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Abstract. From the formation of traffic jams to the development
of troublesome, whirlpool-like spirals in the heart’s electrical activity,
spatio-temporal patterns are key in understanding how complex behav-
iors can emerge in a network of locally interacting dynamical systems.
One of the most important and intriguing questions is how to specify
spatio-temporal behaviors in a formal and human-understandable speci-
fication language and how to monitor their onset efficiently. In this tuto-
rial, we present the spatio-temporal logic STREL and its expressivity
to specify and monitor spatio-temporal behaviors over complex dynam-
ical and spatially distributed systems. We demonstrate our formalism’s
applicability to different scenarios considering static or dynamic spatial
configurations and systems with deterministic or stochastic dynamics.

1 Introduction

Spatio-temporal patterns are central to the understanding of how complex
behaviors can emerge in a network of locally interacting dynamical systems.

A prominent example is the electrical currents that regularly traverse the
cardiac tissue and are responsible for the heart’s muscle fibers to contract.
These electrical impulses travel as a planar wave smoothly and unobstructed
in a healthy heart. In certain circumstances, myocytes can partially or entirely
lose excitability [46,47,60], that is their ability to propagate and reinforce an
electric stimulus. Lack of excitability can cause the formation of whirlpool-like
spirals (see Fig. 1) of electrical activity that are a precursor to a variety of cardiac
arrhythmias, including atrial fibrillation (AF), an abnormal rhythm originating
in the upper chambers of the heart [11]. This type of behavior is called emergent
because it emerges as the result of the local interactions of several (potentially
heterogeneous) entities. Thus, these behaviors cannot be studied analyzing the
individual entities, but they can be reproduced only by simulating/observing
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Fig. 1. Tachycardic spiral wave induced by the left hand side disc of unexcitable
myocytes.

their collective behavior. A typical mechanism responsible for the onset of emer-
gent behaviors is the change in space and time of the concentration of one or
more chemical substances. In the cardiac tissue example, the electrical polar-
ization results from a complex interplay between ion pumps and ionic channels
embedded in the cell membrane that are responsible for the inward/outward
flows of different ionic species (e.g., sodium, potassium, calcium).

Turing’s reaction–diffusion systems [71] are suitable mathematical tools com-
monly used to model and simulate such physical phenomena. Mathematically,
they consist of semi-linear parabolic partial differential equations (PDEs) with
two terms that sum to each other: (a) a reaction term that describes, via nonlin-
ear ordinary differential equations (ODEs), how the chemical species are trans-
formed into each other in time; (b) a diffusion term modeling the flow/the spread
of species in space.

Turing’s reaction–diffusion systems can be employed to model a wide range
of dynamical processes (not necessary chemical) ranging from wave-like phenom-
ena in excitable media to the formation of other spatio-temporal self-organized
patterns that are at the very origin of morphogenesis (e.g., the stripes of a zebra,
the spots on a leopard and the filaments in Anabaena [45]) and developmental
biology [14]. They are also at the core of self-assembly technologies, tissue engi-
neering [72], and amorphous computing [2,21]. Such patterns are also known as
“Turing’s patterns”.

Spatio-temporal patterns are not only pervasively present in nature, but they
can arise also in human engineered artefacts such as Collective Adaptive Sys-
tems [54] (CAS) and Cyber-Physical Systems [64] (CPS).

CAS consist of a large number of heterogeneous components featuring com-
plex interactions among themselves, with humans and other systems. Each com-
ponent in the system may exhibit autonomic behavior and operates in open and
non-deterministic environments where entities may enter or leave the CAS at
any time. Decision-making in CAS is very challenging because the local interac-
tions among components may introduce novel and sometimes undesired emergent
behaviors. A typical example of CAS is a bike sharing system (BSS) [42], a ser-
vice that allows people to borrow bicycles on a short term basis either for a price
or for free. Users can pick-up and return bikes in special stations (spatially dis-
tributed in a city) equipped with bike racks. In such case the undesired behavior
is to have the pick-up stations completely full or empty.
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Fig. 2. An example of Cyber-Physical Systems in the automotive scenario.

Cyber Physical Systems (CPS) share similar characteristics with CAS. The
term CPS was first coined in 2006 by Helen Gill [53], the Program Director for the
Embedded & Hybrid Systems at US National Science Foundation. She defined
CPS as “engineering, physical and biological systems whose operations are inte-
grated, monitored, and/or controlled by a computational core. Components are
networked at every scale. Computing is deeply embedded into every physical
component, possibly even into materials. The computational core is an embed-
ded system, usually demands real-time response, and is most often distributed.
The behavior of a cyber-physical system is a fully-integrated hybridisation of
computational (logical) and physical action.”

Examples of CPS include contact tracing devices, self-driving cars, robotics
teams, mobile ad-hoc sensor networks and smart cities. CPS behavior is charac-
terised by the evolution in time of physical quantities measured by sensors and
discrete states of computational, connected and spatially arranged entities.

Figure 2 shows an instance of CPS in the automotive scenario where the
extensive integration of sensor networks and computational cores into automo-
tive systems has led to the development of various driving assistance features
that facilitate the driver during monotonous maneuvers and protect the passen-
gers from hazardous situations. Furthermore, the advent of 5G mobile-network
technology will support Vehicle To Vehicle (V2V) and Vehicle To Infrastructure
(V2I) communication technologies very soon. These technologies will enable the
exchange of information between vehicles and roadside units about position and
speed of vehicles, driving conditions on a particular road, accidents, or traffic
jams. This will allow to distribute the traffic load among several roads during
rush hour and to prevent accidents.

