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Abstract. Face recognition have been developed rapidly, launched by
the breakthrough of Deep learning based face representation method.
However, disguised face verification in the wild is still a challenge prob-
lem. To address this issue, we propose a novel deep feature based dis-
guised face recognition scheme (DDFR). DDFR introduces the multi-
scale residual network with AM-softmax loss for learning face represen-
tation. In training stage, we put the different occlusions (mask, sunglasses
and scarf et al.) on clean face images to enhance the diversity of training
set. Meanwhile, both aligned face image and un-aligned face image are
combined to improve the discriminative power of feature representation
for disguised face verification. Experimental results demonstrate that the
proposed method achieves the better results than state-of-the-art meth-
ods on the DFW (disguised face in the wild) set.

Keywords: Disguised face verification · Face alignment · Add face
occlusion · Multi-scale feature extraction

1 Introduction

Face recognition has been a hot topic in the field of computer vision and has
been widely used in public security and finance. Recently, Deep learning based
representation methods achieve the landmark breakthrough in face recogni-
tion [3,10,12,18]. This achievement is mainly due to the applications of a better
convolutional neural network architecture [6,13,16,17] and a more restrictive
loss function. However, disguised face recognition is still a challenging problem
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since it contains personal unconscious or conscious cover of the face to hide
personal identity, as well as one person imitates another to deceive the face
recognition system. In this task, large intra-class distance and small inter-class
distance make unconstrained disguised face verification very difficult. To solve
this problem, there are many works have been developed, ranging from the sparse
representation based method to deep convolutional neural network, in the past
decades.

In the literature, Wright et al. [19] proposed a sparse representation based
method to handle face recognition with real-disguise. To further improve the
robustness of the sparse model, robust sparse representation models are devel-
oped for robust face recognition by using M-estimator to characterize the error
term [7,21]. Subsequently, Yang et al. [20] employed nuclear norm to describe the
error term and presented a novel nuclear norm based matrix regression model to
solve facial images contain disguise or occlusion. Qian et al. [11] introduced the
low rank regularized term to ridge regression for solving disguise face recognition.
However, these methods overlooked open sets of subjects, which is limited for
real world applications. To facilitate the research of unrestricted disguised faces
recognition, Kushwaha et al. [9] proposed a novel Disguised Faces in the Wild
(DFW) dataset. DFW is mainly used to evaluate the performance of various
methods in dealing with disguised face recognition. The authors of DFW also
organize a competition [14] in conjunction with the International Conference
on Computer Vision and Pattern Recognition (CVPR) 2018. Based on DFW,
many deep learning based methods are developed to solve disguised face verifi-
cation. Zhang et al. [23] proposed a two-stage training approach for this task.
At the first stage, they employed generic aligned face images and unaligned
face images to train two 64-layer DCNNs [10] in conjunction with AM-Softmax
[18]. At the second stage, PCA is used to obtain the low dimensional com-
pact feature representation. Smirnov et al. [15] proposed a new deep embedding
learning method for disguised face recognition. They used general face images to
train AEFANet with Auxiliary Embedding. Bansal et al.[1] combined ResNet-
101 [6] and Inception-ResNet-v2 [16] with L2-constrained Softmax for handling
disguised face verification (Fig. 1).
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Fig. 1. The proposed Deep feature based disguised face recognition scheme (DDFR).
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However, above mentioned methods use nearly ten million face images to
learn the face representation model. To further improve the disguised face veri-
fication performance, this paper presents a novel method for capturing intrinsic
feature of face image with little training data as possible. The main contributions
of our work are as follows:

– We propose a multi-scale residual (MSR) block to capture more detailed
facial features for improving the performance to distinguish the person and
its impersonator.

– We put the different face occlusions (mask, sunglasses and scarf et al.) on
clean face images to enhance the diversity of training set and increases the
intra-class differences of training set.

– We combine the feature of aligned face image and unaligned face image to
improve the discriminative power of feature representation for disguised face
verification. Experimental results on the DFW dataset demonstrate that our
method achieves better performance than state-of-the-art methods.

