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Preface

Welcome to the proceedings of the Third Chinese Conference on Pattern Recognition
and Computer Vision (PRCV 2020) held in Nanjing, China.

PRCV is the merger of Chinese Conference on Pattern Recognition (CCPR) and
Chinese Conference on Computer Vision (CCCV), which are both the most influential
Chinese conferences on pattern recognition and computer vision, respectively. Pattern
recognition and computer vision are closely interrelated and the two communities are
largely overlapping. The goal of merging CCPR and CCCV into PRCV is to further
boost the impact of the Chinese community in these two core areas of artificial intel-
ligence and further improve the quality of academic communication. Accordingly,
PRCV is co-sponsored by four major academic societies of China: the Chinese
Association for Artificial Intelligence (CAAI), the China Computer Federation (CCF),
the Chinese Association of Automation (CAA), and the China Society of Image and
Graphics (CSIG).

PRCV aims at providing an interactive communication platform for researchers
from academia and industry. It promotes not only academic exchange, but also com-
munication between academia and industry. In order to keep at the frontier of academic
trends and share the latest research achievements, innovative ideas, and scientific
methods in the fields of pattern recognition and computer vision, international and local
leading experts and professors are invited to deliver keynote speeches, introducing the
latest advances in theories and methods in the fields of pattern recognition and com-
puter vision.

PRCV 2020 was hosted by Nanjing University of Science and Technology and was
co-hosted by Nanjing University of Information Science and Technology, Southeast
University, and JiangSu Association of Artificial Intelligence. We received 402 full
submissions. Each submission was reviewed by at least three reviewers selected from
the Program Committee and other qualified researchers. Based on the reviewers’
reports, 158 papers were finally accepted for presentation at the conference, including
30 orals, 60 spotlights, and 68 posters. The acceptance rate is 39%. The proceedings of
PRCV 2020 are published by Springer.

We are grateful to the keynote speakers, Prof. Nanning Zheng from Xi’an Jiaotong
University, China, Prof. Jean Ponce from PSL University, France, Prof. Mubarak Shah
from University of Central Florida, USA, and Prof. Dacheng Tao from The University
of Sydney, Australia.

We give sincere thanks to the authors of all submitted papers, the Program Com-
mittee members and the reviewers, and the Organizing Committee. Without their
contributions, this conference would not be a success. Special thanks also go to all
of the sponsors and the organizers of the special forums; their support made the
conference a success. We are also grateful to Springer for publishing the proceedings



and especially to Ms. Celine (Lanlan) Chang of Springer Asia for her efforts in
coordinating the publication.

We hope you find the proceedings enjoyable and fruitful.

September 2020 Yuxin Peng
Qingshan Liu
Huchuan Lu
Zhenan Sun
Chenglin Liu
Xilin Chen

Hongbin Zha
Jian Yang
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Assessing Action Quality via Attentive
Spatio-Temporal Convolutional Networks

Jiahao Wang, Zhengyin Du, Annan Li(B), and Yunhong Wang

Beijing Advanced Innovation Center for Big Data and Brain Computing,
Beihang University, Beijing, China

{jhwang,duzhy,liannan,yhwang}@buaa.edu.cn

Abstract. Action quality assessment, which aims at evaluating the per-
formance of specific actions, has drawn more and more attention due to
its extensive demand in sports, health care, etc. Unlike action recogni-
tion, in which a few typical frames are sufficient for classification, action
quality assessment requires analysis at a fine temporal granularity to
discover the subtle motion difference. In this paper, we propose a novel
spatio-temporal framework for action quality assessment at full-frame-
rate (25fps), which consists of two steps: i.e. spatio-temporal feature
extraction and temporal feature fusion, respectively. In the first step, to
generate representative spatio-temporal dynamics, we utilize a spatial
convolutional network (SCN) together with specially designed temporal
convolutional networks (TCNs) and train them by a two-stage strategy.
In the second step, we introduce an attention mechanism to fuse fea-
tures in the temporal dimension according to their impact on the overall
performance. Compared with existing three dimensional convolutional
neural networks (3D-CNN) based methods, our model is capable of cap-
turing more action quality relevant details. As a by-product, our model
can also attend to the highlight moments in sports videos, which gives a
better interpretation of the score. Extensive experiments on three public
benchmarks demonstrate that the proposed method has distinct advan-
tage in action quality assessment and achieves improvement over the
state-of-the-art.

Keywords: Action quality assessment · Temporal convolution ·
Attentive fusion

1 Introduction

Automatically assessing action quality can facilitate a wide range of real-world
applications, such as automated sports refereeing, surgical skill scoring, exercise
therapy guidance and so on. Automated scoring systems can play an impor-
tant role in various sports events when the scores given by human referees are

This work was supported by the National Key Research and Development Plan of China
(Grant No. 2016YFB1001002) and the Foundation for Innovative Research Groups
through the National Natural Science Foundation of China (Grant No. 61421003).

c© Springer Nature Switzerland AG 2020
Y. Peng et al. (Eds.): PRCV 2020, LNCS 12306, pp. 3–16, 2020.
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(a)

(b)

Fig. 1. In sports events, the critical moments are usually heterogeneously distributed.
(a) The falling fault in figure skating (t3, t4). (b) The splash fault in diving (t6).

questioned due to partiality or divergence [20,21]. Consequently, there is an
increasing demand for developing action quality assessment systems that can
generate accurate and objective results for sports videos.

Action recognition [3,4,22,24,26,30,31] is usually considered to be the most
relevant computer vision problem to action quality assessment. Although both
of the tasks need modeling human body movement in a spatio-temporal man-
ner, two reasons make action quality assessment different from action recogni-
tion. Firstly, the quality score is usually determined by subtle difference among
actions [17,20,21] while in action recognition the class-differences are often sig-
nificant [30]. Secondly, the temporal distribution of frame-level action impact on
the overall result is more heterogeneous in action quality assessment due to the
uncertainty in sports events. For example, in figure skating events, as illustrated
in Fig. 1(a), the skater falls down in frame t3 and t4 but quickly adjusts the pos-
ture afterward. In diving competitions, as shown in Fig. 1(b), the diver performs
well in the air from frame t1 to t5 but makes a large splash in frame t6. These
critical moments are usually randomly distributed throughout the entire sports
video.

Previous works mainly use discrete cosine transform (DCT) [21] or 3D-
CNNs [17,20,29] to generate spatio-temporal action representations. The afore-
mentioned subtleness and elusiveness in sports videos are overlooked in such
approaches. For 3D-CNN based methods, due to the constrain of computing
capability and memory consumption, these methods take sparsely sampled video
frames (usually 16 frames for each video clip) as the input for extracting clip-
level features, which will be simply averaged or concatenated to generate the
final video representations. Such down-sampling inevitably causes loss in subtle
details. Besides that, the averaging operation brings smoothing effects, salient
moments shown in Fig. 1 will be smeared by adjacent frames.

In this paper, to overcome the limitations of existing methods, we revisit
the spatio-temporal modeling in action quality assessment and formulate it as
a two-step problem, i.e. spatio-temporal feature extraction and temporal fea-
ture fusion, respectively. The overall framework of our approach is illustrated in
Fig. 2. In the first step, to capture fine-grained visual cues, we process videos at
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Fig. 2. Overall framework of the proposed method. Given the input video, the SCN
firstly captures frame-level spatial representation Rs, on which the TCNs further
extracts spatio-temporal features Rst. Finally, we employ attentive fusion on Rst to
generate video representation Rv for score prediction.

full-frame-rate (25fps). Specifically, we employ a spatial convolutional network
(SCN) [25] to capture spatial features and then utilize specially designed tempo-
ral convolutional networks (TCNs) [2,16] to generate spatio-temporal representa-
tions. In the second step, to better exploit the randomly distributed key frames,
we propose attentive temporal fusion to fuse spatio-temporal features for score
prediction. The introduced temporal attention mechanism performs notably bet-
ter than averaging or concatenating schemes especially for long videos. Extensive
experiments on three public benchmarks, i.e. UNLV-Skating, UNLV-Vault and
UNLV-Dive [20], demonstrate our superiority over the state-of-the-art.

In summary, our contributions are three-fold:

– We propose a novel approach for action quality assessment which employs
a SCN together with specially designed TCNs for spatio-temporal modeling.
Our method is capable of capturing detailed action quality cues by utilizing
video frames at full-frame-rate.

– To exploit the randomly distributed key frames in sports videos, we introduce
the attentive temporal fusion method which adaptively attends to critical
actions.

– Our method achieves improvement over the state-of-the-art on three public
action quality assessment benchmarks.

2 Related Work

2.1 Action Recognition

Action recognition aims to classify videos containing different human actions.
Early researchers use hand-crafted features to express action information, such
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as space-time interest points (STIP) [13], histogram of optical flow (HOF) [14].
Recently, inspired by the success of deep architectures [8,12,25] in image classifi-
cation [23], plenty of works adopt deep neural networks to pursuit more accurate
recognition results. 3D-CNNs like C3D [26] and I3D [4] directly take video clips
as input and model spatio-temporal information of videos in an end-to-end man-
ner. In comparison, two-stream CNNs [24,31] use static video frames and optical
flow features to respectively model the spatial and temporal information. As the
difference of visual patterns between action classes are often significant, there are
also some works that attempt to recognize actions more efficiently with single
image [3] or few-shot learning [30].

2.2 Action Quality Assessment

The purpose of action quality assessment is to assess how well a certain kind of
action is performed. As aforementioned, it is a nontrivial problem as it requires
detailed action cues to determine the overall quality of action performance. More-
over, the influence of different moments within the whole action evolution varies
drastically, which makes it challenging to appropriately fuse frame-level action
representations. Over the past few years, several works [17,18,20,21,27,29] have
been dedicated to explore automated action quality assessment in sports events
(e.g. diving, figure skating, etc.), of which early methods tend to use human
pose [21,27] features while the recent ones [17,20,29] employ 3D-CNNs [22,26]
to directly extract features from video frames. Pirsiavash et al. [20] apply the
discrete cosine transform (DCT) on pose features extracted by a pose estimator
[19] and use support vector regression (SVR) to predict the action scores. In [20]
and [17], C3D network [26] is used to extract clip-level spatio-temporal features.
Xiang et al. [29] use P3D network [22] for stage-wise feature extraction. Due to
the constrain of computational cost and memory demand, these 3D-CNN based
methods usually take sparsely sampled video clips as input, which is likely to
loss important action quality details. To fuse clip-level features, long short-term
memory (LSTM) [9], average pooling and feature concatenation are adopted in
[20], [29] and [17], respectively. Nevertheless, none of these methods learns to
pay attention to the critical actions in videos.

3 Approach

3.1 Problem Formulation

Suppose we have a video V {vt}Tt=1, where T is the frame number and vt repre-
sents the t-th frame, action quality assessment can be substantially formulated
as a many-to-one problem, where all frames in V are mapped into a single score
s to describe how well the action in V is performed. As mentioned in Sect. 1,
we decompose the whole problem into two steps, i.e. spatio-temporal feature
extraction and temporal feature fusion, which can be denoted as follows:

Rst{rstt }T
′

t=1 = ST (V ), (1)
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s = F(Rst). (2)

Equation (1) represents the process of spatio-temporal feature extraction
where we employ a certain method ST (·) to extract spatio-temporal features
{rstt }T

′

t=1 of temporal length T
′

from input video V . We denote the generated
spatio-temporal representations as Rst. Next, as formulated in Eq. (2), we use
the temporal fusion method F(·) to fuse Rst and generate the final action quality
score s.

3.2 Two-Stage Spatio-Temporal Feature Extraction

As action quality assessment needs to pay attention to detailed action cues,
we desire a system that operates at full-frame-rate to retain motion details.
However, current 3D-CNN methods are difficult to achieve that due to the limi-
tation of computation and memory resources. Fortunately, recent research shows
the temporal convolutional network (TCN) is a powerful and efficient tool for
sequence modeling tasks including temporal action segmentation [16], machine
translation [2] and so on. Also, experiments in [2] show TCNs have a series of
merits including lower training difficulty and memory demand. Inspired by that,
we propose a two-stage spatio-temporal framework, which consists of a SCN for
spatial modeling and a TCN for temporal modeling, respectively.

Spatial Convolutional Network. In the first stage, the SCN is applied on
every frame of the input video which we define as

Rs{rst }Tt=1 = S(V ). (3)

For every input video V of frame number T , we use the SCN (denoted as
S(·)) to extract the same number of spatial representations {rst }Tt=1, which we
denote as Rs. Specifically, we adopt the Inception-v3 network [25] pretained on
the ImageNet dataset [6] as the backbone model for SCN. Since the task of
ImageNet classification has a considerable gap with action quality assessment,
we finetune the model on corresponding action quality assessment datasets. The
detailed training process is introduced in Sect. 4.1.

Temporal Convolutional Network. In the second stage, we further extract
spatio-temporal features with motion cues and contextual information on the
basis of Rs. Most sports events are composed of a series of motions, e.g., a
complete figure skating performance consists of actions of jumping, spinning,
etc. Therefore, we must capture spatio-temporal features with rich temporal
dynamics to model these movements. We employ the TCN [2,10,16] to generate
spatio-temporal representations which can be formulated as

Rst{rstt }T
′

t=1 = T (Rs), (4)

where Rs is the spatial features. We utilize a TCN model T (·) to produce spatio-
temporal representations Rst of temporal length T

′
. Note that the temporal
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length of Rst and Rs, i.e. T
′

and T can be different. We define TCNs with
T

′
< T as encoding TCN and T

′
= T as plain TCN. We comprehensively

investigate both architectures. For encoding TCN, we devise the encoding tem-
poral convolutional network (ETCN). For plain TCN, we introduce the atrous
temporal convolutional network (ATCN).

Encoding Temporal Convolutional Network. As shown in Fig. 3(a), encod-
ing temporal convolutional network (ETCN) utilizes temporal convolutions [10]
which convolve features in the temporal dimension. ETCN is designed under
the paradigm of encoding networks, which decrease the output size after each
convolutional layer. As illustrated in Fig. 3(c), ETCN is composed of encod-
ing convolution blocks, which is formed by a sequence of temporal convolution,
spatial dropout [16] and temporal max pooling. Inspired by the residual learn-
ing in [8], we also use residual connections in every block as it facilitates the
training of deep networks. For each encoding block, we simply add up the input
and output of the residual function if they have the same depth, otherwise we
employ an 1 × 1 convolution to alter the depth of identity mapping. After the
element-wise addition, we use a normalized rectified linear unit (NRLU) [16]
layer to get the output of the block. We employ a ETCN with 6 convolution
blocks, which have output dimensionalities of {256, 256, 256, 512, 512, 512}. Max
pooling is only used in the first 4 convolution blocks with the stride of 2, which
makes T

′
/T equals to 1/16.

NRLU
Temporal  convolutionConvolution / Identity mapping

Spatial dropout
Max pooling

(a) (c)

Atrous temporal convolution

(b) (d)

Fig. 3. Temporal convolutional networks. (a) An example of temporal convolutions in
ETCN with kernel size 3. (b) An example of atrous convolutions in ATCN with kernel
size 3 and exponentially increasing atrous rates. (c) Structure of encoding convolution
block. (d) Structure of atrous convolution block.

Atrous Temporal Convolutional Network. As the temporal resolution
reduction may cause information loss in output features, we propose the atrous
temporal convolutional network (ATCN) which has an output feature length T

′

equals to the input length T . To achieve a field-of-view comparable to the ETCN
without pooling layers, we utilize the atrous temporal convolution [10,28]. An
illustration of the atrous convolution is shown in Fig. 3(b). For the l-th con-
volutional block, we apply an atrous rate of 2(l−1) which effectively enlarges
the field-of-view of the neurons. Our ATCN is composed of atrous convolution
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blocks, which is presented in Fig. 3(d). An atrous convolution block consists of
two consecutive sequences of atrous temporal convolution, NRLU and spatial
dropout. We also use the same residual connections as ETCN in atrous convolu-
tion blocks. In practice, we employ an ATCN with 4 atrous convolution blocks,
which have output dimentionalities of {256, 256, 512, 512}.

3.3 Attentive Temporal Feature Fusion

After obtaining the spatio-temporal representations of the input video, we per-
form feature fusion in the temporal dimension so as to generate the final predic-
tion. Obviously, during the execution of a sports event, there are some moments
that play key roles in the final scoring. As mentioned in Sect. 1, a diver can be
punished in final score for the splash at the last second of the video. Meanwhile,
the attention mechanism have been demonstrated to be an effective solution for
non-uniformly distributed temporal problems including machine translation [1],
image generation [7]. Motivated by that, we propose our attentive temporal
fusion strategy.

Given the spatio-temporal representations Rst{rstt }T
′

t=1 from TCNs, our
attention weights are generated via a temporal convolution layer with kernel
size 3 followed by a softmax layer, which can be formulated as

at =
ept

∑T ′

i=1 epi

, (5)

where pi denotes the convolution output at the i-th time step and at is the cor-
responding attention weight of rstt . With these attention weights, we calculate
weighted average of Rst in the temporal dimension to produce video represen-
tation Rv as

Rv =
T

′
∑

t=1

atr
st
t . (6)

Note that the fusion strategy is cascaded with the TCNs so as to be optimized
jointly when training. Finally, we employ two fully connected (FC) layers to
produce the final quality score prediction. For comparison, we also investigate
the temporal average pooling scheme where every at equals to 1/T

′
.

3.4 Loss Function

For traditional regression problems, the mean square error (MSE) is usually
adopted as the loss function. We take MSE loss as the first term in our loss
function, which is denoted as

Lmse =
1

2N

N∑

i=1

(pi − gi)2. (7)
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Given a training batch of size N , we use pi and gi to denote the prediction and
ground truth scores of the i-th sample. As presented in Eq. (7), the MSE term
minimizes the gap of score value between prediction and ground truth scores
for each training sample. In action quality assessment tasks, it is important to
retain the correct score ranking correlations between different samples. In other
words, we want the predictions to reflect appropriate ranking order of individu-
als. Nevertheless, merely minimizing score value distance of each individual with
the MSE loss often leads to inaccurate ranking order. Hence, we propose a corre-
lation loss term to constrain the ranking correlations between different training
samples, which can be formulated as

Lcorr =
1

N(N − 1)

N∑

i=1

N∑

j=1,j>i

((pj − pi) − (gj − gi))2, (8)

where p and g represent the same values as in Eq. (7). For each pair of two
predicted scores {pi, pj}, the correlation loss term computes the difference of
correlation distance, i.e. pi − pj , between the prediction and the ground truth.
The overall loss function is then formed as

L = αLmse + βLcorr, (9)

where α and β are the weights for corresponding loss terms.

4 Experiments

4.1 Training and Implementation Details

SCN Training. As mentioned in Sect. 3.2, to adapt the Inception-v3 network
to the action quality assessment task, for each dataset, we finetune the SCN with
10% of training data. In practice, we finetune the last two inception blocks of the
SCN with action score supervision. Two additional FC layers, which respectively
have output dimensionalities of 1024 and 1 are added on top of the last inception
block to produce a single score. We simply take the mean square error (MSE)
loss as loss function. Later when extracting spatio-temporal features with TCNs,
we directly use output features from the last average pooling layer of the SCN.

TCN Training. Our TCNs take the spatial features captured by SCN as input
and produce a single score for each video after attentive temporal fusion. As
the input features have a dimensionality of 2048, both TCNs employ a 1 × 1
temporal convolution with output size 256 for dimensionality reduction. Also,
we set the kernel size and convolution stride in TCNs to 7 and 1, respectively.
The integrated loss introduced in Sect. 3.4 is adopted for TCN training.



Assessing Action Quality 11

Implementation Details. Our models are implemented with Keras [5]. For
both SCN and TCN training, we use the ADAM [11] optimizer with the initial
learning rate of 0.0001. For TCNs, we employ exponential learning rate decay
every 50 training steps with an decay rate of 0.9. The spatial dropout probability
is set to 0.1. We use batch size of 32 for SCN training and 8 for TCN training.
To facilitate batch training for TCNs, we use zero padding at the end of each
video to ensure the sequence lengths are equal. We also use horizontal flipping,
random rotation and cropping for data augmentation when training the SCN.

4.2 Datasets and Metrics

Our framework is evaluated on three public action quality assessment datasets
[20], which respectively contain three different Olympic events, i.e. figure skat-
ing, gymnastic vault and platform diving. All video frames are captured at 25fps
for detailed visual cues. We present video number, average and max video length
(in frames) of these datasets in Table 1. For UNLV-Dive and UNLV-Vault, the
training/testing splits are the same as those in previous works, which are respec-
tively 300/70 and 120/56. For UNLV-Skating, we repeat the experiments 200
times with random splits as in [20,21].

Table 1. General information of datasets.

Dataset Sports event #Videos Avg. length Max length

UNLV-Skating Figure skating 171 4500 5823

UNLV-Vault Gymnastic vault 176 75 100

UNLV-Dive 10m platform diving 370 110 150

Note that the length of videos in UNLV-Skating dataset is nearly 50 times
longer than the ones in other datasets, which means it is more challenging to
aggregate subtle action information across time on this dataset. This feature
hinders the performance of 3D-CNN models, because they have high temporal
down-sampling rate without any additional temporal fusion method. We take the
Spearman’s rank correlation (SRC) used in previous works [17,20,21,27,29] as
evaluation metrics. SRC assesses how well the relationship between two variables
can be described using a monotonic function, which means predictions achieving
higher SRC have a stronger ranking correlation with the ground-truth scores
and vice versa. The range of SRC is between −1.0 and 1.0.
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Table 2. Comparison with the state-of-the-art methods.

Method UNLV-Skating UNLV-Vault UNLV-Dive

Pose+DCT [21] 0.35 0.10 0.53

ConvISA [15] 0.45 – –

C3D+LSTM [20] – 0.05 0.27

C3D+SVR [20] 0.53 0.66 0.78

C3D+CNN [17] 0.58 0.70 0.80

ScoringNet [18] – 0.70 0.84

S3D [29] – – 0.86

Ours (SCN+ATCN) 0.71 0.76 0.85

Ours (SCN+ETCN) 0.59 0.73 0.81

4.3 Comparison with the State-of-the-Art

We compare the performance of our approach on three benchmarks with other
state-of-the-art methods [15,17,20,21,29]. Table 2 shows the results measured
in SRC. It can be observed that both of our SCN-TCN approaches outperform
the state-of-the-art methods on UNLV-Skating and UNLV-Vault datasets and
achieve a competitive performance on UNLV-Dive dataset. This result demon-
strates the distinct advantage of our SCN-TCN framework in action quality
assessment. Furthermore, ATCN performs much better than ETCN on longer
videos (UNLV-Skating), indicating that the temporal length reduction degrades
the spatio-temporal representations of TCN in action quality assessment tasks.

Ground truth: 41.25         Prediction: 40.56 

Ground truth: 93.60         Prediction: 94.09 

(a)

(b)

Fig. 4. Examples of two predictions from UNLV-Dive dataset. (a) An athlete with
good performance (video #179). (b) An athlete with bad performance (video #291).
Our model makes accurate prediction in both cases.

Notably, our method boost the performance on UNLV-Skating dataset by
a large margin (22%). As analyzed in [17,21], down-sampled input hinders the
performance of 3D-CNNs on long videos. This result further demonstrates the
capability of our model in capturing detailed action cues. Figure 4 shows two
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Fig. 5. Ground truth and predicted scores of UNLV-Dive and UNLV-Vault. To better
visualize the ranking correlations, we rearrange the samples in an ascending order of
ground truth scores.

qualitative examples of the ATCN model on UNLV-Dive dataset. It shows that
our model can make accurate predictions for athletes of both good and bad
performance, indicating that our framework can capture discriminative spatio-
temporal representations for different performance levels. The predicted scores of
UNLV-Dive and UNLV-Vault datasets generated by our ATCN model together
with the ground truth scores are presented in Fig. 5. As the figure shows, for
UNLV-Dive dataset, our model preserves most of the original ranking corre-
lations while making predicted scores close to the ground-truth values. For
UNLV-Vault, the predictions fluctuate more intensively around the ground truth,
which is probably caused by the insufficiency of training samples and the blur
of motions in gymnastic vault videos.

Although S3D [29] achieves a better result on UNLV-Dive dataset, they use
additional manually annotated segmentation labels for temporal segmentation.
Besides, annotating segmentation labels for sports videos is a labor-intensive
work, which will take enormous efforts on datasets with larger scale or longer
video length.

4.4 Effectiveness of Temporal Attention

In order to demonstrate the effectiveness of the proposed temporal attention
mechanism, we compare it with simple temporal average pooling method and
present the result in Table 3. The two evaluated models, which both employs
ATCN, are exactly the same except the temporal fusion layers. Obviously, the
one with temporal attention performs better on all three datasets. This result
indicates that our temporal attention mechanism is capable of learning better
fusion weights than sample average fusion. Note that for longer videos like figure
skating, the attention mechanism gains more improvement. This demonstrates
that the longer the sports event is, the more temporal attention is needed to
determine the critical actions.
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Table 3. Comparison of temporal fusion methods.

Method UNLV-Skating UNLV-Vault UNLV-Dive

SCN+ATCN (average) 0.65 0.72 0.82

SCN+ATCN (attention) 0.71 0.76 0.85

An qualitative example of the attention weights derived by our ATCN model
is visualized in Fig. 6, in which three frames with high attention values and two
frames with low values are illustrated. Note that in the first high-value frame, the
skater accidentally tumbles, while in the other two frames the skater performs
twist and one-foot glide, respectively. These frames are worth paying attention
to because each of them has significant influence on the overall performance,
whether negatively or positively. In contrast, in the frames with low attention
values, the skater remains in basic skating postures, which has little impact on
the final score. This result demonstrates that our temporal attention mechanism
is capable of capturing actions that contribute the most to the overall perfor-
mance. As a by-product, the derived attention weights can provide a better
understanding of the predicted scores and facilitate other video analysis tasks,
such as sports highlight generation and video retrieval.

Fig. 6. Visualization of attention weights for video #18 from UNLV-Skating. Note
that the three peak-value frames have significant influence on the overall performance,
especially for the first one, where the skater accidentally tumbles. For the frames with
low attention values, the skater remains in basic skating postures. Our model learns to
focus on critical actions with this attention mechanism.

5 Conclusion

In this paper, we revisit the spatio-temporal modeling for action quality assess-
ment and formulate it as a two-step problem consisting of spatio-temporal feature
extraction and temporal feature fusion. In the first step, we introduce an effec-
tive SCN-TCN framework, in which fine-grained spatial features are captured by
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processing videos at full-frame-rate. For temporal modeling, two kinds of spe-
cially designed TCNs are evaluated. In the second step, we propose attentive
temporal fusion which learns to focus on the critical sports actions. Experimen-
tal results demonstrate the effectiveness of the methodology and the superiority
over the state-of-the-art.
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Abstract. Recently, axial data (i.e. the observations are axes of direc-
tion) have been involved with various fields ranging from blind speech
separation to gene expression data clustering. In this paper, axial data
modeling is performed by proposing a nonparametric infinite Watson
mixture model which is constructed in a collapsed space (denoted by
Co-InWMM) where the mixing coefficients are integrated out. Then, an
effective collapsed variational Bayes (CVB) inference method is theoreti-
cally developed to learn the Co-InWMM with closed-from solutions. The
proposed Co-InWMM with CVB inference for modeling axial data is val-
idated through both synthetical data sets and a challenging application
regarding depth image analysis.

Keywords: Axial data modeling · Mixture model · Watson
distributions · Collapsed variational Bayes · Depth image analysis

1 Introduction

In recent years, directional data (i.e. the “direction” of the data is more impor-
tant than their magnitude) analysis has drawn significant attention in various
fields [12,14]. Typical directional data are the data that are normalized to have
unit norm, which lie on the surface of the unit sphere. Since directional data
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are better represented on a manifold, the nonlinear nature of manifolds implies
that common distributions such as the multivariate Gaussian distribution can
not be used to model and analyze directional data. Alternatively, distributions
that are defined on the unit hypersphere are more appropriate and effective to
model directional data.

One of the most basic directional distributions is the von Mises-Fisher (vMF)
distribution, which is defined on the unit hyperspahere (SD−1) and has similar
characteristics to those of the multivariate Gaussian distribution defined in the
Euclidean space R

D. Although vMF distributions were widely involved with
directional data modeling, it is not a universal solution to all types directional
data. For instance, resent reach works have demonstrated that axial data where
the observations are axes of direction (i.e. the unit vectors ±X are indistinguish-
able) are better modeled with Watson distributions rather than with vMF [1].
As a special type of directional data, axial data have found their applications
in various applications, such as blind speech separation [21], speech cluster-
ing in distributed microphone arrays [17], differentiation between normal and
schizophrenic brains [13], gene expression data clustering analysis [7], etc.

Different methods have been proposed to learn Watson distributions or its
natural extension the Watson mixture model (WMM). The major difficulty of
learning Watson-based models lies on the fact that no analytically solution to
the inference of the concentration parameters of Watson distributions can be
found. Thus, approximation methods were proposed to solve this problem. A
simple approximation method for large concentrations has been proposed in [13]
to learn Watson distributions with the maximum likelihood (ML) estimates. This
learning method, however, can not deal axial data with higher dimensions. In
[1], an approximation to ML estimates has been proposed within an expectation
maximization (EM) framework to learn WMMs. However, this method is prone
to the problem of over-fitting. A better alternative method to ML estimates
is the variational Bayes (VB) [4,9], a method that approximates posterior dis-
tributions through optimization. In [18], a VB inference method was proposed
to learn WMMs and demonstrated better performance than the ML estimates.
Although closed-form solutions can be obtained by this method, the evaluation
of the model complexity (i.e. the number of mixture components model that
best fit the data) requires extra effort. Specifically, the VB inference method in
[18] treats the mixing coefficients of the WMM as random variables which are
assigned with a Dirichlet prior. Then, model selection was performed by remov-
ing the components with small responsibilities. A more elegant solution to the
model selection problem in modeling WMMs was proposed in [7], where a non-
parametric framework known as the Dirichlet process mixture model [3,10] was
adopted to define the WMM with an infinite number of components. By apply-
ing VB inference method to learn the infinite WMM (In-WMM), the number of
mixture component can be freely initialized and will be adjusted automatically
as the data set increases [7].

Although both VB inference methods ([18] and [7]) are effective to learn
WMMs, to ensure closed-form solutions, the VB inference has to adopt the
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mean-field assumption [2] where parameters are assumed to be independent.
This assumption, however, is not realistic in the WMM or In-WMM in which
the mixing coefficients and the latent indicator variables are obviously closely
related. This issue can be addressed by applying VB inference in a collapsed space
where parameters are marginalized out, which leads to the so-called collapsed
VB (CVB) inference framework [20]. As described in [11,20], the mean-field
assumption is more satisfied with CVB without the concern of dependencies
between parameters. Thus, in this work we focus on developing an effective
CVB inference method to learn the In-WMM in a collapsed space where the
mixing coefficients are integrated out.

We summarize the contributions of this work as follows. Firstly, a collapsed
infinite WMM (Co-InWMM) is proposed for modeling axial data by marginaliz-
ing out the mixing coefficients. Secondly, an effective CVB inference method is
theoretically developed to learn Co-InWMM with closed-from solutions. Lastly,
the proposed Co-InWMM with CVB inference is validated through both syn-
thetical data sets and a challenging application about depth image analysis.

2 The Collapsed Infinite WMM

2.1 Infinite Watson Mixture Models

Given a data set X = {xi}N
i=1 which contains N axial random vectors (i.e.

x and −x are equivalent), each D-dimensional data vector can be represented
as a unit vector (i.e. ‖x‖2 = 1) defined on a (D − 1)-dimensional unit hyper-
sphere S

D−1. If each vector x is a drawn from a mixture of an infinite number of
Watson distributions, then the probability density function of this infinite Wat-
son mixture model (InWMM) is given by

p(x|π,μ,γ) =
∞∑

k=1

πkW(x|μk, γk) (1)

where π = {πk}∞
k=1 represent the mixing coefficients that should be nonnegative

and sum to 1; μ ∈ S
D−1 denotes the mean direction with ‖μ‖2 = 1, and γ ∈ R

represents the concentration. W(xi|μk, γk) indicates the Watson distribution
associated with the kth component of the mixture model and is defined by

W(x|μk, γk) =
Γ (D/2)

2πD/2M( 12 , D
2 , γk)

exp[γk(μT
k x)2] (2)

where M(a, b, ·) represents the Kummer function (also known as the confluent
hypergeometric function) which is given by

M(a, b, γ) =
∞∑

n=0

Γ (a + n)Γ (b)
Γ (a)Γ (b + n)

γn

n!
(3)

where Γ (·) denotes the Gamma function.
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Next, each vector xi is assigned with a latent indicator variable zi which is
used to indicate the component from which xi is drawn. For the data set X , the
distribution of indicator variables z = {zi}N

i=1 can be represented by

p(z|π) =
N∏

i=1

∞∏

k=1

π
1[zi=k]
k (4)

where 1[·] denotes the indicator function which equals 1 when zi = k, otherwise
it equals 0.

2.2 Prior Distributions

The InWMM is constructed using a Bayesian framework, in which each unknown
variable is assigned with a prior distribution. A nonparametric prior namely
Dirichlet process [10] is considered for the mixing coefficients π, and is defined
in terms of a stick-breaking representation [3] as

πk = π′
k

k−1∏

s=1

(1 − π′
s), π′

k ∼ Beta(1,�k), G =
∞∑

k=1

πkδθk
, θk ∼ H (5)

where G is a drawn from the Dirichlet process G ∼ DP (�,H) with the base
distribution H and scaling parameter �, where δθk

is an atom at θk.
Following [7,18], a Watson-Gamma prior is selected for parameters μ and γ

as

p(μ,γ) =
∞∏

k=1

W(μk|mk, βkγk)G(γk|ak, bk) (6)

where G(·) indicates the Gamma distribution.

2.3 Collapsed Infinite Watson Mixture Models

According to several recent works in the literature of mixture modeling [5,6], bet-
ter performance often would be obtained when model learning was conducted in
a collapsed space where some or all of the parameters are marginalized out. In our
case, inspired from [5,6,11], we re-formulate a collapsed version of InWMM (i.e.
the Co-InWMM) by marginalizing out the mixing coefficients π. Consequently,
the latent variable z does not depend on the mixing coefficients π anymore and
is distributed as

p(z) =
∞∏

k=1

Γ (1 + nk)Γ (�k + n>k)
Γ (1 + �k + n≥k)

(7)

where nk =
∑N

i=1 1[zi = k] indicates the number of data instances from the kth
component, n>k =

∑N
i=1 1[zi > k], and n≥k = nk + n>k.

The conditional distribution of zi = k given the current state of all except
one variable zi is

p(zi = k|z¬i) ∝ (1 + n¬i
k )(�k + n¬i

>k)(1 + �k + n¬i
≥k)−1 (8)
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where the superscript ¬i indicates the associated ith term is removed.
The joint distribution of all latent and random variables in the Co-InWMM

is given by

p(X ,z,μ,γ) =
N∏

i=1

p(xi|μzi
, γzi

)p(zi)
∞∏

k=1

p(μk, γk) (9)

In contrast with the InWMM as described in Eq. (1), the Co-InWMM has two
major advantages: 1) the explicit dependency between latent variables z and
mixing coefficients π is broken, which will be in favor of the mean-filed variational
Bayes model learning method as developed in the following section; 2) a smaller
number of parameters are obtained by integrating out π, which leads to a faster
inference process with better performance.

3 Model Learning

In this section, based on the VB inference methods that were respectively pro-
posed in [7,18] for learning finite WMM and InWMM, we develop an effective
method based on collapsed variational Bayes (CVB) [11,20] to learn the pro-
posed Co-InWMM with closed-form solutions.

3.1 Mean-Field Collapsed Variational Inference

VB inference is an effective method for approximating posterior dentistries in
Bayesian models. In our case, VB is adopted to approximate the true posterior
p(Θ|X ) with an approximated posterior q(Θ) (also referred to as variational
posterior), where Θ = {z,μ,γ} denotes the set of all latent and random variables
of the Co-InWMM. VB inference solves the problem of approximation though
optimization, by minimizing the Kullback-Leibler (KL) divergence between q(Θ)
and p(Θ|X ), which is equivalent to maximizing the lower bound of ln p(X ) that
is defined by

L(q) =
∫

q(Θ) ln[p(X , Θ)/q(Θ)]dΘ (10)

To perform VB inference for learning Co-InWMM which contains an infinite
number of mixture components, a common technique is to truncate the stick-
breaking representation of Co-InWMM at a finite value K as

π′
K = 1,

K∑

k=1

πk = 1, πk = 0 when k > K (11)

where K can be freely initialized and would be inferred automatically through
VB inference.

To obtain closed-from solutions, mean-field assumption [2] is often adopted in
VB inference to factorize the variational posterior as the product of independent
factors, where each factor represents variational posterior of the corresponding
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variable. In [7], the variational posterior of InWMM with truncation was factor-
ized as

q(Θ) = q(π)q(z)q(μ,γ) (12)

This factorization assumption, however, clearly violates the fact that latent vari-
ables z and mixing coefficients π are closely related with strong dependency as
demonstrated in Eq. (4). The mean-field assumption is more satisfied in Co-
InWMM where π are marginalized out as

q(Θ) =
N∏

i=1

[
q(zi)

] K∏

k=1

[
q(μk, γk)

]
(13)

Then, we can obtain the following update equations by maximizing the lower
bound L(q) with respect to each variational posterior

q(z) =
N∏

i=1

K∏

k=1

r
1[zi=k]
ik (14)

q(μ,γ) =
K∏

k=1

W(μk|m∗
k, β∗

kγk)G(γk|a∗
k, b∗

k) (15)

where the hyperparameters in the above variational posteriors are calculated by

rik =
r̃ik∑K

s=1 r̃is

, (16)

r̃ik = lnΓ (
D

2
) − D

2
ln 2π +

D

2
〈ln γk〉 − ln[γ̄

D
2

k M(
1
2
,
D

2
, γ̄k)]

− ∂

∂γ̄k

[
ln γ̄

D
2

k M(
1
2
,
D

2
, γ̄k)

]
(〈γk〉 − γ̄k)

+ γ̄kϑ(β∗
k γ̄k) +

{
γ̄k[ϑ(β∗

k γ̄k) + β∗
k γ̄kϑ′(β∗

k γ̄k)]

× (〈ln γk〉 + lnβ∗
k − ln β∗

k γ̄k)
}
(m∗T

k Xi)2

+ 〈ln(1 + n¬i
k )〉 − 〈ln(1 + �k + n¬i

≥k)〉
+

∑

j<k

[〈ln(�j + n¬i
>j)〉 − 〈ln(1 + �j + n¬i

≥j)〉
]

(17)

a∗
k = ak +

D

2
(1 +

N∑

i=1

〈zi=k〉) + β∗
k γ̄k

∂

∂β∗
k γ̄k

ln M
(1
2
,
D

2
, β∗

k γ̄k

)
(18)

b∗
k =bk +

N∑

i=1

〈zi=k〉 ∂

∂γ̄k

[
ln γ̄

D
2

k M(
1
2
,
D

2
, γ̄k)

]

+ βk
∂

∂βkγ̄k

[
ln(βkγ̄k)

D
2 M(

1
2
,
D

2
, βkγ̄k)

]
(19)
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A = βkmkmT
k +

N∑

i=1

〈zi=k〉xix
T
i (20)

where ϑ(x) = ∂
∂x ln M

(
1
2 , D

2 , x
)
, β∗

k is the largest eigenvalue of A, m∗
k represents

the corresponding eigenvector to β∗
k . The expected values in above equations are

given by

〈zi=k〉 = rik, γ̄k = a∗
k/b∗

k, 〈ln γk〉 = ψ(a∗
k) − ln b∗

k (21)

〈ln(1 + n¬i
k )〉 ≈ ln(1 + 〈n¬i

k 〉), (22)

〈ln(�k + n¬i
>k)〉 ≈ ln(�k + 〈n¬i

>k〉) (23)

〈ln(1 + �k + n¬i
≥k)〉 ≈ ln(1 + �k + 〈n¬i

≥k〉) (24)

〈n¬i
k 〉 =

∑

i′ �=i

ri′k, 〈n¬i
>k〉 =

∑

i′ �=i

K∑

s=k+1

ri′s, 〈n¬i
≥k〉 = 〈n¬i

k 〉 + 〈n¬i
>k〉 (25)

where the expected values of ln(1 + n¬i
k ), ln(�k + n¬i

>k), and ln(1 + �k + n¬i
≥k)

were acquired according to Gaussian approximations [20] with 0th-order Taylor
approximation [15]. Our CVB inference method for learning the Co-InWMM
is analogous to the maximum likelihood expectation maximization (EM) algo-
rithm, which is summarized in Algorithm 1.

Algorithm 1. CVB Inference of the Co-InWMM.
1: Initialize the truncation level K.
2: Initialize the hyper-parameters ak, bk, �k, and βk.
3: Apply K-Means algorithm to initialize rik.
4: repeat
5: The variational E-step:
6: Estimate the expected values in (21)∼(25), use the current distributions over

the model parameters.
7: The variational M-step:
8: Update the variational posteriors with (14) and (15) based on the estimated

expected values.
9: until The convergence criterion is satisfied.

4 Experimental Results

The proposed Co-InWMM with CVB inference is evaluated through two exper-
iments involved with both simulated data and a application about depth image
analysis. In our experiments, the truncation level K is initialized to 10, �k and
βk are set to 1, ak and bk are initialized to 1 and 0.01, respectively. These initial
values were found through cross validation.
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4.1 Synthetic Data

The principal purpose of conducting experiments on synthetic axial data is to
validate the “correctness” of the proposed CVB inference algorithm in learning
the proposed Co-InWMM. This is fulfilled by verifying the discrepancy between
computed values of the parameters and their true values. A synthetic data set was
generated to conduct the experiments. This data set contains 900 3-dimensional
data instances which are drawn from 3 Watson distributions (as demonstrated
in Fig. 1).

Fig. 1. The synthetic data set.

The true parameters that were used to generate the data set and the esti-
mated parameters by CVB inference method are shown in Table 1. According
to this table, the proposed learning algorithm is able to effectively learn the
Co-InWMM with estimated values of parameters that are vary close to the true
ones.

4.2 Depth Image Analysis

In this experiment, we apply the proposed Co-InWMM to a challenging appli-
cation namely depth image analysis. We use the NYU-V2 depth data set [16]
to conduct our experiments. This data set includes 1449 rgb-d images collected
from three different cities in the United States, consisting of 464 indoor different
scenes across 26 scene classes in commercial buildings and residences. Following
[8], we compute surface normals of depth images and then apply Co-InWMM for
clustering the normals. It is worth noting that the axially symmetric property
of WMM can naturally overcome the ambiguity signals caused by the normal
vector which calculated by plane fitting method.
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Table 1. Parameters estimation of the synthetic data set.

Nk k μk1 μk2 μk3 κk μ̂k1 μ̂k2 μ̂k3 κ̂k

300 1 0 0 1 15 0.01 0.02 0.99 15.46

300 2 0 1 0 22 0.01 0.99 −0.01 22.77

300 3 1 0 0 17 0.99 0.00 −0.01 17.19

Figure 2 shows the number of estimated clusters for all NYU-V2 depth data
set obtained by finite WMM with the Integrated Completed Likelihood (ICL)
criteria [8] and the proposed Co-InWMM. As can we can see from the figure, most
of the images contain 3–4 clusters. It is note worthy that, the WMM method in
[8] has to calculate the ICL criteria with different number of clusters in order to
determine the optimal number. In contrast, our model can detect the number of
clusters automatically with a single run.

Fig. 2. Estimated number of clusters for NYU-V2 depth data set.

(a) (b) (c) (d)

Fig. 3. Cluster example in the NYU-V2 depth data set. (a) rgb image; (b) depth image;
(c) normals; (d) results by Co-InWMM.

Figure 3 shows the example of depth image analysis. From the results we
observe that, different clusters represent different image regions and also rep-
resent the segment plane associated with the scene with a specific axis. Other
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Fig. 4. Cluster results on the NYU-V2 depth data set. (a) rgb images; (b) depth images;
(c) normals; (d) results by WMM; (e) results by In-WMM; (f) results by Co-InWMM.

results can be seen in Fig. 4. Through the results, we can see that some classes
represent some nonplanar objects (see case-7 and case-9 of Fig. 4), which means
that our method can find nonplanar objects. From case-3 and case-5, we can see
a lot of noise on the normal vector, but our method can still identify plane and
nonplaner objects well. In addition, similar to [8], we also find that the data with
lower prior probability will be divided into fewer clusters. In order to solve this
problem, a reasonable solution is to highlight each cluster by preprocessing the
normal vector to make the clustering more accurate.

In order to show the superiority of our model, we compare it with Kmeans,
finite vMFMM [19], finite WMM [8] and the In-WMM proposed in [7] in terms
of clustering performance on normals and computational runtime. It should be
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Table 2. Results obtained by different methods in terms of MI and computational
runtime (in min.)

Algorithm MI Time

Kmeans 0.293 241.39

vMFMM [19] 0.329 273.19

WMM [8] 0.335 270.00

In-WMM [7] 0.347 164.22

Co-InWMM 0.355 156.97

noted that the first three algorithms use ICL criteria to calculate the optimal
cluster number. We use mutual information (MI) to evaluate the performance
of clustering. The specific results are shown in Table 2. Based on the results
shown in this table, it is obvious that the Co-InWMM is able to provide better
clustering performance in terms of the highest MI value. Moreover, the Co-
InWMM is more computational efficient than other tested methods in terms of
the shortest computational runtime. This result demonstrates the advantages
of constructing the nonparametric infinite WMM in a collapsed space, where
mixing coefficients are integrated out and thus leads to a smaller number of
parameters that have to be estimated.

5 Conclusion

In this paper, we proposed a collapsed infinite Watson mixture model for mod-
eling axial data where the mixing coefficients are integrated out. We developed
an effective collapsed variational Bayes inference method to learn the proposed
model with closed-from solutions. The effectiveness of the proposed Co-InWMM
with CVB inference for modeling axial data was verified through experiments
that were conducted on both synthetical data sets and a challenging application
regarding depth image analysis.
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Abstract. This paper proposes a diagonal symmetric pattern (DSP) to develop
the illumination invariant measure for severe illumination variations. Firstly, the
subtraction of two diagonal symmetric pixels is defined as the DSP unit in the face
local region, which may be positive or negative. The DSP model is obtained by
combining the positive and negative DSP units. Then, the DSP model can be used
to generate several DSP images based on the 4 × 4 block region by controlling
the proportions of positive and negative DSP units, which results in the DSP
image. The single DSP image with the arctangent function can develop the DSP-
face. Multi DSP images employ the extended sparse representation classification
(ESRC) as the classifier that can form theDSP images based classification (DSPC).
Further, the DSP model is integrated with the pre-trained deep learning (PDL)
model to construct the DSP-PDL model. Finally, the experimental results on the
Extended Yale B, CMU PIE and VGGFace2 test face databases indicate that the
proposed methods are efficient to tackle severe illumination variations.

Keywords: Diagonal symmetric pattern · Illumination invariant measure ·
Severe illumination variations · Single sample face recognition

1 Introduction

The illumination variation problem is tough and inevitable in face recognition, even the
deep learning feature performed unsatisfactorily [1]. The severe illumination variation
is considered as one of the tough issues for the face image in the outdoor environment,
such as the driver face image in the intelligent transportation systems [2]. Hence, it is
significance to address illumination variations in face recognition, especially for severe
illumination variations. As numerous approaches have been proposed to tackle severe
illumination variations, some significant works are selected to review here.

The illumination holding based approach and the illumination eliminating based
approach are two categories of methods to address illumination variations, where the
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illumination eliminating based approach is more efficient to tackle severe illumination
variations. Most of illumination eliminating based approaches were developed based on
the lambertian reflectance model [3]. The face reflectance [4], the face high-frequency
facial features [1, 5], and the face illumination invariant measures [2, 5–7] are very
efficient to tackle severe illumination variations.

The face reflectance approach [4] employed the lambertian reflectance model [3] to
estimate the reflectance and the illumination from the illumination contaminated face
image simultaneously. The high-frequency single value decomposition face (HFSVD-
face) [5] firstly used the frequency interpretation of the single value decomposition
algorithm to extract the high-frequency facial feature of the illumination contaminated
face image, Recently, HFSVD-face was extended to the orthogonal triangular with
column pivoting (QRCP) decomposition algorithm, which resulted in that the QRCP
decomposition was first used to construct the QRCP-face [1].

The illumination invariant measure [2, 5–7] constructed the reflectance based pattern
by eliminating the illumination of the face image. TheWeber-face [6] proposed a simple
reflectance based pattern that the difference of the center pixel and its neighbor pixel was
divided by the center pixel in the 3× 3 block region, which can eliminate the illumination
of the face image, since the face illumination invariantmeasure assumes that illumination
intensities of neighborhood pixels are approximately equal in the face local region. Then,
theWeber-face was extended to the logarithm domain, and several illumination invariant
measures were proposed such as [2, 5], and [7], since the illumination invariant measure
of the logarithm domain was proved to have better tolerance to illumination variations
than that of the pixel domain in mathematics [5]. The multiscale logarithm difference
edgemaps (MSLDE) [7] was obtained from multi local edge regions of the logarithm
face. The local near neighbor face (LNN-face) [5] was attained from multi local block
regions of the logarithm face. In [7] and [5], different weights were assigned to different
local edge or block regions, whereas the edge region based generalized illumination
robust face (EGIR-face) and the block region based generalized illumination robust
face (EGIR-face) [2] equally treated different local regions, and removed the weights
associated with the edge and block regions. EGIR-face and BGIR-face were obtained
from local edge and block regions of the logarithm face image.

The local binary pattern (LBP) based approach [8, 9] was an efficient hand-crafted
facial descriptor, and robust to various facial variations. The centre symmetric pattern
(CSP) was widely used in the LBP based facial feature. The centre symmetric local
binary pattern (CSLBP) [8] employed the symmetric pixel pairs around the centre pixel
in the 3 × 3 block region to code the facial feature. Recently, the centre symmetric
quadruple pattern (CSQP) [9] extended the CSP to the quadruple space. The quadruple
space was based on the 4 × 4 block region, which meant that CSQP coded the LBP
based facial feature in the face local region with the size of 4 × 4 pixels.

Nowadays, the deep learning feature is the best for face recognition, which requires
massive available face images to train. VGG [10] was trained by 2.6M internet face
images (2622 persons and 1000 images per person). ArcFace [11] was trained by 85742
persons and 5.8M internet face images. As large-scale face images for training the
deep learning model are collected via internet, the deep learning feature performed very
well on internet face images. However, the internet face images are not with severe
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illumination variations, thus the deep learning feature performed unsatisfactorily under
severe illumination variations [1, 2].

2 Diagonal Symmetric Pattern Based Illumination Invariant
Measure

2.1 The Centre Symmetric Quadruple Pattern

The centre symmetric pattern was widely used in the LBP based approach, and the recent
one is the CSQP [9] that extended the centre symmetric pattern to quadruple space. The
quadruple space is based on a 4 × 4 block region, which means that the CSQP codes the
LBP based facial feature in a face local region with the size of 4 × 4 pixels. The CSQP
divided the local kernel of the size 4 × 4 into 4 sub-blocks of the size 2 × 2. Figure 1
shows the centre symmetric quadruple pattern. Supposem ≥ n, the pixel image I is with
m rows and n columns. In Fig. 1, I(i, j) denotes the pixel intensity at the location (i, j),
where (i, j) denotes the location of the image point of the i-th row and the j-th column.

I(i,j) I(i,j+1) I(i,j+2) I(i,j+3)

I(i+1,j) I(i+1,j+1) I(i+1,j+2) I(i+1,j+3)

I(i+2,j+2)

I(i+3,j+1)I(i+3,j) I(i+3,j+3)I(i+3,j+2)

I(i+2,j+1)I(i+2,j) I(i+2,j+3)

Fig. 1. The centre symmetric quadruple pattern.

The pixel-blocks with the same color in Fig. 2 are compared to generate the CSQP
[9] as below

A(i, j) =
27 × C(I(i, j), I(i + 2, j + 2)) + 26 × C(I(i, j + 1), I(i + 2, j + 3))
+25 × C(I(i + 1, j), I(i + 3, j + 2)) + 24 × C(I(i + 1, j + 1), I(i + 3, j + 3))
+23 × C(I(i, j + 2), I(i + 2, j)) + 22 × C(I(i, j + 3), I(i + 2, j + 1))
+21 × C

(
I(i + 1, j + 2), I(i + 3, j) + 20 × C(I(i + 1, j + 3), I(i + 3, j + 1))

)

(1)

C(I1, I2) =
{
1, if I1 > I2
0, if I1 ≤ I2

(2)

Where I1 and I2 are intensities (or grayscales) of two pixels in the CSQP. From formulas
(1) and (2), the CSQP based LBP feature A(i, j) is a decimal number.
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C(i,j)

C(i+3,j+3)

C(i,j+1) C(i,j+2) C(i,j+3)

C(i+1,j) C(i+1,j+1) C(i+1,j+2) C(i+1,j+3)

C(i+2,j) C(i+2,j+1) C(i+2,j+2) C(i+2,j+3)

C(i+3,j) C(i+3,j+1) C(i+3,j+2)

Fig. 2. The diagonal symmetric pattern.

2.2 The Diagonal Symmetric Pattern

The CSQP employs the centre symmetric sub-blocks to develop the facial feature in the
face local region. The centre of the CSQP is the intersection of the horizontal and vertical
axes that divide the 4 × 4 face local block region into 4 sub-blocks [9]. In this paper,
we propose the pixel-wise diagonal symmetric pattern (DSP) model, whose symmetric
centre is also the intersection of the horizontal and vertical axes, and the pixel pairs of
the DSP are strictly diagonal symmetry.

Figure 2 shows the proposed pixel-wise DSP model, which is a 4 × 4 block of the
logarithm image C, where C is the logarithm version of the pixel image I in Fig. 1. The
proposed DSP model incorporates 16 pixel-blocks, and the pixel-blocks with the same
color such as two yellow blocks, are diagonal symmetrical pixels in Fig. 2. The DSP
based illumination invariant measures are defined as below.

P1 = C(i, j) − C(i + 3, j + 3) = ln(R(i, j)) − ln(R(i + 3, j + 3)) (3)

P2 = C(i, j + 1) − C(i + 3, j + 2) = ln(R(i, j + 1)) − ln(R(i + 3, j + 2)) (4)

P3 = C(i + 1, j) − C(i + 2, j + 3) = ln(R(i + 1, j)) − ln(R(i + 2, j + 3)) (5)

P4 = C(i + 1, j + 1) − C(i + 2, j + 2) = ln(R(i + 1, j + 1)) − ln(R(i + 2, j + 2))
(6)

P5 = C(i, j + 2) − C(i + 3, j + 1) = ln(R(i, j + 2)) − ln(R(i + 3, j + 1)) (7)

P6 = C(i, j + 3) − C(i + 3, j) = ln(R(i, j + 3)) − ln(R(i + 3, j)) (8)

P7 = C(i + 1, j + 2) − C(i + 2, j + 1) = ln(R(i + 1, j + 2)) − ln(R(i + 2, j + 1))
(9)
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P8 = C(i + 1, j + 3) − C(i + 2, j) = ln(R(i + 1, j + 3)) − ln(R(i + 2, j)) (10)

From the lambertian reflectance model [3], the logarithm image C can be presented
as C(i, j) = lnI(i, j) = lnR(i, j) + lnL(i, j), where R and L are the reflectance and the
illumination respectively. As illumination intensities are approximately equal in theDSP,
Pk (k = 1, 2, …, 8) in Fig. 2 are independent of the illumination accordingly. In point
view of numerical sign, Pk (k = 1, 2, …, 8) may be positive or negative. We divide
Pk (k = 1, 2, …, 8) into positive DSP units (DSP+) and negative DSP units (DSP-),
where P+

k > 0 and P−
k < 0 denote the positive DSP unit and the negative DSP unit

respectively. The summation of all DSP units can be attained as

∑8

k=1
Pk =

∑

DSP +

P+
k +

∑

DSP -

P−
k , k = 1, 2, · · · , 8 (11)

According to formula (11), the illumination invariant measure under the DSP with
4 × 4 block region can be presented as

DSP(i, j) = α
∑

DSP +

I+k +(2−α)
∑

DSP -

I−k (12)

Formula (12) is the termed as the DSP image in this paper. The DSP face (DSP-face)
is obtained by the DSP image with the arctangent function, which is presented as below

DSP - face(i, j) = arctan

(

4

(

α
∑

DSP +

I+k +(2−α)
∑

DSP -

I−k

))

(13)

Some DSP images and DSP-faces are shown in Fig. 3. Compared with [2, 5] and [7],
the DSP image and the DSP-face are quite different from previous illumination invariant
measures.

3 Classification

3.1 Single DSP Image Classification

From [2, 5, 6] and [7], the illumination invariant measure with the saturation function
(i.e. DSP-face) is more efficient than the illumination invariant measure without the
saturation function (i.e. DSP image) for the single image recognition under the nearest
neighbor classifier, DSP-face in formula (13) is directly used to tackle the single DSP
image recognition under the nearest neighbor classifier. The parameterα= 0.4 in formula
(5) is adopted, which is the same as [2] recommended.

3.2 Multi DSP Image Classification

Formula (4) is used to generate multi training DSP images of the single training image
by different parameter α. Multi DSP images employ the noise robust ESRC [12] to tackle
severe illumination variation face recognition with the single sample problem, which is
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Original 
images

Logarithm 
images

DSP images 
with α =0 

DSP images 
with α =0.4 

DSP images 
with α =1 

DSP images 
with α =1.6 

DSP images 
with α =2 

DSP faces 
with α =0 

DSP faces 
with α =0.4 
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with α =1 

DSP faces 
with α =1.6 

DSP faces  
α =2 

 

Fig. 3. Some DSP images and DSP-faces with different parameters.

the same as [2, Formulas (8) and (9)]. In this paper, we selected three DSP images with
α = 0.4, 1, and 1.6 to form multi training DSP images of each single training image,
which is the same as recommended by [2]. Accordingly, the DSP image of the test image
is generated by α = 1. The DSP image of each generic image is generated by α = 1.
Here, ESRC with multi DSP images is termed as multi DSP images based classification
(DSPC).
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3.3 Multi DSP Images and the Pre-trained Deep Learning Model Based
Classification

Similar with [2, Formulas (10) and (11)], the proposed DSP model can be integrated
with the pre-trained deep learning model. The representation residual of DSPC can
be integrated with the representation residual of ESRC of the deep learning feature
to conduct classification, which is termed as multi DSP images and the pre-trained
deep learning model based classification (DSP-PDL). In this paper, the pre-trained deep
learning models VGG [10] and ArcFace [11] are adopted. Multi DSP images and VGG
(or ArcFace) based classification is briefly termed as DSP-VGG (or DSP-ArcFace) in
this paper.

4 Experiments

This paper proposes the DSP model to address single sample face recognition under
severe illumination variations. The performances of the proposed methods are validated
on the Extended Yale B [13], CMU PIE [14] and VGGFace2 test [15] face databases.
In this paper, all cropped face images and the experimental setting are the same as [2].
The recognition rates of Tables 1, 2 and 3 are from [2, Tables 3, 4 and 7] except for the
proposed methods. For the proposed DSPC and DSP-VGG/ArcFace, three DSP images
(i.e. α = 0.4, 1, and 1.6) are generated.

4.1 Experiments on the Extended Yale B Face Database

The Extended Yale B face database [13] contains grayscale images of 28 persons. 64
frontal face images of each person are divided into subsets 1–5 with illumination varia-
tions from slight to severe. Subsets 1–5 consist of 7, 12, 12, 14 and 19 images per person
respectively. Figure 4 shows some images of one person in the Extended Yale B face
database.

Subset 5Subset 4Subset 1 Subset 5Subset 2 Subset 3

Fig. 4. Some images of one person in the Extended Yale B face database.

The Extended Yale B face database is with extremely challenging illumination vari-
ations. Subsets 1–2 face images are with slight illumination variations, and subset 3 face
images are with small scale cast shadows. Subset 4 face images are with moderate scale
cast shadows, and subset 5 face images are with large scale cast shadows (or severe
holistic illumination variations).

From Table 1, DSP-face outperforms EGIR-face, BGIR-face, MSLDE and LNN-
face on all Extended Yale B datasets, except that DSP-face lags behind BGIR-face on
subset 4. The reason can be explained as that moderate scale cast shadows (i.e. subset
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4 images) incorporate more edges of cast shadows than large scale cast shadows (i.e.
subset 5 images) as shown in Fig. 4, and edges of cast shadows of face images violate
the assumption of the illumination invariant measure that illumination intensities are
approximately equal in the face local block region.

DSPC outperforms DSP-face. There may be two reasons, one is that multi DSP
images incorporate more intra class variation information than the single DSP image,
and the other one is that ESRC is more robust than the nearest neighbor classifier under
illumination variations. DSPC performs better than EGIRC and BGIRC under severe
illumination variations such as on subsets 1–5.

Table 1. The average recognition rates of the compared methods on the Extended Yale B face
database.

Approach Subset 4 Subset 5 Subsets 1–5

Weber-face [6] 58.66 92.52 74.21

MSLDE [7] 53.35 81.45 60.27

LNN-face [5] 61.59 92.02 70.32

CSQP [9] 59.04 87.67 65.53

EGIR-face [2] 61.69 88.12 66.74

BGIR-face [2] 70.15 93.27 72.75

DSP-face 62.97 94.84 77.01

VGG [10] 47.14 27.67 45.32

ArcFace [11] 53.28 30.93 49.71

EGIRC [2] 75.62 96.31 83.59

BGIRC [2] 78.53 97.30 86.69

DSPC 78.31 97.30 88.66

EGIR-VGG [2] 81.79 84.30 82.28

BGIR-VGG [2] 82.45 82.84 83.53

DSP-VGG 81.58 88.52 87.49

EGIR-ArcFace
[2]

79.49 83.13 78.24

BGIR-ArcFace
[2]

79.19 81.73 78.97

DSP-ArcFace 79.71 88.95 84.53

VGG/ArcFace was trained by large scale light internet face images, without con-
sidering severe illumination variations, which performs unsatisfactorily under severe
illumination variations such as on all Extended Yale B datasets. DSP-VGG is superior to
EGIR/BGIR-VGGon subset 5 and subsets 1–5.DSP-ArcFace outperformsEGIR/BGIR-
ArcFace on all Extended Yale B datasets. Despite DSP-VGG/ArcFace is not able to
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attain the highest recognition rates on all Extended Yale B datasets, DSP-VGG/ArcFace
achieves very high recognition rates on all these datasets. Hence, the proposedDSP-PDL
model is able to have the advantages of both the DSP model and the pre-trained deep
learning model to tackle face recognition.

4.2 Experiments on the CMU PIE Face Database

The CMU PIE [14] face database contains color images of 68 persons. 21 images of
each person from each of C27 (frontal camera), C29 (horizontal 22.5° camera) and C09
(above camera) in CMU PIE illumination set are selected. CMU PIE face images are
with slight/moderate/severe illumination variations. From [14], pose variation of C29 is
larger than that of C09. Figure 5 shows some images of one person in the CMU PIE face
database.

C09C29C27 C09C27 C29

Fig. 5. Some images of one person in the CMU PIE face database.

Table 2. The average recognition rates of the compared methods on the CMU PIE face database.

Approach C27 C29 C09

Weber-face [6] 89.17 84.00 89.17

MSLDE [7] 81.01 77.57 80.04

LNN-face [5] 89.26 84.67 88.29

CSQP [9] 86.36 82.46 83.21

EGIR-face [2] 82.12 83.50 83.33

BGIR-face [2] 89.30 89.25 89.72

DSP-face 98.02 97.46 97.76

VGG [10] 87.33 76.91 86.67

ArcFace [11] 91.90 78.02 97.51

EGIR-VGG [2] 98.88 95.48 98.52

BGIR-VGG [2] 99.08 95.91 98.88

DSP-VGG 99.48 98.13 99.36

EGIR-ArcFace [2] 98.40 93.38 99.07

BGIR-ArcFace [2] 98.66 93.92 99.37

DSP-ArcFace 99.45 97.60 99.79

Some CMU PIE face images are bright (i.e. slight illumination variations), and
others are with partial dark (i.e. moderate/severe illumination variations). Illumination
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variations of CMU PIE are not as extreme as those of Extended Yale B. From Fig. 5,
images in each of C27, C29 and C09 are with the same pose (i.e. frontal, 22.5° profile
and downward respectively).

From Table 2, DSP-face achieves very high recognition rates on C27, C29 and C09,
and performs much better than EGIR-face, BGIR-face, MSLDE and LNN-face on all
CMU PIE datasets. It can be seen that DSP-face is very robust to severe illumination
variations under fixed pose.

DSP-VGG/ArcFace performs very well on all CMU PIE datasets. As DSP-
face is superior to EGIR-face and BGIR-face under severe illumination variations
on C27, C29 and C09, DSP-VGG/ArcFace is better than EGIR-VGG/ArcFace and
BGIE-VGG/ArcFace.

4.3 Experiments on the VGGFace2 Test Face Database

The VGGFace2 test face database [15] incorporates color images of 500 persons,
which are with large variations in pose, age, illumination, ethnicity and profession. The
VGGFace2 test is a large scale face database with more than 160,000 images, which
consists of large scale bright internet face images with large pose/expression variations,
and illumination variations of VGGFace2 are not as severe as those of Extended Yale B
and CMU PIE. Figure 6 shows some images of one person in the VGGFace2 test face
database.

Fig. 6. Some images of one person in the VGGFace2 test face database.

Table 3. The recognition rates (%) of some compared methods on the VGGFace2 test face
database.

EGIR-face
[2]

BGIR-face
[2]

DSP-face VGG [10] ArcFace [11] ArcFace +
ESRC

EGIRC-VGG
[2]

BGIRC-VGG
[2]

DSP-VGG

2.93 2.55 3.04 28.80 34.84 35.67 41.98 44.19 43.76

From Table 3, the shallow illumination invariant approaches achieve very low recog-
nition rates compared with the deep learning feature VGG/AracFace. DSP-face is supe-
rior to EGIR-face and BGIR-face. DSP-VGG achieve high recognition rates, since VGG
is the dominant feature of the DSP-PDL model on VGGFace2 test.

4.4 Discussions

In comparison with the data-driven based deep learning methods VGG [10] and ArcFace
[11] that required a training processing, the proposed DSP-face are the model-driven
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based illumination invariant measures, which do not depend on large scale face images
training, such as previous illumination invariant measures EGIR-face [2], BGIR-face
[2], LNN-face [5] and MSLDE [7]. Moreover, DSP-face in (13) employs only one
parameter α.

From experimental results of Extended Yale B, CMU PIE and VGGFace2 test
datasets, DSP-face achieves higher recognition rates than EGIR-face and BGIR-face
except on subset 4 of Extended Yale B, which illustrates that DSP-face is superior to
EGIR-face and BGIR-face under severe illumination variations. DSP-VGG/ArcFace
achieves very high recognition rates on all datasets of Extended Yale B and CMU PIE,
except on Extended Yale B subset 5 with extremely severe illumination variations, since
the pre-trained deep learning model is restricted to frontal face images with severe illu-
mination variations, whereas this is insufficient to deny that DSP-VGG/ArcFace are the
best approaches to tackle severe illumination variations. Hence, the DSP-PDL model
is able to have the advantages of both the DSP model (i.e. robust to severe illumina-
tion variations) and the pre-trained deep learning model (i.e. robust to slight illumination
variations and large pose variations) to tackle face recognition. Moreover, DSP-face out-
performs EGIR-face and BGIR-face on VGGFace2 test, which indicates that DSP-face
is superior to EGIR-face and BGIR-face under slight/moderate illumination variations.

5 Conclusion

This paper proposes the DSP model to address single sample face recognition under
severe illumination variations. DSP-face achieves higher recognition rates compared
with previous illumination invariant approaches EGIR-face, BGIR-face, LNN-face and
MSLDE under severe illumination variations. DSPC is efficient to severe illumination
variations, due to the fact that multi DSP images cover more discriminative information
of the face image. Further, the proposed DSP model is integrated with the pre-trained
deep learning model to have the advantages of both the DSP model and the pre-trained
deep learning model.

Although the proposed DSP model can efficiently tackle severe illumination varia-
tions, the authors realized that further work must be done to improve the proposed model
under pose variations and well illumination.
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Abstract. Currently, one-stage frameworks have been widely applied
for temporal action detection, but they still suffer from the challenge
that the action instances span a wide range of time. The reason is that
these one-stage detectors, e.g., Single Shot Multi-Box Detector (SSD),
extract temporal features only applying a single-level layer for each head,
which is not discriminative enough to perform classification and regres-
sion. In this paper, we propose a Multi-Level Temporal Pyramid Net-
work (MLTPN) to improve the discrimination of the features. Specially,
we first fuse the features from multiple layers with different temporal res-
olutions, to encode multi-layer temporal information. We then apply a
multi-level feature pyramid architecture on the features to enhance their
discriminative abilities. Finally, we design a simple yet effective feature
fusion module to fuse the multi-level multi-scale features. By this means,
the proposed MLTPN can learn rich and discriminative features for dif-
ferent action instances with different durations. We evaluate MLTPN
on two challenging datasets: THUMOS’14 and Activitynet v1.3, and the
experimental results show that MLTPN obtains competitive performance
on Activitynet v1.3 and outperforms the state-of-the-art approaches on
THUMOS’14 significantly.

Keywords: Action detection · One-stage · Feature

1 Introduction

The purpose of temporal action detection in long untrimmed videos is to tem-
porally localize intervals where actions occur and simultaneously predict the
action categories. It serves as a key technology in video retrieval, anomaly detec-
tion and human-machine interaction, hence it has been receiving an increasing
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mount of attention from both academia and industry. Recently, temporal action
detection has achieved great achievements on some public datasets [1,29]. How-
ever, this task is still challenging because the duration of action varies dramat-
ically by ranging from fractions of a second to several minutes. Recent existing
approaches can be divided into three categories: multi-stage approach [5,9,27],
two-stage approach [7,8] and one-stage approach [10]. Among these methods,
one-stage methods, which are mainly inspired by SSD [14], are more efficient
and practical in many direct and indirect applications. Typically, as with Single
Shot Action Detector (SSAD) network [10], these methods apply a single-level
layer to detect actions for each head. Because the action instances span a wide
range of time, the SSD-like methods tend to apply the different layers to detect
action with different durations, e.g., the shallow layers detect short actions and
deep layers for long actions. However, a single layer may be not discriminative
enough to conduct action classification and localization, which can be proved
in Fig. 1 to some extent. Therefore, current performance of the methods are
not satisfactory actually. We believe that improving the discrimination of each
layer can effectively improve action detection performance. Based on the above
observations, we proposed a Multi-Level Temporal Pyramid Network (MLTPN)
to improve the performance of one-stage action detection, as is shown in Fig. 2.
In our proposed MLTPN, we first encode multi-layer temporal information by
fusing multiple layers with different temporal resolutions. Second, inspired by
the successful applications of multi-scale feature pyramid network [23] in object
detection, we propose to embed several feature pyramid networks on the encoded
features to learn multi-level and discriminative features with different scales.
Third, we design a simple yet effective feature fusion module to fuse the multi-
level multi-scale features. By this means, the features encoded by the proposed
MLTPN are more discriminative, and the undergoing multi-scale property is
suitable for detection different action instances with different durations. More-
over, to further improve the performance, we apply GIoU loss to regress the
temporal boundaries. To evaluate the effectiveness of the proposed MLTPN, we
conduct experiments on THUMOS’14 and Activitynet v1.3 datasets, and the
results show that MLTPN achieves a significant improvement on both datasets.
Particularly, the result of MLTPN outperforms the state-of-the-art approaches
on THUMOS’14 significantly.

In summary, we make the following three contributions:

– We propose a multi-level temporal feature pyramid network to improve the
discrimination of each layer for one-stage frameworks;

– We design a simple but effective module to fuse multi-level multi-scale fea-
tures;

– We extensively evaluate MLTPN on the challenging THUMOS’14 dataset and
achieve state-of-the-art performance.
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Fig. 1. Losses of SSAD and MLTPN on the challenging THUMOS’14 (left) and Activ-
itynet v1.3 (right) benchmarks. Universally, SSAD losses are much higher than our
MLTPN during both the training and validation phase. The results demonstrate that
MLTPN can encode more temporal information, and the encoded features are more
discriminative to a certain degree. Better viewed in original color pdf. (Color figure
online)

2 Relation Work

For temporal action detection task, recent existing approaches can be intuitively
divided into three categories: multi-stage approach, two-stage approach and one-
stage approach.

Multi-stage approach, particularly, Boundary Sensitive Network (BSN) [9]
first locates temporal boundaries (start and end), then directly combines these
boundaries as proposals. Next BSN retrieves proposals by evaluating the confi-
dence of whether a proposal contains an action within its region. Finally, using
the proposals to localize action. Boundary-Matching Network (BMN) [27] is an
improvement of BSN, first BMN predicts start and end boundary probabilities
by a sub-network. Then the boundary probabilities are applied to extensively
enumerate the proposals, which is followed by a boundary-matching confidence
map to densely evaluate confidence of all proposals. Based on the proposals,
then refine the boundaries and predict the corresponding categories. Multi-
granularity Generator (MGG) [24] first uses a bilinear matching model to exploit
the rich local information within the video. Then two components, namely seg-
ment proposal producer and frame actionness producer, are combined to per-
form the task of temporal at two distinct granularities. Finally, using the pro-
posals to localize action. These methods achieve impressive performance, but
it is inefficient because of its long pipeline actually. P-GCN [26] exploits the
proposal-proposal relations using Graph Convolutional Networks, first based on
the already obtained proposals, P-GCN constructs an action proposal graph,
where each proposal is represented as a node and their relations between two
proposals as an edge. Finally P-GCN applies the Graph Convolutional Networks
over the graph to model the relations among different proposals and learn rep-
resentations for the action classification and localization.

As for two-stage approach, Region Convolutional 3D Network (R-C3D) [7],
first encodes the video streams using a 3D fully convolutional network,then
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Fig. 2. An overview of our MLTPN. We first utilize a 3D ConvNet to extract the
features of the input video. Then the obtained feature sequence is input into Transform
module to encode multi-layer temporal information. Afterwards each THM generates a
group of multi-scale features, and then the cascaded multiple alternating joint Temporal
H-shaped Modules (THMs) and Conv general multi-level pyramid features. Finally,
Merge Feature Module (MFM) fuses the multi-level pyramid features for detection.

generates candidate temporal regions containing activities, and finally classi-
fies selected regions into specific activities. TAL-Net [8] is an improvement of
R-C3D, compared to R-C3D,TAL-net improves receptive field alignment, better
exploits the temporal context of actions for both proposal generation and action
classification by appropriately extending receptive fields. Although, these meth-
ods have great improved on temporal action detection, The two-stage methods
are Faster RCNN-like procedure, and suffer from another drawback that they are
limited by fixed length inputs. They need to down sample the frames to fit the
GPU memory, e.g., 3 FPS is applied in [7]. Therefore, they lose some temporal
information, which may result in a sub-optimal solution.

In contrast, one-stage methods are mainly spirited by Single Shot MultiBox
Detector (SSD), classification and localization at the same time, hence they are
more efficient. SSAD [10] based on 1D temporal convolutional layers to skip the
proposal generation step via directly detecting action instances in untrimmed
videos. However, SSAD extracts temporal features only applying a single-level
layer for each head, which is not discriminative enough to perform classifica-
tion and localization. Therefore, we propose a Multi-Level Temporal Pyramid
Network (MLTPN) to improve the discrimination of the features. In particular,
SSAD is our baseline.

3 The Proposed Method

3.1 Overview

For the input video, we first use a 3D convolution network to extract features, and
concatenate these features. Then the features are input into Transform module,
to do the dimensional transformation and fuse the features from multiple layers.
Afterwards, We apply a multi-level feature pyramid architecture on the features.
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Finally, the multi-level multi-scale features are input into the Merge Feature
Module (MFM). MFM performs a certain fusion of the features, making our
features more robust and more conducive. Finally, the features are used for
action classification and localization.

3.2 Feature Extracting

To detect action instances in temporal dimension is the ultimate target of action
localization. Given the video frame sequence, We uniformly sample the sequence
of video frame into several small consecutive snippets and then extract visual
features within each snippet. In particular, a sequence of snippets level feature
{fi}T−1

i=0 are extracted, where T is temporal length. We further feed the features
into two 1D convolutional layers (with temporal kernel size 3, stride 2) to increase
the temporal size of receptive fields.

3.3 MLTPN

Our MLTPN consists of three parts, namely transform module, Temporal H-
Shaped Module (THM), Merge Feature Module (MFM).

In the transform module, we use t× c to represent the obtained feature map,
where t is the temporal length and c is the dimension of the representation. In
particular, same as [5], we first use a dimensional transformation, features change
from t×c to 1×t×c, and two convolutions to improve the dimension of features,
so that our features contain multi-layer information and are more conducive to
classification. ‘Conv1’ with k1 kernels, kernel size (3, 1), stride (1, 1). ‘Conv2’
with k2 kernels, kernel size (3, 1), stride (2, 1), and ‘Conv2’ also followed by one
up-sample operation (Nearest neighbor interpolation or Linear interpolation)
map back to the same size as output of ‘Conv1’ and we concatenate the outputs
of ‘Conv1’ and ‘Conv2’. The final output is k× t×c, where k is equal to k1+k2.
Here, transform module can extract the multi-scare features from backbone.

Fig. 3. Details of THM. The numbers in brackets of Conv block: input channels, output
channels, conv kernel size, stride size.

As shown in the Fig. 3, inspired by m2det [23], we design the THM. The
encoder is a series of convolution layers (with kernel size (3, 1), stride (2, 1)).
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The output of these layers is reference set of feature map. At the same time,
in order to make our feature representation more robust and more informative,
we cascade multiple THMs. Finally the resulting multi-level multi-scale features,
which are more conducive to subsequent tasks. The difference between cascaded
multiple THMs and FPN (Feature Pyramid Network) includes several following
aspects: 1) In FPN, each feature map in the pyramid is mainly or even solely
constructed from single-level layers of the backbone. However, in our proposed
cascaded multiple THMs, we embed several feature pyramid networks on the
encoded features to learn multi-level and discriminative features with different
scales; 2) The THM decoder takes the outputs of encoder layers as its reference
set of feature maps, while the original FPN chooses the output of the last layer
of each stage. Also the difference between cascaded multiple THMs and m2det
is: In m2det, as the network deepens, the features of the model are reduced in
both width and height, which is more suitable for object detection in the picture.
However, our cascaded multiple THMs are reduced in one time dimension and
the other is unchanged, which can well retain more semantic information suitable
for classification.

Conv between two adjacent THM consists of two convolution (with temporal
kernel size 1, stride 1) for dimensionality reduction and a concat operation.

The function of MFM is to fuse the features of different THM layers. First
we concatenate the same scale features obtained by multiple THMs into (l ∗
128) × t′ × c, where l is the number of THM. The value of t′ is t/4, t/8, ... etc.
Then we use a small residual module and a channel-wise attention module to
fuse the multi-level features and the convolution in the small residual module
shares parameters with different resolution features from the THM modules.

3.4 Network Optimization

For classification, we reshape the output of the category branch in each cell to
a (C + 1) × N matrix, C + 1 represents the total action categories plus one
background category. N represents the number of anchor. The probability of
being in the ith category is

P (Ci) =
e
oi

∑C
j=1 eoj

, i = 0, 1, 2, ..., C, (1)

where oi is the output of the network, which corresponds to the ith class. We
utilize the standard softmax loss, which can be formulated as

Lcls = −
C∑

n=0

In=c log(p(Cn)) (2)

where In=c is an indicator function, equals to 1 if n is the ground truth class
label c, otherwise 0.

We use the outputs of confidence branch as predictions of the IoU (Inter-
section over Union) values between the proposals and the ground truth. Note



Multi-level Temporal Pyramid Network for Action Detection 47

that the IoU here represents the temporal IoU, and there is only one temporal
dimension. At the same time, for the sake of confusion, we will always use IoU
to represent the temporal IoU. The IoU overlap loss is Smooth L1 loss (SL1), so
the loss is formulated as

Lconf = SL1(piou − giou) (3)

where giou is the ground truth IoU value between the proposal and its closest
ground truth.

For location prediction, the localization loss is only applied to positive sam-
ples. The same as [35]:

Ioui =
|pi ∩ gi|
|pi ∪ gi| (4)

GIoui = Ioui − |Bi\(pi ∪ gi)|
|Bi| (5)

Lreg = 1 − GIoui (6)

where gi is the closest ground truth of the proposal pi. Bi is the shortest con-
tinuous time interval including ground truth gi and the proposal pi.

We jointly train to optimize the above three loss functions. And the final loss
is formulated as

Lcos t = α1
1

Ncls

∑

i

Lcls(pi, p
∗
i )

+α2
1

Nconf

∑

i

Lconf (Ioui, Iou∗) + α3
1

Nreg

∑

i

Lreg(GIoui)
(7)

where α1, α2 and α3 are weight coefficients (empirically set to 1, 10 and 0.3).
Ncls, Nconf and Nreg are the number of samples. pi is the predicted probability
and p∗

i is the ground truth label. Ioui is the predicted IoU between the sample
and the closest ground truth, and Iou∗ is the real IoU. GIoui is the GIoU
between the sample and the closest ground truth.

4 Experiments

We conduct experiments on two challenging datasets, THUMOS’14 and Activi-
tynet v1.3 respectively. The impact of different experimental settings of MLTPN
is investigated by ablation studies. Comparison of MLTPN and other state-of-
the-art methods is also reported.

4.1 Dataset and Experimental Settings

Dataset. THUMOS’14 has 200 and 213 videos with temporal annotations in
validation and testing set from 20 classes. The training set of THUMOS’14 is
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trimmed videos and cannot be used for training of temporal action detection for
untrimmed videos. Therefore, like SSAD, we use its validation set to training our
model and report results on its testing set. The Activitynet v1.3 dataset contains
19994 videos in 200 classes. The numbers of videos for training, validation and
testing are 10024, 4926, and 5044. The labels of testing set are not publicly
available and we report results on its validation set.

Evaluation Metrics. We follow the official evaluation metrics in each dataset
for action detection task. On THUMOS’14, the mean average precision (mAP)
with IoU thresholds 0.3, 0.4, 0.5, 0.6, 0.7 are adopted. On Activitynet v1.3, the
mAP with IoU thresholds between 0.5 and 0.95 (inclusive) with a step size 0.05
are exploited for comparison.

Features. In order to extract snippet-level video feature, we first sample frames
from each video at its own original frame rate on THUMOS’14 and 5fps on
Activitynet v1.3. Then we apply a TV-L1 [41] algorithm to get the optical flow
of each frame. On THUMOS’14, we use open source I3D model [37] pretrained
on Kinetics to extract the I3D features, also we use the TSN models pretrained
on Activitynet v1.3 to extract two-stream features. On activitynet v1.3, the
pretrained two TSN models with Senet152 [42] are used to extract two-stream
features.

Implementation Details. For Thumos’14, In the training phase, we train the
model using Stochastic Gradient Descent (SGD) with momentum of 0.9, weight
decay of 0.0001 and the batch-size is set to 16. We set the initial learning rate at
0.001 and reduce once with a ratio of 0.1 after 15 epochs. For activitynet v1.3,
we train the model using adam [43] method. We set the initial learning rate at
0.0001 and reduce once with a ratio of 0.1 after 15 epochs. The model is trained
from scatch. Also we prevent model overfitting by using an early-stop strategy.
In the testing phase, since there are little overlap between action instances of
same category in temporal action detection task, we take a strict threshold in
NMS, which is set to 0.2.

Table 1. Study of different feature
settings on THUMOS’14 in terms of
mAP@IoU(%)

IoU 0.3 0.4 0.5 0.6 0.7

TSN RGB 39.2 33.4 26.0 16.2 9.3

TSN FLOW 46.6 43.1 35.0 24.5 13.4

TSN Fusion 57.2 51.7 42.5 29.2 16.2

I3D RGB 56.4 51.1 41.9 29.6 17.3

I3D FLOW 62.6 58.0 49.4 34.9 20.0

I3D Fusion 66.0 62.6 53.3 37.0 21.2

Table 2. Study of different anchor
settings on THUMOS’14 in terms of
mAP@IoU(%)

IoU 0.3 0.4 0.5 0.6 0.7

5 anchors 66.3 61.3 50.0 35.1 18.9

6 anchors 63.8 59.1 50.0 33.2 19.1

7 anchors 66.0 62.6 53.3 37.0 21.2

8 anchors 65.9 61.6 50.1 33.3 19.2

9 anchors 65.5 61.6 51.6 35.0 19.7
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Table 3. Study of different THM settings on THUMOS’14 in terms of mAP@IoU(%)

IoU 0.3 0.4 0.5 0.6 0.7

4 THM 65.1 59.8 50.4 35.8 20.4

5 THM 64.8 60.6 51.0 35.8 21.9

6 THM 66.0 62.6 53.3 37.0 21.2

7 THM 63.8 59.2 48.8 34.2 19.3

8 THM 63.3 57.3 47.8 35.6 21.9

4.2 Ablation Studies

Feature Settings. We use the features generated on the TSN and I3D models
for comparison experiments, as shown in Table 1. It can be seen that the I3D
feature performance is much better than TSN features, and there is a large gap.
Moreover, it is common that FLOW features perform better than RGB features.
As expected, the fusion features perform better than using only the RGB or
FLOW features, indicating that in this task, the RGB features and the FLOW
features have a certain complementary effect.

Fig. 4. Visualization of predicted action instances by our MLTPN on THUMOS’14.

Anchor Settings. We study the effect of different number of anchor segments
on our performance. As shown in Table 2, the setting of 7 anchors achieved the
best results with the IoU thresholds of 0.4, 0.5, 0.6, 0.7. The best results are
obtained with the setting of 5 anchors with the IoU threshold of 0.3. We can
say that the number of anchors cannot be too much, because many redundant
detections are involved, and it also cannot be too few. Too few, there are too
few examples of training, which is not conducive to training a good result.



50 X. Wang et al.

Table 4. Performance comparisons of temporal action detection on THUMOS’14, mea-
sured by mAP at different IoU thresholds. The contents of the brackets represent the
feature extractor used.

THUMOS’14, mAP@IoU(%)

Approach 0.3 0.4 0.5 0.6 0.7

Multi-stage & two-stage action localization

Wang et al. [2] 14.0 11.7 8.3 – –

FTP [33] – – 13.5 – –

DAP [34] – – 13.9 – –

Oneata et al. [36] 27.0 20.8 14.4 – –

Yuan et al. [38] 33.6 26.1 18.8 – –

SCNN [6] 36.3 28.7 19.0 10.3 5.3

SST [15] 41.2 31.5 20.0 10.9 4.7

CDC [21] 40.1 29.4 23.3 13.1 7.9

TURN [16] 46.3 35.5 24.5 14.1 6.3

TCN [18] – 33.3 25.6 15.9 9.0

R-C3D [7] 44.8 35.6 28.9 19.1 9.3

SSN [19] 51.9 41.0 29.8 19.6 10.7

CBR [22] 50.1 41.3 31.0 19.1 9.9

BSN [9] 53.5 45.0 36.9 28.4 20.0

MGG [24] 53.9 46.8 37.4 29.5 21.3

BMN [27] 56.0 47.4 38.8 29.7 20.5

TAL-Net [8] 53.2 48.5 42.8 33.8 20.8

P-GCN [26] 63.6 57.8 49.1 – –

One-stage action localization

Richard et al. [32] 30.0 23.2 15.2 – –

Yeung et al. [11] 36.0 26.4 17.1 – –

SMS [28] 36.5 27.8 17.8 – –

SS-TAD [12] 45.7 – 29.2 – 9.6

SSAD [10] (TSN) 52.6 46.2 36.6 22.8 12.0

SSAD [10] (I3D) 62.53 55.14 42.1 27.43 13.5

MLTPN (TSN) 57.2 51.7 42.5 29.2 16.2

MLTPN (I3D) 66.0 62.6 53.3 37.0 21.2

Number of THM. We study the effect of the different number of THM modules
in our MLTPN. The results are shown in the Table 3. We find that when the
number of THM modules is 6, on the THUMOS’14 dataset, the performance is
best with the IoU thresholds of 0.3, 0.4, 0.5, 0.6, and when the number of THM
modules is 5 and 8, the performance is best with the IoU threshold of 0.7.
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Table 5. Performance comparisons of temporal action detection on Activitynet v1.3.
(∗) indicates the method that uses the external video labels from [44]

Activitynet v1.3@IoU(%)

Approach Validation

0.5 0.75 0.95 Average

Multi-stage & two-stage action localization

Wang et al. [39] 45.11 4.11 0.05 16.41

CDC [21] 45.30 26.00 0.20 23.80

TAG-D [31] 39.12 23.48 5.49 23.98

TAL-Net [8] 38.23 18.30 1.30 20.22

BSN∗ [9] 46.45 29.96 8.02 30.03

BMN∗ [27] 50.07 34.78 8.29 33.85

P-GCN [26] 42.90 28.14 2.47 26.99

P-GCN∗ [26] 48.26 33.16 3.27 31.11

One-stage action localization

Singh et al. [25] 26.01 15.22 2.61 14.62

SSAD [10] 33.91 23.16 3.74 22.26

MLTPN 44.86 28.96 4.30 28.27

4.3 Comparison with the State-of-the-Arts

THUMOS’14. We compare our MLTPN with some current state-of-the-art
methods on THUMOS’14 and summarize the results in Table 4. We can see
that our method has a great improvement over the current methods. Especially
at IoU 0.3, 0.4, 0.5, 0.6, the performance is even better than the multi-stage
methods and two-stage methods, achieving the current best results and it is
very close to the best results at IoU 0.7. It is worth noting that the performance
of MLTPN is much better than that of SSAD when MLTPN and SSAD use the
same feature extractor (e.g. TSN, I3D). This fully proves the effectiveness of our
method. And Fig. 4 shows the visualization of prediction results of three action
categories respectively.

Activitynet v1.3. On Activitynet v1.3 dataset, we compare with some cur-
rent state-of-the-art methods. As shown in the Table 5, regarding the average
mAP, MLTPN outperforms SSAD by 6.01% with the same features and the same
experimental Settings for fair comparison. Please refer to Sect. 4.1 for experi-
mental Settings. In fact, MLTPN has better performance than many current
multi-stage & two-stage methods (i.g., CDC, TAL-Net) and our method can
make direct inference to the detection results without using any other labels,
while many other multi-stage methods require step-by-step inference, which is
very troublesome and time-consuming. For example, in the BMN approach, the
classification results of the proposals must be obtained before they can be com-
bined with the final detection results. And under the same experimental environ-
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ment configuration, the calculation speed of BMN is 0.363 s per video (excluding
classification), and MLTPN is 0.284 s per video (including classification).

5 Conclusion

In this paper, we proposed a Multi-Level Temporal Pyramid Network (MLTPN)
for action detection. Our MLTPN drops the proposal generation step and can
directly predict action instances in untrimmed videos. Specially, we first fuse
the features from multiple layers with different temporal resolutions, to encode
multi-layer temporal information. We then apply a multi-level feature pyramid
architecture on the feature to enhance their discriminative abilities. Finally, we
design a simple yet effective feature fusion module to fuse the multi-level multi-
scale feature. Our MLTPN can learn rich and discriminative features for differ-
ent action instances with different durations. As the experimental results show,
MLTPN obtains competitive performance on Activitynet v1.3 and outperforms
the state-of-the-art approaches on THUMOS’14 significantly.
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Fig. 1. The label ambiguity of features in an anchor-based MOT tracker.

1 Introduction

Multi-Object Tracking (MOT), a.k.a Multi-Target Tracking (MTT), is critical
in video analysis systems ranging from video surveillance to autonomous driving.
The objective of MOT is to determine the trajectories of multiple objects simul-
taneously by localizing and associating targets with the same identity across
multiple frames. It is a very difficult task due to challenging factors like large
variations in intra-target appearance and frequent inter-target interactions [13].

Tracking-by-detection is the main paradigm for the current multi-object
tracking algorithms. It usually includes three steps: object detection in each
frame, appearance embedding of each object, and data association across frames.
Integrating these steps in one algorithm is usually difficult, especially if real time
performance is required. For a MOT framework using a common simple associ-
ation strategy (e.g. Hungarian algorithm), its computing resources are mainly
consumed in separated object detection and appearance embedding steps. These
two steps can share low-level features to improve the tracking speed. This sug-
gests unifying object detection and appearance embedding in one step.

At present, there are two main schemes for joint detection and embedding
learning. One is a two-stage framework similar to Faster-RCNN [17], and the
other is a one-stage framework similar to SSD [11]. In the two-stage frame-
work [25], the first stage uses a Region Proposal Network [17] to detect targets,
and the second stage uses metric learning supervision to replace classification
supervision in Faster-RCNN to learn target embedding. Although it saves some
computation by sharing the low-level features, the two-stage design still lim-
its its tracking speed. Moreover, generating a large number of region proposals
improves accuracy but reduces efficiency. The solutions in one-stage framework
are not well studied yet. The existing methods, such as AJDE [23], learn a joint
detector and embedding model based on an anchor-based network, which relies
on some predefined proposals named anchor boxes. The framework achieves near
real-time tracking speed, but still has two disadvantages. As shown in Fig. 1,
according to the Intersection-Over-Union (IOU) values, different anchor boxes
(dotted boxes) at the same location are responsible for different targets (solid
boxes), but only one feature vector is obtained, making the labels of features
ambiguous. The other disadvantage stems from anchor-based structures, such as
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the manual configuration of hyper-parameters to define anchors and the complex
architecture of detection subnets based on the predefined anchors.

To improve the tracking speed and avoid the disadvantages of the anchor-
based structure, an anchor-free one-stage network is proposed in this work, where
the bounding boxes and their corresponding appearance features are simultane-
ously extracted from the locations on feature maps directly, rather than prede-
fined anchor boxes. We notice that the idea in [26] is similar to ours, but the
method in [26] is more focused on the design of backbone, while our method
focuses on the processing of joint object detection and embedding. We name the
locations on feature maps as samples in the following. Unlike in general object
detection tasks, the targets in multi-target tracking, especially multi-pedestrian
tracking, tend to have similar scales and large occlusions. Thus, general anchor-
free detectors (such as FCOS [21]) have a large number of missed detections
in MOT due to attention bias and feature selection. Attention bias means that
objects with good views tend to draw more attention from the detector making
the partially occluded objects being easily missed. The feature selection issue
arises because each target is scaled to a single pyramid level. This causes that
multiple targets with similar scales may be assigned to same locations, especially
if one target occludes another. The embedded features of the targets sharing
the same location are ambiguous in that case. Therefore, the proposed model
includes two strategies to reduce missed detection while incorporating embed-
ding into the detector. First, the samples used for detection and embedding are
re-weighted in the contribution to the network loss based on their distance to
the object center. Second, the box regression ranges overlap in adjacent pyramid
levels. A multi-task loss is introduced to train the model end-to-end.

Our precise embedding facilitates an improved Non-Maximum Suppression
(NMS). The traditional NMS operator only considers Intersection-Over-Union
(IOU) values between detections. The appearance information is ignored. As a
result, many true targets are suppressed in crowded scenes. The improved NMS
suppresses proposals, using both overlaps between the detections and the similar-
ity of the appearances within the detected boxes for reducing over-suppression.
The main contributions of this work are in three-fold:

– An anchor-free one-stage joint detection and embedding learning network
is presented for online multi-target tracking. The model achieves real-time
tracking speed while obtaining state-of-the-art tracking performance.

– Two effective training strategies are proposed to detect targets with similar
scales in crowded scenes. The strategies are regression range overlapping and
samples re-weighting.

– An improved NMS operator is designed to incorporate both the box spatial
and appearance similarity to reduce false negatives in crowded scenes.

We develop a high performance online multi-object tracking system by incor-
porating the proposed network into a hierarchical data association pipeline.
Extensive experimental analyses and evaluations on the MOT benchmark
demonstrate the effectiveness and the efficiency of the proposed approach.
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2 Related Work

Separate Detection and Embedding for MOT. These methods are domi-
nant in the tracking-by-detection paradigm. Some of these methods build embed-
ding networks upon the detections provided by the MOT benchmark to associate
detections across frames, such as DeepSort [24], MOTDT [12], and DAN [19].
Other methods design both detectors and feature extractors to track targets. For
example, POI [27] proposes a pedestrian detector based on Faster R-CNN, and
Tracktor [1] uses the previous tracking results as proposals to detect the new
bounding boxes of the targets for tracking. The single object tracking-based
trackers [32] can also be regarded as detectors based on template matching. All
these methods need an additional extractor after the detector to handle long-
time occlusions. The overall inference time for these methods is approximately
equal to the sum of the times for detection and extraction. This makes real-time
operation difficult to achieve.

Joint Detection and Embedding for MOT. These methods reduce the
tracking time calculations by combining the detection and the embedding into
one step. MOTS [22], STAM [3] and D&T [6] integrate the embedding into a
detector in a two-stage network, while AJDE [23] is a one-stage model. In a two-
stage model, the detection and the embedding share the low-level features. The
embedding is then extracted from the Region-of-Interest (ROI) after the detec-
tion. Due to the sequential nature of detection and embedding, the two-stage
structure still has a limited tracking speed. Besides, since each target is processed
separately in the second stage, the runtime of embedding is proportional to the
number of targets. The one-stage model, AJDE, adds an embedding branch to
the detection header of the SSD framework to carry out detection and embedding
in parallel. This speeds up the tracking while maintaining tracking performance.
But it suffers from the anchor-based structures, such as the manual configuration
of anchor hyper-parameters and the complex architecture of detection header.
Besides, the corresponding relationship between embedding and anchor boxes at
the same location is not always one-to-one correspondent (Fig. 1). The proposed
model is an anchor-free one-stage network, which overcomes the disadvantages
of anchor-based structure and further improves the tracking speed.

3 Our Approach

3.1 Anchor-Free Joint Detection and Embedding

Network Architecture. As shown in Fig. 2, the network consists of a back-
bone, a feature pyramid and one prediction header per pyramid level, in a fully
convolutional style. The backbone can include commonly used convolutional net-
works, such as ResNet50 [7]. The feature pyramid is adopted to deal effectively
with large scale variations between targets. A pyramid level is represented as Pm

where m denotes the level number. The level has 1/sm resolution of the input
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Fig. 2. Architecture of the anchor-free joint detection and embedding model.

frame size, where sm is the stride of down-sampling. A prediction header con-
tains two task-specific subnets, i.e. detection and embedding. The embedding
subnet has three 3 × 3 convolutional layers and the output layer extracts a 512-
dimensional discriminative feature from each location on the feature map. The
detection subnet contains two 3×3 convolutional layers followed by two branches
for classification and bounding box regression. The classification branch outputs
the probability that each location is a positive sample. The regression branch
predicts the distances from each sample to the boundaries of a corresponding
target if the sample is positive.

Supervision Targets. A target in a frame I ∈ R3×W×H is denoted as
B = (x, y, w, h, c) where (x, y) is the center position, w, h are the box width
and height respectively. The c ∈ Zk is the partially annotated identity label,
where −1 indicates a target without an identity label. Given a target, we first
assign it to one pyramid level according to its scale. Specifically, the target is
assigned to the mth pyramid level Pm if max(w, h) ∈ [am, bm], where [am, bm] is
the predefined regression range of bounding box in Pm. We overlap the predefined
regression ranges in adjacent pyramid levels to improve the recall by providing
more proposals from different granularity, especially for close and similar-scaled
targets. Next we define the positive samples in the mth pyramid level. Each
sample pmij with i = 1, 2, . . . ,W/sm and j = 1, 2, . . . ,H/sm on Pm has a cor-
responding image spatial location (Xmij , Ymij) where Xmij = sm(i − 0.5) and
Ymij = sm(j − 0.5). The sample is set as positive if its centerness to any one
target Bk assigned to Pm is larger than a threshold τc. The centerness is the
same as that defined in FCOS [21], i.e.,

CT(pmij , Bk) =

√
min(lkmij , r

k
mij)

max(lkmij , r
k
mij)

min(tkmij , b
k
mij)

max(tkmij , b
k
mij)

, (1)

where (lkmij , r
k
mij , t

k
mij , b

k
mij) denotes the distances between (Xmij , Ymij) and the

left, right, top and bottom boundaries of target Bk.
If the centernesses of a positive sample pmij to multiple targets are all larger

than the threshold τc, the sample is regarded as ambiguous. The target Bk∗ with
maximal centerness is chosen as the responsible object of the ambiguous sample,
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where k∗ = argmaxk{CT(pmij , Bk)|k = 1, 2, . . . , K}, and K is the number of
targets assigned in mth level. The centerness map on Pm is defined as:

Mmij = max
k=1,2,...,K

CT(pmij , Bk). (2)

Multi-task Loss Function. The loss function of the proposed anchor-free joint
detection and embedding model consists of three components for different tasks,
the point classification, the box regression, and discriminative feature extraction.

In the detection subnet, we use the IOU loss Lreg as in FCOS to regress
bounding boxes Bk∗ from positive samples. For the point classification, the
hard-designation of positives and negatives brings more difficulties for training.
To reduce the ambiguity of the samples between hard positives and negatives,
we apply the centerness map M to re-weight the contributions of ambiguous
samples. The focal weight [10] on hard examples are also adopted to combat
the extreme class imbalance between positive and negative samples. Let ρmij

be the network’s estimated probability indicating whether the sample pmij is
positive, and γ be the focusing hyper-parameter. Then, the classification loss in
mth pyramid level can be formulated as:

Lm
cls = − 1

K

W/sm∑
i=1

H/sm∑
j=1

αmij(1 − ρ̂mij)γ log(ρ̂mij), (3)

where

ρ̂mij =
{

ρmij , if Mmij > τc

1 − ρmij , otherwise , αmij =
{

1, if Mmij > τc

(1 − Mmij)β , otherwise .

(4)
The focusing hyper-parameter γ is experimentally set to 2 as suggested in the
Focal Loss [10], and the hyper-parameter β controls the penalty on the ambigu-
ous samples to reduce their contributions to the total loss.

The objective of the embedding subnet is to learn an embedding space where
observations of the same target are close to each other, while observations of
different targets are far apart. We transform the metric learning problem into the
classification problem like many re-identification (ReID) models [20,30]. Then
the cross-entropy loss is used to extract discriminative features. Let fmij ∈ R512

be the output feature in pmij and ck be the class label of Bk regressed in pmij .
Let W ∈ R512×N be the learnable parameters of the last classifier layer, where
N is the number of targets. Then, the embedding loss is defined as follows,

Lm
emb = −

∑
ij:Mmij>τc

log
e(W

T fmij)ck∑
q e(W

T fmij)q
. (5)

The automatic learning scheme for loss weights proposed in [8] is adopted
to combine these three losses. The total multi-task loss with automatic loss
balancing is formulated as,

L =
∑

m,T∈{cls,reg,emb}

1
ewm

T
Lm

T + wm
T , (6)

where wm
T , T ∈ {cls, reg, emb} is the learnable weight parameters.
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Fig. 3. An exemplar of ENMS. (a), (b), (c), (d) show the detections without NMS,
with NMS, with NMS using appearance similarity and with ENMS respectively.

3.2 Appearance Enhanced NMS (ENMS)

NMS is an integral part of the object detection pipeline. The detected boxes are
first sorted according to scores. The box with the highest score is then selected.
All the other boxes that have a significant overlap with it are suppressed. This
process is applied recursively to the remaining boxes until the final detection
result is obtained. Though NMS is efficient in suppressing false positives, it also
over-suppresses in dense scenes as it does not take any appearances into account.
As shown in Fig. 3, the raw proposals are given in Fig. 3(a) and the detections
processed by NMS are given in Fig. 3(b). The arrows in Fig. 3(b) point to targets
that are wrongly suppressed by NMS.

Benefiting from the joint model introduced in the last subsection (Sect. 3.1),
which provides detection and embedding simultaneously, we can use the discrim-
inative feature to enhance the NMS operator. Formally, given the raw proposals
B = {(Bk, ρk, fk)k = 1, 2, . . . , N} and an empty set Bf = ∅, where Bk, ρk, fk
denotes the regressed boxes, predicted scores and features respectively, the most
reliable proposals (Bk∗ , ρk∗ , fk∗), k∗ = argmaxk ρk are selected firstly. Then get
the false proposals of BK∗ based on the box overlap and the appearance simi-
larity, i.e.,

Bs = {(Bk, ρk, fk)|IOU(Bk, Bk∗) > τi ∩ fT
k∗fk > τe}, (7)

where τi, τe are predefined thresholds for IOU and appearance similarity respec-
tively. Update the set Bf = Bf ∪ {Bk∗} and apply the above process recursively
in B = B \ (Bs ∪ {Bk∗}) until B = ∅. The set Bf contains the final detections.
The detections obtained after suppressing false positives using only appearance
similarity are shown in Fig. 3(c), while that obtained using the proposed ENMS
are shown in Fig. 3(d). It shows that the ENMS reduces false suppressions in
dense scenes.
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3.3 Tracking Pipeline

The proposed anchor-free joint detection and embedding model and the appear-
ance enhanced NMS operator are combined with the hierarchical association
strategy in MOTDT [12] to form the tracking pipeline in our tracking algorithm.

– Step 1. Given a new frame, obtain the proposals and corresponding features
using the proposed anchor-free joint detection and embedding model.

– Step 2. Filter the proposals using the enhanced NMS.
– Step 3. Assign the filtered detections to existing tracklets using feature simi-

larities with a threshold εd for the minimum similarity. The similarity is also
limited by the distance between the detection and prediction of the tracklet in
order to meet the constraint of spatial continuity. That is, the target motion
offset in consecutive frames is small. The tracklet feature is online updated
as,

ft = ηft−1 + (1 − η)fk, (8)

where η is the momentum cofficient and set as 0.9 as in AJDE [23], fk is the
feature of associated detection and ft denotes the track feature at time t.

– Step 4. Associate the remaining candidates with unassociated tracklets based
on the IOU values between candidates and predictions with a threshold εiou.

– Step 5. Mark any untracked track as lost. Initialize a new trajectory with
any unmatched detection with a confidence higher than εp. Terminate any
trajectory that remains lost for over εn successive frames or exits the field of
view. Additionally, any new tracks will be deleted if they are lost within the
first two frames. This is to suppress false trajectories.

– Step 6. Repeat above steps for the next frame until no more frames arrive.

Table 1. Statistics of the training set.

Dataset ETH CP CT M16 CS PRW Total

#Img 2K 3K 27K 5.3K 11K 6K 54.3K

#Box 17K 21K 46K 112K 55K 18K 270K

#ID – – 0.6K 0.5K 7K 0.5K 8.7K

Table 2. Quantitative analysis of two
training strategies.

OR RW MOTA Pre Rec IDS IDF1 mAP TFR0.1

× × 63.4 80.3 75.7 366 66.3 81.2 88.3

× � 66.7 85.7 81.1 98 67.1 82.7 89.0

� × 70.2 88.9 81.9 103 66.1 82.2 90.8

� � 71.9 88.4 83.4 78 69.8 82.8 91.7

4 Experiments

4.1 Experimental Settings

Datasets. Since we transform metric learning into a classification problem,
datasets for pedestrian detection, pedestrian ReID and multi-pedestrian track-
ing are all used to train the anchor-free joint detection and embedding model.
The statistics of the training sets are shown in Table 1. ETH dataset [4] and
CityPersons (CP) dataset [28] are used for person detection. We mark their tar-
gets ID as −1 in training as they have no identity annotations. PRW dataset [29]
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and CUHK-SYSU (CS) dataset are derived from the ReID task. CalTech (CT)
dataset [25] and MOT16 (MT) dataset [15] are collected from the MOT task. The
sequences in the ETH dataset that overlap with the MOT16 test set are excluded
for fair evaluation. The model is first analyzed on the MOT15 dataset [9] after
excluding the sequences appeared in the training, then its performance is com-
pared with the SOTA methods on the MOT16 test set.

Evaluation Metrics. The CLEAR MOT metrics [2] are used to analyze the
tracking performance. They include multiple object tracking accuracy (MOTA,
↑), the number of mostly tracked targets (MT, >80% covered, ↑), the num-
ber of mostly lost targets (ML, <20% covered, ↓), false positive (FP, ↓), false
negative (FN, ↓) precision (Pre, ↑), recall (Rec, ↑), and identity switches(IDs,
↓). Additionally, ID F1 score (IDF1, ↑) [18] is also employed to measure the
identity-preserving ability of trackers. IDF1 denotes the ratio of correctly iden-
tified detections over the average number of ground-truth and computed detec-
tions. To evaluate the detection accuracy and the appearance embedding, we
also use the metrics defined in [23], i.e., the average precision (AP, ↑) at IOU
threshold of 0.5 over the Caltech validation set and the true positive rate at
false accept rate 0.1 (TFR0.1, ↑) over the CUHK-SYSU and PRW validation
sets. Here ↑ means higher is better, and ↓ means lower is better.

Implementation Details. We employ DarkNet-53 [16] as the backbone net-
work. The network is trained for 60 epochs with Stochastic Gradient Descent
(SGD) optimizer and the batchsize is set as 16. The learning rate is initialized as
10−2 and is decreased by 0.1 at the 30th and 50th epoch. The input resolution
is 1088×608 if not specified and the data augmentation techniques, such as ran-
dom rotation, random scale and color jittering, are applied to reduce over-fitting.
The predefined regression ranges [am, bm],m = 1, 2, 3 are set as [0, 160], [64, 320]
and [256, 608] respectively. The parameters τi and τe used in the improved NMS
are set to 0.5 and 0.2 respectively according to the experiment analysis shown in
Fig. 4. The parameter τc used for selecting positive anchor points and the param-
eter β used in Eq. (5) are analyzed in next subsection. For data association, we
set εd = 0.5, εiou = 0.5, εp = 0.6 and εn as the frame rate of the sequence.

4.2 Ablation Study

Analysis of the Hyper-parameters. Table 4 analyzes the effects of the hyper-
parameters τc and β, where τc is the centerness threshold used to select positive
samples and β is the exponent in Eq. (4) used to penalize ambiguous samples.
When β = 1.0, the higher τc obtains a better Pre as the positives are more con-
centrated, but concentrated positives mean more ambiguity in negatives which
decrease the Rec. When τc = 0.8, the performances of β > 0 are all, except
Pre, better than the performances with β = 0. This means that the weighted
focal loss is more effective than the original focal loss in MOT. The higher Pre
is obtained at β = 0 because samples around positives are marked as hard neg-
ative samples. This enhances the certainty of positives, but also introduces the
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ambiguity of negatives leading to a lower Rec. The proposed model has the best
performance at τc = 0.8 and β = 1.0, so we use these settings when we evaluate
the proposed method on MOT benchmark.

Fig. 4. The analysis of IOU threshold ti and appearance similarity threshold ts on the
performance of the appearance enhanced NMS on MOT15 train dataset. (a) and (b)
are IDF1 and MOTA respectively.

Table 3. Analysis of the appearance enhanced NMS (ENMS). × and � indicate
whether the ENMS module is used.

Method ENMS MOTA Pre Rec IDs IDF1 FPS

AJDE × 67.3 84.0 85.1 203 66.4 29.4

� 62.0 78.3 89.6 366 67.4 28.7

AFOS† × 67.7 87.0 80.4 99 66.2 31.3

� 68.9 86.8 82.1 106 66.6 30.8

AFOS × 71.9 88.4 83.4 78 69.8 31.6

� 72.8 86.3 87.2 80 70.5 30.8

Analysis of Two Training Strategies. Two training strategies, i.e. overlap-
ping regression ranges (OR) and samples re-weighting (RW), are designed to
deal with crowded scenes. The quantitative analyses of the strategies with the
enhanced NMS are shown in Table 2. Both Pre and Rec are improved by over-
lapping regression ranges because targets with similar scales in crowded scenes
are assigned to different pyramid levels to reduce their interaction. This also
makes it possible to extract more discriminative embedding to reduce the ID
switching in MOT. Samples re-weighting further enhances tracking performance
by improving Rec, as the contribution of ambiguous samples among hard pos-
itives and negatives is reduced. Both strategies improve detection and tracking
performance by enhancing the discrimination of targets in crowded scenes.

Analysis of the Appearance Enhanced NMS. Enhanced NMS (ENMS)
introduces feature similarity to conventional NMS to reduce over-suppression.
As can be seen from Table 3, AFOS and AFOS†, which represent results with
and without overlapping regression ranges respectively, all benefit from ENMS.



Anchor-Free One-Stage Online Multi-object Tracking 65

Table 4. Analysis of the hyper param-
eters on MOT15-train.

τc β AP TFR0.1 MOTA Pre Rec IDs IDF1

0.70 1.0 83.3 90.9 70.7 87.2 83.8 96 69.0

0.75 1.0 83.3 89.2 71.2 87.4 84.2 109 67.5

0.80 1.0 82.8 91.7 71.9 88.4 83.4 78 69.8

0.85 1.0 83.7 90.4 71.7 88.4 83.4 106 68.7

0.80 0.0 82.2 90.9 70.2 88.9 81.9 103 66.1

0.80 0.05 83.9 91.7 71.8 88.2 82.9 97 66.8

0.80 2.0 82.6 91.5 71.2 87.5 84.0 93 69.8

Table 5. Failure analysis of each sub-
set of MOT16-test.

Sets Density FP FN

MOT16-01 14.2 284 (2.0%) 2675 (5.5%)

MOT16-03 69.7 10928 (75.3%) 15068 (31.2%)

MOT16-06 9.7 651 (4.5%) 4013 (8.3%)

MOT16-07 32.6 967 (6.7%) 5321 (11.0%)

MOT16-08 26.8 667 (4.6%) 8702 (18.0%)

MOT16-12 9.2 420 (2.9%) 2874 (6.0%)

MOT16-14 24.6 594 (4.1%) 9635 (20.0%)

Total 30.8 14511 48288

Table 6. Comparison with the state-of-the-art online MOT trackers under the private
detectors on the MOT16 benchmark. In each column of the one-stage and two-stage
methods, the best result is in bold.

#Stage Tracker Det Emb #Box #Id MOTA IDF1 MT ML FP FN IDs FPS

Two- stage DeepSORT 2 FRCNN WRN 429K 1.2K 61.4 62.2 32.8 18.2 12852 56668 781 <8.1

RAR16wVGG FRCNN Inception 429K – 63.0 63.8 39.9 22.1 13663 53248 482 <1.5

TAP FRCNN MRCNN 429K – 64.8 73.5 38.5 21.6 12980 50635 571 <8.2

CNNMTT FRCNN 5-layer 429K 0.2K 65.2 62.2 32.4 21.3 6578 55896 946 <6.4

POI FRCNN QAN 429K 16K 66.1 65.1 34.0 20.8 5061 55194 805 <6.0

One- stage AJDE 864 Anchor-box JDE 270K 8.7K 62.1 56.9 34.4 16.7 – – 1608 32.1

AJDE 1088 Anchor-box JDE 270K 8.7K 64.4 55.8 35.4 20.0 9172 54160 1544 25.4

AFOS 864 (ours) Anchor-free JDE 270K 8.7K 63.2 59.0 33.6 22.9 13268 52277 1485 34.3

AFOS 1088 (ours) Anchor-free JDE 270K 8.7K 64.8 63.1 35.0 22.9 14511 48288 1300 26.5

Although ENMS slightly decreases the Pre values, it improves the recall rates
(Rec) by reducing false suppressions. This improves the MOTA. By reducing
false suppression, the models also achieve the higher IDF1, which measures the
continuity of the trajectory. In addition, the slightly slower speed of the model
using ENMS than that of the model using conventional NMS is because ENMS
calculates the appearance similarity. For AJDE, we find the performance with
ENMS is worse than that with conventional NMS. The reason is that the label
ambiguity of embeddings in the training process of AJDE leads to a confusing of
the targets in the crowded scenes. This reduces the performance of the ENMS.
On the contrary, our model overcomes the label ambiguity, which facilitates
ENMS to further improve tracking performance.

4.3 Evaluation on MOT Benchmark

The proposed method is compared with several state-of-the-art trackers under
private detectors, such as DeepSORT 2 [24], RAR16wVGG [5], TAP [31],
CNNMTT[14], POI [27] and AJDE [23], on the test sets of MOT16. Their con-
figurations and performances are summarized in Table 6. It can be seen from
Table 6 that the joint models (AJDE and the proposed AFOS) run at least
3× faster than existing methods while achieving comparable overall tracking
accuracy, e.g., as measuted by the MOTA metric.
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Compared with AJDE, the proposed method AFOS obtains better IDs and
IDF1 as it extracts more discriminative features and avoids the label ambiguity.
With the enhanced NMS, AFOS also suppress more false negatives. Note we
didn’t compare APOS with the performance of AJDE with ENMS because the
feature ambiguous in AJDE reduces the performance of ENMS which analyzed
in Sect. 4.2. As AFOS is an anchor-free model while AJDE is an anchor-based
model, AFOS is faster than AJDE. AFOS reaches a real-time speed, i.e., 26.5
FPS for images of size 1088 × 608. When the image resolution is down-sampled
to 864 × 480, the speed of AFOS can be further increased to 34.3 FPS with
only a minor performance drop (Δ = −1.6% MOTA). All the experiments are
performed on an NVIDIA Tesla V100 GPU.

Analysis of Tracking Failures. One may notice that AFOS has a much better
FN but a worse FP compared to other methods. We analyze the performance of
each subset in Table 5 and find that the FP and FN mainly come from MOT16-
03 (75.3% and 31.2% respectively). This is because the targets in MOT16-03
are densely distributed with severe occlusions. Many targets are assigned to the
same pyramid level, making them difficult to distinguish.

5 Conclusion and Future Work

In this paper, we have proposed a new MOT tracker named AFOS, which allows
target detection and appearance embedding to be learned in an anchor-free joint
model. AFOS achieves real-time tracking speed with a tracking performance
comparable to that of state-of-the-art MOT trackers. Moreover, in order to ben-
efit from the anchor-free joint detection and embedding model, we introduce an
appearance enhanced NMS, which combines the appearance similarity with the
conventional NMS to prevent over-suppression. We analyze the tracking failures
in the proposed model, and plan to perform occlusion model in AFOS to further
improve its performance in densely crowded scenes in future work.
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9. Leal-Taixé, L., Milan, A., Reid, I., Roth, S., Schindler, K.: MOTchallenge 2015:
towards a benchmark for multi-target tracking. arXiv preprint arXiv:1504.01942
(2015)

10. Lin, T.Y., Goyal, P., Girshick, R., He, K., Dollár, P.: Focal loss for dense object
detection. In: ICCV, pp. 2980–2988 (2017)

11. Liu, W., et al.: SSD: single shot multibox detector. In: Leibe, B., Matas, J., Sebe,
N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9905, pp. 21–37. Springer, Cham
(2016). https://doi.org/10.1007/978-3-319-46448-0 2

12. Long, C., Haizhou, A., Zijie, Z., Chong, S.: Real-time multiple people tracking with
deeply learned candidate selection and person re-identification. In: ICME, pp. 1–6
(2018)

13. Luo, W., Xing, J., Zhang, X., Zhao, X., Kim, T.K.: Multiple object tracking: a
literature review. arXiv preprint arXiv:1409.7618 (2014)

14. Mahmoudi, N., Ahadi, S.M., Rahmati, M.: Multi-target tracking using CNN-based
features: CNNMTT. Multimed. Tools. Appl. 78(6), 7077–7096 (2019)
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Abstract. In real-world multi-view multi-label clustering and some
classification tasks, instances and the corresponding clusters has at least
three kinds of relationships, belong-to definitely, not belong-to definitely,
and uncertain. Some learning machines consider only two of them, for
example, belong-to definitely and not belong-to definitely. Moreover,
three-way decision-based clustering (TDC) strategy is a good method
to make the belongingness of instances to a cluster depend on the proba-
bilities of uncertain instances belonging to core regions. Thus in our work,
we take the notion of classical multi-view multi-label learning machines
as the basic and introduce TDC so as to develop a multi-view and multi-
label method with three-way decision-based clustering (MVML-TDC)
and consider the relationships between instances and clusters. Experi-
mental results validate that MVML-TDC achieves a better average per-
formance and an acceptable running time.

Keywords: Three-way decision-based clustering · Multi-view
learning · Multi-label learning

1 Introduction

1.1 Background and Problems

Since multi-view multi-label data sets exist in real-world applications widely,
thus some related tasks are put forward. Among them, two tasks are of a gen-
eral nature. One is clustering and the other is classification. Classical multi-view
multi-label clustering methods include connectivity constrained clustering algo-
rithm for traffic segmentation [1] and classical multi-view multi-label classifi-
cation methods include latent semantic aware multi-view multi-label learning
(LSA-MML) [2], latent multi-view subspace clustering (LMSC) [3]. Although
there are many learning methods developed to process these tasks, there is a key
problem should to be solved. As we know, in real-world applications, instances
and the clusters (or sub classes) might have gradual relationships. Namely, there
are three relationships between an instance and a cluster, namely, belong-to def-
initely, not belong-to definitely, and uncertain. In most of the existing studies,
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a cluster is represented by a single set. Any set naturally divides the space into
two regions. Instances belong to the cluster if they are elements of the set, oth-
erwise they do not. Here, only two relationships are considered, no matter in
hard clustering or in soft clustering. They are typically based on two-way (i.e.,
binary) decisions. Then for the third relationship, which means the instance
may or may not belong to the cluster, one cannot make decisions based on the
presently obtained knowledge, i.e, two-way decisions, but they can make further
decisions once more information becomes available. This method is referred to
as three-way decisions. According to the present learning methods, they don’t
adopt three-way decisions. Thus, the improvement of performance is limited.

1.2 Objectives

In order to solve the above this problem, we develop a multi-view and multi-
label method with three-way decision-based clustering (MVML-TDC). First, we
adopt an three-way decision-based clustering (TDC) which is one kind of three-
way decisions developed by Yu et al. [4] to improve clustering performance and
produce the group partition of the data set. Second, we construct a multi-view
and multi-label model with the introduction of TDC.

1.3 Novelty and Contributions

The novelty of MVML-TDC is that in the field of multi-view multi-label learning,
it is the first attempt for the combination of multi-view multi-label learning and
three-way decisions. The proposed method can improve the classification and
clustering performances simultaneously.

The contributions of MVML-TDC are (1) it has a better ability to process
multi-view multi-label data sets; (2) it won’t add too much running time and
moves forward research of multi-view multi-label learning.

2 Three-Way Decision-Based Clustering [4]

Suppose there is a data set X = {x1, ..., xi, ..., xn} and it should be clus-
tered with g clusters, namely, C = {C1, ..., Cm, ..., Cg} and for each clus-
ter Cm, it can be represented by Cm = (Co(Cm), F r(Cm)) further. Here,
Co(Cm) = CoreRegion(Cm) and x ∈ CoreRegion(Cm) represents that x
belongs to cluster Cm definitely. Meanwhile, Fr(Cm) = FringeRegion(Cm)
and x ∈ FringeRegion(Cm) represents that x might belong to cluster Cm.
Then, Tr(Cm) = X − Co(Cm) − Fr(Cm) = TrivialRegion(Cm) and x ∈
TrivialRegion(Cm) represents that x does not belong to cluster Cm defi-
nitely. Moreover, for each cluster, we have X = Co(Cm)

⋃
Fr(Cm)

⋃
Tr(Cm),

Co(Cm)
⋂

Fr(Cm) = ∅, Co(Cm)
⋂

Tr(Cm) = ∅, Tr(Cm)
⋂

Fr(Cm) = ∅.
Thus, C = {(Co(C1), F r(C1)), ..., (Co(Cg), F r(Cg))}. What’s more, we let
Y = {y1, ..., yi, ..., yn} indicates the label matrix and yi represents the label
of xi. Then TDC is carried out as a sequence of the following steps.
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2.1 Pairwise Constraints

According to [4], pairwise constraints offer typical prior information for semi-
supervised clustering. In their work, they introduce must-link (positive associ-
ation) and cannot-link (negative association) to reflect the constraint relations
between the data points, i.e., instances. Must-link constraint requires that the
two instances must belong to the same cluster, and this relation is denoted by
ML = {(xi, xj)|yi = yj , for i �= j, xi, xj ∈ X, yi, yj ∈ Y }. Cannot-link
constraint requires that the two objects must belong to different clusters, and
this relation is denoted by CL = {(xp, xq)|yp = yq, for p �= q, xp, xq ∈
X, yp, yq ∈ Y }. Then for instances xi, xj , xg ∈ X, [5] said that must-link
constraint shows the following transitivity properties for instances.

(xi, xj) ∈ ML & (xj , xg) ∈ ML (1)
⇒ (xi, xg) ∈ ML

(xi, xj) ∈ ML & (xj , xg) ∈ CL

⇒ (xi, xg) ∈ CL

Then in [4], we set a matrix R ∈ R
n×n to store the constraint pairs and the

update of R is given below. First, R is initialized as ∅. Then, when a pair of
instances are must-link constraint relation, namely (xi, xj) ∈ ML, the corre-
sponding value of element in R is updated to 1; when a pair of instances are
cannot-link constraint relation, namely (xi, xj) ∈ CL, the corresponding value
of element in R is updated to 0. At the end of each iteration, we update R
according to the response of expert and the transitivity properties of Eq. (1).

Next, one updates the consensus similarity matrix W � in the following man-
ner. Here, W � = (Z� +(Z�)T )/2 where Z� is a consensus low-rank matrix which
is derived from X. The method to get Z� can be refer to [4].

if (xi, xj) ∈ ML, then wij = wji = 1 (2)
if (xi, xj) ∈ CL, then wij = wji = 0

2.2 Initialize Core Regions Construction

When we obtain the pairwise constraints of X, they should initialize core regions
construction. The method to realize the initialization is farthest-first traversal
scheme and this scheme aims to select the core instances. Core instances indicate
the ones which locate on the fringe of a cluster and contain more information
than instances in the center of a cluster. The basic idea of farthest-first traversal
of a set of instances is to find K instances such that they are far from each other.
Details are given below.

First, we let the original X be the CandidateSet and l be the count of the
number of constructed core regions. Initial value of l is 0. Second, for each cluster
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(Co(Cm), F r(Cm)), it is initialized as ∅, namely, Co(Cm) = ∅ and Fr(Cm) = ∅.
Third, we first select a starting instance x from X at random and put x into the
Co(C1). Fourth, we choose the next instance to be farthest from the untraversed
set CandidateSet by Eq. (3). Being specific, AllCo is the set of all core instances,
namely, AllCo =

⋃l
p=1 Co(Cp). According to min-max criterion, the distance

between x and AllCo is d(x,AllCo(p)) = min
y∈AllCo(p)

||x − y||. Then, the farthest

one is determined as follows.

x ← arg max
x∈CandidateSet

d(x,AllCo) (3)

= arg max
x∈CandidateSet,y∈AllCo(p)

(min ||x − y||)

After that, we should decide whether x and an instance xi ∈ Co(Cp) (1 ≤
p ≤ l) are in the same cluster. They make pair-wise queries through the form
as: do instances x and xi belong to the same cluster? If the ML constraint is
satisfied, x is assigned to Co(Cm) and it should be removed from CandidateSet.
If no one ML constraint is satisfied after traversing all core regions, a new core
region Co(Cl+1) is constructed and assign x to the new core region Co(Cl+1).
With the above procedure, we can divide the CandidateSet into g clusters.

2.3 Extend Core Regions and Construct Fringe Regions

Once we initialize the core regions construction, they should extend these core
regions and construct fringe regions. Concretely speaking, let N(x) be a set of
q neighbor instances of x. Then we extend the core regions by observing the
relationship between the x (which is an unlabeled instance) and xi (which is a
labeled random instance from Co(Cm)) with the following three-way decision
rules. Namely, if x is the neighbor of xi and xi is also the neighbor of x, then we
can say that x is much similar with xi and they should both belong to the core
region. If x is the neighbor of xi, but xi is not the neighbor of x, we say they
are not similar and x should belong to the fringe region. Otherwise, if x is not
the neighbor of xi, x should belong to the Tr(Cm).

if (x ∈ N(xi)) ∧ (xi ∈ N(x)), (4)
then Co(Cm) = Co(Cm) ∪ {x}

if (x ∈ N(xi)) ∧ (xi /∈ N(x)),
then Fr(Cm) = Fr(Cm) ∪ {x}

if (x /∈ N(xi)),
then Tr(Cm) = Tr(Cm) ∪ {x}

2.4 Select the Most Informative Instance x� from Fringe Regions

Then we adopt the active learning strategy to improve the performance of clus-
tering. The objective of this strategy is to select the most informative instance x�
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from fringe regions. Concretely speaking, we measure the uncertainty of instance
based on the similarity firstly. Namely, on the base of consensus similarity matrix
W �, let w.j denote the similarity between x and xj and U =

⋃g
m=1 Fr(Cm)

denote all uncertain instances currently, then they adopt the following formula
to estimate the probability of an uncertain instance x belonging to a core region
Co(Cm) where |Co(Cm)| is the number of instances in the core region Co(Cm).

P (x ∈ Co(Cm)) =
1

|Co(Cm)|
∑

xj∈Co(Cm) w.j
∑g

s=1
1

|Co(Cs)|
∑

xj∈Co(Cs)
w.j

(5)

Second, we use Eq. (6) to measure the uncertainty of an instance by the entropy.

H(x) = −1
g

g∑

t=1

(P (x ∈ Co(Cm))log2P (x ∈ Co(Cm))) (6)

where x ∈ U .
Then, the most informative instance x� is selected by Eq. (7).

x� = arg max
x∈U

H(x) (7)

2.5 Construct Pairwise Query

Finally, we construct pairwise query with the following method. First, they sort
the clusters by P (x� ∈ Co(Cm)) in descending order where 1 ≤ m ≤ g. Second,
for each cluster, they select one instance xi from Co(Cm) in random and query
the constraint relationship between x� and xi. If (x�, xi) ∈ ML, then Co(Cm) =
Co(Cm) ∪ {x�}. At last, they adopt Eq. (1) to update the matrix R and Eq. (2)
to update the matrix W �.

With the above five steps, we can cluster X into g clusters. Details of TDC
can be found in [4].

3 Multi-view and Multi-label Method with Three-Way
Decision-Based Clustering

3.1 Data Preparation

Suppose there is a data set X = {x1, ..., xi, ..., xn} with v views and
X1, ...,Xj , ...,Xv is a data matrix of each view. Here, i ∈ [1, n] and j ∈ [1, v].
For jth view, i.e., Xj ∈ R

dj×n where dj is the feature dimension of jth view,
it consists of information from n instances, namely, Xj = {xj

1, ..., x
j
i , ..., x

j
n}

and xj
i = {xj

i1, ..., x
j
ip, ..., x

j
idj

} ∈ R
dj×1 represents the information of jth view

for ith instance and xj
ip represents pth feature of ith instance in the jth view

where p ∈ [1, dj ]. For ith instance, i.e, xi ∈ R
d×1 can be represented by

xi = {x1
i
T
, ..., xj

i

T
, ..., xv

i
T }T where d =

v∑

j=1

dj . Thus X can also be rewritten
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as X =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

X1

...
Xj

...
Xv

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

∈ R
d×n. Furthermore, X is also a multi-label data set and

in different views, an instance always possesses different labels, thus suppose
yj

i ∈ R
lj×1 is a label vector of ith instance in the jth view and each component

of yj
i indicates the label of xj

i for the corresponding class. lj represents that at
jth view, instances have lj classes. If the rth component of yj

i , namely, yj
ir = 1,

it means xj
i belongs to rth class definitely. If yj

ir = −1, this indicates that xj
i

does not belong to rth class definitely. If yj
ir = 0, this means whether xj

i belongs

to rth class or not is not available. Then yi = {y1
i

T
, ..., yj

i

T
, ..., yv

i
T }T represents

the label of ith instance, Y j = {yj
1, ..., y

j
i , ..., y

j
n} ∈ R

lj×n represents the label

matrix of jth view, and we let Y =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

Y 1

...
Y j

...
Y v

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

∈ R
l×n indicates the label matrix

for X where l =
v∑

j=1

lj . Furthermore, since in many cases, instances have two

kinds of labels, one is predicted labels and the other is real labels. So here, we

let Y , Y j , yj
i , yi represent the predicted ones and Ỹ , Ỹ j , ˜

yj
i , ỹi represent the

real ones. Definitions of �̃ is similar with the �.

3.2 Framework of MVML-TDC

On the base of TDC, our proposed MVML-TDC is carried out with the following
method.

According to the above contents, we know if Ỹ is low-rank, it can be
written as the low-rank decomposition, i.e., Ỹ = UV , where U ∈ R

l×k,
V ∈ R

k×n, and rank(Ỹ ) = k < l. U has a function to project the orig-
inal labels to the latent label space while V can be treated as the latent
labels that are more compact and more semantically abstract than the origi-
nal labels. For Ỹ j , it can also be decomposed by Ỹ j = U jV j where U j ∈ R

l×kj ,
V j ∈ R

kj×n, and rank(Ỹ j) = kj < l. Since in real-world applications, due to
the lack of manpower or making equipment failure, labels are only partially
observed and some instances maybe lost a few labels in some views, so we
always want to minimize the reconstruction error on the observed labels, i.e.,

min
U,V,Uj ,V j

||	Ω(Y − UV )||2F +
v∑

j=1

∣
∣
∣
∣	Ωj (Y j − U jV j)

∣
∣
∣
∣2
F

. Here, ||�||2F represents

the square of Frobenius norm for �, Ω (Ωj) consists of indices of the observed
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labels in Y (Y j), [||	Ω(A)||]ij = Aij if (i, j) ∈ Ω, and 0 otherwise (similar to Ωj

case).
After that, we adopt a linear mapping W ∈ R

d×k (W j ∈ R
dj×kj )

to map instances to the latent labels and W (W j) is learned by

min
W,V,W j ,V j

∣
∣
∣
∣V − WT X

∣
∣
∣
∣2
F

+
v∑

j=1

∣
∣
∣
∣
∣
∣V j − W jT

Xj
∣
∣
∣
∣
∣
∣
2

F
.

Moreover, in order to introduce the local label correlation, we divide the data
set into several groups with TDC. Namely, for X, it is partitioned into g groups,
i.e., X = {X1,X2, ...,Xg} and each part Xm ∈ R

d×nm where nm is the number
of instances in Xm. Then under j-th view, Xj is also divided into gj groups,
i.e., Xj = {Xj

1 ,X
j
2 , ...,X

j
gj} and m-th group of Xj is Xj

m ∈ R
dj×nj

m . Then since
the prediction on instance xi is sign(f(xi)) where f(xi) = UWT xi ∈ R

l×1, so
F0 = [f(x1), f(x2), ..., f(xn)] = UWT X represents the classifier output matrix
of X. Similarly, F j

0 = U jW jT
Xj , Fm = UWT Xm, F j

m = U jW jT
Xj

m represent
the classifier output matrices of Xj , Xm, Xj

m respectively. The dimensions of
F0, F j

0 , Fm, F j
m are l × n, l × n, l × nm, l × nj

m respectively.
Then, on the base of X, Xm, Xj , Xj

m and their corresponding observed
label matrices, we compute the label correlation matrices. Take X as instance,

S0 = {[S0]pq} denotes global label correlation matrix and [S0]pq = yp,:y
T
q,:

||yp,:||||yq,:||
represents the global label correlation of p-th label with respect to q-th label
and yp,: is the p-th row of Y . Then we let L0 be the Laplacian matrix of S0.
Similarly, for Xm, Sm = {[Sm]pq} is the corresponding local label correlation
matrix and Lm is its Laplacian matrix. Then, under j-th view, for Xj and Xj

m

Sj
0 = {[Sj

0]pq} and Sj
m = {[Sj

m]pq} are the corresponding global label correlation
matrix and local label correlation matrix, Lj

0 and Lj
m are their corresponding

Laplacian matrices. Dimensions of S0, L0, Sm, Lm, Sj
0, Lj

0, Sj
m, Lj

m are both
l × l.

According to the above definitions, we want the classifier outputs can be
closer if two labels are more positively correlated and then, we should minimize

tr(FT
0 L0F0)+

g∑

m=1
tr(FT

mLmFm)+
v∑

j=1

(tr(F j
0

T
Lj
0F

j
0 )+

gj
∑

m=1
tr(F j

m
T
Lj

mF j
m)) where

tr(A) represents the trace of A.
Furthermore, refer to LSA-MML and LMSC [2,3] which introduce a consen-

sus multi-view representation to encode the complementary information from
different views, we adopt the same way. Suppose P is a latent representation
matrix (i.e., consensus multi-view representation), Bj is the basic matrix corre-

sponding to j-th view, then
v∑

j=1

∣
∣
∣
∣Xj − BjP

∣
∣
∣
∣2
F

searches a comprehensive multi-

view representation and
∑

j �=t

IND(Bj , Bt) is used to measure the independence

between different views where IND(Bj , Bt) = −HSIC(Bj , Bt) and HSIC is a
Hilbert-Schmidt independence criterion estimator [2].
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So according to the above contents, our goal is to solve the following opti-
mization problem.

min
U,W,V,Uj ,W j ,V j

||	Ω(Y − UV )||2F (8)

+λ0

∣
∣
∣
∣V − WT X

∣
∣
∣
∣2
F

+ λ1
(U, V,W,U j , V j ,W j , P,Bj)

+
v∑

j=1

(λ2

∣
∣
∣
∣	Ωj (Y j − U jV j)

∣
∣
∣
∣2
F

+ λ3

∣
∣
∣
∣
∣
∣V j − W jT

Xj
∣
∣
∣
∣
∣
∣
2

F
)

+λ4tr(FT
0 L0F0) + λ5

g∑

m=1

tr(FT
mLmFm)

+
v∑

j=1

(λj
6tr(F

j
0

T
Lj
0F

j
0 ) + λj

7

gj

∑

m=1

tr(F j
m

T
Lj

mF j
m))

+λ8

v∑

j=1

∣
∣
∣
∣Xj − BjP

∣
∣
∣
∣2
F

+ λ9

∑

j �=t

IND(Bj , Bt)

where λs are tradeoff parameters, λjs are tradeoff parameters corresponding to
j-th views, 
(U, V,W,U j , V j ,W j , P,Bj) = ||U ||2F + ||V ||2F + |||W |2F +

∣
∣
∣
∣U j

∣
∣
∣
∣2
F

+
∣
∣
∣
∣V j

∣
∣
∣
∣2
F

+
∣
∣
∣
∣W j

∣
∣
∣
∣2
F

+ ||P ||2F +
∣
∣
∣
∣Bj

∣
∣
∣
∣2
F

is the regularizer.

3.3 Solution

In order to solve Eq. (8), we adopt alternating optimization. Namely, in each
iteration, we update one of the variables in {Zm, U, V,W,Zj

m, U j , V j ,W j , P,Bj}
with gradient descent and leave the others fixed. After we get the ∇A where
A ∈ {Zm, U, V,W,Zj

m, U j , V j ,W j , P,Bj}, we can use A := A − η∇A to update
A where η is the step size. Once we get the optimal results of these parameters, we
can use UWT X to compute the classifier outputs for X. For Xj and the group
partitions Cj

m and Cm, the outputs can be produced with the corresponding
optimal matrices including U js, W js and others.

