
Assurance of Distributed Algorithms
and Systems: Runtime Checking of Safety

and Liveness

Yanhong A. Liu(B) and Scott D. Stoller

Computer Science Department, Stony Brook University, Stony Brook, NY, USA
{liu,stoller}@cs.stonybrook.edu

Abstract. This paper presents a general framework and methods for
complete programming and checking of distributed algorithms at a high-
level, as in pseudocode languages, but precisely specified and directly
executable, as in formal specification languages and practical program-
ming languages, respectively. The checking framework, as well as the
writing of distributed algorithms and specification of their safety and
liveness properties, use DistAlgo, a high-level language for distributed
algorithms. We give a complete executable specification of the checking
framework, with a complete example algorithm and example safety and
liveness properties.

1 Introduction

Distributed systems are increasingly important in our increasingly connected
world. Whether for distributed control and coordination or distributed data
storage and processing, at the core are distributed algorithms.

It is well known that distributed algorithms are difficult to understand. That
has led to significant effort in specifying these algorithms and verifying their
properties, e.g., [5,13,36], as well as in developing specification languages and
verification tools, e.g., TLA and TLA+ Toolbox [18,20,34], I/O Automata [31],
and Ivy [33]. However, challenges remain for automated verification of practical
distributed algorithms using theorem proving or model checking techniques, due
to exorbitant manual effort and expertise required or prohibitive state-space
explosion.

Runtime verification allows information to be extracted from a running sys-
tem and used to check whether observed system behaviors satisfy certain proper-
ties, and to react based on the results of checking. It is the most effective comple-
ment to theorem proving and model checking for sophisticated algorithms and
implementations. For routinely checking real distributed applications written in
general-purpose programming languages, it is so far the only feasible practical
solution.

This work was supported in part by NSF under grants CCF-1414078, CCF-1954837,
CNS-1421893, and IIS-1447549, and ONR under grant N00014-20-1-2751.

c© Springer Nature Switzerland AG 2020
J. Deshmukh and D. Ničković (Eds.): RV 2020, LNCS 12399, pp. 47–66, 2020.
https://doi.org/10.1007/978-3-030-60508-7_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-60508-7_3&domain=pdf
https://doi.org/10.1007/978-3-030-60508-7_3


48 Y. A. Liu and S. D. Stoller

Many methods and related issues for doing such runtime checking have been
studied, as discussed in Sect. 8. Such checking and all kinds of variations have
also long been used extensively in practical program development, testing, debug-
ging, and simulation for distributed algorithms. However, these studies and uses
of runtime checking are either more abstract methods, not presented as exe-
cutable programs, or involving significant programming using commonly-used
programming languages, too large to present in complete and exact forms on
paper.

This paper presents a general framework and methods for complete program-
ming and checking of distributed algorithms at a high-level, as in pseudocode
languages, but precisely specified and directly executable, as in formal specifica-
tion languages and practical programming languages, respectively. The checking
framework, as well as the writing of distributed algorithms and specification of
their safety and liveness properties, use DistAlgo, a high-level language for dis-
tributed algorithms [21,29]. We give a complete executable specification of the
checking framework, with a complete example algorithm and example safety and
liveness properties.

The framework can check any desired properties against observed system
behavior. Note that since any execution of a practical system is finite, the live-
ness properties we check are bounded liveness, that is, the desired properties
hold within specified time bounds. The framework requires no change to the
algorithm code to be checked. It puts the algorithm code, property specification,
as well as fault simulation together with small configurations, thanks to the
power of the DistAlgo language and compiler. The complete checking program
then automatically intercepts messages sent and received by the distributed pro-
cesses to be checked, with both logical and real times, and checks the specified
properties at desired points as written.

This framework has been used in implementing, testing, debugging, simula-
tion, and analysis of many well-known distributed algorithms, and in teaching.
Our experiences included discovering improvements to both correctness and effi-
ciency of some well-known algorithms, e.g., [23,25,28].

2 Distributed Algorithms and Their Safety and Liveness

Distributed algorithms are algorithms that run in distributed systems. Under-
standing and verifying their properties are central challenges for distributed com-
puting.

Distributed Systems and Distributed Algorithms. A distributed system
is a set of distributed processes. Each process has its own private memory that
only it can access. Processes execute concurrently and communicate with each
other by sending and receiving messages.

Distributed processes and communications are prone to various kinds of fail-
ures, depending on the underlying infrastructures. Processes may be slow, may
crash, may later recover, and may even behave arbitrarily. Messages may be lost,
delayed, duplicated, reordered, and even be arbitrarily changed.



Assurance of Distributed Algorithms and Systems 49

Distributed algorithms are for solving problems that involve coordination,
negotiation, etc. among distributed processes in the presence of possible fail-
ures. Due to nondeterminism from concurrency and uncertainty from failures,
distributed algorithms are notoriously difficult to design, understand, and verify.
Even as an algorithm executes in a distributed system, the state of the system
is not fully observable, and the order of events cannot be fully determined. This
led to Lamport’s creation of logical clocks, which are fundamental in distributed
systems [17].

Distributed computing problems are of an extremely wide variety, and a great
number of distributed algorithms have been studied. e.g., [7,9,31]. Well-known
problems range from distributed clock synchronization to distributed snapshot,
from leader election to distributed mutual exclusion, from atomic commit to
distributed consensus, and many more. We give two examples here:

– Distributed mutual exclusion. Distributed mutual exclusion is for multiple
processes to access a shared resource mutually exclusively, in what is called
a critical section, i.e., there can be at most one process in a critical section
at a time.
It is one of the most studied problems, e.g., [15,37], with at least dozens
if not hundreds or more of proposed algorithms and variants. For example,
Lamport’s algorithm [17], introduced to show the use of logical clocks, was
designed to guarantee that access to the resource is granted in the order of
logical clock values of the requests.