The safety-critical nature of these systems [64] requires the engineers to check
their correct execution with respect to rigorously defined spatial and temporal
requirements. However, the complexity of these large scale systems often lim-
its the possibility to analyze them using exhaustive verification techniques. A
common approach consists instead in simulating their design with different ini-
tial conditions, parameters and inputs. The generated traces (e.g., mixed-analog
signals) are then monitored [10,15] with respect to a formal specification of the
behavioral property to satisfy. The verdict of such specification-based monitoring
approach can return either a Boolean value specifying whether the traces satisfy
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or not the specification or a real value indicating how much the specification is
satisfied or violated according to a chosen notion of distance [12,39,49,50,65].

Specification-based monitoring is nowadays the basic functionality upon
which are built several other computer-aided verification and synthesis tech-
niques such as statistical model checking [24,33,75], falsification analysis [1,67,
68,73], failure explanation/debugging [16–18], parameter synthesis for system
identification or design [9,23,35,37]. The majority of specification languages
and tools available for CPS supports only the monitoring of temporal prop-
erties. Examples are Metric Temporal Logic (MTL) [52], Signal Temporal Logic
(STL) [57,58] and Timed Regular Expressions (TRE) [6].

However, one of the most important and intriguing questions in monitor-
ing these systems is how to formally specify in a human-understandable lan-
guage also spatio-temporal emergent behaviour, and how to efficiently monitor
its onset.

In this tutorial, we present the Spatio-Temporal Reach and Escape Logic
(STREL), a spatio-temporal specification language originally introduced in [13].
STREL enables the specification of spatio-temporal requirements and their mon-
itoring over the execution of mobile and spatially distributed components. In this
framework, space is represented as a weighted graph, describing the topological
configurations in which the single components (nodes of the graph) are arranged.
Both nodes and edges have attributes modelling physical and logical quantities
that can change in time. STREL extends the Signal Temporal Logic [57] with two
spatial operators reach and escape from which is possible to derive other spatial
modalities such as everywhere, somewhere and surround. These operators enable
a monitoring procedure where the satisfaction of the property at each location
depends only on the satisfaction of its neighbours. Furthermore, we show how
STREL can be interpreted according different semantics (Boolean, real-valued)
semantics based on constraint semirings, an algebraic structure suitable for con-
straint satisfaction and optimisation.

The rest of this paper is organized as follows. Section 2 introduces the model
we consider to represent the spatio-temporal signals, while Sect. 3 provides the
syntax and the semantics of STREL. In Sects. 4, 5 and 6, we demonstrate the
applicability of our formalism to different scenarios considering static (Sect. 4 and
Sect. 5) or dynamic (Sect. 6) spatial configurations and systems with determin-
istic or stochastic dynamics. Section 7 discusses the related work, while Sect. 8
draws our conclusions and discusses future works.

2 Space Model, Signals and Traces

In this section we introduce some preliminary notions, including the model of
space we consider and the related concept of spatio-temporal signal, illustrating
them through a working example.

Sensor Network. As a running example, let us consider a network [4] of n
devices, equipped with a sensor to monitor for example the temperature. Two



Monitoring Spatio-Temporal Properties (Invited Tutorial) 25

nodes can communicate with each other if their Euclidean distance is within
their communication range.

2.1 Discrete Space as a Graph

The design of a spatial logic is strictly related to the description of space in
which the dynamics takes place. In this tutorial, we consider a discrete space,
described as a weighted direct graph (undirect graphs can be treated as direct
graph with a symmetric relation). The reason why we focus our attention on
discrete space is that many applications, like bike sharing systems, smart grid and
sensor networks are naturally framed in a discrete spatial structure. Moreover, in
many circumstances continuous space is abstracted as a grid or as a mesh. This
is the case, for instance, of many numerical methods that simulate the spatio-
temporal dynamics using partial differential equations (PDEs). Hence, this class
of models can be dealt with by checking properties on such a discretization.

Definition 1 (Space Model). We define the spatial model S as a pair ⟨L,W⟩
where:

– L is a set of nodes that we call locations;
– W ⊆ L × R × L is a proximity function associating a label w ∈ R to distinct

pair �1, �2 ∈ L. If (�1,w, �2) ∈W it means that there is an edge from �1 to �2
with weight w ∈ R, i.e. �1

w
↦ �2.

Considering our running example, let us define a sensor space model. L is given
by the set of devices, i.e. each device represents a location. As proximity function
WC , we can consider the connectivity graph, i.e. a location �i is next to a location
�j if and only if they are within their communication range. Another possibility as
proximity function is the dual graph of the Voronoi diagram [7] which partitions
the plane into set of n regions, one per location, assigning each point of the
plane to the region corresponding to the closest location. These two examples of
graphs can be seen in Fig. 3.

Fig. 3. Proximity graph (left) and connectivity graph (right)
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Given a spatial model we can define routes.

Definition 2 (Route). Let S = ⟨L,W⟩, a route τ is an infinite sequence
�0�1⋯�k⋯ in S such that for any i ≥ 0, �i

w
↦ �i+1.

Let τ = �0�1⋯�k⋯ be a route, i ∈ N and � ∈ L, we use: τ[i] to denote the i-th
node �i in τ , τ[i..] to indicate the suffix route �i�i+1⋯, and τ(�) to denote the
first occurrence of � in τ :

τ(�) = {
min{i∣τ[i] = �} if� ∈ τ
∞ otherwise

We also use Routes(S) to denote the set of routes in S, while Routes(S, �)
denotes the set of routes starting from � ∈ L.

We can use routes to define the distance among two locations in a spatial
model. This distance is computed via an appropriate function f that combines
all the weights in a route into a value.

Definition 3 (Route Distance). Let S = ⟨L,W⟩, τ a route in S, the distance
df

τ [i] up-to index i is:

df
τ [i] =

⎧
⎪⎪
⎨
⎪⎪
⎩

0 i = 0
f(df

τ[1..]
[i − 1],w) (i > 0) and τ[0]

w
↦ τ[1]

Given a location � ∈ L, the distance over τ up-to � is then dτ [�] = df
τ [τ(�)] if

� ∈ τ , or ∞ otherwise1.