2 Deep Disguised Face Verification Framework

In this section, we introduce the multi-scale feature representation method for
obtaining more detailed facial features. The facial occlusion synthesis scheme is
proposed to enrich the diversity of training set. Finally, we fuse the features of
aligned facial image and unaligned facial image into one disguised face verifica-
tion framework.

2.1 Multi-scale Feature Extraction to Capture More Facial Details

As well known, ResNet is a good tool to capture the image feature with deeper
network [6]. Based on this, W. Liu et al. developed ResNet-like block by com-
bining 3× 3 convolution kernels with a residual unit for face representation and
achieved remarkable results [10].
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Fig. 2. (a) Our MSRN structure. (b) Our Multi-scale Residual Block. (c) ResNet-like
Block. (d) Inception-ResNet-A Block.
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ResNet-like block motivates us to design the multi-scale residual block for
matching faces with intentional and unintentional disguises. Compared with
ResNet-like block, our multi-scale residual block includes convolution kernels
of different sizes and employs the different nonlinear transform to combine the
features. The schema of Multi-scale Residual block has to be shown in Fig. 2 (b).
Suppose that there are 64 feature maps and the size of each feature map is 80 ×
80 as the input of this block. Based on this, we convolved the feature map with
three different scale convolution kernels. The number of convolution kernels for
each scale is 21. Then, we connect the convolved feature maps together and use
3× 3 convolution kernels to further represent the connected feature maps. Here,
the number of convolution kernels is 64. Finally, all the convolved feature and
the input feature maps are added together as a whole.

The main difference between Multi-scale Residual block and Inception-
ResNet block is that the Inception-ResNet block draws the idea of Network-in-
Network to reduce dimension, it should use a 1×1 size convolution kernel before
and after using a multi-scale convolution kernel. The structure of Inception-
Resnet-A is shown in Fig. 2 (d). In addition, Multi-scale Residual block can cap-
ture rich facial feature than Inception-ResNet block. The experiments in Sect. 3
also support our view.

(a) The process of adding occlusion (b) Some synthetic occluded face images  

LabelMe

Fig. 3. The pipeline of facial occlusion synthesis and some synthesized results.

(a) The occlusion styles: glasses, mouth-muffle, gestures, masks, and other materials from left to right. 

(b) Some synthesized occluded face images are used to train the occlusion 
detection network. 

(c) Some detection results of Res-Unet on
DFW testing set.  

Fig. 4. The various of occlusion styles. Our synthesize training set of Res-Unet and
some detection results of Res-Unet.
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2.2 Facial Occlusion Synthesis

In the task of disguised face recognition, the person can wear glasses and masks
to weaken its distinguishability, and the pretender can also increase the similarity
between itself and the imitated person in this way. In DFW, it is easy to lead
the overfitting problem since the diguised face images in the training set are
limited. In general, most methods use a large number of face images without
disguise in training stage. To fit the complex face data in the disguised face test
set, the previous work only expand the number and category of face images in
the training set.

Here, we just put occlusions on partial of clean face images to enrich the
diversity of the training set for improving the disguised face verification perfor-
mance. To ensure the authenticity of facial occlusion synthesis, we employs the
LabelMe to obtain the occlusion part and then synthesized the facial occlusion
images as shown in Fig. 3 (a). Specifically, we collect face images with different
occlusions from the training set of DFW, MAFA [5] and NUST-RF dataset. All
face images are aligned by using the same face alignment method. There are 285
occlusion styles, including glasses (55), mouth-muffle (53), masks (53), gestures
(55), and other materials (69). Some face images shows in Fig. 4(a). Then, the
LabelMe is employed to mark the occlusion’s position in the face image. Sub-
sequently, we can obtain the synthesed occlusion face by combing the occlusion
and clean face images.

