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Preface

This volume contains the refereed proceedings of the 20th International Conference on
Runtime Verification (RV 2020), held virtually October 6–9, 2020.

The RV series is a sequence of annual meetings that brings together scientists from
both academia and industry interested in investigating novel lightweight formal
methods to monitor, analyze, and guide the runtime behavior of software and hardware
systems. Runtime verification techniques are crucial for system correctness, reliability,
and robustness; they provide an additional level of rigor and effectiveness compared to
conventional testing, and are generally more practical than exhaustive formal verifi-
cation. Runtime verification can be used prior to deployment, for testing, verification,
and debugging purposes, and after deployment for ensuring reliability, safety, and
security, for providing fault containment and recovery, as well as online system repair.

RV started in 2001 as an annual workshop and turned into a conference in 2010.
The workshops were organized as satellite events of established forums, including the
Conference on Computer-Aided Verification and ETAPS. The proceedings of RV from
2001 to 2005 were published in the Electronic Notes in Theoretical Computer Science.
Since 2006, the RV proceedings have been published in Springer’s Lecture Notes in
Computer Science. Previous RV conferences took place in Istanbul, Turkey (2012);
Rennes, France (2013); Toronto, Canada (2014); Vienna, Austria (2015); Madrid,
Spain (2016); Seattle, USA (2017); Limassol, Cyprus (2018); and Porto, Portugal
(2019).

In 2020, RV celebrated its 20th edition, and to mark this occasion, the conference
had a couple of new initiatives. The first initiative was to invite researchers from a
special focus area to submit papers; the focus area for RV 2020 was “Runtime Veri-
fication for Autonomy.” The second initiative was a panel discussion on RV for
Autonomy, which invited selected prominent researchers from academia and practi-
tioners from industry to serve as panelists. The panel focused on the role of runtime
verification in the emerging field of autonomous systems, highlighting the theoretical
and technical challenges and presenting potential opportunities.

This year we received 43 submissions, 27 as regular contributions, and 16 as short,
tool, or benchmark papers. Each of these submissions went through a rigorous
single-blind review process, as a result of which most papers received four reviews and
all papers received at least three review reports. The committee selected 23 contribu-
tions, 14 regular and 9 short/tool/benchmark papers for presentation during the con-
ference and inclusion in these proceedings. The evaluation and selection process
involved thorough discussions among the members of the Program Committee and
external reviewers through the EasyChair conference manager, before reaching a
consensus on the final decisions.



The conference featured three keynote speakers:

– Katherine Driggs-Campbell, University of Illinois at Urbana-Champaign, USA
– Lane Desborough, Nudge BG, Inc., USA
– Thomas Henzinger, IST Austria, Austria

The conference included five tutorials on the first day, including one invited tutorial
and four other tutorials selected to cover a variety of topics relevant to RV:

– Laura Nenzi, Ezio Bartocci, Luca Bortolussi, Michele Loreti, and Ennio Visconti
presented the invited tutorial on “Monitoring Spatio-Temporal Properties”

– Yanhong A. Liu and Scott D. Stoller presented a tutorial on “Assurance of
Distributed Algorithms and Systems: Runtime Checking of Safety and Liveness”

– Joshua Heneage Dawes, Marta Han, Omar Javed, Giles Reger, Giovanni Franzoni,
and Andreas Pfeiffer presented a tutorial on “Analysing the Performance of
Python-based Web Services with the VyPR Framework”

– Maximilian Schwenger presented a tutorial on “Monitoring Cyber-Physical
Systems: From Design to Integration”

– Klaus Havelund and Doron Peled presented a tutorial on “BDDs for Representing
Data in Runtime Verification”

The 2020 RV Test of Timed Award was given to Nicholas Nethercote and Julian
Seward for their RV 2003 seminal paper “Valgrind: A Program Supervision Frame-
work” on the dynamic analysis of programs.

RV 2020 is the result of the combined efforts of many individuals to whom we are
deeply grateful. In particular, we thank the Program Committee members and
sub-reviewers for their accurate and timely reviewing, all authors for their submissions,
and all attendees of the conference for their participation. We thank Houssam Abbas for
helping us organize the poster session. We are very grateful to RV sponsor Toyota
Research Institute, USA, and Springer who provided an award for the best RV paper.
We thank the RV Steering Committee for their support.

October 2020 Jyotirmoy Deshmukh
Dejan Ničković

vi Preface
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Fantastic Failures and Where to Find Them:
Designing Trustworthy Autonomy

Katherine Driggs-Campbell

University of Illinois at Urbana-Champaign, USA

Abstract. Autonomous robots are becoming tangible technologies that will soon
impact the human experience. However, the desirable impacts of autonomy are
only achievable if the underlying algorithms are robust to real-world conditions
and are effective in (near) failure modes. This is often challenging in practice, as
the scenarios in which general robots fail are often difficult to identify and
characterize. In this talk, we’ll discuss how to learn from failures to design
robust interactive systems and how we can exploit structure in different appli-
cations to efficiently find and classify failures. We’ll showcase both our failures
and successes on autonomous vehicles and agricultural robots in real-world
settings.



The Physical Side of Cyber-Physical Systems

Lane Desborough

Nudge BG, Inc., USA

Abstract. When our commercial reach exceeds our technical grasp, it is
imperative that we advance our knowledge, that we embrace approaches to
manage complexity, lest that complexity introduce undesired emergent prop-
erties. These complexity management approaches may seem new or novel, yet
they rarely are. As science fiction author William Gibson is wont to say, “The
future is already here, it just hasn’t been evenly distributed yet.”
Chemical engineering process control has afforded me a career spanning five

continents and five industries. Although my current focus is the “artificial
pancreas” – automated insulin delivery for people living with insulin-requiring
diabetes – I have been privileged to be exposed to some of the most complex
and challenging cyber-physical systems in the world; systems upon which
society depends.
Most industries exist within their own bubble; exclusionary languages and

pedagogy successfully defend their domains from new ideas. As one who has
traversed many industries and worked on scores of industrial systems, a variety
of personal, visceral experiences have allowed me to identify patterns and les-
sons applicable more broadly, perhaps even to your domain. Using examples
drawn from petrochemical production, oil refining, power generation, industrial
automation, and chronic disease management, I hope to demonstrate the need
for, and value of, real-time verification.



Monitorability Under Assumptions

Thomas A. Henzinger and N. Ege Saraç

IST Austria, Klosterneuburg, Austria
{tah,ege.sarac}@ist.ac.at

Abstract. We introduce the monitoring of trace properties under assumptions.
An assumption limits the space of possible traces that the monitor may
encounter. An assumption may result from knowledge about the system that is
being monitored, about the environment, or about another, connected monitor.
We define monitorability under assumptions and study its theoretical properties.
In particular, we show that for every assumption A, the boolean combinations of
properties that are safe or co-safe relative to A are monitorable under A. We give
several examples and constructions on how an assumption can make a
non-monitorable property monitorable, and how an assumption can make a
monitorable property monitorable with fewer resources, such as integer
registers.

This research was supported in part by the Austrian Science Fund (FWF) under grant Z211-N23
(Wittgenstein Award).
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Monitorability Under Assumptions

Thomas A. Henzinger and N. Ege Saraç(B)

IST Austria, Klosterneuburg, Austria
{tah,ege.sarac}@ist.ac.at

Abstract. We introduce the monitoring of trace properties under
assumptions. An assumption limits the space of possible traces that
the monitor may encounter. An assumption may result from knowl-
edge about the system that is being monitored, about the environment,
or about another, connected monitor. We define monitorability under
assumptions and study its theoretical properties. In particular, we show
that for every assumption A, the boolean combinations of properties that
are safe or co-safe relative to A are monitorable under A. We give sev-
eral examples and constructions on how an assumption can make a non-
monitorable property monitorable, and how an assumption can make a
monitorable property monitorable with fewer resources, such as integer
registers.

1 Introduction

Monitoring is a run-time verification technique that checks, on-line, if a given
trace of a system satisfies a given property [3]. The trace is an infinite sequence
of observations, and the property defines a set of “good” traces. The monitor
watches the trace, observation by observation, and issues a positive verdict as
soon as all infinite extensions of the current prefix are good, and a negative ver-
dict as soon as all infinite extensions of the current prefix are bad. The property
is monitorable if every prefix of every trace has a finite extension that allows a
verdict, positive or negative [17]. All safety and co-safety properties, and their
boolean combinations, are monitorable [5,10].

The above definition of monitorability assumes that the system may generate
any trace. Often a stronger assumption is possible: in predictive monitoring, the
monitor has partial knowledge of the system and, therefore, can partly predict
the future of a trace [7,8,16,18]; in real-time monitoring, the monitor can be
certain that every trace contains infinitely many clock ticks [12]; in composite
monitoring, a secondary monitor can rely on the result of a primary monitor. In
all these scenarios, the monitor can assume that the observed trace comes from a
limited set A of admissible traces. We say that the given property is monitorable
under assumption A if every prefix of every trace in A has a finite extension in A

This research was supported in part by the Austrian Science Fund (FWF) under grant
Z211-N23 (Wittgenstein Award).
c© Springer Nature Switzerland AG 2020

J. Deshmukh and D. Ničković (Eds.): RV 2020, LNCS 12399, pp. 3–18, 2020.
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4 T. A. Henzinger and N. E. Saraç

that allows a verdict relative to A, that is, either all further, infinite extensions
in A are good, or they all are bad.

Assumptions can make non-monitorable properties monitorable. Consider
the finite alphabet {req, ack, other} of observations, and the response property

P = �(req → ♦ack)

that “every req is followed by ack.” The property P is not monitorable because
every finite trace can be extended in two ways: by the infinite extension ackω

which makes the property true, and by the infinite extension reqω which makes
the property false. Now suppose that the monitor can assume that “if any req
is followed by another req without an intervening ack, then there will not be
another ack,” or formally:

A = �(req → ((¬req) W (ack ∨ �(¬ack)))).

The property P is monitorable under A because every finite prefix in A has
the admissible extension req · req which makes the property false1.

In Sect. 2, we study the boolean closure and entailment properties of monitor-
ing under assumptions. In Sect. 3, we study safety and co-safety under assump-
tions, following [12]. We show that for every assumption A, every property that
is safe relative to A, every property that is co-safe relative to A, and all their
boolean combinations are monitorable under A. The results of both sections hold
also if the universe of properties and assumptions is limited to the ω-regular or
the counter-free ω-regular languages, i.e., those properties which can be specified
using finite automata over infinite words or linear temporal logic, respectively.

In Sect. 4, we show that assumptions can reduce the resources needed for
monitoring. Following [11], we define k-register monitorability for monitors that
use a fixed number k of integer registers. A register that is operated by incre-
ments, decrements, and tests against zero is called a counter. It is known that
the k-counter monitorability hierarchy is strict, that is, strictly more properties
are (k + 1)-counter monitorable than are k-counter monitorable, for all k ≥ 0
[11]. We present a property which requires k counters for monitoring, but can
be monitored with k − � counters under an assumption that can be monitored
with � counters.

Finally, in Sect. 5, we construct for every property P three assumptions that
make P monitorable: first, a liveness assumption AS that makes P safe rela-
tive to AS , and therefore monitorable under AS ; second, a liveness assumption
AC that makes P co-safe relative to AC , and therefore monitorable under AC ;
and third, a co-safety assumption AM so that P is monitorable under AM . We
use topological tools for our constructions, most notably the characterization of
monitorable properties as those sets, in the Cantor topology on infinite words,
whose boundary is nowhere dense [9].

1 We follow the notation of [13] for temporal logic, where U is the (strong) until
operator, and W is the unless (or weak until) operator.
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2 Monitorability and Assumptions

Let Σ = {a, b, . . .} be a finite alphabet of observations. A trace is a finite or
infinite sequence of observations. We usually denote finite traces by s, r, t, u ∈ Σ∗,
and infinite traces by f ∈ Σω. A property P ⊆ Σω is a set of infinite traces, and
so is an assumption A ⊆ Σω. For traces f ∈ Σω and s ∈ Σ∗, we write s ≺ f
iff s is a finite prefix of f , and denote by pref (f) the set of finite prefixes of f .
For trace sets P ⊆ Σω, we define Pref (P ) =

⋃
f∈P pref (f). We denote by P the

complement of P in Σω.
Intuitively, an assumption limits the universe of possible traces. When there

are no assumptions, the system can produce any trace in Σω. However, under an
assumption A, all observed traces come from the set A. We extend the classical
definition of monitorability [17] to account for assumptions as follows.

Definition 1. Let P be a property, A an assumption, and s ∈ Pref (A) a finite
trace. The property P is positively determined under A by s iff, for all f , if
sf ∈ A, then sf ∈ P . Similarly, P is negatively determined under A by s iff,
for all f , if sf ∈ A, then sf /∈ P .

Definition 2. The property P is s-monitorable under the assumption A, where
s ∈ Pref (A) is a finite trace, iff there is a finite continuation r such that
sr ∈ Pref (A) positively or negatively determines P under A. The property
P is monitorable under A iff it is s-monitorable under A for all finite traces
s ∈ Pref (A). We denote the set of properties that are monitorable under A by
Mon(A).

For a property P and an assumption A, if P ∩ A 	= ∅, we say that P specifies
under A the set P ∩ A. The monitorability of P under A may seem related to
the monitorability of P ∩ A. However, the two concepts are independent as we
show in the following remark.

Remark 1. In general, P ∈ Mon(A) does not imply P ∩ A ∈ Mon(Σω). Con-
sider A = �♦c and P = a ∨ ((¬b) U (a ∧ �♦c)). The property P specifies
((¬b) U a) ∧ �♦c under A. Observe that every finite trace s ∈ Pref (A) can
be extended to sr ∈ Pref (A) which satisfies or violates ((¬b) U a). Then, since
every infinite extension of sr in A satisfies �♦c, the finite trace sr positively or
negatively determines P under A. Therefore, P ∈ Mon(A). However, P ∩ A is
not s-monitorable under Σω for s = a because for every finite extension r we
have srcω ∈ P ∩ A and sraω /∈ P ∩ A.

Conversely, P ∩ A ∈ Mon(Σω) does not imply P ∈ Mon(A) either. Consider
A = �¬a and P = ♦�c. We have P ∩ A ∈ Mon(Σω) because, for every s ∈ Σ∗,
the finite trace sa negatively determines P . However, P /∈ Mon(A) because for
every finite trace s ∈ Pref (A), we have scω ∈ P and sbω /∈ P . We will discuss
the upward and downward preservation of monitorability later in this section.

As in the case of monitorability in Σω, the set of monitorable properties
under a fixed assumption enjoy the following closure properties.
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Theorem 1. For every assumption A, the set Mon(A) is closed under boolean
operations.

Proof. Let P, Q ∈ Mon(A) be two monitorable properties under assumption A.

– P ∈ Mon(A): If P is positively (resp. negatively) determined under A by a
finite trace s ∈ Pref (A), then s negatively (resp. positively) determines P
under A.

– P ∩ Q ∈ Mon(A): Let s ∈ Pref (A) be a finite trace. Since P ∈ Mon(A), there
is an extension r such that sr ∈ Pref (A) positively or negatively determines P
under A. Moreover, since Q ∈ Mon(A), there exists t such that srt ∈ Pref (A)
positively or negatively determines Q under A. If both properties are pos-
itively determined under A by given finite traces, then P ∩ Q is positively
determined under A by srt. Otherwise, the intersection is negatively deter-
mined under A by srt.

– P ∪ Q ∈ Mon(A): Follows from above points since P ∪ Q = P ∩ Q. �
Next, we switch our focus from boolean operations on properties to boolean

operations on assumptions. The following examples demonstrate that monitora-
bility is not preserved under complementation, intersection, nor under union of
assumptions.

Example 1. Let A = �♦b be an assumption, and P = �♦a ∨ (�♦b ∧ ♦c) be
a property. Under assumption A, the property P specifies (�♦a ∨ ♦c) ∧ �♦b.
For every s ∈ Pref (A), the finite trace sc positively determines P under A
because every infinite extension of sc in A satisfies the property. Therefore,
we have P ∈ Mon(A). However, under assumption A, the property P specifies
�♦a ∧ (¬�♦b), and P /∈ Mon(A). This is because every finite trace s ∈ Pref (A)
can be extended to either satisfy or violate P under A, as illustrated by saω ∈ P
and scω /∈ P .

Example 2. Let A = �¬a and B = �¬b be assumptions, and P = �a ∨ �b ∨
(�(¬a) ∧ �(¬b) ∧ ♦�d) be a property. We have P ∈ Mon(A) because for every
finite prefix s ∈ Pref (A), the finite trace sbc negatively determines P under
A. Similarly, P ∈ Mon(B) because for every s ∈ Pref (B), the finite trace sac
negatively determines P under B. However, P /∈ Mon(A ∩ B). If it were, then for
every finite s ∈ Pref (A ∩ B) there would exist a finite continuation r such that
sr ∈ Pref (A ∩ B) positively or negatively determines P under A ∩ B. In either
case, consider srcω /∈ P and srdω ∈ P to reach a contradiction.

Example 3. Let A = �(c → �♦a) and B = (¬�♦b) ∧ �(c → (¬�♦a)) be
assumptions, and P = �♦a ∨ �♦b be a property. We have P ∈ Mon(A) because
for every s ∈ Pref (A), the finite trace sc positively determines P under A. Sim-
ilarly, P ∈ Mon(B) because for every s ∈ Pref (B), the finite trace sc negatively
determines P under B. Consider the assumption A ∪ B, and let s ∈ Pref (A ∪ B)
be a finite trace containing c. We know that for each continuation f , either (i)
sf has infinitely many a’s by assumption A, or (ii) sf has finitely many a’s and
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finitely many b’s by assumption B. If (i) holds, the trace s positively determines
P under A ∪ B. If (ii) holds, the trace s negatively determines P under A ∪ B.
However, we cannot distinguish between the two cases by looking at finite pre-
fixes. Therefore, for every s ∈ Pref (A ∪ B) that contains c, property P is not
s-monitorable under A ∪ B, which implies P /∈ Mon(A ∪ B).

The union is arguably the most interesting boolean operation on assumptions.
It is relatively easy to discover strong assumptions that make a given property
monitorable. However, in practice, we are interested in assumptions that are as
weak as possible, and taking the union of assumptions can be a way to construct
such assumptions. Next, we define a relation between two assumptions and a
property, in order to capture a special case in which monitorability is preserved
under the union of assumptions.

Definition 3. Let A and B be two assumptions, and P be a property such that
P ∈ Mon(A) and P ∈ Mon(B). The assumptions A and B are compatible with
respect to P iff for every finite trace s ∈ Pref (A) that positively (resp. negatively)
determines P under A, there is no finite extension r such that sr ∈ Pref (B) and
sr negatively (resp. positively) determines P under B, and vice versa.

Intuitively, the notion of compatibility prevents contradictory verdicts as in
Example 3. Under the supposition of compatibility with respect to a given prop-
erty, we show that monitorability is preserved under the union of assumptions.

