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Abstract. Recently, Convolution Neural Networks (CNNs) have achieved great
success in computer vision.To further boost the performance, the depth of the back-
bone network is continuously increased, which improves the capacity of feature
learning but also brings the heavy burden in computation. To address the issues,
this paper introduces a complex convolution method to systematically improve
the performance of the backbone network. Our contributions are three-fold: 1)
the complex architecture backbone network can improve the classification perfor-
mance without increasing or even reducing the number of parameters; 2) for the
detection task, the complex architecture backbone network can improve the abil-
ity of feature map extraction, at the same time our joint bounding box generation
method using both real and imaginary parts of complex features can obviously
improve the object detection ability. 3) the proposed method has a strong gen-
eralization ability for both detection and classification tasks. We have achieved
significant performance improvements in both classification and detection tasks,
which validate the effectiveness of our methods.

Keywords: Complex architectures · Backbones performance · Complex feature
map

1 Introduction

Backbone design is significant in the field of computer vision, especially for classifi-
cation and detection tasks. In recent years, with the development of machine learning
technology, the main methods of classification and object detection has changed from a
feature-based method to a convolution neural networks (CNNs) based method [1, 2]. For
the detection and classification tasks, both of them need to use a suitable and efficient
backbone network to extract feature maps from the input image. Classification tasks
often use fully connected layers to deal with the feature map and then calculate loss.
For detection tasks, it is necessary to use information of feature maps and labels directly
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to calculate loss. For existing backbone networks, the direction of improvement could
be concluded in two aspects: improving accuracy and saving parameters. To improve
the network accuracy, the depth of the network is continuously increased, but for deep
networks with more than 20 layers, there will be obvious degradation [3]. To address
this issue, He et al. proposed residual neural network [4]. Inspired by the idea of resid-
ual learning, the use of identity mapping not only alleviates the problems of gradient
explosion and gradient disappearance caused by the increase in network depth, but also
avoids the degradation of the network and enables the network depth to reach thousands
layers. The representative networks proposed under this idea are ResNet [5], ResNeXt
[6] and Res2Net [7]; To meet the needs of the booming edge computing technology
[8], small backbone networks with fewer layers have also been proposed. They can save
lot parameters by reducing the number of convolution layers. The lightweight networks
under this idea includeMobileNet [9], ShuffleNet [10] and SqueezeNet [11].Meanwhile,
the pre-trained model of the backbone network of the classification task can be used for
the detection task to improve the performance of the detection task. Therefore, it is of
great importance to design a structure to balance number of parameters and prediction
accuracy. In a summary, how to better improve the performance of the backbone net-
work, that is, based on fewer backbone network parameters to obtain better-performing
classification and detection results has very important research significance.

In this paper, we utilize complex structure to improve backbone network perfor-
mance. Based on the existing complex convolution, complex batch normalization, com-
plex ReLU and, complex weight initialization strategy [12], we follow the line of these
algorithms andpropose complexdown sampling, complexdropout, etc.Using these com-
plex architectures, we transform several backbone networks into complex networks, and
proposed several methods of combining complex feature maps to evaluate the classifi-
cation accuracy of the complex backbone networks. For the detection task, we use the
YOLOv3 model to test the efficacy of the complex backbone network based on the VOC
dataset. The backbone network we tested is not limited to darknet53: to test whether
this change is effective for a wide range of backbone networks, we deleted 15 layers of
residual blocks of darknet-53, that is, 30 convolution layers, showing that the algorithm
has a lifting effect on existing backbone networks.

The main contributions of this work are as follows:

1) We show the employment of complex convolution backbone networks can improve
the classification performance without increasing the amount of parameters, based
on our effective combination of real and imaginary feature maps.

2) Extensive experiments demonstrate that the use of real and imaginary feature maps
in the same framework can improve the detection accuracy.

