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Abstract. Texture description is a challenging problem in computer vision and
pattern recognition. The task of texture classification is to classify texture into
the class it belongs to, which is influenced by variations in scale, illumination,
and changes in perspective. There are many texture descriptors in the literature.
In this paper, we combine five texture descriptors for texture classification, which
obtained better performance than the single descriptor at the price of high dimen-
sionality. To solve this problem, we proposed a novel unsupervised feature selec-
tion method based on local structure and low-rank constraints, which can not
only reduce the dimensions but also further improve the classification accuracy.
To evaluate the performance of combing multiple descriptors and the proposed
feature selection method, we design a variety of experiments in two typical tex-
ture datasets, namely KTH-TIPS-2a and CURET. Finally, the result shows the
proposed method outperforms the state-of-the-art methods.
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1 Introduction

Texture classification is still a difficult problem in computer vision and pattern recogni-
tion. The task of it is to assign a class label to the texture category it belongs to. Recently,
a lot of texture feature descriptors have been proposed in the literature [1–6]. One of the
most famous texture descriptors is the Local Binary Patterns (LBP) [1], which describes
the neighborhood of an image pixel by comparing its gray value with the neighborhood
pixels near it and finally forming a binary code. Except for texture classification, the tex-
ture descriptors have been employed to solve other vision tasks, such as object detection,
face recognition, and defect detection.

Texture description may suffer the impact of multiple factors, such as variations in
scale, illumination, and changes in perspective, whichmakes the single texture descriptor
not fit all the situations. People try to combinemultiple features to solve this problem [7].
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In this paper, we proposed to use a set of complementary feature descriptors to extract
features.

Combing multiple texture descriptors may cause the dimension to be too high. To
solve this problem, we proposed a novel feature selection method. Inspired by the recent
development of low-rank constraint representation [8], we design low-rank constraints
to learn the global structure of feature space and remove the noise. Additionally, local
structure plays an important role in feature selection [9]. We design local structure
learning by combing the Euclidean distance with the KNN graph. As our experiments
show, the proposed method can select more informative features.

In this paper, we proposed to combine multiple texture descriptors to improve the
performance compared to single texture descriptors. Moreover, we designed a novel fea-
ture selection method to reduce the dimension without loss of accuracy. Those improve
the accuracy in texture classification.

The rest of the paper is organized as follows. In Sect. 2, we present related work
focusing on texture descriptors and feature selection. Section 3 describes the multiple
texture descriptors. In Sect. 4, we introduce the feature selection method we proposed.
The experimental results are shown in Sect. 5. Finally, we provide the conclusion in
Sect. 6.

2 Related Work

Our texture classification framework involves texture feature description and feature
selection. In this section, we will discuss them separately.

2.1 Texture Descriptors

Texture descriptors reflect the spatial distribution of image pixels. Recently, a variety
of texture descriptors have been proposed. In [1], a multiresolution approach based on
LBP was also proposed for rotation invariants texture classification. Because of LBP’s
simplicity and efficiency, lots of variants have been proposed, such as CLBP [2]. In
[3], a method based on a deep convolution network consisting of computing successive
wavelet transforms and modulus nonlinearity was proposed for invariance to scaling.
Moreover, people also introduced a method that uses vector quantization based on the
lookup table for texture description [10].

It is an interesting problem to fuse multiple texture descriptors for robust classifica-
tion. For example, Li [11] uses the combination of HOG, LBP, and Gabor features for
gender classification. We also use the combination of descriptors for feature extracting.

2.2 Feature Selection

Feature selection is amethod that reduces the dimensionality by selecting a subset ofmost
informative features, which may improve the efficiency and accuracy of classification.

In terms of label availability, feature selection methods can be classified into super-
visedmethods and unsupervisedmethods. The supervisedmethods can effectively select
discriminative features to distinguish samples from different classes. However, with the
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absence of a class label, it is difficult for the unsupervised methods to define feature
relevance. To solve this problem, one of the criteria is to select the features which can
preserve the data similarity or manifold structure in the original feature space [12].
These methods always generate cluster labels via clustering algorithms to guide the
feature selection, such as MCFS [13] and UFSwithOL [14].

However, thesemethodsmay have a common drawback, that is, they ignore the effect
of noise on the estimation of data’s underlying structures. To solve this problem, we pro-
posed a novel unsupervised method to learn global and local structures simultaneously,
and remove the noise from data.

3 Multiple Texture Descriptors

In this selection, we show the multiple texture descriptors and the representation con-
structed by them. Similarity to the paper [15], we combine five texture descriptors, which
are completed local binary patterns (CLBP) [2], wavelet scattering coefficient (SCAT)
[3], binary Gabor pattern (BGP) [4], local phase quantization (LPQ) [5] and binarized
statistical features (BSIF) [6]. They are briefly described below.

