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Abstract. Aiming at the poor accuracy of a single feature in the chal-
lenging scenarios, as well as the failure of tracking caused by partial or
complete occlusion and background clutter, a correlation filter tracking
algorithm based on feature fusion and model adaptive updating is pro-
posed. On the basis of the background-aware correlation filter, the pro-
posed algorithm firstly introduces the CN feature and integrates with
the HOG feature to improve the accuracy of tracking. Then, the Aver-
age Peak-to-Correlation Energy (APCE) is introduced, and the results of
object tracking are fed back to the tracker through the ratio changes. The
tracker is adaptively updated, which improves the robustness of the algo-
rithm to occlusion and background clutter. Finally, the proposed algo-
rithm is experimented on the self-build ship dataset. The experimental
results show that the algorithm can adapt well to complex scenes, such as
object occlusion and background clutter. Compared to the state-of-the-
art trackers, the average precision of the proposed tracker is improved
by 2.3%, the average success rate is improved by 2.9%, and the average
speed is about 18 frames per second.

Keywords: Object tracking · Correlation filter · Feature fusion ·
Model updating · APCE

1 Introduction

Visual tracking is one of the key technologies in the computer vision field, and
it has wide application prospects in video surveillance, human-computer inter-
action, medical diagnosis and so on. With the continuous deepening of research
[1–4], visual tracking has made some progress in stages, but it is difficult to accu-
rately locate the tracked object due to the interference factors such as partial
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or complete occlusion, rotation, motion blur and so on. Therefore, there are still
great challenges in building a robust tracker.

In recent years, mainstream tracking algorithms are divided into two cate-
gories, namely correlation filter and deep learning [5–8]. Among them, correlation
filters (CFs) [9–12] algorithm is a classical algorithm for object tracking, which
is favored by researchers because of its fast speed [13]. Bolme et al. [14] proposed
MOSSE filter, which was the first time to introduce CF into object tracking with
extremely fast speed. Based on that, Henriques et al. [15] introduced a Gaussian
kernel function for acceleration, and extended the single-channel grayscale fea-
ture to the multi-channel Histogram of Oriented Gradient (HOG) to improve
the tracking accuracy. Li et al. [16] proposed a scale adaptive multi-feature
fusion tracker, adding the HOG feature and CN feature [17] on the basis of
gray feature to improve the overall performance of the tracker. Besides, Danelljan
et al. [18] proposed three-dimensional filter, one-dimensional scale filter and two-
dimensional translation filter. This precise scale estimation method can be com-
bined with any other tracking algorithm without scale estimation, and won the
first place in the VOT2014 [19] competition. Since the methods based on CF are
affected by the boundary effect, in order to overcome this problem, Danelljan
et al. [20] added spatial regularization to suppress it, so that the search area
can be expanded, and Gauss-Seidel was used to solve the filter to simplify the
calculation. The models of the above algorithms are not effective for tracking
targets with deformation and motion blur. Bertinetto et al. [21] complemented
the HOG feature and color histogram feature, which was robust to motion blur,
illumination and deformation, and added scale to the HOG to improve the accu-
racy of the tracker. Galoogahi et al. [22] used the negative samples generated by
real shifts to include a larger search area and real background, and proposed an
ADMM-based optimization method to reduce the computation. In recent years,
deep learning-based methods have become more and more popular. Wang et al.
[23] proposed a lightweight end-to-end training network, DCFNet, which simul-
taneously learns deep features and performs filtering processes. Wu et al. [24]
learned the multi-level same-resolution compressed (MSC) features, which effec-
tively incorporate both deep and shallow features for efficient online tracking, in
an end-to-end offline manner.

The above methods have achieved good tracking effects in terms of accuracy
and robustness. However, in the case of complex scenes, such as partial or com-
plete occlusion, background clutter, etc., the problem of tracking loss will still
occur. For this reason, in the framework of background-aware correlation filters
(BACF), the following improvements have been made: (1) The use of excel-
lent features is the basis for accurate tracking. A single feature have defects in
accuracy. Considering the method of feature fusion to improve the accuracy of
tracking, and adding the CN feature on the basis of HOG feature. (2) In order
to better solve the problem of tracking failure caused by occlusion, the APCE
method is introduced in the online update stage to adaptively update model to
improve the robustness of the tracker.
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2 The Tracker

The proposed algorithm is based on the background-aware correlation filter,
which combines the features of HOG and CN, and introduces APCE [25] for
adaptive model update, thereby improving the tracking algorithm’s robustness
to occlusion and background clutter. The framework of the proposed algorithm
is shown in Fig. 1.

Fig. 1. Framework of the Proposed Algorithm. For each input image patch, first extract
the HOG and CN features from the prediction area, fuse the two, and then obtain
the corresponding response map through correlation filtering. APCE is introduced to
adaptively update the model to determine whether to update the model at the current
frame. Finally, update the model at the appropriate frame.