2 Complex Convolution Neural Networks

Since complex numerical operations are mostly used in the field of signal analysis,
most complex neural networks are applied to the speech signals for enhancing the phase
information or predict spectrum. Trabelsi [12], which originally integrated a complex
neural network, utilized a complex neural network to test the music transcription of
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the MusicNet dataset and the speech spectrum prediction and achieved good results.
Choi [13] proposed the Deep Complex U-Net model for evaluation on a mixture of
Voice Bank corpus and DEMAND database, which has been widely used by many deep
learning models for speech enhancement. Pfeifenberger [14] estimates the complex
weights by using the full potential of complex-valued LSTM, MLP, and directly obtains
beamforming weights from complex-valued microphone array data. A complex-valued
deep neural network for speech enhancement and source separation is proposed. It can
be seen that most of the improvement work of complex neural networks is applied to
speech signal processing, and thiswork attempts to use it in visual tasks. The composition
principle of the complex neural network is almost the same, as shown below.

In this network, after the initialization of complex values, real and imaginary parts of
the complex numbers are treated as logically different real-valued entities. By this way
we can use real-valued algorithms to simulate complex number operations internally.

Note that the real part of the complex convolution kernel matrix is Wreal , the imag-
inary part is Wimag , the real part of the input image vector is written as xreal , and the
imaginary part is written as ximag . In particular, the imaginary part here is represented
by real numbers. In the convolution operation, the formula is written as follows:

(W ∗ x)real = Wreal ∗ xreal − Wimag ∗ ximag
(W ∗ x)imag = Wimag ∗ xreal + Wreal ∗ ximag (1)

The ‘*’ represents a two-dimensional real convolution operation. Expressed in matrix
form as:

[
(W ∗ x)real
(W ∗ x)imag

]
=

[
Wreal −Wimag

Wimag Wreal

]
∗

[
xreal
ximag

]
(2)

2.1 Complex Batch Normalization

For batch normalization of real data, only one-dimensional data needs to be converted
into a normal distribution [15]. For complex data, real and imaginary part may have
different variances, which will bring bias into the data. Therefore, we treat it as the
two-dimensional data, and use the covariance matrix V to normalize the eccentricity of
it. As shown in the Eq. (3), x − E[x] refers to the deviation of the two-dimensional data
from the center.

x̃ = (V )−
1
2 (x − E[x]) (3)

Where the covariance matrix V ψ is denoted as:

V =
(
Vrr Vri

Vir Vii

)
=

(
Cov(xreal, xreal) Cov(xreal, ximg)
Cov(ximg, xreal) Cov(ximg, ximg)

)
(4)

Where V needs to satisfy the condition of positive semi-definite matrix to make the
inverse matrix of V in the above formula be solvable. After mathematical derivation,
the conditions to be met are Vrr + Vii = 1, Vri = Vir = 0.Similarly, imitating the batch
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normalization formula of the real-value network, the input complex values are scaled
and translated as follow:

BN (x̃) = γ x̃ + β, γ =
(

γrr γri

γir γii

)
(5)

where γrr and γii are initialized to 1√
2
, γir , γri and β are initialized to 0.

2.2 Complex ReLU and Other Functions

The ReLU involved in our proposed module is a complex ReLU, which is also called
the CReLU. It is a separate ReLU activation applied to both the real and imaginary parts
of the neuron, defined as:

CReLU(x) = ReLU(xreal) + iRELU(ximag) (6)

When the real and the imaginary part are the same sign, that is, when the input com-
plex number is in the first or third quadrant, the formula satisfies the Cauchy-Riemann
equation obviously. A series of other complex methods also adopt this idea, first divide
the real and imaginary part, then treat them as independent real data, such as complex
pooling, complex sigmoid.

3 Methodology for Using Complex Structure in Object
Classification and Object Detection

For classification and detection tasks, the final prediction depends on the feature map of
backbone network. In the classification tasks, the final feature map is a one-dimensional
vector.While in the detection tasks, a high-dimensional tensor is often used. Therefore, it
can be said that the network for classification task is composed of the backbone network
and classifier.While the network for detection task is composed of the backbone network
and the object detection business part [16]. Therefore, for classification tasks, it is only
necessary to design some simple rules to combine complex-valued low-dimensional
feature maps, while for detection tasks, it is necessary to flexibly design the application
of complex feature maps according to the characteristics of object detection business
part.

