
UDenseNet: A Universal Dense Convolutional
Network for Image Recognition

Liang Wang1(B), Changshuang Zhao1, Ling Shao2, and Yihong Wu3

1 Faculty of Information Technology, Beijing University of Technology, Beijing 100124, China
wangliang@bjut.edu.cn

2 Inception Institute of Artificial Intelligence, Abu Dhabi, UAE
3 National Laboratory of Pattern Recognition, Institute of Automation,

Chinese Academy of Sciences, Beijing 100080, China

Abstract. Densely connected convolutional networks (DenseNet) have reached
unprecedented parameter-performance efficiencies and alleviated problems of
vanishing gradients by concatenating each layer to every other layer. However,
with the increase in network depth, the cross-channel interaction of dense blocks
has become increasingly complex. Hence, it is now more difficult to optimize net-
works. Moreover, the way combining features in DenseNet restricts its flexibility
and scalability in learning more expressive combination strategies. In this study,
we aim to answer the question of how to simultaneously ensure the benefits of
feature reuse, reduce the complexity of cross-channel interactions, and increase
the flexibility of the network. Hence, the components of DenseNet are refined and
then used as a basis to develop a universal densely connected convolutional net-
work (UDenseNet). Based on the proposed architecture, the impact of different
component configurations on the network performance is empirically analyzed
to determine the optimal architectural configuration. Extensive experiments are
conducted to validate the proposed UDenseNet on benchmark datasets (CIFAR,
SVHN and ImageNet). Results show that, compared to most other methods, the
proposed UDenseNet can significantly improve performance in image recognition
tasks.

Keywords: Deep learning · Neural networks · Dense connection · Image
recognition

1 Introduction

Deep convolutional networks have achieved promising results inmany visual recognition
tasks [1–3], with significantly improved feature representations. High-level semantic
information is known to play a crucial role in this. One simple and intuitive way to
extract more high-level information is to increase the network depth. Residual network
(ResNets) [4] trains a much deeper network architecture by leveraging the concept of
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shortcut connections. However, when the depth exceeds 1000 layers, the performance of
ResNets reaches saturation owing to information loss caused by the simple summation-
based feature aggregation. This occurs because the information carried by prior feature
maps becomes corrupted or washed out by later features.

Fig. 1. Comparison of network architecture of (a) DenseNet and (b) the proposed UDenseNet.

To resolve this problem faced by ResNets, the densely connected convolutional
network (DenseNet) [5]was proposed.Dense connections alloweach convolutional layer
to connect to every other layer in a feed-forward way. Then, a series of concatenations
is used to integrate semantic information from different layers into one entity as the
final input. The better parameter-performance efficiency of DenseNet over ResNets
may be due to aggregation style, which combines features via direct concatenation,
while preserving their original form. However, concatenation increases the complexity
of cross-channel interactions and the difficulty of optimization, respectively. Moreover,
the way DenseNet combines features restricts its flexibility and scalability to learn more
expressive combination strategies.

In this study, we revisit DenseNet and propose a universal densely connected con-
volutional network (UDenseNet) to extend network flexibility and versatility, while
preserving the efficiency of feature reuse. As shown in Fig. 1, unlike DenseNet, the
proposed UDenseNet consists of three main components: unit, block, and layer. Hierar-
chically, a unit is not only the most fundamental part of the network but also the minimal
entity of dense connections. A block consists of a series of units followed by a 1 × 1
convolution, which can produce cross-channel interactions. Finally, a layer comprises
several layers of blocks, followed by a 2 × 2 average pooling layer, which fulfils the
task of down-sampling. The entire network resembles a building made of Lego bricks;
it is built step-by-step from the most fundamental unit. The feature maps produced by
each block have the same size as the input. Additionally, the neuron of a layer encodes
higher-level semantics by processing larger receptive fields with the pooling layers. The
three components perform distinct roles and combine for desirable outcomes. The differ-
ence between the proposed UDenseNet and DenseNet is shown in Fig. 1. The proposed
UDenseNet (Fig. 1(b)) is an extension of DenseNet (Fig. 1(a)), which is a combination
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of multiple units, blocks, and layers. This hierarchy significantly expands the flexibility
of the network’s construction. It is worth noting that, unlike DenseNet, the last layer
of UDenseNet has a 1 × 1 Conv. The proposed UDenseNet is evaluated on several
benchmark datasets (CIFAR [6], SVHN [7], and ImageNet [8]) for image recognition
and significantly outperforms the state-of-the-art methods on most.