2.1 Background-Aware Correlation Filters

The background-aware correlation filters significantly increases the number of
samples based on the traditional CF method and improves the sample quality
through cropping operator, and has good real-time tracking. Therefore, We make
improvements on the basis of background perception related filters in order to
improve the accuracy of the algorithm. The basic objective function [26] of CF
is:

E(h) =
1
2
‖y −

K∑

k=1

hk � xk‖22 +
λ

2

K∑

k=1

‖hk‖22 (1)

where y is the desired output response, xk and hk represents the kth channel of
the vectorized image and filter respectively. λ is a regularization constant, and
� is the spatial correlation operator. Equation 1 is the form of a single sample.
When we use D cyclic samples, it becomes the following form:

E(h) =
1
2
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j=1

‖y(j) −
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the size of the sample x changes from D to T , which is much larger. Use the
larger sample to generate a cyclic sample. [�τj ] is the circular shift operator.
Then we need to extract the middle part of the size D. This step is replaced by
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P, which is a D × T binary matrix. P can be calculated in advance, and it is a
constant matrix.

Taking advantage of the fast solution of the cyclic samples in the frequency
domain, the expression is transformed into the frequency domain. The formula
is as follows:

E(h, ĝ) =
1
2
‖ŷ − X̂ĝ‖22 +

λ

2
‖h‖22

s.t. ĝ =
√

T (FP� ⊗ IK)h
(3)

where X̂ = [diag(x̂1)�, ...,diag(x̂K)�] andˆrefers to the Discrete Fourier Trans-
form (DFT) of a signal. ĝ is a KT ×1 auxiliary variable and ĝ = [ĝ�

1 , ..., ĝ�
K ]. h is

defined as h = [h�
1 , ...,h�

K ] of size KD×1. The DFT of one-dimensional signal α
is expressed as α̂ =

√
TFα, F is an T × T orthogonal Fourier transform matrix.

IK is a K × K identity matrix (PP� = I), ⊗ refers to the Kronecker product.
Finally, the optimization solution of Eq. 3 is mainly used to put the constraint

term into the optimization function by using the Augmented Lagrangian Method
(ALM) [27].

L(ĝ,h, ζ̂) =
1
2
‖ŷ − X̂ĝ‖22 +

λ

2
‖h‖22

+ ζ̂�(ĝ −
√

T (FP� ⊗ IK)h)

+
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2
‖ĝ −

√
T (FP� ⊗ IK)h‖22

(4)

where ζ̂ = [ζ̂�
1 , ..., ζ̂�

K ] and μ is a penalty factor. Equation 4 can be solved
iteratively using Alternating Direction of Method of Multipliers (ADMM) [27]
technology, and ĝ and h are optimized and solved separately.

2.2 Feature Fusion

The single feature has defects in accuracy. Considering the method of feature
fusion to improve tracking accuracy, CN feature is added to the basis of HOG
feature.

Color-Naming (CN). CN is an 11-dimensional color space feature that maps
the 3-dimensional color features of the RGB space to black, blue, brown, gray,
green, orange, pink, purple, red, white, and yellow. CN can separate objects of
different colors, and it can distinguish objects and backgrounds with significant
color difference and similar texture shapes.

The CN adopts the adaptive color attribute algorithm to map the RGB space
to the 11-dimensional color space with obvious discrimination to obtain the 11-
dimensional color feature vector, which is then mapped into the 10-dimensional
subspace, reducing the dimension from 11 to 10 dimensions. Therefore, HOG and
CN are serially combined into M, assuming that the vectors of HOG and CN
are Hi(i = 1, 2, ..., 31) and Cj(j = 1, 2, ..., 10), respectively. Hi and Cj represent
the i-th channel HOG and the j-th channel CN of the image respectively, then
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M = [H1 H2 ... H31 C1 C2 ... C10], the 31-channel HOG and the 10-channel
CN extracted from the training image patch are serially fused to obtain the
41-channel M.

HOG emphasizes the edge information of the image, while CN focuses on
color information. The two features are complementary and improve the perfor-
mance of the filter. Although the idea is simple, the performance improvement
is very promising.

2.3 Adaptive Model Update

In the process of model tracking, the appearance and scale of the object will
change. Figure 2 shows the object occlusion during tracking. If the tracker is
updated at Fig. 2(b), the model may drift or even lose the object. In order to
adapt to the changes of the tracking model, the maximum response value and
the APCE are introduced to determine when the model will be updated. The
formula is as follows:

APCE(t) =
|Fmax(t) − Fmin(t)|2

mean(
∑
w,h

(Fw,h(t) − Fmin(t))2)
(5)

where Fmax, Fmin and Fw,h represent the maximum response, minimum response
and current frame response value, respectively. When the target is occluded or
lost, APCE will suddenly decrease. In this case, the model is not updated to
avoid model drift. Only when APCE and Fmax are greater than the historical
mean in a certain proportion, the model is updated, greatly reducing the model
drift.

