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13.1  �Introduction

Pearl millet is a hardy C4 crop grown in the arid and semiarid tropics mainly in 
rainfed conditions where other cereals are likely to fail to produce economic yields 
due to drought and heat stresses. Adaptive evolution, a form of natural selection, 
shaped the crop to grow and yield satisfactorily with limited moisture supply or 
under periodic water deficits in the soil (Serba and Yadav 2016). Pyricularia leaf 
spot, also known as blast disease, is particularly important in pearl millet forage 
cultivars. It is an important disease in the southern United States and more recently 
it has emerged as a serious disease of dual-purpose (grain and fodder) pearl millet 
hybrids in India (Lukose et al. 2007; Anonymous 2009). In India, for the first time 
the disease was recorded from Kanpur, Uttar Pradesh (Mehta et al. 1953), and it was 
considered as a minor disease for a long time since its inception.

The pathogen infects several cereal crops, including rice, wheat, pearl millet, 
finger millet, and foxtail millet, and several grasses. The pathogen is highly vari-
able, but highly specialized in its host range. Thus, M. grisea strains isolated from 
rice or any other hosts do not infect pearl millet and vice versa. The rice blast patho-
system has been extensively studied for several decades. In disease-conducive envi-
ronments, the life span of many disease-resistant rice cultivars has been known to be 
ephemeral (Srinivasachary et al. 2002). Most of the deployed resistance genes in 
rice crop break down in a few years because of their race specificity, high rate of 
mutation, and rapid change in pathogenicity of the blast pathogen (Suh et al. 2009). 
Pathogenic variation in M. grisea populations adapted to rice, finger millet, foxtail 
millet, wheat, and several weed hosts has been reported by Takan et  al. (2012). 
Various potential mechanisms, including sexual recombination, heterokaryosis, 
parasexual recombination, and aneuploidy, have been proposed to explain frequent 
race changes in M. grisea (Kang and Lee 2000). This implies that pathogenic vari-
ability might exist in the pearl millet-infecting strains of M. grisea. Therefore, for 
the management of disease through host plant resistance, it is important to know 
pathogen variation in populations of M. grisea infecting pearl millet and to identify 
potential resistance sources.

Disease resistance in plants occurs as a hypersensitive response (HR) at the site 
of infection by pathogen. This specific event is initiated in response to recognition 
of pathogen-associated molecular pattern (PAMP) and subsequent PAMP-triggered 
immunity (PTI) and effector-triggered immunity (ETI) (Boller and He 2009). Both 
PTI and ETI mechanisms are closely associated with reactive oxygen species (ROS) 
production and disease resistance that involves production of distinct biphasic ROS 
as one of its pivotal plant immune mechanisms. This unique oxidative burst is 
strongly dependent on the resistant cultivars because a monophasic ROS burst is a 
hallmark of the susceptible cultivars. However, the cause of the differential expres-
sion of ROS burst remains still unknown. A second phase of the innate immune 
system in plants, known as effector-triggered immunity (ETI), was discovered to be 
mediated by intracellular receptor molecules containing nucleotide-binding (NB) 
and leucine-rich repeat (LRR) domains that specifically recognize effector proteins 
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produced by the pathogen. The binding of receptors and effectors results in the acti-
vation of defense programs and often leads to localized cell death (Chen and Ronald 
2011). In fact, ETI reactivation of defense responses is assumed to be mediated by 
the activity of cytoplasmic proteins and transcriptional reprogramming to make the 
first immune responses involving signaling from the cytoplasm to the nucleus 
(Wirthmueller et al. 2007).