Therefore, to produce one-dimensional feature map, we designed four functions to
combine the obtained one-dimensional complex featuremap. They are calledmagnitude,
signed-magnitude, summation and absoluted-summation respectively. We also try to
directly convert complex feature maps into real feature maps through convolution, and
the experimental results show all of them improve the performance of backbone network.
In the detection task, we use the complex feature map’s real part, the combined feature
map of the real and imaginary parts, and the fully complex feature map of both real
and imaginary parts combined with non-maximum suppression method to improve the
detection accuracy. These methods gain improved detection results by making better use
of the information of complex feature maps.
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3.1 Complex Feature Map Combination Method

Image classification is a basic problem in image understanding. There are lots of data
sets for evaluating image classification effects, such as CIFAR-10/100 [17], Caltech-
101/256 [18] and ImageNet [19]. With the great success of the AlexNet [20] deep
convolutional neural networks based methods have begun to replace traditional hand-
crafted algorithms, and a series of effective backbone networks have been proposed.
Based on AlexNet, some improved backbone, such as DenseNet [21], GoogleNet [22],
ResNet [4], VGG [23], SENet [24] and ShuffleNet [10] have been proposed and achieved
great success. Some classification networks that combine CNN with traditional image
processing methods, such as GCN [25], have also achieved good results.

In this work, we use several widely used backbones to verify the improved charac-
teristics of complex convolution for classification in the CIFAR dataset. The basic VGG
network structure is shown in Fig. 1; the other two backbone network improvement
methods are similar to it. For the CIFAR task, a linearization layer with the width of
4096 is not required. Too many linearization layers is also the reason for the exces-
sive network parameters. We found that removing these fully connected layers does not
influence the performance of the network, but on the other hand, can reduce the number
of parameters. Therefore, some experiments used this structure which removed a fully
connected layer, as shown in the Fig. 1, the 1st chart.

Fig. 1. The scheme of complex architectures for VGG16 network
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Based on this motivation, we use complex architectures on the backbone network,
which will double its parameter amount (see related work for the method). For the
classifier part, if the fully-connected layer is also complex, some methods need to be
designed to combine two one-dimensional vectors. And to verify whether this structure
can improve performance when the parameter amount is constant or even reduced, we
deleted half the number of convolution kernels to perform the same experiment, as shown
in Fig. 1, the 2nd chart.

We design five different methods to combine the complex vectors after the complex
classifier, four are mathematical calculation methods, the other one uses 1 × 1 con-
volution. Magnitude method just treats two parts as mathematical complex numbers,
like vreal + vimaginaryi, which vreal, vimaginary are 2 vectors on behalf of the input. The
combined result is voutput . So this method just calculates the magnitude of it, which is
written as:

Magnitude:voutput = (v2real + v2imaginary)
1
2 (7)

Obviously it is always positive, no negative number will occur. It does not matter
for the sigmoid function. But in more fuzzy work, this kind of feature map may cause
problem because the feature map should be signed. Therefore, an improved method
called signed-magnitude is proposed. The major difference is that the symbolic function
is used to make the results keep the same sign with the real part, so it can be written as:

Signed - Magnitude:voutput = (v2real + v2imaginary)
1
2 × sgn(vreal) (8)

So inspired by this idea, we designed 2 more combine function. In these method
both the real and imaginary part are treated as 1-dimension data. So if we want a signed
output vector, which just calculate the summation, written as:

Summation:voutput = vreal + vimaginary (9)

If we want positive results, just calculate the sum of absolute value, which we called
absoluted-summation, written as:

Absoluted - Summation:voutput = |vreal | + ∣∣vimaginary∣∣ (10)

Also 1-by-1 Convolution Layer is used to combine the 2 part into one, it just like
another full connection layer. Since the input tensor is a one-dimensional vector, just the
kernel size equals 1 may suit for this work. The formula is shown in Eq. (11).