• CLBP: The completed local binary patterns (CLBP) extends the conventional LBP
operator, which incorporates local difference and sign-magnitude transform informa-
tion (LDSMT). The LDSMT further consists of two components, the difference sign
and difference magnitude, which is encoded by a binary code. Similar to the conven-
tional LBP, a region is also represented by its center pixel encoded by a binary code
after global thresholding. Finally, the image is represented by the concatenation of
three binary codes, which form a single histogram.

• SCAT: The wavelet scattering coefficient is a joint translation and invariant represen-
tation of image patches. It is implemented with a deep convolution network, which
computes successive wavelet transforms and modulus nonlinearity. Invariants to scal-
ing, shearing, and small deformations are calculated with linear operators in the scat-
tering domain. SCAT obtains excellent results on texture databases with uncontrolled
view conditions.

• BGP: The binary Gabor pattern is an efficient and effective multi-resolution approach
to gray-scale and rotation invariant texture classification. Unlike MR8 filters [16],
BGP uses predefined rotation invariant binary patterns without the pre-training phase.
To counter the noise sensitivity, BGP adopts the difference of regions instead of the
difference between two single pixels.

• LPQ: The local phase quantization is based on quantizing the phase information of
the local Fourier transform. It is a powerful image descriptor and robust against the
most common image blurs. LPQ is showed to provide excellent results for texture and
face recognition tasks.

• BSIF: The binarized statistical features computes a binary code for each pixel by
linearly projecting local image patches onto a subspace, whose basis vectors are
learned from natural images via independent component analysis, and by binarizing
the coordinates in this basis via thresholding. The number of basis vectors determines
the length of the pixel binary codes which are used to construct the final histogram of
an image.
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In our paper,we slightly modified the scope of the CLBP descriptor, calculating the
coded values of the inner and outer circles, which makes it have multi-scale effects. We
called it CLBP_ext, and others remain the same. Then, each image is represented by the
five texture description methods. The final representation is obtained by concatenating
all five representations into a single histogram, H = [h1, h2, h3, h4, h5]. This histogram
is the original multi-textured description, namely xi, and then we optimize it.

4 Unsupervised Feature Selection of Local Structures
and Low-Rank Constraints

In this selection, we use an unsupervised feature selection method to optimize the orig-
inal texture features. Compared with the supervised method, the unsupervised feature
selectionmethod paysmore effort to find themost informative features.With the absence
of a class label, the selected features should maintain the internal structure as the data
presented by the feature before selected.

To solve this problem, we propose to use low-rank constraints to preserve the global
structure and adjust the local structures with the heat kernel function calculated by the
k-nn graph.

Let X = {x1, x2, . . . , xn} ∈ Rd×n be the data matrix with each column corre-
spond to the data instance xi and row to feature. Then we summarize some notation and
norms used in the following selections. The bold uppercase characters are used to denote
matrices, and the bold lowercase characters to denote vectors. For an arbitrary matrix
M ∈ Rm×n, Mij means the (i, j)-th entry of M, mi means the i-th column vector of M
andmT

j denotes the j-th row vector of M. The l2,1-norms of matrix ||M||2,1- is defined as
∑m

i=1

√∑n
j=1M

2
i,j

4.1 Global Low-Rank Constraints

In the last few decades, people proposed lots of algorithms to analyze the global structure
of data, such as PCA. Recently, the similarity preserving feature selection framework has
demonstrated promising performance, which selects a feature subset with the pairwise
similarity between high-dimensional samples. However, much redundant information
and noise exist in the original high dimensional space.

Inspired by the recent development of low-rank constraint representation [8], we
use the low-rank reconstruction to extract the global structure of data and remove noise.
According to the theory of latent low-rank representation [17], we can get the below
function:

min
Z,L,E

‖Z‖∗ + ‖L‖∗ + λ‖E‖2,1 (1)

s.t.X = XZ + LX + E

where Z ∈ Rn×n is the low-rank matrix, L is used to extract salient features, and E
is the noise component, λ is used to balance the noise component. Compared with
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pairwise similarity, the low-rank representation can remove the noise in the samples and
represent the principal feature in the data. Finally, the optimal solution can be obtained
by the iterative method.

To preserve the global and low-rank reconstruction structure, we propose a row
sparse feature selection and transformation matrixW ∈ Rd×c to reconstruct it, and get

min
W

∥
∥
∥WTX −WTXZ

∥
∥
∥
2 + β‖W‖2,1 (2)

s.t.WTXXTW = I

where β is a regularization parameter to ensure that matrix W is row sparse, and WTX
denotes low dimensional space after dimension reduction. From Eq. (2), the global
structure captured by Z can lead to finding the principle feature. Without noise, global
structure estimation can be more accurate.