Effectors are mainly involved in the colonization of pathogen or interrupt the 
activation of host cell defenses. On the contrary, rice plants have consequently 
showed immunity that is based on the sensitivity of effectors to host resistance pro-
teins. M. grisea produces effector proteins to influence plant immunity, leading to 
the penetration of infection process. Avr proteins are a special group of effectors 
encoded by avirulence genes. These proteins can be distinguished by relative R 
proteins and this leads to the race-specific recognition (Wawra et al. 2013). Pathogen 
AVR effectors have been genetically proven to be essential components in plant 
immune responses (Flor 1971). However, the mechanism by which AVR effectors 
and R proteins are associated with these responses remains unclear. Initially, the 
ligand-receptor model (Gabriel and Rolfe 1990) was widely supported, but the lack 
of physical interactions between a number of R/AVR pairs has resulted in the gen-
eration of alternative guard and decoy hypothesis (van der Hoorn and Kamoun 
2008). One of the interesting results have been reported recently for AVR-Pii and 
OsExo70-F3 interaction in which OsExo70-F3 physically interacts with AVR-Pii 
and is specifically involved in Pii-dependent resistance suggesting OsExo70-F3 as 
a helper in Pii/AVR-Pii interactions (Fujisaki et  al. 2015). More recently, rice-
resistant protein pair RGA4/RGA5 was shown to be required for recognition of 
M. oryzae effectors AVR-Pia and AVR1-CO39 revealing a mode of AVR protein 
recognition through direct binding to a novel, non-LRR interaction domain (Cesari 
et al. 2013, 2014). M. oryzae has evolved effector proteins such as Slp1 and AVR-
Piz-t that can suppress rice immune responses, whereas the rice crop has developed 
an innate immune system that can recognize the presence of M. oryzae and initiate 
PTI and ETI defense responses (Liu et  al. 2013; Singh et  al. 2016). A model of 
AVR-Pii and Os-NADP-ME interactions near the BIC after M. oryzae infection was 
generated and it was also reported that the AVR-Pii-Os-NADP-ME2-3 pair provides 
key evidence on how AVR effectors reprogram host metabolism to establish com-
patibility and why the ROS issue has continued to be treated as a main defense 
mechanism in the innate immunity of most plants.

Insights into the function of secreted fungal effectors in the reprogramming of 
host defense and metabolism are gradually emerging. Among the plethora of 
secreted proteins encoded in the genomes of phytopathogenic fungi, only a few 
fungal effector targets have been identified to date, with less than a handful shown 
to impair host metabolic functions directly (Tanaka et  al. 2014). Although eight 
AVR genes of M. oryzae have been isolated over the last several decades (Zhang 
et al. 2015), their functions as virulence factors have not been functionally addressed, 
except for evidences found in AVR-Pizt and AVR-Pii (Fujisaki et  al. 2015; Park 
et al. 2012).
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In recent years, more progress has been made in investigating the molecular 
mechanisms of innate immunity responses in rice and other cereal crops against 
M. grisea, as well as in identifying R genes, identification-triggered early signaling, 
signaling pathways in rice, and role of these signaling pathways in activating 
defense responses (Saitoh et al. 2011; Seo et al. 2011). However, a complete under-
standing of the molecular network regulating defense responses against pathogens 
in rice and millets is still obscured. For instance, despite the number of R genes 
present in rice, little information is available about the essential signaling needed to 
initiate effector-triggered resistance against M. grisea.