Considering again the sensor example, we can be interested in different types
of distance. For example we can count the number of hops, simply using the
function hops defined as hops(v,w) ∶= v + 1 and in this case dhops

τ [i] = i. We can
also consider the distances with respect the weighted label w in the edges, in
that case we have weight(v,w) = v +w and dweight

τ [i] is the sum the weights in
the edges of the route until the i-th node �i.

Definition 4 (Location Distance) The distance between two locations �1 and
�2 is obtained by choosing the distance values along all possible routes starting
from �1 and ending in �2:

dS[�1, �2] =min{dτ [�2]∣τ ∈ Routes(S, �1)}.

In the sensor network example, the distance between two locations �1 and
�2, will be the minimum hop-length or weight-length over all paths connecting
�1 and �2 for the hops or weight distance function respectively.

1 We restrict here only to the tropical semiring, a more general definition can be found
in [13].
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2.2 Signal, Trace and Dynamic Models

We assume to have piecewise constant temporal signal ν = [(t0, d0), . . . , (tn, dn)]

with ti ∈ T = [0, T ] ⊆ R≥0 a time domain and di ∈ D. Different kinds of signals
can be considered: signals with D = {true, false} are called Boolean signals;
with D = R∞ are called real-valued or quantitative signals, signal with D = Z are
integer signals. We use T (ν) to denote the sequence of (t0, . . . , tn) of time steps
in ν.

Definition 5 (Spatio-temporal signal) Let S = ⟨L,W⟩ be a space model and
T = [0, T ] a time domain, a spatio-temporal signal is a function

σ ∶ L→ T→D

that associates a temporal signal σ(�) = ν at each location. We use σ@t to denote
the spatial signal at time t, i.e. the signal s such that s(�) = σ(�)(t), for any
� ∈ L.

Definition 6 (Spatio-Temporal Trace) Let S = ⟨L,W⟩ be a space model, a
spatio-temporal trace is a function

x ∶ L→ T→Dn

such that for any � ∈ L yields a vector of temporal signals x(�) = (ν1, . . . , νn).
Note that this means that a spatio-temporal trace is composed by a set of spatio-
temporal signals. In the rest of the paper we will use x(�, t) to denote x(�)(t).

We can consider a spatio-temporal trace of our sensor network as x ∶ L → T →

R ×R that associates a set of temporal signals x(�) = (νB , νT ) at each location,
where νB and νT correspond for example to the temporal signals of the battery
and the temperature respectively in location �.

We also consider spatial models that can dynamically change their configura-
tions. For example, the devices can move in space and change their position and
connectivity pattern. For this reason, we need to define a structure that returns
the spatial configuration at each time.

Definition 7 (Dynamic Spatial Model) Let L be a set of locations and
(t0, . . . , tn) a set of time step with ti ∈ T = [0, T ] ⊆ R≥0, a Dynamic Spatial Model
is a function associating each element ti with a space model Si that describes the
spatial configuration at that time step, i.e. (ti,Si) for i + 1, ..., n and S(t) = Si

for all t ∈ [ti, ti+1).

In case of a static spatial model we assume that S(t) = S for all t.

3 Logic and Monitoring Procedures

Here we consider the specification of spatio-temporal properties by the Spatio-
Temporal Reach and Escape Logic (STREL). STREL is an extension of the Sig-
nal Temporal Logic (STL) [34,36,57], with a number of spatial modal opera-
tors. Signal Temporal Logic is a linear-time temporal logic, it integrates the
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dense-semantics of the Metric Interval Temporal Logic (MITL) [5] with a set
of parametrised numerical predicates playing the role of atomic proposition μ,
these are inequality of the form (g(ν1, . . . , νn) ≥ 0), for g ∶ Rn

→ R. Considering
our wireless sensor network, example of atomic propositions are: vB > 0.5, i.e.
the level of the battery should be greater than 0.5, or vT < 30, i.e. the value of
temperature should be less than 30○.

The syntax of STREL is given by

Definition 8 (STREL Syntax)

ϕ ∶= true ∣ μ ∣ ¬ϕ ∣ ϕ1 ∧ϕ2 ∣ ϕ1 UI ϕ2 ∣ ϕ1 SI ϕ2 ∣ ϕ1R
f
d ϕ2 ∣ E

f
d ϕ

where true is the Boolean true constant, μ is an atomic predicate (AP ), negation
¬ and conjunction ∧ are the standard Boolean connectives, the temporal modal-
ities are the until (UI) and the since (SI), where I is a non singular positive
real interval, while reachability (Rf

d) and the escape (Ef
d ) are the spatial opera-

tors, with f a Distance Function described in the previous section (e.g. the hops
function) and d a non singular positive real interval. Both I and d can be infinite
intervals, in case of using all R∞

≥0 the interval can be omitted. In addition, we
can derive the disjunction operator (∨), the future eventually (FI) and always
(GI) operators and the past once (OI) and historically (HI). We can derive also
three other spatial operators: the somewhere, the everywhere and the surround.
Below, we describe in detail the semantics of the spatial operators, we will see
the temporal operators directly in the next Sections within the case studies, for
more detail about temporal operators of STL we refer the reader to [34,36,57].

3.1 Boolean and Quantitative Semantics

The logic presents two semantics: a Boolean semantics, (S,x, �, t) ⊧ ϕ, with the
meaning that the spatio-temporal trace x in location � at time t with spatial
model S, satisfies the formula ϕ and a quantitative semantics, ρ(ϕ,S,x, �, t),
that can be used to measure the quantitative level of satisfaction of a formula
for a given trajectory. The function ρ is also called the robustness function.
The robustness is compatible with the Boolean semantics since it satisfies the
soundness property: if ρ(ϕ,S,x, �, t) > 0 then (S,x, �, t) ⊧ ϕ; if ρ(ϕ,S,x, �, t) < 0
then (S,x, �, t) /⊧ ϕ. Furthermore it satisfies also the correctness property, which
shows that x measures how robust is the satisfaction of a trajectory with respect
to perturbations. We refer the reader to [36] for more details.
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Fig. 4. Example of spatial properties. �3 satisfies yellowRhops
[1,4]

pink while �4 does not.