The main contributions of this paper can be summarized as follows:

– A universal densely connected convolutional network is proposed, which can rea-
sonably extend network flexibility and versatility, while preserving efficient feature
reuse.

– The proposed UDenseNet architecture enhances the performance of dense connec-
tions, enabling it to achieve high performance and dramatically improve accuracy and
effectiveness in comparison with existing deep convolutional networks.

– To the best of our knowledge, this is the first time that an optimal architectural config-
uration is provided for a densely connected convolutional network. This was achieved
by fixing the total number of network layers and performing extensive experiments
with varying number of network components.

The remainder of this paper is organized as follows. Section 2 reviews related works.
In Sect. 3, the proposedmodel and its components are illustrated inmore detail. Extensive
experiments are reported in Sect. 4 and Sect. 5 concludes the paper.

2 Related Works

Since AlexNet [1] won the 2012 ImageNet Challenge [8], deep convolutional networks
have become an important machine learning method in computer vision. With the devel-
opment of hardware and the emergence of large-scale datasets, it is now possible to
train very deep neural networks. In the last few years, the number of network layers has
gradually increased. From the initial LeNet5 [9] of only 5 layers, to the later VGG [10]
and Inception [11] of dozens of layers as well as the more recent highway networks
[12], ResNets [4] and DenseNet [5] which have hundreds of layers, the performance of
deep convolutional networks has steadily and dramatically improved for many image
recognition tasks. This reveals that network depth is crucial. However, it does not mean
that learning better networks is as easy as simply adding more layers. One reason for
this is the notorious problems of vanishing/exploding gradients [13], which hinders con-
vergence from the start. Furthermore, with increasing network depth, difficulties with
feature reuse have been highlighted, thereby resulting in accuracy saturation. Many
recent publications have addressed related issues [13, 14]. In the following paragraphs,
we review several works that are closely related to this present study from micro and
macro perspectives.

To alleviate the problems of deep convolutional networks, earlier works adopted
better initialization schemes. For example, [13] proposed that a properly scaled uniform
distribution should be adopted for initialization. Unfortunately, this initialization scheme
is only valid for linear activations, whereas ReLU and PReLU are nonlinear. Because of
this dilemma, [14] proposed a better, more theoretically sound initialization by consid-
ering ReLU/PReLU, and this enabled very deep models to converge where [13] method
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failed. A recently proposed, notable contribution for training extremely deep networks
is BN [15], which can standardize each mini-batch hidden layer’s mean and variance. It
not only decreases the vanishing gradients problem, but also yields a strong regularizing
effect. However, dataset distributions are generally uneven, especially for a mini-batch
of data taken from a dataset. In these situations, batch normalization fails to adapt to
some data.

On the other hand, some works have focused on the macro design of the network
structure. Most of them improved information flow during forward and backward prop-
agation by introducing extra skip connections. Typical works include highway networks
[12], ResNets [4], and many other residual networks [16–18]. Highway networks [12]
introduce gating units to regulate the information flow of the networks, thereby allow-
ing information to propagate unimpeded on information highways across several lay-
ers. Unlike highway networks, ResNets [4] combine features through direct summation
defined by identity shortcut connections before features are passed into a layer. This is
performed instead of the gated summation defined by shortcut connections with the gat-
ing function. This simplification significantly improves training efficiency, simplicity,
and scalability. Instead of focusing on the depth, wide residual networks [17] focus on
the width of the network. [18] analyses the success of highway networks and ResNets,
whichmayowe to the dropoutmechanismapplied onnetwork layers during training. This
makes it possible that the resulting networks are short during training but deep during
tests. In summary, these findings enable information flow to bypass some dropped layers
via skip connections. Afterward, DenseNet [5] was proposed by building shorter paths
from early layers to later layers, which concatenates all layers together in a feed-forward
way. This has allowed DenseNet to attain high parameter-performance efficiency. Since
its original construction, several extensions of DenseNet have been proposed [19, 20].
The notion of local dense connectivity was introduced in [19], which suggests that
less connectivity can achieve more efficient feature reuse and higher accuracy in dense
architectures, thereby allowing for an increased growth rate at a fixed network capacity.
The closest study to ours is [20], which explores a key architectural aspect of densely
connected convolutional networks, dense feature aggregation, including the summing
scheme of ResNets and concatenating scheme of DenseNet. However, it mainly focused
on the skip layer connections instead of the entire architecture of densely connected
convolutional networks.