– Distributed consensus. Distributed consensus is for a set of processes to agree
on a single value or a continuing sequence of values, called single-value con-
sensus or multi-value consensus, respectively.
It is essential in any important service that maintains a state, including ser-
vices provided by companies like Google and Amazon. This is because such
services must use replication to tolerate failures caused by machine crashes,
network outages, etc. Replicated processes must agree on the state of the
service or the sequence of operations that have been performed, e.g., that a
customer order has been placed and paid but not yet shipped, so that when
some processes become unavailable, the remaining processes can continue to
provide the service correctly.
Even well-known algorithms and variants number at least dozens, starting
from virtual synchrony [1–3], viewstamped replication [22,35], and Paxos [19].

These problems are at the core of distributed file systems, distributed databases,
and fault-tolerant distributed services in general. New algorithms and variants
for them are developed constantly, not to mention a vast number of other dis-
tributed algorithms, such as network protocols, distributed graph algorithms,
and security protocols.

Safety and Liveness. Lamport [16] first formulated two types of properties
of a distributed system: safety and liveness. Informally, a safety property states
that some bad things will not happen, and a liveness property states that some
good things will happen. We continue the two examples discussed earlier:



50 Y. A. Liu and S. D. Stoller

– For distributed mutual exclusion, a most important safety property is that at
most one process is in a critical session at a time. A liveness property is that
some requests are eventually served, and a stronger liveness property is that
all requests are eventually served.
For example, Lamport’s algorithm [17] is designed to guarantee all these,
and in fact, as mentioned above, to guarantee a stronger property—that all
requests are served in the order of logical clock values. This stronger property
can be interpreted and formulated as either a safety property, to mean that
no requests are served out of the order of logical clock values, or a liveness
property, to include that all requests are eventually served.

– For distributed consensus, there are two important safety properties: (1)
agreement on the decided single value, in single-value consensus, or on the
sequence of values, in multi-value consensus, by nonfaulty processes, and (2)
validity of the decided value or values to be among allowed values. A live-
ness property for single-value consensus is that nonfaulty processes eventually
decide on a value. A liveness property for multi-value consensus is that non-
faulty processes repeatedly decide on additional values in the sequence.
Good distributed consensus algorithms, such as Paxos [19], guarantee the two
safety properties, but they cannot guarantee the liveness property due to the
well-known impossibility of consensus in asynchronous distributed systems
even with only one faulty process subject to crash failures [6].

Specifying safety and liveness properties is nontrivial, especially liveness proper-
ties, even informally. For example, liveness for many consensus algorithms and
variants has been left unspecified, or specified too weakly to be useful or too
strongly to be possible [4].

Safety and liveness are, in general, global properties about multiple processes.
Checking them requires knowing the states of multiple processes. However, the
state of a process is private to that process and cannot be accessed directly by
any other process. The best one can do is to observe a process by intercepting
messages sent and received by that process, and determine the state of the system
and desired properties conservatively or approximately, and with a delay.

We use checker to refer to a process that observes the sending and receiving
of messages by a set of processes and checks desired properties.

3 A Powerful Language for Distributed Programming

A powerful language for distributed programming must allow (1) easy creation
of distributed processes and communication channels for sending messages, (2)
easy handling of received messages, both synchronously (with waiting) and asyn-
chronously (without waiting), (3) easy processing of all information communi-
cated as well as a process’s own data, and (4) easy configuration of basic elements
for real execution on distributed machines.

Running Example: The Polling Problem. We introduce a simple but essen-
tial problem, which we call the polling problem, as a running example:



Assurance of Distributed Algorithms and Systems 51

A poller process sends a question to a set of pollee processes, waits to
receive answers to the question from all of them, and then sends an out-
come message to them.

Small variations of this problem include waiting to receive replies from a subset
of the pollee processes, such as a majority or a quorum, instead of all of them.

This problem is essential because any process working with a set of other
processes requires talking to and hearing back from those processes one way or
another. This problem manifests widely in well-known distributed algorithms,
including algorithms for distributed mutual exclusion, atomic commit, and dis-
tributed consensus. This problem also manifests itself in everyday life, such as
an instructor giving assignments to students, a chairperson soliciting suggestions
from committee members, or a campaign organizer sending a poll to voters.

The problem appears simple, but is nontrivial, even without process failures
or message delays or losses, because processes are generally communicating with
multiple processes and doing other things at the same time. Consider some
examples:

– When the poller receives a message from a pollee, how does the poller know
it is replying to a particular question? The pollee might happen to send
something to the poller with the same format as an expected reply, and send
it shortly after the question was sent.

– How does the poller know it has received replies from all pollees? It could
compare the number of replies to the number of pollees, but a pollee might
send multiple replies, or a communication channel might duplicate messages.

The problem becomes even harder if processes can fail and messages may be lost
or delayed. It becomes even more challenging if processes can fake identities and
messages can be altered or counterfeited. In the latter cases, processes need to use
security protocols for authentication and secure communication. Although we do
not consider those problems further in this tutorial, we have extended DistAlgo
with a high-level cryptographic API for expressing such security protocols [14].

Figure 1 shows a complete polling program written in DistAlgo. Process
classes P and R specify the poller and responder (i.e., pollee) processes, respec-
tively. Definitions run and receive specify the main algorithm. The core of the
algorithm is on lines 4–6, 8, 13, and 15–16. The rest puts all together, plus setting
up processes, starting them, and outputting about replies and outcomes of the
polling. The details are explained in examples as we describe next the DistAlgo
language used.

DistAlgo, a Language for Distributed Algorithms. DistAlgo supports
easy distributed programming by building on an object-oriented programming
language, with a formal operational semantics [29], and with an open-source
implementation [21] that extends Python.

Because the implementation uses the Python parser, it uses Python syntax
such as send(m, to=p) instead of the ideal send m to p for sending message m to
process p. For the same reason, it uses from in place of the ideal from because



52 Y. A. Liu and S. D. Stoller

Fig. 1. Polling program in DistAlgo.

the latter is a keyword in Python. A final quirk is that we indicate a previously
bound variable in patterns with prefix in place of the ideal = because is
the only symbol allowed besides letters and numbers in identifiers. Besides the
language constructs explained, commonly used constructs in Python are used,
for no operation (pass), assignments (v = e), etc.

