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Abstract. Visual tracking demands to perform the accurate object location given
the object state of the first frame. The existing methods have proposed various
ways to handle the challenging problems, yet few of them take the relationship
between shallow features and deep semantic features into account. Based on an
extensive analysis, we first propose a residual attention SiameseRPN visual track-
ing method for accurate object state estimation, which introduces the correlation
filter in a Siamese network framework. A novel loss function is presented to
enhance the discriminative capability. Our approach is derived from three differ-
ent loss terms that is capable of training a model in a few iterations. Second, we
present channel attention mechanism to improve the tracking performance, which
is offline trained to capture the general features in the tracking. Third, the proposed
tracking model is trained in end-to-end manner and takes full advantage of both
low-level representation for correlation filter and high-level semantic features for
deep object representation by using multi-task learning strategy which can mine
the relationship from both levels. Our approach benefits from two complementary
effects. Finally, extensive evaluation and ablation studies demonstrate the effec-
tiveness of the proposed tracking approach. Our tracker achieves state-of-the-art
performance on five challenging benchmarks, which proves great potentials in
balancing accuracy and speed.

Keywords: Surveillance · Deep learning · Correlation filter · Siamese network ·
Attention

1 Introduction

Visual tracking is one of the fundamental tasks in computer vision, and has many practi-
cal applications, such as human-computer interaction, action recognition, scene under-
standing, visual navigation, automatic driving and so on. Although much progress has
been done in the past decade, it still remains challenging for a tracker to work at a high
speed and is robust to complex scenarios including occlusion, illumination variations,
low resolution, background clutter, and motion blur.

Recent deep learning based trackers and correlation filter based trackers have shown
great potential for robust and fast tracking. Although basic CF has a high running speed
due to their element-wise multiplications using Fast Fourier Transform. For complex
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scenarios, however, the accuracy of basic CF trackers often drops considerably. Deep
network model has been widely developed to improve tracking performance due to their
strong feature representation.Most existing approaches rely on the amount of the training
data. The deep network model is extensively trained on large benchmarks offline and
aggressively learned the object sequences online. These approaches have achieved very
good results on some recent challenges.

Despite all these significant progress, most trackers suffer from several weaknesses
and still can’t attain consummate results. First, the training datasets are far smaller than
other visual datasets such as ImageNet. The insufficient training data may cause the deep
network model ineffective when facing all kinds of tracking challenges. Second, deep
features learned offline can’t adapt to specific object or unseen categories well during
the tracking. Third, model updating schemes from these methods inevitably affect the
network model adaptability, which degrades the tracking accuracy and increases the
computationally expensive. These limitations lead to inferior accuracy.

To tackle the above limitations, our contributions can be summarized as follows.

(1) We propose a residual attention SiameseRPN method for visual tracking, which is
an end-to-end deep network architecture. A novel loss function from three different
aspects is presented to enhance the discriminative capability. Correlation filter layer
and semantic feature layer are used to mine the relationship both low-level and
high-level features in multi-task learning framework.

(2) An effective attention mechanism is utilized within the Siamese network architec-
ture, which offline learns feature representations to adapt online object tracking.

(3) Numerous experimental results on five challenging benchmarks show that the
proposed tracking method achieves state-of-the-art performance.

The rest of the paper is organized as follows. In Sect. 2, we review related work of
existing object tracking algorithms. Section 3 briefly introduces the generative adver-
sarial network. In Sect. 3.3, we introduce our approach for visual tracking. In Sect. 4,
we present experimental results in two tracking benchmarks. Finally, Sect. 5 concludes
this paper.

2 Related Work

There are extensive surveys of visual tracking in literature [1, 2]. We mainly discuss the
representative trackers based on deep learning and correlation filters.

Deep Learning Tracking. Deep learning has been widely used to improve tracking
performance. Some tracking methods combine deep learning models with correlation
filters such as HCF [3], DeepSRDCF [4], ECO [5]. Another method formulates tracking
task as a classification or regression problem, including CNN-SVM [6], DeepTrack [7],
FCNT [8], TSN [9]. The advantage of these trackers is that they utilize the superior
representation power of deep features. However, tracking speed is reduced due to online
updating of the deep network model.

