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Abstract. Electroencephalogram (EEG) is a common signal for mon-
itoring people’s sleep quality. Manual sleep stage classification on EEG
is a time-consuming task. In this paper, we design a model for auto-
matic sleep stage classification based on raw single-channel EEG. This
model can preserve the information, broaden the network and enlarge the
receptive field as much as possible to extract appropriate time invariant
features and classify sleep stage well. For the class-imbalanced problem
in sleep stage classification, most of the exsisting methods rely on cross
entropy loss and adjust model hyperparameters by experience, leading
to poor performance. We implement a two-step training algorithm. The
first is pre-training the model with the hyperparameters obtained by
Bayesian Optimization after rebalancing datasets by over-sampling. The
second is using feedback loss in model fine-tuning to reduce the impact
of class-imbalanced problem. The loss weights dynamically change with
the per-class F1-score which is used as feedback information. We eval-
uate our method on Fpz-Cz channel from the Sleep-EDF dataset. The
overall accuracy, macro F1-score, Cohen’s Kappa coefficient are 85.53%,
81.18%, 0.80 respectively, showing our method has better classification
performance than the state-of-the-art methods and is an efficient tool for
automatic sleep stage classification.

Keywords: Automatic sleep stage classification · Raw single-channel
EEG · Deep learning · Feedback loss

1 Introduction

Sleep disorders are common in people and can lead to serious health problems
that affect the quality of life [1]. Monitoring people’s sleep quality has important
implications for medical research and practice [2].

A polysomnography (PSG) records the physiological signals of a subject
during sleep at night, which is composed by multiple signals such as elec-
troencephalogram (EEG), electrocardiogram (ECG), electrooculogram (EOG),
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and electromyography (EMG) [3]. According to American Academy of Sleep
Medicine (AASM) [4], sleep stages can be divided into wake (W), three non-
rapid eye movement (NREM) stages (N1-N3), and rapid eye movement (REM).
And stage N3 (also called Slow Wave Sleep) is divided into two distinct stages,
N3 and N4 in Rechtschaffen and Kales (R&K) [5]. Most PSG recordings last at
least eight hours. For sleep experts, manual sleep stage classification in such a
long signal is a tedious task and highly dependent on the appropriate inter-rater
agreement. Therefore, it is important to classify sleep stage automatically, which
can avoid the human subjective bias in classification.

Automated sleep stage classification algorithms can be divided into two
categories: the hand-engineered feature-based methods and the automated fea-
ture extraction-based methods. For the first category, methods extract features
such as time, frequency and time-frequency domain features [6–10] for training.
Because these methods only extracts features, they may lose most of the original
information. As a result, these methods do not generalize well, especially given
the nature of PSG recordings, where variability effects are caused by a number of
factors, including patient and hardware differences, etc. For the second category,
methods learn directly from the raw data, which may solve the limitation in
handcrafted feature extraction. Recently, because some neural networks can be
trained and optimized end-to-end, they are used both as feature extractors and
classifiers. For example, [11] build model with stacked sparse autoencoders, [12]
build model with convolutional neural networks. [13] build model with convolu-
tional neural network and bidirectional recurrent neural network.

Considering the number of channels for neural network’s input, we use single
EEG channel which is cheap and ensures the subjects’ sleep does not be affected
by the instruments. In the methods investigated, the accuracy of sleep stage
classification is not high for the method based on raw single-channel signal,
especially for the Sleep-EDF dataset. Besides, the macro F1-score (MF1) and
Cohen’s Kappa coefficient (κ) do not exceed 0.8 in most studys [11–14], due to
the serious imbalance of the dataset and the authors might do not pay more
attention to the process of model optimization and use the loss which is not
particularly suitable for imbalanced datasets.