3.4 Computational Complexity

As in [4], the computational complexity of TDC is O(ng2) + O(Frng) +
max(O(Fr), O(g)) where Fr is the number of instances in all fringe regions. Then
according to [6], the computational complexity of a classical multi-view multi-
label learning machine is O(Gn2) where G is a constant. Thus, the computa-
tional complexity should be O(ng2)+O(Frng)+max(O(Fr), O(g))+O(Gn2) =
O(Sn2) where S is another constant.

4 Experiments

In order to demonstrate the performance of the developed MVML-TDC, we
consider some benchmark data sets for experiments and related experimental
results are shown in Subsect. 4.2.
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4.1 Experimental Setting

Data Set. In our experiments, three kinds of data sets are adopted. The first
kind is 3 multi-view data sets including Pascal VOC 2007 (VOC)1, MIR-Flickr
(MIR)2, and 3Source3. The second kind is 2 multi-label data sets including Arts
and Business which are also adopted in [7–9]. The third kind is a multi-view
multi-label data set, i.e., NUS-WIDE [10,11].

Compared Method. Since three kinds of data sets are adopted in our experi-
ments, thus for the fair comparison, we also adopt three kinds of learning meth-
ods for comparisons. They are multi-view learning methods, multi-label ones,
and multi-view multi-label ones. For the multi-view ones, multiple-view multiple-
learner semi-supervised learning method (MVMLSS) [12], LMSC [3], multi-view
low-rank dictionary learning (MLDL) [13] are adopted. For the multi-label ones,
label-specific features and local pairwise label correlation based multi-label learn-
ing (LF-LPLC) [14], multi-label classification machine with hierarchical embed-
ding (MLCHE) [15], multi-label learning with global and local label correla-
tion (GLOCAL) [7] are adopted. For the multi-view multi-label ones, multi-view
based multi-label propagation (MVMLP) [11], semi-supervised dimension reduc-
tion for multi-label and multi-view learning (SSDR-MML) [16], LSA-MML [2]
are adopted.

Parameter Setting. For the compared methods, the parameter settings of
them can be found in the respective references. Then for the proposed MVML-
TDC, the setting of TDC can refer to [4]. For others, we can refer to [6]. Although
it seems we should adjust too many parameters, but [6] has validated that only
ones which corresponds to global and local label correlations have a larger influ-
ence on the performance of the learning machine. Thus, we won’t show the
influence of these parameters and the ones corresponding to global and local
label correlations are set to be 10−3.

4.2 Experimental Results

AUC and Precision. We adopt AUC and precision to show the effectiveness
of MVML-TDC for the classification tasks. In general, a higher AUC or a higher
precision brings a better classification performance. Table 1 and Table 2 give the
average AUC and precision respectively for the test sets for each data set. In
these tables, •/◦ indicates that MVML-TDC is significantly better/worse than
the corresponding method (pairwise t-tests at 95% significance level). The best
average AUC or precision for each data set is shown in bold. / represents no result
since the related method cannot process the corresponding data set. From these
tables, it is found that in most cases, MVML-TDC has a better performance
1 http://host.robots.ox.ac.uk/pascal/VOC/.
2 http://press.liacs.nl/mirflickr/.
3 http://mlg.ucd.ie/datasets/3sources.html.

http://host.robots.ox.ac.uk/pascal/VOC/
http://press.liacs.nl/mirflickr/
http://mlg.ucd.ie/datasets/3sources.html
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Table 1. Average AUC (mean ± std.) of MVML-TDC with compared methods for
test instances.

Data sets MVML-TDC LMSC MVMLSS MLDL LF-LPLC

VOC 0.729 ± 0.009 0.687 ± 0.016 • 0.702 ± 0.035 • 0.686 ± 0.035 • /

MIR 0.522 ± 0.017 0.488 ± 0.008 • 0.516 ± 0.036 • 0.520 ± 0.046 /

3Source 0.731 ± 0.001 0.711 ± 0.037 • 0.693 ± 0.045 • 0.725 ± 0.014 /

Arts 0.890 ± 0.007 / / / 0.820 ± 0.005 •
Business 0.958 ± 0.003 / / / 0.926 ± 0.003 •
NUS-WIDE 0.850 ± 0.027 / / / /

win/tie/loss 3 / 0 / 0 3 / 0 / 0 1 / 2 / 0 2 / 0 / 0

Data sets MLCHE GLOCAL MVMLP SSDR-MML LSA-MML

VOC / / 0.701 ± 0.003 • 0.626 ± 0.001 • 0.666 ± 0.049 •
MIR / / 0.512 ± 0.037 • 0.514 ± 0.025 • 0.475 ± 0.002 •
3Source / / 0.647 ± 0.003 • 0.704 ± 0.029 • 0.688 ± 0.023 •
Arts 0.782 ± 0.005 • 0.887 ± 0.005 0.788 ± 0.005 • 0.814 ± 0.005 • 0.771 ± 0.005 •
Business 0.961 ± 0.003 0.950 ± 0.003 0.808 ± 0.003 • 0.839 ± 0.003 • 0.962 ± 0.003

NUS-WIDE / / 0.822 ± 0.031 • 0.796 ± 0.056 • 0.801 ± 0.056 •
win/tie/loss 1 / 1 / 0 0 / 2 / 0 6 / 0 / 0 6 / 0 / 0 5 / 1 / 0

Table 2. Average precision (mean ± std.) of MVML-TDC with compared methods
for test instances.

Data sets MVML-TDC LMSC MVMLSS MLDL LF-LPLC

VOC 0.701 ± 0.004 0.617 ± 0.006 • 0.648 ± 0.047 • 0.683 ± 0.028 • /

MIR 0.521 ± 0.002 0.471 ± 0.042 • 0.440 ± 0.004 • 0.496 ± 0.004 • /

3Source 0.703 ± 0.014 0.630 ± 0.050 • 0.614 ± 0.034 • 0.655 ± 0.025 • /

Arts 0.655 ± 0.008 / / / 0.634 ± 0.005 •
Business 0.916 ± 0.004 / / / 0.902 ± 0.004 •
NUS-WIDE 0.871 ± 0.011 / / / /

win/tie/loss 3 / 0 / 0 3 / 0 / 0 3 / 0 / 0 2 / 0 / 0

Data sets MLCHE GLOCAL MVMLP SSDR-MML LSA-MML

VOC / / 0.594 ± 0.011 • 0.682 ± 0.018 • 0.637 ± 0.034 •
MIR / / 0.462 ± 0.002 • 0.464 ± 0.045 • 0.486 ± 0.006 •
3Source / / 0.624 ± 0.005 • 0.692 ± 0.035 • 0.680 ± 0.002 •
Arts 0.580 ± 0.005 • 0.608 ± 0.005 • 0.603 ± 0.005 • 0.627 ± 0.004 • 0.639 ± 0.004 •
Business 0.839 ± 0.004 • 0.803 ± 0.004 • 0.909 ± 0.004 0.905 ± 0.004 • 0.895 ± 0.004 •
NUS-WIDE / / 0.782 ± 0.015 • 0.876 ± 0.011 0.853 ± 0.011 •
win/tie/loss 2 / 0 / 0 2 / 0 / 0 5 / 1 / 0 5 / 1 / 0 6 / 0 / 0

and according to the win/tie/loss counts, the proposed MVML-TDC is clearly
superior to other compared learning methods, as it wins for most times and less
loses.

Running Time. In Sect. 3.4, we said that the computational complexity of
MVML-TDC can be reduced to O(Sn2) where S is a constant. This compu-
tational complexity is always smaller than O(n3) which is the computational
complexity of many traditional methods, it still larger than some linear learn-
ing methods. Thus, we show the running time of these compared methods and
observe the difference. Table 3 shows the related experimental results. From this
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Table 3. Running time (in seconds) of MVML-TDC with compared methods.

Data sets MVML-TDC LMSC MVMLSS MLDL LF-LPLC

VOC 80.37 73.03 81.61 78.39 /

MIR 377.49 376.59 379.69 377.98 /

3Source 0.23 0.23 0.21 0.23 /

Arts 58.31 / / / 53.47

Business 52.72 / / / 49.09

NUS-WIDE 42.09 / / / /

Data sets MLCHE GLOCAL MVMLP SSDR-MML LSA-MML

VOC / / 77.72 80.75 80.43

MIR / / 360.02 360.96 368.03

3Source / / 0.22 0.22 0.22

Arts 58.13 56.16 54.40 57.75 55.69

Business 49.72 52.49 53.43 53.76 49.30

NUS-WIDE / / 35.98 37.12 39.81

table, we find that our proposed method cost a little more running time which
is also accepted by us.

5 Conclusions and Future Studies

In real-world applications, multi-view multi-label data sets are widely used and
traditional learning methods always produce worse performances when these
data sets exhibit complicate topologies. One main reason is that they cannot
reveal the uncertain relationship between instances and the corresponding clus-
ters. In this work, we develop a multi-view multi-label learning method with
three-way decision-based clustering (MVML-TDC) to overcome such a problem.
In MVML-TDC, it makes the belonging of instances to a cluster depend on
the probability with three-way decision-based clustering strategy. Experimental
results validate that (1) MVML-TDC achieves a better average AUC and preci-
sion in statistical; (2) the running time of MVML-TDC won’t add too much.
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Abstract. Pedestrian attribute recognition (PAR) in surveillance is
to predict pedestrian visual features (somatotype, wearing style, etc.).
Existing methods usually elaborately design complex multi-label deep
neural networks to solve it, which is hard to take advantage of attribute
correlations and prone to suffering from the negative transfer problem. In
this paper, we proposed a grouping and recurrent feature encoding based
multi-task learning method to solve these problems. We group attributes
adaptively based on attribute learning state and use Bi-direction recur-
rent neural network (Bi-RNN) to acquire the encodings of different
groups to build a auxiliary learning task. We optimize group learning
and feature encoding simultaneously in an end-to-end multi-task learn-
ing (MTL) manner. Furthermore, we establish dynamic loss module to
enable the model learn the weight automatically for different tasks in a
closed-loop way. Finally, after finishing training, the proposed method
allow us to remove auxiliary module and merge all group into one to get
a concise yet effective model without weakening the performance. Exten-
sive experimental results in two public datasets, PA-100K and RAP has
demonstrated the performance superiority of our method.

Keywords: PAR · Correlation · Grouping · MTL · Bi-RNN ·
Dynamic loss

1 Introduction

Different from low-level features, pedestrian attributes (gender, haircut and etc.)
can be seen as high-level semantic information which is more robust to viewing
condition diversity and can be described and retrieved. Hence, many visual tasks
integrate attributes into their algorithms to improve performance, such as person
re-identification [1,2] and person retrieval [3]. PAR, which is shown in Fig. 1, has
always been one of the most important visual tasks in video structural analysis
because of its great role.
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Fig. 1. The general framework for pedestrian attribute recognition. The model parses
pedestrian images and outputs visual attributes.

Traditional PAR methods usually focus on developing feature representations
[4,5], however, hand-crafted features aren’t robust enough to various pedestrian
appearance. Recently years, the rise of deep learning (DL) has made computer
vision an impressive performance, researchers now prefer to use DL to solve
PAR. Earlier methods regard PAR as a multi-label classification problem and
establish fork network (shallow layers extract public representations, while the
deepers establish specific branches for each attribute [6,7]) for attribute predic-
tion. Part-based methods are also used by most people. They usually fuse local
and global information to acquire more powerful features [8–12]. However, these
methods either involve too much pre-processing or contain multiple modules for
image region extracting, which make them overly-complicated. Drawn inspira-
tion from real visual system, attention based works have been proposed [13–
16]. By focusing on different image regions, attribute features can be enhanced.
Similarly, weakly-supervised methods concentrate on locating attribute regions
through image-level labels [17]. However, some attributes are abstract concepts
and don’t correspond to certain regions, such as gender and age, which limits
the development of these methods. Some researchers note that there are corre-
lations among attributes, for example, whether a person has long hair can be
easily inferred if female is recognized, so they propose to explore the attribute

...

(a) (b) (c) (d)

... ... ...

Fig. 2. The process of grouping attributes. (a) indicates all attributes are trained jointly
and the average accuracy and loss of each attribute are recorded. (b) shows attributes
are divided into two groups, those with higher average accuracy and lower average loss
are divided into one group, and the others are divided into another group. (c) and (d)
repeat the process and leaf nodes is the attribute groups.
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correlations [18–20], but these methods depends heavily on the prediction order
of attributes.

We argue that a superior PAR model should have three advantages, 1) sim-
ple data processing, 2) powerful feature extraction ability, 3) concise model.
Taking these into account, we propose a group and recurrent feature encoding
based MTL method. First, we don’t do any special pre- and post-processing
for images except for re-scaling. Second, the region sizes and semantic levels of
different attributes are different, so we only take the inception network which
excels in capturing different receptive fields as backbone to fusion features from
multiple levels. We observe that straightly learning all attributes jointly is prone
to suffering from the negative transfer because of different attribute learning
difficulties, so we adaptively group attributes according to their learning state,
which is shown in Fig. 2, to alleviate this phenomenon. Finally, it is arduous
for a simple model to extract robust features, so we use Bi-RNN to design a
auxiliary module (recurrent feature encoding) to explorer attribute correlations
for improving the feature representation of the model. We can simultaneously
optimize group learning and feature encoding in an end-to-end way. In order to
balance the learning of two tasks, we establish dynamic loss module to enable
the model learn the weight automatically for two tasks in a closed-loop way.

To summary, the main contributions of this work are four-fold. (1) An adap-
tive attribute grouping method is proposed to group attributes according to their
learning state rather than experience to alleviate the negative transfer among
multiple attributes. (2) we use Bi-LSTM to establish the auxiliary module to
integrate the attribute correlations into feature learning in the way of MTL. (3)
We enable the model learn the weights for different tasks adaptively instead of
setting a fixed weight by experience to balance the learning between different
tasks. (4) After training, the proposed method allow us to remove the auxiliary
module and merge all groups into one without weakening performance to get a
concise yet effective model.

2 Related Work

2.1 Pedestrian Attributes Recognition

PAR is not a new concept, earlier works rely on hand-crafted features and tra-
ditional machine learning methods [4,5] to solve it, however, they ignore the
attribute correlations. Some graph model methods are proposed to model the
attribute correlations [21–23], but they calculated the relationships of attribute
pairs, too much computation overhead when predicting more attributes.

Following the DL renaissance, researches usually apply ConvNets to PAR.
Sudowe et al. [6] and Li et al. [7] input pedestrian images into CNN and establish
multiple network branches to predict attributes. Wang et al. [18] encoded the
feature of image regions by RNN and then weighted fusion was performed on
the encoded features, finally decoded the fused features to predict the attributes
sequentially. Zhao et al. [19,20] grouped attribute and used RNN to predict the
attributes of different groups sequentially. Fabbri et al. [10] divided the images
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into four parts and fused part features for attribute prediction. Li et al. [12]
proposed to extract the part regions according to pedestrian keypoints and fused
local region features and global information for attribute recognition. Liu et al.
[13] fused the multi-level attention feature map for attribute prediction. Sarfraz
et al. [14] proposed to take the view cues into consideration to better estimate
attributes.

Despite of the promising progress recently, however, they either fail to take
into account the negative knowledge transfer or lack of considering the correla-
tion among attributes. In this work, we group attributes adaptively to allevite
negative knowledge transfer. Furthermore, we encode group features and estab-
lish MTL architecture to take attribute correlations into attribute inference.
Note that the feature encoding module can be removed after finishing training,
which allows us to obtain a simpler model.

2.2 Multi-task Learning

MTL has been widely used in computer vision, especially when some tasks are
correlated or under-sampled [24]. MTL can optimize related tasks simultaneously
and share knowledge in multiple tasks. It has been demonstrated that feature
sharing can boost the performance of some or sometimes all of the tasks [24].

Many researchers use deep multi-task learning to solve corresponding prob-
lems. Zhang et al. [25] proposed a deep cascaded multi-task framework which
exploits the inherent correlation between face detection and alignment. Zhang
et al. [26] proposed to optimize the facial landmark localization with the help
of other heterogeneous but subtly correlated tasks (such as gender and appear-
ance attributes). Jou et al. [27] proposed a multi-task cross-residual network for
knowledge transfer. Abdulnabi et al. [28] proposed a multi-task CNN model to
allow sharing of visual knowledge between tasks to learn facial attributes. Lu
et al. [29] proposed a bottom-up approach that starts with a thin network and
dynamically widens it greedily during training using a criterion that promotes
grouping of similar tasks.

We build multi-task architecture draws inspiration from the above methods.
We use Bi-LSTM to acquire the feature encoding of different groups, based on
encoding, the same attribute classification task and optimization objective as
group learning is established. In order to balance two task, we enable the model
learn the weight automatically to control the loss between them in a closed-loop
way.

3 Approach

Before introducing our method, we give the definition of the problem. Given N
training images {I1, I2, ..., IN} and each sample has k attribute tags for train-
ing. Each tag is in set T = {t1, t2, ..., tk}. G= {g1, g2, ..., gm} is attribute groups,
where gi∩gj = ∅ (i �= j and i, j ≤ m) and ∪m

i=1(gi) =T . For sample Ii, there is
a label vector Vi =

{
v1

i , v2
i , ..., vk

i

}
, where vj

i =1 if Ii has attribute ti and vj
i =0
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otherwise. We aim to learn visual attribute recognition models RI : I → {0, 1}
to recognize the attributes of sample I.

3.1 Attribute Grouping

We group attributes according to the attribute learning state rather than prior
distribution of attribute locations [19]. Attributes which are harder to learn
and easier to learn should be divided into different groups to weaken negative
knowledge transfer.

During training, we regard the average loss and average accuracy as attribute
learning state. The whole grouping process is shown in Fig. 2. We build FC layer
at the rear of the backbone, followed by a sigmoid layer which forwards prediction
results. The sigmoid cross entropy loss, which is defined in (1), is introduced in
multi-attribute learning.

L = − 1
k�

�∑

i=1

k∑

j=1

(yij lnpij + (1 − yij)ln(1 − pij)) (1)

pij = − 1
1 + exp(−xij)

(2)

where yij is j′th attribute of example Ii. x is the output of the last FC layer and
pij is the output probability. We record the loss and accuracy during training
and acquire the average loss and average accuracy of each attribute according
to (3) and (4).

C =

{

cj =
1
ϑ

ϑ∑

i=1

ςij |j = 1, ..., k

}

(3)

Γ =

{

τj =
1
ϑ

ϑ∑

i=1

γij |j = 1, ..., k

}

(4)

where ςij and γij respectively is the loss and accuracy of attribute j in the i
′
th

iteration. ϑ is the iterations number. We set two thresholds μ and ν for loss
and accuracy respectively. Attributes with average loss less than μ and average
accuracy greater than ν are divided into one group, and the others are regarded
as another group, which is defined as (5) and (6).

g1 = {tj |cj<μ, τj>ν, j = 1, ..., k} (5)

g2 = {tj |tj /∈ g1, j = 1, ..., k} (6)

After that, we get the attribute groups shown in (b) of Fig. 2. We recursively
execute this procedure on different attribute groups, a network structure similar
to binary tree is obtained in turn shown in (c) and (d) of Fig. 2. Different leaf
nodes represent different attribute groups. After grouping, we establish branches
for each attribute group at the rear of the backbone network, which is shown in
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grouping learning module of Fig. 3. Attributes are grouped in this adaptive way
rather than in terms of subjective awareness, we can ensure that the learning
state of all attributes in each group are similar to each other. The learning
difficulty of different attribute groups is different and each group is respectively
responsible for its own attribute, in this way, negative knowledge transfer among
attributes is weakened effectively. We compared the effect of attribute grouping
with Zhao et al. [19], which divides attributes into different groups according
to semantic relationship and attribute location, the comparison results. which is
shown in Table 3 of Sect. 4.6, demonstrates that our grouping method outperform
that of Zhao et al. [19].

... ... ...
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... ... ... . .. .. .
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Fig. 3. Overview of the proposed method. According to the grouping results, we build
m branchs for different attribute groups. The first FC layer of each group serves as
the input of the Bi-LSTM. We fuse the output of Bi-LSTM as the feature encodings
of attribute groups. Based on the encodings, we design another learning task whose
structure is consistent with attribute grouping structure. Group learning task and
feature encoding task are optimized simultaneously in an end-to-end way. To balance
multiple tasks, we enable the network learn the weights for different tasks through
dynamic loss weights module instead of setting the weights manually.
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3.2 Group Feature Encoding Based Multi-task Learning

After the above processes, we establish a branch with two FC layers for each
attribute group. In order to integrate the correlations among different groups into
attribute reasoning, we design an auxiliary module which use Bi-LSTM to encode
the features extracted from the first FC layer of each attribute group sequentially,
which is shown in Fig. 3. We fuse the output of each time step of Bi-LSTM to
acquire attribute group feature encodings to establish auxiliary optimization task
whose structure is the same as that of attribute grouping. Group learning (task
A) extracts the unique features of each attribute group, while the auxiliary task
(task B) encodes the features of different attribute groups, the former provides
feature input for the latter, and the latter explorers the attribute correlations, so
that different groups integrate the correlation information into feature learning.
The two tasks work together to improve attribute features in a complementary
way and can be optimized in an end-to-end way simultaneously.

Fig. 4. After finishing training, we remove the feature encoding module and merge
all attribute groups and the shared fc layer (the dotted part) into one followed by a
sigmoid layer which output attribute prediction results.

After training, we remove the auxiliary module and simplify FC layer param-
eters of different attribute groups. Note that we deliberately don’t connect any
nonlinear layer after the first FC layer of each grouping branches to ensure the
parameters of the two FC layers can be merged. We regard F gi

j ∈ Rd
gi
j ×l

gi
j as

the parameters of the j
′
th FC layers of the i

′
th attribute group, where j ∈ {1, 2}

and lg1
2 + · · · + lgm

2 = k. We observe that dg1
1 = · · · = dgm

1 because the first FC
layer of each group is connected behind the backbone network, we abbreviate
them as d1 for convenience. After finishing training, the FC layers parameters
of the i

′
th group can be merged into F gi ∈ Rd1×l

gi
2 . We further combine the FC

layers parameters of each group into F g ∈ Rd1×(l
g1
2 +···+lgm2 ) by concatenating the

parameters of all groups on the second dimension. Because there is no nonlinear
layer connected behind the shared fc layer, we can merge F g and the parameters
of the shared fc into F ∈ Rs×k. Finally, all attribute groups are merged into
one FC layer, which is shown in Fig. 4, followed by a sigmoid layer, which is
responsible for predicting the existence or not of all attributes. In this way, we
reduce the volume of the network and get a concise but efficient inference model.
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3.3 Loss Function

We establish two loss components for each optimization task, sigmoid weighted
cross entropy loss and probability difference loss, which are defined in (7)
and (8).

L1 = − 1
k�

�∑

i=1

k∑

j=1

(w
′
jyij lnpij + w

′′
j (1 − yij)ln(1 − pij)) (7)

L2 = 1 − 1
k�

�∑

i=1

k∑

j=1

(σ
′
jyij(pij)ϕ′ + σ

′′
j (1 − yij)((1 − pij)ϕ′′ )) (8)

where w
′
j = exp (1 − rj) and w

′
j = exp (rj) is the weight of positive and nega-

tive samples of the j’th attribute and rj is the positive sample ratio of the j’th
attribute. σ

′
j , σ

′′
j , ϕ′ and ϕ′′ are hyper-parameters and set to 1 experiencely. For

group learning and feature encoding, which are shown in Fig. 3, their optimiza-
tion objectives are built in the same way, as shown in (9)

LA(B) = L1 + L2 (9)

We optimize two tasks simultaneously in a multi-task learning manner and the
final optimization objectives is defined as (10)

Loss = KT

(
LA

LB

)
(10)

Where K = (λ1, λ2)T is generated from dynamic loss weight module which is
shown in the top of Fig. 3. It is calculated by (11).

K =
1
�

�∑

i=1

fi (11)

where fi is the output of sigmoid for the i
′
th sample. We enable the model to

learn the loss weights for different optimization objectives adaptively rather than
manually setting them to improve the balance between different tasks.

4 Experiment

4.1 Dataset

We use two publicly available pedestrian attribute datasets, RAP [9] and PA-
100K [13] for evaluations. The former consists of 33268 training images and
8317 validation images, which collected from 26 indoor surveillance cameras.
Each image is labelled with 72 attributes and we select 51 binary attributes
for evaluation following the official protocol. The PA-100K dataset is captured
from 598 real outdoor surveillance cameras and includes 100000 images which
are randomly split into training, validation and test sets with a ratio of 8:1:1.
Every image is labelled by 26 attributes, the label is either 0 or 1, indicating the
presence or absence of corresponding attributes respectively.
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4.2 Performance Metrics

We adapt five metrics to evaluate the performance, one of which is label-based
evaluation criteria proposed by Deng et al. [4], which is defined as (12).

mA =
1
2k

k∑

i=1

(
TPi

Pi
+

TNi

Ni
) (12)

where TPi and TNi are the number of correctly predicted positive and negative
samples of i

′
th attribute respectively. Pi and Ni are the number of positive and

negative samples of i
′
th attribute respectively. Example-based evaluation criteria

includes four indicators, as defined below.

Acc =
1
N

N∑

i=1

|Yi∩f(Ii)|
|Yi∪f(Ii)| Prec =

1
N

N∑

i=1

|Yi∩f(Ii)|
|f(Ii)|

Rec =
1
N

N∑

i=1

|Yi∩f(Ii)|
|Yi| F1 =

2×Prec×Rec

Prec + Rec

(13)

where Yi is the ground truth labels of the i
′
th sample, f(Ii) is the predicted

positive labels for i
′
th sample. | · | means the set cardinality.

4.3 Competitors

Our method is compared against 12 state-of-the-art methods, five of which are
CNN based methods, the others are CNN-RNN based methods. ACN [6] and
DeepMAR [7] trains a CNN model to predict all attributes jointly, shallow
layers share weights and transfer knowledge among attributes while the deepers
learn specific features for each attributes. HPNet [13] is an attention model
which integrates local and global information for better attribute recognition.
WPAL [17] fuses the deep features from different layers fed them into FSPP
module to locate attribute regions and predict attribute categories. PDGM [12]
uses the person keypoints to locate the part regions and fuses the region fea-
tures and image information for attribute recognition. VSPAR [14] takes the
view cues into consideration to estimate the view weights which is used for learn-
ing specialized view-specific multi-label attribute predictions. JRL [18] divides
the pedestrian image into several parts and uses an encoder-decoder architec-
ture to mine the relationship among parts and attributes, finally, attributes are
decoded sequencely. RCRA [19] uses Convolutional-LSTM to explore the cor-
relations among attributes and introduce visual attention module to highlight
the region of interest on the feature map. GRL [20] is formulated to recognize
human attributes by group step by step to pay attention to both intra-group and
inter-group relationships. LGNet [30] assigns attribute-specific weights to local
features based on the affinity among pre-extracted proposals and attribute loca-
tions. CCR [31] is a CNN-RNN based sequential prediction model designed to
encode the scene context and inter-person social relations for modeling multiple
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people in an image. SCR [32] is a state-of-the-art multi-label image classifica-
tion model that exploits the ground-truth attribute labels for strongly supervised
deep learning and richer image embedding.

4.4 Implementation Details

We use tensorflow to train model and in order to verify the effectiveness of
the method, we choose two inception structures, inception-v2 and inception-
v4, which pretrained from ImageNet image classification task as the backbone
network. The optimization method is SGD. The initial learning rate of multi-
task training is 0.1 and reduced to 0.00001 by a factor of 0.1 at last. We set the
thresholds μ and ν to the mean of the average loss and average accuracy of all
attributes in the current group.

Table 1. Evaluation on PA-100K and RAP with bold best result. We use inception-v4
to extract image features, and then use group and recurrent feature encoding based
multi-task learning method to train the network in an end-to-end way. After training,
we remove the recurrent encoding module and combine the FC layers to get an opti-
mized simple model, which is used for the attribute prediction. The bold fonts indicate
the best results.

RAP(%) PA-100K(%)

mA Acc Prec Rec F1 mA Acc Prec Rec F1

ACN 69.66 62.61 80.12 72.26 75.98 – – – – –

DeepMAR 73.79 62.02 74.94 76.21 75.56 72.70 70.39 82.24 80.42 81.32

HP-Net 76.12 65.39 77.33 78.79 78.05 74.21 72.19 82.97 82.09 82.53

WPAL 79.48 53.30 60.82 78.80 68.65 – – – – –

PGDM 74.31 64.57 78.86 75.90 77.35 74.95 73.08 84.36 82.24 83.29

VSPAR 77.70 67.35 79.51 79.67 79.59 76.32 73.00 84.99 81.49 83.20

JRL 77.81 - 78.11 78.98 78.58 – – – – –

RCRA 81.16 – 79.45 79.23 79.34 – – – – –

GRL 81.20 - 77.70 80.90 79.29 – – – – –

LGNet 78.68 68.00 80.36 79.82 80.09 76.96 75.55 86.99 83.17 85.04

CCR 70.13 – 71.03 71.20 70.23 – – – – –

SCR 74.21 – 75.11 76.52 75.83 – – – – –

Ours 78.04 68.11 79.19 81.37 80.26 80.07 78.95 87.83 86.82 87.32

4.5 Result

The experiment results of our method and competitors are shown in Table 1.
Although competitors are all the recent state-of-the-art methods, the experi-
ments show the performance superiority of our method even though we don’t
use any data augmentation. For RAP, among all the comparators, our method is
superior in three evaluation metrics (Acc, Rec and F1) compared with any one.
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Table 2. Effect analysis of recurrent feature encoding (RFE) module. We take two dif-
ferent networking, inception-v2 and -v4 as backbones and verify the effect improvement
of RFE on two datasets. The bold fonts indicate the better results.

Dataset Method mA Acc Prec Rec F1

v2 v4 RFE

RAP (%) � 74.60 65.69 77.95 79.07 78.51

� � 76.00 66.66 78.31 80.13 79.21

� 76.60 66.76 78.52 80.07 79.28

� � 78.04 68.11 79.19 81.37 80.26

PA-100K (%) � 77.65 76.63 86.79 84.92 85.85

� � 78.73 77.77 87.22 85.84 86.53

� 79.49 77.82 86.95 86.40 86.68

� � 80.07 78.95 87.83 86.82 87.32

Table 3. We take inception-v2 as backbone and compare the attribute grouping meth-
ods with Zhao et al. [19] which is a representative of attribute division with prior
location information as the competitor. The bold fonts indicate the better results.

Dataset Method mA Acc Prec Rec F1

RAP (%) Zhao et al. 73.92 64.53 77.93 77.66 77.38

Our method 74.60 65.69 77.95 79.07 78.51

PA-100K (%) Zhao et al. 77.26 75.80 86.33 84.23 85.27

Our method 77.65 76.63 86.79 84.92 85.85

Note that F1 is the comprehensive performance of Prec and Rec, our method
outperforms all competitors in F1 and mA demonstrates the superior perfor-
mance. Specifically, compared with DeepMAR, HPNet, PGDM, JRL, CCR
and SCR, our method is superior to them and achieves the highest value on
all evaluation metrics. GRL, RCRA, WPAL and LGNet respectively are the
first, second, third and forth best method in mA (improving 3.16%, 3.12%, 1.44%
and 0.64% than that of our method), but our method outperforms GRL in Prec,
Rec and F1 (improving 1.49%, 0.47% and 0.97%), outperforms RCRA in Rec
and F1 (improving 2.14% and 0.92%), outperforms WPAL in Acc, Prec, Rec
and F1 (improving 14.81%, 18.37%, 2.57% and 11.61%), outperforms LGNet
in Acc, Prec and F1 (improving 0.11%, 1.55% and 0.17%). LGNet, ACN,
VSPAR and RCRA all outperforms our method in Prec, but our method is
far superior in other metrics compare with ACN and VSPAR. Respectively
improving (8.38%, 5.59%, 9.11%, 4.28%) and (0.34%, 0.76%, 1.7%, 0.67%). For
LGNet and RCRA, according to the comparison results mentioned above, our
method outperforms LGNet and RCRA in (Acc, Rec and F ) and (Rec and
F ). For PA-100K, it can be clearly observed that our method is far superior to
all comparators in five evaluation criterias. Specifically, our method outperforms
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DeepMAR, HPNet, PGDM, VSPAR and LGNet in mA, Acc, Prec, Rec
and F1, improving (7.37%, 8.56%, 5.59%, 6.4%, 6%), (5.86%, 6.76%, 4.86%,
4.73%, 4.79%), (5.12%, 5.87%, 3.47%, 4.58%, 4.03%), (3.75%, 5.95%, 2.84%,
5.33%, 4.12%) and (3.11%, 3.4%, 0.84%, 3.65%, 2.28%) respectively. The exper-
iment result shows clearly the benefit of the proposed group and recurrent feature
encoding based multi-task learning method in PAR. This is mainly due to the
capacity of recurrent learning in mining both the intra-group and inter-group
correlations.

Table 4. We take inception-v2 as backbone and compare the dynamic loss with a set
of fixed weights (0.5, 0.5). The bold fonts indicate the better results.

Dataset Method mA Acc Prec Rec F1

RAP (%) Fixed weights 75.15 66.58 78.44 79.88 79.15

Dynamic weight 76.00 66.66 78.31 80.13 79.21

PA-100K (%) Fixed weights 77.72 77.16 87.44 84.79 86.10

Dynamic weight 78.73 77.77 87.22 85.84 86.53

4.6 Ablation Studies

(1) attribute grouping. We compare our attribute grouping with that of Zhao
et al. [19], which is shown in Table 3. The effectiveness of our attribute
grouping method can be clearly observed because of its better performance
in five evaluation criterias compared with Zhao et al.’s method.

(2) recurrent feature encoding. To demonstrate the superiority of the recur-
rent feature encoding, we compare the results of adding recurrent learning
module and not adding it on two network structures (inception-v2 and -v4),
which is shown in Table 2. For these two datasets and two backbones, it can
be clearly observed that our proposed recurrent encoding task can improve
the performance in all evaluation criterias.

(3) dynamic loss weight. Because of its infinity, we can’t enumerate all loss
weights for grouping learning task and recurrent encoding task in our multi-
task learning. Our dynamic loss module is only compared with a set of fixed
weights (0.5, 0.5). The result is shown in Table 4. The dynamic loss module
can significantly improve all criterias except Prec because of its unique
ability to balance two tasks.

5 Conclusion

In this work, we proposed a novel group and recurrent feature encoding based
multi-task learning method for pedestrian attribute recognition. First, we adap-
tively divide attributes into several groups according to the learning state of
attributes to weaken negative knowledge transfer. Then establish recurrent fea-
ture encoding module to model the correlations among attributes. We simulta-
neously train attribute grouping learning task and feature encoding task in an
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end-to-end way. We establish optimization objectives for the two tasks respec-
tively and generate dynamic weights for the two optimization objectives through
the dynamic loss weight module. Extensive experiments demonstrate the advan-
tages of our method.
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Abstract. With the increasing of the forest area and complexity of
tree species, collaborative classification using multi-source remote sens-
ing data has been drawn increasing attention. Fusion of hyperspectral
and LiDAR data can improve to acquire a comprehensive information
which is conductive to the forest land classification. In this work, a sim-
ilar multi-concentrate network focusing on the fine classification of tree
species, denoted as SMCN, is proposed for woodland data. More specific,
a preprocessing stage named pixel screening for data intensity critical
control is firstly designed. Then, a similar multi-concentrate network is
developed to capture spectral and spatial features from hyperspectral
and LiDAR data and make specific connections, respectively. Experi-
mental results validated on Belgian data have favorably demonstrated
that the proposed SMCN outperforms other state-of-the-art methods.

Keywords: Multi-source remote sensing data · Collaborative
classification · Convolutional neural network · Woodland classification

1 Introduction

With the development of geospatial science and sensor technology, classification
technologies of remote sensing image faced to forest land information have made
great progress [13]. Collaborative classification of hyperspectral image (HSI)
and light detection and ranging (LiDAR) data takes advantages of the com-
plementary information from multi-source data [4]. For example, hyperspectral
image provides abundant biophysical and chemical canopy properties informa-
tion which is convenient to discriminate various materials of interest target [4,10].
And LiDAR data provides elevation information which can be acquired free from
the limit of time and weather conditions, it is more suited to assess the horizontal
and vertical canopy structure of forest area [4].

Many studies conclude that combining multi-sensor data could achieve bet-
ter classification accuracy than using either data set individually. Collaborative
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classification is beneficial to synthesize diverse forest information to more accu-
rate forest data classification performance [8,12]. Liao et al. proposed a new
deep fusion framework to integrate the complementary information from multi-
sensor data [6]. Recently-proposed dense Convolutional Network [1] and UNET
network [7] demonstrated that they can be used as an effective method for tree
species classification. However, these deep learning architectures might not per-
form better for tree species mapping in complex and closed forest canopies.

Fig. 1. The proposed collaborative classification framework for forest area.

Based on difficult characteristics of complex tree species, a preprocessing
method is proposed for data intensity control which reduces the impact of exces-
sive pixel differences on network training. A similar multi-concentrated network,
denoted as SMCN, is further designed for focusing on reducing the mutual inter-
ference between spectral and spatial signatures which can effectively combine
the respective feature. The similar and a little different structure guarantees
the consistency of the features. At the same time, the specific information sup-
plement mode for the spectral features and spatial features makes the network
more flexible. A real remote sensing scene has been employed to validate the
effectiveness of the proposed SMCN.

2 Proposed SMCN Classification

The proposed SMCN framework is designed to comprehensively learn and rea-
sonably distinguish the difference of multi-sources data in spectral and spatial
features. The overall structure is illustrated in Fig. 1.

Firstly, a screening process for original data is designed to ensure the critical
control of data intensity. When the network is trained, if pixel range of some
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channels is much larger than other channels, it may affect the network only
extract features of a large pixel range and lose useful pixel information of small
channels. Through comparing the pixel range of the popular remote sensing
data sets, a 10-fold difference between the spectral pixel values of hyperspectral
image in Belgium data may affect classification. After origin data normalized
band-by-band, it has improved visually (as shown in Fig. 2). Because it is a
separate normalization operation for each band, difference in the spectrum is
also retained while reduces the effect of excessive pixel range at the same time.

)b()a(

Fig. 2. Example of spectral pixel inspection: (a) the original image, and (b) the image
after normalized.

Most previous work only pay attention to the study of spatial information,
while proposed network considers the multi-branch to learn different features.
Proposed SMCN divided the same location of data into 2D and 1D image block,
respectively. The former focuses on spatial features and the latter is concen-
trating on spectral features. A one-dimensional processing channel for spectral
features, including two 1-D convolution layers, batch normalization [3], two acti-
vation layers, a max-pooling layer, and the flatten layer. It focuses on the center
pixel pc, through batch normalization to set a high learning rate for accelerating
convergence in each training mini-batch. The leaky rectified linear unit (ReLU)
[9] is used as activation and the convolutional and max-pooling layer are adopted
to solve features simultaneously. To facilitate subsequent processing, the output
spectral features Fspec

p(ij) is solved by flatten layer.
To ensure that the spectral and spatial characteristics of data can be well

combined, the structure of spatial branch is as similar as one-dimensional pro-
cessing channel. It only changed the links and parameter of network. The input
data is image block with radius r around the center pixel pc. After the flatten
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layer, the spatial and spectral features were concatenated into the full-connection
layer. The output can be further expressed as,

Lout = f
(
W ·

(
Fspc

p(ij)‖Fspa
p(ij)

)
+ b

)
(1)

where W and b are the weights and bias of the full connection, || denotes the
simple superposition method of concatenating the spatial and spectral feature
vectors.

Fig. 3. The parameter of deep-mining module.

During training, use HSI image to train the two branch CNN at beginning.
After fixing the weight of trained branch, introduce LiDAR data to fine-tune the
network. The extraction and analysis of spectral characteristics is focusing on the
central pixel of image block, which is independent of each other and have no cor-
responding domain information. Therefore, only a simple superposition is used.
In the branch of spatial features, it not only focuses on the center pixel, but also
considers the spatial features Fspa

p(ij) from the surrounding domain of center tar-
get. Therefore, LiDAR features are passed to HSI branch in stages continuously to
correct the learning of forest information. Finally, perform superposition between
different source feature map and passing the fusion features to subsequent layers.
The final layer usually has the nodes of classification category, it is denoted as Pn

ij

which is a discrete probability distribution values for each category,
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Table 1. The classification performance (%) of different window sizes.

Belgium data 3×3 5×5 7×7

OA 86.28 87.68 87.37

AA 84.28 84.82 84.95

Kappa 82.42 84.17 83.79

Pn
ij =

exp (θn|Lout)∑N
n=1 exp (θn|Lout)

. (2)

Because the initial random weights are far away from the optimal value,
training the specific dual-concentrate network of HSI with a large learning rate
in the first stage. When the training of HSI network is completed and the weights
of the HSI branches are fixed, LiDAR features are transmitted phase by phase
and fine-tuned the network with a small learning rate. The learning rate of the
dual-concentrate structure of HSI is set to 0.01, and the network does fine-tune
at the learning rate of 0.0001 during the adding of LiDAR data, optimizer is
Adam. Figure 3 shows the parameter information of the proposed network in
details.

3 Experimental Results and Analysis

TensorFlow is an open source library that can employ Keras as an application
interface for machine intelligence. Based on the personal computer equipped with
Ubuntu 14.04 and Nvidia GTX 1080, Tensorflow1.3.0 and Keras2.1.2 construct
the integral network. Most programs are implemented using Python language,
some simple processing use MATLAB language.

Belgium data is used to validate the performance of the proposed network. It
represents a forest area reserved at the western part of Belgium. A total of 1450
trees were labeled for the seven species. Tree distribution in the upper canopy
was common beech (27.6%), copper beech (5.5%), pedunculate oak (20.6%),
common ash (4.6%), larch (8.2%), poplar (28.6%) and sweet chestnut (4.6%).
Around 20% samples are used for training, the remaining samples are used for
testing. We only use a multi-band image of 11 PH bands (i.e., full-waveform
LiDAR data) and 286 band hyperspectral data. It covering the visible and short
wave infrared wavelength (372-2498nm). The specific category information can
be acquired in Table 2.

Use overall accuracy (OA), average accuracy (AA), and Kappa coefficients
as evaluation indicator. Table 1 lists the classification performance of the patch
with different sizes. It demonstrates that the size of image block has impact on
the classification performance of different data sets, the best size of Belgium data
is 5×5.
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Table 2. Comparison of the classification accuracy (OA%) among the proposed SMCN.

No. Class(training/testing) Classification performance

SVM ELM Two branch CNN Contex CNN Proposed SMCN

1 Beech(88/321) 79.13 75.39 76.64 63.55 84.74

2 Ash(13/54) 14.81 55.56 64.81 38.89 77.78

3 Larch(23/93) 79.57 82.80 91.4 73.12 86.02

4 Poplar(83/333) 97 93.39 97 92.19 96.7

5 Copper beech (16/64) 100 96.88 93.75 93.75 100

6 Chestnut(13/54) 33.33 51.85 48.15 22.22 64.81

7 Oak (60/243) 75.62 75.62 79.75 75.21 85.12

OA(%) 79.59 80.36 83.38 73.56 87.94

AA(%) 68.49 75.93 78.78 65.56 85.02

Kappa 73.45 74.72 78.70 65.84 84.51

Training time (in Seconds) 943.92 140.32 227.68

To demonstrate the performance of the proposed SMCN framework for multi-
source remote sensing data classification, some traditional and state-of-the-art
methods are compared, such as SVM, ELM [2], Two-Branch CNN [11], Contex
CNN [5], paper [6]. Experimental results listed in Table 2 prove that the proposed
SMCN performs better than aforementioned methods, all kinds of classification
results are excellent.

The distribution of training and testing samples for all the comparison meth-
ods is the same as [6], nearly 20% samples are used for training. At the same
time, based on the different proportion between train and test samples, Table 3
indicates that the proposed network still has good classification performance on
fine classification of tree species. As the number of training samples increases,
the classification of the network becomes more accurate.

Table 3. The classification performance (OA%) on the different proportion between
training and testing samples.

No. Compared methods OA with different proportions

1:9 2:8 3:7

1 SVM 75.86 79.59 84.14

2 ELM 78.62 80.36 86.34

3 Contex CNN 72.95 73.56 85.72

4 Two Branch CNN 81.72 83.38 89.31

5 Proposed SMCN 87.86 87.94 91.86
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4 Conclusion

A collaborative classification method based on the proposed SMCN using HSI
and LiDAR data has been studied for forest area. In the proposed method, each
center pixel of the image block was combined with the spatial information of
the image for deep analysis after learning the relevant information between the
bands. For consensus between the different source information, the structure
of each branch was similar and different. Compared with 3D convolution, the
proposed SMCN has faster speed and better flexibility without taking up too
much memory. Experimental results confirmed that the proposed SMCN was
more effective.
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Abstract. Recent siamese trackers regard the tracking task as a simi-
larity learning problem. However, these trackers ignore the background
information and result in lacking the discriminability. Besides, they can
not adapt to some challenges owing to the fixed template during tracking.
To address these problems, we design a multi-classifier guided discrimina-
tive siamese tracking network, which consists of three parts: siamese base
tracker, multi-classifier module and an online template update mecha-
nism with bounding box selection strategy. Specifically, the siamese base
tracker is used to generate classification scores and regression offsets.
Then, we utilize the ResNet50 and SeNet50 to extract the features for
training the classifiers online. Besides, we replace the original loss func-
tion in online module with a re-weighted loss to balance the sample
weights. After that, we fuse their classification scores maps, combine
with the scores map from siamese base tracker to improve its discrimi-
natibility and boost regression accuracy. Moreover, the fused classifica-
tion scores map not only can improve the discriminability but also can
guide the template update. Finally, we add a bounding box selection
strategy based on the template update mechanism to get more accurate
results. The extensive experiments on OTB2015, VOT2018, GOT-10k
and VOT2019 demonstrate the competitive performance of our tracker
against the state-of-the-art trackers.

Keywords: Visual tracking · Siamese networks · One-shot learning

1 Introduction

Visual tracking aims to estimate the target state in subsequence, given the first
frame with annotated object. It is a fundamental topic in computer vision field.
Besides, it has wide applications like surveillance [1], security, human-machine
interaction [2] and autonomous vehicles [3], etc. Remarkable endeavors have been
made by researchers in the past few years, but visual tracking task still has much
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difficulties to deal with, such as out of view, low resolution, motion, illumination
variations, background clutter, etc. [4].

Generally speaking, visual trackers can be divided into two categories: dis-
criminative trackers and the generative ones. Discriminative trackers often train
and update a classifier online to distinguish the target from background. While
the generative trackers often calculate the similarity between target template
and candidate regions, then predict the state of the target in subsequences.

Recently, siamese tracking architectures [5–9] receive great attention due to
their real-time speed and high accuracy. They are trained offline. In the tracking
phase, they calculate the similarity between target template and search region
to locate the target position. Although these trackers achieve great success, they
are still limited by their disadvantages. Above all, siamese trackers only utilize
the target appearances and ignore the background information, lead to lacking
the discriminability. Moreover, these methods can not adapt the challenges like
rotation, deformation, etc.

Different from the offline methods, discriminative trackers train a high-
quality discriminative classifier online to handle with the deformation and rota-
tion. However, these trackers lack generalization capabilities.

To resolve the mentioned problems, we propose a multi-classifier guided dis-
criminative siamese tracking network with template update module. Foremost,
we use the siamese base tracker to generate the regression offsets and classifica-
tion scores. At the same time, the ResNet [10] and SeNet [11] are used to extract
features to train the classifiers online, then we fuse the classification scores maps
from online module and offline siamese base tracker to enhance the discrim-
inability of our method. Secondly, we search the target location with highest
scores on scores map and calculate its bounding box according to the regres-
sion offsets. Moreover, a template update and bounding box selection strategy is
added to handle the target deformation, rotation, etc. Benefit from the ResNet
[10]and SeNet [11] our tracker can learn a richer feature representation. The
main contributions of this paper can be summarized as follows:

1. We propose a novel multi-classifier guided discriminative siamese tracking
architecture, which consists of siamese base tracker, online multi-classifier
module and a template update mechanism with bounding box selection strat-
egy to fully exploit the background information and improve its discriminabil-
ity. In addition, we introduce the re-weighted loss function to replace the
original loss in ATOM, aiming to balance the weights of training samples in
online classification module.

2. Our proposed multi-classifier module not only can enhance the discriminabil-
ity, but also can guide template update to handle the rotation and deforma-
tion, etc. Besides, we propose a bounding box selection strategy to improve
the robustness of our method.
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2 Related Work

Siamese Tracking Network. Recently, siamese trackers receive great attract
due to their high speed and efficiency. SiamFC [5] as the pioneering method,
utilizes the fully convolutional siamese network to train offline on the ILSVRC
dataset. Owing to its shallow backbone and large offline dataset, SiamFC can
run over 80fps with a relatively good performance. Many of the works that fol-
low are based on it. SiamImp-tri [12] improves the SiamFC by introducing a
novel triplet loss function. SiamRPN [6] introduces the region proposal network
into the tracking, which replaces the target scale estimate with the bounding
box regression and runs at the real-time. Its network is offline-trained on the
ILSVRC and YouTuBe-BB. DaSiamRPN [13] expands the datasets by introduc-
ing the COCO dataset to handle the challenge of occlusion, distractors and out
of boundary, which achieves the outstanding performance. C-RPN [8] utilizes
the cascaded RPN with feature transfer block to fuse the deep and shallow fea-
tures and balance the positive with negative samples. SiamRPN++ [7] explores
the reason that current tracking architectures contain no more than five lay-
ers, and boosts the performance by using a deeper network like ResNet50 [10].
Besides, it replaces the RPN head with a depth-wise cross-correlation to balance
the parameters and accuracy. SiamDW [14] presents the two key principles for
designing siamese backbone, which makes the network can go deeper and wider.
SiamMask [9] combines the task of segmentation and tracking by adding an
extra branch, achieving the high scores on VOT2018 [15] benchmark. GradNet
[16] proposes a gradient guided network to exploit the discrimiantive informa-
tion by using gradients. SiamFC++ [17] introduces 4 guidelines of target state
estimation to improve the generalization ability of the tracker. SiamCAR [18]
designs a novel anchor and proposal free tracker, which simplifies the parameters
tuning. SiamBAN [19] introduces a no-prior box siamese tracker with a novel
sample label assignment strategy, and achieves competitive results without the
sacrifice above the speed.

Discriminative Tracking Approach. The correlation based trackers have
successfully been applied to the visual tracking tasks. These methods often dis-
tinguish the target by computing reliable confidence scores in a 2-D grid, while
using brute force to estimate the target bounding box, leading to huge compu-
tation cost. In order to benefit from end-to-end training on tracking data, a few
recent works aim to combine the discriminative tracker with the neural network.
CFNet [20] introduces the correlation filter into the siamese network, but pro-
viding little gains compared with SiamFC [5]. Inspired by the DCF and IoU-Net
[21], ATOM [22] designs a novel offline trained IoU net for target regression and
updates the classifier online for a better discriminative, which reduces the com-
puting costs and yields a significant improvement on accuracy. SPSTracker [23]
improves the performance of ATOM by introducing the Peak Response Pool-
ing and a Boundary Response Truncation to align discriminative features and
reduces the variance of feature response.DIMP [24] proposes a novel discriminative
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Fig. 1. Overview of our method. It consists of three parts: the siamese base tracker,
online multi-classifier module and a template update mechanism with bounding box
selection strategy. The siamese base tracker generates the regression offsets and classi-
fication scores map, while the online multi-classifier module outputs the fused discrim-
inative scores map. The dashed line denotes the template update, we update each T
frame to enhance its robustness.

learning loss and optimization-based architecture, results show that gets the state-
of-the-art on each benchmarks (Fig. 1).

3 Proposed Method

In this work, we design a multi-classifier guided discriminative siamese tracking
network. We combine the multi-classifier module with the siamese base tracker,
which can fully exploit background information, making the tracker more robust.
Besides, we propose a template update mechanism with bounding box selection
strategy to handle the target deformation. All that will take the advantage of
siamese branch and online multi-classifier branch.

3.1 Siamese Network

Before describing our method, we first review the SiamRPN++. It views tracking
task as a similarity learning problem and uses the Eq. 1 to find the most sim-
ilarity proposal region. It consists of two branches, one is classification branch
another is regression. To ensure classification and regression, extra layers are
used to adjust the channel of φ(z), φ(x) for adapting the output forms, denotes
as [φ(z)]cls [φ(x)]cls, [φ(z)]reg, [φ(x)]reg. Therefore, the classification scores fcls

and the regression offsets freg can be presented as follows:

fcls = DP ([φ(z)]cls, [φ(x)]cls)
freg = DP ([φ(z)]reg, [φ(x)]reg)

(1)

where DP denotes the depth-wise cross-correlation, [φ(z)] serves as kernel.
Tracking requires rich representations to tackle the scenarios like motion blur,
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deformation, etc. Therefore, a layer-wise aggregation is used to improve infer-
ence of classification and regression. Weighted sum is simply added after the
RPN outputs. The function is defined as follows:

fcls
offline =

3∑

i=1

f i
cls freg

offline =
3∑

i=1

f i
reg (2)

3.2 Online Multi-classifier Module

Since the SiamRPN++ is trained offline, it lacks the video-specific context infor-
mation and can not utilize the background information, thus we design an online
multi-classifier branch to make the tracker more discriminative. Traditional dis-
criminative trackers work by optimizing the loss function shows as:

l = min
t∑

i=1

αi(f(xi) − yi)2 (3)

where f(xi) represents the outputs of the network and yi represents the labels.
Our online module is a 2-layer fully convolutional network with a ReLu or
LeakReLu activation in each layer. Different from the ATOM, we use a re-
weighted loss function defined as:

L(w) =
2∑

i=1

m∑

j=1

εi,jγi,j ||f(xi,j ;w) − yi||2

+
2∑

i=1

∑

k

λi,k||wi,k||2
(4)

where f(si,j ;w) is the scores map from online module, yi represents the Gaussian
label of the f(xi,j ;w), and wi,k is the regulation of the function. Each γj in Eq. 4
is computed as below:

γj = e−β∗ ηj
ηmax (5)

ηj = arg max
j

(||f(xj ;w) − yi||) + ε (6)

where ηj denotes the max weight of each training sample. ε, β are constant. We
use both SeNet50 [11] and ResNet50 [10] as feature extract network on multi-
classifier module, benefit from the two deep network, our tracker can get a better
feature representation. The Newton-Gaussian optimization strategy is used the
same as ATOM [22] for online training.

After getting the online classification scores map, we use the bilinear inter-
polation to resize it to the same size as in SiamRPN++, the final response map
is calculated as:

F cls(x, z, w) = λfcls
offline(x, z)

+ (1 − λ)fcls
online(x,w)

(7)

where λ is a hyper-parameter which is used to adjust the weight of online and
offline scores map.
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Algorithm 1. Tracking Algorithm
Input: Subsequences of the video from 1 to L;
Output: Target state in the following frames;

1: Init training set and filters, let t=2;
2: while t ≤ L do
3: Crop the search region xt based on previous state ;
4: Obtain F cls(xt, z1, w) via Eq. 7 based on fcls

offline(x
t, z1), fcls

online(x
t, w);

5: Calculate the bz1 according to the F cls(xt, z1, w);
6: if zt is not None: then
7: Obtain F cls(xt, zt, w) via Eq. 7 based on fcls

offline(x
t, zt), fcls

online(x
t, w);

8: Calculate Bfinal via Eq. 9 based on F cls(xt, zt, w);
9: else

10: Bfinal = bz1 ;
11: end if
12: if hard sample or t==0 then
13: Run Newton-Gaussian;
14: end if
15: if t/T==0 then
16: Get zt use Eq. 8;
17: end if
18: end while
19: return Target state in the subsequences;

3.3 Template Update Mechanism and Bounding Box Selection
Strategy

Note that a good template will improve the performance, thus the selection of
template needs to be well designed. We store the search region in short term
memory each frame and choose the one whose prediction score is higher than
threshold θ1 as the template of next frame, the formula is given by

zt =

{
zn−1 otherwise
zn max(fcls

online(x
n, w)) > θ1

(8)

where max(fcls
online(x

n, w)) denotes the max classification score of online branch
and zn−1, zn its previous frame selected in the short term memory and cur-
rent frame. In order to further improve the robustness of the tracker, we use a
bounding box selection strategy which is calculated as

Bfinal =

⎧
⎪⎨

⎪⎩

bz1 otherwise
bw max(F cls(zn)) − max(F cls(z1)) > θ2,

Dist(bzn , bz1) < θ3

(9)

where bw is defined as δbz1 + (1 − δ)bzt represents the weighted bounding box
from the current frame, bz1 is the predicted output bounding box from the first
template. Dist denotes the distance between predicted boxes, our algorithm is
detailed in Algorithm 1.
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Table 1. Comparison on two tracking benchmarks OTB2015 and VOT2018. Our
tracker is test on the pysot toolkit.

Method OTB2015 VOT2018

AUC Pr EAO A R

ECO [25] 0.682 0.903 0.280 0.484 0.276

UPDT [26] 0.702 – 0.378 0.536 0.184

LADCF [27] 0.696 0.906 0.389 0.503 0.159

DIMP [24] 0.684 – 0.440 0.594 0.153

ATOM [22] 0.669 0.882 0.401 0.590 0.204

MDNet [28] 0.678 0.909 – – –

SiamRPN [6] 0.637 0.851 0.326 0.569 –

DaSiamRPN [13] 0.658 0.875 0.383 0.586 0.28

SiamRPN++ [7] 0.691 0.915 0.414 0.600 0.234

SiamMask [9] – – 0.423 0.615 0.248

DROL-RPN[14] 0.715 0.937 0.481 0.616 –

DROL-Mask [14] – – 0.434 0.614 –

D3S [29] – – 0.489 0.64 0.150

SiamFC++ [17] 0.683 – 0.426 0.587 0.183

SiamFC [5] 0.582 0.771 0.188 0.503 0.585

Siamman [30] 0.705 0.919 0.462 0.605 0.183

SPSTracker [23] 0.692 0.902 0.434 0.612 0.169

SiamDW-RPN [14] 0.67 0.86 – – –

Ours 0.714 0.925 0.517 0.609 0.101

4 Experiments

Our method is implemented in pysot toolkit, we employ SiamRPN++ with the
trained model provided by the official as our siamese base tracker, and utilize
the modified ResNet50 as our backbone.

Online Tracking. We utilize the dual feature extract network: ResNet50 [10]
and SeNet50 [11] on multi-classifier module, during tracking we use the 1 × 1
convolutional with a ReLu activation in the first layer of each network in order
to reduce the computations. In last layer we employ a 4×4 kernel for outputting
the classification scores. Features are extracted from the image patches with the
size of 255 × 255 in search region. Like ATOM [22] and DRNet [31] we perform
data augmentation in the first frame, yielding 30 training samples and total 250
training patches in the following frames. During the tracking we only update the
last layers. Besides, we replace the patch in training set with the higher score
predicted from the online classifiers.



Multi-classifier Guided Discriminative Siamese Tracking Network 109

Fig. 2. Overlap success plots with attributes on OTB2015. Our method achieves the
best performance when evaluating with the mentioned challenging factors.

Table 2. State-of-the-art comparison on GOT-10k.

GOT-10k ECO ATOM SiamRPN++ SPM SiamFC THOR CCOT MDNet Ours

SR.5 30.3 63.4 61.8 59.3 40.4 53.8 32.8 30.3 66.5

SR.75 9.9 40.2 32.5 35.9 14.4 20.4 10.7 9.9 36.1

AO 29.9 55.6 51.8 51.3 37.4 44.7 32.5 29.9 55.3

Template Update and Bounding Box Selection. To handle the deforma-
tion, rotation, etc. We update template each T frame. Notice that, we have dual
templates, one is in the first frame, another is chosen during the online template
updating, we calculate both bounding boxes predicted from the siamese base
tracker and use the Eq. 9 to choose the most suitable one.

Hyper-parameters Setting. We set λ to 0.5 for fusing the online and offline
classification scores, θ1, θ2, θ3, δ to 1.5, 0.1, 5 and 0.25 for template update and
bounding box selection. And the constant ε, β are 0.01, −1 respectively (Fig. 2).

4.1 Comparison with the State-of-the-Art

In this section, we will discuss the performance on four benchmarks: OTB2015,
VOT2018, VOT2019 and GOT-10k.

OTB2015: We evaluate our tracker on OTB2015 dataset, which consists of 100
videos. Generally speaking, siamese trackers are less competitive than traditional
correlation-based or DCF-based trackers on this benchmark in that most siamese
trackers can not handle well with the occlusion, deformation, out of plane, rota-
tion, etc. Results in Table 1 demonstrates that our tracker can get a competitive
performance (Fig. 3).
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Fig. 3. Comparison with the state-of-th-art trackers on OTB2015 and VOT2018.

Table 3. State-of-the-art comparison on VOT2019 in EAO and Accuracy.

VOT2019 SiamDW ST ATOM SiamRPN++ SiamMask ARTCS SiamCRF RT Ours

EAO 0.299 0.292 0.285 0.287 0.294 0.282 0.310

A 0.600 0.603 0.599 0.594 0.602 0.550 0.608

R 0.467 0.411 0.482 0.461 0.456 0.301 0.356

VOT2018: We evaluate our approach on the VOT2018 challenges, which con-
sisting of 60 videos over 7 conditions, they are camera motion, change of illu-
mination, motion and size, occlusion and unassigned. Trackers are evaluated
with the accuracy (average overlap over successfully tracked frames), robustness
(failure rate) and EAO (excepted average overlap), Our approach outperforms
all previous methods by achieving EAO score of 51.7%. From the Table 1, our
tracker is the only one whose EAO can exceed 50.0%, and outperforms DROL,
DIMP with relative gains of 3.6% and 7.7%.

VOT2019: In VOT2019, 60 sequences in VOT2018 are ranked according to their
difficulty, and select the 12 new difficult sequences from the GOT-10k dataset to
replace the easy one but maintain the diversity of the dataset. The performance is
evaluated in terms of accuracy, robustness and EAO. Our tracker use the default
parameters in VOT2018 and improves by 0.8% and 1.5% compared with ATOM
and SiamRPN++ respectively. But our tracker still has room for improvement.
The difficulties result from the fast motion, occlusion and background clutter
(Table 3).

GOT-10k: We evaluate our approach on the GOT-10k [32] test set, which is
a large scale with high-diversity benchmark for object tracking in the wild and
it consists of 180 videos. The AO represents the average overlap and the SR0.5,
SR0.75 represent the rate of successfully tracked frames whose overlap is exceeds
0.5 and 0.75. The Table 2 shows that our tracker improves the scores by 3.1%
and 4.7% for SR0.5 compared with ATOM and SiamRPN++.

4.2 Ablation Analyses

In this part, we will perform extra ablation studies to demonstrate the influence
of each component in our algorithm. Analyses results include the EAO and
accuracy on VOT2018.
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Table 4. Ablation study of multi-classifier and template update with bounding box
selection mechanism, Number of cls represents the number of classifiers, Single − cls
represents the single classifier with ResNet or SeNet. Interval, δ denote the update
interval of template and weights of bounding boxes. The RL means the re-weighted
loss function.

Number of cls RL Interval δ VOT2018

EAO A

Single − cls(ResNet) � T = 8 0.25 0.467 0.605

Single − cls(SeNet) � T = 8 0.25 0.449 0.611

Multi − cls T = 8 0.25 0.48 0.611

Multi − cls � T = 8 0.5 0.48 0.607

Multi − cls � T = 8 0.333 0.495 0.607

Multi − cls � T = 8 0.2 0.493 0.608

Multi − cls � T = 8 0.25 0.517 0.609

Multi − cls � T = 7 0.25 0.512 0.606

Multi − cls � T = 6 0.25 0.503 0.610

Multi − cls � T = 5 0.25 0.493 0.608

Multi − cls � T = 0 0.25 0.468 0.606

Template update is essential in handling with the variation, deformation, etc.
We select the different intervals to balance the speed with precision. As shown
in Table 4, the EAO criterion increases to 51.7% from 46.8% when the update
template mechanism is added and the multi-classifier is more competitive than
the single classifier with ResNet or SeNet. A suitable bounding box strategy will
improve the performance of our method, thus, we select several weights to find
the most suitable parameter in VOT2018. Moreover, compared with the original
loss function in online module, our new loss function can boost the performance.
Results are showed in Table 4 that the tracker with RL loss can improve the
score by 3.7% for EAO.

5 Conclusion

In this work, we propose a multi-classifier guided discriminative siamese track-
ing network, which consists of three parts: the siamese base tracker, online dis-
criminative multi-classifier, and template update mechanism with bounding box
selection strategy. We use the ResNet50 and SeNet50 to extract the features
online to get a rich feature representation. Then, we train the online classifiers
with re-weighted loss function and fuse their results to get a discriminative score
map, combine with the scores map from the siamese base tracker to improve
the discriminability of our method. Furthermore, a template update mechanism
with bounding box selection strategy is added to improve the robustness of the
tracker. Results show that our method can get a competitive performance on
the benchmark mentioned above.
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Abstract. Noise robustness and hard example mining are two impor-
tant aspects in object detection. A common view is that the two tech-
niques are contradictory and they cannot be combined. In this paper,
we show that there is a possibility to combine the best of two tech-
niques. We find that, even using the hard example mining technique,
recent deep neural network-based object detectors themselves have abili-
ties to distinguish correct annotations and wrong annotations during the
early stage of training. Based on this observation, we design a simple
strategy to separate the wrong annotations from training data, reduc-
ing their loss weights and correcting their labels during training. The
proposed method is simple, it doesn’t add any computational overhead
during model inference. Moreover, the proposed method combines the
hard example mining and noise resistance property in one model. Exper-
iments on PASCAL VOC and DOTA datasets show that the proposed
method not only archieves competitive performances on clean dataset,
but also outperforms the baseline by a large margin when data contain
severe noise.

Keywords: Noise robustness · Hard example mining · Focal loss ·
Noise resistant focal loss

1 Introduction

Recently, the object detectors, such as Fast RCNN [16] and RetinaNet [5],
using deep neural networks have exhibited impressive performances. One rea-
son for this huge success is the easy accessibility of the high quality large-scale
datasets. Since data is labeled by people’s subjective judgments, building large-
scale datasets inevitably introduce label noise. Due to the high capacity of deep
neural networks, the presence of noise often degrade detectors’ performance.
Therefore, it is important to develop noise-resistent training strategies for noisy
datasets.

Hard example mining is a popular technique in object detection. It imporves
detectors’ performances by outstanding importances of hard examples during
training. Focal loss [5] is a representative method in hard example mining. It
reduces the relative loss for well-classified examples and put more focus on hard
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examples. Since noise can be regarded as the extremely hard examples, directly
applying the focal loss to noisy datasets deteriorates the performances of detec-
tors. In fact, there is a common belief that the noise robust loss and the hard
example mining are contradictory, they treat hard examples in opposite man-
ners. One question arises: Could we combine the best of both world to develop
a method which not only focus on the hard examples, but also is resistant to
noise?

In this paper, we give the above question a positive answer. We find that,
though the hard example mining technique has been used, correct annotations
and wrong annotations can be distinguished by recent deep neural network-
based object detectors during the early stage of training. Specifically, the net-
work is capable of predicting correct labels of wrong annotations at the early
stage of training. With the progress of training, the wrong annotations inter-
ference the model, thereby degrading the model performances. Thus, we design
noise resistant focal loss to separate the wrong annotations from training data,
reducing their loss weights and correcting their labels during training. The pro-
posed method is simple, it doesn’t add any operation during model inference.
Moreover, the proposed method combines the hard example mining and noise
resistance property in one model. Experiments on PASCAL VOC [6] and DOTA
[17] datasets show that the proposed method not only archieves competitive per-
formances on clean dataset, but also outperforms the baseline by a large margin
when data contain severe noise.

To summary, the contributions of this paper are three-folds:

– We experimentally demonstrate that the neural network-based detector has
self discrimination ability for noise labels.

– We propose noise resistant focal loss to combine the advantages of hard exam-
ple mining and noise robustness. To the best of our knowledge, this is the first
paper to combine these contradictory techniques.

– The proposed method shows competitive results on both clean and noisy
datasets.

2 Related Work

2.1 Dataset Noise

Excellent datasets, such as PASCAL VOC [6] and MS-COCO [12], in object
detection requires high-quality manual annotations with accurate object labels
and precise bounding box coordinates. Unfortunately, because the level of the
workers is different, it is inevitably to generate noise annotations which contain
label noise (i.e., wrong object classes), bounding box noise (i.e., inaccurate object
locations) or the mixture of label noise and bounding box noise. Hard example
mining is used for the part of object classification. Thus, it is sensitive to the
label noise. Label noise could be divided into category-independent label noise
which means that the label noise is irrelevant to the categories and category-
related label noise which refers to several types of ground truths that are labeled



116 Z. Hu et al.

as other fixed labels. In this paper, we focus on category-independent label noise
to study the noise robustness under hard example mining.

2.2 Learning with Label Noise

Though noise robust training for object detection is vitally important for the
industrial community, we surprisingly find that there is only a few researches in
this field. Recently, there are three main methods (weakly-supervised (WS) [4],
semi-supervised (SS) [10,14,15] and co-teaching [8]) for training noise-resistant
object detectors. WS object detection aims to learn object detectors with only
image-level labels. Zhang et al. [18] propose an adaptive sampling method to
impose similarity loss on noisy images through instances with high classification
scores. SS object detection aims to obtain unlabeled image labels and bounding
boxes through existing labels and bounding boxes. Gao et al. [7] focus on the SS
setting to train a detector to use a small amount of bounding box annotations
and a large amount of image-level annotation information. Co-teaching aims to
train two parallel networks, where each network selects small-loss samples to
train the other, to achieve noise robustness and correct the noise. Chadwick
et al. [2] proposes improved co-teaching to achieve robustness to noisy bounding
box. All of these methods do not combine the hard example mining technique.
Besides, they design complex model structures which increase computational
overhead. In contrast, our method doesn’t add any extra computation during
inference step.

2.3 Hard Example Mining

Hard example mining, such as online hard example mining (OHEM) [13] and
focal loss [5], has been widely used in object detection training process. Generally,
hard example mining guides the object detectors to focus on the hard examples
by increasing the relative loss weight of these examples during training. OHEM
computes loss for all RoIs, sorting them based on this loss to select hard RoIs
and setting the loss of non-hard RoIs to 0. Focal loss outstands the relative
loss of hard examples by down-weighting easy examples, such that the hard
examples dominate the training process. Since noise can be regarded as hard
examples, OHEM and focal loss perform the opposite role of noise robustness:
they focuses training on a set of hard examples. Therefore, hard example mining
and noise robustness are contradictory, directly using hard example mining will
degrade detectors’ performances. However, as we will show, this is a possibility
to combine these two properties in one detector.

3 Method

We surprisingly find that the neural network-based detector itself could iden-
tify annotations with wrong categories under hard example mining technique.
To demonstrate our point, we conduct the following experiments. The training
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dataset is NWPU VHR-10 [3] which contains 10 categories. We randomly picked
some ground truth bounding boxes (20% and 40%) from the training dataset and
replace their categories with random categories. The training detector is Reti-
naNet [5] using ResNet-50 [9] as the backbone. Following the common training
strategy, we use SGD with learning rate 0.0025 and momentum 0.9. We train the
detector 60 epochs and divide the learning rate by 10 at 40th and 55th epoch.

For the sake of clarity, we introduce some notations which will be used
throughout the paper. Suppose we have a noisy dataset D = {(I,G), I ∈ χ,G ∈
γ} with K categories, where χ is the set of input images, and G = {(gi, li), i =
1, · · · , N} is the set of annotations including bounding box gi and the corre-
sponding category li. We denote GT = {(gi t, li t), i t = 1, · · · , Ni t} as the set
of bounding boxes with correct labels, and GF = {(gi f , li f ), i f = 1, · · · , Ni f}
as the set of bounding boxes with wrong labels. G = GT

⋃
GF . We also use

G
′
F = {(gi f ′ , l

′

i f ′ ), i f
′
= 1, · · · , Ni f ′ } to denote GF with correct labels.

For gi, Ai = {(aj , P
cls
j ), j = 1, · · · ,Mi} denotes the set of positive anchor

samples, where P cls
j = {s1ij , · · · , sliij , · · · , skij} is the classification probability dis-

tribution vector for the positive anchor aj whose IoU with the nearest bounding
box is greater than 0.5. smax

ij is the maximum predicted score of P cls
j , and srefij

means the maximum prediction score of P cls
j except the score of annotated cat-

egory. We use rliij ∈ {1, · · · , k} to denote the rank of sliij in P cls
j .

Equations 2, 3 and 4 define ACCit, ACCf and ACCf c. ACCit represents the
accuracy of classification prediction for the positive samples of all labels. In terms
of wrong annotated bounding boxes, ACCf represents the prediction accuracy of
wrong labels for the positive samples, and ACCf c means the prediction accuracy
of right labels for the positive samples.

(sliij = smax
ij ) =

{
1
0

if sliij = smax
ij

if sliij �= smax
ij

(1)

ACCit =

N∑

i=1

Mi∑

j=1

(sliij = smax
ij )

N∑

i=1

Mi

, (gi, li) ∈ G (2)

ACCf =

N∑

i=1

Mi∑

j=1

(sliij = smax
ij )

N∑

i=1

Mi

, (gi, li) ∈ GF (3)

ACCf c =

N2∑

i=1

Mi∑

j=1

(sl
′
i
ij = smax

ij )

N∑

i=1

Mi

, (gi, li) ∈ G
′
F (4)
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Equations 5, 6 and 7 define ΔSit, ΔSt and ΔSf . ΔSit is the mean of the
absolute value of the difference between sliij and srefij in G. For GT and GF ,
we utilize ΔSt and ΔSf to represent the average of the difference between sliij
and srefij , respectively. Equation 8 defines ΔSgi as the similar measurement for
individual bounding box gi.

ΔSit =

N∑

i=1

Mi∑

j=1

|sliij − srefij |
N∑

i=1

Mi

, (gi, li) ∈ G (5)

ΔSt =

N∑

i=1

Mi∑

j=1

(sliij − srefij )

N∑

i=1

Mi

, (gi, li) ∈ GT . (6)

ΔSf =

N∑

i=1

Mi∑

j=1

( sliij − srefij )

N∑

i=1

Mi

, (gi, li) ∈ GF . (7)

ΔSgi =

Mi∑

j=1

sliij − srefij

Mi
(8)

In Eqs. 9 and 10, Rt and Rf respectively represents the mean of the relative
ranking rliij/k in GT and GF . Equation 11 defines Rgi as the similar measurement
for individual bounding box gi.

Rt =

N∑

i=1

Mi∑

j=1

rliij/k

N∑

i=1

Mi

, (gi, li) ∈ GT (9)

Rf =

N∑

i=1

Mi∑

j=1

rliij/k

N∑

i=1

Mi

, (gi, li) ∈ GF (10)

Rgi =

Mi∑

j=1

rliij/k

Mi
(11)

We record ACCit, ACCf , ACCf c, ΔSit, ΔSt, ΔSf , Rt and Rf every itera-
tion. For the sake of observation, we averaged the above parameters every 10
iterations.
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Fig. 1. Results of ACCit(Green), ACCf (Red), ACCf c(Blue) at the NWPU VHR-10
dataset with 20% and 40% noise. (Color figure online)

3.1 Analysis of Experimental Results

In Fig. 1, with the training of the network, ACCit and ACCf keep increasing
during the whole training. While ACCf c increases in the early stage of training
and then decreases during the late stage. The above observetion shows the correct
labels in GF can be predicted in the early stage of training. However, in the late
of the training, the wrong labels mislead the network, and the network tends to
predict the wrong category of gi in GF .

Comparing Fig. 1 and Fig. 2, the trend of ΔSit, ΔSt and ACCt are similar,
but ΔSf and ACCf c have opposite trends. It indicates that ΔSit can reflect
the accuracy of the classification prediction. From Fig. 2 and Fig. 3, there are
significant differences in ΔSt and ΔSf as well as in Rt and Rf . These shows
that the network can separate GF from G, moreover the correct labels of gi in
GF can be predicted in the early stage of training. However, when training real
datasets, ΔSf and Rf are unknown. Fortunately, ΔSgi and ΔSf have a similar
pattern for gi ∈ GF , so does Rgi and Rf . Therefore, we can use ΔSit, ΔSgi and
Rgi to separate GF from G.

3.2 Noise Resistant Focal Loss

According to the above experiment, we propose noise resistant focal loss. Noise
resistant focal loss is implemented in two steps. The first step is judgement
which identify whether gi is in GF , and the second step, treatment, is used to
reduce the relative weight of loss and correct the wrong labels.

Judgement. Based on the above observation, ΔSgi , ΔSit and Rgi can be used
as indicators to judge whether gi is in GF . On the one hand, when ΔSgi < −0.15,
ACCit keeps a high value and gi in GF can be distinguished intuitively. On the
other hand, when ΔSit > 0.15 and Rgi > 0.3, gi in GF has sufficient confidence.
Therefore, we use the two conditions to judge whether gi is in GF .
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Fig. 2. Results of ΔSit(Blue), ΔSt(Green) and ΔSf (Red) at the NWPU VHR-10
dataset with 20% and 40% noise. (Color figure online)

Fig. 3. Results of Rt(Green), Rf (Red) at the NWPU VHR-10 dataset with 20% and
40% noise. (Color figure online)

Treatment. Wrong annotated samples are very hard samples. Due to the hard
example mining, the classification loss weights of wrong annotated samples are
amplified. Therefore, the classification loss of gi satisfying Judgement is reduced
to 0.2. Then, we try to correct the wrong label. As Eq. 12 shows that P cls

i denotes
the mean vector of all P cls

j in Ai.

P cls
j =

Mi∑

j=1

P cls
j

Mi
(12)

We further define s1sti and s2ndi , which represent the maximum score and the
second largest score in P cls

i , respectively. By analyzing ΔSgi and Rgi , T cls
i =

s1sti − s2ndi can judge that the predicted label is the correct label of gi in GF .
Particularly, if T cls

i > 0.15, we use the category of s1sti to correct wrong label
besides reducing the weight of loss to 0.2.
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Algorithm 1: Noise resistant focal loss
Input: parameters: ΔSgi , ΔSit, Rgi , T cls

i

1 for each iteration do
2 if ΔSgi < −0.15 or ΔSit > 0.15 & Rgi > 0.3 then
3 weight 0.2;

4 if T cls
i > 0.15 then

5 correct wrong label;
6 end

7 end

8 end

The whole algorithm of noise resistant focal loss is shown in Algorithm 1.
While the above method uses a hard threshold, it is applicable to different
datasets.

4 Experiments

4.1 Datasets and Implementation Details

We use PASCAL VOC [6] and DOTA [17] to evaluate the noise resistant focal
loss. PASCAL VOC is widely used in object detection with high quality bounding
boxes and label annotations. PASCAL VOC contains 20 object categories and
more than 20000 images. We use the union set of VOC 2007 trainval and VOC
2012 trainval as our training data, and VOC 2007 test as our test data. We use the
mean average precision (mAP0.5 and mAP0.75) as the evaluation metric. DOTA
is the largest dataset for object detection in aerial images with both horizontal
and oriented bounding box annotations. The dataset contains 15 categories and
2806 images from different sensors and platforms. For DOTA, we use both the
training and validation sets for training, and the testing set for testing. We report
the mean average precision (mAP0.5) as the evaluation metric.

As for noise, we follow the previous works [1,11] and create random wrong
label to simulate human mistakes of different severity. Specifically, we randomly
choose N% of the training samples and change each of their labels to another
random label. For PASCAl VOC, N contains 0, 10, 20, 30, 40, and 60, and for
DOTA, N contains 0, 20, and 40.

For PASCAL VOC, we adopt the proposed method into the ResNet-50 [9]
based RetinaNet [5] with 1 NVIDIA 2080TI GPU. For DOTA, We adopt the pro-
posed method into the RetinaNet-O [5] with 4 NVIDIA 2080TI GPU. We imple-
ment the detectors based on the mmdetection codebase. For PASCAL VOC, we
use SGD with a learning rate of 0.0025, a momentum of 0.9 and a weight decay
of 0.0001. We train detector 12 epochs, and decrease the learning rate at epoch
9. For DOTA, only learning rate of 0.01 and decrease the learning rate at epoch
8 and epoch 10 are different from PASCAL VOC.
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Table 1. Comparison with focal loss on PASCAl VOC.

Loss function 0% 10% 20% 30% 40% 60%

mAP0.5 Focal loss 80.1 78.3 76.8 75.5 72.6 57.5

Noise resistant focal loss 80.1 79.5 78.5 78.5 77.8 68.4

mAP0.75 Focal loss 56.7 54.1 52.6 51.2 49.1 38.9

Noise resistant focal loss 57.1 56.6 56.5 56.2 55.8 48.6

Fig. 4. Results of Probf (Green) ,Probf c(Red) in 12th epoch with 40% noise. (Color
figure online)

4.2 Comparison with Focal Loss

Result on PASCAL VOC. Table 1 shows the comparison result on PASCAL
VOC dataset, where the training data contains different levels of label noise.
Our method significantly outperforms the focal loss. For clean datasets, our
method can do not affect the performance in mAP0.5 and even achieve 0.4%
improvement in mAP0.75. For noisy data, our method outperforms the baseline
by a large margin. Even for 60% noise, our method can even improve 10.9% in
mAP0.5 and 9.7% in mAP0.75.

In order to better verify the effectiveness of our method, we record the mean

of sliij (Probf ) and s
l
′
i
ij (Probf c) of gi in GF in 12th epoch with 40% noise.

For the convenience of observation, we draw the figure after sorting Probf and
Probf c. Figure 4 shows the results. It shows noise resistant focal loss can not
only improve the classification prediction probability of the correct labels of
noise, but also suppress the classification prediction probability of wrong labels
of noise. These prove that our method is robust to noise.

Result on DOTA. As shown in Table 2, our method achieves impressive perfor-
mance on DOTA. For clean dataset, our method only decreased 0.7% in mAP0.5
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compared with focal loss, and it has little impact on network performance. For
noisy data, our method has a significant improvement over focal loss. Even for
40% noise, our method can improve 6.2% in mAP0.5 and performs better than
focal loss under 20% noise. These shows that our method is still valid on different
datasets.

Table 2. Comparison with focal loss on DOTA.

Method 0% 20% 40%

Focal loss 66.4 61.9 56.9

Noise resistant focal loss 65.7 64.4 63.1

Table 3. Results under different thresholds T .

T Focal loss 0.01 0.05 0.1 0.15 0.25 0.5 1

mAP0.5 72.6 77.8 77.4 77.2 77.2 76.6 76.1 75.5

mAP0.75 49.1 55.3 55.5 55.1 55.2 55.1 53.0 53.3

4.3 Ablation Study and Hyperparameter Analysis

In this subsection, we not only conduct ablation experiments to analyze the
effectiveness of each method in judgement and treatment, but also present
hyperparameter analysis. All experiments use PASCAL VOC dataset with 40%
noise.

The Sensitivity of Threshold T of Tcls
i . We use judgement as the indicator

of noise. For treatment, we only change threshold T of T cls
i . We selected 7 values

which are 0.01, 0.05. 0.1, 0.15, 0.25, 0.5 and 1. Table 3 shows the results. When
T ≤ 0.15, the performance of the network is very close. It indicates that when
T is small, the network is not sensitive to T . Compared with T ≤ 0.15, the
performance of the network is wrose when T > 0.15. Therefore, we can choose
any T ≤ 0.15 as the threshold for training.

The Effectiveness of Each Component of Judgment . To study the effec-
tiveness of the components of judgement, we omit different components in the
judgement to investigate the effectiveness of each part, including ΔSgt < −0.15
and ΔSit > 0.15&Rgt > 0.3. We use treatment with threshold 0.01 of T cls

i to
deal with noise. Table 4 shows the result. Both ΔSgt < −0.15 and ΔSit > 0.15
& Rgt > 0.3 can effectively judge the noise. Using ΔSgt < −0.15 or ΔSit > 0.15
& Rgt > 0.3 can achieve the best performance.
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Table 4. The effectiveness of each component of judgement.

ΔSgt < −0.15 ΔSit > 0.15 & Rgt > 0.3 mAP0.5 mAP0.75

72.6 49.1√
77.2 55.2√
77.0 54.7√ √
77.8 55.2

Table 5. The effectiveness of each component of treatment

Weight 0.2 Correct wrong label mAP0.5 mAP0.75

72.6 49.1√
75.5 53.3√
18.6 11.4√ √
77.2 55.2

The Effectiveness of Each Component of treatment . We use judgement
to judge noise and omit different components in the treatment to investigate the
effectiveness of each part, including weight 0.2 and correct wrong label (T cls

i >
0.01). Table 5 shows the results. Only reducing the weight of loss can effectively
improve the performance, while just correcting the label will damage the net-
work. On the basis of reducing the weight, correcting the noise label can achieve
the best performance.

5 Conclusion

In this paper, we found recent deep neural network-based object detectors can
distinguish correct annotations and wrong annotations in the early stage of train-
ing under hard example mining. We proposed noise resistant focal loss which
combined hard example mining and noise resistance property in one model.
Experiments on PASCAL VOC and DOTA datasets showed that the proposed
method archieved competitive performances. At present, we used hard thresh-
olds to train. In the future, we hope to propose an adaptive method to achieve
noise robustness.
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Abstract. Person Re-Identification (Re-ID) plays a significant role in
intelligent surveillance systems. Existing popular methods mainly focus
on locating regions with specific pre-defined semantics to learn local rep-
resentations, where pedestrian part-level features are inefficient to fully
utilize the global feature information. Besides that, some methods miss
out semantic transition information of human body. In this paper, we
propose an end-to-end feature learning strategy to get refined feature
representations with global-local mutual guided learning. In order to
explore global and local information, we design a Global-Local Mutual
Guided Network (GLMG-Net). It contains two branches to learn global
feature representations, and local feature representations, respectively.
For mutual guided module, global features are combined with each local
feature by the add-wise operation. In the training process, this module
enables branches to guide each other. Comprehensive experiments con-
ducted on the public datasets of Market-1501 and DukeMTMC-ReID
indicate that our method outperforms state-of-the-art approaches in sev-
eral cases. In particular, mean average precision (mAP) scores of our
method on those benchmarks are 89.2% and 79.7%, respectively.

Keywords: Person re-identification · Refined feature learning ·
Dual-branch deep network

1 Introduction

Person re-identication (Re-ID) is a tracking technique used in vision-based smart
retail and security surveillance. It aims to retrieve a given person among all
gallery pedestrian images captured across multiple non-overlapping security cam-
era views at different locations. It is challenging to learn robust feature represen-
tations for each person because of large variations of human attributes like poses,
clothes. Since pedestrian images are typically captured by surveillance cameras
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in open area, the imperfect imaging devices and environment may lead to low
resolution and complex background in pedestrian images. This will degrade the
performance of person Re-ID methods. Benefit from the superiority of mining
automatically high discriminative information, deep learning methods recently
become more popular than traditional hand-crafted methods in this commu-
nity. Some recent deep Re-ID methods [10,12,15,18,19] have achieved promis-
ing results with high-level identification rate and mean average precision. There
are several approaches [1,6,8] only taking advantage of global features from the
whole body on pedestrian images. They are hard to extract discriminative fea-
tures because of high complexity for images captured in surveillance scenes and
being sensitive to the missing key parts of human body.

To relieve this dilemma, most existing part-based approaches focus on learn-
ing part-informed representations containing salient information in recent years.
They can be basically categorized into three types according to local regions gen-
eration procedures. Prior knowledge based approaches [17,20,21] utilized prior
knowledge like poses or body landmarks to localize the discriminative regions.
Nevertheless, robustness of the pose or landmark estimation models greatly
influence the identification result. Attention based approaches [13,16] employed
attention mechanism to enable models to focus on salient regions by localiz-
ing the high activations in deep feature maps. However, the selected regions
lack semantic interpretation. Partition scheme based approaches [18,19] designed
specific partition scheme to crop deep feature maps into pre-defined patches or
stripes. The performance of above methods highly relies on whether pedestrian
images are perfectly aligned.

   Person ID

Guided 
Module

1x1x 3 x3 x3 x3 x

G-branch P-branch

Fig. 1. Illustration of components in our GLMG-Net. We regard whole body of a
person as global representation in G-branch in the left column. The right column
refers to equally split deep feature maps of a person into three horizontal parts for
local information in P-branch. The middle column is Guided-Module for combination
of global representation and each part, respectively.
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We propose a simple yet effective approach, called Global-Local Mutual
Guided Network (GLMG-Net). As shown in Fig. 1, every sub-branch of GLMG-
Net has specific contribution to the whole network. By combining global and
local information in the mutual guided module, our GLMG-Net aims to extract
more refined and discriminative features. The contributions of this paper are as
follows:

• GLMG-Net contains two sub-branches, named G-branch and P-branch.
Besides, GLMG-Net contains a mutual guided module called Guided-Module.
In training process, local salient information in P-branch guide G-branch to
learn more centralized and discriminative features, and vice versa.

• We design G-branch for learning global presentations with more useful infor-
mation. Specifically, we employ ResNet-50 as backbone network of our model,
and combine output feature maps of the last and penultimate residual block
by manipulating their channel and spatial scale. Experiment results show that
most key feature responses concentrate upon foreground of human body. In
P-branch, we directly partition last deep feature map into three horizontal
stripes for learning local presentations.

2 Related Work

In this part, we review several closely related work including deeply part-based
methods and global-local based methods.

Deeply Part-Based Method. Deep learning methods have two main superior-
ities over hand-crafted. On one hand, deep features generically obtain stronger
discriminative ability. On the other hand, some deep learning tools for pars-
ing pedestrians can effectively benefit the part features. For instance, several
works [17,21] in Re-ID employed these tools for pedestrian partition and reported
encouraging improvement. However, robustness of these tools greatly influence
the identification result. Based on strong discriminative ability of deep learning,
Sun et al. [18] divided deep feature maps into fixed numbers horizontal stripes
for partial features in their models. This simple operation can also bring a good
promotion.

Global-Local Based Method. Global features are robust and essential for
person Re-ID task. Therefore, several recent works notice that global and local
features should be jointly learned. Wang et al. [19] designed a multi-branch
network named MGN for learning feature from coarse to fine granularities of
pedestrian images. They respectively divide deep feature maps into 1, 2 and 3
stripes in three sub-branches of MGN. Fu et al. [10] introduced a Horizontal
Pyramidal Pooling (HPP) for dividing deep feature maps into 1, 2, 4 and 8
stripes. They both tried to retain underlying information between different scale
feature stripes.
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Fig. 2. The architecture of our proposed GLMG-Net for person re-identification.

3 Proposed Method

3.1 Network Architecture

Motivation. Global features are robust to the subtle view changes and internal
variations, and are very significant cues for identification. They are always not
well exploited together with local features in existing deep part-based models.
So, we specially design a branch for refining discriminative global feature in our
GLMG-Net. In addition, for current approaches based on global and local feature
jointly learning, feature learning processes are independent after dividing deep
feature maps, taking limited effect on common convolutional layers of backbone
network. We consider to employ a mutual guided module called Guided-Module
to realize mutual learning between global features and local features.

The architecture of Global-Local Mutual Guided Network is shown in Fig. 2.
The ResNet-50 backbone is split into two branches: G-branch and P-branch.
Then Guided-Module combine output features of above branches. For each FC
layer, features are reduced from 2048-dim to 256-dim, and then trained for ID
prediction with a softmax loss separately. During the testing stage, we concate-
nate all reduced features of three components to form the final feature represen-
tation of a pedestrian image. Notice that fully connected layers for dimension
reduction and identity prediction in each component DO NOT share weights
with each other. No matter for triplet loss or softmax loss, each feature has
an independent supervisory signal. More details will be given in Table 1 and
following parts.

Refined Global Feature Extraction. It aims to enrich the global feature
information of pedestrian images. We choose the Resnet-50 as the backbone net-
work with some modifications following the previous state-of-the-art [18,19]. In G-
branch, specifically, we remove the average pooling layer and the fully connected
layer. The output tensor of last residual block and penultimate residual block are
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Table 1. Comparison of the settings for components of GLMG-Net. Notice that the
size of input images is set to 384 × 128.

Component Feature map Feature for triplet loss Feature for softmax loss

Backbone T b3 : 24 × 8 × 1024 f0
T : 1 × 1 × 1024 Null

G-branch T b4
g : 12 × 4 × 2048

Tg : 24 × 8 × 2048

f1
T : 1 × 1 × 2048

f2
T : 1 × 1 × 2048

fg
G : 1 × 1 × 2048

P-branch Tp : 24 × 8 × 2048 f3
T : 1 × 1 × 2048 fi

P |2i=0 : 1 × 1 × 2048

Guided-Moudle Null Null fi
M |2i=0 : 1 × 1 × 2048

named as T b4
g and T b3, respectively. We combine T b4

g and T b3 to extract more use-
ful global representation. To simplify the explanation, upsampling, 1 × 1 convo-
lution and 3 × 3 convolution with batch normalization [11] and ReLU are named
as Upsample, Conv1 and Conv3, respectively. First of all, we employ an Upsam-
ple operation on T b4

g , where its spatial scale is changed from 12 × 4 to 24 × 8 and
a Conv1 to reduce 2048-dim features to 1024-dim. Secondly, we directly combine
T b4
g and T b3 by add-wise operation. Then, we use aConv3 on the tensor after com-

bination for regularization and a Conv1 to increase dimensions from 1024-dim to
2048-dim for convenience of mutual guided learning module. Formally, denote the
feature maps extracted by G-branch as Tg.

Tg = Conv1(Conv3(T b3 + Conv1(Upsample(T b4
g )))) (1)

Finally, we get global representation fg
G by global average pooling (GAP) and

global max pooling (GMP).

fg
G = GAP (Tg) + GMP (Tg) (2)

Mutual Guided Learning Module. It aims to learn more discriminative
feature by combining local and global representation. First of all, P-branch shares
similar network architecture with the original ResNet-50 but removes the last
spatial down-sampling operation to preserve proper areas of reception fields for
local features [19]. Therefore, the feature map of last residual block named as
Tp which scale is 24 × 8 × 2048. And then, with a global max pooling (GMP),
we partition Tp into 3 horizontal stripes and actually they are column vector
f i
P (i = 0, 1, 2) which are represent distinct local information.

f i
P = GMP (Tp), i = 0, 1, 2 (3)

Secondly, by the use of an add-wise way, every single column vector f i
P (i =

0, 1, 2) is combined with global representation fg
G for extracting combined fea-

tures f i
M (i = 0, 1, 2).

f i
M = fg

G + f i
P , i = 0, 1, 2 (4)

For testing phases, in order to obtain the most powerful discrimination, we
concatenate all the features {fg

G, f
i
P |2i=0, f

i
M |2i=0} as the final learned features.
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3.2 Loss Function

We utilize a setting of joint learning with both softmax loss and triplet loss in our
proposed method. Following various deep Re-ID methods, we employ softmax
loss for classification, and triplet loss for metric learning as the loss functions in
training process. Generally, the identification loss is the same as the classification
loss. For i-th learned features fi, softmax loss is formulated as:

Lsoftmax = −
N∑

i=1

log
eW

T
yi

fi

∑C
k=1 e

WT
k fi

(5)

whereWk corresponds to a weight vector for class k, with the size of mini-batch
in training process N and the number of classes in the training dataset C.

4 Experiment

4.1 Datasets and Protocols

This paper uses two mainstream Re-ID datasets for evaluation: Market-1501 [22]
and DukeMTMC-reID [14,23]. It is necessary to introduce these datasets and
their evaluation protocols before we show our results.

Market-1501. It comprises 32,668 images of 1,501 labeled persons of six camera
views. There are 19,732 gallery images and 12,936 training images collected by
DPM [9], including 751 identities in the training set and 750 identities in the
testing set. Among the testing data, the test probe set has 3,368 images. The
test gallery set also includes 2,793 additional distractors, which may have a
considerable influence on the retrieval accuracy.

DukeMTMC-ReID. It is a subset of the DukeMTMC [14] dataset specifically
collected for person reidentification. It contains 1,812 identities captured by 8
high-resolution cameras. There are 2,228 query images, 16,522 training images
and 17,661 gallery images, with 1,404 identities appear in more than two cameras
while 408 (distractor) identities appears in only one camera. DukeMTMC-ReID
is one of the most challenging Re-ID datasets up to now with common situations
in high similarity across persons and large variations within the same identity.

Evaluation Protocol. In our experiment, we use the cumulative matching
characteristic (CMC) at Rank-k, k = 1, 5, 10, and mean average precision (mAP)
to evaluate our approach. CMC represents the accuracy of the person retrieval,
and it is accurate when each query only has one ground truth. However, when
multiple ground truths exist in the gallery, the goal is to return all right match
to user. In this case, CMC may not have enough discriminative ability, but the
mAP could reflect the recall. Moreover, for simplicity, all results reported in this
paper are under the single-query setting and do not use the re-ranking proposed
in [24].
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4.2 Implementation

We resize all the image to 384× 128. For the backbone network, we use Resnet-
50 that initialized with the weights pretrained on ImageNet [7]. During training
process, we deploy random horizontal flipping and random erasing to pedes-
trian images for data augmentation. Each mini-batch is sampled with randomly
selected P identities and randomly sampled K images for each identity from the
training set to cooperate the requirement of triplet loss. Here we set P = 8 and
K = 4. For the margin parameter for triplet loss, we set to 1.0 in all our experi-
ments. We choose SGD as the optimizer with momentum 0.9. The weight decay
factor for L2 regularization is set to 0.0005. We use a warm-up strategy in the
first 10 epochs. Learning rate decays to 3e−3 at epoch 60, and further decays
to 3e−4 at epoch 100. The total training process lasts for 200 epochs. Dur-
ing evaluation, we concatenate the reduced feature vectors together to generate
feature representation of query image. Our model is implemented on PyTorch
platform and train with one NVIDIA 1080Ti GPU. All datasets share the same
experiments setting as above.

Table 2. Comparison results (%) with the state of the art on Market-1501 (4 evalua-
tion metrics: mAP, Rank-1, Rank-5 and Rank-10) and DukeMTMC-reID (2 evaluation
metrics: mAP and Rank-1). Numbers in bold indicate the best performance.

Model Market-1501 DukeMTMC-reID

Rank-1 Rank-5 Rank-10 mAP Rank-1 mAP

MLFN [4] 90.0 – – 74.3 81.0 62.8

HA-CNN [13] 91.2 – – 75.7 80.5 63.8

DuATM [16] 91.4 – – 76.6 81.8 64.6

GP-reid [2] 92.2 97.9 – 81.2 85.2 72.8

Deep-Person [3] 92.3 – – 79.6 80.9 64.8

DNN CRF [5] 93.5 – – 81.6 84.9 69.5

PCB+RPP [18] 93.8 97.5 98.5 81.6 83.3 69.2

HPM [10] 94.2 97.5 98.5 82.7 86.6 74.3

PPS [15] 94.3 97.7 98.7 85.3 88.2 75.9

MGN [19] 95.7 – – 86.9 88.7 78.4

GLMG-Net (ours) 95.9 98.4 99.0 89.2 89.7 79.7

4.3 Comparison with State-of-the-Art Methods

In this section, we compare our proposed method with current state-of-the-art
methods, most of which was proposed in recent two years, on all the candidate
datasets. Results in detail are listed as follows:
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Results on Market-1501. Person Re-ID results on Market-1501 are given in
Table 2. It is worth noting that all results accomplished in the case of single query.
The PCB is a convolutional baseline that achieved outstanding result without
re-ranking, but we have improved performance by 7.6% and 2.1% on metrics
mAP and Rank-1, respectively. MGN considers multiple branches and partitions
feature map from coarse to fine granularities which motivates our approach, but
we employ a more available strategy that takes advantage of the gradual cues
between global and local information. Our method exceeds 2.3% and 0.2% on
metrics mAP and Rank-1 comparing to MGN. Our method outperforms other
comparative methods, especially showing large margins in terms of metrics mAP.

Fig. 3. Top-10 ranking list for some query images on Market-1501 by GLMG-Net. The
images with green borders belong to the same identity to the given query image, while
the one with red border show the incorrect identity. (Color figure online)

Figure 3 shows top-10 ranking results for some given query pedestrian images.
The second pedestrian shows his back carrying a black backpack, but we can
obtain his captured images in front view in Rank-3, 4, 5 and 6. The last query
image is captured in a low-resolution condition, losing an amount of important
information. Nevertheless, from some detailed clues such as the red bag carry-
ing in hand and his red T-shirt with a special logo, all the ranking results are
accurate and with high quality. This surprising result dues to our GLMG-Net,
which learned features can robustly represent discriminative information of their
identities.

Results on DukeMTMC-reID. Results on the challenging DukeMTMC-reID
dataset are shown in Table 2. Among the compared methods, MGN is the clos-
est method to our method score, but still below 1.0% Rank-1 and 1.3% mAP
score, respectively. GP-reid is a good practice of many useful strategies combined
in person Re-ID tasks and achieved the excellent published result. GLMG-Net
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achieves state-of-the-art result of Rank-1/mAP = 89.7%/79.7%, outperforming
GP-reid by +4.5% in Rank-1 and +6.9% in mAP.

4.4 Ablation Study

To verify the effectiveness of each component and setting of GLMG-Net, we
design several ablation study with different settings on Market-1501 in single
query mode. Notice that other unrelated settings in each comparative exper-
iment are the same as GLMG-Net implementation in Sect. 4.2, and we have
carefully tuned all the candidate models and report the best performance with
our settings. Table 3 shows the comparison results in different settings related to
components of GLMG-Net. We separately analyze each component as follows:

Table 3. Results (%) with different settings on Market-1501. “TP” refers to triplet loss.
“G-b, P-b and G-M” refers to “G-branch, P-branch and Guided-Module”. “Branch”
refers to a sub-branch of GLMG-Net. “Single” refers to a single network with the same
setting as the branch with the corresponding name in GLMG-Net. “GLMG-Net (*)”
refers to evaluation results only based on trained classifiers of ‘*’ in GLMG-Net.

Model Rank-1 Rank-5 Rank-10 mAP

ResNet-50+TP 92.0 97.5 98.6 79.6

G-b (Single) 93.5 98.0 98.8 81.6

G-b (Branch) 95.3 98.3 99.0 87.5

P-b (Single) 93.7 97.8 98.7 81.9

P-b (Branch) 95.1 98.2 98.8 86.5

GLMG-Net w/o TP 95.4 98.4 98.9 88.6

GLMG-Net w/o G-b 95.4 98.4 98.9 89.0

GLMG-Net w/o G-M 95.1 98.5 99.0 87.9

GLMG-Net (G-b+P-b) 95.4 98.3 98.8 88.3

GLMG-Net (G-M) 95.7 98.4 98.9 88.8

GLMG-Net 95.9 98.4 99.0 89.2

G-branch vs ResNet-50. Noticed that G-branch and ResNet-50 are both
used to learning global representations in our paper. Comparing to the base-
line ResNet-50 model, from a local view, we can observe G-b (single) makes
a significant performance improvement Rank-1/mAP from 92.0%/79.6% to
93.5%/81.6% (+1.5%/2.0%). For our GLMG-Net, from a global view, if we
employ ResNet-50 to replace our G-branch, the Rank-1/mAP from 95.9%/89.2%
drop to 95.4%/89.0% (−0.5%/0.2%). In addition, we can also observe that fea-
ture map activation of G-branch precisely locates at discriminative foreground
regions and almost not contains useless background information about identities
for pedestrians compared to ResNet-50 in Fig. 4. Results above prove that our
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Fig. 4. Visualization of attention maps from ResNet-50+TP, G-b (Single) G-b
(Branch), P-b (Single) and P-b (Branch). As shown in the 4th and 6th column, the
diverse attention maps from G-b (Branch) and P-b (Branch) accurately located refined
and coherent regions of human body.

G-branch is obviously superior to ResNet-50 and our G-branch can learn refined
global features.

Guided-Module. We explore the effects of Guided-Module in two aspects.
From a global view, the metrics scores of Rank-1/mAP from 95.9%/89.2% drop
to 95.1%/87.9% (−0.8%/1.3%) when we remove Guided-Module from GLMG-
Net. From a local view, the features from sub-branches also perform better
than that from single networks because of Guided-Module. As shown in Fig. 4,
Guided-Module guides G-b and P-b to learn ignored information from each
other. To be specific, for G-branch, detail information from local features helps
it to refine more regions. For P-branch, human sematic information from global
features makes feature map activation coherent and well complements transi-
tional information between global and local representations. Comparing to P-b
(Single), Rank-1/mAP of P-b (Branch) from 93.7%/81.9% rise to 95.1%/86.5%
(+1.4%/4.6%). It shows that the mutual guided cooperation of branches learns
more discriminative feature representations than independent networks. As our
expected, with the help of Guided-Module, the mutual effects between sub-
branches complement the blind spots in their individual learning procedure.

5 Conclusion

In this paper, we construct a global-local mutual guided learning model for per-
son re-identification. Firstly, we design G-branch for learning refined features
for global information. Secondly, we employ Guided-Module further enhances
both global and local feature representations of pedestrian. It is worth noting
that all our results are achieved in a single query setting without using any re-
ranking algorithms.Extensive experiments onMarket-1501 andDukeMTMC-reID
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clearly show that the proposed GLMG-Net has achieved state-of-the-art perfor-
mance on several benchmark datasets.
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Abstract. Structural features of Chinese characters provide abundant
style information for handwritten style recognition, while prior work on
this task has few senses of using structural information. Meanwhile, based
on current handwritten Chinese character datasets, it is hard to obtain
a good generalization model only by character category and writer infor-
mation. Therefore, we add the structural information known as mor-
pheme which is the smallest and unique structure in Chinese character
into the large handwritten dataset HCL2000 and update it to HCL2020.
We also present a deep fusion network (Morpheme-based Handwritten
Style Recognition Network, M-HSRNet), capturing both overall lay-
out characteristics and detail structural features of characters to recog-
nize handwritten style. The evaluation results of the proposed model on
HCL2020 are observed to prove the effectiveness of morpheme. Together
with the proposed Morpheme Encoder module, our approach achieves an
accuracy of 78.06% in handwritten style recognition, which is 3 points
higher than the result without morpheme information.

Keywords: Handwritten Chinese character dataset · Morpheme ·
Handwritten style recognition · Fusion network

1 Introduction

Handwritten style recognition is one of the most challenging research fields
about handwritten character. It aims to identify who this handwritten character
belongs to. It has been implemented in historic document analysis fields and
anti-crime [3], which requires a high level of domain expertise and heavy work.
Handwritten style recognition is divided into page level and character level.
On the research of recognition on page level, Jain et al. [11] used K-adjacent
segments (KAS) feature to model character contours of 300 writers from IAM

P. Hu and M. Xu—contribute equally to this work.
The first authors are students.
This work was supported in part by MoE-CMCC “Artifical Intelligence” Project
No.MCM20190701.

c© Springer Nature Switzerland AG 2020
Y. Peng et al. (Eds.): PRCV 2020, LNCS 12306, pp. 138–150, 2020.
https://doi.org/10.1007/978-3-030-60639-8_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-60639-8_12&domain=pdf
https://doi.org/10.1007/978-3-030-60639-8_12


Handwritten Style Recognition for Chinese Characters on HCL2020 Dataset 139

dataset. [24] leverages online writing information and deep CNNs on 187 writers
with Chinese page input and on 134 writers with English page input on CASIA
Handwriting Database. On the research of recognition on character level, Kamal
Parves et al. [12] introduce an approach with the idea of splitting number of
small sub-images based on a local feature extracted by writer-specific charac-
teristics. Bensefia Ameur et al. [2] present an original approach based on the
analysis of a unique sample of a handwriting word by using the Levenshtein edit
distance based on Fisher-Wagner algorithm.

However, few of these methods have considered the influence of the smaller
structural units in a character on the style characteristics, which are inconsis-
tent with the experts’ handwritten identification methods in real scenes. When
recognizing handwritten style in real scene, in addition to comparing the overall
layout characteristics of the characters, they have a tendency to pay more atten-
tion on some detail structure features which help recognize style information.
When human writing, the acting point on each character structure is differ-
ent, which naturally leads to the difference in the ultimate handwriting style.
It means that, more attention to the differences in detail structures can better
help us to identify one’s handwritten style. For this reason, we extract morpheme
information contained in each character and integrating it into models.

The development of handwritten character recognition and handwritten style
recognition is accompanied by the support of handwritten character datasets.
Nowadays, handwritten character datasets are mainly divided into the following
three categories: 1) symbol image datasets [14,23] with numbers as examples; 2)
phonogram character datasets [1,7] with English and Latin as examples, which
express the meanings by the sound; 3) logogram character datasets [5,16,18,22,26]
with Chinese characters and Japanese characters as examples, which express the
meanings by shape. Research on handwritten character datasets has also made
considerable progress. Taking Chinese character datasets as an example, Zhang
H et al. [26] present a large scale offline handwritten Chinese character database
HCL2000 to facilitate handwritten Chinese recognition research. Liu et al. [16]
release the CASIA handwritten dataset divided into online handwritten database
and offline handwritten database, which covers a maximum of 7,185 Chinese
characters.

Many of these datasets are hard to obtain a good generation model in hand-
written style recognition, which are mainly for the following reasons: 1) some
samples in dataset are not accurate, including of erroneous samples or labels
caused by data collection and storage. 2) Lacking of in writers’ information,
make it difficult to be applied in handwritten style recognition. Besides, the
annotation information of dataset is incomplete and cannot meet the command
of various studies, such as the information of character structures. 3) Storage for-
mat of dataset is not universal and cannot be adapted to current deep learning
algorithm framework, such as Tensorflow. Therefore, a method of reconstruction
and supplementary of annotations should be submitted to make these datasets
more complete and universal to promote the development of handwritten style
recognition.



140 P. Hu et al.

Fig. 1. The system model of HCL2000. The character samples are organized by dif-
ferent writers and stored in PID (Personal Identification) files in Chinese Character
Samples’ Database. Writers’ information includes the gender, age, occupation, educa-
tion, tools of writing in Writers’ Information Database.

In order to solve the shortcomings of models and datasets mentioned above,
we re-proposed HCL2020, a new large scale offline handwritten Chinese character
dataset with the annotations of character information, writer information, and
morpheme information, and utilize a fusion deep network integrating morpheme
information to recognize handwritten style. It is useful of the network to focus
more on the glyph structure that is easy to carry style information. Experiments
on three backbones show that the addition of morpheme information does help
identify one’s handwritten style.

The contributions of our work can be summarized as follows:

1) we update HCL2000 into a more complete large-scale offline handwritten
Chinese character dataset named HCL2020, with annotations of character
information, writer information, and morpheme information.

2) We design a deep fusion network named M-HSRnet utilizing the charac-
ter image information and morpheme information for handwritten style
recognition.

3) We demonstrate the impact of the addition of morpheme information via
extensive experiments using different backbones.

2 HCL2020

2.1 Introduction of HCL2000

HCL2000 database contains 3,755 frequently used simplified Chinese characters
written by 1,000 different writers. Besides the well-preserved sample informa-
tion stored in handwritten Chinese character samples’ sub-database, they also
established writers’ information sub-database, which contains age, gender, occu-
pation, education and tools of writing information of writers. It uses a system
model to control the information that contains not only the Chinese character
image, but also the information about writers as shown in Fig. 1. In order to
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Fig. 2. Some erroneous character samples with writers’ index information and charater
index information. No erroneous data taking writer (Index:000) as an example; Having
some erroneous data taking writer (Index:303,547) as an example.

take advantage of two sub-databases conveniently, the system model builds two
management systems. Users can view all Chinese character samples of a writer.
Chinese character samples are organized by different writers and stored in PID
(Personal Identification) files. The samples written by the same writer are stored
by the sort of section code. Each Chinese character sample is presented as 64 ×
64 binary pixels.

Although HCL2000 has been the basic dataset for handwritten Chinese char-
acter recognition research for nearly 20 years, it has limited its application in
deep learning research due to its organizational form and specific storage format.
Therefore, we propose a new reconstruction method for HCL2000 database to
solve the above problems.

2.2 Reconstruction of HCL2020

In order to make HCL2000 more convenient to employ, we extract the writer’s file
name as the writer’s index through HCL2000 writer information sub-database.
We exclude some erroneous character samples, which writer indices are “303,
306, 307, 308, 314, 316, 317, 318, 319, 443, 547”, for a total of 4,984 character
samples. Some erroneous character samples with writer index information and
character index information are shown in Fig. 2. Finally, we obtain a fresh sample
dataset written by 1,000 writers, for a total of 3,750,016 samples.

We convert HCL2000 to a more generic data storage format-.npz file format,
which can be more convenient used by deep learning algorithms and framework.
On the premise of saving storage space and not affecting visual recognition,
each character sample is described as 28 × 28 pixel gray-scale image by down-
sampling. We compared the effects of different interpolation methods in down-
sampling processing of image scaling and finally choose Nearest Interpolation
Method [17] for image scaling and obtain the final character dataset.

2.3 Annotations of HCL2020

We obtain handwritten Chinese character samples with character category label
and writer number label after the reconstruction of HCL2000. However, there is
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still a doubt whether those information is sufficient to describe Chinese charac-
ter because we have not achieved satisfactory generalization results in handwrit-
ten style recognition. Therefore, we explore the factors that influence the style
recognition of the writer, which contains the information of Chinese character
structure [4], the morpheme and strokes. We add above information as attribute
labels to the HCL2020.

Fig. 3. The criterion of splitting Chinese characters into morphemes based on different
character structures and some examples. The first split criterion contains: (1) No split
based on single-component characters in the form of ‘A’. (2) Split into ‘A+B’ based
on multiple-component characters in the form of ‘A, B’. (3) Split into ‘A+B+C’ based
on single-component characters in the form of ‘A, B, C’. If morphemes after the first
split are still more complicated, a second split will be performed which split criterion
is same as first split criterion, taking the Chinese character as an example. Finally,
each morpheme is represented by a morpheme category index.

It is generally considered that there are four levels [6] for Chinese font from
whole to the part, namely the Chinese characters, morphemes, strokes, and
stroke shapes. Strokes are the most basic element in Chinese characters, which
can form morphemes. Complex strokes can be further split into stroke shapes.
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Table 1. The difference between HCL2000 dataset and HCL2020 dataset. Compared
with HCL2000, HCL2020 has more annotations about character structure information.

HCL2000 dataset HCL2020 dataset

Published year 2000 2020

Amount 3,755,000 3,750,016

Size 28 × 28 64 × 64

Description Binary pixels Gray-scale pixels

Annotations Character categories information;

Writer information;

Character categories information;

Writer information;

Character structures information;

Morphemes information;

Stroke sequence information;

The split from Chinese characters to morphemes is based on different Chinese
character structures, which can be subdivided into 14 structures. Among the
3,755 types of Chinese characters, the left-right structures have the most types
of Chinese characters. Chinese characters can be disassembled into the form of
‘A+B’ or ‘A+B+C’ and can be split to morphemes based on the structural
type of Chinese characters, as shown in Fig. 3. If morphemes after the first split
are still more complicated, a second split will be performed. We add the mor-
phemes as attribute labels to handwritten Chinese character samples in HCL2020
dataset.

According to statistics, there are 780 types of morphemes in 3,755 types of
Chinese characters. We store morpheme information in an array with size of
(3755,780). Each row represents the morpheme information contained in a Chi-
nese character. If a morpheme exists in this character, the corresponding index
will be set as 1, and the non-appearing morpheme will be set as 0. Thus people
can easily get morpheme information according to corresponding character index
and use it on other handwritten style recognition datasets.

Building on the above reconstruction and annotations, we re-propose a new
large scale offline handwritten Chinese character dataset, named HCL2020. The
difference between HCL2000 database and HCL2020 dataset is shown in Table 1.
We randomly select 545 handwritten Chinese character samples written by every
writer to form HCL2020 test dataset, which contains 545,000 Chinese char-
acter samples. The remaining character samples make up the HCL2020 train
dataset, which contains 3,205,016 Chinese character samples. The ratio of the
train dataset to the test dataset is about 6:1.

3 Proposed Network

With the idea of using a deep neural network to solve the multi-model image
fusion problems [8,9,15], we propose a method to fuse the morpheme informa-
tion and character image to prove the validity of the morpheme information
and design a deep network (Morpheme-based Handwritten Style Recognition
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Fig. 4. A brief framework of M-HSRNet. First, we can obtain Chinese character image
data, the writer category index and the morpheme information for each Chinese char-
acter. Then, we can get an embedding vector to present morpheme information in
Morpheme Preprocessor and get an array to present character image in Image Prepro-
cessor. We can extract feature through Morpheme Encoder and Character Encoder by
using 3-layer ConvNet and 20-layer ResNet as backbones. Later we concatenate two
tensors obtained by encoders and send it to Classifier to recognition and predict the
handwritten style. When the M-HSRNet is testing data, it is needed to recognize the
category of Chinese characters used in extracting morpheme information.

Network, M-HSRNet) to classify handwritten style. A brief framework of
M-HSRNet is shown in Fig. 4.

Our model consists of two branches, Character Encoder and Morpheme
Encoder. Character Encoder encodes style information contained in a charac-
ter image, while the Morpheme Encoder extracts the morpheme information of
the corresponding words in the image, thereby reminding the network to place
emphasis on these structures that are usually carrying style information. Then
features extracted by the two branches are concatenated together and passed
to the next classification layer. Experiments demonstrate that the network with
the addition of the morpheme encoder branch can improve the accuracy points
on HCL2020 dataset than without morpheme information. Character Encoder
and Morpheme Encoder are introduced as following. More details information
about M-HSRnet settings when the network is training or testing is available in
Chaprter 4.

Character Encoder. The backbone of Character Encoder employed in our
work is a 20-layer ResNet. It has shown remarkable power on image classification
tasks in recent years. Features extracted from deeper networks have a tendency
to achieve higher performance than that is extracted from shallow networks.
However, with the network deepening, gradients may be vanished or explode,
and the accuracy may be saturated and then degrade rapidly. Thanks to its
exciting property of ‘shortcut connection’ which maps an identity mapping to
push the residual to zero, the network with stacked layers can be trained without
considering the above problems. The input of Character Encoder is a three
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dimensional matrix of a character image with dimension X ∈ Rdh×dh×dw , dh =
dw = 28, dk = 1.

We perform a linear projection by the shortcut connection in 20-layer ResNet
as a backbone to match the dimensions. The residual block is defined as:

y = F (x, {wi}) + x. (1)

Morpheme Encoder. Morpheme is the smallest and unique structure of the
Chinese character. A Chinese character can consist of one or more morphemes.
In previous handwritten style recognition experiments, we find that the charac-
ters with the highest recognition rate have high commonality in the morpheme.
Therefore, we design the morpheme encoder and add the morpheme information
to style recognition model. We sort out all the morphemes in 3,755 Chinese char-
acters, a total of 780. Each morpheme has its category index between 0 and 779.
The input of this morpheme encoder is a one-hot vector which contains all mor-
pheme in current character with dimension M ∈ Rdmor×dk , dmor = 780, dk = 1.
In this vector, the index position corresponding to all the morpheme information
contained in the current character is marked as 1 and the rest as 0. Structure
of morpheme encoder is a ConvNet stacked by three convolution layers plus a
full-connected layer. Each convolution layer is accompanied by a Batch Normal-
ization layer.

HX is the character embedding feature vector obtained by X through
Charater Encoder fCE , and HM is the morpheme embedding feature vector
obtained by M through Morpheme Encoder fME .

HX = fCE (X, θce) (2)

HM = fME (M, θme) (3)

We concatenate HX and HM as the final feature representation. The probability
of the category of handwritten style is defined pt as following.

p(y|x,m) = Softmax(Wi[HX ,HM ] + b) (4)

We use cross-entropy loss as the optimization goal to evaluate our network. y is
corresponding ground-truth.

Loss = −
∑

t

yt × log(pt), t ∈ [0, 100) (5)

4 Experiment

4.1 Hanwritten Style Recognition on HCL2020 Dataset

Morpheme Preprocessor. The role of the Morpheme Preprocessor is to
embed morpheme index information into a vector which can be easily processed
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Table 2. Handwritten Style Recognition results evaluating on HCL2020 dataset using
different backbones. The train and test set sizes are 3,210 and 545 per class, for total
100 classes.

Deep leaning algorithms Parameters Top-1 .err%

ZFNet [25] 30.53 M 39.07

ZFNet [25]+ Morpheme 32.80 M 35.71

VGGNet-16 [20] 34.02 M 34.12

VGGNet-16 [20]+ Morpheme 36.29 M 27.62

ResNet-20 [10] 26.32 M 25.69

ResNet-20 [10]+ Morpheme 30.13 M 21.94

Table 3. Handwritten Chinese character recognition results evaluating on HCL2020
dataset. The train and test set sizes are 3,205,016 and 545,000.

Deep leaning algorithms Parameter Top-1 .err%

ConvNet-3 [19] 39.08 M 8.99

AlexNet [13] 44.80 M 4.64

ZFNet [25] 44.80 M 3.88

VGGNet-16 [20] 347.31 M 2.43

VGGNet-19 [20] 352.61 M 2.34

ResNet-50 [10] 114.93 M 2.31

by the Morpheme encoder. Every Chinese character contains at least one mor-
pheme. According to our statistics, 3,755 characters contain a total of 780 mor-
phemes. We labeled these morphemes from 0 to 779. So we set the dimension
of the morpheme information of corresponding character as WM

i ∈ Rdmor×dk

dimensional embedding. In this morpheme embedding, if a morpheme exists in
the character, the corresponding index will be set as 1, and the non-appearing
morpheme will be set as 0. Finally we smooth this sparse embedding and then
feed it into Morpheme encoder.

OCR Preprocessor. Recognizing handwritten Chinese characters plays an
important role because the Chinese character category can link character with
its corresponding morpheme information. When M-HSRNet is testing, it needs
to recognize the category of Chinese characters used in extracting morpheme
information in the morpheme category index set while it can be obtained cor-
rectly as label information when training. Also, we evaluate HCL2020 dataset
using deep learning algorithms [10,13,19–21,25] in handwritten Chinese charac-
ter recognition task and use 50-layer ResNet algorithm as a backbone of OCR
Preprocessor with data augmentation which achieves the accuracy of 97.69%.
All of evaluation results of deep learning algorithms are shown in Table 3.
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Evaluation Results. Because there is just one sample for each character of
each writer in HCL2020. To ensure the quality of the training set for the hand-
written style recognition experiment, we need to select those writers who have
obvious personal handwritten style and consistent style between different sam-
ples. We finally select 100 writers. We randomly select 545 samples from each
writer’s 3,755 samples to form the test set, which contains 54,500 samples. The
remaining 321,000 samples are used as the train set. The ratio of the train set
to the test set was 6:1. We use different backbones in different experimental
group to verify the effectiveness of morpheme. Evaluation results are shown in
Table 2. We consider for three different backbones: ZFNet [25], VGGNet-16 [20],
ResNet-20 [10]. By comparing the performance between vanilla model and our
fusion model with morpheme information using various backbones, we hope these
results will provide a sense of the relative effectiveness of our morpheme label
(Fig. 5).

Fig. 5. There are some samples of one writer (Index:007). The left part are the samples
which M-HSRNet recognizes correctly, and the right part are the samples can not be
recognize.

Furthermore, Chinese character style recognition in real scenes is usually
based on multiple Chinese characters. In order to explore the influence of increas-
ing number of Chinese characters as input data, we improve above handwritten
style recognition models, of which network allows multiple Chinese characters
of same author as input once time. We keep model structure unchanged. As we
described above, we utilize a Character Encoder with ResNet-20 as backbone
plus a Morpheme Encoder, and then concatenate the hidden layer representa-
tions of each input character to get the final style representation of this author.
The number of input character increases from 1 to 5. Experiment results are
shown in Fig. 6. Red line shows the results of our model with morpheme informa-
tion when input size of character size increased. We also make contrast between
our model and the ResNet-20 backbone. The blue one represents ResNet-20
backbone’s performance. Among all sizes, our model performs slightly better
than backbone. On the other hand, with the increase of input character size,
the accuracy of validation set of the two models both get boosts. When input
character size reaches 5, our model can get the accuracy of 95.05%.
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Fig. 6. Model performances on different input character sizes, building on ResNet-20
backbone. The red line shows the results of our model when input size of character size
increases, while the blue one represents performance of ResNet-20 without morpheme
information. (Color figure online)

5 Conclusions

Based on the study of handwritten identification method presented by profes-
sional experts in real scenes, we add morpheme information and update HCL2000
into a more complete large-scale handwritten Chinese character dataset, named
HCL2020. We propose M-HSRnet, a deep fusion network, which consists of two
network branches to extract morpheme and character image features. We achieve
the accuracy of 78.06% in handwritten style recognition task on HCL2020, which
is higher than the result of methods without morpheme information. The results
show the effectiveness of morpheme information in handwritten style recognition.

For future work, we will explore more deep learning network with morpheme
information. Also, we will develop more Chinese character structure features to
assist handwritten style recognition task. Besides, we hope handwritten char-
acter datasets can be used not only for character recognition and handwritten
style recognition, but also for more creative work, such as handwritten style
generation, transfer learning, cross-domain retrieval and so on.
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Abstract. Eyes are the most prominent visual components on human
face. Obtaining the corresponding face only by the visual hints of eyes
is a long time expectation of people. However, since eyes only occupy a
small part of the whole face, and they do not contain evident identity
recognition features, this is an underdetermined task and hardly to be
finished. To cope with the lack of query information, we enroll extra face
description properties as a complementary information source, and pro-
pose a multimodal image retrieval method based on eyes hints and facial
description properties. Furthermore, besides straightforward correspond-
ing facial image retrieval, description properties also provide the capacity
of customized retrieval, i.e., through altering description properties, we
could obtain various faces with the same given eyes. Our approach is con-
structed based on deep neural network framework, and here we propose a
novel image and property fusion mechanism named Product of Addition
and Concatenation (PAC). Here the eyes image and description proper-
ties features, respectively acquired by CNN and LSTM, are fused by a
carefully designed combination of addition, concatenation, and element-
wise product. Through this fusion strategy, both information of distinct
categories can be projected into a unified face feature space, and con-
tribute to effective image retrieval. Our method has been experimented
and validated on the publicly available CelebA face dataset.

Keywords: Image retrieval · Multimodal information fusion · Eyes
hints · Deep neural network · Customized face query

1 Introduction

Image is a very convenient tool to store and demonstrate visual information.
Hence, how to query and obtain wanted images from giant image datasets is
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an attractive research topic both academically and industrially [2,19,20]. But
since the image belongs to a kind of unstructured information, image retrieval is
never an easily conducted task. Furthermore, in the past few decades, accompa-
nied by the rapid development of image capturing and collecting techniques, the
number of available images is booming astonishingly. Hence how to effectively
acquire wanted images from tremendous candidates is attracting more and more
attentions.

Eyes are the most important facial visual features, and image retrieval based
on eyes is a long history interesting research topic. It has wide practical value
and application significance in the fields of public safety, blind date matching,
beauty retouching, and so forth. However, due to their quite limited region area,
the unique identity information that could be conveyed by eyes hints is seriously
restricted, and hence, by this information source alone, accurate image retrieval
is hardly achievable. In order to deal with this problem, in this paper, we designed
a multimodal image retrieval method based on eyes hints combined with facial
description properties. In our approach, both image and text information are
unified as the query source, hence more effective identity information can be
utilized to guide the searching procedure. On the other hand, the introduction
of description properties can not only directly improve the accuracy of image
retrieval, but also introduce more personality and customization. The users can
perform customized retrieval by alternating the text facial descriptions, as shown
in Fig. 1. Here it can be observed that the image query procedure is customized
by the yellow and green background facial description properties respectively.

Fig. 1. A demonstration of the image retrieval based on both eyes hints and facial
description properties. Here, both images of the rightmost column are the retrieval
output, where the top one is based on the far left eyes image and the yellow and blue
background facial description properties, while the bottom one is on the same eyes
image and the blue and green background properties. (Color figure online)
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In recent years, there have been some research findings involving the com-
bination of vision and text information [11]. But most of them focus on visual
question answering [4,9], cross-modal retrieval and image captioning [7,27]. The
works that are directly related with the multimodal image retrieval specifically
discussed in this paper are relatively rare.

In order to solve the mentioned problem, we propose a novel image and
property information fusion mechanism. After obtaining the high-level semantic
features of the eye images and the description properties respectively through
the encoders, we do element wise addition and concatenation between differ-
ent types of features, then product the results to achieve effective multimodal
information fusion. This proposed method is named the Product of Addition
and Concatenation (or PAC for short). We will give the detailed introduction in
Sect. 3. The approach is experimented on the public available CelebA dataset,
and satisfactory performance is achieved.

To summarize, the main contribution of this paper is threefold:

(1) We propose a multimodal image retrieval method based on eyes hints and
facial description properties.

(2) A novel cross-modal feature fusion mechanism is introduced which could
effective combine both vision and text information.

(3) The multimodal information fusion capacity of deep neural network is ben-
eficially explored.

The rest parts of the paper are organized as follows: Sect. 2 reviews related
work; The proposed PAC based image retrieval method will be presented in
Sect. 3; Validation experiments are shown in Sect. 4; Sect. 5 concludes the paper.

2 Related Work

Vision Question Answering (VQA). VQA is a typical application that com-
bines both image and text information. Its goal is to automatically generate the
natural language answers according to the image and natural language question
input. There are generally two ways to combine features in VQA, one of which is
the direct combinations, such as, concatenation, element wise multiplication, and
element wise addition [14]. Zhou et al. [28] introduce to use the bag-of-words to
express the questions, the GoogleNet to extract visual features, and then direct
connect the two features. Agrawal et al. [1] worked out to input the product of
two feature vectors into a multi-layer perceptron of two hidden layers. Another
way to combine features is using bilinear pooling or related schemes in a neural
network framework [14]. Fukui et al. [8] proposed to the Multimodal Compact
Bilinear (MCB) pooling to combine image features and text features. Due to the
high computational cost of MCB, a multimodal low-rank bilinear pooling strat-
egy (MLB) is worked out, where the Hadamard product and linear mapping are
used to achieve approximate bilinear pooling [15].
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Cross-Modal Retrieval. Cross-modal retrieval uses a certain modal sample to
search for other modal samples with similar semantics. The traditional method
generally obtains the mapping matrix from the paired symbiotic information of
different modal sample pairs, and maps the features of different modalities into
a common semantic vector space. Li et al. [17] introduced a cross-modal factor
analysis method. Rasiwasia et al. [13,21] designed to apply the canonical cor-
relation analysis (CCA) to the cross-modal retrieval between text and images.
In recent years, many researches use deep learning to extract the effective rep-
resentations of different modalities at the bottom layer, and establish semantic
associations of different modalities at the top layer [6,16]. Wei et al. [26] worked
out an end-to-end deep canonical correlation analysis method to retrieve text
and images. Gu et al. [10] enrolled the Generative Adversarial Networks and
Reinforcement Learning for cross-modal retrieval. In their work, the generation
process is integrated into the cross-modal feature embedding. Here, not only
the global features can be learned but also the local features. Wang et al. [24]
believed that the previous methods rarely consider the interrelationship between
image and text information during calculating the similarity, so they proposed
the Cross-modal Adaptive Message Passing (CAMP) method.

Metric Learning. The goal of metric learning is to maximize the inter-class
variations while minimize the intra-class variations, and it is quite common in
pattern recognition applications. In neural network based approaches, LeCun
et al. [12] designed the contrastive loss to increase inter-class variations. Schroff
et al. [22] proposed the triplet loss. Then a large number of subsequent metric
learning methods are worked out based on the triplet loss, such as the quadruplet
loss [5].

3 Method

As mentioned in the introduction section, our goal is to achieve multimodal
image retrieval based on both eyes hints and facial description properties. Here,
how to effectively combine the query information coming from distinct categories
is the most critical problem. Since both vision and text information are complex
and comprehensive, we designed a neural network based information fusing and
processing strategy. The main training pipeline is demonstrated in Fig. 2.

Specifically, first, the query eyes image x is encoded by a Light CNN [25].
Light CNN is a light-weight, noise-removable network proposed for face recog-
nition. Here the query eyes image is transformed into 2D spatial feature vector
fimg(x ) = φx ∈ R

W×H×C , where W is the width, H is the height, and C = 512
is the number of feature channels. Note that we modify the size of the last fully
connected layer of Light CNN from 256 to 512 to make the number of channels
of image and text features the same. Second, we encode the facial description
properties t with LSTM [28]. We define ftext(t) = φt ∈ R

L×S×d to be the hidden
state at the final time step, where L is the sequence length, S is the batch size,
and d = 512 is the hidden layer size. Finally, both φx and φt are combined into
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Fig. 2. The training pipeline of our multimodal image retrieval method based on eyes
hints and facial description properties.

φxt = fcombine(φx , φt ) with the proposed PAC method, which will be introduced
in Sect. 3.1 in details.

On the other hand, during image retrieval, we calculate the similarity of the
fused feature and that of candidate images by cosine distance, and then sort to
get the face images that best meets the query conditions.

3.1 Feature Fusion by PAC

In order to effectively achieve multimodal information fusion, we explored a com-
prehensive combination strategy. Since the element wise addition and catenation
are the most common direct way of fusion, our first glance is to contain both
operation continuously. But because the dimensions of both information may
be different, a co-dimensionalization approach is worked out. In detail, a con-
volution operation is enrolled to adjust the latitude of the concatenated feature
matrix. At the same time, the sigmoid function is introduced to avoid taking
too large a value. After the co-dimensionalization, the two types of combination
methods are fused again by bitwise multiplication to obtain the final fusion fea-
ture. The whole mentioned processing is named the Product of Addition and
Concatenation. Specifically,

φxt = fadd(φx , φt ) � fconcat(φx , φt ), (1)
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where � is element wise product, φx denotes image feature, φt is text feature,
φxt is the fused feature.

fadd(φx , φt ) = Wimgφx + Wtextφt , (2)

where Wimg, Wtext are learnable weights to balance both components.

fconcat(φx , φt ) = σ(Wg ◦ [φx , φt ]), (3)

where [φx , φt ] is matrix concatenate, and σ denotes the sigmoid function. We
define Wg◦ to be a series of convolution operations: first, the concatenated matrix
is normalized in batches, then goes through the ReLU activation function, and
finally its the number of channels is reduced from 1024 to 512 through the fully
connected layer.

3.2 Loss Function

Clearly, the goal of our training is to make the fused features of faces in the same
identity and state closer, while pulling apart the features of distinct images. For
this task, we employ a triplet loss, which contains anchors, positive samples,
and negative samples. When selecting the triples, we choose negative samples
that are the same identity but different states as the anchor in order to enable
that the network can distinguish the differences in face states. We define this
triple as Tstate(f(xa

i ), f(xp
i ), f(xn

i )), where xa
i is anchor, xp

i is positive sample,
and xn

i is negative sample. f(x) is embedding constrained to live on the d-
dimensional hypersphere [22], where d = 512, i.e. ‖f(x)‖2 = 1. Similarly, we
define Tidentity(f(xa

j ), f(xp
j ), f(xn

j )) to denote a triple whose negative sample
and anchor have different identities but similar status. We then use the following
triplet loss:

L =
Nstate∑

i

[
‖f(xa

i ) − f(xp
i )‖22 − ‖f(xa

i ) − f(xn
i )‖22 + α

]

+

+
Nidentity∑

j

[∥∥f(xa
j ) − f(xp

j )
∥∥2

2
− ∥∥f(xa

j ) − f(xn
j )

∥∥2

2
+ α

]

+
,

(4)

where α is a margin that is enforced between positive and negative pairs. Nstate

is the number of Tstate, and Nidentity is the number of Tidentity. We believe that
splitting loss into two parts, status and identity, is beneficial for the network to
combine two types of data.

4 Experiments

In this section, the proposed multimodal image retrieval approach based on eyes
hints and facial description properties will be experimented both quantitatively
and qualitatively.
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4.1 Experiment Configurations

Datasets. The experiments are conducted on a widely used face attribute
dataset CelebA [18], which contains 202,599 images of 10,177 celebrity iden-
tities, and each of its image contains 40 attribute tags. Our experiments utilize
35 of them which do not related with eyes. As shown in Fig. 1, the query eyes
images are in a single rectangle shape. We adopt the same subset division intro-
duced in [18], where 40,000 images constitute the testing set, while all the left
images form the training set.

Implementation Details. The experiments are realized by PyTorch code. The
training is run for 210k iterations with a start learning rate 0.01.

Evaluation Metrics. As to the performance evaluation, we use the most com-
monly used evaluation metric R@K, which is the abbreviation for Recall at K and
is defined as the proportion of correct matchings in top-k retrieved results [24].
Specifically, we adopt the R@1, R@5, R@10, R@50 and R@100 as our evaluation
metrics.

4.2 Quantitative Results

In order to objectively evaluate the method performance, several classical infor-
mation fusion approaches are enrolled as comparison. The MLB is a very classic
multimodal fusion method in the field of VQA, which is based on the Hadamard
product [15]. The MUTAN is a fusion method based on tensor decomposition
applied in the field of VQA [3]. The TIRG method converts multimodal features
into two parts called gating and the residual features, where the gating con-
nection uses the input image features as the reference for the output composite
features, and the residual connection represents the modifications in the feature
space [23].

Table 1. Image retrieval performance on the CelebA dataset.

Methods R@1 R@5 R@10 R@50 R@100

Image only (light CNN) [25] 3.3 7.6 10.5 20.0 25.7

Text only (LSTM) [28] 1.9 5.6 9.0 24.3 34.8

MLB [15] 3.1 9.1 14.3 32.2 44.7

MUTAN [3] 3.0 9.5 13.2 31.0 42.4

TIRG [23] 3.5 10.4 15.4 33.4 45.3

PAC (ours) 4.1 11.4 16.3 34.4 45.8
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In order to fairly compare their performance with that of ours, during exper-
iments, only the feature fusion part is distinct, while all other components are
exactly the same as that of ours.

Table 1 presents the detailed performance. It can be observed that our
method is evidently better than other methods on each evaluation indicator.
Here, one thing to be mentioned is that, since facial description is not a kind of
unique identity information, while the ground truth image used as the evaluation
benchmark is unique, the overall performance may not be quite impressive. But
this is caused by the nature of this task, rather than the method adopted.

Fig. 3. A few image retrieval outputs on the CelebA dataset. In the green dotted frame
of the first column, the eyes image and the description are the query condition. The
next five columns are the top five search results obtained by our method, where the
ground truth image is surrounded by a solid green border. (Color figure online)
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4.3 Qualitative Results

A few of retrieved images are shown in Fig. 3. It can be observed that gener-
ally the top five worked out candidates all conform to the query eyes and facial
properties. Let’s take the first row as an example. It can be easily found that
all the five images are “Attractive, Big Nose, Black Hair, Heavy Makeup, High
Cheekbones, Mouth Slightly Open, No Beard, Receding Hairline, Smiling, Wear-
ing Earrings, Wearing Lipstick, Wearing Necklace, Young”, while their eyes are
similar with the query eyes to some extent.