4.2 Local Structure Learning

Recently, the importance of preserving local geometric data structures in feature dimen-
sionality reduction has been well recognized [9, 18], especial when transforming high-
dimensional data to a low-dimensional space for analysis. What’s more, the local geo-
metric structure of data can be considered as a data-dependent regularization of the
transformation matrix, which leads to maintaining the local manifold structure.

In this paper, we first build a KNN graph with Heat kernel weight. Then, we can get

the weight matrix P ∈ Rn×n. For each data sample xi, only k nearest points
{
xj

}k
j=1 are

considered its neighborhood with weight Pij. In the original feature space, the following
equation can obtain minimum value:

∑

i,j

∥
∥xi − xj

∥
∥2
2Pij (3)

With the weight matrix P, the induced Laplacian LP = DP − (
P + PT

)
/2 can be used

for local manifold characterization, where DP is a diagonal matrix whose i-th diagonal
element is

∑
j (Pij + Pji)/2.

To maintain the local structure after dimension reduction, we propose to recognize
Eq. (3) as a regularization with transformation matrix W, and we get

min
W

∑n

i,j

∥
∥
∥WTxi − WTxj

∥
∥
∥
2

2
Pij (4)

Thus, the optimization problem of Eq. (4) can be considered as a local structure
learning.

Based on the low-rank constraints and local structure learning presented in Eq. (2)
and Eq. (4), we propose a novel unsupervised feature selection method by solving the
following optimization problem:

min
W

∥
∥
∥WTX − WTXZ

∥
∥
∥
2 + α

∑n

i,j

∥
∥
∥WTxi − WTxj

∥
∥
∥
2

2
Pij + β‖W‖2,1 (5)
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s.t.WTXXTW = I

where α and β are regularization parameters balancing the fitting error of local structure
learning and sparsity of transformationmatrixW. It can be seen that ourmethod removes
the noise by low-rank constraints and learns global and local structure simultaneously.

4.3 Optimization Algorithm

With the only variable to be solved, it is easy to derive the approximate optimum solution
in an iterative way. Let LZ = (I − Z)(I − Z)T , LP = DP − (

P + PT
)
/2 and L =

LZ + αLP, the Eq. (5) can be rewritten as:

min
W

Tr(WTXLXTW) + β‖W‖2,1 (6)

s.t.WTXXTW = I

With the t-th estimation Wt , and denote DWt be a diagonal matrix whose i-th diagonal
element is 1

2‖wt
i‖2 , the Eq. (6) can be rewritten as:

min
W

Tr(WTX
(
L + βDWt

)
XTW) (7)

s.t.WTXXTW = I

The optimal solution of W are the eigenvectors corresponding to c smallest eigenvalues
of generalized eigenproblem:

X
(
L + βDWt

)
XTW = �XXTW (8)

Where � is a diagonal matrix whose diagonal elements are eigenvalues.
The complete algorithmof the feature selectionmethod is summarized in algorithm1.

Algorithm 1 This paper’s feature selection method
Input: The data matrix , the regularization parameters , the dimension 

of the transformed data c, the parameter k of KNN.
1) Compute Z by Eq. (1);
2) Compute P by KNN graph with Heat kernel weight;
3) repeat

Update W by Eq. (8);
until Converges

Output: Sort all the d features according to in descending or-
der and select the top m ranked features

5 Experiments

In this section, we conduct extensive experiments to evaluate the performance of the
proposed multiple descriptors combination and feature selection method in texture
classification.
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5.1 Data Sets

To validate the proposed method, we use the following two texture datasets, namely
KTH-TIPS-2a [19] and CURET [20]. The KTH-TIPS-2a dataset consists of 11 texture
categories with images at 9 different scales, 3 poses, and 4 different illumination con-
ditions. According to the standard protocol [21], we randomly select 1 sample for the
test and the remaining 3 samples for training. The CURET dataset consists of 61 tex-
ture categories, 92 images per class. We randomly select 46 images for training and the
remaining for the test. The example images are shown in Fig. 1.

Fig. 1. Example images from KTH_TIPS_2a (up) and CURET (down)

Throughout our experiments, we use one-versus-all SVM using the RBF kernel [22].

5.2 Combining Multiple Texture Features

We start by showing the results for multi-texture representations. They are presented in
Table 1. Compared to other single texture features, BGP provides the best performance.
And the combination of five texture features significantly improves the classification
accuracy. Although BSIF provides the worst performance, it still improves the accuracy
of the combination. The results suggest that different texture representations possess
complementary information, we should make good use of it.