13.2  �Plant Impedance and Genome Editing Tools

The traditional genetic breeding methods depend mainly on the existence of broad 
genetic variation in elite primary gene pool of particular crop species and its closely 
related crop species to introduce new resistant traits into local gene pool, which is 
purely naturally induced spontaneous mutation (Jung et al. 2018). The first artifi-
cially induced transgenesis was experimentally reported in bacteria by Avery et al. 
(1944). But for the first time gene modification or genome editing tools with respect 
to plants started during early 1980s. The work of Schilperoort et  al. (1967) on 
Agrobacterium tumefaciens has become the key step in understanding the transfer 
of genes through the Ti plasmid (200 kb) of virulent strain and its integration into 
nuclear chromosomes (Zaenen et al. 1974; Van Larebeke et al. 1974; Chilton et al. 
1980). Earlier to this a group of investigators at the Institute of Pasteur in Paris dis-
covered a unique phenomenon of deviation from the Mendel’s laws of genetic 
inheritance when they were studying the crossing in the yeast: they discovered that 
a particular mitochondrial allele, known as omega (ω), was unidirectionally inher-
ited, which was later determined to be the gene for the large ribosomal RNA subunit 
which is further known to be type 1 intron; till then introns were regarded as junk 
DNA; after a few days, it became evident that this omega is encoded by separate 
gene producing an endonuclease which recognizes and introduces the double-strand 
break (DSB) over the LSU rRNA genes lacking the intron; these DNA nicks are 
repaired by DNA repair mechanism. This became the first basic foundation of hom-
ing meganucleases to use them in genetic engineering (Bolotin et al. 1971; Bos et al. 
1978; Faye et al. 1979; Jacquier and Dujon 1985). But there was still a question as 
to how to introduce nick in the double-stranded DNA with unique locus of choice 
interest, which was addressed by Snyter and Brooks (1988) and his colleagues 
through the experimental characterization of best rare cutting endonuclease Not1 
enzyme with recognition site of 8 bp length and the I-Sce I endonuclease (omega of 
LSUrRNA) study pioneered the accuracy and precisions of editing of plant genomes 
(Puchta et al. 1993).

As per the records reported till now, for the first time plant genome editing was 
reported from Agrobacterium through chemical mutagenesis with the help of ethyl 
methane sulfonate (EMS) and ionizing radiations which created genome 
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modifications randomly. The second phase is associated with the discoveries of 
homing and meganuclease enzymes during the 1980s and 1990s as mentioned ear-
lier, which are engineered to provide efficient tools for targeted editing in genome. 
During 2006–2012, a few crop plants were successfully and precisely modified 
using zinc-finger nucleases. A third phase (2009–2011) of improvements in genome 
editing led to a dramatic decrease in off-target events with the TALEN technology. 
In the year 2013, major breakthrough came with the development of CRISPR-Cas9 
technology which has high efficiency and technical essence of use is quite impres-
sive; this technology can be employed with the use of in-house kits or commercially 
available kits. The main requirements include careful selection of the location of the 
DNA double-strand breaks to be induced and then ordering of sequence of an oligo-
nucleotide usually a primer (Francis 2016). Genome engineering is currently done 
by employing three different tools as shown in Fig. 13.1.

As it is known gene editing tools have the ability to implement DBS’s double-
strand breaks in the genome, which further requires repair of these breaks for a 
successful knock-in and knockout events. Subsequently, the damaged DNA is 
repaired mainly by two molecular repair mechanisms: homology-directed repair 
(HDR), where the broken DNA is repaired using a homologous DNA sequence as 
template, or nonhomologous end joining (NHEJ) where the broken ends are rejoined 
to each other at nonhomologous DNA sequence and NHEJ is mainly responsible for 
repair of one or two nucleotide breaks in the DNA leading to gene disruption 
whereas HDR is responsible for gene deletion, replacement, and gene insertion (as 
shown in Fig. 13.2). HDR works by precise copying of gene with the help and tem-
plate at specific site, repairs the homologous DNA breaks, and is helpful for gene 
expression studies whereas NHEJ repair mechanism only repairs by insertion or 

Fig. 13.1  Genome engineering via zinc-finger nucleases (ZFNs), transcription activator-like 
effector nucleases (TALENs), and clustered regularly interspaced short palindromic repeats 
(CRISPR) and Cas 9
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deletion of one or two nucleotides where it is helpful in the SNP, knock-in, and 
knockout studies (Maresca et al. 2013; Lee et al. 2015).

13.3  �Meganucleases or Homing Endonucleases (HEs)

HEs are small proteins (<300 amino acids) found in bacteria, archaea, and unicel-
lular eukaryotes. A distinguishing characteristic of HEs is that they recognize rela-
tively long sequences (14–40  bp) compared to other site-specific endonucleases 
such as restriction enzymes (4–8 bp). These lengthy recognition sites, and the name 
of the first such known enzyme, ω (also known as I-SceI), have given rise to the term 
“meganuclease” (Paques and Duchateau 2007).

