
Axial Data Modeling with Collapsed
Nonparametric Watson Mixture Models

and Its Application to Depth Image
Analysis

Lin Yang1, Yuhang Liu1, and Wentao Fan1,2,3(B)

1 Department of Computer Science and Technology,
Huaqiao University, Xiamen, Fujian, China

{19014083028,1625161012}@stu.hqu.edu.cn, fwt@hqu.edu.cn
2 Xiamen Key Laboratory of Computer Vision and Pattern Recognition,

Huaqiao University, Xiamen, China
3 Key Laboratory of Computer Vision and Machine Learning (Huaqiao University),

Fujian Province University, Xiamen, China

Abstract. Recently, axial data (i.e. the observations are axes of direc-
tion) have been involved with various fields ranging from blind speech
separation to gene expression data clustering. In this paper, axial data
modeling is performed by proposing a nonparametric infinite Watson
mixture model which is constructed in a collapsed space (denoted by
Co-InWMM) where the mixing coefficients are integrated out. Then, an
effective collapsed variational Bayes (CVB) inference method is theoreti-
cally developed to learn the Co-InWMM with closed-from solutions. The
proposed Co-InWMM with CVB inference for modeling axial data is val-
idated through both synthetical data sets and a challenging application
regarding depth image analysis.

Keywords: Axial data modeling · Mixture model · Watson
distributions · Collapsed variational Bayes · Depth image analysis

1 Introduction

In recent years, directional data (i.e. the “direction” of the data is more impor-
tant than their magnitude) analysis has drawn significant attention in various
fields [12,14]. Typical directional data are the data that are normalized to have
unit norm, which lie on the surface of the unit sphere. Since directional data
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are better represented on a manifold, the nonlinear nature of manifolds implies
that common distributions such as the multivariate Gaussian distribution can
not be used to model and analyze directional data. Alternatively, distributions
that are defined on the unit hypersphere are more appropriate and effective to
model directional data.

One of the most basic directional distributions is the von Mises-Fisher (vMF)
distribution, which is defined on the unit hyperspahere (SD−1) and has similar
characteristics to those of the multivariate Gaussian distribution defined in the
Euclidean space R

D. Although vMF distributions were widely involved with
directional data modeling, it is not a universal solution to all types directional
data. For instance, resent reach works have demonstrated that axial data where
the observations are axes of direction (i.e. the unit vectors ±X are indistinguish-
able) are better modeled with Watson distributions rather than with vMF [1].
As a special type of directional data, axial data have found their applications
in various applications, such as blind speech separation [21], speech cluster-
ing in distributed microphone arrays [17], differentiation between normal and
schizophrenic brains [13], gene expression data clustering analysis [7], etc.

Different methods have been proposed to learn Watson distributions or its
natural extension the Watson mixture model (WMM). The major difficulty of
learning Watson-based models lies on the fact that no analytically solution to
the inference of the concentration parameters of Watson distributions can be
found. Thus, approximation methods were proposed to solve this problem. A
simple approximation method for large concentrations has been proposed in [13]
to learn Watson distributions with the maximum likelihood (ML) estimates. This
learning method, however, can not deal axial data with higher dimensions. In
[1], an approximation to ML estimates has been proposed within an expectation
maximization (EM) framework to learn WMMs. However, this method is prone
to the problem of over-fitting. A better alternative method to ML estimates
is the variational Bayes (VB) [4,9], a method that approximates posterior dis-
tributions through optimization. In [18], a VB inference method was proposed
to learn WMMs and demonstrated better performance than the ML estimates.
Although closed-form solutions can be obtained by this method, the evaluation
of the model complexity (i.e. the number of mixture components model that
best fit the data) requires extra effort. Specifically, the VB inference method in
[18] treats the mixing coefficients of the WMM as random variables which are
assigned with a Dirichlet prior. Then, model selection was performed by remov-
ing the components with small responsibilities. A more elegant solution to the
model selection problem in modeling WMMs was proposed in [7], where a non-
parametric framework known as the Dirichlet process mixture model [3,10] was
adopted to define the WMM with an infinite number of components. By apply-
ing VB inference method to learn the infinite WMM (In-WMM), the number of
mixture component can be freely initialized and will be adjusted automatically
as the data set increases [7].

