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Abstract. Small object detection in remote sensing images is a major
challenge in the field of computer vision. Most previous methods detect
small objects using a multiscale feature fusion approach with the same
weights. However, experiments shows that the inter feature maps and
the feature map in different scales have different contribution to the net-
work. To further strengthen the effective weights, we proposed an incep-
tion parallel attention network (IPAN) that contains three main parallel
modules i.e. a multiscale attention module, a contextual attention mod-
ule, and a channel attention module to perform small object detection
in remote sensing images. In addition, The network can extract not only
rich multiscale, contextual features and the interdependencies of global
features in different channels but also the long-range dependencies of the
object to another based on the attention mechanism, which contributes
to precise results of small object detections. Experimental results shows
that the proposed algorithm significantly improves the detection accu-
racy especially in complex scenes and/or in the presence of occlusion.
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1 Introduction

With the development of earth observation technology and the improvement
in the performance of computation processing of large-scale data, object detec-
tion in remote sensing images has attracted increasing attention [2,7,18,19,21].
However, for remote sensing images with complex backgrounds, small size and
in the presence of occlusion, it is still a significant challenge. Deep learning algo-
rithms have demonstrated good performance in object detection in recent years,
including region based methods and single shot methods. e.g., faster region-
based CNN (faster-RCNN), spatial pyramid pooling networks (SPP-Net) [5],
you only look once (YOLO) [15] and the single-shot multibox detector (SSD)
[10]. However, these innovations usually fail to detect very small objects, as
small object features are always lost in the downsampling process of deep CNNs
(DCNNs). The above DCNN methods cannot effectively extract the features of
small objects. especially from remote sensing images in which objects usually
small and blurry, which has created considerable challenges.

To increase the accuracy of the networks in detecting small objects in remote
sensing images, one method is to employ features of the middle layers of the CNN
and then exploit multiscale features with multilevel information. Ding et al.
[2] directly concatenated multiscale features of a CNN to obtain fine-grained
details for the detection of small objects. Lin et al. adopted pixelwise summa-
tion to incorporate the score maps generated by multilevel contextual features of
different residual blocks for the segmentation of small objects such as a vehicle.
Mou et al. [13] proposed a top-down pathway and lateral connection to build a
feature pyramid network with strong semantic feature maps at all scales. The
method assigned the feature maps of different layers to be responsible for objects
at different scales. Yang et al. [21] introduced the dense feature pyramid network
(DFPN) for automatic ship detection; each feature map was densely connected
and merged by concatenation. Furthermore, Li et al. [7] proposed a hierarchical
selective filtering layer that mapped features of multiple scales to the same scale
space for ship detection at various scales. Gao et al. [4] designed a tailored pool-
ing pyramid module (TPPM) to take advantage of the contextual information
of different subregions at different scales. Qiu et al. proposed A2RMNet [14] to
improve the problem of wrong positioning caused by excessive aspect ratio dif-
ference of objects in remote sensing images. Xie et al. proposed a fully connect
network model NEOONet [20], which solved the problem of category imbalance
in remote sensing images.

Although the above methods have achieved promising detection results by
aggregating multiscale features, there are still some problems. When the objects
are in the complex scene or partly exposed the previous methods can not extract
discriminative features for detection.

To address these issues, First, we proposed a multiscale attention module to
guide the network to learn more useful information in low-level feature maps with
long-range dependencies, which is important for the detection of small objects.
Then we presented a contextual attention module to extract interdependencies of
foreground and background in feature maps, So the module can learn more of the



ITPAN for Small Object Detection in Remote Sensing Images 471

correlated background and foreground information with long-range dependencies
which can efficiently detect objects in complex scenes and in the presence of
occlusion. In addition, we designed a channel attention module to model the
importance of each feature map, which suppresses the background or unrelated
category features with long-range dependencies, and improves the accuracy of
the model.

2 Proposed Work

Previous methods cannot effectively extract the features of small objects because
of the contradiction between resolution and high-level semantic information; i.e.,
low-level feature maps have high resolution but little semantic information, and
high-level feature maps have low resolution but rich semantic information, which
are all useful for accurately detecting objects. In addition, when an object is in
a complex scene and in the presence of occlusion, the accuracy of the previ-
ous algorithms will decrease. Therefore, motivated by DANet [3], the proposed
method uses a parallel self-attention module to enhance the accuracy of small
object detection in remote sensing images.