The online updating strategy of the model is still the same linear interpolation
method as the traditional CF:

x̂(f)
model = (1 − η) x̂(f−1)

model + η x̂(f) (6)

where η if a learning rate, x̂(f)
model indicates the model at frame f .

(a) No occlusion (b) Occlusion

Fig. 2. Two frames of a ship sequence on the self-build ship dataset. (a) is the 343th
frame image of a ship video sequence, with the object in the red bounding box and
not occluded by other ships or objects; (b) is the 520th frame image of a ship video
sequence, with the object in the red bounding box and occluded by other ships. (Color
figure online)



260 J. Shao et al.

3 Experiments

In order to verify the reliability of the proposed tracker AMUMF (Adaptive
Model Updating Correlation Filter Tracker with Feature Fusion), the self-build
ship dataset was used for evaluation, and compared with 6 excellent correlation
filter trackers, such as KCF, SAMF, STAPLE, STAPLE CA, SRDCF, BACF.

3.1 Experimental Setup and Methodology

The experimental environment of the algorithm is MATLAB R2016a on Win-
dows system. All experiments are completed on a desktop computer equipped
with an Intel Core i5-9400 CPU at 2.90 GHz.

Experimental Dataset. The experimental data used in this research is a self-
build ship dataset, which contains 60 ship video sequences. In order to better
evaluate and analyze the advantages and disadvantages of the tracking method,
11 attributes such as illumination variation (IV), scale variation (SV), occlusion
(OCC), deformation (DEF), motion blur (MB), fast motion (FM), in-plane rota-
tion (IPR), out-of-plane rotation (OPR), out-of-view (OV), background clutters
(BC) and low resolution (LW) are used to annotate the sequence, so as to classify
these sequences. Figure 3 shows the 60 ship video tracking sequences.

Fig. 3. Ship video tracking sequences. The blue box in the figure represents the tracked
target. (Color figure online)

Parameter Settings. The specific parameters of the algorithm are set as: the
thresholds of the maximum response and APCE in the adaptive model updating
are 0.5 and 0.85, respectively. Other parameter settings are the same as the
BACF.
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3.2 Analysis

According to the evaluation method of the OTB [28], the one-pass evaluation
(OPE) method is adopted. And there are two evaluation criteria selected, i.e.
precision plot and success plot.

Table 1. Comparison of overall performance of 7 trackers on self-build ship dataset
(/%). The best results are shown in bold, and the second-ranked is underlined.

AMUMF BACF STAPLE CA SRDCF STAPLE SAMF KCF

Success rate 78.2 75.3 55.6 69.0 57.6 63.1 59.2

Precision 68.9 66.6 37.4 57.4 39.4 48.2 39.4

(a) success plot (b) precision plot

Fig. 4. Comparison of success plot and precision plot of 7 trackers on self-build ship
dataset.

Quantitative Analysis. We tested AMUMF on the self-build ship dataset and
compared with other 6 trackers. Table 1 shows the success rate and precision of
AMUMF and other 6 trackers. It can be seen that the success rate and precision
of AMUMF are 78.2% and 68.9%, respectively, and the best results are obtained.
This is 2.9% and 2.3% higher than BACF without feature fusion and adaptive
model update. Figure 4 shows the corresponding precision curve and success rate
curve of the 7 tracker. Figure 5 shows a comparison of success plot based on video
attributes. It can be seen that AMUMF performs well at low resolution (LR),
background clutter (BC), scale variation (SV), in-plane rotation (IPR), occlusion
(OCC), out-of-plane rotation (OPR). Especially under OCC, the success rate of
AMUMF is 5.3% higher than BACF.
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Fig. 5. Attribute-based evaluation. Comparison of success plot of 7 trackers on self-
build ship dataset. AMUMF outperforms other trackers in these 6 video attributes.

Fig. 6. Comparison of tracking results of 4 types of trackers. Each row represents a
sequence.

Qualitative Analysis. We selected 3 representative video sequences for qual-
itative analysis, and compared AMUMF with BACF, SRDCF and SAMF as
shown in Fig. 6. All three sequences under LR. In addition, the 1st sequence
under OCC and BC. Only AMUMF continues to track accurately, other track-
ers are lost. The 2nd sequence under IPR, AMUMF and BACF can continue
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to track accurately, other trackers produce drift. In the 3rd sequence, two ships
with the same appearance intersect. In addition to BACF, other trackers can
track the target, but only AMUMF can accurately locate.

4 Conclusion

In the framework of background-aware correlation filter, a correlation filter
tracker based on feature fusion and model adaptive updating is proposed. Two
kinds of features are extracted, HOG and CN, and they are serially fused to
obtain the final response map, so that the object is accurately located. We
also introduce a high-confidence model updating to adaptively update track-
ing model, which effectively improves the robustness of the tracker to occlusion
and background clutter. Experiments on the self-build ship dataset prove that
the proposed AMUMF is superior to other trackers in terms of precision and suc-
cess rate. In the future, we will further research the optimization of algorithms
and how to improve the real-time tracking.
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