Distributed Processes That Can Send Messages. A type P of distributed
processes is defined by class P (process): body, e.g., lines 1–10 in Fig. 1. The
body may contain

– a setup definition for taking in and setting up the values used by a type P

process, e.g., line 2,
– a run definition for running the main control flow of the process, e.g., lines

3–8,
– other helper definitions, e.g., lines 9–10, and
– receive definitions for handling received messages, e.g., lines 15–16.

A process can refer to itself as self. Expression self.attr (or attr when there is
no ambiguity) refers to the value of attr in the process. ps = new(P,args,num)

creates num (default to 1) new processes of type P , optionally passing in the
values of args to setup, and assigns the set of new processes to ps, e.g., lines 21
and 22. start(ps) starts run() of processes ps, e.g., lines 23 and 24. A separate
setup(ps,args) can also set up processes ps with the values of args.

Processes can send messages: send(m, to=ps) sends message m to processes
ps, e.g., line 5.



Assurance of Distributed Algorithms and Systems 53

Control Flow for Handling Received Messages. Received messages can
be handled both asynchronously, using receive definitions, and synchronously,
using await statements.

– A receive definition, def receive (msg=m, from =p), handles, at yield points,
un-handled messages that match m from p, e.g., lines 15–16. There is a yield
point before each await statement, e.g., line 6, for handling messages while
waiting. The from clause is optional.

– An await statement, await cond, waits for cond to be true, e.g., line
6. A more general statement, if await cond1: stmt1 elif ... elif condk:

stmtk elif timeout(t): stmt, waits for one of cond1, ..., condk to be true or a
timeout after t seconds, and then nondeterministically selects one of stmt1,
..., stmtk, stmt whose conditions are true to execute.

High-Level Queries for Synchronization Conditions. High-level queries
can be used over message histories, and patterns can be used for matching mes-
sages.

– Histories of messages sent and received by a process are automatically kept in
variables sent and received, respectively. sent is updated at each send state-
ment, by adding each message sent. received is updated at yield points, by
adding un-handled messages before executing all matching receive defini-
tions.
Expression sent(m, to=p) is equivalent to (m,p) in sent. It returns true
iff a message that matches (m,p) is in sent. The to clause is optional.
received(m, from =p) is similar.

– A pattern can be used to match a message, in sent and received, and by a
receive definition. A constant value, such as ’respond’, or a previously bound
variable, indicated with prefix , in the pattern must match the correspond-
ing components of the message. An underscore by itself matches anything.
Previously unbound variables in the pattern are bound to the corresponding
components in the matched message.
For example, received((’reply’,’Y’, t), from =r) on line 7 matches in
received every message that is a 3-tuple with components ’reply’, ’Y’, and
the value of t, and binds r to the sender.

A query can be a comprehension, aggregation, or quantification over sets or
sequences.

– A comprehension, setof(e, v1 in s1, ..., vk in sk, cond), where each vi
can be a pattern, returns the set of values of e for all combinations of values
of variables that satisfy all vi in si clauses and satisfy condition cond, e.g.,
the comprehension on line 7.

– An aggregation, similar to a comprehension but with an aggregation opera-
tor such as countof or maxof, returns the value of applying the aggregation
operator to the collection argument, e.g., the countof query on line 10.



54 Y. A. Liu and S. D. Stoller

– A universal quantification, each(v1 in s1, ..., vk in sk has=cond), returns
true iff, for all combinations of values of variables that satisfy all vi in si
clauses, cond holds, e.g., the each query on line 6.

– An existential quantification, some(v1 in s1, ..., vk in sk has=

cond), returns true iff, for some combinations of values of variables that sat-
isfy all vi in si clauses, cond holds, e.g., the some query on line 13. When the
query returns true, all variables in the query are bound to a combination of
satisfying values, called a witness, e.g., o on line 13.

Configuration for Setting Up and Running. Configuration for require-
ments such as use of logical clocks and reliable channels can be specified in a
main definition, e.g., lines 19–20. When Lamport’s logical clocks are used, Dis-
tAlgo configures sending and receiving of a message to update the clock value,
and defines a function logical clock() that returns the clock value. Processes
can then be created, setup, and started. In general, new can have an additional
argument, specifying remote nodes where the newly created processes will run;
the default is the local node.

4 Formal Specification of Safety and Liveness

When specifying properties about multiple distributed processes, we refer to
the sent and received of a process p as p.sent and p.received. We will use
ideal syntax in this section in presenting the safety and liveness properties, e.g.,
p.received m from p at t instead of p.received(m, from =p, clk=t).

Specifying Safety. Despite being a small and seemingly simple example, a wide
variety of safety properties can be desired for polling. We consider two of them:

(S1) The poller has received a reply to the question from each pollee when sending
the outcome.
This property does not require checking multiple distributed processes,
because it uses information about only one process, the poller. In fact, in
the program in Fig. 1, it is easy to see that this property is implemented
clearly in the poller’s run method.
We use this as an example for three reasons: (1) it allows the reader to con-
trast how this is specified and checked by the checker compared with by the
poller, (2) such checks can be important when we do not have access to the
internals of a process but can observe messages sent to and from the process,
and (3) even if we have access to the internals, it may be unclear whether the
implementation ensures the desired property and thus we still need to check
it.

(S2) Each pollee has received the same outcome when the program ends.
This property requires checking multiple distributed processes, because the
needed information is not available at a single process.
We use this example to show such properties can be specified and checked
easily at the checker, conservatively ensuring safety despite the general impos-
sibility results due to message delays, etc.



Assurance of Distributed Algorithms and Systems 55

Consider property (S1). The checker will be informed about all processes and
all messages sent and received by each process. Also, it can use universal and
existential quantifications, just as in line 6 of the poller’s code in Fig. 1. However,
there are two issues:

1) How does the checker know “the” question? Inside the poller, “the” question
is identified by the timestamp in variable t, which is used in the subsequent
tests of the replies. To check from outside, the checker needs to observe the
question and its id first, yielding a partial specification for (S1):

some p.sent (’question’, _, t) has

each r in rs has some =p.received (’reply’, _, =t) from =r

If one knows that the poller sent only one question, then the some above
binds exactly that question. Otherwise, one could easily check this by adding
a conjunct count {t: p.sent (’question’, , t)} == 1.