The important feature that differentiates HEs from restriction endonucleases is 
their lack of absolute sequence specificity. Whereas restriction enzyme binding and/
or cleavage depend on a perfect match to the recognition sequence, HEs are less 
discriminating, often tolerating multiple sequence changes within their recognition 
site (Colleaux et al. 1988). This is significant at the structural level making a great 
diversity between the number of contacts made by restriction endonucleases and 
HEs. Restriction endonucleases exploit most of the potential hydrogen bonds 
between the proteins and their target sites whereas HEs utilize only a fraction of the 
possible hydrogen bonds. The positions that are tolerated by HEs are often those at 
third positions of codons, which vary naturally between organisms. Such tolerance 
allows homing into new sites. Despite the imperfect fidelity, the lengthy recognition 
sites can make HEs highly specific, often cutting large genomes only once. This 
attribute makes the HEs amenable to genome editing, where spurious off-site cleav-
ages are detrimental.

Fig. 13.2  DNA repair mechanism induced by double-stranded breaks leading to gene disruption 
via NHEJ pathway and gene deletion, insertion, and replacement by HDR mechanisms
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HEs have been historically categorized by small conserved amino acid motifs. At 
least five such families have been identified: LAGLIDADG, GIY-YIG, HNH, His-
Cys Box, and PD − (D/E) × K, which are related to ED × HD enzymes and are 
considered by some as a separate family. At a structural level, the HNH and His-Cys 
Box share a common fold (designated ββα-metal) as same as the PD − (D/E) × K 
and ED × HD enzymes. The catalytic and DNA recognition strategies for each of 
the families vary and lend themselves to different degrees to engineering for a vari-
ety of applications among which LAGLIDADG homing endonucleases are well 
known (Belfort and Bonocora 2014). Another focus was directed to create hybrids 
which provide platform for increasing the specificity, employed for GIY-YIG and 
LAGLIDADG groups of enzymes. The idea of hybrids helped to produce catalyti-
cally nonactive with interest of recognition site enzymes coupling with catalytically 
active with undefined recognition site. The chimeric construct catalytically inactive 
LHE I-SceI fused to the restriction enzyme PvuII as the cleavage module where the 
two subunits are joined by linker (Fonfara et al. 2012). TALE-PvuII chimeric pro-
tein was also developed after the discovery of TALENS to increase the efficiency of 
inducing the breaks at a particular site (Yanik et al. 2013).