At present, there is little methods using Bayesian Optimization [15] in sleep
stage classification. However, Bayesian Optimization can find the optimal hyper-
parameter according to the previous hyperparameter adjustment results, which
has been successfully applied in the machine learning methods [16–19]. In addi-
tion, using the idea of back propagation in network training as reference, we
propose feedback loss by employing the per-class F1-score of the model as feed-
back information to adjust the penalty weight of the loss function constantly.
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Based on the two points above, we design a deep learning model with a
two-step training method, including pre-training network with hyperparame-
ters found by Bayesian Optimization and fine-tuning with feedback loss. This
model can preserve the information, increase the number of network channels
and enlarge the receptive field to the utmost extent while extracting time invari-
ant features and being trained to classify the sleep stage. Through experiments,
the two-step training method can effectively train our model end-to-end through
back propagation, and feedback loss can make MF1 and κ exceed 0.8, decreas-
ing bias towards the majority class caused by imbalanced datasets. Moreover,
the model can be automatically trained without any hand-engineered features.
It is important to note that feedback loss can be used in multiple fields where
imbalanced dataset exits, besides sleep stage classification.

2 Methods

2.1 Model Architecture

The architecture of our model (see Fig. 1) consists of ten convolutional layers
and two fully-connected layers. Small kernels of size 3 × 1 are used in every
convolutional layer. In view of the rapid fluctuation characteristic of EEG sig-
nal, small convolution kernels can extract the subtle information, and realize the
suppression of noise through the convolutional layer combination, because the
bigger kernels such as 5 × 1 and 7 × 1 can be replaced by the combination of
small kernels [20]. Moreover, the use of small convolution kernels can reduce the
parameters and increase the nonlinearity of model while ensuring the receptive

Fig. 1. Architecture of our model. Conv, Relu, BN, DO, FC and SM mean convolutional
layer, rectified linear unit, batch normalization, dropout, fully-connected layer and
softmax severally. The use order of the units in each layer is from bottom to top. The
number at the bottom represents feature size, and the number at the top represents
the number of channels.
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field. Every two adjacent convolutional layers are a block, and perform five oper-
ations sequentially: convolution, applying the rectified linear unit (ReLU) [21]
activation, convolution, applying ReLU activation, batch normalization [22]. The
first convolution applies stride 1 and padding to ensure the input feature has the
same size compared with output feature when the network width increases. The
second convolution applies stride 2 and padding to take place of pooling [23].
In a block, using convolutional layers with stride 1 and stride 2 together can
effectively increase the receptive field and broaden the network without losing
much information. The adoption of batch normalization and ReLU activation
can accelerate model convergence and prevent vanishing gradient. A regulariza-
tion technique named dropout [24] is used to alleviate overfitting problems and
will be removed from the model during testing to provide certain outputs.

2.2 Pre-training

In pre-training, the first step is replicating the minority class samples in the
original training set until all sleep stages have the same number of samples
to reduce the harm of skewed distribution. Then we train model on balanced
dataset using a gradient-based optimizer called Adam [25] with hyperparame-
ters found by Bayesian Optimization. Bayesian Optimization is a method for
hyperparameter tuning, which searches for the optimal hyperparameter based
on the previous results, leading to better performance than human expert-level
for many algorithms [15]. In our algorithm, this method is used to adjust the
hyperparameters of two dropout layers which means the rate at randomly drop-
ping units along with their connections from the neural network during training.
This hyperparameter is very important. If the hyperparameter is too large, only
a small part of the model is left in the training process. If the hyperparameter is
too small, the regularization effect is not obvious, and the model is still serious
overfitting.

2.3 Fine-Tuning with Feedback Loss

In sleep stage classification, the class-imbalanced problem is serious but most
methods do not choose to improve the loss function for solving it, resulting in
low values of MF1 and κ. For methods test on Sleep-EDF dataset, the values
mostly lower than 0.8 [11–14]. As a result, we specifically design a new algorithm
to calculate loss named feedback loss, based on the thought of back propagation.
The following is a detailed description (see Algorithm 1).
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Algorithm 1. Fine-Tuning with Feedback Loss
Input: model, data, target, multiplier
Output: model
for i = 1 to n do

output = model(data)
fscore, mean, standard deviation = compute(output, target)
fscore = (fscore − mean)/standard deviation
weight = max(−fscore + 1, multiplier × fscore + 1)
FeedbackLoss = CrossEntropyLoss(weight)
for j = 1 to n below do

output = model(data)
loss = FeedbackLoss(output, target)
model = get model(model, loss)

end for
end for
return model

For the convenience, we introduce the process for one class that is identical
to the processes for other classes. (a) Put data into model to obtain output, then
compare the output and target by compute to obtain F1-score fscore for the class,
and the mean and standard deviation for all per-class F1-scores; (b) Centralize
fscore with zero-mean by the equation as follows:

fs =
fs − mf

sf
(1)

where fs, mf and sf are the fscore, mean and standard deviation respectively;
(c) Obtain weight by the equation as follows:

w = max (−fs + 1, kffs + 1) (2)
where w is weight of the class. kf is multiplier of the F1-score, and the value lies
between −0.25 and 0; (d) Reload weight as penalty weight on CrossEntropyLoss
to obtain FeedbackLoss; (e) Use FeedbackLoss to obtain loss with output and
target and optimize model parameters by get model with loss for n below epochs;
(f) Return model after running step a,b,c,d,e for n times.

Feedback loss has the following characteristics. The first is selecting F1-score
as feedback information. In imbalanced dataset, the accuracies of minority classes
is easy to be affected by majority classes, resulting in there is not much difference
between the accuracies of minority classes and majority classes. For recall and
precision, both of them are important and an increase in one leads to a decrease
in the other. As a result, F1-score is selected, because it is a combination of
recall and precision. The second is using centralizing F1-score with zero-mean
(see Eq. 1) and the computing method of weight (see Eq. 2) together. For the
F1-scores, the sum of the positive values is equal to the negative value after
centralizing. The method of getting weight by F1-score comes from Leaky ReLU
(see Fig. 2). For a class with good recognition results, its F1-score is positive after
centralizing. The slow weight adjustment with dw

dfs = kf leads to the suppression
on effects of the class. In contrast, for a class with poor recognition results,
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Fig. 2. Comparison between Leaky ReLU (left) and the calculation of weight in feed-
back loss (see Eq. 2) (right). For the important portion, like the positive part of x and
the negative part of fs, the slope of curve stays the same, the absolute value is 1. For
the unimportant portion, like the negative part of x and the positive part of fs, the
slope of curve is small.

its F1-score is negative after centralizing. The rapid weight adjustment with
dw
dfs = −1 and the gradient of weight will not decrease with the iteration, leading
to the constant attention on effects of the class. This method can ignore the
effects of the classes identified well appropriately and focus on classes identified
badly, resulting in the improvement of MF1 and κ. The third is that the penalty
weight is adjusted by the feedback repeatedly in the process of training and the
latest weight is used to calculate feedback loss for model optimization, ensuring
the model has a good performance. By the above statement, we find feedback
loss can apply to most class-imbalanced problems.

3 Results

3.1 Data

In this study, two versions of the Sleep-EDF dataset [26,27] are used. The first
version (Sleep-EDF-13) is contributed in 2013 with 61 polysomnograms, and the
second version (Sleep-EDF-18) is contributed in 2018 with 197 polysomnograms.
Both of them have two studies about the age effects on sleep in healthy individu-
als (SC = Sleep Cassette) and the temazepam effects on sleep in individuals with
mild difficulty falling asleep (ST = Sleep Telemetry) separately. To get closer
to normal, we choose the data in SC studies. Files in SC studies are obtained
in healthy Caucasians aged 25–101, without any sleep-related medication. Each
PSG lasts nearly 20 h, and contains two EEG signals from Fpz-Cz and Pz-Oz
electrode locations, one EOG signal, one EMG signal and one event marker.
Every two recordings are collected during two subsequent day-night periods on
a subject. The EOG and EEG signals are sampled at 100 Hz. According to the
R&K standard, sleep experts manually classify the recordings into one of the six
classes, W, N1, N2, N3, N4, REM. The N3 and N4 classes are combined in one
class named N3 on the basis of AASM. Because each SC file lasts nearly 20 h
and we mainly focus on the sleep period, only the recordings between half hour
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before and after the sleep periods are retained. Table 1 presents the number of
30-s epochs and proportion for each sleep stage in two different versions.

Table 1. Number of 30-s epoches for sleep stages in two versions of Sleep-EDF.