Fig. 4. A few of “unsuccessful” retrieval output on the CelebA dataset. In the green
dotted frame of the first column, the eyes image and the description are the query
condition. The next five columns are the top five search results obtained according to
our method. The images surrounded by solid green border in the rightmost column are
the corresponding ground truth images. (Color figure online)

Figure 4 shows some “unsuccessful” retrievals, which means the ground truth
image is not in the top five worked out images. It can be observed that, even
in those “unsuccessful” retrievals, the obtained images are still compatible with
the query eyes and description properties.

On the other hand, Fig. 5 shows some retrieval output according to the same
eyes but distinct description properties. It can be seen that the text query con-
dition can directly influence the retrieval output. Hence, it can be claimed that
customized image retrieval is achievable by our method.
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Fig. 5. Image retrieval outputs with the same eye but distinct description properties
as the input. The image of the eyes in the dotted frame in the first column is the query
image, and the description is the query text. Note that attribute words marked in red
are unique. The next five columns are the top five search results obtained according
to our method. The images surrounded by solid green border in the rightmost column
are the corresponding ground truth images. (Color figure online)

In addition, we calculated the R@1 of each description properties as well,
see Fig. 6. Among them, the average is 0.6874. It can be seen that “Male”,
“No Beard”, “Mouth Slightly Open” have the highest recall rate in our model,
while “Wearing Necktie”, “Blurry”, “Bald” have relatively lower recall rate. This
phenomenon is identical with our intuition because those latter properties are
relatively rare in the candidate dataset.
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Fig. 6. The accuracy of identifying each properties.

5 Conclusion

In this paper, we propose to use the description properties as supplementary
information for eye images in image retrieval tasks. And a novel multimodal
information fusion method is worked out for the mission. The effectiveness of the
proposed method is verified on a public available dataset, the CelebA. Generally
the performance is identical with our expectation. In addition, personalized and
customized image retrieval is achievable by the proposed approach. In the near
future, we would like to try to extend this method to more general image retrieval
problems.
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Abstract. Discriminant projection is a key technique for dimensional-
ity reduction, especially in many classification tasks of high-dimensional,
small-sample datasets. In this paper, we propose a Depth-Adaptive Dis-
criminant Projection (DADP) method to improve the discriminability of
the projection subspace. First, we propose a novel single-layer discrim-
inant projection by adjusting projected points with nonlinear transfor-
mation. Second, the single-layer structure is extended to multiple-layer
ones according to the proposed Adaptive Depth Determination Criterion
(ADDC), naturally constructing a deep projection model with adaptive
depth, which makes DADP allow for the avoidance of over-fitting prob-
lem for small-scale datasets. Furthermore, the regularized optimal trans-
port (OT) is introduced to learn the optimal weights for pairwise data,
which balances the local and global information incorporated in scatter
estimation. Experimental results on several high-dimensional, small-scale
datasets show the effectiveness of our algorithm both in terms of visual-
ization and classification prediction.

Keywords: Dimensionlity reduction · Optimal transport · Adaptive
depth

1 Introduction

Dimensionality reduction (DR) as a crucial technique for analyzing real-world
data, aims at learning a more meaningful and compact low-dimensional rep-
resentation of high-dimensional data. One major family of DR is discriminant
projection, the goal of which is to learn a subspace that preserves class separabil-
ity for the tasks such as clustering and classification. When label information is
available, various supervised discriminant projection techniques [3,4,7,10] have
been explored to learn a low-dimensional subspace which both preserve intrinsic
structure and discriminative information of input data. The main characteristic
of discriminant subspace is that samples from different classes are as separate
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as possible while samples from the same class are close to each other. Linear
Discriminant Analysis (LDA), a classic linear dimensionality reduction method,
seeks to find such projection subspace by maximizing the ratio of inter-class and
intra-class scatter. However, like most linear models, LDA is hard to uncover
the structure of nonlinear data that are very universal in realistic applications.
Thus, a large number of nonlinear variants have been developed for addressing
this problem.

With the assumption that real-world data could be linearly separable in some
space with much higher dimensionality, kernel based techniques, such as Kernel
Fisher Discriminant Analysis (KFDA) [5,9] implicitly project observed data into
a high-dimensional feature space via a nonlinear mapping determined by kernel
function. However, choosing an appropriate kernel for a specific dataset is chal-
lenging due to the lack of prior knowledge, which limits the application of kernel
based techniques. In contrast, deep architecture based methods directly learn an
explicit nonlinear mapping via deep neural network instead of manually select-
ing a kernel function. GerDA [6] attempts to learn a linearly separable latent
representation by fine-tuning a pre-trained restricted Boltzmann machines on a
linearly discriminant criterion. For simplicity, DeepLDA [2,8] directly replaces
cross entropy loss with Fisher discriminant loss and optimizes several smallest
eigenvalues for increasing discriminative variance in all projection directions.
However, an optimal nonlinear subspace cannot be learned by the network with
an inappropriate architecture. Apart from that, except for the last layer cor-
responding to a linearly separable subspace, each of the former layers lacks
interpretability from the perspective of discriminability. Other problems like the
need of large samples to avoid over-fitting and the extreme sensitivity to hyper-
parameter setting, also severely limit the application of such kinds of methods
in real-world problems [11].

Motivated by the limitations of existing methods, we propose a general dis-
criminant subspace learning algorithm called Depth-adaptive Discriminant Pro-
jection (DADP), which shares a similar architecture of DNN. Compared with
previous works based on DNN, DADP endows the discriminability to each single-
layer nonlinear mapping. Moreover, to enhance the discriminative capacity layer-
by-layer, the Adaptive Depth Determination Criterion (ADDC) is proposed to
determine the depth of our deep architecture. The key idea is to seek a projection
space which has a better discriminative performance than that of previous layer.
The layer-by-layer projection process would not terminate until there is no more
a subspace with better separability. Therefore, the proposed DADP method can
adaptively determine the depth for a given dataset.

The main contributions of this paper are summarized in the following three
points,

1) Adaptive depth: With the help of ADDC, DADP can adaptively determine
the depth for a given real-world datasets. Meanwhile, DADP can avoid the
problem of over-fitting for small sample size cases.

2) Optimal projection matrix: DADP selects optimal weighting plans for con-
structing the inter-class and intra-class scatter matrix respectively via
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smoothed optimal transport. Our approach adaptively balances the local
and global data correlation incorporated in scatter estimation, which further
improves the discriminability of subspace for given datasets.

3) Unrestricted projection dimension: In contrast to LDA, projection dimension
of DADP is not bounded by the number of classes. Each layer mapping can
freely project data into any lower-dimensional subspace.

2 Preliminary

2.1 Notations

Let 〈A,B〉 := tr
(
ATB

)
denote the Frobenius dot-product of two matrix. Besides,

we denote the simplex as
∑

d :=
{
x ∈ R

d
+ : xT1d = 1

}
, where 1d is the d dimen-

sional vector of ones. For two probability vector r and c in the simplex
∑

d, we
write U(r, c) be the transport polytope of r and c, namely the polyhedral set of
d × d matrices, which satisfies U (r, c) :=

{
T ∈ Rd×d

+

∣
∣T1d = r,TT1d = c

}
.

2.2 Regularized Optimal Transport

Choosing a suitable metric to compare probability distributions is crucial to
many machine learning tasks. Among traditional divergences, the distance
defined by optimal transport is capable of capturing geometrical information
when the probability space is a metric space. The distance, known as Wasser-
stein distance or Earth Mover’s distance, is solved by linear programming with
complexity at least in O

(
d3log (d)

)
. To facilitate the applicability of OT in large-

scale data, an entropic regularization is introduced to obtain a smoothed version
of OT. More importantly, regularized OT can be solved with Sinkhorn’s matrix
scaling algorithm, which can be computed several orders of magnitude faster [1].

Definition 2. (Regularized Optimal Transport) Given a d × d cost matrix M,
the cost of mapping r to c using a transport matrix (or a joint probability) T can
be quantified as 〈T,M〉, the regularized optimal transport is defined as,

dλ
M (r, c) :=

〈
Tλ,M

〉
(1)

Tλ = arg min
T∈U(r,c)

〈T,M〉 − 1
λ

H (T ) (2)

where H (T ) = −∑d
i=1

∑d
j=1 Tij log Tij is the entropy of P, and λ > 0 is entropic

regularization coefficient.’

It is noteworthy that the optimal transport T ∗ is a sparse d × d matrix
with at most 2d − 1 non-zero elements [1]. In our work, sparsity of T means
those sample points merely correlate with their nearest neighbors and global
information of projected data has not been sufficiently considered. Hence, smooth
regularizers (entropic regularization e.g.) are necessary to take both local and
global interactions into account.
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3 The Proposed Method

3.1 Problem Statements

In many real-world applications, the volume of available data is ordinarily limited
while the dimensionality is very high. Hence, we consider the problem of learning
a discriminative subspace for small-scale high-dimensional data. Given a dataset
x1, x2, x3, · · · xm = X ∈ R

d×m, which contains m samples from C different classes
c = {1, 2, · · · C}. We define set ζ = {(c1, c2) |c1 �= c2 }, denoting the set of all
pairs of different categories. The goal is to find a target projected subspace
which preserves class discriminability.

3.2 Single-Layer Discriminant Projection

1) Characterize the inter-class Scatter. Given that the optimal linear projection
matrix is W ∈ Rd×l, l ≤ d. Regarding the determination of an optimal projec-
tion dimensionality l, we will have a detail discussionality in later section. The
distance between pairs of data from different classes is

∥
∥WTxi − WTx′

j

∥
∥. By

tuning the regularization term λ, we attempt to learn the appropriate weights
for all pairs from ζ. The weighted sum of the squared distances of point pairs
in ζ can be written as:

db =
∑

i,j∈ζ

trTi,j

(
WTxi − WTx′

j

) (
WTxi − WTx′

j

)T

= trWT
∑

i

∑

j

Ti,j (xi − x′
j) (xi − x′

j)
T
W

= trWTSbW

(3)

where Sb =
∑

i,j∈ζ

Ti,j (xi − x′
j) (xi − x′

j)
T is the inter-class scatter matrix,

Ti,j is the transportation weight that is obtained by optimizing a regularized
optimal transport problem Eq. (2). The cost matrix M is the pairwise squared
Euclidean distance Mi,j = ‖xi − x′

j‖ ∈ Rn×m, where xi ∈ c1, x′
j ∈ c2, n and

m are the number of samples in class c1 and c2 respectively. Note that, xi and
x′

j are feature vectors passed from the last layer. Here, according to Eq. (2),
when cost matrix M is fixed, Ti,j (λ1) can be viewed as a function of λ1.
Note that, when λ1 is large enough, the impact of entropic regularization is
so small that the problem boils down to the origin optimal transport. Even
in special cases where two classes have equal number of points, the problem
has become an optimal matching problem in which each point only is linked
to one another. Hence, it is crucial to set a appropriate λ1 for selecting the
effective data pairs.

2) Characterize the intra-class Scatter. Similarly, we have weighted sum of
squared distances of pairwise points from the same class c = {1, 2, · · · , C},

dw = tr
(
WT SwW

)
(4)
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where Sw =
∑

i,j∈c

T′
i,j (xi − xj) (xi − xj)

T is the intra-class scatter matrix.

T′
i,j (λ2) is also a function of λ2. Similar to the discussion above, when λ2 is

small enough, regularization term plays the dominant role in the optimiza-
tion problem. When λ2 → 0, the transport matrix T := rcT which indicates
two distributions are independent to each other and all coupling are used to
construct the intra-class scatter. Conversely, when λ2 → ∞, optimal trans-
port cost from an empircial distribution to itself is 0. From the point of the
correlation of points, one point only interacts with itself, which is incapable
of capturing the global structure of data from the same class. Therefore it
is necessary to select a relatively smaller value for λ2 (λ2 
 λ1) to obtain a
smoother transport matrix T ′.

Optimal Projection Matrix Selection. We cast optimal projection matrix
selection as an optimization problem with the objective of maximizing the trace
of inter-class scatter of projected data while minimizing the trace of intra-class
scatter of projected data. The objective function is formulated as,

J(W ) = max
tr(WTSbW )
tr (WTSwW )

s.t.WTW = I
(5)

where W ∈ Rd×l, I is d×d identity matrix. Note that the formulation of J(W ) is
in form of Raleigh quotients, the solution of optimal W∗ can be obtained by solv-
ing the general eigenvalue problem, SbW = αSwW where W = (e1, e2, · · · en),
ei is eigenvector of S−1

w Sb and the corresponding eigenvalue is αi. To avoid the
matrix singularity problem, we adjust the intra-class scatter matrix by adding
a multiple of identity matrix I, as follows, (Sw + γI)−1

Sbe = αe.

Nonlinear Activation. Inspired by the single-layer nonlinear transformation
of deep neural network, we adopt similar nonlinear activation approach via
sigmoid (·) function. Besides, we adjust linearly projected data by adding an
extra bias vector b before nonlinear activation. To obtain a better nonlinear
projection subspace, we build the objective function as follows,

min
b

C∑

i=1

∑

yj∈Ci

‖δ (yj + b) − mi‖2 (6)

where C is the number of total classes, and δ (y) = (1 + exp(y))−1, mi =
1
Ki

∑
δ (yj + b) is the mean vector of i-th class. As can be seen from Eq. (6), we

hope that the distances of point pairs from the same class are as small as possible
after nonlinear mapping. In this paper, we find the bias vector using gradient
descent. In addition, we pre-processing the input data or latent representation
by whitening before nonlinear mapping at each layer.
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3.3 Multiple-Layer Discriminant Projection

It is well-known that powerful data representation learning ability of deep neural
network stems from deep architecture, which motivates us to extend single-layer
discriminant projection to multiple-layer ones for boosting the discriminability of
embedding subspace. Although deep architecture is effective in realistic tasks, it
is still intractable to decide how many layers of network are suitable for a given
dataset. Hence, we propose a criterion called Adaptive Depth Determination
Criterion (ADDC) to adaptively determine the depth of network and select the
dimensionality of projection corresponding to each layer.

Algorithm 1. Framework of depth-adaptive discriminant projection.
Input:

Training set S = {(x1, y1) , (x2, y2) . . . (xm, ym)},
λ1 ≥ 0, λ2 ≥ 0, γ ≥ 0, 0 < ε < 1;

Output:
Adaptive deep discriminant projection model f (x);

1: Initialize p1 = p0 − 1, l = 1, whitening the training set S, calculate Sw, Sb respec-
tively according to Eq. (3), Eq. (4);

2: while 1 do
3: if l = 1 then
4: calculate W, b according to Eq. (5), Eq. (6).
5: while acc(p1) < 1

C
do

6: p1 = p1 − 1
7: update W, b
8: end while
9: l = l + 1

10: end if
11: update Sw, Sb, calculate pl according to Eq. (8).
12: update W, b
13: if acc(pl) > acc(pl−1) then
14: l = l + 1
15: else
16: break
17: end if
18: end while

Adaptive Depth Determination Criterion. ADDC determines the projec-
tion dimension sequence by two parts, including initial projection dimension
determination and subsequent projection dimensions determination. Here, the
quality of the projection subspace is judged by the classification accuracy of a k
nearest neighbor algorithm (KNN).

1) Initial Projection Dimension Determination. Motivated by the idea of weak
classifier in the ensemble learning, we propose a general criterion for deter-
mining the initial projection dimension p1 that raw input data are projected
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on, the p1-dimensional subspace should meet the following conditions: classi-
fication accuracy exceeds random guesses 1

C . Simultaneously, to increase the
depth of whole network as possible, the first projection dimension p1 should
be as large as possible. Overall, the criterion can be formualted as follows,

max p1
s.t.p1 < p0

acc(p1) ≥ 1
C

(7)

acc(p1) is the prediction accuracy of KNN. p0 is the origin dimension of
input data. It is possible that p1 is very small if we directly search for a lower
dimension p1 that maximizes classification accuracy. Hence, we only constrain
the accuracy greater than 1

C (accuracy of random guesses).
2) Subsequent Projection Dimension Determination. To achieve a depth-

adaptive network structure, we determine the subsequent dimensions based
on two conditions: (i) the preserve of projection directions with major dis-
criminative variance. (ii) the improvement of the classification accuracy. For
the former condition, we preserve those projection directions which corre-
spond to the larger eigenvalues because each eigenvalue αl−1

i quantifies the
amount of separation in direction of ei of the l −1 layer Here, eigenvalues are
in descending order and criterion can be written as,

pl = arg min
j

j∑

i=1

αl−1
i

pl−1∑

i=1

αl−1
i

≥ ε (8)

where ε is the threshold value set around 95%. For the latter condition, if
pi-dimensional subspace does not meet acc(pl) > acc(pl−1), l ≥ 2, which
means there is no improvement of the performance of the current network
and the projection process terminates. Thus, the depth of network can be
automatically determined, whcih make DADP applicable to different scaling
of datasets.

4 Experiments

As discussed above, shallow models that are linear or nonlinear are hard to
uncover essential structure of data with high dimensionality, while deep archi-
tecture based models require large volume of data. Hence, in this section, we
present the evaluation of the subspace learning capacity of DADP on several
small-scale high-dimensional datasets. Experiments are performed on 10 UCI
dataset, face datasets, such as AR, ORL and FERET databases and Alzheimer’s
disease datasets that include 4 types. The performance of discriminative projec-
tion of DADP is compared with some classical discriminant analysis methods
like LDA, LSDA, some locality preserving methods, such as LFDA, LMNN,
and a deep neural network based method DeepLDA. The discriminability of the
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embedding is judged by the recognition rate of k nearest neighbors classifier with
Euclidean distance. Note that we have split the datasets 80%-20% for training
set and testing set respectively and repeated the random partition process 20
times. In order to obtain a reliable numercial results, we take the average of 20
independent experimental results as the final recording. Considering the poten-
tial impact brought by the dimensionality of projection subspace, we roughly
initialized the dimensionality p to C − 1 except for DADP, where C is the num-
ber of classes.

Table 1. Average test classification accuracy on 10 UCI dataset. Each row represents
a dataset. For each dataset, 20 test runs were performed and the average classification
accuracy as well as standard deviation are presented. Besides, the highest accuracy for
each dataset is in bold.

LDA LFDA LMNN LSDA DeepLDA DADP

Blood transfusion.5862± .0078.5831± .0084.6033± .0088 .6012± .0073.5823± .0142 .7782± .0075

Breast cancer .9942± .0044.9956± .0032.9972± .0045 .9582± .0052.8021± .0153 .9973± .0031

Dermatology .9522± .0042.9692± .0031.9842± .0048.9157± .0043.9122± .0084 .9731± .0042

Diabetes .5562± .0076.7592± .0074.7222± .0086 .7549± .0076.7533± .0094 .8572± .0045

Ionosphere .9322± .0042.9476± .0056.9227± .0048 .9623± .0052.9722± .0099.9426± .0025

Isolet .8058± .0097.9172± .0102.9322± .0112 .7592± .0087.9032± .0142 .9422± .0074

Ozone .9546± .0074.9624± .0078.9726± .0048 .9672± .0075.9886± .0098.9782± .0076

Parkinsons .5652± .0084.6526± .0074.8017± .0072 .6522± .0097.5125± .0121 .8533± .0074

Sonar .6012± .0099.5912± .0083.7723± .0065 .5443± .0045.5712± .0154 .753± .0084

Zoo .8232± .0042.9642± .0051.9776± .0052 .9752± .0044.8122± .0087 .9972± .0074

Table 2. Average test classification accuracy on real-world datasets, including as 4 face
datasets and 4 Alzheimer disease (AD) datasets. Experiment results are the average of
20 independent prediction accuracy.

LDA LFDA LMNN LSDA DeepLDA DADP

AR .8212± .0086 .9156± .0075 .9844± .0084 .9786± .0059 .8556± .0075 .9836± .0072

Feret .4032± .0074 .5156± .0085 .5032± .0102 .7175± .0174 .6223± .0082 .7632± .0075

Orl .8734± .0062 .9250± .0514 .9652± .0047 .9525± .0322 .8172± .0122 .9752± .0057

MRI3 .4136± .0453 .3556± .0268 .5524± .1323 .3278± .0351 .4524± .1422 .6012± .0072

MRI4 .2732± .1023 .2950± .0471 .4286± .0105 .3200± .0949 .4323± .1182 .4332± .0961

PET3 .3130± .0962 .3501± .0982 .5952± .0101 .3389± .0315 .6172± .1022 .6207± .0418

PET4 .2621± .1049 .2905± .1055 .5238± .0840 .2850± .0818 .3448 ± .0977 .4538± .0844

4.1 Experiments on UCI Datasets

We carried out experiments on UCI benchmark datasets, including Breast can-
cer, Diabetes, Isolet, Zoo etc. The goal of our experiment is to validate the ability
of our method to learn a separable subspace for high-dimensional data with small
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number of instances. In our experiments, except for DADP, we empirically fine-
tuned the projection dimensionality p and the size of nearest neighborhood k of
KNN classifier. Concretely, we initialized the number of neighbors to k′ = 7 for
LFDA, LMNN and the size was adjusted to maximize the classification accuracy
by 10-fold cross-validation. In addition, for LMNN, we split 20% of training set
as validation, other settings like the maximal iteration times, trade-off parame-
ter between loss and regularizer have been fine-tuned according to the accuracy
of each experiment. For LSDA, that needs a graph based embedding learning
method, we utilized the algorithm LGE and the required affinity graph matrix
and constraint graph matrix are constructed in the same way, where KNN with
Euclidean distance was used and the neighborhood size was set to 5, weights
between two nodes were calculated in HeatKernel mode. As for DeepLDA, we
manually altered network architecture for various UCI datasets and we employed
a relatively shadow structure here in order to avoid the overfitting problem. The
number of the maximized eigenvalues was set C − 1, where C is the number
of classes. Last, for our method DADP, we gave a rough setting for λ1 = 0.01
and λ2 = 0.1 respectively and fine-tuned the regularization term with a much
smaller step to assign a more appropriate weights for all data pairs.

As can be observed from the Table 1, DADP is capable of achieving the
highest accuracy compared with other methods or sightly lower than the best
accuracy, which demonstrates the effectiveness of multiple-layer nonlinear com-
binations of features. For UCI datasets, DeepLDA could not perform well in
most cases and even performed worsest compared with other methods for some
datasets. Concludely, deep neural network based discriminant analysis methods
are not suitable for small-scale datassets. Note that, average accuracy of LMNN
and LFDA demonstrates the significance of preserving local structure. Lastly,
what we want to emphasize is that for Diabetes dataset, the prediction accuracy
of most algorithms are below 80% while DADP achieved the accuracy 85.72%.
Similarily, for Blood transfusion, DADP achieves the best classification accuracy
at least 15% higher than other methods.

4.2 Experiments on Several Real-World Datasets

The objective of this experiment is to evaluate the capacity of DADP to han-
dle real-world datasets, including three kinds of face datasets and Alzheimer’s
disease dataset.

Face Datasets. Face datasets include AR, FERET and Orl databases. AR
database contains 3120 grayscale images from 120 persons, 26 images for each
person. Images from the same class correspond to one person’s distinct facial
expressions pictured in different light condition. Similarly, FERET and Orl
databases include 200×7, 40×10 grayscale images respectively. Additionally, for
AR and FERET datasets, we pre-processed original images using PCA and pro-
jected images on 200-dimensional feature vectors, for Orl datasets, we cropped
and resized the original images to 32 × 32 and flatten the pixel matrix to a
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1024-dimensional feature vector. Besides, we normalized images by scaling pixel
values to [0 ∼ 1].

As can be seen from Table 2, DADP is able to find a discriminant subspace
which preserves separability of different persons. From the perspective of the
size of different face datasets, DADP is adaptive to different scaling of datasets.
Meanwhile, as expected, DeepLDA still can not perform well owing to the small
sample size. Only few hundreds or thousands of pictures are far from sufficient
for training deep model in end-to-end fashion.

Alzheimer’s Disease Datasets. AD datasets contain 4 types of datasets on
Alzheimer’s disease, including MRI3, PET3, MRI4, PET4. Each dataset com-
prises 202 samples that can be categoried into Alzheimer disease patients (AD),
Mild Cognitive Impairment (MCI) and NormalControl (NC). In addition, for
MCI, patients can be further divided into MCI-C (those MCI patients convert
to AD) and MCI-NC (those MCI patients do not convert to AD). Among them,
MRI3 represents samples with 3 classes, MRI4 indicates persons with 4 classes,
and similar case for PET datasets. Each row is a 93-dimensional features corre-
sponding to different brain regions extracted from MRI images or PET images.

As can be seen from Table 2, DADP is more suitable for classifying AD sam-
ples with three classes comparing with other methods. Especially for MRI3, accu-
racy of DADP is significantly better than other methods. The prediction results
of LFDA and LSDA are around the accuracy of random guess, which illustrates
that both two kinds of methods are unable to discriminate AD datasets. For all
types of AD datasets, The results of LMNN do not make a big difference and
the accuracy of LMNN is slightly lower that of DADP for the first three AD
diseases and the highest for PET4, which illustrates that nearest neighbors large
margin assumption is appropriate for AD datasets to some extent.

5 Conclusion

This paper presents the Depth-Adaptive Discriminant Projection (DADP), a
nonlinear discriminant subspace learning model. By virtue of the proposed Adap-
tive Depth Determination Criterion (ADDC), DADP can adaptively determine
the projection dimensionality of each nonlinear layer and the number of non-
linear transformation, which makes DADP more flexible than existing discrimi-
nant analysis models combined with Deep Neural Network (DNN). Based on the
framework of regularized optimal transport (OT), each layer of DADP learns new
weights for each pairwise data, leading to the selection of an optimal projection
matrix. Unlike most methods in which weighting scheme is designed under some
prior assumption (neighborhood, margin), DADP can flexibly balance between
the global and local correlations at a category level by adjusting regularization
term of Optimal Transport. Experimental results show that DADP is able to
efficiently seek a discriminative subspace for small-scale and high-dimensional
datasets.
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Similar research, such as manifold learning, component analysis and corre-
lation analysis, can be explored in later work. Future work will consider an
objective function for bias vector that has a closed solution for the purpose of
further reducing the computation cost and enhancing the adaptivity for small-
scale dataset with more complex class distribution.
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Abstract. Few-shot object detection is to detect objects of novel categories from
only a few annotated examples and has recently attracted attention. Existing meth-
ods focus on designing new training strategies on a widely used object detection
network, while ignoring the importance of network representation ability for this
problem. This paper proposes a novel network model named HOSENet, which
introduces a higher-order semantic enhancement module (e.g. second-order pool-
ing) in the forward process of the network. The entire network is first trained
with base class data and then fine-tuned by support images to detect objects of
novel classes. Experiments on PASCALVOC andMSCOCO show that the detec-
tion precision of our method in novel classes is far superior to other competitive
methods without compromising the detection precision in base classes.

Keywords: Few-shot object detection · Semantic enhancement · Second-order
pooling

1 Introduction

Object detection is one of the fundamental sub-areas in computer vision, which aims
to locate and classify the objects of interest in images. It has been widely applied in
many vision scenes, such as face detections [1], vehicle detections [2] and pedestrian
detections [3]. The difficulty of this field lies mainly in the different appearances, shape
and posture of various objects as well as the illumination and occlusion when imaging
them.

Although the accuracy of the object detection algorithm [4–6] has been greatly
improved with the introduction of deep learning, most of these algorithms rely heavily
on massive labeled image data, which requires not only huge efforts to annotate, but
also long training time. Obviously, this learning method is not as effective as human
cognitive behaviors, which are able to identify a new object from a very small number of
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samples. The computer vision systems also need this ability to learn from a few samples,
when some object categories are inherently scarce, such as endangered animals or rare
medical data. However, the deep learning model will encounter overfitting and poor
generalization problem if the convolution network is directly trained with only a few
data.

Few-shot object detection [7–10] is recently developed to learn from few shots of
data in a given category to detect the objects falling into that category (Fig. 1). Most
existing few-shot object detection methods use the idea of meta-learning [7, 9] in the
network. Theyfirst learn generalizablemeta-features frombase classes and then reweight
the features for novel classes detection by producing the feature map from a few support
samples.

Novel classes

Base classes detect

Detector

Fig. 1. The illustration of few-shot object detection. The network is trained in a certain way by
using sufficient base class data and few novel class data, and can detect both new classes and base
classes.

Recently, a method based on fine-tuning is proposed [10]. After training the object
detection network with the base classes data, the parameters for the last layer of the
network are fine-tuned by using supporting images to detect the objects of unseen classes.
Despite its simplicity, it achieves the state-of-art result.

The above methods mainly focus on the design of training methods but only use
the basic object detection architecture, whose nonlinear modeling capability is far from
enough for few-shot object detection. We know that humans can quickly identify new
classes from a small number of samples due to their ability to extract image seman-
tics. Similarly, for the problem of insufficient novel samples, it is particularly critical
to enhance the network’s semantic representation. Therefore, this paper introduces a
second-order representation module in the forward process of convolution to learn the
correlation between channels and then insert this module into the Faster R-CNN [4]
framework to solve the problem of sample scarcity.

Our main contributions are as follows:

(1) We propose to introduce a semantic enhancement module into the convolution
network, improving the network representation ability for few-shot object detection
problems.
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(2) We conduct two ablation experiments on the module position and configuration.
The former analyzes the impact of the module on the detection results when it is
inserted into the different layers of the convolution networks. The latter is to decide
whether to use the first-order, second-order or hybrid-order pooling for semantic
enhancement.

(3) Sufficient experiments verify that for few-shot object detection, enhancing the
expressive capability of the network can greatly improve the detection precision
especially when detecting novel classes, and our proposed method achieves the
best results.

2 Related Work

General Object Detection. Currently, the mainstream object detection methods are
based on deep learning, and are mainly divided into two categories: single-stage detec-
tors and two-stage detectors. Single-stage detectors [5, 6, 15] do not generate region
proposals. They generally treat all the locations on the image as potential regions, and
then classify each region of interest as background or object and regress the bounding
box of the objects. Two-stage detectors [4, 17] first generate a series of region proposals
as samples through the RPN (region proposal network), then classify the samples and
fine-tune the bounding boxes. The methods mentioned above require a large number of
annotated images to train the network. If the samples of certain categories are naturally
scared, or their annotations are difficult to obtain, direct training of the network with
few samples will result in overfitting, thus deteriorating the model generalization and
detection accuracy.

Few-shot Object Detection. Few-shot object detection is an emerging task that deals
with the above situation. Given the supporting image S that contains a close-up of
class C, the task is to detect the objects of class C in the query image Q and to mark
them with bounding boxes. The pioneering methods in this field [7, 9] use the idea
of meta-learning. Kang et al. [7] propose a model that first learns meta features from
base classes, and then utilizes a few support examples to identify the meta features that
are important and discriminative for detecting novel classes. The model can be adapted
accordingly to transfer detection knowledge from the base classes to the novel ones. Yan
et al. [9] present a method to achieve low-shot object detection and segmentation, which
extends Faster/Mask R-CNN by proposing meta-learning over RoI (Region-of-Interest)
features instead of a full image feature. Later, Fan et al. [18] propose an RPN attention
module and a matching module. The RPN attention module improves the response to
new classes to make the unseen objects become the region of interest. The matching
module learns the relationship between the support images and the region of interest,
effectively improving the detection accuracy. Recently, Wang et al. [10] propose a new
network, which only fine-tunes the last layer of existing detectors on rare classes and
achieves better detection. Following this work, our method also uses the Faster R-CNN
object detection architecture, and the similar training method, but enhances the semantic
representation of the feature extraction module.
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Semantic Enhancement Modules. Researchers have discussed the modeling of first-
order and higher-order representation in the convolutional network. In earlymethods [11,
12], the first-order information enhancement module is proposed for the image classi-
fication task. By modeling the first-order relationship (such as average pooling or max
pooling) between the channels of the feature map, the weights of channels are calculated
to reweight the original feature map. Subsequently, some researchers [13, 14] modeled
the second-order relationship between channels to improve the nonlinear representation
ability of the network, thereby further improving the classification accuracy. Inspired by
the above work, this paper introduces the second-order and hybrid-order pooling mod-
ule into the convolutional network. With an enhanced representation ability, the entire
network can better detect the objects of new classes.

3 HOSENet

This section introduces the overall architecture of our model (as shown in Fig. 2), and
the embedded HOSE module (Fig. 3) that enhances the semantic representation of the
network. In the experiments, we try first-order pooling, second-order pooling and hybrid-
order pooling which integrates both and finally choose the second-order pooling as the
embedded module of the network.

conv layer conv layer 

HOSE 

conv layer 

backbone 

RPN 

ROI 
Pooling 

Detection 

Fig. 2. Overall network architecture. A higher-order semantic enhancement (HOSE) module is
inserted in the end of backbone to enhance the nonlinear representation of the network.

Fig. 3. The second-order semantic enhancement module, where σ denotes the sigmoid function,
Md is the operation of dimensionality reduction, and is the element-wise multiplication.

3.1 Network Overview

Our detection model is based on Faster R-CNN [4], which is a two-stage object detector,
containing the backbone, the RPN (region proposal network), the RoI pooling and the
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detection module for classifying the object categories and predicting the bounding box
coordinates. The backbone is responsible for extracting features from images, which are
learned from base classes can also be transferred to feature extraction on new classes.

Due to the limited number of novel classes, we introduce higher-order semantic
enhancement module into the backbone to improve nonlinear capability of convolution
networks. The backbone is based on Resnet-101 as shown in Table 1.

Table 1. HOSENet with Resnet-101 architecture

Output Layer

conv1 112 × 112 7 × 7, 64, Stride = 2

pool1 56 × 56 max pool, 3 × 3, Stride = 2

conv2_x
⎡
⎢⎢⎣

1 × 1, 64

3 × 3, 64

1 × 1, 256

⎤
⎥⎥⎦ × 3

conv3_x 28 × 28
⎡
⎢⎢⎣
1 × 1, 128

3 × 3, 128

1 × 1, 512

⎤
⎥⎥⎦ × 4

conv4_x 14 × 14
⎡
⎢⎢⎣

1 × 1, 256

3 × 3, 256

1 × 1, 1024

⎤
⎥⎥⎦ × 22

HOSE

conv5_x 7 × 7
⎡
⎢⎢⎣

1 × 1, 512

3 × 3, 512

1 × 1, 2048

⎤
⎥⎥⎦ × 3

3.2 Higher-Order Semantic Enhancement Module (HOSE)

In the image classification task, the use of higher-order correlation between the channels
to reweight convolution feature maps helps to improve the representation power of the
network, and the module can be easily inserted into any position between convolutions
layers. This inspires us to apply this module into the few-shot object detection task.

Suppose the input feature map is F ∈ RC×H×W . Firstly, the channel information of
the feature map is aggregated by 1 × 1 convolution to generate a compressed feature
map:F ′ ∈ RC ′×H×W , which can extract valid information and reduce the complexity
of subsequent operations. Secondly, the correlation between each two channels is cal-
culated to produce covariance matrix Mcov ∈ RC ′×C ′

, where the element in the i-th
row and the j-th column represents the correlation between the i-th channel and the j-th
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channel. Thirdly, the Mcov is transformed into a vector by row-wise convolution Mrow

and dimensionality reduction is performed. Afterwards, the sigmoid function is used as
a nonlinear activation to obtain a vector Mc ∈ RC×1×1 where each element represents
the importance of each channel. Finally, a dot product is performed between the vector
and the original feature map. The above steps make full use of the connections between
the channels of the feature map, reminding the network to pay more attention to certain
channels when facing different images with different objects. The internal process of the
module is shown in Fig. 3.

We also propose a hybrid-order semantic enhancement module that integrates
first-order pooling with second-order pooling in parallel. The original feature map is
reweighted by multiplying the weight coefficientsMh they learned. In our experiments,
both the second-order and hybrid-order pooling modules are verified to enhance the
nonlinearity representation of the convolutional network, so they are referred to as
higher-order semantic enhancement modules in this paper.

In addition, the insertion position of the module is studied, that is, in the middle or
the end of the backbone. Through the experiment, it is determined that the module is
better inserted in the back end. We will discuss in detail in the experiment in Sect. 4.

3.3 Training Strategy for the Network

We follow the training strategy in [10], which outperforms the meta-learning methods
by a large margin. This training strategy is divided into two steps.

The first step is to use base classes to train the network with the following loss
function [4]:

L = Lrpn + Lcls + Lloc (1)

where Lrpn is the loss for generating region proposals, Lcls is cross-entropy loss function
for the box classification, and the Lloc is smooth L1 loss for bounding box regression.

The second step is to fine-tune the last layer of the network. We input a subset of
base classes and novel classes to fine-tune the network, which is a collection containing
a few shots of each class in the entire dataset. It allows the network to learn to detect new
classes while not compromising the ability to detect base classes. When the network is
fine-tuned, the classification loss function changes from the cross entropy loss function
in the first step to the cosine similarity loss function [23], which makes the detection
precision of the base classes decreases less, especially when the number of training
samples is small.

4 Experiments

In order to evaluate the HOSE module, we conducted three experiments, including the
impact of different insertion positions of the module on the result, the impact of different
pooling configurations of the module (first-order, second-order and hybrid-order) on
the result, and the comparison of our method with other state-of-art methods. All the
comparative methods are implemented in the PyTorch framework.
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4.1 Settings

We evaluate all few-shot object detectionmethodswith twowidely-used object detection
benchmark datasets: PASCAL VOC [20, 24] and MS COCO [21]. The PASCAL VOC
dataset contains 20 classes, from which 15 classes are randomly selected to build base
classes and the remaining classes are novel classes. The COCO dataset contains 80
classes, and we divide them into 60 classes as base classes and 20 classes as novel
classes.

Our implementation is based on Faster R-CNN [4]. The hyper-parameters follow the
settings in [10]. A learning rate of 0.02 is used during base training and 0.001 during few-
shot fine-tuning. The training data of the experiment is composed of all the annotations
of base classes and a few annotations of novel classes. For the latter, we randomly select
k annotated samples from each class, where k indicates how many shots you want.

For evaluation metrics, we adopt average precision over all IOU thresholds (AP),
AP at IOU thresholds 0.5(AP50) and AP at IOU thresholds 0.75(AP75). To make the
results more convincing, the experiment was repeated three times by random sampling,
and the results are averaged for the final evaluation.

4.2 Ablation Studies

Impact of Different Insertion Positions. Consider that Resnet-101 has many residual
blocks, we put the module in the middle and the end of the network respectively.

Figure 4 shows the detection results of the method inserting HOSE module in dif-
ferent positions, where the middle level represents the method with the HOSE module
embedded after the second residual stage of Resnet-101, and the high level represents the
method with the HOSE module embedded after the third residual stage of Resnet-101.
The results show that, embedding HOSE module at the end of the Resnet-101 is better
than embedding it in the middle. This indicates that when the representation obtained by
the convolutional network is more sufficient, the calculation of higher-order correlation
ismore accurate and thus the semantic enhancementmodule ismore effective.Moreover,
if the module is embedded in the middle of the network, the subsequent convolutions
may weaken the nonlinear representation ability of this module, thereby, reducing the
detection precision. Therefore, it is placed at the end of Resnet-101 in our method.

Fig. 4. Few-shot detection performance for novel classes on PASCAL VOC dataset. The method
variants with the HOSE module in different positions of Resnet-101 are compared.
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Impact of Different Module Configurations. We use average pooling as first-order
pooling module follows [8], which is average pooling followed by convolution and non-
linear activations to capture channel dependency, and then to rescale the channel for data
recalibration. The hybrid-order pooling module is to multiply the weights learned in the
first-order pooling and the weights learned in the second-order pooling module to obtain
the weight values of each channel of the feature map, and then to reweight the original
feature map.

Figure 5 presents the comparison results. When there is only one shot, the hybrid-
order pooling module performs better than others. As the number of shots increases, the
impact of the second-order poolingmodule is greater than that of the hybrid-order pooling
module. Based on the overall results, our method uses second-order pooling module as
the HOSEmodule for comparison with other related few-shot object detection methods.

Fig. 5. Few-shot detection performance for novel classes on PASCAL VOC dataset. The method
variants with the HOSE module in different configurations are compared.

In summary, the ablation experiments show that the use of the correlation between the
channels at the end of the network can effectively enhance the semantic representation
of the convolutional network, which can greatly improve the overall performance of
few-shot object detection.

4.3 Comparison with Competing Networks

We compare our method with existing methods FSRW [7], MetaDet [19],Meta R-CNN
[9], and FsDet [10]. The first three use the training strategy of meta-learning and the last
one is based on fine-tuning as we do.

Results on PASCAL VOC. We report the average AP50 for the novel classes on PAS-
CAL VOC in Table 2. Our method uses Resnet-101 with the semantic enhancement
module as the backbone. Meta R-CNN and FsDet use Resnet-101 as their backbone.
The first three models are based on meta-learning [7, 9, 19], and the rest are based on
fine-tuning. Since the novel samples are randomly selected, the results of a single exper-
iment are not stable. In order to make the experimental results more convincing, we
repeat the experiment three times by random sampling, and used the average value for
comparison. From the Table 2, the result shows that our model significantly outperforms
the others, especially when the labeled images are extremely scarce. In the one-shot
case, our method even has a 7.6% improvement on AP50 compare to FsDet, which
once performed best in all methods. For more detailed comparisons, the average AP50
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values for the base classes on PASCAL VOC of FSRW, FsDet and HOSENet are listed
in Table 3. It shows that, like FsDet, our method also maintains a good performance in
the detection of base classes.

Table 2. Few-shot detection performance (AP50) on the novel classes of the PASCAL VOC
dataset.

Method/shots 1 3 5 10

FSRW [7] 14.8 26.7 33.9 47.2

MetaDet [19] 18.9 30.2 36.8 49.6

Meta R-CNN [9] 19.9 35.0 45.7 51.5

FsDet [10] 25.3 42.1 47.9 52.8

HOSENet (ours) 32.9 47.4 52.6 54.9

Table 3. Few-shot detection performance (AP50) on the base classes of the PASCAL VOC
dataset.

Method/shots 1 3 5 10

FSRW [7] 66.4 64.8 63.4 63.6

FsDet [10] 77.6 77.3 77.4 77.5

HOSENet (ours) 79.2 77.9 77.8 77.5

Results on MS COCO. Similarly, we report the average AP, AP75 for the 20 novel
classes with 10 shots and 30 shots on MS COCO in Table 4. The experiment is repeated
three times by random sampling to output the average value. The comparison result is
similar to that on the PASCALVOCdataset, that is, after using the semantic enhancement
module, the detection performance of novel classes is significantly improved and the
performance of detecting bases classes is not compromised, especially when there are
few samples. (see Table 5).

Table 4. Few-shot detection performance on AP, AP75 for novel classes on MS COCO dataset.

Method/shots 10 30

AP AP75 AP AP75

FSRW [7] 5.6 4.6 9.1 7.6

MetaDet [19] 7.1 6.1 11.3 8.1

Meta R-CNN [9] 8.7 6.6 11.1 10.8

FsDet [10] 9.1 8.8 12.1 12.0

HOSENet (ours) 10.0 9.1 14.0 14.0
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Table 5. Few-shot detection performance onAP, AP75 for the base classes onMSCOCOdataset.

Method/shots 1 3 10

AP AP75 AP AP75 AP AP75

FsDet [10] 31.9 34.3 32.0 35.1 32.4 35.7

HOSENet (ours) 31.9 34.4 32.2 34.9 32.4 35.3

Finally, we compare some detection results of FsDet and HOSENet for 10 shots
novel classes on MS COCO in Fig. 6. The first two lines are the detection results of
FsDet, and the next two lines are of ours.

Fs
D

et
H

O
SE

N
et

Fig. 6. Examples of 10-shots detection results of novel classes on MS COCO. The novel classes
contain person, motorcycle, train, cat, sheep, chair, dining table, bicycle, airplane, boat, dog, cow,
couch, tv, car, bus, bird, horse, bottle, and potted plant.

It can be seen that for the images in the first row, FsDet cannot detect the objects of
new classes (i.e. motorcycle, airplane, train and birds, respectively), while HOSENet can
detect them. For the images in the second row, both HOSENet and FsDet can detect the
object, but the bounding box given by HOSENet is more accurate. However, there are
some cases where objects of new classes are not detected in both methods. For example,
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for the images in the first and third columns of the second row, both methods fail to
detect the new class of person.

5 Conclusion

In this work, we proposed an effective approach for few-shot object detection by exploit-
ing the higher-order semantic enhancement module in the backbone of a Faster R-CNN
network. Specifically, the second-order or hybrid-order pooling module is inserted into
the convolutional network. The experiments show that with enhanced representation
ability, the performance of detecting new class objects can be significantly improved in
a fine-tuning-based training strategy. This implies that for the few-shot objection detec-
tion problem, the improvement of image understanding could be more important than
the improvement of training methods, which will be studied in depth in future work.
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Abstract. With the development of Internet, the forms of web data
are rapidly increasing. However, existing cross-media retrieval methods
mainly focus on coarse-grained, which is far from being satisfied in practi-
cal application. In addition, the heterogeneity gap among different types
of media tends to result in inconsistent data representation, so the mea-
suring similarity is quite challenging. In this work, we propose a novel
multi-modal network for fine-grained cross-media retrieval. Specifically,
our model consists of two networks, including proprietary networks and
the common network. The proprietary network is designed as a single
feature extraction network for each media to extract unique features for
obtaining precise media feature representation. The common network is
designed to extract common features of four different types of media.
Comprehensive experiments demonstrate the effectiveness of our pro-
posed approach. The source code and models of this work have been
made public available at: https://github.com/fgcmr/fgcmr.

Keywords: Fine-grained cross-media retrieval · Proprietary network

1 Introduction

With the development of the Internet, various types of media data have shown
explosive growth on the web [1–12]. Images, texts, audios, and videos are becom-
ing the main form of people to know the world and cross-media retrieval is
becoming increasingly popular especially with the development of deep learn-
ing [13–19]. Different from the traditional retrieval works [20–24] which usually
focus on the single media type, as shown in Fig. 1, the cross-media retrieval
deals with various types of media. However, the existing cross-media retrieval
task usually concentrates on coarse-grained, which is far from being satisfied in
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Fig. 1. Examples of fine-grained cross-media retrieval, where the audio data is visual-
ized by spectrogram.

practical applications. Compared to coarse-grained cross-media retrieval, fine-
grained cross-media retrieval has a wide range of research needs and application
scenarios in both industry and academia.

Fine-grained cross-media retrieval is a challenging task due to the small inter-
class and large intra-class appearance variance. In addition, the heterogeneity
gap is another challenging problem which is far from being solved in cross-media
retrieval [25–29]. To this end, a lot of efforts have been devoted to researching
cross-media retrieval. For example, [47] proposed an important method to get
a common semantic space by maximizing the correlation between two media
data. Unfortunately, the local structure of data in each media and the structure
matching between different media types are ignored. Another branch of works,
deep neural networks (DNN) have established semantic association of different
media types data through the advantage of feature extraction ability. [46,52]
utilized a cross-media shared layer to map a common semantic space. Besides,
[39] shared a uniform deep model FGCrossNet which learns four types (image,
video, text, and audio) media without discriminative treatments. Sharing the
layer and network reduced the heterogeneity gap to a certain extent, but these
models ignore the local structure of data in different media types and don’t
concentrate on each media special feature.

In this paper, we proposed a simple yet effective approach to narrow the het-
erogeneity gap and extract the media feature precisely. Our work is motivated by
the following observations: 1) Existing fine-grained cross-media retrieval meth-
ods can’t fully consider the problems of large intra-class differences and small
inter-class differences among fine-grained subcategories. 2) Current fine-grained
cross-media method only adopts to share common network so that can’t con-
sider the special attributes of media. 3) For narrowing the heterogeneity gap,
most methods make two different features closer from each dimension of the sam-
ple but don’t consider the sample feature distribution of different media types
comprehensively. Our proposed approach consists of two networks, including
the proprietary network and the common network. Specifically, the proprietary
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network is designed for each media specific distinctive attributes to extract more
representative features. The common network is designed for four different media
types to obtain common feature representation to minimize the heterogeneity gap.
Extensive experiments on public available data set demonstrate the effectiveness
of our proposed approach.

2 Related Work

2.1 Cross-Media Retrieval

The task of this paper concerns the heterogeneity gap of the cross-media retrieval
framework. At present, most research of the cross-media retrieval concerns two
media types, the seldom research aims at more than two media types. The early
works address the above problems by utilizing the graph regulation methods
[31,51,55,58,64–67]. [58] proposed a joint graph regularized heterogeneous met-
ric learning algorithm, which integrates firstly the structure of five media types
into a joint graph regularization. With the development of computing ability,
the complexity of neural network can be computed and some based on the DNN
methods of cross-media retrieval can be solved. [31] proposed a method to reg-
ularize cross-media neural networks, which takes five input types.

2.2 Fine-Grained Recognition

Since our task aims at fine-grained aspect, which distinguish the categories with
difficulty by ordinary method, fine-grained recognition can help us to extract
the feature [50,63]. However, the current researches on the fine-grained aims
merely at the visual recognition. For other media types, we used some methods
of the visual recognition for reference. The early work is based on strongly super-
vised methods, which is utilizing bounding boxes or part annotations besides
the image-level labels [31,35,56,57,59]. But these increased the cost of manual
annotation. Researches on weakly supervised methods had solved the problem,
which is only utilizing image-level labels [30,33,34,38,43,45,53,55,60,61]. These
works obtained the remarkable results and it will be the trend of the fine-grained
recognition.

2.3 Relations to Benchmark

Up to now, the benchmark [39] is the first and only work research on fine-
grained cross-media retrieval. The author constructed a new benchmark for fine-
grained cross-media retrieval, which consist of 200 fine-grained subcategories of
the “Bird”, and contains four media types, including image, text, video and
audio. The benchmark deals four media data in the same format before they come
in the common network simultaneously, but it doesn’t consider the proprietary
feature of media lead to the experimental effect of benchmark is not good enough.
That motivated us to design a proprietary model for different types media, which
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Fig. 2. An overview of our multi-model network for fine-grained cross-media retrieval.

extracts more precise proprietary features. In addition, our common network is
a little similar to the benchmark network. Benchmark network introduced three
loss functions to narrow heterogeneity gap and our common network introduces
four loss functions to narrow heterogeneity gap.

3 The Proposed Approach

In this section, we present our method for fine-grained cross-media retrieval. As
shown in Fig. 2, our framework consists of two groups of networks, which combine
with each other to get the final feature representation for better performance.

3.1 Proprietary Network

Due to different types of media usually have inconsistent distribution and rep-
resentation, we design different proprietary network for each media to extract
special feature.

Image Proprietary Network: For image and video, we introduce bilinear
network [43] which is widely used in fine-grained visual recognition as their pro-
prietary network to extract features. For video data, we extract 25 frames from
each video at regular intervals. The frames of video are similar to images so
we choose the same proprietary network for them. The image proprietary net-
work is composed of two CNNs. Two different streams represent different fea-
tures obtained by CNN, and the features are operated through bilinear, then get
the final feature representation through the pooling and full connection layers.
The aim of bilinear is through the outer product we can acquire the relevances
between two outputs and part-feature interactions to get the more accurate fea-
ture representation. We adopt a location in the image and the input image as l
and i, respectively, and then the bilinear between them is b(l, i). Its definition is
as follows:

b(l, i) = Ea(l, i)TEb(l, i), (1)
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where Ea and Eb are the two functions that extract features (CNN a and CNN b).
We calculate the value at each location of the image and then through the pooling
function we converge them to form the image feature, which is defined as

P (i) =
∑

l∈L

b(l, i). (2)

L is the location area in the image. By the P (i), we obtain the image feature
and through the full connection layer to get the final feature representation.

Text Proprietary Network: In existing fine-grained cross-media retrieval, text
data are usually converted to char embedding and processed with the convolu-
tional neural network. Nevertheless, char embedding lacks rich semantic infor-
mation and abandons the pre-training ecosystem of plug and play. In this work,
we introduce Attention-Based Bidirectional Long Short-Term Memory Networks
(Att-BLSTM) [62] as text proprietary network to capture the most important
semantic information in a sentence. The text proprietary model is composed of
four layers, the first layer receives the input sentences. The second layer trans-
forms words into word vectors. The third layer is used to obtain deeper feature
representation and extract text feature widely. The last layer multiplies gen-
erated the weight matrix and the deeper feature to get the sentence feature
representation.

The input of the text proprietary network are the sentences. We denote each
sentence as T = [t1, t2, · · · , tn], where ti is the word vector of the i-th word in
the sentence and n is the length of the sentence. Through the pre-trained word
embedding, each word ti of the sentence is expressed as specific word vector ei.
So the input is transformed into E = [e1, e2, · · · , en]. Then the sequence T enter
the Long Short-Term Memory (LSTM) layer. In this text proprietary network,
we choose a bidirectional LSTM to process the sequence which contains forward
LSTM and backward LSTM. Then we combine with two outputs of LSTM on
the basis of each element ei to obtain the output vector. The output vector hi

can be defined as:
hi =

→
LSTM (ei) ⊕

←
LSTM (ei). (3)

We denote the output vectors set of LSTM layer as H and H can be represented
as H = [h1, h2, . . . , hn], in which n is the length of the sentence.

In virtue of some vectors have more important influence on sentences, so
we introduce the attention layer to find these vectors and let them make a big
difference. The main core of attention layer is attention neural network. It’s
widely used in natural language processing and image processing. And our aim
is to obtain a weight matrix γ assigns large weight to important features. The
weight of attention layer is obtained by:

γ = softmax(wT tanh(H)) (4)

f = HγT , (5)
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where w is a trained weight matrix and the value of attention score after softmax
is represented by γ. Finally H multiplies with weight to get the sentence vector
representation f .

Audio Proprietary Network: For audio, we choose VGG-16 [48] as audio’s
proprietary network. The spectrogram of each audio compose audio data, the
size of which is 448 × 448. The spectrogram contain the frequency of noise besides
birds singing because the birds singing of environment always mix with the sound
of the wind, water and other birds’ singing.

3.2 Common Network

The common network is designed for four media types simultaneously to make
four media types as similar as possible and then extract features. We choose
FGCrossnet as our basic deep model and introduce a new loss function to reduce
heterogeneity gap. Before entering the network, the preprocessing of media data
expect text data is the same as above proprietary network. In order to let
all media types share the same network, text data is transformed from one-
dimensional vector into two-dimensional vector to keep the same input format
as other media types. We consider four loss functions of the network from cross-
entropy, center, quadruplet and distribution. Cross-entropy loss makes the net-
work better distinguish the characteristics of different categories. Center loss
makes the samples of same fine-grained subcategory have the same features.
Quadruplet loss lets the distance of different categories as far as possible. Dis-
tribution loss lets the same subcategory of different media types have the same
feature distribution.

3.3 Combined Network

Finally, we combine the output of proprietary network and the common network
for each media. The combined network not only considers the special features
of the media, but also considers the features when the four media types are as
close as possible. The formula is as follows:

f = α ∗ fpro + (1 − α) ∗ fcom. (6)

Each media has to go through the same calculation to get the final unified
representation f based on the integration of different features. In which fpro
is the feature of fully connected layer of the proprietary network and fcom is
the feature of fully connected layer of the common network, α is the weight of
proprietary network.

4 Experiments

4.1 Datasets and Evaluation Metrics

Datasets: We evaluate our approach on the benchmark fine-grained cross-media
retrieval data set, PKU FG-XMedia [39]. It’s the first and only data set on
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fine-grained cross-media retrieval direction. PKU FG-XMedia is composed of 200
fine-grained subcategories of birds and contains four media types (image, text,
video and audio). The data set contains more than 50,000 instances includ-
ing 11,788 image instances, 18,350 video instances, 8,000 text instances, and
12,000 audio instances. Furthermore, its data coming from many different web-
sites result in different data quality, which increases the difficulty of retrieval.

Evaluation Metrics: We adopt mean average precision (MAP) as the evalua-
tion metrics of retrieval. MAP considers both the ranking and accuracy of the
results, which is widely used in cross-media retrieval. We first compute aver-
age precision (AP) of returned results by a query sample. Then calculating the
average of AP values of all queries to obtain the final MAP.

4.2 Retrieval Tasks

Multi-modality Fine-grained Cross-media Retrieval: Any media type of
four types as input data to retrieval all media data and return all instances
of same semantics results. For example, if users submit the image of “Herring
Gull”, they will obtain samples about the video of “Herring Gull”, the text of
“Herring Gull” and the audio of “Herring Gull” in the test data, which is called
image retrieval all media types (I→All). The remaining three media types as
query samples can be called V→All (video), T→All (text), A→All (audio).

Bi-modality Fine-grained Cross-media Retrieval: Any media type of four
types as input data to retrieval the other media data and return all instances of
same semantics results. For example, if users submit the image of “Herring Gull”,
they will obtain samples about the video of “Herring Gull”, which is called image
retrieval video (I→V). Similarly, video retrieval image is represented as V→I. So
bi-modality fine-grained cross-media retrieval contains: I→V, I→T, I→A, V→I,
V→T, V→A, T→I, T→V, T→A, A→I, A→V, A→T.

4.3 Baselines

To verify the effectiveness of our approach, we compare our method with state-
of-the-art methods on PKU FG-XMedia data set. The following cross-media
retrieval methods as our baselines: FGCrossNet [39], MHTN [40], ACMR [49],
JRL [58], GSPH [44], CMDN [46], SCAN [42], GXN [37]. We use these methods
to carry out multi-modality fine-grained cross-media retrieval and bi-modality
fine-grained cross-media retrieval.

4.4 Implementation Details

Input: For proprietary network, different media data are processed to input
proprietary network separately to get better performance. For common net-
work, four media data need to input the network simultaneously. In addition,
for quadruplet loss function, four different media input should belong to three
categories.
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Table 1. Comparison of the bi-modality fine-grained cross-media retrieval performance
on PKU FG-XMedia data set.

Methods I→T I→A I→V T→I T→A T→V A→I A→T A→V V→I V→T V→A Average

Ours 0.355 0.629 0.660 0.409 0.324 0.335 0.643 0.287 0.515 0.706 0.335 0.544 0.478

FGCrossNet [39] 0.210 0.526 0.606 0.255 0.181 0.208 0.553 0.159 0.443 0.629 0.195 0.437 0.366

MHTN [40] 0.116 0.195 0.281 0.124 0.138 0.185 0.196 0.127 0.290 0.306 0.186 0.306 0.204

ACMR [49] 0.162 0.119 0.477 0.075 0.015 0.081 0.128 0.028 0.068 0.536 0.138 0.111 0.162

JRL [58] 0.160 0.085 0.435 0.190 0.028 0.095 0.115 0.035 0.065 0.517 0.126 0.068 0.160

GSPH [44] 0.140 0.098 0.413 0.179 0.024 0.109 0.129 0.024 0.073 0.512 0.126 0.086 0.159

CMDN [46] 0.099 0.009 0.377 0.123 0.007 0.078 0.017 0.008 0.010 0.446 0.081 0.009 0.105

SCAN [42] 0.050 – – 0.050 – – – – – – – – 0.050

GXN [37] 0.023 – – 0.035 – – – – – – – – 0.029

Table 2. Comparison of the multi-modality fine-grained cross-media retrieval perfor-
mance on PKU FG-XMedia data set.

Methods I→All T→All V→All A→All Average

Ours 0.637 0.333 0.577 0.509 0.514

FGCrossNet [39] 0.549 0.196 0.416 0.485 0.412

MHTN [40] 0.208 0.142 0.237 0.341 0.232

GSPH [44] 0.387 0.103 0.075 0.312 0.219

JRL [58] 0.344 0.080 0.069 0.275 0.192

CMDN [46] 0.321 0.071 0.016 0.229 0.159

ACMR [49] 0.245 0.039 0.041 0.279 0.151

Training Strategy: For image and video proprietary network training, we
adopt a two-training strategy. First step, we only train the fully connected layer
parameters in case of fixing other layers parameters. Second step, we train all
layer parameters based on the first step model. We choose the Adam optimizer.
The batch size is set to 128 in the first step and 64 in the second step. The
learning rate is set to 0.001 in the first step and 0.0001 in the second step. For
text proprietary network, we train the word embedding firstly and the dimen-
sion of word embedding is set to 100. In the experiment, we choose AdaDelta
optimizer. The batch size is set to 32 and the learning rate is set to 1.0. At the
second, third, forth layer, we select the drop rate 0.3, 0.3, 0.5 respectively. For
audio proprietary network training, we use the pre-trained model VGG-16 to
fine-tune the network. We choose the SGD optimizer. The batch size is set to 64
and the learning rate is 0.01. For common network, we adopt a three-training
strategy. First step, we only use the image data to train network in case of using
the pre-trained model ResNet50 to initialize the network. Second step, we use
all media types data to train network with cross-entropy loss function based on
the first step model. Final step, we train all media types data with center loss,
quadruplet loss and distribution loss based on the second step model.
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4.5 Experimental Results

Table 1 presents the scores of MAP result of various approaches about bi-
modality fine-grained cross-media retrieval on PKU FG-XMedia data set. By
observing Table 1, we can notice that on all bi-modality fine-grained cross-media
retrieval, our method achieves best performance than other approaches, which
has increased by about 11% on average. FGCrossNet achieves the second best
performance than other compared methods, which uses a uniform depth model
to learn the four media data simultaneously. It indicates the advantages of mod-
eling four media types simultaneously. But the special characteristics of individ-
ual media type are not fully considered. MHTN is superior to other compared
methods expect FGCrossNet and our approach, which uses transfer learning to
jointly transfer knowledge from single-modal in source domain to all modalities
in target domain to promote cross-media common representation learning [40].
The explanation is that transfer knowledge to other media types is useful to
obtain better feature representation. ACMR has a better performance in image
and text retrieval, which is based on adversarial learning. However, the perfor-
mances of other bi-modality fine-grained cross-media retrievals are not very well
may because of the generalization of its network is not strong. SCAN and GXN
have the lower scores of MAP, mainly due to they need more additional image
and text retrieval information so they are not suited to our benchmark. SCAN
and GXN need the correspondence between image regions and text words, which
is through sentence describe what happened in the image.

Table 2 presents the scores of MAP result of various approaches about multi-
modality fine-grained cross-media retrieval on PKU FG-XMedia dataset. From
the results, we can observe that our method obtains the highest scores of MAP.
The method in this paper exceeds all the methods of comparative test. The aver-
age retrieval accuracy is promoted from 0.412 to 0.514. That indicates that our
method is more effective in fine-grained cross-media retrieval. Only FGCross-
Net and MHTN methods can deal with multiple media types data simultane-
ously, which have a better performance than other methods. By way of contrast,
FGCrossNet is lack of consideration of media special attributes and MHTN is
lack of model analysis of the small differences between subcategories.

From Table 1 and 2, we can observe that our method achieves the best
performance not only in bi-modality fine-grained cross-media retrieval, but also
in multi-modality fine-grained cross-media retrieval. Here are several reasons:
(1) Our method considers each media special attributes through setting up a
separate feature extractor for each media. (2) Our method can extract more
similar features to reduce the heterogeneity gap through dealing with four media
types data at the same time. (3) Our method considers intra-class, inter-class
and intra-media variance comprehensively through introducing four different loss
functions.
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5 Conclusion

In this work, we studied the problem of fine-grained cross-media retrieval and
proposed a new approach to solve feature representation for fine-grained cross-
media retrieval. Our key idea is to design two network for fine-grained cross-
media retrieval, one is proprietary network for each media to extract special
feature, the other is common network for all media types to extract common
feature features. Experiments demonstrated the effectiveness of our approach.
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Abstract. Hyperspectral images have been widely applied to various fields due
to the high spectral and spatial resolution. However, the vast amounts of spectral
and spatial information also bring difficulties in hyperspectral image processing,
where the efficiency is one of the biggest challenges. To address this challenge,
we propose a method to extract the spectral-spatial 3-dimensional homogeneous
regions (SS3DHRs) from hyperspectral images. First, highly correlated neighbor
spectral bands are selected based on the correlation coefficients between adjacent
bands; Based on the sub-band selection, a superpixel segmentation method is
improved for hyperspectral images to gather the spatial information; Combining
the spectral sub-bands and spatial superpixels, the SS3DHRs are collected from
the 3-deminsion hyperspectral data cube. The SS3DHR can be processed as a unit
for the subsequent applications, which may significantly reduce the redundant
data and thus raise the efficiency. In experiment part, the extracted SS3DHRs
are applied for hyperspectral image classification, where the experimental results
demonstrate the effectiveness and efficiency of the proposed method.

Keywords: Hyperspectral image · Band selection · Superpixel segmentation ·
Spectral distance · Classification

1 Introduction

With the development of the hyperspectral imaging technologies, the spectral and spatial
resolution of hyperspectral images has been improved significantly. Benefit from the high
image resolution, hyperspectral images have been widely used in various applications,
such as classification [1, 2], target detection [3, 4], change detection [5, 6], and so on.

Hyperspectral imaging is a spectral imaging acquisition where each pixel of the
image is employed to acquire a set of images within certain spectral bands. Thus, a
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third spectral dimension is added to the traditional 2-dimension spatial images. The
3-dimension data cube can provide abundant spectral and spatial information for hyper-
spectral image applications. However, the efficiencies of applications are reduced when
dealing with the huge amount of data. To solve this problem, some researchers attempted
to select a part of valuable spectral bands from the third dimension. Luo et al. [7] pro-
posed an information-assisted density peak index method for the band selection. The
intra-band information entropy is introduced by using a density-based clustering app-
roach, and meanwhile the band distance is integrated with channel proximity to con-
trol the compactness of local density. Wang et al. [8] designed an optimal clustering
framework for the band selection, which can obtain the optimal clustering result for a
particular form of objective function under a reasonable constraint. To further raise the
processing speed of hyperspectral image applications, the reduction of spatial dimension
has also been widely studied. Tarabalka et al. [9] improved a watershed segmentation
method to define information about spatial structure, and then the segmented regions are
processed for hyperspectral image classification. In recent years, an image processing
technology—superpixel segmentation has been investigated. Superpixel segmentation
algorithms can segment an image into small local regions adhering tightly to the bound-
aries. In [10–14], superpixels are adopted to boost various kinds of hyperspectral image
applications. In spite of many researches have been studied for the dimension reduction,
there are still three main challenges: (1) How to design an effective and fast approach to
reduce the spectral dimension? (2) How to make the superpixel segmentation methods
more suitable for hyperspectral images? (3) How to comprehensively reduce the spec-
tral and spatial dimensions to further speed up subsequent applications? To address the
abovementioned challenges, we propose a spectral-spatial 3-dimensional homogeneous
region (SS3DHR) extraction method for hyperspectral images. First, a simple producer
is established to select the highly correlated neighbor spectral bands; then, an improved
superpixel model is proposed for the hyperspectral image segmentation; finally, the
SS3DGRs are extracted by combing the spectral sub-band set and the spatial superpixel
segmentation. Experimental results demonstrate the effectiveness and efficiency of the
proposed SS3DHR for hyperspectral image classification.

2 Method

The proposed SS3DHR extraction method is composed of two main steps. First, highly
correlated neighbor spectral bands are selected based on the correlation coefficient
of adjacent bands; then, spatial homogeneous superpixels are generated by using an
improved superpixel segmentation algorithm; finally, the SS3DHRs are extracted by
combing the above-mentioned two main steps. Based on the SS3DHRs, subsequent
hyperspectral image applications can be processed efficiently. The framework of the
proposed method is displayed in Fig. 1.
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Fig. 1. Framework of the proposed method.

2.1 Highly Correlated Neighbor Spectral Bands Selection

For a given hyperspectral image I(m, n, z) with spatial size m × n and spectral bands
number z, the correlation coefficients between the adjacent bands are first calculated
according to the following equation:

C
(
Pi, Pj

) = m × n × ∑
Pi × Pj − ∑

Pi
∑

Pj√
m × n × ∑

P2
i − (∑

Pi
)2

√
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j − (∑

Pj
)2

(1)

where C represents the correlation coefficient between the two spectral bands, Pi and
Pj denote the pixel values with the vector number m × n in the ith and jth bands,
respectively. In practice, the spectral resolution of hyperspectral images is usually very
high, thus the correlation coefficients between the neighbor spectral bands are very
large. In this case, the highly similar bands can be gathered and processed together.
However, the spectral curve might be changed obviously in some special wavelength,
thus a threshold is required to group the spectral bands into several sub-band sets. In the
proposed method, the highly correlated neighbor spectral bands are selected according
the following procedure: Step1: input the first spectral band into Set 1; Step 2: calculate
the correlation coefficient between the first band and the next adjacent band Pj; Step 3:
if the correlation coefficient is larger than the predefined threshold t, the adjacent band
Pj is grouped into the same sub-band set as the prior band; otherwise, put the band Pj

into a new sub-band set; Step 4: repeat the steps 2 and 3 to assign each spectral band
into a proper sub-band set. By using the proposed method, a hyperspectral image can
be divided into several sub-band sets, where the spectral bands in each sub-band set are
highly similar.

2.2 Spatially Homogeneous Superpixel Segmentation

In order to utilize the local spatial information, an improved superpixel segmentation
method is designed for hyperspectral images. Superpixels are the spatially homoge-
neous local patches in an image, where the proposed superpixel segmentation method
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is improved from SLIC (simple linear iterative clustering) [15]. SLIC is a widely-used
superpixel segmentation method focused on natural images. To make the superpixel
segmentation method more effective on hyperspectral images, a novel spectral distance
is designed in the proposed method. In our method, a spatial image (one band) of the
hyperspectral image is first divided into k regular grids with equal edge size s, and then
the k initial cluster centers are formulated with spatial coordinates and spectral signa-
tures. After the cluster center initialization, each pixel is assigned to the closest cluster
center based on their distances as follows:

D(xi, ck) =
√
DSpetral(xi, ck)2 + � 2

(
DSpatial(xi, ck)

/
s
)2 (2)

whereD(xi, ck) denotes the distance between the pixel xi and the cluster center ck , and it
is composed of a spectral distance DSpetral(xi, ck) and a spatial distance DSpatial(xi, ck).
The parameter � is introduced to weigh the relative importance of the spectral and
spatial distance. In the proposed superpixel segmentation method, the spectral distance
is calculated as:

DSpetral(xi, ck) =
L∑

l=1

∣∣X̄i(l) − C̄k(l)
∣∣

X̄i(l) + C̄k(l)
(3)

where L is the number of the sub-band sets, X̄i(l) and C̄k(l) denote the mean value of
the l th sub-band set for the pixel xi and ck , respectively. Regarding the spatial distance,
the Euclidean distance is adopted as:

DSpatial(xi, ck) =
√

(mi − mk)
2 + (ni − nk)2 (4)

After the pixel assignment, the cluster centers are updated by calculating the mean vec-
tors of all the pixels belonging to the cluster. Repeat the pixel assignment and cluster
center update, and superpixels are generated if no further changes of the labels. Combin-
ing the highly correlated neighbor spectral bands selection and spatially homogeneous
superpixel segmentation, the SS3DHRs are extracted.

3 Experimental Results

3.1 Hyperspectral Dataset Description

In our experiments, we exploit the classical hyperspectral image—Indian Pines (IPs)
data set to evaluate the performance of the proposed method. The IPs hyperspectral
image is obtained by the airborne visible/infrared imaging spectrometer (AVIRIS) over
Indian Pines test site in North-western Indiana. AVIRIS is a widely-used hyperspectral
imaging sensor, which produces hyperspectral images with 220 spectral bands ranging
from 0.2 µm to 2.4 µm. After removing the spectral bands covering the region of water
absorption 104-108, 150-163 and 220, the total band number of IPs data is 200. The
spatial size of the utilized IPs data is 145 × 145 pixels with the resolution 20 m per
pixel. The IPs data set contains 16 reference land cover classes, where the ground truth
map is displayed in Fig. 2 (Table 1).
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Fig. 2. Ground truth of the Indian Pines hyperspectral image.

Table 1. Number of samples of different classes in the Indian Pines data set.

Class Name Numbers

1 Alfalfa 46

2 Corn-notill 1428

3 Corn-mintill 830

4 Corn 237

5 Grass-pasture 483

6 Grass-trees 730

7 Grass-pasture-mowed 28

8 Hay-windrowed 478

9 Oats 20

10 Soybean-notill 972

11 Soybean-mintill 2455

12 Soybean-clean 593

13 Wheat 205

14 Woods 1265

15 Buildings-Grass-Trees-Drives 386

16 Stone-Steel-Towers 93

Total number 10249

3.2 Spatially Superpixel Segmentation Results

The superpixel segmentation is crucial for the accurate spatial information extraction.
In the proposed superpixel segmentation method, there are two important parameters
which may affect the segmentation results. The first one is the number of sub-band set
L, and another one is the weight parameter � . The number of the sub-band sets L is
decided by the threshold t. When the threshold t is small, more neighbor bands may
be grouped into a sub-band set, thus the number of the sub-band set will be small. In
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this situation, the image processing speed will be fast, but the superpixel segmentation
accuracy might be reduced as less spectral information is exploited. When the threshold
t is large, the converse is true. To balance the efficiency and accuracy, the threshold t
is optimized as 0.9 in our experiments. Regarding the parameter � , it may affect the
boundary adherence and the regularity of the superpixel shape. If the parameter � is
too small, the spectral distance will play the dominant role. The segmented superpixels
might be unregular in shape in this case, as shown in Fig. 3(a), where the parameter �

equals 0.0001. If the weight parameter is too large, the spatial distance will be dominate,
thus the generated superpixels can not adhere tightly to the image local boundaries. As
displayed in Fig. 3(c), the segmented superpixels are degraded as regular blocks with
a large weight parameter � = 0.5. Comprehensively consider the importance of the
spectral and spatial distance, the parameter � is set as 0.005 in our experiments, where
the superpixel segmentation results is shown in Fig. 2(b). Compared with Fig. 3(a) and
(c), the superpixel segmentation results in Fig. 2(b) are compactness and exhibitingmore
accurate boundary adherence.

Fig. 3. Superpixel segmentation results with different weight parameter � . (a) � = 0.0001, (b)
� = 0.005, (c) � = 0.5.

3.3 Hyperspectral Image Classification Based on SS3DHR

In this experiment part, we apply the SS3DHR for the hyperspectral image classification.
Hyperspectral image classification is a classical and meaningful application in practice.
In traditional classification methods, different types of classifiers are designed to group
each pixel into one specific class. For a given hyperspectral image with spatial size m×
n and spectral bands number z, we need to deal with m× n spatial pixels with z spectral
features for each pixel. In thismanner, the processing speedmight be very slow.Whenwe
extract SS3DHRs from the hyperspectral image, a SS3DHR is regarded as a unit for the
classification, where the number of spectral and spatial features is greatly reduced, and
thus the efficiency of the hyperspectral image classificationwill be increased. Among the
traditional hyperspectral image classification methods, the random forests (RF) method
[16] usually produces good performance due to its decision-making mechanism. For a
better comparison, we apply the RF method for hyperspectral image classification based
on the single pixel and SS3DHR, respectively. The size of SS3DHR is important for the
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hyperspectral image classification. When the size of SS3DHR is large, i.e., the whole
hyperspectral image is divided into only a few SS3DHRs, the classification process will
be very quick. However, some spectral and spatial information might be lost in this case,
thus the classification accuracy might be decreased. On the other hand, if the size of
SS3DHR is small, the classification accuracy will be increased, and at the meantime,
the processing time will be increased. Based on the experimental performance, we set
the initial size of superpixel s = 5 and the sub-band selection threshold t = 0.9. In this
experiment, we simply use the mean value of the spectral and spatial features in each
SS3DHR for the classification. For the two compared methods, we randomly select 10%
of all the samples for training and the rest for testing, where the classification maps are
shown in Fig. 4. Figure 4(a) displays the classificationmap based on the traditional pixel-
wise RFmethod, where the classification overall accuracy (OA) is 0.748; Fig. 4(b) shows
the classification map with the SS3DHR-based RF method, where the classification OA
is 0.716. Compared with the two methods, the classification accuracy of the SS3DHR-
based RF method is slightly lower than the pixel-based RF method. However, regarding
the processing speed, the pixel-based RF method costs 3.64 s and the SS3DHR-based
method costs 1.18 s, where all the experiments are performed usingMATLAB (R2016a)
on a PC with 3.5 GHz CPU and 32 GB RAM. Obviously, the proposed SS3DHR-based
method is much faster than the traditional pixel-based method. It is worth noting that in
our experiment, we simply use the mean value of each SS3DHR for the classification. In
real hyperspectral image applications, other statistical characteristics of SS3DHRs can
be exploited for amore accurate classification. In reality, some applications are efficiency
first and some others are accuracy first. When dealing with the real hyperspectral image
applications, we can set different sizes of the SS3DHR to achieve various requirements.

Fig. 4. Classification maps with the pixel-based and SS3DHR-based RFmethods. (a) pixel-based
RF method, (b) SS3DHR-based RF method.

4 Conclusion

In this paper we propose a new method to extract SS3DHRs from hyperspectral images.
First, correlation coefficients between the two adjacent bands are calculated; based on
the correlation coefficients, the highly correlated neighbor spectral bands are selected
with a simple procedure. For the spatial local region extraction, an improved superpixel
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segmentation method is proposed with a new spectral distance. Combining the spectral
sub-band sets and the spatial superpixels, the SS3DHRs are finally generated fromhyper-
spectral images. In experiment part, the extracted SS3DHRs are applied for hyperspec-
tral image classification, where the experimental results demonstrate the effectiveness
and efficiency of the proposed method. Furthermore, the proposed SS3DHR extraction
method can also help to speed up various subsequent hyperspectral image applications.
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Abstract. Cable surface inspection based on vision is of great significance for
the scientific management and maintenance of cable-stayed bridges. In this paper,
a set of automatic multi-view cable surface image acquisition system is designed
in which images from four fixed cameras are wirelessly transmitted to a service
computer, and then stitched together on the service computer. Clustering segmen-
tation and histogrammatching are used to enhance the collected images, and a new
cylindrical objective image stitching algorithm is designed to obtain the distorted
unwrapping cylindrical image from the 360° capture of the cable. The precise
location and measurement of the damage can be achieved quickly by combining
with the prior geometric dimensions of the cable. The tests on several groups of
bridge data show that the proposed algorithm can solve the problem of feature-
less cylindrical cable surface and the problem of complex background conditions,
which is of great significance for quickly determining the position and distribution
of cable surface damage.

Keywords: Cable inspection · Cylindrical back-projection · Image stitching

1 Introduction

Cable-stayed bridge has become the main type of long-span bridges, and the number of
cable-stayed bridges rapidly increased [1]. Cables are the most important load-bearing
components in cable-stayed bridges, are exposed to the air, wind, rain and sunshine
for a long time. The polyethylene (PE) pipe is the protective layer for the cable. With
age, the PE pipe will meet with fatigue, corrosion, and their coupled effects [2]. The
long-accumulated damage causes internal steel wires to break, causing serious traffic
accidents such as the collapse of the can tho bridge in 2007. The conventional inspection
method of the cable is mainly to inspect the surface of the cable by using a lifting vehicle
or a lifting trolley. This method has strong subjectivity, low detection efficiency, and is
dangerous to the inspectors [3–5]. Therefore, it is crucial for developing an automatic
image-based surface damage detection system to assess the conditions of the cables [6].

Nowadays, many tunnel inspection systems using computer vision have been devel-
oped to improve the efficiency and scientificmanagement. [6] presented a damage detec-
tion algorithm which combines image enhancement techniques with principal compo-
nent analysis (PCA) algorithm. They developed an image enhancement method together
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with a noise removal technique. Then the images are projected into PCA sub-space to
identify and localize damage in cable surface of cable-stayed bridges. [7] developed the
imaging and inspection of the Deep Tunnel Sewerage System (DTSS). They created
cylindrical images captured by a novel 360° revolving camera system and developed
a geometrical relationship to combine the camera trajectory with scene geometry to
automatically create a panoramic view of the tunnel. [8] proposed an modified scale-
invariant feature transform (SIFT) algorithm for stitching defect images from multiple
perspectives.

According to these research, we design a set of automatic multi-view cable surface
image capture and process device. The cables’ surface images are completely captured
by four cameras and then transmitted wirelessly to principal computer. Next, due to the
collected data has the characteristics of less surface texture and complex background
environments, clustering segmentation and histogram matching are done with the data
to enhance image quality in the principal computer. Thereafter, we use cylindrical back-
projection to unwrap cylindrical surface images and stitch them.

In summary, we make the following contributions:

• We develop an efficient segmentation algorithm combined clustering segmentation
with histogram matching to separate the background from the stay cable.

• We infer a geometric relation between 2D captured cylindrical image and unwrapped
image.

• We propose an image stitching algorithm aimed at some feature-less objects like stay
cable, tunnel, bridge deck and so on.

2 Related Work

2.1 Image Segmentation

Image segmentation is a basic and key technology in the field of image processing. Its
purpose is to separate the object from the background and provide a basis for subsequent
processing such as object detection and accurate positioning. Some current methods are
edge detection segmentation, region-based segmentation, clustering segmentation, etc.
[9]. We use clustering segmentation and edge detection segmentation in this paper. Edge
detection segmentation segments an image by detecting the edge of different areas. The
edge are often detected by derivative operations, and derivatives are calculated using
differential operator, like the Roberts gradient, Sobel operator, Laplacian, etc. [10].
Then is the clustering segmentation. Clustering is to divide the data set into several
subsets according to the similarity among the elements. Clustering segmentation is an
unsupervised statistical method, which does not require training samples and plays an
important role in the application of image segmentation [11–15].

2.2 Cylindrical Back-Projection

For some cylindrical or spherical objects that are consisted of surface, distortion of sur-
face texture will occur in the process of imaging. The solution to this problem is to
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project the image texture onto a two-dimensional plane that to convert the cylindrical
projection into a plane projection, which is a process of cylindrical back-projection. [16]
proposed a universal back-projection formula for all curved objects. Other recent meth-
ods [17, 18] were proposed by adding auxiliary rectangles, applying to the recognition
of cylinder QR code.

2.3 Image Stitching

Image stitching is to use image processing technology to find overlapped parts in the
imageswith overlapping areas,match the images, and thenmerge into an image. Feature-
based registrationmethod is themainstream of image stitching algorithm. Image features
can include corners, outlines, textures, or other special structures. Harris corner [19],
FAST [20], SIFT [21], and SURF [22] features are often used in feature registration.
There are two chief problems in stitching of cylindrical cables: registration of feature-less
data under different four viewpoints.

3 Method

In this paper, the cable surface images of cable-stayed bridge captured by four CCD
cameras are stored in the computer. For the stored images, we firstly separate the cable
surface from the background, and then rectify the distorted cable surface. Lastly, we
present an algorithm based on grid partitioning to stitch them. Figure 1 is shown the
process of cable surface stitching.

Fig. 1. The process of cable surface stitching.
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3.1 Cable Surface Segmentation

In the acquisition images of bridge cables, all images are in the scene having parallax
with the cable surface foreground and background. If only a single global transformation
is used for modeling, it is easy to cause image distortion. Figure 2 shows the result of
feature matching under parallax. Therefore, it is necessary to separate the cable surface
from the background in our image processing.

Fig. 2. The result of feature matching under parallax shows different homography.

Fig. 2. The process of cable surface segmentation: (a) original image; (b) pre-segmentation; (c)
edge detection; (d) line-segment detection; (e) border fitting; (f) background erase and color
harmony.

In the segmentation between the cable surface and the background, it is prone to errors
if the method of line-segment detection is simply used on account of the possible exis-
tence of rubber drainage tubes on the surface of the cable and complex background. If
the images are segmented by the method of line-segment detection, some of which will
segment the rubber drainage tubes and the background.
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Therefore, the clustering segmentation and Flood Fill algorithm are selected to back-
ground segmentation, which can reserve the shape information of cable surface and
remove its background. In image processing, starting from a starting node, the adjacent
nodes are extracted or filled with different colors. After the segmentation, the brightness
of four images from four cameras is different due to the parallax of the four cameras,
which is adjusted by histogram matching. The specific algorithm steps are as follows:

(1) Pre-segment images by mean-shift and flood fill.
(2) Get edges from pre-segmented images and original images by Canny operator.
(3) Detect lines by using Line Segment Detector (LSD) algorithm.
(4) The outer rectangular bounds are employed to fit lines.
(5) Erase background.
(6) Adjust brightness by histogram matching algorithm.

3.2 Cylindrical Back-Projection

The image of cable surface acquired byCCDdigital cameras is cylindrical surface image.
In order to meet the requirements of subsequent image stitching, the cable image needs
to be expanded into a plane image. We first build an ideal cylindrical back-projection
model, assuming that the image of cable surface is an ideal cylindrical image, and is
expanded along the direction of the generating line.

The imaging geometric relationship is shown in Fig. 3.:

Fig. 3. Cylindrical back-projection: A 3D point P(x, y, z) in a cylinder with known radius is
projected onto a planar image as a point p′(u, v).

A 3D point P = [x, y, z]Tcan be projected into a 2D pixel of a planar image, p′ =
[u, v]T , using some known parameters: cylinder’s radius, r, focal length, f, the distance
from camera’s optical center Oc to the center of the cylinder, z. This 3D point can be
calculated as follows:

⎡
⎣
x
y
z

⎤
⎦ =

⎡
⎣
r cos θ

d
r sin θ

⎤
⎦ (1)
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where angle, θ , and height of the point, d are two parameters in cylinder. Based on similar
triangle theory, we can derive the following equations in the condition of the center of
the cylinder locates at the center of the image:

m

h
= 2r

w
= z

f
(2)

PC

p′c
= AC

ac
(3)

The following formula is derived by Eq. (2) and Eq. (3):

v =
{
h

2
− zd

2r(z − r|sin θ |)w

u =
{

w
2 (1 − z|cos θ |

z−r|sin θ | ), θ ≥ −π
2

w
2 (1 + z|cos θ |

z−r|sin θ | ), θ < −π
2

(4)

An example of the result of cylindrical back-projection is shown in Fig. 4.:

Fig. 4. (a) 2D cylindrical image. (b) unwrapped image after cylindrical back-projection.

3.3 Image Stitching

In order to obtain a complete cylinder image, we need to stitch the acquired image. How-
ever, the image features are relatively simple and there are few local similar regions so
that we choose SIFT algorithm to accurately extract key points and realize image match-
ing through feature point description. SIFT feature extraction is very time-consuming
and difficult to achieve real-time computing speed, so the SiftGPU, namely to achieve
real-time calculation is obtained by using the graphics acceleration rate, aimed at 400 ×
300 size of image point extraction can be achieved with the same speed of 4 frames per
second, basically guarantee the real-time positioning effect, can complete the processing
of large amount of data in a short time.
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In addition, the key to the success of stitching is to obtain uniform matching points.
However, due to the lack of features and uneven distribution on the cable surface, the
SIFT feature matching algorithm guided by global homography cannot obtain uniform
matching points.Weuse the followingmethods to solve this problem: first, the cylindrical
back-projection formula in 3.2 is used to expand the cylindrical image to obtain more
features; Second, APAP (As Projective As Possible) algorithm [27] is used to divide the
image into multiple local image blocks by mesh, and the uniformity of each local image
block is obtained to make the matching points more uniform and more dense. Figure 5
is shown the the comparison between two different feature matching methods.

Fig. 5. (a) SIFT feature matching algorithm guided by homography. (b) feature matching
algorithm guided by local homography with meshing.

4 Experimental Results

To verify the key parts of the above, we tested several groups of data collected from a
cable-stayed bridge in Kaifu district, Changsha city named Hongshan Bridge as shown
in Fig. 6. Hongshan Bridge is the world’s largest span cable-stayed bridge without back
cable pylon, and the only concrete pylon bridge with a height of more than 100 m [24].

The experimental result is shown in Fig. 7, demonstrating that the proposed algorithm
are suitable for cable detection.
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Fig. 6. The data collection in Hongshan Bridge.

Fig. 7. The result of stitching.

5 Conclusion

In this work, we conduct digital image processing on the damage detection of cable
surface. The core work is the splicing of the cable surface with few features to obtain a
complete cable image. The preliminarywork is to extract the cable area from the complex
background accurately, then we use the derived cylindrical back-projection formula to
rectify it. Finally through a series of feature extraction andmatching, stitching, we obtain
a complete cylinder image. The experimental results show that the system can be applied
to actual cable detection.
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Abstract. In this work, we present a newmodule for semantic segmentation. This
new module is designed as a plug in module for the backbone networks to fur-
ther boosting the segmentation performance using the principal semantic feature
analysis with covariance attention. Specifically, the spatial and channel covari-
ance attention module are designed respectively, which can filter noisy regions
and help the CNN to adaptively extract the dominant semantic content. By using
the proposed covariance attention modules, a covariance attention architecture is
built over FCN. Experimental results demonstrate the substantial benefits brought
by the proposed covariance attention scheme, and show that the covariance atten-
tion mechanism is feasible and effective for improving the accuracy of semantic
segmentation.

Keywords: Image segmentation · Neural networks · Covariance matrices ·
Hand-engineered features

1 Introduction

Semantic segmentation, as a fundamental task in computer vision, has been extensively
studied whose goal is to assign a semantic label for every pixel of image. The success
of many artificial intelligence applications, such as autonomous driving [5, 6], med-
ical diagnosis [9, 10], and image synthesis [12], are conditioned on the accuracy of
the semantic segmentation. One of the breakthroughs is fully convolutional network
[2] (FCN) and many state-of-the-art models are based on it [16, 17], and remarkable
progress has been made.

Recent efforts have revealed the importance of the attention modules for deep con-
volutional neural networks [18, 19] based computer vision tasks. In general, for a visual
recognition task, the neural network is often required to emphasize certain content while
avoiding distracting information. However, features extracted by the attention module
can produce more consistent semantic information [9].

In order to extract attention features, many attention modules based on dependencies
betweendata distribution havebeendesigned for complexvisual analysis.Non-local neu-
ral networks [22] utilized a self-attentionmechanism to captured long-range dependence
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information between pixels in image for object detection. Yuan et al. [23] employed an
object context pooling attention scheme to learn the object context map recording the
similarities between all the pixels and the associated pixel for scene parsing. Specially,
in SeNet [24], Squeeze-and-Excitation block has been proposed to improve the qual-
ity of dominant semantic representations by explicitly modeling the interdependencies
between channel features.

While the above-mentioned attention modules are successful in improving recogni-
tion precision for vision tasks, the following aspects are ignored: (1) The original feature
usually needs to be transformed into another feature with different shape, such as scalars,
vectors, to adapt to the calculation process of dependence, which may interfere with the
original spatial distribution of the feature to some degree. (2) Because of the high volume
of the feature maps, the computation of attention matrices or tensor encoding dependen-
cies normally needs high time and space complexity. (3) Currently, all the features are
learnt by network and the hand-engineered feature, whichmight provide complementary
information and human prior for learning, are abandoned.

In this work, we formulate the dependencies over local and global clues as a covari-
ance matrix projection process to obtain more consistent feature representation. More
specially, motivated by design of image covariancematrix presented on the 2DPCA [25],
we proposed the feature covariance matrix (FCM), which can be directly constructed via
using the original feature map without breaking the its spatial structure. Using the FCM
to explicitly model the dependencies between the data distribution of feature maps, the
feature representation ability can be further enhanced. Sine there is no feature shape
conversion, the proposed approach, feature covariance attention mechanism, has lower
space and time complexity. It enables CNN network to further enhance the dominating
feature and filter irrelevant information.

Specifically, we incorporate the covariance matrix analysis, which is an important
tool in classic pattern recognition, into the design of attention modules for deep seman-
tic segmentation framework. Similar to [17], the spatial and channel covariance attention
modules are built by adopting the proposed FCM. In addition, inspired by the covariance
descriptor [26] which exploits the dependency between heterogeneous statistics to boost
the accuracy of classic vision tasks before the deep learning era, we further integrate the
FCM with the hand-engineered features and expect richer spatial feature representation
can be obtained by combining the handcraft and learnt features.

The overview of the proposed framework is depicted in Fig. 1 and the contribution
of this work lies in following aspects:

1) A novel approach that exploits covariancematrix to generate attentionmatrix encod-
ing the dependencies over local and global clues is proposed, which has lower
complexity.

2) Base on this method, the spatial and channel covariance attention modules are
designed respectively, which can boost the accuracy of semantic segmentation.

3) An edge attention feature is presented to retain and enhance the presentation of
details by combining the hand-engineered and learnt features.

4) We build a network named CANet for scene parsing by using above mentioned
covariance attentionmodules and achieve very competitive performance onmultiple
challenging datasets.
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Fig. 1. Overview of the proposed covariance attention semantic segmentation network.

2 Related Work

Semantic Segmentation. Recent CNN based methods [11, 27, 28] for semantic seg-
mentation have achieved significant success. Fully convolutional network (FCN) [2],
firstly replace the last full connected layer with a deconvolution layer to get high level
and highly refined features. In [10], the features in encoder are used to combined to the
output features within decoder. The atrous convolution proposed by Chen et al. [13, 29,
30] can expand the receptive field without extra parameters. In DeepLab v2 [30], the
researchers proposed a multi-scale robust semantic segmentation method, atrous space
pyramid pool (ASPP). Later, DeepLab v3 [31] utilized image-level features over ASPP
to encode global context. Similar to ASPP, Zhao et al. [14] used pyramid poolingmodule
to integrate the information of local and global context in the PSPNet. Yang et al. [31]
skillfully combined ASPP module with dense connection presented in Densenet [32] to
model DenseASPP for wider field of perception.

Attention Mechanism. Attention model had been proved very successful in many
vision tasks, including detection [22], classification [24] and the semantic segmentation
[16, 17]. There are basically two strategies to build attention mechanism so far: (1) learn
a weight vector or mask by a new branch in neural network to reconstruct raw features
toward emphasizing the important local regions or channel-wise features and filtering
irrelevant information, such as [24, 33] (2) explicitlymodel rich contextual dependencies
over local and global features, in which, generally, a huge correlation matrix or tensor
between each spatial point features is calculated to enhance the dominating semantic
extraction relative to inessential information, such as [16, 17, 22].

Covariance Analysis. Covariance is widely used in the areas of pattern recognition,
computer vision and signal processing, etc. [34, 35]. One of the most famous of these
is principal component analysis (PCA), a feature extraction and data representation
technique. In order to reduce the expenditure of memory and time in traditional PCA,
Yang et al. [25] propose the 2DPCA that can obtain “image covariance matrix”, directly
from original images. Zhang et al. [36] explicitly indicated 2DPCA which is working
in the column direction of images when evaluating a image covariance matrix. For
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efficient image representation and recognition, the researchers develop the 2DPCA,
i.e. (2D)2PCA [36] by simultaneously considering the row and column directions. In
this paper, we refer to 2DPCA, and exploits feature covariance matrices to model the
dependencies over local and global clues.

3 Covariance Attention Mechanism

In the section, the design of spatial and channel covariance attention module is
firstly provided. Then, the architecture of the proposed network (CANet) for semantic
segmentation will be descried.

3.1 Spatial Covariance Attention Module

The spatial covariance attention module (SCA) is designed to focus the principal spatial
distribution. As shown in Fig. 2, let M ∈ R

C×W×H be the output features at the last
layer of encoder. Two convolution layers comprised of 1 × 1 filter are applied on M,
individually, to generate two feature maps F ∈ R

C ′×W×H and B ∈ R
C×W×H . Split

F according to the channel dimension, F =
{
P1, P2, P3 · · · PC ′}

. Inspired by image

covariance matrix [25], we define the following matrix:

Covs = 1

C ′
C ′∑
i=1

(
Pi − P̄

)T (
Pi − P̄

)
(1)

where Pi ∈ R
W×H and P̄ = 1

C ′
C ′∑
i
P i . The matrix Covs ∈ R

H×H is called the spatial

feature covariance matrix. By applying softmax on the spatial feature covariance matrix
Covs , corresponding spatial covariance attention matrix Hs ∈ R

H×H can be denoted
by

Hs
i, j =

exp
(
Covsi, j

)

∑H
j=1 exp

(
Covsi, j

) (2)

where Covsi, j represents the (i, j) element in covariance matrix Covs, and Hs
i, j can

be consider as the dependency between the i th column and the j th column of spatial

Fig. 2. The detail of spatial covariance
attention module.

Fig. 3. The detail of channel covariance
attention module.
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features. Then, the original feature maps are reconstructed by performing matrix multi-
plication between the spatial covariance matrixHs and channel featuresB for extracting
the dominant semantic information, and thus the primary spatial feature (PSF)M∗ can
be expressed by

M∗
j = λB j · Hs + M j (3)

where the M∗
j is the attention feature of j th channel feature in M after covariance

matrix projection. λ is a learnable coefficient of weight.
Additionally, although primary spatial information contained in feature map can be

captured by the spatial covariance attention operation, some elaborate details of raw fea-
ture, including boundary, texture and so on, are also crucial to the semantic segmentation.
To enrich the representation of primary spatial feature extracted by attentionmodules, an
edge attention feature that is generated by combining the hand-engineered edge features
with a covariance attention operation is proposed. To be specific, two fixed convolution
kernels, Sobel, are used on learnt feature provided by neural network to extract edge
features, and then they are enhanced by covariance attention operation.

First of all, two tensors, T ∈ R
C ′×W×H and N ∈ R

C×W×H , are obtained by two
convolution layers with 1 x 1 filter on the featureM, respectively. Then, first-derivative{
T

′
x, T

′
y

}
and

{
N

′
x, N

′
y

}
in X direction and Y direction of T and N are computed

respectively by two Sobel filters and their magnitude T ′ and N ′ can be calculated by
Eqs. (4) and (5). As shown in the top part of Fig. 2, similar to the feature F , the edge
feature magnitude T ′ will be feed to the spatial feature covariance matrices generator
for an edge covariance attention matrix Hedge ∈ R

H×H .

T ′ =
√
T

′
x
2 + T

′
y
2

(4)

N ′ =
√
N

′
x
2 + N

′
y
2

(5)

Finally, the edge attention feature (EAF) E after covariance matrix projection can
be denoted by

E j = N
′
j · Hedge (6)

where the E j and N
′
j indicate j th channel feature in E and N ′, respectively. Since

the edge attention feature E is essentially spatial feature, it is merged with the primary
spatial features M∗ by summation. Therefore, M′, the spatial attention features with
edge attention can be formulated as:

M′
j = λB j · Hs + μN

′
j · Hedge + M j (7)

where both ofλ andμ are the learnable coefficient ofweight. Using the covariancematrix
to model the dependencies over local and global clues, the spatial attention module is
capable of producing more consistent sematic information.
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3.2 Channel Covariance Attention Module

In order to highlight the primary channel feature and reduce irrelevant channel informa-
tion, a channel covariance attentionmodule (CCA) utilizing channel covariancematrices
is proposed. Different from the SE block [24], where all contextual semantic information
within each channel panel is coarsely aggregated to a scalar value, these elements in each
column or row in feature map are taken as the presentation of each channel feature and
then the average of a series of covariance matrices is used as the final relation descriptor
between each channel. The details are shown in the Fig. 3, follow the design of spatial
covariance attention module, two convolution layers with 1 × 1 filter are utilized on
M so that two original feature maps �′ and �′′ can be obtained for evaluating a pair
of channel covariance matrices with different direction. Then we fix channel direction
and split �′,�′′ according to the width and height dimensions of feature, respectively.
Let �′ = {

Q1, Q2, Q3 · · · QW}
and �′′ = {

R1, R2, R3 · · · RH}
, Qi ∈ R

H×C and
Ri ∈ R

W×C . Two analogous channel feature covariance matrices can be separately
presented by

CovC0 = 1

W

W∑
i=1

(
Qi − Q̄

)T(
Qi − Q̄

)
(8)

CovC1 = 1

H

H∑
i=1

(
Ri − R̄

)T(
Ri − R̄

)
(9)

where the CovC0 and CovC1 ∈ R
C×C . Then, softmax operation:

HC0
i, j =

exp
(
CovC0

i, j

)

∑C
j=1 exp

(
CovC0

i, j

) (10)

HC1
i, j =

exp
(
CovC1

i, j

)

∑C
j=1 exp

(
CovC1

i, j

) (11)

in which HC0
i, j or H

C1
i, j denotes a correlation coefficient of i th channel relative to j th

channel feature. Using the channel covariance attention matrices to map �′ and �′′
respectively, the channel attention feature can be easily acquired. Then the two channel
attention features are fused by simply adding. Thus, the channel attention feature (CAF)
can be presented by following equation:

M◦
j = γ

(
�′

j · HC0 + �′′
j · HC1

)
+ M j (12)

where M◦
j expresses the j th channel attention feature in M after covariance matrix

projection, and the γ is trainable scalar quantity. By using the covariance matrix to
model the dependencies between channel features, the channel covariance attention
module is able to obtain more consistent semantic information. Illustrative examples are
represented in Figs. 4 and 5, which show the contributions of different modules.



Principal Semantic Feature Analysis with Covariance Attention 223

Image            Truth             Raw             SCA            CCA 

Fig. 4. Visualization of the effects of the attention
module on Cityscapes validation set. The 1, 2 and 3
rows respond respectively to the ‘car’, ‘person’,
‘traffic light’ class.

Fig. 5. Visualization result of the effects
of edge attention feature for a certain
channel feature.

3.3 Network Architecture

As illustrated in Fig. 1, we adopt the popular convolutional network ResNet as our back-
bone and two dilated convolutions with stride 2 and 4 are severally employed in the
last two ResNet block for high resolution feature maps. Then, the spatial and channel
covariance attention module are directly joint in parallel. By leveraging the two pro-
posed covariance attention modules, the dominant semantic representations contained
in the features that produced by backbone will be adaptively captured, which is helpful
to enhanced original feature. And the majority of fusion module consists of three con-
volution layers with 1 × 1 filter, in which two filters are employed to handle the output
of spatial and channel covariance attention modules, respectively. Then, an element-
wise sum operation is performed on the spatial attention features and channel attention
features. The final fusion features will be used to generate pixel-level prediction.

4 Experiments

In this section, the CANet is evaluated on multiple datasets and the experimental results,
including the qualitative and quantitative analysis of the proposed attention module, are
presented.

4.1 Dataset

Cityscapes is a semantic segmentation dataset focusing on urban street scenes from 50
cities, which contains 5000 images with pixel-level labels and 20000 images with coarse
annotations that involve 19 categories of both objects and stuffs. Each image has

2048× 1024 pixels. In this work, only the finely annotated images are used and they
are divided into 2,975/500/1,525 images for training, validation, and testing, respectively.

Pascal Context contains 4,998 images for training and 5105 images for testing, all
of which have detailed semantic labels for wholes scenes. This dataset is re-annotated
from Pascal VOC and there are 60 classes used for evaluation.

ADE20K, as a scene parsing benchmark, provides more than 20k fully annotated
images with 150 objects and stuff categories. It has up to 1,038 different image-level
labels in total. The dataset is divided as follows: 20,210 for training, 2,000 for validation
and 3,000 for testing.
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4.2 Training and Implementation Details

Following [16], the prediction outputs of CANet are bilinearly upsampled by a factor
of 8 to calculate the loss. The standard SGD optimizer is used to optimize the entropy
loss, and the momentum coefficient is set to 0.9 and the weight decay coefficient is
set to 0.0001. All the models are initialized using ImageNet pre-trained weights. In
addition, we adopt a poly learning rate policy: the initial learning rate is multiplied by

1 −
(

i ter
max_i ter

)power
with power = 0.9. The base learning rates for cityscapes and

ADE20k are set to 0.003, and for Pascal-context, it is set to 0.001. We randomly crop a
375 × 375 region on Pascal-context and ADE20k. For cityscapes, training images are
randomly cropped to 768 × 768 region. Owing to the limited GPU memory, the batch
size is set to 6.

4.3 Ablation Studies for Attention Modules

In the ablation study, extensive experiments are conducted on the validation set of
Cityscapes for verifying the validity of proposed covariance attention module. The indi-
vidual component of the full attentionmodule is added to the dilated network one by one.
To further explore the effectiveness of the edge attention features, it was separated from
spatial attention features for better observation. The results are summarized in Table 1.
PSF, CAF, EAF respectively represent primary spatial feature, channel attention feature,
edge attention feature. We can observe that the proposed covariance attention modules
can remarkably improve the accuracy of scene parsing by leveraging feature covariance
matrix to model the dependencies over local and global information to focus the primary
semantic information. Compare with the bassline, denoted as dilated FCN, incorporating
the primary spatial feature (PSF) improves the performance by 2.5–3.5% no matter how
deep the backbone network is, which proves the effectiveness of the primary spatial fea-
ture. In additional, by adding the channel attention feature to baseline, the performance is
also improved by 2–3%.When these two types of attention feature are integrated together
into the dilated FCN, the result represents an improvement of 4.5% for ResNet50. Even
for a deeper network (Res101), a remarkable improvement is also yielded.

In addition, it can be observed that a substantial benefit, about 0.7%, can be obtained
by using of edge attention features, whichmake the proposed network achieving 80.02%
and 81.18% for different backbone respectively. In general, the results of ablation study
demonstrate the feature covariance matrix has ability to model the dependencies over the
local and global clues to further improves the performance of semantic segmentation.

4.4 Complexity Analysis

In recent work [17], a spatial attention module (PAM) and a channel attention module
(CAM) are proposed, which are able to aggregate contextual information to model
dependence for every pixel. To demonstrate the benefits and limitations between it and
the proposed attention modules, their performances are evaluated on the Pascal-Context
test.

For a fair comparison, both of themodel are trainedwith same training set and param-
eters. The accuracies are shown in Table 2, and time complexity and space complexity
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Table 1. Ablation study on the validation set of cityscapes

Method BaseNet PSF CAF EAF mIoU

Dilated
FCN

Res50 74.92

CANet Res50 ✓ 76.83

CANet Res50 ✓ 78.51

CANet Res50 ✓ ✓ 79.43

CANet Res50 ✓ ✓ ✓ 80.02

Dilated
FCN

Res101 77.41

CANet Res101 ✓ 80.32

CANet Res101 ✓ 79.97

CANet Res101 ✓ ✓ 80.41

CANet Res101 ✓ ✓ ✓ 81.18

are also given in Table 3. It can be observed that the both methods have comparable per-
formance in terms of mIoU. More specifically, the proposed attention modules perform
slightly better than PAM and CAM for the deeper backbone and worse for the shallower
backbone. But PAM is about an order of magnitude higher in time complexity than the
proposed SCA and about two orders of magnitude higher in space complexity. For chan-
nel attention module, the CCA has the same time complexity and spatial complexity
compared with CAM. From the accuracy point of view, CCA slightly outperforms the
CAM when the backbone is Res101.

Table 2. Performance comparison of attention
modules on Pascal context test.

Method mIoU (Res50) mIoU (Res101)

PAM 48.28 50.33

SCA (proposed) 48.22 49.85

CAM 48.21 49.81

CCA
(proposed)

47.74 50.13

PAM + CAM 48.50 49.95

SCA + CCA 48.17 50.53

Table 3. Complexity analysis of attention
methods.

Method T(n) S(n)

PAM O
(
(WH)2C

)
O

(
(WH)2

)

SCA O
(
WH2C

)
O

(
H2

)

CAM O
(
C2WH

)
O

(
C2

)

CCA O
(
C2WH

)
O

(
C2

)

FromTable 3, another interesting aspect can be observed is that the proposed attention
modules are more friendly to the high-resolution semantic segmentation, since its space
and time complexity growth is much smaller than the baseline when the input feature
map size became bigger (W and H).
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4.5 Comparison with the State-of the-Arts

The benchmarking results against the state-of-the-art segmentation networks are pre-
sented in Tables 4 and 5. In addition, since the proposed method is relevant to DANet
[17] that recently achieves very impressive results on multiple benchmark datasets, we
retrain the DANet model with same training parameters and environment as proposed
CANet for a fair comparison.

Table 4. ADE20K performance.

Methods BaseNet mIoU

SegNet [1] 21.64

FCN [2] 29.39

DilatedNet [4] 32.31

CiSS-Net [8] Res50 42.56

RefineNet [11] Res152 40.70

PSPNet [14] Res101 41.96

UperNet [15] Res101 42.66

DSSPN-Softmax [21] Res101 42.03

DANet [17] (Retrained) Res101 42.74

CANet (Proposed) Res101 43.01

Table 5. Pascal-context performance.

Methods BaseNet mIoU

FCN-8 s [2] 37.8

ParseNet [3] 40.4

VeryDeep [7] 44.5

CiSS-Net [8] 48.7

RefineNet [11] Res152 47.3

DeepLab-v2 [13] Res101 45.7

PSPNeta [14] Res101 47.8

EncNet [20] Res101 51.7

DANet (Published) Res101 52.6

DANet (Retrained) Res101 50.0

CANet (Proposed) Res101 50.5

ADE20k Datasets. Table 4 shows the comparison results on the validation set of
ADE20k. Among all the compared algorithms, the proposed CANet performs the best,
even if the dataset has very complicated scenes and diverse objects. Note that we do not
use additional data and online hard examplemining (OHEM) strategy in this experiment,
which can further boost the performance.

Pascal-Context Datasets. To further demonstrate the generality of the proposed atten-
tion method for semantic segmentation, we carry out experiments on Pascal-context,
and the results are listed in Table 5. Compared with the published methods, we can obvi-
ously observe that the CANet built by using the covariance attention method obtains
a competitive accuracy without bells and whistles. Moreover, CANet has better result
rather than DANet under the same training set, which further indicates that the proposed
covariance attention mechanism can effectively capture the dominant semantic informa-
tion via employing feature covariance matrix as a projection to promote segmentation
effect.
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4.6 Qualitative Analysis

We further adopt the method introduced in [37] to visualize the changes in the features
before and after the covariance attention module. As shown in Fig. 4, for each input
image, we randomly select a class as a representative and show its corresponding raw
features and attention features in columns 2, 3 and 4. Intuitively, by modeling the depen-
dencies over local and global information, the covariance attention feature finally aggre-
gate richer contextual information compared with the original features. For example, in
the third row, the traffic light area reacts more sensitively after attention processing, and
the sky, which is often the background of traffic lights, becomes brighter.

In addition, we specifically visualize the impact of EAF. As shown in Fig. 5, When
the original features are fused with EAF features, the edges within features become
clearer, which helps the CANet to improve the segmentation effect.

5 Conclusion

In this paper, a new attention module, covariance attention, has been presented in this
work. This new method is attractive for the following reasons: 1) Covariance matrix is
used as a new attention module to model the global and local dependency for the feature
maps and the local and global dependency is formulated as simple matrix projection
process; 2) Since covariance matrix can encode the joint distribution information for the
heterogeneous yet complementary statistics, the hand-engineered features is combined
with the learnt feature effectively using covariance matrix to boosting the segmenta-
tion performance; 3) A semantic segmentation framework based covariance attention
mechanism is proposed and very competitive performance have been obtained.
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Abstract. Human hand features contain rich gender information. In
this paper, we propose an approach to boost the performance of a
given gender recognizer through the hierarchical fusion of human hand
subspace features, texture features, and geometric features. We first
use Eigenhand to extract subspace features. Hand texture features are
obtained by applying local binary mode histograms. Then we get the
geometric features by calculating the length ratio of fingers other than
the thumb. We call this method as Geometric Gender Descriptor of Hand
Images (GGD-H). Based on these, we use the serial strategy to fuse tex-
ture features and geometric features in the feature-level and then fuse its
classification result with the subspace feature in the decision-level. The
fused vectors are used as the final feature vectors to feed the support vec-
tor machine for our gender recognition task. Through this method, we
can obtain gender difference features from multiple directions, thereby
enhancing the perception ability of the same human hand in different
scenes and the robustness of feature expression. The final experimental
results show that the method proposed in this paper achieves a recog-
nition rate of 0.988 on 11K Hands, exceeding the common hand gender
recognition scheme.

Keywords: Gender recognition · Hand feature · Decision-level fusion

1 Introduction

Gender recognition is one of the foremost research topics of pattern recognition
and computer vision. Computer systems with gender recognition capabilities
have essential applications in many areas such as criminal investigations [6] and
human handprints research in archeology [10]. Many studies show that the hand
contains many unique features that can reveal gender information [1]. Compared
with facial image models that vary with facial expressions and other factors,
the variability of hand images is much lower. So the hand is suitable for feature
extraction and model building [1]. As we all know, it is difficult for human eyes to
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judge the gender identity of an object based on the hand. However, from another
perspective, its hard-to-recognize nature can precisely protect the privacy of
users in the identity recognition system. Moreover, the storage requirements
of hand images are low, and the amount of calculation is small. Therefore, it
has significant advantages over facial recognition as well as a wide range of
application needs and research prospects.

At present, there is no mainstream algorithm framework and widely used
large data sets for gender recognition based on hand features. The lack of this
point makes the relevant research lack a unified comparison standard. So the
current research results are few. Researchers [3,11,12] often use hand textures
or geometric features for gender recognition. The acquisition of texture features
is relatively simple. But the surface of the hand skin is affected by many factors,
which can easily interfere with gender recognition. Geometric features contain
distinct information about gender differences, but they are not easy to obtain and
may have geometric errors. Both methods have advantages and disadvantages.
Currently, there is no research scheme to fuse the above two features.

In this paper, we propose an approach to boost the performance of a given
gender recognizer through the multi-directional fusion of features. The illustra-
tion of our method is shown in Fig. 1. We first use the Eigenhand method to
extract subspace features and use the Support Vector Machine (SVM) to do the
first recognition. After that, the extracted textures and geometric features are
fused in the feature-level for the second recognition. The feature-level fusion of
texture features and geometric features can obtain more distinctive gender infor-
mation than single features and reduce the redundant information caused by the
correlation between the two features sets. For the extraction of texture features,
we adopt the Local Binary Patterns Histograms (LBPH) method [2] for process-
ing. We extract geometric features by the Geometric Gender Descriptor of Hand
Images (GGD-H). Finally, the decision-level fusion is performed on the above two
classification results to get the outcome. We further adopt decision-level fusion
not only to sufficiently synthesize the performance results of the three kinds of
features but also to avoid the problem of excessively high dimensions caused by
the fusion of the three types of features at the feature layer. Therefore, we can
enhance the robustness of the recognition system, improve the efficiency of the
algorithm as well as facilitate the development of real-time recognition system.

The major contributions of our work are summarized as follows.

– We use Eigenhand, LBPH, and GGD-H for hand multi-directional feature
extraction. The method improves the perception ability of the recognition
scheme in different scenarios of the same hand and enhances the robustness
of the system.

– We perform feature-level fusion and decision-level fusion for gender recog-
nition to enhance the fault tolerance of the recognition method. The final
accuracy is better than the recognition accuracy obtained by other existing
studies.

The rest of this paper is organized as follows. In Sect. 2, we briefly review
related work. Section 3 provides an overview of related feature extraction methods.
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Fig. 1. The framework of hierarchical fusion algorithm for hand based gender
recognition.

Section 4 proposes our fusion principles. In Sect. 5, we introduce the data set used
and the experimental results of gender recognition. Finally, this paper is concluded
in Sect. 6.

2 Related Work

Gender recognition is a binary classification problem, which requires to deter-
mine whether the given information belongs to a man or a woman according to
certain feature information.

Brown et al. [5] proposed that the ratio of the index finger to ring finger
contained gender information. The ratio of the index finger to the ring finger of
the female is greater than that of males.

The geometric characteristics of the hand mainly include the palm width,
length, and aspect ratio. And secondly, the relationship between the index fin-
ger and the ring finger. Most hand gender recognition base on geometric fea-
tures. Amayeh et al. [3] used the region and boundary features based on Zernike
moments and Fourier descriptors to describe the geometric features of the hand
shape. Wu and Yuan [11] used palm width and palm aspect ratio for feature
extraction. Xie et al. [12] proposed a gender recognition method based on the
hand back skin texture (HBST), which describes the gender difference well.

In recent years, the use of Convolutional Neural Networks (CNN) has led to
many state-of-the-art results in image classification problems. Mahmoud Afifi
[1] used CNN to perform multi-level and complete feature extraction on hand
images, which is an extremely practical feature extraction scheme.



Hierarchical Fusion for Gender Recognition Based on Hand Images 233

3 Hand Image Representation

For high-dimensional original images, the correlation between each dimensional
feature is high. The PCA method can not only reduce the data dimension but
also remove the correlation among features. In this way, we can improve the
efficiency of the algorithm and obtain an uncorrelated low-dimensional feature
space. Besides, for the human hand, as a part of the body, it has texture features.
When it is extracted as a geometric image, it also has geometric features. There-
fore, obtaining multiple feature sets at the same time can enhance the robustness
of feature expression. In this way, the recognition result will not cause errors due
to the detection deviation of a specific feature.

3.1 Eigenhand

Principal Component Analysis (PCA) is an extremely effective data dimension-
ality reduction method.

The basic formula of PCA is a linear transform as shown in Eq. (1).

Xn · WT
k = Xk (1)

For hand image, each row in the original data set Xn can represent a
piece of hand information. Xk is the data of Xn reduced from n-dimension to
k-dimension. WT

k ∈ R
k×n. Each row of WT

k can be regarded as a sample. That
is, each row can also represent a type of hand information, which we name as
“Eigenhand”. Therefore, each row of WT

k represents a principal component, and
the importance of the samples decreases from the first row to the k-th row.

Eigenhand method can not only extract the subspace feature, but also reduce
the dimension of the feature vector efficiently, which significantly improves the
efficiency of the algorithm. The reshaped “Eigenhand” is shown in Fig. 2.

Fig. 2. The examples of Eigenhand
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3.2 LBPH of Hand Texture

Local Binary Patterns Histograms (LBPH) method is proposed by Ahonen
et al. [2]. It is based on LBP operator [7]. For a pixel, the LBP value can generate
by comparing it with the pixels in its n neighbors as shown in Eq. (2).

lbp(x, y)k =
{

1 (gray(x, y)k ≤ gray(x, y))
0 (gray(x, y)k > gray(x, y)) (2)

where k represents the k-th point around the center pixel. Then the LBP value
of the center pixel can be obtained by Eq. (3).

lbp(x, y) =
neighbors−1∑

k=0

lbp(x, y)k · 2n (3)

We use 8-sample LBP operator, the feature value of each pixel is precisely
between 0 and 255, so an LBP map can be formed. Based on the LBP map,
the image can be divided into x × y sub-regions. For each region, a statistical
histogram hi can be obtained. H = [h1, h2...hm], j = 1, 2, ...m, m = x × y is the
final LBPH vector of Hand Texture (LBPH-HT).

3.3 Hand Geometry Descriptor

Just like the human face, the hand also has geometric characteristics that contain
rich gender information. But these features cannot be included in the texture
feature. Therefore, it is considered to superimposing the texture feature and the
geometric feature of the hand to obtain a new combined feature vector.

Geometric Gender Descriptor of Hand Images. Dean R. Snow [9] and
Brown et al. [5] found that the ratio of the index finger to the ring finger of the
female is higher than that of male. The core idea of our method which we refer
to as Geometric Gender Descriptor of Hand Images (GGD-H) is to obtain the
gender difference by calculating the finger length ratios.

According to the keypoint detection method, the geometric position (x, y)
of each keypoint can be obtained. We record the geometric position of the i-th
point as si = (xi, yi), i = 1, ..., 10. The lengths of the index finger (d2), middle
finger (d3), ring finger (d4) and little finger (d5) can be obtained by calculating
|s3 − s4|, |s5 − s6|, |s7 − s8|, |s9 − s10|. Finally we can get the ratio of index
finger to ring finger, middle finger and ring finger to little finger according to
Eq. (4). ⎧⎨

⎩
r1 = d2

d4

r2 = d2
d5

(4)
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Geometric Keypoints Detection of Hand Images. To form the GGD-H,
we need to get the hand keypoints. The following are our two solutions.

DOS Curvature Method. The keypoint detection is mainly divided into the
hand contour extraction, calculation of the curvature of each point on the out-
line, and obtain the keypoint whose curvature is the extreme value. We use the
Difference of Slopes (DOS) [4] method to detect the curvature of the hand con-
tours. For any point on the outline, we take two points before and after ω points
from this point and form two vectors v1, v2 with this point. Then we calculate
the angle θ between them as shown in Eq. (5) and obtain the contour curvature
map of the hand.

θ = arccos
(

v1 · v2
|v1| |v2|

)
(5)

Theoretically, the extreme value protrusion on the contour curvature map cor-
responds to the part of the edge of the hand contour that changes suddenly,
namely the fingertip or finger valley. So the keypoints of the hand can be found
by extracting the extreme point.

OpenPose Method. The keypoint detection of the hand is mainly to find the
geometric position of the fingertips, finger valleys, and the joint parts between
them. The CMU Perceptual Computing Lab of Carnegie Mellon University
released the OpenPose keypoint detection model [8]. We use this model for key-
points detection.

According to the Eq. (5), the curvature graph is shown in Fig. 3 when ω is 20.

Fig. 3. The curvature of hand contour points

However, due to the dense point set of the hand contour, the feature points
can not be extracted by selecting the top 10 points directly, as shown in Fig. 4(a).
Therefore, we extract the extreme points of curvature at intervals of 40 to achieve
the filtering effect. According to the above curvature diagram, the keypoint posi-
tions of each fingertip and finger valley can be obtained, as shown in Fig. 4(b).
Figure 4(c) shows the detection results of OpenPose method. Then the length
of each finger and its ratio r1, r2 can be calculated in order.
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(a) (b) (c)

Fig. 4. Detection results of the two schemes: (a) Failed extraction example of scheme
2, (b) Successful extraction example of scheme 2, (c) Extraction example of scheme 2

4 Hierarchical Fusion Scheme

We get Eigenhand, LBPH-HT, and GGD-H in Sect. 3. Among them, the sub-
space feature covers the overall characteristics, while the texture feature and
geometric feature separately cover certain aspects of the hand. Therefore, we
fuse the texture and the geometric feature in the feature-level to get a more
comprehensive feature. However, in order not to make the fused feature dimen-
sion too high, we do not blend the subspace feature in the feature-level. Instead,
we use it and the above fused feature for the first recognition and then merge
the recognition results of the two in the decision-level.

4.1 Feature-Level Fusion

We denote M ∈ R
m×n as the LBPH-HT matrix, where m is the number of

samples, n is the feature dimension of LBPH-HT for each sample, and D ∈ R
m×r

is the geometric feature matrix, where r is equal to 2, corresponding to the r1
and r2 values of each sample. Then we perform feature-level fusion on LBPH-HT
and GGD-H by Eq. (6).

F = M ⊕ D (6)

The fused feature matrix is F ∈ R
m×f where f = n + r.

4.2 Decision-Level Fusion

After feature-level fusion, the class prediction probability matrix of the classi-
fier for each sample is recorded as X1. The probability matrix obtained by the
subspace feature is marked as X2. To have more accurate decision-making, we
perform second-level decision fusion after the first-level decision, according to
Eq. (7).

X= (1−λ)X1 + λX2 (7)

Where λ needs to take the appropriate threshold according to the recognition
effect of X1 and X2. Each dimension vector of X is xi, then the input sample
set of the decision level classifier SVM is {(x1, y1), ...(xl, yl)}, i = 1, ..., l, where
yi = {0, 1}, 0 means female, 1 means male.
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4.3 Classifiers

In order to enhance the reliability of the experiment, we experimented with
three different classifiers: Support Vector Machines (SVM), Linear Discriminant
Analysis (LDA), and XGBoost.

In the case of SVM, we divided the boundary between male and female by
finding a maximum margin hyperplane. SVM has excellent generalization abil-
ity. Its own optimization goal is to minimize structural risk, not empirical risk.
Therefore, through the concept of margin, a structured description of the data
distribution is obtained, thus reducing the requirements for data scale and data
distribution. In the case of LDA, we need to find the best discriminant vector
space to maximize the distance between the two types of data and minimize the
distance within the class. XGBoost is a tree integration model. It will integrate
the classification results of many tree models to get the final result. So it is
usually better than the Decision Tree.

5 Experiments

5.1 Dataset

Our experimental data comes from the 11k Hands data set [1] published by
York University. The data set covers 11076 hand images (1600 × 1200 pixels)
from 190 experimental subjects between 18 and 75 years old, including the palm
and back of the hand. The metadata records associated with each image include
ID, gender, age, skin color, and a set of captured hand information such as
right or left hand, hand side (dorsal or palm), and logical indicators. The logical
indicators refer to whether the hand image contains accessories, nail polish, or
irregularities. Our study focuses on gender recognition. Therefore, we selected
metadata records other than age as the initial data recordset.

5.2 Feature Extraction and Result Analysis

For the original dimension of 11076 × 12288, we retained 95% of the principal
component variance. The data size after dimensionality reduction is 11076× 314.
We set the first 7500 samples of the data set as the training set and the remaining
3576 samples as the test set. For the Eigenhand method, the accuracy of the test
set is 0.984. We can see that the Eigenhand includes the main features of the
hand image very well and improve the classification recognition efficiency of the
classifier. In the meanwhile, effective dimensionality reduction has dramatically
improved the effectiveness of the algorithm.

Then, we take the obtained LBPH-HT feature directly as the input of the
SVM classifier. The input dimension of the data is 11076× 3776. Then we divided
the data set by the same ratio. The accuracy of the test set is 0.941. We can
see in Table 1 that the LBPH-HT, as a general feature extraction method, has
strong applicability and flexibility in each recognition scenario. It is a generally
reliable scheme.
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Table 1. The recognition effect of each feature

Eigenhand LBPH-HT GGD-H (DOS) GGD-H (OpenPose)

Accuracy 0.984 0.941 0.622 0.642

AUC 0.996 0.972 0.461 0.527

According to the Sect. 3.3, we can obtain the detection results d2, d3, d4, d5
and r1, r2 respectively. We can see the results of DOS method and OpenPose
method in Table 1. Due to the development of hand keypoint detection technol-
ogy, the extraction of individual geometric features still can be improved.

5.3 Hierarchical Fusion

Feature-Level Fusion. Next, we superimpose the acquired GGD-H and
LBPH-HT dimensions as input to the classifier. The feature vector dimension
expanded from 11076 × 3776 to 11076 × 3378. Under the same SVM parameter
settings, the effect is as follows.

Table 2. Recognition effect of feature-level fusion

LBPH-HT+GGD-H (DOS) LBPH-HT+GGD-H (OpenPose)

Accuracy 0.873 0.947

AUC 0.948 0.979

As shown in Table 2, the performance of the LBPH-HT fused with GGD-H
is significantly improved. Compared with the two geometric feature extraction
schemes, the improvement effect of OpenPose is better with the accuracy of
0.947. The geometric features of the hand can help improve the accuracy of the
model.

The effectiveness of feature-level fusion can be further verified by the pure
OpenPose method result in Table 1.

Table 3. Comparison of the recognition results of each classifier

SVM LDA XGBoost

Accuracy 0.947 0.900 0.877

Precision 0.945 0.8492 0.920

Recall 0.910 0.889 0.735

F1-score 0.928 0.866 0.817
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We further use this fusion feature to verify its effectiveness on different clas-
sifiers, as shown in Table 3. It shows that the recognition results of the SVM
classifier are best on the accuracy and other evaluation standards. The ROC
curves of each classifier on the test set are shown in Fig. 5.

Fig. 5. ROC curves of all classifiers

Decision-Level Fusion. Although the fused features achieve good results on
the SVM classifier, it is still lower than the 0.984 recognition rate of the Eigen-
hand method. To further improve the recognition rate, we choose SVM as the
second-level decision classifier and perform decision-level fusion according to the
theory in Sect. 4.2. Table 4 shows that the final recognition rate increase from
0.984 to 0.988. The performance of the two fusions is shown in the Fig. 6.

Table 4. The effect of two fusion operations

Feature-level fusion Decision-level fusion

Accuracy 0.947 0.988

Precision 0.945 0.976

Recall 0.910 0.982

F1-score 0.928 0.979

AUC 0.980 0.998

At present, there are relatively few research results on gender recognition
of hand features. Many research results are based on different data sets, and
most of them are small samples. So these results are not comparable in terms of
recognition rate. Therefore, we can only make a qualitative comparison between
our method and some methods in recent years, as shown in Table 5.
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Fig. 6. ROC of two fusion operations and PCA method

Table 5. Method comparison

Amayeh et al. [3] Wu and Yuan
[11]

Afifi [1] Ours

Feature Zernike moments
and Fourier
descriptors

Palm aspect
ratio

CNN+LBP Fusion of subspace,
texture and
geometric features

Classifier LDA PSSVM SVM SVM

Number of data set 40 30 190 190

Data set size 40 180 11076 11076

Accuracy 0.980 0.850 0.973 0.988

6 Conclusion

In this paper, we investigate the problem of gender recognition based on hand
features. Based on the observation of the biological characteristics of the hand,
we extract hand feature sets by three different feature expressions of Eigenhand,
LBPH-HT, and GGD-H. After that, we perform two fusions. For the first time,
feature-level fusion is achieved on LBPH-HT and GGD-H to enhance the fault
tolerance of the feature expression. In the second time, we perform decision-
level fusion on the recognition results to improve the robustness of the model.
In our work, we use classic and efficient algorithms such as PCA and LBPH,
and our intuitive and concise geometric feature calculation methods to ensure
the efficiency of our algorithm. The two fusion operations enable us to achieve
a high accuracy comparable to the CNN method.

Gender recognition research based on hand features is an emerging research
direction and field. With the application needs of biometrics and identity authen-
tication in recent years, as well as the better availability and privacy protection
of hands, The field has made great progress. The work of this paper is based on
this background. In future work, we will further explore more geometric features
and examine the possibility of application in this field.
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Abstract. In order to solve the problems of insufficient accuracy of
pedestrian bounding boxes in person search and large-scale person
matching. A novel person search framework is proposed, which includes:
(1) A multi-layer cascade heatmap mechanism (MCHM) is proposed,
which aggregates pedestrian features by multi-layer heatmaps cascaded
and improves the accuracy of the pedestrian bounding box by optimizat-
ing the offset between the center of the bounding box and the center
point. (2) A learnable part-based pedestrian feature weight calculation
module is proposed, which can learn the weight of the part according
to the importance of the part-based feature instead of manually set
hyperparameters. (3) A group feature correlation graph convolution net-
work (GFCGCN) is proposed, which can calculate the similarity between
group pedestrian features and provide a more accuracy end to end per-
son search work. Some ablation studies and comparative experiments on
datasets CUHK-SYSU, PRW show that our model can effectively achieve
more accuracy pearch search with accuracy of 88.7% rank-1 and 78.2%
mAP.

Keywords: Pedestrian re-identification · Convolutional neural
network · Graph convolutional network · Person detection · Person
search

1 Introduction

Pedestrian re-identification is a research, which aims at matching a target person
with a gallery of images. Although numerous methods have been proposed, most
methods [1,2] mainly rely on external object detectors to detect pedestrians
in the video, and then perform pedestrian matching on candidate sets. These
methods treat detection and re-identification as two separate tasks. Existing
pedestrian detectors inevitably produce false detections, missing detections, and
misalignments, which will harm the final searching performance significantly.
Person search has recently emerged as the task of finding a person, provided as
a cropped exemplar, in a gallery of non-cropped images [3,4].
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Although the existing works have tried to address these bottlenecks, these
works generally have the following deficiencies: 1) They ignored the impact
of inaccurate pedestrian bounding boxes on pedestrian re-identification. The
general object detection model usually detects multiple categories of objects.
Obviously the wrong category will have a negative impact on pedestrian re-
identification. 2) The simple pedestrian feature similarity measurement method
is not robust enough. Both Euclidean distance and Consine distance require the
feature to be highly robust. The information such as background texture has
a great influence on distance measurement. 3) They do not consider the influ-
ence of the crowd features around the target pedestrian on the re-identification
results. If the pedestrians around the target all appear in another camera, the
confidence that the target appears in that camera should be higher.

To address this deficiency, an novel person search framework is proposed in
this paper. This framework uses MCHM to aggregate information on features to
reduce the impact of background texture in pedestrian features and improve the
accuracy of pedestrian bounding boxes. And the GFCGCN module is proposed
to calculate group pedestrian features so as to achieve more accurate pedestrian
re-identification. The contributions of our model are as follows:

(1) A multi-layer cascade heatmap mechanism (MCHM) is proposed, which
aggregates pedestrian features by multi-layer heatmaps and improves the
accuracy of the pedestrian bounding box by optimizating the offset between
the center of the bounding box and the center point.

(2) A learnable part-based pedestrian feature weight calculation module is pro-
posed, which can learn the weight of the part according to the importance
of the part-based feature instead of manually set hyperparameters.

(3) A group feature correlation graph convolution network (GFCGCN) is pro-
posed, which can calculate the similarity between group pedestrian features
and provide a more accuracy end to end person search work.

2 Related Work

In this section we first introduce prior art on the two separate tasks of person
detection and person re-identification, and then introduce the person search.

2.1 Pedestrian Detection and Re-identification

In recent years, convolutional neural networks (CNNs) at pedestrian detection
joint learning the classification model and the features in an end-to-end fashion
[5]. Commonly used pedestrian detection models can be divided into single-
stage models and two-stage models. While single-stage object detectors [6,7]
are preferable for runtime performance, the two-stage strategy of Faster R-CNN
remains the more robust general solution [8], versatile to tailor region proposals
to custom scene geometries [9] and to add multi-task branches [10,11].

Person re-identification aims to associate pedestrians over non-overlapping
cameras. Most previous methods try to address this task on two directions, i.e.,
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feature representation and distance metric learning. Some methods design differ-
ent kinds of hand-crafted features to achieve certain success on small datasets.
But these methods are limited for large-scale searching. While there are two
main trends in the modern CNN model learning: (1) by Siamese networks and
contrastive losses; (2) by ID classification with crossentropy losses. In the first,
pairs [12,13], triplets [14] or quadruplets [15] are used to learn a corresponding
number of Siamese networks, by pushing or pulling the same or the different
person ids, respectively. In the second, [16] define as many classes as people IDs,
train classifiers with a cross-entropy loss, and take the network features as the
embedding metric during inference.

2.2 Person Search

Person search is a recently introduced problem of matching a probe person
bounding box against a set of gallery whole scene images [17]. Some methods
[11,26] design online learning object functions to learn large number of identi-
ties in the training set and achieve great performance on recent person search
datasets. However, these methods only employ individual appearance for ver-
ification, which ignores the underlying relationship between individuals in the
scene. This is challenging due to the uncontrolled false alarms, misdetections, and
misalignment emerging in the auto-detection process. The multi-scale matching
problem turns out a more severe challenge in person search.

3 Method

In this section, the proposed person search framework will be introduced in
detail. Firstly, a backbone network is used to encode features and a multi-layer
cascaded heatmap mechanism (MCHM) is proposed to makes the bounding box
more accurate, where the center point and bounding box are continuously opti-
mized by training. Secondly, a group feature correlation graph convolution net-
work (GFCGCN) is applied to output the similarity estimation. The overall
structure of the framework is shown in Fig. 1.

Fig. 1. An overview of the person search framework.
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3.1 Multi-layer Cascade Heatmap and Anchor-Free Based
Detection

The ResNet is adopted as backbone to extract deep features and then a multi-
layer cascaded heatmap mechanism (MCHM) is proposed for further information
aggregation. In a non-cropped image, it usually contains rich background infor-
mation, which brings difficulty to detection and re-identification. To reduce the
interference caused by background information, the MCHM outputs heatmaps
from different levels of features to make the model pay more attention to pedes-
trians. Finally, multi-level heatmaps use up-sampling layers to aggregate infor-
mation on features to achieve more accurate pedestrian detection.

The common object detection model obtains the bounding box coordinates
by regression, which depends on the quality of the regression. However, this
method usually causes information loss or contains too much noise information
such as contains too much background information. In this case, the anchor-free
based detect head of the MCHM not only outputs the bounding box coordinates,
but also outputs the center point of the pedestrian. During the training steps,
the bounding box is continuously corrected by minimizing the offset between
the center point and the center of bounding box as shown in Fig. 2. Hence the
center point is responsible for localizing the objects more precisely. Note that
the benefits for pedestrian detection performance may be marginal. But it is
critical for pedestrian re-identification because the pedestrian features extracted
according to bounding box.

Fig. 2. An example diagram of pedestrian bounding box optimization process.
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where M̂ is the estimated heatmap, and α, β are the parameters.
Assume the outputs of the bounding box size and the offset as Ŝ ∈ RW∗H∗2

and Ô = RW∗H∗2, respectively. For each GT box bi = (xi
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i
1, x

i
2, y

i
2) in the

image, we can compute its size as si = (xi
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i
2−yi

1). Similarly, the GT offset

can be computed as oi = ( ci
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4 ,
ci

y

4 ) − (� ci
x

4 �, � ci
y

4 �). Denote the estimated size and
offset at the corresponding location as Ŝi and Ôi, respectively. Then we enforce
l1 loss for the two outputs:

Lbox =
N∑

i=1

||oi − ôi||1 + ||si − ŝi||1 (2)

3.2 Pedestrian Feature Extraction and Group Feature Proposal

Once the bounding box obtained, the pedestrians can be extracted by a STN
module. Because there is a gap between feature coordinates and image coordi-
nates. The STN module can correct this gap by affine transformation. As indi-
vidual features are not sufficient for real world retrieval task, a group features is
employed to help calculate the weights of the part-based features. Suppose the
set of persons which appear on both probe and gallery scenes as positive feature
pairs. The way of judging whether two features belong to the same person is to
compute the similarity between the feature pairs. xr

i , x
r
j is denoted as the r − th

part from feature i and j. As shown in Fig. 3, consider different feature parts,
the final similarity s(i, j) can be represented as the summation of different parts:

s(i, j) =
R∑

r=1

∗wrdist(xr
i , x

r
j) (3)

where dist denotes the Euclidean distance between xr
i , x

r
j , R is the number of

part (R = 6 in our framework). wr is the contribution weight of the r−th feature
part.

Fig. 3. A diagram of pair of features similarity weights calculation.

Because the weights of different parts are significantly different across sam-
ples, due to possible occlusions, different viewpoints and lighting conditions. The
weight wr will have a impact on the final similarity. In this case, the model uses
two fully connected layers and a Softmax layer to output a learnable weights wr.
It takes in R pairs of feature vectors, and the Softmax layer output R normal-
ized weights. Given an object pair (i, j), the corresponding label y = 1 if these
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two samples belong to the same person, otherwise y = 1, the loss function is as
follows:

L =

{
1 − s(i, j) if y = 1
max(0, s(i, j) + α) if y = −1

(4)

This loss term builds a margin α between positive and negative pairs, and thus
safeguards the discrminativeness of the embedded features.

3.3 Group Feature Correlation Graph Learning

For a given image pair A, B. The motivation is to determine whether the target in
image A also appears in image B. Therefore, assuming that a target is captured
in image A and B, respectively. All need to be done is to determine whether
these two targets are the same pedestrian. For probability events, if most of the
pedestrians around the target in A appear in B, then there is a higher confidence
that the target also appears in image B. Based on this, we fully consider the
impact of crowd on pedestrian re-identification.

Fig. 4. An overview of the model structure of the GFCGCN network.

Given K pedestrian group feature pairs (Ai, Bi), i ∈ 1, ..,K. A graph is
dessigned to jointly take the target pairs and the K group feature pairs as
well as single features (only appear in one image) into consideration as shown
in Fig. 4. In this graph, the target pedestrian node is the center of the graph,
which is connected to all the group feature nodes for information aggregation
and node weight updation.

Assume the graph mentioned above is denoted by G. Where G = (V,E), V
represents the N-dimensional feature vector, and E represents the edge set of
the graph. Each node is assigned with a pair of features (XAj

,XBj
), j ∈ 0, ...,K.