13.4  �Zinc-Finger Endonucleases (Nucleases), ZFNs

ZFNs are artificially developed restriction enzymes that have been successfully 
used for a few years as a genome editing tool. As it is known that two most desired 
qualities of genome editing comprise (1) an endonuclease that must be able to rec-
ognize specific long target sequences and (2) adequate flexibility of re-targeting to 
desired sequences defined by use. The ZFN structure meets the above properties 
better than any other meganucleases. The ZFN carries the DNA-binding domain 
zinc-finger proteins (ZFPs) derived from eukaryotic transcription factors and the 
Fok I cleavage domain derived from Flavobacterium okeanokoites (Bitinaite et al. 
1998; De Souza 2011). The zinc-finger nuclease is composed of 30 amino acids 
forming two antiparallel β-sheets opposite an alpha-helix. Each ZFN cleavage 
domain is linked to a range of three–six zinc fingers designed to specially recognize 
the target sequence flanking the cleavage site. The most commonly used zinc fingers 
have three DNA-binding domains, and nine base pairs. The zinc-finger proteins are 
used in pairs giving 18-base specificity of each bind to a single codon (i.e., three 
nucleotide codons). ZFN can become an optional tool for researchers, but due to the 
high cost and design complications, presently ZFNs have been successfully used for 
HDR-mediated gene KI and NHEJ-mediated KO approaches to many targets in 
prokaryotes as well as eukaryote gene editing experiments (Carroll 2011). Even 
though with so much advances in engineered systems, they also have some draw-
backs like all possible nucleotide sequences of the genome cannot be targeted and 
its specificity to the sequence cannot be precisely defined as it may be influenced by 
other neighboring protein domains (Maeder et al. 2008).
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Despite their complicated construction and off-targeting issues, ZFNs have 
already been used to make gene modifications in Arabidopsis (Osakabe et al. 2010; 
Petolino et al. 2010; Zhang et al. 2010; Even-Faitelson et al. 2011; Qi et al. 2013), 
tobacco (Nicotiana tabacum) (Wright et al. 2005; Townsend et al. 2009), and also 
in crops including maize (Zea mays), soybean (Glycine max), and canola (Brassica 
napus) (Shukla et al. 2009; Curtin et al. 2011; Gupta et al. 2012; Ainley et al. 2013). 
Resistance to bialaphos in maize (Shukla et al. 2009), resistance to herbicides in 
tobacco (Townsend et  al. 2009), and ABA-insensitive phenotype in Arabidopsis 
(Osakabe et al. 2010). However, ZFNs lack specificity which results in the genera-
tion of undesired mutations, off targets, and some chromosomal abbreviations 
(Pattanayak et al. 2011; Radecke et al. 2010).

13.5  �Transcription Activator-Like Effector Nucleases 
(TALENS)

After several years, Schornack et  al. (2006) reported some proteins from 
Xanthomonas bacterial species that are capable of hijacking the plant immune 
response in rice. These proteins are 30–35-residue-long sequences with most posi-
tions occupied by conserved sequences and a series of tandem repeats, of which 
four conserved positions are with limited variability [two amino acids in positions 
12 and 13 (called “diresidues”) vary and specify the binding to A, C, G, and T as 
shown in Fig. 13.2] with DNA-binding domain and an effector domain. Proteins 
with similar properties were reported and were termed as transcription activator-like 
effector (TALE) (Moscou and Bogdanove 2009; Boch et al. 2009). The TALE pro-
teins are engineered with a FokI nuclease domain which creates the DSB (Mussolino 
and Cathomen 2012). TALENs possess longer recognition sites which help in 
increasing the specificity and then ZFNs are highly efficient with less prone to 
mutations and cause very minimum deleterious effects (Puchta and Fauser 2014; 
Petersen and Niemann 2015). The plant pathogen TALE’s N-terminal segment 
(NTS) harbors protein secretion signal peptides while their C-terminal segment 
(CTS) contains nuclear localization signal peptides and a transcription activator 
domain which play a very important role in cleavage efficiency by impairing the 
catalytic domain scaffold when fused with the FokI, so the scaffold optimization 
plays an important role during engineering the TALENs for developing efficient 
genome editing tool with precise on targets and DSB of our interest (White 
et al. 2009).

Just like ZFNs, TALEN construction also requires verification in vitro to have 
the knowledge of efficiency of site-specific cleavage instead of directly employing 
into the experiments because of the modular nature of the various segments (con-
served sequences, NTS and CTS) in TALEN; the probability of rationally designing 
a TALEN that will be specific for a particular sequence appears to be greater than 
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that for ZFNs; however, it is not possible to rule out off-target cleavage in an experi-
ment model without extensive testing and confirmation.