Dataset Type W N1 N2 N3 R

Sleep-EDF-13 Number 8,285 2,804 17,799 5,703 7,717

Proportion (%) 19.58 6.63 42.07 13.48 18.24

Sleep-EDF-18 Number 65,951 21,522 69,132 13,039 25,835

Proportion (%) 33.74 11.01 35.37 6.67 13.22

For Sleep-EDF-13 dataset, we test our method using k-fold cross-validation,
where k was set to 14. In each fold, nf | k recordings are selected for testing
model, and the remaining recordings are taken to train model, where nf is the
number of recordings in the dataset. This process is repeated k times. Then
we combine the predicted sleep stages from all folds and compute the evalua-
tion metrics. Sleep-EDF-18 has 153 recordings, from which 142 recordings are
selected for training network, 8 recordings are validation set, and the remaining
3 recordings are test set. It is important to note that the training set, valida-
tion set and test set are divided into subjects, ensuring test subjects’ epochs do
not appear in training set, so we can verify our method on the unknown sub-
jects. If all recordings are mixed before testing, the data of the same subject will
appear in the training set and the test set. Although the model’s performance
improves [15], its practicability reduces. Our division ensures that the data of
the same subject will not appear in training set and test set at the same time.

3.2 Experimental Design

In the pre-training, the Adam optimizer’s learning rate is 0.001, and 30-s epoch
is taken as a sample. After shuffling the oversampled dataset, 128 samples are
loaded into the model as a mini-batch. The cost function is multiclass cross-
entropy. For hyperparameter tuning, we randomly search for five hyperparameter
combinations at first, then use Bayesian Optimization, setting (0.3, 0.8) as the
search space for hyperparameter of every dropout layer and choosing Gaussian
Process [28] as internal regressor which is trained with training set comprised
by the previous results. After that, search for multiple hyperparameter combi-
nations by two parts: randomly initializing multiple combinations and searching
for more combinations using L-BFGS-B [29]. Next, the mean mp and standard
deviation sp of each combination are obtained by using regressor. Obtain the
fitted value v at each combination by the equation as follows:

v = mp + kpsp (3)

kp is enlargement factor. Then return the combination corresponding to the
maximum value which is the new hyperparameter combination. We repeat this
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search operation 15 times. In the fine-tuning, the Adam optimizer’s parame-
ter learning rate, mini-batch size are set 0.0002, 128 respectively. In addition,
multiplier, n below, n are −0.24, 8 and 6 separately.

3.3 Evaluation Metrics

Different metrics are used to evaluate the performance of our approach including
per-class recall, overall accuracy (ACC), MF1 and κ.

ACC =
∑N

c=1 TPc

TF
(4)

MF1 =
∑N

c=1 FSc

N
(5)

TPc is the true positive epoches of class c, TF is the number of epoches in
the dataset, FSc is the F1-score of class c, N is the number of classes.

3.4 Sleep Stage Classification Performance and Comparison

Table 2 shows confusion matrices obtained from Sleep-EDF-13 and Sleep-EDF-
18 datasets respectively. It can be seen that true positive values in the main
diagonals are higher than other values in the same rows and columns, meaning
our method can accurately identify each classes in most case. Table 3 shows the
comparison of our method with other state-of-the-art methods across overall
accuracy, MF1 and κ. In terms of overall accuracy, our study performs bet-
ter than the state-of-the-art algorithms compared. Moreover, for MF1 and κ,
our method reaches the highest level, indicating that feedback loss is highly
applicable to the current imbalanced dataset. In Sleep-EDF-13, κ reaches 0.80
(between 0.8 and 1), indicating almost complete agreement between the sleep
experts and our method, and κ reaches 0.78 in Sleep-EDF-18 (between 0.61 and
0.80), indicating the agreement between the sleep experts and our method are
substantial [30].

Table 2. Confusion matrix achieved by the proposed method.

True Predicted (Sleep-EDF-13) Predicted (Sleep-EDF-18)

W N1 N2 N3 R W N1 N2 N3 R

W 4482 437 36 12 112 1455 128 3 1 4

N1 193 1293 278 3 345 39 161 64 0 25

N2 50 542 11056 371 608 2 102 1021 129 28

N3 2 5 225 3216 1 0 0 16 369 0

R 98 558 254 0 4367 20 97 4 0 428
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Table 3. Classification performance comparison of our method with other methods by
evaluation metrics.