As illustrated in Fig. 1, three types of attention modules are designed, and
they contain a series of matrix operations to synthetically consider multiscale
features, local contextual features and global features in the residual network
after every residual block (resblock). In addition, in order to extract the feature
of direction sensitive objects we use Deformable convolution and upsampling
bottleneck operations to add deep feature maps to the shallow feature maps and
we use four-scale feature maps to predict which are advantageous for detecting
small objects. Before prediction, 3 3 convolutional layers are used to prevent
aliasing effects.

2.1 Multiscale Attention Module

Feature maps of different scales have different semantic and spatial information;
in high-level feature maps, semantic information are rich, and in the low-level
feature maps, spatial information are rich, however, both types of information
are useful for detecting small objects in remote sensing images. To strengthen the
small object feature representation, a multiscale attention module is proposed
to combine deep and shallow features. The structure of the multiscale attention
module is illustrated in Fig. 2.

The feature maps of A and B are used obtained by resblockl and resblock2
to calculate the attention map. H, W, and C represent the height, width and
the number of channels of the feature maps respectively. By € RE*H*XW B, ¢
R2CxH/2xW/2 1 % 1 convolution is used to set By to B € REXH/2xW/2 e
reshape A to RE*N and B to RE*N/4 and N = H x W is the number of pixels.
Then, a matrix multiplication of the transpose of A and B is performed and a
softmax layer is applied to normalize the weights and calculate the multiscale
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Fig. 1. The architecture of the IPAN. The proposed method use three parallel mod-
ules to obtain rich multiscale, contextual features and global features in different chan-
nels. Next, an element-wise summation operation is performed on the feature maps of
the above three modules to obtain the final representations reflecting the long-range
contexts. Finally, four scales with a multiscale feature fusion operation are used for
prediction.

attention map M € RN*H/4;

exp (A4; - B;
Mji = — ( ;) (1)
> i1 exp (A - Bj)

where Mj; measures the ¢ th position’s impact on the j th position at different
scales. Then, we perform a matrix multiplication of B and the transpose of M
and reshape the result to RE>*#*W Finally, the result is multiplied by a scale
parameter @ and perform an elementwise summation is performed with A to
obtain the final output E € REXHXW 45 follows:

N
Z M;;B;) + By (2)

The feature map B is deeper than A in resnet, which has more semantic
information. Therefore, the attention map can guide B to learn more low-level
information. As a result, E combines the low-level position information and high-
level semantic information, which is effective for small object detection. From
the heat map in E, we can see that more small object features are activated.

2.2 Contextual Attention Module

A discrimination of foreground and background features is essential for object
detection and can be achieved by capturing contextual information. Some stud-
ies [6,17] have used contextual information to improve the detection result. To
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Fig. 2. The architecture of multiscale attention module.
plication.

represents matrix multi-

model rich contextual relationships over local features, we introduce a contex-
tual attention module. The contextual attention module encodes a wide range
of contextual information into the local features, thus enhancing the represen-
tation capability. Next, we elaborate the process to adaptively aggregate spatial
contexts.

As illustrated in Fig. 3, given a local feature By € RE*H>*W 'the local feature
is first fed into convolution layers to generate two new feature maps C' and D the
size of the filter is 7 x 7 (for example, By). With the deepening of the network,
the filter sizes are 7 x 7, 5 x 5, and 3 x 3 at different scales, and large-scale
filters can extract more contextual features, where C,D € RE*H*W  Then,
reshape them RE*N where N = H x W is the number of pixels. Then, a matrix
multiplication of the transpose of C' and B is performed, and a softmax layer is
applied to calculate the contextual attention map P € RV*N:

P'i _ exp (Cz . Dj) 3
" nlen (G- D)) ?
F ﬁ Z Blz + Bl] (4)

where Mj; measures the ¢ th position’s impact on the jth position with contex-
tual information. The more similar feature representations of the two positions
contribute to a greater correlation with contextual information between them.
Then, we perform a matrix multiplication of B; and the transpose of M and
reshape the result to RE*H>*W  Finally, we multiply the result by a scale param-
eter § and perform an elementwise summation operation with the features B
to obtain the final output F € RE*XHXW,

The attention map from B and C' contains contextual information with long-
range dependencies. From the heat map shown in F', it can be observed that there
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are many features around the objects, which contributes to the detection of the

small objects is activated.
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Fig. 3. The architecture of contextual attention module. “x” represents matrix multi-
plication.