In this paper, we separate the fully-dense connectivity of dense block by introducing
1× 1 Conv and redefine the components of densely connected convolutional network. A
universal densely connected convolutional network is proposed.Basedon this, the impact
on network performance of different component configurations is empirically analyzed
to determine the optimal architectural configuration. To the best of our knowledge,
this is the first study that provides an optimal configuration for the densely connected
convolutional network architecture, when the total number of layers, i.e., the depth, is
fixed.
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3 Universal Densely Connected Convolutional Network

In DenseNet, each layer that is densely connected by concatenation receives the feature
maps of all previous layers. In contrast to common connection methods, dense connec-
tions ensure maximum information flow between network layers, which is beneficial for
information transmission in the network. Consequently, the feature maps of the ith layer
can be represented by the following formula:

xi = Hi
([
x0, x1, · · · , xi−1

])
(1)

where xj(0 ≤ j ≤ i) is the output of the jth layer, [·] refers to the concatenation of the
feature maps, and Hi (·) denotes the non-linear transformation function corresponding
to the ith layer. In [5], DenseNet consists of sequentially stacked dense blocks, as shown
in Fig. 1(a). A detailed description is as follows. DenseNet is divided into three dense
blocks, each of which has an equal number of layers. There is a transition layer between
dense blocks to reduce the number of accumulated channels per concatenation while
one 2 × 2 average pooling operation is used for down-sampling to increase the size of
the network’s receptive field.

In the remaining parts of this section, we introduce the network architecture of
UDenseNet. A schematic illustration is shown in Fig. 1(b) to facilitate an understanding
of the network architecture. Each component of the network is now described.

3.1 Unit

A unit refers to the minimal dense connection in the network, which connects the input
with its output by concatenation to ensure the benefits of feature reuse (see Fig. 1(b)).
Following DenseNet [5], two types of units are used in UDenseNet:

Basic - BN and ReLU are followed by one 3 × 3 convolution: BN-ReLU-3 × 3
Conv, with which the network is denoted as UDenseNet.

Bottleneck - one 1 × 1 convolution is added before the 3 × 3 convolution of the
Basic unit to reduce the feature dimension: BN-ReLU-1 × 1 Conv-BN-ReLU-3 × 3
Conv, with which the networks is denoted as UDenseNet-B.

As in [5], the 3 × 3 convolution kernel is adopted here without considering other
convolutional kernels with different sizes.

3.2 Block

Skip connections allow useful features to be transferred from shallower layers to deeper
layers, where each layer is directly supervised by the final output layer. DenseNet imple-
ments skip connections by concatenating outputs of all previous layers. However, a
potential drawback is that aggregation by concatenation results in the isolation between
feature maps. Therefore, to learn complex cross channel interactions, an additional con-
volutional operation with a kernel size of 1 × 1 is added before down-sampling in
transition layers. Thus, the 1 × 1 Conv is a necessary component of a block. In an
ablation study, we performed extensive experiments to show the effect of 1 × 1 Conv,
as described in Sect. 4.2. In UDenseNet, the 1 × 1 Conv in the transition layer in the
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original DenseNet was moved to the end of the block. Then, we redefined the concept
of the block, that is, a group of dense connections ending with one 1 × 1 Conv form the
new block. Note that the 1 × 1 Conv is connected in a traditional way rather than as a
dense connection. Further, a unit factor u, which is the number of units (including both
Basic and Bottleneck) in each block, was also introduced.