Suppose the images have K group feature pairs, then N = K + 1. We define
X ∈ RN∗2d and A ∈ RN∗N , where d is the pedestrian feature dimension. A
denote the adjacent matrix associated with graph G and it can be expressed by
the following formula:

Ai,j =

{
1 if i = 1 or j = 1 or i = j,

0 otherwise
(5)
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where i, j ∈ 1, ..., N . To better implement the model, the adjacency matrix A is
normalized for the ease of learning. The adjacency matrix A can be seen as a
stack of {A1, ..., AT }, each At is normalized symmetrically by At = Λ− 1

2
t ∗ Ât ∗

Λ− 1
2

t . Where Ât = At + I and Λt is the diagonal node degree matrix of Ât. Â
and Λ are used to denote the stack of Ât and Λt, respectively. Finally, a group
feature correlation graph convolution network (GFCGCN) is proposed to update
the weights and output the similarity. The network structure can be shown in
Fig. 4 and the layer-wise GFCGCN propagates as follows:

GFC(V l, A)l+1 = σ(Λ− 1
2 ∗ Â ∗ Λ− 1

2 ∗ V (l) ∗ W (l))) (6)

where V (l) is the outputs of the l − th layer, and V (0) = X as input. W (l) is the
learnable parameters and σ is the ReLU activation function. Finally, a fully con-
nected layer is applied to merge all the vertices into a 1024-dimensional feature
vector. And a binary Softmax layer is employed supervise network training.

4 Experiments and Analysis

4.1 Datasets

CUHK-SYSU. The CUHK-SYSU dataset [17] consists of 18184 images, labeled
with 8,432 identities and 96,143 pedestrian bounding boxes (23,430 boxes are
ID labeled). The images, captured in urban areas by hand-held cameras or from
movie snapshots, vary largely in viewpoint, lightning, occlusion and background
conditions.

PRW. The PRW dataset [4], acquired in a university campus from six cam-
eras, consists of 11,816 images with 43,110 bounding boxes (34,304 boxes are ID
labeled) and 932 identities. Compared to CUHK-SYSU, PRW is with features
less images and IDs but many more bounding boxes per ID (36.8, against 2.8 in
CUHK-SYSU), which makes it more challenging.

4.2 Implementation Details

An ImageNet pretrained ResNet-50 model is applied as a backbone. The model is
trained 60 epochs with the Adam optimizer and a starting learning rate of 0.001.
The learning rate is reduced by 10% every 10 epochs. All the training images are
resized to 512 ∗ 128. Besides, a standard data augmentation including rotation,
scaling and color jittering is applied to enhance data. The model is implemented
on Pytorch, trained and tested on two Tesla P100 GPUs.

4.3 Multi-layer Cascade Heatmap Mechanism

The MCHM is used to detect pedestrians and extract features from non-cropped
images. In order to verify the effectiveness of the MCHM, some relevant com-
parative experiments and ablation experiments are conducted.



Person Search via Anchor-Free Detection 249

Table 1. A comparison of accuracy between the proposed MCHM and common object
detection methods.

Methods AP AP50 AP60

Faster RCNN [19] 26.8 46.7 36.7

RGB-D Faster RCNN [18] 36.7 59.5 38.9

MFI-SSD [20] 45.0 63.5 46.7

CornerNet [21] 47.6 63.7 53.1

CenterNet [22] 52.4 64.8 56.3

MCHM (ours) 56.8 70.1 57.1

Comparative Experiments. Some common object detection models propose
bounding boxes by anchor, which can be summarized as anchor-based methods.
Besides, there are some key point-based methods called anchor-free methods.
In this section, the proposed MCHM is compared with two sorts of common
object detection methods on the datasets CUHK-SYSU. Among them, RGB-D
Faster RCNN [18], Faster RCNN [19] and MFI-SSD [20] are employed as the
anchor-based method. And CornerNet [21] and CenterNet [22] are employed as
the anchor-free method. The results are shown in Table 1. It can be seen from the
experiment that the proposed MCHM is significantly better than the common
object detection model under the optimization of the pedestrian center point.

Ablation Study. Different level of cascaded heatmap layers (3, 4, 5 layers) are
applied to the ablation experiment to explore the performance of the MCHM.
The experimental results are shown Fig. 5.

Fig. 5. The effect of MCHM on pedestrian feature extraction. The greater the number
of cascaded heatmaps, the more clustered pedestrian features are and the less back-
ground information it contains.

Without using MCHM, the model can only learn some roughly information
around pedestrian features. Usually that features contain too much background
information, which is harmful to pedestrian re-identification. The MCHM can
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Fig. 6. The accuracy of the comparative experiments on performance.

effectively reduce the background information. In addition, the different level of
cascaded heatmaps also has a greater impact on the information aggregation.
Compared with the 3-layer heatmaps cascaded, The 5-layer structure can more
accurately pay attention to the pedestrians. Overall, the MCHM can effectively
aggregate pedestrian information.

4.4 Group Feature Correlation Graph Learning

Conventionally Euclidean distance is used to calculate the similarity between fea-
tures. However, this approach often requires the features to be very robust. The
quality of the features affects the similarity result directly. This model combines
target pedestrians and contextual pedestrians to form group features to calcu-
late the similarity between features. The proposed GFCGCN model measures the
correlation between group features and finally makes a comprehensive similarity
estimation. Similarly, some research is carried out to explore the effectiveness
of the model. Firstly, some comparative experiments are performed between the
GFCGCN and some existing metric learning methods. Secondly, some ablation
experiments are conducted to study the influence of this part on the final results.
Finally, some person search results of this framework is demonstrated (Fig. 6).

Comparative Experiments. The model is compared with some previous met-
ric learning re-identification models such as IAN [11], Dis-GCN [25], as well as
some other hand-crafted features such as DSIFT [23] and LOMO [24]. The exper-
imental quantification results are shown in Table 2.

Ablation Study. In this subsection, the MCHM and GFCGCN are combined
to do ablation experiments to explore the person search result. The ablation
experiments use different backbone networks, GFCGCN and conventional dis-
tance formula. The quantitative results are described in Table 3. In addition,
the influence of the number of group features K can be qualitatived in Fig. 7
and Fig. 8. It can be seen from the curve in the figure that for five pedestrians
appearing at the same time, this model can significantly improve the effect of
pedestrian search. Therefore, this framework can be more suitable for person
search in crowded scenes.
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Table 2. Quantitative results of some comparative experiments.

Methods Datasets mAP (%) Top-1 (%) Top-5 (%) Top-10 (%)

CNN+DSIFT+Euclidean [23] CUHK-SYSU 34.5 38.6 45.8 56.8

CNN+DSIFT+KISSME [23] CUHK-SYSU 47.8 53.5 60.8 78.9

CNN+LOMO+XQDA [24] CUHK-SYSU 68.9 74.1 80.2 89.9

IAN(Resnet-34)IAN [11] CUHK-SYSU 73.1 78.0 84.2 92.4

IAN(Resnet-50)IAN [11] CUHK-SYSU 75.0 80.5 86.0 96.3

Dis-GCN [25] CUHK-SYSU 75.8 80.1 90.2 93.2

Ours CUHK-SYSU 78.2 88.7 94.8 96.5

CNN+DSIFT+Euclidean [23] PRW 17.4 23.8 32.3 40.7

CNN+DSIFT+KISSME [23] PRW 18.4 25.8 30.1 40.2

CNN+LOMO+XQDA [24] PRW 20.4 23.1 34.8 43.8

IAN(Resnet-34)IAN [11] PRW 23.0 50.8 60.8 74.7

IAN(Resnet-50)IAN [11] PRW 35.8 56.7 65.3 75.8

Dis-GCN [25] PRW 40.5 56.8 62.4 70.0

Ours PRW 57.8 72.3 80.5 86.4

Fig. 7. The impact of group feature size K on performance.

Table 3. An ablation study of the proposed MCHM mechanism on dataset CUHK-
SYSU.

Model structure Similarity estimation mAP (%) Top-1 (%)

Resnet-34+MCHM GFCGCN 73 78.3

Resnet-34+MCHM Euclidean distance 58.1 63

Resnet-34+MCHM cosine distance 56.3 59.8

Resnet-50+MCHM GFCGCN 78.2 88.7

Resnet-50+MCHM Euclidean distance 68.4 71.6

Resnet-50+MCHM Cosine Distance 65.3 70.9
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Fig. 8. The performance of different crowd sizes in the experiment. The red bounding
box represents the target pedestrian, the green bounding box represents the surround-
ing crowd, and the blue bounding box represents the pedestrian first appeared in the
scene. (Color figure online)

5 Conclusion

In this work, a novel person search framework with a MCHM module and
GFCGCN module is proposed. The framework combines pedestrian detection
and re-identification as one task and significantly improves the person search
result. Instead of identifying target independently, the framework combines the
surrounding crowds to form group features for re-identification. The framework
has been verified on public datasets and achieved better re-identification results.
It can be used to implement an end-to-end person search work in the surveillance
system.
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Abstract. Aiming at the poor accuracy of a single feature in the chal-
lenging scenarios, as well as the failure of tracking caused by partial or
complete occlusion and background clutter, a correlation filter tracking
algorithm based on feature fusion and model adaptive updating is pro-
posed. On the basis of the background-aware correlation filter, the pro-
posed algorithm firstly introduces the CN feature and integrates with
the HOG feature to improve the accuracy of tracking. Then, the Aver-
age Peak-to-Correlation Energy (APCE) is introduced, and the results of
object tracking are fed back to the tracker through the ratio changes. The
tracker is adaptively updated, which improves the robustness of the algo-
rithm to occlusion and background clutter. Finally, the proposed algo-
rithm is experimented on the self-build ship dataset. The experimental
results show that the algorithm can adapt well to complex scenes, such as
object occlusion and background clutter. Compared to the state-of-the-
art trackers, the average precision of the proposed tracker is improved
by 2.3%, the average success rate is improved by 2.9%, and the average
speed is about 18 frames per second.

Keywords: Object tracking · Correlation filter · Feature fusion ·
Model updating · APCE

1 Introduction

Visual tracking is one of the key technologies in the computer vision field, and
it has wide application prospects in video surveillance, human-computer inter-
action, medical diagnosis and so on. With the continuous deepening of research
[1–4], visual tracking has made some progress in stages, but it is difficult to accu-
rately locate the tracked object due to the interference factors such as partial
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or complete occlusion, rotation, motion blur and so on. Therefore, there are still
great challenges in building a robust tracker.

In recent years, mainstream tracking algorithms are divided into two cate-
gories, namely correlation filter and deep learning [5–8]. Among them, correlation
filters (CFs) [9–12] algorithm is a classical algorithm for object tracking, which
is favored by researchers because of its fast speed [13]. Bolme et al. [14] proposed
MOSSE filter, which was the first time to introduce CF into object tracking with
extremely fast speed. Based on that, Henriques et al. [15] introduced a Gaussian
kernel function for acceleration, and extended the single-channel grayscale fea-
ture to the multi-channel Histogram of Oriented Gradient (HOG) to improve
the tracking accuracy. Li et al. [16] proposed a scale adaptive multi-feature
fusion tracker, adding the HOG feature and CN feature [17] on the basis of
gray feature to improve the overall performance of the tracker. Besides, Danelljan
et al. [18] proposed three-dimensional filter, one-dimensional scale filter and two-
dimensional translation filter. This precise scale estimation method can be com-
bined with any other tracking algorithm without scale estimation, and won the
first place in the VOT2014 [19] competition. Since the methods based on CF are
affected by the boundary effect, in order to overcome this problem, Danelljan
et al. [20] added spatial regularization to suppress it, so that the search area
can be expanded, and Gauss-Seidel was used to solve the filter to simplify the
calculation. The models of the above algorithms are not effective for tracking
targets with deformation and motion blur. Bertinetto et al. [21] complemented
the HOG feature and color histogram feature, which was robust to motion blur,
illumination and deformation, and added scale to the HOG to improve the accu-
racy of the tracker. Galoogahi et al. [22] used the negative samples generated by
real shifts to include a larger search area and real background, and proposed an
ADMM-based optimization method to reduce the computation. In recent years,
deep learning-based methods have become more and more popular. Wang et al.
[23] proposed a lightweight end-to-end training network, DCFNet, which simul-
taneously learns deep features and performs filtering processes. Wu et al. [24]
learned the multi-level same-resolution compressed (MSC) features, which effec-
tively incorporate both deep and shallow features for efficient online tracking, in
an end-to-end offline manner.

The above methods have achieved good tracking effects in terms of accuracy
and robustness. However, in the case of complex scenes, such as partial or com-
plete occlusion, background clutter, etc., the problem of tracking loss will still
occur. For this reason, in the framework of background-aware correlation filters
(BACF), the following improvements have been made: (1) The use of excel-
lent features is the basis for accurate tracking. A single feature have defects in
accuracy. Considering the method of feature fusion to improve the accuracy of
tracking, and adding the CN feature on the basis of HOG feature. (2) In order
to better solve the problem of tracking failure caused by occlusion, the APCE
method is introduced in the online update stage to adaptively update model to
improve the robustness of the tracker.
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2 The Tracker

The proposed algorithm is based on the background-aware correlation filter,
which combines the features of HOG and CN, and introduces APCE [25] for
adaptive model update, thereby improving the tracking algorithm’s robustness
to occlusion and background clutter. The framework of the proposed algorithm
is shown in Fig. 1.

Fig. 1. Framework of the Proposed Algorithm. For each input image patch, first extract
the HOG and CN features from the prediction area, fuse the two, and then obtain
the corresponding response map through correlation filtering. APCE is introduced to
adaptively update the model to determine whether to update the model at the current
frame. Finally, update the model at the appropriate frame.

2.1 Background-Aware Correlation Filters

The background-aware correlation filters significantly increases the number of
samples based on the traditional CF method and improves the sample quality
through cropping operator, and has good real-time tracking. Therefore, We make
improvements on the basis of background perception related filters in order to
improve the accuracy of the algorithm. The basic objective function [26] of CF
is:

E(h) =
1
2
‖y −

K∑

k=1

hk � xk‖22 +
λ

2

K∑

k=1

‖hk‖22 (1)

where y is the desired output response, xk and hk represents the kth channel of
the vectorized image and filter respectively. λ is a regularization constant, and
� is the spatial correlation operator. Equation 1 is the form of a single sample.
When we use D cyclic samples, it becomes the following form:

E(h) =
1
2

T∑

j=1

‖y(j) −
K∑

k=1

hk
�Pxk[�τj ]‖22 +

λ

2

K∑

k=1

‖hk‖22 (2)

the size of the sample x changes from D to T , which is much larger. Use the
larger sample to generate a cyclic sample. [�τj ] is the circular shift operator.
Then we need to extract the middle part of the size D. This step is replaced by
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P, which is a D × T binary matrix. P can be calculated in advance, and it is a
constant matrix.

Taking advantage of the fast solution of the cyclic samples in the frequency
domain, the expression is transformed into the frequency domain. The formula
is as follows:

E(h, ĝ) =
1
2
‖ŷ − X̂ĝ‖22 +

λ

2
‖h‖22

s.t. ĝ =
√

T (FP� ⊗ IK)h
(3)

where X̂ = [diag(x̂1)�, ...,diag(x̂K)�] andˆrefers to the Discrete Fourier Trans-
form (DFT) of a signal. ĝ is a KT ×1 auxiliary variable and ĝ = [ĝ�

1 , ..., ĝ�
K ]. h is

defined as h = [h�
1 , ...,h�

K ] of size KD×1. The DFT of one-dimensional signal α
is expressed as α̂ =

√
TFα, F is an T × T orthogonal Fourier transform matrix.

IK is a K × K identity matrix (PP� = I), ⊗ refers to the Kronecker product.
Finally, the optimization solution of Eq. 3 is mainly used to put the constraint

term into the optimization function by using the Augmented Lagrangian Method
(ALM) [27].

L(ĝ,h, ζ̂) =
1
2
‖ŷ − X̂ĝ‖22 +

λ

2
‖h‖22

+ ζ̂�(ĝ −
√

T (FP� ⊗ IK)h)

+
μ

2
‖ĝ −

√
T (FP� ⊗ IK)h‖22

(4)

where ζ̂ = [ζ̂�
1 , ..., ζ̂�

K ] and μ is a penalty factor. Equation 4 can be solved
iteratively using Alternating Direction of Method of Multipliers (ADMM) [27]
technology, and ĝ and h are optimized and solved separately.

2.2 Feature Fusion

The single feature has defects in accuracy. Considering the method of feature
fusion to improve tracking accuracy, CN feature is added to the basis of HOG
feature.

Color-Naming (CN). CN is an 11-dimensional color space feature that maps
the 3-dimensional color features of the RGB space to black, blue, brown, gray,
green, orange, pink, purple, red, white, and yellow. CN can separate objects of
different colors, and it can distinguish objects and backgrounds with significant
color difference and similar texture shapes.

The CN adopts the adaptive color attribute algorithm to map the RGB space
to the 11-dimensional color space with obvious discrimination to obtain the 11-
dimensional color feature vector, which is then mapped into the 10-dimensional
subspace, reducing the dimension from 11 to 10 dimensions. Therefore, HOG and
CN are serially combined into M, assuming that the vectors of HOG and CN
are Hi(i = 1, 2, ..., 31) and Cj(j = 1, 2, ..., 10), respectively. Hi and Cj represent
the i-th channel HOG and the j-th channel CN of the image respectively, then
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M = [H1 H2 ... H31 C1 C2 ... C10], the 31-channel HOG and the 10-channel
CN extracted from the training image patch are serially fused to obtain the
41-channel M.

HOG emphasizes the edge information of the image, while CN focuses on
color information. The two features are complementary and improve the perfor-
mance of the filter. Although the idea is simple, the performance improvement
is very promising.

2.3 Adaptive Model Update

In the process of model tracking, the appearance and scale of the object will
change. Figure 2 shows the object occlusion during tracking. If the tracker is
updated at Fig. 2(b), the model may drift or even lose the object. In order to
adapt to the changes of the tracking model, the maximum response value and
the APCE are introduced to determine when the model will be updated. The
formula is as follows:

APCE(t) =
|Fmax(t) − Fmin(t)|2

mean(
∑
w,h

(Fw,h(t) − Fmin(t))2)
(5)

where Fmax, Fmin and Fw,h represent the maximum response, minimum response
and current frame response value, respectively. When the target is occluded or
lost, APCE will suddenly decrease. In this case, the model is not updated to
avoid model drift. Only when APCE and Fmax are greater than the historical
mean in a certain proportion, the model is updated, greatly reducing the model
drift.

The online updating strategy of the model is still the same linear interpolation
method as the traditional CF:

x̂(f)
model = (1 − η) x̂(f−1)

model + η x̂(f) (6)

where η if a learning rate, x̂(f)
model indicates the model at frame f .

(a) No occlusion (b) Occlusion

Fig. 2. Two frames of a ship sequence on the self-build ship dataset. (a) is the 343th
frame image of a ship video sequence, with the object in the red bounding box and
not occluded by other ships or objects; (b) is the 520th frame image of a ship video
sequence, with the object in the red bounding box and occluded by other ships. (Color
figure online)
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3 Experiments

In order to verify the reliability of the proposed tracker AMUMF (Adaptive
Model Updating Correlation Filter Tracker with Feature Fusion), the self-build
ship dataset was used for evaluation, and compared with 6 excellent correlation
filter trackers, such as KCF, SAMF, STAPLE, STAPLE CA, SRDCF, BACF.

3.1 Experimental Setup and Methodology

The experimental environment of the algorithm is MATLAB R2016a on Win-
dows system. All experiments are completed on a desktop computer equipped
with an Intel Core i5-9400 CPU at 2.90 GHz.

Experimental Dataset. The experimental data used in this research is a self-
build ship dataset, which contains 60 ship video sequences. In order to better
evaluate and analyze the advantages and disadvantages of the tracking method,
11 attributes such as illumination variation (IV), scale variation (SV), occlusion
(OCC), deformation (DEF), motion blur (MB), fast motion (FM), in-plane rota-
tion (IPR), out-of-plane rotation (OPR), out-of-view (OV), background clutters
(BC) and low resolution (LW) are used to annotate the sequence, so as to classify
these sequences. Figure 3 shows the 60 ship video tracking sequences.

Fig. 3. Ship video tracking sequences. The blue box in the figure represents the tracked
target. (Color figure online)

Parameter Settings. The specific parameters of the algorithm are set as: the
thresholds of the maximum response and APCE in the adaptive model updating
are 0.5 and 0.85, respectively. Other parameter settings are the same as the
BACF.
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3.2 Analysis

According to the evaluation method of the OTB [28], the one-pass evaluation
(OPE) method is adopted. And there are two evaluation criteria selected, i.e.
precision plot and success plot.

Table 1. Comparison of overall performance of 7 trackers on self-build ship dataset
(/%). The best results are shown in bold, and the second-ranked is underlined.

AMUMF BACF STAPLE CA SRDCF STAPLE SAMF KCF

Success rate 78.2 75.3 55.6 69.0 57.6 63.1 59.2

Precision 68.9 66.6 37.4 57.4 39.4 48.2 39.4

(a) success plot (b) precision plot

Fig. 4. Comparison of success plot and precision plot of 7 trackers on self-build ship
dataset.

Quantitative Analysis. We tested AMUMF on the self-build ship dataset and
compared with other 6 trackers. Table 1 shows the success rate and precision of
AMUMF and other 6 trackers. It can be seen that the success rate and precision
of AMUMF are 78.2% and 68.9%, respectively, and the best results are obtained.
This is 2.9% and 2.3% higher than BACF without feature fusion and adaptive
model update. Figure 4 shows the corresponding precision curve and success rate
curve of the 7 tracker. Figure 5 shows a comparison of success plot based on video
attributes. It can be seen that AMUMF performs well at low resolution (LR),
background clutter (BC), scale variation (SV), in-plane rotation (IPR), occlusion
(OCC), out-of-plane rotation (OPR). Especially under OCC, the success rate of
AMUMF is 5.3% higher than BACF.
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Fig. 5. Attribute-based evaluation. Comparison of success plot of 7 trackers on self-
build ship dataset. AMUMF outperforms other trackers in these 6 video attributes.

Fig. 6. Comparison of tracking results of 4 types of trackers. Each row represents a
sequence.

Qualitative Analysis. We selected 3 representative video sequences for qual-
itative analysis, and compared AMUMF with BACF, SRDCF and SAMF as
shown in Fig. 6. All three sequences under LR. In addition, the 1st sequence
under OCC and BC. Only AMUMF continues to track accurately, other track-
ers are lost. The 2nd sequence under IPR, AMUMF and BACF can continue
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to track accurately, other trackers produce drift. In the 3rd sequence, two ships
with the same appearance intersect. In addition to BACF, other trackers can
track the target, but only AMUMF can accurately locate.

4 Conclusion

In the framework of background-aware correlation filter, a correlation filter
tracker based on feature fusion and model adaptive updating is proposed. Two
kinds of features are extracted, HOG and CN, and they are serially fused to
obtain the final response map, so that the object is accurately located. We
also introduce a high-confidence model updating to adaptively update track-
ing model, which effectively improves the robustness of the tracker to occlusion
and background clutter. Experiments on the self-build ship dataset prove that
the proposed AMUMF is superior to other trackers in terms of precision and suc-
cess rate. In the future, we will further research the optimization of algorithms
and how to improve the real-time tracking.
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Abstract. The applications of deep learning algorithm in sports con-
tain enormous potential. Specifically, in soccer, tracking algorithm could
record the tracks of players, which could play as an assistant to assess
team performance and evaluate strategies. Moreover, through segmenta-
tion model, we could extract semantic attributes of players. This auxil-
iary information may contribute to the special visual effects processing in
broadcasting or entertainment area. Unlike general tracking tasks, soccer
videos contain much more cases of deformation, blur, and occlusion. In
this paper, we propose a novel model which could combine tracking and
segmentation together. A novel deformable cross-similarity correlation
(DF CORR) is adopted to estimate the deformation of players. A new
soccer tracking dataset is established to evaluate the performance of top-
ranked trackers in soccer videos. In soccer tracking dataset, our model
outperforms the state-of-the-art trackers whose accuracy is decreased sig-
nificantly compared with the general tracking tasks. Moreover, our exten-
sive experiments show comparable segmentation performance against
SiamMask, while running in a real-time speed of 36.2FPS.

Keywords: Soccer · Visual tracking · Semantic segmentation · Deep
learning

1 Introduction

Visual tracking is a fundamental and critical topic within computer vision area.
Initialized by the location of target in the first frame of a video, the tracker is
designed to evaluate the correspondences of target and estimate its position in
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Fig. 1. Visualization of the soccer tracking dataset. Line (a), (b) and (c) show some sit-
uations about occlusion, deformation and similar instances respectively. The bounding
box with dot lines means that target is occluded by other objects.

the following frames. In soccer, tracking algorithm could record every movement
of players. Coaches and teams could use these attributes to assess team perfor-
mance and evaluate strategies. In recent years, with the popularization of smart
devices, deep learning applications have evolved rapidly in sports game broad-
casting and entertainment area. With the auxiliary target semantic attributes,
the impression of video could be significantly enhanced by adding special visual
effects. Thus, it is practical and feasible to narrow the gap between visual object
tracking and video object segmentation.

Currently, most of the state-of-the-art visual tracking approaches tend to
involve template-based strategy [1,2] which consists of a template branch and a
detection branch. Such algorithm is efficient to estimate the paralleled shift and
scale change of target. As for high-dimensional transformations such as in-plane
rotation and deformation, this algorithm may not appropriate.

Unlike the visual tracking tasks, the video object segmentation (VOS) algo-
rithm is designed to obtain binary per-pixel segmentation mask which expresses
whether or not a pixel belongs to the target [3]. This property could contribute to
handling high-dimensional transformations of target. Unfortunately, some stud-
ies [4] show that top-ranked object segmentation approaches perform poorly in
short-term tracking tasks. The background clutter could significantly decrease
the performance of models and these segmentation errors will lead to an irrecov-
erable tracking failure.

Different from general tracking tasks, there exist some unique features
in soccer videos. First, the videos contain a panoramic view of the entire
field. The scale of player is around 100 pixels. Such low resolution will cause
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Fig. 2. (a) Overall structure of encoder-decoder pipeline. (b) The details of prediction
network. The network will utilize the feature from deformable cross-similarity corre-
lation operation to localize and classify targets. DW CORR and DF CORR refer to
depth-wise correlation and deformable correlation respectively.

segmentation failure. Second, there are several similar instances around the tar-
get, since players wear only two kinds uniforms. It is a tough task for model’s
discriminative ability. Third, there exist much more high-dimensional transfor-
mations than normal task such as deformation, rotation, occlusion and blur as
shown in Fig. 1. These features will degrade the performance of pre-trained
model. Due to the lack of semantic mask labels in existing soccer videos, we
could not easily implement transfer learning based on top-ranked strategies.

To address these problems, a novel deformable cross-similarity correlation
(DF CORR) is proposed to estimate the deformation of the targets as shown
in Fig. 2(b). DF CORR could predict the target deformation by destroying
the spatial structure of the template patches intentionally, which could help
to predicting the high-dimensional transformation. An encoder-decoder struc-
ture combined with feature fusion network is adopted to achieve tracking and
segmentation in a one-shot processing. The main contributions of this paper are
summarized as follows:

– We propose a novel deformable cross-similarity correlation which could pre-
dict the target deformation by destroying the spatial structure of the template
patches pixel-by-pixel.

– We propose an encoder-decoder structure combined with a feature fusion net-
work, which could achieve tracking and segmentation in one shot processing
with a real-time speed.

– We propose a soccer tracking dataset which is more challenging than general
tasks and can evaluate or expand the scope of the existing trackers.
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2 Related Work

2.1 Visual Tracking

Discriminative correlation filters tracker (DCF) [5] prove robust target localiza-
tion performance depends on the model’s discriminative ability between the tar-
get and the background. Kernelized correlation filters tracker (KCF) [6] proposes
a good way to speed up processing by converting the convolution operation to
an element-wise product via the Fourier domain. Furthermore, there exist some
approaches which attempt to use convolution operation instead of correlation
operation to achieve end-to-end training [7]. Meanwhile a mini-batch of scaled
images is generated to predict target scale. The critical bottleneck of these algo-
rithms is bounding box estimation. To address this problem, SiamRPN [1] and
its succeeding works [2,8,9] propose a siamese network followed by a Region Pro-
posal Network, which is inspired by the Faster R-CNN [10] in object detection
filed. To improve the target-background discriminative ability during tracking
procedure, [11] develops an end-to-end tracking architecture, capable of fully
exploiting both target and background appearance information for target model
prediction derived from a discriminative learning loss.

2.2 Video Object Segmentation

Traditionally, tracking tasks tend to achieving a real-time processing speed and
are designed to mainly focus on the target position rather than to represent the
shape and contour. Conversely, video object segmentation algorithms have been
more concerned with an accurate representation of the object of interest [3].

One branch is to process video frames one by one, independently. [12] only
adopts the ground-truth mask provided in the first frame with a pretrained fully-
convolutional network for classification without any temporal information. Some
strategies [13,14] attempt to compute optical flow between frames to exploit
temporal information. By performing spatio-temporal MRF model, [14] proposes
an algorithm that alternates between a temporal fusion operation and a mask
refinement feed-forward CNN, progressively inferring the results of video object
segmentation.

Currently, some strategies [9,15] attempt to combine tracking and segmen-
tation together. In particular, SiamMask adopts SiamRPN to do bounding box
regression. Segmentation mask is computed from a subarea of whole feature maps
guided by top-ranked bounding box. Benefited by this structure, SiamMask could
achieve real-time processing.

3 Methodology

3.1 Siamese-Based Feature Extraction

Visual tracking tasks could be described as an similarity comparison problem via
Siamese network [1]. Feature maps from search image and template image are
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extracted through Siamese network respectively. In detail, in template branch,
template features φ(t) is extracted from template image t which is a subarea
of first frame guided with initial target bounding box. Meanwhile, the search
branch will extract search features φ(s) from search image s which is a subimage
from current frame. The backbone network φ(·) shares parameters between two
branches as described in Siamese network. The similarity between template and
search features could be evaluated as:

fi(s, t) = ϕfeature
i (φ(s)) � ϕkernel

i (φ(t)), s, t ∈ R
2 (1)

where � denotes the cross-correlation operation. i denotes cls or loc. ϕfeature
cls ,

ϕfeature
loc , ϕkernel

cls and ϕkernel
loc are four adjustment network which is aimed to

covert common features from backbone into specific task space.

3.2 Deformable Cross-Similarity Correlation

The cross correlation module is proposed by [5,6] which utilizes hand-crafted
features. Subsequently, CREST [7] proves that deep network could replace cor-
relation operation by convolution operation to achieve end-to-end training. In
SiamRPN, cross-correlation is extended to embed much higher level information
such as anchors, by adding a huge convolutional layer to scale the channels [2].

Traditional cross correlation layer has the ability to assess the location
of target. Because of the invariance of spatial structure of template batches,
cross correlation could not adapt to predict high-dimensional transformation
of deformable targets. To tackle this, deformable cross-similarity correlation is
proposed. This operation could predict the target deformation by destroying the
spatial structure of the template patches intentionally, which can be described as
performing cross correlation operation and evaluate the similarity pixel by pixel
through spatial dimension. As shown in Fig. 2(b), the prediction head will use
the feature from depth-wise correlation and deformable correlation to implement
foreground-background classification and target localization.

The normal Siamese-based tracker tends to utilize a template patch which
is two times larger than the target itself to ensure a balance of foreground-
background discrimination. Based on this, we propose a content pipeline which
is only concentrated on target feature as shown in Fig. 2. The feature maps from
content c will be split through H and W followed by a flatten operation and
then convolved with s as shown in Fig. 3(c). The experiment results prove that
this intentional operation could significantly improve the capacity of model to
predict target deformation.

Different from SiamRPN++ [2], we do not utilize dense anchor based method
to achieve bound box regression. The output of the network will directly lead to
the location. Since the target will span several pixels, these pixels at the center
of the target will be more discriminating than those at the boundary with a
posteriori inference. The score map is more like a 2D gaussian distribution
localized in the center of the target. The cls and score will be utilized not
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Fig. 3. Sketch of different cross correlation operations. (a) Deformable cross-similarity
correlation could predict the target deformation by destroying the spatial structure of
the template patches intentionally, which can be described as performed cross correla-
tion operation pixel by pixel through spatial dimension. (b) Cross correlation pre-
dicts a single channel similarity map between target template and search patches
in SiamFC [16]. (c) Depth-wise cross correlation (Group convolution) predicts multi-
channel correlation features between a template and search patches [2].

only to select the best predicted bounding box, but also to filter the background
cluster of the feature map in feature fusion network.

3.3 Feature Fusion Network

The details of feature fusion network are shown in Fig. 4. The raw feature maps s
from backbone without correlation operation is much larger than cls and score .
A huge depth-wise convolution, whose size is same with c, followed by 1×1conv
is adopted to increase its receptive field without huge computation cost. Sine
not all information in feature map contributes to semantic segmentation, and
similar instances or background interference could cause segmentation failure.
Tracker output could instruct the model to concentrate on target feature itself
as a selective mask.

We state a training objective as follows:

Lseg =
1
N

N∑

i=1

Lseg(piseg, t
i
seg), (2)
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Fig. 4. Flow chart of feature fusion network. Results from tracker output could instruct
the decoder to suppress the background interference.

Ltrack =
1
N

N∑

i=1

Lcls(picls, t
i
cls) +

λ1

N

N∑

i=1

ticlsLloc(piloc, t
i
loc)

+
λ2

N

N∑

i=1

ticlsLscore(piscore, t
i
score) (3)

where N is the total position number in cls. Lseg denote the binary cross entropy
loss. Lcls and Lscore denote the focal loss. Lloc denote the IoU loss.

4 Experiment

4.1 Soccer Tracking Datatset

Sine we want to achieve a unification in tracking and segmentation for soccer
videos, a soccer tracking dataset is established for evaluation. The sources of
soccer match videos are downloaded from Internet. In each soccer match video,
we cut around 10 short clips, with each containing around 6 tracking tracks.
We implement a semi-automatic strategy to label the dataset. For each track,
we first adopt a state-of-the-art tracking algorithm to do pre-labeling. When
the overlap rate is unsatisfactory or the bounding box can not fit target well,
we manually correct the bounding box frame by frame. For the requirement of
some training and testing cases or certain application scenarios, we also add the
occlusion label if 30% or more area of the target is occluded by other objects.

Specifically, this soccer tracking dataset contains total 1268 instance tracks.
374048 frames are labeled with bounding boxes associated with occlusion label.
Some potential traits of the dataset are extracted by observing all the tracks:

– The resolution of the target is generally lower than the existing tracking and
semantic segmentation datasets.
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– Occlusion occurs promiscuously as shown in Fig. 1(a). The model should be
capable of deducing the overall target feature from unblocked area.

– Compared with general datasets, soccer players are more prone to be
deformed when they run and hit the ball, as shown in Fig. 1(b).

– The biggest difference is that there exist many similar instances around the
target as shown in Fig. 1(c). Tracking soccer players requires models to be
more discriminative than general tasks.

Obviously, these above features tend to occur in a kind of combination, which
is a tough challenge for the application of pre-trained models. This dataset will
be released in the future.

4.2 Implementation Details

The hardware environment for training is a workstation with 2 TITANxp GPUs.
The hardware for all of the tests below is a workstation with i7-9700K CPU,
16 GB RAM and GTX 1080 Ti GPU. We choose ResNet50 [17] and Incep-
tionV3 [18] as feature extract backbone which is pre-trained on ImageNet [19] for
object classification. We adopt COCO [20], YoutubeVIS [21] and GOT-10k [22]
as tracking datasets. Sine COCO and YoutubeVIS contain the mask label of
target, we could use them to train the decoder. We utilize alternate training
strategy for tracking and segmentation. The optimizer is ADAM with fine-tuned
last two layers of the backbone.

4.3 Tracking Results

Our soccer tracking dataset’s assessment criteria are very similar to OTB bench-
mark [23]. Higher Area Under the Curve (AUC) means higher overlap rate
between prediction and labels. Note that we devide the whole soccer tracking
data set into training, validation and test sets. There are total 1016 training
tracks, 126 validation tracks and 126 testing tracks in soccer tracking dataset
which contain all of the tough situation mentioned above. We select several state-
of-the-art trackers SiamRPN [1], SiamRPN++ [2], SiamMask [9], ATOM [24],
UpdateNet [25] and DAT [26]. SiamRPN++ and SiamRPN are fine-tuned in
soccer tracking training set. Table 1 presents the results soccer tracking dataset.
Our tracker ranks the first in AUC and precision. The other trackers’ AUC
drops rapidly since they could not fit the target deformation well. Besides, our
tracker is leading the rank of AUC even without fine-tuned in training set as
shown in Table 2. These results illustrate a higher adaptability of deformable
cross-similarity correlation to handle deformation tasks.

4.4 Segmentation Results

To evaluate the segmentation performance in soccer tracking dataset, we select
SiamMask which could achieve tracking and segmentation in one-shot processing
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Table 1. Tracking results in soccer tracking dataset. AUC is short for area under the
curve of overlap rate. Precision@20 means the predict center position deviation is no
more than 20 pixels. (F) refers to fine-tuned in soccer tracking training set.

Method AUC Precision@20 FPS

Ours InceptionV3(F) 0.726 0.921 36.2

Ours ResNet50(F) 0.713 0.932 40.8

SiamRPN(F) 0.700 0.891 77.7

SiamRPN++(F) 0.690 0.930 30.2

UpdateNet 0.656 0.824 42.0

SiamMask 0.650 0.794 36.6

DAT 0.634 0.924 0.317

ATOM 0.606 0.783 28.6

Fig. 5. Segmentation results of our method, SiamMask and Deeplab in soccer tracking
dataset. The inpus for Deeplab is shown in the upper left corner of the forth row.

like our strategy and Deeplab [27]. Because the semantic information is not anno-
tated in soccer tracking dataset, we train Deeplab model on a basketball player
segmentation dataset for transfer learning. Figure 5 illustrates input search image
and segmentation results. Compared with the other two approaches, we limit the
range of input area in Deeplab to reduce background interference. Deeplab pre-
dicts the players’ edge more precisely, but it can not distinguish similar instances
even with strict constraints. Our work shows comparable performance against
SiamMask and has a better discriminative ability between similar instances.

4.5 Ablation Studies

In order to evaluate the contribution of each component, we test different
backbone structure and construct a tracker without deformable cross-similarity
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Table 2. Ablation experiment results in soccer tracking dataset. The tracking perfor-
mance will degrade significantly without the contribution of DF CORR.

Method AUC Precision@20

InceptionV3(F) 0.726 0.921

InceptionV3 0.717 0.911

ResNet50(F) 0.713 0.932

InceptionV3 w/o DF CORR 0.664 0.838

correlation as the baseline. The results in Table 2 prove that ResNet50 is apt to
fit precision and InceptionV3 tends to improve AUC. We have to be aware that
there is a dramatic performance degradation both in precision and AUC without
DF CORR, which means that proposed DF CORR operation could contribute
to predicting the target deformation and promotes tracking accuracy.

4.6 Visual Effects in Soccer Videos

In recent years, with the popularization of smart devices, deep learning applica-
tions have evolved rapidly in sports game broadcasting and entertainment area.
With the auxiliary target semantic attributes, the impression of video could
be significantly enhanced by adding special visual effects. Figure 6 shows some
demos of effects. By obtaining the location and semantic information of the
target, we could automatically layer the image, just like some functions in Pho-
toshop. Such utils could make the special effects more vivid, and reduce labor
burden.

(a)

(b)

Fig. 6. Visualization of some visual effects. Line (a) shows the halo circle under the
player’s feet. Line (b) shows the effect of adding a light column. These effects utils are
still in early versions
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5 Conclusion

In this paper, we present a novel tracking-segmentation network which could pre-
dict target location and segmentation mask in one-shot processing. A deformable
cross-similarity correlation is adopted to fit the deformation of the target. Our
encoder-decoder structure combined with feature fusion network shows compa-
rable segmentation performance against SiamMask. A soccer tracking dataset is
established to evaluate and expand the scope of applications. Extensive experi-
ments show our strategy outperforms state-of-the-art trackers in AUC and could
achieve real-time speed. Such strategy could be also adopted in visual effects
adding for soccer videos.
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Abstract. Independent of sunlight and weather conditions, synthetic aperture
radar (SAR) imagery is widely applied to detect ships in marine surveillance. This
paper proposes a ship target detection algorithm, aiming at the missing and false
detection in the situation of dense ship targets in SAR images. Firstly, we used
the spatial pyramid pooling (SPP) to enhance the feature extraction capability in
different scales. Then, we modified the regression loss function with three fac-
tors of center distance, overlap area and length-width ratio to reduce the error of
location. Finally, we proposed double threshold soft non maximum suppression
(DTSOFT-NMS) to reduce the missing detections for dense ships. The experi-
mental results reveal that our model exhibits excellent performance on the open
SAR-ship-dataset and improves average precision (AP) by 6.5% compared with
the baseline YOLOv3 model.

Keywords: Synthetic Aperture Radar (SAR) · Spatial pyramid pooling · Double
threshold soft non maximum suppression (DTSOFT-NMS)

1 Introduction

Synthetic Aperture Radar (SAR) is an active microwave sensor that can emit electro-
magnetic waves and receive echo signals for active imaging without being restricted
by external conditions such as weather and light. With all-weather characteristics, SAR
images have been widely applied in civil and military fields, and ship target detection
based on SAR images has become one of the hot research issues.

Traditional ship detectionmethodsweremainly based on the different backscattering
characteristics between ship targets and the ocean. Common methods include constant
false alarm rate (CFAR) [1], polarization decomposition, wavelet decomposition and
template method. With the development of SAR, the resolution of SAR images has
further improved, and traditional detection methods are difficult to meet the current
actual needs in terms of accuracy and detection efficiency.

Due to the strong feature extraction capabilities of convolutional neural network
(CNN), deep learning has achieved great success in object detection. Object detection
algorithms based on CNN can be divided into two categories: one is a two-stage object
detection algorithm, also known as a region-based algorithm, includes Fast R-CNN [2],
Faster R-CNN [3], R-FCN [3], and Mask R-CNN [5]. The other one is a one-stage
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object detection algorithm, also called regression-based object detection algorithm. This
type of algorithm directly generates the category and position information of the target.
Representative algorithms include SSD [6], RetinaNet [7] and YOLO series [8–10].

Zhang [11] proposed a ship target detection algorithm based on visual attention
via CNN coupling cascade (3c2n-guided), which can improve detection performance
and greatly reduce missed detection and false positives. CHEN [12] proposed a target
detection network combined with attention mechanism to accurately locate the target
in complex scenarios. JIAO [13] proposed a densely connected multiscale neural net-
work based on Fasters R-CNN framework to solve the multiscale multi-scene SAR ship
detection problem. Miao [14] proposed a detection method that the traditional CFAR
was combined with Faster R-CNN network to improve the detection performance. Yang
[15] proposed a new detection method based on SSD, which combines context informa-
tion fusion, migration model learning and SSD, and conducts training and testing on the
public SSDD dataset. In the past years, deep learning has made great progress in ship
target detection of SAR images, but there are still many problems.

Because the SAR system hasmultiple imagingmodes and imaging resolutions, ships
have different sizes in SAR images. Current detectionmethods have poor detection effect
on multi-size ships, especially small-size ships. Besides, in the dense areas with small
adjacent spaces between ships, the detection strategy of CNN will lead to missing and
false detection.

In this paper, we propose a method for multiscale and densely arranged ships
detection in SAR Image. The main contributions of this paper are as follows.

1. We chose YOLOv3 as the baseline and use the SPP module to improve the feature
extraction capability of the network;

2. We redesigned the regression loss function based on CIOU [17], which can reduce
the scale sensitivity and improve the location accuracy;

3. We proposed DTSOFT-NMS into the final processing to improve the detection effect
for dense ships;

4. Based on the public SAR ship dataset [18] proposed by the Chinese Academy of
Sciences, we use k-means clustering to redesign the anchor boxes, train and test the
proposed network.

The organization of this paper is as follows. Section 2 relates to the related work
of the baseline model. Section 3 illustrates our proposed method and network structure.
Section 4 introduces the dataset used in our experiments and describes the experimental
details and results. Section 5 presents the conclusion.

2 Related Work

In 2016, You Only Look Once (YOLO) has been introduced which unlocks the potential
of real-time performance. YOLO uses regression method to predict the coordinates of
the bounding boxes and achieve the classification of the targets. YOLO applies a grid
approach for bounding box detection and adds a SoftMax layer to directly predict the
object class. The detection speed reaches 30 FPS, but YOLO has serious location error,



280 J. Wang et al.

causing poor detection accuracy. YOLOv2 modified the feature extraction network with
Darknet-19, usesAnchorBox to predict targets and appliesBatchNormalization (BN) for
training. Compared with YOLO, the running speed and detection accuracy of YOLOv2
have been significantly improved. YOLOv3 uses the deep residual network Darknet-53
to extract features and achieve multi-scale prediction, which make the accuracy and
speed meet the actual engineering needs.

The network structure of YOLOv3 is composed of feature extraction network
darknet-53 and feature pyramid network (FPN).

Inspired by residual network, darknet-53 has 53 convolution layers, which can be
divided into 5 residual convolution blocks. Each convolution block is composed of
multiple residual units. The residual operation is carried out by the input and two digital
cumulativemodeling (DBL) units to construct the residual unit. Every DBL cell contains
convolution layer, BN, and leaky ReLU activation functions. By introducing residual
units, the depth of the network can be increased to reduce the gradient vanishing problem.

The FPN of YOLOv3 is shown in Fig. 1. In the process of detection, the input image
will be down-sampled for 5 times, and the last three feature maps are fused with larger
feature maps by up-sampling. When the input image size is 416 × 416,the detection is
performed on the scales of 13 × 13,26 × 26 and 52 × 52.

Fig. 1. The feature pyramid network of YOLOv3

Feature maps of different scales contain different feature information. The small
maps can usually provide deep semantic information, while large maps contain more
targets position information, especially small targets information. Thus, YOLOv3 fuses
feature maps of different scales to improve multiscale detection ability. It can not only
detect large size targets, but also optimize the detection of small size targets.

3 Methods

3.1 Spatial Pyramid Pooling

In this paper, we use SPP module to improve the extraction ability of local and global
features between multiscale ships in SAR images.

The SPP module is based on the SPP-net [16], which is used to solve the problem
of different image input to fixed size output to the full connection layer. The application
of SPP in our method can alleviate the over-sensitivity of the convolutional layer for



Towards More Robust Detection for Small and Densely 281

position information. It can realize the fusion of local feature and global feature at the
feature maps level.

The structure of SPP is shown in Fig. 2, which is all pooling layers. SPP does not
change the size of feature maps before and after processing. There are three sizes of
pooling kernel, with 3 × 3, 5 × 5, 7 × 7, and then superimpose the initial feature map to
obtain the new feature map. We add three SPP modules before the detectors of the three
scale feature maps in the baseline model. The new structure of our models is shown as
Fig. 3.

Fig. 2. The structure of SPP

Fig. 3. The structure we proposed

In SAR images, the shapes of ships are different, so ships in the same image may
have multiple sizes. Besides, the same ship in various resolution images has different
sizes. Therefore, multiscale ship is a difficult problem for SAR ship detection. YOLOv3
performed object detection on three scale feature maps and each of which is responsible
for different ships.

Usually, the feature maps of 52 × 52 detect small ships and 26 × 26, 13 × 13
feature maps detect big ships. Three SPP modules before three detectors can improve
the detection effect of multiscale ship.
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3.2 Loss Function

The loss function of the original YOLOv3 network is composed of four parts, including
center coordinate error, width-height error, confidence error and classification error.
Among them, center coordinate error andwidth andheight coordinate error are calculated
by mean square error (MSE). However, the various target sizes will lead to the large
fluctuation of the mean square error loss, which will eventually affect the positioning
accuracy of the target and reduce the detection accuracy.

Inspired by the CIOU [17], we modify the loss function with overlapping area,
distance penalty and length-width penalty to reduce scale sensitivity enhance positioning
accuracy. The new loss function is defined as follows:

Lreg = 1 − IoU + ρ2(b, bgt
) + αv (1)

IoU =
∣
∣B

⋂
Bgt

∣
∣

∣∣B
⋃
Bgt

∣∣ (2)

where B is the target prediction box and Bgt is the ground true box; b and bgt represent
the center points of the target prediction box and the true box; ρ is the Euclidean distance
between the two points.

In the length-wide penalty, α is the coefficient used to balance the proportion and v
is used to measure the proportion consistency between the anchor frame and the target
frame. Their formulas are as follows:

v = 4

π2

(
arctan

wgt

hgt
− arctan

w

h

)2

(3)

α = 1

(1 − IoU ) + 1
(4)

where w, h are the width and height of prediction box and wgt, hgt are the width and
height of the ground true box.

It can be seen that the length-wide penalty is invariant with respect to the scale.When
calculating the loss between the prediction box and the real box, our loss function not
only considers the distance between the overlapping area and the center point, but also
adds the influencing factor of the aspect ratio of length and width. Therefore, the new
loss function can achieve better regression for different distances, directions, areas and
achieve faster convergence speed and convergence effect.

3.3 DTSOFT-NMS

Most detection algorithms use Non maximum suppression (NMS) to suppress overlap-
ping boxes. The idea of NMS is to regard the box with the highest score as the best
detection result and then remove all other prediction boxes with high overlap degree.
The mathematical expression of this algorithm is as follows:

Sf =
{
Si, UIoU (Max, Bi) < Nt

0, UIoU (Max, Bi) ≥ Nt
(5)



Towards More Robust Detection for Small and Densely 283

where Si is the original score of the prediction box; Sf is the final score of the prediction
box;Max is the prediction box with the highest score, Bi is the other boxes to be checked
except Max; UIOU (Max, Bi) is the IOU of Bi and Max and Nt is the threshold of IOU.

When the overlap of the two boxes is small, IOU is less than the threshold value.
According to the NMS algorithm, the two prediction boxes belong to different target
detection results, so two boxes are both reserved. When the overlap of two boxes is very
high and IOU is greater than the threshold, as shown in Fig. 4(a), the NMS algorithm
will determine that these two boxes are the detection results of the same target, so it will
clear the confidence score of the box with a low score, so as to complete the filtering of
the repeated prediction box.

Fig. 4. An illustration of dense ships

However, when the ships are very closed, the prediction box of two different targets
have large IOU and the prediction box with lower score will be cleared, resulting in a
missed detection. As shown in Fig. 4 (b), the distance between ships is very close in port
area. The prediction boxes of different colors represent the detection results of different
ship targets. However, according to the NMS algorithm, only the prediction box of the
target with the highest score will be kept, and multiple ships will be regarded as the same
target, resulting in missed detection.

Therefore, we propose DTSOFT-NMS algorithm to solve the detection problem
of dense targets. The core idea of DTSOFT-NMS algorithm is to reduce the score of
the prediction box with large overlap by using the penalty strategy, and to reserve the
prediction box belonging to different targets to the greatest extent, so as to reduce the
missed detection.

In the DTSOFT-NMS algorithm, the penalty function of the confidence score is
calculated as (6). The confidence score of the prediction box with small overlap will
not decay. However, the prediction box with large overlap attenuates greatly, but does
not clear directly. When the IOU of the prediction box is really large,the score will be
remove. Such a strategy can keep the prediction box of densely distributed ship targets
and reduce the missed detection.

Sf =

⎧
⎪⎨

⎪⎩

0 ,Nt1 ≤ UIoU (Max, Bi)

Sie
− IoU(Max, Bi)

2

Nt2 ,Nt2 ≤ UIoU (Max, Bi) < Nt1

Si , UIoU (Max, Bi) < Nt2

(6)
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4 Experiments

4.1 The Experiment Platform

All experiments were implemented on a workstation with an Intel(R) Core (TM) i5-
9400F@2.90 GHz, an NVIDIA RTX 2070 GPU and the Pytorch framework. The initial
learning rate of the network was set to 0.001 for the first 400 iterations and 0.0001 for
the last 400 iterations. The batch size is 8. The optimization algorithm used Adam, with
beta1 of 0.9, beta2 of 0.999 and epsilon of 1e-8.

4.2 Dataset

In this paper, we use the SAR-ship-Dataset 18 published byChinese academy of sciences
to train and test the deep neural network. A total of 102-scene gaofen-3 and 108-scene
sentinel-1 SAR images are used to build a SAR ship target deep learning sample library.
The dataset contains 43819 ship slices and their label information, while the target to
be detected is only one class. Thus, it is sufficient for training our network. In our
experiment, 80% of the samples were used as the training set and 20% of the sample
data were testing set.

4.3 Evaluation Metrics

The evaluation metrics used in this paper are average accuracy (AP) to quantitatively
evaluate the detection effect of the model. The average accuracy is defined as follows:

AP =
∫ 1

0
P(R)dR (7)

R = XTP

XTP + XFN
(8)

P = XTP

XTP + XFP
(9)

where P is the detection accuracy; R is the target recall rate; XTP represents the number
of targets correctly detected; XFN represents the number of targets not detected; XFP
represents the number of targets that were incorrectly checked out.

4.4 Ablution Study

To illustrate the effectiveness of the proposed approaches, we compared the effects of
different versions of ourmethod on theAP through step-by-step experiments based on the
SAR-ship-Dataset. The various approaches incorporated into our model, as mentioned
above are shown in Table 1.
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Table 1. Ablution Study

Method SPP CIOU DTSOFT
-NMS

AP (%)

Proposed
√

86.22%√
85.43%√
83.56%√ √
86.96%√ √
87.86%√ √
89.75%√ √ √
89.92%

We add three SPP modules before the detectors of the three scale feature maps in the
YOLOv3 network to enhances the feature extraction capability of network at different
scales and the AP of the model is improved by 2.9%.

By using the CIOU loss into the loss function, the sensitivity of the network to
different ship target scales is reduced, and the AP of the model is improved by 2.06%.

By contrast, using DTSOFT-NMS improves the AP of the model by only 0.17%.
The reason for this lesser improvement maybe that the dataset contains relatively few
densely arranged ship samples. Based on the approaches mentioned above, the final AP
of the proposed model is 89.92% on the SAR-Ship-Dataset.

4.5 Results Analysis

In Fig. 5, we can see that as the number of training iterations increases, the loss value
gradually decreases and converges to a low value. Finally, the loss function converges
to 0.69.

Fig. 5. Loss function curve during the training process
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The application of SPP in YOLOv3 network can realize the fusion of local feature
and global feature at the feature graph level, so as to enrich the expression ability. As
shown in Fig. 6, the blue line represents the precision of our detection algorithm and
the yellow line represents the original YOLOv3. By comparing, we can find that adding
SPP structure can improve AP by 2.96%.

Fig. 6. The PR curves of YOLOv3 and YOLOv3-SPP

The ship detection results obtained under the different environmental conditions
represented in the SAR-Ship-Dataset were analyzed, as shown in Fig. 7.We show several
detection results for SAR ships.

The first row shows results for ship detection against complex backgrounds. We find
that the proposed method can effectively distinguish targets from their backgrounds.
The second row shows results for the detection of ships of different sizes. It is clear
that the proposed algorithm achieves an improved detection effect for small ships and
big ships with a lower missed detection rate. The third row shows densely arranged
ships detection. It can be seen that the algorithm proposed in this paper can effectively
distinguish closely spaced ships.

To better illustrate the effectiveness of the proposed DTSOFT-NMS, we select a sub-
dataset from sentinel-1 SAR images with densely arranged ships. It contains 32 images
and 108 ship targets. The result in Table 2 shows that DTSOFT-NMS can reduce some
missed detection compare with original NMS.

4.6 Comparison with Other Methods

In this section, our proposed method is quantitatively compared with several mainstream
object detection models based on deep learning in terms of the AP and detection speed.
The results are shown in Table 3.

It is apparent that the proposed method achieves the best AP of 89.92% on the SAR-
Ship-Dataset compared with other one-stage object detection methods including SSD
and original YOLOv3. The use of SPP and DTSOFT-NMS increase the computation of
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Fig. 7. Experimental results

Table 2. Densely arranged ships detection

Methods Detected
ships

True
ships

False
alarms

Missed
ships

Precision Recall

NMS 114 94 20 14 82.45% 87.03%

DTSOFT-NMS 122 100 22 8 81.96% 92.59%

the network. Thus, our algorithm is not as fast as original YOLOv3. But its detection
time of one image is 30.14ms, which is sufficient for real-time detection. Comparedwith
the two-stage object detection algorithm Faster R-CNN, the time cost of the proposed
algorithm is only 30% of that of Faster R-CNN, and the AP of our method is 1% higher
than Faster R-CNN.
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Table 3. Compare with other methods

Method Backbone AP Time

Faster R-CNN Resnet-101 88.74% 93.29 ms

SSD VGG16 78.62% 31.52 ms

YOLOv3 Darknet-53 83.36% 26.74 ms

Proposed Darknet-53 with SPP 89.92% 30.14 ms

5 Conclusion

In this paper, we proposed a detection algorithm based on YOLOv3 for ship detection
in SAR image and verified our method on the public SAR-Ship-Dataset. Based on the
YOLOv3, this paper used the spatial pyramid pooling structure to improve the feature
extraction capability of the network. Then, the regression loss function based on CIOU
is proposed to make the network converge faster and obtain higher positioning accuracy
during training. Finally, this paper proposed DTSOFT-NMS to reduce the missed and
false detection in the process of intensive target detection. The detection time of a single
image in the SAR-Ship-Dataset is 30.14 ms and the AP is 89.92%, which is significantly
improved for densely arranged ships and multiscale ships.
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Abstract. As a core component, Automatic License Plate Recognition
(ALPR) plays an important role in modern Intelligent Transportation
System (ITS). Due to the complexity in real world, many existing license
plate detection and recognition approaches are not robust and efficient
enough for practical applications, therefore ALPR still a challenging task
both for engineers and researchers. In this paper, a Convolutional Neu-
ral Network (CNN) based lightweight segmentation-free ALPR frame-
work, namely SLPNet is established, which succinctly takes license plate
detection and recognition as two associated parts and is trained end-
to-end. The framework not only accelerates the processing speed, but
also achieves a better match between the two tasks. Other contributions
includes an anchor-free LP localization network based on corners using a
novel MG loss is proposed and a multi-resolution input image strategy is
adopted for different tasks to balance the operation speed and accuracy.
Experimental results on CCPD data set show the effectiveness and effi-
ciency of our proposed approach. The resulting best model can achieve
a recognition accuracy of 98.6% with only 3.4M parameters, while the
inference speed is about 25 FPS on a NVIDIA Titan V GPU. Code is
available at https://github.com/JackEasson/SLPNet pytorch.

Keywords: License plate detection · License plate recognition · End
to end training · Segmentation-free · Lightweight CNN

1 Introduction

Automatic License Plate Recognition (ALPR) plays an important role in Intel-
ligent Transportation System (ITS) which is widely used in traffic manage-
ment, intelligent surveillance and parking management in large cities [20], hence,
attracts considerable research attentions in recent two decades.

Even significant progress has been made especially with the help of deep
learning in recent years, ALPR in nature environment is still a challenging task,
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due to the complexity and uncertainty of the environment and uncontrollable
photographing conditions. Generally, an ALPR task can be divided into three
subtasks according to its operating process, namely license plate detection, char-
acter segmentation and character recognition. With the popular of deep learn-
ing, a new trend to combine some of the above steps into one is appeared. For
instance, character segmentation is merged with recognition in certain methods
that directly predict the whole license plate numbers in form of sequences, which
is known as segmentation-free license plate recognition [12,22,28]. Furthermore,
some recent work has utilized a single network to simultaneously localize license
plates and recognize the characters in a single forward inference. Such network
not only can be trained end-to-end, but can avoid intermediate error accumula-
tion [20] as well. However, it suffers from a dilemma of image resolution that the
network operates at, since large images can get high recognition accuracy while
at the expense of slow operation speed.

In this paper, a lightweight deep network named as SLPNet is proposed for
ALPR task. The network architecture is based on lightweight fully convolutional
network and designed specifically to reduce the intermediate error as well as
reduce the impact from the unbefitting resolution of input images at the same
time. The whole ALPR framework is segmentation-free and can be trained end-
to-end with the advantages of high accuracy and low computational cost. The
main contributions of the paper are summarized as follows:

(1) An anchor-free method for license plate detection based on corners instead of
regions is introduced. As the detected corners can provide more geometrical
distortion information that will be further used for perspective correction,
license plate recognition can benefit from this design.

(2) A Multiple Constraints Gaussian Distance loss (MG loss for short) is put
forward to improve corner localization precision, which is demonstrated to
make license plate detector’s training more stable and efficient.

(3) To further improve the recognition rate, we integrate a multi-resolution
strategy into the end-to-end network architecture. For different subtask net-
works, an image is decomposed into different resolutions that are utilized as
respect inputs.

The rest of the paper is organized as follows. Section 2 provides a brief
review on traditional and current methods for ALPR. The proposed approach is
presented in Sect. 3 by detailing the detection and recognition subtasks, network
architectures as well as the loss function design. The experimental results are
reported and discussed in Sect. 4. Finally, in Sect. 5 a conclusion is drawn.

2 Related Work

There are two kinds of approaches to perform ALPR in terms of feature extrac-
tion, i.e., manual feature extraction and automatic feature extraction. Generally,
manual features are extracted by image analysis while automatic feature extrac-
tions are depended upon machine learning.
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2.1 Methods Based on Manual Features

Traditional ALPR systems are usually based on manual features and can be
divided into three separate subtasks, namely license plate detection, character
segmentation and character recognition.

Existing license plate detection methods can be roughly classified into four
categories based on the features they used, namely edge based [26], color based
[1], texture based [25] and character feature based [17] method. Edge and color
are obvious features that are easily affected by the variation of illumination, while
texture and character features can provide more fine distributed information thus
are more robust.

Traditional segmentation methods based on manual features often uses pixel
connectivity and some prior knowledge of characters [2] to perform segmentation.
They are simple but lack of robustness. Meanwhile, some more sophisticated
approaches like character-contour-based methods [4] are complex and slow.

For license plate recognition task, each segmented character is subject to clas-
sification by Optical Character Recognition (OCR) technique. Template match-
ing [5] is a simple and straightforward way, but lack of reliability. Thus, many new
methods extract more efficient features with some advanced filters like Gabor
filter [10] to further improve recognition accuracy.

2.2 Methods Based on Machine Learning

Shallow Learning. Early ALPR systems use shallow machine learning to sub-
stitute manual feature selection and classification in detection, segmentation
and recognition subtasks. Classic machine learning algorithms such as SVM,
AdaBoost are combined with different composite features conveniently to achieve
better performance. In [8], an initial set of possible character regions are obtained
by AdaBoost classifiers and then passed to a support vector machine (SVM)
where noncharacter regions are rejected. For license plate recognition, in addi-
tion to SVM, many classifiers can be employed to recognize characters with
effective feature extraction such as ANN [9].

Deep Learning. With the remarkable development of deep learning in recent
years, detection and recognition tasks can reach better precision and robustness
with the help of deep neural networks, freeing people from manual feature selec-
tion. Rayson Laroca et al. [11] used a one-stage detector to efficiently localize
license plate regions, while Z. Selmi et al. [19] use simple convolutional neural
network (CNN) to complete the task of single character classification and the
method achieves high recognition accuracy.

Moreover, some current state-of-the-art ALPR frameworks adopt segmenta-
tion free methods and the whole network can be trained end to end, which leads
to an efficient learning process and achieves excellent performance. Typical work
such as RPNet [22] adopts a simple CNN as backbone for license plate detection
and employs fully connected layers to classify characters in each detected image.
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Besides, in [12], Bidirectional Recurrent Neural Networks (BRNNs) with Con-
nectionist Temporal Classification (CTC) [6] are adopted to label the sequential
data without character separation, leading to a high recognition accuracy. To fur-
ther accelerate the process speed, S. Zherzdew et al. [28] use lightweight CNNs
to extract features and train the model with CTC loss [6].

3 SLPNet

Different from aforementioned methods described in Sect. 2, an ALPR framework
called Skip-shuffle License Plate Network (SLPNet) based on lightweight fully
convolutional networks (FCNs) is proposed here. As illustrated in Fig. 1, our
approach divides the whole framework into two associated parts: detection part
and recognition part. Our method completes the detection task by localizing four
corners of each license plate (LP). Then, the detected and cropped LP region
will be processed by perspective correction to effectively reduce the recognition
difficulty. For LP recognition, we treat it as a sequence labeling problem similar
to LPRNet. Although the networks in different part are designed separately,
the network as a whole can be trained end to end and be optimized with a joint
detection and recognition loss function. In the following subsections, we will give
a detailed description about each components.

Fig. 1. The overall structure of our ALPR framework.

3.1 Detection Subnetwork

Corner Localization. To perform anchor-free object detection, an effective box
is proposed in FSAF [29] where area inside is regarded as effective region (or
positive region). Only cells from effective region are subject to object coordinates
regression. Our approach also utilizes effective region to localize LP corners as
shown in Fig. 2. We represent a LP region with an ordinary quadrangle according
to the positions of its four corners, rather than the shape of a straight rectangle.

Similar to FSAF, two shrunk factors, δ1 and δ2 (δ1 < δ2) are selected to
obtain effective boxes and ignore boxes as illustrated in Fig. 2(b). In our method,
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(a) (b) (c) (d)

W

H

Fig. 2. An example of generating effective regions from ground truth. (a) A license plate
with ground-truth bounding box; (b) Different types of boxes: bounding box (green),
ignore box (black) and effective box (red); (c) Cells in positive area; (d) Rectangular
bounding (blue) determined by a bounding box (green). (Color figure online)

three pairs of shrunk factors, namely (0.8, 1.2), (1.0, 1.5) and (0.6, 0.9) are used
respectively for different size of LP images. Large shrunk factor pairs are used
for small size LPs while smaller ones are for large size LPs. That means more
attention is paid to LPs with small size in training process. We divide the LPs
into three classes namely small, middle and large, according to its size using k-
means clustering based on the size of the rectangular bounding box determined
by ground-truth corners as shown in Fig. 2(d).

Nonlinear Transformation. Each ground-truth bounding box consists of 4
corners and is represented by a vector g = (x1, y1, x2, y2, x3, y3, x4, y4). Our
goal is to learn a nonlinear transformation that maps the network’s output,
o = (tx1 , ty1 , tx2 , ty2 , tx3 , ty3 , tx4 , ty4) to the ground-truth g. Each (txi

, tyi
) i ∈

{1, 2, 3, 4} is the offset of the i-th corner to the cell center (x, y).

txi
= 3

√
xi − 2l(x + 0.5)

z
, tyi

= 3

√
yi − 2l(y + 0.5)

z
. (1)

where l is the pyramid level and z is an integer factor that shrinks the output
ranges. Equation (1) first maps the coordinate (x, y) to the input image, then
compute the offsets between the projected coordinates and g and regularizes the
results with a cube root function.

Confidence of Detection Output. The normalized 2D Gaussian function is
used to work out a score between the ground-truth corners and those predicted
from the detection network. The score, also known as confidence, is denoted as
Gaussian Scores that is described in formula (2).

G(x,y) = Ae
−(

(x−x0)2

2σ2
x

+
(y−y0)2

2σ2
y

)
,

σx = αW,σy = αH,A = 1.
(2)

where (x, y) is a pair of the predicted corner coordinates and (x0, y0) is the
ground-truth. As shown in Fig. 2(d), W and H are the width and the height
of a rectangular bounding box determined by the 4 corners. Moreover, a scale
factor α ∈ (0, 1) is used to control the Gaussian variance.
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Detection Network. A lightweight fully convolutional network called DSNet
is proposed for LP detection, where ShuffleNetv2 [16] units are adopted as basic
blocks and skip connection [7] between different basic blocks is added as illus-
trated in Fig. 3. To further improve the performance, several Global context
(GC) blocks [3] are employed to enhance the ability of feature representation.
Specially, a stem block [21] for spatial downsampling is utilized in DSNet and
complex feature maps are generated by three pyramid feature maps in different
stages. In our implementation, the input image size is set to 512×512, thus, the
output map size is 32 × 32. Therefore, the pyramid level l is equivalent to 4 and
z can be set to 128 in formula (1).

The Loss Function for Detection Network. The targets of the detection
network are to work out the nonlinear transformation of LP corners by regression
and get high Gaussian Scores in cells from all regions. To achieve the goal, we
proposed a Multiple Constraints Gaussian Distance loss (MG loss) inspired by
CIoU loss [27]. The MG loss for each cell in positive regions is defined as

LMG = (1 − Conf) +
ρ2(b, bgt)

c2
+ αυ + βd,

α =
υ

(1 − Conf) + υ
,

υ =
2
π2

[(arctan
w1

h1
− arctan

wgt
1

hgt
1

) + (arctan
w2

h2
− arctan

wgt
2

hgt
2

)],

β =
d

(1 − Conf) + d
, d = 2

√√√√1
4

4∑
i=1

(Gsi − Gsgti )2.

(3)

where Conf represents LP confidence that is averaged from four corners’ real
Gaussian Scores in a cell. ρ(b, bgt) and c are distance and scale factor that are
similar to CIoU loss. We enumerate four corners on each LP clockwise, there-
fore, in above formula (w1, h1) are worked out from Corner 1 and Corner 3.
(wgt

1 , hgt
1 , wgt

2 , hgt
2 ) are widths and heights generated by corners from ground-

truth. Gsi represents the predicted Gaussian Score of the i-th Corner, while
Gsgti represents a real Gaussian Score.

From formula (3), one can see MG loss consists of four terms: localization loss,
distance loss, bounding shape loss and corners dispersion loss. The first item is
the main loss and the others are constraints to make the learning process more
stable and efficient. Considering the imbalance between positive and negative
samples, we calculate Gaussian Score loss in each cell with Focal loss [14].
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Fig. 3. The network structure of DSNet. ‘C’ represents concatenation operation while
‘+’ represents addition. ‘S’ is the stride of convolutions. Bilinear interpolation is used
to resize the pyramid features.

3.2 Recognition Subnetwork

Sequence Prediction. Since the number of characters on Chinese LP is unfixed
depending on the type of vehicle, we treat the LP recognition as a sequence label-
ing problem by use of CTC employed in LPRNet [28], a kind of segmentation-free
license plate recognition method.

Recognition Network. The recognition network, named as RSNet is also
based on ShuffleNetv2 units, as illustrated in Fig. 4, where four kinds of blocks,
PDB(a) ∼ PDB(d) for different spatial downsampling are designed. These
blocks benefit from the parallel structure and are good at extracting features
through downsampling. Like DSNet mentioned above, the intermediate feature
maps are augmented with the global context embedding blocks (GCE blocks)
[15]. To improve recognition performance, we also aggregate feature maps from
different pyramid levels to get more complex maps.

The Loss Function for Recognition Network. Since the RSNet is based
on CTC, the CTC loss is adopted in training recognition network.

3.3 Network Cascade

For end-to-end training, we need to link up the two separated networks and
process the detection and recognition tasks sequentially. The predicted corners
from DSNet are used to crop LP regions from raw images, which will be fed into
RSNet then. Thus RSNet can be compatible with DSNet better, leading to less
intermediate error propagation and achieving higher recognition accuracy. Since
the DSNet uses small size images to perform detection, the detected and cropped
LP regions are not suitable for recognition. To solve the problem, we re-map the
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Fig. 4. The network structure of RSNet. ‘PDB(a) ∼ PDB(d)’ are four kinds of parallel
downsampling blocks with different pooling layers or different strides. ‘class N ’ is the
total number of character classes. ‘Mean’ is an operator that averages the output maps
in the 2nd dimension.

detected region to raw image and perform perspective correction according to
the LP’s coordinates of the DSNet’s output. This multi-resolutions strategy can
improve recognition accuracy effectively.

We utilize NMS [18] to get final detection results according to the predicted
confidence. When decoding the recognition outputs, greedy search is applied on
the output sequence of the RSNet to get the class with max probability.

4 Experiments

4.1 Chinese Licence Plate Dataset

In this section, the experimental results are reported. The performance of our
method is compared with other state-of-the-art models in terms of a Chinese
City Parking Dataset (CCPD)[22]. The CCPD dataset is the largest publicly
available labeled license plate dataset in China by far. We randomly select 60,000
images from CCPD for experiment. As usual, all the images are subsequently
split into 3 subsets in the proportion of 8:1:1 respectively for training, validation
and testing.

4.2 Training Details

All training experiments are performed by pytorch on a NVIDIA Titan V GPU
with 12 GB memory. We set Gaussian scale factor to 0.2 in training and use
Adam optimizer with batch size of 22. The initial learning rate is set to 0.005.
We drop the learning rate every epoch with exponential decay and the decay
factor is 0.98. To make the training more stable, the whole process is consists of
two stages. In the first phase, the detection network is trained until the average
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Gaussian Scores of predicted corners in validation set is greater than 0.6, then
the two subnetworks are trained jointly. In this stage, a loss function compound
with both detection and recognition losses as described in formula (4) are used,
where λ is a weighted factor, and λ ∈ (0, 1):

Llp = Ldet + λLreg (4)

Here, λ is set to 0.5. The model is trained jointly for 70 epochs in total. All hyper-
parameters are adjusted through experiments and can be optimized further.

4.3 Experimental Results

During the training process, no data augmentation is performed and only the
48,000 raw images in the training set are utilized. We evaluate the perfor-
mance of the proposed SLPNet with other publicly reported models on Chi-
nese LP recognition. The rule for the calculation of the recognition accuracy
is described as follows: only when a LP is detected successfully (IoU ≥ 0.5 or
GaussianScore ≥ 0.6) and all the characters of the LP on an image are correctly
recognized, the result is considered to be correct. The recognition accuracy for
different methods is illustrated in Table 1.

Table 1. Experiment results of different methods on CCPD.

Model End-to-end Accuracy Frame Parameters

HyperLPR [24] No 78.8% – 11M

MTCNN+LPRNet [23,28] No 91.8% 12FPS 3.6M

RPNet [22] Yes 93.4% 58FPS 210M

SLPNet(ours) Yes 98.6% 25FPS 3.4M

Other three publicly available models that we compared with are Hyper-
LPR [24], MTCNN+LPRNet [23] and RPNet [22]. HyperLPR [24] is an open
source Chinese license plate detection and recognition framework with high
speed. The framework use a mixture of deep neural networks and classic
image processing algorithms to perform detection, segmentation and recogni-
tion. MTCNN+LPRNet [23] is another open source lightweight ALPR frame-
work based on LPRNet. It uses MTCNN to detect license plate and uses LPRNet,
a segmentation-free method to perform recognition. RPNet [22] is an excellent
end-to-end LP recognition model that first issued the CCPD dataset. As one can
see, compared with other models, the SLPNet achieves the highest recognition
accuracy at 98.6% with the least parameters and the inference speed arrives at
25 FPS. Some detection and recognition results are shown in Fig. 5, from which
one finds that even under clutter scenes and uneven illumination condition our
approach still can get stable results.
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Fig. 5. Some typical detection and recognition results on CCPD with our SLPNet
model.

To demonstrate the feasibility of the proposed MG loss, two other loss func-
tions, namely Gaussian loss which is the first term of MG loss, and traditional
smooth L1 loss are also adopted for comparison in term of LP detection. The
detection accuracy with different loss functions is illustrated in Table 2.

Table 2. Detection accuracy with different loss functions.

Loss function MG loss Gaussian loss Smooth L1 loss [11]

Detection accuracy 98.2% 97.7% 96.3%

LP detection can be viewed as a special nature scene text detection problem
and DB [13] is a popular real-time scene text detector recently. As the last exper-
iment, DB is utilized to detect LPs, compared with our SLPNet. The detection
results are shown in Table 3. It’s obvious that our SLPNet is much more efficient
in LP detection task. And for better LP detection and recognition performance,
an appropriative LP detector is considered to be necessary.

Table 3. Detection results on CCPD with different detectors.

Model Precision Recall F1-Score

DB [13] 44.55% 81.00% 57.49%

SLPNet(ours) 99.87% 99.25% 99.56%

4.4 Performance Analysis

It should be noted that a segmentation-free ALPR framework with end-to-end
training not only leads to easier learning process but also achieves a better
balance between different subnetworks. The integration of the recognition sub-
network with the detection subnetwork can make the framework more consistent
and matched for each other in end-to-end training. The networks in our method
are built based on lightweight convolutional blocks and enhancement modules
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with low computational cost so that we can improve the detection and recog-
nition performance with less parameters. Compared with RPNet which is also
trained on CCPD, our method needs only a subset of the dataset while achieves
higher recognition accuracy, owing to the multi-resolution training strategy and
corner based detector with MG loss.

5 Concluding Remarks

In this paper, we introduce SLPNet, a segmentation-free end-to-end framework
for efficient license palate detection and recognition, which can achieve up to
98.6% recognition accuracy. The model is based on lightweight convolutional
networks therefore it can run fast and the total parameters are only 3.4M. To
raise the detection rate, the proposed detection subnetwork uses corners instead
of regions to locate license plates and a new MG loss function is introduced. The
perspective transformation is utilized to correct LP images so that character
recognition rate is improved. To gain better performance, a multi-resolutions
strategy is adopted without adding any computational cost nearly. Compared
with existing ALPR methods, our approach exhibits a noteworthy performance
and great potentiality for LP detection and recognition.
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Abstract. In visual tracking task, accuracy and robustness are critical
issues for achieveing remarkable performance. In this paper, we propose a
novel dual path network with discriminative meta-filters and hierachical
representations to solve these issues. We first design geometrically sensi-
tivity pathway (GESP) and geographical sensitivity pathway (GASP) as
two subtasks for target classification and scale estimation. GASP mainly
includes powerful discriminative meta-filters to find coarse location of
target and GESP can refine region of interests online while adapt the
appearance model to the target swiftly. Then, a dual path network is
developed in a online and offline framework. Specifically, meta-filters
are trained offline in order to gain meta-knowledge of similar track-
ing scenes. Finally, we present three suggestions on deigning modern
tracker. Extensive experiments on VOT2018 datasets verify the superior
performance of proposed method compared with other state-of-the-arts,
achieving expected average overlap (EAO) of 0.467.

Keywords: Object tracking · Meta-filter · Dual path network · Online
learning · Hierarchical deep features

1 Introduction

Generic visual tracking is a crucial task in computer vision aiming at locating
the specific continuous object in video. Limited information, usually the first
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annotation is provided during visual object tracking. One unique characteristic
of generic object tracking is that no prior knowledge (e.g., the object class) about
the object, as well as its surrounding environment, is allowed [1]. The quality of
localization and scale estimation of target are the most influential factor of the
performance.

Recently, localization and scale estimation tend to be two subtasks of the
tracking problem [2]. Before the deep learning methods, trackers based on Dis-
criminative Correlation Filter (DCF) [3,4] framework took dominant positions
in tracking method. Traditional correlation trackers suffer from inefficiency and
low accuracy due to its inherent flaw. It is natural that the deep learning ways
are applied to other computer vision tasks, such as object detection, seman-
tic segmentation and visual tracking. SiamFC [5], introduces siamese learning
paradigm into visual object tracking, though it employs brutal multi-scale test
which is inaccurate and inefficiency [2]. Then, SiamRPN tracker family [6–8] per-
form an accurate and efficient target scale estimation by introducing the Region
Proposal Network (RPN) [9]. However, the pre-defined anchor settings not only
introduce ambiguous similarity, but also demand huge prior-knowledge about
target. SiamFC++ [10] adopts the anchor-free regression and classification style
based on Siamese learning paradigm, it still heavily rely on the sufficient prior-
knowledge about target. Motivated by the aforementioned analysis, we propose
three suggestions on designing modern visual object trackers:

• Balance between online learning and offline training: The break-
throughs on object detection provide a better way to replace multi-scale esti-
mation in object tracking. For example, RPN [9] structure achieves astonish-
ing accuracy in SiamRPN [6]. Because siamese formulation does not provide
a powerful discriminative model, we highly recommend that online learning
needs to be well-designed. The Correlation based trackers [3,4,11,12] are able
to tackle with online model updation. However, the problems of model drift
and insufficient training of online model result in low accuracy.

• Fully utilization of Multi-level deep convolutional features: Deep
model should be trained for robustness, while the shallow model should
emphasize accurate target localization [13]. We highly recommend that deep
and shallow models should be emphasized equally in order to have better
robustness performance. Even though the high quality training data is cru-
cial for the success of end-to-end representation [7], we argue that models
designed for both deep and shallow features can reduce the burden of offline
training.

• Online searching strategies are highly recommended in scale esti-
mation branch: Both the RPN structure from Faster-RCNN [9] or one-
stage anchor-free detection from FCOS [14] output the coordinates of target
directly without online searching strategy. We strongly consist that it cannot
tackle with severe appearance deformation and complex scenes. In our work,
we choose the IoU-Net [15] prediction proposed by Atom [2] as our scale
estimation branch. It can perform online searching strategy when the coarse
location of target is determined.
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2 Related Work

Generic object tracking can be divided into two frameworks: Tracking framework
and detection framework. Generally, tracking framework trackers are mainly
based on correlation filters. MOSSE [4] proposes a CF tracker by learning a
minimum output sum of squared error for target appearance and calculate in
Fourier domain. KCF [3] adopts ridge regression and circulant matrix to facil-
itate the speed of calculation in Fourier domain. C-COT [16] converts feature
maps of different resolutions into a continuous spatial domain to achieve bet-
ter accuracy. The subsequent ECO [17] has better efficiency by removing the
redundant correlation filters.

ATOM [2] tracker adopts IoU-Net [15] and online learning to classify the
target and estimate the scale. Online learning and offline training are combined
together. ATOM achieves better robustness performance than Siamese-based
trackers. However, it still lack of multi-level deep convolutional features fusion
and its online learning is totally independent of offline training which can be fur-
ther improved. DiMP [18] combines online training and offline training together.

SiamRPN and its succeeding works [3,4,11,12] modifies a Region Proposal
Network after a siamese network. They have direct bounding box regression
ability thanks to extensive offline training. However, the robustness still suf-
fers from the weak discriminative ability of siamses-based detection networks.
The pre-defined anchors of Region Proposal Network (RPN) [9] also need to be
well-designed. Even though the SiamFC++ [10] adopts an anchor-free style for
bounding box regression, its performance still heavily rely on extensive offline
training and robustness cannot be improved as much as accuracy.

3 Proposed Method

Two meta-filters in Geographical Sensitivity Pathway (GASP) are trained to
have more discriminative power between foreground and background. The geo-
metrically sensitivity pathway (GESP) focus more on the appearance model of
the object in order to estimate the scale accurately.

3.1 Dual Path Network

The whole pipeline of our tracker consists of two meta-filters and a Box Fast
Adaption Module. Hierarchical feature representations are used for two meta-
filters in order to achieve better performance on localizations. Similar to the
object segmentation in [19], the Box Fast Adaption Module can have accurate
object outline estimation after the localization process (Fig. 1).

3.2 Multi-hierarchical Independent Discriminati Filters in Online
Learning

Inspired by discriminative correlation filter (DCF) approaches, we formulate our
learning objective based on L2 classification error. Each sample xk contains D
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Fig. 1. Pipeline of Dual Pathway Network. GASMF stands for meta-filtes in Geograph-
ical Sensitivity Pathway. GESMF stands for meta-filtes in Geometrically Sensitivity
Pathway. GESAFM is Appearance Fast Adaption Module in Geometrically Sensitivity
Pathway

feature channels x1
j x2

j , . . . , x
D
j , extracted from the same image patch, where k

is the index of the samples. Assume that f = {fd}d=1:D is a set of D channel
features. The correlation filters algorithm can be formulated as:

arg min
f

K∑

k=1

‖φ (xk, f) − yk‖2L2 + λ

D∑

d=1

‖f‖2L2 (1)

where xk is the cyclic shift sample of the xk and yk is the Gaussian response
label. The optimization problem in Eq. (1) can be solved efficiently in the Fourier
domain.

φ (xk, f) =
D∑

d=1

fd ∗ xd
k (2)

In our work, we try to combine the online optimization with offline train-
ing, thus we approximate the loss with a quadratic function and optimize it by
backward propagation instead of Fast Fourier Transform (FFT).

In this section, the discriminative learning loss is described in details. The
input to our model predictor D consists of a training set Strain = {(xj)}n

j=1
of deep feature maps xj ∈ X generated by the backbone network F . During
online tracking, correlation filter is optimized to generate a target model f =
D (Strain ) . The model f is defined as the filter weights of a convolutional layer.
The maximum value of the model output should localize the center of target.

L(f) =
1

|Strain |
∑

(x)∈Swain

‖r(x ∗ f, c)‖2 + ‖λf‖2 (3)
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Here, * denotes convolution and λ is a regularization factor. The function
r(s, c) computes the residual at every spatial location based on the target con-
fidence scores s = x ∗ f and the ground-truth target center coordinate c. In Eq.
(1), r(s, c) = s − yc, traditional correlation filter trackers optimize the residuals
between response and the Gaussian target scores. Thus, the difference of target
and distractor response usually represents the discriminative ability of the corre-
lation filters. However, during online tracking, background noise and distractors
are far more abundant than our target resulting in imbalance of the positive and
negative samples.

In order to learn a more discriminative filter, it is common to have a weight
matrix in the learning loss. In our work, We employ a hinge-like loss in r, clipping
the scores at zero as max(0, s) in the background region. Thus, the filter is more
focus on the hard negative distractors instead of easy negative samples. We
believe that it could contribute to a more discriminative filter and efficiency
online optimization.

r(s, c) = vc · (mcs + (1 − mc) max(0, s) − yc) (4)

The mask mc modifies the spatial weight of scores, having values in the
interval mc(t) ∈ [0, 1] at each spatial location t ∈ R

2.
In our work, we use convolutional layers D to generate the filter f = D (Strain)

by implicitly minimizing the error (3).

f (i+1) = f (i) − α∇L
(
f (i)

)
(5)

Instead of minimizing the error (3) in Fourier domain, we approximate the
error with a quadratic function and directly employ gradient descent optimiza-
tion using a step length α.

L(f) ≈ L̃(f) =
1
2

(
f − f (i)

)T

Q(i)
(
f − f (i)

)

+
(
f − f (i)

)T

∇L
(
f (i)

)
+ L

(
f (i)

) (6)

Here, the filter variables f and f (i) are seen as vectors and Q(i) is positive
definite square matrix. The steepest descent is adopted in order to achieve a fast
convergence performance. By solving d

dα L̃
(
f (i) − α∇L

(
f (i)

))
= 0, we could find

the step length α.

α =
∇L

(
f (i)

)T ∇L
(
f (i)

)

∇L
(
f (i)

)T
Q(i)∇L

(
f (i)

) (7)

In this work, We set Q(i) =
(
J (i)

)T
J (i), where J (i) is the Jacobian of the

residuals at f (i). This design of positive definite square matrix Q(i) involves with
second-order gradient descent of residuals at f (i) which can contribute to a fast
and efficient convergence.
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Compared to the traditional correlation filter (CF) algorithms, We treat the
hierarchical features differently. Because the shallow and deep features are both
critical to the localization and classification, we train a set of independent filters
for each feature. The decomposition of the function of two filters are beneficial
to the overall performance. Conventional CF algorithms with one single filter is
usually difficult to tackle with both classification and localization tasks during
online tracking leading to model drift and insufficient online learning.

3.3 Filter Generations in Meta-learning Style

The motivation of our learning algorithm is that discriminative filters for similar
visual objects in arbitrary background have amounts of sharing weights. Fil-
ters for objects with the same high-level semantic information should be robust
towards changes, motion blur, scale variations, etc. To extract useful sharing fil-
ter weights in similar tracking scenes, we separate scene-independent information
through offline training (Fig. 2).

Meta-filter 
Generator  

Optimizer

Offline

Online

Meta-knowledge

Fig. 2. Multi-hierarchical independent discriminative filters combined with online
learning and offline training framework.

Algorithm 1. Meta-filters f (i) in offline training
Training samples Strain = {(xj , cj)}n

j=1 ,test samples Stest = {(xj , cj)}m
j=1

repeat
f (i) ← FilterGen (Strain ) # Generate filters

∇L
(
f (i)

)
← FilterGrad

(
f (i), Stest

)
#Apply filters

FilterGen ←BackProp(∇L
(
f (i)

)
) # Update FilterGen

until Niter
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With these sharing weights stored in convolutional networks to generate
meta-filters, our online discriminative model for classification can be adapted
to the specific objects fastly. We introduce a network module called filter gen-
eration network gθ. It consists of two convolutional layer and a precise ROI
pooling. During offline training, the Strain = {(xj , cj)}n

j=1 , composed of several
tracklets, are used to generate meta-filters through averaging the pooled fea-
ture maps. And then, the test samples Stest = {(xj , cj)}m

j=1 are applied with
generated filters to optimize the filter generation network.

Details of our meta-filters in Geographical Sensitivity Pathway (GASP) and
Geometrically Sensitivity Pathway (GESP) are show in Fig. 3. ResNet-50 Block3
features in different stage are passed to a convolutional block (Cls). Regions
defined by the input bounding boxes are then pooled to a fixed size using Precise
Pooling layers. After a convolutional block, the weights of filter are generated to
perform as convolutional block for features of searching image. Online optimizers
optimize weights of filters during online tracking while offline optimizers try to
learn meta-knowledges of filter-generation.

Fig. 3. Full architecture of our discriminative meta-filters. Pseudo-siamese network is
not shown here for simplicity.

3.4 Appearance Fast Adaption Module

After the coarse spatial location of target is figured out, we need a subnetwork to
acquire the accurate localization of target. In this work, we adopt an independent
IoU-Nets [15] with template feature modulation. We train our independet IoU-
Net [15] with template feature modulation for measuring the differences between
proposals and ground truth. Full architecture can be viewed in Fig. 4.

The template features x0 and searching area features x are extracted by
modulation branch and test branch. The bounding box annotion A0 is as extral
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Fig. 4. Full architecture of our Appearance Fast Adaption Module (AFAM I) and
Appearance Fast Adaption Module II (AFAM II).

Algorithm 2. Online searching strategy in Box Fast Adaption Module
Random Proposals Generation Pi = GaussionRandom(Ai−1) ,

∑k
1 i = 8

Niter = 0, step length = α
repeat

f (i) ← testBranFexactor(Pi)# Feature extraction for proposal
Mvec ← ModuBran(x0, At)# Modulation convolutional kernels
BoxConV al(i) = g (c (x0, A0) · z(x,A))#Confidence value of proposal
p ← BackProp(∇(BoxConV al(i)) # Optimization through Backward Propaga-
tion
Pi ← Pi + αp# Proposal updation
Niter = Niter + 1

until Niter = 10

modulation information for generating box confidence value. The modulation
information c (x0, A0) is added to the test branch as convolution kernel. The
feature representation of search area z(x,A) has strong spatial correspondence
with the searching frame. Thus it could reflect the spatial coordinate difference
between template and test frame.

BoxConVal(A) = g (c (x0, A0) · z(x,A)) (8)

During online tracking, we apply another online searching strategy to max-
imun the confidence value with bounding box optimization. We use Gaussian
distribution and previous position of target to generate initial proposals. For
each proposel, we obtain the confidence value through the Box Fast Adaption
Module. By backward propagation to obtain the gradient of confidence value,
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we optimize the length and center position of current proposal directly. Details
are shown in Algorithm 2.

Appearance Fast Adaption Module II (AFAM II) provides pixel-level target
information. We use the features extracted from ResNet-50. For the first frame
and ground truth, we obtain the pseudo-mask for the target from the AFAM II.
Then the extra information from Appearance Fast Adaption Module I (AFAM
I) and pseudo-mask are concatenated together. The refinement network will
output the final appearance estimation. Although the AFAM II are pretrained
on training segmentation sequences from Youtube-VOS, yet it is not design for
the segmentation task. During training, we use bounding box labels as inputs to
predict target mask. So it should be considered as target appearance estimation,
not instance segmentation.

4 Experiments

Meta-filters in Geographical Sensitivity Pathway (GASMF) and Box Fast Adap-
tion Module in Geometrically Sensitivity Pathway (GESBFAM) are firstly
trained jointly with ImageNet pretrained weights. Because ImageNet pretrained
models are for classification task which may not suitable for tracking, we firstly
train the GASMP and GESBFAM 40 epochs in the training splits of TrackingNet
[20], LaSOT [21], GOT10k [1] and COCO [22] datasets to adapt backbone to
tracking task. Then, we add the meta-filters in Geometrically Sensitivity Path-
way (GESMF) to train another 30 epochs for a more discrminative power model.
We train our model by sampling 26,000 frame-pairs per epoch. We use ADAM
[23] with learning rate decay of 0.2 every 10th epoch. We use features extracted
from the third block from Resnet. We set the kernel size of the meta-filters to
64 * 4 * 4. Appearance Fast Adaption Module (AFAM) in Geometrically Sen-
sitivity Pathway are pre-trained on 3471 training segmentation sequences from
Youtube-VOS [24].

4.1 Ablation Studies

We compared the performance of different combinations in Resnet50. ResNet-50
Block3 features in different stage. If we select adjacent layers, more redundancy
and interference will be introduced into our tracking framework, thus causing
the performance degradation. From the Table 2 the best performance achieved
is from the layer3a and layer3e. When using two meta-filters, the EAO comes to
0.455, which demonstrates the effectiveness of two filters. The Box Fast Adaption
Module improves accuracy a lot which is 0.652 comparing to 0.597 (Table 1).

4.2 Results on Several Benchmarks

VOT2018 [25] datasets consist of 60 test sequences. With no training dataset
provided, VOT is the most challenging benchmark for tracking which has topics
including fast motion, occlusion, etc. We tested our tracker on this benchmark
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Table 1. VOT2018-comparison with different settings.

Tracker Settings0 Settings1 Settings2 Settings3 Settings4 Settings5

Filters Single Single Two Two Two Two

Features Block2e Block3e Block2e+3e Block3e+3f Block3a+3e Block3a+3e

Box adaption – – – – – Yes

A ↑ 0.595 0.596 0.596 0.597 0.596 0.652

R ↓ 0.172 0.168 0.157 0.165 0.155 0.155

EAO ↑ 0.421 0.435 0.455 0.448 0.457 0.467

and present the results in Table 2 and Table 3. To the best of our knowledge, we
achieves an EAO of 0.467 on VOT2018 (Kristanetal, 2018) and EAO of 0.334 on
VOT2019 benchmark which is the new state-of-the-art performance. Our tracker
also can run at 30 FPS in Nvidia GeForce 1080ti which is still very competitive
(Tables 4 and 5).

Table 2. VOT2018-comparison with state-of-the-art trackers. The top three results
are in red, blue and green fonts. Best viewed in color display.

Tracker Ours SiamFC++ [10] ATOM [2] SiamRPN++ [8] DaSiamRPN [7] ECO [17]

Where – AAAI20 CVPR19 CVPR19 ECCV18 CVPR17

A ↑ 0.652 0.587 0.590 0.600 0.586 0.484

R ↓ 0.155 0.183 0.204 0.234 0.276 0.276

EAO ↑ 0.467 0.426 0.401 0.414 0.383 0.280

Table 3. VOT2019 realtime-comparison with state-of-the-art trackers. The top three
results are in red, blue and green fonts. Best viewed in color display.

Tracker Ours SiamBAN [26] DiMP [18] SiamRPN++ [8] SiamMask [27] SiamCRF [25]

Where – CVPR20 CVPR19 CVPR19 ECCV18 CVPR17

A ↑ 0.636 0.602 0.582 0.599 0.594 0.549

R ↓ 0.276 0.396 0.371 0.482 0.461 0.346

EAO ↑ 0.334 0.327 0.321 0.285 0.287 0.262

Table 4. GOT-10K-comparison with state-of-the-art trackers. The top three results
are in red, blue and green fonts. Best viewed in color display.

Tracker Ours SiamFC++ ATOM [2] SiamRPN++ [8] SiamFCv2 [5] ECO [17]

Where – AAAI20 CVPR19 CVPR19 ICCV19 CVPR17

AO ↑ 60.0 59.5 55.6 51.8 37.4 31.6

SR(0.5) ↑ 71.6 69.5 63.4 61.8 40.4 30.9

SR(0.75) ↑ 46.0 47.9 40.2 32.5 14.4 11.1



Learning Meta-filters in Dual Path Network 313

Table 5. OTB-15-The top three results are in red, blue and green fonts. Best viewed
in color display.

Tracker Ours ATOM [2] SiamRPN++ [8] DaSiamRPN [7] ECO [17]

Where – CVPR19 CVPR19 ECCV18 CVPR17

Success ↑ 67.7 66.9 69.6 65.8 69.1

5 Conclusions

In this paper, we propose three suggestions on designing modern visual object
trackers. We combine offline training and online learning of discriminative filters
together. The meta-learning ways are stressed and successfully applied in object
tracking. The meta-knowledge of the filter generations on similar tracking scenes
are learned through convolutional network. Gradient descent optimization is
carefully designed to adapt our filters to unseen objects efficiently. Moreover,
a pseudo-siamese network structure enpowers the discriminative ability of our
meta-filters. Our tracker can perform online searching strategies to find the best
object bounding box. The balance of online searching and offine training helps
us to achieve better results with less training resource.
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Abstract. Pedestrian attribute recognition is a key problem in intelli-
gent surveillance. Relations between attributes and human body struc-
tures or relations among attributes are beneficial to attribute recogni-
tion, while the annotations are just image-level binary labels. In this
work, we propose a novel pedestrian attribute recognition network that
takes advantage of latent attribute localizations and local attribute rela-
tions to improve the performance of pedestrian attribute recognition.
Our method generates latent attribute localization maps by weakly-
supervised learning in latent attribute localization (LAL) module. These
latent attribute localization maps are fed into the local attribute atten-
tion (LAA) module to extract local attributes, and local attributes are
interacted with each other with the attention mechanism. Extensive
experiments made on the publicly pedestrian attribute datasets of PETA
and RAP show that our model outperforms previous methods.

Keywords: Pedestrian attribute recognition · Latent attribute
localization · Local attribute attention

1 Introduction

Pedestrian attribute recognition aims to extract semantic descriptions from tar-
get person image, including low-level descriptions (e.g., wearing, hairstyle) and
high-level ones (e.g., gender, age). Pedestrian attribute recognition is one of the
active research areas in computer vision because of its wide applications in intel-
ligent video surveillance systems. Accurate attributes recognition also benefits
other applications such as person re-identification and person retrieval.
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In recent years, researchers pay more attention to solve the pedestrian
attribute recognition problem. At first, pedestrian attribute recognition mainly
relies on hand-crafted features such as color and texture histograms [1,2].
Recently, methods based on deep learning achieve great success, which formu-
lates it as a multi-label classification problem [3]. These methods can roughly be
divided into spatial attention methods and label relation methods. Spatial atten-
tion methods are proposed to pay more attention to discriminative local features
of pedestrian [4–6], which are proved useful due to the existing relations between
pedestrian attribute and attribute location on the human body. Label relation
methods are proposed to exploit semantic relations to assist attribute recogni-
tion [7,8], which improve the performance of pedestrian attribute recognition by
considering the dependency and conflicts of labels.

The main problems of existing methods are at least one of the following:
(1) Ideally, one attribute corresponds to one specific region according to spa-
tial attention methods. However, the relation between attributes and the human
body is quite complicated, and these regions could be disconnected. (2) Some
pedestrian attributes are predicted from shared feature vectors, which is benefi-
cial to train the feature extractor. However, classifier needs to handle more redun-
dant features when predicting a specific attribute. For example, The attribute
female is inferred from many low level features (long hair, dress style), and it
doesn’t correspond to a specific human body region.

To address these problems, we propose to learn the latent attributes local-
ization and handle local attributes with attention. The target attributes can be
seen as combinations of latent attributes, which could be related to more precise
regions and easier to represent. In our method, the latent attribute features are
first extracted with spatial constraints. And then target attributes are predicted
with attention mechanism to model relations among latent attributes.

Different from previous methods, we propose the latent attribute localization
module (LAL) to localize the latent attributes, and generated latent attribute
localization maps are used to extract local attributes. Then local attribute atten-
tion (LAA) methods are adopted to model relations among local attributes. The
final predictions are obtained through a voting scheme to output the maximum
predictions among different feature levels. The proposed framework is end-to-end
trainable and requires only image-level annotations.

The main contributions of this work are as follows:

1. We propose a framework to handle latent attribute localizations and local
attribute relations simultaneously in a weakly supervised manner. The latent
attribute localization (LAL) module is proposed to localize discriminative
latent attributes with image-level labels.

2. The local attribute attention (LAA) method is proposed to process latent
attributes simultaneously and model relations among local attributes.

3. We conduct extensive experiments on publicly available pedestrian attribute
datasets PETA and RAP, and our method outperforms previous methods.
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2 Related Work

Many works have been proposed in the field of pedestrian attribute recognition.
At first, pedestrian attribute recognition mainly relies on hand-crafted features
such as color and texture histograms [1,2]. Recent years CNN-based approaches
make great success in pedestrian attribute recognition and outperform most of
traditional methods. The problem is formulated as a multi-label classification
problem [3]. These methods can roughly be divided into spatial attention meth-
ods and label relation methods.

Spatial attention methods are proposed to pay more attention to discrimi-
native local features of pedestrian [4–6,9], which are proved useful due to the
existing relations between pedestrian attribute and attribute location on the
human body. Liu et al. [4] propose a multi-directional attention model to learn
multi-scale attentive features for pedestrian analysis, which extracts attention
maps with convlution methods. Fabbri et al. [5] propose a generative adversial
models,which uses features extracted from different human body parts. Li et al.
[9] combine pose estimation and spatial transform network to extract local fea-
tures. Tang et al. [6] extract features from different regions with spatial tranform
network. Li et al. [10] model the spatial relations by simply dividing the image
into rigid grids. However, these methods try to learn spatial constraints for all
attributes, which is unnecessary and hard to learn.

Label relation methods are proposed to exploit semantic relations to
assist attribute recognition [7,8], which improve the performance of pedestrian
attribute recognition by considering the dependency and conflicts of labels.
Wang et al. [7] propose a CNN-RNN network to exploit the relations among
attributes. Zhao et al. [8] divide the attributes into several groups and attempt
to explore the intra-group and inter-group relationships. However, these meth-
ods are mainly reply on pre-defined rules and don’t take advantage of relations
between attributes and human body regions.

3 Methods

The overview of our proposed framework is illustrated in Fig. 1. The proposed
framework consists of a backbone network, Latent Attribute Localization (LAL)
modules and Local Attribute Attention (LAA) modules applied to different fea-
ture levels. The key idea of this work is to take advantage of latent attribute
localizations and local attributes relations to improve the effect of pedestrian
attribute recognition.

3.1 Network Architecture

Formally, given an input pedestrian image along with its corresponding labels
y = [y1, y2, ..., yC ]T where C is the total number of attributes, and yc is a
binary label that indicates the presence of c-th attribute if yc = 1. We adopt the
Inception-V3 [11] as the backbone network in our framework.
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Fig. 1. Overview of the proposed framework. The latent attribute localization (LAL)
modules and local attribute attention (LAA) modules are appended after different
feature levels to handle attributes of different levels. Outputs from different branches
are trained with intermediate supervision ways. Inference process is shown in dashed
line, predictions from different levels vote for final prediction in a maximum way. The
prediction output from LAL modules are not involved in inference process.

Pedestrian attribute recognition deals with attributes of various levels, so we
extract features after different inceptions to take both low-level details feature
and high-level semantics feature into account. For each pedestrian image, we can
obtain feature representation F i, i = 1, 2, 3 from 3 different levels in backbone
network. We then conduct the LAL module and LAA module with different level
features F i. LAL module extracts latent attribute localization maps, and these
maps are fed into LAA module. In LAA module, the local attributes are first
extracted with features F i and latent attribute localization maps. The relations
among local attributes are modeled in LAA modules by applying corresponding
weights on local attributes, and then full connect layers are used to make target
attribute predictions. Attributes predictions are generated from different feature
levels. During the inference process, final predictions are predicted by voting
the maximum prediction among predictions made in different levels. The whole
pipeline is shown in Fig. 1.

3.2 Latent Attribute Localization Module

As mentioned in Sect. 1, previous spatial attention methods extract regions
related to specific attributes to improve performance. There are two things that
should be considered. First, regions related to target attributes could be discon-
nected and hard to learn. Second, there are correlations among the attributes.
Thus it is not suitable to learn each attribute location independently. To address
such problems, we propose to learn latent attributes locations.

The details of the latent attribute localization module are shown in Fig.
2. The latent attribute localization method is motivated by weakly supervised
detection and localization method [12–14]. Given input F i, i ∈ 1, 2, 3, stacked
convolution layers with kernel size equals to 1 are used to extract latent attribute
localization maps zi. In our experiment, the convolution layer number is set as 3.
The kernel number of last convolution layer referred to as Ni equals the number



320 M. Sun et al.

of the latent attributes. The pixel value of c-th channel at position (h,w) of
latent attribute localization maps are referred as zic,h,w. The extracted latent
attribute localization maps are then spatially normalized to put more attention
on discriminative regions, and we get normalized latent attribute localization
maps ai ∈ R

Hi
L×W i

L×Ni

. The nomalization process of ai
c,h,w is shown as Eq. 1:

ai
c,h,w =

exp(zic,h,w)
∑

h,w exp(zic,h,w)
(1)

Following [14], the feature maps F i are concurrently passed to convolution
layers followed by the sigmoid function. This branch is used to decrease the
influence when the latent attribute is absent. The parameter in this branch is set
the same as previous branch. And we can get the latent attribute confidence maps
si from this branch. The output from two branches are element-wise multiply to
get the final latent attribute localization map Li as Eq. 2:

Li = ai � si (2)

And we get the latent attribute localization maps Li that the LAL module
learns to represent in the weakly supervised method. Then we convert latent
attribute into target attribute predictions for training. The localization map Li

is fed through pooling layers and full connect layers to make target attribute
prediction, and predictions from LAL Module on i-th level are referred as yi

L.
These predictions are not involved in reference process.

Fig. 2. Details of LAL module

3.3 Local Attribute Attention Module

The LAA module is proposed to handle relations among local attributes and
make target attribute recognition. The target attribute can be seen as combi-
nation of attributes, and attention mechanisms are adopted in LAA module to
handle the relations. The details are shown in Fig. 3.
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Fig. 3. Details of LAA module

With feature maps F i from i-th level and extracted latent attribute localiza-
tion maps Li, we can extract local attributes vectors, shown as Eq. 3:

(f i
n)init =

∑

h,w

Li
n � F i, n ∈ 1, 2, ..., N (3)

To make local attributes distinguishable from each other, we adopt hard position
encoding methods [15]. For the n-th local attribute, it computes cosine and sine
functions of different wavelengths and adds to the local attribute vector [15]. The
position encodered n-th local attribute is referred as f i

n. With input set of N
local attributes f i

1, f
i
2, ...f

i
N , the ralation feature rin of the whole local attribute

set with respect to the n-th local attribute f i
n is computed as follows:

rin =
N∑

m=1

wi
mn · φi

W (f i
m) (4)

where φi
W is learnable linearly transform, wi

mn is the relation weight that indi-
cates the ralation of m-th local attribute and n-th local attribute. And wi

mn in
computed as Eq. 5:

(wi
mn)init =

φi
K(f i

n) · φi
Q(f i

m)√
dk

wi
mn =

(wi
mn)init∑

k(w
i
kn)init

(5)

where φi
K , φi

Q are learnable linearly transform. dk is the dimention of local
attribute vector. It calculates the similarity of f i

n in key space and f i
m in query

space as the relation between n-th local attribute and m-th local attribute. Then
the relation features are passed through full connect layers to get the target
attribute predictions yi

A.
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3.4 Loss Function

We adopt the weighted binary cross-entropy loss function [3] as the loss function,
formulated as follows:

Loss(ŷ, y) = − 1
K

K∑

c=1

e−pc

(yclog(ŷc) + (1 − yc)log(1 − ŷc)) (6)

where yc is the ground truth label which represents whether target person has c-
th attribute, ŷ denotes the output label probability of the c-th label, pc denotes
the positive ratio of c-th attribute in the training set, K denotes the number
of target attributes. As stated in [3], the usage of weights of positive samples
in the loss function can alleviate the problem of imbalanced label distribution.
All predictions(y0, yi

L, yi
A) are trained with the above weighted entropy loss.

During inference process, predictions(y0, yi
A) from different levels vote for final

prediction in a maximum way. The predictions(yi
L) from LAL module are just

for auxiliary training.

4 Experiments

4.1 Implementation

Datasets. For evaluations, we used two publicly available pedestrian attribute
datasets: (1) PETA Dataset [16]. The dataset consists of 19000 person images.
Following [3], we divide the whole dataset into three nonoverlapping partitions:
9500 for model training, 1900 for verification, and 7600 for model evaluation.
And we choose 35 attributes that positive ratio is higher than 5% in our exper-
iment. (2) RAP Dataset [17]. The dataset has 41585 images drawn from 26
indoor surveillance cameras. Following the official protocol [17], we split the
whole dataset into 33,268 training images and 8,317 test images. We choose 51
attributes that positive ratio higher than 1% in our experiments.

Evaluation Metrics. We adopt two types of metrics for evaluation [17]: (1)
Label-based metric: we calculate the mA as the mean of positive accuracy and
negative accuracy for each attribute. (2) Instance-based metric: we adopt four
well-known criteria: accuracy, precision, recall and F1 score.

Implementation Details. Our model is implemented with Pytorch. Inception-
V3 model pretrained from the ImageNet image classification task is adopted as
the backbone network. We train the network with batch size equals to 32. The
initial learning rate of training is 1e–4 and changes to 1e–5 after 10 epochs. The
optimization algorithm used in training is Adam optimization algorithm [18].
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Table 1. Performance comparisons against previous methods on RAP dataset. Best
results are in bold, and second best results are underlined.

Method Metric

mA Acc Prec Recall F1

ACN [19] 69.66 62.61 80.12 72.26 75.98

DeepMar [3] 73.79 62.02 74.92 76.21 75.56

JRL [7] 77.81 – 78.11 78.98 78.58

GRL [8] 81.20 – 77.70 80.90 79.29

RA [20] 81.16 – 79.45 79.23 79.34

HP-Net [4] 76.12 65.39 77.33 78.79 78.05

PGDM [9] 74.31 64.57 78.86 75.9 77.35

Ours 83.22 69.91 80.56 80.04 80.29

Table 2. Performance comparisons against previous methods on PETA dataset. Best
results are in bold, and second best results are underlined.

Method Metric

mA Acc Prec Recall F1

ACN [19] 81.15 73.66 84.06 81.26 82.64

DeepMar [3] 82.89 75.07 83.68 83.14 83.41

JRL [7] 85.67 – 86.03 85.34 85.42

GRL [8] 86.70 – 84.34 88.82 86.51

RA [20] 86.11 – 84.69 88.51 86.56

HP-Net [4] 81.77 76.13 84.92 83.24 84.07

PGDM [9] 82.97 78.08 86.86 84.68 85.76

Ours 86.91 78.62 87.10 87.04 87.06

Table 3. Performance comparisons on RAP dataset when gradually adding proposed
component to the baseline model.

Dataset PETA RAP

Component Metric

mA F1 mA F1

Baseline 80.63 82.58 75.80 77.78

LAL(single level) 82.48 83.07 77.59 79.24

LAL+LAA(single level) 84.11 83.48 80.37 79.40

LAL+LAA(multi-level) 86.29 85.02 83.22 80.29
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4.2 Evaluation

In this section, we compare the performance of our proposed method against sev-
eral previous methods. We choose the representative methods of three catagories
mentioned in Sect. 1 and compare proposed method with them: (1) Holistic
methods including ACN [19] and DeepMAR [3]. (2) Label relation methods
including JRL [7], GRL [8] and RA [20]. (3) Spatial attention methods including
HP-Net [4] and PGDM [9].

Tabel 1 and Tabel 2 shows the comparison results of the proposed methods
against previous methods on PETA dataset and RAP dataset. The result sug-
gests that our proposed method achieves superior performance compared with
existing works. On RAP dataset, our proposed method achieves significant per-
formance. The proposed method achieves the best performance on mA, accuracy,
precision, and F1. The mA and F1 can be selected as main metrics to evaluate
the methods performance for classification problems. The results suggest that
our proposed method achieves superior performances compared with existing
methods. The precision and recall metrics are mutually exclusive. Moreover, our
method aims to extract more precise local features with complex network struc-
tures, which improves the credibility of results. So the precision of our method
is quite high. Besides, our method has a faster speed compared with relation-
based network [7,8] for its parallel structure. The improvement of performance
on PETA dataset is not so obvious. In fact, there are more attributes at high
levels depend on human and object interaction in the RAP dataset (e.g., action,
attachment), which are better improved by the proposed methods. The compar-
ison details are shown in Sect. 4.4.

4.3 Ablation Study

To validate our contributions, we further perform ablation studies on the PETA
dataset and RAP dataset. We choose mA and F1 score as the representation of
label-based and instance-based metrics to evaluate the effect. The result with
the Inception-V3 net is chosen as the baseline method for comparison. In the
baseline method, the input image is passed through convolution layers, pooling
layers and full connect layers to make attribute recognition.

As shown in Table 3, based on Inception-v3 as the baseline network, we grad-
ually add modules on it to analyze the effect. (1) Latent Attribute Local-
ization Module We first evaluate the contribution of the LAL module by
appending LAL Module after backbone convolution layers. The predictions from
LAL modules are selected as target attribute predictions. The mA and F1 both
increase, which demonstrates the spatial regularization of latent attributes is
effective. And the improvement is quite obvious. (2) Local Attribute Atten-
tion Module We evaluate the impact of the LAA module by appending the
LAA module with the LAL module at the same time. The improvement of
mA is quite significant, which demonstrates the attention mechanism on local
attributes is useful. The effect is further improved by handling the relationship
among attributes with LAA module. (3) Modules on Different Levels Then
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we evaluate the effect of applying the LAL module and the LAA Module on
multiple feature levels. We apply the proposed Modules after Incep-1, Incep-2,
and Incep-3 and get final predictions with the voting max scheme. The multi-
level framework is proved useful because it takes advantage of features extracted
from different levels. Considering the model complexity, LAL and LAA modules
are applied on 3 levels in our method.

4.4 Improvements on Different Attributes

Table 4. 5 attributes with the greatest improvement in RAP dataset

Attribute Improvement

Attach paper bag 12.4%

Upbody suitup 12.1%

Shoes cloth 11.5%

Attach handbag 11.3%

Bold head 9.6%

Compared with Baseline methods, the proposed methods increase the accuracy
better in the following attributes on RAP dataset: attach paper bag (increase
12.4%), upbody suitup (increase 12.1%), shoes cloth (increase 11.5%), attach
handbag (increase 11.3%), bold head (increase 9.6%), as shown in Table 4. We
can find that these attributes are more focused on understanding the structure
of the human body. These attributes are local attributes or combinations of
local attributes. On th contrary, the improvements on abstract attributes like
age and body shape are not so obvious. Our proposed method improves the
ability to understand human body structure by learning latent attributes. Thus
our method performs better on recognition of the attributes related with human
body.

5 Conclusion

In this work, we propose a novel end-to-end model for pedestrian attribute recog-
nition by learning latent attributes. Latent Attribute Localization (LAL) module
learns the relation between latent attributes and human bodies, and the localiza-
tion maps are used to extract local attributes. Relations among local attributes
are modeled with Local Attribute Attention (LAA) methods. Our proposed
model outperforms a wide range of existing pedestrian attribute recognition
methods. Extensive experiments demonstrate the effects of proposed modules
LAL and LAA.
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Abstract. In this work, we propose a novel method to perform intra-camera
supervised person re-ID by Tracklet Level Classifier (TLC). The key idea of our
method is to train classifiers for every intra-camera ID, which is tracklet level,
compared with camera level of previous works. By training tracklet level classi-
fiers, we make the backbone learned to extract intra-camera invariant represen-
tations. With the fine-trained classifiers, we mine and exploit latent inter-camera
ID matching pairs easily. Previous works needs two stages and relies on compli-
cated rules to match inter-camera pairs while we simplify the training strategy to
only one stage and do not need a complex design to match tracklet over cameras.
Extensive experiments and ablation studies on three large re-ID datasets show
that our simple and effective TLC method achieve state-of-the-art among all the
intra-camera supervised person re-ID methods.

Keywords: Person Re-ID · Weakly supervised · Tracklet

1 Introduction

Person re-Identification (re-ID) is a hot research topic nowadays for its application in
surveillance camera systems. It is a sub-topic in image retrieval in computer vision.
Person re-ID aims to match the same pedestrian across non-overlapping camera views
[1–5]. With the develop of deep learning, especially deep convolutional neural net-
work (CNN) [6,7], the performance of person re-ID has been improved significantly
[8–11]. Conventional supervised learning methods depend on the well annotated labels
to extract camera-view invariant features for person images due to CNN is a data driven
method. However, the labels are annotated manually, which is very time- and money-
consuming. As the number of cameras grows, the workload of matching ID across the
cameras increases by a quadratic scale, making it harder to annotate person re-ID labels
than other computer vision task, e.g. classification and detection. The high cost of label-
ing limits the fully supervised person re-id methods, so other methods are needed that
do not need such labels.

There have been some unsupervised or weakly supervised person re-ID methods to
address this problem. We roughly classify them to four categories: (1) Domain adaption
methods [12–14] (2) Unsupervised clustering methods [15,16], (3) Semi-supervised
methods [17], (4) Intra-camera supervised or tracklet supervised methods [18–21].
Domain adaption methods regard different datasets as different domains and aim to
c© Springer Nature Switzerland AG 2020
Y. Peng et al. (Eds.): PRCV 2020, LNCS 12306, pp. 328–342, 2020.
https://doi.org/10.1007/978-3-030-60639-8_28
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Fig. 1. Illustration of Tracklet Level Classifier (TLC) method and Camera Level Classifier (CLC)
method for intra-camera supervised person re-ID learning. Given a feature extracted by the back-
bone network, TLC builds independent classifiers for every tracklets, a.k.a in-camera IDs. A
tracklet classifier predicts whether a feature belongs to a tracklet. Compared with common used
CLC methods build classifiers for every camera and each classifier predict which tracklet the fea-
ture belongs to. The probability is determined by all logits in a camera in CLC while by only the
tracklet’s logit itself in TLC, which makes a more precise tracklet classifiers and thus giving a
easy way to matching latent cross-camera tracklet pairs for performance improvements.

transfer the source domain trained model to the target domain in a domain adap-
tion manner. Unsupervised clustering methods generate labels automatically for tar-
get domain data by means of clustering algorithms and then fine tune a model from
source domain with the generated labels for target domain. Semi-supervised methods
use a slight amount of labels for training and then using techniques to generate labels
for unlabeled data, then train on generated labels. Intra-camera supervised or tracklet
supervised methods are recently proposed promising methods that using intra-camera
annotated labels or tracklet label generated by existing tracking methods which perform
the best among all these 4 categories.

Domain adaption and unsupervised clustering methods rely on a fine trained model
from the source domain, which is not scalable and also performs mediocrely. Semi-
supervised methods still rely on high costing cross camera labels and perform better
with more labels, which can be regarded as special case of fully supervised learning.
Intra-camera and tracklet supervised methods are similar because they only rely on
intra-camera labels. The difference is that tracklet supervised methods use label gen-
erated by tracking methods [22–25] and need original videos to perform the tracking,
while intra-camera use human annotated intra-camera label, which is easier and cheaper
to get than cross-camera labels. They are two versions of trade-off between label qual-
ity and cost. Intra-camera methods achieve promising performance recently. However,
UTAL [19] and TAUDL [18] need a large mini-batch (384) at run time for matching the
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latent cross-camera tracklet pairs, which may occupy at least ve 1080-Ti GPUs in train-
ing, UGA [21] builds a complicated graph algorithm to match cross-camera tracklet
pairs. Besides, these methods are made of two stage training, which may be cumber-
some.

We also observe that all above intra-camera methods use multi-task on camera level
classifiers, as illustrated in lower part of Fig. 1, in which circumstances the predicted
probability for a feature to every tracklet are determined by not only its logit but also
logits of the same camera. That makes it hard to tell if a feature belongs to a tracklet.
In multi-label learning methods [26,27], classifiers for every class are trained to fit the
demand that an image may have multi labels. In intra-camera supervised person re-ID,
a feature may belong to multi tracklet in different camera, makes it possible to adopt
some concept from multi-label classification.

To address above problems and inspired by multi-label classification, we propose
a Tracklet Level Classifier (TLC) architecture, compared with existing works’ Camera
Level Classifier (CLC). The difference between TLC and CLC is illustrated in Fig. 1.
Our TLC method trains classifier for every tracklet and for leveraging the intra-camera
label and inter-camera underlying tracklet pairs we propose two components of train-
ing objective loss function: Intra-Camera Tracklet Classification and Inter-Camera
Tracklet Classification. The two losses take effect all at the same one stage and our
model runs at a normal mini-batch size, e.g. 60.

Intra-Camera Tracklet Classification helps the model to exploit the intra-camera
labels, which makes a feature extractor that extracts intra-camera invariant features for
pedestrian images and a serial of classifiers for every tracklet.

Inter-Camera Tracklet Classification is designed to mine and exploit the latent
matching pairs of tracklet across different cameras. With the help of precise classifier
trained by Intra-Camera Tracklet Classification, we match the pairs only by a hyper-
parameter threshold, which makes our model simple and effective. To sum up, our con-
tributions of this paper is:

– We propose an intra-camera supervised person re-ID architecture named Tracklet
Level Classifier (TLC), which is simple yet effective. Without huge hardware burden
or complex matching strategy, our TLC method achieves competitive performances.

– Inspired by multi-task learning, we adopt building independent classifiers for every
tracklet instead of every camera, which fits the intra-camera supervised person re-ID
scenario better and is proved by analysis and experiments.

– Extensive experiments and ablation studies on three popular person re-ID datasets
demonstrate the effectiveness of proposed TLC.

2 Related Word

2.1 Supervised Person Re-ID

Most existing person re-ID models are trained by supervised learning methods on inter-
camera pairwise ID labelled training data [8–11,28,29]. Training on large labelled data
boosts their performance by hard association of inter-camera images and makes them
perform state-of-the-art. However, supervised learning based re-id methods suffer from
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significant performance decrease when lacking a large scale of inter-camera identity
labelled training data, which is labour intensive and very expensive. This limits their
usability and scalability for realistic applications [20].

2.2 Semi-supervised Person Re-ID

Semi-supervised learning methods [17,30] are to self-learn knowledge from large unla-
belled training data based on the knowledge learned from labelled training data. There-
fore, they decrease the need of labelled training data and achieve a trade-off between
model scalability and re-id accuracy. However, these methods still need some expen-
sive cross-view pairwise labelling. To get rid of exhaustively collecting a large set of
labelled training data for every application domain, lots of unsupervised learning based
person re-id models are proposed [14,15,18,19,21,31].

2.3 Unsupervised Person Re-ID

Unsupervised domain adaptation based methods and unsupervised clustering based
methods are two typical methods on unsupervised learning person re-id models. Unsu-
pervised domain adaptation [14] based methods handle unlabeled target domain by
leveraging information from the labelled data in source domain. Unsupervised clus-
tering methods [15,31] use the unsupervised clustering algorithms to obtain the pseudo
labels of target domain data and fine tune the source domain model with pseudo labels
on target domain [21]. Both of the adaptation methods and cluster methods rely on the
similarity between the different domain.

2.4 Intra-Camera Supervised Person Re-ID

Intra-camera or tracklet supervised methods [18–21] are recently proposed promising
methods for person re-ID, which only need intra-camera labels and achieve pretty good
performance. Without the need of inter-camera pair matching label, the annotation is
much easier and cheaper to get and even can be generated by trackers. Intra-camera
supervised methods usually use multi-task learning for every camera, and design com-
plex rules to match the latent inter-camera matching pairs to boost the performance.
Some methods [18,19] match the tracklet pairs in mini-batches, and thus demand for
several GPUs during training time.

2.5 Multi-label Classification

Multi-label classification is a type of classification that every instance may have sev-
eral labels instead of only one label in conventional classification, e.g. classification
of all the objects in an images is a typical multi-label classification. Multi-label clas-
sification methods usually transform multi-label into multiple binary label for classi-
fication. [26,27]. The problem of intra-camera supervised person re-ID is similar to
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multi-label classification. If we regard every intra-camera label, a.k.a tracklet, as a class,
then every instance may have multiple labels because a pedestrian may appear in multi-
ple camera. How to assign the label would be the key to adopt multi-label classification
in intra-camera classification method.

3 Problem Formulation

In intra-camera supervised (ICS) person re-identification scenario, suppose we have
person images from K cameras. For each camera k ∈ {1, 2, ...,K}, we annotate
each person image Iki ∈ {Ik1 , Ik2 , ..., IkNk

} with an intra-camera identity label yk
j ∈

{yk
1 , yk

2 , ..., yk
Tk

}, where Nk is the number of person images and Tk is the number
of intra-camera identities in camera k. Generally speaking, when annotating person
images with intra-camera identities, the most common method is using a detector to
generate the bounding boxes and using a tracker to make a tracklet ID for each bound-
ing box. We adopt the Sparse Space-Time Tracklet (SSTT) [18] sampling and assume
that each intra-camera ID belongs to different person ID, so we mark every intra-camera
ID as a tracklet. For clarity, the tracklet ID is annotated respectively, which means for
any given cameras p and q and any tracklet ID yp

i and yq
j , we do not know whether they

belong to the same person or not.
Compare with conventional fully supervised person re-ID problem, the most dif-

ferent and challenging point is that in ICS scenario we do not have the inter-camera
tracklet matching information, which decreases the annotation costs yet increases the
difficulty of modeling. A good method to problem should effectively take use of the
tracklet ID and have a proper way to mining the latent inter-camera tracklet matching
pairs.

4 Proposed Method

We propose a novel method that can better exploit the tracklet ID and find latent inter-
camera tracklet matching, by designing Tracklet Level Classifiers (TLC). We model
the problem as a tracklet classification problem and propose two objective functions
to exploit the intra-camera tracklet label and inter-camera tracklet matching: (1) Intra-
Camera Tracklet Classification that takes use of intra-camera label (Sect. 4.1), (2) Inter-
Camera Tracklet Classification that mines the latent tracklet matching pairs across cam-
eras (Sect. 4.2).

An overview of our proposed TLC method is shown in Fig. 2. The model consists of
a backbone network for feature extraction and several Tracklet Classifier. Each track-
let classifier is designed to classify whether a feature belongs to this tracklet. With
the intra-camera and inter-camera tracklet classification method, our model is capable
of better exploiting the intra-camera label and automatically find latent inter-camera
tracklet matching pairs.
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Fig. 2. Overview of proposed Tracklet Level Classifier(TLC) method. (a) Given images from
different cameras, the labels are annotated independently over these cameras. (b) TLC method is
designed to train classifiers for every within-camera ID, a.k.a tracklet, we train the TLC model by
two components of loss function: (c) Intra-camera tracklet classification is designed to exploit the
given supervision of intra-camera label. We set the tracklet classifiers’ label by the intra-camera
label and then calculate the loss to train the model. (d) Intra-camera tracklet classification mines
the latent matching pairs across cameras. Due to the preciseness of tracklet classifiers, we judge
the matching with only as simple rule of threshold. With the novel design of tracklet classifier
and two dedicated objective loss functions, our TLC model learns the intra-camera supervision
information effectively.

4.1 Intra-Camera Tracklet Classification

Our model is based on a multi-task learning strategy [19] in tracklet level, compared
with previous works [18–21] in camera level. Using multi-task learning aims to bet-
ter exploit the great generalization ability of convolutional neural networks due to the
common knowledge is shared by all these tasks.

The tracklet classifier is a classifier that predict whether a feature belongs to specific
tracklet, so it naturally is a binary classifier. For Ci

j , the j-th tracklet classifier from the
i-th camera, it contains a weight vector Wi

j and a sigmoid function that maps any
real number to a probability, defined as σ(x) = 1

1+e−x . Most common used objective
function of binary classifier is Binary Cross-Entropy loss, which is formulated as:

Lb = −(y log(p̂) + (1 − y) log(1 − p̂)) (1)

where y ∈ {1, 0} is the label that indicates true or false of a classification and p̂ is
the predicted probability of Ci

j . According to the practice, we call the real number that
feeds to σ(·) as a logit. Due to the vanishing gradient problem of σ(·), the logit should
be near 0. So we adopt an L2-norm strategy to get the logit and formulate the p̂ as:

p̂ij = σ(
F · Wi

j

||F || · ||Wi
j ||

· s) (2)

where F is the feature extracted by the backbone network andWi
j is the weight vector

for Ci
j and s is a hyper-parameter used to adjust the scale of the logit.
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In intra-camera tracklet classification scenario, the key factor is to assign a proper
label for the classifiers. Given a feature F p

k extracted from an image from the k-th
tracklet of camera p, due to the prior that a tracklet is unique within a camera, we get
y = 1 for Cp

k and y = 0 for Cp
q �=k. But for any tracklet classifier from other cameras,

we do not know whether the image is from that tracklet or not in this stage. The way
to assign label for unknown tracklet classifier is illustrated in Sect. 4.2, and for now we
just leave that loss to 0 and then our intra-camera tracklet classification loss function
for Ci

j is:

Li,j
intra = Li,j

b · 1(feature from camera i) (3)

where 1(·) is an indicator function that returns {1, 0} when given {True, False}. Due
to the unequal distributed label that y = 1 appears far less that y = 0, we average the
two conditions respectively and give the complete loss function as:

Lintra =
1

∑y=1 1

y=1∑
Li,j
intra +

1
∑y=0 1

y=0∑
Li,j
intra (4)

with the intra-camera tracklet classification learning, we can train a model that exploit
all the intra-camera supervise information, and get a good feature extractor for person
re-ID and get a predictor for each tracklet to tell whether a feature belongs to it.

4.2 Inter-Camera Tracklet Classification

Person re-ID relies highly on the feature consistency across different camera views.
While we do not have the inter-camera labels, it is key for ICS person re-ID to min-
ing the latent inter-camera tracklet matching pairs and exploit that information for the
model training. Previous works [18–20] have designed lots of complicated rules to
match the pairs, while thanks to the good design of our model, it is very easy for us
to find good pairs for inter-camera tracklet classification training. By performing the
intra-camera tracklet classification, we get a serial of tracklet classifiers that could pre-
dict if a feature belongs to it. Due to the shared information between camera are similar
and the good generalization ability of deep network, it makes it possible for the classi-
fier to predict even a feature from another camera.

Specifically, given a feature F i
j and a tracklet classifier Cm

n , where m �= i. We can
easily calculate the predicted probability by Eq. 2, but here we use a different way:

p̂i,j,m,n = σ(
Wi

j · Wm
n

||Wi
j || · ||Wm

n || · s) (5)

where Wa
b is weight vector for Ca

b . Review Eq. 2, we can easily find F
||F || and

W i
j

||W i
j ||

are two unit vectors and their product is the cosine between two vectors. The cosine is
max when two vectors are same, which makes the predicted probability max. A fine-
trained classifier should have a largest average probability to all the features that belong

to it, so we assume the classifier’s weight vector
W i

j

W i
j

as a representative vector for all
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the features that belong to it. To have a more precise matching and minimize the random
error of a feature, we useWi

j as a representative vector for all features that belong to it.
Here we use a threshold hyper-parameter t and when p̂i,j,m,n > t, we regard it as a

matched pair betweenCi
j andCm

n . Our inter-camera tracklet classification is performed
when any F i

j matches Cm
n , which means tracklet Ci

j are found to be in camera m. Then
we set label yi,j,m,k = 1(p̂i,k,m,k > t) for all the tracklet classifiers Cm

k of camera
m. We do not set the yi,j,m,k if F i

j do not match any tracklet in camera m, because
when our tracklet classifiers are not fine-trained, the latent matching pair’s predicted
probability might be lower than t, and it harms the model to use those false negative
labels. Our inter-camera tracklet classification uses the objective loss:

Li,j,m,n
inter = Li,j,m,n

b · 1(yi,j,m,n is set) (6)

like Eq. 4, we average the losses respectively between positive and negative conditions,
and the complete version of inter-camera tracklet classification loss is:

Linter =
1

∑y=1 1

y=1∑
Li,j,m,n
inter +

1
∑y=0 1

y=0∑
Li,j,m,n
inter (7)

With inter-camera tracklet classification learning, our model can continuously find
and exploit the inter-camera matching pairs to improve the person re-ID performance.

4.3 Model Objective Loss Function

We use together the intra and inter camera objective loss functions and get the model
objective loss function:

L = Lintra + Linter (8)

4.4 Theoretical Analysis

Compared with previous used common Camera Level Classifier methods [20], the
largest difference of our TLC uses a different way to predict the probability of an image
to a tracklet. Previous Camera Level Classifier methods use a soft-max function:

p̂isoftmax =
eLi

∑j
eLj

(9)

where Li is the logit of tracklet i. While we use sigmoid function σ(·) to generate the
prediction probability:

p̂isigmoid =
1

1 + e−Li
(10)

The reason that we use sigmoid other than soft-max is that by using sigmoid we
build an absolute classifier compared with soft-max a relative classifier. We call it
absolute classifier because the probability in Eq. 10 is determined only by logit Li,
compared with relative classifier in Eq. 9, the probability is determined by all the logits
of that camera.
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Supposing we have two groups of of logits [4, 2, 2]and [−2,−4,−4], the probability
calculated by sigmoid is [0.98, 0.88, 0.88] and [0.12, 0.02, 0.02]. But their probability
by soft-max are the same, which is [0.78, 0.11, 0.11]. Due to soft-max only focus on
relative values among all the logits, it cannot distinguish if the logits are all low or all
high.

By adopting sigmoid function and using Tracklet Level Classifier, we can directly
maximize the positive logits and minimize the negative logits, which we believe can
improve the model training performance instead of optimizing the relative values of
logits. At the same time, with absolute classifiers of tracklets, we can simply use the pre-
dicted probability to match inter-camera pairs, instead of designing complicated rules.
The effects are discussed in Sect. 5.3.

5 Experiment

5.1 Experimental Setup

Datasets. To evaluate we proposed TLC method, all experiments are evaluated on three
existing large-scale re-id datasets, i.e., Market-1501 [32], DukeMTMC-reID [33,34],
and MSMT17 [35].The Market-1501 dataset is collected by a total of six cameras,
including 5 high-resolution cameras and one low-resolution camera. DukeMTMC-reID
is a subset of the DukeMTMC dataset. 1,812 identities were captured by 8 cameras in
it. MSMT17 is the largest re-ID dataset. A total of 15 cameras are used, including 12
outdoor cameras and 3 indoor cameras.

The details of the these datasets including the number of ID and images are shown
in Table. 1.

Table 1. The details of datasets used in our experiments.

Dataset ID Cam Tain Test Images

Market-1501 1,501 6 751 750 32,668

DukeMTMC-reID 1,812 8 702 1,110 36,411

MSMT17-V2 1,467 15 1,041 3,060 126,441

Evaluation Protocol. Cumulative Matching Characteristic (CMC) [32] curve and the
mean average precision (mAP) were used in all our experiments to evaluate the perfor-
mance of our method. All the test data in the test set to evaluate the model performance,
and all results reported in this paper are under the single-query setting without post-
processing.

Implementation Details. In practice, we used an ImageNet pre-trained ResNet-50 as
the backbone network of our TLC model. In order to balance the model training across
camera views, we used a CPK sampling method, which randomly selects K number of
images for P number of identities from C number of camera views for each mini-batch.
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Table 2. Comparing TLC with the state-of-the-art methods on the image person re-ID dataset.

Category Method Market-1501 DukeMTMC-reID MSMT17

Rank-1 Rank-5 Rank-10 mAP Rank-1 Rank-5 Rank-10 mAP Rank-1 Rank-5 Rank-10 mAP

Clustering BUC [15] 61.9 73.5 78.2 29.6 40.4 52.5 58.2 22.1 – – – –

TSSL [16] 71.2 – – 43.3 62.2 – – 38.5 – – – –

Semi-supervised MVC [17] 72.2 – – 49.6 52.9 – – 33.6 – – – –

Domain adaption MAR [12] 67.7 – – 40.0 67.1 – – 48.0 – – – –

ECN [13] 75.1 – 91.6 43.0 63.3 – 80.4 40.4 30.2 – 46.8 10.2

SGG++ [14] 86.2 94.6 96.5 68.7 76.0 85.8 89.3 60.3 – – – –

Intra-Camera TAUDL [18] 63.7 – – 43.2 61.7 – – 43.5 28.4 – – 12.5

UTAL [19] 69.2 – – 46.2 62.3 – – 44.6 31.4 – – 13.1

MTML [20] 85.3 – 96.2 65.2 71.1 – 86.9 50.7 44.1 – 63.9 18.6

UGA [21] 87.2 – – 70.3 75.0 – – 53.3 49.5 – – 21.7

TLC (Our Method) 88.1 95.3 97.2 71.1 79.2 88.7 91.9 60.6 46.1 59.5 65.1 19.1

Supervised DG-Net [36] 94.8 – – 86.0 86.6 – – 74.8 77.2 87.4 90.5 52.3

st-ReID [9] 97.2 99.3 99.5 86.7 94.0 97.0 97.8 82.8 – – – –

The C, P, K are set to be 3, 5, 4, making up and mini-batch of 60. The training images
are resized to 256×128 in pixel for all datasets. Adam optimizer is adopted for training
our TLC model, with a learning rate of 3.5e−4. The hyper-parameter scale s is set to
be 4 and hyper-parameter threshold t is set to be 0.95.

5.2 Comparisons to the State-of-the-Art

In this section, we evaluate our method compared with the proposed method with some
state-of-the-art person re-ID methods, specifically compared with four similar intra-
camera learning based methods on Market-1501, DukeMTMC-reID andMSMT17. The
performances of these methods are shown in Table. 2.

We compared the proposed TLC model with 12 existing state-of-the-art methods,
which can be grouped into 5 categories: (1) Clustering methods including BUC [15] and
TSSL [16]; (2) Semi-supervised learning methods, including MVC [17]; (3) Domain
adaption based methods including MAR [12], ECN [13] and SGG++ [14]; (4) Intra-
camera supervised methods including TAUDL [18], UTAL [19], MTML [20] and
UGA [21]; (5) State-of-the-art Supervised learning methods including DG-Net [36]
and st-ReID [9].

The results are shown in Table. 2. Clustering based unsupervised methods, i.e. BUC
and TSSL, and semi-supervised method, i.e. MVC remains a long way to reach a com-
parable performance in the table. The Domain adaption based methods are compa-
rable with intra-camera supervised ones, while our proposed TLC method achieves
the best performance among all non-fully-supervised methods in Market-1501 and
DukeMTMC-reID datasets. In MSMT17, TLC has a comparable performance. The
supervised methods remain unreachable for all other categories of methods, with the
supervision of expensive and time consuming cross-camera annotated label. However,
our TLC method decreases the gap between supervised and non-fully-supervised meth-
ods. The scalability and low cost of getting labels makes our TLC a promising method
in practice.