Although both VB inference methods ([18] and [7]) are effective to learn
WMMs, to ensure closed-form solutions, the VB inference has to adopt the
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mean-field assumption [2] where parameters are assumed to be independent.
This assumption, however, is not realistic in the WMM or In-WMM in which
the mixing coefficients and the latent indicator variables are obviously closely
related. This issue can be addressed by applying VB inference in a collapsed space
where parameters are marginalized out, which leads to the so-called collapsed
VB (CVB) inference framework [20]. As described in [11,20], the mean-field
assumption is more satisfied with CVB without the concern of dependencies
between parameters. Thus, in this work we focus on developing an effective
CVB inference method to learn the In-WMM in a collapsed space where the
mixing coefficients are integrated out.

We summarize the contributions of this work as follows. Firstly, a collapsed
infinite WMM (Co-InWMM) is proposed for modeling axial data by marginaliz-
ing out the mixing coefficients. Secondly, an effective CVB inference method is
theoretically developed to learn Co-InWMM with closed-from solutions. Lastly,
the proposed Co-InWMM with CVB inference is validated through both syn-
thetical data sets and a challenging application about depth image analysis.

2 The Collapsed Infinite WMM

2.1 Infinite Watson Mixture Models

Given a data set X = {xi}N
i=1 which contains N axial random vectors (i.e.

x and −x are equivalent), each D-dimensional data vector can be represented
as a unit vector (i.e. ‖x‖2 = 1) defined on a (D − 1)-dimensional unit hyper-
sphere S

D−1. If each vector x is a drawn from a mixture of an infinite number of
Watson distributions, then the probability density function of this infinite Wat-
son mixture model (InWMM) is given by

p(x|π,μ,γ) =
∞∑

k=1

πkW(x|μk, γk) (1)

where π = {πk}∞
k=1 represent the mixing coefficients that should be nonnegative

and sum to 1; μ ∈ S
D−1 denotes the mean direction with ‖μ‖2 = 1, and γ ∈ R

represents the concentration. W(xi|μk, γk) indicates the Watson distribution
associated with the kth component of the mixture model and is defined by

W(x|μk, γk) =
Γ (D/2)

2πD/2M( 12 , D
2 , γk)

exp[γk(μT
k x)2] (2)

where M(a, b, ·) represents the Kummer function (also known as the confluent
hypergeometric function) which is given by

M(a, b, γ) =
∞∑

n=0

Γ (a + n)Γ (b)
Γ (a)Γ (b + n)

γn

n!
(3)

where Γ (·) denotes the Gamma function.
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Next, each vector xi is assigned with a latent indicator variable zi which is
used to indicate the component from which xi is drawn. For the data set X , the
distribution of indicator variables z = {zi}N

i=1 can be represented by

p(z|π) =
N∏

i=1

∞∏

k=1

π
1[zi=k]
k (4)

where 1[·] denotes the indicator function which equals 1 when zi = k, otherwise
it equals 0.

2.2 Prior Distributions

The InWMM is constructed using a Bayesian framework, in which each unknown
variable is assigned with a prior distribution. A nonparametric prior namely
Dirichlet process [10] is considered for the mixing coefficients π, and is defined
in terms of a stick-breaking representation [3] as

πk = π′
k

k−1∏

s=1

(1 − π′
s), π′

k ∼ Beta(1,�k), G =
∞∑

k=1

πkδθk
, θk ∼ H (5)

where G is a drawn from the Dirichlet process G ∼ DP (�,H) with the base
distribution H and scaling parameter �, where δθk

is an atom at θk.
Following [7,18], a Watson-Gamma prior is selected for parameters μ and γ

as

p(μ,γ) =
∞∏

k=1

W(μk|mk, βkγk)G(γk|ak, bk) (6)

where G(·) indicates the Gamma distribution.