�9 satisfies Ehops
[3,∞]

orange while �10 does not. �1 satisfies �hops
[3,5]

pink and �
hops
[2,3]

yellow. All

green points satisfy green ⊚hops
[0,100]

blue. �43 (the green point in the middle with a boild

red circle) is the only location that satisfies green ⊚hops
[2,3]

blue. The letters inside the
nodes indicate the color and the numbers indicate the enumeration of the locations.
(Color figure online)

Reach. The quantitative semantics of the reach operator is:
ρ(ϕ1R

f
[d1,d2]

ϕ2,S,x, �, t) =

= max
τ∈Routes(S(t),�)

max
�′∈τ ∶(df

τ [�′]∈[d1,d2])

(min(ρ(ϕ2,S,x, �′, t), min
j<τ(�′)

ρ(ϕ1,S,x, τ[j], t)

The Boolean semantics can be derived substituting min,max with ∨,∧ and con-
sidering the Boolean satisfaction instead or ρ. (S,x, �, t), a spatio-temporal
trace x, in location �, at time t, with a (dynamic) spatial model S, satisfies
ϕ1R

f
[d1,d2]

ϕ2 iff it satisfies ϕ2 in a location �′ reachable from � through a route
τ , with a length df

τ [�
′
] ∈ [d1, d2], and such that τ[0] = � and all its elements with

index less than τ(�′) satisfy ϕ1. Practically, the reach operator φ1R
f
[d1,d2]

φ2

describes the behaviour of reaching a location satisfying property φ2 passing
only through locations that satisfy φ1, and such that the distance from the ini-
tial location and the final one is greater than d1 and less than d2. In Fig. 4,
we report an example of reachability property, considering f as the hops func-
tion described in the previous section. In the graph, the location �3 (meaning the
trajectory x at time t in position �3 with spatial model S(t) as in the figure) sat-
isfies yellowRhops

[1,4]
pink. Indeed, there exists a route τ = �3�13�14�17�35 such that

dhops
τ [�35] = 4, where τ[0] = �3, �35 satisfies the pink property (i.e. it is pink) and

all the other elements of the route satisfy the yellow property. Instead, for exam-
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ple, the location �4 does not satisfy the property because it does not satisfies the
distance constraint.

Escape. The quantitative semantics of the escape operator is:

ρ(Ef
[d1,d2]

ϕ,S,x, �, t) = max
τ∈Routes(S(t),�)

max
�′∈τ ∶(d

f
S(t)

[�,�′]∈[d1,d2])

min
i≤τ(�′)

ρ(ϕ,S,x, τ[i], t).

The Boolean semantics can be derived substituting min,max with ∨,∧, and
considering the Boolean satisfaction instead of ρ. (S,x, �, t), a spatio-temporal
trace x, in location �, at time t, with a (dynamic) spatial model S, satisfies
E

f
[d1,d2]

ϕ if and only if there exists a route τ and a location �′ ∈ τ such that
τ[0] = �, dS[τ[0], �′] ∈ [d1, d2] and all elements τ[0], ...τ[k] (with τ(�′) = k)
satisfy ϕ. Practically, the escape operator Ef

[d1,d2]
φ describes the possibility of

escaping from a certain region passing only through locations that satisfy φ, via
a route with a distance that belongs to the interval d.

In Fig. 4, we report an example of escape property. In the graph, the location
�9 satisfies Ehops

[3,∞]
orange. Indeed, there exists a route τ = �9�10�11�12 such that

τ[0] = �9, τ[3] = �12, dhops
S [�9, �12] = 3 and all elements τ[0], τ[1], τ[2], τ[3]

satisfy the orange property. Note that the route �10�11�12 is not a good route to
satisfy the property because the distance dhops

S [�10, �12] = 2.
Now we describe the other three derived operators.

Somewhere. �f
[d1,d2]

ϕ ∶= trueRf
[d1,d2]

ϕ holds for (S,x, �, t) iff there exists a
location �′ in S(t) such that (S,x, �′, t) satisfies ϕ and �′ is reachable from �
via a route τ with length df

τ [�
′
] ∈ [d1, d2]. In Fig. 4, �1 satisfies the property

�
hops
[3,5]

pink because there is a path τ = �1 . . . �35 with a length dhops
τ (k) ∈ [3,5],

where τ[0] = �1, τ[k] = �35, and �35 satisfies the pink property.

Everywhere. �
f
[d1,d2]

ϕ ∶= ¬�f
[d1,d2]

¬ϕ holds for (S,x, �, t) iff all the locations
�′ reachable from � via a path,with length df

τ [�
′
] ∈ [d1, d2], satisfy ϕ. In Fig. 4,

�1 satisfies �
hops
[2,3]

yellow because all the locations at a distance between 2 and 3
from �1 satisfy the yellow property, while �2 does not satisfies because �18 is at
a distance less than 3 but does not satisfy the yellow property.