Recently some deep model based approaches are trained on videos offline and used
to track the object online through an end-to-end deep network learning such as MDNet
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[10], CFNet [11], RTT [12], ACFN [13]. The aforementioned problems have been most
successfully addressed by Siamese network architecture [14–20]. SINT [14] formulates
tracking task as a verification problem and trains a Siamese network model for object
matching during the tracking. Similar methods include SiamFC [15], SiamRPN++[16],
SiamRPN [17], SiamMN [18], Deeper and Wider Network [19] and SINT++ [20], etc.
The VITAL tracker [21] generates hard samples by using adversarial learning and lever-
ages the class imbalance with an effective loss. These methods advance the development
of end-to-end deep network model and achieve the promising results on some challeng-
ing benchmarks. However, deep network model may suffer from over-fitting due to
deficiency of training data.

Correlation Filter Tracking. Recent advances of correlation filter (CF) have achieved
great success in terms of speed and accuracy [22–34]. We arrange these algorithms in a
hierarchy and classify them into two categories:Basic correlationfilter based trackers and
regularized correlation filter based trackers. Some basic CF trackers have been developed
to boost performance in tracking by using scale estimation [23], spatial constraints [24],
reducing boundary effects [25], and long-term tracking [26]. However, basic CF trackers
are limited in their detection range since they require the filter size and patch size to be
equal. To address this issue, several regularizedCFbased trackers are proposed, including
SRDCF [24], STRCF [27], ACFN [13], DeepSRDCF [4], ECO [5], DMSRDCF [28],
C-COT [29], DCFNet [31], CSR-DCF [30], SAMF [32], MCPF [33], ATOM [34],
etc. Among others, some trackers combine CF with deep features, which have shown
significant improvement.

In this work, we focus on residual attention SiameseRPN for visual tracking. Differ-
ent from the goals of the above mentioned approaches, our multi-stream network archi-
tecture is proposed to address the problem of object drift by using attention mechanism
in the sequences.

3 The Proposed Tracking Method

In this section, we first introduce the network architecture of the proposed approach, and
then give a detailed training process and loss function. Finally, we apply our model to
visual tracking task.

3.1 ResNet Based Siamese Tracking Method

The Siamese network based object tracking methods [14] formulate visual tracking as
a matching problem between the object template and the search area. The similarity
measure is learned from Siamese deep network structure. The object state is usually
given in the first frame of the sequence and can be used as object template z. The goal
is to find the most similar candidates from the following frame x.

f (z, x) = φ(z) ∗ φ(x) + b (1)

where φ() is a semantic embedding space; f () denotes a similarity function; b is bias.
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Furthermore, SiameseRPN [17] is trained with a ResNet-50 backbone by the spatial
aware sampling scheme, which can overcome the translation invariance, asymmetrical
features for classification and regression.

Network Architecture: We utilize ResNet-50 as base network architecture and feature
extractor. Different from the original ResNet which has a large stride of 32 pixels, we
reduce the strides at the last block from 16 pixels and 32 pixels to 8 pixels by modifying
the conv5 block to have unit spatial stride. We crop the center 7× 7 regions as the object
template features to reduce a heavy computational burden on the correlation module.
Furthermore, we fine-tune ResNet to improve the tracking accuracy. The parameters of
deep network model are jointly trained in an end-to-end manner. The flowchart of the
proposed tracker is shown in Fig. 1.

Fig. 1. The flowchart of the proposed tracking method. The intermediate layers in the common
feature extractor have been omitted for clarity.

For the ResNet-50 network model, we utilize multi-level features extracted from the
first residual block and the last residual block for tracking, respectively. The outputs
of two-level features (Conv1, Conv5) are denoted as F1(·), and F5(·), respectively. On
the one hand, object localization is obtained using the correlation filter working on the
low-level fine-grained representations. Correlation filter is carried out as a differentiable
layer. On the other hand, high-level semantic features are extracted from Conv5 and fed
into the SiameseRPN module to achieve classification and regression tasks.