338 Y. Bai et al.

5.3 Ablation Study

Component Analysis. Our TLC method consists of two components, Lintra and
Linter, that help the model to learn intra-camera and inter-camera knowledge of person
re-ID. They are all necessary to our TLC method, but technically we can use Lintra

only to train a model that learns only the intra-camera information. In order to find
out how they contribute to the model performance, we experiment on it and results are
shown in Table. 3. We find that: (1) Models trained with only Lintra achieve competi-
tive performance, indicating that our Lintra leverages the shared knowledge behind all
these tracklet classifier to train the model; (2) With both Lintra and Linter, our model
runs even better, indicating that Lintra’s inter-camera matching pairs help mine and
exploit the information of cross-camera person re-ID, even though there may be some
false matching pairs.

Table 3. Effective analysis on two components of TLC method: TLC-intra is trained with only
Lintra and TLC is trained with both Lintra and Linter .

Method Rank-1 Rank-5 Rank-10 mAP

Market1501

TLC-intra 80.4 90.9 93.7 58.2

TLC 88.1 95.3 97.2 71.1

DukeMTMC-reID

TLC-intra 74.9 85.5 88.6 55.8

TLC 79.2 88.7 91.9 60.6

Tracklet Level Classifier vs. Camera Level Classifier. We have discussed the differ-
ence between Tracklet Level Classifier (TLC) and Camera Level Classifier (CLC) in
Sect. 4.4. In order to compare their effects, we set two groups of experiments, one uses
sigmoid as TLC and the other uses soft-max as CLC, all experiments are supervised
only with intra-camera information and do not match cross-camera pairs for a fair com-
parison. As shown in Table. 4, our TLC methods perform better in ICS scenario and we
believe the improvement is from the absolute classifier which makes preciser classifier
for every tracklet.

Discussion of Hyper-Parameter. We use two hyper-parameter for model training, s
the scale in Eq. 5 and t the threshold in Sect. 4.2.

Scale. Scale is set to adjust the activation area of sigmoid function. A good choice of
scale should cover all the domain of input and output and make sure their gradient do
not disappear. The domain of input is [−1, 1] and the domain if output is [0, 1]. We
draw the sigmoid function with different scale in Fig. 3 (a). We can find that when scale
= 1 or 2, it cannot cover the output domain of [0, 1], while when scale = 8, inputs that
larger than 0.75 or lower than −0.75 will suffer from zero gradient and scale = 4 is a
proper choice.
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Table 4. Comparison between Tracklet Level Classifier (TLC-intra) and Camera Level Classi-
fier (CLC-intra) on intra-camera supervised person re-ID.

Method Rank-1 Rank-5 Rank-10 mAP

Market1501

CLC-intra 75.9 89.3 92.8 50.4

TLC-intra 80.4 90.9 93.7 58.2

DukeMTMC-reID

CLC-intra 71.5 83.6 87.2 51.0

TLC-intra 74.9 85.5 88.6 55.8

Threshold. A proper threshold is significant for Inter-camera Tracklet Classification,
for a threshold too large decrease the opportunity of finding matching pairs while one
too low increase the false positive rate. In order to quest on how the threshold affects
the matching pairs, we calculate a serial of precision and recall of matching pairs on
different thresholds, as shown in Fig. 3 (b). It can be see that when threshold is 0.95, the
precision and recall reach a balance with both at high values.

Pair Matching Dynamics. To further quest on the effect of Pair matching in Inter-
Camera Tracklet Classification, we tracked the evolving dynamics of matching pairs
during the model training process. As shown in Fig. 3(c), the precision of pair match-
ing goes down slightly while the recall increase significantly with the training step
grows. With the intra-camera loss and the generalization ability of backbone network,
the model learns to extract some inter-camera invariant features, in which situation the
inter-camera loss find and exploit the inter-camera matching pair to further optimize
the model. With the supervision of the two losses, the model gets maturer and maturer
during training time.

Fig. 3. (a) Sigmoid function with different scales. The optimal scale is 4 where the input and out-
put domain are all covered with a good gradient. (b) Precision and recall of matching pairs on dif-
ferent threshold. The choosing of threshold is a trade-off between precision and recall of matching
pairs. (c)Dynamics of self-discovered inter-camera identity matching pairs during model training
on the Market-1501 dataset.
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6 Conclusion

In this work, we propose a novel method to perform intra-camera supervised called
Tracklet Level Classifier. The key idea of TLC is training classifiers for every intra-
camera ID. Our TLC method is simple yet effective, which simplify previous works’
two stage training strategy to one stage and do not rely on complex matching rules
compared with them. Theoretical analysis and ablation studies prove our superiority to
existing Camera Level Classifier methods. Extensive experiments show that our method
achieves state-of-the-art among other intra-camera supervised methods and comparable
to fully supervised methods.
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Abstract. More and more complex Deep Neural Networks (DNNs) are
designed for the improvement of human pose estimation task. However,
it is still hard to handle the inherent ambiguities due to diversity of pos-
tures and occlusions. And it is difficult to meet the requirements for the
high accuracy of human pose estimation in practical applications. In this
paper, reasoning-based multi-level predictions with graphical model for
single person human pose estimation is proposed to obtain the accurate
location of body joints. Specifically, a multi-level prediction using cas-
caded network is designed with recursive prediction according to three
different levels from easy to hard joints. At each stage, multi-scale fusion
and channel-wise feature enhancement are employed for stronger con-
textual information to improve capacity of feature extraction. Heatmaps
with rich spatial and semantic information are refined by explicitly con-
structing graphical model to learn the structure information for infer-
ence, which can implement the interactions between joints. The proposed
method is evaluated on LSP dataset. The experiments show that it can
achieve highly accurate results and outperform state-of-the-art methods.

Keywords: Pose estimation · Multi-scale fusion · Multi-level
prediction · Graphical model · Information propagation

1 Introduction

In recent years, deep learning techniques have made significant progress and
successfully tackled classic computer vision problems. As one of the most chal-
lenging fundamental tasks in computer vision, human pose estimation can be
applied to many important tasks such as action recognition, human tracking
and Human-Computer Interaction (HCI). Due to the diverse variations in body
postures, clothing appearance and occlusion, results of many human pose esti-
mation methods are still far from state-of-the-art performance.

Existing approaches can be classified into two categories: regression based
and detection based. Regression based methods [1–3] generally try to map the
input image to the output joints and directly produce joint coordinates. Detec-
tion based methods [4–12] intend to generate a likelihood heatmap for each joint,
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and locate the joint as the keypoint by computing the argmax of pixel values in
the heatmap. Conventionally, human pose estimation methods based on DNNs
are mainly performed by multi-stage architectures [10–12]. These networks pro-
duce predictions in stages to output a refined pose without deeply mining the
difficulty levels for joints. For example, occluded or unclear joints can distort
predictions of the more clear joints. In order to make the more certain joints
positively influence the less certain ones, we propose a cascade Multi-level Pre-
diction Network (MPN), whose predictions are refined by a grphical model. In
MPN, with the initial prediction generated in the first stage, the subsequent
stages output refined predictions sequentially. We start with the most reliable
joints, go through subsequent stages to predict the less reliable joints. Our pro-
posed multi-stage network which is trained in an end-to-end manner, defines
difficulty levels of different joints explicitly, and provides reasoning priors for
less reliable joints implicitly.

Moreover, a central problem is that the per-joint is evaluated independently
and the internal structures of the pose should not be ignored. In other words,
the joint connections are not well exploited. To make use underlying spatial
structure of human pose, we utilize Graph Neural Network (GNN) built on a
graphical structure to learn the joint dependences. On the predefined graph,
each node is associated with its neighboring joints. Spatial relations is captured
through edge construction. Message aggregation and updation among nodes and
edges contributes to the final precise prediction. Our method considers not only
the joint location but also the spatial correlation of joints, and it is also end-to-
end trainable. We show that our approach produces competitive results on the
standard pose estimation benchmarks: Leeds Sports Pose (LSP) dataset [24].

2 Related Work

2.1 Single-Person Pose Estimation

The problem of single-person pose estimation aims at recognizing and localizing
the joints in the images. Benefiting from the development of the DNNs based
methods, significant progress has been made in the field. The general approach
tackling this problem use DNNs to learn feature representations for obtaining
score maps or the locations of joints. Some methods [1–3] directly employ deep
features to regress joint positions. Only using joints coordinate lacks robustness,
in order to provide more supervision information, Tompson et al. [4] first employ
heatmap to indicate the ground truth. Each heatmap channel which occupied
with a 2D Gaussian distribution is correspond to a joint, and is centered at
the actual joint location. Moreover, Papandreous et al. [5] propose an improved
representation of the joint location, which is a combination of binary activa-
tion heatmap and corresponding offset. Heatmap has since come overwhelmingly
dominant amongst pose estimation models, and most of the recent research is
based on heatmap representation.

It is essential to facilitate an excellent network architecture and to make
better use of the input information. Rafi et al. [6] design a network with multi-
scale inputs based on GoogleNet [7]. Xiao et al. [8] add deconvolutional layers
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to ResNet [9]. In terms of multi-stage style for human pose refinement, some
work [10–12] get predictions from coarse to fine through a cascade architecture
via intermediate supervision. Especially, Hourglass uses a residual module as
the component unit, processing repetitive down-sampling and up-sampling to
exploit multi-scale features. Sun et al. [13] propose a novel High-Resolution Net-
work (HRNet) with repeated multi-scale feature fusions to keep high-resolution
representation of features across the whole network, reduce the quantization
error caused by down-sampling and get higher accuracy.

Different from above which attempt to fit detected body joints into models,
Gkioxari et al. [16] propose a convolutional Recurrent Network in a fixed order
to output joint location one by one following a chain model. The output of each
step depends on both the input image and the previously output. Lifshitz et
al. [17] also define a sequential prediction order. They both allow for the easy
cases to be processed first while the harder cases are processed last, and as a
result use the contextual information from the joints predicted before them.

Intermediate supervision and recursive prediction have proven their signifi-
cant advantages among recent methods. Meantime, Hourglass Module [11] which
process multi-scale feature fusions and residual learning with repetitive down-
sampling and up-sampling, has achieved better performance. In this work, we
leverage advantages of these methods, and define a difficulty levels for sequential
prediction on account of the degree of certainty. We propose a Multi-level Predic-
tion Network with ResNet-50 and Hourglass Module as sub-networks to capture
features across different scales and learn the spatial configuration implicitly.

2.2 Graphical Models and Inference

Excellent network architecture shall produce robust feature representation, but
the constrains of human pose estimation are not involved as relation priors. In
most previous work, to model joint relations, the pictorial structures are used to
define the deformable configurations by spring-like connections between pairs of
joints. Tompson et al. [4] create a fully connected graph on body parts and per-
form an approximate Markov Random Field (MRF) over the spatial relations.
However, for datasets cover a large range of the possible poses, the distribution
of spatial locations might be less effective. Yang et al. [15] explicitly incorporate
human pose priors including body part mixture types and standard quadratic
deformation constrains into models with a tree structure or a loopy structure.
Lifshitz et al. [17] discretize the image into log-polar bins centered around the
augmented 30 joints and use the VGG-based network to get a probability dis-
tribution over the log-polar bins, indicating the relative joint location. Ning et
al. [18] inject the external knowledge representation into a fractal network by
a learned projection matrix to guide network training process. Chu et al. [19]
propose the a bi-directional tree structured model through adopting geometri-
cal transform kernels to capture the spatial relationships of joints from feature
maps. Zhang et al. [22] propose Pose Graph Neural Network (PGNN) to learn
a structured representation of human pose as a graph. Direct message passing
between different joints is enabled and spatial relation is captured.
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To better estimate the human pose, network architecture design with large
parameters are expected on account of the articulated structure of the human
body. In our work, we use a joint detector combined with a graphical model to
infer the precise location. By compensating for the large variation of the poses,
we empirically learning the spatial configuration.

3 Proposed Method

The overall architecture is illustrated in Fig. 1. It includes two steps: Multi-level
Pose Network (MPN) for heatmap detection and Pose Inference using Graphical
model.

Fig. 1. The proposed network architecture, consisting of two parts: Multi-level Pre-
diction Network (MPN) for Heatmap Detection and Pose Inference using Graphical
Model.

3.1 Cascade Multi-level Pose Network

MPN is constructed by a multi-stage style where the previous stage serves as a
prior for the output of heatmaps on the next stage. Considering the reliability of
different joints, MPN predicts all the joints from the most reliable joints to the
less certain ones, and thus defines three levels from easy joints to hard joints.
Each stage focus on a subset of joints.

Multi-scale Feature Fusion Module. Previous methods [11,12] have proved
that the use of multi-scale information is crucial for feature learning. As we
all know, features with larger scales are benefit for localization, and features
with lower scales are discriminative for classification. We aim to extract more
representative features through down-sampling process. In order to localize, some
work use a U-shape architecture, larger scale features from shallower layers are
down-sampled. Therefore, the lost information can hardly be recovered in the
up-sampling or deconvolution procedure. Skip connections are used for element-
wise summation or concatenation for feature fusion.
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In this work, we learn from the convolutional attention mechanism, and
design Semantic Fusion Module (SFM) and Detail Integration Module (DIM)
for enhancement of discrimination and localization respectively. As shown in
Fig. 2, we adopt ResNet-50 as the basic module for feature extraction. 1 × 1
convolutional operation and Rectified Linear Unit (ReLU) are applied to make
high-resolution features and low-resolution features have consistent channels.
The feature maps in lower scales are up-sampled by bilinear interpolation in
SFM to obtain the higher semantics of lower-resolution features. The feature
maps in higher scales are down-sampled by max-pooling to complement details
of higher-resolution features. SFM and DIM both utilize element-wise sum oper-
ation for the final feature fusions.

Fig. 2. Two modules for multi-scale feature fusions: (a) Semantic Fusion Module. (b)
Detail Integration Module.

Multi-level Pose Prediction. Simply increasing the feature representation
by feature fusions is not novel. Multi-stage methods aim to iteratively refine the
predictions and produce increasingly effective results. An issue arises that the
accuracies are unbalanced. For example, the head is always with high accuracy,
the ankle is always with low accuracy. To avoid the negative influences, let some
joints that are easier to locate predict in the former stage, some joints that are
more difficult to locate predict in the latter stage.

Fig. 3. Multi-level pose prediction network.
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Based on the accuracies of all joints, this work defines difficulty levels of
different joints. At each stage, use the previous predicted joints as a prior to
implicitly predict the other joints. Divide the joints into three levels: easy joints
(head, neck), hard joints (shoulders, hips), harder joints (elbows, wrists, knees,
ankles). The multi-scale fusion network has a so-called effective feature represen-
tation and output heatmaps of all joints. Then a cascade three-stage module get
sequentially predictions starting from easy joints to hard joints secondly, and to
the harder joints finally (see Fig. 3). Each module consists of a hourglass module
and 1 × 1 convolutional operation for feature fusions and intermediate super-
vision. Based on channel attention mechanism [23], we employ global average
pooling operation to perform channel-wise calculation of features which denotes
the channel-wise importance. The importance measurement is followed by nor-
malization, and it is the weights for all channels which should be multiplied by
original features. The channel-wise attention layers without parameters can help
enhance discriminability and alleviate redundant interference.

3.2 Inference Mechanism Based on Graphical Model

We perform the inference using the predefined graphical model through GNN
to learn structured information. Each joint serves as a node, and each edge
represents the local contextual relations between joints. With the guidance of
graphical model and information aggregating from the associated joints, the
contextual structure information is propagated to refine each joint at steps.

Construction of Graphical Model. Graphical model can be constructed to
model relations on different joints of human skeleton. Thus, the human pose can
be expressed as a graphical model with joints as nodes and joint connections
as edges. Our work utilizes graphical model to explicitly represent the spatial
relationships among joints. GNN is a general neural network architecture defined
according to a graph structure G = (V,E) where V is the set of K nodes and
E are edges. As for the pose estimation task, each node represents a body joint
and each edge denotes the relationships of neighboring joints. Besides, the nodes
can be constructed with arbitrary topologies to make the internal structure be
well exploited.

In general, the fully connected graphical model that connect each joint to
every other joint seems to be the ideal choice. However, due to the flexibility
of an articulated human body, not all body joints are related to each other.
For example, the head may provide little information to locate the right ankle.
While the joint inter-connectivity can provide reliable guidance of locating an
ambiguous joints, the connection of those unrelated or weakly related joints
shall no longer transfer effective features, or even transfer negative influence. To
overcome the issue and simplify the graphical model, we utilize the tree graphical
model. As shown in Fig. 1, tree structure is a natural skeleton structure with
physical connections in human body. Thus, we argue that simple tree graphical
model is powerful enough for inference, we also adopt the loopy graphical model
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to denote body structure. Based on the tree structure, the loopy graphical model
adds edges with shoulder and wrist, hip and ankle, which may give more mutual
information.

It should be noted that the graphical model is undirected that allows bi-
directional influence for the inference mechanism. GNNs map the tree graphical
model to outputs via information aggregation and propagation. Each node is
represented by the heatmap learned from the joint detector. Each edge represents
priors implied in the graphical model. For node k (k ∈ k), the heatmap feature
as the initial hidden state h0

k:

h0
k = Fk(Θ, I), (1)

where F is the network form heatmap detection, Θ is the learnable parameter
matrix of network, and I represents the input image.

Information Propagation in Neural Network. The predefined graphical
model contains high-level semantics and provides important and explicit infor-
mation on spatial locations. A graph based convolutional propagation can be
applied to node k (k ∈ k) via two steps at the propagation time t. First, node
representations are transformed by a learnable parameter matrix which repre-
sent as the message passing function Mt(·). Second, these transformed node
representations are gathered to node k from its neighboring nodes j (j ∈ N(k))
followed by a non-linear function, which is called node updation function Ut(·).
The inference mechanism enforce the information propagation for the final fea-
ture representation on the graph.

Fig. 4. Example of information propagation and updation mechanism from right knee
to right ankle.
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Each node collects information from its unary terms. As shown in Fig. 1, target
node k with hidden state ht

k, and one of its neighboring nodes j with hidden state
ht
j , the information propagated from its neighbors can be calculated as:

xt
k = Mt(ht

k, h
t
j |j ∈ N(k)). (2)

After information collection, each node update its hidden state with node
update function Ut(·). For target node k, Ut(·) can be expressed as:

ht
k = Ut(ht−1

k , xt
k). (3)

To reduce the negative influence by relevant nodes, this paper retains the
hidden state of target node. Different convolution kernels have lead to different
directions on the same feature map. Message can be passed between feature maps
through the geometrical transform kernels. Hence, using convolutional operation
to learn different kernels and sum up for different nodes. The message passing
function Mt(·) is expressed as:

xt
k =

∑

j∈N(k)

Wp,kh
t
j + bp,k, (4)

where Wp,k is the weights and bp,k is the bias term of node k for different
convolution layers p.

The size of convolution kernels should also consider the joint displacement. To
effectively integrate information and cover large joint displacement, we employ
successive convolutions with 3 × 3 kernels. One is that the consistent 3 × 3
convolutions can approximate and enlarge receptive field. On the other hand,
each convolution is followed by a non-linear layer which can propagate more
effective information and reduce the number of parameters. After summing up
different neighboring information, the transform kernels provide heatmap rep-
resentations which is approximate to the exact distribution of target node. We
only use element-wise product for node updation to refine the original state. The
transformed kernels and the effect of element-wise product can be seen in Fig. 4.

4 Experiments

4.1 Dataset and Evaluation Metrics
Our approach is trained on LSP [24] training set and validated on the LSP
dataset. The LSP dataset consists of 11k training images and 1k testing images
from sports activities.

For evaluation, Percentage of Correct Keypoints (PCK) metric is used. An
estimated joint is considered correct if its distance from ground truth is less than
a fraction of the torso length.
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4.2 Training Details

Data Augmentation. We train our models by adding the MPII [25] training
dataset to the LSP dataset. During training, we crop the images with the target
human centered at the images with roughly the same scale, and warp the image
patch to the size 256×256. Then we randomly rotate (±30◦) and flip the images.
We also perform random rescaling (0.75 to 1.25) to make the model more robust
to scale change. During testing, we simply use the image size as the rough scale,
and the image center as the rough position of the target human to crop the
image patches for the LSP dataset.

Configurations. We train our model with Pytorch using the initial learning
rate of 2.5 × 10−4. The parameters are optimized by RMSprop algorithm. We
train the model on the LSP dataset for 90 epochs and use mini-batches of size
16. The learning rate is decreased by 10 times of initial value after 60 epochs.
We adopt the Mean-Squared Error (MSE) based loss function which calculate
each joint predicted score map with its ground truth map. The heatmap outputs
are all supervised via a MSE loss.

4.3 Results and Analyses

Table 1 gives a summary of results on the LSP dataset. We investigate our net-
work with different network architectures that considering priors on spatial cor-
relations of body joints. Our best performance is achieved by joint training the
propose MPN and tree graphical model. As reported in Table 1, the proposed
multi-stage network with difficulty levels get a 95.2% PCK, which is a 1.2%
improvement compared to [22]. Next, the inference with graphical model, which
provides explicit information and directions, further improves the perfomance
by 0.4% PCK.

Table 1. Comparisons of PCK@0.2 score on the LSP dataset.

Method Head Sho. Elbo. Wri. Hip Knee Ank. Mean

Chu et al. [19] - - - - - - - 80.8

Wei et al. [15] - - - - - - - 81.1

Chu et al. [20] - - - - - - - 83.1

Lifshitz et al. [17] 96.8 89.0 82.7 79.1 90.9 86.0 82.5 86.7

Chu et al. [21] 98.1 93.7 89.3 86.9 93.4 94.0 92.5 92.6

Ning et al. [18] 98.2 94.4 91.8 89.3 94.7 95.0 93.5 93.9

Zhang et al. [22] 98.4 94.8 92.0 89.4 94.4 94.8 93.8 94.0

Proposed MPN 98.5 95.3 94.0 92.3 94.9 96.5 94.6 95.2

Proposed MPN-GNN 98.6 96.6 94.7 92.8 94.8 96.9 94.8 95.6
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Table 2. Comparisons of proposed MPN of PCK@0.2 score on the LSP dataset.

Method Head Sho. Elbo. Wri. Hip Knee Ank. Mean

Belagiannis et al. [26] 95.2 89.0 81.5 77.0 83.7 87.0 82.8 85.2

Pishchulin et al. [27] 97.0 91.0 83.8 78.1 91.0 86.7 82.0 87.1

Insanfutdinov et al. [28] 97.4 92.7 87.5 84.8 91.5 89.9 87.2 90.1

Wei et al. [10] 97.8 92.5 87.0 83.9 91.5 90.8 89.9 90.5

Bulat et al. [29] 97.2 92.1 88.1 85.2 92.2 91.4 88.7 90.7

Yang et al. [12] 98.3 94.5 92.2 88.9 94.4 95.0 93.7 93.9

Proposed MPN(w/o squential prediction) 98.3 94.7 92.8 89.1 94.8 95.3 93.5 94.1

Proposed MPN(w/o channel-wise attention) 98.5 94.9 93.5 91.9 95.0 96.1 94.4 94.9

Proposed MPN 98.5 95.3 94.0 92.3 94.9 96.5 94.6 95.2

Multi-level Prediction Network. We first evaluate the proposed MPN for
single-person pose estimation on LSP dataset. Table 2 reports the ablation study
on multi-level prediction, multi-scale feature fusions and channel-wise attention.
The multi-scale fusions and channel-wise attention mechanism help to retain
and enhance the spatial contextual information. Compared to the state-of-the-
art performance, our network without sequential prediction has achieved 0.2%
improvement. Even with the multi-level guidance and an channel-wise attention
layer for cross stage aggregation, certain priors are effectively helpful for positive
predictions which gives a improvement by 0.8% and 1.1% respectively.

Type of Graphical Model. Table 3 lists our investigation on the graphical
model types. Both loopy model and tree model show more or less improvements
on accuracy. The two types have the similar performance which indicates the
availability of explicit inference mechanism.

Number of the Message Passing Layers. Table 3 also lists comparations
on number of the message passing layers as it controls spread of information
propagation. The accuracy increases by a small amount from T = 1 to T = 3 on
both two types of graphical model.

Qualitative Results. Figure 5 shows some pose estimation results on LSP
datasets. As seen, the inference mechnism is able to effectively correct false pre-
dictions on MPN. It indicates that the graphical model can encode relationships
among joints and further propagate useful information. The bottom row of Fig. 5
also shows some failure cases which is marked as a red box. Perhaps the message
passing layers give a negative transfer, and the joint is shifted to wrong location.
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Table 3. Comparisons of different types of graphical models and message passing layers
of PCK@0.2 score on the LSP dataset.

Experiments Configurations

Tree
√ √ √

Loopy
√

T = 1
√

T = 2
√ √

T = 3
√

Mean 95.51 95.53 95.38 95.60 95.20

Fig. 5. Qualitative results on the LSP dataset. 1st row: results from proposed MPN.
2nd row: results from both proposed MPN-GNN.

5 Conclusion

This paper has incorporated the DNNs with explicit priors of difficulty level
and relations among joints. Our network leverages the advantages of recursive
architectures and the contextual information. Through multi-scale and cross
stage feature fusions, the enhanced features are well exploited for sequential
prediction from easy joints to hard joints. Then a graphical model is defined
for explicit information propagation and inference to refine the results using
GNNs. The combination of the two parts obtains state-of-the-art performance
on LSP dataset. However, there are also many possible directions for future work.
For example, how to incorporate information with more effective human body
representation, especially for more diverse datasets like MPII.
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Abstract. Electroencephalogram (EEG) is a common signal for mon-
itoring people’s sleep quality. Manual sleep stage classification on EEG
is a time-consuming task. In this paper, we design a model for auto-
matic sleep stage classification based on raw single-channel EEG. This
model can preserve the information, broaden the network and enlarge the
receptive field as much as possible to extract appropriate time invariant
features and classify sleep stage well. For the class-imbalanced problem
in sleep stage classification, most of the exsisting methods rely on cross
entropy loss and adjust model hyperparameters by experience, leading
to poor performance. We implement a two-step training algorithm. The
first is pre-training the model with the hyperparameters obtained by
Bayesian Optimization after rebalancing datasets by over-sampling. The
second is using feedback loss in model fine-tuning to reduce the impact
of class-imbalanced problem. The loss weights dynamically change with
the per-class F1-score which is used as feedback information. We eval-
uate our method on Fpz-Cz channel from the Sleep-EDF dataset. The
overall accuracy, macro F1-score, Cohen’s Kappa coefficient are 85.53%,
81.18%, 0.80 respectively, showing our method has better classification
performance than the state-of-the-art methods and is an efficient tool for
automatic sleep stage classification.

Keywords: Automatic sleep stage classification · Raw single-channel
EEG · Deep learning · Feedback loss

1 Introduction

Sleep disorders are common in people and can lead to serious health problems
that affect the quality of life [1]. Monitoring people’s sleep quality has important
implications for medical research and practice [2].

A polysomnography (PSG) records the physiological signals of a subject
during sleep at night, which is composed by multiple signals such as elec-
troencephalogram (EEG), electrocardiogram (ECG), electrooculogram (EOG),
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and electromyography (EMG) [3]. According to American Academy of Sleep
Medicine (AASM) [4], sleep stages can be divided into wake (W), three non-
rapid eye movement (NREM) stages (N1-N3), and rapid eye movement (REM).
And stage N3 (also called Slow Wave Sleep) is divided into two distinct stages,
N3 and N4 in Rechtschaffen and Kales (R&K) [5]. Most PSG recordings last at
least eight hours. For sleep experts, manual sleep stage classification in such a
long signal is a tedious task and highly dependent on the appropriate inter-rater
agreement. Therefore, it is important to classify sleep stage automatically, which
can avoid the human subjective bias in classification.

Automated sleep stage classification algorithms can be divided into two
categories: the hand-engineered feature-based methods and the automated fea-
ture extraction-based methods. For the first category, methods extract features
such as time, frequency and time-frequency domain features [6–10] for training.
Because these methods only extracts features, they may lose most of the original
information. As a result, these methods do not generalize well, especially given
the nature of PSG recordings, where variability effects are caused by a number of
factors, including patient and hardware differences, etc. For the second category,
methods learn directly from the raw data, which may solve the limitation in
handcrafted feature extraction. Recently, because some neural networks can be
trained and optimized end-to-end, they are used both as feature extractors and
classifiers. For example, [11] build model with stacked sparse autoencoders, [12]
build model with convolutional neural networks. [13] build model with convolu-
tional neural network and bidirectional recurrent neural network.

Considering the number of channels for neural network’s input, we use single
EEG channel which is cheap and ensures the subjects’ sleep does not be affected
by the instruments. In the methods investigated, the accuracy of sleep stage
classification is not high for the method based on raw single-channel signal,
especially for the Sleep-EDF dataset. Besides, the macro F1-score (MF1) and
Cohen’s Kappa coefficient (κ) do not exceed 0.8 in most studys [11–14], due to
the serious imbalance of the dataset and the authors might do not pay more
attention to the process of model optimization and use the loss which is not
particularly suitable for imbalanced datasets.

At present, there is little methods using Bayesian Optimization [15] in sleep
stage classification. However, Bayesian Optimization can find the optimal hyper-
parameter according to the previous hyperparameter adjustment results, which
has been successfully applied in the machine learning methods [16–19]. In addi-
tion, using the idea of back propagation in network training as reference, we
propose feedback loss by employing the per-class F1-score of the model as feed-
back information to adjust the penalty weight of the loss function constantly.
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Based on the two points above, we design a deep learning model with a
two-step training method, including pre-training network with hyperparame-
ters found by Bayesian Optimization and fine-tuning with feedback loss. This
model can preserve the information, increase the number of network channels
and enlarge the receptive field to the utmost extent while extracting time invari-
ant features and being trained to classify the sleep stage. Through experiments,
the two-step training method can effectively train our model end-to-end through
back propagation, and feedback loss can make MF1 and κ exceed 0.8, decreas-
ing bias towards the majority class caused by imbalanced datasets. Moreover,
the model can be automatically trained without any hand-engineered features.
It is important to note that feedback loss can be used in multiple fields where
imbalanced dataset exits, besides sleep stage classification.

2 Methods

2.1 Model Architecture

The architecture of our model (see Fig. 1) consists of ten convolutional layers
and two fully-connected layers. Small kernels of size 3 × 1 are used in every
convolutional layer. In view of the rapid fluctuation characteristic of EEG sig-
nal, small convolution kernels can extract the subtle information, and realize the
suppression of noise through the convolutional layer combination, because the
bigger kernels such as 5 × 1 and 7 × 1 can be replaced by the combination of
small kernels [20]. Moreover, the use of small convolution kernels can reduce the
parameters and increase the nonlinearity of model while ensuring the receptive

Fig. 1. Architecture of our model. Conv, Relu, BN, DO, FC and SM mean convolutional
layer, rectified linear unit, batch normalization, dropout, fully-connected layer and
softmax severally. The use order of the units in each layer is from bottom to top. The
number at the bottom represents feature size, and the number at the top represents
the number of channels.
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field. Every two adjacent convolutional layers are a block, and perform five oper-
ations sequentially: convolution, applying the rectified linear unit (ReLU) [21]
activation, convolution, applying ReLU activation, batch normalization [22]. The
first convolution applies stride 1 and padding to ensure the input feature has the
same size compared with output feature when the network width increases. The
second convolution applies stride 2 and padding to take place of pooling [23].
In a block, using convolutional layers with stride 1 and stride 2 together can
effectively increase the receptive field and broaden the network without losing
much information. The adoption of batch normalization and ReLU activation
can accelerate model convergence and prevent vanishing gradient. A regulariza-
tion technique named dropout [24] is used to alleviate overfitting problems and
will be removed from the model during testing to provide certain outputs.

2.2 Pre-training

In pre-training, the first step is replicating the minority class samples in the
original training set until all sleep stages have the same number of samples
to reduce the harm of skewed distribution. Then we train model on balanced
dataset using a gradient-based optimizer called Adam [25] with hyperparame-
ters found by Bayesian Optimization. Bayesian Optimization is a method for
hyperparameter tuning, which searches for the optimal hyperparameter based
on the previous results, leading to better performance than human expert-level
for many algorithms [15]. In our algorithm, this method is used to adjust the
hyperparameters of two dropout layers which means the rate at randomly drop-
ping units along with their connections from the neural network during training.
This hyperparameter is very important. If the hyperparameter is too large, only
a small part of the model is left in the training process. If the hyperparameter is
too small, the regularization effect is not obvious, and the model is still serious
overfitting.

2.3 Fine-Tuning with Feedback Loss

In sleep stage classification, the class-imbalanced problem is serious but most
methods do not choose to improve the loss function for solving it, resulting in
low values of MF1 and κ. For methods test on Sleep-EDF dataset, the values
mostly lower than 0.8 [11–14]. As a result, we specifically design a new algorithm
to calculate loss named feedback loss, based on the thought of back propagation.
The following is a detailed description (see Algorithm 1).
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Algorithm 1. Fine-Tuning with Feedback Loss
Input: model, data, target, multiplier
Output: model
for i = 1 to n do

output = model(data)
fscore, mean, standard deviation = compute(output, target)
fscore = (fscore − mean)/standard deviation
weight = max(−fscore + 1, multiplier × fscore + 1)
FeedbackLoss = CrossEntropyLoss(weight)
for j = 1 to n below do

output = model(data)
loss = FeedbackLoss(output, target)
model = get model(model, loss)

end for
end for
return model

For the convenience, we introduce the process for one class that is identical
to the processes for other classes. (a) Put data into model to obtain output, then
compare the output and target by compute to obtain F1-score fscore for the class,
and the mean and standard deviation for all per-class F1-scores; (b) Centralize
fscore with zero-mean by the equation as follows:

fs =
fs − mf

sf
(1)

where fs, mf and sf are the fscore, mean and standard deviation respectively;
(c) Obtain weight by the equation as follows:

w = max (−fs + 1, kffs + 1) (2)
where w is weight of the class. kf is multiplier of the F1-score, and the value lies
between −0.25 and 0; (d) Reload weight as penalty weight on CrossEntropyLoss
to obtain FeedbackLoss; (e) Use FeedbackLoss to obtain loss with output and
target and optimize model parameters by get model with loss for n below epochs;
(f) Return model after running step a,b,c,d,e for n times.

Feedback loss has the following characteristics. The first is selecting F1-score
as feedback information. In imbalanced dataset, the accuracies of minority classes
is easy to be affected by majority classes, resulting in there is not much difference
between the accuracies of minority classes and majority classes. For recall and
precision, both of them are important and an increase in one leads to a decrease
in the other. As a result, F1-score is selected, because it is a combination of
recall and precision. The second is using centralizing F1-score with zero-mean
(see Eq. 1) and the computing method of weight (see Eq. 2) together. For the
F1-scores, the sum of the positive values is equal to the negative value after
centralizing. The method of getting weight by F1-score comes from Leaky ReLU
(see Fig. 2). For a class with good recognition results, its F1-score is positive after
centralizing. The slow weight adjustment with dw

dfs = kf leads to the suppression
on effects of the class. In contrast, for a class with poor recognition results,
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Fig. 2. Comparison between Leaky ReLU (left) and the calculation of weight in feed-
back loss (see Eq. 2) (right). For the important portion, like the positive part of x and
the negative part of fs, the slope of curve stays the same, the absolute value is 1. For
the unimportant portion, like the negative part of x and the positive part of fs, the
slope of curve is small.

its F1-score is negative after centralizing. The rapid weight adjustment with
dw
dfs = −1 and the gradient of weight will not decrease with the iteration, leading
to the constant attention on effects of the class. This method can ignore the
effects of the classes identified well appropriately and focus on classes identified
badly, resulting in the improvement of MF1 and κ. The third is that the penalty
weight is adjusted by the feedback repeatedly in the process of training and the
latest weight is used to calculate feedback loss for model optimization, ensuring
the model has a good performance. By the above statement, we find feedback
loss can apply to most class-imbalanced problems.

3 Results

3.1 Data

In this study, two versions of the Sleep-EDF dataset [26,27] are used. The first
version (Sleep-EDF-13) is contributed in 2013 with 61 polysomnograms, and the
second version (Sleep-EDF-18) is contributed in 2018 with 197 polysomnograms.
Both of them have two studies about the age effects on sleep in healthy individu-
als (SC = Sleep Cassette) and the temazepam effects on sleep in individuals with
mild difficulty falling asleep (ST = Sleep Telemetry) separately. To get closer
to normal, we choose the data in SC studies. Files in SC studies are obtained
in healthy Caucasians aged 25–101, without any sleep-related medication. Each
PSG lasts nearly 20 h, and contains two EEG signals from Fpz-Cz and Pz-Oz
electrode locations, one EOG signal, one EMG signal and one event marker.
Every two recordings are collected during two subsequent day-night periods on
a subject. The EOG and EEG signals are sampled at 100 Hz. According to the
R&K standard, sleep experts manually classify the recordings into one of the six
classes, W, N1, N2, N3, N4, REM. The N3 and N4 classes are combined in one
class named N3 on the basis of AASM. Because each SC file lasts nearly 20 h
and we mainly focus on the sleep period, only the recordings between half hour
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before and after the sleep periods are retained. Table 1 presents the number of
30-s epochs and proportion for each sleep stage in two different versions.

Table 1. Number of 30-s epoches for sleep stages in two versions of Sleep-EDF.

Dataset Type W N1 N2 N3 R

Sleep-EDF-13 Number 8,285 2,804 17,799 5,703 7,717

Proportion (%) 19.58 6.63 42.07 13.48 18.24

Sleep-EDF-18 Number 65,951 21,522 69,132 13,039 25,835

Proportion (%) 33.74 11.01 35.37 6.67 13.22

For Sleep-EDF-13 dataset, we test our method using k-fold cross-validation,
where k was set to 14. In each fold, nf | k recordings are selected for testing
model, and the remaining recordings are taken to train model, where nf is the
number of recordings in the dataset. This process is repeated k times. Then
we combine the predicted sleep stages from all folds and compute the evalua-
tion metrics. Sleep-EDF-18 has 153 recordings, from which 142 recordings are
selected for training network, 8 recordings are validation set, and the remaining
3 recordings are test set. It is important to note that the training set, valida-
tion set and test set are divided into subjects, ensuring test subjects’ epochs do
not appear in training set, so we can verify our method on the unknown sub-
jects. If all recordings are mixed before testing, the data of the same subject will
appear in the training set and the test set. Although the model’s performance
improves [15], its practicability reduces. Our division ensures that the data of
the same subject will not appear in training set and test set at the same time.

3.2 Experimental Design

In the pre-training, the Adam optimizer’s learning rate is 0.001, and 30-s epoch
is taken as a sample. After shuffling the oversampled dataset, 128 samples are
loaded into the model as a mini-batch. The cost function is multiclass cross-
entropy. For hyperparameter tuning, we randomly search for five hyperparameter
combinations at first, then use Bayesian Optimization, setting (0.3, 0.8) as the
search space for hyperparameter of every dropout layer and choosing Gaussian
Process [28] as internal regressor which is trained with training set comprised
by the previous results. After that, search for multiple hyperparameter combi-
nations by two parts: randomly initializing multiple combinations and searching
for more combinations using L-BFGS-B [29]. Next, the mean mp and standard
deviation sp of each combination are obtained by using regressor. Obtain the
fitted value v at each combination by the equation as follows:

v = mp + kpsp (3)

kp is enlargement factor. Then return the combination corresponding to the
maximum value which is the new hyperparameter combination. We repeat this
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search operation 15 times. In the fine-tuning, the Adam optimizer’s parame-
ter learning rate, mini-batch size are set 0.0002, 128 respectively. In addition,
multiplier, n below, n are −0.24, 8 and 6 separately.

3.3 Evaluation Metrics

Different metrics are used to evaluate the performance of our approach including
per-class recall, overall accuracy (ACC), MF1 and κ.

ACC =
∑N

c=1 TPc

TF
(4)

MF1 =
∑N

c=1 FSc

N
(5)

TPc is the true positive epoches of class c, TF is the number of epoches in
the dataset, FSc is the F1-score of class c, N is the number of classes.

3.4 Sleep Stage Classification Performance and Comparison

Table 2 shows confusion matrices obtained from Sleep-EDF-13 and Sleep-EDF-
18 datasets respectively. It can be seen that true positive values in the main
diagonals are higher than other values in the same rows and columns, meaning
our method can accurately identify each classes in most case. Table 3 shows the
comparison of our method with other state-of-the-art methods across overall
accuracy, MF1 and κ. In terms of overall accuracy, our study performs bet-
ter than the state-of-the-art algorithms compared. Moreover, for MF1 and κ,
our method reaches the highest level, indicating that feedback loss is highly
applicable to the current imbalanced dataset. In Sleep-EDF-13, κ reaches 0.80
(between 0.8 and 1), indicating almost complete agreement between the sleep
experts and our method, and κ reaches 0.78 in Sleep-EDF-18 (between 0.61 and
0.80), indicating the agreement between the sleep experts and our method are
substantial [30].

Table 2. Confusion matrix achieved by the proposed method.

True Predicted (Sleep-EDF-13) Predicted (Sleep-EDF-18)

W N1 N2 N3 R W N1 N2 N3 R

W 4482 437 36 12 112 1455 128 3 1 4

N1 193 1293 278 3 345 39 161 64 0 25

N2 50 542 11056 371 608 2 102 1021 129 28

N3 2 5 225 3216 1 0 0 16 369 0

R 98 558 254 0 4367 20 97 4 0 428
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Table 3. Classification performance comparison of our method with other methods by
evaluation metrics.

Dataset Method ACC (%) MF1 (%) κ

Sleep-EDF-13 SleepEEGNet [14] 84.26 79.66 0.79

DeepSleepNet [13] 82.0 76.9 0.76

Tsinalis et al. [11] 78.9 73.7

Tsinalis et al. [12] 74.8 69.8

This study 85.53 81.18 0.80

Sleep-EDF-18 SleepEEGNet [14] 80.03 73.55 0.73

This study 83.84 77.36 0.78

3.5 Method Analysis

In order to see the difference between the predictions of our method and the
labels, we selects one file of test dataset named SC4001E0, and draws the pre-
dicted hypnogram and target hypnogram. We can find our method’s judgments
are the same as the labels in most epoches (see Fig. 3). For understand the con-
fusion matrixs in Table 2 better, we visualize them (see Fig. 4). The value in the
cell is the recall, the ratio of the number in corresponding cell of the confusion
matrix to the number of 30-s epochs for corresponding sleep stage. For the recall
values in the cells, there is a no identification error in many pairs including
W-N3, N1-N3 and N3-R. In addition, the confusion matrix is almost symmet-
ric across the diagonal proving class-imbalanced problem is eliminated to some
extent.

Fig. 3. Comparison of the target hypnogram (top) with the predicted hypnogram (bot-
tom) in SC4001E0. The overall accuracy, MF1, κ, and the recall of N1 stage reach
87.63%, 83.32%, 0.84, and 60.38% respectively.
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Fig. 4. Confusion matrix visualization based on recall. For each square, the larger the
number, the darker the color. In both datasets, it can be seen the worst performance
is noted for N1 stage, and the N3 stage reaches the best performance.

4 Discussion

As for the recognition difficulty of N1 stage, after analyzing the confusion matrix
and consulting relevant information, we find that the reason for this result lies in
the data itself. The first reason is the number of N1 stage is small compared with
the other sleep stages. For example, the proportion of N1 stage in Sleep-EDF-
13 and Sleep-EDF-18 are 6.63% and 11.01% respectively. The second reason
is N1 stage is easy to confuse with REM. Because θ wave (frequency ranges
from 4 hz to 8 hz) occurs only during REM stage and N1 stage [31], making the
characteristics of N1 stage and REM stage are similar, leading to the failure of
classifier in distinguishing the two stages.

In general, the larger the dataset, the better the performance of the classifier.
However, we test our method on Sleep-EDF-13 and Sleep-EDF-18, finding this is
not the case. Same problem appears in other study [32]. Therefore, the labels of
Sleep-EDF-18 dataset may not be accurate enough due to the heavy workload of
expert manual annotation. For κ, [33] find it between 0.48 and 0.89 by studying
the agreement between two experts. Similarly, [34] find it between 0.72 and 0.85.
These studies prove that manual classification is defective. As the era progresses,
the manual classification may lag behind the automatic classification.

The class-imbalance data is particularly common in many fields, and the same
situation appears in this study. We use two methods to solve this problem. The
first is to simply copy the samples of minority classes to make them reach the
same number as the majority classes. The second is mainly through the design
of feedback loss. Except for these methods, we have tried other methods, such
as random under-sampling and SMOTE over-sampling, but the performance of
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our method does not improve. There are many studies on the improvement of
loss algorithm, including focal loss [35], dice loss [36], etc. We can combine their
characteristics with feedback loss. For the current feedback loss, we directly
use the F1-score as feedback information to adjust the weight. However, PID
control is widely used in the feedback regulation. If we regard the error between
the current F1-score and the expected F1-score as feedback information, put it
into the PID controller [37] and use the output as penalty weight for feedback
loss, our method may improve unexpectedly.

5 Conclusion and Future Work

We propose a deep learning model which can extract time invariant features
and classify sleep stage under retaining information, widening the network and
increasing the receptive field. We also implement a two-step training algo-
rithm: pre-training model on oversampled datasets with model hyperparameters
adjusted by Bayesian Optimization, and proposing feedback loss in fine-tuning to
alleviate class-imbalanced problem. Experimental results show that our method
outperforms the state-of-the-art methods on the sleep stage classification task.
Since our model automatically learns from the original EEG, we believe that
our method is a better way to implement sleep stage classification than the
hand-engineering methods. When developing an automated system, imbalanced
dataset often occurs, such as the arrhythmia detection by ECG and the epilepsy
detection by EEG, and feedback loss can make a contribution in these areas.
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Abstract. Recognizing persons under unconstrained settings is chal-
lenging due to variation in pose and viewpoint, partial occlusion, and
motion blur. Inference only by face-based recognition techniques would
fail in these cases. Previous studies mainly focus on this problem on still
images while they cannot handle the temporal variations in videos. In
this work, we aim to tackle these challenges and propose a Multi-Cue and
Temporal Attention (MCTA) framework to recognize persons in videos.
For the spatial domain, we extract features from multiple visual cue
regions and utilize a Multi-Cue Attention Module to integrate them. For
the temporal domain, we adopt a Temporal Attention Module to com-
bine the video frames, which is learned to assess the quality of different
frames adaptively. By this means, MCTA can comprehensively explore
the complementary information in spatial-temporal dimensions for per-
son recognition in videos. Moreover, we introduce Character Recognition
in Videos (CRV), a new video dataset for character recognition under
challenging settings. Extensive experiments on CRV demonstrate the
effectiveness of our proposed framework. Dataset with annotations and
all codes used in this paper are publicly available at https://github.com/
zhezheey/MCTA.

Keywords: Person recognition · Multiple cues · Spatial-temporal
attention

1 Introduction

Recognizing persons in images or videos is frequently needed in practical sce-
narios. As a key task of the understanding of multimedia content and computer
vision, person recognition has been widely studied and achieved great success in
multiple settings, including face recognition [1,2], person re-identification [3,4],
and speaker recognition [5]. Nonetheless, person recognition under unconstrained
scenarios remains a challenging task and far from being well solved. Issues like
great variation in pose and viewpoint, partial occlusion, motion blur, and noisy
sounds in practice bring substantial difficulties for these methods.
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Fig. 1. How do we recognize a person in videos when the face is invisible? The hairstyle,
clothing, scene, and information of adjacent frames are significant.

To tackle the problem, a natural idea is to combine the information of mul-
tiple cues. Existing studies mainly focus on image-based condition, in which
additional visual cues, such as hairstyles, clothing, or scenes, are utilized to
recognize persons in photos when the faces are blurred or even cropped. They
rely on concatenation [6,7], heuristics [8,9], or simple attention methods [10]
to combine contextual cues from multiple regions and achieve better results on
benchmarks.

However, compared to image-based person recognition, the video-based sce-
nario attracts far less attention. Recognizing persons in unconstrained videos is
a more challenging task with many practical applications, which needs both the
spatial and temporal context to help recognition (see Fig. 1). Recently, iQIYI and
ACM Multimedia held a challenge [11] towards multi-model person identification
based on a large-scale video dataset and attracted hundreds of researchers [12–15]
to come up with novel ideas. However, these studies are limited in two aspects: (1)
The large dataset with high-quality faces (99.65% of videos contain clear faces)
provides much richer information than practical scenarios that the model can get
over 90% mAP only by face features [12], making other visual and multi-model
cues almost useless. (2) These methods rely on simple concatenation [14,15] to
integrate multi-cue information, and averaging [12] or heuristic rules [13,15] to
model the temporal information separately, which are obviously over-simplified.

In this work, we propose a Multi-Cue and Temporal Attention (MCTA)
framework for person recognition in videos. In the spatial domain, different
regions of a person, including face and upper body, are detected and then input
along with the whole image into specific Convolutional Neural Networks (CNNs)
to extract the features. Moreover, we adopt a Multi-Cue Attention Module
(MCAM) to adaptively combine multiple visual cues. In the temporal domain,
we introduce a Temporal Attention Model (TAM), which applies an attention
weighted average on the sequence of image features, to model the importance of
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different frames. Finally, our MCTA framework achieves person recognition by
end-to-end spatial-temporal information learning in videos.

To evaluate our method under more diverse settings and facilitate the
research, we construct a dataset named Character Recognition in Videos (CRV)
by annotating 79 characters in 4,405 video clips from 34 movies or TV series. In
particular, all of the actors or actresses play multiple roles in one movie or TV
series, and there are certain differences between the characters. To simplify the
problem, each video clip is limited to contain only one or one main person sim-
ilar to [11]. Compared with the existing dataset [11], CRV is more challenging,
which requires additional visual cues like hairstyles or clothing to complement
facial information and recognize the characters. Experiments demonstrate that
our proposed framework can significantly raise the performance on CRV.

In summary, the main contributions of this work include:

– We propose a novel MCTA framework to recognize persons in videos under
unconstrained settings, which incorporates both the spatial and temporal
information for person recognition.

– We introduce an MCAM to integrate features of visual cues from multiple
regions, and a TAM to access the quality of different frames and combine
them. These two modules together comprehensively explore the information
of persons in videos.

– We construct CRV, a novel and challenging dataset for character recognition,
to promote the research on person recognition in videos.

– Our framework achieves state-of-the-art performance on CRV, which demon-
strates the effectiveness of our method.

2 Related Work

2.1 Face Recognition and Person Re-identification

As the most widely studied and applied direction of person recognition, face
recognition algorithms [1,2] have achieved impressive results on verification and
recognition tasks. The state-of-the-art method, ArcFace [2] achieved a face veri-
fication accuracy of 99.83% on LFW [16], which is even better than human-level
performance. Another popular task is person re-identification [3,4], which aims
at recognizing pedestrians across cameras within a relatively short period, where
visual cues are likely to remain consistent. However, these methods are highly
sensitive to environmental conditions and inadequate to handle the variations in
social media photos or movies, where the faces and bodies are always invisible
or blurred and the clothing may be changed.

2.2 Person Recognition in Photo Albums

Person recognition under unconstrained settings is the problem of interest in
this work, which mainly focuses on the persons in photo albums. Zhang et al. [8]
introduced the People In Photo Albums (PIPA) dataset and combined three
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visual recognizers on face, body, and poselet-level cues to recognize the persons.
To further improve the performance on PIPA, some studies [6,7] paid attention
to exploiting more visual cues, such as head [6,7], upper body [6,7], scene [6],
pose [7], or other human attributes [6] respectively. Other studies [9,10] focused
on combining visual cues and social context to exploit domain-specific informa-
tion. Li et al. [9] exploited contextual cues at person, photo, and group levels
and combined them with a heuristic rule to identify persons. Huang et al. [10]
proposed a framework to couple social context learning with people recognition
by a unified formulation, which integrated multiple visual cues adaptively and
achieved state-of-the-art performance. However, simply applying image-based
methods to recognize persons in videos would lose temporal information and
require high computing cost.

2.3 Person Recognition in Unconstrained Videos

Person recognition in unconstrained videos attracts far less attention due to
challenges as follows: (1) Lacking annotated video datasets. (2) The tempo-
ral and multi-model information of videos put forward higher requirements for
algorithms. In particular, the Celebrity Video Identification Challenge [11] held
in 2019 presented iQIYI-VID-2019, a large-scale video dataset for multi-modal
person recognition. However, almost all (99.65%) videos in this dataset contain
clear faces, which is much different from the real-world scenarios. The winning
team [12] relied only on face features and achieved better results than others that
combining multiple cues [14,15]. Moreover, most teams chose averaging [12] or
heuristic rules [13,15] to aggregate the image features of a video in the compe-
tition, which are obviously over-simplified. Another noteworthy task is person
search in videos. Huang et al. [17] proposed a framework to incorporate both
the visual similarity and the identity invariance along a tracklet, and developed
a new schedule to improve the reliability of propagation, which outperformed
mainstream person re-id methods on this problem. However, this task is essen-
tially different, where a clear portrait for each person is required.

3 The Proposed Framework

3.1 Overview

Given a video clip, the task of person recognition in videos is to recognize
the identity in the clip, which is defined as a standard supervised classification
task [8,11] that we train and test on the same set of identities.

In this work, we devise a Multi-Cue and Temporal Attention framework for
this task. As shown in Fig. 2, the overall architecture of MCTA framework mainly
contains four parts:

1) Multi-cue region detector and feature extractor. The framework
takes as input one video clip which is sampled into F frames. To obtain regions of
multiple visual cues, different body parts, including face, head, upper body, and
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Fig. 2. The overall architecture of multi-cue and temporal attention framework.

the whole body are cropped from frames with region-specific detectors. Next,
specific CNNs are adopted to extract the spatial features of these body regions
and the whole images.

2) Temporal feature modeling. For each visual cue region, this stage com-
putes a quality score vector for the feature of each sampled frame and aggregates
them into a video-level representation. For this, a Temporal Attention Module
(TAM) is adopted to adaptively learn the importance of different frames and
integrate them.

3) Spatial feature modeling. This stage fuses the video features of dif-
ferent visual cues and forms the final video-level representation for each video
clip. For this, a Multi-Cue Attention Module (MCAM) is learned to combine the
visual cues from different regions with adaptive weights.

4) Classifier with video-level features. In this stage, the identity of per-
son is predicted by the video-level feature. A three-layer Multilayer Perceptron
(MLP) model is adopted for the final classification.

3.2 Temporal Attention Module

Unlike the task of action recognition in videos [18], the movement between frames
has little effect on person recognition. For temporal information, we mainly con-
sider the quality of video frames, which is represented by the quality of visual
features here. To this end, we devise a Temporal Attention Module (TAM) as
the quality predictor, which is inspired by [3], to compute the scores of different
frames and aggregate them better.

For each visual cue region, the input of TAM is a feature matrix X ∈ R
F×D,

where F is the sampled frame number for a video clip and D is the length of
feature vector. Then X is fed into a fully connected layer and a softmax layer,
to get the quality score matrix Z:

Y = WFX + b , (1)

zi =
exp(yi)

∑F
i=1 exp(yi)

, (2)
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where WF ∈ R
F×F , b ∈ R

F are parameters to be learned, and yi denotes the
i-th row of Y. The i-th row of Z, denoted by zi, is the quality score vector for
the i-th frame. Finally, the output feature vector o is fused through:

o =
F∑

i=1

zi � xi , (3)

where � is the element-wise multiplication operator, and xi denotes the feature
vector of the i-th frame. As a result, TAM calculates an attention weighted
average on the sequence of image features, which aggregates complementary
information from all frames in a video, and the influence of image regions with
poor quality is compensated by other frames.

3.3 Multi-Cue Attention Module

Previous studies [6–10] have proved the utility of incorporating multiple visual
cues for person recognition. The facial features play a decisive role when the front
face is clear. However, in unconstrained videos, the face may be invisible due to
the limited scope of camera or occlusion, where we have to resort to other visual
cues like hairstyle, clothing, or scene to recognize its identity. Moreover, different
visual cue regions always vary in contributions across instances. Inspired by [10],
we utilize a Multi-Cue Attention Module (MCAM) to combine the features of
multiple visual cues adaptively.

The MCAM is a neural network that takes the stacked features X ∈ R
N×D

from all N visual cue regions as input, where N is the number of visual cues
and D is the length of feature vector. N positive coefficients are yielded as the
weights of different regions through a fully connected layer, a mean operation,
and a softmax layer in MCAM:

Y = WNX + b , (4)

ȳi =
1
D

D∑

j=1

yi,j , (5)

zi =
exp(ȳi)

∑N
i=1 exp(ȳi)

, (6)

where WN ∈ R
N×N , b ∈ R

N are learnable parameters, ȳi denotes the average
value of the i-th row (yi,1, yi,2, ..., yi,D) of Y, and zi is the weight for the i-th
visual cue region. Then the final feature vector of the i-th visual cue region is
given by:

oi = zixi , (7)

where the i-th row of X, denoted by xi, is the raw feature vector of the i-th visual
cue region. Finally, we get the output feature vector o by the concatenation of oi.
As a result, MCAM can calculate a weighted score for each visual cue adaptively
and combine them by weighted concatenation.
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4 Experiments

4.1 New Dataset: Character Recognition in Videos

Existing datasets for person recognition under unconstrained settings are mainly
based on still images [8,10], while the video-based dataset is rare. To our best
knowledge, the latest video dataset for person identification is iQIYI-VID [11],
which contains about 200,000 videos of 10,034 identities collected from real online
videos. However, as discussed in Sect. 1, almost all video clips in the dataset have
clear appearances of faces, which makes it different from the practical scenarios
and limited in use.

To facilitate related research and assess our method under more practical
settings, we build a high-quality Character Recognition in Videos dataset from
movies and TV series, dubbed as CRV. This dataset contains 4,405 video clips
of 79 characters in total, which are played by 37 actors or actresses in 34 movies
and TV series. The duration of video clips is in the range of 1 to 30 s, with 5.14
s on average. Particularly, all actors and actresses in CRV play multiple (from
2 to 4) roles with differences in one movie or TV series. We need to combine
facial features with different visual cues, such as hairstyles, clothing, actions, or
surrounding scenes, to identify the specific character in a video clip.

The construction process contains four steps as follows: (1) We first select
more than 50 movies and TV series in which one person (or twins) plays multiple
roles. Videos of characters acted by one person that are nearly indistinguishable
by annotators are excluded. (2) We then ask ten annotators to segment video
clips of the selected characters from the movies and TV series. The length of
each clip is limited to 1 to 30 s to avoid redundant information while keeping
the temporal information. Particularly, each video clip must contain only one
or one main person. The scene in one clip should be fixed. Characters with less
than 5 clips are discarded. (3) Each candidate video clip is labeled according
to its character by another annotator and then checked twice to guarantee the
accuracy of both the segmentation and the label. (4) At last, the dataset is
randomly split into training, validation, and testing sets by the ratio of 4: 3: 3.

Figure 3 shows several examples of video frames in our dataset. It can be seen
that recognizing characters, especially those played by the same actor or actress,
is very challenging. Characters in CRV are diverse in views, poses, clothing, and
scenes.

4.2 Implementation Details

Data Preprocessing and Feature Extraction. In the experiments, each
video clip is uniformly sampled into 16 frames by time. We use three visual
cue regions of each frame: face, upper body, and the whole image. For the sam-
pled frames, the bodies of persons are first detected and cropped with Mask R-
CNN [19] pre-trained on MS-COCO [20]. Then we separately adopt MTCNN [21]
for face detection and alignment, and SSD [22,23] pre-trained on Hollywood-
Heads [24] to detect the heads inside the cropped body regions. The regions
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Fig. 3. Examples of CRV dataset.

of upper bodies are obtained by simple geometric rules based on the region of
heads and bodies. For feature extraction, we adopt ArcFace [2] pre-trained on
MS1M-ArcFace [25] to extract face features, and ResNet-152 [26] pre-trained
on ImageNet [27] as the feature extractor for other visual cue regions. The face
features are duplicated four times and concatenated to have the same dimension
(2,048-D) as the other ResNet [26] features. Each feature is then scaled by its
maximum absolute value. In particular, we use zero vectors as the features for
visual cue regions that are invisible or not detected.

Network Training. In our framework, the features of frames for multiple visual
cues are extracted firstly, and the other parts of MCTA are trained end-to-end.
A three-layer MLP with a hidden layer of 2,048 nodes is chosen for the final
classification based on the validation set. We train MCTA with the cross-entropy
loss at a learning rate of 0.0003. The MCTA is implemented based on the Keras
framework.

4.3 Comparison with the State-of-the-Art Methods

As discussed in Sect. 2.3, person recognition in videos especially under uncon-
strained scenarios is a relatively new task, which attracts less attention and is far
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Table 1. Comparison to the existing state-of-the-art and baseline methods on CRV.

Method Module Result(%)

Multi-cue modeling Temporal modeling mAP@100 mAP Accuracy

Face + MLP [12] – Average 81.82 83.26 79.98

Multi + MLP Concatenation Average 85.71 87.14 87.85

MCTA-t Concatenation TAM 86.49 87.90 90.31

MCTA-mc MCAM Average pooling 86.63 88.04 90.44

MCTA MCAM TAM 87.01 88.42 90.56

from well being solved now. To validate the effectiveness of the proposed MCTA
framework, we compare it with existing state-of-the-art and baseline methods
on the CRV dataset. The mean Average Precision (mAP) and accuracy are cal-
culated as the evaluation metrics. The details of these methods are as follows:

1) Face + MLP [12]. This method uses only face features [2] of frames as
the input and adopts an MLP for classification. The averaged probability vector
of frames in a video is used as its prediction result. The main idea is similar
to [12], the winning team in [11], while we remove tricks like data augmentation
and model ensemble. Therefore we consider this model as the state-of-the-art
method for person recognition in videos.

2) Multi-Cue + MLP. This method uses the same framework with Face +
MLP except that the concatenation of multi-cue features is taken as the input.

3) MCTA-t. This method is a simplified version of MCTA, which replaces
the MCAM with simple concatenation to integrate the multi-cue features.

4) MCTA-mc. This method is another simplified version of MCTA, which
replaces the TAM with average pooling to combine the features of different
frames.

5) MCTA. This is the complete MCTA framework as described in Sect. 3,
which adopts the MCAM to integrate features of multiple visual cues and the
TAM to model the importance of different frames.

Analysis and Discussion. The results of these methods are listed in Table 1.
We can observe that recognizing characters in CRV dataset is challenging. Com-
pared with Face + MLP [12], Multi-Cue + MLP raises the performance by a con-
siderable margin, which validates the significance of multiple visual cues. More-
over, by comparison of Multi-Cue + MLP, MCTA-t, MCTA-mc, and MCTA, we
can find that the multi-cue and temporal attention module are both effective in
this task. MCAM can generate adaptive weights for different visual cues, and as
a result, the mAP is significantly improved. Although the temporal information
between frames is poor in a short video clip, TAM gives slightly better perfor-
mance than average pooling by exploiting the image quality of different frames.
Furthermore, MCTA obtains the best performance on CRV, which demonstrates
the complementary effect of multiple visual cues and temporal information in
videos.
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Table 2. Results (%) of different visual cues.

Cue mAP accuracy

Face (F) 83.18 86.68

Upper body (U) 72.37 80.09

Image (I) 63.81 74.79

F + U 86.26 89.85

F + I 87.30 89.38

U + I 75.59 82.16

F + U + I 88.42 90.56

F + Head + U + Body + I 88.35 91.40

4.4 Ablation Study

Significance of Multiple Visual Cues. Here we show the comparison of dif-
ferent visual cues. The results are listed in Table 2. For single visual cue, face
feature achieves the highest mAP, which can be used to recognize the person
in videos to a pair or group of characters and further recognize it by extra
facial information such as expression and decoration. The combination of mul-
tiple visual cues can significantly improve the performance, which demonstrates
the complementary effect of multi-cue information. Moreover, when we add the
features of head and the whole body to MCTA, the performance changes insignif-
icantly. The head feature can provide extra information when the face is invisi-
ble, while it’s already covered by the upper body feature. Compared with upper
body, the whole body always changes in views for different videos, which makes
the information unclear.

Significance of Different Modules. Here we explore the effect of multi-
cue modeling module, temporal modeling module, and MLP module in MCTA.
Table 3 lists the results of the cross combination of different multi-cue infor-
mation modeling methods, i.e., simple concatenation, heuristic weighted con-
catenation (the weight ratio is set to F: U: I = 0.4: 0.3: 0.3 after experimental
comparison) and MCAM, and different temporal information modeling methods,
i.e., average pooling, max pooling, LSTM, and TAM. From the results, we can
find that MCAM and TAM perform better than all of the other methods, which
proves that our MCTA framework can better explore the spatial-temporal char-
acteristics of persons in unconstrained videos. Moreover, the mAP reduces from
88.42% to 73.92% when we remove the MLP module in MCTA, which reflects
the necessity of the MLP part.

Analysis on Hyper Parameters. For the sampled frame number F , we com-
pare the results of MCTA for F = 1, 4, 8, 16, and 24. The results are listed in
Table 4. It shows that the mAP increases with the growth of input frames (from
71.72% to 88.42%) and reaches a smooth state when F is larger than 16 (88.42%
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Table 3. Results (mAP, %) of the cross combination of different multi-cue and tem-
poral information modeling methods.

Concatenation Heuristics MCAM

Average pooling 87.52 87.81 88.04

Max pooling 86.09 86.16 86.18

LSTM 87.00 87.29 87.42

TAM 87.90 88.14 88.42

Table 4. Results (%) of different sampled frame number (F ).

F 1 4 8 16 24

mAP 71.72 87.60 88.14 88.42 88.50

vs. 88.50%). Therefore, we finally choose F = 16 for the balance of accuracy and
model complexity.

5 Conclusion

In this paper, we propose a new framework named MCTA for person recog-
nition in videos, which utilizes an MCAM to adaptively combine the features
of multiple visual cues and a TAM to aggregate the frame-level features by
assessing the importance of different frames. We construct a novel dataset CRV
from movies and TV series for the recognition of characters under challenging
settings. Extensive comparing experiments and ablation studies on CRV show
that our approach can learn a better spatial-temporal representation for person
recognition in unconstrained videos.
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Abstract. Zero-shot learning (ZSL) refer to recognizing the new class without
training samples. Traditionally, the projection function learned from visual fea-
tures to semantic features is used for object recognition. However, few works
will focus on accurate feature representation of recognition objects. The human
designed semantics are not discriminative and sufficient to recognize different and
new classes. In this paper, we propose to use the image reconstruction to extract
enhanced semantics (ES) on salient region of image. The salient region of image is
encoded corresponding to predefined attributes and ES features. And then decoded
to original image of salient region. The Lifted structure feature embedding (LSFE)
is applied to make the extended features more discriminative. Softmax is used for
classification thus makes ES features more accurate. Experiments on two bench-
mark datasets AwA2 and CUB, demonstrate the effectiveness of the proposed
approach.

Keywords: Zero-shot learning · Object saliency detection · Lifted structure
feature embedding · Enhanced semantic

1 Introduction

In recent years, deep learning models have made a great breakthrough in object recogni-
tion task [4]. However, the limitation of these models are also obvious. The supervised
learning models are required to get enough training samples. Moreover, the training data
needs to be labelled which is so expensive and training a deep convolutional neural net-
works (CNNs) from scratch is complex. It’s easy to collect the daily object samples such
as book, but it’s hard to get enough pictures of rare animals or a newly identified specie.
The achievements of these models are based on massive training data. Few models take
few or no training samples for a given class in consider.

In our daily life, give children a single “horse” picture and tell them that the zebra
is a horse but black and white stripes on it. When they see a picture of “zebra”, they
can combine the “horse” picture and the “black and white” semantic information, finally
recognized the “zebra” easily. The conventional deep learning model is fail to work well
on few or no training samples. On the contrary, humans are expert in recognizing objects
without seeing any samples. Inspired by human’s great ability of recognition, Lampert
et al. [5] propose Zero-shot learning (ZSL) and use attributes as a bridge to transfer
knowledge. In recent years, ZSL attracts a lot of interest of researches and industrials.
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Traditional object recognition seeks for a mapping from visual space to label space.
Hence, the categories of training set are separate from those from test set. In other words,
the training data and test data do not share the label space. ZSL aims to recognize the new
class from unseen classes, based on the assumption that both seen classes and unseen
classes share a common semantic space which we call the bridge. There are several
types of bridges in ZSL. The first type is attributes. Attributes were introduced in [5] and
enjoy a great popularity [7, 9, 11]. For example, attributes, such as black, has wings and
furry are shared among different kinds of animals, which were used for building up the
relationship between seen classes and unseen classes. The second type is word vector
or text-description [14–16]. This type of bridge automatically mine the relationship of
diverse animals via text corpus. The third type is hierarchies or taxonomies [7, 8]. The
semantic concepts of different kinds would be extracted form taxonomies.

The semantic attributes as bridge are used for connecting seen classes and unseen
classes. However, there are still some problems to be solved. Firstly, few existing models
extract image feature manually or from a pre-trained on ImageNet [19] CNN model,
which cannot do well in this task. Secondly, the semantic attributes is defined by human
generally and may be not enough discriminative for the recognition task. Moreover,
there is a huge different of attributes between different animals. For examples, tiger
and pig both have the same semantic attributes “tail”, but huge variations in visual,
which is semantic gap. Thirdly, some existing models [27, 28] propose to seek for
a mid-level semantic representation and introduce enhanced semantics. However, the
enhanced semantics cannot describe object itself accurately.

In this paper, we propose a deep learning model to handle these issues in ZSL.
We summarize our contributions on three folds: Firstly, in our model, we propose a
framework to combine an autoencoder-decoder and a salient object detection model in
order to find the mapping between the salient regions of image and enhanced semantics.
Secondly, wemake the extended semanticsmore discriminative via deepmetric learning.
Finally, we take the advantages of a CNN to find the abstract features and utilize image
reconstruction to learn enhanced semantics which can describe object more accurately
and reduce semantic gap.

2 Related Work

Zero-Shot Learning. Most of existing classic models can be divided into the following
five types roughly. The first group is positive projection [7, 9, 15, 20]. These approaches
project visual features of an instance onto semantic embedding to obtain a semantic
representation. Then compare this semantic representation with all unseen semantic
prototype representation and find the closest one as forecast result. The second type is
class similarity [9, 22]. These methods usually train a classifier from seen classes to
the label. Then utilize the relationship between the seen classes and unseen classes to
transfer the knowledge and find themost similar one. The third one is mid-level semantic
representation [25–28]. These work seek for a mid-level representation which will catch
more important information of the data in place of semantic prototype representation. The
forth type is back projection [29], which project the semantic representation onto visual
space. Then compare visual features of the instance with visual prototype representation
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and find the closest one. The last one is based on data synthesis [11], whose models can
utilize semantic prototype representation to synthesize visual features for unseen classes
without real images and convert ZSL into conventional supervised problem. According
towhether the unlabeled samples are used during the training period, ZSL can be roughly
divided into two groups: inductive ZSL [9, 25, 29] and transductive ZSL [2, 3]. For the
inductive ZSL, only samples of source domain classes are available during the training
period. For the transductive ZSL, the labeled source samples and the unlabeled target
samples are both utilized to accomplish the ZSL task. Depending on whether the source
data is used for testing during the test phase, ZSL can also be categorized into two types:
conventional ZSL [20, 22] and generalized ZSL [2, 23]. For the conventional ZSL, the
most existing models assume that the test images come solely from the target classes.
Different from this, generalized ZSL takes the training images from the source classes
in consider during the test phase.

Salient Object Detection. Most existing models did not pay much attention on visual
feature extraction. Image features from a pre-trained on ImageNet are learned, which
is not optimal for a particular ZSL task. Taking it in consider, Li et al. [21] propose a
zoom-net based on attention mechanism to optimize the image features. Different from
[21], J. Fu et al. [10] consider that focusing on the region of object itself will contribute
to object recognition. Salient object detection has gone through three waves. The first
wave starts with Itti et al. [6]. After that, plenty of models are influence by them more
or less. After three waves, some models [13, 24] based on deep convolutional neural
network achieve great success. Inspired by this, our model will take the advantage of
object salient detection to find the salient region which benefits to classification.

Lifted Structure Feature Embedding. The user-defined attributes are semantic pro-
totype representation, but not exhaustive. They are not enough discriminative for ZSL
task. Under such consideration, [21, 27, 28] propose to find a more discriminative mid-
level semantic representation in place of user-defined. Generally, hinge loss or triplet
loss is used to increase inter-class distance and reduce intra-class distance. However,
both of them can’t take full advantage of batches of deep learning. Different from them,
our model introduces lifted structure feature embedding (LSFE) [12] based on deep
metric learning, which optimize positive and negative samples distance via sample-pairs
distance matrix.

Autoencoder. In previous works, Kodirov et al. [26] propose a semantic autoencoder
(SAE) for ZSL. This model first projects visual features onto semantic attributes, and
then adds constraints to make the semantic features reconstruct the visual features.
Meanwhile, this model implemented through sparse coding and dictionary learning
proves to alleviate domain shift problem effectively. In contrast to this, our model adopts
convolutional autoencoder to catchnon-linear featureswhich can represent objects better.
Besides, ourmodel replaces semantic prototype featureswith enhanced semantic features
and adds constrains. In general, autoencoder can be roughly divided into undercomplete
autoencoders and overcomplete autoencoders. In our model, we utilize undercomplete
autoencoder to learn the underlying structure of data.
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3 The Proposed Method

3.1 Problem Definition

There are two sets in the training and test set respectively. Given the seen class set
∅s = {Xs,Ys,Zs} in the training set with cs seen classes and ns labeled samples. In
another data set ∅u = {Xu,Yu,Zu} with cu unseen classes and nu unlabeled samples.
Each sample xi is d-dimensional visual representation vector. So it’s easy to draw
Xs = [x1,x2, . . . , xns ] ∈ Rd×ns and Xu = [x1,x2, . . . , xnu ] ∈ Rd×nu , which respec-
tively represent seen and unseen class samples set. Zs and Zu represent the label of the
seen and unseen class samples respectively, Zs ∩ Zu = ∅. Ys ∈ Rm×ns and Yu ∈ Rd×nu

represent m- dimensional semantic representation vector of seen and unseen class. Then
semantic information of seen class Ys is given and semantic information of unseen class
Yu is unknown (unlabeled). The target is predict Zu by given the semantic information
P ∈ Rm×(cs+cu).

3.2 Our Model

The framework of the proposed model consists of three main components: the salient
detection network to detect salient object for image representation. Feature encoder
to build the relationship between visual and enhanced semantic attributes and feature
decoder to reconstruct the image from the semantic features. The whole framework is
illustrated in Fig. 1.

Fig. 1. The framework of the proposed model

Salient Detection Network. Ourmodel takes the advantages of [13] to obtain the salient
regions. Salient regions from the original images can be obtain by a series of short
connections from the high-level features to low-level features. However, multiple salient
regions will be obtained in the image. We select the maximum connected region as the
final salient detection region X for it which contains more information of image and has
higher probability on salient region.
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Fig. 2. Reconstruction of training data in (a) and test data in (b)

Generally, the input image X ′ has multiple salient regions x1, x2, . . . . . . , xm. We
select the maximum connected region X as shown in Fig. 2. Therefore, we can obtain
X as follow:

X = Rmax
(
X ′) = max(x1, x2, . . . . . . , xm) (1)

Feature Encoder and Visual-Semantic Mapping. Our model uses CNN to extract
visual features from salient region X . We adopt a resnet_50 as feature subnet and use
the final fully connected output as the visual embedding features. The salient region X
is converted to a 2048 dimensional visual feature vector in this way. These processes
can be represented as ∅(X ). It is vital to build the bridge from the visual embedding
to the semantic embedding. In our model, we adopt fully connected layers to map the
2048 dimensional vector to D-dimensional (D depends on the dimension of user-defined
attributes (UA) and enhanced semantic attributes in different datasets). The non-linear
mapping W , which represents the projection parameters in fully connected layers, is
used in our work. In addition, the semantic features y will be normalized as follow:

ϕ(y) = y

||y||2 (2)
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Furthermore, we extend the semantic attributes y′ to make the different class more
discriminative. Similarly, the semantic attributes contains UA and ES can be repre-
sented as ϕ

(
y, y′). The higher the compatibility score, the more the image matching the

semantics. Finally, we can obtain the compatibility score of the hybrid model as follow:

F
(
X , y, y′;W ) = ∅(X )TWϕ

(
y, y′) (3)

Feature Decoder. Through the above steps, we can obtain a 1 × 1 × D mid-level
semantic representation. Firstly, the mid-level semantic representation converts to 1 ×
1 × 256 feature map by convolution. Next, we upsample by bilinear interpolation. Then
we upsample by deconvolution and convolution in each stage. After that, our model can
obtain a size 224 × 224 × 3 image, which reconstructs to the original image.

3.3 Training

Given an image X , we can obtain the predicted semantic value by the learned non-linear
mapping W . For the normalized enhanced semantic attributes ϕ

(
y, y′), we can obtain

the compatibility score by inner product:

S = <WT∅(X ), ϕ
(
y, y′)> (4)

For the user-defined semantic attributes, we attempt to seek for a mapping to align
the predicted semantic attributes and the ground truth. This part is to train the attributes
classifier. The softmax loss is used for training this part:

loss1 = −1

n

∑n

i

exp
(
<WTX , ϕ(y)>

)

∑
s exp(<WTX , ϕ(y)s>)

, sεY S (5)

For the extended semantic attributes, we aim to find the learned features to be more
discriminative among different categories. Our model takes the advantages of LSFE,
which can make full use of batches of deep learning. First, sample-pairs distance matrix
D2 can be obtained by Eq. (7) (It represents the distance between i-th sample and j-th
sample.):

Di,j =
∣∣∣
∣∣∣ϕ

(
y

′
i

)
− ϕ

(
y

′
j

)∣∣∣
∣∣∣
2

2
(6)

Unlike the random selection of anchor points for triplet loss, LSFE selects positive
pairs from a batch randomly. After that, our model utilizes nonrandom sampling to
find the hardest negative edge from D2, which contains the information needed for
sub-gradient descent. LSFE loss can be written as follow:

loss2 = 1

2|P|
∑

(i,j) ∈ P
max

(
0, Ji,j

)2 (7)

Ji,j = log

(∑

(i,k)∈N exp
{
m − Di,k

} −
∑

(j,l)∈N exp
{
m − Dj,l

}) + Di,j (8)
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For the part of decoder, we expect the enhanced semantic attributes can be learned
by image reconstruction. Moreover, our model can learn the principal components of
the nonlinear combination of hidden features during the reconstruction process. Mean-
while, the learned enhanced semantic attributes can be more accurate for object feature
representation. Hence, we use the MSE loss function to calculate the error between the
reconstructed image and the real image:

loss3 = minW ,W ′
∥
∥X − W ′WX

∥
∥2
F (9)

After building the mapping from visual embedding features to enhanced semantic
attributes, ZSL can be done with k nearest neighbors search in the enhanced semantic
space. Actually, the loss function can be divided into three parts: user-defined attributes
align loss, extended semantic LSFE loss and image reconstruction loss. Therefore, we
can obtain the whole loss function as follow:

L = loss1 + loss2 + loss3 (10)

3.4 ZSL Prediction

It’s easy to know the user-defined attributes, but the extended semantic attributes is
unknown and no ground-truth. Actually, we consider that ZSL is a semi-supervised
learning problem. The similar classes are more likely to have similar semantic infor-
mation. So we assume that the extended semantic attributes between the seen class and
unseen class also have the same similar relationship simu

s as the user-defined attributes
between seen class semantic embedding Ys and unseen class semantic embedding Yu.
Therefore, the similar relationship can be obtained as follow:

simu
s = argmin

∥∥
∥yu −

∑
simu

s ys
∥∥
∥
2

2
+ α

∥
∥simu

s

∥
∥2
2, s ∈ ys (11)

Our model utilizes the similar relationship simu
s to transfer knowledge from the

user-defined attributes of the seen class y
′
s to extended semantic attributes of the unseen

class y
′
u:

y
′
u =

∑
simu

s y
′
s (12)

For new class classification, we can take the maximum of the compatibility score
among the unseen class. Optimal solution for compatibility scores S∗ among the unseen
class can be obtained as follow:

S∗ = argmax
u∈yu

(
<WT∅(X )T , ϕ

(
y, y′)>

)
(13)
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4 Experiments

4.1 Datasets and Evaluation

We evaluate our proposed model on two representative ZSL datasets: Animals with
Attributes2 (AwA2) [17] and Caltech-UCSD-Birds200-2111 (CUB) [18]. For AwA2
dataset, it contains 37322 images from 50 class of common animals. Each class in this
dataset is labeled with 85-dim vector both continuous and binary to denote the attributes.
Weutilize the continuous 85-dimension class-level attributes as semantic space and adopt
standard 40/10 split in our experiment. For CUB dataset, it dataset consists of 11788
images of 200 bird species. It has a fixed split for evaluation with 150 training classes
and 50 test classes. Continuous 312-dimension class-level attributes provided in [18] are
used.

To calculate the classification accuracy rate, zero-sample learning is the same as other
single-label image classification, using the Top-1 accuracy rate. But if the accuracy rate
is calculated as the average of all pictures, then the performance of the model depends
largely on the densest classification. Finally, we select average per-class top-1 accuracy
in GBU [17] setting as following:

acc = 1

||Zu||
∑||Zu||

c=1

#correct predictions in c

#samples in c
(14)

4.2 Network Architecture Implement

The network architecture is composed of two parts: encoder and decoder. First, a size 224
× 224 × 3 image is input into the network. After 5 stages, the 7 × 7 2048-dimensional
features are obtained. Then through full connected layers, the features are mapping to
1 × 1 × D enhanced semantic feature representation, and this part is the encoder part.
The decoder starts from the middle semantic feature representation. After 5 stages, it
is reconstructed into a size 224 × 224 × 3 image. The whole architecture is shown as
Table 1.

4.3 Comparative Experiments

We set up four groups of experiments. The group 1 was performed on original image
feature extraction and the enhanced semantics based on triplet loss (TL). Different from
group 1, salient region is adopted in group 2. The group 3 and 4 are based on LSFE
enhanced semantics, but different feature extraction. The results are shown in Table 2.

As shown in Table 2, group 2 is 2.3% and 3.4% higher than group 1 in AwA2
and CUB respectively. As for group 3 and group 4, salient region images outperform
original images by 2.7% inAwA2 and 4.1% inCUB respectively. Therefore, for the same
extended semantics method, we conclude that features extracted from salient region
improve average per-class top-1 accuracy significantly.

For original image extraction, group3 is 3.1% and 2.2% higher than group1 in AwA2
and CUB respectively. By comparing group 2 and group 4, we can find that LSFE is
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Table 1. The proposed model architecture

Layers Output Convolution/pooling

Encoder Input 224 × 224

en_conv1 112 × 112 7 × 7,64,stride 2

en_conv2_x 56 × 56 3 × 3,max pooling, stride 2
⎡

⎢
⎢
⎣

1 × 1, 64

3 × 3, 64

1 × 1, 256

⎤

⎥
⎥
⎦ × 3

en_conv3_x 28 × 28
⎡

⎢
⎢
⎣

1 × 1, 128

3 × 3, 128

1 × 1, 512

⎤

⎥
⎥
⎦ × 4

en_conv4_x 14 × 14
⎡

⎢⎢
⎣

1 × 1, 256

3 × 3, 256

1 × 1, 1024

⎤

⎥⎥
⎦ × 6

en_conv5_x 7 × 7
⎡

⎢
⎢
⎣

1 × 1, 512

3 × 3, 512

1 × 1, 2048

⎤

⎥
⎥
⎦ × 3

encoder 1 × 1 average pooling, D-dim, fc

decoder de_conv1 7 × 7 1 × 1, 256 Convolution
Bilinear upsampling

de_conv2 14 × 14 3 × 3, 256 Deconvolution
3 × 3, 256 Convolution

de_conv3 28 × 28 3 × 3, 256 Deconvolution
3 × 3, 256 Convolution

de_conv4 56 × 56 3 × 3, 256 Deconvolution
3 × 3, 128 Convolution

de_conv5 112 × 112 3 × 3, 128 Deconvolution
3 × 3, 64 Convolution

decoder 224 × 224 3 × 3, 64 Deconvolution
3 × 3, 3 Convolution

3.5% and 2.9% higher than triplet loss in AwA2 and CUB respectively. The above
experimental results demonstrate LSFE can improve the recognition accuracy in a great
deal.

The training (see in Fig. 3(a)) and test data (see in Fig. 3(b)) belong to different
categories, but the reconstruction process is actually an unsupervised learning process.
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Table 2. The accuracy of the model on AwA2 and CUB under different extended semantics

Visual-semantic Group AwA2 CUB

Original image-TL 1 51.3 34.3

Salient region-TL 2 53.6 37.7

Original - LSFE 3 54.4 36.5

Salient region - LSFE 4 57.1 40.6

Table 3. Comparative experiments of proposed model based on reconstruction

Model Feature
extraction

AwA2 CUB

Non-reconstruction Original
image

54.4 36.5

Reconstruction Original
image

56.2 41.2

Non-reconstruction Salient
region

57.1 40.6

Reconstruction Salient
region

59.4 47.3

The input image is encoded and then reproduced by the decoder. After adding two
constraints, the image cannot be well reconstructed, but the model can capture the main
feature components of the object.

For the feature extraction from original image, the reconstruction model is 1.8%
and 4.7% higher than non-reconstruction model in AwA2 and CUB respectively. For
the feature extraction from salient region, by comparing reconstruction model with non-
reconstruction model, we can find that the reconstruction model improve 2.3% and 6.7%
inAwA2 andCUB respectively. Through the above two comparative analysis, we believe
that the reconstruction hybrid model can improve the recognition accuracy effectively.

Following the evaluation setting of GBU setting [17], we compare our model with
7 other classic ZSL model in Table 4. We can see that on AwA2 and CUB, our result
outperforms than DAP, CONSE, SYNC, SAE on AwA2, but lower than DEVISE, DEM,
RN. For CUBdataset, ourmodel outperforms thanDAP,CONSE and SAE, but is inferior
to DEVISE, SYNC, DEM and RN. However, our model takes the advantages of salient
regions and LSFE. Moreover, we implement by convolutional autoencoder and decoder
which make the model learn non-linear principal components of hidden features to
describe object itself more accurately. Finally, through comparative experiments, we
prove that our model can effectively improve predicted accuracy.
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Table 4. Comparison with the results of the classic zero-sample learning model

Model AwA2 CUB

DAP [9] 46.1 40.0

CONSE [22] 44.5 34.4

DEVISE [15] 59.7 52.0

SYNC [11] 46.6 55.6

SAE [26] 54.1 33.3

DEM [29] 67.1 51.7

RN [1] 64.2 55.6

OURS 59.4 47.3

5 Conclusion

In this paper, we propose an end-to-end deep learning model to accomplish ZSL task.
Our model contains 3 parts: salient detection network, convolutional autoencoder and
decoder. The salient detection network is to find the salient region of original image,
which optimizes visual feature extraction. Convolutional autoencoder seeks for a map-
ping from salient region image to the enhanced attributes and make extended semantic
attributes more discriminative. Finally, our model reconstructs salient region image by
decoder to describe the object more accurately. The average per-class top-1 accuracy of
our model is 59.4% and 47.3% in AwA2 and CUB respectively and these experimental
results show the effectiveness of our model.
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Abstract. Recently, Convolution Neural Networks (CNNs) have achieved great
success in computer vision.To further boost the performance, the depth of the back-
bone network is continuously increased, which improves the capacity of feature
learning but also brings the heavy burden in computation. To address the issues,
this paper introduces a complex convolution method to systematically improve
the performance of the backbone network. Our contributions are three-fold: 1)
the complex architecture backbone network can improve the classification perfor-
mance without increasing or even reducing the number of parameters; 2) for the
detection task, the complex architecture backbone network can improve the abil-
ity of feature map extraction, at the same time our joint bounding box generation
method using both real and imaginary parts of complex features can obviously
improve the object detection ability. 3) the proposed method has a strong gen-
eralization ability for both detection and classification tasks. We have achieved
significant performance improvements in both classification and detection tasks,
which validate the effectiveness of our methods.

Keywords: Complex architectures · Backbones performance · Complex feature
map

1 Introduction

Backbone design is significant in the field of computer vision, especially for classifi-
cation and detection tasks. In recent years, with the development of machine learning
technology, the main methods of classification and object detection has changed from a
feature-based method to a convolution neural networks (CNNs) based method [1, 2]. For
the detection and classification tasks, both of them need to use a suitable and efficient
backbone network to extract feature maps from the input image. Classification tasks
often use fully connected layers to deal with the feature map and then calculate loss.
For detection tasks, it is necessary to use information of feature maps and labels directly
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to calculate loss. For existing backbone networks, the direction of improvement could
be concluded in two aspects: improving accuracy and saving parameters. To improve
the network accuracy, the depth of the network is continuously increased, but for deep
networks with more than 20 layers, there will be obvious degradation [3]. To address
this issue, He et al. proposed residual neural network [4]. Inspired by the idea of resid-
ual learning, the use of identity mapping not only alleviates the problems of gradient
explosion and gradient disappearance caused by the increase in network depth, but also
avoids the degradation of the network and enables the network depth to reach thousands
layers. The representative networks proposed under this idea are ResNet [5], ResNeXt
[6] and Res2Net [7]; To meet the needs of the booming edge computing technology
[8], small backbone networks with fewer layers have also been proposed. They can save
lot parameters by reducing the number of convolution layers. The lightweight networks
under this idea includeMobileNet [9], ShuffleNet [10] and SqueezeNet [11].Meanwhile,
the pre-trained model of the backbone network of the classification task can be used for
the detection task to improve the performance of the detection task. Therefore, it is of
great importance to design a structure to balance number of parameters and prediction
accuracy. In a summary, how to better improve the performance of the backbone net-
work, that is, based on fewer backbone network parameters to obtain better-performing
classification and detection results has very important research significance.

In this paper, we utilize complex structure to improve backbone network perfor-
mance. Based on the existing complex convolution, complex batch normalization, com-
plex ReLU and, complex weight initialization strategy [12], we follow the line of these
algorithms andpropose complexdown sampling, complexdropout, etc.Using these com-
plex architectures, we transform several backbone networks into complex networks, and
proposed several methods of combining complex feature maps to evaluate the classifi-
cation accuracy of the complex backbone networks. For the detection task, we use the
YOLOv3 model to test the efficacy of the complex backbone network based on the VOC
dataset. The backbone network we tested is not limited to darknet53: to test whether
this change is effective for a wide range of backbone networks, we deleted 15 layers of
residual blocks of darknet-53, that is, 30 convolution layers, showing that the algorithm
has a lifting effect on existing backbone networks.

The main contributions of this work are as follows:

1) We show the employment of complex convolution backbone networks can improve
the classification performance without increasing the amount of parameters, based
on our effective combination of real and imaginary feature maps.

2) Extensive experiments demonstrate that the use of real and imaginary feature maps
in the same framework can improve the detection accuracy.

2 Complex Convolution Neural Networks

Since complex numerical operations are mostly used in the field of signal analysis,
most complex neural networks are applied to the speech signals for enhancing the phase
information or predict spectrum. Trabelsi [12], which originally integrated a complex
neural network, utilized a complex neural network to test the music transcription of
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the MusicNet dataset and the speech spectrum prediction and achieved good results.
Choi [13] proposed the Deep Complex U-Net model for evaluation on a mixture of
Voice Bank corpus and DEMAND database, which has been widely used by many deep
learning models for speech enhancement. Pfeifenberger [14] estimates the complex
weights by using the full potential of complex-valued LSTM, MLP, and directly obtains
beamforming weights from complex-valued microphone array data. A complex-valued
deep neural network for speech enhancement and source separation is proposed. It can
be seen that most of the improvement work of complex neural networks is applied to
speech signal processing, and thiswork attempts to use it in visual tasks. The composition
principle of the complex neural network is almost the same, as shown below.

In this network, after the initialization of complex values, real and imaginary parts of
the complex numbers are treated as logically different real-valued entities. By this way
we can use real-valued algorithms to simulate complex number operations internally.

Note that the real part of the complex convolution kernel matrix is Wreal , the imag-
inary part is Wimag , the real part of the input image vector is written as xreal , and the
imaginary part is written as ximag . In particular, the imaginary part here is represented
by real numbers. In the convolution operation, the formula is written as follows:

(W ∗ x)real = Wreal ∗ xreal − Wimag ∗ ximag
(W ∗ x)imag = Wimag ∗ xreal + Wreal ∗ ximag (1)

The ‘*’ represents a two-dimensional real convolution operation. Expressed in matrix
form as:

[
(W ∗ x)real
(W ∗ x)imag

]
=

[
Wreal −Wimag

Wimag Wreal

]
∗

[
xreal
ximag

]
(2)

2.1 Complex Batch Normalization

For batch normalization of real data, only one-dimensional data needs to be converted
into a normal distribution [15]. For complex data, real and imaginary part may have
different variances, which will bring bias into the data. Therefore, we treat it as the
two-dimensional data, and use the covariance matrix V to normalize the eccentricity of
it. As shown in the Eq. (3), x − E[x] refers to the deviation of the two-dimensional data
from the center.

x̃ = (V )−
1
2 (x − E[x]) (3)

Where the covariance matrix V ψ is denoted as:

V =
(
Vrr Vri

Vir Vii

)
=

(
Cov(xreal, xreal) Cov(xreal, ximg)
Cov(ximg, xreal) Cov(ximg, ximg)

)
(4)

Where V needs to satisfy the condition of positive semi-definite matrix to make the
inverse matrix of V in the above formula be solvable. After mathematical derivation,
the conditions to be met are Vrr + Vii = 1, Vri = Vir = 0.Similarly, imitating the batch
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normalization formula of the real-value network, the input complex values are scaled
and translated as follow:

BN (x̃) = γ x̃ + β, γ =
(

γrr γri

γir γii

)
(5)

where γrr and γii are initialized to 1√
2
, γir , γri and β are initialized to 0.

2.2 Complex ReLU and Other Functions

The ReLU involved in our proposed module is a complex ReLU, which is also called
the CReLU. It is a separate ReLU activation applied to both the real and imaginary parts
of the neuron, defined as:

CReLU(x) = ReLU(xreal) + iRELU(ximag) (6)

When the real and the imaginary part are the same sign, that is, when the input com-
plex number is in the first or third quadrant, the formula satisfies the Cauchy-Riemann
equation obviously. A series of other complex methods also adopt this idea, first divide
the real and imaginary part, then treat them as independent real data, such as complex
pooling, complex sigmoid.

3 Methodology for Using Complex Structure in Object
Classification and Object Detection

For classification and detection tasks, the final prediction depends on the feature map of
backbone network. In the classification tasks, the final feature map is a one-dimensional
vector.While in the detection tasks, a high-dimensional tensor is often used. Therefore, it
can be said that the network for classification task is composed of the backbone network
and classifier.While the network for detection task is composed of the backbone network
and the object detection business part [16]. Therefore, for classification tasks, it is only
necessary to design some simple rules to combine complex-valued low-dimensional
feature maps, while for detection tasks, it is necessary to flexibly design the application
of complex feature maps according to the characteristics of object detection business
part.

Therefore, to produce one-dimensional feature map, we designed four functions to
combine the obtained one-dimensional complex featuremap. They are calledmagnitude,
signed-magnitude, summation and absoluted-summation respectively. We also try to
directly convert complex feature maps into real feature maps through convolution, and
the experimental results show all of them improve the performance of backbone network.
In the detection task, we use the complex feature map’s real part, the combined feature
map of the real and imaginary parts, and the fully complex feature map of both real
and imaginary parts combined with non-maximum suppression method to improve the
detection accuracy. These methods gain improved detection results by making better use
of the information of complex feature maps.
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3.1 Complex Feature Map Combination Method

Image classification is a basic problem in image understanding. There are lots of data
sets for evaluating image classification effects, such as CIFAR-10/100 [17], Caltech-
101/256 [18] and ImageNet [19]. With the great success of the AlexNet [20] deep
convolutional neural networks based methods have begun to replace traditional hand-
crafted algorithms, and a series of effective backbone networks have been proposed.
Based on AlexNet, some improved backbone, such as DenseNet [21], GoogleNet [22],
ResNet [4], VGG [23], SENet [24] and ShuffleNet [10] have been proposed and achieved
great success. Some classification networks that combine CNN with traditional image
processing methods, such as GCN [25], have also achieved good results.

In this work, we use several widely used backbones to verify the improved charac-
teristics of complex convolution for classification in the CIFAR dataset. The basic VGG
network structure is shown in Fig. 1; the other two backbone network improvement
methods are similar to it. For the CIFAR task, a linearization layer with the width of
4096 is not required. Too many linearization layers is also the reason for the exces-
sive network parameters. We found that removing these fully connected layers does not
influence the performance of the network, but on the other hand, can reduce the number
of parameters. Therefore, some experiments used this structure which removed a fully
connected layer, as shown in the Fig. 1, the 1st chart.

Fig. 1. The scheme of complex architectures for VGG16 network
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Based on this motivation, we use complex architectures on the backbone network,
which will double its parameter amount (see related work for the method). For the
classifier part, if the fully-connected layer is also complex, some methods need to be
designed to combine two one-dimensional vectors. And to verify whether this structure
can improve performance when the parameter amount is constant or even reduced, we
deleted half the number of convolution kernels to perform the same experiment, as shown
in Fig. 1, the 2nd chart.

We design five different methods to combine the complex vectors after the complex
classifier, four are mathematical calculation methods, the other one uses 1 × 1 con-
volution. Magnitude method just treats two parts as mathematical complex numbers,
like vreal + vimaginaryi, which vreal, vimaginary are 2 vectors on behalf of the input. The
combined result is voutput . So this method just calculates the magnitude of it, which is
written as:

Magnitude:voutput = (v2real + v2imaginary)
1
2 (7)

Obviously it is always positive, no negative number will occur. It does not matter
for the sigmoid function. But in more fuzzy work, this kind of feature map may cause
problem because the feature map should be signed. Therefore, an improved method
called signed-magnitude is proposed. The major difference is that the symbolic function
is used to make the results keep the same sign with the real part, so it can be written as:

Signed - Magnitude:voutput = (v2real + v2imaginary)
1
2 × sgn(vreal) (8)

So inspired by this idea, we designed 2 more combine function. In these method
both the real and imaginary part are treated as 1-dimension data. So if we want a signed
output vector, which just calculate the summation, written as:

Summation:voutput = vreal + vimaginary (9)

If we want positive results, just calculate the sum of absolute value, which we called
absoluted-summation, written as:

Absoluted - Summation:voutput = |vreal | + ∣∣vimaginary∣∣ (10)

Also 1-by-1 Convolution Layer is used to combine the 2 part into one, it just like
another full connection layer. Since the input tensor is a one-dimensional vector, just the
kernel size equals 1 may suit for this work. The formula is shown in Eq. (11).

Conv1:use 1 × 1 convolution kernel to connect the real and imaginary part (11)

3.2 Joint Bounding Box Generation Method of Complex Feature Map

Detection task is amiddle-level problem in the field of computer vision, that is, it needs to
understand the foreground and background of the image. So far, object detectionmethods
based on deep learning can be divided into 2 categories: two-stage detectionmethods and
one-stage detection methods. The two-stage detection methods delineate the detection
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area first, and then determine whether there are targets in the selected area. R-CNN [26],
fast R-CNN [27], faster R-CNN [28] and SPP-Net [29] are representative two-stage
detection methods.. One-step detection method uses intensive sampling directly from
the feature map to obtain the prior frame, and then do classification and regression on the
prior frame. Obviously, one-stage method has a faster detection speed. Representatives
of such method are YOLO [30], SSD [31], OD-GCN [32], and RON [33]. With the
introduction of YOLOv4 [34], this type of method has achieved a balance between
detection accuracy and efficiency, becoming the main trend of future research.

Therefore, we take YOLOv3 as an example to study the improvement effect of
complex architectures on the backbone network in our work. To judge whether this
method will improve performance under the condition of no pre-training model or any
backbone network, we deleted the 15-layer residual connection layer of darknet-53, that
is, the 30-layer convolution layer. So it can also be called “dark-23” as a comparison
in the experiments. In the same way, we also conduct the complex architectures on
original darknet-53backbonenetwork.Because of the lackof pre-trainedmodel about the
complex darknet-53 backbone network,we repeatedly assign the original real darknet-53
pre-trained model to the real and imaginary parts of the complex model. This pre-trained
model may not be ideal. If there is a better pre-trained model, a better detection effect
may be achieved.And the effectiveness of improvement can be judged by the comparison
of different feature map using methods.

The output part of the backbone network is shown in Fig. 2. The specific structure
of the darknet-53 and “darknet-23” backbone network can also be clearly seen from
this figure. In this part, we use complex convolution, complex batch normalization,
complex leaky ReLU and others to replace the real-valued function, which is also clear
in the diagram. So we just make the input image in which real part equal to its real and
imaginary part equal to zero. After this module, we will get 3 complex 3-dimensional
tensors. If it is regarded as a real tensor, it can be regarded as 4-dimensional tensor. How
to use this tensor for training and testing is shown in Fig. 3.

Fig. 2. The complex architectures for darknet-53 and “darknet-23”
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Fig. 3. The principle of training and testing using the output complex-value feature map

Here we conduct 3 experiments. First, we use the real part of the output complex fea-
ture map. Second, we use the signed-magnitude of the output complex feature map (see
Eq. (8)). Last, we use both the real and imaginary parts of the output featuremap for train-
ing and testing. For using real part of complex feature map and using signed-magnitude
of complex feature map, these two methods actually convert the 4-dimensional output
tensor into 3-dimensional tensor. Therefore, for subsequent processing parts, such as loss
function calculation, or prediction box generation, there is no need to transform these
parts. However, if we want to use both real and imaginary parts of complex tensor at
the same time, it is equivalent to use two 3-dimensional feature maps. Here we treat the
real and imaginary parts as two independent feature maps to calculate the loss function
and generate the detection frame respectively. Then, the losses are combined together
through summation. Therefore, the totally loss can be written as:

Lfinal = Lreal + Limaginary (12)

According to the principle of back propagation, it can be derived and the training
parameters can feedback on the backbone network automatically.During the test process,
the real and imaginary parts will simultaneously generate bounding boxes from the
prediction model. At this time, we put the prediction frames generated by the two parts
in the same stack, and use the non-maximum suppressionmethod to remove the repeated
prediction frames to obtain the most comprehensive result. Therefore, the final output
of bounding boxes can be written as:

bboxesoutput = bboxesreal ∪ bboxesimaginary (13)

Employing the designed method, the information of all complex feature maps can
be used as much as possible by reducing the missed detection rate of objects.
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4 Result Analysis

4.1 Result Analysis for Object Classification

In the experiments, we involve 3 different backbones, VGG16 [23], ResNet18 [4] and
SENet18 [24] for comparison. It is clearly that the connection methods designed for
complex architectures are obviously robust to classification problems. We designed 5
methods to connect the complex feature map and the final output result. All the classifi-
cation results have been significantly improved, which shows that the complex backbone
network has fundamentally improved the performance of the backbone network. When
the number of parameters of the multiple backbone networks is doubled, from the exper-
imental results of the three networks, a performance improvement of 2–4% points can
be achieved. Among them, due to the parameter quantity’s redundancy of the fully con-
nected layer, the VGG16 network’s parameter quantity can be basically unchanged.
Similarly, when the number of parameters is reduced to the half by reducing the num-
ber of convolution channels, according to the statistical results of the three network
experiments, a classification improvement of 1–2.5% points can be achieved (VGG16
network can be reduced to a quarter of the original parameter). The above experiments
are sufficient to demonstrate that the improvement of the complex architectures backbone
network is owing to the backbone itself (Table 1).

4.2 Result Analysis for Object Detection

In this part, we use the VOC data set to evaluate the improvement of the detection
effect by complex architectures network. We employ VOC2007trainval dataset and
VOC2012trainval dataset as the training data, while utilize VOC2007test dataset dur-
ing the test. For the part without pre-trained model, “darknet-23” is used as backbone
network. We tested non-complex convolution model and three variants of the complex
convolution model (using only real part of feature map, using signed-magnitude of fea-
ture map, and using both real and imaginary parts of feature map) on it. Obviously, for
any networks, the involvement of complex convolution on the backbone network will
improve the feature map extraction ability. For the part with pre-trained model, since it
is hard to train the complex darknet-53 pre-trained model on ImageNet dataset due to
the hardware limitations, the real-number pre-trained model is loaded twice for both real
and imaginary parts. Therefore, in this part, we don’t compare the results with original
darknet53 detection model. On the other hand, we compare the 3 improved models to
evaluate the effectiveness of the improvement. We can see that under the condition of
using the same complex convolution backbone network, employing full-feature map
information (signed-magnitude) will improve the detection effect by nearly 5% points
compared with only using real-part feature map.More than that, using the information of
the real and imaginary feature map together by NMSwill improve the detection effect by
nearly 8% points compared with only using the real part of feature map. This shows that
our proposed method, using non-maximum suppression methods to jointly apply real
and imaginary feature maps for bounding box prediction, is effective in object detection
task. Additionally, it can be applied to various detection models and tasks in the future
(Table 2).
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Table 2. VOC result by complex method.

VOC(mAP) Baseline Real Signed-magnitude Real and imaginary
with NMS

“Darknet-23”
(without pretrain
model)

0.608413
(0)

0.617585
(0.009172)

0.622672
(0.014259)

0.631942
(0.023529)

Darknet-53
(load pretrain model
both real and
imaginary)

– 0.685472
(0)

0.731432
(0.04596)

0.759334
(0.073862)

5 Conclusion and Future Works

In this work, we use CIFAR and VOC datasets to verify the effectiveness of the complex
architecture on the backbone network. Through theoretical analysis and experimental
verification, the following conclusions can be obtained. The complex convolution archi-
tectures can improve the performance of feature extraction of backbone network and
improve performance in either classification or object detection. Moreover, for classi-
fication tasks, classification performance can be improved without increasing or even
reducing the number of parameters. In the object detection task, when the prediction
frames jointly listed by the real and imaginary feature map are combined by using
the non-maximum suppression, it will significantly improve the detection performance.
Moreover, this method could be generalized for any detection task.

We plan to employ ImageNet and COCO data sets for more scientifically verifying
the ability of complex architectures on improving the performance of the backbone net-
work. Meanwhile, we expect to explore whether the joint detection method of real and
imaginary parts based on non-maximum suppression has certain improvement capabili-
ties on some special tasks, such as small target detection tasks or unclear target detection
tasks, by reducing the missed detection rate for difficult-to-identify targets.
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Abstract. Visual tracking demands to perform the accurate object location given
the object state of the first frame. The existing methods have proposed various
ways to handle the challenging problems, yet few of them take the relationship
between shallow features and deep semantic features into account. Based on an
extensive analysis, we first propose a residual attention SiameseRPN visual track-
ing method for accurate object state estimation, which introduces the correlation
filter in a Siamese network framework. A novel loss function is presented to
enhance the discriminative capability. Our approach is derived from three differ-
ent loss terms that is capable of training a model in a few iterations. Second, we
present channel attention mechanism to improve the tracking performance, which
is offline trained to capture the general features in the tracking. Third, the proposed
tracking model is trained in end-to-end manner and takes full advantage of both
low-level representation for correlation filter and high-level semantic features for
deep object representation by using multi-task learning strategy which can mine
the relationship from both levels. Our approach benefits from two complementary
effects. Finally, extensive evaluation and ablation studies demonstrate the effec-
tiveness of the proposed tracking approach. Our tracker achieves state-of-the-art
performance on five challenging benchmarks, which proves great potentials in
balancing accuracy and speed.

Keywords: Surveillance · Deep learning · Correlation filter · Siamese network ·
Attention

1 Introduction

Visual tracking is one of the fundamental tasks in computer vision, and has many practi-
cal applications, such as human-computer interaction, action recognition, scene under-
standing, visual navigation, automatic driving and so on. Although much progress has
been done in the past decade, it still remains challenging for a tracker to work at a high
speed and is robust to complex scenarios including occlusion, illumination variations,
low resolution, background clutter, and motion blur.

Recent deep learning based trackers and correlation filter based trackers have shown
great potential for robust and fast tracking. Although basic CF has a high running speed
due to their element-wise multiplications using Fast Fourier Transform. For complex
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scenarios, however, the accuracy of basic CF trackers often drops considerably. Deep
network model has been widely developed to improve tracking performance due to their
strong feature representation.Most existing approaches rely on the amount of the training
data. The deep network model is extensively trained on large benchmarks offline and
aggressively learned the object sequences online. These approaches have achieved very
good results on some recent challenges.

Despite all these significant progress, most trackers suffer from several weaknesses
and still can’t attain consummate results. First, the training datasets are far smaller than
other visual datasets such as ImageNet. The insufficient training data may cause the deep
network model ineffective when facing all kinds of tracking challenges. Second, deep
features learned offline can’t adapt to specific object or unseen categories well during
the tracking. Third, model updating schemes from these methods inevitably affect the
network model adaptability, which degrades the tracking accuracy and increases the
computationally expensive. These limitations lead to inferior accuracy.

To tackle the above limitations, our contributions can be summarized as follows.

(1) We propose a residual attention SiameseRPN method for visual tracking, which is
an end-to-end deep network architecture. A novel loss function from three different
aspects is presented to enhance the discriminative capability. Correlation filter layer
and semantic feature layer are used to mine the relationship both low-level and
high-level features in multi-task learning framework.

(2) An effective attention mechanism is utilized within the Siamese network architec-
ture, which offline learns feature representations to adapt online object tracking.

(3) Numerous experimental results on five challenging benchmarks show that the
proposed tracking method achieves state-of-the-art performance.

The rest of the paper is organized as follows. In Sect. 2, we review related work of
existing object tracking algorithms. Section 3 briefly introduces the generative adver-
sarial network. In Sect. 3.3, we introduce our approach for visual tracking. In Sect. 4,
we present experimental results in two tracking benchmarks. Finally, Sect. 5 concludes
this paper.

2 Related Work

There are extensive surveys of visual tracking in literature [1, 2]. We mainly discuss the
representative trackers based on deep learning and correlation filters.

Deep Learning Tracking. Deep learning has been widely used to improve tracking
performance. Some tracking methods combine deep learning models with correlation
filters such as HCF [3], DeepSRDCF [4], ECO [5]. Another method formulates tracking
task as a classification or regression problem, including CNN-SVM [6], DeepTrack [7],
FCNT [8], TSN [9]. The advantage of these trackers is that they utilize the superior
representation power of deep features. However, tracking speed is reduced due to online
updating of the deep network model.

Recently some deep model based approaches are trained on videos offline and used
to track the object online through an end-to-end deep network learning such as MDNet
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[10], CFNet [11], RTT [12], ACFN [13]. The aforementioned problems have been most
successfully addressed by Siamese network architecture [14–20]. SINT [14] formulates
tracking task as a verification problem and trains a Siamese network model for object
matching during the tracking. Similar methods include SiamFC [15], SiamRPN++[16],
SiamRPN [17], SiamMN [18], Deeper and Wider Network [19] and SINT++ [20], etc.
The VITAL tracker [21] generates hard samples by using adversarial learning and lever-
ages the class imbalance with an effective loss. These methods advance the development
of end-to-end deep network model and achieve the promising results on some challeng-
ing benchmarks. However, deep network model may suffer from over-fitting due to
deficiency of training data.

Correlation Filter Tracking. Recent advances of correlation filter (CF) have achieved
great success in terms of speed and accuracy [22–34]. We arrange these algorithms in a
hierarchy and classify them into two categories:Basic correlationfilter based trackers and
regularized correlation filter based trackers. Some basic CF trackers have been developed
to boost performance in tracking by using scale estimation [23], spatial constraints [24],
reducing boundary effects [25], and long-term tracking [26]. However, basic CF trackers
are limited in their detection range since they require the filter size and patch size to be
equal. To address this issue, several regularizedCFbased trackers are proposed, including
SRDCF [24], STRCF [27], ACFN [13], DeepSRDCF [4], ECO [5], DMSRDCF [28],
C-COT [29], DCFNet [31], CSR-DCF [30], SAMF [32], MCPF [33], ATOM [34],
etc. Among others, some trackers combine CF with deep features, which have shown
significant improvement.

In this work, we focus on residual attention SiameseRPN for visual tracking. Differ-
ent from the goals of the above mentioned approaches, our multi-stream network archi-
tecture is proposed to address the problem of object drift by using attention mechanism
in the sequences.

3 The Proposed Tracking Method

In this section, we first introduce the network architecture of the proposed approach, and
then give a detailed training process and loss function. Finally, we apply our model to
visual tracking task.

3.1 ResNet Based Siamese Tracking Method

The Siamese network based object tracking methods [14] formulate visual tracking as
a matching problem between the object template and the search area. The similarity
measure is learned from Siamese deep network structure. The object state is usually
given in the first frame of the sequence and can be used as object template z. The goal
is to find the most similar candidates from the following frame x.

f (z, x) = φ(z) ∗ φ(x) + b (1)

where φ() is a semantic embedding space; f () denotes a similarity function; b is bias.
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Furthermore, SiameseRPN [17] is trained with a ResNet-50 backbone by the spatial
aware sampling scheme, which can overcome the translation invariance, asymmetrical
features for classification and regression.

Network Architecture: We utilize ResNet-50 as base network architecture and feature
extractor. Different from the original ResNet which has a large stride of 32 pixels, we
reduce the strides at the last block from 16 pixels and 32 pixels to 8 pixels by modifying
the conv5 block to have unit spatial stride. We crop the center 7× 7 regions as the object
template features to reduce a heavy computational burden on the correlation module.
Furthermore, we fine-tune ResNet to improve the tracking accuracy. The parameters of
deep network model are jointly trained in an end-to-end manner. The flowchart of the
proposed tracker is shown in Fig. 1.

Fig. 1. The flowchart of the proposed tracking method. The intermediate layers in the common
feature extractor have been omitted for clarity.

For the ResNet-50 network model, we utilize multi-level features extracted from the
first residual block and the last residual block for tracking, respectively. The outputs
of two-level features (Conv1, Conv5) are denoted as F1(·), and F5(·), respectively. On
the one hand, object localization is obtained using the correlation filter working on the
low-level fine-grained representations. Correlation filter is carried out as a differentiable
layer. On the other hand, high-level semantic features are extracted from Conv5 and fed
into the SiameseRPN module to achieve classification and regression tasks.

Offline Training: ResNet-50 deep network architecture is pre-trained on the training
datasets of ImageNet, COCO, ImageNet DET and ImageNet VID to learn a general
object feature for object representation. We employ single scale images with 127 pixels
for template patches and 255 pixels for searching regions, respectively. To enhance the
capacity to distinguish distracters of deep network model, we randomly obtain shifting
and scaling following a uniform distribution on the search image as data augmentation
techniques.

Our network model is trained with stochastic gradient descent (SGD). We use a
warm-up learning rate of 0.001 for first 10 iterations to optimize the RPN branches.
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For the last 15 iterations, the whole network is end-to-end trained with learning rate
exponentially decayed from 0.005 to 0.0005. Weight decay of 0.0005 and momentum
of 0.9 are used. We first train our model with for 5 warm-up epochs with learning rate
linearly increased from 10−7 to 2 × 10−3, then use a cosine annealing learning rate
schedule for the rest of 45 epochs.

Discriminative Loss Function: The training loss is optimized from three different
aspects. First, the classification loss and regression loss are written as follows.

LSiamRPN = 1

Npos

∑

x,y

Lcls(px,y, c∗
x,y) + λ

Npos

∑

x,y

1{c∗
x,y > 0} · Lreg(tx,y, t∗x,y) (2)

where Lcls denotes the focal loss for the object classification; Lreg is the IoU loss for the
object location; we assign 1 to c∗

x,y if it is a positive sample;Npos is the number of positive
samples; 1{.} denotes the indicator function that takes 1 if the condition holds and takes
0 if not. tx,y and t∗x,y stands for the object position and ground-truth, respectively.

Second, different from CF that uses hand-crafted features for visual tracking, we
develop to learn low-level feature representation fitting a CF. The features are obtained
by a low-level convolutional layer of CNN model. The loss function is designed by

Llow = ‖g(x) − y‖22 = ‖Xw − y‖22 (3)

where x is a search image; X is the circulate matrix of x for the search image patch; w
is the learned CF.

Third, the high-level semantic is used to measure the similarities between the object
template and the search image. The problem can be further written as the minimization
of the following logistic loss.

Lhigh =
∑

x,z

log(1 + exp(−y(x, z)f (x, z))) (4)

Thewhole network is trained fromend-to-end based on amulti-task learning strategy.
The final loss can be overall formulated as follow.

L = LSiamRPN + Llow + Lhigh (5)

3.2 Channel Attention

A convolutional feature channel corresponds to certain visual information. In some cer-
tain circumstances, some feature channels are more important than others. The channel
attention scheme is to keep the adaptation ability of deep network model to adapt the
object appearance changes. To share a common attention, we propose a channel attention
scheme to assist the object location.

The architecture of the channel attention is shown in Fig. 2, which is composed by
a dimension reduction layer, a ReLU and a dimension increasing layer with sigmoid
activation. Given a set of M channel features F = [

f 1, f 2, . . . , fM
]
, the output of

attention net is obtained by computing channel-wise re-scaling on the input in Eq. (7)
where β is the parameter of the channel attention.

q̄i = βi · qi i = 1, 2, . . . , d (6)
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Fig. 2. The architecture of channel attention mechanism.

3.3 Online Tracking

Given the first framewith annotation, we utilize data augmentation strategies to construct
an initial training set containing 20 positive samples. The object template is then obtained
using the ResNet network architecture which is fine-tuned with the initial training set.

In the tracking phase, when a new input video frame arrives, we crop some large
search patches centered at the previous target position with multiple scales. These search
patches are fed into the ResNet-50 to get their feature representations. The fine-grained
object representation is fed into the correlation filter layer. The semantic representation
is evaluated based on the channel attention mechanism. The object candidate states
x = {x1, x2, . . . , xN } are randomly drawn based on the object position in the last frame.
The candidates are estimated by finding the maximum of the fused correlation response
in Eq. (7).

x∗
t = argmax

i=1,....,M
S(xi) (7)

The candidate with the maximum object confidence score is considered as the track-
ing result. The parameters of deep network model are updated every 20 frames using
positive and negative samples collected in previous tracking frames.

4 Experiments

4.1 Implementation Details

In this work, the proposed method is carried out in Python using Tensorflow and Keras
deep learning libraries. We test our tracker on a PC machine with an Intel i7 CPU (32G
RAM) and an NVIDIA GTX 1080Ti GPU (11G memory), which runs in real-time with
24.8 frames per second (fps). The quantitative analysis and ablation studies are evaluated
in this section.

In the initial training phase, the convergence loss threshold is set to 0.02 and the
maximum iteration number is 50. For the Siamese network framework, we use the
initial object of the first frame as the object template and crop the search region with 3
times of the object size from the current frame. For the scale evaluation, we generate a
proposal pyramid with three scales, i.e., 45/47, 1, and 45/43 times of the previous object
size.
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4.2 Overall Performance

We evaluate our approach with other competing trackers on five challenging tracking
benchmarks, including OTB-100 [40], UAV123 [41], VOT2018 [35], LaSOT [37] and
TrackingNet [45]. The proposed approach is compared with the state-of-the-art trackers,
including the correlation filter based trackers, such as SRDCF [24], MCPF [33], C-COT
[29], ECO [5], and STRCF [27]; the non-real-time deep tracking algorithms such as
MDNet [10], CREST [38], LSART [43], VITAL [21], and DAT [44]; and the real-time
deep learning tracking methods such as ACT [42], SiamFC [15], ATOM [34], CFNet
[11], SiamRPN++ [16], LTMU[36],DaSiamRPN [39], andUPDT [46]. In the following,
we will report the quantitative analysis on these benchmarks.

OTB-100: Table 1 shows the success overlap rate in the dataset. Among the compared
trackers, our tracker obtains an AUC score of 68.1%, competitive with UPDT tracking
method.

UAV123: The benchmark includes 123 low altitude aerial videos captured from a UAV.
The AUC score on this benchmark is reported in Table 1. SiamRPN++ achieves an AUC
score of 61.3%. Our tracker significantly outperforms SiamRPN++ and obtains AUC
score of 63.4%.

Table 1. State-of-the-art trackers on OTB-100 and UAV123 benchmarks in terms of AUC score.

ECO CCOT DaSiam RPN ATOM UPDT MDNet SiamRPN++ Our

OTB-100 64.3 68.2 65.8 66.9 69.2 67.8 68.9 68.1

UAV123 50.6 51.3 58.6 64.4 54.5 52.5 61.3 63.4

VOT2018: We evaluate our tracker on this challenging dataset which consists of 60
video sequences. Accuracy and robustness are used as measures to evaluate the tracking
performance. EAO (Expected Average Overlap) is obtained to rank trackers. Results are
given in Table 2. We can see that SiamRPN++ achieves the best performance in terms of
accuracy. However, it obtains inferior robustness compared with ACT and ATOM. Our
tracker has a 15.1% lower failure rate, while achieving compatible accuracy.

Table 2. Comparison of state-of-the-art trackers on VOT2018 benchmark.

DAT ACT DaSiam-RPN ATOM UPDT SiamRPN SiamRPN++ Our

Accuracy 0.505 0.519 0.586 0.590 0.536 0.586 0.600 0.587

Robustness 0.140 0.201 0.276 0.204 0.184 0.276 0.234 0.151

EAO 0.385 0.356 0.383 0.401 0.378 0.383 0.414 0.440
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LaSOT: We evaluate the proposed tracker on this dataset consisting of 280 sequences
which have longer sequences with an average of 2500 frames per sequence. Therefore,
it is important to adapt the object appearance variations. Figure 3 shows the success rate
plot. ATOM tracker employs the pre-trained ResNet-18 to discriminate the object from
the background. Our approach uses end-to-end trained method and further improves the
performance with an AUC score of 51.6%. The experiment evaluations demonstrate that
model adaption capabilities of the proposed tracking method on video sequences.
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Fig. 3. Success plot on the LaSOT benchmark.

TrackingNet: Wecarry out our approachon the large-scaleTrackingNet dataset. Table 3
shows the tracking evaluation results. SiamRPN++ reports a satisfied AUC score of
73.3%. Our method achieves AUC score of 74.1% with the same ResNet-50 as in
SiamRPN++.

Table 3. Comparison of state-of-the-art trackers on TrackingNet benchmark.

ECO CFNet MDNet CSRDCF UPDT SiamFC SiamRPN++ Our

AUC 55.4 57.8 60.6 53.4 61.1 57.1 73.3 74.1

P 49.2 53.3 56.5 48.0 55.7 53.3 69.4 69.6

Pnorm 61.8 65.4 70.5 62.2 70.2 66.3 80.0 80.4

4.3 Ablation Studies

We conduct ablation evaluation to verify the contributions of different components and
different layer features using OTB-100 and VOT2018 benchmarks. Table 4 shows the
AUC scores of each variation.
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Table 4. Ablation study of ourmethod onOTB-100 andVOT2018 benchmarks. L4 and L5 denote
conv4 and conv5, respectively. Finetune is whether the backbone is trained offline.

BackBone L4 L5 Finetune OTB-100 VOT2018
AlexNet 0.666 0.355

ResNet-50
√ √ 0.679 0.347

√ √ 0.675 0.337

ResNet-50
√ √ 0.676 0.392
√ √ √ 0.700 0.408

Feature Selection. The choice of features from different layers plays a significant role
in visual tracking. The number of parameters and type of network layers directly affect
the speed and accuracy of the tracking algorithms. First, different deep network archi-
tectures are evaluated on two popular benchmarks. AlexNet and ResNet-50 are used
as backbones to verify the tracking performance. The AUC score is shown in Table 4.
Our tracker and SiamRPN++ can benefit from the deeper layers network architecture.
In addition, the tracking performance can obtain a great improvement by finetuning the
backbone. Furthermore, the experiment results show that conv4 alone obtains a satisfy-
ing performance with 0.347 in EAO. Deeper layer and shallow layer perform with 5%
drops. We combine conv4 and conv5 to obtain the improvements.

Effectiveness of Different Components. The proposed tracking approach consists of
SiamRPN (S), correlation filter layer (CF), and channel attentionmodule (A). To evaluate
the importance of different components, we carry out the following variants: (1) ours (S)
is our tracker merely using SiamRPN to track the object in every frame; (2) ours (CF)
stands for our method by combining low-level correlation filter and high-level semantic
representation to obtain the object location in every frame; (3) our tracker (A) denotes
the proposed tracker with the channel attention module; and (4) our (S+CF+A) is the
final tracker. The effectiveness of different components is evaluated in Table 5.

Table 5. Effectiveness of different components for our tracking algorithm.

Tracker F-score Pr Re fps

Ours (S) 0.553 0.551 0.541 34.7

Ours (CF) 0.583 0.584 0.557 30.6

Ours (A) 0.597 0.607 0.565 21.4

Ours (S+CF+A) 0.603 0.613 0.596 24.8

Table 5 shows the experimental results of the variants and illustrates that all com-
ponents can boost the tracking performance. Removal of the channel attention module
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from the proposed model causes a 6.4% performance drop, while removal of the cor-
relation filter layer reduces the performance by 7.8%. The accuracy of both variants is
comparable to the original SiamRPN, while the number of failures increases. Therefore,
the attention module is crucial for a robust object selection strategy during the tracking
process. The proposed tracking approach leads to a 9.5% EAO and a 8.7% accuracy
reduction. Therefore, it benefits from the rotated bounding box estimation.

5 Conclusions

In this paper, we propose an end-to-end deep network architecture for visual object
tracking. Channel attentionmechanism is introduced to the Siamese network framework.
Low-level features are used to learn correlation filter and high-level semantic features are
used to deep object representation. Then both two-level features are jointly represented
in multi-task learning framework. The loss function is designed to optimize the deep
network parameters. Experiments show that the proposed tracking approach significantly
improves tracking performance in terms of accuracy and speed. In future work, we plan
to incorporate spatial-temporal attention module representation in our model framework
to further improve its effectiveness.
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Abstract. Face recognition have been developed rapidly, launched by
the breakthrough of Deep learning based face representation method.
However, disguised face verification in the wild is still a challenge prob-
lem. To address this issue, we propose a novel deep feature based dis-
guised face recognition scheme (DDFR). DDFR introduces the multi-
scale residual network with AM-softmax loss for learning face represen-
tation. In training stage, we put the different occlusions (mask, sunglasses
and scarf et al.) on clean face images to enhance the diversity of training
set. Meanwhile, both aligned face image and un-aligned face image are
combined to improve the discriminative power of feature representation
for disguised face verification. Experimental results demonstrate that the
proposed method achieves the better results than state-of-the-art meth-
ods on the DFW (disguised face in the wild) set.

Keywords: Disguised face verification · Face alignment · Add face
occlusion · Multi-scale feature extraction

1 Introduction

Face recognition has been a hot topic in the field of computer vision and has
been widely used in public security and finance. Recently, Deep learning based
representation methods achieve the landmark breakthrough in face recogni-
tion [3,10,12,18]. This achievement is mainly due to the applications of a better
convolutional neural network architecture [6,13,16,17] and a more restrictive
loss function. However, disguised face recognition is still a challenging problem
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since it contains personal unconscious or conscious cover of the face to hide
personal identity, as well as one person imitates another to deceive the face
recognition system. In this task, large intra-class distance and small inter-class
distance make unconstrained disguised face verification very difficult. To solve
this problem, there are many works have been developed, ranging from the sparse
representation based method to deep convolutional neural network, in the past
decades.

In the literature, Wright et al. [19] proposed a sparse representation based
method to handle face recognition with real-disguise. To further improve the
robustness of the sparse model, robust sparse representation models are devel-
oped for robust face recognition by using M-estimator to characterize the error
term [7,21]. Subsequently, Yang et al. [20] employed nuclear norm to describe the
error term and presented a novel nuclear norm based matrix regression model to
solve facial images contain disguise or occlusion. Qian et al. [11] introduced the
low rank regularized term to ridge regression for solving disguise face recognition.
However, these methods overlooked open sets of subjects, which is limited for
real world applications. To facilitate the research of unrestricted disguised faces
recognition, Kushwaha et al. [9] proposed a novel Disguised Faces in the Wild
(DFW) dataset. DFW is mainly used to evaluate the performance of various
methods in dealing with disguised face recognition. The authors of DFW also
organize a competition [14] in conjunction with the International Conference
on Computer Vision and Pattern Recognition (CVPR) 2018. Based on DFW,
many deep learning based methods are developed to solve disguised face verifi-
cation. Zhang et al. [23] proposed a two-stage training approach for this task.
At the first stage, they employed generic aligned face images and unaligned
face images to train two 64-layer DCNNs [10] in conjunction with AM-Softmax
[18]. At the second stage, PCA is used to obtain the low dimensional com-
pact feature representation. Smirnov et al. [15] proposed a new deep embedding
learning method for disguised face recognition. They used general face images to
train AEFANet with Auxiliary Embedding. Bansal et al.[1] combined ResNet-
101 [6] and Inception-ResNet-v2 [16] with L2-constrained Softmax for handling
disguised face verification (Fig. 1).

MSRN for aligned face 

MSRN for un-aligned face 

PCA

Identity 
Representation

Aligned face and  
un-aligned face fusion

Fig. 1. The proposed Deep feature based disguised face recognition scheme (DDFR).
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However, above mentioned methods use nearly ten million face images to
learn the face representation model. To further improve the disguised face veri-
fication performance, this paper presents a novel method for capturing intrinsic
feature of face image with little training data as possible. The main contributions
of our work are as follows:

– We propose a multi-scale residual (MSR) block to capture more detailed
facial features for improving the performance to distinguish the person and
its impersonator.

– We put the different face occlusions (mask, sunglasses and scarf et al.) on
clean face images to enhance the diversity of training set and increases the
intra-class differences of training set.

– We combine the feature of aligned face image and unaligned face image to
improve the discriminative power of feature representation for disguised face
verification. Experimental results on the DFW dataset demonstrate that our
method achieves better performance than state-of-the-art methods.

2 Deep Disguised Face Verification Framework

In this section, we introduce the multi-scale feature representation method for
obtaining more detailed facial features. The facial occlusion synthesis scheme is
proposed to enrich the diversity of training set. Finally, we fuse the features of
aligned facial image and unaligned facial image into one disguised face verifica-
tion framework.

2.1 Multi-scale Feature Extraction to Capture More Facial Details

As well known, ResNet is a good tool to capture the image feature with deeper
network [6]. Based on this, W. Liu et al. developed ResNet-like block by com-
bining 3× 3 convolution kernels with a residual unit for face representation and
achieved remarkable results [10].
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Fig. 2. (a) Our MSRN structure. (b) Our Multi-scale Residual Block. (c) ResNet-like
Block. (d) Inception-ResNet-A Block.
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ResNet-like block motivates us to design the multi-scale residual block for
matching faces with intentional and unintentional disguises. Compared with
ResNet-like block, our multi-scale residual block includes convolution kernels
of different sizes and employs the different nonlinear transform to combine the
features. The schema of Multi-scale Residual block has to be shown in Fig. 2 (b).
Suppose that there are 64 feature maps and the size of each feature map is 80 ×
80 as the input of this block. Based on this, we convolved the feature map with
three different scale convolution kernels. The number of convolution kernels for
each scale is 21. Then, we connect the convolved feature maps together and use
3× 3 convolution kernels to further represent the connected feature maps. Here,
the number of convolution kernels is 64. Finally, all the convolved feature and
the input feature maps are added together as a whole.

The main difference between Multi-scale Residual block and Inception-
ResNet block is that the Inception-ResNet block draws the idea of Network-in-
Network to reduce dimension, it should use a 1×1 size convolution kernel before
and after using a multi-scale convolution kernel. The structure of Inception-
Resnet-A is shown in Fig. 2 (d). In addition, Multi-scale Residual block can cap-
ture rich facial feature than Inception-ResNet block. The experiments in Sect. 3
also support our view.

(a) The process of adding occlusion (b) Some synthetic occluded face images  

LabelMe

Fig. 3. The pipeline of facial occlusion synthesis and some synthesized results.

(a) The occlusion styles: glasses, mouth-muffle, gestures, masks, and other materials from left to right. 

(b) Some synthesized occluded face images are used to train the occlusion 
detection network. 

(c) Some detection results of Res-Unet on
DFW testing set.  

Fig. 4. The various of occlusion styles. Our synthesize training set of Res-Unet and
some detection results of Res-Unet.
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2.2 Facial Occlusion Synthesis

In the task of disguised face recognition, the person can wear glasses and masks
to weaken its distinguishability, and the pretender can also increase the similarity
between itself and the imitated person in this way. In DFW, it is easy to lead
the overfitting problem since the diguised face images in the training set are
limited. In general, most methods use a large number of face images without
disguise in training stage. To fit the complex face data in the disguised face test
set, the previous work only expand the number and category of face images in
the training set.

Here, we just put occlusions on partial of clean face images to enrich the
diversity of the training set for improving the disguised face verification perfor-
mance. To ensure the authenticity of facial occlusion synthesis, we employs the
LabelMe to obtain the occlusion part and then synthesized the facial occlusion
images as shown in Fig. 3 (a). Specifically, we collect face images with different
occlusions from the training set of DFW, MAFA [5] and NUST-RF dataset. All
face images are aligned by using the same face alignment method. There are 285
occlusion styles, including glasses (55), mouth-muffle (53), masks (53), gestures
(55), and other materials (69). Some face images shows in Fig. 4(a). Then, the
LabelMe is employed to mark the occlusion’s position in the face image. Sub-
sequently, we can obtain the synthesed occlusion face by combing the occlusion
and clean face images.

To add an appropriate proportion of face images with occlusion to the train-
ing set, we propose that the rate of occluded face images in the training set
should be consistent with the test set. We introduce an occlusion detection net-
work (the backbone is Res18-Unet [4]) to detect whether the images in the test
set are occluded and further count the proportion of face images containing
occlusion in the test set. And then we randomly select the same proportion face
images of each person in the training set to put occlusion on them. For occlusion
detection network, the training set is composed of various occlusion styles and
100,000 face images without occlusion from CASIA-WebFace [22] dataset. Some
occlusion detection results of the network on DFW are shown in Fig. 4 (c).

2.3 Aligned and Unaligned Face Feature Fusion

It is known that aligned face images have the advantage of eliminating posture
changes compared to unaligned face images, which makes the model pay more
attention to details such as facial texture. However, the unaligned face images
possibly contain some irregular discriminative information. We think that the
irregular discriminative information of unaligned face image and the discrimi-
native information of aligned face image can be combined together to further
improve the discriminative power of face representation. Finally, PCA is then
used to achieve the low-dimensional feature vector.
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Normal Validation Disguised Impersonator

Fig. 5. Some example images of Disguised Faces in the Wild. It consists of four kinds
of images: normal, validation, disguised and impersonator.

3 Experiments

3.1 Disguised Faces in the Wild Dataset

The Disguised Faces in the Wild (DFW) data set includes 11157 images from
1000 different identities. Among them, the training set contains 3386 face images
of 400 people. And the test set includes 7,771 face images of 600 people. Most of
the identities have four kinds of face images: Normal, Validation, Disguised and
Impersonator. These four types images are shown in Fig. 5.

There are three pre-defined protocols. Protocol 1 aims to evaluate the perfor-
mance of face verification methods under impersonation only. There are 25,046
pairs of face images for this protocol. In Protocol 2, the given face verification
methods are evaluated for disguises via obfuscation only. The number of image
pairs is 9,041,283 for this protocol. And Protocol 3 is used for evaluating the
given methods on the whole dataset. The total number of image pairs for this
protocol is 9,066,329.

3.2 Experimental Settings

Mini Training Set. The mini training set is designed to facilitate the ablation
study. This training set is composed of CASIA-WebFace [22], PubFig [8] and
the training set of DFW [9]. We removed the identities overlap between training
set and testing set strictly according to provided identity names. More details
for removing the overlap identities can be found in AM-Softmax paper [18]. The
final generic mini training dataset includes 10,397 identities and 444,895 (0.44M)
face images.

Big Training Set. This set is an extension of the mini training set. The
expanded images are all from the VGGFace2 data set [2]. Compared with Mini
training set, there are another 8047 persons and each person have about 200 face
images. The final expanded big training set includes 18444 people and about
2,039,485 (2.04M) face images.
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Training Setting. In our experiments, all face images are resized to 160×160.
AM-Softmax is used in our model. The parameters m (cosine margin constrain)
is 0.35 and s (norm-scale of features) is 30. The batch size is 24 for the mini
training set and the large training set. For the mini training set, the learning rate
starts from 0.1 and is divided by 10 at 140K, 180K iterations and the maximum
iterations is 200K. For the large training set, to make full use of this data set, the
learning rate starts from 0.1 and is divided by 10 at 700K, 900K iterations, and
the maximum iterations are 1M. In addition, we use random horizontal flipping
for data augmentation. For PCA, we select the first 250 eigenvectors to form the
projection matrix.

3.3 Experimental Results

We compare our verification results on DFW with state-of-the-art methods pub-
lished in DFW competition. The compared results are shown in the Table 1.
And the ROC curves on the mini training set and the big training set are shown
in the Fig. 6.

We can see from the Table 1 that when the training set is 0.44M, our method
outperforms Occlusionface on three protocols. Specifically, our method is 13%
higher than the Occlusionface at 0.1% FAR on Protocol-1. On Protocol-2 and
Protocol-3, our method is 6% and 7% higher than the Occlusionface at 1%FAR
and 0.1%FAR, respectively. It is worth mentioning that even with 0.44M training
set, our method is nearly 6% higher than UMDNet whose training set is 5.6M
at 0.1% FAR on Protocol-1. And the results of our method on other protocols
are also similar with UMDNets.

When the number of face images in the training set increases to 2.04M,
the results of our method on three protocols are obviously better than UMD-
Nets. Compared with the AEFRL whose training set is 8.3M, even through our
methods is 0.5% lower than AEFRL at 0.1% FAR on Protocol-1, our method is
2%–4% higher than AEFRL at FARs on Protocol-2 and Protocol-3. Compared
with MiRA-Face whose training set is 7.6M, our method is nearly 1% higher
than MiRA-Face at 1% FAR and is 9% higher at 0.1% FAR on Protocol-1. On
Protocol-2 and Protocol-3, the results of our method are only a tiny difference
with MiRA-Face. Overall, our method outperforms other state-of-the-art meth-
ods with less training set.

3.4 Ablation Study

Effect of Face Alignment Scale. We use two different face alignment scales
(one contains hair and face contours, and the other remove these two parts)
to train our multi-scale residual network model, and compare their verification
results on DFW test set.

From Table 2, we can see that the alignment scale of the face without hair
shows a clear advantage on three protocols. On Protocol-1, the alignment scale
of without hair part is nearly 5% higher than the face images with hair part at
0.1% FAR. On Protocol-2 and Protocol-3, the alignment scale without hair is
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Table 1. Verification accuracy (%) of our method and other published methods on
three protocols

Method Protocol-1 GAR Protocol-2 GAR Protocol-3 GAR

@1%FAR @0.1%FAR @1%FAR @0.1%FAR @1%FAR @0.1%FAR

AEFRL (8.3M) 96.80 57.64 87.82 77.06 87.90 75.54

MiRA-Face (7.6M) 95.46 51.09 90.65 80.56 90.62 79.26

UMDNets (5.6M) 94.28 53.27 86.62 74.69 86.75 72.90

Occlusionface (0.52M) 93.44 46.21 80.45 66.05 80.80 65.34

DDFR (0.44M) 93.86 59.23 86.14 73.43 86.35 72.47

DDFR (2.04M) 96.30 60.84 90.19 80.61 90.30 79.57

Fig. 6. ROC Curves for three protocols on the mini training set and the big training
set

2%–5% higher than that with hair at FARs. In general, the face images without
the hair part can achieve better performance than that with hair cause it can
remove the interference of hairstyle and beard.