3.3 Layer

Inspired by residual networks, in which multiple residual blocks process feature maps
of the same scale, we took advantage of a few dense blocks for this. The down-sampling
layer is essential for changing the size of feature maps in the network. As in [5], the pool-
ing operation was also used. Here, we introduced the concept of a layer, which consists
of several serially connected blocks followed by one 2 × 2 pooling layer (see Fig. 1(b)).
Additionally, two factors, block factor b and layer factor l, were also introduced, where b
is the number of blocks in each layer and l is the number of layers in UDenseNet. From
the perspective of UDenseNet, the original densely connected convolutional network
(i.e., 40-layer DenseNet [5]) has 3 layers, where each layer has 1 block, and each block
has 12 units, but the last layer has no 1 × 1 Conv.

3.4 The General Expression and Structure

Various components of the densely connected convolutional network are refined above.
In this section, we will present a concrete mathematical expression that indicates the
relationship between the total number of network layers and the number of components.
Additionally, to express the network architecture, we present a description to clarify the
specific general structure of the network.

A list is used to express an N-layer densely connected network, as follows:

[N(u1, b1)(u2, b2) · · · (ul, bl)] (2)

where l refers to the number of layers in the network. Each layer is in the form of
parentheses with two elements, where the first element, i.e., ui(1 � i � l), is the number
of units in each block, and the second element, i.e., bj(1 � j � l), is the number of
blocks within each layer. The relationship between the total number of network layers
and the number of units and blocks can be represented by the following formula:

N =
∑l

i=1
(αui + 1) × bi + 2 (3)

where the coefficient α = 1 for UDenseNet and α = 2 for UDenseNet-B.
Several variants of the network structure can be obtained for different l, b, and u,

respectively. The above analysis shows that the architecture of UDenseNet more flexible
for learning more expressive merge strategies. For example, a UDenseNet version of
original DenseNet [5], which is a 40-layer DenseNet, can be described as follows:

[40(5, 1)(7, 2)(7, 2)] (4)
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From Eq. (3), it can be seen that Eq. (4) is not the sole UDenseNet architecture
corresponding to the original 40-layer DenseNet. For example, [40(4, 2)(6, 2)(6, 2)] and
[40(9, 1)(6, 2)(6, 2)] are also corresponding UDenseNet architectures. This shows that
UDenseNet has more flexibility than DenseNet.

Table 1 illustrates the general structure of UDenseNet. It consists of an initial con-
volution Conv; 3 sequential layers L1, L2, and L3, each of which is followed by average
pooling, which is not shown in this table; and the final classification layer, which is also
omitted for clarity. In the example shown, the network uses a Basic unit. As in [5], we
also introduced the compression factor r to scale the channel of the 1 × 1 Conv in the
last block of one layer, and the growth rate k to describe the number of feature maps
(or channels) added by per dense connection. A UDenseNet with compression factor
r is called UDenseNet-C, and in the following experiments, it is set to r = 0.5. When
both the bottleneck and compression factor r are used, the corresponding UDenseNet
is called UDenseNet-BC. We analyzed the impacts of the unit, block, and layer on
the performance of dense connections through experiments. Several modifications of
the densely connected network architecture are further reported and compared in the
following section of experiments.

Table 1 Structure of universal densely connected convolutional networks. The number of units in
each block is denoted by factor ui; the parameters k and r are the growth rate and the compression
ratio of the network, respectively; and groups of convolutions are shown in brackets, where bi is
the number of blocks in each layer.