Offline Training: ResNet-50 deep network architecture is pre-trained on the training
datasets of ImageNet, COCO, ImageNet DET and ImageNet VID to learn a general
object feature for object representation. We employ single scale images with 127 pixels
for template patches and 255 pixels for searching regions, respectively. To enhance the
capacity to distinguish distracters of deep network model, we randomly obtain shifting
and scaling following a uniform distribution on the search image as data augmentation
techniques.

Our network model is trained with stochastic gradient descent (SGD). We use a
warm-up learning rate of 0.001 for first 10 iterations to optimize the RPN branches.
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For the last 15 iterations, the whole network is end-to-end trained with learning rate
exponentially decayed from 0.005 to 0.0005. Weight decay of 0.0005 and momentum
of 0.9 are used. We first train our model with for 5 warm-up epochs with learning rate
linearly increased from 10−7 to 2 × 10−3, then use a cosine annealing learning rate
schedule for the rest of 45 epochs.

Discriminative Loss Function: The training loss is optimized from three different
aspects. First, the classification loss and regression loss are written as follows.

LSiamRPN = 1

Npos

∑

x,y

Lcls(px,y, c∗
x,y) + λ

Npos

∑

x,y

1{c∗
x,y > 0} · Lreg(tx,y, t∗x,y) (2)

where Lcls denotes the focal loss for the object classification; Lreg is the IoU loss for the
object location; we assign 1 to c∗

x,y if it is a positive sample;Npos is the number of positive
samples; 1{.} denotes the indicator function that takes 1 if the condition holds and takes
0 if not. tx,y and t∗x,y stands for the object position and ground-truth, respectively.

Second, different from CF that uses hand-crafted features for visual tracking, we
develop to learn low-level feature representation fitting a CF. The features are obtained
by a low-level convolutional layer of CNN model. The loss function is designed by

Llow = ‖g(x) − y‖22 = ‖Xw − y‖22 (3)

where x is a search image; X is the circulate matrix of x for the search image patch; w
is the learned CF.

Third, the high-level semantic is used to measure the similarities between the object
template and the search image. The problem can be further written as the minimization
of the following logistic loss.

Lhigh =
∑

x,z

log(1 + exp(−y(x, z)f (x, z))) (4)

Thewhole network is trained fromend-to-end based on amulti-task learning strategy.
The final loss can be overall formulated as follow.

L = LSiamRPN + Llow + Lhigh (5)

3.2 Channel Attention

A convolutional feature channel corresponds to certain visual information. In some cer-
tain circumstances, some feature channels are more important than others. The channel
attention scheme is to keep the adaptation ability of deep network model to adapt the
object appearance changes. To share a common attention, we propose a channel attention
scheme to assist the object location.

The architecture of the channel attention is shown in Fig. 2, which is composed by
a dimension reduction layer, a ReLU and a dimension increasing layer with sigmoid
activation. Given a set of M channel features F = [

f 1, f 2, . . . , fM
]
, the output of

attention net is obtained by computing channel-wise re-scaling on the input in Eq. (7)
where β is the parameter of the channel attention.

q̄i = βi · qi i = 1, 2, . . . , d (6)
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Fig. 2. The architecture of channel attention mechanism.

3.3 Online Tracking

Given the first framewith annotation, we utilize data augmentation strategies to construct
an initial training set containing 20 positive samples. The object template is then obtained
using the ResNet network architecture which is fine-tuned with the initial training set.

In the tracking phase, when a new input video frame arrives, we crop some large
search patches centered at the previous target position with multiple scales. These search
patches are fed into the ResNet-50 to get their feature representations. The fine-grained
object representation is fed into the correlation filter layer. The semantic representation
is evaluated based on the channel attention mechanism. The object candidate states
x = {x1, x2, . . . , xN } are randomly drawn based on the object position in the last frame.
The candidates are estimated by finding the maximum of the fused correlation response
in Eq. (7).

x∗
t = argmax

i=1,....,M
S(xi) (7)

The candidate with the maximum object confidence score is considered as the track-
ing result. The parameters of deep network model are updated every 20 frames using
positive and negative samples collected in previous tracking frames.