Table 2. Verification accuracy (%) of our model trained with different face align scale

Method Protocol-1 GAR Protocol-2 GAR Protocol-3 GAR

@1%FAR @0.1%FAR @1%FAR @0.1%FAR @1%FAR @0.1%FAR

With hair scale 91.30 51.55 80.47 64.52 80.86 63.88

Without hair scale 92.87 55.48 83.09 69.07 83.38 68.50

Effect of Different Feature Extraction Block. To compare the feature
extraction capabilities of MSR block, Resnet-like block and Inception-Resnet-
A block, we prepare three different models. The first one is MSRN, then we
replace the MSR block in the MSRN with Resnet-like block and Inception-
Resnet-A block to construct Resnet-like model and Inception-Resnet-A model,
respectively. The structures of these three blocks are shown in Fig. 2. And the
verification results of the three models on the DFW test set are shown in Table 3
(Fig. 7).
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Fig. 7. ROC curves for three protocols with different face alignment scale

We can find that whether on Protocol-1 (impersonation) or Protocol-2 (obfus-
cation), MSR Block has stronger feature representation capabilities than the
other two network Blocks. Especially on Protocol-1, the model with the MSR
Block is 4.5% higher than the ResNet-like Block model and 7% higher than the
Inception-Resnet-A Block model at 0.1% FAR (Fig. 8).

Table 3. Verification accuracy (%) of ResNet-Like Block (R-L Block), Inception-
Resnet-A Block (I-R-A Block), and our MSR Block on three protocols.

Method Protocol-1 GAR Protocol-2 GAR Protocol-3 GAR

@1%FAR @0.1%FAR @1%FAR @0.1%FAR @1%FAR @0.1%FAR

R-L Block 90.88 50.98 81.48 67.14 81.89 66.72

I-R-A Block 91.93 48.44 81.77 67.51 82.11 67.04

MSR Block 92.71 55.48 83.09 69.07 83.38 68.50

Fig. 8. ROC curves of different blocks on three protocols

Effect of Increasing the Rate of Occluded Face Images. To understand
the impact of different proportions of synthetic occluded face images in the
training set on the model’s disguised face verification results, we compare three
different rates 5%, 20% and 100%. Among them, 5% is also the rate of occlusion
images in the DFW test set.
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We can see that when we keep the rate of the occluded face images in training
set consistent with the proportion of the occluded face images in the DFW test
set, the effectiveness of our model on disguised face verification tasks is improved.
However, when we increase the proportion of synthetic occluded face images
synthesized in the training set to 20% and 100%, the verification performance
of the model on the DFW test set decreases. On Protocol-1, our model trained
with 5% synthetic occluded face images is 2% higher than the model trained
with ordinary face images at 0.1% FAR. On Protocol-2 and Protocol-3, our
model trained with 5% synthetic occluded face images is 1% higher than the
model trained with ordinary face images at 0.1% FAR. Therefore, it is effective
to add synthetic occlusion face images to the training set. However, the ratio
of the added synthetic occlusion images should be consistent with the occlusion
image ratio in the test set (Table 4).

Table 4. Verification accuracy (%) of our model trained with or with out occlusion
faces

Method Protocol-1 GAR Protocol-2 GAR Protocol-3 GAR

@1%FAR @0.1%FAR @1%FAR @0.1%FAR @1%FAR @0.1%FAR

Ordinary face 93.64 57.20 85.95 72.47 86.09 71.65

Occluded face (20%) 93.03 55.66 86.11 72.46 86.26 71.58

Occluded face (100%) 91.54 52.85 82.52 65.77 82.74 65.06

Occluded face (5%) 93.86 59.24 86.14 73.43 86.35 72.48

Effect of Facial Feature Fusion. We train aligned MSRN model and
unaligned MSRN model by using aligned and unaligned face images, respec-
tively. Then, we merge the aligned and unaligned face features in the embedding
layer and use PCA to achieve the compressed feature. The verification results
of these three methods on the DFW test set are shown in the Table 5. And the
ROC curves of these three methods on the three protocols are shown in Fig. 9.
On Protocol-1, the feature fusion method is 4% higher than aligned MSRN
model and 2% higher than unaligned MSRN model at 0.1% FAR. On Protocol-
2, the feature fusion method is 3% higher than aligned MSRN model and 5%
higher than unaligned MSRN model at 1% FAR. And at 0.1% FAR, the GAR
of feature fusion method is 4% higher than aligned MSRN model and 8% higher
than unaligned MSRN model. In general, the feature fusion method has more
advantages than the single feature method.
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Table 5. Verification accuracy (%) of our model trained with aligned face images,
unaligned face images and feature fusion of both.

Method Protocol-1 GAR Protocol-2 GAR Protocol-3 GAR

@1%FAR @0.1%FAR @1%FAR @0.1%FAR @1%FAR @0.1%FAR

Unalign 92.70 57.20 80.75 64.91 81.03 64.21

Align 92.87 55.48 83.09 69.06 83.38 68.50

Fusion+PCA 93.86 59.24 86.14 73.43 86.35 72.47

Fig. 9. ROC curves of aligned face feature, unaligned face feature and feature fusion
of both for three protocols

4 Conclusion

In this article, we propose a multi-scale residual network and a method of adding
real occlusion to the training set for disguised face verification. Compared with
the deep metric learning method, our proposed method enriches the facial feature
by using multi-scale residual blocks and increases the diversity of training set
samples by adding real occlusion on a clean face. Another advantage is that our
method uses fewer training samples and achieves better results than the state-
of-the-art methods. In future work, we will further investigate how to design
efficient deep face representation model with little training set as possible. It is
always interesting in developing attention neural network to handle disguised
face representation.
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Abstract. Fine-grained search task such as retrieving subordinate cat-
egories of birds, dogs or cars, has been an important but challenging
problem in computer vision. Although many effective fine-grained search
methods were developed, with the amount of data increasing, previous
methods fail to handle the explosive fine-grained data with low storage
cost and fast query speed. On the other side, since hashing sheds its light
in large-scale image search for dramatically reducing the storage cost and
achieving a constant or sub-linear time complexity, we leverage the power
of hashing techniques to tackle this valuable yet challenging vision task,
termed as fine-grained hashing in this paper. Specifically, our proposed
method consists of two crucial modules, i.e., the bilinear feature learn-
ing and the binary hash code learning. While the former encodes both
local and global discriminative information of a fine-grained image, the
latter drives the whole network to learn the final binary hash code to
present that fine-grained image. Furthermore, we also introduce a novel
multi-task hash training strategy, which can learn hash codes of differ-
ent lengths simultaneously. It not only accelerates training procedures,
but also significantly improves the fine-grained search accuracy. By con-
ducting comprehensive experiments on diverse fine-grained datasets, we
validate that the proposed method achieves superior performance over
the competing baselines.

Keywords: Fine-grained image retrieval · Deep hashing · Multi-task
learning · Large-scale methods

1 Introduction

As a fundamental and challenging problem in computer vision, fine-grained
image analysis (FGIA) [26] has been an active research area for several decades.
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Fig. 1. An example of the fine-grained hashing problem. Its goal is to retrieve images
belonging to multiple subordinate categories of a super-category (i.e., birds). Each fine-
grained image will be mapped into a binary code by a hashing function h(·). We return
the images which are in the same variety as the query image since they have smaller
hamming distance d. Here, different shapes of markers represent different subordinate
categories.

One of the central tasks in FGIA is fine-grained image search [25,28], whose goal
is to retrieve images belonging to multiple subordinate categories of a super-
category (e.g ., different species of birds, different models of cars, or different
kinds of clothes) and then return the images which are in the same variety as
the query image, cf. Fig. 1. Due to small inter-class variations and large intra-
class variations caused by the fine-grained nature, it is desirable to capture the
discriminative parts of these fine-grained objects to form a powerful image rep-
resentation.

During the booming of deep learning, recent years have witnessed effective
progress of fine-grained search using deep learning techniques. Some trials [25]
employed the pre-trained CNN models to unsupervisedly locate fine-grained
objects and then obtain the deep features for image search. Later, to break
through the limitation of unsupervised fine-grained search by pre-trained models,
some works [29,30] tended to discovery novel loss functions under the supervised
metric learning paradigm. Although these previous methods obtain good image
search accuracy, they still cannot handle the large-scale fine-grained data with
low storage cost and fast query speed, especially for the significant increment
of data amount in the deep learning era. Moreover, with the rapidly explosive
growth of vision data, more and more large-scale fine-grained datasets [3,8,9,24]
are proposed recently. In consequence, the demand of handling large-scale data
for fine-grained search methods has increased dramatically.

To deal with the large-scale data amount challenge, in machine learning,
approximate nearest neighbor (ANN) search [1,2] has attracted much attention
in recent years. Among ANN search methods, hashing [6,16,27] has been an
active and representative subarea, which is able to map the data points to binary
codes with hash functions by preserving the similarity in the original space of
the data points. Thanks to the binary hash code representation, the storage cost
for the large-scale data can be drastically reduced, and also the time complexity
can be constant or sub-linear.
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Therefore, in this paper, to alleviate the large-scale fine-grained search prob-
lem, we investigate a novel problem, i.e., fine-grained hashing, as a step towards
efficient and effective large-scale fine-grained image search. To realize fine-grained
hashing, we propose an end-to-end trainable network which is inspired by a state-
of-the-art fine-grained recognition backbone model, i.e., bilinear pooling [14] and
is also tailored for the fine-grained nature. Specifically, as shown in Fig. 2, our
proposed method consists of a bilinear feature learning module and a hash code
learning module. The former can encode the discriminative information of a fine-
grained image by utilizing both global and local streams into the intermediate
feature vector, while the latter plays the role to drive the whole network training
and obtain the final binary hash codes.

The key novelty of our method is the “piecewise” and “synergistic” proposals.
First, based on the outer product operation in bilinear pooling [14], the obtained
feature can be viewed as a set of sub-vectors, and thus, each of which implicitly
attends to one part of the image. We perform the part-level local stream mech-
anism upon these part-level sub-vectors “piece by piece” (“piecewise” proposal)
to capture the discriminative cues for effectively representing fine-grained parts
(e.g ., “tufted heads”, “red-yellow stripe”), which favors the fine-grained nature.
Additionally, a parallel global stream is also designed to obtain the global-level
image feature. By aggregating both local (part-level) and global (object-level)
information, the final image representation can be fed into the hash code learning
module. Second, in order to accelerate the training process, we simultaneously
train hash functions of different lengths in a novel multi-task hash training frame-
work. Hash functions of different lengths share the convolutional layers with each
other to learn feature representations (the “synergistic” proposal), while saving
70% training and inference time (with four functions) both theoretically and
practically.

Empirical results on five fine-grained datasets, i.e., CUB [21], Aircraft [17],
NABirds [8], VegFru [9], and Food101 [3] show that our piecewise hashing
method significantly outperforms competing baselines, including the deep or non-
deep hashing state-of-the-arts. Meanwhile, we perform our proposed method on
a popular generic dataset, i.e., CIFAR-10 [11], to demonstrate that our method
is able to achieve the best search accuracy when facing the generic images.

The main contributions of this paper are summarized as:

– We study the practical and challenging fine-grained hashing problem and
propose an end-to-end trainable network with a novel multi-task hash training
strategy to deal with the large-scale fine-grained search problem.

– We devise a novel piecewise hashing method consisting a bilinear feature
learning module and a hash code learning module. The former resorts to the
special structure of the bilinear CNN features to learn discriminative image
features by leveraging both the global and local streams, while the latter
drives the whole network training and returns the final fine-grained hash
codes. Besides, the proposed multi-task strategy improves the efficiency and
accuracy by synergistically learning the common layers across hash functions
of different lengths.
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– We conduct experiments on five fine-grained datasets and one generic dataset.
Empirical results show that our proposed network outperforms previous hash-
ing methods for both fine-grained images and generic images.

2 Related Work

2.1 Fine-Grained Image Search

Fine-grained image search has attracted increasing research attention in recent
years, where the instances are within a subordinate category and different in
slight patterns. In the literature, [28] is the first attempt to use handcraft fea-
tures for fine-grained image search. Inspired by the power of deep learning, some
unsupervised and supervised deep fine-grained image search methods have been
proposed. Selective convolutional descriptor aggregation (SCDA) [25] is the first
work on deep fine-grained image search, which directly discovers the discrimina-
tive parts in the images unsupervisedly. [29] defines the fine-grained search as a
deep metric learning problem and tries to learn discriminative representations by
designing specific loss functions. At the same time, with the rapid growth of fine-
grained visual data, more and more large-scale fine-grained datasets have been
proposed containing abundant labeled images, to name a few, RPC [24], Cars [5],
DA-Retail [23] and NABirds [8], facilitating further research. Nevertheless, these
previous fine-grained search work cannot handle large-scale fine-grained data, as
they represented the images with high-dimensional real-valued vectors.

2.2 Hashing

Hashing is a widely used method for ANN search in large scale image retrieval
with encouraging efficiency in both speed and storage. Existing hashing meth-
ods can be roughly categorized into unsupervised and supervised hashing. Unsu-
pervised hashing methods [18] learn hash functions from unlabeled data, e.g .,
LSH [6], SH [27] and ITQ [7]. Supervised hashing methods [22] attempt to
leverage supervised information (e.g ., similarity matrix or label information) to
improve the quality of hash codes, e.g ., KSH [16] and SDH [19]. Inspired by pow-
erful feature representations learning with deep neural networks [20], the deep
supervised hashing [10] adopting deep learning to generate high-level seman-
tic features has been proposed. Deep Pairwise-Supervised Hashing (DPSH) [13]
preserves relative similarity between image triplets straightly by integrating fea-
ture learning and hash functions in an end-to-end manner. Further, HashNet [4]
tackles the data imbalance problem between similar and dissimilar pairs and alle-
viates this drawback by adjusting the weights of similar pairs. To additionally
accelerate the training procedure, several asymmetric deep hashing methods are
proposed, i.e., Asymmetric Deep Supervised Hashing (ADSH) [10], which only
learns the hash function for query points to alleviate time-consuming. However,
previous hash methods were designed for generic images, which were not capable
for fine-grained images search.
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is the bilinear operation defined in Eq.(2).           is the element-wise add operation.      is a non-linear two layer perceptron. vectorizes a matrix to a vector.     

Bilinear Feature 

Asymmetric Learning 

Fig. 2. Overview structure of our proposed piecewise hashing, which consists of two
main modules, i.e., bilinear representation learning and hash code learning. For bilin-
ear representation learning, we develop both global (object-level) and local (part-level)
stream to discover discriminative information for fine-grained objects by leveraging the
bilinear features tailored for fine-grained images. Specifically, for better capturing dif-
ferent but subtle part features, we perform the part-level attention on the local stream.
For hash code learning, three loss functions corresponding to three hash learning prin-
ciples are employed, and the network can be trained in an end-to-end fashion with only
image-level supervisions.

3 Proposed Method

In this section, we elaborately introduce our piecewise hashing method. Besides,
for improving the efficiency, we also propose a simple yet effective multi-task
training strategy to jointly learn hash functions of different code-lengths while
sharing the convolutional layers of the bilinear representation learning module.

Vectors and scalars are bold lower case italic letters and lower case italic
letters, such as α and c. The i-th element of a vector α and the i, j-th element
of a matrix S are represented as αi and Si,j , while the i-th column and j-th row
of a matrix S are presented as S∗,i and Sj,∗. Assume that we have m training data
points and n database points denoted as X =

{
xi

}m

i=1
and Y =

{
yj

}n

j=1
. The

pairwise supervised information is denoted as S ∈ {−1,+1}m×n in training.
If point xi and point yj are similar, Sij = +1, otherwise Sij = −1. Under
this condition, the goal of supervised hashing is to learn binary hash codes
code ∈ {−1,+1}c for each point, and its corresponding hashing function h(·;Θ),
where c is the target length of binary code. Additionally, we use U =

{
ui

}m

i=1
∈

{−1,+1}m×c and V =
{
vj

}n

j=1
∈ {−1,+1}n×c to denote the learned binary

hash codes for training points and database points. The hash codes have to
preserve the similarity S between each point, which means the Hamming distance
between ui and vj should be as small as possible if Sij = +1.

3.1 Our Piecewise Hashing

Our model is shown in Fig. 2, which contains two modules: the bilinear repre-
sentation learning module and the hash-code learning module. We will elaborate
them as follows.
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Bilinear Representation Learning Module. In this part, we introduce our
network architecture in detail. For clarity, all the equations take one data point
xi as input.

Bilinear pooling (BCNN) [14] is an effective architecture tailored for the
fine-grained task. BCNN represents an image as an outer product of features
derived from two CNNs and discovers localized feature interactions. Inspired
by BCNN, we acquire bilinear representations and further generate hash codes
based on them. Specifically, we assume the outputs of two CNNs in BCNN are
re-organized into fA(xi) ∈ R

D×L and fB(xi) ∈ R
D×L, where D denotes the

dimension of the outputs and L denotes the spatial locations. Then, we define
the bilinear feature at location l as:

bilinear(l,xi, fA, fB) = fA(l,xi)fB(l,xi)� . (1)

The sum pooling aggregates the bilinear combination of features across all
locations in the image to obtain the global bilinear representation Bi ∈ R

D×D

as follows:
Bi =

∑L

l=1
bilinear(l,xi, fA, fB) . (2)

After obtaining the bilinear representation Bi, the global stream and the local
stream are paralleled to derive outputs. In the global stream, the D2-dimension
bilinear representation Bi is mapped to a c-dimension binary-like output. A
straightforward solution to realize this mapping is employing a multi-layer per-
ception (MLP) m(·). Therefore, we derive the global (object-level) binary-like
output via an MLP mg(·) : RD2 → R

c as:

hg(xi) = mg(vec(Bi)) , (3)

where vec(·) vectorizes a D × D matrix to a D2 × 1 vector.
The key novelty of our method is “piecewise” in the local stream. Based on

the outer product operation above, the bilinear representations can be viewed as
a set of sub-vectors (pieces), and thus, each of which implicitly attends to a highly
localized image feature (e.g ., “tufted heads” and “red-yellow stripe”). Hence, in
the local stream, we apply the part-level attention (“piecewise”) to emphasize
the discriminative pieces and understate the pointless pieces over the bilinear
representation. Specifically, we locally re-organize the bilinear representation Bi

by column and map each column to a local binary-like output via an MLP.
Then we derive the local (part-level) bilinear binary-like output from the convex
combination of local binary-like outputs for each column as follows:

hl(xi) = Attention(α, Bi) =
∑D

d=1
αdm

l
d(B

i
∗,d)

s.t.
∑D

d=1
αd = 1 ,

(4)

where α ∈ R
D×1 is a learnable parameter, and ml

d(·) : RD → R
c represents the

MLP for the d-th column.
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The overall binary-like output hsoft(xi;Θ) is also the convex combination of
the global bilinear binary-like output hg(xi) and the local bilinear binary-like
output hl(xi). Discrete hash codes h(xi;Θ) are derived by employing sign(·) on
the overall binary-like output as follows:

h(xi;Θ) = sign(hsoft(xi;Θ)) = sign(βhg(xi) + (1 − β)hl(xi))
s.t. 0 ≤ β ≤ 1 ,

(5)

where β is a learnable parameter, and Θ is the parameters of the whole network
including α and β.

Hash-Code Learning Module. In this section, we design our objective func-
tion by three following principles including: preserving the similarity of data
points in the original space, distributing the codes to uniformly fulfill the code
space, and generating compact binary codes. In total, these principles correspond
to three loss functions to drive the training procedure of the whole network.

To preserve the similarity S during the training procedure, the previous
work [10,15] achieves it by minimizing the �2 loss between similarity Sij and
inner product of query-database binary code pairs uivj�. As all the hash codes
are discrete, it is hard to complete the training of hash functions. Previous works
always employ discrete function sign(·) to calculate the hash codes ui and utilize
sigmoid(·) or tanh(·) functions to approximate sign(·). The common similarity
loss they minimize is as:

JS0 =
∑m

i=1

∑n

j=1
‖uivj� − cSij‖2

=
∑m

i=1

∑n

j=1
‖ sign(hsoft(xi;Θ))vj� − cSij‖2

≈
∑m

i=1

∑n

j=1
‖ tanh(hsoft(xi;Θ))vj� − cSij‖2 .

(6)

Nevertheless, employing such non-linear functions would inevitably slow
down or even affect the convergence of the network [12]. To ease such a problem,
we directly optimize the real-valued network outputs instead of the approxima-
tion of ui, and impose a regularizer, i.e., the quantization loss JQ, on the real-
valued network outputs to approach the desired discrete values. Particularly, we
present the JS and the regularizer JQ as:

JS =
∑m

i=1

∑n

j=1
‖hsoft(xi;Θ)vj� − cSij‖2 , (7)

JQ =
∑m

i=1
‖ui − hsoft(xi;Θ)‖2 . (8)

One of the advantages of hash is storage efficiency. This brings another goal
to accomplish, that is, hash-codes points should uniformly fulfill the 2c code
space. Hence, for fully utilizing each bit of hash codes, we set a term JB to make
each bit of the hash codes be balanced on all the points. Ideally, if we sum up
all the hash-codes, the results should be 0. This term can be presented as:

JB =
∑

c

[∣∣
∣
∑m

i=1
ui

c

∣
∣
∣ +

∣
∣
∣
∑n

j=1
vj

c

∣
∣
∣
]

. (9)
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The final objective function we minimize is as follows:

min
V,Θ

J = JS + λJQ + μJB

s.t. V ∈ {−1,+1}n×c ,
(10)

where λ and μ are hyper-parameters, which are set to 200 and 0.1 in all the
experiments.

3.2 Multi-task Hash Training Strategy

The another key novelty of our method is the “synergistic” proposal. Multi-task
hash training is a simple but effective training strategy. In the previous deep
hashing work [4,10], though the convolutional layers can be shared, they still
separately train models of different code-lengths, while in shallow hash meth-
ods [6,16], they usually utilize the same features to train several hash functions
of different lengths.

To reduce the training time and the redundancy among different hash func-
tions, we propose a multi-task hash training strategy enabling us to learn hash
functions of different code-lengths simultaneously. We split the network into the
convolutional layers, and the non-convolutional layers, i.e., the global and local
stream, which are directly related to the code-length shown in Fig. 2. Specifi-
cally, hash functions of different code-lengths contain the non-convolutional lay-
ers, while sharing the convolutional layers with each other (“synergistic”). When
we learn four hash functions of 12 bits, 24 bits, 32 bits, and 48 bits concurrently,
the corresponding objective function becomes as:

min
V12,V24,V32,V48,Θ

Jmul = J12 + J24 + J32 + J48

s.t. V12 ∈ {−1,+1}n×12, V24 ∈ {−1,+1}n×24 ,

V32 ∈ {−1,+1}n×32, V48 ∈ {−1,+1}n×48 ,

(11)

where J12, J24, J32 and J48 are the objective functions where we set c =
12, 24, 32, 48 in Eq. (10). Note that, there is no hyper-parameter between these
four terms, which reveals our multi-task learning strategy is not tricky.

Multi-task hash training strategy enables us to learn intermediate represen-
tations and hash functions of different code-lengths simultaneously, saving com-
putation time and memory space. As the code length grows, the model would
contain more parameters and then get prone to overfitting. This strategy can help
overcome such problems by sharing parts of parameters on the whole network
thus benefiting the training procedure. Additionally, the theoretical analyses in
Sect. 3.4 prove that our strategy is efficient.

3.3 Learning Algorithm

In this section, we present an alternating learning algorithm to learn V and
Θ of Eq. (10). The pseudo codes of our algorithm can be found in Appendix.
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The parameters are learned alternatively, which means we update one parameter
with another parameter fixed. The details are presented below.

Normally, we are only given the database points Y =
{
yj

}n

j=1
and the pair-

wise supervised information S between them, we can learn hash-codes and hash
functions by sampling a subset or the whole set of Y as the query set X for train-
ing, i.e., X ⊆ Y . To accelerate the training procedure, we construct a subset X
of database Y instead of using the whole database. Hence, we only consider the
item related to V in JB of Eq. (10).

Learn Θ with V fixed. When V is fixed, we learn and update the parameter
Θ of our neural network by back-propagation (BP) algorithm.

Specifically, for each query point xi in the query points, the gradient can be
calculated as:

∂J

∂zi
=

∂JS

∂zi
+ λ

∂JQ

∂zi
+ μ

∂JB

∂zi
=

∑m

i=1

[(
zivj� − cSij

)
vj + λ(ui − zi)

]
, (12)

where zi = hsoft(xi, Θ). Once we have the ∂J
∂zi , we can compute ∂J

∂Θ based on
∂J
∂zi using the chain rule and the back propagation algorithm to update Θ.

Learn V with Θ fixed. When Θ is fixed, we can easily reformulate the Eq. (10)
as follows:

min
V

J(V ) = tr
(
V

[
Z�V Z� − 2cZ�S − 2λV̄ �])

+ μ
∑c

k=1
|1 · V∗,k| + ε

s.t. V ∈ {−1,+1}n×c ,
(13)

where Z =
[
z1, z2, . . . , zm

] ∈ [−1,+1]m×c, 1 = [1, 1, . . . , 1] ∈ {1}1×n, V̄ = {V̄j =
I(yj ∈ X)uj}n×1

j=1 ∈ R
n×c, I(·) is the indicator function, and “ε” is a constant

independent of V . For convenience, we let Q = (Z�V Z� − 2cZ�S − 2λV̄ �)�.
Then we can rewrite this problem as:

min
V

J(V ) = tr
(
V Q�)

+ μ
∑c

k=1
|1 · V∗,k| + ε

s.t. V ∈ {−1,+1}n×c.
(14)

To ease this problem, we update one bit a time. We alternatively update one
column of V with the other columns fixed. Hence, the optimal solution of this
bit by bit problem is:

J(V∗k) =
{

= − sign(Q∗,k + μ1�), 1 · V∗,k ≥ 0
= − sign(Q∗,k − μ1�), 1 · V∗,k < 0 . (15)

3.4 Out-of-Sample Extension and Model Analyses

After completing the learning procedure, hash-codes for all the database points
can be easily generated. As for the point xq in query points, we can use
uq = sign(hsoft(xq, Θ)) to generate binary hash-codes. The total computa-
tional complexity for training our piecewise hashing is O(n). For the train-
ing complexity, while the complexity of separate training without multi-task
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is O4(n) ≈ 4O(n), multi-task strategy accelerates model training by saving 70%
time cost with the complexity of O4multi−task(n) ≈ 1.2O(n). Thus, our proposal
of simultaneously training hash functions of different lengths is theoretically
efficient.

4 Experiments

In this section, we evaluate the performance of our proposed method on both fine-
grained and generic datasets, and then compare with state-of-the-art approaches.

We evaluate the performance of our proposed method on six datasets, i.e.,
CUB [21], Aircraft [17], NABirds [8], VegFru [9], Food101 [3] and CIFAR-10 [11].
For the above datasets, we follow the standard split proposed with these datasets,
while two images will be treated as a ground-truth similar pair if they share
the same label. We evaluate the retrieval performance by adopting two evalua-
tion metrics: mean Average Precision (mAP) and Precision-recall Curves (PR
Curves) based on lookup. Details are available in Appendix. All the data are
reported with average values running five times. We compare our deep piecewise
hashing method with several state-of-the-art hashing methods, including shal-
low methods, i.e., LSH [6], ITQ [7], SH [27], SDH [19] and KSH [16], and deep
supervised methods, i.e., DSH [15], DPSH [13], HashNet [4], and ADSH [10]. For
all deep hashing methods, we use raw images resized to 224× 224 as inputs. For
traditional shallow methods, we extract 4096-dimensional deep features by the
VGG-16 model pre-trained with ImageNet to conduct fair comparisons. Besides,
for all the state-of-the-art hashing methods, we prefer to employ the hyper-
parameters introduced in their papers.

The mAP results on six datasets are presented in Table 1. Additional results
of PR Curves and Top-5K mAP on all the datasets are available in Appendix.

Search Accuracy on the Fine-Grained Datasets: Our proposed method
with the multi-task learning strategy outperforms other hashing methods across
different code-lengths on fine-grained datasets. Specifically, the mAP of our
piecewise hashing obtains relative improvements over the next-best state-of-the-
art methods of 14.36%, 37.52%, 32.82%, and 24.30% on CUB. We notice that
similar improvements are achieved on other fine-grained datasets.

Search Accuracy on the Generic Dataset: Moreover, as shown in Table 1,
our piecewise hashing still outperforms other hashing methods on the generic
dataset, i.e., CIFAR-10, obtaining significant increment of 1.90%, 4.53%, 2.85%,
and 2.57% for different lengths of hash codes, respectively.
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Table 1. Comparisons of mAP w.r.t. different number of bits on six datasets, CIFAR-
10, CUB, Aircraft, NABirds, VegFru and Food101. Best in bold.

Method Backbone CIFAR-10 CUB Aircraft

12 bits 24 bits 32 bits 48 bits 12 bits 24 bits 32 bits 48 bits 12 bits 24 bits 32 bits 48 bits

LSH – 0.1162 0.1215 0.1224 0.1244 0.0152 0.0235 0.0288 0.0415 0.0169 0.0219 0.0238 0.0282

SH – 0.1316 0.1289 0.1287 0.1274 0.0666 0.0809 0.0893 0.1048 0.0328 0.0385 0.0404 0.0428

ITQ – 0.1544 0.1607 0.1630 0.1656 0.0855 0.1196 0.1376 0.1549 0.0438 0.0528 0.0582 0.0605

KSH – 0.2353 0.2563 0.2669 0.2763 0.1125 0.1502 0.1722 0.1954 0.0557 0.0738 0.0814 0.0892

SDH – 0.1746 0.2140 0.2115 0.2362 0.0964 0.1442 0.1491 0.1827 0.0489 0.0636 0.0690 0.0765

DPSH ResNet50 0.6872 0.7024 0.7281 0.7437 0.0685 0.0885 0.1008 0.1148 0.0874 0.1087 0.1354 0.1394

DSH ResNet50 0.7230 0.7644 0.7746 0.7920 0.1360 0.1899 0.2237 0.2744 0.0814 0.1066 0.1221 0.1445

HashNet ResNet50 0.7261 0.7614 0.7858 0.7950 0.1203 0.1777 0.1993 0.2213 0.1491 0.1775 0.1942 0.2032

ADSH ResNet50 0.6599 0.7413 0.7590 0.7672 0.0209 0.1002 0.2997 0.4535 0.0924 0.2314 0.3204 0.4278

Ours VGG-16 0.7451 0.8097 0.8143 0.8207 0.2796 0.5651 0.6279 0.6956 0.4392 0.5662 0.5997 0.6296

Method Backbone NABirds VegFru Food101

12 bits 24 bits 32 bits 48 bits 12 bits 24 bits 32 bits 48 bits 12 bits 24 bits 32 bits 48 bits

LSH – 0.0064 0.0096 0.0132 0.0201 0.0077 0.0117 0.0147 0.0207 0.0158 0.0199 0.0221 0.0279

SH – 0.0258 0.0437 0.0470 0.0660 0.0258 0.0437 0.0549 0.0660 0.0410 0.0480 0.0494 0.0532

ITQ – 0.0351 0.0591 0.0668 0.0782 0.0306 0.0569 0.0711 0.0866 0.0559 0.0748 0.0831 0.0939

KSH – 0.0396 0.0645 0.0768 0.0915 0.0353 0.0006 0.0923 0.1096 0.0804 0.0954 0.1040 0.1099

SDH – 0.0327 0.0637 0.0814 0.0945 0.0384 0.0659 0.0868 0.1085 0.0719 0.1048 0.1167 0.1295

DPSH ResNet50 0.0159 0.0225 0.0241 0.0380 0.0375 0.0541 0.0731 0.0931 0.0795 0.1059 0.1370 0.2025

DSH ResNet50 0.0139 0.0225 0.0304 0.0392 0.0537 0.0786 0.0970 0.1119 0.1225 0.2392 0.2643 0.2961

HashNet ResNet50 0.0157 0.0242 0.0276 0.0351 0.0726 0.1157 0.1284 0.1568 0.2186 0.3222 0.3515 0.4109

ADSH ResNet50 0.0124 0.0998 0.1782 0.3041 0.0838 0.2460 0.3679 0.5285 0.0296 0.0499 0.1605 0.4835

Ours VGG-16 0.0940 0.2619 0.3419 0.4093 0.2974 0.5525 0.6058 0.6674 0.4177 0.5896 0.6284 0.6666

5 Conclusion

In this paper, we presented a piecewise hashing method for the novel fine-grained
hashing task. One of the key contributions was the local stream with piecewise
part-level attention on bilinear representations to capture the discriminative cues
for effectively representing fine-grained parts. Besides, our proposed multi-task
training strategy can decrease the training and inference time while concurrently
learned several hash functions and improving the search accuracy. Experimental
results on diverse fine-grained datasets and the generic dataset showed the supe-
riority of our method. In the future, we would like to explore novel fine-grained
hashing methods under the unsupervised setting.
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Abstract. Fully Convolutional Siamese network (SiamFC) has demon-
strated high performance in the visual tracking field, but the learned
CNN features are redundant and not discriminative to separate the
object from the background. To address the above problem, this paper
presents a Mixed High-order Attention Siamese network (MHASiam)
for real-time object tracking. We first proposes a High-order Attention
(HA) module that is integrated into the Siamese network to select the
features in the channel domain. Especially, a high-order attention mod-
ule is followed by the last layer of the network, and this benefit to obtain
the higher-order representation for improving the discriminate ability of
the model. Then, a First-order Attention (FA) module is introduced to
further enhance the richness of attention knowledge, which is combined
with the HA module in a parallel manner. Finally, the GOT10k data set
is employed to train our Mixed High-order Attention Siamese network
(MHASiam) to improve the target representation ability. Experimental
results show that the proposed algorithm improves the accuracy by 9.4%
and the success rate by 4.8% compared with the SiamFC tracker.

Keywords: Visual tracking · Siamese network · High-order attention ·
Channel attention

1 Introduction

Visual tracking is one of the difficult problems in the field of computer vision,
and it is the basis for achieving more advanced visual understanding and scene
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analysis [24]. Visual tracking technology is widely used in video surveillance,
human-computer interaction, robotics, video editing and auto-driving. Under
the condition that only the initial position and target scale are given, the visual
tracking task is supposed to achieve continuous and stable tracking of moving
targets in subsequent frames. Despite much progress have been made in recent
year, long-term stable visual tracking is still a challenging problem because of
the complex factors such as scale variation, target rotation, deformation, rapid
motion, illumination changes and similar object interference.

Recently, the visual tracking algorithms based on the Siamese network
have achieved a good balance between tracking accuracy and speed, which has
attracted extensive attention and research [2,11,17,30]. The tracking algorithm
based on the Siamese network regards the tracking as a similarity matching task.
By learning the general features of the target offline on a very large data set,
the Siamese-based algorithm only use the initial frame as a template for online
tracking. Since there is no online model update, the tracking methods based on
Siamese network have obvious speed advantage compared to other deep learning
based tracking algorithms.

However, almost all of the Siamese-based trackers only exploit the first-order
image representation, which limits the nonlinear modeling capability of Siamese
networks. Recently, modeling of the higher statistics has attracted great atten-
tion in a variety of computer visual tasks, such as object recognition [9], person
re-identification [5], semantic segmentation [4], and fine-grained image catego-
rization [18]. In order to further improve the feature representation and discrim-
ination ability of the Siamese network, this paper explores the high-order image
representation and further proposes a tracking algorithm based on the Mixed
High-order Attention Siamese network (MHASiam).

MHASiam is a twofold Siamese network comprised of a first-order attention
branch and a high-order attention branch. Each branch is a Siamese network
computing the similarity scores between the target image and a detection image.
For the first-order branch, we adopt the Squeeze-and-Excitation module [14] to
compute channel-wise weights based on global average pooling. For the high-
order branch, we propose a high-order attention module that is motivated by
SENet [14] to exploit higher-order statistics for more discriminative image rep-
resentations based on covariance pooling. In order to maintain the end-to-end
fashion and the number of parameters, the two branches are joint trained and
the similarity score maps are combined. Evaluations show that our tracker out-
performs the baseline algorithm by a large margin on OTB2015 benchmark and
achieves comparable performance with many state-of-the-art trackers.

2 Related Works

In this section, we made a review about the recent proposed methods that are
most relevant to our tracker. A comprehensive review of the tracking methods is
beyond the scope of the paper, and surveys of this field can be found in [6,19,24].
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Fig. 1. The architecture of the proposed MHASiam network. The MHASiam is com-
posed of a shared CNN feature extractor (indicated by green box in the figure) and two
attention branches (first-order attention and high-order attention). The two branches
are joint trained and combined in testing time. When a pair of target image and search
image flow into the network, two types of attentions are extracted, the output of each
branch is a response map. We obtain the target location by searching the final response
map after sum operation. (Color figure online)

2.1 Deep Feature Based Trackers

Since the deep feature has superior representation and generalization ability,
it is a worthwhile research to migrate it to the tracking task. At present, the
research on the combination of deep features and tracking tasks can be divided
into two directions. First, the offline pre-training network is used for feature
extraction [8,12,20,23]. For example, Ma et al. [20] extracted features from the
VGG19 network. The combination of multi-layer deep features and correlation
filter algorithms yields significant performance improvements. Qi et al. [23] also
proposed a similar method, except that the Hedge algorithm is used to adaptively
fuse multi-layer features. Moreover, UPDT [3] and ECO [7] constructed trackers
based on the continuous convolution filters. The other direction is offline training
with online fine-tuning. The representative work is the MDNet algorithm [22],
which treate tracking as a classification problem, and learnt an offline deep fea-
ture extractor and then online updated the classifier by adding some learnable
fully-connected layers to perform online tracking.

2.2 Siamese Network Based Trackers

Siamese architectures have recently attracted considerable attention in visual
tracking due to computational efficiency and robustness. Using Siamese Network
for object tracking starts with SINT [25], which formulated visual tracking as a
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verification learning problem and trained a Siamese architecture offline to learn
a similarity metric. The most well-known work is the SiamFC [2], which brought
cross correlation to enable a much larger search area. Notable improvements have
been made to this popular tracker to address several limiting issues [10,11,17,26,
30,31]. CFNet [26] attempts to introduce correlation filter into Siamese network
to speed up tracking. SA-Siam [11] aims to improve SiamFC with heterogeneous
features. SiamDW [31] incorporates the deeper and wider network and achieves
better performance. To cope with the scale changes, several RPN-based trackers
are further investigated [17,32].

3 Mixed High-Order Attention Siamese Network

We propose a mixed high-order attention Siamese network for real-time visual
tracking. Figure 1 shows the network architecture of the proposed MHASiam
tracker. As shown in Fig. 1, the proposed architecture consists of a Siamese
network for feature extraction and two attention branches. In this section, we
describe the proposed method in detail. Firstly, a brief introduction to the fully
convolutional Siamese network is presented, Then we demonstrate the proposed
MHA module. Finally, the two attention branches are joint trained and comple-
ment each other. By this way, a large performance improvement is achieved.

3.1 Fully Convolutional Siamese Network

The essence of the Siamese-based visual tracking methods is similarity learning
in an embedding space. Given the first frame as an exemplar, the goal is to find a
most similar instance from subsequent frames. The key problem is how to learn
a powerful matching function. Assuming that the template image is set as z, and
the candidate image is set as x, and f represent the similar function. First, the
template feature ϕ (x) and the candidate feature ϕ (z) are extracted through the
network, and the similarity score map can be recorded as f (ϕ (x) , ϕ (z)). When
the two images are of the same size, the similarity becomes a value, and when
search image is much larger, the similarity measure becomes a response map.
The Siamese network tracking algorithm calculates the similarity by adding a
cross-correlation layer, as shown below:

f (z, x) = ϕ (z) ∗ ϕ (x) + b (1)

where b is an offset term that represents the same real value at each location,
∗ indicating a cross-correlation operation. The maximum value of the response
map is the position corresponding to the target. A large number of positive and
negative sample pairs and logistic regression loss functions are used to train the
network. The training details can be found in the paper [2].
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Fig. 2. High-order Attention (HA) module. The feature maps are shown as feature
dimensions, e.g. h,w, d′ denotes a feature map with channel number d′, height h and
width w. The high order pooling operation is performed on all the feature maps.

3.2 High-Order Attention Module

The attention module has achieved great success in the field of natural language
processing, especially the self-attention mechanism, which greatly promoted the
development of natural language processing. In recent years, a large amount
of research work has applied the attention mechanism to the field of computer
vision from the remarkable image recognition to the panoramic segmentation.
In order to improve the ability of the Siamese network to discriminate specific
targets, this paper proposes a MHA module that combines FA attention and HA
attention.

The multi-channel feature of deep neural networks can achieve more robust
representation of the target, but almost all network structures treat the signif-
icance of each channel equally. However, different channels play different roles
in tracking different targets. Therefore, in certain circumstance some feature
channels are more significant than the others. For the tracking task of a specific
target, only the responses of some channels may be useful, and the responses of
other channels can be viewed as interference.

Figure 2 illustrated the diagram of the proposed high-order attention mod-
ule. Assume that the output feature tensor of the last convolutional layer is
represented as X ∈ Rh×w×d, where d is the number of feature channels, h,w
is the height and width of feature map. In order to reduce the computational
burden, we firstly use 1 × 1 convolution to decrease the channel number from d
to d′. Then we adopt high order pooling to obtain a d′ × d′ covariance matrix
that denotes the channel correlations. The covariance matrix is described as :

⎡
⎢⎢⎢⎣

cov (X1,X1) cov (X1,X2) · · · cov (X1,Xd′)
cov (X2,X1) cov (X2,X2) · · · cov (X2,Xd′)

...
...

. . .
...

cov (Xd′ ,X1) cov (Xd′ ,X2) · · · cov (Xd′ ,Xd′)

⎤
⎥⎥⎥⎦ (2)

where Xi denotes the feature map of i-th channel, i ∈ [1, d′]. The i-th row
of the resulting covariance matrix can be regarded as statistical correlation of
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Fig. 3. The comparison of the first-order attention module and the high-order attention
module. The feature maps are shown as the shape of their tensors, e.g. h×w×d denotes
a feature map with channel number d, height h and width w. “�” denotes element-
wise multiplication. The global average pooling operation is performed on each feature
map while the high order pooling performed on all the feature maps. The green boxes
denote convolution operation. (Color figure online)

channel i with all channels. For the d′×d′ matrix, we use row-wise convolution to
transform the matrix to a 4d′-dimensional vector. Then we perform another 1×1
convolution to decrease the vector dimension from 4d′ to d, and this time we use
the sigmoid function as a nonlinear activation. Finally, the obtained d-dimension
vector is performed dot product with the output feature tensor X ∈ Rh×w×d in
the channel dimension.

For the first-order attention module, we borrow the channel attention module
from SENet [14] (as shown in Fig. 3(a)) to model the relationship between the
high-level feature channels. By this way, the weight vector β about the impor-
tance of the channel feature can be obtained. Given a set of d channel features
Z = [z1, z2, . . . , zd], we execute channel-wise re-scaling on the input as bellow:

z̃i = βi · zi i = 1, 2, . . . , d (3)

3.3 Joint Training and Testing

In order to maintain the end-to-end fashion and reduce the computation com-
plexity, the two branches are joint trained and tested. The final response map is
computed by weighted averaging of the two branches:

fFinal (z, x) = λfFA (z, x) + (1−λ) fHA (z, x) (4)
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Fig. 4. Distance precision and overlap success plots on the OTB2015 [28] dataset.

Fig. 5. Attribute-based distance precision metric on the OTB2015 dataset [28].

where fFinal denotes the final response map. fFA, fHA are the response map
from the first-order attention branch and high-order attention branch. λ is the
weighting parameter to balance the importance of the two branches, which is set
to 0.5 in this paper. After obtaining the position of the tracked target, we use
multi-scale inputs to deal with scale changes as same as SiamFC.
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4 Experiments

In this section, we first present the implementation details, and then evaluate
the proposed tracker on a large benchmark dataset [28] containing 100 videos
with comparison to some related and state-of-the-art methods.

4.1 Implementation Details

The proposed tracker is implemented on PyTorch 1.1.0 framework and all the
experiments are executed on a PC with a Intel Core i5-8400 2.8GHz CPU with a
GeForce GTX Titan Xp GPU. The average testing speed of MHASiam is 65 fps.
Similar to SiamFC, we use AlexNet [16] as base network and trained offline on
the GOT10k dataset [15]. To adapt to the scale variation, we search on three
scales during evaluation and testing.

4.2 Datasets and Compared Trackers

In the OTB2015 dataset, this paper compares the proposed tracker with 10 other
related and state-of-the-art tracking algorithms, including:

(1) methods based on the combination of pre-training deep feature and correla-
tion filter: HCF [20]

(2) correlation filter methods based on traditional hand-crafted features: staple
[1], LCT [21], KCF [13]

(3) tracking methods based on end-to-end learning: CFNet [26], DCFNet [27],
SiamFC [2], SiamRPN [17]

(4) other methods: MEEM [29]

4.3 Overall Performance

Figure 4 shows the comparison curve of tracking accuracy and success rate of the
algorithm and comparison algorithm in this paper. Compared with the baseline
algorithm SiamFC, the proposed method has significant performance improve-
ment both in accuracy and success rate, the accuracy is increased by 9.4%, and
the success rate is increased by 4.8%. Compared with DCFNet and CFNet which
are also based on SiamFC, the algorithm in this paper still has better perfor-
mance, mainly due to the application of attention mechanism and training on
large-scale datasets. Compared to the recently published SiamRPN tracker, our
method demonstrates a little advantage on precision plot.

4.4 Attribute-Based Evaluation

In order to analyze the performance of the algorithm in various tracking scenarios
in detail, 11 annotation attributes in OTB2015 data set are used to analyze
the algorithm. Figure 5 lists the tracking success rate of each algorithm under
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Fig. 6. Sample tracking results on challenging image sequences (from top to down are
MotorRolling, Skiing, Matrix, CarScale, Human9 ). We show some tracking results of
SiamFC [2], CFNet [26], SiamRPN [17] as well as the proposed algorithm.

each attribute respectively, with red representing the optimal result and green
representing the suboptimal result. It can be seen from Fig. 5 that the algorithm
in this paper achieves the optimal or suboptimal tracking results on almost all
attributes.

4.5 Quantitative Evaluation

Figure 6 shows the qualitative comparisons with the performing tracking meth-
ods: SiamFC [2], CFNet [26], SiamRPN [17] and the proposed method on five
challenging image sequences including Human3, MotorRolling, Human9, Skiing,
Freeman4.

Qualitative analysis mainly compares the algorithm in this paper and three
related algorithms. As shown in Fig. 6, the algorithm in this paper can well deal
with these complex scenes. Especially in Human3 and reeman4 video sequences,
the performance is even better than the latest SiamRPN algorithm, which proves
the effectiveness of the algorithm.
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(1) Background clutter: the interference of similar objects has always been
one of the difficult problems of Siam-based algorithms, especially in the Free-
man4 video sequence, on the one hand, the tracking target is very small,
on the other hand, there are a large number of similar objects in the back-
ground, making most of the algorithms difficult to track the target success-
fully. SiamRPN and CFNet algorithm both lose the target in #76 frames,
but the algorithm in this paper benefits from the introduction of attention
mechanism, which can achieve continuous and stable tracking of the target.

(2) Low resolution: when the resolution of tracking target is low, the available
information is extremely effective, making the visual tracking task more
difficult. In human3 and skiing, the resolution of the target is low, which
requires the Siamese network to have better feature expression ability. In
skiing, only our method and SiamRPN can achieve continuous tracking,
both SiamFC and CFNet lose the target at about #18 frames. Compared
with SiamRPN, this algorithm has better tracking accuracy. Through the
use of high-order feature information, the trained Siamese network has a
better representation ability in dealing with small targets, and has a better
performance in tracking accuracy and success rate.

(3) Illumination change: the illumination change will cause the target pixel
information to change greatly. In motorrolling and human9, the target has
obvious illumination change. There is also a large degree of target rotation
variation in motorrolling. SiamFC and CFNet both lose the target in two
video sequences, and the algorithm in this paper can track the target sta-
bly in these complex scenes through attention mechanism, and has better
tracking accuracy than other algorithms.

5 Conclusions

This paper presents a Siamese network tracking algorithm based on mixed high-
order attention mechanism. By adding first order attention module and high
order attention module to the basic network structure of SiamFC, the discrimi-
nation ability of the model is improved, and the model is trained on the large-
scale data set GOT10k. The experimental results also prove the effectiveness of
the algorithm, and the performance of all 11 attributes is improved obviously. In
the future, we will consider the introduction of higher-order attention in earlier
layers and more complex CNN models.
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Abstract. Face recognition has achieved great progress because of the
advancement of deep convolutional neural networks (CNNs) techniques.
The Softmax loss is one of the most popular loss function for deep learn-
ing models. In many situations, face images are captured in the uncon-
strained environments with changing poses and illuminations, making
face recognition very challenging because of the dramatic appearance
variations. The models trained with the Softmax loss may fail to extract
discriminative information for the face images with extreme illumina-
tion or pose conditions. Recently, Cosface has been proven effective for
improving the generalization ability of the Softmax loss. Derived from
Cosface, we propose a novel method named Penalty Cosface to address
the unconstrained face recognition challenges and learn discriminative
features. Specifically, we design a variant of Cosface that remove radial
variations by penalizing �2-normalized constraints of the features and
weights. Therefore, the discriminative ability of the Penalty Cosface is
guaranteed by the large margin of the Cosface, and the penalty term is
beneficial to simplifying the gradient calculations. Experimental results
show that the Penalty Cosface improves the discriminative power of deep
networks and outperforms the other variants of Softmax loss.

Keywords: Deep learning · Face recognition · Cosface · Penalty
methods

1 Introduction

Face recognition (FR) is an important biometric technology for identity authen-
tication [10], and is widely used in various areas, such as military, financial,
security and so on. In the past decades, researchers have made great efforts
to improve the performance of FR techniques. Early studies focus on design-
ing hand-crafted features [15,25] whose performance degrades significantly when
dealing with unconstrained face images in practical applications. Recently, deep
learning methods [4,7,16] have achieved great breakthroughs in a wide range of
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research topics. Specially, with the emergence of large-scale face datasets, convo-
lutional neural networks (CNNs) [7] has significantly improved the performance
of FR. The Softmax loss is widely applied in many classification tasks including
FR. Note that many face images are captured in the wild with changing illumina-
tions, imaging qualities and poses. Therefore, face recognition is very challenging
and the robustness of FR approach is essential for applications. However, the
Softmax loss is insufficient to learn the discriminative features [8,9] when dealing
with face images of extreme illuminations and poses conditions.

Recently, many researchers have tried to develop new methods to improve
the discriminative power of deep models. The basic idea of the recent proposals is
to improve the discriminative ability of deep networks by maximizing the inter-
class variance while minimizing the intra-class variance. Many works design loss
functions to improve the discriminative ability. Wen et al. propose Center loss
[22] to narrow the gaps between the samples and the corresponding class cen-
ters, leading to more distinguishing features in Euclidean space. In Cosface [21],
Wang et al. propose the Large Margin Cosine Loss that introduces an additive
angular margin to concentrate the samples on a hypersphere borderline. Similar
to Cosface, Arcface [3] and A-Softmax [8] also introduce angular margins to the
decision boundaries of the origin Softmax loss and improve the discriminative
ability.

In this paper, we design a novel method named Penalty Cosface to learn
the discriminative features for deep face recognition. Our idea is to design a
loss function that remove the radial variations by penalizing the features and
weights to satisfy the �2-normalization constraints. We first transform the Cos-
face into the equivalent constraint problem by establishing the equality relation-
ships between the objectives and the corresponding �2-normalized vectors. Then,
we give a relaxation term of the constraint problem. After that, we decompose
the relaxation term using the penalty method [12]. The proposed approach leads
to a suitable expression for optimization, and the gradient calculations are sim-
plified. Experimental results show that the proposed method performs well on
popular face datasets, indicating the discriminative ability of the loss function.

The main contributions of this paper can be summarized below:

– We propose a novel approach named Penalty Cosface (p-Cosface) to learn
discriminative features for deep face recognition.

– The penalty terms of the p-Cosface enforce the weights and features to sat-
isfy the �2-normalization constraints, so that Cosface can be approximated
without any �2-normalized operators. During model training, each class of
samples converges to an adaptive center near the hypersphere borderline.

– Experimental results demonstrate that the p-Cosface performs well on the
popular face datasets and improves the discriminative ability of deep networks
in both Euclidean and angular space.
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2 Related Work

Deep Face Recognition. With the development of deep learning techniques
[4,7,16] and the emergence of large-scale face datasets, face recognition (FR)
has achieved a great progress in recent years. Taigman et al. are the first to
conduct FR and propose a novel model named DeepFace [19] which train a 9
layers CNN to learn the face representation and achieve 97.345% accuracy on
Label Faces in the Wild (LFW) dataset [5]. Schroff et al. propose the FaceNet
[13] that introduces the triplet loss to learn deep features in Euclidean space.
Notably, the FaceNet is trained on an extremely large-scale face dataset with
100M-200M training samples from about 8M different identities and the perfor-
mance of FaceNet is superior over other method. Despite DeepFace and FaceNet,
many other approaches are also proposed to improve the performance of the deep
CNNs on FR [17,18].

Softmax Margin Loss Functions. Softmax loss is one of the most popular
loss function for learning deep models. Given an input feature xi ∈ Rd×1 with
its corresponding label yi ∈ {1, 2, . . . , C}, the definition of Softmax loss is

L = −
N∑

i=1

log
ew

�
yi

xi

C∑
j=1

ew
�
j xi

, (1)

where wj ∈ Rd×1 denotes the weight vector. Although the Softmax loss is
proven effective in many deep networks, it is insufficient to extract discriminative
features in many challenging situations [8,9,21].

To improve the discriminative ability of Softmax loss, Wang et al. propose
the Normalized Softmax loss (NSL) [21]. In Eq. 1, the inner product of wj and
xpi is equivalent to

w�
j xi = ‖wj‖2‖xi‖2 cos θji, (2)

where θji is the angle between wj and xi. Then, the formulas of the �2-
normalization of wj and xi can be written as:

w̃j =
wj

‖wj‖2
, j = 1, 2, . . . , C, x̃i =

xi

‖xi‖2
, i = 1, 2, . . . , N. (3)

By substituting Eq. 3 into Eq. 1, the NSL can be written as:

L = −
N∑

i=1

log
esw̃�

yi
xi

C∑
j=1

esw̃�
j xi

= −
N∑

i=1

log
es cos θyii

C∑
j=1

es cos θji

, (4)

where s > 0 is the scaling factor that guarantees the features to be separable in
the angular space.

But Eq. 4 only considers the classification results and ignores the margin
between features from different classes. The discriminative power of the NSL is
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not enough because features around the classification boundary may be affected
by factors such as illuminations and poses, resulting in wrong classification deci-
sions. Wang et al. proposes the following Cosface loss [21] to tackle with this
problem, which can be formulated as:

L = −
N∑

i=1

log
es(cos θyji

−m)

es(cos θyji
−m) +

C∑
j �=yi

es cos θji

. (5)

In Eq. 5, m > 0 denotes the margin. We can obtain a more discriminant classifier
by enforcing a margin to separate features between different identities.

Fig. 1. The binary classification illustrations of different loss functions in cosine space.
Dashed line denotes the decision boundary, and empty spaces in Cosface refer to the
margins.

Figure 1 illustrates the binary classification examples in cosine space. It is
obvious that Cosface loss separates the feature distributions by enforcing the
margin in the cosine space.

In analogy with Cosface, Arcface [3] introduces an additive angle margin for
closer intra-class distance, and A-Softmax [8] scales the angle between weights
and features by a multiplicative margin. Many other Softmax margin loss func-
tions are also proposed to enhance the discriminative ability of deep networks
[9,20].

3 Penalty Cosface

3.1 Motivation

Cosface is a variant of Softmax loss in cosine space which improves the discrim-
inative ability of deep models by compressing the inter-class variance using the
margin factor. However, the features learned by Cosface are only suitable for
cosine/angular space. Center loss [22] is designed to narrow the gaps between
the samples and the corresponding class centers, and generates more distinguish-
ing features in Euclidean space because features of different classes are separated
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by different centers. But the centers are proportional to the number of classes,
resulting in numerous training parameters and slow convergence.

In this paper, we propose the Penalty Cosface (p-Cosface) approach which
integrates the penalty method into the Cosface loss to learn discriminant models
without introducing additional parameters and training consumptions. We first
transform the Cosface loss into the equivalent constraint problem by establishing
the equality constraints between the features/weights and the corresponding �2-
normalized vectors. Then, we give a relaxation form of the constraint problem.
After that, we decompose the relaxation form by using the penalty method. The
penalty terms of the p-Cosface approach enforce the �2-norms of weights and
features to be closed to 1, so that we can approximate the Cosface loss without
using �2-normalized operators. In p-Cosface, samples from different classes are
trained to converge to an adaptive center that is near the hypersphere borderline.
Consequently, the p-Cosface combines the advantage of both the Cosface and the
penalty terms to enhance the discriminative power of deep networks.

3.2 Penalty Cosface

The optimization problem of Cosface can be written as:

min
θ

−
N∑

i=1

log
es(cos θyii

−m)

es(cos θyii
−m) +

C∑
j �=yi

es cos θji

. (6)

Obviously, Eq. 6 is equivalent to the following constrained problem:

min
w ,x

− log e
s(w �

yi
x i−m)

e
s(w �

yi
x i−m)+

C
∑

j �=yi

e
sw �

j
x i

s.t. wj = w j

‖w j‖2
, j = 1, 2, . . . , C,

xi = xi

‖xi‖2
, i = 1, 2, . . . , N.

(7)

Under the constraints of Eq. 7, the optimal solutions wyi
,xi are �2-normalized

vectors. When the training process converges, we can learn the Cosface without
space projection. But Eq. 7 involves the fractional optimization, which will result
in complex gradient calculations. As a result, we design the following optimiza-
tion problem:

min
w ,x

− log e
s(w �

yi
x i−m)

e
s(w �

yi
x i−m)+

C
∑

j �=yi

e
sw �
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s.t. wj = wk
j

‖wk
j‖2

, j = 1, 2, . . . , C,

xi = xk
i

‖xk
i ‖2

, i = 1, 2, . . . , N,

k = 0, 1, . . . ,

(8)

where k denotes the last iteration and wk
j ,xk

i are the corresponding solutions.
Equation 8 have a better structure than Eq. 7 from the view of optimization.
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Clearly, wk
j and xk

i are constant terms in current iteration. By applying
penalty method, we obtain the optimization problem of the Penalty Cosface
(p-Cosface) approach:

min
w ,x
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log e
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yi
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e
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2
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2

2

,

k = 0, 1, . . . ,

(9)

where β1 > 0, β2 > 0 are the penalty parameters. Let L denotes the objective

function in Eq. 9, Ls = −
N∑

i=1

log e
s(w �

yi
x i−m)

e
s(w �

yi
x i−m)+

C
∑

j �=yi

e
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, f(z) = z
‖z‖2

. Then the

brief expression of the objective function of p-Cosface can be written as follows:

L = Ls +
β1

2C

C∑

j=1

‖wj − f(wk
j )‖22 +

β2

2N

N∑

i=1

‖xi − f(xk
i )‖22. (10)

The penalty terms minimize the error between wj ,xi and the last normalized
solutions. Therefore, when the training algorithm of Eq. 9 converges, Eq. 8 can
obtain the approximate solutions as the solutions from Eq. 9 [12].

By solving Eq. 9, the p-Cosface can obtain the solutions similar to Cosface in
Euclidean space. Under the influence of penalty terms, the features converge to
the adaptive centers which are near the hypersphere borderline. Therefore, the
features guided by Eq. 9 may benefit from the advantages of both the Cosface
and the penalty terms.

Compared with Cosface, the proposed approach does not need any �2-
normalized operators, which is helpful for simplifying the gradient calculations.
Furthermore, the gradient of the penalty terms is easy to calculate. We can train
the p-Cosface model in an end-to-end manner by combining the back-propagation
and penalty method, and the gradient expressions of p-Cosface loss 10 on wyi

,
xi are given bellow:

∂L
∂wyi

= s(e−Ls,i − 1)xi + β1(wyi
− f(wk

yi
))

+
N∑

l �=i

sesw�
yi

xl

es(w�
yl

xl−m) +
C∑

j �=yl

esw�
j xl

xl, (11)

∂L
∂xi

= s(e−Ls,i − 1)wyi
+ β2(xi − f(xk

i )). (12)
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4 Experiments

4.1 Feature Visualization

Parameter Setting. In this part, we select 8 different identities from CASIA-
Webface [23] consisting of 3, 552 faces to train the model for feature visualization.
We adopt VGG [16] as the backbone for this experiment. Notably, the dimension
of the features is set to 2 to visualize the feature distribution. During training,
we adopt Adam [6] as the optimizer, set the initial learning rate as 0.1, and
decrease the learning rate by 10% for each epoch. The involved facial images are
detected and aligned by MTCNN [24]. Finally, we compare the p-Cosface with
the Softmax loss and Cosface to prove the effects of the proposed approach. For
Cosface and p-Cosface, we set m = 0.3 and s = 64.

In the following experiments, the maximum of penalty parameter is set
to 1000. We check the penalty terms for weight 1

C

C∑
j=1

‖wj − f(wk
j )‖22 and feature

1
N

N∑
i=1

‖xi − f(xk
i )‖22 every 100 iterations, if a penalty term is larger than 2, the corre-

sponding penalty parameter is updated by β = β ×2. The initial values of β1, β2

are set to 1.

Fig. 2. Feature distributions of Softmax loss, Cosface loss and Penalty Cosface loss in
Euclidean/Angular space.

Experimental Results. Figure 2 illustrates the visualization of different loss
functions. For each loss function in Fig. 2, the left column displays the fea-
ture distributions in Euclidean space while the right column is the situation in
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angular space. Both p-Cosface and Cosface show the discriminating capability
in angular space, while Softmax loss is insufficient to learn the discriminative
features. Figure 2 also shows that the proposed p-Cosface learns the discrimina-
tive features both in Euclidean and angular space after 150 epochs training. It
demonstrates that the proposed p-Cosface has the ability to learn the discrim-
inative features. Compared with Cosface, the proposed p-Cosface separates the
features in a quick convergence. Meanwhile, each sample is clustered to the cor-
responding center adaptively and the distributions are similar to the situation
in angular spaces.

4.2 Face Recognition

In this section, we evaluate the proposed p-Cosface on 1 : 1 face recognition
experiments.

Datasets. We train the model on CASIA WebFace [23] with 10, 575 identi-
ties, 494, 414 images. LFW [5] is a standard face verification testing dataset for
unconstraint face recognition. It includes 13, 233 face images from 5, 749 identi-
ties collected from website. We report the results of the comparison loss func-
tions on 6, 000 pairs testing images on LFW. Besides the LFW dataset, we also
report the performance of the proposed p-Cosface on VGG2 FP [1], CPLFW [3],
CALFW [3], AGEDB 30 [11], CFP FF [14] and CFP FP [14]. All of the datasets
for training and testing are summarized in Table. 1.

Table 1. Face datasets for training and testing.

Datasets #Identites #Image #Pairs

CASIA-Webface 10,575 494414 –

LFW 5,749 13,233 6k

CFP-FP 500 7,000 7k

CFP-FF 500 7,000 7k

AGEDB-30 568 16,488 6k

CPLFW 5,749 11,652 6k

CALFW 5,749 12,174 6k

VGG2 FP – – 5k

Parameter Setting. The experiments are implemented in python 3.6 with Ten-
sorflow 2.0. The involved facial images are detected and aligned using MTCNN.
We adopt MobileFaceNet [2] and ResNet-50 [4] as the backbones and Adam as
the optimizer. By setting the initial learning rate to 0.01, we decrease the learn-
ing rate by 10% for each epoch. For Cosface and p-Cosface, we set m = {0, 0.3}
and s = 64. During testing, we adopt the backbone features of 512 dimensions
from the embedding network as the output for each face. All of the models are
trained in 20 epochs, a total of 72, 000 steps.



Deep Face Recognition Based on Penalty Cosface 465

Experimental Results. Table 2 and Table 3 illustrate the experimental results
for the comparisons between p-CosFace, Cosface and Softmax using Mobile-
FaceNet and ResNet-50 as backbones on several popular face recognition bench-
marks. For all of the loss functions, the first row gives the accuracies evaluated
by �2 distance and cosine distance respectively. For p-Cosface, the third row gives
the accuracies evaluated by �2-distance in Euclidean space. Except the third row
results of p-Cosface, all of the results are evaluated after �2-normalization.

Table 2 and Table 3 show that the proposed p-Cosface (m = 0.3) achieves the
best performance for most of the cases and learns much discriminant features
compared with the Softmax loss.

Table 2. The performance of comparison methods on MobileFaceNet.

LFW AGEDB 30 CALFW CPLFW CFP FF CFP FP VGG2 FP

Softmax loss 94.93% 79.03% 82.77% 72.13% 93.66% 81.57% 82.38%

94.93% 80.40% 83.05% 74.52% 94.07% 82.07% 82.42%

Cosface 94.93% 79.38% 83.50% 74.98% 93.70% 83.47% 83.44%

m = 0 95.07% 80.80% 83.65% 76.48% 94.34% 83.47% 83.42%

Cosface 97.13% 84.85% 87.45% 77.33% 96.67% 79.66% 82.28%

m = 0.3 97.30% 85.33% 88.43% 78.43% 96.86% 81.14% 82.52%

p-Cosface 95.98% 76.60% 83.98% 73.57% 92.75% 81.34% 83.26%

m = 0 95.98% 79.85% 84.07% 76.32% 93.74% 81.66% 82.74%

95.40% 77.62% 83.40% 73.00% 93.45% 80.20% 81.06%

p-Cosface 96.68% 85.82% 88.13% 80.08% 96.06% 80.40% 83.76%

m = 0.3 97.65% 85.73% 88.93% 80.02% 97.04% 83.47% 85.08%

97.15% 83.52% 87.22% 78.17% 95.80% 79.51% 82.40%

Table 3. The performance of comparison methods on ResNet-50.

LFW AGEDB 30 CALFW CPLFW CFP FF CFP FP VGG2 FP

Softmax loss 94.77% 80.47% 83.13% 75.15% 94.67% 81.00% 82.62%

95.87% 81.20% 83.82% 75.27% 95.07% 82.56% 82.98%

Cosface 96.70% 80.73% 85.73% 77.62% 95.47% 84.27% 83.24%

m = 0 96.72% 82.12% 85.80% 78.27% 95.56% 84.29% 84.06%

Cosface 97.13% 86.70% 87.40% 81.10% 95.97% 81.84% 82.48%

m = 0.3 97.83% 86.42% 88.97% 81.10% 97.03% 82.86% 83.90%

p-Cosface 97.72% 84.98% 88.55% 79.95% 96.96% 84.34% 84.34%

m = 0 97.82% 85.67% 88.68% 80.83% 96.96% 84.39% 84.44%

97.33% 85.38% 87.45% 79.92% 96.43% 83.24% 84.18%

p-Cosface 97.82% 85.68% 89.23% 79.77% 96.76% 83.80% 85.24%

m = 0.3 97.87% 86.43% 89.28% 81.65% 96.86% 83.74% 85.10%

97.77% 85.80% 88.66% 80.80% 96.66% 83.09% 84.50%
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Fig. 3. The plots of (a) the value of p-Cosface loss versus the number of iterations,
(b) the value of Ls of Eq. 10 versus the number of iterations, (c) penalty term

1
C

C∑

j=1

‖wj − f(wk
j )‖2

2 versus the number of iterations, (d) penalty term 1
N

N∑

i=1

‖xi −
f(xk

i )‖2
2 versus the number of iterations.

Fig. 4. The plots of the accuracy versus the number of iterations on LFW dataset,
with m = 0.35, ResNet-50.
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Figure 3 shows the declines of the function values of the proposed p-Cosface
on CASIA-Webface. For each figure in Fig. 3, the abscissa denotes the number
of iterations and ordinate is the function value. From Fig. 3(a) and Fig. 3(b), we
find that the value of Ls of Eq. 10 is close to value of the p-Cosface loss L when
the training process is terminated. As shown in Fig. 3(c) and Fig. 3(d), both of

the penalty terms 1
C

C∑
j=1

‖wj − f(wk
j )‖22 and 1

N

N∑
i=1

‖xi − f(xk
i )‖22 decrease and converge

as the number of iterations growing. It indicates the convergence the proposed
p-Cosface.

Figure 4 plots the changes of accuracy of the Cosface and p-Cosface with m =
0.35. It shows that both the Cosface and p-Cosface have the similar convergence
tendencies.

5 Conclusions

In this paper, we propose the p-Cosface to address the unconstrained face
recognition challenges and learn discriminative features. By penalizing the
�2-normalization constraints of the features and weights, the proposed p-Cosface
can improve the discriminative power of the deep models. The experimental
results show that the proposed Penalty Cosface performs well and indicates a
discriminative capability in both Euclidean and angular space.
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Abstract. The dynamic brain network (DBN) consists of a set of time-
varying states (i.e., functional connectivity matrixes), and has revolu-
tionized the field of brain network analysis through captured dynamic
evolution patterns. However, current representation methods of DBN,
which use hand-crafted features, are still not data-driven, and cannot
effectively learn the hierarchically organized temporal nature of DBN. To
address this issue, we propose a novel hierarchical representation learn-
ing (HARL) method for dynamic brain networks in the framework of
graph convolutional networks. Specifically, we first define a graph model,
whose nodes represent time-varying states, node features are determined
by states’ functional connectivity matrix, and edges learn according to
node features. Then, based on this model, we build a HARL module
to learn the representation of DBN under different levels. Each level
consists of a convolution layer and a pooling layer. Through a convo-
lution layer, node features can be updated according to their neighbor
nodes, which can better learn the representation of each state. In the
pooling layer, according to both node features and graph topology, we
select some important nodes (i.e., states) from the whole graph to form
a coarsened graph, which would be further input to the next level. In
each level, the representation of DBN is generated by aggregating these
node features. These representations will be input to the fully connected
layer for disease prediction. Experiments on a real schizophrenia dataset
demonstrate the effectiveness and advantages of our proposed method.

Keywords: Dynamic brain network · Hierarchical representation
learning · Schizophrenia

This study was supported by the National Key Research and Development Pro-
gram of China (Nos. 2018YFC2001600, 2018YFC2001602, 2018ZX10201002) and
the National Natural Science Foundation of China (Nos. 61861130366, 61732006,
61876082). Jiashuang Huang and Xu Li contribute equally to this article and should
be considered co-first authors.

c© Springer Nature Switzerland AG 2020
Y. Peng et al. (Eds.): PRCV 2020, LNCS 12306, pp. 470–479, 2020.
https://doi.org/10.1007/978-3-030-60639-8_39

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-60639-8_39&domain=pdf
https://doi.org/10.1007/978-3-030-60639-8_39


HARL 471

1 Introduction

In recent years there has been a surge of interest in analyzing dynamic brain
networks (DBN) that can reveal dynamic functional connections of the human
brain system [1]. Previous studies [2–4] about brain network usually used a single
functional connectivity matrix. Recent evidence suggests that functional connec-
tions may not be stationary over time [5]. To explored the dynamics of brain
connectivity from resting-state fMRI, DBN has been proposed to model tempo-
ral variability of those connectivities. DBN usually consists of a set of functional
connectivity matrices, where each matrix is calculated based on overlapping sub-
series of fMRI time series by using a sliding window correlation. Thus, the DBN
has been used in the diagnosis of brain diseases, such as Schizophrenia [6], and
Alzheimers disease [7].

Traditional representation methods of DBN use hand-crafted features. These
methods can be simply divided into two categories: 1) node-level based measure-
ment and 2) state-based measurement. In the first category, the author defines a
node-level measurement to describe the time-varying property of node of DBN.
For example, Zhang et al.[8] suggest using the Pearson correlation of functional
connectivities between each time-varying state to calculate this measurement.
Braun et al. [9] define this measurement based on the average number of the
DBN’s community changes over time. The advantage of these methods is that
they can directly transform the DBN into feature vectors that can be analyzed
by using machine learning technologies. In the second category, the author uses
K-means clustering to detect representative connectivity patterns from all time-
varying states of the DBN. For example, Damaraju et al. [10] use these repre-
sentative connectivity patterns to reveal transient states of dysconnectivity in
schizophrenia. Nomi et al. [11] use the most frequently occurring representative
connectivity patterns of DBN to clarify the functional role of the insular cortex
and its subdivisions. However, both node-level based measurements and state-
based measurements are still not data-driven. These hand-crafted features have
limited generalization capability, which will affect the performance of the model
in the identification of brain diseases.

Recently, some deep-learning based models have been proposed to learn the
representation of DBN. These methods benefit from powerful nonlinear expres-
sion ability of neural networks, which can obtain more effective features than
traditional methods. For example, Jie et al. [12] use three layers of convolutional
operation to characterize temporal properties of DBN, and improves the perfor-
mance of Alzheimers disease identification compared with traditional methods.
Kam et al. [13] apply 3D convolutional neural networks (CNN) to extract fea-
tures of DBN for early MCI detection. Besides CNN, recurrent neural networks
(RNN) also have been used in the DBN analysis. In these methods, the author
considers DBN as a sequence of data (consisted of a set of time-varying states),
and uses the RNN to capture dynamic patters between these states. However,
existing methods are designed to learn the representation of the whole sequence
or individual states, thus neglecting hierarchically organized temporal nature of
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DBN. Characterizing hierarchically properties of DBN can help reveal cognitive
performance and the mechanism of brain diseases [14].

To address these issues, we propose a novel hierarchical representation learn-
ing (HARL) method for dynamic brain networks. The main idea of this paper is
to build a deep neural network framework that can learn hierarchical representa-
tion of DBN. As shown in Fig. 1, firstly, we use the sliding window correlation to
construct DBN and then model this DBN with a graph, where nodes represent
each state of DBN, and edges represent correlations between states. Based on
this graph, we design the HARL module to learn the representation of DBN at
different levels. Each level consists of a graph convolutional layer, a graph pool-
ing layer and a readout layer. These layers are used to update node features,
select nodes, and aggregate node features respectively. Through this module,
we can learn representations of DBN under three levels. Finally, we combine
these representations to identify brain diseases by using a fully-connected layer.
Experiments on a real schizophrenia dataset demonstrate the effectiveness and
advantages of our proposed method.
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Fig. 1. Architecture of the proposed hierarchical representation learning (HARL)
method for dynamic brain networks. There are three modules in our framework (i.e.,
a graph construction module, a HARL module, and a classier module). The HARL
module consists of a convolution layer, a pooling layer, and a readout layer.

2 Materials and Preprocessing

We use a total of 120 subjects, including 67 normal controls (21 female (F)/46
male (M), aged 34.82 ± 11.28), and 53 Schizophrenia (11 female (F)/42 male
(M), aged 36.75 ± 13.68), with rs-fMRI data from COBRE database. The data
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are acquired by Siemens Trio 3T scanner. The scan parameters of rs-fMRI are
as follows: TR = 2000 ms, TE = 30 ms, flip angle = 90◦, voxel size = 3.75 ×
3.75 × 3.75 mm3. All rs-fMRI images are pre-processed by using the SPM 8 in
the DPARSF toolbox version 2.0. The resulting volumes have 145 time points
and are parcellated into 90 regions of interest (ROIs) using the AAL atlas. The
DBN are constructed by using the sliding-window method which divides the
time-series into a regular number of windows. In this paper, we set the length of
window as 20 time points, and the step to move window as 9 time points. Then,
there are 15 time-varying states in each DBN.

3 Proposed Method

Our proposed framework consists of two parts: Graph construction module
(described in Sect. 3.1), and HARL module (described in Sect. 3.2). Let A ∈
R

|Ω|×|Ω| represent the functional connectivity matrix, where Ω is the set of
nodes corresponding to brain regions. Then, the DBN is defined as a set of func-
tional connectivity matrixes A = {A(1), A(2), .., A(T )}, where T is the number
of the slice window. Mathematically, our task can be describe as obtaining a
mapping F : A → y, where y is the label of subject (i.e., patient or normal
control).

3.1 Graph Construction

In our work, we utilize a graph G = {V,E} to model the DBN. In this
graph, the node set V = {vi, i = 1, 2, ..., T} represents all states of DBN.
The feature vector xi on a node i is defined according the corresponding func-
tional connectivity matrix A(i). Due to this matrix is symmetric, we only use
its upper triangular elements to construct the feature vector. The edge set
E = {eij , i = 1, 2, ..., T, j = 1, 2, ..., T} represents the connection between each
node. In our model, this connection means the relationship between each state
of DBN. Although these states are obtained in sequence, it is quite complicated
to define the exact relationship between them due to the complicated biological
mechanism of brain system. To simplify this graph model, we assume that each
state may have potential connections with other states. Then, we set this model
as a fully connected graph, and the weight of edges can be learned automatically
by node features:

eij = conv1d(Wxi||Wxj), (1)

where conv1d represents 1D convolution operator, W is the learnable weight
matrix that improves the feature expression ability, and || is the concatenation
operator. The value of eij indicates whether the connection is strong or weak. To
make it easy to compare the connection weight of different nodes, we normalize
these weights by utilizing the following function:

αij =
exp(conv1d(Wxi||Wxj))∑

k∈Ni
exp(conv1d(Wxi||Wxk))

, (2)
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where Ni means the neighbour nodes of node i. This normalized weight can
further guide the graph convolutional for leaning node representation in the
HARL module.

3.2 HARL

Our proposed HARL consists of three levels, and each level contains a graph
convolutional layer, a graph pooling layer and a readout layer. The graph convo-
lution layer is used to update node features for obtaining more effective represen-
tation. The graph pooling layer is used to select important nodes for generating
a coarsened graph, which would be further input into the next level. A readout
layer is used to generate a global representation of DBN from the individual
representation of states. Three levels correspond to three hierarchical levels that
extract features of the DBN at different scales. The detail of this module is
described as follows:

Graph Convolution Layer: Convolution operation on graphs can be defined
in either the spectral or non-spectral domain. In this work, we utilize the widely
used graph convolution based on neighborhood aggregation [15]. It can be for-
mulated as:

xl+1
i = σ(αl

iiWcxi
l +

∑

j∈N l
i

αl
ijWcx

l
j), (3)

where xi
l is the node feature of l-th layer and Wc ∈ R

F×F ′
is the convolution

weight with input feature dimension F and output dimension F ′. σ represents
an nonlinear activation function.

Graph Pooling Layer: The pooling layer on the graph can be considered
as a downsampling operation. Similar to the image data, the graph would be
smaller through the pooling layer. In this work, we want to select important
nodes (i.e., states) for generating a global representation of DBN. Then we use
self-attention scores [16] to measure the importance of nodes. These scores are
obtained by considering both graph features and topology in the framework of
graph convolution formula. The self-attention score of node i at l-th level is
calculated as follows.

zl
i = σ(αl

iiWpxi
l +

∑

j∈N l
i

αl
ijWpx

l
j), (4)

where Wp ∈ R
1×F is a learnable weight matrix. zl

i is a scalar.
After obtaining self-attention scores, we adopt a simple node selection

method proposed by [17]. The pooling ratio k ∈ (0, 1] is a hyperparameter that
determines the number of nodes to keep. Then, the top [kT ] nodes are selected
based on the value of Z = {z1, z2, ..., zT }.

idx = top − rank[Z, kT ], Zmask = Zidx (5)

where top − rank is the function that returns the indices of the top [kT ] val-
ues, idx is an indexing operation and Zmask is the feature attention mask.
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We get the coarsened node feature matrix X ′ by applying the following function:
X ′ = X � Zmask, where X is the original node feature matrix, and � is the
broadcasted elementwise product.

Readout Layer: This layer is a kind of global pooling layer that aggregates node
features to generate the graph representation. In our work, the readout layer is
used to learn the global representation of DBN from the individual representation
of states. The equation of this aggregation operation is as follows:

sl =
1
N

N∑

i=1

xl
i||

N l

max
i=1

xl
i, (6)

where N l is the number of nodes of graph at leave l, xl
i is the feature vector of i-th

node at leave l, and || denotes concatenation. This operation can learn a global
representation of DBN at each level, and the dimensions of these representations
are consistent.

3.3 Implementation

The model is trained to minimize the cross-entropy cost between the ground-
truth label Y and the predicted label Ŷ . The predicted label is obtained through
a dense layer that connects S to Ŷ by applying the softmax function: Ŷ =
softmax(f(Wf �S)), where � operator represents element-wise multiplication,
Wf is a learnable weight matrix, S = s1, s2, s3. We describe the details of the
learning process below: we use the training subjects DBN (i.e., A) as input,
and their corresponding labels as output. Then, the DBN are model as a graph
G, and fed into the HARL module. The pooling ratio of the HARL set as 0.8
empirically. Our model is implemented in Pytorch using an NVIDIA Titan X
GPU with 12 GB memory.

4 Experiments

4.1 Experimental Settings

We evaluate the performance of the proposed model for identifying brain dis-
ease in 120 subjects. The performance is evaluated by measuring the classifi-
cation accuracy, sensitivity (i.e., the proportion of patients that are correctly
predicted), and specificity (i.e., the proportion of normal controls that are cor-
rectly predicted) via 10-cross validation.

We compare it with state-of-the-art methods, including 1) traditional meth-
ods: SVM-based method (denoted as SVM), temporal variability method [8]
(denoted as TV) and sparse temporally dynamic method [18] (denoted as STD).
2) deep learning based methods: weighted correlation kernels convolutional neu-
ral networks [12] (denoted as wck-CNN) and Spatial-Temporal Convolutional-
Recurrent Network [19] (denoted as ST-CRN). We briefly introduce these meth-
ods. In the SVM-based method, we construct a functional connection matrix,



476 J. Huang et al.

and extract its upper triangle elements as features. These features would be
input into the SVM classifier for predicting the label. In the TV method, we
first extract node-level measurements to generate feature vectors, and then input
these features into the SVM classifier. In the STD method, we first construct
DBN based a spares learning method, and calculate clustering coefficients as
feature vectors, and then input these features into the SVM classifier. In the
wck-CNN method, we extract the representation of DBN by using three convo-
lutional layers, and input this representation into a fully-connected layer. In the
ST-CRN method, the representation of states are obtained by using the convolu-
tional layer, and these representations are further input into the recurrent neural
network for generating a global representation, which can be used to predict the
label of subjects by using a fully-connected layer.

4.2 Results

The experimental results of all methods are summarized in Table 1. As can be
seen, our method generally outperforms the competing methods. More specifi-
cally, our method achieves much higher accuracy (i.e., 91.6%), while the accuracy
of the competing deep learning based methods are 84.1% and 88.3%. The pos-
sible reasons could be listed as follows 1) Both wck-CNN and ST-CRN use a
single feature vector to represent the DBN, thus neglect the hierarchically orga-
nized temporal nature of DBN. In our method, we design the HARL module
to learn the representation of DBN at different levels, which could improve the
performance of the classification task. 2) Both wck-CNN and ST-CRN input
the representation of DBN directly to the full connection layer instead of using
a preprocessing layer (i.e., readout layer). The readout layer can significantly
reduce the dimension of representations of DBN. In this work, we only have 120
subjects, so the overfitting problem should be considered in training the model.

Table 1. Performance Comparison of the Proposed and Competing Methods.

Methods ACC (%) SPE (%) SEN(%)

SVM 67.5 62.8 74.0

TV [8] 65.8 64.2 68.0

STD [18] 70.8 65.7 78.0

wck-CNN [12] 84.1 82.8 88.0

ST-CRN [19] 88.3 87.1 90.0

Our method 91.6 90.0 94.0

4.3 Effectiveness of Hierarchical Representations

We further evaluate the effectiveness of hierarchical representations by a statis-
tical test and a classification task. In the statistical test, we assess the statistical
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Fig. 2. The group difference of representations of DBN under different levels between
normal controls and Schizophrenia. Here, p-values more than 0.05 are set to 1 (denoted
as yellow lines). (Color figure online)

significance of these hierarchical representations (i.e., s1,s2, and s3) between
normal controls and Schizophrenia. The results are reported in Fig. 2. From this
figure, we can see that there are significant differences on each level, and the
third level has the most significant differences. This result suggests that the rep-
resentation of DBN under different levels may provide discrepant information to
identify Schizophrenia. In the classification task, we test the performance of our
proposed method under different hierarchical levels. The results are reported in
Fig. 3. We observe that the value of specificity increases with the number of
levels, which further suggests the effectiveness of hierarchical representations.
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Fig. 3. Performance of the proposed method using different levels.

5 Conclusion

In summary, we define a graph model for characterizing the dynamic brain net-
work, and propose a novel hierarchical representation learning method in the
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framework of graph convolutional networks for extracting DBN features under
different hierarchical levels. This is completely different from the conventional
methods, which only represent the DBN by using a single level. Results on
120 subjects from COBRE database demonstrate that our proposed method
improves the classification performance compared with state-of-the-art meth-
ods.
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Abstract. Human action recognition is one of the challenging and
active research fields. Recently, spatio-temporal graph convolutions for
skeleton-based action recognition have attracted much attention. Sev-
eral strategies, such as temporal downsampling, convolution striding,
and temporal pooling, are used to handle long action sequences. Recur-
rent neural networks are typically used for the processing of sequen-
tial data. In this paper, we propose a deep architecture that combines
spatio-temporal graph convolution and graph-temporal long short-term
memory (GT-LSTM) for skeleton-based human action recognition. Ini-
tially, topology-learnable spatio-temporal graph convolutions are applied
to learn the local spatio-temporal features of graph nodes and adap-
tively evolve graph topologies. Then, GT-LSTM successively performs
the spatio-temporal feature fusion with the node sequence and the tem-
poral dimension, for the final recognition. Experimental results on the
NTU RGB+D and Kinetics-Skeleton datasets demonstrate that the pro-
posed architecture can effectively perform graph node information aggre-
gation, graph topology evolution, and spatio-temporal graph feature
fusion. liu2017skeleton.

Keywords: Human action recognition · Graph convolution · LSTM

1 Introduction

Human action recognition plays an important role in various computer vision
fields, such as video surveillance and human-computer interaction, and has
become an active research field in the recent years [9,20,21]. The 3D skele-
ton data represent human body structures by using a set of 3D coordinates of
human joints. Human skeleton can be naturally represented by a graph, where
each node represents one human joint. Therefore, human actions can be viewed
as spatio-temporal graphs.
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Fig. 1. Overview of the proposed architecture. Topology-learnable ST-GCN learns
the local spatio-temporal features from the skeleton graph data. Graph-LSTM fuses
the graph features with the node sequence, and GAMP aggregates all graph nodes.
Temporal-LSTM fuses the features with the temporal dimension. GAMP denotes
“graph average-maximum pooling”, and TAMP denotes “temporal average-maximum
pooling”.

In the recent years, convolutional neural networks (CNNs) have been gen-
eralized into graph domains, and graph convolutional networks (GCNs) have
emerged for the applications based on irregular graph-like structures. Spatial
temporal GCNs (ST-GCNs) have been proposed for skeleton-based action recog-
nition [22]. Different strategies are designed for graph partitioning, and multiple
spatio-temporal graph convolution layers are applied to generate higher-level fea-
ture maps gradually on the graph. On the basis of ST-GCN, a two-stream adap-
tive ST-GCN (2s-AGCN) is proposed [13] by learning new connections beyond
the handcrafted graph. Two extra learnable components are added to the hand-
crafted adjacency matrix to evolve the graph adaptively. These works disassem-
ble the spatio-temporal graph convolution into spatial graph and temporal con-
volutions in a similar way to the spatiotemporal convolutional block “R(2+1)D”
[19]. However, they still suffer from the inherent drawbacks of 3DCNNs (e.g..,
using temporal downsampling, convolution striding, or temporal pooling) when
dealing with long sequential data.

Recurrent neural networks (RNNs), which are typically used for the process-
ing of sequential data, can be applied to graph sequences. The straightforward
way is to fuse the graph node features before feeding them into the RNN/LSTM,
such that the RNN/LSTM only focuses on the feature fusion with the tempo-
ral dimension. An attention-enhanced graph convolutional LSTM (AGC-LSTM)
is constructed by replacing the spatial convolutions in ConvLSTM with graph
convolutions for skeleton-based action recognition [14]. These methods perform
LSTM operations on each graph node in succession to the graph convolution
or node feature fusion operations. The graph topologies are maintained in the
recurrent process of LSTM.

In the present study, we propose a novel approach that combines spatio-
temporal graph convolution and LSTM for long action sequence recognition (Fig.
1). First, a topology-learnable ST-GCN is constructed to learn the local spatio-
temporal features and adaptively evolve the graph topologies. This topology-
learnable ST-GCN component neither should be deep nor should have a large
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temporal receptive field, because it is designed to learn the local spatio-temporal
features. Then, a graph-temporal LSTM (GT-LSTM) component is constructed
to fuse the features successively with the node sequence and the temporal dimen-
sion. The GT-LSTM component focuses on the graph-temporal global feature
learning. The experimental results demonstrate that the topology-learnable ST-
GCN can effectively aggregate the node information and evolve the graph topolo-
gies, and the GT-LSTM can efficiently fuse the learned local spatio-temporal
features.

The main contributions of this work are visible in three aspects: 1) a deep
architecture that combines spatio-temporal graph convolution and LSTM to
effectively learn the local and global spatio-temporal features. 2) a GT-LSTM
that provides a new way to successively fuse spatio-temporal graph features
with the graph node sequence and the temporal dimension. 3) the achievement
of state-of-the-art performances on two large-scale datasets for skeleton-based
action recognition.

2 Related Work

The recent approaches to construct graph convolutional networks can generally
be categorized into spectral and spatial perspectives. The spatial perspec-
tive directly defines convolutions on the graph within the k-step neighbors. Yan
et al. [22] constructed ST-GCN for skeleton-based action recognition. Spatial
graph and temporal convolutions were successively implemented on the graphs
and temporal edges. Instead of performing graph convolutions on the entire
skeleton graphs, part-based GCNs were constructed for skeleton-based action
recognition [10,18]. Fixing the handcrafted graph topologies over all layers are
not optimal. Thus, Shi et al. [13] proposed adaptive graph convolutional networks
to learn the data-dependent graph topologies. In addition to the human joint
information, the shapes and locations of body bones are important for skeleton-
based action recognition. Zhang et al. [24] constructed graph edge convolutional
networks to investigate bone information from skeleton data for action recog-
nition. AGC-LSTM replaces the spatial convolutions in ConvLSTM with graph
convolutions for skeleton-based action recognition [14]. Moreover, action recogni-
tion methods which focus on the incomplete skeletons [16], action-specific latent
dependencies [6], and directed graphs [12], have been also proposed in the recent
years. Besides, RNNs, which are typically used for the processing of sequen-
tial data, can also be applied to graph sequences. Many LSTM-based methods
[5,7,8,11,15,23] for skeleton-based action recognition have been proposed.

In this study, we propose a novel approach for the fusion of graph features
with the node sequence and the temporal dimension. The graph features are
learned by a topology-learnable ST-GCN. The experimental results demonstrate
that the learned graph features have fully used the node information and the
graph topologies, such that the graph topologies do not need to be maintained
in the recurrent process of LSTM.
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3 GT-LSTM Networks

3.1 Pipeline Overview

The proposed architecture consists of two components (as illustrated in Fig.
1): topology-learnable ST-GCN and GT-LSTM. The former is designed to
learn the local spatio-temporal graph features and adaptively evolve the graph
topologies. It fully uses the graph node information and the graph topologies. As
such, the latter does not need to maintain the graph topologies in the recurrent
process. The latter successively fuses the learned local spatio-temporal features
with the node sequence and the temporal dimension to extract the global spatio-
temporal features.

3.2 Topology-Learnable ST-GCN

A modified architecture based on ST-GCN [22] and 2s-AGCN [13] is constructed,
namely denoted as the topology-learnable ST-GCN. The topology-learnable
graph convolution is defined as follows:

fout =
Kv∑

k

Wkfin(Ak + Bk), (1)

where fin and fout denote the feature maps, Ak is the normalized physical adja-
ceny matrix, Bk is the learnable topology matrix which is initialized using Ak

(instead of initialized to 0 as in 2s-AGCN [13]), and Wk is the weight matrix
to evolve the features. The spatial configuration partitioning [22] is used; thus,
Kv = 3.

The topology-learnable ST-GCN component is designed to learn the local
spatio-temporal features. Thus, this component neither should be deep nor
should have a large temporal receptive field. A seven-layer network is con-
structed. The temporal kernel size of the temporal convolutions was originally
set to 9 in [13,22]. This study demonstrates the non-necessity to pursue a large
temporal field in the topology-learnable ST-GCN because the GT-LSTM com-
ponent will further fuse the features with the temporal dimension.

3.3 GT-LSTM

The topology-learnable ST-GCN component outputs graph sequences with new
node features and topologies, whereas the GT-LSTM component fuses the fea-
tures with the node sequence and the temporal dimension (Fig. 2).

Graph-LSTM. Initially, Graph-LSTM performs feature fusion with the node
sequence. Let X = {Xt,i|i = 1, · · · , N, t = 1, · · · , T} denote the new node fea-
tures, where N is the node count and T is the temporal length. The fusion
operations are performed on the graph nodes at each time step, as shown in
Eqs. (2)–(7). The fusion process is conducted with the node sequence.
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Fig. 2. Overview of the GT-LSTM architecture. Only the output features of the
topology-learnable ST-GCN component are fed into GT-LSTM for the subsequent
feature fusion.

it,i = σ(W̃xiXt,i + W̃hiHt,i−1 + b̃i), (2)

ft,i = σ(W̃xfXt,i + W̃hfHt,i−1 + b̃f ), (3)

ot,i = σ(W̃xoXt,i + W̃hoHt,i−1 + b̃o), (4)

Gt,i = tanh(W̃xcXt,i + W̃hcHt,i−1 + b̃c), (5)

Ct,i = ft,i ◦ Ct,i−1 + it,i ◦ Gt,i, (6)

Ht,i = ot,i ◦ tanh(Ct,i), (7)

where it,i, ft,i, ot,i are the gates of LSTM with the node sequence i at each time
step t. Ht,i and Ct,i are the hidden and the cell states. Gt,i is the candidate mem-
ory. W̃x∗, W̃h∗ and b̃∗ are the parameters of the linear operations in LSTM. σ(·)
and tanh(·) are the activation functions. Graph-LSTM can be bidirectional and
have more than one layer. The corresponding details are ignored for simplicity.

GAMP. Graph-LSTM generates outputs at each recurrent step. A natural way
of fusing the outputs is global average pooling. In this work, the readout layer
is used, as shown in Eq. (8). Global maximum pooling is also performed for
augmentation. The augmentation operation, however, can double the dimension
of the fused features, which increases the parameters of the Temporal-LSTM.
Therefore, a linear operation is performed to maintain the size of the fused
features.

Ht =
1
N

N∑

i=1

Ht,i ‖ N
max
i=1

Ht,i. (8)

Xt = WGHt + bG, (9)

where Ht is the augmented feature, and WG and bG are the parameters to keep
the channel size of Xt the same as Ht,i.
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Temporal-LSTM. The Graph-LSTM and GAMP layers aggregate the graph
into one single node, and the spatio-temporal features are fused into temporal
feature sequences. Therefore, the Temporal-LSTM only needs to perform regular
LSTM operations.

it = σ(ŴxiXt + ŴhiHt−1 + b̂i), (10)

ft = σ(ŴxfXt + ŴhfHt−1 + b̂f ), (11)

ot = σ(ŴxoXt + ŴhoHt−1 + b̂o), (12)

Gt = tanh(ŴxcXt + ŴhcHt−1 + b̂c), (13)

Ct = ft ◦ Ct−1 + it ◦ Gt, (14)

Ht = ot ◦ tanh(Ct), (15)

where it, ft, ot are the gates of LSTM with the time step t. Ht and Ct are the
hidden and the cell states. Gt is the candidate memory. Ŵx∗, Ŵh∗ and b̂∗ are
the parameters of the linear operations in LSTM.

TAMP. A similar pooling strategy to GAMP is performed on the outputs of
Temporal-LSTM, as shown in Eq. (16). The GAMP and TAMP layers fix the
size of the fused features regardless if the Graph-LSTM and Temporal-LSTM
are unidirectional or bidirectional.

Y = WT (
1
T

T∑

t=1

Ht ‖ T
max
t=1

Ht) + bT . (16)

where WT and bT are the parameters of the linear operation to keep the channel
size of Y the same as Ht.

3.4 GT-LSTM Networks

The numbers of output channels for each layer of the topology-learnable ST-
GCN are set to 64, 64, 64, 128, 128, 256, and 256, and the default temporal
kernel size is 5. The channel numbers of the inputs and the hidden states in
GT-LSTM are 256, and two bidirectional LSTM layers are stacked by default in
the Graph-LSTM and Temporal-LSTM.

Two-stream networks are constructed on the basis of the joint and the bone
information [13]. The final classification scores of the two streams are added to
predict the action label.

4 Experiments

Two large-scale action recognition datasets, namely, NTU RGB+D [11] and
Kinetics-Skeleton [3,22], are used to evaluate the performance of the proposed
architecture. The top-1 and top-5 classification accuracies are used to evaluate
the recognition performance.
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Table 1. Comparisons of the validation accuracy with different temporal kernel sizes
in the topology-learnable ST-GCN component.

Configurations Top-1 Top-5

Temporal Kernel size = 3 93.56 99.26

Temporal Kernel size = 5 93.95 99.31

Temporal Kernel size = 7 93.33 99.30

Temporal Kernel size = 9 93.70 99.27

4.1 Datasets

NTU RGB+D. NTU RGB+D [11] is currently the largest human action
dataset with 3D joint annotations. The dataset contains 56,000 action clips in
60 action classes. A total of 40 volunteers perform the actions captured by three
cameras at the same height but from different horizontal angles: -45◦, 0◦, and 45◦.
Each subject has 25 joints, and each video has no more than two subjects. This
dataset has two benchmarks: The first one is the cross-subject (X-Sub), wherein
40,320 and 16,560 videos are used for training and validation, respectively, and
the participants in the two subsets are different. The second benchmark is the
cross-view (X-View), wherein 37,920 videos are captured by Cameras 2 and 3
for training and 18,960 videos are captured by Camera 1 for validation.

Kinetics-Skeleton. The DeepMind Kinetics human action dataset [3] contains
approximately 300,000 video clips, which cover 400 human action classes. The
Kinetics dataset has only raw video clips without skeleton data. Yan et al. [22]
built the Kinetics-Skeleton dataset by using the publicly available OpenPose
toolbox [1]. The skeleton data contain 18 human joints for each frame. The
skeleton data of 240,000 clips are used for training, whereas those of 20,000 clips
are used for validation.

4.2 Training Details

Our implementation is based on the released code of 2s-AGCN [13], and the same
training details are used. In particular, the PyTorch deep learning framework is
adopted. Stochastic gradient descent with Nesterov momentum (0.9) is applied
for network optimization. The batch size is 64 and the weight decay is 0.0001.
Softmax function is used as the final classifier.

The used data preprocessing operations are the same as those in 2s-AGCN
[13]. A total of 50 epochs are performed when training on the NTU RGB+D
dataset. The initial learning rate is set to 0.1 and divided by 10 at the 30th and
40th epochs. A total of 65 epochs are performed when training on the Kinetics-
Skeleton dataset. The initial learning rate is set to 0.1 and divided by 10 at the
45th and 55th epochs.
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Table 2. Comparisons of the validation accuracies with different configurations of the
GT-LSTM component.

Configurations Top-1 Top-5

Two layers, bidirectional 93.95 99.31

Two layers, unidirectional 92.83 99.20

One layers, unidirectional 92.59 99.08

4.3 Ablation Study

The X-View subset of NTU RGB+D is used for the ablation study.

Temporal Kernel Size. ST-GCN [22] and 2s-AGCN [13] set the temporal
kernel size of all the layers to 9. Large temporal kernel sizes are necessary to
achieve a large temporal receptive field for these two networks. However, the pro-
posed topology-learnable ST-GCN component is designed to learn local spatio-
temporal features, whereas the GT-LSTM component is designed to fuse features
with the temporal dimension. Therefore, a large temporal receptive field is not
crucial for the topology-learnable ST-GCN component. Moreover, increased tem-
poral kernel sizes will result in additional parameters. Different temporal kernel
sizes are evaluated, and Table 1 presents the results. The results demonstrate
that large temporal kernel sizes do not signify good performances. The default
temporal kernel size in this work is set to 5.

Depth of GC-LSTM. Different configurations of the GT-LSTM component
are evaluated, and Table 2 presents the results. The configuration “Two lay-
ers, bidirectional” means that the Graph-LSTM and Temporal-LSTM compo-
nents each have two bidirectional LSTM layers. All inputs and hidden states are
designed in a fixed-size representation (i.e., 256 channels). The results show that
two bidirectional layers achieve excellent performance. In two LSTM layers, the
former LSTM layer outputs a sequence of vectors which will be used as an input
to a subsequent LSTM layer. This hierarchy of hidden layers enables more com-
plex representation of node sequence, capturing information at different scales.
And in Bidirectional LSTM layers, using the two hidden states the cell can
combine the information from both past and future. The topology-learnable ST-
GCN component is designed to be simple and shallow; therefore, the GT-LSTM
component should own a certain complexity to guarantee the performance of the
entire architecture.

Node Shuffling. The Graph-LSTM fuses features with the node sequence.
However, the nodes are not sorted on the basis of the graph topologies. The
evolved graph topologies are excluded in the GT-LSTM process. To verify
whether the orders of the nodes will affect the GT-LSTM’s performance, node
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Table 3. Comparisons of the validation accuracies when node shuffling is performed
before feeding graph features into the GT-LSTM component.

Configurations Top-1 Top-5

w/o Node shuffling, w/o Fine-tuning 93.95 99.31

w/ Node shuffling, w/o Fine-tuning 93.19 99.19

w/o Node shuffling, w/ Fine-tuning 94.69 99.32

w/ Node shuffling, w/ Fine-tuning 94.72 99.25

shuffling is performed before feeding the local spatio-temporal features into the
GT-LSTM during training. This step means that the node orders may be differ-
ent at each training and testing iteration. We train the architecture with node
shuffling from scratch or fine-tune on the basis of the trained model without
node shuffling.We also try to improve the architecture without node shuffling
by fine-tuning on the basis of the trained model of the bone-stream. The com-
parison results in Table 3 show that accuracy loss is not always present when
shuffling the nodes. Node shuffling may increase the level of difficulty of training;
fine-tuning operations, however, can overcome this difficulty.

4.4 Comparison with State-of-the-Art Methods

Cross-modality fine-tuning can improve network performance. The original
NTU RGB+D and Kinetics-Skeleton datasets contain human joint information.
Human bone information is a second-order information represented as a vector
that points to the target joint from the source joint. We fine-tune the networks
of the joint-stream on the basis of the trained models of the bone-stream, and
vice versa.

Tables 4 and 5 illustrate the comparison results of the proposed architecture
with the state-of-the-art methods on the NTU RGB+D and Kinetics-Skeleton
datasets, respectively. Many LSTM-based [5,7,8,11,15,23] and GCN-based
[6,10,13,14,17,22] methods for skeleton-based action recognition have been pro-
posed. The proposed architecture achieves state-of-the-art performances. Firstly,
the proposed architecture outperforms the stardand spatio-temporal graph con-
volution networks, such as ST-GCN [22] and 2s-AGCN [13]. Compared to 2s-
AGCN [13], our proposed method utilizes Topology-Learnable ST-GCN and GT-
LSTM to learn local and global spatio-temporal features, respectively. Secondly,
AGC-LSTM [14] is the first network that embeds graph convolution into convolu-
tional LSTM for skeleton-based action recognition, and an attention mechanism
is also embedded to enhance the performance of the graph convolutional LSTM.
The comparison results indicate that the proposed architecture achieves compa-
rable or better performances, compared with AGC-LSTM. This study provides
a new method that combines spatio-temporal graph convolution and LSTM to
perform the node information aggregation, graph topology evolution and spatio-
temporal graph feature fusion, for skeleton-based action recognition.
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Table 4. Comparisons of the validation accuracies of the proposed architecture with
the state-of-the-art methods on the NTU RGB+D dataset.

Methods X-Sub X-View

Deep LSTM [11] 60.7 67.3

ST-LSTM [8] 69.2 77.7

STA-LSTM [15] 73.4 81.2

VA-LSTM [23] 79.2 87.8

ARRN-LSTM [5] 80.7 88.8

Ind-RNN [7] 81.8 88.0

PA-GCN [10] 80.4 82.7

ST-GCN [22] 81.5 88.3

DPRL+GCNN [17] 83.5 89.8

BPLHM [24] 85.4 91.1

3s RA-GCN (Song et al. [16]) 85.9 93.5

AS-GCN [6] 86.8 94.2

PB-GCN (Thakkar et al. [18]) 87.5 93.2

2s-AGCN [13] 88.5 95.1

AGC-LSTM [14] 89.2 95.0

GT-LSTM (Joint) 88.4 94.7

GT-LSTM (Bone) 88.0 94.5

GT-LSTM (Both) 89.2 95.2

Table 5. Comparisons of the validation accuracies of the proposed architecture with
the state-of-the-art methods on the Kinetics-Skeleton dataset.

Methods Top-1 Top-5

Feature Enc. [2] 14.9 25.8

Deep LSTM [11] 16.4 35.3

TCN [4] 20.3 40.0

ST-GCN [22] 30.7 52.8

BPLHM [24] 33.4 56.2

AS-GCN [6] 34.8 56.5

2s-AGCN [13] 36.1 58.7

GT-LSTM (Joint) 35.2 58.0

GT-LSTM (Bone) 34.9 57.8

GT-LSTM (Both) 36.6 59.5

5 Conclusion

In this paper, we propose a deep architecture that combines spatio-temporal
graph convolution and graph-temporal LSTM for skeleton-based action recog-
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nition. The topology-learnable spatio-temporal graph convolution network is
designed to learn the local spatio-temporal features and adaptively evolve the
graph topologies. The graph-temporal LSTM component successively fuses the
learned graph features with the node sequence and the temporal dimension. The
proposed graph-temporal LSTM effectively aggregates the graph nodes and does
not need to operate on each node when fusing with the temporal dimension. The
proposed architecture can effectively perform graph node information aggrega-
tion, graph topology evolution, and spatio-temporal graph feature fusion.
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Abstract. Depression is the most common psychiatric disorder in the
general population. An effective treatment of depression requires early
detection. In reschedule this paper, a novel algorithm is presented based
on eye-tracking and a self-rating high-risk depression screening scale
(S-hr-DS) for early depression screening. In this algorithm, a subject
scan path is encoded by semantic areas of interest (AOIs). AOIs are
dynamically generated by the POS (part-of-speech) tagging of Chinese
words in the S-hr-DS items. The proposed method considers both tem-
poral and spatial information of the eye-tracking data and encodes the
subject scan path with semantic features of items. The support vector
machine recursive feature elimination (SVM-RFE) algorithm is employed
for feature selection and model training. Experimental results on a data
set including 69 subjects show that our proposed algorithm can achieve
an accuracy of 81% with 76% in sensitivity and 79% in F1-score, demon-
strating a potential application in high-risk depression detection.

Keywords: High-risk depression groups · Word-fixation driven feature
coding · Feature selection · Eye-tracking

1 Introduction

Depression is a kind of mental disorder, which is the fourth leading cause of
disability and death [24]. More than 300 million people worldwide are suffering
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from depression, which equals about 4.4% of the global population [22]. The
World Health Organization (WHO) experts point out that, like other diseases,
the earlier the depression is detected and treated, the better it will be [19].
High-risk depression groups refer to people who are with personality vulnerable
to depression [27] and have developed at least one symptom but haven’t reached
the DSM-5 [2] diagnosis standards. These people are the majority and have
subjective discomfort in social communication, career, and life. They are easier
to suffer depression upon stress or pressure. Therefore, this study focuses on
developing a novel method effectively identifying high-risk depression groups
based on high-risk depression screening scale (S-hr-DS) and the eye-tracking
data.

Traditionally, depression is diagnosed with performing psychological self-
assessment on scales and inventories. However, these self-assessment results can-
not provide the subject’s test-taking process data that is objective evidence
related to the subject’s mental state. Different ways have been proposed to tackle
this problem. It can either be explored from the electroencephalogram (EEG)
signal [1,8] or the eye-tracking data [6], both acquired during the procedure
of self-assessment tests. The eye-tracking technology can both conveniently and
non-intrusively record the subject’s vision process with high time and special res-
olution, so we employed it to track the scan path of the subjects when finishing
the S-hr-DS and thus provide clues related to the subject’s mental state.

The application of eye-tracking technology in mental disorder is an updated
attentive [7,23] study area, we utilize it in a novel way. Instead of focusing on
conventional features such as the fixation time [25], number of fixations and the
spatial distributions of the fixations (heat map) [5], we propose to construct
features by encoding the subject scan path when the subject happens to scan
different areas of interest (AOIs) in the items of the S-hr-DS. The AOIs in the
items of the S-hr-DS are partitioned according to the POS (part-of-speech) tags
of Chinese words dynamically. In order to reduce the dimension of the feature and
improve the performance of the classifier, we implement the wrapper type feature
selection procedure. In our case, the support vector machine (SVM) classifier [17]
is chosen for our classification task. Therefore, the recursive feature elimination
(RFE) scheme developed specifically for the SVM [21] is employed. Experiment
results in a data set containing eye-tracking data of 69 subjects show that our
proposed method can achieve an accuracy of 81% with 76% in sensitivity and
79% in F1-score.

In summary, the key contributions of our work are:

1. Specially designed eye-tracking system is utilized to self-rating high-risk
depression screening scale for early depression early screening.

2. We dynamically partition the S-hr-D item to different AOIs areas of interest
by words or phrases with different POS tags.

3. We propose a word-fixation driven feature encoding method to extract fea-
tures on the subject scan path and POS based AOI.
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2 Theoretical Background

Depression screening mostly relies on self-reported subjective inventories and
scores. There have already been many depression measurement scales, such as
the center for epidemiological studies depression scale (CES-D) [20], the Beck
depression inventory (BDI) [4], the self-rating depression scale (SDS) [26], and so
on. However, the major goal of these scales is to assess whether individuals meet
the morbidity standards of depression and degree of depression. Unfortunately,
most depression scales are inapplicable to screening high-risk depression groups
due to the ambiguous definition of state depression and trait depression [14].
Therefore, this study developed a High-Risk Depression Screening Scale (S-hr-
DS) based on division and recombination of state and traits of items in some
classical scales.

S-hr-DS is a novel self-reported subjective inventory to assess whether indi-
viduals who do not meet the morbidity standards of depression and degree of
depression but already have relative state and traits of depression. Our research
group is composed of psychologists, clinicians and information scientists. We aim
to discover the characteristics of the subconscious activities aroused by specific
situations under synchronous multimodal behavioral and neurocognitive data.

Although high-risk depression groups can be detected upon performing S-
hr-DS, self-assessment tests have obvious disadvantages because these self-
assessment tests cannot provide the subject’s test-taking process data that is
objective evidence related to its mental state. Different ways have been pro-
posed to tackle this problem. As a well-developed cognition research technology,
eye-tracking has been one of the common methods to screen dysphrenia and
brain cognitive explorations [3]. Recent research has shown that the eye-tracking
paradigm of depression has anti-saccade tasks [12], free view tasks [13], staring
stability tasks [16] and negative vocabularies or “self” attentions. This technic
can track the subject scan path when finishing the S-hr-DS and thus provide clues
related to the subject’s mental state. The application of eye-tracking technology
in mental disorder is an updated attentive study area, we utilize it in a novel
way. Instead of focusing on conventional features such as the fixation time [25],
number of fixations and the spatial distributions of the fixations (heat map) [5],
we propose to extract features by word-fixation driven feature encoding.

In order to reduce the dimension of the feature and improve the performance
of the classifier, we implement the wrapper type feature selection procedure.
Support vector machine recursive feature elimination (SVM-RFE) can filter out
redundant features and insignificant feature components to achieve higher clas-
sification performance [9]. The research findings of Harikrishna et al. have shown
that this method can not only simplify the computational procedure but also
effectively improve classification accuracy in datasets [11]. Therefore, the recur-
sive feature elimination (RFE) scheme developed specifically for the SVM is
employed in our case.
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3 Experimental Methods

3.1 Data Acquisition

In this study, the randomized control method was applied and subjects were
divided into high-risk depression groups and healthy groups according to the
S-hr-DS. Items in the S-hr-DS were tested twice on a computer one by one after
10 months to prevent practice effect. The S-hr-DS consisting of 62 items was
first imported into the software Tobii Pro Lab. These items are presented on an
item-by-item basis to the subjects. The Tobii Pro X3-120 Eye Tracker [13] will
record the subjects’ eye-tracking data and answers to the S-hr-DS.

Fig. 1. Procedure of data collection

An item of the S-hr-DS is shown in part A of Fig. 1. The specific process with
data collection is shown in part B of Fig. 1. After the eye movement calibration,
the subjects were shown a sign of “+ in the middle of the screen in 500 ms. Items
of the S-hr-DS are presented on an item-by-item basis to the subjects. Each item
in the S-hr-DS should be answered with “Yes” or “No” by pressing the keyboard
according to its contents. The eye-tracker will record the subjects’ eye-tracking
data and answers (the part C of Fig. 1) to the S-hr-DS.

High-risk groups were selected from a total of 697 subjects. All of them were
screened according to the S-hr-DS. 39 subjects met the screening standards of the
S-hr-DS but didn’t reach the diagnosis standards of the Self-Rating Depression
Scale (SDS) [26]. They were labeled high-risk depression groups. Healthy groups
were also selected from the above mentioned 697 subjects. Healthy groups were
those who didn’t reach the screening standards of the S-hr-DS and the SDS. The
total number of healthy groups are amount to 39 people. We exclude 9 subjects
of two groups whose gaze samples are under 75% in the experiment. There is
a total of 69 subjects (33 subjects labeled high-risk depression groups and 36
subjects labeled healthy groups) in the data set. Such labels will be used as the
ground truth for training the classifier, while features will be extracted from the
eye-tracking data.
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3.2 Feature Extraction

Traditionally, the clinician makes decisions regarding the mental state of the
subject according to a comprehensive assessment of the answers to the item
in the scores and inventories. However, these answers cannot provide objective
evidence related to the subjects mental state because the subject’s test-taking
process cannot be recorded. On the other hand, assessment of the answers by
psychologists is a laboursome problem, especially for large scale screening. There-
fore, we try to develop a computer-assisted screening method based on features
extracted from the eye-tracking data acquired during the self-assessment test
process.

In order to construct features from the eye-tracking data, each item is decom-
posed into question and answers part. Our preliminary study shows that high-
risk depression groups and the healthy groups show different preferences to Chi-
nese words or phrases with different POS tags. Therefore, we propose to partition
the item to different AOIs, including words or phrases with different POS tags,
as shown in Fig. 2. In this manner, the time the gaze stays in any area of inter-
est (AOI) reflects the preference level of the subject to the words or phrases
with different POS tags in the item and hence can be used as an indicator of
the mental state. On the other hand, the order the gaze scans different AOIs
(the scan path) provides clues regarding the decision process when the subject
is trying to give an answer to the question in the item of S-hr-DS. Based on this
analysis, we propose to extract the feature by the way of word-fixation driven
feature encoding that the time the gaze stays in different AOIs can be considered
simultaneously. A detailed description of word-fixation driven feature encoding
process can be found as follows:

Step 1: Mark the segmentation and parsing result of all items in the S-hr-DS
and encode each POS tag with an integer in a manner as shown in Table 1.

Step 2: Use the software Tobii Pro Lab to partition the S-hr-DS into dif-
ferent AOIs according to the POS of the words or phrases and assigns a code
from Table 1 to each AOI. Figure 2(a) and Fig. 2 (b) give a sample item of the
S-hr-DS and the result of AOI partitioning and encoding.

Step 3: Export all eye-tracking data from the software Tobii Pro Lab. Use
the software Microsoft Excel to sort out the fixation time in the AOIs of each
item. Merge the eye-tracking data for AOIs of the POS tags.

Step 4: Take 60 ms as the basic unit on fixation feature quantization and
convert the fixation time on each AOI to that in a time unit of 60 ms.

Step 5: Encode the subject scan path according to the fixation time (in
60 ms unit) and the corresponding POS tag codes of the AOIs. For example, if
the gaze scans over an AOI of a verb and stays on this AOI 120 ms, the resulted
code for this scan is “11”, with “1” denoting the code of the AOI of this POS
tag while two “1” implying that the gaze fixes two time units on this AOI.
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Table 1. Mapping table of different part-of-speech (POS) tags..

Area of interest Meaning Code

v Verb 1

r Pronoun 2

n Noun 3

d Adverb 4

a Adjective 5

u Auxiliary 6

p Preposition 7

c Conjunction 8

m Numeral 9

2 Yes 10

3 No 11

Black Area of blank 12

(a) (b)

Fig. 2. (a) A sample slide of the S-hr-DS. (b)The result of areas of interest partitioning
and encoding.

Due to the difference in the time for different subjects spending on answer-
ing the questions in the items of the S-hr-DS, the length of the encoded features
corresponding to different subjects will be different. The feature lengths cor-
responding to different subjects will be normalized to that of the longest one
(The length of the longest feature in the data set is 10715 features) by padding
zeros to tackle such a problem.

3.3 Feature Selection and Model Training

As mentioned above, our feature vector contains 10715 components that is much
larger than the number of samples for training in our study. This is a typi-
cal under determined problem. On the other hand, there may exist correlations
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between different feature components [10]. Furthermore, different feature compo-
nents may contribute quite differently to the classification. Therefore, a wrapper
type feature selection procedure (recursive feature elimination, RFE) [9] will be
performed specifically for the SVM classifier with respect to the feature vector
to remove irrelevant and redundant features.

The SVM-RFE based feature selection method starts with all feature compo-
nents and recursively removes the feature component with the least importance
for classification in a backward elimination manner. The measure for the impor-
tance of a feature component is computed from the weighting vector of the
SVM [18]:

w =
∑

l

αl × yl × x(l) (1)

where αl is the Lagrange multipliers, yl is the class label of the l-th sample, and
x(l) is the feature vector resulted from feature extraction for the l-th sample.
With such a weighting vector, the importance of the i-th component ci can be
determined as w2

i , and hence the feature components can be selected according
to their importance as determined above. A detailed description of the feature
selection and model training procedure can be found in Algorithm 1.

Feature components are removed recursively one-by-one according to their
corresponding weights in the SVM classifier trained in the training data set. The
feature selection results are evaluated by the performance of the SVM classifier in
the test data set while retrained in the training set based on the reduced feature
vector. In this way, the optimal classifier which perform the best in terms of the
accuracy can be obtained.

4 Experimental Results and Discussions

4.1 Description of the Data Set

In our study, with the assessment mentioned in Sect. 3.1, 33 of the subjects are
labeled high-risk depression groups while the 36 subjects are labeled healthy
groups. All subjects have no history of taking psychotropic drugs and also have
no history of alcohol and drug abuse. In the test, each subject is asked to sit
down in front of a computer where 62 items are displayed sequentially on the
screen. For each item, the subject is asked to choose an answer by keyboard, and
the eye-tracking data is recorded synchronously.

4.2 Experimental Results and Discussions

We calculate the frequencies of the nine POS tags in extracted features for each
of the two groups (healthy groups and those are high-risk depression groups) of
subjects. The frequencies of nine POS tags that appeared in items of the S-hr-
DS are also calculated as features. Figure 3 (a) and Fig. 3 (b) give the bar plots
of these two kinds of frequencies in the S-hr-DS and in the extracted features,
respectively.
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(a)

(b)

Fig. 3. (a) The frequencies of nine part-of-speech (POS) tags appeared in items of the
self-rating high-risk depression screening scale. Different color bars indicate different
POS tags of words. (b) The frequencies of POS tags of words after feature extraction.
Black bars indicate the frequencies of POS tags of words in the feature set of high-risk
depression groups. White bars indicate the frequencies of POS tags of words in the
feature set of healthy groups.

In general, the two groups pay different attention to AOI in different parts
of speech. As shown in Fig. 3. (b), both groups pay more attention to nouns,
adverbs, and adjectives than to pronouns, although the pronouns appear more
frequently than the nouns, the adverbs, and the adjectives in the S-hr-DS (See
Fig. 3. (a)). We can also see from Fig. 3. (b) that both groups pay more attention
to numbers than to auxiliary words, prepositions, and conjunctions, although
Fig. 3. (a) demonstrates that the numbers appear less frequently than the aux-
iliary words, prepositions and conjunctions in the S-hr-DS. These observations
may lend the psychologists a way for improving the S-hr-DS by including more
nouns, adjectives, and numbers in it. In addition, it can be observed from
Fig. 3. (b) that high-risk depression groups pay more attention to words of each
POS tag than the healthy groups do. This population difference is particularly
obvious for verbs and adjectives. Such a difference motivates us to develop the
classifier based on these eye-tracking features.
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In order to demonstrate the robustness of our algorithm 10-fold cross-
validation [15] procedure is implemented during the process of feature selection
and model training. In this process, the data set is randomly divided into 10
copies for 10 round feature selection and model training. During each round,
one copy is randomly selected as the test set, and the remaining data set is
used as the training set. This cross-validation procedure results in 10 different
classifiers and 10 different subsets of features.

The performance of the classifiers trained in one round of the 10-fold cross-
validation procedure in terms of the accuracy under different numbers of feature
components is illustrated in Fig. 4. From the curve in this figure, we can see that
different numbers of feature components involved in the classification result in
different accuracies. We achieve an optimal accuracy of 85% when an optimal
subset of 1000 feature components is selected out from the total 10715 feature
components. The accuracy saturates at about 71% when more than 2000 compo-
nents are selected. This is mainly due to the existence of redundant and related
features in the feature set. From these observations, we can conclude that upon
the proper selection of a subset of feature components, the performance of the
corresponding classifier can be significantly improved.

Fig. 4. Performance of the classifiers trained in one round of the 10-fold cross validation
procedure in terms of the accuracy under different numbers of feature components

Table 2. Experimental results before & after feature selection.

Feature selection Accuracy Sensitivity F1-score p-value

CI(95%) CI(95%) CI(95%)

Before 0.59 0.54 0.54

After 0.81 0.76 0.79 p < 0.05

The results of statistical assessment of our proposed algorithm in the afore-
mentioned data set in terms of the sensitivity, the F1-score, and the accuracy are
shown in Table 2 for cases with and without feature selection procedure. From
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this table we can see that upon performing the feature selection procedure the
performance of the trained model in terms of all the above three parameters is
significantly improved.

Algorithm 1: Feature selection and model training algorithm

Input: Pool of features for all subjects Px =
{
X(1),X(2), . . . ,X(ns)

}
, pool

of class labels Plb = {y1, y2, . . . , yns
}, the number ns of subjects,

the number L for components of features in the pool.
Output: The accuracy Acc for the optimal classifier.
Initialize: Feature rank list r = [ ], feature index I = [1, 2, 3 . . . L],
accuracy set of the classifier R = [ ], the accuracy for the classifier
acc = 0, the accuracy for the optical classifier Acc = 0;

Split: split Px into training set Xtr =
[
X(1),X(2), . . . ,X(ntr)

]T
and test

set Xte =
[
X(1),X(2), . . . ,X(nte)

]T
, split Plb into class labels for samples

in the training set Ytr = [y1, y2, . . . , yntr
]T and class labels for samples in

the test set Yte = [y1, y2, . . . , ynte
]T , where ntr is the number of samples in

the training set, nte is the number of samples in the test set;
Begin
while (I �= φ) do

Train the SVM classifier in the training set with the selected features;
Perform classification and compute the accuracy acc with the test set ;
R ← [acc,R] ;
Compute the weighting vector w from Eq.(1);
Compute the ranking criterion ci = (wi)

2 for all feature components;
Find the feature component: î = arg mini∈I ci ;
r ← [̂i, r], I ← I − {̂i} ;
Set Xtr = Xtr(:, I),Xte = Xte(:, I);

end
set Acc = max(R);
Output: Acc;
End

5 Conclusions and Future Work

In this paper, a novel method has been proposed based on the processing of the
eye-tracking data recoded when answering S-hr-DS to identify high-risk depres-
sion groups. In the method, the eye-tracking features are extracted by a novel way
of word-fixation driven feature encoding that the time the gaze stays in different
AOIs can be considered simultaneously. The support vector machine recursive
feature elimination (SVM-RFE) algorithm is employed for feature selection and
model train-ing. We achieve an accuracy of 81% with 76% in sensitivity and 79%
in F1-score on a data set including 69 subjects, which demonstrates a potential
application of this algorithm in detecting high-risk depression groups.
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However, there exist some drawbacks in our method. Firstly, the performance
of the trained model is quite different from run to run of 10-fold cross-validation.
This may be due to the loss of diversity in each of the 10 partitions of the
data set because our data set only contains 69 subjects in total. Therefore, one
of our future work will be to acquire more data for both model training and
performance evaluations. Secondly, other data sources, including EEG data and
the active unit (AU) data of the faces, will be considered in our future work
to further improve the performance of the model. Finally, iterative innovation
of the S-hr-DS will be performed in the future according to the experimental
results of this work.
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Abstract. Infrared small target detection (ISTD) is a key technology
in the field of infrared detection and has been widely used in infrared
search and tracking systems. In this paper, a novel ISTD approach based
on a prior constraint network (PCN) and an efficient patch-tensor model
(EPT) is proposed. Firstly, the PCN trained by numerous synthetic
image patches is employed to obtain the preliminary segmentation result
of small targets, which is later used as a prior constraint. Then the EPT
model deals with the target detection problem by solving an optimiza-
tion problem of recovering low-rank and sparse tensor. Next, the prior
constraint is further applied to the target component of the EPT model
as a regularization. Finally, the joint PCN-EPT model can be solved effi-
ciently by the Alternating Direction Multiplier Method, and the targets
are obtained by applying a simple adaptive threshold segmentation to
the obtained target component from the PCN-EPT. Experimental results
on multiple real datasets show that the proposed model outperforms the
state-of-the-art.

Keywords: Infrared small target detection · Prior constraint
network · Robust principal component analysis · Low-rank and sparse
decomposition.

1 Introduction

Infrared small and dim target detection (ISTD) are broadly applied in missile
detection and guidance, search and rescue in the sea, industrial flaw inspection,
wild animal protection. However, great challenges [6,10] exist in the ISTD task:
(1) the size of a target is very small due to the long distance between the target
and infrared sensors. (2) the signal-to-noise ratio of an infrared small target
image is quite low owing to the weakness of the target signal, interference from
the background, and sensor noises.
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In the literature, two lines of methods are developed to deal with the
ISTD task: the sequence-based and single-frame based methods. The sequence-
based ones use features such as continuity and smoothness of target motion
for detection, which aims to make better use of spatial-temporal information
and Representative methods include three-dimensional matching filter [20]. The
sequence-based methods are rarely used in real-time applications due to high
time-consumption.

On the contrary, The single-frame based methods extract targets from a
single image. They are broadly used in real applications and can be roughly cat-
egorized into background filtering-based, human vision system (HVS)-inspired
and low-rank and sparse decomposition (LSD)-based methods.

The background filtering-based methods use various filtering operations to
suppress background and enhance target, say Top-Hat transformation [25], Max-
median filtering [11], and two-dimensional adaptive filtering (TDLMS) [12], etc.
These methods are efficient and perform well in simple scene backgrounds, but
they often fail under complex backgrounds.

Numerous ISTD methods [5,9,15,24] are inspired by the HVS. The Local con-
trast measure (LCM) [5] uses a ground-effect local contrast calculation method
that can effectively enhance the target while suppressing background clutter.
Improved local contrast measure (ILCM) [15] is proposed to alleviate the prob-
lem of noise enhancement in LCM. The multi-scale patch-based contrast measure
(MPCM) [15] and weighted local difference measure (WLDM) [9] are proposed
which can further improve the detection performance of small targets. These
methods obtain the detection results only based on the gray relationship in a
local area, neglecting using the global context information.

The LSD-based methods exploit the non-local self-correlation property of
the infrared background image and the sparsity property of small targets. The
background and targets are then regarded as sparse components and low-rank
components, respectively. Therefore, the ISTD is transformed into the prob-
lem of detaching the low-rank and sparse components from a data matrix. The
most representative work of LSD is the infrared patch-image (IPI) model [14],
in which the data matrix is constructed by vectorizing all image patches of an
infrared image and the low-rank and sparse decomposition problem is viewed as
a robust principal component analysis (RPCA) [4] problem. The IPI model uses
the l1 norm to measure the sparseness of the target, which could produce some
background residuals in the target image. To deal with this issue, the weighted
IPI model [8] is proposed to suppress strong edges and noise. The subsequent
weighted infrared patch-tensor model (RIPT) [7] tries to use both local and non-
local prior information. Sun et al. proposed an improved re-weighted infrared
patch-tensor model based on the weighted tensor nuclear norm (WNRIPT) [22],
which leverages the advantage of the continuity between consecutive frames.
Besides, the total variation regularization is employed to regularize the back-
ground component so that the smoothness of the background component can be
enhanced. Wang et al. proposed a method based on total variation regularization
and principal component pursuit (TV-PCP) [23]. The reference [21] proposed a
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method via spatial-temporal total variation regularization and weighted ten-
sor nuclear norm. Although these detection methods have good performance
in complex scenes, they are lack of efficiency in solving respective optimization
problems.

In recent years, deep neural networks have developed rapidly. Due to excellent
feature extraction capabilities, they have made great achievements in the fields of
general object detection and image segmentation. Convolutional neural network
(CNN) for general object detection does not perform well in the detection of
dim and small targets, thereby some scholars propose concrete deep methods for
ISTD. Fan et al. [13] used modified convolutional neural networks to enhance the
contrast of small targets in infrared images. Lin et al. [18] design a seven-layer
fully convolutional network to detect small targets and supervised training on
the synthetic data generated by oversampling. Zhao et al. [26] regard the target
detection problem as a semantic segmentation problem. They use the target
extraction module to segment the target and then constrain the segmentation
result by using a semantic constraint module. The main bottlenecks of deep
methods for ISTD lie in their relying more on a large number of training samples
and limited generalization ability to unseen scenes.

To improve the detection accuracy and efficiency of infrared small targets in
diverse backgrounds, we propose a new infrared small target method based on
prior constraint network and efficient infrared patch-tensor model. This method
can combine the advantages of deep neural networks and LSD to achieve better
performance in detection accuracy and efficiency. The contributions of this paper
are fourfold:

1) A fully convolutional neural network called PCN for ISTD is proposed. It is
trained on totally synthetic image patches.

2) We propose a block-wise detection scheme and construct an efficient infrared
patch-tensor model (EPT) for the ISTD task.

3) In further, we combine the PCN and EPT to form the PCN-EPT model,
where the detection result from PCN is used as a prior constraint to regularize
the target component in the EPT. A modified alternating direction multiplier
method (ADMM) is designed to solve the PCN-EPT model.

4) Experiments on a single-frame image dataset and five real image sequences
show that our proposed method can significantly improve the detection per-
formance and outperform the compared methods.

2 Prior Constraint Network (PCN)

The architecture of PCN is shown in Fig. 1. Note that the color arrows show dif-
ferent layers and the blocks represent the feature maps. In Fig. 1, the lower part
is an encode-decode structure, which includes three down-sampling layers and
three up-sampling layers. The upper part of the PCN firstly uses bicubic inter-
polation to increase the resolution of the image. Then it is followed by a residual
block and a max-pooling layer, which can increase the detailed characteristics
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and better distinguish small targets from the background. Each down-sampling
process in the encoder process contains a residual block (Upper right dashed
block), which has two convolutional layers and each of them is followed by a
batch normalization layer and an activation layer. We use a skip-layer to add
the feature maps from the first convolutional layer to the final output. Such
residual connection can enhance the learning effect of the network and acceler-
ate the network convergence [16]. The network decoding process is completed
by the up-sample block (Lower right dashed block) and the intermediate skip
connections.

Fig. 1. The architecture of PCN.

In Fig. 1, the sizes are shown around each feature maps, where C denotes
the number of channels and we set C = 8. The PCN outputs the segmentation
image fP indicating the targets existing in the input image fD ∈ Rm×n. The
PCN model performs supervised learning on a large number of infrared synthetic
image patches of size 128×128. The generation procedure of the synthetic image
patches will be introduced in the experiment section. The loss function of PCN
consists of the target extraction loss and the sparse loss, which are defined as:

LPCN =
1
N

N∑

i=1

||fPi
− fTi

||2F + λ||fPi
||1, (1)

where fT is the ground truth of infrared image fD, N is the number of training
samples, and the λ is used to trade-off the relationship between the two loss
items. The target extraction loss uses the Frobenius norm to measure the differ-
ence between the PCN output of fP and fD. The target sparse loss is l1 norm
of fP , which is used to suppress potent noise and reduce the false alarm rate.
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Through PCN’s learning from numerous training samples, we can obtain a
preliminary infrared small detection result fP with respect to the infrared image
fD. However, this result may not sufficiently capture the background and target
information in the real image. In order to achieve high detection performance in
an unseen environment, we should utilize more information from the test image.
To this end, we consider taking fP as a prior and building a joint model, which
is capable of significantly utilizing target-related information both from a large
number of training samples and from the test image.

3 Efficient Patch-Tensor Model

In this section, we will introduce a new patch-tensor model based on a block
detection scheme and IPI model. It is efficient in extracting targets only from
one test image, so we name it efficient patch-tensor model (EPT).

3.1 Block Detection

For an input infrared image fD, we adopt a block-wise detection scheme to
extract small targets. The motivation behind is that parallel dealing with all
sub-images can be more efficient than processing the original image. According
to a basic block size B × B, we divide the original image fD into k detection
blocks (fD1 , fD2 , ..., fDk

), and the overlap of any two adjacent detection blocks
is fixed as 20 pixels. For an infrared image fD ∈ Rm×n, the number of detection
blocks k is k = [m

B ] × [ n
B ], where [·] is rounding operation. Therefore, using the

detection block decomposition method, we formulate an infrared image model
to the following form:

fDi
= fBi

+ fTi
+ fNi

, i = 1, 2, ..., k. (2)

where fDi
, fBi

, fTi
and fNi

are the original sub-image, background sub-image,
small target and noise sub-image of the i-th detection block. Decomposing the
original infrared image into detection blocks can significantly improve the detec-
tion efficiency, and we will explain in detail in the experiment section.

3.2 Patch-Tensor Model with Block Detection

In fact, we can use tensor structure to rewrite the Eq. (2):

D = B + T + N , (3)

where D,B, T ,N ∈ RM×N×k and D(i) is the infrared patch-image correspond-
ing to the ith detection block fDi

. Due to the lower proportion of small target
occupying the pixel area to the infrared image, the corresponding target patch-
tensor can be regarded as a sparse component, which is restricted by ||T ||0 � l.
Here l is a scalar and determined by the number and size of targets. Gener-
ally, the infrared background image have the characteristics of low contrast and
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slightly blurred. The local and non-local patches in the infrared image have
certain correlation properties, so we consider that the background patch-image
corresponding to each detection block is low-rank, which can be described as:
||rank(B(i))||0 � ri, i = 1, 2, ..., k, where ri is constant and determined by the
background complexity of the ith detection block fDi

. In addition, since the
obtained infrared image will be interfered by some noises it can be assumed that
the noise is i.i.d. So noise patch-tensor N for some δ > 0 satisfies the condition
||N ||2F � δ, where the constant δ reflects the degree of image interference by
noise. At this point, we can formulate the problem of detecting small targets
from an image fD into the following low-rank and sparse tensor factorization
task:

min
B,T

k∑

i=1

||B(i)||∗ + λ||T ||1, s.t. D = B + T , (4)

where λ is the parameter that balances target patch-tensor and the background
patch-tensor. There we use the tractable nuclear norm and l1 norm to convex
approximations of the rank function and l0 norm, respectively. We can obtain
the detection results of small targets in fD by solving the problem (4).

4 PCN-EPT Model and Solution

4.1 PCN-EPT Model

To fully utilizing the target information from training samples and the test
image, we combine PCN and EPT and obtain the PCN-EPT model. It uses
the output of PCN as a prior to constrain the target component in Eq. (4). We
first obtain the output fP from the PCN for the input image fD, and then we
convert fP to the corresponding patch-tensor P. In order to further reduce the
interference of strong edges and noise on the detection results, the target local
structure weighted image fW is also calculated [7]. Likewise, fW is transformed
to the weighted patch-tensor WT . We add P and WT as the prior conditions to
regularize the target component in (4). Therefore, we have:

min
B,T

k∑

i=1

||B(i)||∗ + λ1||WT � T ||1 + λ2||T − P||2F , s.t. D = B + T , (5)

where � is the notation of Hadamard product and λ1, λ2 are the weight param-
eter. The λ2 represents the degree of constraint on the target component, which
can reflect the reliability of PCN detection. The optimal solution of model (5)
can be considered as a good fusion of the detection results of PCN and EPT
models, which can incorporate the advantages of both.



510 C. Nie et al.

4.2 Solution of the PCN-EPT Model

We use the ADMM algorithm [2] to solve our model (5), which helps accelerate
the convergence of our model. According to the ADMM, the model (5) can be
converted to minimizing the following convex optimization problem (6).

L(B, T ,Y, β) =
k∑

i=1

||B(i)||∗ + λ1||WT � T ||1 + λ2||T − P||2F

+
β

2
||D − B − T ||2F + < Y,D − B − T >,

(6)

where Y ∈ RM×N×k and β are the Lagrange multiplier tensors and positive
penalty parameter, respectively. During each iterative process, one variable will
individually be considered the decision variable and the corresponding sub-
problem is solved while the others are fixed. This process are repeated several
times until it meets the convergence condition. The related sub-problems are
listed as follows:

1) The sub-problem of the variable B is:

min
B

k∑

i=1

||B(i)||∗ +
β

2
||D − B − T ||2F + < Y,D − B − T > . (7)

The above problem (7) can be solved by singular value thresholding (SVT) [3]:

B(i) = SV T1/β(D(i) − T(i) − β−1Y(i)), i = 1, 2, .., k, (8)

where SV Tμ(·) is the singular thresholding operator and defined as follows:

SV Tμ(X) = USμ(
∑

)V T , where Sμ(x) = max(|x| − μ, 0)sign(x). (9)

Through singular value decomposition we have X = U
∑

V T , and extend
Sμ(·) operation to tensor by applying it to every entry. The function sign(·)
is a symbolic function.