Theorem 2. Let A and B be assumptions, and P be a property such that P ∈
Mon(A) and P ∈ Mon(B). If A and B are compatible with respect to P , then
P ∈ Mon(A ∪ B).

Proof. Let s ∈ Pref (A ∪ B). We want to show that P is s-monitorable under
A ∪ B. Observe that either s ∈ Pref (A) or s ∈ Pref (B). Suppose s ∈ Pref (A).
Since P ∈ Mon(A), there is an extension r such that sr ∈ Pref (A) positively or
negatively determines P under A. Suppose sr positively determines P under A.

Observe that either sr ∈ Pref (A)\Pref (B) or sr ∈ Pref (A) ∩ Pref (B). If sr ∈
Pref (A)\Pref (B), then sr also positively determines P under A∪B because all
possible continuations of sr come from assumption A. If sr ∈ Pref (A)∩Pref (B),
since P ∈ Mon(B) and the two assumptions are compatible with respect to P ,
there is an extension t such that srt positively determines P under B, and
either srt ∈ Pref (B) \ Pref (A) or srt ∈ Pref (A) ∩ Pref (B). If srt ∈ Pref (B) \
Pref (A), then srt also positively determines P under A ∪ B because all possible
continuations of srt come from B. If srt ∈ Pref (A) ∩ Pref (B), since sr and srt
positively determine P under A and under B, respectively, srt also positively
determines P under A ∪ B.

Cases for s ∈ Pref (B) and negative determinacy follow from similar argu-
ments. Therefore, P ∈ Mon(A ∪ B) since P is s-monitorable under A ∪ B for
every finite trace s ∈ Pref (A ∪ B). �

Next, we explore the preservation of monitorability under the strengthening
and weakening of assumptions. We show that, in general, monitorability is nei-
ther downward nor upward preserved. However, for each direction, we identify a



8 T. A. Henzinger and N. E. Saraç

special case in which monitorability is preserved. The following is an example of a
property that is monitorable under an assumption, but becomes non-monitorable
under a stronger assumption.

Example 4. Let A = Σω and B = �¬a be assumptions, and P = �(¬a) ∧ ♦�c
be a property. Observe that P ⊆ B ⊆ A. We have P ∈ Mon(A) because for every
finite prefix s ∈ Pref (A), the finite trace sa negatively determines P under A.
We claim that P /∈ Mon(B). If it were, then for every finite s ∈ Pref (B) there
would exist a finite continuation r such that sr ∈ Pref (B) positively or negatively
determines P under B. Consider srbω /∈ P and srcω ∈ P to reach a contradiction
in either case.

In the example above, the stronger assumption removes all prefixes that
enable us to reach a verdict. We formulate a condition to avoid this problem,
and enable downward preservation as follows.

Theorem 3. Let A and B be assumptions, and P be a property such that B ⊆ A
and P ∩ A = P ∩ B. If P ∈ Mon(A) and B ∈ Mon(A) such that every prefix that
negatively determines B under A has a proper prefix that negatively determines
P under A, then P ∈ Mon(B).

Proof. Let s ∈ Pref (A) be a finite trace and r, t ∈ Σ∗ be extensions such that
sr, srt ∈ Pref (A) positively or negatively determine P or B under A.

– Suppose sr positively determines P under A. Then, sr also positively deter-
mines P under B since B ⊆ A and P ∩ A = P ∩ B.

– Suppose sr positively determines B under A, and srt positively determines
P under A. Then, srt positively determines P under B.

– Suppose sr positively determines B under A, and srt negatively determines
P under A. Then, srt negatively determines P under B.

– Suppose sr negatively determines P under A, and srt positively determines
B under A. Then, sr negatively determines P under B.

– Suppose sr negatively determines P under A, and srt negatively determines
B under A. If we have t 	= ε, then we have sr ∈ Pref (B) and therefore
negatively determines P under B. Otherwise, there is a shortest proper prefix
u of sr that negatively determines P under A, and u ∈ Pref (B), therefore u
negatively determines P under B.

– Suppose sr negatively determines B under A, then there is a proper prefix of
sr that negatively determines P under A. We can resolve this case as above.

These imply that P is s-monitorable under B for every finite trace s ∈
Pref (B). Therefore, P ∈ Mon(B). �

Next, we move on to the upward preservation of monitorability. We give an
example of a property that is monitorable under an assumption, but becomes
non-monitorable under a weaker assumption.
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Example 5. Let A = Σω and B = �(b → ♦c) be assumptions, and P =
♦a ∧ �(b → ♦c) be a property. Observe that P ⊆ B ⊆ A. We have P ∈ Mon(B)
because for each finite prefix s ∈ Pref (B), the finite trace sa positively deter-
mines P under B. One can verify that P /∈ Mon(A) by supposing that a finite
trace s ∈ Pref (A) positively or negatively determines P under A, and consider-
ing sbω /∈ P and sa(bc)ω ∈ P .

Intuitively, the weaker assumption in the previous example introduces pre-
fixes that prevents us from reaching a verdict. The following theorem provides
a condition to ensure that all new prefixes can be extended to reach a verdict.

Theorem 4. Let A and B be assumptions, and P be a property such that B ⊆ A
and P ∩ A = P ∩ B. If P ∈ Mon(B) and B ∈ Mon(A), then P ∈ Mon(A).

Proof. Let s be a finite trace and r be a finite continuation such that sr ∈
Pref (A) positively or negatively determines B under A. If sr negatively deter-
mines B under A, then it also negatively determines P under A because B ⊆ A
and P ∩ A = P ∩ B. Suppose sr positively determines B under A. Since
P ∈ Mon(B), there is a finite extension t such that srt ∈ Pref (B) positively
or negatively determines P under B. Then, srt also positively or negatively
determines P under A. It yields that P is s-monitorable under A for every finite
trace s ∈ Pref (A), hence P ∈ Mon(A). �

For many problems in runtime verification, the set of ω-regular and LTL-
expressible properties deserve special attention due to their prevalence in speci-
fication languages. Therefore, we remark that the results presented in this section
still hold true if we limit ourselves to ω-regular or to LTL-expressible properties
and assumptions.

3 Safety and Co-safety Properties Under Assumptions

In this section, we extend the notion of relative safety from [12] to co-safety
properties, and to general boolean combinations of safety properties, with a
focus on monitorability.

Definition 4. A property P is a safety property under assumption A iff there
is a set S ⊆ Σ∗ of finite traces such that, for every trace f ∈ A, we have f ∈ P
iff every finite prefix of f is contained in S. Formally,

∃S ⊆ Σ∗ : ∀f ∈ A : f ∈ P ⇐⇒ pref (f) ⊆ S.

Equivalently, P is a safety property under assumption A iff every f /∈ P has a
finite prefix s ≺ f that negatively determines P under A. We denote by Safe(A)
the set of safety properties under assumption A.
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Definition 5. A property P is a co-safety property under assumption A iff
there is a set S ⊆ Σ∗ of finite traces such that, for every trace f ∈ A, we have
f ∈ P iff some finite prefix of f is contained in S. Formally,

∃S ⊆ Σ∗ : ∀f ∈ A : f ∈ P ⇐⇒ pref (f) ∩ S 	= ∅.

Equivalently, P is a co-safety property under assumption A iff every f ∈ P
has a finite prefix s ≺ f that positively determines P under A. We denote by
CoSafe(A) the set of co-safety properties under assumption A.

One can observe from these definitions that, for every assumption A and
property P , we have P ∈ Safe(A) iff P ∈ CoSafe(A).

Definition 6. A property P is an obligation property under assumption A iff
P =

⋂k
i=1(Si ∪ Ci) for some finite k ≥ 0, where Si ∈ Safe(A) and Ci ∈ CoSafe(A)

for all 1 ≤ i ≤ k. We denote by Obl(A) the set of obligation properties under
assumption A.

The set Obl(A) is exactly the boolean combinations of properties from Safe(A)
and CoSafe(A). Therefore, we have Safe(A) ⊆ Obl(A) and CoSafe(A) ⊆ Obl(A) for
every assumption A. Note also that when A = Σω, our definitions are equivalent
to the classical definitions of safety, co-safety, and obligation properties. Next,
we present examples of non-monitorable properties that become safe or co-safe
under an assumption.

Example 6. Let P = ((¬a) U b) ∨ �♦c. The property P is not monitorable, thus
not safe, because the finite trace a has no extension that positively or negatively
determines P . Let A = ¬�♦c. Then, P specifies ((¬a) U b) ∧ ¬�♦c under A.
Observe that every f /∈ P has a finite prefix s ≺ f that negatively determines
P under A because every such infinite trace in A must have a finite prefix that
violates ((¬a) U b). Therefore, we get P ∈ Safe(A).

Example 7. Let P = (¬�♦a) ∧ ♦b. The property P is not monitorable, thus not
co-safe, because the finite trace b has no extension that positively or negatively
determines P . Let A = ¬�♦a. Then, every f ∈ P has a finite prefix s ≺ f that
contains b, which positively determines P under A. Therefore, P ∈ CoSafe(A).

For the sets of safety and co-safety properties relative to a given assumption,
the following closure properties hold.

Theorem 5. For every assumption A, the set Safe(A) is closed under positive
boolean operations.

Proof. Let P, Q ∈ Safe(A) be two safety properties under assumption A. Let
f /∈ (P ∪ Q) be a trace. Since we also have f /∈ P , there is a finite prefix s ≺ f
that negatively determines P under A. Similarly, we have r ≺ f that negatively
determines Q under A. Assume without loss of generality that s is a prefix of r.
Then, r negatively determines P ∪ Q under A, and thus P ∪ Q ∈ Safe(A).

Now, let f /∈ (P ∩ Q). By a similar argument, we have a prefix s ≺ f that
negatively determines P under A or Q under A. Then, one can verify that s also
negatively determines P ∩ Q under A. Therefore, P ∩ Q ∈ Safe(A). �
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Theorem 6. For every assumption A, the set CoSafe(A) is closed under positive
boolean operations.

Proof. Let P, Q ∈ CoSafe(A) be two co-safety properties under assumption A.
Observe that P ∪ Q = P ∩ Q and P ∩ Q = P ∪ Q where P , Q ∈ Safe(A), and
apply Theorem 5. �

By combining Theorems 5 and 6 with the definition of Obl(A), we obtain the
following corollary.

Corollary 1. For every assumption A, the set Obl(A) is closed under all boolean
operations.

Next, we show that relative safety, co-safety, and obligation properties enjoy
downward preservation. In other words, if P is a safety, co-safety, or obligation
property under an assumption, then it remains a safety, co-safety, or obligation
property under all stronger assumptions.

Theorem 7 [12]. Let A and B be assumptions such that B ⊆ A. For every
property P , if P ∈ Safe(A), then P ∈ Safe(B).

Theorem 8. Let A and B be assumptions such that B ⊆ A. For every property
P , if P ∈ CoSafe(A), then P ∈ CoSafe(B).

Proof. Since P ∈ CoSafe(A), we have P ∈ Safe(A). Then, by Theorem 7, we get
P ∈ Safe(B), which implies that P ∈ CoSafe(B). �
Theorem 9. Let A and B be assumptions such that B ⊆ A. For every property
P , if P ∈ Obl(A), then P ∈ Obl(B).

Proof. By definition, P =
⋂k

i=1(Si ∪ Ci) for some finite k > 1, where Si ∈
Safe(A) and Ci ∈ CoSafe(A) for each 1 ≤ i ≤ k. Theorems 7 and 8 imply that
Si ∈ Safe(B) and Ci ∈ CoSafe(B) for every 1 ≤ i ≤ k. Therefore, P ∈ Obl(B). �

Finally, we show that every safety, co-safety, and obligation property relative
an assumption A is monitorable under A.

Theorem 10. For every assumption A, we have Safe(A) ⊆ Mon(A).

Proof. Let P ∈ Safe(A) be a property and s ∈ Pref (A) be a finite trace. If there
is a continuation f such that sf /∈ P , then there is a finite prefix r ≺ sf that
negatively determines P under A. Otherwise, s itself positively determines P
under A. In either case, P is s-monitorable under A for an arbitrary finite trace
s ∈ Pref (A), and thus P ∈ Mon(A). �
Theorem 11. For every assumption A, we have CoSafe(A) ⊆ Mon(A).
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Proof. The proof idea is the same as in Theorem 10. Let P ∈ CoSafe(A) be a
property and s ∈ Pref (A) be a finite trace. If there is a continuation f such
that sf ∈ P , then there is a finite prefix r ≺ sf that positively determines P
under A. Otherwise, s itself negatively determines P under A. In either case,
P is s-monitorable under A for an arbitrary finite trace s ∈ Pref (A), and thus
P ∈ Mon(A).

Theorem 12. For every assumption A, we have Obl(A) ⊆ Mon(A).

Proof. Let P ∈ Obl(A) be a property. We can rewrite P as
⋂k

i=1(Si ∪ Ci) for
some finite k > 0 such that Si ∈ Safe(A) and Ci ∈ CoSafe(A). By Theorems 10
and 11, each Si and Ci is in Mon(A). By Theorem 1, each Si ∩Ci and their union
is in Mon(A). Therefore, P ∈ Mon(A). �

We note that, as in Sect. 2, the results of this section still hold when restricted
to the ω-regular or to the LTL-expressible properties and assumptions.

4 Register Monitorability

In this section, we study monitorability under assumptions for an operational
class of monitors, namely, register machines. We follow [11] to define register
machines. Let X be a set of registers storing integer variables, and consider
an instruction set of integer-valued and boolean-valued expressions over X. An
update is a mapping from registers to integer-valued expressions, and a test is a
boolean-valued expression. We denote the set of updates and tests over the set X
of registers by Γ (X) and Φ(X), respectively. We define a valuation as a mapping
v : X → Z from the set of registers to integers. For every update γ ∈ Γ (X), we
define the updated valuation v[γ] : X → Z by letting v[γ](x) = v(γ(x)) for every
x ∈ X. A test φ ∈ Φ(X) is true under the valuation v iff v |= φ.

Definition 7. A register machine is a tuple M = (X, Q, Σ, Δ, q0, Ω) where X
is a finite set of registers, Q is a finite set of states, Σ is a finite alphabet,
Δ ⊆ Q × Σ × Φ(X) × Γ (X) × Q is a set of edges, q0 ∈ Q is the initial state, and
Ω ⊆ Qω is a set of accepting runs, such that for every state q ∈ Q, letter σ ∈ Σ,
and valuation v, there is one and only one outgoing edge (q, σ, φ, γ, r) ∈ Δ with
v |= φ, i.e., the machine is deterministic.

Let M = (X, Q, Σ, Δ, q0, Ω) be a register machine. A configuration of M is
a pair (q, v) consisting of a state q ∈ Q and a valuation v : X → Z. A transition
σ−→ between two configurations of M is defined by the relation (q, v) σ−→ (q′, v′) iff
v′ = v[γ] and v |= φ for some edge (q, σ, φ, γ, q′) ∈ Δ. A run of M over a word
w = σ1σ2 . . . is an infinite sequence of transitions (q0, v0) σ1−→ (q1, v1) σ2−→ · · ·
where v0(x) = 0 for all x ∈ X. The word w ∈ Σω is accepted by M iff its
(unique) run over w yields an infinite sequence q0q1q2 . . . of states which belongs
to Ω. The set of infinite words accepted by M is called the language of M , and
denoted L(M).
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Register machines are a more powerful specification language for traces than
finite-state monitors. Even when confined to safety, this model can specify many
interesting properties beyond ω-regular, as explored in [11]. Formally, we can
limit our model to safety properties as follows: let qsink ∈ Q be a rejecting state
such that there are no edges from qsink to any state in Q\{qsink}, and let Ω be the
set of infinite state sequences that do not contain qsink . Under these conditions,
L(M) is a safety property monitored by M . Next, we introduce assumptions to
register monitorability.

Definition 8. Let P be a property, A an assumption, and s ∈ Pref (A) a finite
trace. The property P is positively k-register determined under A by s iff there
is a register machine M with k registers such that, for all f ∈ Σω, if sf ∈
L(M) ∩ A, then sf ∈ P . Similarly, P is negatively k-register determined under
A by s iff there is a register machine M with k registers such that, for all f ∈ Σω,
if sf ∈ A \ L(M), then sf /∈ P .

Definition 9. A property P is k-register monitorable under assumption A iff
for every finite trace s ∈ Pref (A) there is a finite extension r such that P is pos-
itively or negatively k-register determined under A by sr ∈ Pref (A). We denote
the set of properties that are k-register monitorable under A by k-RegMon(A).

In the following, we restrict ourselves to a simple form of register machines
in order to demonstrate how assumptions help for monitoring non-regular prop-
erties.

Definition 10. A counter machine is a register machine with the instructions
x+1, x−1, and x = 0 for all registers x ∈ X. We write k-CtrMon(A) for the set
of properties that are monitorable by k-counter machines under assumption A.

Computational resources play an important role in register monitorability. As
proved in [11], for every k ≥ 0 there is a safety property that can be monitored
with k counters but not with k − 1 counters, that is, the set k-CtrMon(Σω) \
(k − 1)-CtrMon(Σω) is non-empty. We now show that assumptions can be used
to reduce the number of counters needed for monitoring.

Theorem 13. Let Σk = {0, 1, . . . , k}. For every k ≥ 1 and 1 ≤ � ≤ k, there
exist a safety property Pk ∈ k-CtrMon(Σω) \ (k − 1)-CtrMon(Σω) and a safety
assumption A� ∈ �-CtrMon(Σω

k ) such that Pk ∈ (k − �)-CtrMon(A�).

Proof. For every letter σ ∈ Σ and finite trace s ∈ Σ∗, let |s|σ denote the number
of occurrences of σ in s. Let Pk = {f ∈ Σω

k | ∀0 ≤ i < k : ∀s ≺ f : |s|i ≤ |s|i+1}.
We can construct a k-counter machine M that recognizes Pk as follows. For
each 0 ≤ i < k, the counter xi of M tracks the difference between |s|i and |s|i+1
by decrementing with letter i and incrementing with i + 1. The machine keeps
running as long as every counter value is non-negative, and rejects otherwise.
Notice that we can rewrite Pk =

⋂k−1
i=0 Si where Si = {f ∈ Σω

k | ∀s ≺ f :
|s|i ≤ |s|i+1} and Si ∈ 1-CtrMon(Σω

k ). Then, for each 1 ≤ � ≤ k, we can
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construct an assumption A� =
⋂�−1

i=0 Si where A� ∈ �-CtrMon(Σω
k ). Since the

properties S0 to S�−1 are true under assumption A�, we only need to monitor
the remaining conditions S� to Sk−1. Therefore, it is not hard to verify that
Pk ∈ (k − �)-CtrMon(A�). �

5 Using Topology to Construct Assumptions

Let X be a topological space, and S ⊆ X be a set. The set S is closed iff it
contains all of its limit points. The complement of a closed set is open. The
closure of S is the smallest closed set containing S, denoted cl(S). Similarly,
the interior of S is the largest open set contained in S, denoted int(S). The
boundary of S contains those points in the closure of S that do not belong to
the interior of S, that is, bd(P ) = cl(P ) \ int(P ). The set S is dense iff every
point in X is either in S or a limit point of S, that is, cl(S) = X. Similarly, S is
nowhere dense iff int(cl(S)) = ∅. For the operations in relative topology induced
by X on a subspace Y ⊆ X, we use clY (S), intY (S), and bdY (S) where S ⊆ Y .