Surround. ϕ1 ⊚
f
[d1,d2]

ϕ2 ∶= ϕ1 ∧ ¬(ϕ1R
f
[d1,d2]

¬(ϕ1 ∨ϕ2) ∧ ¬(E
f
[d2,∞]

(ϕ1)) holds
for (S,x, �, t) iff there exists a ϕ1-region that contains �, all locations in that
region satisfies ϕ1 and are reachable from � via a path with length less than
d2. Furthermore, all the locations that do not belong to the ϕ1-region but are
directly connected to a location in ϕ1-region must satisfy ϕ2 and be reached
from � via a path with length in the interval [d1, d2]. Practically, the surround
operator expresses the topological notion of being surrounded by a ϕ2-region,
while being in a ϕ1-region, with additional metric constraints. The idea is that
one cannot escape from a ϕ1-region without passing from a node that satisfies
ϕ2 and, in any case, one has to reach a ϕ2-node at a distance between d1 and
d2. In Fig. 4, the green points satisfy green ⊚hops

[0,100]
blue. Indeed, for each green
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point we can find a region that contains the point, such that all its points are
green and all the points connected with an element that belongs to the region
are blue and satisfy the metric constraint. Instead, the property green⊚hops

[2,3]
blue

is satisfied only by location �43 (the location with a bold red circle), indeed �43 is
the only location for which there exists a region (the green region) such that all
its elements are at a distance less than 3 from �43 and satisfy the green property;
and all the locations directly connected with the green region are at a distance
between 2 and 3 from �43 and satisfy the blue property.

3.2 Offline Monitoring Algorithm

At the moment the logic supports only offline monitoring. The monitor takes as
inputs a static or dynamic spatial model S, a trace x and a formula φ and returns
the spatio-temporal signal σ representing the monitoring of φ, a Boolean spatio-
temporal signal for the Boolean Semantics and a real-value spatio-temporal sig-
nal for the quantitative one. The monitor of the whole trace corresponds to σ@0,
i.e. the spatial Boolean or real-value signal at time zero. This means that the
monitor of the whole trace corresponds to the evaluation at time t = 0 in each
point in space: (S,x, �) ⊧ ϕ iff (S,x, �,0) ⊧ ϕ and ρ(ϕ,S,x, �) ∶= ρ(ϕ,S,x, �,0).
We made this choice because we assume no privilege direction or location so we
cannot consider a zero location as for the time.

Like in STL, monitoring of temporal operators is linear in the length of the
signal times the number of locations in the spatial model. This because the mon-
itoring procedure is performed at each location by using the same (linear) algo-
rithm proposed in [36]. Monitoring of spatial properties is more expensive. These
algorithms, formally described in [13], are based on a variations of the classical
Floyd-Warshall algorithm. The number of operations to perform is polynomial
on the size of the model times the length of the signal.

3.3 Application to Stochastic Systems

The analysis of spatio-temporal properties can be applied also on stochastic
systems considering methodologies as Statistical Model Checking [74] (SMC).
SMC combines simulation of the stochastic model (i.e. an algorithm that samples
traces according to the probability distribution of the model in the Skorokhod
space) with a monitoring routine for the property φ. Stochastic systems induce
a probability measure on the space of all possible traces (i.e. on the so-called
Skorokhod space, the space of càdlàg functions, which are piecewise continuous
functions of time, taking real values). If we define a stochastic process M =

(T ,A, μ), where T is a trajectory space and μ is a probability measure on a
σ-algebra A of T , a quantity for measuring how a certain STREL formula ϕ
is satisfied by M is the satisfaction probability S(ϕ, t), i.e. the probability that
a trajectory generated by the stochastic process M satisfies the formula ϕ at
the time t: E[s(ϕ, ξ, t)] = ∫ξ∈T s(ϕ, ξ, t)dμ(ξ) where s(ϕ, ξ, t) = 1 if (ξ, t) ⊧ ϕ
and 0 otherwise. The quantitative counterpart of the satisfaction probability is
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the expected robustness, defined as ⟨ρ(ϕ, t)⟩ ∶= E[ρ(ϕ, ξ, t)] = ∫ξ∈T ρ(ϕ, ξ, t)dμ(ξ)
that is the expectation of the robustness computed over the trajectories of M.

More specifically, SMC for satisfaction probability works by pipelining the
generation of traces and their monitoring: every time a trace is generated by the
simulator, it is passed to the Boolean monitor, which returns either 0 (false) or
1 (true). Probabilistically, this can be seen as a sample of a Bernoulli random
variable, having probability p(φ) of observing 1. From a finite sample of such
values, we can rely on standard statistical tools to estimate p(φ) and to com-
pute the confidence level of such an estimate. Estimation of average robustness
works in a similar way. Examples of spatio-temporal model checking to com-
pute the approximated probabilistic satisfaction can be found in [14]. Analyzing
these systems through the computation of satisfaction probability and/or aver-
age robustness, can therefore bring key insights in assessing and evaluating the
design choices being made. The combination of Statistical Model Checking with
quantitative semantics has been explored earlier for STL in [9] and applied to
tasks like system design and parameter synthesis [9,25].

4 Static Space and Regular Grid: The Formation
of Patterns

We consider here the simplest scenario, a regular grid, with only hop distance
function and a deterministic model. In particular, in this example, we show how
to exploit the surround operator to specify the formation of patterns and some
other spatio-temporal related properties.

Model and Trace. The space model is a K ×K grid treated as a weighted
undirected graph, where each cell (i, j) ∈ {1, . . . ,K} × {1, . . . ,K} is a location,
edges connect each pairs of neighbouring nodes along four directions and they
have only one label which corresponds to the hop distance function, i.e. if two
cells are neighbors the distance is equal to one.