2) How does the checker know that all replies had been received when the out-
come was sent (Note that a similar question about identifying “the” outcome
can be handled the same way as for “the” question.) Inside the poller, it is
easy to see that tests of the replies occur before the sending of the ’outcome’

message. Outside the poller, we cannot count on the order that the checker
receives messages to determine the order of events. The checker needs to use
the timestamps from the logical clocks.

some p.sent (’question’, _, t), p.sent (’outcome’, _) at t1 has
each r in rs has some =p.received(’reply’,_,=t) from =r at t2 has t1>t2

Note the added p.sent (’outcome’, ) at t1 on the first line and
at t2 has t1 > t2 on the second line.

Note that when the receiver or logical time of a sent message is not used, it is
omitted from the property specification; it could also be included and matched
with an underscore, e.g., p.sent m to at .

Consider property (S2), which is now easy, using the same idea to identify
“the” outcome o based on the outcome message sent by the poller:

some p.sent (’outcome’, o) has

each r in rs has some =r.received (’outcome’, =o)

The checker just needs to check this at the end.

Specifying Liveness. Specifying liveness requires language features not used in
the algorithm description. We use the same specification language we introduced
earlier [4]. In particular,

evt cond

where evt is read as “eventually”, denotes that cond holds at some time in the
duration that starts from the time under discussion, i.e., eventually, cond holds.

Many different liveness properties can be desired. We consider two of them:



56 Y. A. Liu and S. D. Stoller

(L1) The poller eventually receives a reply to the question.
This assumes that a question was sent and covers the duration from then to
receiving the first reply.
We use this example because it is the first indication to the poller that the
polling really started. We also use receiving the first reply to show a small
variation from receiving all replies.

(L2) Eventually each pollee receives the outcome.
This assumes that an outcome was sent and covers the entire duration of the
polling.
We use this example because it expresses the completion of the entire algo-
rithm.

For (L1), one can simply specify it as an evt followed by the partial specifi-
cation for (S1) except with each r in rs replaced with some r in rs:

evt some p.sent (’question’, _, t) has

some r in rs has some =p.received (’reply’, _, =t) from =r

In practice, one always estimates an upper bound for message passing time and
poll filling time. So one can calculate an upper bound on the expected time from
sending the question to receiving the first reply, and be alerted by a timeout if
this bound is not met.

For (L2), one can see that this just needs an evt before the property specified
for (S2):

evt some p.sent (’outcome’, o) has

each r in rs has some =r.received (’outcome’, =o)

In practical terms, (L2) means that the program terminates and (S2) holds when
the program ends. Thus, with (S2) checked as a safety property, (L2) boils down
to checking that the program terminates.

Conceptually, evt properties are checked against infinite executions. In prac-
tice, they are checked against finite executions by imposing a bound on when the
property should hold, and reporting a violation if the property does not hold by
then. From a formal perspective, imposing this time bound changes the liveness
property to a safety property.

5 Checking Safety

We describe a general framework for checking safety through observation by a
checker external to all original processes in the system. The checker observes all
processes and the messages they send and receive. We then discuss variations
and optimizations.

Extending Original Processes to Be Checked. The basic idea is: each
process p, when sending or receiving a message, sends information about the



Assurance of Distributed Algorithms and Systems 57

sending or receiving to the checker. The checker uses this information to check
properties of the original processes.

The information sent to the checker may include (1) whether the message is
being sent or received by p, indicated by ’sent’ and ’rcvd’, respectively, (2) the
message content, (3) the receiver or receivers (for a message sent) and sender (for
a message received), and (4) the logical timestamp of the sending or receiving, if
a logical clock is used. In general, it may include any subset of these, or add any
other information that is available and useful for checking properties of interest.

With ideal channels to send such information to the checker, the checker can
extract all the information using the following correspondence:

p.sent m to qs at t ⇐⇒ checker received (’sent’ m to qs at t) from p

p.received m from q at t ⇐⇒ checker received (’rcvd’ m from q at t) from p

Sending the information can be done by extending the original processes,
so the original program is unchanged. The extended processes just need to (1)
extend the send operation to send information about the sending to the checker,
and (2) add a receive handler for all messages received to send information
about the receiving to the checker. A checker process can then specify the safety
conditions and check them any time it desires; to check at the end, it needs to
specify a condition to detect the end.

Figure 2 shows safety checking for the polling example. It imports the original
program polling.da as a module, and extends processes P and R to take checker

as an argument at setup. In extended P, it extends send and adds receive to send
all 4 kinds of information listed to checker (lines 4–8). In extended R, it sends 3
kinds of information, omitting logical times (lines 12–16). It then defines process
Checker that takes in p and rs at setup, waits for a condition to detect the end
of the polling (line 20), and checks safety properties (S1) and (S2) (lines 22–31).
The main method is the same as in Fig. 1 except for the new and updated lines
for adding the checker process, as noted in the comments.

Variations and Optimizations. When checking systems with many processes,
a single checker process would be a bottleneck. The single checker framework can
easily be extended to use a hierarchy of checkers, in which each checker observes
a subset of original processes and/or child checkers and reports to a parent
checker.

As an optimization, information not needed for the properties being checked
can be omitted from messages sent to the checker, leading to more efficient exe-
cutions and simpler patterns in specifying the conditions to be checked. In Fig. 2,
process R already omits logical times from all messages to the checker. More infor-
mation can be omitted. For example, process P can omit target processes, the 3rd
component of the message, in information about sending. Additionally, process R

can omit all information about sending and all but the second component about
receiving. Furthermore, more refined patterns can be used when extending send

to omit unused parts inside the message content, the second component. For
example, the specific question in ’question’ messages can be omitted.

Instead of extending the original processes to be checked, an alternative is to
let the original processes extend a checker process. While the former approach



58 Y. A. Liu and S. D. Stoller

Fig. 2. Checking safety for the polling program.

requires no change at all to the original processes, the latter approach requires
small changes: (1) to each original process class, (a) add the checker process
class as a base class and (b) add a setup parameter to pass in the checker
process, and (2) in main, (a) create, setup, and start the checker process and
(b) in the call to new or setup for each original process, add the checker process
as an additional argument. The advantage of this alternative approach is that
the same checker class can be used for checking different programs when the
same checking is desired. An example use is for benchmarking the run method
of different programs1.