The safety properties correspond to the closed sets in the Cantor topology on
Σω, and the liveness properties correspond to the dense sets [1]. Moreover, the co-
safety properties are the open sets [6], and the monitorable properties are the sets
whose boundary is nowhere dense [9]. Since these topological characterizations
extend to subsets of Σω through relativization [9,12], we use them to construct
assumptions under which properties become safe, co-safe, or monitorable.

Theorem 14. For every property P , there is a liveness assumption A such that
P ∈ Safe(A) [12]. Moreover, if P is not live, then P ⊂ A; and if P is not safe,
then for every assumption B such that A ⊂ B, we have P /∈ Safe(B).

Proof. Using the standard construction, we can rewrite P as an intersection
of a safety property and a liveness property. Formally, P = PS ∩ PL where
PS = cl(P ) is the smallest safety property that contains P , and PL = PS \ P is
a liveness property [1]. Let A = PL. We know by Theorem 7 that PS ∈ Safe(A).
Since PS ∩ A = P ∩ A, we also have P ∈ Safe(A). Also, if P is not live, we have
PS ⊂ Σω, and A = PS ∪ P strictly contains P .

Now, let B be an assumption such that A ⊂ B. Then,

clB(P ∩ B) = cl(P ) ∩ B = PS ∩ B

strictly contains P ∩B because there is a trace f ∈ (PS \P )∩B by construction.
It implies that P ∩ B is not closed in B, therefore P /∈ Safe(B). �

Intuitively, the construction in the proof of Theorem 14 removes all traces
in P which have no prefix that negatively determines P . We can alternatively
exclude the traces in P which have no prefix that positively determine P , in
order to turn P into a relative co-safety property.

Theorem 15. For every property P , there is a liveness assumption A such that
P ∈ CoSafe(A). Moreover, if P is not live, then P ∩ A 	= ∅; and if P is not
co-safe, then for every assumption B such that A ⊂ B, we have P /∈ CoSafe(B).
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Proof. Let PC = int(P ) be the largest co-safety property contained in P , and
A = P \ PC be an assumption. The assumption A is live since int(P \ PC) ⊆
int(P ) \ int(PC) = ∅. We know by Theorem 8 that PC ∈ CoSafe(A). Then,
because PC ∩ A = P ∩ A, we also have P ∈ CoSafe(A). Also, if P is not live, we
have PC 	= ∅, and thus P ∩ A 	= ∅ by construction.

Now, let B be an assumption such that A ⊂ B. Then,

intB(P ∩ B) = int((P ∩ B) ∪ B) ∩ B = int(P ) ∩ B = PC

is strictly contained in P ∩ B since there is a trace f ∈ (P \ PC) ∩ B by
construction. It implies that P ∩ B is not open in B, therefore P /∈ CoSafe(B).�

Notice that we removed elements from cl(P ) \ P and P \ int(P ) in the above
constructions. The union of these two regions corresponds to bd(P ), and a prop-
erty P is monitorable iff bd(P ) is nowhere dense [9], that is, int(cl(bd(P ))) = ∅.
Since boundary sets are closed in general, and cl(S) = S for every closed set S,
this condition is equivalent to int(bd(P )) = ∅. Now, we describe a construction
to make any property monitorable by removing a subset of bd(P ) from Σω.

Theorem 16. For every property P , there is a co-safety assumption A such
that P ∈ Mon(A). Moreover, if P is not live, then P ∩ A 	= ∅.

Proof. We want to construct a subspace A ⊆ Σω such that intA(bdA(P ∩ A)) =
∅. Note that bdA(P ∩A) ⊆ bd(P ∩A)∩A and intA(P ∩A) = int((P ∩A)∪A)∩A.
Then, we have

intA(bdA(P ∩ A)) ⊆ int((bd(P ∩ A) ∩ A) ∪ A) ∩ A.

Since union of interiors is contained in interior of unions and we want the expres-
sion on the right-hand side to be empty, we have

int(bd(P ∩ A) ∩ A) ∪ int(A) ⊆ int((bd(P ∩ A) ∩ A) ∪ A) ⊆ int(A).

It implies that int(bd(P ∩ A) ∩ A) ⊆ int(A), and since bd(P ∩ A) ∩ A and A are
disjoint, we get int(bd(P ∩ A) ∩ A) = ∅. Then,

int(bd(P ∩ A) ∩ A) ⊆ int((bd(P ) ∪ bd(A)) ∩ A)
= int((bd(P ) ∩ A) ∪ (bd(A) ∩ A)).

Now, we can pick A to be open to have bd(A) ∩ A = ∅, which yields

int((bd(P ) ∩ A) ∪ (bd(A) ∩ A)) = int(bd(P ) ∩ A)
= int(bd(P )) ∩ A

since interior of finite intersection equals intersection of interiors and A is open.
At this point, we want int(bd(P )) ∩ A = ∅ such that A is open. It is equivalent
to choosing A such that A is a closed set containing int(bd(P )), for which the
smallest such choice is A = cl(int(bd(P ))). Therefore, we let A = cl(int(bd(P ))).
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Observe that A is indeed open, i.e., a co-safety assumption. Since we obtained
that intA(bdA(P ∩ A)) = ∅ if int(bd(P )) ∩ A = ∅ and A is open, we have
P ∈ Mon(A).

Finally, given that P is not live, we get int(P ) 	= ∅. It implies that bd(P ) ⊂
Σω. Then, since int(P ) ⊆ bd(P ) ⊆ A and int(P ) ⊆ P , we obtain that P ∩A 	= ∅.

�
Since both ω-regular and LTL-definable languages are closed under the topo-

logical closure [2,15], the constructions presented in this section can be performed
within the restricted universe of ω-regular or LTL-definable languages. In other
words, given an ω-regular (resp. LTL-definable) property, the constructions from
the proofs of Theorems 14, 15 and 16 produce ω-regular (resp. LTL-definable)
assumptions. Note also that, if P is safe, co-safe, or monitorable under Σω,
respectively, then all three constructions yield A = Σω.

As pointed out in the previous theorems, the constructions are useful only for
certain classes of properties. To demonstrate this, consider a liveness property
P such that P is also live, that is, P is both live and co-live. Such properties
are said to have zero monitoring information [14]. For example, P = �♦a is
a property with zero monitoring information because there is no finite prefix s
such that P is s-monitorable under Σω. Since P is live, we have cl(P ) = Σω,
and since P is live, we have int(P ) = ∅. It follows that bd(P ) = Σω. Therefore,
if we let AS , AC , and AM be assumptions as constructed in Theorems 14, 15,
and 16, respectively, we obtain AS = P , AC = Σω \ P , and AM = ∅.

Next, we present an example of a non-monitorable property that is neither
live nor co-live, and apply the constructions described in this section.

Example 8. Let P = (a ∨ �♦a) ∧ b. One can verify that cl(P ) = b and
int(P ) = a ∧ b by constructing the corresponding Büchi automata. Then, we
also get bd(P ) = (¬a) ∧ b. We now apply the constructions described above.
If we let AS = cl(P ) ∪ P , we get P ∈ Safe(AS) because every finite trace in AS

that satisfies ¬b negatively determines P under AS . If we let AC = P ∪ int(P ),
we get P ∈ CoSafe(AC) because every finite trace in AC that satisfies a ∧ b
positively determines P under AC . Now, observe that cl(int(bd(P ))) = bd(P ).
Then, we have AM = a ∨ (¬b), which yields that P specifies a ∧ b under AM ,
and therefore P ∈ Mon(AM). Note that both AS and AC are live, while AM is
co-safe.

Finally, we apply the construction from the proof of Theorem 16 to make a
non-monitorable liveness property monitorable.

Example 9. Let Σ = {req, ack, reboot, other} be a finite set of observations, and
consider the property

P = (�(req → ♦ack) ∨ (¬ack) U req) ∧ ♦reboot.

The property P is live because cl(P ) = Σω. We can compute its boundary as
bd(P ) = int(P ) = cl(P ). Constructing the Büchi automaton for P and taking
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its closure gives us bd(P ) = (ack R (¬req)) ∨ �¬reboot. One can similarly com-
pute int(bd(P )) = ack R (¬req), and observe that cl(int(bd(P ))) = int(bd(P )).
Therefore, we have A = (¬ack) U req, which is indeed a co-safety assumption.
The property P specifies ((¬ack)U req)∧♦reboot under A, therefore P ∈ Mon(A).

Since the assumption A constructed in the proof of Theorem 16 is co-safe,
we get by Theorem 4 that P ∩ A is also monitorable. However, as explained
in Sect. 2, this is not necessarily the case in general for monitorability under
assumptions. We can look for other ways of constructing an assumption A such
that P is monitorable under A, but P ∩ A is not necessarily monitorable. For
this, Theorem 4 may prove useful, and we aim to explore it in future work.

6 Conclusion

Inspired by the notion of relative safety [12], we defined the concepts of co-
safety and monitorability relative to an assumption. Assumptions may result
from knowledge about the system that is being monitored (as in predictive mon-
itoring [18]), knowledge about the environment (e.g., time always advances),
or knowledge about other, connected monitors. In further work, we plan to
develop a theory of composition and refinement for monitors that use assump-
tions, including assume-guarantee monitoring, where two or more monitors are
connected and provide information to each other (as in decentralized monitoring
[4]). We gave several examples and constructions on how an assumption can make
a non-monitorable property monitorable. In the future, we intend to study the
structure of the weakest assumptions that make a given property monitorable,
particularly the conditions under which such assumptions are unique. Finally, we
showed how an assumption can make a monitorable property monitorable with
fewer integer registers. More generally, carefully chosen assumptions can make
monitors less costly (use fewer resources), more timely (reach verdicts quicker),
and more precise (in the case of quantitative verdicts). In further work, we will
study all of these dimensions to provide a theoretical foundation for the practical
design of a network of monitors with assumptions.
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Abstract. From the formation of traffic jams to the development
of troublesome, whirlpool-like spirals in the heart’s electrical activity,
spatio-temporal patterns are key in understanding how complex behav-
iors can emerge in a network of locally interacting dynamical systems.
One of the most important and intriguing questions is how to specify
spatio-temporal behaviors in a formal and human-understandable speci-
fication language and how to monitor their onset efficiently. In this tuto-
rial, we present the spatio-temporal logic STREL and its expressivity
to specify and monitor spatio-temporal behaviors over complex dynam-
ical and spatially distributed systems. We demonstrate our formalism’s
applicability to different scenarios considering static or dynamic spatial
configurations and systems with deterministic or stochastic dynamics.

1 Introduction

Spatio-temporal patterns are central to the understanding of how complex
behaviors can emerge in a network of locally interacting dynamical systems.

A prominent example is the electrical currents that regularly traverse the
cardiac tissue and are responsible for the heart’s muscle fibers to contract.
These electrical impulses travel as a planar wave smoothly and unobstructed
in a healthy heart. In certain circumstances, myocytes can partially or entirely
lose excitability [46,47,60], that is their ability to propagate and reinforce an
electric stimulus. Lack of excitability can cause the formation of whirlpool-like
spirals (see Fig. 1) of electrical activity that are a precursor to a variety of cardiac
arrhythmias, including atrial fibrillation (AF), an abnormal rhythm originating
in the upper chambers of the heart [11]. This type of behavior is called emergent
because it emerges as the result of the local interactions of several (potentially
heterogeneous) entities. Thus, these behaviors cannot be studied analyzing the
individual entities, but they can be reproduced only by simulating/observing
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Fig. 1. Tachycardic spiral wave induced by the left hand side disc of unexcitable
myocytes.

their collective behavior. A typical mechanism responsible for the onset of emer-
gent behaviors is the change in space and time of the concentration of one or
more chemical substances. In the cardiac tissue example, the electrical polar-
ization results from a complex interplay between ion pumps and ionic channels
embedded in the cell membrane that are responsible for the inward/outward
flows of different ionic species (e.g., sodium, potassium, calcium).

Turing’s reaction–diffusion systems [71] are suitable mathematical tools com-
monly used to model and simulate such physical phenomena. Mathematically,
they consist of semi-linear parabolic partial differential equations (PDEs) with
two terms that sum to each other: (a) a reaction term that describes, via nonlin-
ear ordinary differential equations (ODEs), how the chemical species are trans-
formed into each other in time; (b) a diffusion term modeling the flow/the spread
of species in space.

Turing’s reaction–diffusion systems can be employed to model a wide range
of dynamical processes (not necessary chemical) ranging from wave-like phenom-
ena in excitable media to the formation of other spatio-temporal self-organized
patterns that are at the very origin of morphogenesis (e.g., the stripes of a zebra,
the spots on a leopard and the filaments in Anabaena [45]) and developmental
biology [14]. They are also at the core of self-assembly technologies, tissue engi-
neering [72], and amorphous computing [2,21]. Such patterns are also known as
“Turing’s patterns”.

Spatio-temporal patterns are not only pervasively present in nature, but they
can arise also in human engineered artefacts such as Collective Adaptive Sys-
tems [54] (CAS) and Cyber-Physical Systems [64] (CPS).

CAS consist of a large number of heterogeneous components featuring com-
plex interactions among themselves, with humans and other systems. Each com-
ponent in the system may exhibit autonomic behavior and operates in open and
non-deterministic environments where entities may enter or leave the CAS at
any time. Decision-making in CAS is very challenging because the local interac-
tions among components may introduce novel and sometimes undesired emergent
behaviors. A typical example of CAS is a bike sharing system (BSS) [42], a ser-
vice that allows people to borrow bicycles on a short term basis either for a price
or for free. Users can pick-up and return bikes in special stations (spatially dis-
tributed in a city) equipped with bike racks. In such case the undesired behavior
is to have the pick-up stations completely full or empty.
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Fig. 2. An example of Cyber-Physical Systems in the automotive scenario.

Cyber Physical Systems (CPS) share similar characteristics with CAS. The
term CPS was first coined in 2006 by Helen Gill [53], the Program Director for the
Embedded & Hybrid Systems at US National Science Foundation. She defined
CPS as “engineering, physical and biological systems whose operations are inte-
grated, monitored, and/or controlled by a computational core. Components are
networked at every scale. Computing is deeply embedded into every physical
component, possibly even into materials. The computational core is an embed-
ded system, usually demands real-time response, and is most often distributed.
The behavior of a cyber-physical system is a fully-integrated hybridisation of
computational (logical) and physical action.”

Examples of CPS include contact tracing devices, self-driving cars, robotics
teams, mobile ad-hoc sensor networks and smart cities. CPS behavior is charac-
terised by the evolution in time of physical quantities measured by sensors and
discrete states of computational, connected and spatially arranged entities.

Figure 2 shows an instance of CPS in the automotive scenario where the
extensive integration of sensor networks and computational cores into automo-
tive systems has led to the development of various driving assistance features
that facilitate the driver during monotonous maneuvers and protect the passen-
gers from hazardous situations. Furthermore, the advent of 5G mobile-network
technology will support Vehicle To Vehicle (V2V) and Vehicle To Infrastructure
(V2I) communication technologies very soon. These technologies will enable the
exchange of information between vehicles and roadside units about position and
speed of vehicles, driving conditions on a particular road, accidents, or traffic
jams. This will allow to distribute the traffic load among several roads during
rush hour and to prevent accidents.

The safety-critical nature of these systems [64] requires the engineers to check
their correct execution with respect to rigorously defined spatial and temporal
requirements. However, the complexity of these large scale systems often lim-
its the possibility to analyze them using exhaustive verification techniques. A
common approach consists instead in simulating their design with different ini-
tial conditions, parameters and inputs. The generated traces (e.g., mixed-analog
signals) are then monitored [10,15] with respect to a formal specification of the
behavioral property to satisfy. The verdict of such specification-based monitoring
approach can return either a Boolean value specifying whether the traces satisfy
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or not the specification or a real value indicating how much the specification is
satisfied or violated according to a chosen notion of distance [12,39,49,50,65].

Specification-based monitoring is nowadays the basic functionality upon
which are built several other computer-aided verification and synthesis tech-
niques such as statistical model checking [24,33,75], falsification analysis [1,67,
68,73], failure explanation/debugging [16–18], parameter synthesis for system
identification or design [9,23,35,37]. The majority of specification languages
and tools available for CPS supports only the monitoring of temporal prop-
erties. Examples are Metric Temporal Logic (MTL) [52], Signal Temporal Logic
(STL) [57,58] and Timed Regular Expressions (TRE) [6].

However, one of the most important and intriguing questions in monitor-
ing these systems is how to formally specify in a human-understandable lan-
guage also spatio-temporal emergent behaviour, and how to efficiently monitor
its onset.

In this tutorial, we present the Spatio-Temporal Reach and Escape Logic
(STREL), a spatio-temporal specification language originally introduced in [13].
STREL enables the specification of spatio-temporal requirements and their mon-
itoring over the execution of mobile and spatially distributed components. In this
framework, space is represented as a weighted graph, describing the topological
configurations in which the single components (nodes of the graph) are arranged.
Both nodes and edges have attributes modelling physical and logical quantities
that can change in time. STREL extends the Signal Temporal Logic [57] with two
spatial operators reach and escape from which is possible to derive other spatial
modalities such as everywhere, somewhere and surround. These operators enable
a monitoring procedure where the satisfaction of the property at each location
depends only on the satisfaction of its neighbours. Furthermore, we show how
STREL can be interpreted according different semantics (Boolean, real-valued)
semantics based on constraint semirings, an algebraic structure suitable for con-
straint satisfaction and optimisation.

The rest of this paper is organized as follows. Section 2 introduces the model
we consider to represent the spatio-temporal signals, while Sect. 3 provides the
syntax and the semantics of STREL. In Sects. 4, 5 and 6, we demonstrate the
applicability of our formalism to different scenarios considering static (Sect. 4 and
Sect. 5) or dynamic (Sect. 6) spatial configurations and systems with determin-
istic or stochastic dynamics. Section 7 discusses the related work, while Sect. 8
draws our conclusions and discusses future works.

2 Space Model, Signals and Traces

In this section we introduce some preliminary notions, including the model of
space we consider and the related concept of spatio-temporal signal, illustrating
them through a working example.

Sensor Network. As a running example, let us consider a network [4] of n
devices, equipped with a sensor to monitor for example the temperature. Two
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nodes can communicate with each other if their Euclidean distance is within
their communication range.