Conv1:use 1 × 1 convolution kernel to connect the real and imaginary part (11)

3.2 Joint Bounding Box Generation Method of Complex Feature Map

Detection task is amiddle-level problem in the field of computer vision, that is, it needs to
understand the foreground and background of the image. So far, object detectionmethods
based on deep learning can be divided into 2 categories: two-stage detectionmethods and
one-stage detection methods. The two-stage detection methods delineate the detection
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area first, and then determine whether there are targets in the selected area. R-CNN [26],
fast R-CNN [27], faster R-CNN [28] and SPP-Net [29] are representative two-stage
detection methods.. One-step detection method uses intensive sampling directly from
the feature map to obtain the prior frame, and then do classification and regression on the
prior frame. Obviously, one-stage method has a faster detection speed. Representatives
of such method are YOLO [30], SSD [31], OD-GCN [32], and RON [33]. With the
introduction of YOLOv4 [34], this type of method has achieved a balance between
detection accuracy and efficiency, becoming the main trend of future research.

Therefore, we take YOLOv3 as an example to study the improvement effect of
complex architectures on the backbone network in our work. To judge whether this
method will improve performance under the condition of no pre-training model or any
backbone network, we deleted the 15-layer residual connection layer of darknet-53, that
is, the 30-layer convolution layer. So it can also be called “dark-23” as a comparison
in the experiments. In the same way, we also conduct the complex architectures on
original darknet-53backbonenetwork.Because of the lackof pre-trainedmodel about the
complex darknet-53 backbone network,we repeatedly assign the original real darknet-53
pre-trained model to the real and imaginary parts of the complex model. This pre-trained
model may not be ideal. If there is a better pre-trained model, a better detection effect
may be achieved.And the effectiveness of improvement can be judged by the comparison
of different feature map using methods.

The output part of the backbone network is shown in Fig. 2. The specific structure
of the darknet-53 and “darknet-23” backbone network can also be clearly seen from
this figure. In this part, we use complex convolution, complex batch normalization,
complex leaky ReLU and others to replace the real-valued function, which is also clear
in the diagram. So we just make the input image in which real part equal to its real and
imaginary part equal to zero. After this module, we will get 3 complex 3-dimensional
tensors. If it is regarded as a real tensor, it can be regarded as 4-dimensional tensor. How
to use this tensor for training and testing is shown in Fig. 3.

Fig. 2. The complex architectures for darknet-53 and “darknet-23”
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Fig. 3. The principle of training and testing using the output complex-value feature map

Here we conduct 3 experiments. First, we use the real part of the output complex fea-
ture map. Second, we use the signed-magnitude of the output complex feature map (see
Eq. (8)). Last, we use both the real and imaginary parts of the output featuremap for train-
ing and testing. For using real part of complex feature map and using signed-magnitude
of complex feature map, these two methods actually convert the 4-dimensional output
tensor into 3-dimensional tensor. Therefore, for subsequent processing parts, such as loss
function calculation, or prediction box generation, there is no need to transform these
parts. However, if we want to use both real and imaginary parts of complex tensor at
the same time, it is equivalent to use two 3-dimensional feature maps. Here we treat the
real and imaginary parts as two independent feature maps to calculate the loss function
and generate the detection frame respectively. Then, the losses are combined together
through summation. Therefore, the totally loss can be written as:

Lfinal = Lreal + Limaginary (12)

According to the principle of back propagation, it can be derived and the training
parameters can feedback on the backbone network automatically.During the test process,
the real and imaginary parts will simultaneously generate bounding boxes from the
prediction model. At this time, we put the prediction frames generated by the two parts
in the same stack, and use the non-maximum suppressionmethod to remove the repeated
prediction frames to obtain the most comprehensive result. Therefore, the final output
of bounding boxes can be written as:

bboxesoutput = bboxesreal ∪ bboxesimaginary (13)

Employing the designed method, the information of all complex feature maps can
be used as much as possible by reducing the missed detection rate of objects.
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4 Result Analysis