Group Input size Output size Layer type

Conv 32 × 32 32 × 32 (3 × 3, 2k)

L1 32 × 32 16 × 16 (
(3 × 3, k) × u1

1 × 1, r

)

× b1

L2 16 × 16 8 × 8 (
(3 × 3, k) × u2

1 × 1, r

)

× b2

L3 8 × 8 1 × 1 (
(3 × 3, k) × u3

1 × 1, r

)

× b3

4 Experiments

4.1 Implementation Details

We empirically validated UDenseNet on a series of benchmark datasets (including
CIFAR [6], and SVHN [7]) for image recognition tasks. Comparisons with the state-of-
the-art methods were also performed. The main purpose of Subsect. 4.2 is to explore the
internal structure of the dense convolutional network, i.e., the relationship between unit,
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block, and layer, and its impact on network performance, rather than to focus on higher
precision. In contrast, Subsect. 4.3 focuses on the high precision. In the experiments,
the DenseNet [5] was taken as the reference network. For all datasets, we compared the
results of the reference network with those of the proposed UDenseNet.

Similar to [5], for the CIFAR datasets [6], the training and test sets have 50,000
and 10,000 images, respectively, and 5,000 training images were taken as a validation
set. A standard data augmentation scheme (mirroring/shifting) was adopted, and a “+”
mark after the dataset name denotes this data augmentation in the following tables. For
the Street View House Numbers (SVHN) dataset [7], the training set contains 73,257
images and additional 531,131 images, and 6,000 images were used as a validation
set. The test set contains 26,302 images. No data augmentation was adopted for this
dataset. Each UDenseNet has three dense layers. For the CIFAR dataset, networks did
not adopt the dropout, whereas the dropout rate is 0.2 for the SVHN. Further, we also
verified the proposed UDenseNet on the ImageNet2012 [8] dataset and compared it with
the DenseNet. In the experiments on ImageNet, we used a 121-layer UDenseNet-BC
structure. And UDenseNet-BC has four dense layers.

As in [5], all networks utilize stochastic gradient descent (SGD) with a weight decay
of 10−4 as a learning optimizer and adopt the parameter initialization introduced by
[14]. For the CIFAR and SVHN datasets, the batch size of the network is set to 64 and
is trained for 4 and 5 epochs, respectively. The initial learning rate is set to 0.1, and is
divided by 10 at 50% and 70% of the total number of training epochs. For the ImageNet,
model is trained for 90 epochs with a batch size of 256. The initial learning rate of the
model is 0.1 and every 30 rounds divided by 10 until 90 epochs. Our implementations
were performed in Pytorch [21].

4.2 Trade-Off Between Unit and Block

First, experiments were performed to explore the relationship between unit factor u and
block factor b and its impact on network performance. The comparison was performed
among networks of equal depths, thus we established networks with different u and b to
ensure that the total number of convolutional layers were equal. Thismeans, for instance,
that u should increase while b decreases. Results are shown in Table 2, where the total
number of convolutional layers of UDenseNet, 38, is fixed, and several networks with
different unit factors u and block factors b were trained and tested. Further, results of
a UDenseNet with the same depth as the original 40-layer DenseNet and a UDenseNet
with similar layer type (12, 1)(12, 1)(12, 1) as the original DenseNet are also shown
in Table 2. It can be seen that both significantly outperformed the original DenseNet.
Notably, the difference in network architectures makes that UDenseNet and DenseNet
unable to have the same depth and similar layer type simultaneously. Considering that
UDenseNet outperformed the corresponding DenseNet with the same depth, 38-layer
UDenseNet were used here for perform analysis.

As seen in Table 2, [38(5, 2)(5, 2)(5, 2)] and [38(3, 3)(3, 3)(3, 3)] turn out to be
the better, whereas [38(11, 1)(11, 1)(11, 1)] and [38(16)(1, 6)(1, 6)] have the poorer
performances. This is probably due to the increased difficulty in optimization as a result
of the increased number of dense connections in [38(11, 1)(11, 1)(11, 1)]. Similarly, it
is speculated that feature extraction may not be sufficient in [38(1, 6)(1, 6)(1, 6)]. Thus,
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when the depth of the network is fixed, too many or too few units in each block result in
poor network performance. This means that the optimal architecture of UDenseNet can
be obtained when the unit factor u and block factor b reach the best trade-off. Further,
we also discuss the impact of the last layer, with and without the 1 × 1 convolution,
on network performance. Table 2 shows that [41(12, 1)(12, 1)(12, 1)] outperformed the
reference network. On CIFAR-10, the error dropped from 5.24% to 5.13%. Following
a similar trend, the error dropped from 24.42% to 23.23% on CIFAR-100. Notably, the
performance of the proposed UDenseNet with 38 layers exceeded that of the reference
network everywhere except for [38(1, 6)(1, 6)(1, 6)]. The number of network layers,
meanwhile, was smaller, which increased the compactness of the densely connected
network. From the point of view of the number of FLOPs, it is also consistent with the
above conclusion. For networks listed from top to bottom in Table 2, the number of
FLOPs is 0.29, 0.29, 0.30, 0.18, 0.26, 0.24, 0.22, 0.20, and 0.15, respectively. It can be
seen that UDenseNet can improve the network performance with similar FLOPs and
parameters in comparison with DenseNet.