2.1 Discrete Space as a Graph

The design of a spatial logic is strictly related to the description of space in
which the dynamics takes place. In this tutorial, we consider a discrete space,
described as a weighted direct graph (undirect graphs can be treated as direct
graph with a symmetric relation). The reason why we focus our attention on
discrete space is that many applications, like bike sharing systems, smart grid and
sensor networks are naturally framed in a discrete spatial structure. Moreover, in
many circumstances continuous space is abstracted as a grid or as a mesh. This
is the case, for instance, of many numerical methods that simulate the spatio-
temporal dynamics using partial differential equations (PDEs). Hence, this class
of models can be dealt with by checking properties on such a discretization.

Definition 1 (Space Model). We define the spatial model S as a pair ⟨L,W⟩
where:

– L is a set of nodes that we call locations;
– W ⊆ L × R × L is a proximity function associating a label w ∈ R to distinct

pair �1, �2 ∈ L. If (�1,w, �2) ∈W it means that there is an edge from �1 to �2
with weight w ∈ R, i.e. �1

w
↦ �2.

Considering our running example, let us define a sensor space model. L is given
by the set of devices, i.e. each device represents a location. As proximity function
WC , we can consider the connectivity graph, i.e. a location �i is next to a location
�j if and only if they are within their communication range. Another possibility as
proximity function is the dual graph of the Voronoi diagram [7] which partitions
the plane into set of n regions, one per location, assigning each point of the
plane to the region corresponding to the closest location. These two examples of
graphs can be seen in Fig. 3.

Fig. 3. Proximity graph (left) and connectivity graph (right)
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Given a spatial model we can define routes.

Definition 2 (Route). Let S = ⟨L,W⟩, a route τ is an infinite sequence
�0�1⋯�k⋯ in S such that for any i ≥ 0, �i

w
↦ �i+1.

Let τ = �0�1⋯�k⋯ be a route, i ∈ N and � ∈ L, we use: τ[i] to denote the i-th
node �i in τ , τ[i..] to indicate the suffix route �i�i+1⋯, and τ(�) to denote the
first occurrence of � in τ :

τ(�) = {
min{i∣τ[i] = �} if� ∈ τ
∞ otherwise

We also use Routes(S) to denote the set of routes in S, while Routes(S, �)
denotes the set of routes starting from � ∈ L.

We can use routes to define the distance among two locations in a spatial
model. This distance is computed via an appropriate function f that combines
all the weights in a route into a value.

Definition 3 (Route Distance). Let S = ⟨L,W⟩, τ a route in S, the distance
df

τ [i] up-to index i is:

df
τ [i] =

⎧
⎪⎪
⎨
⎪⎪
⎩

0 i = 0
f(df

τ[1..]
[i − 1],w) (i > 0) and τ[0]

w
↦ τ[1]

Given a location � ∈ L, the distance over τ up-to � is then dτ [�] = df
τ [τ(�)] if

� ∈ τ , or ∞ otherwise1.

Considering again the sensor example, we can be interested in different types
of distance. For example we can count the number of hops, simply using the
function hops defined as hops(v,w) ∶= v + 1 and in this case dhops

τ [i] = i. We can
also consider the distances with respect the weighted label w in the edges, in
that case we have weight(v,w) = v +w and dweight

τ [i] is the sum the weights in
the edges of the route until the i-th node �i.

Definition 4 (Location Distance) The distance between two locations �1 and
�2 is obtained by choosing the distance values along all possible routes starting
from �1 and ending in �2:

dS[�1, �2] =min{dτ [�2]∣τ ∈ Routes(S, �1)}.

In the sensor network example, the distance between two locations �1 and
�2, will be the minimum hop-length or weight-length over all paths connecting
�1 and �2 for the hops or weight distance function respectively.

1 We restrict here only to the tropical semiring, a more general definition can be found
in [13].
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2.2 Signal, Trace and Dynamic Models

We assume to have piecewise constant temporal signal ν = [(t0, d0), . . . , (tn, dn)]

with ti ∈ T = [0, T ] ⊆ R≥0 a time domain and di ∈ D. Different kinds of signals
can be considered: signals with D = {true, false} are called Boolean signals;
with D = R∞ are called real-valued or quantitative signals, signal with D = Z are
integer signals. We use T (ν) to denote the sequence of (t0, . . . , tn) of time steps
in ν.

Definition 5 (Spatio-temporal signal) Let S = ⟨L,W⟩ be a space model and
T = [0, T ] a time domain, a spatio-temporal signal is a function

σ ∶ L→ T→D

that associates a temporal signal σ(�) = ν at each location. We use σ@t to denote
the spatial signal at time t, i.e. the signal s such that s(�) = σ(�)(t), for any
� ∈ L.

Definition 6 (Spatio-Temporal Trace) Let S = ⟨L,W⟩ be a space model, a
spatio-temporal trace is a function

x ∶ L→ T→Dn

such that for any � ∈ L yields a vector of temporal signals x(�) = (ν1, . . . , νn).
Note that this means that a spatio-temporal trace is composed by a set of spatio-
temporal signals. In the rest of the paper we will use x(�, t) to denote x(�)(t).

We can consider a spatio-temporal trace of our sensor network as x ∶ L → T →

R ×R that associates a set of temporal signals x(�) = (νB , νT ) at each location,
where νB and νT correspond for example to the temporal signals of the battery
and the temperature respectively in location �.

We also consider spatial models that can dynamically change their configura-
tions. For example, the devices can move in space and change their position and
connectivity pattern. For this reason, we need to define a structure that returns
the spatial configuration at each time.

Definition 7 (Dynamic Spatial Model) Let L be a set of locations and
(t0, . . . , tn) a set of time step with ti ∈ T = [0, T ] ⊆ R≥0, a Dynamic Spatial Model
is a function associating each element ti with a space model Si that describes the
spatial configuration at that time step, i.e. (ti,Si) for i + 1, ..., n and S(t) = Si

for all t ∈ [ti, ti+1).

In case of a static spatial model we assume that S(t) = S for all t.

3 Logic and Monitoring Procedures

Here we consider the specification of spatio-temporal properties by the Spatio-
Temporal Reach and Escape Logic (STREL). STREL is an extension of the Sig-
nal Temporal Logic (STL) [34,36,57], with a number of spatial modal opera-
tors. Signal Temporal Logic is a linear-time temporal logic, it integrates the
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dense-semantics of the Metric Interval Temporal Logic (MITL) [5] with a set
of parametrised numerical predicates playing the role of atomic proposition μ,
these are inequality of the form (g(ν1, . . . , νn) ≥ 0), for g ∶ Rn

→ R. Considering
our wireless sensor network, example of atomic propositions are: vB > 0.5, i.e.
the level of the battery should be greater than 0.5, or vT < 30, i.e. the value of
temperature should be less than 30○.

The syntax of STREL is given by

Definition 8 (STREL Syntax)

ϕ ∶= true ∣ μ ∣ ¬ϕ ∣ ϕ1 ∧ϕ2 ∣ ϕ1 UI ϕ2 ∣ ϕ1 SI ϕ2 ∣ ϕ1R
f
d ϕ2 ∣ E

f
d ϕ

where true is the Boolean true constant, μ is an atomic predicate (AP ), negation
¬ and conjunction ∧ are the standard Boolean connectives, the temporal modal-
ities are the until (UI) and the since (SI), where I is a non singular positive
real interval, while reachability (Rf

d) and the escape (Ef
d ) are the spatial opera-

tors, with f a Distance Function described in the previous section (e.g. the hops
function) and d a non singular positive real interval. Both I and d can be infinite
intervals, in case of using all R∞

≥0 the interval can be omitted. In addition, we
can derive the disjunction operator (∨), the future eventually (FI) and always
(GI) operators and the past once (OI) and historically (HI). We can derive also
three other spatial operators: the somewhere, the everywhere and the surround.
Below, we describe in detail the semantics of the spatial operators, we will see
the temporal operators directly in the next Sections within the case studies, for
more detail about temporal operators of STL we refer the reader to [34,36,57].

3.1 Boolean and Quantitative Semantics

The logic presents two semantics: a Boolean semantics, (S,x, �, t) ⊧ ϕ, with the
meaning that the spatio-temporal trace x in location � at time t with spatial
model S, satisfies the formula ϕ and a quantitative semantics, ρ(ϕ,S,x, �, t),
that can be used to measure the quantitative level of satisfaction of a formula
for a given trajectory. The function ρ is also called the robustness function.
The robustness is compatible with the Boolean semantics since it satisfies the
soundness property: if ρ(ϕ,S,x, �, t) > 0 then (S,x, �, t) ⊧ ϕ; if ρ(ϕ,S,x, �, t) < 0
then (S,x, �, t) /⊧ ϕ. Furthermore it satisfies also the correctness property, which
shows that x measures how robust is the satisfaction of a trajectory with respect
to perturbations. We refer the reader to [36] for more details.
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Fig. 4. Example of spatial properties. �3 satisfies yellowRhops
[1,4]

pink while �4 does not.

�9 satisfies Ehops
[3,∞]

orange while �10 does not. �1 satisfies �hops
[3,5]

pink and �
hops
[2,3]

yellow. All

green points satisfy green ⊚hops
[0,100]

blue. �43 (the green point in the middle with a boild

red circle) is the only location that satisfies green ⊚hops
[2,3]

blue. The letters inside the
nodes indicate the color and the numbers indicate the enumeration of the locations.
(Color figure online)

Reach. The quantitative semantics of the reach operator is:
ρ(ϕ1R

f
[d1,d2]

ϕ2,S,x, �, t) =

= max
τ∈Routes(S(t),�)

max
�′∈τ ∶(df

τ [�′]∈[d1,d2])

(min(ρ(ϕ2,S,x, �′, t), min
j<τ(�′)

ρ(ϕ1,S,x, τ[j], t)

The Boolean semantics can be derived substituting min,max with ∨,∧ and con-
sidering the Boolean satisfaction instead or ρ. (S,x, �, t), a spatio-temporal
trace x, in location �, at time t, with a (dynamic) spatial model S, satisfies
ϕ1R

f
[d1,d2]

ϕ2 iff it satisfies ϕ2 in a location �′ reachable from � through a route
τ , with a length df

τ [�
′
] ∈ [d1, d2], and such that τ[0] = � and all its elements with

index less than τ(�′) satisfy ϕ1. Practically, the reach operator φ1R
f
[d1,d2]

φ2

describes the behaviour of reaching a location satisfying property φ2 passing
only through locations that satisfy φ1, and such that the distance from the ini-
tial location and the final one is greater than d1 and less than d2. In Fig. 4,
we report an example of reachability property, considering f as the hops func-
tion described in the previous section. In the graph, the location �3 (meaning the
trajectory x at time t in position �3 with spatial model S(t) as in the figure) sat-
isfies yellowRhops

[1,4]
pink. Indeed, there exists a route τ = �3�13�14�17�35 such that

dhops
τ [�35] = 4, where τ[0] = �3, �35 satisfies the pink property (i.e. it is pink) and

all the other elements of the route satisfy the yellow property. Instead, for exam-



30 L. Nenzi et al.

ple, the location �4 does not satisfy the property because it does not satisfies the
distance constraint.

Escape. The quantitative semantics of the escape operator is:

ρ(Ef
[d1,d2]

ϕ,S,x, �, t) = max
τ∈Routes(S(t),�)

max
�′∈τ ∶(d

f
S(t)

[�,�′]∈[d1,d2])

min
i≤τ(�′)

ρ(ϕ,S,x, τ[i], t).

The Boolean semantics can be derived substituting min,max with ∨,∧, and
considering the Boolean satisfaction instead of ρ. (S,x, �, t), a spatio-temporal
trace x, in location �, at time t, with a (dynamic) spatial model S, satisfies
E

f
[d1,d2]

ϕ if and only if there exists a route τ and a location �′ ∈ τ such that
τ[0] = �, dS[τ[0], �′] ∈ [d1, d2] and all elements τ[0], ...τ[k] (with τ(�′) = k)
satisfy ϕ. Practically, the escape operator Ef

[d1,d2]
φ describes the possibility of

escaping from a certain region passing only through locations that satisfy φ, via
a route with a distance that belongs to the interval d.

In Fig. 4, we report an example of escape property. In the graph, the location
�9 satisfies Ehops

[3,∞]
orange. Indeed, there exists a route τ = �9�10�11�12 such that

τ[0] = �9, τ[3] = �12, dhops
S [�9, �12] = 3 and all elements τ[0], τ[1], τ[2], τ[3]

satisfy the orange property. Note that the route �10�11�12 is not a good route to
satisfy the property because the distance dhops

S [�10, �12] = 2.
Now we describe the other three derived operators.

Somewhere. �f
[d1,d2]

ϕ ∶= trueRf
[d1,d2]

ϕ holds for (S,x, �, t) iff there exists a
location �′ in S(t) such that (S,x, �′, t) satisfies ϕ and �′ is reachable from �
via a route τ with length df

τ [�
′
] ∈ [d1, d2]. In Fig. 4, �1 satisfies the property

�
hops
[3,5]

pink because there is a path τ = �1 . . . �35 with a length dhops
τ (k) ∈ [3,5],

where τ[0] = �1, τ[k] = �35, and �35 satisfies the pink property.

Everywhere. �
f
[d1,d2]

ϕ ∶= ¬�f
[d1,d2]

¬ϕ holds for (S,x, �, t) iff all the locations
�′ reachable from � via a path,with length df

τ [�
′
] ∈ [d1, d2], satisfy ϕ. In Fig. 4,

�1 satisfies �
hops
[2,3]

yellow because all the locations at a distance between 2 and 3
from �1 satisfy the yellow property, while �2 does not satisfies because �18 is at
a distance less than 3 but does not satisfy the yellow property.

Surround. ϕ1 ⊚
f
[d1,d2]

ϕ2 ∶= ϕ1 ∧ ¬(ϕ1R
f
[d1,d2]

¬(ϕ1 ∨ϕ2) ∧ ¬(E
f
[d2,∞]

(ϕ1)) holds
for (S,x, �, t) iff there exists a ϕ1-region that contains �, all locations in that
region satisfies ϕ1 and are reachable from � via a path with length less than
d2. Furthermore, all the locations that do not belong to the ϕ1-region but are
directly connected to a location in ϕ1-region must satisfy ϕ2 and be reached
from � via a path with length in the interval [d1, d2]. Practically, the surround
operator expresses the topological notion of being surrounded by a ϕ2-region,
while being in a ϕ1-region, with additional metric constraints. The idea is that
one cannot escape from a ϕ1-region without passing from a node that satisfies
ϕ2 and, in any case, one has to reach a ϕ2-node at a distance between d1 and
d2. In Fig. 4, the green points satisfy green ⊚hops

[0,100]
blue. Indeed, for each green



Monitoring Spatio-Temporal Properties (Invited Tutorial) 31

point we can find a region that contains the point, such that all its points are
green and all the points connected with an element that belongs to the region
are blue and satisfy the metric constraint. Instead, the property green⊚hops

[2,3]
blue

is satisfied only by location �43 (the location with a bold red circle), indeed �43 is
the only location for which there exists a region (the green region) such that all
its elements are at a distance less than 3 from �43 and satisfy the green property;
and all the locations directly connected with the green region are at a distance
between 2 and 3 from �43 and satisfy the blue property.

3.2 Offline Monitoring Algorithm

At the moment the logic supports only offline monitoring. The monitor takes as
inputs a static or dynamic spatial model S, a trace x and a formula φ and returns
the spatio-temporal signal σ representing the monitoring of φ, a Boolean spatio-
temporal signal for the Boolean Semantics and a real-value spatio-temporal sig-
nal for the quantitative one. The monitor of the whole trace corresponds to σ@0,
i.e. the spatial Boolean or real-value signal at time zero. This means that the
monitor of the whole trace corresponds to the evaluation at time t = 0 in each
point in space: (S,x, �) ⊧ ϕ iff (S,x, �,0) ⊧ ϕ and ρ(ϕ,S,x, �) ∶= ρ(ϕ,S,x, �,0).
We made this choice because we assume no privilege direction or location so we
cannot consider a zero location as for the time.

Like in STL, monitoring of temporal operators is linear in the length of the
signal times the number of locations in the spatial model. This because the mon-
itoring procedure is performed at each location by using the same (linear) algo-
rithm proposed in [36]. Monitoring of spatial properties is more expensive. These
algorithms, formally described in [13], are based on a variations of the classical
Floyd-Warshall algorithm. The number of operations to perform is polynomial
on the size of the model times the length of the signal.

3.3 Application to Stochastic Systems

The analysis of spatio-temporal properties can be applied also on stochastic
systems considering methodologies as Statistical Model Checking [74] (SMC).
SMC combines simulation of the stochastic model (i.e. an algorithm that samples
traces according to the probability distribution of the model in the Skorokhod
space) with a monitoring routine for the property φ. Stochastic systems induce
a probability measure on the space of all possible traces (i.e. on the so-called
Skorokhod space, the space of càdlàg functions, which are piecewise continuous
functions of time, taking real values). If we define a stochastic process M =

(T ,A, μ), where T is a trajectory space and μ is a probability measure on a
σ-algebra A of T , a quantity for measuring how a certain STREL formula ϕ
is satisfied by M is the satisfaction probability S(ϕ, t), i.e. the probability that
a trajectory generated by the stochastic process M satisfies the formula ϕ at
the time t: E[s(ϕ, ξ, t)] = ∫ξ∈T s(ϕ, ξ, t)dμ(ξ) where s(ϕ, ξ, t) = 1 if (ξ, t) ⊧ ϕ
and 0 otherwise. The quantitative counterpart of the satisfaction probability is
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the expected robustness, defined as ⟨ρ(ϕ, t)⟩ ∶= E[ρ(ϕ, ξ, t)] = ∫ξ∈T ρ(ϕ, ξ, t)dμ(ξ)
that is the expectation of the robustness computed over the trajectories of M.

More specifically, SMC for satisfaction probability works by pipelining the
generation of traces and their monitoring: every time a trace is generated by the
simulator, it is passed to the Boolean monitor, which returns either 0 (false) or
1 (true). Probabilistically, this can be seen as a sample of a Bernoulli random
variable, having probability p(φ) of observing 1. From a finite sample of such
values, we can rely on standard statistical tools to estimate p(φ) and to com-
pute the confidence level of such an estimate. Estimation of average robustness
works in a similar way. Examples of spatio-temporal model checking to com-
pute the approximated probabilistic satisfaction can be found in [14]. Analyzing
these systems through the computation of satisfaction probability and/or aver-
age robustness, can therefore bring key insights in assessing and evaluating the
design choices being made. The combination of Statistical Model Checking with
quantitative semantics has been explored earlier for STL in [9] and applied to
tasks like system design and parameter synthesis [9,25].

4 Static Space and Regular Grid: The Formation
of Patterns

We consider here the simplest scenario, a regular grid, with only hop distance
function and a deterministic model. In particular, in this example, we show how
to exploit the surround operator to specify the formation of patterns and some
other spatio-temporal related properties.