While checking safety using our framework is already relatively easy, higher-
level declarative languages can be designed for specifying the desired checks,
and specifications in such languages can be compiled into optimized checking
programs that require no manual changes to the original programs.

1 http://github.com/DistAlgo/distalgo/blob/master/benchmarks/controller.da.

http://github.com/DistAlgo/distalgo/blob/master/benchmarks/controller.da


Assurance of Distributed Algorithms and Systems 59

6 Checking Liveness

As discussed in Sect. 4, in finite executions, checking liveness boils down to safety
checking plus use of timeouts to check that properties hold within an expected
amount of time. For the polling example, checking timeouts plus the same or
similar conditions as (S1) and (S2) corresponds to what can be checked for (L1)
and (L2). We describe a general framework for easily checking timeouts during
program execution based on elapsed real time at the checker process. Using real
time at the checker avoids assumptions about clock synchronization. We then
discuss variations and optimizations.

Extending Original Processes to Be Checked. The same framework to
extend original processes for safety checking can be used for liveness checking.
One only needs to specify checks for timeouts instead of or in addition to safety
checks. We show how timeouts between observations of any two sending or receiv-
ing events, as well as a timeout for the entire execution, can easily be checked,
even with multiple timeout checks running concurrently.

Given any two sending or receiving events e1 and e2, we check that after e1

is observed by the checker, e2 is observed within a specified time bound. There
are two steps:

1) When the checker receives e1, it starts a timer for the specified time bound.
Each timer runs in a separate thread and, when it times out, it sends a
timeout message to the checker.

2) When the checker receives a timeout message, it checks whether the expected
event e2 has been observed. If yes, it does nothing. Otherwise, it reports a
violation of the time bound requirement.

All time bounds are specified in a map, which maps a name for a pair of events
to the required time bound from observing the first event until observing the
second event.

This framework can easily be generalized to check conditions involving any
number of events. When the timeout happens, instead of checking whether
one specific event e2 has been observed, the checker can check whether several
expected events have all been observed, or whether any other desired condition
on the set of observed events holds.

A time bound for the entire execution of the algorithm can be set and checked
separately, in addition to checking any other safety and liveness properties,
to directly check overall termination, using an appropriate condition to detect
whether the algorithm has completed successfully.

Figure 3 shows timeout checking for the polling example. To check liveness
instead of safety, one could use exactly the same program as for safety check
except for the added import’s and TIMEOUT map at the top and a rewritten Checker

process. To check timeouts in addition to safety, the Checker process in Fig. 3 can
extend the Checker process in Fig. 2, and just add the function calls super().S1()

and super().S2() at the end of the run method here.



60 Y. A. Liu and S. D. Stoller

Modules threading and time are imported in order to run each timer in a
separate thread. A dictionary TIMEOUTS holds the map of time bounds (in seconds)
for different pairs of events: ’q-r’ is for the poller sending the question and the
poller receiving the first reply, corresponding to (L1), and ’q-o’ is for the poller
sending the question and all pollees receiving the outcome, corresponding to
(L2). The dictionary also includes an entry ’total’ with a time bound for the
entire execution of the algorithm.

The Checker process waits for the same condition, as for safety checking, to
detect the end of the polling (line 8–9), but with a timeout for ’total’ (line
10) while waiting. It starts two timers corresponding to (L1) and (L2) when
observing the question was sent (lines 13–15), and checks and reports timeouts
when any timer times out (lines 22–28).

Fig. 3. Checking timeouts for the polling program.

Variations and Optimizations. Variations and optimizations for checking
safety can also be used for checking liveness. Checking timeouts using real time
is the additional challenge.

In the program in Fig. 3, the timeout ’q-o’ for (L2) waits for the same condi-
tion as for detecting the end of polling in run, and covers almost the entire execu-
tion. Therefore, the test for detecting the end of polling in run is unnecessary in
this case, and the entire body of run may simply be await (timeout(’total’)).
When a timeout ’q-o’ is received, the checker could terminate itself by importing
sys and calling sys.exit(). Of course after either timeout for ’q-o’ or timeout in
run, the checker process could also do anything else helpful instead of terminating
itself.



Assurance of Distributed Algorithms and Systems 61

Instead of or in addition using real time at the checker, one could use real
time at the original processes. A clock synchronization algorithm can be used
to improve the precision of clocks at different original processes and the over-
all precision and time bounds. Even without clock synchronization, using real
time at the original processes can improve the precision and bounds for liveness
properties involving multiple events at the same process, such as (L1).

Note that observing the start and end of an operation or entire program is
also how performance measurements can be performed, as mentioned for bench-
marking at the end of Sect. 5.

7 Implementation and Experiments

DistAlgo has been implemented as an extension of the Python programming
language and used extensively in studying and teaching of distributed algo-
rithms [29]. The framework discussed for checking safety and liveness properties
has also been used extensively, in both ad hoc and more systematic ways. We
describe using the DistAlgo implementation and our framework for execution
and runtime checking.

Execution and Fault Simulation. DistAlgo is open source and available on
github [21]. One can simply add it to the Python path after downloading, and
run the da module in Python, e.g., running the program polling.da in Fig. 1 as
python -m da polling.da.

For runtime checking, a checking program, such as the program in Fig. 2 can
be run in the same way. More generally, implementations of three conceptual
components are needed:

1) A distributed algorithm, plus input taken by the algorithm. This needs a
complete executable program, such as polling.da in Fig. 1.

2) Safety and liveness requirements to be checked. These are expressed as exe-
cutable functions that can be called at required points during the execution,
such as functions S1 and S2 in Fig. 2 and the receive handlers in Fig. 3.

3) Process and communication failures to be considered. These correspond
to executable configurations that can be executed for fault simulation, as
described below.

Our framework puts these together naturally, with small configurations to
observe processes and communications, with both logical and real times, thanks
to the power of the DistAlgo language and compiler.

Fault simulation is essential for checking safety and liveness of complex algo-
rithms in simulation of real distributed systems that are fault-prone. Both pro-
cess and communication failures may happen, but the latter are much more
frequent. Also, the former can be simulated with the latter, because a pro-
cess interacts with other processes only through communication. For example,
a crashed process is indistinguishable from one that stops sending messages to
other processes.