2.3 Channel Attention Module

Each channel map has a different class and spatial position response, some con-
tribute to object detection but others do not. To strengthen the positive response,
weaken the negative response and exploit the interdependencies between channel
maps, it can be emphasized that interdependent feature maps can improve the
feature representation of the class and specific position. Therefore, we build a
channel attention module to explicitly model the interdependencies between the
channels and learn the long-range dependencies in the feature maps.

The structure of the channel attention module is illustrated in Fig.4. Dif-
ferent from the contextual attention module, we directly calculate the channel
attention map M € R*C from the original features By € RE**W  Specif-
ically, B; is reshaped to RE*N  and then a matrix multiplication of original
B and the transpose of Bj is performed. Finally, a softmax layer is applied to
obtain the channel attention map Q € R€*:

exp (BM . Blj)

. 5

% S exp (By; - Bij) )
N

Gj = WZ (QjiB1i) + By (6)
i—1

where M;; measures the ¢ th channel’s impact on the j th channel. In addition,
we perform a matrix multiplication of the transpose of M and B; and reshape
the result to RE*H*W  Then, we multiply the result by a scale parameter ~
and perform an elementwise summation operation with B; to obtain the final
output G € RE*H*W From the heat map shown in G from Fig. 4, we can see
that more features strongly associated with the objects are activated.
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Fig. 4. The architecture of channel attention module. “X” represents matrix multipli-
cation.

2.4 Embedding with Networks

As shown in Fig. 1, we set our parallel attention module after every resblock.
After every IPA module, the feature maps have multiscale contextual and global
information with long-range dependencies. Positive feature response achieves
mutual gains, thus increasing differences in the objects and backgrounds. Then,
every scale feature map is fed to RPN [16] for a further prediction. In addi-
tion, the model can exploit spatial information at all corresponding positions
to model the channel correlations. Notably, the proposed attention modules are
simple and can be directly inserted into the existing object detection pipeline.
The modules do not require too many parameters yet effectively strengthen the
feature representations.

3 Experiment

We performed a series of experiments with RSOD [11] including objects that are
small in a complex scene and in the presence of occlusion. The proposed method
achieved state-of-the-art performance: 95.9% for aircrafts and 95.5% for cars.
We first conducted evaluations of the remote sensing object detection dataset
to compare the performance to that of other state-of-the-art object detection
methods, and evaluated the robustness of the proposed method using the COCO
[9] dataset.

3.1 Comparison with State-of-the-Arts Methods in Remote Sensing
Object Detection Dataset

We chose the ResNet-101 model as the backbone network. The model was initial-
ized by the ImageNet classification model and fine-tuned with the RSOD [11].
We randomly split the samples into 80% for training and 20% for testing. In all
experiments, we trained and tested the proposed method based on the Tensor-
Flow deep learning framework. First, we resized the images to 800 x 800 pixels
and applied stochastic gradient descent for 50k iterations to train our model.



476 S. Yang et al.

The learning rate was 0.001 and it was decreased to 0.0001 after 30 k iterations.
We adopted only one scale anchor for one scale to predict with three ratios, 1:1,
1:2 and 2:1, with areas of 32 x 32 pixels, 64 x 64 pixels, 128 x 128 pixels, and
256 x 256 pixels, which performed well with the dataset.

Figure5 shows the detection results of comparing the proposed algorithm
with popular deep learning methods. The red boxes in the first three rows are
the results of aircraft (small object) detection in complex scene, in the presence
of occlusion respectively. The last row shows the results for the cars, the blue
box is the car in the complex scene and the red box is the car in the presence of
occlusion.

Fig. 5. Visualization of the small object detection results for a complex scene in the
presence of occlusion for the proposed algorithm with popular deep learning methods on
the aircraft and car datasets: (a) is the results of FPN [8], (b) is the results of Modified
faster-RCNN [17], (c) is the results of R-FCN [1] and (d) the proposed method. (Color
figure online)

Firstly, we compared the proposed approach with seven common state-of-
the-art methods for object detection and five state-of-the-art methods for remote
sensing object detection. As shown in Table 1, the deep learning method is obvi-
ously better in terms of accuracy than traditional methods such as the HOG
[19] and SIFT [18]. Because of the superiority of the proposed method in small
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object detection and the strong ability to handle complex scene with occlusion,
the proposed method has higher accuracy and robustness when detecting air-
crafts and cars. From the AP and recall (R) shown in Table 1, we can observe
that in terms of AP over all the aircraft and the car categories, the proposed
approach improve about 7% on average to other deep learning methods, and
outperforms the previously most accurate USB-BBR [11] method and AARMN
[14] method by 1% and 1%, respectively. The proposed method can obtain the
highest AP on the premise of relatively high recall.