Model and Trace. The space model is a K ×K grid treated as a weighted
undirected graph, where each cell (i, j) ∈ {1, . . . ,K} × {1, . . . ,K} is a location,
edges connect each pairs of neighbouring nodes along four directions and they
have only one label which corresponds to the hop distance function, i.e. if two
cells are neighbors the distance is equal to one.

The spatio-temporal trace describes the concentration of two proteins A and
B in each cell of the grid at each time step. It is generated by a reaction-diffusion
system, discretised according to a Finite Difference scheme [63], as a system of
ODEs whose variables are organised in the K × K rectangular grid. Figure 5
reports the concentration of A for a number of time steps. It can be seen that
from time t = 20 the shape of the pattern is apparent and remains stable; the
pattern consists in a almost equidistant distribution of (blue) spots which have a
low concentration of A surrounded by regions with a high concentration of A. For
protein B (not shown) happens the opposite (high density regions surrounded
by low density regions). More details about the model can be found here [62].
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t=0 t=5 t=7 t=10 t=20 t=50
0
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6

Fig. 5. Concentration of protein A for the reaction-diffusion system for the frames with
t = 0,5,7,12,20,50 time units. The initial conditions (i.e. the initial concentration of
A and B) are set randomly. The colour map for the concentration is specified in the
legend on the right. (Color figure online)

Fig. 6. (a) Boolean (left) and quantitative (right) satisfaction of the (spot formation)
property; in the Boolean case the cells that satisfy the formula are in red; (b) Snapshots
at time t = 50 of protein A for the reaction-diffusion model with different diffusion rates
for which we have the formation of different patterns. (Color figure online)

4.1 Properties

Spot. (φspot ∶= (A <= h) ⊚hops
[d1,d2]

(A > h)) holds in sub-regions that have low
concentration of A, surrounded by a high concentrations of A. In detail, this
property holds in the location � that belongs to a region L′ of the grid where all
elements satisfy the atomic proposition A <= h and their distance from � belong
to the interval is less than d2. Furthermore, each element directly connected with
L′ satisfy A > 0, and its distance from � belongs to [d1d2]. The elements in the
boundary correspond to all elements directly connected to a location of L′. Note
that the use of distance bounds in the surround operator allows one to constrain
the size/ diameter of the spot to [d1d2]. If we have only one type of distance
function, the name in the formula can be even omitted.

Spot Formation. (F
[T,T+δ]G(spot)) means that from a point in the future

between T and T + δ the spot property should always hold. In Fig. 6(a) we can
see the Boolean and quantitative satisfaction of the Spot Formation formula
with h = 0.5, T = 19, δ = 1, d1 = 1, d2 = 6 for the trajectory reported in Fig. 5.

Pattern. (��
[0,dspot]

spotformation) means that each node in the grid should
be connected to a node at a distance less than dspot where the spot property
holds, where dspot represent the maximum distance between spots. This prop-
erty permits to describe a global behaviour. As we pointed in the description
of the logic the monitor is done in each location, differently from the temporal
part where we define the satisfaction of the whole trajectory as the satisfaction
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at time zero. Using the everywhere operator (�) without distance constraints
means to cover all the locations of the grid, i.e. all the locations will have the
same evaluation and this means that checking this formula in a random location
of our space is enough to verify the presence of the pattern. In Fig. 6(b), we can
see a snapshot of two different patterns generated by the same reaction-diffusion
system, changing the diffusion rate. Changing the diffusion rate can affects the
shape and size of the spots or even disrupts them. Trajectories generating pat-
terns as in Fig. 6(b) do not satisfy the pattern formula (and the quantitative
semantics returns a value around 0.5) while trajectory generating pattern as in
Fig. 5 satisfy it.

5 Static Space and Stochastic Systems: Availability
of Bikes

In this example we show how to combine temporal operators with the somewhere
operator, for specifying some key properties of stochastic bike sharing systems.
In particular, we observe how spatio-temporal properties can be used to analyse
the availability of bikes or free slots in proximity of users.

Model and Trace. We consider the London Santander Cycles Hire network,
modelled as a Population Continuous Time Markov Chain (PCTMC) with time-
dependent rates [40]. We set the model parameters using historic journey and
bike availability data from January 2015 to March 2015.

The Bike-Sharing System (BSS) is composed of a number of bike stations,
distributed over a geographic area. Each station has a fixed number of bike
slots. The users can pick up a bike, use it for a while, and then return it to
another station in the area. The model, given the number of bikes/free slots
in a station at time t, computes the probability distribution of the number of
bikes/free slots in that station at time t+h with h ∈ [0,40]min. We can describe
the model as a transition system where Bi (respectively Si) represents the bike
agent (respectively the slot agent) in the ith station, T i

j is the bike agent travelling
from pick-up station i to return station j, while N is the total number of stations.
Each transition describes a possible event changing the state of the system. A
transition rule like Bi → Si + T i

j models that an agent Bi is removed from the
system (a bike leaves station i), while new agents Si and T i

j are added to the
system (a free slot is added to station i, while the bike is set to travel towards
station j). The rate of each transition encodes the mean frequency with which it
happens, considering historic journey data. For a detailed understanding of the
model, the interested reader can refer to [62].

We consider a model with 733 bike stations (each with 20–40 slots) and
a total population of 57,713 agents (users) picking up and returning bikes. We
simulate the model using Simhya [22], a Java tool for the simulation of stochastic
and hybrid systems, using the Gibson-Bruck (GB) algorithm. We are considering
in particular the trajectories only of the bike (B) and slot (S) agents, in each
station. Our spatio-temporal trace is then x(i, t) = (Bi(t), Si(t)), associating



Monitoring Spatio-Temporal Properties (Invited Tutorial) 35

at each station i the number of bikes and free slots at each time. The space is
represented by a weighted graph, where the nodes are the bike stations and the
edges describe the connection between each station. Two nodes are connected if
they are at a distance less or equal than 1 km.

5.1 Properties

We use STREL to study spatio-temporal properties of the system and to explore
their robustness considering a set of parameter values for the formulas. In the
following, we will consider the distance induced by the function Δ(v, (x, y)) =
v+∣∣(x, y)∣∣2, where (x, y) are the coordinates of the distance vector between two
adjacent nodes, while v is the distance incrementally computed by Δ.

Local Availability. One of the main problems of these systems consists in the
availability of bikes or free slots in each station. The most interesting question
related to this issue from a user’s point of view is “If I don’t find a bike (free slot,
resp.) here, can I find another station close enough where there is an available
bike (resp. free slot)?” This concern can be expressed by the STREL property
described below:

φ1 = G
[0,Tend]

{�
Δ
[0,d](B > 0) ∧�Δ

[0,d](S > 0)} (1)

A station � satisfies φ1 if and only if it is always true that, between 0 and Tend

minutes, there exists a station at a distance less than or equal to d, that has at
least one bike and a station at a distance less or equal to d that has at least one
free slot.

In the analysis, we investigate the value of parameter d ∈ [0,1] kilometres to
see how the satisfaction of the property changes in each location. Figure 7 shows
the approximate satisfaction probability pφ1 for 1000 runs for all the stations,
for (a) d = 0, and (b) d = 0.3 For d = 0, we can see that many stations have
a high probability to be full or empty (indicated by red points), i.e. low values
of satisfaction probability, with standard deviation of all the locations in the
range [0, 0.0158] and mean standard deviation 0.0053. However, increasing d
to d = 0.3 km, i.e. allowing a search area of up to 300 metres from the station
that currently has no bikes, or no slots respectively, we greatly increase the
satisfaction probability of φ1, with a standard deviation that remains in the
same range and mean standard deviation of 0.0039. For d = 0.5, the probability
of pφ1 is greater than 0.5 for all the stations; standard deviation is in the range [0,
0.0142] and mean stdv is 0.0002. Figure 8 (a) shows the satisfaction probability
of some BBS stations vs distance d=[0,1.0].

Timed Availability. The property we analyzed previously did not consider that
a user will need some time to reach a nearby station. Property ϕ1 can be refined
to take this aspect into consideration by considering a nested spatio-temporal
property:

ψ1 = G
[0,Tend]

{�
Δ
[0,d](F[tw,tw]

B > 0) ∧�Δ
[0,d](F[tw,tw]

S > 0)} (2)
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Fig. 7. Approximate satisfaction probability of formula φ1 for 1000 runs for each BSS
station for (a) d = 0, and (c) d = 0.3. The value of the probability is given by the color
legend. (Color figure online)

A station � satisfies ψ1 if and only if it is always true between 0 and Tend minutes
that there exists a station at a distance less than or equal to d, that, eventually
in a time equal to tw (the walking time), has at least one bike and a station at
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Fig. 8. Approximate satisfaction probability for property φ1 (a). (b) pψ1 − pφ1 vs the
distance d = [0,1.0]. Both evaluated over 1000 runs of BSS stations �1,�50, �100, and
�300.

a distance less than or equal to d, that, eventually in a time equal to tw has at
least one free slot.

We consider an average walking speed of 6.0 km/h, this means for example
that if we evaluate a distance d = 0.5 km, we consider a walking time tw = 6 min.
The results of ψ1 are very similar to the results of φ1. This means that there is not
much difference between looking at t = 0 or after the walking time. Figure 8(b)
shows the difference between the satisfaction probability of properties ψ1, φ1 for
the same locations.

6 Dynamic Space: Connectivity and Reliability
in a MANET

In the previous sections we have considered two scenarios where the structure
of the space does not change in time. Differently, in this section, we consider a
scenario where the structure of the space is dynamic.

Model and Trace. We consider a mobile ad-hoc sensor network (MANET).
This kind of systems can consist of up ten thousands of mobile devices connected
wirelessly, usually deployed to monitor environmental changes such as pollution,
humidity, light and temperature.

Each sensor node is equipped with a sensing transducer, data processor, a
radio transceiver and an embedded battery. A node can move independently
in any direction and indeed can change its links to other devices frequently.
Two nodes can communicate each other if their Euclidean distance is at most
their communication range as depicted in Fig. 3. Moreover, the nodes can be
of different type and their behaviour and communication can depend on their
types.

In this scenario, the spatial model of time t is obtained by considering the
graph where each device represents a node/location of the network. Edges are
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labelled with both their Euclidean distance and with the integer value 1. This
last value is used to compute the hop (shortest path) count between two nodes,
that is the number of intermediate network nodes through which data must pass
between source node and target one. The signal associated with each location
contains three values: the type of node (coordinator, router, end-device), the
level of battery, and the temperature.

6.1 Properties

We can use STREL to specify, and monitor, properties related to connectivity
of the network.

Connectivity. The first property one is interested to monitor is the connectivity.
That is, each node that is an end device is directly connected either to a router
or to a coordinator :

ψ1 = end devRhops
[0,1]
(router ∨ coord)

The formula above holds if from a node satisfying the atomic proposition end dev
(indicating an end device), we can reach a node satisfying either router or coord
(that are the atomic proposition satisfied by coordinators or a routers), following
a path in the spatial graph such that the hops distance along this path (i.e. its
number of edges) is not bigger than 1.

More sophisticated properties can be specified with STREL. For instance, the
following property can be used to specify that an end device is either connected
to the coordinator or can reach it via a chain of at most of 5 routers:

ψ2 = end devRhops
[0,1]
(routerRhops

[0,5]
coord)

Delivery. Another property that one could be interested in monitoring is the
ability of the system to forward a message at a given distance. The ability of a
component to forward a message is related to its battery level. To express this
property, we can use the escape operator:

ψ3 = E
hops
[5,∞]

(battery > 0.5)

This property states that from a given location, we can find a path of (hops)
length at least 5 such that all nodes along the path have a battery level greater
than 0.5, i.e. that a message will be forwarded along a connection with no risk
of power failure.

Reliability. Spatial and temporal operators can be mixed to specify properties
regarding the evolution of the space in time. For instance, the following property
is satisfied by the nodes with a battery level less than 0.5 that can reach in less
than 10 hops another component that will eventually have a the battery level
greater than 0.5:

ψ4 = (battery < 0.5) Rhops
[0,10]

F(battery > 0.5)
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Moreover, the following property can be used to state that the correct spatial
configuration is preserved in each time step:

ψ5 = Gψ2

where ψ2 is the formula defined above.

7 Related Work

Machine Learning vs Specification Languages. Pattern recognition is a
well-established research area in machine learning. A typical approach consists
in using a classifier trained with a labeled data set that assigns each data item to
one class. Once the classifier is built from data using one of the several machine
learning (ML) techniques [66] available, it can be used to detect/monitor whether
a new data “most likely” matching to the classes. An important step is the choice
and the extraction of the distinctive features [19,32,51,55] with relevant infor-
mation from a set of input data representing the pattern of interest. Although
extremely powerful, ML techniques lack generally of interpretability: they typ-
ically provide black-box data descriptors (e.g., deep neural networks) that are
generally far from the human comprehension and ability to reason. Our approach
to specify spatio-temporal patterns is instead based on a logic-based specifica-
tion language. The declarative nature of the language offers an high-level and
abstract framework enabling generalisation. STREL specifications are re-usable,
compositional and generally closer to the human understanding.

Spatio-Temporal Models. In [69], Talcott introduced the notion of spatial-
temporal event-based model to monitor spatial-temporal properties over CPS
executions. In this model, actions (e.g. the exchange of messages, or a physical
changes) are labeled with time and space stamps and they trigger events that
are further processed by a monitor. In [70] the model was further extended
to enable different space representations. Although the approaches in [69,70]
provide a valuable algorithmic framework, they lack a specification language
and the monitors cannot be automatically generated.

Other mathematical structures such as topological spaces, closure spaces,
quasi-discrete closure spaces and finite graphs [61] have been investigated to
reason about spatial relations (e.g. closeness and neighborhood) in the context
of collective adaptive systems [31]. Quad-trees spatial structures [41] have been
proposed in [44,47,48] to reason about fractal-like spatial patterns or spatial
superposition properties in a grid, such as electrical spiral formation in cardiac
tissues [47] or power management requirements in a smart grid [48]. Despite
these models are suitable for offline and centralised monitoring of model-based
simulations, they do not scale well for the runtime monitoring of spatially dis-
tributed CPS.

Spatial and Spatio-Temporal Logics. Spatial logics have been the subject
of theoretically investigation since at least almost a couple of decades [3]. The
work in [3] focuses on theoretically investigation, expressivity and decidability,
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often in continuous space. Less attention has been placed on more practical
aspects, especially in the verification procedures. In particular, model checking
techniques for spatial models have been introduced more recently. In [29], the
authors introduce a Spatial Logic for Closure Spaces (SLCS) that leverages a dis-
crete and topological notion of space, based on closure spaces [43]. An extension
of the SLCS with temporal aspects, as “snapshot” models, was proposed later
in [30]. This extends SLCS with the temporal modality of the branching logic
Computation Tree Logic [38]. However, the algorithms to check snapshot models
are very computational expensive and are susceptible to state-space explosion
problems because the spatial formulae need to be recomputed at every state.

Relevant works are also those on spatial logics for process algebra with loca-
tions such as in [27,28], or spatial logic for rewrite theories [8]. Other logic-based
formalisms have been introduced to reason about the topological [20] or direc-
tional [26] aspects of locally interacting components. In the topological app-
roach [20], the entities are sets of points in the space and the relation between
them is preserved under translation, scaling and rotation. If the relation between
objects depends on their relative position then the spatial model supports the
directional reasoning. These logics are highly computationally complex [26] or
even undecidable [59] and indeed impractical to use.

Table 1. Table comparing the main features of different spatio-temporal logics.

Specification language Temporal logic Spatial model Static/dynamic space

STREL [13] STL [57] Weighted graph Static/dynamic

SpaTeL [48] STL [57] Quad-trees Static

STLCS [30] CTL [38] Closure spaces Static

SaSTL [56] STL [57] Weighted graph Static

SSTL [61] STL [57] Weighted graph Static

Monitoring spatial-temporal behaviors has recently started to receive more
attention with Spatial-Temporal Logic (SpaTeL) [48], Signal Spatio-Temporal
Logic SSTL [61], Spatial Aggregation Signal Temporal Logic (SaSTL) [56] and
Spatio-Temporal Reach and Escape Logic STREL [13]. SpaTeL is the unification
of Signal Temporal Logic [57] (STL) and Tree Spatial Superposition Logic (TSSL)
introduced in [44] to classify and detect spatial patterns. Spatial properties are
expressed using ideas from image processing, namely quad trees [41]. This allows
one to capture very complex spatial structures, but at the price of a complex
formulation of spatial properties, which are in practice only learned from some
template images. SSTL combines STL with two spatial modalities, one express-
ing that something is true somewhere nearby and the other capturing the notion
of being surrounded by a region that satisfies a given spatio-temporal property.
SSTL has two possible semantics a Boolean and a real-valued one. SSTL [62]
operates over a static topological space while STREL on the contrary can mon-
itor entities over a dynamic topological space. Furthermore, STREL generalizes
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SSTL spatial modalities with the reach and escape operators, simplifying the
monitoring that can be computed locally with respect to each node. Finally,
SaSTL [56] is recently proposed specification language that augment STL with
two new logical operators for expressing spatial aggregation and spatial count-
ing characteristics that are typical in monitoring spatio-temporal requirements
in a smart city. Similarly to SSTL, also SaSTL operates on a static topological
space. We summarize the main characteristics of the different spatio-temporal
logics discussed in section in Table 1.

8 Conclusion

Spatio-temporal logics are high level languages that permit us to specify com-
plex behaviours of dynamical systems distributed in space. In this tutorial paper
we presented STREL, a modal logic which permits to specify spatio-temporal
requirements and to monitor them automatically over a spatio-temporal trace.
We discuss how STREL is suitable to capture behaviours of different scenarios:
emergent Turing patterns, bike sharing systems, mobile sensor networks. These
scenarios have both static and dynamic spatial structure and deterministic or
stochastic dynamics. This flexibility of the logic, however, does not result in a
high computational complexity of monitoring algorithms. This is a consequence
of endowing the logic with spatial operators which are existential modal oper-
ators. Currently, STREL supports only offline monitoring. In order to properly
apply STREL to real-time scenarios, we are designing dedicated online and dis-
tributed monitoring algorithms. Future work also includes the use of STREL
within design and control loops of cyber-physical systems, leveraging the work
done with STL in this respect [68].
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Abstract. This paper presents a general framework and methods for
complete programming and checking of distributed algorithms at a high-
level, as in pseudocode languages, but precisely specified and directly
executable, as in formal specification languages and practical program-
ming languages, respectively. The checking framework, as well as the
writing of distributed algorithms and specification of their safety and
liveness properties, use DistAlgo, a high-level language for distributed
algorithms. We give a complete executable specification of the checking
framework, with a complete example algorithm and example safety and
liveness properties.

1 Introduction

Distributed systems are increasingly important in our increasingly connected
world. Whether for distributed control and coordination or distributed data
storage and processing, at the core are distributed algorithms.