62 Y. A. Liu and S. D. Stoller

With our existing framework for checking, we can simply use send to simulate
all possible communication failures, including message

– loss: drop messages without sending;
– delay: delay messages before sending;
– duplication: send messages multiple times;
– reordering: delay sending messages until after sending later messages; and
– corruption for simulating Byzantine failures: change message before sending.

For example, to simulate a 1% chance of dropping a message sent by a P

process, in the send method in Fig. 2, we can put super().send(m,to) inside a
conditional:

if random.random() < 0.99: super().send(m,to)

and add import random before it.
Similarly, one may add fixed or random delays, duplications, reorderings, or a

combination of them. A main issue to note is that, in general, one would want to
send a delayed or duplicated message using a separate thread, to avoid delaying
the execution of the algorithm.

Configuration options and values can be provided through command-line
arguments and external files, as well as built-in language constructs. All these
kinds have been provided in the DistAlgo language and compiler and used in
DistAlgo programs. Similar mechanisms have been used in all kinds of system
configurations for decades. A challenge is to design and implement a powerful,
commonly accepted language for such configurations.

Experiments and Experience. For the running example, checking both safety
and liveness, with the Checker process in Fig. 3 extending that in Fig. 2 but
replacing the last line in run in Fig. 3 with the last line in run in Fig. 2 and
adding super().before S1() and S2(), an example output is as shown below:
> python -m da .\polling_check_live.da
[54] da.api<MainProcess>:INFO: <Node_:75001> initialized at 127.0.0.1:(UdpTransport=37786, T
cpTransport=45837).
[54] da.api<MainProcess>:INFO: Starting program <module ’polling_check_live’ from ’.\\pollin
g_check_live.da’>...
[55] da.api<MainProcess>:INFO: Running iteration 1 ...
[56] da.api<MainProcess>:INFO: Waiting for remaining child processes to terminate...(Press "
Ctrl-Brk" to force kill)
[1446] da.api<MainProcess>:INFO: Main process terminated.
[160] polling_check.P<P:a900d>:OUTPUT: -- received Y from: {<R:a9007>, <R:a900b>, <R:a900c>,
<R:a9004>}

[618] polling_check.R<R:a9009>:OUTPUT: == received outcome: 4
[1303] polling_check.R<R:a9003>:OUTPUT: == received outcome: 4
[400] polling_check.R<R:a900b>:OUTPUT: == received outcome: 4
[1082] polling_check.R<R:a9005>:OUTPUT: == received outcome: 4
[1194] polling_check.R<R:a9004>:OUTPUT: == received outcome: 4
[860] polling_check.R<R:a9007>:OUTPUT: == received outcome: 4
[1417] polling_check_live.Checker<Checker:a9002>:OUTPUT: !! L2 timeout receiving outcome by
all pollees 0 {<R:a9004>, <R:a900a>, <R:a9007>, <R:a9009>, <R:a9003>, <R:a9005>, <R:a900c>,
<R:a9006>, <R:a900b>, <R:a9008>} <R:a9008>
[511] polling_check.R<R:a900a>:OUTPUT: == received outcome: 4
[974] polling_check.R<R:a9006>:OUTPUT: == received outcome: 4
[733] polling_check.R<R:a9008>:OUTPUT: == received outcome: 4
[291] polling_check.R<R:a900c>:OUTPUT: == received outcome: 4
[1438] polling_check_live.Checker<Checker:a9002>:OUTPUT: ~~ polling ended. checking safety:
True True



Assurance of Distributed Algorithms and Systems 63

Notice the last process, <R:a9008>, printed in the 3 lines reporting (L2) timeout;
it shows a witness for violation of the each check on lines 25–27 in Fig. 3, printed
at the end of line 28. When we increased the timeout for ’q-o’ to 0.01 s, no (L2)
timeout was reported in all dozens of runs checked. When we added message loss
rate of 10%, we saw some runs reporting total timeout, and some runs reporting
even all three timeouts.

Overall, we have used the checking framework in implementation, testing,
debugging, simulation, and analysis of many well-known distributed algorithms,
and in developing their high-level executable specifications. This includes a vari-
ety of algorithms for distributed mutual exclusion and distributed consensus
written in DistAlgo [23,25,28,30], especially including over a dozen well-known
algorithms and variants for classical consensus and blockchain consensus [26].
Use of DistAlgo has helped us find improvements to both correctness and effi-
ciency of well-known distributed algorithms, e.g., [23,25,28].

We have also used the framework in other research, e.g., [24], and in teach-
ing distributed algorithms and distributed systems to help study and implement
many more algorithms. DistAlgo has been used by hundreds of students in gradu-
ate and undergraduate courses in over 100 different course projects, implement-
ing and checking the core of network protocols, distributed graph algorithms,
distributed coordination services, distributed hash tables, distributed file sys-
tems, distributed databases, parallel processing platforms, security protocols,
and more [29].

The algorithms and systems can be programmed much more easily and clearly
compared to using conventional programming languages, e.g., in 20 lines instead
of 200 lines, or 300 lines instead of 3000 lines or many more. Systematic methods
for checking these algorithms and implementations has been a continual effort.

Additional information is available at http://distalgo.cs.stonybrook.edu/
tutorial.

8 Related Work

Francalanza et al. broadly surveyed runtime verification research related to dis-
tributed systems [8]. Here, we focus on aspects related to DistAlgo.

Global Property Detection. Many algorithms have been developed to detect
global properties in distributed systems, e.g., [9,15]. These algorithms vary along
several dimensions. For example, many consider only the happened-before order-
ing [17]; others also exploit orderings from approximately-synchronized real-time
clocks [38]. Some can detect arbitrary predicates; other are specialized to check
a class of properties efficiently. Many use a single checker process (as in our
example); others use a hierarchy of checker processes, or are decentralized, with
the locus of control moving among the monitored processes. DistAlgo’s high-
level nature makes it very well-suited for specifying and implementing all such
algorithms.

http://distalgo.cs.stonybrook.edu/tutorial
http://distalgo.cs.stonybrook.edu/tutorial


64 Y. A. Liu and S. D. Stoller

Efficient Invariant Checking. Runtime checking of invariants, in centralized
or distributed systems, requires evaluating them repeatedly. This can be expen-
sive for complex invariants, especially invariants that involve nested quantifiers.
We used incrementalization for efficient repeated evaluation of predicates in the
contexts of runtime invariant checking and query-based debugging for Python
programs [10,11]. We later extended our incrementalization techniques to handle
quantifications in DistAlgo programs [29].