Table 1. Compares the proposed method to other methods in the remote sensing
object detection datasets. The symbol “~” indicates that the method does not provide
relevant results.

Methods Aircraft AP (%) | Aircraft R (%) | Car AP (%) | Car R (%)
YOLO [15] 84.92 82.81 71.73 70.93
faster-RCNN [16] |80.15 78.91 82.52 81.21
FPN [8] 91.22 90.18 85.12 86.33
R-FCN [1] 84.3 95.26 89.3 88.2
USB-BBR [11] 94.69 93.09 - -
NMMDPN [12] |- - 91.36 90.56
NEOON [20] 94.49 - 93.22 -
MFast-RCNN [17] | 84.5 85.1 80.1 80.5
AARMN [14] 94.27 94.18 94.65 92.16

3.2 Ablation Study

An ablation study is performed to validate the contribution of each module of the
proposed method. In each experiment, one part of our method is omitted, and the
remaining parts are retained. The APs are listed in Table 2. It can be seen that
the AP increased by almost 1% by including the contextual attention module and
the channel attention module, because the contextual attention module contains
contextual information about the object. Second, we used the proposed channel
attention module and the multiscale attention module after the resblock, and the
result improved by 2.1%. Which indicates that global information and multiscale
information are important for detection. Finally, we interposed the contextual
attention module and the multiscale attention module into the network, and
the AP improved by 2.3%. Thus, the contextual information and multiscale
information are effective in helping the network detect small objects. It is obvious
that when all modules are applied, the proposed method can improve the AP
by 4.7%.

Figure 6 shows the visualized results of the ablation study for situations 1-
5 in Table3, corresponding to (b)—(f). It can be easily seen that due to the
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use of the multiscale attention module, the proposed method obtains more spa-
tial structural information and semantic information about small objects, so it
can enhance the feature representation of small objects. The contextual atten-
tion module and the channel attention module enable the network to learn the
correspondence between the background and foreground and the global interde-
pendence in different channels and further strengthen the feature representation,
so the network can efficiently detect the objects in a complex scenes and in the
presence of occlusion.

Table 2. The result of the ablation study for the proposed framework in the aircraft
detection task. N: No, Y: Yes.

TPAN 1 2 3 4 5
Multiscale attention | N N Y Y Y
Contextual attention N |Y |N |Y |Y
Channel attention N Y |Y |[N |Y
Aircraft AP(%) 91.2192.1{93.3/93.5|95.9

Fig. 6. The visualized results of the ablation study. (a) is the original image and (b)—(f)
are situations from “1” to “5” in Table 2.

3.3 Robustness Experiments

In order to verify the robustness of the proposed method, we evaluated the
performance with the COCO [9] dataset. As shown in Table 3, the dataset has
more classes and considerably smaller objects so the proposed algorithm has
better performance than other methods.
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Table 3. Compares the proposed method in the COCO dataset to the state-of-the-art
methods.

Methods COCO mAP(%)
R-FCN [1] 29.9Y

FPN [8] 36.2

SSD [10] 31.2

YOLO [15] 33

Proposed method | 38.3

4 Conclusion

In this paper, an IPAN is presented for small object detection in remote sensing
images, which enhances the feature representation and improves the detection
accuracy for small objects, especially in complex scenes and in the presence
of occlusion. Specifically, we introduced three parallel modules: a multiscale
attention module guiding the model extract more information of small objects,
a contextual attention module to capture contextual correlation, and a chan-
nel attention module to learn global interdependencies in different channels, In
addition, the IPAN can capture long-range dependencies which helps to detect
objects. The experiments and ablation study show that the network is effective
and achieve precise detection results. The proposed IPAN consistently achieves
outstanding performance with remote sensing object detection datasets. The
future work will focus on further enhancing the robustness of our model.
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