It is well known that distributed algorithms are difficult to understand. That
has led to significant effort in specifying these algorithms and verifying their
properties, e.g., [5,13,36], as well as in developing specification languages and
verification tools, e.g., TLA and TLA+ Toolbox [18,20,34], I/O Automata [31],
and Ivy [33]. However, challenges remain for automated verification of practical
distributed algorithms using theorem proving or model checking techniques, due
to exorbitant manual effort and expertise required or prohibitive state-space
explosion.

Runtime verification allows information to be extracted from a running sys-
tem and used to check whether observed system behaviors satisfy certain proper-
ties, and to react based on the results of checking. It is the most effective comple-
ment to theorem proving and model checking for sophisticated algorithms and
implementations. For routinely checking real distributed applications written in
general-purpose programming languages, it is so far the only feasible practical
solution.
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Many methods and related issues for doing such runtime checking have been
studied, as discussed in Sect. 8. Such checking and all kinds of variations have
also long been used extensively in practical program development, testing, debug-
ging, and simulation for distributed algorithms. However, these studies and uses
of runtime checking are either more abstract methods, not presented as exe-
cutable programs, or involving significant programming using commonly-used
programming languages, too large to present in complete and exact forms on
paper.

This paper presents a general framework and methods for complete program-
ming and checking of distributed algorithms at a high-level, as in pseudocode
languages, but precisely specified and directly executable, as in formal specifica-
tion languages and practical programming languages, respectively. The checking
framework, as well as the writing of distributed algorithms and specification of
their safety and liveness properties, use DistAlgo, a high-level language for dis-
tributed algorithms [21,29]. We give a complete executable specification of the
checking framework, with a complete example algorithm and example safety and
liveness properties.

The framework can check any desired properties against observed system
behavior. Note that since any execution of a practical system is finite, the live-
ness properties we check are bounded liveness, that is, the desired properties
hold within specified time bounds. The framework requires no change to the
algorithm code to be checked. It puts the algorithm code, property specification,
as well as fault simulation together with small configurations, thanks to the
power of the DistAlgo language and compiler. The complete checking program
then automatically intercepts messages sent and received by the distributed pro-
cesses to be checked, with both logical and real times, and checks the specified
properties at desired points as written.

This framework has been used in implementing, testing, debugging, simula-
tion, and analysis of many well-known distributed algorithms, and in teaching.
Our experiences included discovering improvements to both correctness and effi-
ciency of some well-known algorithms, e.g., [23,25,28].

2 Distributed Algorithms and Their Safety and Liveness

Distributed algorithms are algorithms that run in distributed systems. Under-
standing and verifying their properties are central challenges for distributed com-
puting.

Distributed Systems and Distributed Algorithms. A distributed system
is a set of distributed processes. Each process has its own private memory that
only it can access. Processes execute concurrently and communicate with each
other by sending and receiving messages.

Distributed processes and communications are prone to various kinds of fail-
ures, depending on the underlying infrastructures. Processes may be slow, may
crash, may later recover, and may even behave arbitrarily. Messages may be lost,
delayed, duplicated, reordered, and even be arbitrarily changed.
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Distributed algorithms are for solving problems that involve coordination,
negotiation, etc. among distributed processes in the presence of possible fail-
ures. Due to nondeterminism from concurrency and uncertainty from failures,
distributed algorithms are notoriously difficult to design, understand, and verify.
Even as an algorithm executes in a distributed system, the state of the system
is not fully observable, and the order of events cannot be fully determined. This
led to Lamport’s creation of logical clocks, which are fundamental in distributed
systems [17].

Distributed computing problems are of an extremely wide variety, and a great
number of distributed algorithms have been studied. e.g., [7,9,31]. Well-known
problems range from distributed clock synchronization to distributed snapshot,
from leader election to distributed mutual exclusion, from atomic commit to
distributed consensus, and many more. We give two examples here:

– Distributed mutual exclusion. Distributed mutual exclusion is for multiple
processes to access a shared resource mutually exclusively, in what is called
a critical section, i.e., there can be at most one process in a critical section
at a time.
It is one of the most studied problems, e.g., [15,37], with at least dozens
if not hundreds or more of proposed algorithms and variants. For example,
Lamport’s algorithm [17], introduced to show the use of logical clocks, was
designed to guarantee that access to the resource is granted in the order of
logical clock values of the requests.

– Distributed consensus. Distributed consensus is for a set of processes to agree
on a single value or a continuing sequence of values, called single-value con-
sensus or multi-value consensus, respectively.
It is essential in any important service that maintains a state, including ser-
vices provided by companies like Google and Amazon. This is because such
services must use replication to tolerate failures caused by machine crashes,
network outages, etc. Replicated processes must agree on the state of the
service or the sequence of operations that have been performed, e.g., that a
customer order has been placed and paid but not yet shipped, so that when
some processes become unavailable, the remaining processes can continue to
provide the service correctly.
Even well-known algorithms and variants number at least dozens, starting
from virtual synchrony [1–3], viewstamped replication [22,35], and Paxos [19].

These problems are at the core of distributed file systems, distributed databases,
and fault-tolerant distributed services in general. New algorithms and variants
for them are developed constantly, not to mention a vast number of other dis-
tributed algorithms, such as network protocols, distributed graph algorithms,
and security protocols.

Safety and Liveness. Lamport [16] first formulated two types of properties
of a distributed system: safety and liveness. Informally, a safety property states
that some bad things will not happen, and a liveness property states that some
good things will happen. We continue the two examples discussed earlier:
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– For distributed mutual exclusion, a most important safety property is that at
most one process is in a critical session at a time. A liveness property is that
some requests are eventually served, and a stronger liveness property is that
all requests are eventually served.
For example, Lamport’s algorithm [17] is designed to guarantee all these,
and in fact, as mentioned above, to guarantee a stronger property—that all
requests are served in the order of logical clock values. This stronger property
can be interpreted and formulated as either a safety property, to mean that
no requests are served out of the order of logical clock values, or a liveness
property, to include that all requests are eventually served.

– For distributed consensus, there are two important safety properties: (1)
agreement on the decided single value, in single-value consensus, or on the
sequence of values, in multi-value consensus, by nonfaulty processes, and (2)
validity of the decided value or values to be among allowed values. A live-
ness property for single-value consensus is that nonfaulty processes eventually
decide on a value. A liveness property for multi-value consensus is that non-
faulty processes repeatedly decide on additional values in the sequence.
Good distributed consensus algorithms, such as Paxos [19], guarantee the two
safety properties, but they cannot guarantee the liveness property due to the
well-known impossibility of consensus in asynchronous distributed systems
even with only one faulty process subject to crash failures [6].

Specifying safety and liveness properties is nontrivial, especially liveness proper-
ties, even informally. For example, liveness for many consensus algorithms and
variants has been left unspecified, or specified too weakly to be useful or too
strongly to be possible [4].

Safety and liveness are, in general, global properties about multiple processes.
Checking them requires knowing the states of multiple processes. However, the
state of a process is private to that process and cannot be accessed directly by
any other process. The best one can do is to observe a process by intercepting
messages sent and received by that process, and determine the state of the system
and desired properties conservatively or approximately, and with a delay.

We use checker to refer to a process that observes the sending and receiving
of messages by a set of processes and checks desired properties.

3 A Powerful Language for Distributed Programming

A powerful language for distributed programming must allow (1) easy creation
of distributed processes and communication channels for sending messages, (2)
easy handling of received messages, both synchronously (with waiting) and asyn-
chronously (without waiting), (3) easy processing of all information communi-
cated as well as a process’s own data, and (4) easy configuration of basic elements
for real execution on distributed machines.

Running Example: The Polling Problem. We introduce a simple but essen-
tial problem, which we call the polling problem, as a running example:



Assurance of Distributed Algorithms and Systems 51

A poller process sends a question to a set of pollee processes, waits to
receive answers to the question from all of them, and then sends an out-
come message to them.

Small variations of this problem include waiting to receive replies from a subset
of the pollee processes, such as a majority or a quorum, instead of all of them.

This problem is essential because any process working with a set of other
processes requires talking to and hearing back from those processes one way or
another. This problem manifests widely in well-known distributed algorithms,
including algorithms for distributed mutual exclusion, atomic commit, and dis-
tributed consensus. This problem also manifests itself in everyday life, such as
an instructor giving assignments to students, a chairperson soliciting suggestions
from committee members, or a campaign organizer sending a poll to voters.

The problem appears simple, but is nontrivial, even without process failures
or message delays or losses, because processes are generally communicating with
multiple processes and doing other things at the same time. Consider some
examples:

– When the poller receives a message from a pollee, how does the poller know
it is replying to a particular question? The pollee might happen to send
something to the poller with the same format as an expected reply, and send
it shortly after the question was sent.

– How does the poller know it has received replies from all pollees? It could
compare the number of replies to the number of pollees, but a pollee might
send multiple replies, or a communication channel might duplicate messages.

The problem becomes even harder if processes can fail and messages may be lost
or delayed. It becomes even more challenging if processes can fake identities and
messages can be altered or counterfeited. In the latter cases, processes need to use
security protocols for authentication and secure communication. Although we do
not consider those problems further in this tutorial, we have extended DistAlgo
with a high-level cryptographic API for expressing such security protocols [14].

Figure 1 shows a complete polling program written in DistAlgo. Process
classes P and R specify the poller and responder (i.e., pollee) processes, respec-
tively. Definitions run and receive specify the main algorithm. The core of the
algorithm is on lines 4–6, 8, 13, and 15–16. The rest puts all together, plus setting
up processes, starting them, and outputting about replies and outcomes of the
polling. The details are explained in examples as we describe next the DistAlgo
language used.

DistAlgo, a Language for Distributed Algorithms. DistAlgo supports
easy distributed programming by building on an object-oriented programming
language, with a formal operational semantics [29], and with an open-source
implementation [21] that extends Python.

Because the implementation uses the Python parser, it uses Python syntax
such as send(m, to=p) instead of the ideal send m to p for sending message m to
process p. For the same reason, it uses from in place of the ideal from because
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Fig. 1. Polling program in DistAlgo.

the latter is a keyword in Python. A final quirk is that we indicate a previously
bound variable in patterns with prefix in place of the ideal = because is
the only symbol allowed besides letters and numbers in identifiers. Besides the
language constructs explained, commonly used constructs in Python are used,
for no operation (pass), assignments (v = e), etc.

Distributed Processes That Can Send Messages. A type P of distributed
processes is defined by class P (process): body, e.g., lines 1–10 in Fig. 1. The
body may contain

– a setup definition for taking in and setting up the values used by a type P

process, e.g., line 2,
– a run definition for running the main control flow of the process, e.g., lines

3–8,
– other helper definitions, e.g., lines 9–10, and
– receive definitions for handling received messages, e.g., lines 15–16.

A process can refer to itself as self. Expression self.attr (or attr when there is
no ambiguity) refers to the value of attr in the process. ps = new(P,args,num)

creates num (default to 1) new processes of type P , optionally passing in the
values of args to setup, and assigns the set of new processes to ps, e.g., lines 21
and 22. start(ps) starts run() of processes ps, e.g., lines 23 and 24. A separate
setup(ps,args) can also set up processes ps with the values of args.

Processes can send messages: send(m, to=ps) sends message m to processes
ps, e.g., line 5.
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Control Flow for Handling Received Messages. Received messages can
be handled both asynchronously, using receive definitions, and synchronously,
using await statements.

– A receive definition, def receive (msg=m, from =p), handles, at yield points,
un-handled messages that match m from p, e.g., lines 15–16. There is a yield
point before each await statement, e.g., line 6, for handling messages while
waiting. The from clause is optional.

– An await statement, await cond, waits for cond to be true, e.g., line
6. A more general statement, if await cond1: stmt1 elif ... elif condk:

stmtk elif timeout(t): stmt, waits for one of cond1, ..., condk to be true or a
timeout after t seconds, and then nondeterministically selects one of stmt1,
..., stmtk, stmt whose conditions are true to execute.

High-Level Queries for Synchronization Conditions. High-level queries
can be used over message histories, and patterns can be used for matching mes-
sages.

– Histories of messages sent and received by a process are automatically kept in
variables sent and received, respectively. sent is updated at each send state-
ment, by adding each message sent. received is updated at yield points, by
adding un-handled messages before executing all matching receive defini-
tions.
Expression sent(m, to=p) is equivalent to (m,p) in sent. It returns true
iff a message that matches (m,p) is in sent. The to clause is optional.
received(m, from =p) is similar.

– A pattern can be used to match a message, in sent and received, and by a
receive definition. A constant value, such as ’respond’, or a previously bound
variable, indicated with prefix , in the pattern must match the correspond-
ing components of the message. An underscore by itself matches anything.
Previously unbound variables in the pattern are bound to the corresponding
components in the matched message.
For example, received((’reply’,’Y’, t), from =r) on line 7 matches in
received every message that is a 3-tuple with components ’reply’, ’Y’, and
the value of t, and binds r to the sender.

A query can be a comprehension, aggregation, or quantification over sets or
sequences.

– A comprehension, setof(e, v1 in s1, ..., vk in sk, cond), where each vi
can be a pattern, returns the set of values of e for all combinations of values
of variables that satisfy all vi in si clauses and satisfy condition cond, e.g.,
the comprehension on line 7.

– An aggregation, similar to a comprehension but with an aggregation opera-
tor such as countof or maxof, returns the value of applying the aggregation
operator to the collection argument, e.g., the countof query on line 10.
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– A universal quantification, each(v1 in s1, ..., vk in sk has=cond), returns
true iff, for all combinations of values of variables that satisfy all vi in si
clauses, cond holds, e.g., the each query on line 6.

– An existential quantification, some(v1 in s1, ..., vk in sk has=

cond), returns true iff, for some combinations of values of variables that sat-
isfy all vi in si clauses, cond holds, e.g., the some query on line 13. When the
query returns true, all variables in the query are bound to a combination of
satisfying values, called a witness, e.g., o on line 13.

Configuration for Setting Up and Running. Configuration for require-
ments such as use of logical clocks and reliable channels can be specified in a
main definition, e.g., lines 19–20. When Lamport’s logical clocks are used, Dis-
tAlgo configures sending and receiving of a message to update the clock value,
and defines a function logical clock() that returns the clock value. Processes
can then be created, setup, and started. In general, new can have an additional
argument, specifying remote nodes where the newly created processes will run;
the default is the local node.

4 Formal Specification of Safety and Liveness

When specifying properties about multiple distributed processes, we refer to
the sent and received of a process p as p.sent and p.received. We will use
ideal syntax in this section in presenting the safety and liveness properties, e.g.,
p.received m from p at t instead of p.received(m, from =p, clk=t).

Specifying Safety. Despite being a small and seemingly simple example, a wide
variety of safety properties can be desired for polling. We consider two of them:

(S1) The poller has received a reply to the question from each pollee when sending
the outcome.
This property does not require checking multiple distributed processes,
because it uses information about only one process, the poller. In fact, in
the program in Fig. 1, it is easy to see that this property is implemented
clearly in the poller’s run method.
We use this as an example for three reasons: (1) it allows the reader to con-
trast how this is specified and checked by the checker compared with by the
poller, (2) such checks can be important when we do not have access to the
internals of a process but can observe messages sent to and from the process,
and (3) even if we have access to the internals, it may be unclear whether the
implementation ensures the desired property and thus we still need to check
it.

(S2) Each pollee has received the same outcome when the program ends.
This property requires checking multiple distributed processes, because the
needed information is not available at a single process.
We use this example to show such properties can be specified and checked
easily at the checker, conservatively ensuring safety despite the general impos-
sibility results due to message delays, etc.
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Consider property (S1). The checker will be informed about all processes and
all messages sent and received by each process. Also, it can use universal and
existential quantifications, just as in line 6 of the poller’s code in Fig. 1. However,
there are two issues:

1) How does the checker know “the” question? Inside the poller, “the” question
is identified by the timestamp in variable t, which is used in the subsequent
tests of the replies. To check from outside, the checker needs to observe the
question and its id first, yielding a partial specification for (S1):

some p.sent (’question’, _, t) has

each r in rs has some =p.received (’reply’, _, =t) from =r

If one knows that the poller sent only one question, then the some above
binds exactly that question. Otherwise, one could easily check this by adding
a conjunct count {t: p.sent (’question’, , t)} == 1.

2) How does the checker know that all replies had been received when the out-
come was sent (Note that a similar question about identifying “the” outcome
can be handled the same way as for “the” question.) Inside the poller, it is
easy to see that tests of the replies occur before the sending of the ’outcome’

message. Outside the poller, we cannot count on the order that the checker
receives messages to determine the order of events. The checker needs to use
the timestamps from the logical clocks.

some p.sent (’question’, _, t), p.sent (’outcome’, _) at t1 has
each r in rs has some =p.received(’reply’,_,=t) from =r at t2 has t1>t2

Note the added p.sent (’outcome’, ) at t1 on the first line and
at t2 has t1 > t2 on the second line.

Note that when the receiver or logical time of a sent message is not used, it is
omitted from the property specification; it could also be included and matched
with an underscore, e.g., p.sent m to at .

Consider property (S2), which is now easy, using the same idea to identify
“the” outcome o based on the outcome message sent by the poller:

some p.sent (’outcome’, o) has

each r in rs has some =r.received (’outcome’, =o)

The checker just needs to check this at the end.

Specifying Liveness. Specifying liveness requires language features not used in
the algorithm description. We use the same specification language we introduced
earlier [4]. In particular,

evt cond

where evt is read as “eventually”, denotes that cond holds at some time in the
duration that starts from the time under discussion, i.e., eventually, cond holds.

Many different liveness properties can be desired. We consider two of them:
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(L1) The poller eventually receives a reply to the question.
This assumes that a question was sent and covers the duration from then to
receiving the first reply.
We use this example because it is the first indication to the poller that the
polling really started. We also use receiving the first reply to show a small
variation from receiving all replies.

(L2) Eventually each pollee receives the outcome.
This assumes that an outcome was sent and covers the entire duration of the
polling.
We use this example because it expresses the completion of the entire algo-
rithm.

For (L1), one can simply specify it as an evt followed by the partial specifi-
cation for (S1) except with each r in rs replaced with some r in rs:

evt some p.sent (’question’, _, t) has

some r in rs has some =p.received (’reply’, _, =t) from =r

In practice, one always estimates an upper bound for message passing time and
poll filling time. So one can calculate an upper bound on the expected time from
sending the question to receiving the first reply, and be alerted by a timeout if
this bound is not met.

For (L2), one can see that this just needs an evt before the property specified
for (S2):

evt some p.sent (’outcome’, o) has

each r in rs has some =r.received (’outcome’, =o)

In practical terms, (L2) means that the program terminates and (S2) holds when
the program ends. Thus, with (S2) checked as a safety property, (L2) boils down
to checking that the program terminates.