2) The sub-problem of the variable T can be converted to:

min
T

λ1||WT �T ||1+λ2||T −P||2F +
β

2
||D−B−T ||2F + < Y,D−B−T >, (10)

which can be solved by soft thresholding operator [1]:

T = S λ1
2λ2+β WT

(
β(D − B) − Y + 2λ2P

2λ2 + β
). (11)

3) For Lagrange multiplier Y and scale β, the update operation is:

Y = Y + β(D − B − T ), where β = min(ρβ, βmax). (12)
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4.3 Overall Detection Procedure

Taking an infrared image fD as input, the pipeline of the PCN-EPT model is
shown in Fig. 2. The main steps are also listed as follows:

1) The PCN trained on numerous synthetic dataset is used to obtain prior
detection results fP , then calculate the target local structure weighted image
fW according to [7].

2) Apply EPT model to image fD, fP , fW and get the corresponding infrared
patch-tensor D,P,W, respectively. Then we can have the corresponding
background patch-tensor B, target patch-tensor T and noise patch-tensor
N .

3) Reconstruct background patch-tensor B and target patch-tensor T into cor-
responding background image fB and target images fT .

4) Finally, we use adaptive threshold [14] to extract the target.

Fig. 2. Infrared small target detection procedure based on PCN-EPT model.

4.4 Complexity Analysis

The computational complexity of the PCN-EPT model mainly consists of two
parts, namely the PCN and the EPT model. The complexity of the PCN can
be measured by the parameter storage (MPCN ) and the number of multiply-
add operations (OPs). We only considered convolutional layers for PCN OPs,
because the proportion of other layers such as up-sampling layers and activation
layers is negligible. During the experiment, we set the parameter c = 8, λ = 0.2,
so MPCN = 1.3 × 105, OPs = 2.9 × 108. For a single infrared image of size
256 × 256, it can be processed on the device GeForce RTX 2080 Ti in real-time.

Now we analyze the computational complexity of the EPT model. Assuming
that the size of the input infrared image is m × n, the IPI model is directly
constructed by the patch of size p×p to obtain a patch-image of size M×N , where
M = p2, N ∼ mn and we assume M > N . The total cost of each iteration of IPI
model is O(MN2) operations and our proposed EPT model can be seen as a
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combination of constructing the IPI model on each detection block. The number
of detection blocks is k = mn/B2 when basic block size B be divided with no
remainder by m and n. So the complexity of the PET model is O(mn

B2 M(NB2

mn )2),
which can be simplified to O(MN2

k ). Since the number of iterations of matrix
decomposition is related to its size, the actual detection takes less time.

5 Experimental Results

This section presents the experiments on several real datasets to demonstrate
the performance of our PCN-EPT model. We first introduce the experimental
settings, including evaluation metrics, datasets, and baseline methods used for
comparison. Then we discuss the impacts of the key parameters of our model.
Finally, the proposed method is tested on the datasets and compared with the
baseline methods.
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Fig. 3. ROC curves for different size of blocks and patches on Single-frame dataset.

5.1 Metrics, Datasets and Baseline Methods

Metrics. To evaluate our model, we apply the detection probability Pd and false
alarm rate Fa [14] and the ROC curve over the two, which are popularly used in
the ISTD literature. The detection result obtained after the adaptive threshold
is considered to be a target if it meets: there are overlapping pixels between the
detection and a real target and their center distance is less than 4 pixels.

Datasets. Our experimental datasets consists of a single-frame dataset con-
taining 100 test images (Single dataset for short) and five real infrared image
sequences. All images in Single are obtained from Google Image Search. The real
infrared image sequences are captured by infrared cameras. The details of the
experimental datasets are shown in the supplementary materials.

The training samples for PCN are obtained by randomly embedding a target
T patch of size a × b into a infrared background image fB as follows:

fD(x, y) =

{
max(rT (x − x0, y − y0), fB(x, y)), x ∈ (1 + x0, a+ x0), y ∈ (1 + y0, b+ y0),

fB(x, y), otherwise,
.

(13)
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where (x0, y0) is randomly generated position of the left upper corner of the
target in the background image. The parameter r is the grayscale change factor
of the target image, which is a random integer within the range [h, 255], and
h is the maximum value of the background image fB . Each synthetic image
randomly contains one to three targets, and the size of the target is changed by
bicubic interpolation. The synthetic dataset obtained by the above method can
simulate the real environment well [14].

Methods for Comparison. We compared the proposed method with six base-
line detection methods, including Top-Hat [25], Max-Median [11], LCM [5], DPS-
MGRG [17], FKRW [19], and IPI method [14]. The detailed parameter settings
of these detection methods are given in the supplementary materials.

5.2 Parameter Setting and Analysis

We first analyze the effect of basic blocks size B and patch size PS on the
detection probability (Pd), false alarm rate (Fa), and detection efficiency on the
synthetic dataset. We let the size of the basic block vary between (60× 60, 80×
80, 100 × 100, 120 × 120, 140 × 140, 160 × 160, m × n) and the corresponding
patch sizes are (20×20, 30×30, 40×40, 50×50, 60×60, 70×70). The average
detection time of a single infrared image on the synthetic dataset is shown in
Table 1, and the corresponding receiver operating characteristic (ROC) curves
of simulation experiments is shown in Fig. 3. Due to the patch size PS must be
smaller than the basic blocks size B, then part of the data in Table 1 is empty.

Table 1. Average processing time (s) of PCN-EPT model over the Single dataset.

PS B

60 × 60 80 × 80 100 × 100 120 × 120 140 × 140 160 × 160 m× n

20 × 20 0.1343 0.1458 0.1543 0.1718 0.1760 0.1818 0.1884

30 × 30 0.1488 0.1710 0.1675 0.1895 0.2025 0.2154 0.2896

40 × 40 0.1738 0.1803 0.1645 0.2026 0.2488 0.2796 0.4538

50 × 50 0.1467 0.1823 0.1931 0.2086 0.2630 0.3012 0.5876

60 × 60 * 0.1758 0.2210 0.2472 0.3073 0.3420 0.6144

70 × 70 * 0.1497 0.1891 0.2508 0.3317 0.3508 0.6981

It can be seen from Table 1 that the average detection time of a single infrared
image will increase with the lager of the basic block. The detection time reaches
the maximum when the basic block and original image as the same size. When
the size of B is fixed, the average detection time increases first and then decreases
as PS becomes larger, and the false alarm rate (Fa) and detection probability
(Pd) are decreasing (Fig. 3). Whenever PS is increased by 10, the Fa will decrease
by an average of one third, and the small basic block detection probability drop is
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more obvious. At the same time, when the sizes of B and PS are close, the Pd and
detection time will be drop significantly (Fig. 3(c)), but smaller PS can adapt to
all size detection block (Fig. 3(a)). The main reason is the aspect ratio of the IPI
model constructed by a single detection block is seriously unbalanced, which will
cause the lower detection probability. Our experiment found when B meeting
condition of B > 2PS, then our proposed block detection method will not
affect the detection accuracy, and smaller B can improve the detection efficiency.
Through the above analysis, in order to trade off the detection efficiency, Pd and
Fa, we choose basic block size B is 80 × 80 and the patch size PS is 30 × 30.

The parameter sliding step will also affect detection performance. An exces-
sively large sliding step will usually reduce the self-correlation of the patch-image,
but too small a sliding step decreases the detection efficiency, we choose the slid-
ing step to 10 according to [14]. We set the parameter λ1 = 1/

√
max(m,n). The

parameter λ2 = γ
1−γ can be regarded as a weighted combination of the detection

results of the PCN and EPT models, where the weight coefficients of the PCN
and EPT models are γ and 1 − γ, respectively. When λ2 is infinity or zero, the
PCN-EPT model will degenerate into a single PCN or EPT model. Here we set
λ2 = 0.5.

5.3 Performance Comparison

The detection results of six representative infrared images from the experimental
datasets are shown in Fig. 4. It can be seen that the dim and small targets contained
in the image are successfully detected. For the small objects which are obviously

(a)

(b)

(c)

Fig. 4. The detection results of the 6 representative infrared images of with PCN-EPT
model. (a) Original image. (b) Detection results. (c) Surface map of target image.
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Table 2. The average calculation time of the test methods on the experimental
datasets.

Datasets Top-Hat Max-Median LCM DPS-MGRG FKRW IPI PCN-EPT

Single dataset 0.0108 0.0244 15.0527 0.7333 0.3289 19.3785 0.1710

Sequence 1 0.0145 0.0213 28.2869 1.5713 0.6533 38.9210 0.2673

Sequence 2 0.0149 0.0211 25.4815 1.3957 0.6378 25.8114 0.2844

Sequence 3 0.0144 0.0137 28.5842 0.9491 0.4115 11.4445 0.1768

Sequence 4 0.0154 0.0183 42.7432 1.1721 0.1676 30.5828 0.2601

Sequence 5 0.0181 0.0448 101.5943 2.7116 1.2316 128.8257 0.6963

relative to the surrounding area in the general scene Fig. 4(1,3,5), our model can
easily localize the targets by our proposed method. When the low contrast and dim
target is located in the complex scene Fig. 4(2,4) or submerged by cloud and noise
Fig. 4(6), the PCN-EPT model still has a good detection performance.
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Fig. 5. ROC curves of detection results on experimental datasets: (a) Single-frame
dataset; (b) sequence 1; (c) sequence 2; (c) sequence 3; (d) sequence 4; (e) sequence 5;
(f) sequence 6.

The ROC curves of PCN-EPT model and six methods for comparison over
the datasets are shown in Fig. 5. It can be seen that our proposed method has the
best detection performance on the Single dataset and all real image sequences.
An obvious advantage of the PCN-EPT model is that it can achieve a high
detection probability at a low false alarm rate, rather than other methods (such
as IPI and LCM) growing slowly with the increase of false alarm rate. This
shows that PCN-EPT can better enhance the target and suppress background.
Besides, the PCN-EPT model can also have a good detection performance on
5 real image sequences, while the detection probability of the others methods
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appears too low (Fig. 5(d)). This is mainly due to the fact that these methods
cannot adapt to various complex scenarios. However, our proposed method can
correctly and robustly detect small targets thanks to the combination of both
PCN and EPT.

The computational time of different methods on the experimental datasets is
shown in Table 2. The Top-Hat and Max-median have high detection efficiency
but lower detection probability. The IPI model and LCM outperform Top-Hat
and Max-median but their time-cost increase too much. FKRW and DPS-MGRG
are fast than IPI and LCM. However, they are less efficient than our PCN-EPT
model, which is especially efficient for large-scale infrared images.

6 Conclusion

In this paper, a PCN-EPT model is proposed to improve the detection accu-
racy and efficiency of ISTD, Firstly, a prior constraint network is designed to
learn the preliminary segmentation result of small targets from numerous syn-
thetic data. Secondly, a patch-tensor model is proposed to improve the effi-
ciency of single-frame detection method of LSD. The output of PCN is used
as a prior constraint to the EPT model to take the advantages of both PCN
and EPT. Experiments demonstrate the effectiveness and efficiency of the pro-
posed method. In the future, we will further improve the model by exploiting
spatial-temporal context information.
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Abstract. Hashing methods play an important role in large-scale image retrieval.
Unsupervised hashing is popular in practical applications because it does not
require labels for supervised training. However, as one of the important steps in
unsupervised hashing, construction of semantic relationships between data by k-
nearest neighbors has limitations due to the existence of false neighbors among
the first k neighbors. In this paper, we propose a novel unsupervised deep hashing
method for image retrieval.We firstly construct a semantic similaritymatrix which
utilizes deep features and the expanded k-reciprocal nearest neighbors to guide
the learning of hash codes. After that, we design a deep neural network to preserve
the structural information of original images. In addition, a weighted pairwise loss
function generated by the positive pairs and negative pairs is employed to solve
data imbalance problem. Extensive experiments on CIFAR-10, MIRFLICKR and
NUS-WIDE datasets show that our method significantly outperforms the state-of-
the-art unsupervised hashing methods.

Keywords: Unsupervised deep hashing · K-reciprocal nearest neighbors ·
Image retrieval

1 Introduction

With the rapid growth of image and video data on the internet, hashing-basedmethods for
large-scale datasets have received more and more attention. Due to high computational
efficiency and low storage burden, hashing-based methods have been applied to many
fields [1–4].

Most data in real-world scenarios do not have semantic labels and it takes time to
manually make labels for large-scale datasets. Therefore, learning in the unsupervised
way is crucial, which is the focus of our work. In recent years, a number of works
exploited the similarity relationships between images by the k-nearest neighbors [5, 6].
Deep Discrete Hashing (DDH) [7] constructed a pairwise similarity matrix by k-nearest
neighbors and used the similarity matrix to guide the learning of hash codes. However,
these methods exist some drawbacks. Firstly, they do not consider that there may be
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some non-neighbor items among the first k neighbors. For example, in Fig. 1, P1, P2, P3
and P4 are four true neighbors to the query image, but some of them are not included in
the top-4 ranks such as P4. From the figure, we can also observe some false neighbors
(N1−N6) receive high ranks. As a result, directly using the top-k ranked images will
introduce noise and influence the final result seriously. Inspired by recent studies [19,
20], we construct the similarity matrix by expanded k-reciprocal nearest neighbors. In
addition, the aforementioned methods do not consider the impact of data imbalance
problem which is mentioned in the supervised hashing [8]. Data imbalance refers to
the issue that the number of similar image pairs is much smaller than that of dissimilar
image pairs in a batch of training data.

query P1 P2 P3N1 N2 N3 N4 P4 N5 N6

Fig. 1. Illustration of the nearest neighborhoods of a query image in CIFAR-10 dataset. Top:
The query image and its 10-nearest neighbors, where P1-P4 are positives, N1-N6 are negatives.
Bottom: Each two columns shows 10-nearest neighbors of the corresponding image. Red and
orange box correspond to the query image and positives, respectively. (Color figure online)

In order to solve these problems, we propose a novel unsupervised hashing method
based on k-reciprocal nearest neighbors and the contributions can be summarized as
follows:

1) We employ the expanded k-reciprocal nearest neighbors to build our semantic
similarity matrix from deep features, which improves the accuracy of similar matrix.

2) We propose a deep learning framework to learn discrete hashing codes in an unsu-
pervised way to improve the effectiveness of hashing methods, in which a novel
weighted loss function for pairwise hashing learning from imbalance data.

3) Extensive experimental results on three popular datasets show that the proposed
method outperforms the state-of-the-art unsupervised hashing methods.

2 Related Work

2.1 Hashing Methods

Existing hashing methods include data-independent and data dependent. Locality sen-
sitive hashing (LSH) [9] is a typical data-independent hashing method, the basic idea
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of LSH is that after two adjacent data points in the original data space are transformed
by using random linear projections, the probability that the two data points are still
adjacent in the new data space is large. Data-dependent hashing methods can generate
more accurate hash codes, so they have attracted more attentions compared to data-
independent hashingmethods. Thesemethodsmainly include two categories: supervised
and unsupervised hashing methods.

Supervised hashingmethods usually make full use of supervised information such as
semantic label to help them obtain superior retrieval performance. Supervised hashing
with kernels (KSH) [10] uses the relationship between hamming distance and inner
product to obtain an efficient objective function that minimizes the distance between
similar pairs andmaximizes the distance between dissimilar pairs. Deep hashing network
(DHN) [11] minimizes both pairwise cross-entropy loss and pairwise quantization loss
to guarantee pairwise similarity and improve the quality of hash codes. Deep learning
to hash by continuation (HashNet) [8] improves DHN by balancing the positive and
negative pairs in training data, and by continuation technique for lower quantization
error. To accelerate the learning process, GAH [12] proposes a new deep hashing model
integrated with a novel gradient attention mechanism.

In unsupervised hashing methods, Spectral hashing (SH) [13] provides a relaxed
solution to the graph segmentation problem by analyzing the Laplacian matrix eigenval-
ues and eigenvectors of similar graphs. Density sensitive hashing (DSH) [14] extends
LSH by exploring the geometry of the data and avoids the use of projections that are
most consistent with the data distribution to randomly select projections. ITQ [15] uti-
lizes an efficient alternating minimization strategy to find a rotation of zero-centered
data to minimize the quantization error by mapping these data to the vertexes of a zero-
centered binary hypercube.With the appearance of deep learning, deep hashing methods
have also been proposed. Deep Hashing (DH) [16] develops a deep neural network to
seek multiple hierarchical non-linear transformations to learn hash codes. DeepBit [17]
uses original images and their corresponding rotated images as input, and minimizes
the distance between their binary descriptors when updating network parameters. Deep
discrete hashing (DDH) [7] constructs the similarity matrix which exploits the neigh-
borhood structure through the images in a feature space to guide the training of network.
Semantic structure-based unsupervised deep hashing (SSDH) [18] constructs the seman-
tic structure by considering the distribution of data with distances that are estimated by
two half Gaussian distributions and designs a pair-wise loss function to preserve the
semantic information.

2.2 Stacked Denoising Autoencoder

Autoencoder [29] was proposed by Rumelhart in 1986 and can be used for high-
dimensional data processing such as dimensionality reduction and feature learning.
Denoising autoencoders can extract more robust characterization, where noise is added
to the input data of the model, and then it is expected to recover the original image with-
out noise. SAE [30] is composed of multiple layers of autoencoder. SAE initializes the
parameters of the deep network by pretraining of layer-by-layer unsupervised learning.
In this paper, we initial our network with a stacked denoising autoencoder (SDAE) [21]
which can facilitate more robust hash codes.
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3 Methodology

Firstly we introduce the notations I = {I1, I2, . . . , In} represents the training data of n
images without labels, and X = {x1, x2, . . . , xn} ∈ Rd×n represents the global features
of n samples, each of which uses a d-dimensional feature vector. Our goal is to learn
their compact binary codes B = {b1, b2, . . . , bn} ∈ {−1,+1}k×n which can preserve
semantic similarities in the original feature space. The training procedure of the proposed
framework is shown in Fig. 2. The whole framework has four components. In stage 1,
a pretrained ResNet50 [22] network is used to exact 2048 dimensional features from
each image. In stage 2, we construct a semantic similarity matrix as information source
steering the process of hash learning. In stage 3, we initialize our deep neural network
with a stacked denoising autoencoder network. In stage 4, we use all encoder layers
of SDAE [21] to learn features and hash function simultaneously. In our method, a
pairwise weighted cross-entropy loss preserves the pairwise similarity in deep features
and a binary quantization loss function controls the quantization error of binarizing
continuous real-values to binary codes.

Step1:Feature Exaction
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Pairwise
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Fig. 2. The training procedure of the proposed framework

3.1 Construction of Semantic Similarity Matrix

To obtain neighborhood structure of the images for unlabeled datasets, we exact the
2048-dimensional features from the pretrainedResNet50model [22]. Thenweuse cosine
similarity of feature vectors to compare the relationship between image pairs and employ



522 J. Wang and Z. Lian

k-nearest neighbors (KNN) method to construct neighbors. For each image, we select k1
images with highest cosine similarity as its neighbors and get an initial similarity matrix
S1 as:

(S1)ij =
{
1, if xj is k1 NN of xi
0, otherwise

(1)

In fact, the top-k1 results of the original ranking usually contain some negative
samples. In order to find a better approach, we borrow the ideas from k-reciprocal
nearest neighbors [19, 20]. The basic idea of k-reciprocal neighbors is that if an image
u is one of the k nearest neighbors for an image v and if v is also one of the k nearest
neighbors for u, then we can infer u and v are k-reciprocal nearest neighbors. Based on
the above description, we generate the second similarity matrix S2 as:

(S2)ij =
{
1, if xj is k1 NN of xi and xi is k1 NN of xj
0, otherwise

(2)

Here we use {G1,G2, . . . ,Gn} to denote the ranking lists of points {x1, x2, . . . , xn}
by k1-reciprocal nearest neighbors, Gi is defined as follows:

Gi = {
j|(S2)ij = 1

}
(3)

However, in practice some images have very few k-reciprocal nearest neighbors,
even for a very large k. In order to tackle this problem, more nearest neighbor set G

′
d of

each candidate d ∈ Gi is added to form a set Ri. Here, G
′
d is defined as follows:

G
′
d = {z|(S3)dz = 1 ∧ d ∈ Gi} (4)

And S3 is defined as follows:

(S3)dz =
{
1, if xz is 1

2k1 NN of xd and xd is
1
2k1NN of xz

0, otherwise
(5)

1
2k1NN means the first half of k1 nearest neighbors. Finally, a more robust k1-reciprocal
nearest neighbor set Ri is defined according to following condition:

Ri ← Gi ∪ G
′
d (6)

The above condition ensures that the added neighbors are very likely to be relevant
to the original set Gi.Thus, we can obtain final similarity matrix S by:

(S)ij =
{
1, if j ∈ Ri

0, otherwise
(7)
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3.2 Architecture of Deep Neural Network

We initialize our deep neural network with a stacked denoising autoencoder [21]. And
the aim of initialization is to enhance the discriminability between features. Here we
set network dimensions to 2048-5000-3000-5000-k-5000-3000-5000-2048, where k is
the length of hash layer z. After that we fine-tune the whole network by minimizing
reconstruction loss. z = fw(x) and x′ = gw′(z) respectively represent the encode function
and the decode function, where w and w′ is the weights of the network. In our method,
the reconstruction loss is written as:

L =
N∑
i=1

∣∣∣∣∣∣xi − x
′
i

∣∣∣∣∣∣2
2

(8)

After pretraining, we discard the decoder layers and reserve the encoder layers as
our deep hash model.We optimize the encoder layers by minimizing the weighted cross-
entropy loss and quantization loss. In the hash layer, we use tanh(·) as activation function
which aims to promote hash codes at 1 or −1. Eventually we obtain k-bit binary codes
by the sign function.

3.3 Loss Function

In order to obtain more accurate hash codes, an appropriate loss function is important
which reduce the difference between the current hash codes and the learning goal. As
mentioned earlier, data imbalance problem is often ignored inmost deep hashing learning
training. For example, in CIFAR-10 dataset, supposing that the batch size is 100. In such
a batch, the number of similar image pairs is 10 × (10 × 9 ÷ 2) = 450, and the number
of dissimilar image pairs is 100 × 99 ÷ 2 − 450 = 4500. Therefore, the proportion of
positive pairs and negative pairs reaches 1: 10. However, too few positive pairs may leads
to insufficient learning of positive pairs and reduce the overall retrieval performance. To
perform deep hashing from imbalanced data, we jointly preserve similarity information
of pairwise images and generate hash codes by maximum likelihood [28]. Given a pair
of hash codes bi and bj, their hamming distance distB

(
bi, bj

)
and inner product

〈
bi, bj

〉
have a good relationship. It is defined as:

distB
(
bi, bj

) = 1

2

(
k − 〈

bi, bj
〉)

(9)

Given the pairwise semantic similarity matrix S = {
sij

}
and hash codes B =

{bi}ni=1, the weighted maximum likelihood (WML) estimation of the hash codes B =
{b1, b2, . . . , bn} can be formulated as:

log P(S|B) =
∑
sij∈S

cijlog p(sij|bi, bj) (10)

cij is used to balance the loss of similar and dissimilar pairs. The value of cij does not set
a fixed value according to different training sets, but changes dynamically according to
similar and dissimilar pairs in a batch of data. If there are many similar pairs in training
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data, the weight of dissimilar pairs will be increased; otherwise, the weight of similar
pairs will be increased. Here we release it as,

cij =
{ |S0|/|S1|, sij = 1

|S1|/|S0|, sij = 0
(11)

where S1 = {
sij ∈ S : sij = 1

}
is the set of similar pairs and S0 = {

sij ∈ S : sij = 0
}

is the set of dissimilar pairs. For each pair of hash codes, p(sij|bi, bj) is the conditional
probability which can be expressed by the Bernoulli distribution:

p
(
sij|bi, bj

) =
{

σ
(〈
bi, bj

〉)
, sij = 1

1 − σ
(〈
bi, bj

〉)
, sij = 0

= σ
(〈
bi, bj

〉)sij (1 − σ
(〈
bi, bj

〉)1−sij (12)

where σ(x) = 1/
(
1 + e−x

)
is the sigmoid function, and

〈
bi, bj

〉
is the inner product

between a pair of hash codes bi and bj. By taking Eq. 12 into Eq. 10, we can get the
negative log likelihood function as follows:

J1 =
∑
sij∈S

cij
(
log

(
1 + e〈bi,bj〉

)
− sij

〈
bi, bj

〉)
(13)

Specifically, in order to facilitate optimization, we introduce a continuous variable
zi instead of the discrete variable bi. zi is the output of the last fully connected layer of
the encoder and bi = sgn(zi), so the negative log likelihood function can be rewritten
as:

J1 =
∑
sij∈S

cij
(
log

(
1 + e〈zi,zj〉

)
− sij

〈
zi, zj

〉)
(14)

In order to get a more accurate binary code, we add the quantization loss function.
||·||1 is the element-wise absolute operation. The loss function is adopted as follows:

J2 =
N∑
i=1

k∑
j=1

∣∣∣||zji |−1|
∣∣∣
1

(15)

The overall loss function can be written as:

J = J1 + αJ2 (16)

where α is the hyper-parameter. Equation 16 is not discrete, so we can easily optimize
it with Stochastic Gradient Descent (SGD).

4 Experiments

4.1 Datasets

We evaluate the proposed method on three popular datasets: Firstly, CIFAR-10 [23] has
60,000 color images, whose dimension is 32× 32× 3. In our experiments, we pick 100
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images from each category as the test set, and the left 59,000 images are taken as the
retrieval set. We randomly select 10,000 images from the retrieval set as a training set.
Secondly, MIRFLICKR [25] includes 25,000 images under 38 concepts. Each image
is associated with one or multiple labels. 1,000 images are randomly selected from the
dataset as the test set, and the remaining images are left as the retrieval set. We randomly
select 10,000 images from the retrieval set as a training set. Finally, NUSWIDE [24]
includes 269,648 images assigned with one or multiple labels under totally 81 concepts.
We choose the most frequent 21 concepts, and finally obtain 160,236 images. 2,100
images are randomly selected from the dataset as the test set, and the remaining images
are left as the retrieval set. We randomly select 21,000 images from the retrieval set as
a training set.

4.2 Experimental Settings

We compare our method with some unsupervised hashing methods including LSH [9],
PCAH [26], SH [13], ITQ [15], DSH [14], DDH [7] and SSDH [18]. Among them, LSH,
PCAH, SH, ITQ and DSH are traditional shallow hashing methods, DDH and SSDH are
deep hashing methods. For shallow hashing methods, we exact 2048-dimensional deep
features from the pool5-layer of the ResNet50 that is pretrained on ImageNet. For deep
hashing methods, we use the same features to generate similarity matrix, others use the
same settings in their original papers.

We implement our method based on the open-source framework TensorFlow [27].
Each layer is pretrained with a dropout rate of 20% and the entire network is finetuned
without dropout. For pretraining of SDAE, the initial learning rate is set to 0.1, the batch
size is 128. For our deep hashing model, the learning rate is set to 0.01, the batch size is
128, the coefficient of quantization loss is 0.01 and the value of k1 is set to 700, 1000,
1000 for CIFAR-10, MIRFLICKR and NUSWIDE respectively.

Three standard evaluation metrics are adopted to evaluate the performance, where
they are mean average precision (MAP), precision-recall(P-R) curves and precision
curves with respect to different numbers of top retrieved samples (P@N). We adopt
MAR@1000 for CIFAR-10, and MAP@5000 for MIRFLICKR and NUSWIDE.

4.3 Experimental Results

Table 1 shows the MAP results for our method and all baseline methods on three bench-
mark datasets with hash code lengths to be 16, 32, 64 bits respectively. From the table,
we can see that the proposed method obtains the best results in all cases. In particular,
compared to the best baseline method, our method achieves relative improvements of
5.4%, 7.7% and 13.6% for different bits on CIFAR-10. On MIRFLICKR, our method
achieves relative improvements over the best baseline methods of 6%, 6% and 5.7% for
16 bits, 32 bits and 64 bits respectively. The value of MAP is also higher than other
baseline methods on NUSWIDE, and it achieves improvements 8.7%, 6.8% and 8.9%
for different bits.

From the table we can also get the following observations. Firstly, comparing to tra-
ditional linear methods, although they get good performance using deep features, they
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Table 1. Comparison with baselines in terms of MAP@1000, 5000, 5000 on CIFAR-10,
MIRFLICKR and NUSWIDE. The best result is shown in bold.

Method CIFAR-10 MIRFLICKR NUSWIDE

16bits 32bits 64bits 16bits 32bits 64bits 16bits 32bits 64bits

LSH 0.259 0.311 0.324 0.573 0.586 0.606 0.407 0.433 0.465

PCAH 0.484 0.410 0.344 0.645 0.640 0.628 0.526 0.505 0.494

SH 0.428 0.424 0.372 0.603 0.609 0.597 0.484 0.485 0.450

ITQ 0.548 0.581 0.591 0.704 0.696 0.715 0.627 0.665 0.673

DSH 0.453 0.452 0.483 0.618 0.677 0.699 0.565 0.572 0.633

DDH 0.479 0.522 0.561 0.713 0.731 0.755 0.638 0.663 0.689

SSDH 0.473 0.448 0.380 0.725 0.698 0.681 0.571 0.597 0.621

Ours 0.602 0.658 0.727 0.785 0.791 0.812 0.725 0.733 0.778

are still worse than our model which uses deep network to preserve the structural infor-
mation of the original images. Secondly, we can see that SSDH and DDH obtain better
results than traditional linear methods in most cases, which demonstrate the effective-
ness of deep architecture. In addition, our method is significantly better than the results
of SSDH and DDH. SSDH does not consider the data imbalance problem, so its perfor-
mance is worse. DDH constructs similarity matrix without considering the non-neighbor
items among the first k neighbors, so it can not generate more accurate hash codes.

To further demonstrate the effectiveness of our method, we draw Precision-Recall
(P-R) curves and Precision curves @ N retrieved images (P@N) on CIFAR-10 and
MIRFLICKR datasets for 64 bit lengths in Fig. 3 and Fig. 4. From the figure, we can
observe that the performance of our method is better than several methods.

Fig. 3. Precision-recall curves with code length 64.
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Fig. 4. Precision curves @ N retrieved images (P@N) with code length 64.

4.4 Detailed Analysis

To further evaluate our proposed model, we give three aspects of parameter analysis
results. We firstly conduct experiments to analyze the value of k1, then analyze the
weight of solving the data imbalance, finally we analyze the effect of different similar-
ity matrices. In our experiment, we conduct experiments to learn the influence of k1.
We select k1 from the set {100,200,300,400,500,600,700,800,900,1000}. We fix other
parameters and only change the k1 value. When the value of k1 changes, we record the
results as shown in Fig. 5. In this figure, the performance increases along with the value
of k1 gradually increasing at the beginning, and finally stable.

Fig. 5. MAP with respect to the value of k1

To demonstrate the effectiveness of the sensitive to weight of solving the data imbal-
ance, we conduct experiments on CIFAR-10, MIRFLICKR and NUSWIDE datasets.
Both the experiments are conducted with code length 16, 32, 64, and the results are
shown in Table 2. From this table, we can observe that the performance with the weight
item is better than that without it. This reflects that the weight can effectively solve the
data imbalance problem.

In addition, we compare different methods to construct similarity matrix and the
results are presented in Fig. 6. From the figure, we can observe that the performance of
expanded k-reciprocal matrix is superior to the other twomethods. As mentioned before,
some images have very few k-reciprocal nearest neighbors, so the performance of non-
expanded k-reciprocal matrix is worse than the KNN-based matrix. We can also observe
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Table 2. Performance comparison in terms of MAP by training with pairwise loss and with
weighted pairwise loss.

Method Hash bits CIFAR-10 MIRFLICKR NUSWIDE

With
pairwise loss

16 0.566 0.773 0.699

32 0.620 0.784 0.704

64 0.705 0.797 0.746

With weighted pairwise loss 16 0.602 0.785 0.725

32 0.658 0.791 0.733

64 0.727 0.812 0.778

that the result of our method is better than the result of KNN, which demonstrates the
effectiveness of proposed semantic similarity matrix.

Fig. 6. Performance comparison by different methods to construct similarity matrix.

5 Conclusion

In this paper, we present a novel deep unsupervised hashing method. We construct a
deep neural network to learn hash codes. Pairwise similarity matrix is constructed by
expanded k-reciprocal nearest neighbors to preserve the semantic relationships between
data. Extensive studies on three datasets show that our method significantly outperforms
the state-of-the-art methods.
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Abstract. Micro-Expression Recognition has been a challenging task as transi-
tory micro-expressions only appear in a few of facial areas. In this work, we aim
to improve the recognition performance by boosting the micro-variations in the
learned areas. This paper proposes an architecture, deriving facial micro-variation
heat areas and then integrating in conjunction with the micro-expression recog-
nition network, to learn the micro-expression features in an end-to-end manner.
The method is constructed by the Heat Areas Estimator from Heatmap (HAEH),
which is to produce micro-variation heat areas as facial geometric structure, and
the Temporal Facial Micro-Variation Network (TFMVN) for learning the fusion
features. The method can define and capture facial heat areas significantly con-
tributed to the micro-expressions. Our approach activates or deactivates corre-
sponding feature maps from the heat areas to guide feature learning. We per-
form experiments on CASME II dataset and SAMM dataset. The experimental
results show that we achieve state-of-the-art accuracy, and the method demon-
strates good generalization ability for cross-dataset. Moreover, we validate three
pivotal components’ effectiveness within our architecture.

Keywords: Micro-expression recognition · Heatmap · Heat areas

1 Introduction

Micro-Expression Recognition, which refers to the slight facial parts moved facial
expression recognition, serves as a key step for lie-detect and other psychological activ-
ities.

Different from the traditional Facial Expression Recognition (FER), a micro-
expression lasts between 1/5 to 1/25 of a second and usually only involves in sev-
eral facial key areas [8]. The movement of these facial parts can hardly be recognized
even by human eyes. Therefore, it is challenging to distinguish the moved facial key
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areas between consecutive frames. The objective of this work is to improve the micro-
expression recognition performance by focusing on micro-variation.

Recently, [9] proposed a concept called expression-state and used Convolutional
Neural Network (CNN) to model the dynamic evolution of expression states. After
that, the LSTM takes the features extracted by CNN as input and learns the temporal
information between different frames. [8] proposed an Enriched Long-term Recurrent
Convolutional Network that encodes each micro-expression frame into a feature vec-
tor through CNN modules, then predicts the micro-expression by passing the feature
vector through a Long Short-term Memory (LSTM) module. Compared to traditional
facial expression recognition, the micro-expression recognition requires different visual
features.

Facial landmarks have been proved to effective for recognizing facial expression [6].
However, in micro-expression recognition, the dynamic geometrical variations based on
facial landmarks can hardly be caught partially due to the slight movement of facial key
areas (usually 1˜2 pixels). Besides, the facial landmarks based methods mostly depend
on the quality of face alignment algorithms. Even subtle misalignment may weak the
performance of micro-expression recognition.

In this paper, we propose a new model to integrate micro-variation information in
conjunction with micro-expression recognition. Therefore, the micro-expression recog-
nition can utilize the invariable facial structure information, for the facial geometrical
features are essential to locate the facial key areas. We aim to guide the feature extractor
automatically focusing on facial key areas which contribute to micro-expression recog-
nition.

In contrast with directly using landmarks to capture the dynamic geometrical vari-
ations, our approach uses Fully Convolutional Neural Network (FCN) [2] to generate
facial micro-variation heat areas. As noticed in Fig. 1, the heatmaps through FCN can
precisely denote the facial key areas such as eyes, mouth and nose. In Sect. 4.1, we
experiment and observe that the model guided by ground truth facial micro-variation
heat areas can achieve 66.39% accuracy on CASME II dataset [22]. It suggests the
richness contained in heat areas.

After generating facial micro-variation heat areas, we integrate heat areas into
microexpression recognition. The heat areas serve as structure cue to guide feature
learning for CNN. To fully utilize the structure information, we apply facial micro-
variation heat areas at multiple stages in the Convolutional Neural Network.

We evaluate the proposed method on popular micro-expression benchmarks
CASME II. Our approach outperforms previous state-of-the-art methods. We also con-
duct the cross-dataset experiment and ablation analysis to demonstrate the generaliza-
tion and effectiveness of our model.

2 Related Work

In the literature of Micro-Expression recognition, besides classic methods (LBP-
TOP [20], DMDSP [14] and Bi-WOOF [11]), recently, state-of-the-art performance has
been achieved with Deep Convolutional Neural Networks (DCNNs). These methods
mainly fall into two categories, i.e., handcrafted features and Deep Neural Networks.
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Fig. 1. Given a face image I, we divide the image into three parts: eyes (including left and right
eyes), nose and mouth. We transform the landmarks to facial micro-variation heat areas’ heatmap
according to different parts by initializing the gauss distribution according to the center.

Handcrafted Features. Handcrafted features have mainly chosen Local Binary Pattern
with Three Orthogonal Planes (LBP-TOP) [20] as their primary baseline feature extrac-
tor. Optical flow has also been widely studied in computer vision for decades. [21] pro-
posed the Facial Dynamics Map (FDM) based on optical flow estimation. [15] learned
the temporal characteristics and the corresponding discriminative filters. [10] combined
several handcrafted features and classified them by SVM. The handcrafted features
based methods have two steps: feature extraction and classification, whereas deep neu-
ral networks can automatically extract features and it is end-to-end trainable

Deep Neural Networks. Peng et al. [16] proposed a two-stream 3-D CNNmodel called
Dual Temporal Scale Convolutional Neural Network (DTSCNN). Different streams of
the framework were used to adapt to different frame rates of ME video clips. [9] pro-
posed a concept called expression-state. The author used CNN to model the dynamic
evolution of expression states. (i.e., onset, onset to apex, apex, apex to offset and off-
set). After that, the LSTM took the features extracted by CNN as input and learns the
temporal information between different frames. This approach provides the motivation
towards the design of our proposed method. In this work, we adopt LSTM to extract the
temporal appearance features. Recently, [8] proposed an Enriched Long-term Recurrent
Convolutional Network that encodes each micro-expression frame into a feature vector
through CNN modules, then predicts the micro-expression by passing the feature vec-
tor through a Long Short-termMemory (LSTM) module. Our approach is inspired from
these deep learning methods, however differs from them in two specific aspects: (1) the
heat areas are learned by the heatmap focusing on the micro-variations. (2) The app-
roach is guided by the integrations with the boosted micro-variation heat areas in an
end-to-end manner.

3 Proposed Method

As mentioned in the introduction, the movement of facial key areas can hardly be rec-
ognized and the dynamic geometrical variations based on facial landmarks can also
hardly be caught due to the slight movement. We propose a model to integrate facial
micro-variation heat areas into micro-expression recognition. The detailed configura-
tion of our proposed model is illustrated in Fig. 2. It is composed of two closely related



534 M. Zhang et al.

Fig. 2. The model of our approach. The upper box is Heat Areas Estimator from Heatmap
(HAEH) and the lower box is Temporal Facial Micro-Variation Network (TFMVN). First we
trained the Heatmap Estimator on face alignment dataset. After getting the trained estimator, the
micro-expression images are input to the estimator to get the facial heat areas. The heatmaps
serves as structure cue to guide feature learning. Based on these heatmaps, TFMVN with three
branches were built.

components: Heat Areas Estimator from Heatmap (HAEH) and Temporal Facial Micro-
Variation Network (TFMVN). The HAEH produces micro-variation heat areas as facial
geometric structure. TFMVN incorporates facial micro-variation information according
to heatmaps and uses LSTM to model the temporal features.

We have noticed other choices available for geometric structure representa-
tions. [12] has adopted facial parts to aid facial tasks. However, facial parts are too
coarse for focusing on facial micro-expression key areas. [4] proposed a mask-cnn to
locate the position of objects parts, but the generation approach of mask can not be used
on face. On the contrary, facial micro-variation heat areas pay attention to areas which
contribute to micro-expression. And the effectiveness of HG network has been proved in
other face alignment and pose estimation tasks [13]. Experiments in Sec 4 have shown
that heat areas can best boost the performance of micro-expression recognition.

3.1 Heat Areas Estimator from Heatmap

In order to incorporate facial micro-variation heat areas into feature learning, we trans-
form landmarks to facial micro-variation heat areas to aid the learning of feature. The
responses of each pixel in heatmap are decided by the distance to the corresponding
facial micro-variation heat areas. The details of facial micro-variation heat areas are
defined as follows.

Label Transform. The process of label transform is shown in Algorithm 1. Specifi-
cally, given a face image I, we divide the image into three parts: eyes (including left
and right eyes), nose and mouth. Since the facial boundary of cheek has no contribution
to micro-expression, we ignore the facial areas which belong to cheek. We use the face
alignment dataset named 300W-LP [17] to train the Stacked-Hourglass network, the
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Algorithm 1 Process of label transform.
Input:

A face image, I;
The corresponding landmarks, [x1, y1, ..., x68, y68];

Output:
Facial micro-variation heat areas,Mi(i = 1, 2, 3);

1: Initializing the i− th heat areas center:
compute the midpoint of the 2 boundary landmarks(i.e. lower eyelid and eyebrow);

2: Setting the radius to the distance between the midpoint and boundary landmarks;
3: Making gauss distribution according to the center and the radius on Mi

4: return Mi;

labels in dataset are 68 landmarks. Therefore, after dividing the face image into three
parts, we transform the landmarks to facial micro-variation heat area according to dif-
ferent parts. Specifically, we choose the middle landmarks of lower eyelid and eyebrow
(the 41th and 19th landmarks), and compute the midpoint of these two landmarks as
the gauss distribution center. Then we initialize the gauss distribution according to the
center, and set the radius to the distance between the midpoint and lower eyelid. As for
nose and mouth, we take the similar method to initialize these two areas. The heat areas
of different parts are shown in Fig. 1.

Hourglass Network. Following the instruction of [13], we adopt four-stacked hourglass
network as our backbone network of estimator. The structure of hourglass network is
shown in Fig. 2. While [13] uses the bottleneck block of [19] as the main building block
for the HG, we go one step further and replace the bottleneck block with the recently
introduced hierarchical, parallel and multi-scale block of [1]. This block outperforms
the original bottleneck of [19] when the same number of network parameter was used.

Training and Evaluation. We train the heatmap estimator on 300W-LP dataset [17],
and evaluate on 300-W test set. Traditionally, the metric used for face alignment is the
point-to-point Euclidean distance normalized by the interocular distance. We follow
this evaluation metric, in particular, we use the Normalized Mean Error defined as:

NME =
1
N

N∑

k=1

‖xk − yk‖2
d

(1)

, where x denotes the ground truth gauss distribution center for each facial parts (k =
1, 2, 3), y is the corresponding prediction and d is the interocular distance of the ground
truth centers.

3.2 Temporal Facial Micro-variation Network

In Sect. 3.1, we mentioned that facial micro-variation heat areas can be obtained through
heatmap estimator. Based on these heatmaps, a Temporal Facial Micro-Variation Net-
work (TFMVN) with three branches can be built. The TFMVN structure has been
shown in Fig. 2. We introduce the operation of each network by taking the eyes part
as an example.



536 M. Zhang et al.

Extract Facial Micro-variation Feature.We resize the input image of the eyes branch
to 224*224 resolution. The next component is feature learning component. We use
VGG-16 [18] as our backbone network to extract the appearance features of each frame.
It is worth mentioning that in TFMVN we remove the fully connected layer of the tradi-
tional convolutional neural network to extract its convolutional layer features as feature
descriptors. Besides, unlike other image classification tasks [19], the classes and frame
sequences in micro-facial expression databases are insufficient compared with other
video classification problems. If directly using some deeper CNN models, it can eas-
ily fall into overfitting when training. Therefore, we retain all convolution operations
before the pool3 layer (including the pool3 layer) and remove all convolutional layer
after the pool3 layer. For an input image of 224*224, a 28*28*512 convolution fea-
ture can be obtained under this condition, which can correspond to a 512-dimensional
feature descriptor of 28*28 spatial positions. Then we reorganized the eyes heat areas
obtained in the heatmap estimator by bilinear interpolation to a size of 28*28 to select
and retain valuable convolution descriptors.

As shown in Fig. 2, the convolution descriptors in the image are reserved in the dif-
ferent semantic branches with the weights corresponding to the heat areas. Meanwhile,
if a convolution descriptor is identified as representing an unrelated region, it will be
dropped. Specifically, the heatmap is a two-dimensional real-value matrix whose value
satisfies the Gaussian distribution. We define a threshold of 0.7 (selected through exper-
iment). If the pixel value of heatmaps is greater than the threshold, it is reserved, oth-
erwise, it will be dropped. The convolution descriptors in the TFMVN “reserve” and
“drop” operations are implemented in experiments with element-level multiplication
between convolutional features and heatmaps. Therefore, for a descriptor that is deter-
mined to represent a facial micro-variation heat areas (a region where the heatmap is
larger than the threshold), these descriptors will be reserved according to the weight.
Otherwise, the descriptor determined to be the unrelated region will become an all-zero
vector.

After getting the convolution descriptors reserved according to heatmaps from three
branches (eyes, nose and mouth), we use the maximum and average pooling and sepa-
rately perform L2 normalization. Then cascade them as the final feature representation.
Similarly, the nose and mouth branches have the same operational steps as the eye
branches described above.

Extract Temporal Feature. Seeing that we can view the variation of facial expres-
sion as an image sequence from neutral expression to peak expression, LSTM can be
modeled in accordance with people’s understanding behavior of a facial expression.
Therefore, after CNN extracts appearance features from each frame, instead of using
3D filters to extract temporal information like [7], we use LSTM to model the tempo-
ral relations between expression frames. Moreover, in [5] a CRF module was added
to extract the temporal information. But the model is a two-step network. In contrast,
by applying the LSTM for modeling consecutive frames in vision problems, our app-
roach can jointly train convolutional and recurrent networks in order to make the FAN
end-to-end trainable.
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The LSTM structure is shown in Fig. 2. The inputs of LSTM are attention appear-
ance features of each frame. In order to average the predictions of each time step for
final classification, we propose an average pooling layer with a weight function W(t):

zi =
1
N

∗
N∑

t=1

hti ∗ W (t) (2)

, where Hi = (ht1, ht2, ..., htn) is the output of LSTM at time t, Z = (z1, z2, ..., zn) is
the result of average pooling. W (t) is a weight function which linearly increases from
0...1 over frames t = 0...T . By applying W (t) in pooling layer, we emphasize the
importance of prediction at later frames in which hidden units capture more variation.

Training Method. TFMVN is an end-to-end trainable Convolutional Recurrent Neu-
ral Networks and therefore it is trained with Backpropagation Through Time. During
the training phase, all model parameters are randomly initialized except for the biases
which are initialized with zeros. After a whole facial expression frame sequence has
been propagated forward through the TFMVN, the weight parameters begin to update.
This end-to-end optimization can update the visual (CNN) and sequential (LSTM)
model parameters at the same time.

4 Experiments

In this section, we first introduce the datasets, evaluation methods and experiments con-
figuration. Then, we compare the empirical results of our method with other state-of-
the-arts on single domain and cross-dataset evaluation. The experimental results show
the effectiveness and potential of our approach. Furthermore, our model consists of
several pivotal components, and we also validate their effectiveness on the CASME II
dataset.

Datasets. We conduct evaluations on two challenging datasets including CASME
II [22] and SAMM [3].

CASME II dataset: CASME II is currently the most widely used benchmark dataset.
It consists of 247 video samples, elicited from 26 Asian participants with an average
age of 22.03 years old. Each CASME II participants originally has one of five categories
of micro-expressions: Surprise, Disgust, Happiness, Repression and Others.

SAMM dataset: SAMM is a newer challenging dataset. Full set contains 159 micro-
movements (one video for each) with a mean age of 33.24 years from 32 participants.
SAMM reported 7 basic emotions: happiness, anger, surprise, fear, disgust, sadness and
contempt.

Evaluation Metric. For single domain experiment, we evaluate our algorithm using
F1-Score, Unweighted Average Accuracy Recall (UAR), and Accuracy on CASME II.
In order to show the generalization ability and verify the capacity of handling cross-
dataset micro-expression recognition of our method, we use CASME II to train our
model and test it on SAMM dataset. In addition, because our model consists of several
pivotal components, i.e., Heatmap Estimator, micro-variation features and average pool-
ing layer with W(t). We validate their effectiveness within our model on the CASME
II.
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4.1 Comparison with State-of-the-Arts

Evaluation on CASME II. In single domain experiment, we compare our approach
with the state-of-the-art methods on CASME II dataset. For all experiments, we use the
Leave-One-Subject-Out (LOSO) cross validation protocol to prevents subject bias. The
results are shown in Table 1.

The methods compared in Table 1 can be classified into two categories: handcrafted
features [8,10,15,21] and deep neural networks [8,9]. For handcrafted features, [21]
proposed the Facial Dynamics Map (FDM) based on optical flow estimation. [8] chose
LBP-TOP as baseline which utilize only six intersection points in the 3D plane. [10]
combined several handcrafted features and classified by SVM. [15] learned the tem-
poral characteristics and the corresponding discriminative filters. As for deep neural
networks, [9] used CNN to extract appearance features of each frames and modeled the
temporal relations by LSTM. [8] proposed an Enriched Long-term Recurrent Convolu-
tional Network which integrates hierarchical spatial features. Our method outperforms
most previous methods on accuracies. Note that, our method achieves 65.37% accuracy
on the CASME II dataset which reflects the effectiveness for micro-expression recog-
nition.

We use ground truth facial micro-variation heat areas in the proposed method to
verify the effectiveness and potential of heat areas. “TFMVN+gtheatarea“ significantly
outperforms the TFMVN. The results increased by 1.02% on accuracy, 2.25% on UAR
and 3.08% on F1-Score, which demonstrate the effectiveness of heat areas information
and show great potential performance gain if the heat areas information can be well
captured.

While [10] employed Eulerian video magnification method and combined Local
Binary Pattern (LBP), Histograms of Oriented Gradients (HOG) and Histograms of
Image Gradient Orientation (HIGO) on three orthogonal planes. The number of subjects
and frame sequences in CASME II dataset is insufficient compared with other image
classification tasks, which means that it is especially not competent for deep learning
methods. Therefore, the handcrafted features like [10] could achieve better accuracies.
On the other hand, the handcrafted features based methods have two steps: feature selec-
tion and classification, whereas our TFMVN can automatically extract features and the
whole network is end-to-end trainable.

Cross-Dataset Evaluation. In cross-dataset evaluation, followed the configuration
of [8], we use both CASME II and SAMM dataset. Specifically, we hold out one
database at each time: trained on CASME II and tested on SAMM, and vice versa.
Table 2. comparing the performance of our TFMVN against the state-of-the-art meth-
ods on the cross-dataset evaluation protocol, our model outperforms previous results.
We achieve 45.36% accuracy with 36.75%UAR. The accuracy is significantly increased
by 2.18%, which indicates the robustness of our method to handle cross-dataset recog-
nition. Whereas the F1-Score is 1.92% lower than [8].

It is worth mentioning that In order to verify the capacity of handling cross-dataset
micro-expression recognition of our method, we use heatmaps estimator trained on
300W-LP which has no overlap with CASME II and SAMM dataset and compare the
performance with and without using facial micro-variation heat areas (TFMVN without
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Table 1. Performance compared with other method on CASME II.

Method F1-Score UAR Acc

FDM [21] 0.4053 N/A 0.4593

LBP-SIP [8] 0.4480 N/A 0.4656

LBP-TOP [8] 0.2941 0.3094 0.4595

EVM+HIGO [10] N/A N/A 0.6721

MM+LBP-TOP [15] N/A N/A 0.5191

ELRCN-TE [8] 0.5000 0.4396 0.5244

CNN-LSTM [9] N/A N/A 0.6098

TFMVN 0.4923 0.4587 0.6537

TFMVN+gtheatarea 0.5231 0.4812 0.6639

heatmap) information. The results are reported in Table 2. There is 4.8% accuracy boost
between our method without and with using facial micro-variation heat areas informa-
tion.

Table 2. Experimental results for cross-dataset evaluation.

Method F1-Score UAR Acc

ELRCN-SE [8] 0.3411 0.3522 0.4345

LBP-TOP [8] 0.2162 0.2179 0.3891

HOG-3D [8] N/A 0.228 0.363

HOOF [11] N/A 0.348 0.353

TFMVN 0.3219 0.3675 0.4563

TFMVN without heatareas 0.2814 0.3122 0.4083

ConfusionMatrix. To better understand what goes on under the model, we provide the
confusion matrix for TFMVN on CASME II dataset. Figure 3 shows the resulting con-
fusion matrices of our model on CASME II. It can be seen that our model achieved rel-
atively high recognition accuracies of each emotion. In particular, our model performs
well on happiness and surprise possibly due to larger amount of training samples. The
high confusion in disgust expression can be caused by the few number of sequences in
dataset. Further analysis is showed that the appearance variations of disgust expressions
are extremely slight which creates more confusions for our model. Hence, the sample
size remains a challenging problem for deep learning based approaches.

4.2 Ablation Study

Our model consists of several pivotal components, i.e., heatmap estimator for heat areas,
facial micro-variation features and average pooling layer with W(t). In this section,
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Fig. 3. Confusion matrix for TFMVN and BL on CASME II dataset. 0-Surprise, 1-Disgust, 2-
Happiness, 3-Repression, 4-Others.

we validate their effectiveness within our model on the CASMEII dataset. Based on
the baseline CNN-LSTM (BL), we analyze each proposed component, i.e., with the
baseline Heatmap estimator (BL+Heatmap) and average pooling with weight function
W(t)(APW), by comparing their accuracies on CASEM II.

Facial Micro-Variation Heat Areas. Heatmaps are chosen as geometric structure
which represent facial micro-variation heat areas in our model. We verify the poten-
tial of other structure information as well, i.e., mask for stress facial key areas. We
show the micro-expression recognition accuracies using different structure information
in Table 3. It can be observed easily that heat areas map (BL+Heatmap) is the most
effective one with the accuracy of 65.37%, increased by 4.39% compared to BL and
3.02% compared to BL+Mask.

Moreover, we use CAM algorithm [20] to visualize the features learned by our
model. Figure 4 shows the CAM heatmaps without using heat areas. Many regions
which are unrelated to micro-expression have a high response and the model out-
put wrong classification results. Figure 5 shows the CAM heatmaps generated by our
model. It can be clearly seen that our model focuses on some facial key areas which are
important for recognition. As a result, our model output the ground-truth classification
results on these examples.

Pooling Methods. We also conduct experiments to evaluate our pooling methods,
including average pooling with a weight function W(t)(APW), max pooling(MP) and
directly using the last output of RNN without pooling(WP). The result is shown in
Table 4. It can be observed that the performance is increased by 34.75% compared with
MP and 12.5% compared to the WP, which indicated that by applying W (t) in pooling
layer, TFMVN emphasizes the importance of prediction at later frames in which hidden
units capture more information.

Table 3. Accuracies on CASME II for
evaluation the potential of facial micro-
variation heat areas as the facial structure
information.

Methods BL BL+Mask BL+Heatmap

Accuracy 0.6098 0.6253 0.6537

Table 4. Accuracies on CASME II
for evaluation the potential of average
pooling with a weight function W(t) as
the pooling methods.

Methods MP WP APW

Accuracy 0.3062 0.5278 0.6537
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Fig. 4. The heatmaps generated by CAM algorithm without using heat areas. The model focuses
on many unrelated regions and output wrong classification results.

Fig. 5. The heatmaps generated by CAM algorithm with heat areas. The model focuses on some
facial key ares which have an important impact on the classification results.

5 Conclusion

Geometric structure is important for facial expression recognition and landmarks have
been proven well performed, however in the Micro-Expression Recognition, it is still
challenging due to the micro-variations. In this work, we proposed the method of Heat
Areas Estimator from Heatmap (HAEH) and Temporal Facial Micro-Variation Net-
work (TFMVN), which integrates micro-variations heat areas into micro-expression
recognition learning. Our approach activate or deactivate corresponding feature maps
according to the facial micro-variation heat areas to achieve the micro-variation boosted
recognition. We test our approach on CASME II and SAMM datasets. The experimental
results show that we achieve state-of-the-art accuracy and the well-performed accuracy
on cross-dataset evaluation. We also conduct ablation study to show the effectiveness
of our model.
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Abstract. Fashion sketches play a critical role in the initial stages of
fashion product design. This situation has motivated the development of
artificial intelligence (AI) techniques for automatically generating fashion
sketches. We present Fashion-Sketcher, a hybrid deep generative model
able to generate multi-class fashion sketches through two stages. At the
first stage, we design a Contour Generation Network to synthesize con-
tour images with a given categorical vector. At the second stage, we
design a Sketch Translation Network to translate the contour images to
the sketch images by extending the StyleGAN2 model to the conditional
version. The quantitative and qualitative analysis demonstrates that our
method is capable of synthesizing high-quality fashion sketches.

Keywords: Fashion sketch · Deep generative model · Generative
adversarial network · Variational auto-encoder

1 Introdution

Sketch drawings play an important role in assisting humans in communication
and creative design since the ancient period. In ancient times, our ancestors
carved strokes on rocks to record events. Nowadays, sketching is the fundamental
first step for expressing artistic ideas. For instance, in the fashion world, new
designs are presented by fashion experts in the form of hand-drawn sketches
before they’re cut and sewn. The fashion sketches usually include key information
such as category and patterns of fashion products, which are the foundation for
fashion style designs.

Besides, AI technologies are transforming the fashion industry in every ele-
ment of its value chains such as designing at a faster pace than ever. For exam-
ple, Google has already tested the waters of user-driven AI fashion design with
Project Muze, which creates designs based on users’ interests and alignment with
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the style preferences recognized by a pre-trained neural network1. Since fashion
sketches play a critical role in the initial stages of fashion product design, allowing
a fashion designer to quickly draft and visualize their thoughts, which motivates
us to generate fashion sketches via AI techniques.

In this work, we aim to automatically generate high-quality multi-class fash-
ion sketches by modeling pixel images of fashion sketches. The diversity of
sketches and their abstract structures make fashion sketch synthesis a challeng-
ing task. Firstly, the fashion sketches of the same category may be drawn in
diverse styles due to the nature of freehand sketches. Secondly, hand-drawn fash-
ion sketches lack texture and necessary contextual information and are generally
known to be more ambiguous than natural images.

Recently, there has been rapid improvement in generative modeling of images
using neural networks as a generative tool in very recent years, among which Gen-
erative Adversarial Networks (GANs) [6] and Variational Auto-Encoder (VAEs)
[10,15] have become popular tools in this fast-growing area. However, the major-
ity of those research on image generation mainly deal with natural images and
cannot be directly applied for sketch image generation. On the other hand, some
works have tried to generate sketch drawings of common objects based on human-
drawn inputs [3,8]. However, these works developed generative models of vector
images rather than pixel images, which are also not suitable for our problem.

To achieve our goal we design a hybrid deep generative model for fashion
sketch synthesis, called Fashion-Sketcher. Our key idea is to automatically gen-
erate multi-class fashion sketches by synthesizing contour images as an inter-
mediate step. Such a process of sketch synthesis mimics human painters that
first draw the outlines of objects and then finished the detailed structures and
contents of the objects. Specifically, our Fashion-Sketcher generates multi-class
fashion sketches through two stages. At the first stage, a Contour Generation
Network (CGN) is designed to synthesize contour images with given categorical
information, which combines a variational auto-encoder with cascade generative
adversarial networks. At the second stage, a Sketch Translation Network (STN)
is designed to transform the contour images to the sketch images, which extends
StyleGAN2 [9] to the conditional version by adding an embedding network for
encoding contour images.

Another challenge for fashion sketch synthesis is the lack of datasets for
the training of the generative models. Although there have been a few sketch
datasets which have been built as benchmarks for sketch-based image retrieval
[5,18] and sketch classification [4], those existing sketch datasets cannot be used
for the task of fashion sketch synthesis since the categories of objects of those
existing sketch datasets are confined to general classes or a few specific classes.
Thus, it motivates us to create a new sketch dataset for fashion sketch synthesis.
An ideal way to collect the new dataset is to employ fashion experts to draw
high-quality fashion sketches. Considering such a process is too expensive and

1 https://blog.google/around-the-globe/google-europe/project-muze-fashion-inspired-
by-you/.

https://blog.google/around-the-globe/google-europe/project-muze-fashion-inspired-by-you/
https://blog.google/around-the-globe/google-europe/project-muze-fashion-inspired-by-you/
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labor-intensive, instead, we utilize the advanced image processing techniques to
automatically extract sketches of fashion product images from online stores.

To summarize, our contributions are as follows: (1) We propose the first AI
technique that enables a computer to automatically generate fashion sketches of
multiple categories. (2) We propose a novel hybrid deep generative model called
Fashion-Sketcher for automatically generating fashion sketches by synthesizing
fashion contours as an intermediate step. (3) We build a new sketch dataset
for fashion sketch synthesis by using advanced image processing techniques for
extracting sketches of fashion products. (4) Our experiments demonstrate the
effectiveness of our proposed model, which produces higher-quality synthesized
results compared to other methods.

2 Related Work

2.1 Deep Generative Models

The state of generative image modeling has developed dramatically in recent
years. Among various deep generative models, GANs and VAEs have become
the most prominent techniques. A Generative Adversarial Net employs a two-
player min-max game with two models, a generator and a discriminator. A Vari-
ational Auto-Encoder learns a parametric latent variable model by maximizing
the marginal log-likelihood of the training data. GANs and VAEs both have
their own significant strengths and limitations. Much effort has been devoted
to combining the strengths of VAEs and GANs, e.g., VAE/GAN [11] and AAE
[14]. In our work, we design a hybrid deep generative model for fashion sketch
synthesis by leveraging the strengths of GANs and VAEs.

2.2 Sketch Generation

Very recently, Ha et al. [8] introduced a sequence-to-sequence VAE model called
sketch-rnn that is able to generate simple and cursive stroke-based drawings
of common objects based on human-drawn inputs. Since its invention, several
models have been developed based on Sketch-RNN. Song et al. [16] introduced
a stroke-level photo-to-sketch synthesis model based on Sketch-RNN to extract
sketches from images. Cao et al. [3] proposed a deep generative model for learning
sequential and spatial information from a set of training sketches to automat-
ically generate multi-class sketch drawings with higher quality. The aforemen-
tioned methods for sketch drawings are not suitable for our problem because
they deal with vector images of sketches, rather than develop generative models
of pixel images of sketches.

2.3 Sketch-Based Datasets

Currently, there are a few datasets of human-drawn sketches for sketch-based
image retrieval [5,18], sketch-based image classification [4] and sketch synthesis
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[8]. As for sketch synthesis, the newly published QuickDraw dataset [8] built
by Google has an impressive 50 million vector drawings spanning hundreds of
classes of common objects. However, those existing sketch datasets cannot be
used for the task of fashion sketch synthesis, because the categories of objects
of those existing sketch datasets are confined to general classes or a few specific
classes.

3 Dataset

(a) Input (b) Original Sketch (c) Clustering Map (d) Gradient Map

(e) Mask Map (f) Contour (g) Improved Sketch

Fig. 1. The pipeline of fashion sketch creation.

We collect high-resolution (650*650) fashion product images from an online store
(e.g., Tradesy) and manually select high-quality images that contain pure prod-
ucts. In total, 12,500 high-quality fashion product images of five representative
categories (e.g., dress, pants, shorts, skirts and tops) are collected. We use edge
detection and several post-processing steps to extract fashion sketches. We first
detect edges of fashion product images with Holistically-nested edge detection
(HED). After binarizing the output and thinning all edges, we clean isolated
pixels and remove small connected components. Then, we remove the remaining
spurs.

However, the originally extracted sketches should be refined because the thin-
ning operation and threshold selection cause the discontinuity of contours. Thus,
we take the following steps to further improve the extracted fashion sketches by
getting the continuous contours: (1) We cluster the pixels of the original fashion
product image by using K-means algorithm. (2) After computing the gradients
of the Clustering Matrix2 and performing a flood-fill operation on the gradient
2 Each entry in the Clustering Matrix corresponds to a pixel in an original fashion

product image and the value of each entry is set with the class label of the corre-
sponding pixel.
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Table 1. The detailed data split for training and evaluation.

Dataset Train Set Test Set Total

Dress 2,125 375 2,500

Pants 2,125 375 2,500

Shorts 2,125 375 2,500

Skirts 2,125 375 2,500

Tops 2,125 375 2,500

Total 10,625 1,875 12,500

map, we obtain a mask map that separates the foreground and background of
the product image. (3) We generate a continuous contour image by computing
the gradients of the mask map and binarizing it. (4) Once we get the contour
image, the sketch image is then refined by simply overlaying the original sketch
image and the contour image. Figure 1 illustrates the pipeline of fashion sketch
creation. Finally, we split the 12,500 extracted sketch into the training set and
test set with a ratio of 8.5:1.5, where we try to keep the category labels in each
set to be evenly distributed. Table 1 displays the detailed data split for training
and evaluation.

4 Proposed Method

In this section, we introduce the detailed design and implementation of Fashion-
Sketcher. Our Fashion-Sketcher mainly consists of two modules, namely, Contour
Generation Network (CGN) and Sketch Translation Network (STN). CGN com-
bines a variational auto-encoder with cascade generative adversarial networks for
synthesizing contour images in fine-grained categories. STN extends StyleGAN2
[9] to the conditional version for translating contour images to fashion sketches.

4.1 Contour Generation Network

Network Architecture. To keep the diversity of generated contour images in
fine-grained categories during inference, CGN combines a conditional variational
auto-encoder with cascade generative adversarial networks. Specifically, CGN
consists of following components as shown in Fig. 2:

1. An encoder E, which maps a contour image x to a latent representation
z through a learned distribution P (z|x, c), where c is a k-dimensional one-
hot conditional vector. The k-dimensional one-hot conditional vector encodes
the categorial information of the input contour image. Here, k indicates the
number of classes of contour images.
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Fig. 2. CGN combines a variational auto-encoder with cascade generative adversarial
networks for keeping the diversity of generated contour images.

2. A classifier C, which measures the class probability of a real coutour image
x, P (c|x).

3. A generator G1, which generates a coarse contour image x′ given a latent
vector z and a conditional vector c by sampling from the learned distribution
P (x|z, c).

4. A discriminator D1, which distinguishes real/fake contours (where x is a real
contour image and x′ is a fake coarse contour image).

5. A generator G2, which generates a fine contour image x
′′

conditioned on a
coarse contour image x

′
. We are motivated to add a cascade generative adver-

sarial network in CGN for refining the contour images since the background
of contour images generated by G1 are usually not clear enough.

6. A discriminator D2, which distinguishes real/fake contours (where x is a real
contour image and x′′ is a fake fine contour image).

Overall, the training procedure of CGN follows two steps. In the first step,
CGN generates a coarse contour image x′ by simultaneously training E, C, G1,
and D1. In the second step, CGN generate a fine contour image x′′ by adding a
cascade module (G2, D2).

Generating Coarse Contours. Similar to VAE, the encoder E maps a contour
image x to a latent representation z. To ensure that random sampling can be
used during inference time, the latent distribution z ∼ E(x) is regularized using
KL-divergence to be close to Gassian distribution N(0, I) during training:

Lkl = Ex∼p(x)[DKL(E(x)||N(0, I))] (1)
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The classifier C accepts a contour image x and outputs a k-dimensional
conditional vector, which turns into class probabilities using a softmax function.
The classifier C tries to minimize the softmax loss during training:

Lcla = −Ex∼p(x) log p(c|x) (2)

For discriminator D1, it tries to distinguish real contours from synthesized
ones. Concretely, the discriminator D1 tries to minimize the loss function:

Ldis = −Ex∼p(x)D1(x) + Ec∼p(c),z∼E(x)(D1(G1(c, z))) + λgpLgp (3)

where the λgp is a hyperparameter for controlling the gradient penalty. We adopt
WGAN-GP for the adversarial learning of D1 and G1. WGAN-GP [7] improves
WGAN [1] on the implementation of Lipschitz constraint by imposing a gradient
penalty on the discriminator instead of weight clipping.

For generator G1, we improve the GAN loss by incorporating a reconstruction
loss, feature matching loss based on the classifier and a mask loss:

Lgen = −λganEc∼p(c),z∼E(x)(D1(G1(c, z)))+
λrecEc∼p(c),z∼E(x)‖x − G1(c, z)‖1 +

λfEx∼p(x),c∼p(c),z∼E(x)‖f(x) − f(G1(c, z))‖1 +
λmEx∼p(x),c∼p(c),z∼E(x)‖m ⊗ x − m ⊗ G1(c, z)||1

(4)

Here the first loss term is used to fool the discriminator as the traditional GANs
do. The L1 reconstruction loss (second term) is added to encourage less blurring.
The feature matching loss (third term) is used to deal with the unstable gradient
of the generator, where f(x) represents features on an intermediate layer of the
classifier C. The mask loss (fourth term) is added to refine the contours, where
m represents a binary mask map. λgan, λrec, λf and λm are weight parameters
that balance different loss terms.

Overall, the goal of the first step of CGN is to minimize the following loss
function:

LCGN1 = λklLkl + λclaLcla + λdisLdis + λgenLgen (5)

where λkl, λcla, λdis and λgen are weight parameters that balance different loss
terms. All models (including E, C, D1 and G1) are updated iteratively as all
these objectives are complementary to each other, and ultimately enable the
model to obtain satisfactory results.

Generating Fine Contours. Once the encoder E, classifier C, discriminator
D1 and generator G1 have been well trained, a cascade module that consists of
G2 and D2 is co-trained for refining the generated contours. It is worth noting
that, only G2 and D2 are updated during training in the second step while
all the weights of the models in the first step are fixed. The generator G2 and
discriminator D2 are essentially a conditional GAN, where G2 generates a fine
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contour image x
′′

conditioned on a coarse contour image x
′
generated by G1 and

D2 distinguishes a real contour x from a fake contour x′′.
We use LSGANs [12] for stable adversarial learning of G2 and D2. The goal

of the D2 is to minimize the following loss function:

Ldis2 =
1
2
Ex′ ,x∼p(x′ ,x)[(D2(x

′
, x) − 1)2] +

1
2
Ex′ ∼p(x′ )[D2(x

′
, G2(x

′
))2]

(6)

In contrast, the goal of the G2 is to minimize the following loss function:

Lgen2 =
1
2
Ex′ ∼p(x′ )[(D2(x

′
, G2(x

′
))2 − 1)2] (7)

We further utilize the L1 reconstruction loss and feature loss to mix with the
GAN objective to encourage less blurring of generated contour images:

Lgen2 =
1
2
Ex′ ∼p(x′ )[(D2(x

′
, G2(x

′
))2 − 1)2] +

λrec2Ex′ ,x∼p(x′ ,x)‖x − G2(x
′
)‖1 +

λf2Ex′ ,x∼p(x′ ,x)‖f(x) − f(G2(x
′
))‖1

(8)

where λrec2 and λf2 are weight parameters that balance the adversarial loss
term, reconstruction loss and feature loss.

Fig. 3. STN maps a contour image to a target sketch image by extending the Style-
GAN2 model to the conditional version.
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4.2 Sketch Translation Network

Network Architecture. The task of STN is to map a contour image to a tar-
get sketch image. Our STN is built on the state-of-the-art network, StyleGAN2
[9] Concretely, we extend StyleGAN2 to the conditional version by adding an
contour embedding autoencoder for encoding contour images and a sketch clas-
sifier for improving the quality of synthetic images. As illustrated in Fig. 3, our
STN consists of following main components:

1. A contour embedding autoencoder, which consists of the contour embedding
encoder and the contour embedding decoder. The encoder encodes a contour
image into a 512-dimensional embedding vector for producing the style vector,
where the style vector controls the layers of the synthesis network.

2. A progressive generator, which generates the target sketch image with input
style vector. Similar with StyleGAN2, the style is fed into each style block.
At each style block, weight modulation and demodulation are employed in all
convolution layers, except for the output layers leaving out the demodulation.

3. A discriminator, which distinguishes real or fake sketch images. Note that
the network structures of the progressive generator and the discriminator are
identical to those in StyleGAN2.

4. A sketch classifier, which classifies the synthetic sketch images into five cate-
gories.

To train STN, firstly, the contour embedding autoencoder is pretained on
the contour images of the training set using the reconstruction loss. Secondly,
a VGG16 sketch classifier is pretained on the sketch images of the training set
using cross entropy loss. Finally, the training procedure of STN is a minmax
two-player game between the progressive generator and discriminator.

The goal of the progressive generator is to minimize the following loss func-
tion:

LPG = λAdvgLAdvg + λPathLPath +
λRecLRec + λClassLClass

(9)

Here LAdvg and LPath are consistent with the loss terms in StyleGAN2. The
LRec is the L1 reconstruction loss and LClass is the classification loss. λAdvg ,
λPath, λRec and λClass are weight parameters that balance different loss terms.

The goal of the discriminator is to minimize the following loss function:

LDis = λAdvdLAdvd + λR1LR1 (10)

Here LAdvd and LR1 are consistent with the loss terms in StyleGAN2. λAdvd and
λR1 are weight parameters that the adversarial loss term and R1 regularization
term.

5 Experiment

5.1 Implementation Details

Training Details. All experiments in this work were conducted on NVIDIA
TITAN Xp GPUs. During training CGN, we used adam optimizer with beta1



Fashion-Sketcher 553

= 0.5 and beta2 = 0.999. And we trained E, C, D2 and G2 with a learning
rate of 0.0002 and trained G1 and D1 with a learning rate of 0.0001. The weight
parameters were set as λkl = 1, λcla = 1, λdis = 1, λgen = 1, λgp = 10,
λgan = 0.25, λrec = 8, λf = 15, λm = 15, λrec2 = 15 and λf2 = 10. In the first
stage of CGN, we used a batch size of 22 and trained the network for 90 epochs.
In the second stage of CGN, we used a batch size of 30 and trained the network
for 100 epochs. During training STN, both the generator and discriminator used
the adam optimizer with beta1 = 0, beta2 = 0.99. The weight parameters were
set as λAdvg = 1, λPath = 2, λRec = 3.5 and λClass=0.01, λAdvd = 1 and λR1 = 10.
We used a batch size of 6 and trained STN with a learning rate of 0.0002 for
250 epochs.

(a)

Dress

(b) (c) (d)

Pants

(a) (b) (c) (d)

Shorts

(a) (b) (c) (d)

Skirts

(a) (b) (c) (d)

Tops

(a) (b) (c) (d)

Fig. 4. Comparison results of different approches on multi-class fashion sketch synthe-
sis. Here, (a), (b), (c) and (d) represents ACWGAN, CVAE-GAN, CVAE-WGAN and
our method, respectively.
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5.2 Evaluation

Baselines. To validate the effectiveness of our proposed method, we compare
with the following baseline methods. Unlike our method, the three baselines
directly generate fashion sketches conditioned on the conditional vector which
encodes the categorial information of sketch images.

– ACWGAN: ACWGAN is an improved model of ACGAN [13], where wgan-
gp loss [7] replaces the traditional gan loss.

– CVAE-GAN: CVAE-GAN combines the conditional variational auto-
encoder and the generative adversarial network [2]. Specifically, it consists
of four modules, an encoder, a classifier, a generator and a discriminator.
Note that the network structures of the encoder, the generator and the dis-
criminator are identical with those of E, G1 and D1 in our CGN, respectively.
The classifier uses VGG16 model and is fine-tuned on our sketch dataset.

– CVAE-WGAN: CVAE-WGAN adopts the same architecture with CVAE-
GAN but uses wgan-gp loss instead of the traditional gan loss.

Qualitative Results. Figure 4 presents a visual comparison of the evaluated
methods. We compare these methods with the synthetic fashion sketches includ-
ing dress, pants, shorts, skirts and tops. We observed that the generated fash-
ion sketches by ACWGAN and CVAE-WGAN are blurry and of low quality.
Although CVAE-GAN generates more clear fashion sketches than ACWGAN
and CVAE-WGAN, it is inferior to our in diversity of synthetic sketches. Overall,
comparing with other baselines, our method renders more realistic and diverse
textures, especially for skirts and tops.

Quantitative Results. To quantitatively evaluate the quality of the generated
images by different models, we adopt four widely used evaluation metrics [17]
which include the Inception Score, Fréchet Inception Distance, Kernel MMD and
the Wasserstein Distance. The Inception Score is the most widely adopted score
for GAN evaluation, which measures the quality and diversity of the generated
images using a pre-trained neural network. The Fréchet Inception Distance is
a measure of similarity between two datasets of images, which is then used for
evaluating the quality of generated samples. The Kernel MMD measures the
dissimilarity between Pr and Pg for a fixed kernel function k. A lower MMD
means that Pg is closer to Pr. The Wasserstein Distance is often referred to
as the Earth Mover’s Distance, and corresponds to the solution to the optimal
transport problem. Similar to the Kernal MMD, the Wasserstein Distance is
lower when two distributions are more similar.

Table 2 reports the evaluation results for our method and the other baselines.
As we can see, our method consistently outperforms the other baselines in terms
of four evaluation metrics, which demonstrates the advatanges of our proposed
method that synthesizes contour images as an intermediate step for generat-
ing multi-class fashion sketches. By comparing the results of CVAE-GAN and
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Table 2. Quantitative comparison of four evaluation metrics.

Model IS ↑ FID ↓ Kernel MMD ↓ Wasserstein Distance ↓
ACWGAN 1.237 0.037 0.196 7.622

CVAE-GAN 1.232 0.024 0.122 6.919

CVAE-WGAN 1.240 0.035 0.116 7.489

Our Method 1.268 0.018 0.069 6.721

CVAE-WGAN, we found that replacing the traditional gan loss with wgan-gp
loss dose not necessarily improve the synthetic results. In contrast, wgan-gp loss
is crucial for ACWGAN since we found that the model easily suffered from mode
collapse using the traditional gan loss in the preliminary experiments.

6 Conclude

We have presented a novel approach for generating high-quality multi-class fash-
ion sketches through two stages. At the first stage, we design CGN for synthe-
sizing contour images with given categorical information by combining a varia-
tional auto-encoder with cascade generative adversarial networks. At the second
stage, we design STN for transforming the contour images to the sketch images
by extending the StyleGAN2 model to the conditional version. We conducted
experiments on our fashion sketch dataset, and promising results are achieved
both quantitatively and qualitatively, which shows the effectiveness of our pro-
posed approach.
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Abstract. Compared with conventional ReID task, RGB-IR person re-
identification is more significant and challenging owing to enormous
cross-modality variations between RGB and infrared images. Most exist-
ing cross-modality person re-identification approaches in the infrared and
visible domains use the joint training of traditional triplet loss and CE
loss to reduce the discrepancy between two modalities. However, as the
model gradually converges, the number of positive and negative sample
pairs that can be optimized by traditional triplet loss also decreases. In
this paper, we adopt a dual-stream CNN structure and propose a max-
imum intra-class distance to triplet loss (MICT loss) for RGB-IR ReID
task. The proposed method enjoys several advantages. First, it can learn
specific modal information and shared information better through the
CNN structure of the dual-stream branch. Second, it can add the opti-
mization of intra-class cross-modality distance to the traditional triplet
loss, which can effectively reduce the intra-class distance and increase the
training difficulty of the model. Experimental results demonstrate that
our proposed algorithm performs favorably against the state-of-the-art
methods that rank-1 accuracy is 61.71% and mAP is 58.06% on SYSU-
MM01 dataset.

Keywords: Person Re-identification · Triplet loss · Cross modality ·
Maximum intra-class distance

1 Introduction

Person re-identification is regarded as an image retrieval problem, aiming at
matching the same person image of interest between different non-overlapping
cameras[25]. With the continuous improvement of smart cities and video surveil-
lance, person re-identification task has attracted more and more attention.
It is very challenging owing to the inter-class and intra-class discrepancies
resulted from various viewpoints, poses, illuminations. Currently, most of per-
son re-identification methods mainly focus on matching images between visible
cameras[4,8,9,12,16,24].
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However, only RGB person re-identification is not enough, because conven-
tional visible cameras are often difficult to obtain rich image information in poor
light or night environments, causing a large retrieval discrepancy between day
and night. Therefore, the visible camera is often used to obtain images during
the day, and the infrared camera is used to obtain near-infrared images at night.
Compared with RGB person re-identification, IR-RGB person re-identification
still needs to consider the difference between two different modalities, making it
more difficult to retrieve the same person across disjoint cameras. As shown in
Fig. 1, the IR and RGB images have different spectra, and the two types of infor-
mation are heterogeneous. Therefore, it is difficult to directly use the person re-
identification methods for processing RGB images in the RGB-IR cross-modality
person re-identification task.

RGB images
In the day

Thermal images
During the night

Fig. 1. Instances of RGB images and thermal images in SYSU-MM01 dataset

To solve this problem, some methods have been proposed in this field. Wu
et al. [18] first proposed a large-scale cross-modality re-identification dataset,
and used CE loss to train a single-stream deep network structure called zero-
padding. Ye et al. [20] proposed to use CE loss and contrastive loss to train the
dual-stream network structure named TONE. Due to the lack of flexibility of
contrastive loss in learning shared subspaces, Ye et al. [22] proposed to use top-
ranking loss to train a dual-stream network model called BDTR. In addition,
Dai et al. [3] approached the problem from different angles and used triplet
loss and CE loss to train a generative adversarial network called cmGAN to
allow the model to learn cross-modal feature representations. Zhang et al. [23]
proposed a two-channel public space network that preserves spatial structure
and contrast-related networks. The former embeds cross-modal images into a
common three-dimensional tensor space, and the latter extracts contrast features
by dynamically comparing input images.

However, most of the methods mentioned above are aiming at adjusting the
network or trying different loss functions which are existing. As the number
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of training increases, the effect of inter-class distance on network training is
gradually smaller than the effect of intra-class distance, and for cross-modal
tasks, the optimization of intra-class distance becomes more important. In this
paper, a maximum intra-class distance is added to the traditional triplet loss,
ensuring that the network can optimize the intra-class distance in the training
process. In addition, we use cascade supervised learning of CE loss and maximum
intra-class triplet (MICT) loss to train this network. Both loss functions can
be minimized by standard optimization algorithms, such as stochastic gradient
descent (SGD) [1].

At the same time, we used a dual-stream network structure. In order to
ensure that CE loss and MICT loss are more effective for network training, we
first introduced the BNNeck [15] structure to dual-branch network model for
RGB-IR ReID, reducing the network optimization differences caused by these
loss functions. The network has two parts, the first part is used to extract the
feature information of different modalities, and the second part is used to find the
shared subspace of the two modalities. A large number of experimental results
show that the dual-branch network structure using MICT loss and CE loss can
achieve SOTA performance in this field.

The main contributions of this paper can be summarized as follows. (1) We
improved the classic triplet loss by adding the maximum intra-class distance,
ensuring the network can pay attention to the optimization of intra-class dis-
crepancy during training. Especially for cross-modal problems, the discrepancy
between different modalities of the same person is large. (2) We used a sim-
ple network structure (ResNet50) and introduced the BNNeck structure to the
RGB-IR task to verify its effectiveness. The whole structure is not only simple
and effective, but the final result is also very good. (3) In the all-search mode
of the SYSU-MM01 dataset, our proposed method achieves 61.71% and 58.06%
for rank-1 and mAP, respectively.

2 Related Work

RGB Reid. The main challenge of conventional Reid task is the large intra-
class differences caused by different viewpoints, poses and occlusions. The task
has two basic contents, namely feature expression and metric learning. In terms
of feature expression, some recent researches mainly focus on designing more
powerful network structures in order to better extract some features of the per-
son. In metric learning, it mainly focuses on the design of loss functions. [5] first
proposed Triplet loss. By selecting three pictures to form a triple, and making the
network during the training process, the distance between the positive samples is
the smallest, and the distance between the negative samples is increased, which
can solve the problems of inter-class similarity and intra-class difference. [7] adds
the idea of hard sample mining to traditional triplet loss, and selects the most
difficult images from same ID and different ID in a mini-batch to form a triple.
[2]proposes the Quadruplet Loss method. Compared with the traditional triplet
loss, it mainly considers the absolute distance between negative samples. [19]
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proposes the Margin Sample Mining Loss method. Compared with Quadruplet
Loss, this method selects only the most difficult positive sample and the most
difficult negative sample pair to calculate the loss. However, with the continuous
traning of the model, there are many triplets in the late stage of training with a
loss of 0. This paper is based on the maximum intra-class triplet loss improved
by the tri-hard method, which effectively guarantees that the triplet loss in the
mini-batch is non-zero during the entire training process.

Multi-modal Person Re-Identification. Recently, a large number of multi-
modal person re-identification models have been proposed. Nguyen et al. [17]
used the person re-identification model for the first time on RGB-IR images. Wu
et al. [18] designed a deep shape descriptor for noise and rotation and robustness.
At the same time, Lin et al. [14] combined attribute information in visible light
images. These works usually use multi-modal information to improve the per-
formance of ReID, but we mainly focus on cross-modal person re-identification.
For cross-modal person re-identification, [10,11,21] proposed a series of person
retrieval methods for text pictures. However, these methods cannot be directly
used in RGB-IR Reid tasks.

RGB-IR Reid. In RGB-IR Reid, [22] proposed a two-stage structure that
includes feature learning and metric learning. In addition, [18] introduced a
deep zero-padding network to learn the shared features of different modalities.
[6] proposed an end-to-end dual-stream hyper spherical manifold embedded net-
work with classification and identification constraints. At the same time, a two-
stage training scheme to obtain decorrelated features is also designed. [13] used
the HPILN framework and proposed a specially designed hard pentaplet that
can effectively handle cross-modal and internal modal changes in RGB-IR ReID.
[23] proposed a two-path cross-modal feature learning framework based on the
characteristic that humans usually notice the difference between two similar
objects. Among them, DSCSN embeds the cross-modal image into a common
three-dimensional tensor space without losing the spatial structure, and CCN
extracts the contrast features by dynamically comparing the input image pairs.
Although the above research works have achieved very good results, their model
structures are relatively complex and difficult to use efficiently. The model struc-
ture proposed in this paper is based on ResNet50 and introduces the BNNeck
structure. The whole model is very simple, and the experimental results show
that the final effect is also good.

3 Our Proposed Method

In this paper, we use an end-to-end dual-stream convolutional neural network,
as shown in Fig. 2. This architecture consists of two parts. The first part is used
to extract the unique features of the modal, and the second part uses a shared
weight strategy to allow the network to extract common features. With the
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Fig. 2. The Dual-stream Network with BNNeck

joint supervision of CE loss and MICT loss, the model learns the discriminative
features. Specifically, the dual-stream network can well optimize the distance
between different modalities, and make the model learn a shared space. In addi-
tion, in this paper, the maximum intra-class distance is added to the traditional
triple loss, so that the intra-class distance can be optimized when the model
converges.

3.1 Dual-Stream Network

We used a dual-stream network structure to extract features in the near infrared
and visible domains. Specifically, the dual-stream structure contains two parts,
feature extraction and feature embedding. The former is mainly to obtain specific
information of different image modalities. The latter focuses on learning a multi-
modal shared space to bridge the gap between two heterogeneous modalities.

Feature Extraction. We use ResNet50 as the backbone network, which uses
the zeroth layer (res-layer0) in ResNet50 to extract shallow features of different
modalities. The main reason is that the shallow convolutional layer can obtain
low-level information, such as texture, corner. This may be shared among all pic-
tures. Although the structure of extracting shallow features of different modali-
ties is the same, the parameters of the two branches are independent of each other
to ensure that unique feature information of different modalities is obtained. In
addition, due to the small size of the data set, the network model we use needs
to be initialized with the help of pre-trained parameters on ImageNet, which
accelerates the convergence of training.

Feature Shared Subspace. In order to learn the embedding space of two
heterogeneous modalities, we introduce a shared layer after the feature extrac-
tion part. Note that the shared layer contains all the structures after layer1 in
ResNet50, and all the parameters are shared. At the same time, we added the
BN structure before the FC layer. If the shared layer is not added for feature
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embedding, the feature space learned in the visible domain and the feature space
learned in the near-infrared domain are completely different subspaces. In the
following experimental section, we will explain through the experimental results
that for RGB-IR Reid, the shared layer can well capture the two different modal
shared subspaces, because its function is similar to a projection function.

3.2 Maximum Intra-class Triplet Loss

When embedding the features of visible images and near-infrared images into a
shared subspace, we optimized the conventional triplet loss, ensuring that the
model can maximize the distance between classes and within classes during the
training process. First of all, we review the classic triplet loss and its related
deformation forms.

Triplet Loss. There are many image matching works such as face recogni-
tion and person re-identification which widely used triplet loss. In person re-
identification, we can choose P persons in a mini-batch, and each person has N
visible images and N near infrared images, respectively. Using the visible image
xi as the anchor in candidate triplet set, the corresponding label is yi, we hope
that the distance between xi and the positive sample zj should be smaller than
the distance between xi and the negative sample zk, where m is a margin value.
Using the convolutional neural network as the feature extractor, all the features
used for the triplet loss are normalized by L2. In our method, the Euclidean
distance between feature embedding is used as the similarity measure function
of two images. Therefore, we further obtain the formula for the triplet loss:

Ltriplet =
∑

∀yi �=yk,∀yi=yj

max[m + D(xi, zj) −D(xi, zk), 0] (1)

where Euclidean distance D(xi, zj = ||f(xi)− f(zj)||2, and the subscripts i and
j represent the same identity, while i and k are different identities.

Soft Margin Loss. The loss function is obtained by the classic triplet loss
deformation. In traditional triplet loss, the margin value is set artificially to
ensure that different classes can be separated by a certain distance during con-
vergence. However, artificially setting the margin value often requires continuous
trial and error before it is possible to find a relatively suitable value. Therefore,
[7] proposed the concept of soft margin and removed the artificially set margin
value. The formula is as follows:

Lsoftmargin =
∑

∀yi �=yk,∀yi=yj

log[1 + exp(D(xi, zj) −D(xi, zk))] (2)
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Maximum Intra-class Triplet Loss. When the first item of max in the tra-
ditional triplet loss is zero, the network model will not perform backpropagation
to optimize this part, resulting in waste of resources and unbalanced training.
Therefore, we propose to replace the second term of max with the maximum
intra-class distance to ensure that the network can optimize all samples every
time. At the same time, for the RGB-IR Reid task, the distance between differ-
ent modes of the same category can also be reduced. The improved formula is
as follows:

Lmdtri =
∑

∀yi �=yk,∀yi=yj

max[m + D(xi, zj) −D(xi, zk),D(xi, zj)] (3)

In the same way, we can get the maximum intra-class Soft Margin loss:

Lsoftmargin =
∑

∀yi �=yk,∀yi=yj

log[1 + exp(D(xi, zj) −D(xi, zk)) + D(xi, zj)] (4)

Batch Sampling. In order to ensure that the constraint effect in the mini-
batch is the same, we have made some adjustments based on mini-batch sam-
pling method. Specifically, P persons are randomly selected for training in each
iteration. Then, we randomly select M pictures from different modalities to form
a mini-batch, in which a total of 2 × P × M pictures is fed into the network.
In this way, we will be able to select M from the visible image as the anchor
and use it to calculate and correspond to the triplet loss of the near infrared
image, and vice versa. Due to the randomness of the sampling mechanism, as
the number of training increases, it will traverse all possible situations to obtain
a global optimal.

4 Experimental Results

4.1 Experimental Settings

SYSU-MM01 is a large-scale cross-modal person re-identification dataset, in
which the data is collected by 6 cameras, including 4 visible cameras and 2
thermal cameras. Because the person images in this dataset are collected in two
different environments, indoor and outdoor, it is more challenging. It contains a
total of 29003 visible images and 15712 near infrared images of 491 persons, and
each person collects images from at least two different cameras. Among them,
22258 visible images of 395 people and 11909 near-infrared images were used for
training, and 96 images were used for testing. During the test, 3803 near-infrared
images were used as the query set, and the gallery set was a sample formed by
randomly selecting each person image from different cameras. This is the most
difficult situation and the evaluation standard for Single-shot all search, which
is widely used by researchers.
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Evaluation Metrics. In order to show the performance of our method, stan-
dard cumulative matching characteristics (CMC) and mean average accuracy
(mAP) were introduced.

Implementation Details. We use the pytorch to implement the algorithm
in this paper. Pedestrian pictures are transformed to 288 × 144. Use random
cropping and random horizontal flip as data enhancement. The batch size is
set to 64. In order to implement our proposed sampling strategy, there are 8
pedestrian ids in a batch, each of which consists of 4 visible light images and
4 near infrared images. The final feature dimension after pooling is 2048. After
passing through the BN layer and the FC layer, the dimension reduction is 395
dimensions. The optimizer used is SGD, where the momentum is set to 0.9. The
learning rate was set to 0.2, the learning rate became 0.02 after 20 epochs, and
0.002 after 40 epochs.

4.2 Ablation Study

This section evaluates the effect of our proposed end-to-end dual-stream network
structure under different changes, as shown in the following table. In Table 1,
we use Triplet loss as the metric function of the network, and compare the
effectiveness of adding the BNNeck structure to the network. As can be seen from
the data in Table 1, after adding the BNNeck structure, the network performance
has been greatly improved, Rank-1 and mAP increased by 17.8% and 14.77%,
respectively. In Table 2, we extracted the results of the two modal features at
different locations and concat them. From the experimental results, we can know
that the effect of concat after res-layer0 is the best. Therefore, in our subsequent
experiments, we use the best results in Table 1 and Table 2, that is, use the
BNNeck structure and concat after layer0 as the experimental baseline.

Table 1. The effect with BNNeck
Structure on SYSU-MM01

SYSU-MM01

R=1 mAP

Triplet loss/no BN 38.23 39.61

Triplet loss/with BN 56.03 54.38

Table 2. Which layer to concat for
baseline

SYSU-MM01

R=1 mAP

Res-layer0 60.14 57.05

Res-layer1 59.19 56.73

Res-layer2 58.64 56.39

Res-layer3 55.51 54.28

Res-layer4 51.43 52.04

Table 3 shows the experimental results after adding the method in this article.
The classic triplet loss and MICT loss are used in the first two lines, and the
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soft margin loss and maximum soft margin loss are used in the last two lines.
It can be seen from the experimental results that after adding the maximum
intra-class distance, rank-1 and mAP in the case of triplet loss are increased
by 5.68% and 3.68%, respectively. In the case of soft margin loss, rank-1 and
mAP increased by 2.4% and 2.63%, respectively. In addition to verifying the
effectiveness of the proposed method in the RGB-IR Reid task, we also conducted
related experiments in the RGB Reid task. The baseline in Table 4 uses the
code written by [15]. The loss functions include Cross Entropy loss and triplet
loss. Using the method of this article on the Market-1501 data set, rank-1 and
mAP have been increased by 0.7% and 1.5%. Using the method of this article
on the Duke-reid dataset, rank-1 and mAP were improved by 1.0% and 1.7%,
respectively. It shows that the method in this paper is to optimize the triplet
loss function, and the Reid task using this function has a good performance
improvement.

Table 3. Comparison triplet loss and soft margin loss on SYSU-MM01 with baseline

SYSU-MM01

R=1 mAP

Soft margin loss/Baseline 57.74 54.42

Soft margin loss/ours 60.14 57.05

Triplet loss/Baseline 56.03 54.38

Triplet loss/ours 61.58 57.52

Table 4. Using proposed method on RGB-Reid datasets

Market-1501 Duke-Reid

R=1 mAP R=1 mAP

Baseline 94.3 85.5 86.5 79.5

ours 95.0 87.0 87.5 77.6

4.3 Comparison with State-of-the-art Methods

We compare the method in this paper with the traditional manual feature
method and the method based on deep learning. The methods of manual fea-
tures include the use of HoG and LOMO with different metrics, among which are
KISSME, LFDA, CCA, CDFE, GMA. Methods based on deep learning include
Zero-padding, TONE + HCML, BDTR, cmGAN, eBDTR, D2RL, DPMBN,
HPILN, AlignGAN, TSLFN + HC, JSIA-Reid, Hi-CMD. For these methods
that need to be compared, we directly copied from the original paper.
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The results on Rank-1 accuracy and mAP are shown in Table 5. The result
of the last line is the result of using the dual-stream structure in this article.
From Table 5 we can clearly find that the method proposed in this article has
a very good effect. Specifically, in the most difficult all-search single-shot mode,
the proposed method achieves the state-of-the-art effect, which is 61.71% and
58.06% on Rank-1 and mAP, respectively.

Table 5. Comparison with the state-of-the-arts on SYSU-MM01 datasets. The R=1 and
mAP denote Rank-1 accuracy (%) and mean average precision score (%), respectively.

SYSU-MM01

R=1 mAP

HOG 2.76 4.24

LOMO 1.75 3.48

Zero-Padding 14.8 15.95

TONE+HCML 14.32 16.16

BDTR(ResNet50) 17.01 19.66

cmGAN(ResNet50) 26.97 27.8

eBDTR(ResNet50) 27.82 28.42

D2RL(ResNet50) 28.9 29.2

DPMBN(ResNet50) 37.02 40.28

HPILN(ResNet50) 41.36 42.95

AlignGAN 42.4 40.7

TSLFN+HC 56.96 54.95

JSIA-Reid 38.1 36.9

Hi-CMD 34.94 35.94

ours 61.71 58.06

5 Conclusion

In this paper, for the RGB-IR person re-identification task, we added the
BNNeck structure to ResNet50 and used the maximum intra-class triplet loss
function to enable the network to learn more distinguishing features. By com-
bining CE loss and maximum intra-class triplet loss, the model can learn the
feature representation well, thereby reducing intra-class cross-modal differences
and inter-class differences. The whole frame structure is simple and achieves
very good performance, confirming the potential of being a good baseline in the
future. A large number of experiments show the effectiveness of the proposed
method, and the effect exceeds state-of-the-art.
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Abstract. Matrix factorization based on image representation algorithms have
been widely used to deal with high-dimensional data. Previous studies have
shown that matrix factorization methods can achieve remarkable performances
in clustering. In this paper, we propose a novel method for image representation,
called Locally Consistent Constrained Concept Factorization with Lp Smooth-
ness (LCCCF-LS). The main contributions of our proposed LCCCF-LS method
mainly include as follows: Firstly, the local geometric structure of the data is effec-
tively explored using a graph regularizer. Secondly, the label information of the
concepts is consistent with known label information without additional parame-
ters. Finally, we add the Lp smoothness constraint to produce a smooth and more
accurate solution, and thus ensure the smoothness of the coefficient matrix. Com-
prehensive experiments on several image datasets manifest the superiority of the
proposed LCCCF-LS method.

Keywords: Matrix factorization · Image representation · Graph · Label
information · Lp smoothness

1 Introduction

Data representation is a fundamental problem in machine learning and computer vision.
In recent years, the demand for high-dimensional data representation has been increasing
in the field of face recognition, document clustering and target tracking [1, 3, 4]. A good
representation can effectively discover potential semantic structures, and simultaneously
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improve the performances of clustering or classification methods. Therefore, many stud-
ies aim to seek an effective data representationmethod to find a suitable low-dimensional
representation for high-dimensional data.

The matrix factorization based on image representation has attracted wide attention
due to its effectiveness and efficiency. The main idea of matrix factorization is to find
the product of two or more factor matrices to approximate the original matrix. Among
the matrix factorization methods, non-negative matrix factorization (NMF) [2] is a well-
knownmethod, whose elements in each factor matrix are non-negative. Therefore, NMF
only performs additional operations and not subtraction. Thus, it is a parts-based rep-
resentation method, and have been widely applied in many applications, such as image
analysis [3–8], face recognition [9], date clustering [10–12].

In some cases, the nonnegative constraint is too strict to deal with the real data
mixed noise or outlier. To solve this issue, Xu et al. [3] proposed the Concept Factor-
ization (CF) method for document clustering. The advantages of CF not only deal with
high-dimensional data, but also can be easily kernelized. In order to consider the local
geometric structure, Cai et al. [13] proposed a locally consistent concept factorization
(LCCF) for document clustering. It adopts a graph model as an regularizer to extract
the consistency concept according to the local consistency theory. Since CF is an unsu-
pervised algorithm, and thus neglects the label information among the data. In order to
alleviate this problem, Liu et al. [1] proposed a constrained concept factorization (CCF)
method, which considers the known label information. It ensures that data points sharing
the same label are mapped to the same concept in the low-dimensional space. However,
the above-mentionedmethods neglect the smoothness of the coefficientmatrix. Shu et al.
[14] proposed a local learning regularized concept factorization (LLRCF) method that
considers both the manifold structure and discriminative structure of data using a local
learning regularizer. Many studies have shown that the smoothness assumption plays
an important role in data representation [15, 16]. To solve this issue, Leng et al. [17]
proposed to constrain the coefficient matrix with the Lp smoothness. Therefore, it can
generate a smoother and more accurate solution for the model.

In this paper, we propose a novel method, called locally consistent constrained con-
cept factorization with Lp smoothness (LCCCF-LS) for image representation. LCCCF-
LS not only takes the smoothness of the solution and the geometric manifold structure
embedded in data into account using the regularization technology, but also utilizes
the label information of the labeled samples with parameter-free. We present an effi-
cient optimization algorithm based on the multiplicative updating algorithm to solve the
proposed model. Experiments on several benchmark datasets show that our proposed
LCCCF-LS method is superior to related state-of-the-art methods.

The remainder of this paper is organized as follows: Sect. 2 briefly reviews the related
works. Section 3 introduces the proposed LCCCF-LS algorithm. Section 3.1 gives the
proof of convergence. Section 4 conducts the experiment results, and Sect. 5 concludes
the paper.
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2 The Related Works

In this section, we briefly review some related works to our proposed method.

2.1 CF

Consider a case that there is a data matrix X = [
xij

] ∈ R
M×N from c categories samples.

NMF aims to find two non-negative matrixes U = [
ujk

] ∈ R
M×K and V = [

vjk
] ∈

R
N×K such that their product approximates to the original data matrix X. Different from

NMF, CF seeks to represent each base vector uj by a linear combination of data samples,
i.e., uj = ∑

i
WijXi

(
Wij ≥ 0

)
, whereW = [

wij
] ∈ R

N×K . The goal of CF is to calculate

the following approximate problem as

X ≈ XWVT . (1)

Using the Frobenius norm as metrics, the objective function of CF can be expressed
as follows:

OCF =
∥∥∥X − XWVT

∥∥∥
2

F

s.t.W > 0,V > 0
. (2)

The multiplicative updating rules of CF in Eq. (3) and Eq. (4) can be derived as
follows:

Wt+1
ij ← Wt

ij
(KV )jk

(KWVTV )jk
, (3)

V t+1
ij ← V t

ij
(KW )ij

(VWTKW )ij
, (4)

where K = X TX .

2.2 LCCF

According to local consistency assumption, LCCF models the local geometric structure
of data using a nearest neighbor graph.

By imposing the graph regularization constraint on the model of the original CF, the
objective function of LCCF is given as follows:

OLCCF =
∥∥∥X − XWVT

∥∥∥
2

F
+ λTr(VTLV )

s.t.U ≥ 0,V ≥ 0
. (5)

where Tr(·) is the trace of the matrix. s is the affine matrix of the nearest neighbor
graph, and L denotes a Laplacian matrix, where D is a diagonal matrix, Djj = ∑

s Sjs,
L = D − S.

By adopting similar optimization scheme, the updating rules of problem (6) is derived
as follows:

wij ← wij
(KV )ij

(KWVTV )ij
, vij ← vij

(KW + λSV )ij

(VWTKW + λDV )ij
. (6)
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3 The Proposed Method

In this section, we introduce the proposed LCCCF-LS method in details.

3.1 Construction of Auxiliary Matrix

In order to make full use of known label information, we construct an auxiliary matrix
with parameter-free. Assume that there is a non-negativematrix {xi}ni=1 from c categories
samples, the first l samples are labeled and the remaining samples are unlabeled. If xi
is from the j-th class, then mij = 1, otherwise mij = 0. Then the indicator matrix A is
constructed as follows:

A =
(
Ml×c 0
0 In−l

)
, (7)

where I is an identity matrix. To fully utilize the label information, the label constraint
is imposed by introducing an auxiliary matrix Z. The coefficient matrix can be rewritten
as follows:

V = AZ . (8)

3.2 Objective Function of LCCCF-LS

To take advantage of the prior knowledge of data, such as the local geometric information,
label information and the smoothness of solution, we propose a novel method, namely
LCCCF-LS, for image representation. LCCCF-LS considers more prior knowledge as
much as possible, and thus has more representation ability compared with traditional CF
methods. The objective function of the proposed LCCCF-LSmethod is given as follows:

OLCCCF−LS = ‖X − XWZTAT‖2F + λTr(ZTATLAZ) + 2μ‖W‖p. (9)

3.3 Optimization

It is obvious that the proposed model in Eq. (9) is non-convex, and thus cannot find the
global optimal solution. Fortunately, we can achieve a local minimum ofmodel (9) using
the multiplicative iterative algorithm. Then Eq. (9) can be further rewritten as follow:

OLCCCF−LS = ‖X − XWZTAT‖2F + λTr(ZTATLAZ) + 2μ‖W‖p
= Tr((X − XWZTAT )T (X − WZTAT )) + λTr(ZTATLAZ) + 2μ‖W‖p
= Tr(K) − 2Tr(WTTKAZ) + Tr(WTKWZTATAZ) + λTr(ZTATLAZ)

+ 2μ‖W‖p (10)

where λ and μ are two nonnegative parameters, respectively, and K = X TX . Let ϕij and
φij be the Lagrange multiplier for constraints wij ≥ 0, zij ≥ 0 and � = [

ϕij
]
, � = [

φij
]
,

the Lagrange function l is given as follows:

� = OLCCCF−LS + Tr(�WT ) + Tr(�ZT ). (11)
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Taking the partial derivatives of U and Z for �, we have:

∂�

∂W
= −2KAZ + 2KWZTATAZ + 2μPWP−1 + �. (12)

∂�

∂Z
= −2ATKW + 2ATAZWTKW + 2λATLAZ + �. (13)

According to KKT conditions ψijwij = 0 and φijzij = 0, Eqs. (12) and (13) can be
further rewritten as follows:

wt+1
ij ← wt

ij
(KAZ)ij

(KWZTATAZ + μPWP−1)ij
, (14)

zt+1
ij ← ztij

(ATKW + λATSAZ)ij

(ATAZWTKW + λATDAZ)ij
, (15)

4 Experiments

To evaluate effectiveness of the proposed LCCCF_LS method, we carried out some
clustering experiments on PIE, ORL and YaleB datasets. We compared our proposed
method with other methods including k-means (KM), CF, CCF, LCCF, LCCCF and
NMF. In our experiments, two popular metrics including accuracy (AC) and normalized
mutual information (NMI) are used to evaluate the performances of all methods.

4.1 PIE Image Database

PIE database includes 41368 multi-posture, light, and expression facial images from
68 individuals. Each person was taken 42 images from different light and illumination
conditions. The size of all images is 32 × 32, and each image can be represented as a
1024-dimensional vector. Part of samples from the PIE database are shown in Fig. 1.

Fig. 1. Sample images from PIE database.

In our experiment, P categories samples were randomly picked out as the data subset
to evaluate LCCCF-LS and its competitors. The experiments were repeated ten times
and then their average results were recorded. Table 1 and Table 2 show the AC and NMI
of all methods with different values of P on the PIE database. It is obvious that our
proposed LCCCF-LS method is significantly improved over NMF and CF. The main
reason is that both NMF ang CF are unsupervised learning algorithms, they take no
account of label information. Our proposed LCCCF-LS method not only makes full use
of label information among data, but also explores the manifold structure of the data and
the smoothness of the solution. It is easily found that the proposed LCCCF-LS method
is superior to other state-of-the-art methods.
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Table 1. AC on PIE database.

K KM NMF CF CCF LCCF LCCCF LCCCF-LS

2 0.526 0.900 0.612 0.812 0.835 0.647 0.876

4 0.445 0.635 0.421 0.592 0.663 0.477 0.749

6 0.348 0.545 0.329 0.500 0.587 0.407 0.619

8 0.324 0.465 0.254 0.475 0.500 0.365 0.682

10 0.278 0.398 0.217 0.421 0.423 0.341 0.673

12 0.264 0.374 0.194 0.382 0.413 0.328 0.574

14 0.245 0.317 0.164 0.375 0.356 0.322 0.579

AVG 0.347 0.519 0.313 0.508 0.539 0.412 0.678

Table 2. NMI on PIE database.

K KM NMF CF CCF LCCF LCCCF LCCCF-LS

2 0.194 0.767 0.134 0.454 0.550 0.157 0.654

4 0.264 0.526 0.248 0.469 0.577 0.271 0.718

6 0.249 0.479 0.177 0.445 0.532 0.319 0.673

8 0.268 0.453 0.127 0.453 0.515 0.337 0.743

10 0.267 0.426 0.119 0.427 0.478 0.345 0.754

12 0.274 0.421 0.116 0.429 0.465 0.357 0.700

AVG 0.252 0.512 0.154 0.446 0.519 0.297 0.707

4.2 YaleB Database

YaleB face database is an extension of Yale face database. It includes in total 16128
images from 38 human subjects under 9 poses and 64 illumination conditions. Figure 2
shows some samples of the YaleB face database.

Fig. 2. Sample images from YaleB database.

We constructed an experimental data subset by randomly choosing K (= 26, …, 38)
categories and 30 samples from each category. We run all methods ten times indepen-
dently for different values of K, and recorded their average performances as the final
results. Table 3 and Table 4 show the AC as well as the NMI of seven algorithms on the
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YaleB database. It can be found that LCCCF-LS outperforms other state-of-the-art meth-
ods. This is because that LCCCF-LS effectively discovers the local geometric structure
embedded in high-dimensional data, and simultaneously considers the label information
of labeled samples and the smoothness of the solution.

Table 3. AC on YaleB database.

K KM NMF CF CCF LCCF LCCCF LCCCF-LS

26 0.497 0.366 0.176 0.217 0.415 0.262 0.519

28 0.460 0.373 0.173 0.212 0.420 0.252 0.531

30 0.465 0.340 0.164 0.212 0.442 0.250 0.522

32 0.445 0.346 0.166 0.216 0.397 0.243 0.527

34 0.468 0.341 0.163 0.204 0.388 0.237 0.468

36 0.442 0.315 0.160 0.206 0.367 0.237 0.456

38 0.442 0.337 0.163 0.200 0.353 0.245 0.431

AVG 0.460 0.345 0.166 0.209 0.397 0.246 0.493

Table 4. NMI on YaleB database.

K KM NMF CF CCF LCCF LCCCF LCCCF-LS

26 0.643 0.550 0.333 0.404 0.585 0.447 0.675

28 0.641 0.574 0.337 0.400 0.560 0.442 0.690

30 0.639 0.542 0.345 0.415 0.615 0.452 0.690

32 0.634 0.555 0.354 0.428 0.582 0.457 0.703

34 0.652 0.565 0.361 0.428 0.580 0.449 0.666

36 0.643 0.545 0.370 0.437 0.572 0.466 0.668

38 0.659 0.550 0.385 0.443 0.563 0.465 0.655

AVG 0.644 0.554 0.355 0.422 0.579 0.454 0.678

4.3 ORL Database

The ORL database contains different images of each of 40 distinct subjects. All the
imageswere taken at different times, varying the lighting and facial expressions. Figure 3
shows some sample from ORL database.
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Fig. 3. Sample images from ORL database.

Similar to the above experimental setting, we randomly selected samples ofK (= 28,
…, 40) categories, All methods were run for ten times, and their average performances
were reported. Table 5 and Table 6 show the performances of all methods on ORL
database. We can see that LCCCF-LS outperforms other state-of-the-art methods in
terms of the average AC and NMI. The main reason is that LCCCF-LS takes more prior
knowledge of data into account and thus have more discriminative power than other
competitors in clustering.

Table 5. AC on ORL database.

K KM NMF CF CCF LCCF LCCCF LCCCF-LS

28 0.533 0.475 0.197 0.340 0.606 0.373 0.600

30 0.545 0.465 0.186 0.332 0.607 0.392 0.607

32 0.526 0.433 0.186 0.348 0.591 0.384 0.605

34 0.514 0.444 0.180 0.329 0.605 0.371 0.595

36 0.537 0.436 0.180 0.341 0.595 0.370 0.604

38 0.523 0.418 0.174 0.328 0.599 0.378 0.607

40 0.535 0.412 0.165 0.325 0.58 0.367 0.582

AVG 0.530 0.440 0.181 0.335 0.597 0.376 0.600

Table 6. NMI on ORL database.

K KM NMF CF CCF LCCF LCCCF LCCCF-LS

28 0.704 0.655 0.371 0.536 0.739 0.589 0.774

30 0.710 0.650 0.375 0.520 0.747 0.602 0.744

32 0.700 0.636 0.379 0.532 0.735 0.603 0.775

34 0.700 0.648 0.384 0.528 0.747 0.604 0.777

36 0.715 0.645 0.391 0.557 0.743 0.605 0.781

38 0.709 0.638 0.395 0.552 0.747 0.619 0.788

40 0.714 0.639 0.388 0.572 0.749 0.609 0.782

AVG 0.707 0.644 0.383 0.542 0.744 0.604 0.774
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4.4 Parameters Selection

The proposed LCCCF-LS model contains three parameters α, μ and P. We randomly
selected 30, 20, 28 categories samples from PIE, YaleB and ORL datasets as subset to
investigate the parameter sensitivity of the proposed LCCCF-LS method. Specifically,
one parameter is varied when other parameters are fixed. Due to the limitation space,
Figs. 4, 5 and 6 only show the clustering accuracy of the proposed LCCCF-LS method
varied with the parameters α, μ and P, respectively. From Figs. 4, 5 and 6, it can be
seen that LCCCF-LS achieves relative stable performance with different values of the
parameters α, μ and P.

(a) PIE                                                                  (b) YaleB 

(c) ORL 

Fig. 4. The performance of LCCCF-LS varied the parameter α.
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(a) PIE                                                                 (b) YaleB 

(c) ORL 

Fig. 5. The performance of LCCCF-LS varied the parameter μ.

(a) PIE                                                                  (b) YaleB 

Fig. 6. The performance of LCCCF-LS varied the parameter P.
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(c) ORL 

Fig. 6. (continued)

5 Conclusions

In this paper, we propose a novel method named locally consistent constrained concept
factorizationwithLp smoothness (LCCCF-LS) for image representation. Comparedwith
traditionalmethods, the advantage of the proposedLCCCF-LSmethod effectively simul-
taneously explores more prior knowledge of data including the known label information,
the manifold structure and the smoothness of the solution. In addition, an efficient opti-
mization strategy is provided to solve the model of LCCCF-LS. Experimental results on
benchmark datasets demonstrate the proposed LCCCF-LS method outperforms related
state-of-the-art methods in clustering.
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Abstract. Recent deep learning based Rotation-Invariant Face Detection (RIFD)
algorithmsmake efforts to explore amapping function from face appearance to the
rotation-in-plane (RIP) orientation. Most methods propose to predict RIP angles
in a coarse-to-fine cascade regression style and improve the overall RIFD per-
formance. However, the problem of suboptimal between the models of training
phase and testing phase cannot be solved because of its cascaded nature. The
weakness of ambiguous mapping between face appearance and its real orienta-
tion would also degrade the performance considerably. In this paper, we propose a
novelDirection-Sensitivity Features EnsembleNetwork for rotation-invariant face
detection (DFE-Net) which learns an end-to-end convolutional model for RIFD
from coarse to fine. Specifically, the incline bounding box regression is imple-
mented by introducing angle prediction based on improved SSD. A Direction-
Sensitivity Features Ensemble Module (DFEM) is adopted in the network to pro-
gressively focus on the awareness of face angle information, which can learn and
accurately extract features of rotated regions and locate rotated faces precisely.
Finally, we add multi-task loss to guide the learning process to captures consistent
face appearance-orientation relationships. Extensive experiments on two chal-
lenging benchmarks demonstrate that the proposed framework achieves favorable
performance and consistently outperforms the state-of-the-art algorithms.

Keywords: Rotation-invariant face detection · Rotation convolution · SSD ·
Deep learning

1 Introduction

Rotation-invariant face detection, aiming at locating and detecting the human faces at the
very beginning, has been achieved more and more attention in computer vision because
of its wide-range of real-world applications, such as face alignment [3], face recognition
[1] and face reenactment [2].

In the rotation-invariant face detection scenario, it is crucial to tackling two impor-
tant issues: face detection and RIP angle estimation. Traditional rotation-invariant face

© Springer Nature Switzerland AG 2020
Y. Peng et al. (Eds.): PRCV 2020, LNCS 12306, pp. 581–590, 2020.
https://doi.org/10.1007/978-3-030-60639-8_48

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-60639-8_48&domain=pdf
http://orcid.org/0000-0001-9759-8683
http://orcid.org/0000-0001-9640-7822
http://orcid.org/0000-0001-5328-4068
http://orcid.org/0000-0001-8347-564X
http://orcid.org/0000-0003-1788-0780
https://doi.org/10.1007/978-3-030-60639-8_48


582 L.-F. Zhou et al.

detection methods naturally learn the large variations of face appearances from huge
training sets and extract representative global features to characterize rotated faces [4–
6]. However, these methods are clearly unsatisfactory in the case of practical use which
consider both accuracy and processing speed. What is more, the representation ability
of deep features is limited to capture rich structure and semantic information of target
objects. Therefore, it is a challenge to design discriminative rotation-invariant features
which are powerful enough to separate rotated faces from cluttered image background.

Recent rotation-invariant face detectors achieve favorable performance. In order to
capture global structural information,Multi-taskConvolutionalNeuralNetworks (MTC-
NNs) employ a series of calibration processes, e.g., rotating face candidates according
to the predicted RIP angles, to extend the face detection model [3, 4, 6–8]. Then the
range of RIP angles is gradually decreasing, which helps distinguish faces from non-
faces. The result is suboptimal between the model of training phase and testing phase
due to its cascaded nature. On the other hand, directly regressing RIP angles of rotated
faces introduces cluttered information, which leads to ambiguous mapping between face
appearance and its real orientation.

According to the observation above, it is crucial to focus on a detailed represen-
tation with richer information about the target object, and design elaborative strategy
to integrate rotation-invariant feature maps. To this end, we present a novel Direction-
Sensitivity Features Ensemble Network for rotation-invariant face detection (DFE-Net),
which explicitly exploits and integrates global structural information by learning the
incline bounding box regression. The DFE-Net is an end-to-end convolutional neural
network and consists of three parts: (1) we employ the VGG-16 [9] as the backbone
of the proposed network, which consists of five convolution blocks Conv-1, Conv-2,
Conv-3, Conv-4 and Conv-5; (2) in order to preserve the resolution of feature maps
learned in higher-level layers without sacrificing the size of the receptive field, the FCN
is appended at the end of the backbone; (3) the Direction-Sensitivity Features Ensemble
Module, referring as DFEM, which integrates rotation-invariant feature maps generated
in rotation convolution layer and outputs the final detection result with higher quality.

Particularly, the DFEM is appended at the end of the feature extractor. Three DFEMs
are learned from the hierarchically integrated feature maps. Considering that feature
maps in deeper layers have a global insight into the input image, a rotation convolution
operation is applied on such featuremaps according to the different directions.As a result,
the generated feature maps are equipped with discrimination ability and are denoted
as DSF. Based on the DSF, an initial RIP angle is generated. The DSF is subsequently
integrated by adding a rotation activation function, fromwhich rotation-invariant features
are explored in the DFEM. Then final RIP angle predictions are refined according to
initial result from coarse to fine, greatly increasing the model accuracy.

In summary, the main contributions of this work are: 1) A novel DFE network is
proposed for rotation-invariant face detection, which explicitly explores and integrates
global structural information. 2) A direction-sensitivity features ensemble module is
adopted to progressively compensate RIP angle predictions and endows discriminative
ability to rotation-invariant feature maps. 3) A multi-task loss is employed to guide the
learning process to captures consistent face appearance-orientation relationships.
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2 Related Work

Rotation-invariant face detection is inherently involves two different tasks: face detection
and pose estimation [3, 12]. Unifying or separating these two tasks will lead to different
approaches. In the unified framework [10], the detector is designed to model human
faces with diverse RIP angles, while the detector in separated framework addressed
rotation variation by multi-class classification approaches, which categorized the entire
RIP range into several distinct groups according to their RIP angles [6, 12]. Though a
single detectors [19] can achieve accuracy of 87% on the challenging WIDER FACE,
learning a large neural networks for powerful image representations in a data augmenta-
tion fashion usually leads to low computational efficiency which is unpractical in many
applications.

There are alternative strategies for improving rotation-invariant face detection in
separated framework apart from data augmentation. In [12], the part-level response
signal can be generated by deformable partmodels (DPM) technique for inferring human
faces. [6] divided the full RIP range into several groups and then developed multiple
detectors in order to cater to RIFD. Unfortunately, these methods suffer from significant
limitations: 1) it causes quantization issue which result from multi-class classification,
and 2) it is computationally inefficient.

Currently, the most state-of-the-art RIFD method [4] casts RIFD as a multi-class
classification problem and turns the classification results into regression by calculating
the expected value as the RIP orientation of each face candidate. The detector, which
is used to generate the RIP angle of each face candidate in a coarse-to-fine manner, is
easier to achieve fast and accurate calibration by flipping original image few times.

3 Method

This paper proposes an improved SSDmodel [11] and achieves inclined bounding boxes
regression by introducing angle prediction process,where both the coarse-to-fine strategy
and the soft classification are incorporated into the formulation of angle prediction, rather
than directly performing multi-class classification. By introducing the angle prediction
process, the tilted bounding box regression is achieved. Both the refined strategy and the
soft classification strategy are incorporated into the learning process of angle prediction
to avoid the problemof learning bias caused by the direct execution ofmulti-classification
tasks. Correspondingly, the algorithm adds a new angle offset loss to the general face
detection loss function which can be used to supervise the generation of face regions. In
order to extract effective rotation features, this paper uses a rotation convolution layer
to implement a direction-sensitive feature integration module.

3.1 General Architecture

SSD is a classic single-stage target detection framework. The detection algorithm per-
forms both coordinate regression and classification tasks. Figure 1 shows the architecture
of the target detection model proposed in this paper. The model consists of the basic net-
work and the detection function. This paper improves themodel detection function based
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on the SSD model, changes the output result to a slanted bounding box representation
method, adds a rotating convolution integration module, and improves the sensitivity
of the output feature to the target rotation transformation through convolution kernel
rotation and fusion. The loss function is improved so that the model can effectively learn
the angle deviation.

Fig. 1. The illustration of our architecture. The basic network uses the VGG-16 network model
which is composed of convolutional layers. The detection head adopts the FPNmulti-scale feature
fusion structure, and the down-sampled 32-fold, 16-fold and 8-fold feature maps are multi-scale
fusion, after each layer of feature maps in FPN. Then a Direction-Sensitivity Features Ensemble
Module (DFEM) is implemented to detect the inclined bounding box. Particularly, the DFEM is
appended at the end of the feature extractor. Three DFEMs are learned from the hierarchically
integrated feature maps.

The basic network uses the VGG-16 network model which is composed of convo-
lutional layers. Considering advantage of the convolutional layer in extracting target
features, the convolutional layer with a stride of 2 replaces the pooling layer to com-
plete the feature map. The detection head adopts the FPN [15] multi-scale feature fusion
structure, and the down-sampled 32-fold, 16-fold and 8-fold featuremaps aremulti-scale
fusion, after each layer of feature maps in FPN. Then a Direction-Sensitivity Features
Ensemble Module (DFEM) is implemented to detect the inclined bounding box.

3.2 Inclined Bounding Box Representation

We have analyzed that the existing method of target representation based on rectangular
bounding box which still has bottlenecks. The main problem is that there is a lot of
background noise based on the feature extraction of the region. This representation
method is difficult to accurately describe the structural information of the rotating face,
which interferes with the subsequent classification and positioning of the rotating face.
This is the scenario portrayed by FDDB benchmark, which represents the human face
with a rotated bounding box [13]. Inspired by this, we simplified the oblique ellipse
bounding box as a five-dimensional vector (x, y, w, h, θ ), as shown in Fig. 2. It contains
the coordinates (x, y) of the center point, and the direction angle θ represents the angle
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between the side of the slope k ≤ 0 in the bounding box and the positive direction of the
x-axis; w represents width, h represents height.

Fig. 2. The incline bounding box representation.

3.3 Direction-Sensitivity Features Ensemble Module

Local feature description is the core of many basic problems in the field of computer
vision. In recent years, the emergence of deep learning technology has brought historic
breakthroughs to many problems in the field of computer vision. Artificial neural net-
works with multiple hidden layers have excellent feature learning capabilities, and the
learned features can better reflect the essential characteristics of data. Recently, Spatial
Transformer Networks (STN) [14] has been introduced into the study of feature expres-
sion and learning to obtain ideal features with constant translation, scaling, and rotation.
Chen et al.: Used a similar strategy to embed the spatial transformation layer in the face
detection network to alleviate the pose change problem [16]. Although the experimental
results fully prove the robustness of these methods, the STN module can only process
one object at a time, and the calculation complexity is high, which is difficult to meet
the real-time requirements in practical applications.

Recent studies have shown that a typical DCNN network, even if it does not change
its network structure, can be directly trained on a large-scale multi-directional data set,
so that some features including essential attributes of the image can be automatically
learned [17]. In order to extract a truly effective rotation-invariant feature from the four
features output by the rotation convolution layer, we introduce new effective operations
and layers into the depth model, which can further improve the performance of the
learned feature representation. First, copy the original convolution kernel in 4 copies
and rotate it to four directions. Use convolution to extract the four orientation features in
the original image. Second, connect the cross-channel pooling layer behind the rotation
convolution layer [18], the output direction is sensitive feature.

Before describing the direction-sensitive feature integration module (see Fig. 3.),
we first briefly introduce the angle soft classification strategy. The angle prediction
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Fig. 3. Detailed structure of Direction-Sensitivity Features Ensemble Module.

task is implemented in DFEN in the form of multiple classifications, defining θ ∈ {0,
π/24, 2π/24, 3π/24, …, 23π/24}, and dividing the full RIP angle into 24 finite sets.
Considering the research and application of rotation-invariant face detection methods,
in order to maintain the speed of model detection without sacrificing too much accuracy,
we use a strategy from coarse to fine to perform secondary prediction. The first prediction
is implemented in the form of four categories, defining θ1 ∈ {0, π/4, π/2, 3π/4}. The
preliminary prediction θ1 is generated before the direction-sensitive feature extraction by
adopting a skip connection structure. The primary prediction generated by the direction-
sensitive feature integration module and the final prediction result generated by the
prediction module form an angle soft classification, to avoid the inaccurate classification
caused by directly performing the multi-classification task.

Subsequently, θ1 is used as the input parameter of the direction-sensitive feature
integration module to realize the direction-sensitive feature integration in the form of an
activation function. The activation function is:

f =
∑4

i=1

θ i1 · zi
4

(1)

in which z denotes the four direction feature map generated by the cyclic convolution
layer.

3.4 Loss Function

The training of DFEN model uses a combination of three loss functions, including face
classification, bounding box regression and angle classification. These loss functions act
on the final convolution layer of the direction-sensitive feature integration module. The
face classification loss is mainly used to distinguish the face area and the background.
The regression loss is mainly used to learn the relative distance of the face area based
on the preset frame. The MSE loss is used to represent face classification and regression
errors; the angle classification loss is mainly to fit the person. The global structure of the
face uses cross-entropy loss.
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For each training sample i,pi represents the corresponding network output face clas-
sification score; if it contains a face, p*i = 1; otherwise, p*i = 0; ti represents the bounding
box regression vector, t*i = [x*i , y

*
i , w

*
i , h

*
i ] represents the true center coordinates and

height and width of the slanted bounding box; θ i represents the angle classification
score output by the network, and θ*i represents the real category label of the sample. N
represents the number of training samples, set λcls = 3, λreg = 1, λang = 1.

4 Experiments

4.1 Implementation Details

As for parameter initialization, the basic network of the DFEN method uses the VGG16
network model, and their parameters are initialized from the pre-trained VGG16, and
other additional layers are initialized randomly by the “xavier” method. We use the
Tensorflow framework and adopt Adam technology for optimization. The weight decay
is 0.0005, the momentum is 0.9, the learning rate is fixed at 0.001, and the training round
is 100 Epochs. The entire network is trained on Nvidia GTX 1080Ti GPU.

4.2 Methods for Comparison

We compare with the following three representative methods:

Divide-and-Conquer: The first kind addressed the RIFD using multi-class classi-
fication approaches by quantizing the entire face ranges into groups. In our experi-ments,
we implement an upright face detector based on Cascade CNN [20] and run this detector
four times. Then the multi-oriented detection results on test images are combined to
output the final decision.

Data Augmentation: These models directly learn a mapping function from the whole
training images with great variations of face appearances to the face regions. For more
extensive comparison, we employ the most state-of-the-art models, such as Faster R-
CNN [19], SSD300 [11] and Cascade CNN.

PCN: The designation of PCN represents rotation variation in a label-learning man-
ner and provides a coarse-to-fine way to perform RIFD, which have demonstrated the
robustness to faces with full 360 RIP angles.
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4.3 Evaluation Results

Results on Multi-oriented FDDB. The FDDB dataset contains 2845 images and 5171
annotated faces. Since the original version of the FDDB dataset contains only a few
rotated faces, it is also not suitable for evaluating RIFD, we use its extended version
provided by [4] in the experiments. Compared to PCN,FasterR-CNN(VGG16), SSD300
(VGG16) and Cascade CNN, our method achieves the best accuracy on the FDDB
dataset. The specific results (Recall rate at 100 False Positive on Multi-Oriented FDDB)
are presented in the Table 1. All the results demonstrate the effectiveness of multi-class
classification. The speed results are shown in Table 2.

Results on Rotation WIDER FACE. The WIDER FACE dataset [21], remains dom-
inated by faces with small RIP variations. For fair comparisons, we follow the same
experimental settings and evaluation metrics as adopted in [4]. To this end, we manually
select some images that contain rotated faces from theWIDER FACE test set, denoted as
Rotation WIDER FACE, contains 400 images and 1053 rotated faces in the wild. Some
detection results can be viewed in Fig. 4.

Table 1. The FDDB recall rate (%) is at 100 false positives.

Method Recall rate at 100 FP on FDDB

Up Down Left Right Ave

MTCNN 89.6 – – – –

MTCNN-aug 86.2 84.1 83.6 83.5 84.4

Divide-and-Conquer 85.5 85.2 85.5 85.6 85.5

Cascade CNN-aug 85.0 84.2 84.7 85.8 84.9

SSD500 (VGG16) 86.3 86.5 85.5 86.1 86.1

Faster R-CNN (VGG16) 87.0 86.5 85.2 86.1 86.2

PCN 87.8 87.5 87.1 87.3 87.4

Ours 88.5 88.3 87.5 87.6 87.9

Table 2. Speed comparison between different methods.

Method Faster R-CNN SSD500 Ours

CPU 0.5 1 0.5

GPU 10 20 15
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Fig. 4. Our DFE-Net’s detection results on rotation WIDER FACE.

5 Conclusion

In this work, we propose a novel Direction-Sensitivity Features Ensemble Network for
rotation-invariant face detection. To promote the discrimination ability of coarse feature
maps, a Direction-Sensitivity Features EnsembleModule is embedded into the detection
network. As a result, each directional position of the feature maps can carry over to
appearance variations accounted for in our design. Then the fine detailed geometric cues
are progressively recovered in the prediction results by learning direction-sensitivity
features ensemblemodule. Futurework includes conductingmore extensive experiments
which would be help further demonstrate the efficacy of our design.
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Abstract. The main task of human keypoint detection is to detect the
position of human bone joints in pictures or videos. In the branch-based
network, key points are classified according to different properties, and
each branch of the network is responsible for the prediction of a certain
set of keypoints. Compared with the direct prediction of the network of
all the key points, the advantage of this method is that it considers the
structural constraints on the human body and the internal relationship
between the key points. Based on the branch network, this paper studies
the information-sharing relationship and the negative transfer relation-
ship between branches. It proposes a new branch information correction
network to make full use of the complementary information on branches.
The experiment proves that the method proposed in this paper can fur-
ther improve the accuracy of the keypoint prediction of the human body,
and can correct some key points which are easily affected by the envi-
ronment.

Keywords: Human pose estimation · Convolutional neural network ·
Human skeleton joints

1 Introduction

Human Pose Estimation (HPE) is a foundational problem in the field of com-
puter vision. It is also known as the location of Human skeleton key points,
which is to use robust algorithms to estimate the position of human skeleton key
points in pictures or videos.

The traditional algorithm [1–6] for HPE in the early stage is based on the
graph model of parts. However, due to the inconsistency of the human scale in
the picture and the complex distribution of distance and angle of key points, the
generalization performance of these models is usually insufficient. In recent years,
due to the outstanding performance of the convolutional neural network in image
classification and feature extraction, many HPE works use deep netural network
to realize feature extraction and spatial position constraint. DeepPose [7] for the
first time proposed the use of deep convolution neural network for coordinate
regression of key points. The Iterative Error Feedback model [8] proposed by
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Joao Carreira et al. gradually changes the initial hypothetical position of points
through the feedback error.

Some deep learning methods explicitly add tree structure [9] and graph struc-
ture [10] to the network, which usually requires high computation overhead and
a clear description of the distribution. So recently, many methods use heatmap
regression to learn structural information implicitly at the same time to avoid the
above problems. CPM [11] (Convolutional Pose Machines) proposed by Shih-En
Wei et al. has become a classical method in the field of human pose estima-
tion, which uses large convolution kenel sequence to expand the receptive field
and implicitly learn structural information. The Stacks Hourglass Networks of
Newell [12] can learn high-level semantic information through multi-scale recep-
tive field mechanism. At the same time, the encoding and decoding parts with
the same resolution of the network are added to get enhanced pose estimation
information. The network [13–15] based on Hourglass, changes the upsampling
method of feature graph or introduces the network structure such as attention
mechanism. HRNet [16] has changed the traditional method of recovering high-
resolution representation from low resolution and has always maintained reliable
high-resolution representation, so it has better performance.

Pose estimation is essentially homogeneous multi-task learning, with each
task responsible for the prediction of one or a series of key points. Some recent
work has used the multi-task sharing mechanism to locate key points, where
the branch network is a representation of the network structure. Compared with
the common network that directly estimates all the key points, the advantage
of the branch network is that it takes into account the structural constraints of
the human body and the internal relationship between the key points. CrossIn-
foNet [17] divided hand posture estimation into two subtasks, palm and finger,
and adopted two branch cross-linking structures to share beneficial information.
CPN [18] (Cascaded Pyramid Network) divided the human posture estimation
task into two subtasks: coarse critical point detection and fine critical point
detection. The fine detector was built on multiple feature layers of the coarse
detector to improve the accuracy of the difficult key points.

Part-based branching Network (PBN) [19] believes that traditional end-to-
end learning, all key points share the same rich pose representation, and ignores
the negative transfer between some key points which can lead to adverse effect.
Therefore, based on the nature of mutual information, the author divided the
pose estimation task into five subtasks and adopted a multi-branch structure to
avoid the interaction of negative correlation feature of some key points.

This paper studies the roles of the backbone and the branch of PBN. Based
on the information-sharing relationship between branches and the correlation
of key points, the corresponding network structure is designed to optimize the
branch structure and improve the independence of branches. The branch infor-
mation correction network is proposed, which makes full use of the complemen-
tary information between the branches to select the needed features from the
rich coupling features, and at the same time enhances the independence of the



Branch Information Correction Network for Human Pose Estimation 593

branches and realizes the enhancement of the features. The experiment shows
that it can correct some key points which are easily affected by the environment.

2 Related Work

PBN [19] treats the joint position to be predicted as a random variable lm ∈ L,
m ∈ {1, · · · ,M}, where L is spatial domain, m represents any key point and M
is the number of joints. Therefore, the correlation between the two variables is
measured by calculating the mutual information I(lm, ln). The higher the value
of I(lm, ln) means that the features closely related to the joint m also provide
some clues to the joint n and vice versa. Finally, they treat {I(lm, ln)}, with
m,n ∈ {1, · · · ,M} as an affinity matrix and use spectral clustering to group
related parts. On the basis of the experiment, the key points were divided into
five groups.

Fig. 1. A part-based branching network (PBN)

PBN uses the structure of a backbone network cascading branch network,
and the superposition of multiple modules is to continually refine the accu-
racy of pose estimation. The branch network is composed of five branches, and
the five branches separately predict the key points which are divided into five
groups according to the mutual information. PBN’s backbone is used to extract
the semantic features of human pose, and the branch network independently
estimates the distribution of a certain set of key points (See Fig. 1). Some sim-
ple common feature representations learned from the backbone are provided to
each branch, and then the individual feature is expected to be learned from each
branch, which thereby mitigates the impact of negative migration between key
point groups. However, the PBN’s backbone contains at least twelve residual
blocks and much more convolutional layers, which is thus much deeper than
each branch that contains only one residual block. As a result, the backbone
provides abundant global high-level pose semantic feature, and this feature is
coupled with the information of each key point, while the branch network is



594 Q. Ni et al.

only a simple feature selector and has such a limited decoupling ability that
cannot fully extract or independently learn the features of this group of key
points. That is why increasing the number of residuals in a branch network does
not improve network performance. Besides, if the backbone network only learns
the general features, and each branch network independently learns the features
of each group of key points, there should be some repetitive structures, which
increase redundant network parameters.

In response to the questions raised above, this paper proposes a branch infor-
mation correction network (BICNet). It uses HRNet as the backbone to extract
high-level semantic features that retain reliable high resolution. The branch net-
work is improved so that it can extract features from the rich coupling features
of all key point in an optimized way.

3 Our Approach

The BICNet proposed in this paper is based on the backbone network cascad-
ing branch network structure, and its main improvement is the branch feature
enhancement module in the branch network. Our work is inspired by CrossIn-
foNet [17] and applies it to human pose estimation, extending it to the case of
the five branches, and analyzing its ability to enhance its independence. The
information extraction capability of the branch network is optimized by using
the branch structure and the information between branches. At the same time,
the mutually beneficial information between the branches is used to enhance
the feature and the independence of the branch network. The proposed branch
information correction network is shown in Fig. 2.

The grey rectangle in the figure represents the input image. The backbone
uses HRNet network to learn the rich pose feature (See Fig. 2). Each branch
learns the preliminary features of the keypoints by residual block and then
obtains the prediction feature map of each branch through our branch feature
enhancement module (red dotted box in Fig. 2). A concatenation of feature maps
from each branch is used for intermediate supervision (See Fig. 3).

Based on PBN, we divide the key points of human body into five groups. Each
branch is set as bi, i ∈ [1, 5], and the feature obtained by backbone network is
f. In the branch information enhancement module, fmi (the ith branch) in the
figure represents the initial features obtained by convolution of the residual block
R(·) with f .

fmi = R(f) (1)

For the bn, fbn is obtained by subtracting the features of bi, i ∈ [1, 5], i �= n from
the common feature f . Then, fbn is concatenating with the initial feature of bn,
and the result fm

′
i can be used as the branch feature after enhancement. That is:

fm′
i =

(
f − Σ5

j=1,j �=ifmj

) � fmi (2)

where � represents the concatenation of feature map.
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Fig. 2. Branch information correction network. Inside the red dotted rectangle is the
branch feature enhancement module (Color figure online)

Fig. 3. The intermediate supervision of branch feature enhancement module
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If we only have the structure of the network with no specific constraints,
it is not correct to rely solely on the network to learn the functions of the
modules we expect. Therefore, a fundamental premise of this module is that
fmi must be a feature of some of the key points that the bi wants to predict.
Therefore, this article introduces an auxiliary loss, the green box part of the
picture (See Fig. 3). The intermediate supervision is added to the network so
that the initial estimation can be optimized continuously. At the same time, the
intermediate supervision can also prevent the gradient from disappearing and
promote convergence.