Similar to the case of the 40-layer UDenseNet stated in Sect. 3.4, there are some
other 38-layer UDenseNet. They have similar performances with the ones reported. The
relationship between u and b and its impact on network performance of them follow the
trend summarized above, too. For clarity and space limitation, we do not list them here.

Table 2 Test error on CIFAR-10+ and CIFAR-100+ of dense convolutional network with varying
u and b. The overall best results are in blue, and the best results of the networks with the same
depth are in bold.

Network Depth Params FLOPs (109) CIFAR-10+ CIFAR-100+

DenseNet [5] 40 1.0M 0.29 5.24 24.42

Our implementation 40 1.0M 0.29 5.38 24.47

UDenseNet [41(12, 1)(12, 1)(12,
1)]

41 1.2M 0.30 5.13 23.23

UDenseNet [40(5, 1)(7, 2)(7, 2)] 40 1.1M 0.18 4.74 22.88

UDenseNet [38(11, 1)(11, 1)(11,
1)]

38 1.0M 0.26 5.18 23.64

UDenseNet [38(5, 2)(5, 2)(5, 2)] 38 1.0M 0.24 4.84 22.83

UDenseNet [38(3, 3)(3, 3)(3, 3)] 38 0.9M 0.22 4.83 22.61

UDenseNet [38(2, 4)(2, 4)(2, 4)] 38 0.8M 0.20 5.07 23.20

UDenseNet [38(1, 6)(1, 6)(1, 6)] 38 0.6M 0.15 5.93 25.80

4.3 Performance Evaluation

Experiments were also performed to evaluate the UDenseNet architecture. To make
comparisons, the DenseNet and other state-of-the-art methods were also applied on
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benchmark datasets. Experiments were performed on datasets of CIFAR-10, CIFAR-
100 and SVHN. The top1 error rate was used to evaluate the performance. Experimental
results are shown in Table 3, which shows that UDenseNet-BC [250(11, 4) (13, 3)(12, 3)]
with depth= 250 and k= 24 outperformed the existing DenseNet and other state-of-the-
art methods on all CIFAR datasets. Its error rates of 3.56% on CIFAR-10+ and 17.48%
on CIFAR-100+ are significantly lower than the error rates achieved by the variations of
ResNets. Notably, the performance of UDenseNet is improved in comparison with the
corresponding DenseNet variant structure.

Table 3 Comparisons of test error (%) of UDenseNet and existing methods. The overall best
results are in blue. The symbol+ in the dataset name indicates standard data augmentation
(translation and/or mirroring).

Network Depth Params CIFAR-10+ CIFAR-100+ SVHN

Network in network [22] – – 8.81 – 2.35

All-CNN [23] – – 7.25 33.71 –

Highway network [12] – – 7.72 32.39 –

Scalable BO [24] – – 6.37 27.40 1.77

FractalNets [25] 21 38.6M 5.22 23.30 2.01

Wide ResNets [17] 16 11.0M 4.81 22.07 –

ResNets [4] 110 1.7M 6.41 27.22 2.01

ResNets (pre-activation) [16] 164 1.7M 5.46 24.33 –

ResNets with stochastic depth [18] 110 1.7M 5.23 24.58 1.75

DenseNet [5] 40 1.0M 5.24 24.42 1.79

DenseNet [5] 100 7.0M 4.10 20.20 1.67

DenseNet-BC [5] 100 0.8M 4.51 22.27 1.76

DenseNet-BC (k = 24) [5] 250 15.3M 3.62 17.60 1.74

UDenseNet-BC [40(5, 1)(7, 2)(7, 2)] 40 1.1M 4.74 22.88 1.80

UDenseNet-BC [100(12, 2)(8, 4)(8,
4)]