Conceptually, evt properties are checked against infinite executions. In prac-
tice, they are checked against finite executions by imposing a bound on when the
property should hold, and reporting a violation if the property does not hold by
then. From a formal perspective, imposing this time bound changes the liveness
property to a safety property.

5 Checking Safety

We describe a general framework for checking safety through observation by a
checker external to all original processes in the system. The checker observes all
processes and the messages they send and receive. We then discuss variations
and optimizations.

Extending Original Processes to Be Checked. The basic idea is: each
process p, when sending or receiving a message, sends information about the
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sending or receiving to the checker. The checker uses this information to check
properties of the original processes.

The information sent to the checker may include (1) whether the message is
being sent or received by p, indicated by ’sent’ and ’rcvd’, respectively, (2) the
message content, (3) the receiver or receivers (for a message sent) and sender (for
a message received), and (4) the logical timestamp of the sending or receiving, if
a logical clock is used. In general, it may include any subset of these, or add any
other information that is available and useful for checking properties of interest.

With ideal channels to send such information to the checker, the checker can
extract all the information using the following correspondence:

p.sent m to qs at t ⇐⇒ checker received (’sent’ m to qs at t) from p

p.received m from q at t ⇐⇒ checker received (’rcvd’ m from q at t) from p

Sending the information can be done by extending the original processes,
so the original program is unchanged. The extended processes just need to (1)
extend the send operation to send information about the sending to the checker,
and (2) add a receive handler for all messages received to send information
about the receiving to the checker. A checker process can then specify the safety
conditions and check them any time it desires; to check at the end, it needs to
specify a condition to detect the end.

Figure 2 shows safety checking for the polling example. It imports the original
program polling.da as a module, and extends processes P and R to take checker

as an argument at setup. In extended P, it extends send and adds receive to send
all 4 kinds of information listed to checker (lines 4–8). In extended R, it sends 3
kinds of information, omitting logical times (lines 12–16). It then defines process
Checker that takes in p and rs at setup, waits for a condition to detect the end
of the polling (line 20), and checks safety properties (S1) and (S2) (lines 22–31).
The main method is the same as in Fig. 1 except for the new and updated lines
for adding the checker process, as noted in the comments.

Variations and Optimizations. When checking systems with many processes,
a single checker process would be a bottleneck. The single checker framework can
easily be extended to use a hierarchy of checkers, in which each checker observes
a subset of original processes and/or child checkers and reports to a parent
checker.

As an optimization, information not needed for the properties being checked
can be omitted from messages sent to the checker, leading to more efficient exe-
cutions and simpler patterns in specifying the conditions to be checked. In Fig. 2,
process R already omits logical times from all messages to the checker. More infor-
mation can be omitted. For example, process P can omit target processes, the 3rd
component of the message, in information about sending. Additionally, process R

can omit all information about sending and all but the second component about
receiving. Furthermore, more refined patterns can be used when extending send

to omit unused parts inside the message content, the second component. For
example, the specific question in ’question’ messages can be omitted.

Instead of extending the original processes to be checked, an alternative is to
let the original processes extend a checker process. While the former approach
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Fig. 2. Checking safety for the polling program.

requires no change at all to the original processes, the latter approach requires
small changes: (1) to each original process class, (a) add the checker process
class as a base class and (b) add a setup parameter to pass in the checker
process, and (2) in main, (a) create, setup, and start the checker process and
(b) in the call to new or setup for each original process, add the checker process
as an additional argument. The advantage of this alternative approach is that
the same checker class can be used for checking different programs when the
same checking is desired. An example use is for benchmarking the run method
of different programs1.

While checking safety using our framework is already relatively easy, higher-
level declarative languages can be designed for specifying the desired checks,
and specifications in such languages can be compiled into optimized checking
programs that require no manual changes to the original programs.

1 http://github.com/DistAlgo/distalgo/blob/master/benchmarks/controller.da.

http://github.com/DistAlgo/distalgo/blob/master/benchmarks/controller.da
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6 Checking Liveness

As discussed in Sect. 4, in finite executions, checking liveness boils down to safety
checking plus use of timeouts to check that properties hold within an expected
amount of time. For the polling example, checking timeouts plus the same or
similar conditions as (S1) and (S2) corresponds to what can be checked for (L1)
and (L2). We describe a general framework for easily checking timeouts during
program execution based on elapsed real time at the checker process. Using real
time at the checker avoids assumptions about clock synchronization. We then
discuss variations and optimizations.

Extending Original Processes to Be Checked. The same framework to
extend original processes for safety checking can be used for liveness checking.
One only needs to specify checks for timeouts instead of or in addition to safety
checks. We show how timeouts between observations of any two sending or receiv-
ing events, as well as a timeout for the entire execution, can easily be checked,
even with multiple timeout checks running concurrently.

Given any two sending or receiving events e1 and e2, we check that after e1

is observed by the checker, e2 is observed within a specified time bound. There
are two steps:

1) When the checker receives e1, it starts a timer for the specified time bound.
Each timer runs in a separate thread and, when it times out, it sends a
timeout message to the checker.

2) When the checker receives a timeout message, it checks whether the expected
event e2 has been observed. If yes, it does nothing. Otherwise, it reports a
violation of the time bound requirement.

All time bounds are specified in a map, which maps a name for a pair of events
to the required time bound from observing the first event until observing the
second event.

This framework can easily be generalized to check conditions involving any
number of events. When the timeout happens, instead of checking whether
one specific event e2 has been observed, the checker can check whether several
expected events have all been observed, or whether any other desired condition
on the set of observed events holds.

A time bound for the entire execution of the algorithm can be set and checked
separately, in addition to checking any other safety and liveness properties,
to directly check overall termination, using an appropriate condition to detect
whether the algorithm has completed successfully.

Figure 3 shows timeout checking for the polling example. To check liveness
instead of safety, one could use exactly the same program as for safety check
except for the added import’s and TIMEOUT map at the top and a rewritten Checker

process. To check timeouts in addition to safety, the Checker process in Fig. 3 can
extend the Checker process in Fig. 2, and just add the function calls super().S1()

and super().S2() at the end of the run method here.
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Modules threading and time are imported in order to run each timer in a
separate thread. A dictionary TIMEOUTS holds the map of time bounds (in seconds)
for different pairs of events: ’q-r’ is for the poller sending the question and the
poller receiving the first reply, corresponding to (L1), and ’q-o’ is for the poller
sending the question and all pollees receiving the outcome, corresponding to
(L2). The dictionary also includes an entry ’total’ with a time bound for the
entire execution of the algorithm.

The Checker process waits for the same condition, as for safety checking, to
detect the end of the polling (line 8–9), but with a timeout for ’total’ (line
10) while waiting. It starts two timers corresponding to (L1) and (L2) when
observing the question was sent (lines 13–15), and checks and reports timeouts
when any timer times out (lines 22–28).

Fig. 3. Checking timeouts for the polling program.

Variations and Optimizations. Variations and optimizations for checking
safety can also be used for checking liveness. Checking timeouts using real time
is the additional challenge.

In the program in Fig. 3, the timeout ’q-o’ for (L2) waits for the same condi-
tion as for detecting the end of polling in run, and covers almost the entire execu-
tion. Therefore, the test for detecting the end of polling in run is unnecessary in
this case, and the entire body of run may simply be await (timeout(’total’)).
When a timeout ’q-o’ is received, the checker could terminate itself by importing
sys and calling sys.exit(). Of course after either timeout for ’q-o’ or timeout in
run, the checker process could also do anything else helpful instead of terminating
itself.
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Instead of or in addition using real time at the checker, one could use real
time at the original processes. A clock synchronization algorithm can be used
to improve the precision of clocks at different original processes and the over-
all precision and time bounds. Even without clock synchronization, using real
time at the original processes can improve the precision and bounds for liveness
properties involving multiple events at the same process, such as (L1).

Note that observing the start and end of an operation or entire program is
also how performance measurements can be performed, as mentioned for bench-
marking at the end of Sect. 5.

7 Implementation and Experiments

DistAlgo has been implemented as an extension of the Python programming
language and used extensively in studying and teaching of distributed algo-
rithms [29]. The framework discussed for checking safety and liveness properties
has also been used extensively, in both ad hoc and more systematic ways. We
describe using the DistAlgo implementation and our framework for execution
and runtime checking.

Execution and Fault Simulation. DistAlgo is open source and available on
github [21]. One can simply add it to the Python path after downloading, and
run the da module in Python, e.g., running the program polling.da in Fig. 1 as
python -m da polling.da.

For runtime checking, a checking program, such as the program in Fig. 2 can
be run in the same way. More generally, implementations of three conceptual
components are needed:

1) A distributed algorithm, plus input taken by the algorithm. This needs a
complete executable program, such as polling.da in Fig. 1.

2) Safety and liveness requirements to be checked. These are expressed as exe-
cutable functions that can be called at required points during the execution,
such as functions S1 and S2 in Fig. 2 and the receive handlers in Fig. 3.

3) Process and communication failures to be considered. These correspond
to executable configurations that can be executed for fault simulation, as
described below.

Our framework puts these together naturally, with small configurations to
observe processes and communications, with both logical and real times, thanks
to the power of the DistAlgo language and compiler.

Fault simulation is essential for checking safety and liveness of complex algo-
rithms in simulation of real distributed systems that are fault-prone. Both pro-
cess and communication failures may happen, but the latter are much more
frequent. Also, the former can be simulated with the latter, because a pro-
cess interacts with other processes only through communication. For example,
a crashed process is indistinguishable from one that stops sending messages to
other processes.
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With our existing framework for checking, we can simply use send to simulate
all possible communication failures, including message

– loss: drop messages without sending;
– delay: delay messages before sending;
– duplication: send messages multiple times;
– reordering: delay sending messages until after sending later messages; and
– corruption for simulating Byzantine failures: change message before sending.

For example, to simulate a 1% chance of dropping a message sent by a P

process, in the send method in Fig. 2, we can put super().send(m,to) inside a
conditional:

if random.random() < 0.99: super().send(m,to)

and add import random before it.
Similarly, one may add fixed or random delays, duplications, reorderings, or a

combination of them. A main issue to note is that, in general, one would want to
send a delayed or duplicated message using a separate thread, to avoid delaying
the execution of the algorithm.

Configuration options and values can be provided through command-line
arguments and external files, as well as built-in language constructs. All these
kinds have been provided in the DistAlgo language and compiler and used in
DistAlgo programs. Similar mechanisms have been used in all kinds of system
configurations for decades. A challenge is to design and implement a powerful,
commonly accepted language for such configurations.

Experiments and Experience. For the running example, checking both safety
and liveness, with the Checker process in Fig. 3 extending that in Fig. 2 but
replacing the last line in run in Fig. 3 with the last line in run in Fig. 2 and
adding super().before S1() and S2(), an example output is as shown below:
> python -m da .\polling_check_live.da
[54] da.api<MainProcess>:INFO: <Node_:75001> initialized at 127.0.0.1:(UdpTransport=37786, T
cpTransport=45837).
[54] da.api<MainProcess>:INFO: Starting program <module ’polling_check_live’ from ’.\\pollin
g_check_live.da’>...
[55] da.api<MainProcess>:INFO: Running iteration 1 ...
[56] da.api<MainProcess>:INFO: Waiting for remaining child processes to terminate...(Press "
Ctrl-Brk" to force kill)
[1446] da.api<MainProcess>:INFO: Main process terminated.
[160] polling_check.P<P:a900d>:OUTPUT: -- received Y from: {<R:a9007>, <R:a900b>, <R:a900c>,
<R:a9004>}

[618] polling_check.R<R:a9009>:OUTPUT: == received outcome: 4
[1303] polling_check.R<R:a9003>:OUTPUT: == received outcome: 4
[400] polling_check.R<R:a900b>:OUTPUT: == received outcome: 4
[1082] polling_check.R<R:a9005>:OUTPUT: == received outcome: 4
[1194] polling_check.R<R:a9004>:OUTPUT: == received outcome: 4
[860] polling_check.R<R:a9007>:OUTPUT: == received outcome: 4
[1417] polling_check_live.Checker<Checker:a9002>:OUTPUT: !! L2 timeout receiving outcome by
all pollees 0 {<R:a9004>, <R:a900a>, <R:a9007>, <R:a9009>, <R:a9003>, <R:a9005>, <R:a900c>,
<R:a9006>, <R:a900b>, <R:a9008>} <R:a9008>
[511] polling_check.R<R:a900a>:OUTPUT: == received outcome: 4
[974] polling_check.R<R:a9006>:OUTPUT: == received outcome: 4
[733] polling_check.R<R:a9008>:OUTPUT: == received outcome: 4
[291] polling_check.R<R:a900c>:OUTPUT: == received outcome: 4
[1438] polling_check_live.Checker<Checker:a9002>:OUTPUT: ~~ polling ended. checking safety:
True True
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Notice the last process, <R:a9008>, printed in the 3 lines reporting (L2) timeout;
it shows a witness for violation of the each check on lines 25–27 in Fig. 3, printed
at the end of line 28. When we increased the timeout for ’q-o’ to 0.01 s, no (L2)
timeout was reported in all dozens of runs checked. When we added message loss
rate of 10%, we saw some runs reporting total timeout, and some runs reporting
even all three timeouts.

Overall, we have used the checking framework in implementation, testing,
debugging, simulation, and analysis of many well-known distributed algorithms,
and in developing their high-level executable specifications. This includes a vari-
ety of algorithms for distributed mutual exclusion and distributed consensus
written in DistAlgo [23,25,28,30], especially including over a dozen well-known
algorithms and variants for classical consensus and blockchain consensus [26].
Use of DistAlgo has helped us find improvements to both correctness and effi-
ciency of well-known distributed algorithms, e.g., [23,25,28].

We have also used the framework in other research, e.g., [24], and in teach-
ing distributed algorithms and distributed systems to help study and implement
many more algorithms. DistAlgo has been used by hundreds of students in gradu-
ate and undergraduate courses in over 100 different course projects, implement-
ing and checking the core of network protocols, distributed graph algorithms,
distributed coordination services, distributed hash tables, distributed file sys-
tems, distributed databases, parallel processing platforms, security protocols,
and more [29].

The algorithms and systems can be programmed much more easily and clearly
compared to using conventional programming languages, e.g., in 20 lines instead
of 200 lines, or 300 lines instead of 3000 lines or many more. Systematic methods
for checking these algorithms and implementations has been a continual effort.

Additional information is available at http://distalgo.cs.stonybrook.edu/
tutorial.

8 Related Work

Francalanza et al. broadly surveyed runtime verification research related to dis-
tributed systems [8]. Here, we focus on aspects related to DistAlgo.

Global Property Detection. Many algorithms have been developed to detect
global properties in distributed systems, e.g., [9,15]. These algorithms vary along
several dimensions. For example, many consider only the happened-before order-
ing [17]; others also exploit orderings from approximately-synchronized real-time
clocks [38]. Some can detect arbitrary predicates; other are specialized to check
a class of properties efficiently. Many use a single checker process (as in our
example); others use a hierarchy of checker processes, or are decentralized, with
the locus of control moving among the monitored processes. DistAlgo’s high-
level nature makes it very well-suited for specifying and implementing all such
algorithms.

http://distalgo.cs.stonybrook.edu/tutorial
http://distalgo.cs.stonybrook.edu/tutorial
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Efficient Invariant Checking. Runtime checking of invariants, in centralized
or distributed systems, requires evaluating them repeatedly. This can be expen-
sive for complex invariants, especially invariants that involve nested quantifiers.
We used incrementalization for efficient repeated evaluation of predicates in the
contexts of runtime invariant checking and query-based debugging for Python
programs [10,11]. We later extended our incrementalization techniques to handle
quantifications in DistAlgo programs [29].

Centralization. Due to the difficulty of runtime checking of truly distributed
systems, some approaches create centralized versions of them. We have devel-
oped a source-level centralization transformation for DistAlgo that produces a
non-deterministic sequential program, well-suited to simulation and verification.
In prior work, we developed bytecode-level transformations that transform a dis-
tributed Java program using Remote Method Invocation (RMI) into a centralized
Java program using simulated RMI [39]. Minha [32] takes another approach to
centralization of distributed Java programs, by virtualizing multiple Java Vir-
tual Machine (JVM) instances in a single JVM and providing a library that
simulates network communication.

DistAlgo Translators. Grall et al. developed an automatic translation from
Event-B models of distributed algorithms to DistAlgo [12]. Event-B is a modeling
language adapted to verification of distributed algorithms. They chose DistAlgo
as the target language because “Its high-levelness makes DistAlgo closer to the
mathematical notations of Event-B and improves the clarity of DistAlgo pro-
grams.” We developed a translator from DistAlgo to TLA+, allowing verification
tools for TLA+ to be applied to the translations [27].

Conclusion. We have presented a general, simple, and complete framework for
runtime checking of distributed algorithms. The framework, as well as the algo-
rithms and properties to be checked, are written in a high-level language that
is both completely precise and directly executable. A challenging problem for
future work is a powerful, commonly accepted language for higher-level, declar-
ative configurations for checking distributed algorithms and systems.
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Abstract. In this tutorial paper, we present the current state of VyPR,
a framework for the performance analysis of Python-based web services.
We begin by summarising our theoretical contributions which take the
form of an engineer-friendly specification language; instrumentation and
monitoring algorithms; and an approach for explanation of property vio-
lations. We then summarise the VyPR ecosystem, which includes an
intuitive library for writing specifications and powerful tools for analysing
monitoring results. We conclude with a brief description of how VyPR
was used to improve our understanding of the performance of a critical
web service at the CMS Experiment at CERN.

1 Making a Start with Performance Analysis

Understanding a program’s performance precisely is vital, especially when the
program performs critical activities or fulfils a wide range of use cases. Analysing
the performance of a program involves two key steps: determination of expected
performance, and investigation when performance deviates from expectation.

To address the first step, we must construct an appropriate definition of the
performance of a program. Such a definition usually depends on the category
into which the program fits. For example, the program may perform a lot of com-
putation with heavy memory operations and complex control-flow. In this case,
performance may be characterised by the time taken to compute a result, along
with paths taken through control-flow. Alternatively, the program in question
may communicate frequently over a network, in which case a characterisation
of its performance may be in terms of the network’s stability and the latency
experienced with respect to the data being transferred.

In this work, the outcome of the first step is a specification of the performance
expectations, based on a combination of data from previous program runs and
engineers’ intuition, that can be checked during future program runs. Further,
the systems with which we concern ourselves are Python-based web services.
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This allows us to investigate the performance of critical services employed at
the CMS Experiment at CERN. We remark that we do not currently consider
performance in the context of parallelism.

To address the second step, we need a way to determine what caused devia-
tions from expected performance. In this work we call this process explanation,
the definition of which also depends on the type of program being analysed and
the domain in which it operates.