5.3 The Effect of Feature Selection Method

As shown above, the combination of features improves the accuracy at the price of high
dimensionality. We use the proposed unsupervised feature selection method to remove
the redundancy features and reduce dimensions. How many dimensions are appropriate
is an open question. In this paper, we reduce the final dimension to 300. We set the
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Table 1. Classification accuracy (%) of different texture representations and their combinations

Method Dimension KTH-TIPS-2a CURET

CLBP_ext
SCAT
BGP
LPQ
BSIF

432
391
216
256
256

69.25
76.48
82.13
73.42
58.42

97.01
98.64
98.82
96.65
96.29

CLBP_ext + SCAT
CLBP_ext + SCAT + BGP
CLBP_ext + SCAT + BGP + LPQ
CLBP_ext + SCAT + BGP + LPQ + BSIF

823
1039
1295
1551

72.52
75.74
76.19
84.72

98.61
98.97
99.14
99.47

Table 2. Classification accuracy (%) obtained with and without feature selection method

Method Dimension KTH-TIPS-2a CURET

Original texture
feature

1551 84.72 99.47

Feature after
selection

300 87.69 99.29

parameters k = 5, λ = 0.1, α = 0.1, β = 0.5, and c is set to be the number of classes.
The result is shown in Table 2.

The result showsour selectionmethod reduces the dimensionswithout any significant
loss in accuracy. Especially, on theKTH-TIPS-2a, our feature selectionmethod improves
the performance by 2.97% compared to the original representation.

To evaluate the effect of the local structure learning, we design the experiments with
and without local structure learning. The result is shown in Table 3. The result shows
that local structure learning improves performance, especially in KTH-TIPS-2a.

Table 3. Classification accuracy (%) obtained with and without local structure learning

Method KTH-TIPS-2a CURET

Without local structure learning 85.37 99.25

With local structure learning 87.69 99.29

Additionally, we also compare our feature selection method with other classical
feature selection methods, such as CFS [23], MCFS [13], UDFS [24] and UFSwithOL
[14]. We provide a brief introduction to the above methods:

• CFS: a correlation-based feature selection method.
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• MCFS: it selects the features by adopting spectral regression with l1-norm regular-
ization.

• UDFS: it exploits local discriminative information and feature correlations simulta-
neously.

• UFSwithOL: it uses a triplet-based loss function to enforce the selected feature groups
to preserve the ordinal locality of original data.

Table 4 shows all 4 feature selectionmethods can reduce texture features’ dimensions
to 300, but they may cause varying degrees of decline in accuracy, especially MCFS.
Our feature selection method significantly outperforms other methods.

Table 4. Classification accuracy (%) of different feature select methods

Method Dimension KTH-TIPS-2a CURET

CFS
MCFS
UDFS
UFSwithOL

300
300
300
300

81.57
79.63
85.46
84.63

99.03
97.90
99.00
98.79

The
proposed

300 87.69 99.29

5.4 Computation Cost and Parameter Sensitivity

The experiment was running on a machine with Window10, Matlab R2018a, NVIDIA
GeForce GTX 1080, Intel (R) Core (TM) i5-9400 CPU @ 2.90 GHz, 8 GB RAM. We
recorded the time to solve Eq. (5) in the two data sets. It took 16.26 s in KTH_TIPS_2a
and 14.57 s in CURET. Moreover, the classification accuracy is not very sensitive to
λ, α and β in wide ranges.

5.5 Comparison with State-of-the-Art

Table 5 shows the classification accuracy of various methods on two databases, which
come from either original or related publications. It can be seen that our texture
classification method outperforms typical and state-of-the-art methods.
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Table 5. Classification accuracy (%) of variousmethods, and “-”means the lack of related original
or publication

Method KTH-TIPS-2a CURET

MR8 [16]
RP [25]
SIFT + IFV [26]
DMD + IFV [26]
LHS [27]
COV-KLBPD [28]
scLBP [29]
NDV [30]
LZMHPP [31]

-
-
76.6
80.3
73
74.9
78.4
77.1
-

93.5
98.5
98.1
98.4
-
-
-
-
98.38

The proposed 87.69 99.29

6 Conclusion

In this paper, we introduce a novel idea of fusing complementary texture features, which
significantly improves the accuracy of texture classification. To reduce the dimensions
of fusing texture features without loss of accuracy, we proposed a novel unsupervised
feature selection method. We use low-rank constraints to learn global structures, and
design a regularization to learn local structure simultaneously. Finally, our experimental
results demonstrate that the framework combining multiple texture features and feature
selection outperforms the state-of-the-art in texture classification.

In the future, we plan to design a feature complimentary evaluation method, which
helps us to find more complementary features and further improves classification accu-
racy. Moreover, we plan to validate the performance of our feature selection method in
a wider dataset.
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