The spatio-temporal trace describes the concentration of two proteins A and
B in each cell of the grid at each time step. It is generated by a reaction-diffusion
system, discretised according to a Finite Difference scheme [63], as a system of
ODEs whose variables are organised in the K × K rectangular grid. Figure 5
reports the concentration of A for a number of time steps. It can be seen that
from time t = 20 the shape of the pattern is apparent and remains stable; the
pattern consists in a almost equidistant distribution of (blue) spots which have a
low concentration of A surrounded by regions with a high concentration of A. For
protein B (not shown) happens the opposite (high density regions surrounded
by low density regions). More details about the model can be found here [62].
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Fig. 5. Concentration of protein A for the reaction-diffusion system for the frames with
t = 0,5,7,12,20,50 time units. The initial conditions (i.e. the initial concentration of
A and B) are set randomly. The colour map for the concentration is specified in the
legend on the right. (Color figure online)

Fig. 6. (a) Boolean (left) and quantitative (right) satisfaction of the (spot formation)
property; in the Boolean case the cells that satisfy the formula are in red; (b) Snapshots
at time t = 50 of protein A for the reaction-diffusion model with different diffusion rates
for which we have the formation of different patterns. (Color figure online)

4.1 Properties

Spot. (φspot ∶= (A <= h) ⊚hops
[d1,d2]

(A > h)) holds in sub-regions that have low
concentration of A, surrounded by a high concentrations of A. In detail, this
property holds in the location � that belongs to a region L′ of the grid where all
elements satisfy the atomic proposition A <= h and their distance from � belong
to the interval is less than d2. Furthermore, each element directly connected with
L′ satisfy A > 0, and its distance from � belongs to [d1d2]. The elements in the
boundary correspond to all elements directly connected to a location of L′. Note
that the use of distance bounds in the surround operator allows one to constrain
the size/ diameter of the spot to [d1d2]. If we have only one type of distance
function, the name in the formula can be even omitted.

Spot Formation. (F
[T,T+δ]G(spot)) means that from a point in the future

between T and T + δ the spot property should always hold. In Fig. 6(a) we can
see the Boolean and quantitative satisfaction of the Spot Formation formula
with h = 0.5, T = 19, δ = 1, d1 = 1, d2 = 6 for the trajectory reported in Fig. 5.

Pattern. (��
[0,dspot]

spotformation) means that each node in the grid should
be connected to a node at a distance less than dspot where the spot property
holds, where dspot represent the maximum distance between spots. This prop-
erty permits to describe a global behaviour. As we pointed in the description
of the logic the monitor is done in each location, differently from the temporal
part where we define the satisfaction of the whole trajectory as the satisfaction
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at time zero. Using the everywhere operator (�) without distance constraints
means to cover all the locations of the grid, i.e. all the locations will have the
same evaluation and this means that checking this formula in a random location
of our space is enough to verify the presence of the pattern. In Fig. 6(b), we can
see a snapshot of two different patterns generated by the same reaction-diffusion
system, changing the diffusion rate. Changing the diffusion rate can affects the
shape and size of the spots or even disrupts them. Trajectories generating pat-
terns as in Fig. 6(b) do not satisfy the pattern formula (and the quantitative
semantics returns a value around 0.5) while trajectory generating pattern as in
Fig. 5 satisfy it.

5 Static Space and Stochastic Systems: Availability
of Bikes

In this example we show how to combine temporal operators with the somewhere
operator, for specifying some key properties of stochastic bike sharing systems.
In particular, we observe how spatio-temporal properties can be used to analyse
the availability of bikes or free slots in proximity of users.

Model and Trace. We consider the London Santander Cycles Hire network,
modelled as a Population Continuous Time Markov Chain (PCTMC) with time-
dependent rates [40]. We set the model parameters using historic journey and
bike availability data from January 2015 to March 2015.

The Bike-Sharing System (BSS) is composed of a number of bike stations,
distributed over a geographic area. Each station has a fixed number of bike
slots. The users can pick up a bike, use it for a while, and then return it to
another station in the area. The model, given the number of bikes/free slots
in a station at time t, computes the probability distribution of the number of
bikes/free slots in that station at time t+h with h ∈ [0,40]min. We can describe
the model as a transition system where Bi (respectively Si) represents the bike
agent (respectively the slot agent) in the ith station, T i

j is the bike agent travelling
from pick-up station i to return station j, while N is the total number of stations.
Each transition describes a possible event changing the state of the system. A
transition rule like Bi → Si + T i

j models that an agent Bi is removed from the
system (a bike leaves station i), while new agents Si and T i

j are added to the
system (a free slot is added to station i, while the bike is set to travel towards
station j). The rate of each transition encodes the mean frequency with which it
happens, considering historic journey data. For a detailed understanding of the
model, the interested reader can refer to [62].

We consider a model with 733 bike stations (each with 20–40 slots) and
a total population of 57,713 agents (users) picking up and returning bikes. We
simulate the model using Simhya [22], a Java tool for the simulation of stochastic
and hybrid systems, using the Gibson-Bruck (GB) algorithm. We are considering
in particular the trajectories only of the bike (B) and slot (S) agents, in each
station. Our spatio-temporal trace is then x(i, t) = (Bi(t), Si(t)), associating
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at each station i the number of bikes and free slots at each time. The space is
represented by a weighted graph, where the nodes are the bike stations and the
edges describe the connection between each station. Two nodes are connected if
they are at a distance less or equal than 1 km.

5.1 Properties

We use STREL to study spatio-temporal properties of the system and to explore
their robustness considering a set of parameter values for the formulas. In the
following, we will consider the distance induced by the function Δ(v, (x, y)) =
v+∣∣(x, y)∣∣2, where (x, y) are the coordinates of the distance vector between two
adjacent nodes, while v is the distance incrementally computed by Δ.

Local Availability. One of the main problems of these systems consists in the
availability of bikes or free slots in each station. The most interesting question
related to this issue from a user’s point of view is “If I don’t find a bike (free slot,
resp.) here, can I find another station close enough where there is an available
bike (resp. free slot)?” This concern can be expressed by the STREL property
described below:

φ1 = G
[0,Tend]

{�
Δ
[0,d](B > 0) ∧�Δ

[0,d](S > 0)} (1)

A station � satisfies φ1 if and only if it is always true that, between 0 and Tend

minutes, there exists a station at a distance less than or equal to d, that has at
least one bike and a station at a distance less or equal to d that has at least one
free slot.