Centralization. Due to the difficulty of runtime checking of truly distributed
systems, some approaches create centralized versions of them. We have devel-
oped a source-level centralization transformation for DistAlgo that produces a
non-deterministic sequential program, well-suited to simulation and verification.
In prior work, we developed bytecode-level transformations that transform a dis-
tributed Java program using Remote Method Invocation (RMI) into a centralized
Java program using simulated RMI [39]. Minha [32] takes another approach to
centralization of distributed Java programs, by virtualizing multiple Java Vir-
tual Machine (JVM) instances in a single JVM and providing a library that
simulates network communication.

DistAlgo Translators. Grall et al. developed an automatic translation from
Event-B models of distributed algorithms to DistAlgo [12]. Event-B is a modeling
language adapted to verification of distributed algorithms. They chose DistAlgo
as the target language because “Its high-levelness makes DistAlgo closer to the
mathematical notations of Event-B and improves the clarity of DistAlgo pro-
grams.” We developed a translator from DistAlgo to TLA+, allowing verification
tools for TLA+ to be applied to the translations [27].

Conclusion. We have presented a general, simple, and complete framework for
runtime checking of distributed algorithms. The framework, as well as the algo-
rithms and properties to be checked, are written in a high-level language that
is both completely precise and directly executable. A challenging problem for
future work is a powerful, commonly accepted language for higher-level, declar-
ative configurations for checking distributed algorithms and systems.

References

1. Birman, K., Joseph, T.: Exploiting virtual synchrony in distributed systems. In:
Proceedings of the 11th ACM Symposium on Operating Systems Principles, pp.
123–138. ACM Press, November 1987

2. Birman, K., Malkhi, D., Renesse, R.V.: Virtually synchronous methodology
for dynamic service replication. Technical report MSR-TR-2010-151, Microsoft
Research (2010)

3. Birman, K.P., Joseph, T.A.: Reliable communication in the presence of failures.
ACM Trans. Comput. Syst. (TOCS) 5(1), 47–76 (1987)

4. Chand, S., Liu, Y.A.: What’s live? Understanding distributed consensus. Comput-
ing Research Repository arXiv:2001.04787 [cs.DC], January 2020. http://arxiv.
org/abs/2001.04787

http://arxiv.org/abs/2001.04787
http://arxiv.org/abs/2001.04787
http://arxiv.org/abs/2001.04787


Assurance of Distributed Algorithms and Systems 65

5. Chand, S., Liu, Y.A., Stoller, S.D.: Formal verification of multi-Paxos for dis-
tributed consensus. In: Fitzgerald, J., Heitmeyer, C., Gnesi, S., Philippou, A. (eds.)
FM 2016. LNCS, vol. 9995, pp. 119–136. Springer, Cham (2016). https://doi.org/
10.1007/978-3-319-48989-6 8

6. Fischer, M.J., Lynch, N.A., Paterson, M.S.: Impossibility of distributed consensus
with one faulty process. J. ACM 32(2), 374–382 (1985)

7. Fokkink, W.: Distributed Algorithms: An Intuitive Approach. MIT Press, Cam-
bridge (2013)

8. Francalanza, A., Pérez, J.A., Sánchez, C.: Runtime verification for decentralised
and distributed systems. In: Bartocci, E., Falcone, Y. (eds.) Lectures on Runtime
Verification. LNCS, vol. 10457, pp. 176–210. Springer, Cham (2018). https://doi.
org/10.1007/978-3-319-75632-5 6

9. Garg, V.K.: Elements of Distributed Computing. Wiley, New York (2002)
10. Gorbovitski, M., Rothamel, T., Liu, Y.A., Stoller, S.D.: Efficient runtime invariant

checking: a framework and case study. In: Proceedings of the 6th International
Workshop on Dynamic Analysis, pp. 43–49. ACM Press (2008)

11. Gorbovitski, M., Tekle, K.T., Rothamel, T., Stoller, S.D., Liu, Y.A.: Analysis and
transformations for efficient query-based debugging. In: Proceedings of the 8th
IEEE International Working Conference on Source Code Analysis and Manipula-
tion, pp. 174–183. IEEE CS Press (2008)

12. Grall, A.: Automatic generation of DistAlgo programs from Event-B models. In:
Raschke, A., Méry, D., Houdek, F. (eds.) ABZ 2020. LNCS, vol. 12071, pp. 414–417.
Springer, Cham (2020). https://doi.org/10.1007/978-3-030-48077-6 34

13. Hawblitzel, C., et al.: IronFleet: proving practical distributed systems correct. In:
Proceedings of the 25th Symposium on Operating Systems Principles, pp. 1–17.
ACM Press (2015)

14. Kane, C., Lin, B., Chand, S., Stoller, S.D., Liu, Y.A.: High-level cryptographic
abstractions. In: Proceedings of the ACM SIGSAC 14th Workshop on Program-
ming Languages and Analysis for Security. ACM Press, London, November 2019

15. Kshemkalyani, A., Singhal, M.: Distributed Computing: Principles, Algorithms,
and Systems. Cambridge University Press, Cambridge (2008)

16. Lamport, L.: Proving the correctness of multiprocess programs. IEEE Trans. Softw.
Eng. 3(2), 125–143 (1977)

17. Lamport, L.: Time, clocks, and the ordering of events in a distributed system.
Commun. ACM 21(7), 558–565 (1978)

18. Lamport, L.: The temporal logic of actions. ACM Trans. Program. Lang. Syst.
16(3), 872–923 (1994)

19. Lamport, L.: The part-time parliament. ACM Trans. Comput. Syst. 16(2), 133–169
(1998)

20. Lamport, L.: Specifying Systems: The TLA+ Language and Tools for Hardware
and Software Engineers. Addison-Wesley, Boston (2002)