Rice bacterial blight is caused by Xanthomonas oryzae pv. oryzae (Xoo) and its 
pathogenesis is controlled by the interaction TALE of Xanthomonas oryzae and host 
target S genes. TALENs were developed with respect to S gene effector-binding 
element site (EBE) and induced the disruption of EBE which resulted in lack of 
interaction between Xanthomonas TALE protein and S genes resulting in subse-
quent establishment of blight resistance rice line (Li et al. 2012). The first TALEN-
modified rice was made by mutating the OsSWEET14 promoter to generate 
heritable and effective disease-resistant lines. Powdery mildew pathogens cause 
yield loss up to 50% worldwide (Cao et al. 2011) and Wang et al. (2014) attempted 
to obtain a resistant variety of wheat by targeting the mlo (mildew locus O) gene 
coding for proteins repressing defense against the disease. A pair of TALENs was 
created that targeted a region in exon 2 of all three homolog genes, creating mainly 
small deletions. Homozygous mutation of all three homolog genes was necessary to 
have an effective and heritable powdery mildew resistance.

13.6  �Clustered Regularly Interspaced Short Palindromic 
Repeats (CRISPR) and Associated Systems

Similar to eukaryotic mammalian immune system even bacteria and most of the 
archaea harbor a special type of immune response against various infections. 
Bacteria and archaea bacteria of known being are invaded by phages; bacteria fend 
this invasion of foreign bodies by employing clustered regularly interspaced short 
palindromic repeats (CRISPR) and CRISPR-associated proteins, which is similar to 
adaptive immunity of eukaryotic immune system; hence it is also referred to as 
adaptive immunity of bacteria and archaea bacteria (Jansen et al. 2002; Sorek et al. 
2008). In eukaryotes the antigen and presentation are done by classical antigen-
presenting cells, where a piece of fragment of that foreign body is being sliced and 
represented to recognize and defend the infection similarly in bacteria; as soon as it 
encounters the phage infection the bacterium with CRISPR acquires a piece of its 
DNA and tailors close to promoter sequence of CRISPR array. CRISPR array tran-
scribes and generates m-RNA (referred to as crRNA) which serves as a guiding 
molecule for Cas9 proteins (helicase and nuclease proteins) to the target phage 
genome, cleaves the special nucleotide sequence (3–5 base pair) found upstream to 
protospacer adjacent motif (PAM) sequence in future invasion, and provides immu-
nity to bacterial cell (Jinek et al. 2012). Even though CRISPR repeats were initially 
discovered in the 1980s in E. coli its function remained ununderstood (Ishino et al. 
1987) but experimentally demonstrated resistance of S. thermophilus acquired 
against a bacteriophage by integrating a virus genomic fragment into its CRISPR 
locus (Barrangou et al. 2007).
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Cas9 protein was characterized and known to have two catalytically active 
domains, namely N-terminal HNH domain with nuclease domain with histidine and 
asparagine residues in the middle region and RuvC domain with nuclease activity 
towards C-terminal end (Sapranauskas et al. 2011).

The CRISPR element consists of a complex of noncoding RNAs and Cas pro-
teins (CRISPR associated), which have nuclease and helicase activity. In contrast to 
the chimeric TALEN proteins, recognition by the CRISPR/Cas system is carried out 
via the complementary interaction between noncoding RNA and target-site DNA, 
whereas TALEN tool is protein-directed gene editing. Simple construct of CRISPR 
plasmid contains elements necessary for CRISPR/Cas9 activity: U3 or U6 RNA 
polymerase III promoters, Cas9 nuclease/nickase, CRISPR mRNA, and 
tracrRNA. The crRNAs consist of approximately 40 bp sequences in association 
with tracrRNA that activates and guides Cas9 nuclease. Biolistic and agrobacterium-
mediated transformation is being employed to transfer the sgRNA and Cas9 pro-
teins into the desired cell when it is used for plant genome editing. The target 
sequence of choice of pathogen is inserted into this position by introducing DSB in 
the plasmid by employing site-specific endonucleases; once the cell encounters the 
invasion by respective pathogen this CRISPR-Cas9 protein gets activated and 
induces the cleavage in the target genome which is referred to as protospacers 
(Nemudryi et  al. 2014; Barrangou et  al. 2007). The advantages of CRISPR-Cas 
gene editing technology over other tools are that protein engineering is not required 
like ZFNs or TALENs, modification like DNA methylation can be done which can-
not be done using ZFNs or TALENs, multiple targeting (multiplexing) can be done 
in single experiment, and even any number of gRNAs can be designed for a single 
target which makes it special (Ding et al. 2013; Doench et al. 2014; Mao et al. 2013).