This is shown in Fig. 3. Since the number of channels of the initial feature map
fmi in the box is the same, new feature map with different channels is obtained
by 1 × 1 convolution, and the number of channels of the new feature map is the
same as the number of key points to be predicted by this branch. In this way, the
newly obtained feature map can be concatenated to obtain the feature maps of
16 channels (MPII [20] dataset has 16 joint points) for intermediate supervision.
That is:

JB = L (fm1) � L (fm2) . . . . . . � L (fm5) (3)

The auxiliary loss function of the intermediate supervision is:

LossB =
1
2n

∑

x

‖JB − Y ‖2 (4)

where x is each element in the feature map, and Y is the ground-truth label. At
the end of the backbone, JA obtained from the backbone network with 1 × 1
convolution with f . The auxiliary loss function of it is:

LossA =
1
2n

∑

x

‖JA − Y ‖2 (5)

Assuming that the output of the whole branch network is J , the loss function of
the network can be defined as:

LossO =
1
2n

∑

x

‖J − Y ‖2 (6)

Therefore, the total loss function of the whole network is:

Loss = LossA + LossB + LossO (7)

The point of subtraction of feature map is that each branch either excludes the
direct information from other branches or the information coupling with other
branches. The resulting feature maps are then cascaded with the initial feature
maps fmi learned through supervision, and the resulting new feature maps are
enhanced compared to the previous ones. Importantly, the network has a specific
decoupling capability. More importantly, since extraction and cascading are both
directed at this branch, the independence between branches is also increased.

Intermediate supervision only plays a role in training and does not need to
work in network reasoning, so the network improves its performance without
improving the parameters of PBN’s branch network.
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4 Experiments and Results

The performance of the pose estimation was evaluated on the MPII dataset
to evaluate the effectiveness of the proposed method. The images in the MPII
dataset are all drawn from YouTube videos and cover a variety of human activ-
ities. It contains 25K images, including 40,000 people with richly annotated
human joints. MPII’s annotation in the single-person pose estimation includes
16 key points of the human body correspond to the coordinates of the original
image, among which “visible” indicates whether the key points are visible, and
the coordinates of some invisible points beyond the image boundary are set as
(0, 0). “Scale” refers to the ratio of the height of the human body in the original
figure to 200, which represents the size of the human body. “Center” marks the
central position of the human body, which is obtained from the average of the
left and right buttocks and left and right shoulders.

Data preprocessing includes random scale enhancement, rotation enhance-
ment and shear enhancement, and image mirroring with a 50% probability. The
image is cropped to 256 × 256 with the “center” annotation as the centre. HRNet
is used as the backbone network for pose feature extraction, and HRNet’s pre-
training model was used for training. PCKh is used as the evaluation measure
for the prediction results. In this paper, two 2080Ti GPUs are used for the
experiment under Pytorch framework.

Fig. 4. Upgrade the 3 stacks PBN with the branch feature enhancement moudle. The
first row is the result of 3 stacks PBN, and the second row is the result of 3 stacks
PBN with branch feature enhancement moudle.

The experiments were conducted ablation studies on branch information cor-
rection network. Compare the performance of a network that uses HRNet as its
backbone and does not include branches. At the same time, we also compared
the PBN with the backbone of HRNet with our BICNet.
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Table 1. The experimental results on the MPII verification set.

Method Head Shoulder Elbow Wrist Hip Knee Ankle Mean

HRNet 97.1 95.3 90.5 85.4 89.2 85.8 82.2 90.1

Baseline 97.2 96.5 91 86.2 88.8 86.3 83.3 90.3

BICNet* 97.2 95.9 90.7 86.1 88.6 87.2 83.8 90.3

BICNet 97.2 96.6 91.1 86.7 89.6 86.4 83.5 90.6

The Baseline in Table 1 is a network structure with HRNet as the backbone
network and five branches of PBN. BICNet is the experimental result of the
branch information correction network proposed in this paper on the MPII veri-
fication set. The experimental results show that the branch feature enhancement
module can improve the accuracy on the basis of the reference network. With an
average accuracy of 90.1% for HRNet only, our BICNet improves accuracy by
0.5%. Our branch network is also 0.3% more accurate than the baseline. BIC-
Net* means no intermediate supervision was used in the experiment. We tried
to adjust the parameters in the hope of improving the results, but after multiple
experiments, the results remained at 90.3%. It is explained that intermediate
supervision plays a decisive role in our approach because it ensures that the
structure we design has specific physical meaning. This is only significant when
a small number of parameters are introduced in the intermediate supervision
section. However, intermediate supervision only plays a role in training and does
not need to work in network reasoning, so the network improves its performance
without improving the parameters of PBN’s branch network.

Fig. 5. The partial results obtained by BICNet on the MPII dataset.
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The network training parameters of the above three experiments are consis-
tent. Because each branch of the feature enhancement module shares its learned
features in a mutually beneficial way, the feature enhancement is realized. In the
actual prediction, its reasoning effect in the occlusion of the key points is more
prominent.

PBN’s idea is to design branch networks by grouping key points through
mutual information. Comparisons with PBN (the backbone network is Hour-
glass) need only be different in branching networks, all else being equal. Based
on the same HRNet as the backbone, compare the branches of PBN and ours
can not only verify the effectiveness of the PBN branch, but also verify the effec-
tiveness of our method. Because the results of PBN with the backbone of HRNet
are higher than that of HRNet, the results of our approach are higher than those
of PBN with the backbone of HRNet.

Our experimental results are not obtained by tuning parameters, but by using
the parameters of HRNet. Perhaps its parameters do not fit our network, but our
experimental results are improved. We have also tried to design more complex
network structural relationships, but the results have not improved.

Figure 4 shows some of the results from the PBN revamped using BICNet’s
branches compared to the original 3stacks PBN. The results showed that BICNet
could effectively correct the position of vulnerable joints such as wrists, ankles
and knees. In this paper, the predefined information sharing structure encodes
part of the information and learns the corresponding information through the
network. Columns 2, 5, and 6 indicate that BICNet effectively corrects some of
the key points where PBN locates it to someone nearby (See Fig. 4). Figure 5 is a
partial result of the branch information correction network on the MPII dataset.

5 Conclusion

Through the benchmark experiment and some ablation comparison experiments,
the branch information correction network proposed by us is valid and has a
good effect on the prediction of the key points that are difficult to reason and
easy to block, such as wrist and ankle. The branch feature enhancement module
can correct some key points which are easily affected by the environment. It
combines the reciprocal information between branches to help other branches
learn better with the features learned by this branch. The module also optimizes
the feature extraction method to exclude the information of other branches from
the rich backbone network features, and then concatenate the information of this
branch to isolate the features between the branches. That is to say, the branch
feature enhancement module enhances the independence of the branches while
enhancing the features.
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Abstract. It is necessary to realize the automatic detection of cervical cells in Pap
Smears. We present an automatic cervical cell detection approach based on the
so-called Dense-Cascade R-CNN (Dense-Cascade Region-based Convolutional
Neural Networks). The approach consists of three modules: data augmentation,
training set balancing (TSB), and the Dense-Cascade R-CNN. The data augmen-
tation module carries out operations such as rotation, scale, flip, etc. on input
images to increase the samples. The TSBmodule is used to balance the number of
cervical cell samples of various classes in the training set after data augmentation.
As for the Dense-Cascade R-CNN module, the residual neural network (ResNet)
with 101 layers in a Cascade R-CNN is replaced by a dense connected convolu-
tion neural network (DenseNet) with 121 layers so as to improve the detection
performance of cervical cells. We evaluated the proposed method on the Herlev
dataset. The results show that our approach can improve both mean average pre-
cision (mAP) and mean average recall (mAR) for Cascade R-CNN. Our cervical
cell automatic detection approach can be used as an auxiliary diagnostic tool for
cervical cancer screening.

Keywords: Cervical cancer · Cervical cells · Automatic detection · Pap smear ·
Deep learning

1 Introduction

With the rapid development of social economy, the natural and social factors that endan-
ger women’s health are increasing, and the incidence of gynecological cancer is also
increasing year by year. Cervical cancer is the most common gynecological malignant
tumor. In China, cervical cancer is the second most common gynecological malignant
tumor. As cervical cancer is the only gynecological malignant tumor that can be success-
fully cured by early diagnosis and treatment, screening for precancerous lesions of the
cervix is particularly important. In the 1940s, the Pap Smear method was established by
Papanicolaou who used cervical exfoliated cells directly for cervical cancer screening. It
was simple for operation and low in price. The widespread of this technique has reduced
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the incidence and mortality of cervical cancer significantly. Now Pap Smear method is a
widely used method for early screening of cervical cancer, which is of great significance
for the early diagnosis and treatment of cervical cancer [1, 2]. However, this method
relies on manual microscopy, the doctor’s workload is large, the screening cost is high,
and the accuracy of the screening results depends on the doctor’s experience. In addi-
tion, the cumbersome operation in the high-powered environment is likely to cause the
doctor to fatigue and thus affect the critical result. Therefore, it is necessary to achieve
automatic detection of cervical cell in the Pap Smear.

In recent years, the automatic detection of cervical cell images by image processing
technology has become the norm [1–3]. Neghina et al. introduced a method of cervical
cell segmentation and classification based on a polar transformation. One aspect of this
method is that a number of parameters can be observed conveniently and evaluated as
fuzzy memberships to the non-cell class in the segmented polar representation, out of
which the final decision can be determined [4]. Chankong et al. used the fuzzy C-means
(FCM) clustering technique to segment a single-cell image into the nucleus, cytoplasm,
and background; hence, the 2-class problem can be achieved [4].

The above research mainly uses the traditional image classification method. The
problems of these methods are as follows: (1) Manual selection of features is required,
so technicians need to master professional knowledge of cytology and pathology; (2)
Different classifiers for different types of cervical cells need to be designed. These clas-
sifiers are not universal and are difficult to apply to different datasets. As the number
of cell types increases, the tasks of the classifier design will increase dramatically; (3)
Thesemethods are only good at classification, and the cervical cells cannot be accurately
marked in the image. In recent years, deep learning is widely used in the automatic detec-
tion ofmedical images [5]. Some scholars have used a deep convolutional neural network
(DCNN) to perform feature extraction and classification on gynecological examination
smears such as thinprep cytologic test (TCT), and cross-validation is used to verify its
validity [4]. The results show that the performance of the deep learning method signif-
icantly outperforms that of the traditional method. However, deep learning is still less
used in the automatic detection of cervical cells in Pap Smears, which contains both clas-
sification and segmentation tasks. The purpose of this paper is to explore the application
of deep learning in the automatic detection of cervical cells. Since the detection perfor-
mance of DCNN depends heavily on the size of the sample, the balance of the samples
of different classes in the input image, and the structure of the DCNN, this paper focuses
on the investigation of data augmentation, training set balancing (TSB), and the structure
of region-based CNN (a kind of DCNN) to find ways to improve the automatic detection
performance of cervical cells. The main contributions of this paper are as follows: (1) A
data augmentation method that combing 7 carefully-selected operations is presented to
expand the sample size of the data set; (2) A training set balancing (TSB) algorithm is
used to balance the number of samples in the data set; (3) A improved network, named
Dense-Cascade R-CNN, is given based on Cascade R-CNN: the 101-layer ResNets in
the Cascade R-CNN are replaced with 121 layers of DenseNets, and a segmentation
branch is added to each detection branch of the Cascade R-CNN to implement segmen-
tation task. All these tricks help to improve the performance of our network significantly
in contrast to other networks.
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2 Materials and Methods

2.1 Dataset

We use the Herlev dataset for experiments. The Herlev dataset was produced in collab-
oration with the Technical University of Denmark and the Herlev University Hospital
[4]. The images in this dataset are saved as BMP format. Each image is a single intact
cell image with an average resolution of 150 × 140 that has been divided into normal
class and abnormal class by cytologists. In this paper, 917 samples (675 abnormal cells
and 242 normal cells) in the Herlev dataset are used for experiments [6]. All cells can be
further divided into 7 classes (C1–C7, see Table 1). The entire dataset is divided into a
training set and a test set. Furthermore, a part of the samples from the training set (about
10%) is taken as the verification set. Table 1 lists the number of training and test samples
for the original Herlev dataset.

Table 1. Number of training images and test images

Type Class Training set Test set

Normal cell Superficial squamous epithelial (C1) 58 16

Intermediate squamous epithelial (C2) 54 16

Columnar epithelial (C3) 82 16

Abnormal cell Mild squamous non-keratinizing dysplasia (C4) 166 16

oderate squamous non-keratinizing dysplasia (C5) 130 16

Severe squamous non-keratinizing dysplasia (C6) 181 16

Squamous cell carcinoma in situ intermediate (C7) 134 16

Total 805 112

Data augmentation

Training set balancing

Training stage: training deep convolution 
neural network

Test stage: network model applied to test set

Output: cervical cell 
classification, location, 
segmentation results

Input: Herlev data set

Fig. 1. Flowchart of the proposed method for cervical cell detection
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2.2 Detection Method

Data Augmentation
Since the number of samples in the Herlev dataset is too small, we use data augmenta-
tion methods to enrich the dataset by creating new similar samples before training our
proposed DCNN. This operation improves the accuracy of DCNNs and reduces over-
fitting [6]. Random translation [7], rotation [8], scale [8], ZCA whitening [9], feature
standardization [10], horizontal flip [7], and vertical flip [7] are used to increase the
number of samples. After data augmentation, the number of samples is increased from
805 to 7000.

Training Set Balancing
As the number of samples in different classes of the Herlev dataset is unbalanced, we
balance the number of samples in each class by training set balancing (TSB). In this
paper, we first generate a large number of new samples by various methods in the data
augmentation module, and then select the required number of samples randomly from
generated samples together with the original ones to form the training set, so that the
number of cell images in each class is equal.

Dense-Cascade R-CNN
Currently, there are many object detection networks based on DCNN, such as R-CNN
[4], Fast R-CNN [4], Faster R-CNN [4], Mask R-CNN [11], and Cascade R-CNN [4].
They are networks based on regional recommendations. Note that the Mask R-CNN can
simultaneously perform classification, location, and pixel-level segmentation [4], hence
it is always chosen as a benchmark for performance evaluation. In our experiments, we
also chose it as a benchmark for comparison purpose.

Different from Mask R-CNN or Faster R-CNN, Cascade R-CNN is composed of
a sequence of detectors trained with increasing IoU thresholds, and the detectors are
trained sequentially, using the output of a detector as the training set for the next.Actually,
Cascade R-CNN is a multi-stage extension of the Faster R-CNN. In the two-stage archi-
tecture of the Faster R-CNN, The first stage is a proposal sub-network, which is applied
to produce preliminary detection hypotheses. In the second stage, these hypotheses are
processed, a final classification score and a bounding box are assigned per hypothesis.
Cascade R-CNN contains four stages, i.e. an RPN network and three detectors. In these
three detectors, the input of each detector is the result of the regression of the boundary
box of the previous detector, and the IoU thresholds of the three detectors are different
and increasing.

Cascade R-CNN using ResNet backbone has achieved excellent results in the seg-
mentation of many large datasets [11]. It outperforms most state-of-the-art detectors.
However, ResNet is not an optimal choice for Cascade R-CNN for feature extraction
for small datasets. Some research argues that for a relatively small dataset, the network
called DenseNet (Densely Connected Convolutional Neural Network) always shows
better performance [12], because it can solve the problem of overfitting better [12].

The basic idea of DenseNet is similar to ResNet, but it establishes a dense connection
between all the front and back layers. DenseNet is mainly divided into two modules:
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Dense block and Transition layer. The Dense block consists of two convolution layers
with a convolution kernel size of 1 × 1 and 3 × 3, respectively. The Transition layer
consists of a convolution layer of 1 × 1 convolution kernel and an average pooled
layer. Similar to ResNet, DenseNet is initially a 7 × 7 convolution layer and a 3 × 3
maximum pooling layer, followed by the Dense block and Transition layer, and finally
the 7 × 7 global pooling layer and the fully connected layer. The feature map size of
the corresponding layer of DenseNet can match the feature map size of the 5 stages
output in ResNet. Because of this architecture, we can replace the ResNet in Cascade
R-CNNwith DenseNet. Another feature of DenseNet is that it can reuse feature through
the connection of features on Channel [12]. These features allow DenseNet to achieve
better performance than ResNet in the case of fewer parameters and computational costs.
Studies have shown that the feature extraction performance of DenseNet is superior to
ResNet [12].

Inspired by this conclusion, we attempt to replace the 101-layer ResNet in Cascade
R-CNN with the 121-layer DenseNet. Moreover, we add a segmentation branch to each
detection branch ofCascadeR-CNN to implement segmentation tasks. Figure 2(b) shows
the architecture of our proposed DCNN, which uses the 121-layer DenseNet instead.
We call this network Dense-Cascade R-CNN. We also manage to load the weights of
DenseNet and Cascade R-CNN pre-trained models to initialize the proposed network.
This operation speeds up the convergence rate of the gradient. We also replace ResNet
in Mask R-CNN for comparison purpose. We call it Dense R-CNN.

3 Results and Analysis

In this paper, we use the samples listed in Table 1 for the experiment.We first evaluate the
performance of the data augmentation module and TSB module, showing how they can
contribute to detection; then, we evaluate the whole approach and present the cervical
cell detection results.

3.1 Evaluation of Data Augmentation

In order to evaluate the effect of the data augmentation module in this paper, we design
the ablation experiment shown in Table 2, in which the first row is the number of each
experiment, and the first column lists the methods available in the data augmentation
module. The “

√
” in the table indicates that this method is used in the experiment of

this column. We evaluate the effect of each method on cervical cell performance by
combining the methods in the module. Table 3 shows the detection performance scores
on the test set when using different data augmentation methods. In order to make a fair
comparison, E1–E7 does not use the TSB method, but uses each data augmentation
method separately to expand the original training set in Table 1 by one time to get 805
× 3 training samples (original included), and then randomly selects 24 samples from
each class (hence 192 samples) to form the verification set. E8 merges the training sets
of E1–E7 together to obtain 805 × 8 training samples, and then randomly selects 96
samples from each class to form the verification set. The test set is always the same, and
the default hyperparameters of the network are applied.
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1×1 conv

2x up

DenseNet 121 for FPN

predict

predict

predict

Bottom-up pathway

Lateral connections

Top-down pathway

(b)

(a) 

Fig. 2. Architecture of the proposedDense-Cascade R-CNN. (a) FPN is constructed byDenseNet
121. (b) Overall architecture.

Table 2. Results of ablation experiments on the data augmentation module. Methods used in the
module were combined to evaluate the impact of each method on the detection performance. The
“
√
” in the table indicates that the method was used in the experiment listed in the same column

No.
Method

E1 E2 E3 E4 E5 E6 E7 E8

Random translation
√ √

Rotation
√ √

Scale
√ √

ZCA whitening
√ √

Feature standardization
√ √

Horizontal flip
√ √

Vertical flip
√ √

In Table 2, E1–E7 are experiments using a single data augmentation method to
evaluate the impact of the method on the detection performance of cervical cells. The
purpose ofE8 is designed to assess the impact of the combination of all data augmentation
methods on the detection performance of cervical cells. It can be seen from Table 3
that when a single data augmentation method is applied, the best performance of mean
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Table 3. Detection results on the test set using different data augmentation methods

No.
Metric

E1 E2 E3 E4 E5 E6 E7 E8

mAP 0.539 0.483 0.505 0.464 0.478 0.539 0.525 0.787

mAR 0.620 0.577 0.588 0.547 0.560 0.611 0.589 0.833

Type
No.

C4 C5 C6 C7

Ground 
truth

E1

E2

E3

E4

E5

E6

E7

E8

Fig. 3. Cell segmentation results of various data augmentation methods on Herlev dataset, taking
abnormal cells as an example
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average precision (mAP) is E1 (53.9%), the worst is E4 (46.4%), the best performance of
mean average recall (mAR) is E1 (62.0%), and the worst is E4 (54.7%). This shows that
for cervical cell detection, different data augmentation methods have different impacts
on the detection results; combined with various data augmentation methods, mAP and
mARhave been significantly improved compared to the best results using singlemethod:
mAP increased by 24.8% point, and mAR increased by 21.3% point. Figure 3 shows
the segmentation results of abnormal cells with different data augmentation methods
(E1–E8).

3.2 Evaluation of Training Set Balancing

In order to verify whether the TSB is beneficial to the cervical cell automatic detection
performance of the network, we conduct a comparative experiment of the network cell
segmentation performance without and with TSB. Default hyperparameters of the net-
work are applied. In the experiment without TSB, the original Herlev dataset shown in
Table 1 is used, with a total of 805 training set samples. For the experiment with TSB,
the new training set (the number of cells in each class is 1000) and data augmentation
method E8 in Table 2 are used. The results show that, when there is no TSB, the mAP of
the network is 29.6%, and the mAR is 39.1%, which are much smaller than the values
when TSB is applied (mAP: 79.2%, mAR: 89.0%).

Figure 4 compares the detection performance of the network without and with TSB
for each class in the test set. It can be seen fromFig. 4 that TSB improves the performance
of the network in all classes, and it has the greatest influence on class C2 (intermediate
squamous epithelial).

0.0

0.2

0.4

0.6

0.8

1.0

C1 C2 C3 C4 C5 C6 C7
mAP(no TSB) 0.425 0.062 0.139 0.709 0.353 0.406 0.312
mAP(with TSB) 0.952 0.904 0.876 0.900 0.931 0.761 0.786
mAR(no TSB) 0.450 0.056 0.144 0.750 0.362 0.412 0.319
mAR(with TSB) 0.963 0.925 0.900 0.925 0.956 0.825 0.844

m
A

P/
m

A
R

Fig. 4. Comparison of the detection performance of the network without and with TSB

3.3 Evaluation of Dense-Cascade R-CNN

In this section, we apply the proposed approach to the test set to evaluate its performance.
The experiments are implemented based on PyTorch and MMDetection.
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Ground truth Segmentation result
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C3

C4

C5

C6

C7

Fig. 5. Cell segmentation results of the proposed methods on the Herlev dataset. C1–C3: normal
cell; C4–C7: abnormal cell
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We fine-tune the hyperparameters of the Dense-Cascade R-CNN to get an excellent
result. Figure 5 shows the detection results. As can be seen from Fig. 5, all the cells are
classified, located, and segmented accurately.

We compare the performance of several state-of-the-art approaches (Mask R-CNN,
Dense R-CNN, Cascade R-CNN [13], and Dense Cascade-R-CNN) on the test set.
Table 4 shows the comparison results.

Table 4. Performances of different approaches for cervical cell detection. The data underlined
indicate the best performance metrics among these approaches. (Epoch = 200)

Metric Mask R-CNN Dense R-CNN Cascade R-CNN Dense-Cascade R-CNN

mAP 0.922 0.899 0.964 0.979

mAR 0.968 0.959 0.973 0.988

As can be seen fromTable 4, Dense R-CNN achieves both the lowest mAP andmAR,
indicating that DenseNet replacing ResNet is the cause of performance degradation,
hence the framework of Mask R-CNN might not suitable for DenseNet. Please note
both mAP and mAR are increased after ResNets are replaced by DensNets in Cascade
R-CNN: the mAP of Dense-Cascade R-CNN is 1.5% points higher than that of Cascade
R-CNN; for the mAR, it also increases 1.5 percentage points. Both mAP and mAR of
Dense-Cascade R-CNN are highest among all approaches. This indicates our method
does work better for the cervical cell detection task, and it is served as the detector
according to clinical needs.

In addition, we also compare the performance of the above approaches in dealing
with abnormal cells and normal cells. As shown in Fig. 6, the detection performance

0.800

0.900

1.000

Normal cell Abnormal cell
AVG_mAP(Mask R-CNN) 629.0869.0
AVG_mAP(Dense R-CNN) 319.0059.0
AVG_mAP(Cascade R-CNN) 859.0499.0
AVG_mAP(Dense-Cascade R-CNN) 879.0799.0
AVG_mAR(Mask R-CNN) 849.0779.0
AVG_mAR(Dense R-CNN) 149.0369.0
AVG_mAR(Cascade R-CNN) 179.0699.0
AVG_mAR(Dense-Cascade R-CNN) 289.0899.0

m
A

P/
m

A
R

Fig. 6. Performance comparison of different methods for segmenting abnormal and normal cells
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of our approach outperforms that of other methods for both abnormal and normal cells.
This may be because our network can better learn the shape and the contour details of
cells.

4 Conclusion

Currently, most hospitals depend on the doctors to examine Pap smears for the screen-
ing of precancerous lesions in the cervix. This method is time-consuming and labor-
intensive, and the accuracy of the screening results depends on the experience of the
doctor. In addition, it can easily lead to fatigue of the doctor. It is of great significance
to implement the automatic detection of cervical cells in Pap Smear. In this paper, a
new approach for the automatic detection of Pap Smear cervical cells is proposed. Three
modules, data augmentation, training set balancing, and Dense-Cascade R-CNN, are
contained in our approach. One important aspect of the proposed Dense-Cascade R-
CNN is that the DenseNet is used to extract features instead of ResNet in the networks
so as to improve the detection performance of cervical cells. Experimental results show
that compared with other state-of-the-art approaches, our proposed system can improve
the automatic detection performance of cervical cells. Therefore, the proposed approach
can be used as an auxiliary diagnostic tool for cervical cancer screening.

As the performance of the network relies heavily on hyperparameters, our method
needs more experiments to verify the parameter sensitivity. We plan to design and carry
out these experiments to investigate the effects of hyperparameters in the next step.
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Appendix

The supplementary materials (including the source code of the proposed approach) for
this paper can be downloaded from https://github.com/threedteam/cell_detection.
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Abstract. Texture description is a challenging problem in computer vision and
pattern recognition. The task of texture classification is to classify texture into
the class it belongs to, which is influenced by variations in scale, illumination,
and changes in perspective. There are many texture descriptors in the literature.
In this paper, we combine five texture descriptors for texture classification, which
obtained better performance than the single descriptor at the price of high dimen-
sionality. To solve this problem, we proposed a novel unsupervised feature selec-
tion method based on local structure and low-rank constraints, which can not
only reduce the dimensions but also further improve the classification accuracy.
To evaluate the performance of combing multiple descriptors and the proposed
feature selection method, we design a variety of experiments in two typical tex-
ture datasets, namely KTH-TIPS-2a and CURET. Finally, the result shows the
proposed method outperforms the state-of-the-art methods.

Keywords: Texture classification · Feature selection · Local structure learning

1 Introduction

Texture classification is still a difficult problem in computer vision and pattern recogni-
tion. The task of it is to assign a class label to the texture category it belongs to. Recently,
a lot of texture feature descriptors have been proposed in the literature [1–6]. One of the
most famous texture descriptors is the Local Binary Patterns (LBP) [1], which describes
the neighborhood of an image pixel by comparing its gray value with the neighborhood
pixels near it and finally forming a binary code. Except for texture classification, the tex-
ture descriptors have been employed to solve other vision tasks, such as object detection,
face recognition, and defect detection.

Texture description may suffer the impact of multiple factors, such as variations in
scale, illumination, and changes in perspective, whichmakes the single texture descriptor
not fit all the situations. People try to combinemultiple features to solve this problem [7].

R. Li—The first author is a student.
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In this paper, we proposed to use a set of complementary feature descriptors to extract
features.

Combing multiple texture descriptors may cause the dimension to be too high. To
solve this problem, we proposed a novel feature selection method. Inspired by the recent
development of low-rank constraint representation [8], we design low-rank constraints
to learn the global structure of feature space and remove the noise. Additionally, local
structure plays an important role in feature selection [9]. We design local structure
learning by combing the Euclidean distance with the KNN graph. As our experiments
show, the proposed method can select more informative features.

In this paper, we proposed to combine multiple texture descriptors to improve the
performance compared to single texture descriptors. Moreover, we designed a novel fea-
ture selection method to reduce the dimension without loss of accuracy. Those improve
the accuracy in texture classification.

The rest of the paper is organized as follows. In Sect. 2, we present related work
focusing on texture descriptors and feature selection. Section 3 describes the multiple
texture descriptors. In Sect. 4, we introduce the feature selection method we proposed.
The experimental results are shown in Sect. 5. Finally, we provide the conclusion in
Sect. 6.

2 Related Work

Our texture classification framework involves texture feature description and feature
selection. In this section, we will discuss them separately.

2.1 Texture Descriptors

Texture descriptors reflect the spatial distribution of image pixels. Recently, a variety
of texture descriptors have been proposed. In [1], a multiresolution approach based on
LBP was also proposed for rotation invariants texture classification. Because of LBP’s
simplicity and efficiency, lots of variants have been proposed, such as CLBP [2]. In
[3], a method based on a deep convolution network consisting of computing successive
wavelet transforms and modulus nonlinearity was proposed for invariance to scaling.
Moreover, people also introduced a method that uses vector quantization based on the
lookup table for texture description [10].

It is an interesting problem to fuse multiple texture descriptors for robust classifica-
tion. For example, Li [11] uses the combination of HOG, LBP, and Gabor features for
gender classification. We also use the combination of descriptors for feature extracting.

2.2 Feature Selection

Feature selection is amethod that reduces the dimensionality by selecting a subset ofmost
informative features, which may improve the efficiency and accuracy of classification.

In terms of label availability, feature selection methods can be classified into super-
visedmethods and unsupervisedmethods. The supervisedmethods can effectively select
discriminative features to distinguish samples from different classes. However, with the
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absence of a class label, it is difficult for the unsupervised methods to define feature
relevance. To solve this problem, one of the criteria is to select the features which can
preserve the data similarity or manifold structure in the original feature space [12].
These methods always generate cluster labels via clustering algorithms to guide the
feature selection, such as MCFS [13] and UFSwithOL [14].

However, thesemethodsmay have a common drawback, that is, they ignore the effect
of noise on the estimation of data’s underlying structures. To solve this problem, we pro-
posed a novel unsupervised method to learn global and local structures simultaneously,
and remove the noise from data.

3 Multiple Texture Descriptors

In this selection, we show the multiple texture descriptors and the representation con-
structed by them. Similarity to the paper [15], we combine five texture descriptors, which
are completed local binary patterns (CLBP) [2], wavelet scattering coefficient (SCAT)
[3], binary Gabor pattern (BGP) [4], local phase quantization (LPQ) [5] and binarized
statistical features (BSIF) [6]. They are briefly described below.

• CLBP: The completed local binary patterns (CLBP) extends the conventional LBP
operator, which incorporates local difference and sign-magnitude transform informa-
tion (LDSMT). The LDSMT further consists of two components, the difference sign
and difference magnitude, which is encoded by a binary code. Similar to the conven-
tional LBP, a region is also represented by its center pixel encoded by a binary code
after global thresholding. Finally, the image is represented by the concatenation of
three binary codes, which form a single histogram.

• SCAT: The wavelet scattering coefficient is a joint translation and invariant represen-
tation of image patches. It is implemented with a deep convolution network, which
computes successive wavelet transforms and modulus nonlinearity. Invariants to scal-
ing, shearing, and small deformations are calculated with linear operators in the scat-
tering domain. SCAT obtains excellent results on texture databases with uncontrolled
view conditions.

• BGP: The binary Gabor pattern is an efficient and effective multi-resolution approach
to gray-scale and rotation invariant texture classification. Unlike MR8 filters [16],
BGP uses predefined rotation invariant binary patterns without the pre-training phase.
To counter the noise sensitivity, BGP adopts the difference of regions instead of the
difference between two single pixels.

• LPQ: The local phase quantization is based on quantizing the phase information of
the local Fourier transform. It is a powerful image descriptor and robust against the
most common image blurs. LPQ is showed to provide excellent results for texture and
face recognition tasks.

• BSIF: The binarized statistical features computes a binary code for each pixel by
linearly projecting local image patches onto a subspace, whose basis vectors are
learned from natural images via independent component analysis, and by binarizing
the coordinates in this basis via thresholding. The number of basis vectors determines
the length of the pixel binary codes which are used to construct the final histogram of
an image.
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In our paper,we slightly modified the scope of the CLBP descriptor, calculating the
coded values of the inner and outer circles, which makes it have multi-scale effects. We
called it CLBP_ext, and others remain the same. Then, each image is represented by the
five texture description methods. The final representation is obtained by concatenating
all five representations into a single histogram, H = [h1, h2, h3, h4, h5]. This histogram
is the original multi-textured description, namely xi, and then we optimize it.

4 Unsupervised Feature Selection of Local Structures
and Low-Rank Constraints

In this selection, we use an unsupervised feature selection method to optimize the orig-
inal texture features. Compared with the supervised method, the unsupervised feature
selectionmethod paysmore effort to find themost informative features.With the absence
of a class label, the selected features should maintain the internal structure as the data
presented by the feature before selected.

To solve this problem, we propose to use low-rank constraints to preserve the global
structure and adjust the local structures with the heat kernel function calculated by the
k-nn graph.

Let X = {x1, x2, . . . , xn} ∈ Rd×n be the data matrix with each column corre-
spond to the data instance xi and row to feature. Then we summarize some notation and
norms used in the following selections. The bold uppercase characters are used to denote
matrices, and the bold lowercase characters to denote vectors. For an arbitrary matrix
M ∈ Rm×n, Mij means the (i, j)-th entry of M, mi means the i-th column vector of M
andmT

j denotes the j-th row vector of M. The l2,1-norms of matrix ||M||2,1- is defined as
∑m

i=1

√∑n
j=1M

2
i,j

4.1 Global Low-Rank Constraints

In the last few decades, people proposed lots of algorithms to analyze the global structure
of data, such as PCA. Recently, the similarity preserving feature selection framework has
demonstrated promising performance, which selects a feature subset with the pairwise
similarity between high-dimensional samples. However, much redundant information
and noise exist in the original high dimensional space.

Inspired by the recent development of low-rank constraint representation [8], we
use the low-rank reconstruction to extract the global structure of data and remove noise.
According to the theory of latent low-rank representation [17], we can get the below
function:

min
Z,L,E

‖Z‖∗ + ‖L‖∗ + λ‖E‖2,1 (1)

s.t.X = XZ + LX + E

where Z ∈ Rn×n is the low-rank matrix, L is used to extract salient features, and E
is the noise component, λ is used to balance the noise component. Compared with
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pairwise similarity, the low-rank representation can remove the noise in the samples and
represent the principal feature in the data. Finally, the optimal solution can be obtained
by the iterative method.

To preserve the global and low-rank reconstruction structure, we propose a row
sparse feature selection and transformation matrixW ∈ Rd×c to reconstruct it, and get

min
W

∥
∥
∥WTX −WTXZ

∥
∥
∥
2 + β‖W‖2,1 (2)

s.t.WTXXTW = I

where β is a regularization parameter to ensure that matrix W is row sparse, and WTX
denotes low dimensional space after dimension reduction. From Eq. (2), the global
structure captured by Z can lead to finding the principle feature. Without noise, global
structure estimation can be more accurate.

4.2 Local Structure Learning

Recently, the importance of preserving local geometric data structures in feature dimen-
sionality reduction has been well recognized [9, 18], especial when transforming high-
dimensional data to a low-dimensional space for analysis. What’s more, the local geo-
metric structure of data can be considered as a data-dependent regularization of the
transformation matrix, which leads to maintaining the local manifold structure.

In this paper, we first build a KNN graph with Heat kernel weight. Then, we can get

the weight matrix P ∈ Rn×n. For each data sample xi, only k nearest points
{
xj

}k
j=1 are

considered its neighborhood with weight Pij. In the original feature space, the following
equation can obtain minimum value:

∑

i,j

∥
∥xi − xj

∥
∥2
2Pij (3)

With the weight matrix P, the induced Laplacian LP = DP − (
P + PT

)
/2 can be used

for local manifold characterization, where DP is a diagonal matrix whose i-th diagonal
element is

∑
j (Pij + Pji)/2.

To maintain the local structure after dimension reduction, we propose to recognize
Eq. (3) as a regularization with transformation matrix W, and we get

min
W

∑n

i,j

∥
∥
∥WTxi − WTxj

∥
∥
∥
2

2
Pij (4)

Thus, the optimization problem of Eq. (4) can be considered as a local structure
learning.

Based on the low-rank constraints and local structure learning presented in Eq. (2)
and Eq. (4), we propose a novel unsupervised feature selection method by solving the
following optimization problem:

min
W

∥
∥
∥WTX − WTXZ

∥
∥
∥
2 + α

∑n

i,j

∥
∥
∥WTxi − WTxj

∥
∥
∥
2

2
Pij + β‖W‖2,1 (5)
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s.t.WTXXTW = I

where α and β are regularization parameters balancing the fitting error of local structure
learning and sparsity of transformationmatrixW. It can be seen that ourmethod removes
the noise by low-rank constraints and learns global and local structure simultaneously.

4.3 Optimization Algorithm

With the only variable to be solved, it is easy to derive the approximate optimum solution
in an iterative way. Let LZ = (I − Z)(I − Z)T , LP = DP − (

P + PT
)
/2 and L =

LZ + αLP, the Eq. (5) can be rewritten as:

min
W

Tr(WTXLXTW) + β‖W‖2,1 (6)

s.t.WTXXTW = I

With the t-th estimation Wt , and denote DWt be a diagonal matrix whose i-th diagonal
element is 1

2‖wt
i‖2 , the Eq. (6) can be rewritten as:

min
W

Tr(WTX
(
L + βDWt

)
XTW) (7)

s.t.WTXXTW = I

The optimal solution of W are the eigenvectors corresponding to c smallest eigenvalues
of generalized eigenproblem:

X
(
L + βDWt

)
XTW = �XXTW (8)

Where � is a diagonal matrix whose diagonal elements are eigenvalues.
The complete algorithmof the feature selectionmethod is summarized in algorithm1.

Algorithm 1 This paper’s feature selection method
Input: The data matrix , the regularization parameters , the dimension 

of the transformed data c, the parameter k of KNN.
1) Compute Z by Eq. (1);
2) Compute P by KNN graph with Heat kernel weight;
3) repeat

Update W by Eq. (8);
until Converges

Output: Sort all the d features according to in descending or-
der and select the top m ranked features

5 Experiments

In this section, we conduct extensive experiments to evaluate the performance of the
proposed multiple descriptors combination and feature selection method in texture
classification.
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5.1 Data Sets

To validate the proposed method, we use the following two texture datasets, namely
KTH-TIPS-2a [19] and CURET [20]. The KTH-TIPS-2a dataset consists of 11 texture
categories with images at 9 different scales, 3 poses, and 4 different illumination con-
ditions. According to the standard protocol [21], we randomly select 1 sample for the
test and the remaining 3 samples for training. The CURET dataset consists of 61 tex-
ture categories, 92 images per class. We randomly select 46 images for training and the
remaining for the test. The example images are shown in Fig. 1.

Fig. 1. Example images from KTH_TIPS_2a (up) and CURET (down)

Throughout our experiments, we use one-versus-all SVM using the RBF kernel [22].

5.2 Combining Multiple Texture Features

We start by showing the results for multi-texture representations. They are presented in
Table 1. Compared to other single texture features, BGP provides the best performance.
And the combination of five texture features significantly improves the classification
accuracy. Although BSIF provides the worst performance, it still improves the accuracy
of the combination. The results suggest that different texture representations possess
complementary information, we should make good use of it.

5.3 The Effect of Feature Selection Method

As shown above, the combination of features improves the accuracy at the price of high
dimensionality. We use the proposed unsupervised feature selection method to remove
the redundancy features and reduce dimensions. How many dimensions are appropriate
is an open question. In this paper, we reduce the final dimension to 300. We set the



Feature Selection and Classification of Texture Images 621

Table 1. Classification accuracy (%) of different texture representations and their combinations

Method Dimension KTH-TIPS-2a CURET

CLBP_ext
SCAT
BGP
LPQ
BSIF

432
391
216
256
256

69.25
76.48
82.13
73.42
58.42

97.01
98.64
98.82
96.65
96.29

CLBP_ext + SCAT
CLBP_ext + SCAT + BGP
CLBP_ext + SCAT + BGP + LPQ
CLBP_ext + SCAT + BGP + LPQ + BSIF

823
1039
1295
1551

72.52
75.74
76.19
84.72

98.61
98.97
99.14
99.47

Table 2. Classification accuracy (%) obtained with and without feature selection method

Method Dimension KTH-TIPS-2a CURET

Original texture
feature

1551 84.72 99.47

Feature after
selection

300 87.69 99.29

parameters k = 5, λ = 0.1, α = 0.1, β = 0.5, and c is set to be the number of classes.
The result is shown in Table 2.

The result showsour selectionmethod reduces the dimensionswithout any significant
loss in accuracy. Especially, on theKTH-TIPS-2a, our feature selectionmethod improves
the performance by 2.97% compared to the original representation.

To evaluate the effect of the local structure learning, we design the experiments with
and without local structure learning. The result is shown in Table 3. The result shows
that local structure learning improves performance, especially in KTH-TIPS-2a.

Table 3. Classification accuracy (%) obtained with and without local structure learning

Method KTH-TIPS-2a CURET

Without local structure learning 85.37 99.25

With local structure learning 87.69 99.29

Additionally, we also compare our feature selection method with other classical
feature selection methods, such as CFS [23], MCFS [13], UDFS [24] and UFSwithOL
[14]. We provide a brief introduction to the above methods:

• CFS: a correlation-based feature selection method.
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• MCFS: it selects the features by adopting spectral regression with l1-norm regular-
ization.

• UDFS: it exploits local discriminative information and feature correlations simulta-
neously.

• UFSwithOL: it uses a triplet-based loss function to enforce the selected feature groups
to preserve the ordinal locality of original data.

Table 4 shows all 4 feature selectionmethods can reduce texture features’ dimensions
to 300, but they may cause varying degrees of decline in accuracy, especially MCFS.
Our feature selection method significantly outperforms other methods.

Table 4. Classification accuracy (%) of different feature select methods

Method Dimension KTH-TIPS-2a CURET

CFS
MCFS
UDFS
UFSwithOL

300
300
300
300

81.57
79.63
85.46
84.63

99.03
97.90
99.00
98.79

The
proposed

300 87.69 99.29

5.4 Computation Cost and Parameter Sensitivity

The experiment was running on a machine with Window10, Matlab R2018a, NVIDIA
GeForce GTX 1080, Intel (R) Core (TM) i5-9400 CPU @ 2.90 GHz, 8 GB RAM. We
recorded the time to solve Eq. (5) in the two data sets. It took 16.26 s in KTH_TIPS_2a
and 14.57 s in CURET. Moreover, the classification accuracy is not very sensitive to
λ, α and β in wide ranges.

5.5 Comparison with State-of-the-Art

Table 5 shows the classification accuracy of various methods on two databases, which
come from either original or related publications. It can be seen that our texture
classification method outperforms typical and state-of-the-art methods.
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Table 5. Classification accuracy (%) of variousmethods, and “-”means the lack of related original
or publication

Method KTH-TIPS-2a CURET

MR8 [16]
RP [25]
SIFT + IFV [26]
DMD + IFV [26]
LHS [27]
COV-KLBPD [28]
scLBP [29]
NDV [30]
LZMHPP [31]

-
-
76.6
80.3
73
74.9
78.4
77.1
-

93.5
98.5
98.1
98.4
-
-
-
-
98.38

The proposed 87.69 99.29

6 Conclusion

In this paper, we introduce a novel idea of fusing complementary texture features, which
significantly improves the accuracy of texture classification. To reduce the dimensions
of fusing texture features without loss of accuracy, we proposed a novel unsupervised
feature selection method. We use low-rank constraints to learn global structures, and
design a regularization to learn local structure simultaneously. Finally, our experimental
results demonstrate that the framework combining multiple texture features and feature
selection outperforms the state-of-the-art in texture classification.

In the future, we plan to design a feature complimentary evaluation method, which
helps us to find more complementary features and further improves classification accu-
racy. Moreover, we plan to validate the performance of our feature selection method in
a wider dataset.
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Abstract. In this paper, we propose efficient and effective methods for
2D human pose estimation. A new ResBlock is proposed based on depth-
wise separable convolution and is utilized instead of the original one in
Hourglass network. It can be further enhanced by replacing the vanilla
depthwise convolution with a mixed depthwise convolution. Based on it,
we propose a bottom-up multi-person pose estimation method. A rooted
tree is used to represent human pose by introducing person centroid as
the root which connects to all body joints directly or hierarchically. Two
branches of sub-networks are used to predict the centroids, body joints
and their offsets to their parent nodes. Joints are grouped by tracing
along their offsets to the closest centroids. Experimental results on the
MPII human dataset and the LSP dataset show that both our single-
person and multi-person pose estimation methods can achieve competi-
tive accuracies with low computational costs.

Keywords: Human pose estimation · Depthwise separable
convolution · Hourglass network · Joint grouping

1 Introduction

Human pose estimation aims to locate human body joints from a single monocu-
lar image. It is a challenge and fundamental task in many visual applications, e.g.
surveillance, autonomous driving, human-computer interaction, etc. In the last
a few years, considerable progress on human pose estimation has been achieved
by deep learning based approaches [17–19,29,34,35].

Most existing research works on human pose estimation focus on improving
the accuracy and develop deep networks with large model size and low com-
putational efficiency, which prohibits their practical application. To adopt deep
networks in real-time applications and/or on limited resource devices, the model
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should be compact and computational efficient. Inception module [30] is used
to build deeper networks without increase model size and computational cost.
Depthwise separable convolution [5,10,31], has been utilized as the key building
block in many successful efficient CNNs. In this paper, we follow these successful
design principles to develop efficient deep networks for human pose estimation.

For multi-person pose estimation, it is needed to distinguishing poses of differ-
ent persons. The approaches can mainly be divided into two categories: top-down
strategy and bottom-up strategy. The top-down approaches [6,13,22,29,34]
employ detectors to localize person instances and then apply joint detector to
each person instance. Each step of top-down approaches requires a very large
amount of calculations, and the run-time of the second step is proportional to
the number of person. In contrast, the bottom-up approaches [3,11,12,15,21,24]
detect all the body joints for only once and then group/allocate them into dif-
ferent persons. However, they suffer from very high complexity of joint grouping
step, which usually involves solving a NP-hard graph partition problem. Differ-
ent methods have been proposed to reduce the grouping time. Recently, some
one-stage multi-person pose estimation approaches [19,27,32] have been pro-
posed, but their performance lag behind the two-stage ones. In this paper, we
also focus on the bottom-up strategy.

In this paper, we propose efficient and effective methods for 2D human pose
estimation. A new ResBlock is proposed with two depthwise separable convo-
lutions and a squeeze-and-excitation (SE) module and utilized in place of the
original ResBlock in Hourglass network. Its representation capability is further
enhanced by replacing the vanilla depthwise convolution with a mixed depth-
wise convolution. The new Hourglass networks is very light-weighted and can be
directly applied to single-person pose estimation. Base on this backbone network,
we further propose a new bottom-up multi-person pose estimation method. A
rooted tree is used to represent human pose by introducing person centroid as the
root which connecting to all the joints directly or hierarchically. Two branches
of sub-networks are used to predict the centroids, body joints and their off-
sets to their parent nodes. Joints are grouped by tracing along their offsets to
the closest centroids. Our single-person pose estimation method is evaluated on
MPII Human Pose dataset [1] and Leeds Sports Pose dataset [14]. It achieves
competitive accuracy with only 4.7 GFLOPs. Our multi-person pose estimation
method is evaluated on MPII Human Pose Multi-Person dataset [1], and achieves
competitive accuracy with only 13.6 GFLOPs.

2 Related Works

2.1 Efficient Neural Networks

To adopt deep neural networks in real-time applications and/or on resource-
constrained devices, many research works have been devoted to build efficient
neural networks with acceptable performance. Depthwise separable convolution
was originally presented in [28]. It can achieve a good balance between the rep-
resentation capability and computational efficiency, and has been utilized as
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the key building block in many successful efficient CNNs, such as Xception [5],
MobileNets [10,26] and ENAS [23]. MixConv [31] extends vanilla depthwise con-
volution by partitioning channels into multiple groups and apply different kernel
sizes to each of them, and achieves better representation capability.

2.2 Multi-person Pose Estimation

Top-Down Methods. Top-down multi-person pose estimation methods first
detect people by a human detector (e.g. Faster-RCNN [25]), then run a single-
person pose estimator on the cropped image of each person to get the final pose
predictions. Representative top-down methods include PoseNet [22], RMPE [6],
Mask R-CNN [8], CPN [4] and MSRA [34]. However, top-down methods depend
heavily on the human detector, and their inference time will significantly increase
if many people appear together.

Bottom-Up Methods. Bottom-up methods detect the human joints of all
persons at once, and then allocate these joints to each person based on various
joint grouping methods. However, they suffer from very high complexity of joint
grouping step, which usually involves solving a NP-hard graph partition problem.
DeepCut [24] and DeeperCut [12] solve the joint grouping with an integer linear
program which results in the order of hours to process a single image. Later works
drastically reduce prediction time by using greedy decoders in combination with
additional tools. Cao et al. [3] proposed part affinity fields to encode location and
orientation of limbs. Newell and Deng [16] presented the associative embedding
for grouping joint candidates. PPN [18] performs dense regressions from global
joint candidates within a embedding space of person centroids to generate person
detection and joint grouping. But it need to adopt the Agglomerative Clustering
algorithm [2] to determine the person centroids. In this paper, we avoid the
time-consuming clustering by regressing the person centroids together with body
joints and using them to guide the joint grouping.

Recently, Nie et al. [19] proposed a one-stage multi-person pose estimation
method (SPM) which predicts root joints (person centroids) and joint displace-
ments directly. Although both SPM and our method predict person centroid,
they use centroid plus displacements to recover joints and we use centroid to
guide joint grouping. We argue that joints can be predicted more precisely than
its displacements.

3 The Proposed Light-Weight Hourglass Network

3.1 Hourglass Network

Although Hourglass network has been utilized in many human pose estimation
methods [18–20,35], it is hard to been adapted in practical applications due to its
large model size. Original Hourglass network consists of eight stacked hourglass
modules, whose structure is illustrated in Fig. 1. The ResBlock used in original
Hourglass network has a bottleneck structure (Fig. 2(a)). In this paper, we try to
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improve the efficiency of Hourglass network by replacing the original ResBlocks
with the light-weight ones (Fig. 1). The proposed Hourglass network is called
DS-Hourglass network. More details are given as follows.

Fig. 1. An illustration of a Hourglass module, “/2” means downsampling operation
and “x2” means upsampling operation.

Fig. 2. Architecture of the ResBlocks. (a) The original ResBlock in Hourglass [17]. (b)
another kind of ResBlock proposed in ResNet [9]. (c) DS-ResBlock corresponding to
(b), (d) replace the DWConv in (c) with Mix-Cov.

3.2 Depthwise Separable Convolutions

A depthwise separable convolution decomposes a standard convolutional opera-
tion into a depthwise convolution (capture the spatial correlation) followed by a
pointwise convolution (capture the cross-channel correlation).

A standard convolution operation needs c1 × c2 × k × k parameters and
about h × w × c1 × c2 × k × k computational cost, where h × w, c1/c2 and
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k × k are the spatial size of input and output feature maps, the number of
input/output feature channels and the convolutional kernel size, respectively.
While a depthwise separable convolution operation only needs c1×k×k+c1×c2
parameters and about h×w×c1(k2+c2) computational cost. For example, if we
set k to 3 and c2 to 128, the number of parameters and the computational cost
of the depthwise separable convolution is only about 1/9 of the corresponding
standard convolution.

Fig. 3. Our pipeline. Our method takes color image as input, the DS-Hourglass build
with 8 stage and predict 2 sets, heatmaps and offsetmaps, finally return joints for each
person in image at once by our efficient joint grouping algorithm.

3.3 Light-Weight ResBlock

To develop an efficient ResBlock, we first reduce the number of its input/output
feature channels from 256 to 128, and use two stacked 3 × 3 convolutions
(Fig. 2(b)). Then, we replace the two standard 3×3 convolutions with two depth-
wise separable convolutions followed with a squeeze-and-excitation (SE) block
to get a light-weight ResBlock (Fig. 2(c)). The SE block is very efficient and
used to relocate features and strengthen features. To capture the information of
different scales, we further replace the depthwise convolution with a mixed depth-
wise convolution (MixConv [31]) to get another version of light-weight ResBlock
(Fig. 2(d)). In MixConv, the input feature channels are first split into groups,
then depthwise convolutions with different kernel sizes are applied to different
groups, finally, the output of each depthwise convolution are concatenated. In
this paper, we apply kernels of 3× 3 and 5× 5 to two groups of channels respec-
tively to trade-off the representation capability and the computational costs. In
our study, we found that adding a skip connection around the second depthwise
separable convolution can make the training of this ResBlock (Fig. 2(d)) more
stable.
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4 Multi-person Pose Estimation

Figure 3 illustrates the overall pipeline of our network. Our multi-person pose
estimation method first predicts joints of all person at once, then the joint can-
didates are grouped into different persons. To improve the efficiency of joint
grouping, a rooted tree is used to represent human pose by using person centroid
as the root which connecting to all the joints directly or hierarchically. Another
network branch is used to predict the offset from each joint to its parent node.
The person centroid is treated as a pseudo joint and predicted together with
body joints. After that, body joints are grouped by tracing along their offsets to
the closed centroids.

Fig. 4. Pose representations: (a) kinematic structure; (b) centroid-rooted tree;
(c) hierarchical centroid-rooted tree

4.1 Centroid-Rooted Tree Structure to Define the Offsets

The centroid-rooted tree structure is illustrated in Fig. 4(b), where the person
centroid (root node) directly connect to all body joints (leaf nodes). The draw-
back of this representation is that it leads to some long-range offsets which are
hard to be precisely predicted, e.g. from ankle, knee and wrist to the centroid. To
alleviate this problem, we further proposed a hierarchical centroid-rooted tree
(Fig. 4(c)) based on the kinematic structure (Fig. 4(a)), where the long-range
offsets are decomposed into short-range or middle-range offsets.

4.2 Joint and Offset Prediction

Our network has two branches of sub-networks for joint and offset prediction.
Both sub-networks have only one 1 × 1 convolution and share the same feature
maps from hourglass module.
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Joint Prediction. Our ground-truth heatmap is generated according to
following equation,

Hj(x, y) = min(
N∑

i=1

exp(− ((x, y) − (xi
j , y

i
j))

2

2σ2
), 1), (1)

where (xi
j , y

i
j) is the coordinate of joint j of person i, N is the number of person

in the image and σ controls the spread of the peak, and minimum function is
used to guarantee the value not greater than 1.

Offset Prediction. we construct a dense offset map for each body joint as the
ground-truth for offset prediction. We first construct a offset map Oi

j for joint j
of person i as:

Oi
j(x, y) =

{
1
Z ((xi

c, y
i
c) − (x, y)) if (x, y) ∈ N i

j

0 otherwise
(2)

where N i
j =

{
(x, y)|

√
(x, y) − (xi

j , y
i
j) ≤ τ

}
denotes the area of neighbors of

joint j of person i, (xi
c, y

i
c) is the coordinate of the centroid of the person i,

Z = 1
2min(W,H) is a normalization coefficient, W and H are the width and

height of the input image. If a location belongs to multiple people, these vectors
are averaged. If the hierarchical centroid-rooted tree is used to represent human
pose, we only need to replace the centroid in Eq. (2) with the parent node of the
joint j of the person i.

The MSE Loss is used for joint prediction, and Smooth L1-Loss is used for
offset prediction.

4.3 Centroid-Guided Joint Grouping

Based on the predicted person centroids, we develop a greedy method for joint
grouping. First, we apply NMS to the heatmaps of the last stage of DS-Hourglass
to get the coordinates of all candidate joints, and sort them in descending order
of their score. For the centroid-rooted tree representation, joint allocation is
performed independently for each body joint. Given a candidate of joint j, its
centroid’s coordinate can be predicated as

(x̂, ŷ)c = (x, y) + Z × Oj(x, y), (3)

where (x, y) is the coordinate of the candidate joint, (x̂, ŷ)c is the predicated
coordinate of its person centroid, and Oj is the offset map of joint j. Then the
predicated centroid is compared to each person centroid generated from heatmap
and allocated to the nearest one under the constrain that one person has only
one instance for each joint category.

For hierarchical centroid-rooted tree representation, the joints are also group-
ed hierarchically. Base on the intuition that the joints close to the torso can be
predicted more reliably. We classify joints into three levels, the first level contains
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shoulder, hip, and neck, the second level contains head, elbow and knee, and third
level contains wirst and ankle. The joint allocation is performed from the first
level to the third level, each joint candidate is associated to its parent node in
the tree structure according to Eq. (3) and the nearest-neighbour rule.

5 Experiments

5.1 Experiment Setup

Datasets. MPII Single-Person Dataset consists of around 25k images with anno-
tations for multiple people providing 40k annotated samples (28k training, 11k
testing) for single-person pose estimation. The MPII Multi-Person dataset con-
sists of 3,844 and 1,758 groups of multiple interacting persons for training and
testing. The LSP dataset has 11K training samples and 1K test samples, with
14 annotated joints for a person.

Table 1. Comparison of ResBlocks on MPII single-person validation set

Methods Mean Stages Param FLOPs

Hourglass [17] 90.52 8 26M 26.2G

SBN [34] 89.6 – 68.6M 21G

HRNet [29] 90.3 – 28.5M 9.5G

FPD [35] 89.04 4 3M 3.6G

DS-Hourglass* 88.71 8 2.9M 3.3G

DS-Hourglass w/o SE 89.47 8 2.9M 4.7G

DS-Hourglass 89.87 8 4.2M 4.7G

DS-Hourglass (mix) 89.94 8 4.6M 4.8G

Training Details. We randomly augmented the samples with rotation degrees
in [−40, 40], scaling factors in [0.7, 1.3], translation offset in [−40, 40] and hor-
izontally mirror, adopt 256 × 256 as training size. The initial learning rate is
0.0025, learning rate decay at step 150, 170, 200 and 230 with total 250 epochs
by 0.5.

5.2 Ablation Study

Ablation for ResBlocks. In Table 1, DS-Hourglass* uses Fig. 2(c) with only
one depthwise separable convolution. DS-Hourglass w/o SE uses Fig. 2(c) with-
out SE module. DS-Hourglass and DS-Hourglass (mix) use Fig. 2(c) and Fig. 2(d)
respectively. ResBlock with two depthwise separable convolution can improve
1.1% in PCKh than ResBlock with only one, but with 1.4 GFLOPs computa-
tional cost increased. SE model can improve 0.4% in PCKh; Mixed depthwise



634 J. Ou and H. Wu

convolution only brings very little improvement for single-person pose estima-
tion. Compared with the excellent methods, our DS-Hourglass(mix) is 0.9%
higher than FPD. And 0.36% lower than HRNet [29], However, the GFLOPs
is only half of it and the parameters are only 16% of HRNet.

Ablation for Assembly Methods. Table 2 indicated that our centroid-guided
method improves 0.4% over PPN, and our hierarchical centroid-guided method
improves 1.8% over PPN. DS-Hourglass (mix) improves 1% over DS-Hourglass
with hierarchical centroid-guided assembly method, as it can handles multi-scale
problem better, even better than PPN [18] based on original Hourglass one
(79.8% vs 79.4%), we can save 50GFLOPs and only need 21% parameters of
PPN.

5.3 Comparisons to State-Of-The-Art Methods

MPII Single-person Dataset. From Table 3, we can find that our method is
very lightweight and efficient. Our model has greatly reduced the deployment
cost, while still achieving a high PCKh of 91.5%. Compared our method with the
best performer, PIL [20], the DS-Hourglass needs only 16% of its computational
cost but has only 0.9% drop in PCKh. Our method outperforms FPD [35] (91.5%
vs 91.1% AP) which needs knowledge distillation and pretrained weights.

LSP Dataset. Our method also achieve the 90.8% PCK@0.2 accuracy on LSP
dataset which is same as FPD [35], without using extra dataset. Because space
is limited, the comparison is not listed in the form of a table.

Table 2. Comparison of assembly methods on MPII multi-person validation set

Model Stage Method Mean Param FLOPs

Hourglass 8 PPN [18] 79.4 22M 62.9G

Hourglass 1 PPN 74.4 3.0M 10.8G

Hourglass 1 Center 75.8 3.0M 10.9G

Hourglass 1 Cent.Hier. 76.2 3.0M 10.9G

DS-Hourglass 8 Cent.Hier. 78.8 4.4M 13.3G

DS-Hourglass (mix) 8 Cent.Hier. 79.8 4.6M 13.6G

MPII Multi-person Dataset. In Table 4, we compare our method with the
leading methods in recent years. It should be noted that our method does not
use single-person pose estimation to refine the results. Research works [3,18]
have reported that the single-pose refinement can improve the result by about
2.6%. However, the refinement is always time-consuming, so we did not use it.
We get very competitive result 77.4% achieve the state-of-the-art among the
methods without refinement. Our model has only 4.6M parameters and needs
13.6 GFLOPs when using input size of 384 × 384. To best of our knowledge,
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Table 3. Result on MPII single-person test set. ∗ means the use of extend dataset.

Method PCKh Auxiliaries Stage Pre. Input size Out. size FLOPs #Param

DeeperCut [12] 88.5 – – Yes 344× 344 43× 43 37G 66M

CPM* [33] 88.5 – 6 Yes 368× 368 46× 46 175G 31M

SHG [17] 90.9 – 8 No 256× 256 64× 64 26.2G 26M

PIL [20] 92.4 Segment 8 No 256× 256 64× 64 29.2G 26.4M

Sekii [27] 88.1 – – Yes 384× 384 12× 12 6G 16M

FPD [35] 91.1 Know. dist. 4 Yes 256× 256 64× 64 3.6G 3.2M

HRNet [29] 92.3 – – Yes 256× 256 64× 64 9.5G 28.5M

DS-Hourglass 91.5 - 8 No 256× 256 64× 64 4.7G 4.2M

PPN [18] is the state-of-the-art on MPII Multi-Person dataset, from our ablation
Table 2, we can find that our method is better than PPN, and our method can
reduced the computational cost by approximately 50GFLOPs.

Table 5 lists the results on MPII 288 test set, and our method gets 81.0%,
only 0.3% lower than the best one [7] which uses refinement. It can be found
that our method has great advantages in the distal part of the body (e.g. wrist,
knee, ankle, etc.), as we use hierarchical centroid-rooted tree to avoid long-range
offset prediction.

Table 4. Results on the Full MPII Multi-person test set.

Methods Head Shoulder Elbow Wrist Hip Knee Ankle Total Refine.

CMU-Pose [3] 91.2 87.6 77.7 66.8 75.4 68.9 61.7 75.6 Yes

AE-Pose [16] 92.1 89.3 78.9 69.8 76.2 71.6 64.7 77.5 Yes

RefinePose [7] 91.8 89.5 80.4 69.6 77.3 71.7 65.5 78.0 Yes

PPN [18] 92.2 89.7 82.1 74.4 78.6 76.4 69.3 80.4 Yes

SPM [19] 89.7 87.4 80.4 72.4 76.7 74.9 68.3 78.5 Yes

DeepCut [24] 73.4 71.8 57.9 39.9 56.7 44.0 32.0 54.1 No

DeeperCut [12] 89.4 84.5 70.4 59.3 68.9 62.7 54.6 70.0 No

Levinkov et al. [15] 89.8 85.2 71.8 59.6 71.1 63.0 53.5 70.6 No

ArtTrack [11] 88.8 87.0 75.9 64.9 74.2 68.8 60.5 74.3 No

RMPE [6] 88.4 86.5 78.6 70.4 74.4 73.0 65.8 76.7 No

Sekii [27] 93.9 90.2 79.0 68.7 74.8 68.7 60.5 76.6 No

DS-hourglass (mix) 91.6 88.3 78.0 68.3 77.9 72.5 65.1 77.4 No
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Table 5. Results on a set of 288 images from MPII Multi-person test set.

Methods Head Shoulder Elbow Wrist Hip Knee Ankle Total Refine.

CMU-Pose [3] 92.9 91.3 82.3 72.6 76.0 70.9 66.8 79.0 Yes

AE-Pose [16] 91.5 87.2 75.9 65.4 72.2 67.0 62.1 74.5 Yes

RefinePose [7] 93.8 91.6 83.9 75.2 78.0 75.6 70.7 81.3 Yes

DeepCut [24] 73.1 71.7 58.0 39.9 56.1 43.5 31.9 53.5 No

Iqbal and Gall [13] 70.0 65.2 56.4 46.1 52.7 47.9 44.5 54.7 No

DeeperCut [12] 92.1 88.5 76.4 67.8 73.6 68.7 62.3 75.6 No

ArtTrack [11] 92.2 91.3 80.8 71.4 79.1 72.6 67.8 79.3 No

RMPE [6] 89.4 88.5 81.0 75.4 73.7 75.4 66.5 78.6 No

Sekii [27] 95.2 92.2 83.2 73.8 74.8 71.3 63.4 79.1 No

DS-Hourglass (mix) 93.2 91.1 81.5 74.7 81.0 75.5 70.2 81.0 No

6 Conclusions

In this paper, we develop a light-weight Hourglass network by applying depthwise
separable convolution and mixed depthwise convolution. The new network can
be directly applied to single-person pose estimation. Based on this backbone
network, we further proposed an efficient multi-person pose estimation method.
Both our single-person and multi-person pose estimation methods can achieve
competitive accuracies on public datasets with low computational costs.
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Abstract. Weakly-supervised temporal action localization (WTAL) has
recently attracted attentions. Many of the state-of-the-art methods usu-
ally utilize temporal class activation map (T-CAM) to obtain target
action temporal regions. However, class-specific T-CAM tends to cover
only the most discriminative part of the actions, not the entire action.
In this paper, we propose an erasing strategy for mining discrimina-
tive regions in weakly-supervised temporal action localization (DRES).
DRES achieves better performance with action localization, which can
be attribute to two aspects. First, we employ the salient detection mod-
ule, which suppresses the background to obtain the most discrimina-
tive regions. Second, we design the eraser module to discover the missed
action regions by the salient detection module, which complements action
regions. Based on experiments, we demonstrate that DRES improve the
state-of-the-art performance on THUMOS’14.

Keywords: Weakly-supervised temporal action localization ·
Temporal class activation map · Erasing strategy

1 Introduction

Temporal action localization, as a crucial and challenging task in the field of
video content analysis, has received more and more attention. It not only requires
classifying the categories of actions correctly, but also needs to precisely locate
the temporal boundaries of each action in an untrimmed video. Most methods
with excellent performance are based on full supervision (e.g. [3,23] etc.), that
is, they usually require temporal annotations of action intervals. However, the
diversity of actions and the complexity of the background in real scenes make the
large scale temporal annotations of actions are prohibitively expensive and time-
consuming. Therefore, weakly-supervised temporal action localization (WTAL),
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which required only video-level labels (i.e. whether each video contains action
frames of interest) is increasingly favored by the research community.

Drawing on the method of generating Class Activation Map (CAM) for object
localization in the field of weakly-supervised object Localization (e.g. [19,26,29]
etc.), some previous methods utilize temporal Class Activation Map (T-CAM)
to obtain target action temporal regions (e.g. [14,21,28] etc.). However, due
to the lack of negative examples of the background, these methods often did
not explicitly consider the background class, but only use the action categories
contained in the current video sequence as a positive example for training the
classification network. Ignoring the background class is equivalent to adding a
lot of noise to the data, which will cause the background frames to be incorrectly
classified into action classes during the training process, and cause more inter-
ference to the action classifier. To tackle this problem, Lee et al.[8] proposed a
background suppression network (BaSNet) to better exploit background class.
By introducing an auxiliary class representing the background, and design a
two-branch architecture with weights sharing, meanwhile, elaborately design a
filtering module in the suppression branch, and introduce L1 norm as the spar-
sity supervision, the interference of background frames to the localization results
is effectively eliminated.

Although BaSNet [8] has achieved good results after modeling the back-
ground class, it still exist following defects: Using L1 norm as the sparsity super-
vision when training the classification network may cause the model to cover only
the most discriminative part of the action, and ultimately make the localization
results a sparse subset of a series of key segments rather than the entire action.
To alleviate this defect, we proposed an erasing strategy, which first makes the
most discriminative part of the action instances obtain a high response through
salient detection module, and a preset threshold is used on the existing detec-
tion results to generate a binary mask to erase the corresponding high response
regions in initial feature maps, such erasing strategy is equivalent to hiding the
most discriminative part of the initial features. Based on erased feature, an eraser
module, which the structure is the same as the salient detection module, is used
to classify the erased feature. Since the most discriminative regions of the fea-
ture have been hidden, the eraser module can only tap the remaining relatively
insignificant areas in the same action instances as much as possible to obtain the
same classification result in the common forward propagation process. Finally,
by fusing the localization results of the salient detection module and the eraser
module, a more complete action localization result is obtained.

To sum up, the main contributions of our work are as follows:
We propose an erasing strategy, which force the eraser model to mining rel-

atively insignificant regions in the same action instance by erasing the most
discriminative part of action instance, and through fusion to make the final
detected action instance more complete.
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2 Related Work

Fully-Supervised Temporal Action Localization (TAL): During the past
few years, driven by the development of deep learning, TAL has made great
progress. Inspired by SSD [11], Lin et al. [9] proposed an anchor-based one-stage
architecture detector which directly localizes the instances by temporal convolu-
tion with predetermined anchors, but its performance is not satisfactory enough
due to limit of fixed temporal scales. R-C3D [23] generate candidate regions using
the anchor segment method, and then classify the categories and regression the
temporal boundaries of these candidate proposals through a classification subnet,
but temporal boundaries of candidate proposals which generated by the anchor
segment method only are not fine enough. On the basis of R-C3D, PCAD [5]
draws on the BSN [10] and proposes an auxiliary boundary proposal network
(BPN), which complements the candidate proposal generation network based on
anchor segment method to generate more elaborate candidate proposals, which
further improves the detection performance of the model.

Weakly-Supervised Temporal Action Localization (WTAL): Unlike
TAL whose training labels contains both frame-wise labels and video-level labels,
WTAL solves the same problem by using only video-level labels. Drawing on
the method of generating Class Activation Map (CAM) [29] for object localiza-
tion in the field of weakly-supervised object detection, some previous methods
utilize temporal class activation map (T-CAM) to obtain target action tempo-
ral regions. [14] first proposed the use of T-CAM for WTAL, and introduced
additional L1 norm as sparseness supervision, so that the designed attention
module can obtain the class-agnostic attention weight to represent the frame-
level importance of the segment, and ensure that the final localization results
are more complete. Unlike other methods that use convolutional networks for
modeling, [24] uses long short-term memory networks to model the relationship
between different actions, and a permissive coverage mechanism is proposed to
solve the problem of overlapping attention weights when action segments are
close to or coincide in temporal dimension. [25] proposed marginalized average
attention network (MAAN) to alleviate the problem that attention weights are
easily dominated by some subsets of segments that have a large contribution to
the action classification. To better model the background class, [8] proposed a
background suppression network (BaSNet) to better exploit background class.

3 Our Approach

We proposed an end-to-end trainable model for weakly-supervised temporal
action localization (WTAL). The overall architecture of our method is shown
in Fig. 1. The model consists of three sub-modules: a feature extraction mod-
ule, a salient detection module (SDM), and an eraser module (EM). In order
to more effectively use the appearance and motion characteristics of the video,
we simultaneously encode the RGB and optical flow features of the input video
streams with pre-trained feature extractor, and stack the features obtained by
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each in temporal dimension. For better model the background class, we designed
a segment-level activator, which is two-branch structure with weights sharing,
to better suppresses background frames while mining foreground actions. The
SDM effectively mines the most discriminative regions of the action instances,
but the obtained action interval prediction is not complete. In view of this, we
generate a binary mask, to erase the most discriminative regions in the initial
feature map of the corresponding action instances by a preset threshold, and
designed an eraser module (EM) with the same structure as the SDM to mine
the lower response part of the action instances. Finally, a more complete action
localization prediction is obtained after fusion the prediction results of the SDM
and EM. We describe our proposed method in detail with the following sections.

Fig. 1. Overall architecture of the proposed method. It consists of three modules: (a)
Feature extraction Module, (b) Salient Detection Module (SDM) and (c) Eraser Module
(EM), where the SLA represents Segment-level Activator whose detailed structure is
shown in Fig. 2

3.1 Feature Extraction

Suppose V = {Vn}Nn=1 denote as N training videos we are given, and their video-
level labels Y = {yn}Nn=1, where yn is C-dimensional binary vector with yn;c = 1
if n-th video contains c-th action category otherwise 0 for C classes. For each
input video vn , we first divide it in a 16-frame non-overlapping manner, and each
divided video can be expressed as Vn = {Sn,i}Ii=1 which contain I segments, due
to its video lengths are large variation, we sample a fixed number of T segments
{Sn,i}Ti=1 from each video. Afterwards, we use pre-trained I3D network to extract
the RGB and optical flow features of the input video streams, respectively. Then
stack those two features in temporal dimension to integrate the appearance and
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motion characteristics of the input video, and the initial feature obtained can
be denoted as Finit ∈ R(T,2F ), where T represents the size of the temporal
dimension of the extracted feature (i.e. the number of fixed sampling segments
for each video), and F represents the dimension of each segment output after
passing through the I3D network .

Fig. 2. The detailed structure of the segment-level activator, which is two-branch struc-
ture with weights sharing.

3.2 Salient Detection Module (SDM)

To effectively model the background class, and reduce the negative impact of
the background frames on final detection result, in SDM, we first introduced an
auxiliary class representing the background, and then designed a segment-level
activator, which is a two-branch structure with weights sharing, whose structure
is shown in Fig. 2. Among them, base branch takes the original feature as input
and treat the background as a positive sample, while suppression branch regards
the background as a negative sample. Then, an additional attention module, is
designed to predict the probability of whether each segment contains foreground
actions. The greater the corresponding attention weight, the higher probability
that the current segment contains foreground actions.

Specifically, the base branch in segment-level activator take the Finit as input,
then temporal class activation map (T-CAM) corresponding to each class is
generated. The overall process can be summarized as:

Mbase = Activator(Finit;Φ) (1)

where Φ represents the trainable parameter of the corresponding convolutional
layer of the base branch in the segment-level activator, Mbase ∈ RT×(C+1) donate
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the T-CAM generated for each class, where C + 1 represent that we use C action
classes and one auxiliary class for the background.

In order to generate single video-level class score, following previous work
(Wang et al. [21] ; Paul, Roy, and RoyChowdhury [15])), we use the top-k mean
technique to aggregate segment-level class scores, and then a softmax function
is applied to generate the probability score for single class. The overall process
can be described as:

Pbase = Softmax(topk(Mbase, k)) (2)

where k =
⌊
T
r

⌋
, and r is a hyperparameter to control the ratio of selected

segments in a video.
Different from base branch, an additionally attention module, which is used

to predict the probability of whether each segment contains foreground actions, is
designed in the suppression branch, and uses L1 norm as the sparsity supervision
for attention module. The output of attention module can be denoted as Watt ∈
RT , which range from 0 to 1. Then multiply the obtained attention weight
Watt by the Finit to obtain the background suppression feature, which can be
described as:

Fsupp = Finit

⊗
Watt (3)

where Fsupp ∈ R2F×T and
⊗

denotes element-wise multiplication over temporal
dimension. Following the steps (1) and (2) in the base branch, we correspondingly
generate T-CAM and single probability scores of suppression branch, which can
be denote as Msupp and Psupp.

The base branch and the suppression branch share the weights of the
Segment-level activator, so that the attention module can effectively learn the
weights of each frame as the foreground, and effectively suppress the background
frames.

3.3 Eraser Module (EM)

Due to the use of L1 norm as sparseness supervision, the salient detection mod-
ule can only cover the most discriminative part in the action instances, not the
entire action, which can be seen from Fig. 3. In view of this, we propose a com-
plementary eraser module for mining relatively insignificant regions in action
instances, and the visualization process is shown in Fig. 4.

Specifically, we first obtain the temporal class activation map (T-CAM)
Msupp from the suppression branch of the SDM. Since the corresponding video-
level labels are available during training, we select the activation sequence cor-
responding to the class labels in Msupp. Note that a video segments may contain
more than one class of video-level labels, to facilitate erasing, we selected the acti-
vation sequence with the highest response. The process above can be described
as: {

As = Msupp[index(y)]
As = max

a∈As

a (4)
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Fig. 3. Visualization of action localization by using activation sequence generated from
suppression branch of different modules, where the blue polyline represents the activa-
tion sequence generated from Salient detection module (SDM) with current action cat-
egory (i.e. Frisbee Catch), while the orange polyline represents the activation sequence
generated from Eraser module (EM) with the same action category. It can be seen that
the high-response part of the blue polyline covers most of the area of the current action,
but some relatively insignificant areas, such as edge area at the beginning or end of
the action, are easily ignored. In contrast, the orange polyline has a higher response
to these relatively insignificant areas. By fusion the results of two modules, the final
action localization results are more complete. (Color figure online)

where y is C-dimensional binary vector with yc = 1 if current video contains c-th
action category otherwise 0 for C classes ,note that a video may contain multiple
action classes, i.e.

∑C
c=1 yc ≥ 1, index(y) refers to the index of the position equal

to 1 in the y vector, As donates the corresponding activation sequence selected
from Msupp through the video-level labels y, and As ∈ RT×1 represents the
activation sequence with the highest response selected from As.

To better guide the model erase the most discriminative regions in the action
instances, we use sigmoid function to map the activation sequence As to the
range of 0 to 1. Then a preset threshold ε is used to generate binary mask,
whose dimension is the same as As, if the value of the corresponding segment
of the As after sigmoid mapping is greater than the threshold ε, the value of
the corresponding position in the binary mask is 0, otherwise it is 1. The whole
process can be described as:

⎧
⎨

⎩

dim(mask) = dim(As) ∈ RT×1

mask[sigmoid(As) ≥ ε] = 0
mask[sigmoid(As) < ε] = 1

(5)

After obtaining the binary mask, we multiply it with the initial feature Finit,
and obtain the erased feature:

Ferased = mask
⊗

Finit (6)
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where Ferased ∈ RT×2F represents the erased feature obtained after erasing the
most discriminative part in the action instances.

After obtaining the erased feature, we use eraser module, whose structure is
the same as SDM, to further mine the remaining part of the action instances in
the erased feature. The specific process is exactly the same as SDM, except that
the input of the model has changed: in SDM, the input used is Finit, while the
input used by EM is Ferased.

Fig. 4. Visualization of generating binary mask corresponding to a specific category of
activation sequence, where sigmoid (As) represents the mapping value of the activation
sequence corresponding to the current action category (JavelinThrow in this example)
after being mapped by the sigmoid function, and ε represents the preset threshold.
Frames in the frame sequence corresponding to the feature map of the current segment
sequence will be masked when the corresponding mapping value is higher than the
threshold ε, and the value of the corresponding position of the binary mask will be set
to 0, otherwise it is 1.

3.4 Result Fusion

In inference time, we use the predicted probability greater than the class-
threshold Θclass as the video-level labels of the current testing video. In order
to obtain a more complete localization result, we use video-level labels to select
the activation sequence from T-CAM generated by the suppression branches of
the SDM and EM, which the process can be described by Eq. 4 above. Let As

and Ae be the activation sequence selected from SDM and EM, respectively. The
activation sequence after fusion can be described as:

Af = max([As, Ae], dim = t) (7)

where Af represents the fusion activation sequence obtained after fusion opera-
tion, and dim = t means that the max operation is performed in the temporal
dimension.
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After fusion activation sequence Af is obtained, frame-wise action intervals
are inferred by thresholding Af . Since Af contains not only the most discrimina-
tive regions, but also the relatively insignificant regions in the action instances,
the final action localization results are more complete.

4 Experiments and Analysis

4.1 Dataset

To verify the effectiveness of our method, we evaluate our model on a large-
scale action detection dataset THUMOS’14 [7]. THUMOS’14 contains a total of
20 different categories of sport activities, which include three subsets: training
set, validation set and test set. However, training set only contains trimmed
videos which are not suitable for our tasks. So actually we use validation set and
test set to match our tasks. Among this, validation set contains a total of 200
untrimmed videos with 3007 action instances, which we use to train our model,
test set contains 213 untrimmed videos with 3358 action instances, which we use
to evaluate our trained model.

4.2 Evaluation Metrics

In order to make a fair comparison with other works in the same task, and proves
the superiority of our model. We evaluate our results in terms of mean Average
Precision – mAP@α where α denotes different Intersection over Union (IoU)
thresholds. It is also a common metrics to demonstrate model performance in
this task.

4.3 Implementation Details

We use I3D [2] networks which pre-trained on ImageNet [4] and Kinetics [2]
respectively to extract features for video segments. To better use the motion
information of the input videos, we use TVL1 algorithm [22] for generating
optical flow of segments. Since the video lengths are large variation, we sample
a fixed number of 750 segments for each video, and adopted different sampling
strategies during the training and testing phases: stratified random perturbation
during training and uniform sampling during test. We set the threshold ε = 0.615
to generate binary mask both in training and testing. The network is trained
using Adam optimizer with learning rate 10−4. At testing time, we set the class-
threshold Θclass = 0.25, and reject classes whose video-level probabilities are
lower than Θclass. To delete proposals with high overlap rates, we perform non-
maximum suppression (NMS) with threshold 0.7.
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Table 1. Comparison results of using different strategies in terms of mAP at IoU
threshold 0.1-0.9 under the weakly-supervised temporal action localization (WTAL)
task on THUMOS’14 testing set. Among them, SDM only means that only Salient
detection module is used for WTAL, while SDM + EM means that Eraser module is
introduced through the erasing strategy based on result of SDM only.

mAP@IoU 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

SDM only 57.01 51.2 43.8 35.2 26.06 17.8 9.92 3.77 0.39

SDM + EM 58.87 52.43 44.33 36.04 27.33 18.77 10.22 3.84 0.46

Table 2. Comparison results of our work with some representative works in terms of
mAP at IoU thresholds 0.1–0.9 (denoted as α) under the weakly-supervised temporal
action localization task on THUMOS’14 testing set.

Strong subversion α

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

SSN [27] 66 59.4 51.9 41 29.8 – – – –

CBR [6] 60.1 56.7 50.1 41.3 31 19.1 9.9 – –

BSN [10] – – 53.5 45 36.9 28.4 20 – –

S-CNN [18] 47.7 43.5 36.3 29.7 19 10.3 5.3 – –

CDC [16] – – 40.1 29.4 23.3 13.1 7.9 – –

R-C3D [23] 54.5 51.5 44.8 35.6 28.9 – – – –

Weak subversion α

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

UntrimmedNet [21] 44.4 37.7 28.2 21.1 13.7 – – – –

Hide-and-seek [20] 36.4 27.8 19.5 12.7 6.8 – – – –

STPN(I3D) [14] 52.0 44.7 35.5 25.8 16.9 9.9 4.3 1.2 0.1

W-TACL(I3D) [15] 55.2 49.6 40.1 31.1 22.8 – 7.6 – –

AutoLoc [17] – – 35.8 29.0 21.2 13.4 5.8 – –

MAAN [25] 59.8 50.8 41.1 30.6 20.3 12.0 6.9 2.6 0.2

3C-Net [13] 59.1 53.5 44.2 34.1 26.6 – 8.1 – –

RefineLoc [1] – – 33.9 – 22.1 – 6.1 – –

Clean-Net [12] – – 37.0 – 30.9 13.9 7.1 – –

BaSNet(I3D) [8] 58.2 52.3 44.6 36.0 27.0 18.6 10.4 3.9 0.5

Ours(I3D) 58.87 52.43 44.33 36.04 27.33 18.77 10.22 3.84 0.46

4.4 Ablation Studies

To thoroughly evaluate the effectiveness of our erasing strategy for the weakly-
supervised temporal action localization, we performed extensive ablation experi-
ments on the THUMOS’14 dataset. We first use only Salient detection module for
weakly-supervised temporal action detection, based on this basis, we then take
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erasing strategy to hide the most discriminative part of the action instances, and
add an additional eraser module to further mine the remaining actions in the
erased feature. The comparison results are shown in Table 1. We observe that
by adopting the erasing strategy in the existing Salient detection module, the
action localization performance of our method has been effectively improved.

4.5 Results Comparison

As shown in Table 2, we compare our result with some representative works in
terms of mAP at IoU thresholds 0.1–0.9 (denoted as α) under the same task to
evaluate the effectiveness of our methods.

From Table 2, we can see that under the same supervision conditions, our
method exhibits excellent performance. Even compared to some fully-supervised
methods with more annotated information, our method also demonstrates
superiority.

5 Conclusion

In this paper, we introduce an erasing strategy for weakly-supervised temporal
action localization. In order to better explore the relatively insignificant regions
of the action instances, a preset threshold is used to generate a binary mask to
erase the most discriminative part of the action instances, and force the model
to find those regions that contribute less to the classification task in the action
instances, and ultimately improve the action localization performance. In the
future, we will continue to explore weakly-supervised temporal action localiza-
tion methods and further improve and upgrade our method.
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Abstract. Visible-infrared person re-identification (VI-ReID) is a sig-
nificant technology in night-time surveillance applications. Compared to
traditional person re-identification that focuses on only visible imaging
system, the modality discrepancy between infrared and visible images
brings an additional challenge to VI-ReID. Taking the shortcomings of
existing VI-ReID works in terms of feature representation into account,
in this paper, we propose an end-to-end network named Joint Feature
Learning Network (JFLN) to jointly utilize global and local features,
high-level and middle-level features, as well as shared and specific fea-
tures. In addition, based on these extracted features, we introduce a
multi-loss supervision strategy in the training process. Extensive exper-
iments conducted on public SYSU-MM01 dataset demonstrate that the
proposed method outperforms the state-of-the-arts, with relatively less
computational cost.

Keywords: Person re-identification · Visible-infrared · Joint feature ·
Multi-loss supervision

1 Introduction

The purpose of person re-identification (ReID) is to find a specific person across
different cameras. This technology can make the analysis of surveillance videos
more intelligent, which is of great significance to public security. Since day-and-
night video surveillance is more suitable for actual scenarios, visible-infrared
ReID (VI-ReID) has attracted increasing attention recently. As we can see in
Fig. 1, the purpose of VI-ReID is to retrieve person images captured by differ-
ent spectrum cameras. Therefore, in addition to the traditional problems like
pedestrian pose, viewpoint or illumination variations of ReID, the modality dis-
crepancy between infrared and visible images resulting from different imaging
systems makes VI-ReID more challenging.

Since Wu et al. [13] released the first large-scale visible-infrared cross-
modality dataset named SYSU-MM01, analyzing three different network struc-
tures and proposed a deep zero-padding one-stream network, many works have
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Fig. 1. An example of visible-infrared person re-identification (VI-ReID). The person
images captured by different spectrum cameras can be divided into four classes: 1)
images of same modality and same identity, 2) images of same modality and different
identities, 3) images of different modalities and same identity, 4) images of different
modalities and different identities. In VI-ReID, given a infrared image, we want to
retrieve the same identity image from a large visible gallery.

been done in this field. Ye et al. [14] proposed a two-stream CNN network
to learn modality-shared feature representation. Subsequently, more two-stream
networks [3] have been explored to improve VI-ReID performance. In addition,
cmGAN [2] is the first work which applied generative adversarial network tech-
nology to VI-ReID. It achieved better performance than before and provided
a new idea [10,12] for solving VI-ReID problem. Zhu et al. [18] started the
first attempt to apply local feature to VI-ReID, and got impressive accuracy.
As shown in Fig. 1, the aim of VI-ReID is to retrieve images with same iden-
tity and different modalities from a gallery dataset. Some works [13] map the
visible features and the infrared features into a same feature space to extract
modality-shared feature, fully exploiting the cross-modality invariable character-
istics. Hetero-Center (HC) loss [18] effectively narrows the discrepancy of intra-
class cross-modality images, which greatly improves the performance of VI-ReID.
Although above works make great progress in VI-ReID, they have the follow-
ing shortcomings: 1) they mostly only utilized global high-level features, which
has limited discriminant ability. And the simple partition strategy likes [8] only
produced local regional features, without using the global feature. 2) the widely
used high-level feature can only represent the high-level semantic information.
The low-level and middle-level features, which has massive detail information,
are neglected by above methods. 3) the additional computation cost caused by
GAN becomes additional challenge. 4) only using modality-shared feature can
make the features of the same identities compressed, and HC loss is hard to
distinguish different identities due to the loss of modality-specific feature.

In this paper, we propose a novel architecture named Joint Feature Learn-
ing Network (JFLN), which fully exploit the joint utilization of global and local
features, high-level and middle-level features, as well as shared and specific fea-
tures. In addition, a multi-loss supervision strategy is introduced in the training
process. The main contributions of our work can be concluded as follows:

(i) The joint feature strategies are proposed to extract more discriminative
feature representation. It is the first attempt to utilize the combination of
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joint global and local features, joint high-level and middle-level features and
joint shared and specific features. Besides, different kinds of losses are used
to supervise the training process.

(ii) A novel Joint Feature learning Network is proposed. Extensive experiments
on SYSU-MM01 dataset show that the proposed JFLN achieves 66.11% in
Rank-1 and 64.93% in mAP, which outperforms the state-of-art methods in
VI-ReID.

2 Proposed Approach

We proposed a Joint Feature Learning Network (JFLN), which utilized Joint
Global and Local (JGL) features, Joint High-level and Middle-level (JHM) fea-
tures, and Joint Shared and Specific (JSS) features to improve VI-ReID. In addi-
tion, a multi-loss Supervision Strategy (MSS) is proposed for training. Figure 2
shows the architecture. We utilize pretrained ResNet50 with four stages as the
backbone network, and the convolution stride of Stage 4 is changed from 2 to
1. The red solid and black dashed boxes in the figure represent implementations
of JGL and JHM, respectively. Above JGL and JHM are modality-shared fea-
tures, which are mapped to a same feature space from different modalities by
a weight-shared fully-connected layer. The modality-specific feature is obtained
using a fully connected layer without shared weight.

According to [18], Hetero-Center (HC) loss and Cross Entropy (CE) loss are
used for the modality-shared features. To learn better modality-specific feature,
we used mixed-modality Triplet loss [11] and CE loss on modality-specific feature
to reduce the intra-class cross-modality discrepancy and enlarge the inter-class
cross-modality dissimilarity simultaneously.

More details are presented in the following each subsection.

2.1 Joint Global and Local (JGL) Features

Most works of VI-ReID extract global feature to learn the whole representation of
a person image [1,13,14]. However, global features only focus on whole informa-
tion of pedestrian, ignoring some fine-grained features which play an important
role to VI-ReID. Recently, local features were proved effective for VI-ReID [18].
Because of the different details between pedestrians contained in local feature,
it is possible to distinguish various identities. However, learning accurate local
features is still a difficult task, due to the difference in actual scenes (such as
diversified pedestrian poses, the distance of the camera view, and the block fea-
tures are not aligned and calibrated, etc.). Then, we can conclude that it is not
ideal to learning global features or local features alone.

Considering the advantages and disadvantages of global features and local
features, and inspired by visible ReID, we propose a multi-scale horizontal par-
titioning strategy in VI-ReID tasks. As shown in Fig. 2, for the features extracted
by Stage 4, we use a multi-level block strategy for pooling to obtain global fea-
ture, halving horizontally feature and trisecting horizontally feature. Global fea-
ture can be viewed as the macroscopic characteristic of the pedestrian’s entire
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Fig. 2. Structure of JFLN. There are two branches for visible and infrared images.
For each branch, the input images goes through each stage of ResNet50 to form a 3D
tensor described low-level, middle-level or high-level features. To get JHM features, we
convolved the feature map extracted from Stage 3 with 1 × 1 kernel, then combining
it with the feature map extracted from Stage 4. Besides, JGL feature representation is
obtained by putting three partition schemes on feature map extracted from Stage 4.
Concatenating these 7 tensors, we can get 7 feature vectors after a conventional average
pooling layer. Then, the dimension of each vector is reduced by a weight-sharing FC
layer, and we combine them to form shared features. Afterward, each strip of shared
features goes though a BN layer and a FC layer, used to calculate HC loss and CE
loss. In addition, the global feature vector going though a FC layer represents specific
feature. Finally, we use a BN layer to get two feature spaces for CE loss and Triplet
loss on each modality.

body, while the two-part and three-part features represent different scales of
pedestrian detail. The combining of local feature and global feature can get a
more informative representation of pedestrian. To the best of our knowledge, our
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work is the first attempt to comprehensively consider global and local features
in VI-ReID.

2.2 Joint High-Level and Middle-Level (JHM) Features

In our ReID task, researchers often use a deep network as a backbone to extract
advanced semantic features of images to represent pedestrians. However, it is
inappropriate to only use the high-level features, because VI-ReID requires fine-
grained features (clothing texture, hairstyle characteristics, etc.) of image to
distinguish different identities. Additionally, the poor semantic expression in
infrared image and the significant modality discrepancy between Visible and IR
images also make it hard to only use high-level features to retrieve pedestrians
in VI-ReID. Middle-level features mainly focus on fine-grained features, which
is complementary for high-level features to achieve VI-ReID. Therefore, middle-
level features should not be completely abandoned.

In our work, to avoid making the model complicated and the feature dimen-
sion too large, only a branch is added after Stage 3 to get middle-level feature
representations. 1 × 1 convolution was used to make the middle-level features
increase from 1024 dimensions to 2048 dimensions. Then, middle-level features
are concatenated with high-level features in the last stage. The fusion of high-
level features and middle-level features makes the network effectively learn com-
plex and abstract visual concepts, and the more informative feature representa-
tion benefits VI-ReID.

2.3 Joint Shared and Specific (JSS) Features

It is a huge challenge to keep as much as possible discriminative information
when learning feature representation from cross-modality images. Many excel-
lent methods were proposed to extract modality-shared features for VI-ReID
and achieved good performance. However, existing research mainly focuses on
learning modality-shared features, abandoning modality-specific features, which
means a huge loss of useful identity information. Therefore, it is inappropriate to
consider modality-shared features alone. Recently, [6] proposed a shared-specific
transfer network (SSTN) in which the modality-shared and modality-specific fea-
tures are utilized in VI-ReID. Their work achieves good performance and proves
the great importance to jointly use of modality-shared and modality-specific
features in VI-ReID.

Inspired by traditional two-stream network, we use the weight-shared fully
connected layer to extract the modality-shared feature. Besides, the fully-
connected layer without shared-weight was proposed to extract the modality-
specific features. Then supervised learning was performed on the modality-
shared features and modality-specific features in the training process. Exper-
iments show that although we only add a simple branch for specific feature
extraction, the using of modality-specific features has significantly improved the
overall performance.
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2.4 Multi-loss Supervision Strategy (MSS)

Early VI-ReID methods [13,14] often used CE loss and Triplet loss, where Triplet
loss can reduce intra-class distance and enlarge inter-class distance simultane-
ously. Recently, Zhu et al. [18] proposed HC loss, which is combined with CE loss
to achieve a new milestone and effectively improve the performance for VI-ReID.
Different from Triplet loss, HC loss is designed specially for reducing the discrep-
ancy between intra-class samples in different modalities. As a result, based on
CE loss and HC loss, we introduced Triplet loss to improve feature distribution.
Luo et al. [7] analyzed that CE loss and Triplet loss face convergence problem
when the two losses acted on the same feature. They introduced a Batch Nor-
malization (BN) layer to alleviate the confliction. Similarly, there exist conflicts
between CE loss and HC loss, Triplet loss and HC loss, which have been proved
in experiments. Therefore, the BN layers were applied to eliminate the conflicts.

For modality-shared feature, similar to [18], we use the combination of CE
loss and HC loss to supervise the modality-shared feature learning. The formula
is

LSH = Lsh−CE + λLsh−HC

= −
K∑

i=1

log
eW

�
yixi+byi

∑n
j=1 eW

T
j xi+bj

+ λ

U∑

i=1

[‖ci,1 − ci,2‖22
], (1)

For CE loss in Eq. 1, the batch size is K. The ith sample belonging to the yi
class, we extracted feature xi. Besides, Wj denotes the weight and b is the bias
term. For HC loss, U denotes the number of classes, as well as ‖ci,1 − ci,2‖22
means center-sample feature distance of images with different modalities and
same identity. ci,1 = 1

M

∑M
j=1 xi,1,j , ci,2 = 1

N

∑N
j=1 xi,2,j denotes the centers of

feature distribution of visible modality and infrared modality in the ith class. M
and N are the numbers of visible images and infrared images in the ith class.
xi,1,j and xi,2,j denotes the jth visible image and infrared image in the ith class.
And λ in Eq. 1 is the weight between HC loss and CE loss, to balance the two
losses.

To supervise the modality-specific feature learning, the mixed-modality
Triplet loss [11] is introduced to reduce the intra-class distance and enlarge
the inter-class distance. This mixed-modality Triplet loss is expressed as

Lsp−mTri(V ) =
P∑

i=1

K∑

a=1

[α + max
p=1,...,K

d (fa
vt(i), f

p
vt(i))

− min
j=1,...,P,n=1,...,K,j �=i

d (fa
vt(i), f

n
vt(j))]+

(2)

Above mixed-modality Triplet loss is computed from the hard triplet exam-
ples. To construct triplet examples, at each iteration, P identities are randomly
selected, and then K visible images and K infrared images of each selected iden-
tity are randomly selected to form a mini-batch. There are 2PK images in total.
Where fa

vt(i), fp
vt(i) and fn

vt(j) refer to the features extracted from the anchor
sample, positive sample, and negative sample selected from the sample batch of
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mixed visible and infrared images, respectively. In addition, the distance here is
measured by Euclidean distance, and + means that when the value in [] is bigger
than zero, the value is taken as loss, while the loss is zero if it is less than zero.

So the loss function on the modality-specific feature can be expressed as

LSP = Lsp−CE + Lsp−mTri (3)

The overall joint loss can be expressed as

L =
7∑

i=1

LSHi
+ LSP (4)

Because we extracted 7 part of local features by modality-shared branches,
the total loss is the sum of 7 modality-shared loss and 1 modality-specific loss.

3 Experiments and Results

3.1 Dataset and Evaluation Metrics

We conducted the experiments to evaluate the proposed JFLN -Net on the large-
scale VI-ReID dataset, SYSU-MM01 [13]. The images in SYSU-MM01 are cap-
tured from 6 cameras: four visible cameras (CAM 1,2,4,5) and two thermal
cameras (CAM 3,6). There are 29003 visible images and 15712 infrared images
belonging to 491 pedestrians in the dataset, among which 22258 visible images
and 11909 infrared images from 395 identities are used for training and the
images of the remainding 96 identities are used for testing. In testing set, 3803
thermal images consist of query set, and the gallery set is formed by random
sampling one visible sample from each identity. The above method is the single-
shot setting in the widely used all-search mode, which is also the most difficult
test protocol.

Each given query image is matched by calculating the Euclidean distance to
these images in gallery set. Then, a similarity ranking list is formed by sorting
the distance in descending order. Cam 2 and Cam 3 are in the same position,
which means easier match between images captured by them. Consequently, if
the infrared image in the query set is obtained from camera 3, the visible image
from camera 2 is skipped directly in the gallery set. The widely used Rank-x
(x=1, 10, 20) of Cumulative Match Characteristic (CMC) and mean average
precision (mAP) are reported for comparison. Considering the randomness of
the gallery set, during the test, we repeated the above evaluation method 100
times to get the average performance.

3.2 Implementation Details

Our experiments were conducted on a NVIDIA GeForce 1080Ti GPU, using the
PyTorch framework. The pedestrian images are resized to 384×128. During the
training process, we randomly selected 4 identities, and then randomly selected
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8 visible images and 8 infrared images for each identity. As a result, the batch
size in an epoch was set to 64. To balance HC loss and CE loss, the weight of HC
loss in Eq. 1 was set to 0.5. The margin of Triplet loss was set to 0.3. The SGD
algorithm is used as the optimizer with a momentum of 0.9. The network was
trained 80 epochs with warm up strategy for first 10 epochs. The learning rate
lr(t) at epoch t is compute as Eq. 5. In addition, we utilized modality-shared
and modality-specific features to optimize the network in the training process.
In testing, only the modality-shared features were used to evaluate the similarity
between query images and gallery images. The reason is that, under the influence
of modality-specific features, the modality-shared features extracted have been
able to effectively describe the image through end-to-end collaborative learning,
which was proved in our experiment. Another reason is that using shared features
alone can speed up the computation in testing.

lr(t) =

⎧
⎪⎪⎨

⎪⎪⎩

0.1 × t
10 if t ≤ 10

0.1 if 10 < t ≤ 20
0.01 if 20 < t ≤ 50
0.001 if 50 < t ≤ 80

(5)

Table 1. Comparison with the state-of-art methods.

Methods All-search & Single-shot

Rank-1(%) Rank-10(%) Rank-20(%) mAP(%)

Deep Zero-Padding(ICCV2017) 14.80 54.12 71.33 15.95

BDTR(IJCAI2018) 17.01 55.43 71.96 19.66

HSME(AAAI2019) 20.68 58.31 74.43 23.12

IPVT-1 and MSR(Access2019) 23.18 – – 22.49

cmGAN(IJCAI2018) 26.97 67.51 80.56 27.80

D2RL(CVPR2019) 28.90 70.60 82.40 29.20

Hi-CMD(CVPR2020) 34.94 77.58 – 35.94

DSCSN+CCN(ArXiv2019) 35.10 77.60 88.90 37.40

EDFL(ArXiv2019) 36.94 84.52 93.22 40.77

JSIA(AAAI2020) 38.10 80.70 89.90 36.90

HPILN(IET IP2019) 41.36 84.78 94.51 42.95

AlignGAN(ICCV2019) 42.40 85.00 93.70 40.70

BDTR(IJCAI2018 with AWG) 47.50 – – 47.65

TSLFN+HC(ArXiv2019) 56.96 91.50 96.82 54.95

cm-SSFT(CVPR2020) 61.60 89.20 93.90 63.20

JFLN (ours) 66.11 95.69 98.79 64.93

3.3 Comparison with the State-of-the-Art Methods

We compared JFLN -Net with the state-of-the-art (SOTA) methods, includ-
ing Deep Zero-Padding [13], cmGAN [2], BDTR [15], D2RL [12], HSME [3],
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(IPVT-1 and MSR) [4], EDFL [5], AlignGAN [10], HPILN [17], TSLFN+HC
[18], DSCSN+CCN [16], Hi-CMD [1], cm-SSFT [6], JSIA [9]. The experiments
are conducted under all-search and single-shot test mode for the above methods.
The results are shown in the Table 1.

Among these methods, our JFLN is similar with TSLFN+HC, but exceeds it
by +9.15% in Rank-1 and +9.98% in mAP. Besides, we note that cm-SSFT is the
best one in all compared methods. Although cm-SSFT achieves 61.60% in Rank-
1 and 63.20% in mAP, our results exceed it by +4.51% in Rank-1 and +1.73% in
mAP. Furthermore, cm-SSFT has a more complicated network structure, which
leads to more parameters and computations.

3.4 Ablation Study

In order to verify the effectiveness of each component of our proposed JFLN,
we take TSLFN+HC for comparison as it is similar with our method. We
replaced the part-based feature of TSLFN+HC by Joint Global and Local
(JGL) feature, and named it as Baseline(JGL). Then, we added Joint High-
level and Middle-level (JHM) feature to the Baseline and named it as Base-
line(JGL)+JHM. Besides, we added Jointly Shared and Specific (JSS) feature
to Baseline(JGL)+JHM and named it as Baseline(JGL)+JHM+JSS, which is
our proposed JFLN. The results are shown in the Table 2.

Table 2. Components analysis. We take TSLFN + HC for comparison. JGL, JHM
and JSS represent the components of the proposed JFLN.

Methods Rank-1(%) Rank-10(%) Rank-20(%) mAP(%)

TSLFN+HC 56.96 91.50 96.82 54.95

Baseline(JGL) 61.23 94.10 97.98 59.95

Baseline(JGL)+JHM 64.69 94.08 98.00 62.38

Baseline(JGL)+JHM+JSS(JFLN) 66.11 95.69 98.79 64.93

From the results of Table 2, we can find that our Baseline(JGL) achieves
61.23% in Rank-1 and 59.95% in mAP, which exceeds TSLFN+HC by +4.27%
in Rank-1 and +5.00% in mAP. This means the Joint Global and Local (JGL)
feature is more effective then part-based feature. After adding JHM and JSS to
the Baseline(JGL), the results are improved respectively. As the result, we con-
cluded that Joint Global and Local (JGL) feature, Joint High-level and Middle-
level (JHM) feature and Jointly Shared and Specific (JSS) feature are effective
and can be combined together to achieve the best performance.

In order to determine the best partitioning level for Joint Global and Local
(JGL) feature, we designed the following experiment. We used different parti-
tioning strategies to get different scale features, and added them with the global
feature. The combination of global feature and 2 partitioning is named as Scale 1.
Then, Scale 2 contains global feature, 2 partitioning features and 3 partitioning
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features. It is similar for Scale 3, which contains global feature, 2 partition-
ing features, 3 partitioning features and 4 partitioning features. The results are
reported in Table 3, where we also report the results of TSLFN+HC.

Table 3. Analysis of multi-scale feature. Here, Scale 1, Scale 2 and Scale 3 represent
different partitioning strategies.

Methods Rank-1(%) Rank-10(%) Rank-20(%) mAP(%)

TSLFN+HC 56.96 91.50 96.82 54.95

Scale 1 55.78 92.38 97.52 54.67

Scale 2 61.23 94.10 97.98 59.95

Scale 3 60.60 87.09 97.65 59.89

From Table 3, we can find that the best Joint Global and Local (JGL) feature
is Scale 2, which has global feature, 2 partitioning features and 3 partitioning
features. Less scale and more scale drop the performance. According to our
knowledge, a person has three parts (head, body and legs) in structure, which
has different appearances, so Scale 3 is appropriate for person representation.

Furthermore, we also did experiments to find the best Joint High-level and
Middle-level (JHM) feature. Based on the best Joint Global and Local (JGL)
feature, we extracted different level feature to form multi-level feature. The fea-
ture extracted form Level x (x = 2, 3) are combined with JGL features. The
results are shown in Table 4.

Table 4. Analysis of multi-level feature

Methods Rank-1(%) Rank-10(%) Rank-20(%) mAP(%)

Baseline(JGL) 61.23 94.10 97.98 59.95

Baseline(JGL)+Level 2 60.66 93.75 97.87 59.76

Baseline(JGL)+Level 3 64.69 94.08 98.00 62.38

Baseline(JGL)+Level 2+Level 3 63.77 94.79 98.05 61.58

From Table 4, we can find that the best Multi-Level (ML) feature is Level
3. It achieved 64.69% in Rank-1 and 62.38% in mAP, which exceeds JGL by
+3.46% in Rank-1 and +2.43% in mAP. Note that Baseline(JGL)+Level 2 has
lower performance than Baseline(JGL), and Baseline(JGL) + Level 2 + Level 3
also has lower performance than Baseline(JGL)+Level 3. So we can conclude that
the feature extracted from Level 2 always drops the performance. The reason
may be the feature extracted from Level 2 has too low-level information, which
has no contribution for semantic classification.

There exists a converging problem when CE loss and Triplet loss are applied
to the same feature simultaneously. Inspired by [7] we introduce a BN layer
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on the modality-specific feature, and then calculate CE loss and Triplet loss.
We used the same strategy as [18] to calculate HC and CE for modality-shared
features. Two settings are tested: (1)CE-HC-on-SH&Tri-CE-on-SP: Triplet loss
is applied before BN while CE loss is applied after BN; (2)CE-HC-on-SH&CE-
Tri-on-SP: CE loss is applied before BN while Triplet loss is applied after BN.
From Table 5, we find that using Triplet loss after BN is better.

Table 5. Analysis of loss-settings

Methods Rank-1(%) Rank-10(%) Rank-20(%) mAP(%)

CE-HC-on-SH&Tri-CE-on-SP 63.32 95.85 98.87 61.77

CE-HC-on-SH&CE-Tri-on-SP 66.11 95.69 98.79 64.93

ALL-on-SH 58.71 93.94 98.33 58.73

We also added Triplet loss to the modality-shared feature as HC loss, however
both mAP and Rank-1 drop greatly. The reason is that HC loss and Triplet loss
may have a conflict due to their different optimization objectives.

4 Conclusion

In this paper, we propose a novel network named Joint Feature Learning Network
for visible and infrared cross-modality person re-identification. Combining joint
global and local features, joint high-level and middle-level features, and joint
shared and specific features, the network can fully exploit most information con-
tained in input and learns better discriminative feature. Besides, our proposed
multi-loss supervision strategy plays an important role in training. Finally com-
prehensive experiments demonstrate that the proposed method outperforms the
state-of-the-arts.
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Abstract. The detection of road cracks is the main basis of highway mainte-
nance, and the noise, shadows, and irregularities of road images will bring great
challenges to traditional detection. Therefore, we propose a multi-source attention
U-net network, which can effectively avoid these interferences and get satisfac-
tory results. In this method, we use transfer learning to make up for the lack of
data, then use the U-net add attention mechanism to increase the weights of the
cracks, and finally get more accurate results through model fusion. To prove the
effectiveness of the method, we verify it by comparative experiments, and the
experimental results show that the proposed approach is superior to the state of
the art method in crack detection task.

Keywords: U-net network · Transfer learning · Attention mechanism · Model
fusion

1 Introduction

Highway is one of the most basic transportation facilities, which plays an irreplaceable
role in national construction and development. As pavement cracks are the main hidden
danger of highway safety, the detection of cracks plays a vital role in the maintenance
of pavement.

Traditional crack detection methods [1–5] are based on the typical features of the
crack in the image, such as the transformation of crack features in different directions,
the continuity feature crack, the edge feature of the crack, and so on. These methods can
resist noise, light, shadow, and other interference in the image. But their ability to resist
interference is limited, so we need to look for other ways.

The emergence of deep neural network helps us open a new door. In [6], CNN
overcomes the interference brought by noise and shadow. CrackSegnet [7] improves the
ability of neural network to segment cracks. In [8], U-net solves the problem caused by
less dataset samples. These techniques significantly improve our detection results.
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In order to obtainmore accurate crack detection results, a newcrack detectionmethod
is proposed in this paper. The main structure of this method is the U-net network, which
is more robust and effective than the DCNN network of concrete crack detection in [9]
and has a better effect on the small sample problem. Considering the small number of
road samples and the inaccuracy of crack feature extraction, we use transfer learning
based on the U-net network. To avoid the interference caused by noise and small crack
width in the image, we introduce the attention mechanism of increasing the weight of
the crack area. Finally, in order to avoid the differences in the results, which caused by
the transfer learning of different datasets, we use model fusion to improve the accuracy
of results.

The paper is organized as the following. In the next section, we review some exist-
ing work. The third section describes the implementing details of the neural network,
including the U-net network, transfer learning, attention mechanism, and model fusion.
Section four gives data preparation, evaluation methods, and experimental results. The
fifth section provides the conclusion of this paper.

2 Related Work

In recent years, some mainstream target detection methods have been used to detect
cracks. For example, in [10], presents an approach for detecting cracks in infrared thermal
imaging steel sheets using Convolutional Neural Networks (CNN), which overcome the
drawbacks of vision-based methods. Tang et al. [11] propose a Multitask Enhanced dam
crack image detection method based on Faster R-CNN (ME-Faster R-CNN) to adapt
the detection of dam cracks in different lighting environments and lengths. Aiming at
the problems of poor real-time performance and low accuracy of traditional pavement
crack detection, Nie et al. [12] designed a method based on Yolo v3 for pavement crack
detection. Although the target detection can identify the crack, the detection result is
only in the rough range, so we need to adopt other methods to conduct more accurate
positioning. In [13], Mask R-CNN was used to localize cracks on concrete surfaces,
and this method lowers the time consumption in the process of detection, reduces costs,
and increases the personnel’s safety. Wang et al. [14] use a MAV equipped with an HD
camera to capture images of the concrete dam, and reconstructing the 3D point cloud
model of these images; then the FCN is used to train the data to obtain the crack detection
model iteratively. In [15], a new crack detection and segmentation method is proposed,
which can lower time-consuming, and suppress false alarms. Chen et al. [16] propose
an encoder-decoder structural model with a fully convolutional neural network, namely,
PCS, which significantly improve the test results.

For crack detection, we often face the difficulty of fewer data sets, so we need to take
other ways to solve this problem. The emergence of transfer learning [17, 18] can help
us to solve this problem. Through transfer learning, the network can not only acquire the
characteristics of the same kind of data but also accelerate the convergence of the model
and complete the training faster. The attention mechanism [19, 20] increases the weight
of the required parts of the image, and the other parts reduce the weight to highlight the
areas we need, making the segmentation of the image more efficient and accurate.
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3 The Proposed Approach

The network structure ofmulti-source attentionU-net is shown in Fig. 1, which including
four parts: U-net network, transfer learning, attentionmechanism, andmodel fusion. The
functionality of each section is described in detail below.

Fig. 1. The multi-source attention U-net network.

3.1 U-Net Network

U-net network consists of two parts, and one is used for image feature extraction; the
other is used for the precise location of the segmentation region. For the datasets input
into the network, firstly, the feature information in the image is collected by convolution,
and then the image size is reduced by pooling. In this way, the features in the image are
extracted after repeated four times. After that, the crack is located by deconvolution. In
the process of deconvolution, the local feature extracted previously is combined with
the new feature mapping to get a more accurate location.

3.2 Transfer Learning with Multiple Sources

Due to the small number of road data samples, it will have a negative impact on the
results of the experiment. Therefore, we introduce the transfer learning method. In this
paper, we use the dam, wall, and bridge data sets for transfer learning. Firstly, three
sets of data sets are trained by U-net network, and three different network models are
generated. Then the weights of nodes in each network model are transferred to the new
U-net network, and the road data sets are input into these three new networks for training.

The use of transfer learning accelerates the convergence of the model and helps to
identify the characteristics of road cracks more accurately and improve the detection
accuracy through the feature transfer of dam cracks, wall cracks, and bridge cracks.
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3.3 Attention U-Net for Pavement Crack

Although migration learning improves the accuracy of detection, it still has some inter-
ference information. In order to minimize this interference information, after transfer
learning, we add attention mechanism in the U-net network.

In the process of locating road cracks, after each deconvolution layer, we transform
the feature map into an attention map: convolute the feature map, transform the size,
then use the residual block to reduce the error, and finally use the Hyperbolic Tangent
activation function. Four attention maps are generated, marked as W1, W2, W3, W4
respectively, and then these four attention modules are fused with the detection results
to get more accurate detection results, as shown in Fig. 2.

Fig. 2. The fusion process of attention map and detection results.

The formula of image fusion is as follows:

m5 = {1 + exp[−((((m1w1 + m1)w2 + m2)w3 + m3)w4 + m4)]}−1 (1)

where: m1, m2, m3, m4, m5 is the response value of the same position of the shadow
masksM1,M2,M3,M4,M5, and w1, w2, w3, w4 is the weight value of the corresponding
position of the weight maps W1, W2,W3, W4.

3.4 Model Fusion

Because it is the result of three different datasets after transfer learning, there may be
some differences between them. To eliminate the contingency of the results, we fuse the
three groups of results, which are respectively from the training results of U-net network
with attention mechanism after using three different datasets for transfer learning.

Firstly, we performed binarization processing on the three training results, which
separate the crack from the background more obviously:

f (pi) =
{
pi = 255, pi ≥ x;
pi = 0, pi < x.

(2)

where i is the location of the pixel, pi is the pixel value, and x is the threshold value.
When the threshold value of the pixel point exceeds x, it is the crack area; otherwise, it
is the background area.

Then, for the processed results, we make decisions based on the pixel values of the
same location of these images, which are obtained from the same road image training:

g(pi) =
{
pi = 255,

∑3
k pi

255 ≥ y;
pi = 0,

∑3
k pi

255 < y.
(3)
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Where k is the prediction graph of group kth, i is the position of pixel points in the
image, and pi is the pixel value, and y is the decision indicator. When more than the
indicator, we see the pixels as part of the crack part, or as the background.

4 Experiments

The network is implemented in Python with Tensorflow and Keras. All experiments are
performed using an Intel Core i5-9400F CPU with 2.90 GHz, 1080. The batch size for
each iteration is one, and the number of epochs is 30 for both datasets.

4.1 Dataset

In this article, we use the four groups of datasets: pavement dataset (including 114
training sets and 81 test sets), 288 dam training images, 64 Bridge training images, and
167 wall training images, with the size of 512 * 512 per image. The parameter setting in
data augmentation is rotation range, width shift range, height shift range, shear range,
zoom range, horizontal flip.

4.2 Evaluation

For the comparison of results, Precision (Pr), Recall (Re) and F-Measure (F1) [21] were
used to measure the accuracy of the method:

Pr = TP

TP + FP
(4)

Re = TP

TP + FN
(5)

F1 =
(
1 + β2

) × Pr × Re

β2 × Pr + Re
(6)

where TP, FP, FN are the numbers of true positive, false positive, and false negative
respectively. In this experiment, the value of β2 is 0.3, which makes the weight of the
accuracy rate higher than the recall rate.

4.3 Loss Function

The experiment in this paper is about the segmentation of road cracks, a pixel-level binary
classification problem. Therefore, we choose binary_crossentropy as the loss function
of the experiment:

loss = −
∑n

i=1

(
yi log ŷi + (1 − yi)log

(
1 − ŷi

))
(7)

Where yi is the classification label of pixels in the ground truth, ŷi is the classification
label of pixels in the prediction results.

When yi and ŷi are equal, the loss is 0; otherwise, the loss is a positive number. And
when the probability difference is larger, the loss will be larger.
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4.4 Result

In this section, to test the effectiveness of the proposed method, we conducted several
comparative experiments. First of all, we compared several results in the experimental
process, as shown in Fig. 3. It can be seen that in different experimental stages, the
results we get are quite different, and the method proposed in this paper is more accurate
than other results. Table 1 is the comparison data of these results. From the perspective
of accuracy, all the results in the experimental process have a significant improvement
compared with U-net. For recall, different results have different degrees of decline, but
most remain in a relatively stable range. As for the final evaluation index, it can be seen
that compared with the results of U-net, the results of other methods have significantly
improved. Among them, the effects of adding the attention mechanism are enhanced by
1.74%, and the improvement of the three transfer learning results is between 5% and
7%. Our proposed method is improved more, with an increase of 8.28%, which is much
higher than other results.

Fig. 3. Parts of the road crack detection results (from left to right: original image, ground truth,
U-net, U-net + Attention, bridge transfer learning, dam transfer learning, wall transfer learning
and the proposed method)

Table 1. Results at different stages.

Stages Pr Re F1

U-net 0.7479 0.8122 0.7519

U-net + Attention 0.7881 0.7699 0.7693

Bridge transfer learning 0.9075 0.6361 0.8069

Dam transfer learning 0.8345 0.7695 0.8095

Wall transfer learning 0.8761 0.7381 0.8149

The Proposed Method 0.8940 0.7302 0.8347
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Then the canny algorithm, Frequency tuning, Image salience, and vgg19 network
are used to compare with the method in this paper. The results are shown in Fig. 4. It
can be found that the Canny algorithm and Frequency tuning have higher requirements
for the image; otherwise, it is easy to be interfered. Image saliency and vgg19 network
have good results, but they are also easily interfered with by the white line in the image,
leading to a decrease in accuracy. Although there are some defects in our method, the
interference of external factors is largely eliminated, so that the results can be better
improved. Table 2 is the comparison data of these algorithms, from which we can see
that the data of the Canny algorithm and Frequency tuning are both minimal, indicating
that these two algorithms are not suitable for this experiment data. The recall rate of
image significance is high, but its accuracy is low, making the F-Measure poor. The
accuracy of the vgg19 network is low, but the recall rate is high, which improves the
F-Measure. The method proposed in this paper has high accuracy and recall rate, so the
F-Measure is the best, which also shows the method’s effectiveness.

Fig. 4. Results of the comparative experiments (from left to right: original image, ground truth,
canny algorithm, gray histogram statistical comparisonmethod, image significancemethod, vgg19
and the proposed method)

Table 2. Results of different methods.

Methods Pr Re F1

Canny 0.2255 0.4154 0.2359

Frequency tuning 0.5630 0.1192 0.2875

Image salience 0.4364 0.7062 0.4703

Vgg19 0.6420 0.8347 0.6665

The proposed method 0.8940 0.7302 0.8347
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5 Conclusion

In this paper, we made some improvements based on the U-net network. We added the
attention mechanism on its expansion path, to increase the weight of the crack region in
the image, to facilitate segmentation. Besides, the idea of transfer learning is adopted to
improve the model’s shrinkage speed and introduce the characteristics of other cracks,
on the other hand, to facilitate the identification of cracks. Finally, the method of model
fusion is used, which not only helps to extract more accurate fracture areas but also helps
to exclude other external interference, making the results more accurate and better. We
compared various parts of the method, and the results showed that the method had
significant improvement compared with the individual parts. Compared with different
algorithms, the results show that the method has a higher detection efficiency than the
traditional algorithm, and it has a more accurate effect than other neural networks. The
method proposed in this paper is only an improvement of the U-net network, and it has
more potential, so we will further explore the U-net network in the following research.
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Abstract. The robustness of model-free trackers is always supported
by a model updater and a motion model. However, most state-of-the-art
trackers (e.g. correlation-filter or Siamese-network based trackers) are
unbalanced in both aspects. Consequently, they drift easily when encoun-
tering challenging scenarios such as fast motion, occlusion or background
clutter. Inspired by the complementarity of different tracking mecha-
nisms, we propose an adaptive cooperation tracker, where correlation fil-
ter and Siamese networks complement each other in their shortcomings.
Specifically, our tracker consists of three components: a context-aware
correlation filter network (termed as CaCFNet), a Siamese network and
a tracking failure estimator. In the online tracking, the Siamese network
component locates the target coarsely in a larger search region, and then
CaCFNet refines the coarse position for higher accuracy. The Siamese
network component is activated adaptively according to the result of fail-
ure estimator, which keeps the tracker in real time and avoids interference
between two different mechanisms. Moreover, context-aware correlation
filter network and Siamese network are trained offline for better feature
representation for visual tracking task. Comprehensive experiments are
performed on three popular benchmark: OTB2013, OTB2015, VOT2017
to demonstrate the effectiveness of the proposed tracker, and the pro-
posed tracker achieves state-of-the-art results on these benchmark.

Keywords: Visual tracking · Correlation filter · Siamese network

1 Introduction

Visual tracking is a fundamental problem in computer vision, which tracks a
specified target given in the first frame in a changing video sequence automati-
cally. Although much progress [2,4,14,15,24–26] has been made in recent years,
it remains very challenging to track the target at a high speed while robust
for changing scenarios such as occlusions, fast motion, illumination variations,
background clutter and deformation and so forth.
c© Springer Nature Switzerland AG 2020
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https://doi.org/10.1007/978-3-030-60639-8_56

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-60639-8_56&domain=pdf
http://orcid.org/0000-0003-3423-1539
https://doi.org/10.1007/978-3-030-60639-8_56


674 B. Zhou et al.

Recent works [2,4,6,12] demonstrating significant performance improvement
on several benchmarks [10,13,22,23], can be fallen roughly into two broad cate-
gories: correlation-filter (CF) based trackers and Siamese-network based trackers.
They are two different tracking mechanisms.

In this work, we propose an adaptive cooperation tracker via cooperating
correlation filter with Siamese network. Specifically, our tracker consists of three
basic components: a correlation filter component, a Siamese component, and a
tracking failure estimator.

The correlation filter component is a context-aware correlation filter network
(CaCFNet), which is designed to gain better feature extractor for correlation
filter task. We equip the CaCFNet with light weight convolution network, which
is trained offline in an end-to-end way using positive and negative samples for
larger discriminative power. The Siamese network is different from traditional
SiamFC [2], which uses the shallow Alexnet [11]. In this paper, we choose the
more robust modified VGG-16 [17] for larger discriminative power (Fig. 1).

Fig. 1. The adaptive cooperation tracking architecture.

The main contributions of this work are as follow:

1) We propose a cooperative tracker that takes advantage of complementary of
correlation filter and Siamese network for robust tracking.

2) We propose a context-aware correlation filter network to improve the per-
formance of traditional correlation filter. The network can be trained offline
using positive and negative samples to obtain better and more discriminative
feature presentation for correlation filter task.

3) We propose an adaptive strategy to automatically to guide the cooperation of
CaCFNet and Siamese network. This strategy keeps the tracker in real time
and avoids interference between two different mechanisms.

2 Related Works

In this section, we give a brief related works closely related to this work.
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Correlation Filter for Visual Tracking. Recently, correlation filter based
trackers have achieve great success. However, there are also two major issues that
limit performance improvements: boundary effect and feature representation.
Different from using ineffective and inefficient hand-craft and raw convolution
feature, inspired by [19,20], we transform context-aware correlation filter [15]
into a differentiable layer coupled with a lightweight convolution network to
obtain more discriminative and effective feature. To address boundary effect,
[6,9] introduce a spatial regularization component to ensure tracker can work
on a large search region effectively, which are at the price of optimizing the
regularized objective function costly, even in the Fourier domain.

Siamese Network for Visual Tracking. The Siamese-network based trackers
have drawn much attention in recent years. These trackers not only track the
object in a larger search region with high accuracy but also be real time. SiamFC
[2] and SiamRPN [12] are two typical algorithms. Many trackers [3,21,27] have
been done to make further improvement based on them. In this work, we apply
the Siamese network to search the target in larger region to alleviate the bound-
ary effect of correlation filter.

3 The Proposed Tracker

3.1 Overview

An adaptive cooperation tracker utilizing the complementarity advantage of cor-
relation filter and Siamese network is proposed. Specifically, our tracker con-
sists of three core components: the proposed context-aware correlation network
(termed as CaCFNet), Siam-VGG and a tracking failure estimator.

In online tracking, once the tracking failure estimator finds that CaCFNet
misses the target encountering difficult scenarios such as out of view because of
the limited search region, Siamese network is activated adaptively to tracking
coarsely the target in a larger search region, and then CaCFNet tracks the target
finely based the position provided by Siamese Network. The adaptive cooperation
tracking architecture is shown as in Fig. 3.

3.2 Context-Aware Correlation Filter Network

Inspired by the context aware correlation filter [15], our correlation filter is reg-
ularized by distracted patches for larger discrimination power. The distracted
patches can be viewed as hard negative samples which contain various distractors
and diverse background. Then, the correlation filter is learned that has a high
response for the target patch and close to zero response for distracted patches:

minw||X0w − y||22 + λ1||w||22 + λ2

k∑

i=1

||Xiw||22 (1)

where Xi and X0 represent circulant feature matrices from negative samples
and positive samples respectively. w represents the learned correlation filter. λ1
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and λ2 is the regularization coefficient. And the regression objective y is a 2D
Gaussian. The closed-form solution in the Fourier domain for our CF is:

ŵ =
x̂∗
0 � ŷ

x̂∗
0 � x̂0 + λ1 + λ2

∑k
i=1 x̂∗

i � x̂i

, (2)

where xi and x0 represent the feature patches of negative samples and positive
sample respectively. ∧ denotes the discrete Fourier transform and ∗ represents
the complex conjugate. � denotes the Hadamard product.

Different from most CF based trackers using raw convolution or hand-craft
features, we propose to actively learn robust representations fitting to a CF by
transforming context-aware correlation filter into a differentiable layer. We equip
the differentiable CF layer with a lightweight convolution network for real-time
speed. For more larger discriminative power, we train this network offline using
two positive samples and four distracted negative samples from other classes as
shown in the Fig. 2. This network is termed as context-aware correlation filter
network (CaCFNet). And the CF differentiable layer is termed as CaCF layer.

Fig. 2. Architecture of context-aware correlation filter network. The numbers above the
convolution layers represent the number of channels and the size of kernel respectively.

3.3 Fully Convolution Siamese Network

The goal of fully convolution Siamese network is to learn a metric of similarity
in the embedding space. We can easily calculate the similarity to the exemplar
patch at all translation of a large candidate patch using cross convolution. The
candidate patch x is much larger than the exemplar patch z. The similarity at
all translation of the candidate patch can be calculated using:

f(z, x) = ϕ(z) ∗ ϕ(x) + b1 (3)

where ∗ is the general convolution operation, b1 is the bias which takes value in
every location. The f(z, x) is a score map that represents the similarity of each
translation. The network can be trained using the logistic loss:

l(y, v) = log(1 + exp(−yv)) (4)
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Where y is the ground-truth label and v is the similarity score of a single
exemplar-candidate pair. The output of the network is a score map f(z, x) and
therefore we define the loss of the whole network as the mean of the individual
losses,

L(y, f) =
1

|D|
∑

u∈D

l(y[u], f [u]), (5)

where y[u] represents the ground-truth label for each position u ∈ D in the score
map and f [u] represents the similarity score for each position in the score map.

In this work, the Siamese network complements the correlation filter to alle-
viate boundary effect. Compared with correlation filter trackers, the advantage
of Siamese network provide as input to the network a much larger search image
and it will compute the similarity at all translated sub-windows on a dense grid
in a single evaluation using cross convolution. This larger search image equips
a tracker with a larger file of vision to cope with abrupt motion and heavy
occlusion. In this work, we choose the more robust backbone VGG-16, which is
modified for balance of speed and accuracy, as shown in Fig. 3. The padding of
this backbone is removed. The first seven layers are initialized using pre-trained
VGG-16 model on ImageNet [16].

Fig. 3. Architecture of full convolution Siamese network. We use a modified VGG archi-
tecture as the feature extractor. The numbers above the convolution layers represent
the number of channels and the size of kernel respectively.

3.4 Adaptive Model Update and Target Search

Most frames in a sequence are easy cases, where targets with distinct and move
slowly. In those cases, our CaCFNet can track a target well and the model should
be updated to adapt to target appearance changes. However, when the target is
occluded or out of the view, the target drifts and may never be found again. In
these cases, model update is not needed and the prediction of the potential target
regions in larger search region is needed for finding the target again. Instead of
tracking with model update and Siamese network in each frame, model update
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and Siamese network are activated automatically by evaluating the tracking
results of CaCFNet.

For correlation filter, idea response map should have one peak value in tar-
get position and damps quietly from peak to the rest region. However, when
encountering challenging scenarios, such as heavy occlusion and out of view, the
response map fluctuates intensely and damps slowly as shown in Fig. 4. The dis-
tribution of response map can reveal the confidence degree of tracking results
to some extent. Based on above observation, we design a novel criterion called
Region-Peak-Sidelobe-Ratio (RPSR) to reveal distribution of the response peak
and thus evaluate the tracking status.

Specially, we divide the response map F into two region: peak region Fp

and side-lobe region Fs. Fp represents the area near the maximum value, Fs

represents the rest region of response map except the Fp, called side-lobe region.
The RPSR is defined as

RPSR =
mean(Fp − fmin)2

mean(Fs − fmin)2
(6)

where
fmin = min(F ) (7)

where fmin is corresponding minimum value of response map F . Meanwhile, the
maximum value in response map is also a important criteria to reveal the status
of tracking to some extent.

fmax = max(F ) (8)

When the response map is ideal, RPSR and fmax are larger, and fall into a
small value when response map fluctuating intensely.

Then, we calculate historical average values of RPSR and fmax within the
first m frame of the current frame, termed as RPSRm

t and fmaxm
t

. In online
tracking, When these two criteria RPSR and fmax of the current frame are
greater than RPSRm

t and fmaxm
t

with certain ratios β1, β2, the tracking result
in the current frame is considered to be high-confidence. The proposed tracking
model will be updated online with a learning rate parameter η as,

wt = ηw + (1 − η)wt−1 (9)

Further, When encountering occlusion, CaCFNet drifts easily and out of the
view because of the limited search region. As shown in Fig. 5, when encountering
challenging scenarios, such as occlusion, CaCFNet drifts and cannot find the
target because of the limited search region, in contrast, Siamese network based
trackers can find the target. Based on the above observation, the Siamese network
is activated in these cases.
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Fig. 4. The shots of sequence Jogging-1 from OTB2015, where red box represents the
ground-truth. (Color figure online)

Fig. 5. The comparison of search region. Red, yellow green, blue boxes represent the
ground-truth, the search region from Siamese network, the search region from correla-
tion filter and the results of CaCFNet, respectively. (Color figure online)

4 Experiments

In this section, firstly, we introduce the implementation details of our tracker.
Secondly, we analyze the contribution to the performance of each component of
our tracker through the results of the ablation experiments. Finally, the results on
OTB2013, OTB2015 and VOT2017 demonstrate the effectiveness and robustness
of our approach.

4.1 Implementation Details

Training Parameters. We apply stochastic gradient descent (SGD) with
momentum of 0.9 to train both correlation network and Siamese network. For
correlation filter, the learning rate is annealed geometrically at each epoch from
1e − 2 to 1e − 5. The training is performed for 50 epochs with a mini-batch size
of 32. For Siamese network, the learning rate is annealed geometrically at each
epoch from 1e − 3 to 1e − 6. The training is performed for 50 epochs with a
mini-batch size of 16.

The Training Dataset. To avoid the over-fitting, the training and testing are
selected from different datasets. We use the data from video of ImageNet Large
Scale Visual Recognition Challenge (ILSVRC) [16] as our training dataset for
both CaCFNet and Siam-VGG. For CaCFNet, the inputs include two positive
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samplers and four negative samplers. The two positive samplers are collected
within the nearest 10 frames in the same sequence, and the negative samplers
are collected in different sequence. The all samplers are cropped with a padding
size of 2, and then resized to the input size of 125×125×3. For Siamese network,
we collect each pair of frames within the nearest 100 frames and the processing
of training samples can be referred to SiamFC [2].

Tracking Parameters. For correlation filter, λ1 and λ2 in (2) is set as 1e-4 and
0.1 respectively. For RPSR, we set the area of peak region as the area which
distance from the center position is less than 16. The β1 and β2 is set 0.65 and
0.43 respectively. m is set 7. The η in (9) is set 0.01. To make the tracker adapt
to the scale variations of target, scale pyramid is used in this work. The scale
interval in CaCFNet is set as S = 1.031 and 3 scale are exploited. And only one
search patch is used in Simaese network, which is cropped based on the position
and scale of previous frame.

The proposed tracker is implemented with the PyTorch wrapper with python
and all the experiments are executed on a PC with an Intel i5-3470 CPU, 22 GB
RAM and Nvidia GTX 2080Ti GPU.

Tracking Benchmarks. Tracking performance evaluations of our tracker and
state-of-the-art trackers are performed on the OTB2013 [22], OTB2015 [23]
and VOT2017 [10]. On OTB benchmarks, precision plot and success plot are
exploited as are evaluation metrics. The precision plot show the relative number
of frames in the sequence where the center location error is smaller than the
fixed threshold of 20 pixels. The success plot shows the percentage of successful
frames where the bounding box overlap exceeds the given threshold ranging from
0 to 1. The area under curve (AUC) of each success plot is used to rank trackers.
On VOT2017, the expected average overlap (EAO) is exploited to quantita-
tively analyze the tracking performance. The EAO considering both bounding
box overlap ratio (accuracy) and the re-initialization times (robustness).

4.2 Evaluation on OTB2013

OTB2013 [22] contains 50 fully annotated sequences that are collected from com-
monly used tracking sequences. The proposed tracker is compared with recent
state-of-the-art trackers as shown in Fig. 6. These trackers can be roughly cate-
gorized into two types: (I) correlation filter based trackers: C-COT [8], ECO-hc
[4], SRDCF-deep [7], SRDCF [6], Staple [1], DSST [5]; (II) Siamese network and
deep learning based tracker: Siamfc [2], CFNet [19], CREST [18]. Our tracker
achieves precision of 89.4% and AUC of 67.6% with real-time speed of 35 fps. The
results demonstrate that robust and accurate target tracking can be achieved by
the cooperation of different tracking mechanisms, namely the proposed context-
aware correlation filter network and the Siamese network.

Ablation study. The basic idea in this work is how to take advantage of their
complementary strengths from correlation filters and Siamese networks. So our
tracker uses two basic component to construct a robust tracker: CaCFNet and
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Fig. 6. Precision and Success plots of OPE(one pass evaluation) on OTB2013 [22] and
OTB2015 [23] respectively. The numbers in the legend indicate the precision at 20
pixels for precision plots and the AUC score for success plots respectively.

Fig. 7. Expected average overlap(EAO) ranking on VOT2017. We only show a part of
trackers in this figure for clarity.
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Siamese network. Besides, a tracking failure estimator is introduced for efficiency
in this work. We evaluate their contributions by checking the performance of the
tracker when the examined component is missing. “CaCFNet+RPSR” repre-
sents the CaCFNet with RPSR. “CaCFNet+Siam” represents without RPSR.
“Ours+Alexnet” represents using the AlexNet as the backbone for Siamese net-
work. Table 1 shows the effectiveness of the cooperation of correlation filter and
Siamese network.

Table 1. The results of ablation experiments on OTB2013

AUC Precision Speed (fps)

CaCFNet 0.657 0.871 120

CaCFNet+RPSR 0.664 0.879 143

CaCFNet+Siam 0.632 0.846 27

Ours+Alexnet 0.665 0.887 50

Ours 0.676 0.894 35

Table 1 shows the effectiveness of the cooperation of correlation filter and
Siamese network. RSPR enhances the performance of CaCFNet via measuring
tracking state and can combines effectively the correlation filter and Siamese
network. The degraded performance of “CaCFNet+Siam” demonstrates Siamese
network distracts CaCFNet in easy case during tracking. The comparison of
“Ours+Alexnet” and “Ours” represent a more discriminant Siamese network is
better for our tracker.

4.3 Evaluation on OTB2015

The OTB2015 [23] benchmark is the extension of OTB2013. The evaluation cri-
teria of two benchmarks are identical. Compared to the state-of-the-art trackers,
as shown in Fig. 6, our tracker achieves a precision of 86.2% and AUC of 64.6%.
Considering both speed and accuracy, our tracker achieves a very competitive
result.

4.4 Evaluation on VOT2017

VOT2017 contains 60 challenging sequences and trackers are re-initialized when
missing the target. As indicated in the VOT2017 [10], the strict state-of-the-art
bound is about 0.21 under the EAO metric. That means trackers are considered
as state-of-the-art one when their EAO values exceed 0.21.

The proposed tracker is evaluated on VOT2017 with state-of-the-art trackers
as shown in Fig. 7. Among these trackers, ECO [4] and CCOT [8] has a higher
EAO than our tracker but has low speed. And our tracker can run at 14 fps
and with state-of-the-art performance. According to the analysis of VOT2017
[10] and the definition of the strict state-of-the-art bound, our tracker can be
regarded as a state-of-the-art tracker.
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5 Conclusion

In this work, we propose an adaptive cooperation tracker inspired by the com-
plementary of CF based tracker and Siamese network based trackers. These two
basic components with different tracking mechanism complement each other in
motion model and model updater. Instead of using off-the-shelf components
directly, we improve the basic components. Specifically, a context-aware cor-
relation filter network and a Siamese network with more robust backbone are
designed, which can be trained offline to obtain more better feature represen-
tation for visual tracking task. Further, an automatic activating strategy is
designed to guide their cooperation and reliable model update. Experiments on
four popular benchmarks demonstrate state-of-the-art performance with high
speed frame-rates. We believe that considerably higher performance could be
obtained by substituting the two base trackers with more advanced trackers.
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