4 Experiments

4.1 Implementation Details

In this work, the proposed method is carried out in Python using Tensorflow and Keras
deep learning libraries. We test our tracker on a PC machine with an Intel i7 CPU (32G
RAM) and an NVIDIA GTX 1080Ti GPU (11G memory), which runs in real-time with
24.8 frames per second (fps). The quantitative analysis and ablation studies are evaluated
in this section.

In the initial training phase, the convergence loss threshold is set to 0.02 and the
maximum iteration number is 50. For the Siamese network framework, we use the
initial object of the first frame as the object template and crop the search region with 3
times of the object size from the current frame. For the scale evaluation, we generate a
proposal pyramid with three scales, i.e., 45/47, 1, and 45/43 times of the previous object
size.
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4.2 Overall Performance

We evaluate our approach with other competing trackers on five challenging tracking
benchmarks, including OTB-100 [40], UAV123 [41], VOT2018 [35], LaSOT [37] and
TrackingNet [45]. The proposed approach is compared with the state-of-the-art trackers,
including the correlation filter based trackers, such as SRDCF [24], MCPF [33], C-COT
[29], ECO [5], and STRCF [27]; the non-real-time deep tracking algorithms such as
MDNet [10], CREST [38], LSART [43], VITAL [21], and DAT [44]; and the real-time
deep learning tracking methods such as ACT [42], SiamFC [15], ATOM [34], CFNet
[11], SiamRPN++ [16], LTMU[36],DaSiamRPN [39], andUPDT [46]. In the following,
we will report the quantitative analysis on these benchmarks.

OTB-100: Table 1 shows the success overlap rate in the dataset. Among the compared
trackers, our tracker obtains an AUC score of 68.1%, competitive with UPDT tracking
method.

UAV123: The benchmark includes 123 low altitude aerial videos captured from a UAV.
The AUC score on this benchmark is reported in Table 1. SiamRPN++ achieves an AUC
score of 61.3%. Our tracker significantly outperforms SiamRPN++ and obtains AUC
score of 63.4%.

Table 1. State-of-the-art trackers on OTB-100 and UAV123 benchmarks in terms of AUC score.

ECO CCOT DaSiam RPN ATOM UPDT MDNet SiamRPN++ Our

OTB-100 64.3 68.2 65.8 66.9 69.2 67.8 68.9 68.1

UAV123 50.6 51.3 58.6 64.4 54.5 52.5 61.3 63.4

VOT2018: We evaluate our tracker on this challenging dataset which consists of 60
video sequences. Accuracy and robustness are used as measures to evaluate the tracking
performance. EAO (Expected Average Overlap) is obtained to rank trackers. Results are
given in Table 2. We can see that SiamRPN++ achieves the best performance in terms of
accuracy. However, it obtains inferior robustness compared with ACT and ATOM. Our
tracker has a 15.1% lower failure rate, while achieving compatible accuracy.

Table 2. Comparison of state-of-the-art trackers on VOT2018 benchmark.

DAT ACT DaSiam-RPN ATOM UPDT SiamRPN SiamRPN++ Our

Accuracy 0.505 0.519 0.586 0.590 0.536 0.586 0.600 0.587

Robustness 0.140 0.201 0.276 0.204 0.184 0.276 0.234 0.151

EAO 0.385 0.356 0.383 0.401 0.378 0.383 0.414 0.440
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LaSOT: We evaluate the proposed tracker on this dataset consisting of 280 sequences
which have longer sequences with an average of 2500 frames per sequence. Therefore,
it is important to adapt the object appearance variations. Figure 3 shows the success rate
plot. ATOM tracker employs the pre-trained ResNet-18 to discriminate the object from
the background. Our approach uses end-to-end trained method and further improves the
performance with an AUC score of 51.6%. The experiment evaluations demonstrate that
model adaption capabilities of the proposed tracking method on video sequences.
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Fig. 3. Success plot on the LaSOT benchmark.