In the analysis, we investigate the value of parameter d ∈ [0,1] kilometres to
see how the satisfaction of the property changes in each location. Figure 7 shows
the approximate satisfaction probability pφ1 for 1000 runs for all the stations,
for (a) d = 0, and (b) d = 0.3 For d = 0, we can see that many stations have
a high probability to be full or empty (indicated by red points), i.e. low values
of satisfaction probability, with standard deviation of all the locations in the
range [0, 0.0158] and mean standard deviation 0.0053. However, increasing d
to d = 0.3 km, i.e. allowing a search area of up to 300 metres from the station
that currently has no bikes, or no slots respectively, we greatly increase the
satisfaction probability of φ1, with a standard deviation that remains in the
same range and mean standard deviation of 0.0039. For d = 0.5, the probability
of pφ1 is greater than 0.5 for all the stations; standard deviation is in the range [0,
0.0142] and mean stdv is 0.0002. Figure 8 (a) shows the satisfaction probability
of some BBS stations vs distance d=[0,1.0].

Timed Availability. The property we analyzed previously did not consider that
a user will need some time to reach a nearby station. Property ϕ1 can be refined
to take this aspect into consideration by considering a nested spatio-temporal
property:

ψ1 = G
[0,Tend]

{�
Δ
[0,d](F[tw,tw]

B > 0) ∧�Δ
[0,d](F[tw,tw]

S > 0)} (2)
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Fig. 7. Approximate satisfaction probability of formula φ1 for 1000 runs for each BSS
station for (a) d = 0, and (c) d = 0.3. The value of the probability is given by the color
legend. (Color figure online)

A station � satisfies ψ1 if and only if it is always true between 0 and Tend minutes
that there exists a station at a distance less than or equal to d, that, eventually
in a time equal to tw (the walking time), has at least one bike and a station at
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Fig. 8. Approximate satisfaction probability for property φ1 (a). (b) pψ1 − pφ1 vs the
distance d = [0,1.0]. Both evaluated over 1000 runs of BSS stations �1,�50, �100, and
�300.

a distance less than or equal to d, that, eventually in a time equal to tw has at
least one free slot.

We consider an average walking speed of 6.0 km/h, this means for example
that if we evaluate a distance d = 0.5 km, we consider a walking time tw = 6 min.
The results of ψ1 are very similar to the results of φ1. This means that there is not
much difference between looking at t = 0 or after the walking time. Figure 8(b)
shows the difference between the satisfaction probability of properties ψ1, φ1 for
the same locations.

6 Dynamic Space: Connectivity and Reliability
in a MANET

In the previous sections we have considered two scenarios where the structure
of the space does not change in time. Differently, in this section, we consider a
scenario where the structure of the space is dynamic.

Model and Trace. We consider a mobile ad-hoc sensor network (MANET).
This kind of systems can consist of up ten thousands of mobile devices connected
wirelessly, usually deployed to monitor environmental changes such as pollution,
humidity, light and temperature.

Each sensor node is equipped with a sensing transducer, data processor, a
radio transceiver and an embedded battery. A node can move independently
in any direction and indeed can change its links to other devices frequently.
Two nodes can communicate each other if their Euclidean distance is at most
their communication range as depicted in Fig. 3. Moreover, the nodes can be
of different type and their behaviour and communication can depend on their
types.

In this scenario, the spatial model of time t is obtained by considering the
graph where each device represents a node/location of the network. Edges are
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labelled with both their Euclidean distance and with the integer value 1. This
last value is used to compute the hop (shortest path) count between two nodes,
that is the number of intermediate network nodes through which data must pass
between source node and target one. The signal associated with each location
contains three values: the type of node (coordinator, router, end-device), the
level of battery, and the temperature.

6.1 Properties

We can use STREL to specify, and monitor, properties related to connectivity
of the network.

Connectivity. The first property one is interested to monitor is the connectivity.
That is, each node that is an end device is directly connected either to a router
or to a coordinator :

ψ1 = end devRhops
[0,1]
(router ∨ coord)

The formula above holds if from a node satisfying the atomic proposition end dev
(indicating an end device), we can reach a node satisfying either router or coord
(that are the atomic proposition satisfied by coordinators or a routers), following
a path in the spatial graph such that the hops distance along this path (i.e. its
number of edges) is not bigger than 1.

More sophisticated properties can be specified with STREL. For instance, the
following property can be used to specify that an end device is either connected
to the coordinator or can reach it via a chain of at most of 5 routers:

ψ2 = end devRhops
[0,1]
(routerRhops

[0,5]
coord)

Delivery. Another property that one could be interested in monitoring is the
ability of the system to forward a message at a given distance. The ability of a
component to forward a message is related to its battery level. To express this
property, we can use the escape operator:

ψ3 = E
hops
[5,∞]

(battery > 0.5)

This property states that from a given location, we can find a path of (hops)
length at least 5 such that all nodes along the path have a battery level greater
than 0.5, i.e. that a message will be forwarded along a connection with no risk
of power failure.

Reliability. Spatial and temporal operators can be mixed to specify properties
regarding the evolution of the space in time. For instance, the following property
is satisfied by the nodes with a battery level less than 0.5 that can reach in less
than 10 hops another component that will eventually have a the battery level
greater than 0.5:

ψ4 = (battery < 0.5) Rhops
[0,10]

F(battery > 0.5)
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Moreover, the following property can be used to state that the correct spatial
configuration is preserved in each time step:

ψ5 = Gψ2

where ψ2 is the formula defined above.