2.3 Collapsed Infinite Watson Mixture Models

According to several recent works in the literature of mixture modeling [5,6], bet-
ter performance often would be obtained when model learning was conducted in
a collapsed space where some or all of the parameters are marginalized out. In our
case, inspired from [5,6,11], we re-formulate a collapsed version of InWMM (i.e.
the Co-InWMM) by marginalizing out the mixing coefficients π. Consequently,
the latent variable z does not depend on the mixing coefficients π anymore and
is distributed as

p(z) =
∞∏

k=1

Γ (1 + nk)Γ (�k + n>k)
Γ (1 + �k + n≥k)

(7)

where nk =
∑N

i=1 1[zi = k] indicates the number of data instances from the kth
component, n>k =

∑N
i=1 1[zi > k], and n≥k = nk + n>k.

The conditional distribution of zi = k given the current state of all except
one variable zi is

p(zi = k|z¬i) ∝ (1 + n¬i
k )(�k + n¬i

>k)(1 + �k + n¬i
≥k)−1 (8)
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where the superscript ¬i indicates the associated ith term is removed.
The joint distribution of all latent and random variables in the Co-InWMM

is given by

p(X ,z,μ,γ) =
N∏

i=1

p(xi|μzi
, γzi

)p(zi)
∞∏

k=1

p(μk, γk) (9)

In contrast with the InWMM as described in Eq. (1), the Co-InWMM has two
major advantages: 1) the explicit dependency between latent variables z and
mixing coefficients π is broken, which will be in favor of the mean-filed variational
Bayes model learning method as developed in the following section; 2) a smaller
number of parameters are obtained by integrating out π, which leads to a faster
inference process with better performance.

3 Model Learning

In this section, based on the VB inference methods that were respectively pro-
posed in [7,18] for learning finite WMM and InWMM, we develop an effective
method based on collapsed variational Bayes (CVB) [11,20] to learn the pro-
posed Co-InWMM with closed-form solutions.

3.1 Mean-Field Collapsed Variational Inference

VB inference is an effective method for approximating posterior dentistries in
Bayesian models. In our case, VB is adopted to approximate the true posterior
p(Θ|X ) with an approximated posterior q(Θ) (also referred to as variational
posterior), where Θ = {z,μ,γ} denotes the set of all latent and random variables
of the Co-InWMM. VB inference solves the problem of approximation though
optimization, by minimizing the Kullback-Leibler (KL) divergence between q(Θ)
and p(Θ|X ), which is equivalent to maximizing the lower bound of ln p(X ) that
is defined by

L(q) =
∫

q(Θ) ln[p(X , Θ)/q(Θ)]dΘ (10)

To perform VB inference for learning Co-InWMM which contains an infinite
number of mixture components, a common technique is to truncate the stick-
breaking representation of Co-InWMM at a finite value K as

π′
K = 1,

K∑

k=1

πk = 1, πk = 0 when k > K (11)

where K can be freely initialized and would be inferred automatically through
VB inference.

To obtain closed-from solutions, mean-field assumption [2] is often adopted in
VB inference to factorize the variational posterior as the product of independent
factors, where each factor represents variational posterior of the corresponding
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variable. In [7], the variational posterior of InWMM with truncation was factor-
ized as

q(Θ) = q(π)q(z)q(μ,γ) (12)

This factorization assumption, however, clearly violates the fact that latent vari-
ables z and mixing coefficients π are closely related with strong dependency as
demonstrated in Eq. (4). The mean-field assumption is more satisfied in Co-
InWMM where π are marginalized out as

q(Θ) =
N∏

i=1

[
q(zi)

] K∏

k=1

[
q(μk, γk)

]
(13)

Then, we can obtain the following update equations by maximizing the lower
bound L(q) with respect to each variational posterior

q(z) =
N∏

i=1

K∏

k=1

r
1[zi=k]
ik (14)

q(μ,γ) =
K∏

k=1

W(μk|m∗
k, β∗

kγk)G(γk|a∗
k, b∗

k) (15)

where the hyperparameters in the above variational posteriors are calculated by

rik =
r̃ik∑K

s=1 r̃is

, (16)

r̃ik = lnΓ (
D

2
) − D

2
ln 2π +

D

2
〈ln γk〉 − ln[γ̄

D
2

k M(
1
2
,
D

2
, γ̄k)]

− ∂

∂γ̄k

[
ln γ̄

D
2

k M(
1
2
,
D

2
, γ̄k)

]
(〈γk〉 − γ̄k)