To add an appropriate proportion of face images with occlusion to the train-
ing set, we propose that the rate of occluded face images in the training set
should be consistent with the test set. We introduce an occlusion detection net-
work (the backbone is Res18-Unet [4]) to detect whether the images in the test
set are occluded and further count the proportion of face images containing
occlusion in the test set. And then we randomly select the same proportion face
images of each person in the training set to put occlusion on them. For occlusion
detection network, the training set is composed of various occlusion styles and
100,000 face images without occlusion from CASIA-WebFace [22] dataset. Some
occlusion detection results of the network on DFW are shown in Fig. 4 (c).

2.3 Aligned and Unaligned Face Feature Fusion

It is known that aligned face images have the advantage of eliminating posture
changes compared to unaligned face images, which makes the model pay more
attention to details such as facial texture. However, the unaligned face images
possibly contain some irregular discriminative information. We think that the
irregular discriminative information of unaligned face image and the discrimi-
native information of aligned face image can be combined together to further
improve the discriminative power of face representation. Finally, PCA is then
used to achieve the low-dimensional feature vector.
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Normal Validation Disguised Impersonator

Fig. 5. Some example images of Disguised Faces in the Wild. It consists of four kinds
of images: normal, validation, disguised and impersonator.

3 Experiments

3.1 Disguised Faces in the Wild Dataset

The Disguised Faces in the Wild (DFW) data set includes 11157 images from
1000 different identities. Among them, the training set contains 3386 face images
of 400 people. And the test set includes 7,771 face images of 600 people. Most of
the identities have four kinds of face images: Normal, Validation, Disguised and
Impersonator. These four types images are shown in Fig. 5.

There are three pre-defined protocols. Protocol 1 aims to evaluate the perfor-
mance of face verification methods under impersonation only. There are 25,046
pairs of face images for this protocol. In Protocol 2, the given face verification
methods are evaluated for disguises via obfuscation only. The number of image
pairs is 9,041,283 for this protocol. And Protocol 3 is used for evaluating the
given methods on the whole dataset. The total number of image pairs for this
protocol is 9,066,329.

3.2 Experimental Settings

Mini Training Set. The mini training set is designed to facilitate the ablation
study. This training set is composed of CASIA-WebFace [22], PubFig [8] and
the training set of DFW [9]. We removed the identities overlap between training
set and testing set strictly according to provided identity names. More details
for removing the overlap identities can be found in AM-Softmax paper [18]. The
final generic mini training dataset includes 10,397 identities and 444,895 (0.44M)
face images.

Big Training Set. This set is an extension of the mini training set. The
expanded images are all from the VGGFace2 data set [2]. Compared with Mini
training set, there are another 8047 persons and each person have about 200 face
images. The final expanded big training set includes 18444 people and about
2,039,485 (2.04M) face images.
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Training Setting. In our experiments, all face images are resized to 160×160.
AM-Softmax is used in our model. The parameters m (cosine margin constrain)
is 0.35 and s (norm-scale of features) is 30. The batch size is 24 for the mini
training set and the large training set. For the mini training set, the learning rate
starts from 0.1 and is divided by 10 at 140K, 180K iterations and the maximum
iterations is 200K. For the large training set, to make full use of this data set, the
learning rate starts from 0.1 and is divided by 10 at 700K, 900K iterations, and
the maximum iterations are 1M. In addition, we use random horizontal flipping
for data augmentation. For PCA, we select the first 250 eigenvectors to form the
projection matrix.

3.3 Experimental Results

We compare our verification results on DFW with state-of-the-art methods pub-
lished in DFW competition. The compared results are shown in the Table 1.
And the ROC curves on the mini training set and the big training set are shown
in the Fig. 6.

We can see from the Table 1 that when the training set is 0.44M, our method
outperforms Occlusionface on three protocols. Specifically, our method is 13%
higher than the Occlusionface at 0.1% FAR on Protocol-1. On Protocol-2 and
Protocol-3, our method is 6% and 7% higher than the Occlusionface at 1%FAR
and 0.1%FAR, respectively. It is worth mentioning that even with 0.44M training
set, our method is nearly 6% higher than UMDNet whose training set is 5.6M
at 0.1% FAR on Protocol-1. And the results of our method on other protocols
are also similar with UMDNets.