One of the most powerful applications of CRISPR-Cas technology in plants will 
be to study the specific gene function involved in the metabolic or developmental 
pathways for knockout. For example, two key proteins in photosynthesis, highly 
homologous magnesium chelatase subunit I (CHLI) genes, CHLI1 and CHLI2, 
have been simultaneously targeted for elimination and have resulted in the produc-
tion of albino plants as a useful tool for understanding the role of these enzymes in 
chlorophyll biosynthesis (Mao et al. 2013). Understanding the role of a particular 
gene in plant development like the auxin-binding protein (ABP1) is not required for 
either auxin signaling or Arabidopsis development (Gao et  al. 2015). These two 
examples showed the precise elimination of one or more specific genes of character 
of interest to study the effects of its gene product role in the regulation of plant 
growth and development. Similarly multiplexing can be done because gRNA is 
small in size so that many genes can be targeted simultaneously. Golden gateway 
and Gibson assembly are the two important techniques which are employed to make 
multiplex targeting. Gibson assembly works based on primer overhangs whereas 
golden gateway of cloning works by employing restriction endonucleases which 
helps to target 5–8 genes. The other way of modifying plant growth and develop-
ment and maximum yield of food grains for commercial benefit is to manipulate the 
specific gene timing and level of its expression by employing dead Cas9 (lacks the 
nuclease activity) coupling it with gene activator and gene repressor proteins, which 
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guides the polymerase to transcribe active and continuously or repress the expres-
sion continuously. The important issue after transformation is screening of positive 
clones with different techniques that have been developed, like annealing at critical 
temperature-polymerase chain reaction (ACT-PCR) (Hua et  al. 2017), high-
resolution melting analysis (HRMA) (Thomas et al. 2014), polyacrylamide gel elec-
trophoresis (PAGE)-mediated genotyping (Zhu et  al. 2014), T7 endonuclease I 
(T7EI) approach (Vouillot et al. 2015), and restriction enzyme site loss technique. 
After the successful editing of genome of Arabidopsis (Feng et al. 2013; Li et al. 
2013) and rice (Miao et al. 2013; Shan et al. 2013) using CRISPR/Cas9 system has 
been reported, many independent applications of this genome editing tool in various 
crops have shown that CRISPR/Cas9 system is broadly acceptable and effective for 
crop improvement like generating herbicide resistance, disease resistance, enhanc-
ing of yield levels, and stress tolerance.