7 Related Work

Machine Learning vs Specification Languages. Pattern recognition is a
well-established research area in machine learning. A typical approach consists
in using a classifier trained with a labeled data set that assigns each data item to
one class. Once the classifier is built from data using one of the several machine
learning (ML) techniques [66] available, it can be used to detect/monitor whether
a new data “most likely” matching to the classes. An important step is the choice
and the extraction of the distinctive features [19,32,51,55] with relevant infor-
mation from a set of input data representing the pattern of interest. Although
extremely powerful, ML techniques lack generally of interpretability: they typ-
ically provide black-box data descriptors (e.g., deep neural networks) that are
generally far from the human comprehension and ability to reason. Our approach
to specify spatio-temporal patterns is instead based on a logic-based specifica-
tion language. The declarative nature of the language offers an high-level and
abstract framework enabling generalisation. STREL specifications are re-usable,
compositional and generally closer to the human understanding.

Spatio-Temporal Models. In [69], Talcott introduced the notion of spatial-
temporal event-based model to monitor spatial-temporal properties over CPS
executions. In this model, actions (e.g. the exchange of messages, or a physical
changes) are labeled with time and space stamps and they trigger events that
are further processed by a monitor. In [70] the model was further extended
to enable different space representations. Although the approaches in [69,70]
provide a valuable algorithmic framework, they lack a specification language
and the monitors cannot be automatically generated.

Other mathematical structures such as topological spaces, closure spaces,
quasi-discrete closure spaces and finite graphs [61] have been investigated to
reason about spatial relations (e.g. closeness and neighborhood) in the context
of collective adaptive systems [31]. Quad-trees spatial structures [41] have been
proposed in [44,47,48] to reason about fractal-like spatial patterns or spatial
superposition properties in a grid, such as electrical spiral formation in cardiac
tissues [47] or power management requirements in a smart grid [48]. Despite
these models are suitable for offline and centralised monitoring of model-based
simulations, they do not scale well for the runtime monitoring of spatially dis-
tributed CPS.

Spatial and Spatio-Temporal Logics. Spatial logics have been the subject
of theoretically investigation since at least almost a couple of decades [3]. The
work in [3] focuses on theoretically investigation, expressivity and decidability,
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often in continuous space. Less attention has been placed on more practical
aspects, especially in the verification procedures. In particular, model checking
techniques for spatial models have been introduced more recently. In [29], the
authors introduce a Spatial Logic for Closure Spaces (SLCS) that leverages a dis-
crete and topological notion of space, based on closure spaces [43]. An extension
of the SLCS with temporal aspects, as “snapshot” models, was proposed later
in [30]. This extends SLCS with the temporal modality of the branching logic
Computation Tree Logic [38]. However, the algorithms to check snapshot models
are very computational expensive and are susceptible to state-space explosion
problems because the spatial formulae need to be recomputed at every state.

Relevant works are also those on spatial logics for process algebra with loca-
tions such as in [27,28], or spatial logic for rewrite theories [8]. Other logic-based
formalisms have been introduced to reason about the topological [20] or direc-
tional [26] aspects of locally interacting components. In the topological app-
roach [20], the entities are sets of points in the space and the relation between
them is preserved under translation, scaling and rotation. If the relation between
objects depends on their relative position then the spatial model supports the
directional reasoning. These logics are highly computationally complex [26] or
even undecidable [59] and indeed impractical to use.

Table 1. Table comparing the main features of different spatio-temporal logics.

Specification language Temporal logic Spatial model Static/dynamic space

STREL [13] STL [57] Weighted graph Static/dynamic

SpaTeL [48] STL [57] Quad-trees Static

STLCS [30] CTL [38] Closure spaces Static

SaSTL [56] STL [57] Weighted graph Static

SSTL [61] STL [57] Weighted graph Static

Monitoring spatial-temporal behaviors has recently started to receive more
attention with Spatial-Temporal Logic (SpaTeL) [48], Signal Spatio-Temporal
Logic SSTL [61], Spatial Aggregation Signal Temporal Logic (SaSTL) [56] and
Spatio-Temporal Reach and Escape Logic STREL [13]. SpaTeL is the unification
of Signal Temporal Logic [57] (STL) and Tree Spatial Superposition Logic (TSSL)
introduced in [44] to classify and detect spatial patterns. Spatial properties are
expressed using ideas from image processing, namely quad trees [41]. This allows
one to capture very complex spatial structures, but at the price of a complex
formulation of spatial properties, which are in practice only learned from some
template images. SSTL combines STL with two spatial modalities, one express-
ing that something is true somewhere nearby and the other capturing the notion
of being surrounded by a region that satisfies a given spatio-temporal property.
SSTL has two possible semantics a Boolean and a real-valued one. SSTL [62]
operates over a static topological space while STREL on the contrary can mon-
itor entities over a dynamic topological space. Furthermore, STREL generalizes
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SSTL spatial modalities with the reach and escape operators, simplifying the
monitoring that can be computed locally with respect to each node. Finally,
SaSTL [56] is recently proposed specification language that augment STL with
two new logical operators for expressing spatial aggregation and spatial count-
ing characteristics that are typical in monitoring spatio-temporal requirements
in a smart city. Similarly to SSTL, also SaSTL operates on a static topological
space. We summarize the main characteristics of the different spatio-temporal
logics discussed in section in Table 1.

8 Conclusion

Spatio-temporal logics are high level languages that permit us to specify com-
plex behaviours of dynamical systems distributed in space. In this tutorial paper
we presented STREL, a modal logic which permits to specify spatio-temporal
requirements and to monitor them automatically over a spatio-temporal trace.
We discuss how STREL is suitable to capture behaviours of different scenarios:
emergent Turing patterns, bike sharing systems, mobile sensor networks. These
scenarios have both static and dynamic spatial structure and deterministic or
stochastic dynamics. This flexibility of the logic, however, does not result in a
high computational complexity of monitoring algorithms. This is a consequence
of endowing the logic with spatial operators which are existential modal oper-
ators. Currently, STREL supports only offline monitoring. In order to properly
apply STREL to real-time scenarios, we are designing dedicated online and dis-
tributed monitoring algorithms. Future work also includes the use of STREL
within design and control loops of cyber-physical systems, leveraging the work
done with STL in this respect [68].
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