When the number of face images in the training set increases to 2.04M,
the results of our method on three protocols are obviously better than UMD-
Nets. Compared with the AEFRL whose training set is 8.3M, even through our
methods is 0.5% lower than AEFRL at 0.1% FAR on Protocol-1, our method is
2%–4% higher than AEFRL at FARs on Protocol-2 and Protocol-3. Compared
with MiRA-Face whose training set is 7.6M, our method is nearly 1% higher
than MiRA-Face at 1% FAR and is 9% higher at 0.1% FAR on Protocol-1. On
Protocol-2 and Protocol-3, the results of our method are only a tiny difference
with MiRA-Face. Overall, our method outperforms other state-of-the-art meth-
ods with less training set.

3.4 Ablation Study

Effect of Face Alignment Scale. We use two different face alignment scales
(one contains hair and face contours, and the other remove these two parts)
to train our multi-scale residual network model, and compare their verification
results on DFW test set.

From Table 2, we can see that the alignment scale of the face without hair
shows a clear advantage on three protocols. On Protocol-1, the alignment scale
of without hair part is nearly 5% higher than the face images with hair part at
0.1% FAR. On Protocol-2 and Protocol-3, the alignment scale without hair is
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Table 1. Verification accuracy (%) of our method and other published methods on
three protocols

Method Protocol-1 GAR Protocol-2 GAR Protocol-3 GAR

@1%FAR @0.1%FAR @1%FAR @0.1%FAR @1%FAR @0.1%FAR

AEFRL (8.3M) 96.80 57.64 87.82 77.06 87.90 75.54

MiRA-Face (7.6M) 95.46 51.09 90.65 80.56 90.62 79.26

UMDNets (5.6M) 94.28 53.27 86.62 74.69 86.75 72.90

Occlusionface (0.52M) 93.44 46.21 80.45 66.05 80.80 65.34

DDFR (0.44M) 93.86 59.23 86.14 73.43 86.35 72.47

DDFR (2.04M) 96.30 60.84 90.19 80.61 90.30 79.57

Fig. 6. ROC Curves for three protocols on the mini training set and the big training
set

2%–5% higher than that with hair at FARs. In general, the face images without
the hair part can achieve better performance than that with hair cause it can
remove the interference of hairstyle and beard.

Table 2. Verification accuracy (%) of our model trained with different face align scale

Method Protocol-1 GAR Protocol-2 GAR Protocol-3 GAR

@1%FAR @0.1%FAR @1%FAR @0.1%FAR @1%FAR @0.1%FAR

With hair scale 91.30 51.55 80.47 64.52 80.86 63.88

Without hair scale 92.87 55.48 83.09 69.07 83.38 68.50

Effect of Different Feature Extraction Block. To compare the feature
extraction capabilities of MSR block, Resnet-like block and Inception-Resnet-
A block, we prepare three different models. The first one is MSRN, then we
replace the MSR block in the MSRN with Resnet-like block and Inception-
Resnet-A block to construct Resnet-like model and Inception-Resnet-A model,
respectively. The structures of these three blocks are shown in Fig. 2. And the
verification results of the three models on the DFW test set are shown in Table 3
(Fig. 7).
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Fig. 7. ROC curves for three protocols with different face alignment scale

We can find that whether on Protocol-1 (impersonation) or Protocol-2 (obfus-
cation), MSR Block has stronger feature representation capabilities than the
other two network Blocks. Especially on Protocol-1, the model with the MSR
Block is 4.5% higher than the ResNet-like Block model and 7% higher than the
Inception-Resnet-A Block model at 0.1% FAR (Fig. 8).

Table 3. Verification accuracy (%) of ResNet-Like Block (R-L Block), Inception-
Resnet-A Block (I-R-A Block), and our MSR Block on three protocols.