13.7  �Development of Blast Resistance by Genome Editing

Potato crop is harvested and stored in cold rooms to avoid sprouting; due to storage 
under cold conditions the starch of potato degrades into glucose and fructose. These 
reduced sugars, when subjected to deep frying in oil, i.e., while making chips, 
French fries, etc., turn into a carcinogen called acrylamide. Chawla et al. (2012) 
used RNAi to overcome this problem and developed a new variety of potato called 
“innate potato”; similarly another group of scientists used a gene of enzyme called 
vascular invertase which plays a very important role in reducing the sucrose into 
glucose and fructose by using TALENs; it was successful in providing potatoes with 
very less starch and helps in brown-colored acrylamide formation (Clasen et  al. 
2016). Similarly, when apple cut was exposed to air it turned into brown color, 
because of reduction in polyphenols by polyphenol oxidase enzyme (PPO gene). 
RNAi was used to address this reduction by blocking the homologous PPO gene 
expression (Waltz et al. 2015). Herbicide-resistant crops were also developed by 
inducing the mutation in acetolactate synthase (ALS) gene which serves as a target 
for imidazolinone herbicides (Townsend et al. 2009) by employing the ZFNs. Citrus 
canker caused by Xanthomonas citri is a serious disease in many citrus cultivars, 
leading to huge economic losses around the world. Pathogen injects its effector 
(TALEPthA4) protein which has target of CsLOB1 gene EBE motifs resulting in 
active transcription of canker susceptibility products. It is known to possess two 
genes CsLOB1 and two genes where both are capable of functioning in the absence 
of other (Jia et al. 2016, 2017) induced mutation in both genes and generated canker-
resistant citrus plants, which bind to EBE motifs and transcriptionally activate the 
downstream target canker susceptibility lateral organ boundary 1 (CsLOB1) gene in 
the host, leading to disease susceptibility using CRISPR-Cas system. Rice blast is 
the most devastating in all the rice-growing countries, with yield loss of 10–30% 
(Dean et al. 2012). Therefore, creating resistance to M. oryzae is one of the most 
effective approaches to mitigate the disease. The plant ethylene response factors 
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(ERF) are the main factors involved in multiple stress tolerance (Müller and Munné-
Bosch 2015). The work of knockdown expression of rice ERF92 by employing 
RNAi enhances resistance to M. oryzae (Liu et al. 2012). CRISPR/Cas9 is used to 
mutate the OsERF922 gene through agrobacterium-mediated transformation of rice 
calli (Kuiku 131) where one sgRNA was designed for targeting the first exon of the 
gene, 21 mutant lines are obtained, and these mutant lines are evaluated for different 
agronomic parameters, but these mutant lines showed enhanced resistance to 
M. oryzae infection compared to the wild type. The lesion length in the mutant lines 
is about 66% smaller than that in the wild type (Wang et al. 2016). Ma et al. (2018) 
developed 273 ossec3a mutants that are more tolerant to M. oryzae infection by 
using CRISPR/Cas9. In the same way even pearl millet is highly affected by blast 
disease caused by M. grisea which can be managed by developing the resistant lines 
by employing genetic engineering tools. CRISPR-Cas9 tool can be used to target 
the genes responsible for the susceptibility to blast disease which are commonly 
termed as S genes and induce the DSBs in S gene by Cas system and direct it 
towards any of the DNA repair mechanism, resulting in the mutation of S gene 
which yields blast-resistant pearl millet crop lines (as shown in Fig. 13.3).

13.8  �Conclusion and Future Prospects

Pearl millet blast severity has been increasing in recent years due to adoption of 
high-yielding varieties and use of chemical fungicides is not safe to environment. 
The use of recent technology CRISPR/Cas9 system which is simple, efficient, and 
highly specific produces fewer off-target events. It is a promising tool for genome 
modification in crop improvement program. Mutation in host susceptible gene/s by 
using CRISPR/Cas9 system has conferred broad-spectrum disease resistance 
against fungal diseases. This technology is successfully utilized in powdery mildew 
resistance locus O (mlo) which is one of the renowned S genes. It has been mutated 
via CRISPR/Cas9 and the mutants obtained were more resistant to powdery mildew 
fungus Blumeria graminis f. sp. tritici (Bgt) and Oidium neolycopersici in wheat 
and tomato, respectively. This technology is applied in rice blast which is one of the 
most damaging diseases in the world, which is caused by Magnaporthe oryzae. 
Targeted loss-of-function mutagenesis of negative regulator Oryza sativa ethylene 
response factor 922 (OsERF922) showed enhanced disease resistance against rice 
blast. Similarly, mutation in coding region of Pi21 gene via CRISPR/Cas9 has also 
improved the resistance in rice plants against blast fungus. This technology was 
utilized in rice blast resistance development with the help of the coding region of 
mitogen-activated protein kinase 5 (OsMAPK5). This technology has lot of poten-
tial in the development of blast disease resistance in pearl millet crop with suitable 
modifications in the genome.
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Fig. 13.3  Typical overview of generating blast disease-resistant pearl millet crop lines using 
CRISPR-Cas 9 system
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