Dataset Method ACC (%) MF1 (%) κ

Sleep-EDF-13 SleepEEGNet [14] 84.26 79.66 0.79

DeepSleepNet [13] 82.0 76.9 0.76

Tsinalis et al. [11] 78.9 73.7

Tsinalis et al. [12] 74.8 69.8

This study 85.53 81.18 0.80

Sleep-EDF-18 SleepEEGNet [14] 80.03 73.55 0.73

This study 83.84 77.36 0.78

3.5 Method Analysis

In order to see the difference between the predictions of our method and the
labels, we selects one file of test dataset named SC4001E0, and draws the pre-
dicted hypnogram and target hypnogram. We can find our method’s judgments
are the same as the labels in most epoches (see Fig. 3). For understand the con-
fusion matrixs in Table 2 better, we visualize them (see Fig. 4). The value in the
cell is the recall, the ratio of the number in corresponding cell of the confusion
matrix to the number of 30-s epochs for corresponding sleep stage. For the recall
values in the cells, there is a no identification error in many pairs including
W-N3, N1-N3 and N3-R. In addition, the confusion matrix is almost symmet-
ric across the diagonal proving class-imbalanced problem is eliminated to some
extent.

Fig. 3. Comparison of the target hypnogram (top) with the predicted hypnogram (bot-
tom) in SC4001E0. The overall accuracy, MF1, κ, and the recall of N1 stage reach
87.63%, 83.32%, 0.84, and 60.38% respectively.
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Fig. 4. Confusion matrix visualization based on recall. For each square, the larger the
number, the darker the color. In both datasets, it can be seen the worst performance
is noted for N1 stage, and the N3 stage reaches the best performance.

4 Discussion

As for the recognition difficulty of N1 stage, after analyzing the confusion matrix
and consulting relevant information, we find that the reason for this result lies in
the data itself. The first reason is the number of N1 stage is small compared with
the other sleep stages. For example, the proportion of N1 stage in Sleep-EDF-
13 and Sleep-EDF-18 are 6.63% and 11.01% respectively. The second reason
is N1 stage is easy to confuse with REM. Because θ wave (frequency ranges
from 4 hz to 8 hz) occurs only during REM stage and N1 stage [31], making the
characteristics of N1 stage and REM stage are similar, leading to the failure of
classifier in distinguishing the two stages.

In general, the larger the dataset, the better the performance of the classifier.
However, we test our method on Sleep-EDF-13 and Sleep-EDF-18, finding this is
not the case. Same problem appears in other study [32]. Therefore, the labels of
Sleep-EDF-18 dataset may not be accurate enough due to the heavy workload of
expert manual annotation. For κ, [33] find it between 0.48 and 0.89 by studying
the agreement between two experts. Similarly, [34] find it between 0.72 and 0.85.
These studies prove that manual classification is defective. As the era progresses,
the manual classification may lag behind the automatic classification.

The class-imbalance data is particularly common in many fields, and the same
situation appears in this study. We use two methods to solve this problem. The
first is to simply copy the samples of minority classes to make them reach the
same number as the majority classes. The second is mainly through the design
of feedback loss. Except for these methods, we have tried other methods, such
as random under-sampling and SMOTE over-sampling, but the performance of
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our method does not improve. There are many studies on the improvement of
loss algorithm, including focal loss [35], dice loss [36], etc. We can combine their
characteristics with feedback loss. For the current feedback loss, we directly
use the F1-score as feedback information to adjust the weight. However, PID
control is widely used in the feedback regulation. If we regard the error between
the current F1-score and the expected F1-score as feedback information, put it
into the PID controller [37] and use the output as penalty weight for feedback
loss, our method may improve unexpectedly.

5 Conclusion and Future Work

We propose a deep learning model which can extract time invariant features
and classify sleep stage under retaining information, widening the network and
increasing the receptive field. We also implement a two-step training algo-
rithm: pre-training model on oversampled datasets with model hyperparameters
adjusted by Bayesian Optimization, and proposing feedback loss in fine-tuning to
alleviate class-imbalanced problem. Experimental results show that our method
outperforms the state-of-the-art methods on the sleep stage classification task.
Since our model automatically learns from the original EEG, we believe that
our method is a better way to implement sleep stage classification than the
hand-engineering methods. When developing an automated system, imbalanced
dataset often occurs, such as the arrhythmia detection by ECG and the epilepsy
detection by EEG, and feedback loss can make a contribution in these areas.
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