Method Protocol-1 GAR Protocol-2 GAR Protocol-3 GAR

@1%FAR @0.1%FAR @1%FAR @0.1%FAR @1%FAR @0.1%FAR

R-L Block 90.88 50.98 81.48 67.14 81.89 66.72

I-R-A Block 91.93 48.44 81.77 67.51 82.11 67.04

MSR Block 92.71 55.48 83.09 69.07 83.38 68.50

Fig. 8. ROC curves of different blocks on three protocols

Effect of Increasing the Rate of Occluded Face Images. To understand
the impact of different proportions of synthetic occluded face images in the
training set on the model’s disguised face verification results, we compare three
different rates 5%, 20% and 100%. Among them, 5% is also the rate of occlusion
images in the DFW test set.
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We can see that when we keep the rate of the occluded face images in training
set consistent with the proportion of the occluded face images in the DFW test
set, the effectiveness of our model on disguised face verification tasks is improved.
However, when we increase the proportion of synthetic occluded face images
synthesized in the training set to 20% and 100%, the verification performance
of the model on the DFW test set decreases. On Protocol-1, our model trained
with 5% synthetic occluded face images is 2% higher than the model trained
with ordinary face images at 0.1% FAR. On Protocol-2 and Protocol-3, our
model trained with 5% synthetic occluded face images is 1% higher than the
model trained with ordinary face images at 0.1% FAR. Therefore, it is effective
to add synthetic occlusion face images to the training set. However, the ratio
of the added synthetic occlusion images should be consistent with the occlusion
image ratio in the test set (Table 4).

Table 4. Verification accuracy (%) of our model trained with or with out occlusion
faces

Method Protocol-1 GAR Protocol-2 GAR Protocol-3 GAR

@1%FAR @0.1%FAR @1%FAR @0.1%FAR @1%FAR @0.1%FAR

Ordinary face 93.64 57.20 85.95 72.47 86.09 71.65

Occluded face (20%) 93.03 55.66 86.11 72.46 86.26 71.58

Occluded face (100%) 91.54 52.85 82.52 65.77 82.74 65.06

Occluded face (5%) 93.86 59.24 86.14 73.43 86.35 72.48

Effect of Facial Feature Fusion. We train aligned MSRN model and
unaligned MSRN model by using aligned and unaligned face images, respec-
tively. Then, we merge the aligned and unaligned face features in the embedding
layer and use PCA to achieve the compressed feature. The verification results
of these three methods on the DFW test set are shown in the Table 5. And the
ROC curves of these three methods on the three protocols are shown in Fig. 9.
On Protocol-1, the feature fusion method is 4% higher than aligned MSRN
model and 2% higher than unaligned MSRN model at 0.1% FAR. On Protocol-
2, the feature fusion method is 3% higher than aligned MSRN model and 5%
higher than unaligned MSRN model at 1% FAR. And at 0.1% FAR, the GAR
of feature fusion method is 4% higher than aligned MSRN model and 8% higher
than unaligned MSRN model. In general, the feature fusion method has more
advantages than the single feature method.
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Table 5. Verification accuracy (%) of our model trained with aligned face images,
unaligned face images and feature fusion of both.

Method Protocol-1 GAR Protocol-2 GAR Protocol-3 GAR

@1%FAR @0.1%FAR @1%FAR @0.1%FAR @1%FAR @0.1%FAR

Unalign 92.70 57.20 80.75 64.91 81.03 64.21

Align 92.87 55.48 83.09 69.06 83.38 68.50

Fusion+PCA 93.86 59.24 86.14 73.43 86.35 72.47

Fig. 9. ROC curves of aligned face feature, unaligned face feature and feature fusion
of both for three protocols

4 Conclusion

In this article, we propose a multi-scale residual network and a method of adding
real occlusion to the training set for disguised face verification. Compared with
the deep metric learning method, our proposed method enriches the facial feature
by using multi-scale residual blocks and increases the diversity of training set
samples by adding real occlusion on a clean face. Another advantage is that our
method uses fewer training samples and achieves better results than the state-
of-the-art methods. In future work, we will further investigate how to design
efficient deep face representation model with little training set as possible. It is
always interesting in developing attention neural network to handle disguised
face representation.
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