+ γ̄kϑ(β∗
k γ̄k) +

{
γ̄k[ϑ(β∗

k γ̄k) + β∗
k γ̄kϑ′(β∗

k γ̄k)]

× (〈ln γk〉 + lnβ∗
k − ln β∗

k γ̄k)
}
(m∗T

k Xi)2

+ 〈ln(1 + n¬i
k )〉 − 〈ln(1 + �k + n¬i

≥k)〉
+

∑

j<k

[〈ln(�j + n¬i
>j)〉 − 〈ln(1 + �j + n¬i

≥j)〉
]

(17)

a∗
k = ak +

D

2
(1 +

N∑

i=1

〈zi=k〉) + β∗
k γ̄k

∂

∂β∗
k γ̄k

ln M
(1
2
,
D

2
, β∗

k γ̄k

)
(18)

b∗
k =bk +

N∑

i=1

〈zi=k〉 ∂

∂γ̄k

[
ln γ̄

D
2

k M(
1
2
,
D

2
, γ̄k)

]

+ βk
∂

∂βkγ̄k

[
ln(βkγ̄k)

D
2 M(

1
2
,
D

2
, βkγ̄k)

]
(19)
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A = βkmkmT
k +

N∑

i=1

〈zi=k〉xix
T
i (20)

where ϑ(x) = ∂
∂x ln M

(
1
2 , D

2 , x
)
, β∗

k is the largest eigenvalue of A, m∗
k represents

the corresponding eigenvector to β∗
k . The expected values in above equations are

given by

〈zi=k〉 = rik, γ̄k = a∗
k/b∗

k, 〈ln γk〉 = ψ(a∗
k) − ln b∗

k (21)

〈ln(1 + n¬i
k )〉 ≈ ln(1 + 〈n¬i

k 〉), (22)

〈ln(�k + n¬i
>k)〉 ≈ ln(�k + 〈n¬i

>k〉) (23)

〈ln(1 + �k + n¬i
≥k)〉 ≈ ln(1 + �k + 〈n¬i

≥k〉) (24)

〈n¬i
k 〉 =

∑

i′ �=i

ri′k, 〈n¬i
>k〉 =

∑

i′ �=i

K∑

s=k+1

ri′s, 〈n¬i
≥k〉 = 〈n¬i

k 〉 + 〈n¬i
>k〉 (25)

where the expected values of ln(1 + n¬i
k ), ln(�k + n¬i

>k), and ln(1 + �k + n¬i
≥k)

were acquired according to Gaussian approximations [20] with 0th-order Taylor
approximation [15]. Our CVB inference method for learning the Co-InWMM
is analogous to the maximum likelihood expectation maximization (EM) algo-
rithm, which is summarized in Algorithm 1.

Algorithm 1. CVB Inference of the Co-InWMM.
1: Initialize the truncation level K.
2: Initialize the hyper-parameters ak, bk, �k, and βk.
3: Apply K-Means algorithm to initialize rik.
4: repeat
5: The variational E-step:
6: Estimate the expected values in (21)∼(25), use the current distributions over

the model parameters.
7: The variational M-step:
8: Update the variational posteriors with (14) and (15) based on the estimated

expected values.
9: until The convergence criterion is satisfied.

4 Experimental Results

The proposed Co-InWMM with CVB inference is evaluated through two exper-
iments involved with both simulated data and a application about depth image
analysis. In our experiments, the truncation level K is initialized to 10, �k and
βk are set to 1, ak and bk are initialized to 1 and 0.01, respectively. These initial
values were found through cross validation.
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4.1 Synthetic Data

The principal purpose of conducting experiments on synthetic axial data is to
validate the “correctness” of the proposed CVB inference algorithm in learning
the proposed Co-InWMM. This is fulfilled by verifying the discrepancy between
computed values of the parameters and their true values. A synthetic data set was
generated to conduct the experiments. This data set contains 900 3-dimensional
data instances which are drawn from 3 Watson distributions (as demonstrated
in Fig. 1).

Fig. 1. The synthetic data set.

The true parameters that were used to generate the data set and the esti-
mated parameters by CVB inference method are shown in Table 1. According
to this table, the proposed learning algorithm is able to effectively learn the
Co-InWMM with estimated values of parameters that are vary close to the true
ones.