21. Lin, B., Liu, Y.A.: DistAlgo: a language for distributed algorithms (2014). http://
github.com/DistAlgo. Accessed March 2020

22. Liskov, B., Cowling, J.: Viewstamped replication revisited. Technical report MIT-
CSAIL-TR-2012-021, Computer Science and Artificial Intelligence Laboratory,
Massachusetts Institute of Technology, Cambridge (2012)

23. Liu, Y.A.: Logical clocks are not fair: what is fair? A case study of high-level
language and optimization. In: Proceedings of the Workshop on Advanced Tools,
Programming Languages, and Platforms for Implementing and Evaluating Algo-
rithms for Distributed Systems, pp. 21–27. ACM Press (2018)

https://doi.org/10.1007/978-3-319-48989-6_8
https://doi.org/10.1007/978-3-319-48989-6_8
https://doi.org/10.1007/978-3-319-75632-5_6
https://doi.org/10.1007/978-3-319-75632-5_6
https://doi.org/10.1007/978-3-030-48077-6_34
http://github.com/DistAlgo
http://github.com/DistAlgo


66 Y. A. Liu and S. D. Stoller

24. Liu, Y.A., Brandvein, J., Stoller, S.D., Lin, B.: Demand-driven incremental object
queries. In: Proceedings of the 18th International Symposium on Principles and
Practice of Declarative Programming, pp. 228–241. ACM Press (2016)

25. Liu, Y.A., Chand, S., Stoller, S.D.: Moderately complex Paxos made simple: high-
level executable specification of distributed algorithm. In: Proceedings of the 21st
International Symposium on Principles and Practice of Declarative Programming,
pp. 15:1–15:15. ACM Press, October 2019

26. Liu, Y.A., Stoller, S.D.: From classical to blockchain consensus: what are the exact
algorithms? In: Proceedings of the 2019 ACM Symposium on Principles of Dis-
tributed Computing, July–August 2019, pp. 544–545. ACM Press (2019)

27. Liu, Y.A., Stoller, S.D., Chand, S., Weng, X.: Invariants in distributed algorithms.
In: Proceedings of the TLA+ Community Meeting, Oxford, U.K. (2018). http://
www.cs.stonybrook.edu/∼liu/papers/DistInv-TLA18.pdf

28. Liu, Y.A., Stoller, S.D., Lin, B.: High-level executable specifications of distributed
algorithms. In: Richa, A.W., Scheideler, C. (eds.) SSS 2012. LNCS, vol. 7596, pp.
95–110. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33536-
5 11

29. Liu, Y.A., Stoller, S.D., Lin, B.: From clarity to efficiency for distributed algo-
rithms. ACM Trans. Program. Lang. Syst. 39(3), 12:1–12:41 (2017)

30. Liu, Y.A., Stoller, S.D., Lin, B., Gorbovitski, M.: From clarity to efficiency for
distributed algorithms. In: Proceedings of the 27th ACM SIGPLAN Conference
on Object-Oriented Programming, Systems, Languages and Applications, pp. 395–
410. ACM Press (2012)

31. Lynch, N.A.: Distributed Algorithms. Morgan Kaufman, San Francisco (1996)
32. Machado, N., Maia, F., Neves, F., Coelho, F., Pereira, J.: Minha: large-scale dis-

tributed systems testing made practical. In: Felber, P., Friedman, R., Gilbert, S.,
Miller, A. (eds.) 23rd International Conference on Principles of Distributed Sys-
tems (OPODIS 2019). LIPIcs, vol. 153, pp. 11:1–11:17. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik (2019)

33. McMillan, K.L., Padon, O.: Ivy: a multi-modal verification tool for distributed
algorithms. In: Lahiri, S.K., Wang, C. (eds.) CAV 2020. LNCS, vol. 12225, pp.
190–202. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-53291-8 12

34. Microsoft Research: the TLA toolbox. http://lamport.azurewebsites.net/tla/
toolbox.html. Accessed 27 Apr 2020

35. Oki, B.M., Liskov, B.H.: Viewstamped replication: a new primary copy method
to support highly-available distributed systems. In: Proceedings of the 7th Annual
ACM Symposium on Principles of Distributed Computing, pp. 8–17. ACM Press
(1988)

36. Padon, O., Losa, G., Sagiv, M., Shoham, S.: Paxos made EPR: decidable reason-
ing about distributed protocols. Proc. ACM Program. Lang. 1(OOPSLA), 108:1–
108:31 (2017). Article no. 108

37. Raynal, M.: Algorithms for Mutual Exclusion. MIT Press, Cambridge (1986)
38. Stoller, S.D.: Detecting global predicates in distributed systems with clocks. Dis-

trib. Comput. 13(2), 85–98 (2000). https://doi.org/10.1007/s004460050069
39. Stoller, S.D., Liu, Y.A.: Transformations for model checking distributed java pro-

grams. In: Dwyer, M. (ed.) SPIN 2001. LNCS, vol. 2057, pp. 192–199. Springer,
Heidelberg (2001). https://doi.org/10.1007/3-540-45139-0 12

http://www.cs.stonybrook.edu/~liu/papers/DistInv-TLA18.pdf
http://www.cs.stonybrook.edu/~liu/papers/DistInv-TLA18.pdf
https://doi.org/10.1007/978-3-642-33536-5_11
https://doi.org/10.1007/978-3-642-33536-5_11
https://doi.org/10.1007/978-3-030-53291-8_12
http://lamport.azurewebsites.net/tla/toolbox.html
http://lamport.azurewebsites.net/tla/toolbox.html
https://doi.org/10.1007/s004460050069
https://doi.org/10.1007/3-540-45139-0_12

	Assurance of Distributed Algorithms and Systems: Runtime Checking of Safety and Liveness
	1 Introduction
	2 Distributed Algorithms and Their Safety and Liveness
	3 A Powerful Language for Distributed Programming
	4 Formal Specification of Safety and Liveness
	5 Checking Safety
	6 Checking Liveness
	7 Implementation and Experiments
	8 Related Work
	References