TrackingNet: Wecarry out our approachon the large-scaleTrackingNet dataset. Table 3
shows the tracking evaluation results. SiamRPN++ reports a satisfied AUC score of
73.3%. Our method achieves AUC score of 74.1% with the same ResNet-50 as in
SiamRPN++.

Table 3. Comparison of state-of-the-art trackers on TrackingNet benchmark.

ECO CFNet MDNet CSRDCF UPDT SiamFC SiamRPN++ Our

AUC 55.4 57.8 60.6 53.4 61.1 57.1 73.3 74.1

P 49.2 53.3 56.5 48.0 55.7 53.3 69.4 69.6

Pnorm 61.8 65.4 70.5 62.2 70.2 66.3 80.0 80.4

4.3 Ablation Studies

We conduct ablation evaluation to verify the contributions of different components and
different layer features using OTB-100 and VOT2018 benchmarks. Table 4 shows the
AUC scores of each variation.
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Table 4. Ablation study of ourmethod onOTB-100 andVOT2018 benchmarks. L4 and L5 denote
conv4 and conv5, respectively. Finetune is whether the backbone is trained offline.

BackBone L4 L5 Finetune OTB-100 VOT2018
AlexNet 0.666 0.355

ResNet-50
√ √ 0.679 0.347

√ √ 0.675 0.337

ResNet-50
√ √ 0.676 0.392
√ √ √ 0.700 0.408

Feature Selection. The choice of features from different layers plays a significant role
in visual tracking. The number of parameters and type of network layers directly affect
the speed and accuracy of the tracking algorithms. First, different deep network archi-
tectures are evaluated on two popular benchmarks. AlexNet and ResNet-50 are used
as backbones to verify the tracking performance. The AUC score is shown in Table 4.
Our tracker and SiamRPN++ can benefit from the deeper layers network architecture.
In addition, the tracking performance can obtain a great improvement by finetuning the
backbone. Furthermore, the experiment results show that conv4 alone obtains a satisfy-
ing performance with 0.347 in EAO. Deeper layer and shallow layer perform with 5%
drops. We combine conv4 and conv5 to obtain the improvements.

Effectiveness of Different Components. The proposed tracking approach consists of
SiamRPN (S), correlation filter layer (CF), and channel attentionmodule (A). To evaluate
the importance of different components, we carry out the following variants: (1) ours (S)
is our tracker merely using SiamRPN to track the object in every frame; (2) ours (CF)
stands for our method by combining low-level correlation filter and high-level semantic
representation to obtain the object location in every frame; (3) our tracker (A) denotes
the proposed tracker with the channel attention module; and (4) our (S+CF+A) is the
final tracker. The effectiveness of different components is evaluated in Table 5.

Table 5. Effectiveness of different components for our tracking algorithm.

Tracker F-score Pr Re fps

Ours (S) 0.553 0.551 0.541 34.7

Ours (CF) 0.583 0.584 0.557 30.6

Ours (A) 0.597 0.607 0.565 21.4

Ours (S+CF+A) 0.603 0.613 0.596 24.8

Table 5 shows the experimental results of the variants and illustrates that all com-
ponents can boost the tracking performance. Removal of the channel attention module
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from the proposed model causes a 6.4% performance drop, while removal of the cor-
relation filter layer reduces the performance by 7.8%. The accuracy of both variants is
comparable to the original SiamRPN, while the number of failures increases. Therefore,
the attention module is crucial for a robust object selection strategy during the tracking
process. The proposed tracking approach leads to a 9.5% EAO and a 8.7% accuracy
reduction. Therefore, it benefits from the rotated bounding box estimation.

5 Conclusions

In this paper, we propose an end-to-end deep network architecture for visual object
tracking. Channel attentionmechanism is introduced to the Siamese network framework.
Low-level features are used to learn correlation filter and high-level semantic features are
used to deep object representation. Then both two-level features are jointly represented
in multi-task learning framework. The loss function is designed to optimize the deep
network parameters. Experiments show that the proposed tracking approach significantly
improves tracking performance in terms of accuracy and speed. In future work, we plan
to incorporate spatial-temporal attention module representation in our model framework
to further improve its effectiveness.
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