100 10.25M 3.83 19.17 1.74

UDenseNet-BC [100(7, 2)(8, 2)(8, 2)] 100 0.9M 4.40 21.31 1.88

UDenseNet-BC [250(11, 4)(13, 3)(12,
3)]

250 21.99M 3.56 17.48 1.71

For example, the DenseNet with depth = 100 and k = 12 obtained a competitive
error rate of 4.10% on the test dataset of CIFAR-10+. Meanwhile, the test error of
the UDenseNet [100(12, 2)(8, 4)(8, 4)] with depth = 100 and k = 12 reached 3.83%
on CIFAR-10+, which is a relative improvement of 6.59% with respect to the afore-
mentioned DenseNet. On CIFAR-100+, we observed a similar trend. However, the
UDenseNet performed poorer than the DenseNet on SVHN. This was partly because
the content of the SVHN was comparatively simple, thus overfitting to the training
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dataset might have occured. In summary, the proposed UDenseNet surpassed most
state-of-the-art methods on CIFAR-10, CIFAR-100, and SVHN.

Table 4. The top1 and top5 errors (%) of UDenseNet and DenseNet on ImageNet validation set,
with single-crop testing. All the networks have the same growth rate k = 32 and depth 121. The
overall best results are in blue.

Network Params FLOPs (109) top1 top5

DenseNet-BC 7.98M 0.57 25.02 7.71

UDenseNet [121(12, 1)(7, 2)(7, 2)(8, 2)] 7.99M 0.50 24.69 7.30

UDenseNet [121(7, 2)(7, 2)(5, 3)(6, 2)] 8.29M 0.61 24.75 7.38

UDenseNet [121(5, 3)(7, 2)(7, 2)(6, 2)] 8.01M 0.68 24.80 7.36

To show efficiency on a larger-scale dataset, the different configurations of
UDenseNet were tested and compared with DenseNet on ImageNet [8]. All models
had the same preprocessing methods and hyperparameters during training. The valida-
tion error for ImageNet2012 is reported in Table 4. These results show that the better
accuracy exhibited by UDenseNet over DenseNet extended to ImageNet. UDenseNets
have similar numbers of parameters to those of state-of-the-art DenseNets, while obtain
significantly higher precision. For example, UDenseNet-BC (k = 32) [121(12, 1) (7,
2)(7, 2)(8, 2)] (7.99 M params) yielded lower validation error to DenseNet-BC (k = 32)
(7.98 M params). Table 4 shows it can be seen that different network structures can be
constructed by controlling u and b when the network depth remains unchanged, which
can also reflects the flexibility of the UDenseNet.

5 Conclusions

In this study, DenseNet was revisited, and components of densely connected convo-
lutional networks were refined to propose a universal dense convolutional network,
UDenseNet. The proposed UDenseNet guarantees the benefits of feature reuse while
reducing the complexity of cross-channel interactions and increasing network flexibil-
ity. Additionally, it can also significantly improve the performance of the densely con-
nected convolutional networks. Based on the proposed network architecture, the impact
of different component configurations on network performance was analyzed empir-
ically to investigate the optimal architecture configuration of the densely connected
convolutional networks. Extensive experiments proved the feasibility of the proposed
UDenseNet. Moreover, the proposed UDenseNet also outperforms most state-of-the-art
methods on the datasets of CIFAR-10, CIFAR-100, SVHN, and ImageNet. We believe
that these results will help the further study of densely connected convolutional net-
works. In a future study, we plan to focus on the optimal configuration of densely con-
nected convolutional networks in theory and apply the proposed UDenseNet for various
purposes.
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