4.2 Depth Image Analysis

In this experiment, we apply the proposed Co-InWMM to a challenging appli-
cation namely depth image analysis. We use the NYU-V2 depth data set [16]
to conduct our experiments. This data set includes 1449 rgb-d images collected
from three different cities in the United States, consisting of 464 indoor different
scenes across 26 scene classes in commercial buildings and residences. Following
[8], we compute surface normals of depth images and then apply Co-InWMM for
clustering the normals. It is worth noting that the axially symmetric property
of WMM can naturally overcome the ambiguity signals caused by the normal
vector which calculated by plane fitting method.
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Table 1. Parameters estimation of the synthetic data set.

Nk k μk1 μk2 μk3 κk μ̂k1 μ̂k2 μ̂k3 κ̂k

300 1 0 0 1 15 0.01 0.02 0.99 15.46

300 2 0 1 0 22 0.01 0.99 −0.01 22.77

300 3 1 0 0 17 0.99 0.00 −0.01 17.19

Figure 2 shows the number of estimated clusters for all NYU-V2 depth data
set obtained by finite WMM with the Integrated Completed Likelihood (ICL)
criteria [8] and the proposed Co-InWMM. As can we can see from the figure, most
of the images contain 3–4 clusters. It is note worthy that, the WMM method in
[8] has to calculate the ICL criteria with different number of clusters in order to
determine the optimal number. In contrast, our model can detect the number of
clusters automatically with a single run.

Fig. 2. Estimated number of clusters for NYU-V2 depth data set.

(a) (b) (c) (d)

Fig. 3. Cluster example in the NYU-V2 depth data set. (a) rgb image; (b) depth image;
(c) normals; (d) results by Co-InWMM.

Figure 3 shows the example of depth image analysis. From the results we
observe that, different clusters represent different image regions and also rep-
resent the segment plane associated with the scene with a specific axis. Other
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Fig. 4. Cluster results on the NYU-V2 depth data set. (a) rgb images; (b) depth images;
(c) normals; (d) results by WMM; (e) results by In-WMM; (f) results by Co-InWMM.

results can be seen in Fig. 4. Through the results, we can see that some classes
represent some nonplanar objects (see case-7 and case-9 of Fig. 4), which means
that our method can find nonplanar objects. From case-3 and case-5, we can see
a lot of noise on the normal vector, but our method can still identify plane and
nonplaner objects well. In addition, similar to [8], we also find that the data with
lower prior probability will be divided into fewer clusters. In order to solve this
problem, a reasonable solution is to highlight each cluster by preprocessing the
normal vector to make the clustering more accurate.

In order to show the superiority of our model, we compare it with Kmeans,
finite vMFMM [19], finite WMM [8] and the In-WMM proposed in [7] in terms
of clustering performance on normals and computational runtime. It should be
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Table 2. Results obtained by different methods in terms of MI and computational
runtime (in min.)

Algorithm MI Time

Kmeans 0.293 241.39

vMFMM [19] 0.329 273.19

WMM [8] 0.335 270.00

In-WMM [7] 0.347 164.22

Co-InWMM 0.355 156.97

noted that the first three algorithms use ICL criteria to calculate the optimal
cluster number. We use mutual information (MI) to evaluate the performance
of clustering. The specific results are shown in Table 2. Based on the results
shown in this table, it is obvious that the Co-InWMM is able to provide better
clustering performance in terms of the highest MI value. Moreover, the Co-
InWMM is more computational efficient than other tested methods in terms of
the shortest computational runtime. This result demonstrates the advantages
of constructing the nonparametric infinite WMM in a collapsed space, where
mixing coefficients are integrated out and thus leads to a smaller number of
parameters that have to be estimated.

5 Conclusion

In this paper, we proposed a collapsed infinite Watson mixture model for mod-
eling axial data where the mixing coefficients are integrated out. We developed
an effective collapsed variational Bayes inference method to learn the proposed
model with closed-from solutions. The effectiveness of the proposed Co-InWMM
with CVB inference for modeling axial data was verified through experiments
that were conducted on both synthetical data sets and a challenging application
regarding depth image analysis.
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