4.1 Result Analysis for Object Classification

In the experiments, we involve 3 different backbones, VGG16 [23], ResNet18 [4] and
SENet18 [24] for comparison. It is clearly that the connection methods designed for
complex architectures are obviously robust to classification problems. We designed 5
methods to connect the complex feature map and the final output result. All the classifi-
cation results have been significantly improved, which shows that the complex backbone
network has fundamentally improved the performance of the backbone network. When
the number of parameters of the multiple backbone networks is doubled, from the exper-
imental results of the three networks, a performance improvement of 2–4% points can
be achieved. Among them, due to the parameter quantity’s redundancy of the fully con-
nected layer, the VGG16 network’s parameter quantity can be basically unchanged.
Similarly, when the number of parameters is reduced to the half by reducing the num-
ber of convolution channels, according to the statistical results of the three network
experiments, a classification improvement of 1–2.5% points can be achieved (VGG16
network can be reduced to a quarter of the original parameter). The above experiments
are sufficient to demonstrate that the improvement of the complex architectures backbone
network is owing to the backbone itself (Table 1).

4.2 Result Analysis for Object Detection

In this part, we use the VOC data set to evaluate the improvement of the detection
effect by complex architectures network. We employ VOC2007trainval dataset and
VOC2012trainval dataset as the training data, while utilize VOC2007test dataset dur-
ing the test. For the part without pre-trained model, “darknet-23” is used as backbone
network. We tested non-complex convolution model and three variants of the complex
convolution model (using only real part of feature map, using signed-magnitude of fea-
ture map, and using both real and imaginary parts of feature map) on it. Obviously, for
any networks, the involvement of complex convolution on the backbone network will
improve the feature map extraction ability. For the part with pre-trained model, since it
is hard to train the complex darknet-53 pre-trained model on ImageNet dataset due to
the hardware limitations, the real-number pre-trained model is loaded twice for both real
and imaginary parts. Therefore, in this part, we don’t compare the results with original
darknet53 detection model. On the other hand, we compare the 3 improved models to
evaluate the effectiveness of the improvement. We can see that under the condition of
using the same complex convolution backbone network, employing full-feature map
information (signed-magnitude) will improve the detection effect by nearly 5% points
compared with only using real-part feature map.More than that, using the information of
the real and imaginary feature map together by NMSwill improve the detection effect by
nearly 8% points compared with only using the real part of feature map. This shows that
our proposed method, using non-maximum suppression methods to jointly apply real
and imaginary feature maps for bounding box prediction, is effective in object detection
task. Additionally, it can be applied to various detection models and tasks in the future
(Table 2).
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Table 2. VOC result by complex method.

VOC(mAP) Baseline Real Signed-magnitude Real and imaginary
with NMS

“Darknet-23”
(without pretrain
model)

0.608413
(0)

0.617585
(0.009172)

0.622672
(0.014259)

0.631942
(0.023529)

Darknet-53
(load pretrain model
both real and
imaginary)

– 0.685472
(0)

0.731432
(0.04596)

0.759334
(0.073862)

5 Conclusion and Future Works

In this work, we use CIFAR and VOC datasets to verify the effectiveness of the complex
architecture on the backbone network. Through theoretical analysis and experimental
verification, the following conclusions can be obtained. The complex convolution archi-
tectures can improve the performance of feature extraction of backbone network and
improve performance in either classification or object detection. Moreover, for classi-
fication tasks, classification performance can be improved without increasing or even
reducing the number of parameters. In the object detection task, when the prediction
frames jointly listed by the real and imaginary feature map are combined by using
the non-maximum suppression, it will significantly improve the detection performance.
Moreover, this method could be generalized for any detection task.

We plan to employ ImageNet and COCO data sets for more scientifically verifying
the ability of complex architectures on improving the performance of the backbone net-
work. Meanwhile, we expect to explore whether the joint detection method of real and
imaginary parts based on non-maximum suppression has certain improvement capabili-
ties on some special tasks, such as small target detection tasks or unclear target detection
tasks, by reducing the missed detection rate for difficult-to-identify targets.
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