This paper summarises our efforts so far to introduce 1) a new body of
theoretical work for performance analysis of programs that is based on Runtime
Verification and 2) the implementation of a framework based on this theoretical
work. The summary is as follows:

– In Sect. 2, we review existing work to frame our contributions to both the
Software Engineering and Runtime Verification (RV) communities.

– In Sect. 3, we describe our theoretical body of work. We begin with an intro-
duction to our specification language along with efficient instrumentation and
monitoring algorithms that it admits [32]. We then introduce our approach for
explaining violations of properties written in our specification language [31].

– In Sect. 4, we present VyPR [30,33], a framework for the performance analysis
of Python web services. We developed VyPR at the CMS Experiment at
CERN based on our theoretical contributions. VyPR marks a significant
effort to establish RV as a software development tool.

– In Sect. 5, we give details of VyPR’s analysis tools [30], which consist of a
web application and a Python-based library.

– In Sect. 6, we give a step-by-step reproduction of an investigation that found
interesting performance of critical software at the CMS Experiment.

This paper accompanies a tutorial delivered at the International Conference
on Runtime Verification 2020, the materials for which can be found at http://
pyvypr.github.io/home/rv2020-tutorial/.

2 Existing Techniques for Performance Analysis

We review well-established profiling techniques, work from the RV community
that considers timing behaviour and work from the Software Engineering com-
munity on performance data visualisation.

2.1 Profiling

One of the most popular performance analysis techniques for Python, as for most
languages, is profiling. Profilers record a quantity in which a software engineer is
interested, which is usually the time taken by some operation. For example, if a
software engineer wanted to understand the behaviour of a function f in a Python
program, a profiling tool such as cProfiler [2] (a deterministic profiler [14])
could be attached. The engineer would then have the task of finding the data

http://pyvypr.github.io/home/rv2020-tutorial/
http://pyvypr.github.io/home/rv2020-tutorial/
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relevant to the function f in the pile of data generated by the profiler. While this
search is not too much of a problem (in fact there are tools to help with this [1]),
the overhead often is. This is mainly because naive profiling of entire Python
programs often relies on tracing [13], which involves attaching a function with
a specific signature to the Python interpreter and collecting data each time a
relevant event is observed. To counter this overhead, statistical profilers [5] are
sometimes used.

While these approaches are commonly used and well catered for by the stan-
dard Python interpreter (CPython [12]), they suffer from drawbacks when one
needs to analyse anything other than the time taken by a function each time it
is called. If one needs to check whether a constraint holds that relates multiple
quantities, offline analysis quickly becomes more difficult and error-prone.

This is one of the first advantages that VyPR brings. That is, VyPR’s rich
specification language allows measurement and comparison of multiple quanti-
ties at runtime, including the time taken by various operations and (properties
of) values held by variables. Further, rather than using tracing, VyPR instru-
ments code based on specifications which reduces overhead. Finally, VyPR’s
offline analysis tools allow engineers to carry out detailed analyses, including
inter-procedural analysis, inter-machine analysis and path comparison for deter-
mination of root causes of performance problems.

2.2 Runtime Verification for Performance Analysis

The existing work in RV that could be used in performance analysis is necessarily
that which considers the timing behaviour of the system being monitored. Since
approaches in RV can be characterised, at least in part, by their specification
language, we focus on the languages which can reason about time [34].

The collection of specification languages introduced or adapted by the RV
community includes temporal logics [15,20,38,40], rule systems [18], stream log-
ics [29], event-processing logics [36] and automata [17,23]. The situations in
which each can be used depend on their semantics and expressiveness.

As a first example that can reason about time, we take Metric Temporal
Logic (MTL) [38], which extends Linear Temporal Logic (LTL) [40] with intervals
attached to modal operators. In MTL one can write a formula such as φ U[0,5] ψ
to mean that φ should hold for at most 5 units of time until ψ holds. There is also
Timed Linear Temporal Logic (TLTL) [20], which extends LTL with operators
that allow one to place constraints on how long since or until some observation
was or will be made. Automata are used in settings both with [17] and without
[23] time. In other RV work, automata are used only in the synthesis of monitors
for specifications written in timed logics [20]. Stream logics, rule systems and
event-processing systems are all capable of reasoning about time [18,29,36].

Despite the existing work on timed specification languages, we highlight that
those which can reason about time (and are intended for the same setting as
our work) tend to have a high level of abstraction with respect to the code
being monitored. While this allows specification languages to be more expressive,
it creates two problems. First, the software engineer becomes responsible for
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maintaining a mapping from the program being monitored to the symbols in the
specification. Second, it makes interpretation of specifications difficult because
a mapping must be considered at the same time.

We have previously called the combination of these problems the separation
problem [32]. In the same work, we introduced a new specification language,
Control-Flow Temporal Logic (CFTL). CFTL formulas are low-level, meaning
that they require only the source code of the monitored program to make sense.
While formulas must then be changed with the program source code, we remark
that this has faced no resistance in practice. Further, we highlight that this fits in
with RV’s role as a complement to testing in the software development process.

Explanation of property violations has received little attention, though there
has been some interest in recent years (our work on explanation of CFTL vio-
lations [31]; work on trace edit-distances [41]; explanation in Cyber-Physical
Systems [19] and the use of temporal implicants [35]). Outside of RV the Fault
Localisation [24,25,43,45,46] and Model Checking [16,22,28,44] communities
have made significant contributions.

2.3 Performance Data Visualisation

Our experience has shown that effective presentation of data obtained by moni-
toring at runtime is as important as the specification and monitoring processes
themselves. However most existing work on visualising performance data and
runtime analytics is done outside RV and focuses on data obtained by methods
other than formal verification [21,26,27].

Despite the lack of integration with formal verification, a key trend is the
display of performance data in the context of the source code that generated it.
The web-based analysis environment that we provide visualises data recorded
by VyPR alongside the source code, similarly to contributions from the Soft-
ware Engineering community. The key difference is that we have not yet looked
at displaying performance data directly in the IDE because we have not yet
needed to.

3 An Engineer-Friendly Specification Language

Our main goal is to provide a framework with which software engineers can
easily analyse the performance of their programs with minimal disruption to
their existing development process. This gives rise to the requirement that, if we
use a formal specification language, such a language should make the transition
from natural language to formal specification as smooth as possible. Here, we give
a brief description of our language (Control-Flow Temporal Logic (CFTL)) with
its semantics; and our instrumentation, monitoring and explanation approaches.
For full details, the reader can refer to [31–33].
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Fig. 1. A Python program with a for-loop with its symbolic control-flow graph.

3.1 A Representation of Programs

We consider a program P whose performance we want to analyse, written in
a subset of the Python language defined in [32]. Our first step is to introduce
a representation of the program P on which both the CFTL semantics and
our instrumentation approach are based. We would like engineers to be able
to reason about 1) the states created during a run of P by instructions such
as assignments and function calls; and 2) the transitions that occur to move
between such states. Since we need to consider instrumentation, which in this
work we assume happens strictly before runtime, we need pre-runtime analogues
of these states. We call these symbolic states. A symbolic state σ is a pair 〈ρ,m〉
for ρ a unique identifier of the statement in the source code that generated the
symbolic state and m a map from each program variable/function to a status in
{undefined, changed,unchanged, called}.

We then represent a program P as a directed graph whose vertices are these
symbolic states, with edges representing instructions that could move the pro-
gram from one state to another. We call such a graph a symbolic control-flow
graph, denote it by SCFG(P ) and give an example in Fig. 1.

3.2 A Representation of Program Runs

We now introduce the structures over which CFTL semantics are defined, that
is, our representations of program runs. To help us later with instrumentation,
a representation of a run of our program P should be seen as a path through
SCFG(P ), the symbolic control-flow graph of P . To this path, we can add infor-
mation from runtime, such as variable values and timestamps. We do this by
augmenting symbolic states to give their runtime analogue, concrete states. A
concrete state is a triple 〈σ, v, t〉 for σ a symbolic state, v a map from each
program variable/function to a value and t a real-numbered timestamp. We can
now represent a program run by a sequence of concrete states, which we call a
dynamic run and denote by D. Further, these dynamic runs have the required
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Fig. 2. A sample Python program.

property that each concrete state can be associated with a symbolic state, mean-
ing that each dynamic run forms a path through a symbolic control-flow graph.

3.3 Control-Flow Temporal Logic

Control-Flow Temporal Logic (CFTL) is a linear time, temporal logic designed
for writing specifications over low-level program behaviour (at the line-of-code
level). We achieve this by defining its semantics over dynamic runs, which are
detailed representations of program runs. CFTL formulas are in prenex normal-
form, so consist of two parts: the quantifiers, and the inner-most quantifier-free
formula. Finally, when a dynamic run D satisfies a CFTL formula ϕ, we write
D |= ϕ.

For brevity, instead of giving the full syntax, which can be found in [32], we
consider the sample program in Fig. 2 and give examples of CFTL formulas that
express properties over this program.

A Simple Constraint over Call Durations. We can express the constraint that
no call to query should ever take more than 2 s by writing

∀c ∈ calls(query) : duration(c) ≤ 2

In this case, the quantifier ∀c ∈ calls(query) identifies all pairs of concrete states
in a dynamic run such that, in the second concrete state, the function query has
just been called. We call c a variable and calls(query) a predicate. The quantifier-
free part of the formula then uses CFTL’s duration operator. This operator takes
the difference of the timestamps associated with the pair of concrete states iden-
tified by the quantifier. The final step is to assert that the observed duration is
less than or equal to 2.

Place a Constraint, But Only in a Certain Case. One might want to constrain
the time taken by every call to query in the future, but only if authenticated
was set to True. To capture this property, one could write

∀s ∈ changes(authenticated) : ∀c ∈ future(s, calls(query)) :
s(authenticated) = True =⇒ duration(c) < 2
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To form the second quantifier, we use CFTL’s future operator to identify all
occurrences of an event after whatever is identified by the preceding quantifier.
In this case, for each change of the variable authenticated, every future call of
the function query after that will be identified. Then, for each pair formed by
this process, the quantifier-free part of the formula will be evaluated.

Place a Constraint on the Time Between Points. Consider the constraint that
the time taken to reach the next state in which results has been changed after
the change of authenticated should be less than a certain value. With CFTL,
one could write

∀s ∈ changes(authenticated) : timeBetween(s, next(s, changes(results))) < 1

In this formula, we quantify over changes of authenticated and then, in the
quantifier-free part, we introduce two new features of CFTL. The first is the next
operator, which takes a variable along with a predicate and gives the next part
of the dynamic run being considered which satisfies the predicate. The second
new idea is the timeBetween operator, which takes two parts of the dynamic run
and measures the time between them.

Place a Constraint Relating Two Measurements. Often, the time taken by some
function call relates to the size of its input. For example, one might want to
express the requirement that each call of the function query takes no more than
0.8 times the length of its input variable in. Then this could be expressed in
CFTL by

∀c ∈ calls(query) : duration(c) ≤ length(source(c)(in)) × 0.8

3.4 Instrumentation

Consider the situation in which a monitoring algorithm must decide whether the
formula ∀c ∈ calls(query) : duration(c) ≤ 2 holds or not, given a dynamic run
generated by the program in Fig. 2. Such a dynamic run would contain much
more information than is needed to decide whether this formula holds. Hence,
when the monitoring algorithm tries to process the dynamic run, it would first
have to decide whether each concrete state was useful. In this case, most of the
information in the dynamic run would be useless, and a large amount of the
work done by the monitoring algorithm would be to conclude as such.

Our instrumentation approach involves 1) ensuring that the dynamic run
extracted from the running program includes only the concrete states relevant
to a formula by determining a subset of critical symbolic states before runtime;
and 2) speeding up certain lookup processes that monitoring must perform when
it has observed something that it needs.

Ensuring extraction of a conservative dynamic run is achieved with two steps.
First, we inspect the quantifiers to determine points of interest in the program,
and then we inspect the quantifier-free part of the formula to determine where
measurements need to be taken. As an example, consider again the specification

∀s ∈ changes(authenticated) : timeBetween(s, next(s, changes(results))) < 1
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Determining Points of Interest. We first inspect the quantifiers and see that,
based on ∀s ∈ changes(authenticated), we need to find all symbolic states in
the symbolic control-flow graph in which the variable authenticated has just
been changed. In this case, we treat authenticated as a local primitive-type
variable, so we do not consider side-effects from impure functions.

Determining Instrumentation Points. Once the set of points of interest has been
derived, we inspect the quantifier-free part of the formula. In this case, we have
a single constraint over multiple quantities that must be measured at runtime.
In inspecting the timeBetween operator, we see that the first argument is the
variable s, which refers to a concrete state in which the variable authenticated
has just been changed. Hence, s refers directly to the points of interest that
we have already determined, so we include these in our set of critical symbolic
states.

Next, we have next(s, changes(results)), which refers to the next concrete
state in which results was changed after authenticated was changed. Since
when we perform instrumentation we often cannot be sure of the branches taken
at runtime, we must follow the symbolic control-flow graph from each of the
points of interest to determine each possible next change of results.

Correctness. Informally, instrumentation is correct when the dynamic run with-
out instrumentation satisfies a CFTL formula if and only if the dynamic run
with only concrete states included by instrumentation also satisfies it [32].

3.5 Monitoring

The problem that we must solve in monitoring is that of determining whether a
dynamic run satisfies a CFTL formula, given incremental updates to the dynamic
run (otherwise known as online monitoring).

Our monitoring approach is helped significantly by instrumentation, in that
the input dynamic run is both reduced and structured by it. In particular, our
instrumentation approach involves constructing a tree that allows our monitoring
algorithm to quickly determine in what way some information from a dynamic
run with instrumentation is relevant to the property being monitored [33].

When checking a dynamic run for satisfaction of a formula, our monitoring
algorithm maintains an and-or formula tree (with extra structure to cope with
CFTL formulas) for every part of the dynamic run that is identified by the
formula’s quantifiers. As more of the dynamic run is processed, the relevant
formula trees are updated until they collapse to a truth value. The result of
monitoring is then, as expected, the conjunction of these truth values. In the
case that a formula tree was not collapsed because the dynamic run did not
contain enough information, a number of policies could be implemented, though
in practice we opt for discarding such formula trees.
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3.6 Explanation by Path Comparison

We now summarise the extension of our work on CFTL to explaining why runs
of a program did not satisfy a property, addressing the need identified in [42].
The full details are given in [31].

In that work, we first highlighted that dynamic runs with instrumentation
applied may have the problem that their precise path through a symbolic control-
flow graph can no longer be determined. Our solution to this was to modify our
instrumentation process to ensure that enough concrete states are included in
dynamic runs to allow the precise path taken to be reconstructed.

Once we can obtain the exact program path taken by a dynamic run in
the form of a sequence of edges from a symbolic control-flow graph, our key
contribution is a formalism for comparison of multiple paths. We assume that
these dynamic runs generated different verdicts with respect to a CFTL property.

To enable comparison, we introduced a new technique that identifies points of
disagreement in sets of paths and enables comparison of how the paths disagreed.
To achieve this, we represent the regions over which paths disagree by path
parameters and say that each path gives each of these parameters a value with
the sub-path that it took in that region.

Finally, we extended this comparison of paths to take full advantage of
CFTL’s semantics. This extension enables analyses such as comparison of paths
between two statements at which measurements were taken for a specification.
Ultimately, this paves the way for identification of problematic regions of code
based on monitoring results.

4 Translation into a Software Development Tool

The theory summarised in Sect. 3 has been used to implement VyPR, a frame-
work for the performance analysis of Python programs (most often, web ser-
vices) along with an ecosystem of supporting tools. VyPR provides facilities for
specification of program performance, automatic instrumentation with respect
to specifications, efficient online monitoring and in-depth offline analysis. More
information, along with documentation, can be found at http://pyvypr.github.
io/home/.

The discussion in this section draws on experience from addressing the chal-
lenges encountered when implementing VyPR. These challenges can be divided
into two categories:

– Determining how to implement a tool based on the theory given so far that
enables specification and then performs instrumentation and monitoring auto-
matically.

– Determining how to enable software engineers to benefit as much as possible
from the resulting tool.

http://pyvypr.github.io/home/
http://pyvypr.github.io/home/
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4.1 A Python Library for CFTL

The first step a software engineer takes when using VyPR is writing their spec-
ifications. The process of a software engineer writing a formal specification is
that of translation from a natural language specification to its equivalent in the
specification language. To facilitate this process, we opted to build a Python
library, PyCFTL, with which engineers can write their specifications and supply
them to VyPR. To demonstrate PyCFTL, we consider the CFTL specification

∀s ∈ changes(x) : timeBetween(s, dest(next(s, calls(query)))) < 1

and construct it in Python code using the PyCFTL library

1 Forall(s = changes ("x")).\

2 Check(lambda s : (

3 timeBetween(s, s.next_call (" query "). result ()) < 1

4 ))

Here, we see two key translations:

Quantifiers. The single quantifier is built at line 1 by instantiating the Forall
class using Python’s keyword argument feature to introduce the variable s. The
predicates implemented in the PyCFTL library match those defined in the CFTL
semantics, namely changes and calls.

Constraints. The constraint to be checked at each point of interest identified by
the quantifier is defined between lines 2 and 4 by passing a lambda expression
to the method Check defined on the Forall instance. The arguments of this
lambda expression must match the variables bound by the quantifiers. Hence, in
this case, our lambda has the single argument s.

The constraint definition also includes one of the key features of PyCFTL:
variables bound by quantifiers contain objects that can be treated like the events
they represent. For example, using the variable s that holds a state, we can refer
to the next call along using the method next call. We can then get the state
immediately after that call using the method result.

In Fig. 3 we give a further example, which demonstrates more of the PyCFTL
library. Once a specification is written, the next concern to address is how to
deal with Python software that contains multiple modules and classes. In the
current implementation of VyPR, we wrap PyCFTL in a layer that allows
software engineers to indicate to which individual functions in their code a given
specification should apply. Figure 4 gives an example.

In Fig. 4, lines 2–8 give an example of explicit indication and lines 10–14
give an example of indication using compilation. Explicit indication involves the
software engineer manually telling VyPR which package, module and then either
1) function or 2) class/method to instrument and monitor.

This approach to specification gives rise to the problem that software engi-
neers may not know precisely where in their system they would like to measure
something. To ease the situation, we have begun development of a set of helper
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Fig. 3. Another example of the PyCFTL specification library.

Fig. 4. An example of how to tell VyPR where to instrument and monitor for a
specification.

classes to enable indication using compilation. In practice, this means that, when
a software engineer uses a helper class such as Functions, VyPR will inspect the
symbolic control-flow graph of each function in a system and select it for mon-
itoring if it fulfils the criteria given as an argument. Since system-wide static
analysis is an obvious source of inefficiency, part of our development efforts
involve caching results to mitigate the situation.

4.2 Instrumentation and Monitoring

The instrumentation and monitoring algorithms implemented by VyPR are
those described in Sects. 3.4 and 3.5 respectively, extended to the setting of
a system with multiple functions written across multiple files.

Instrumentation. This algorithm consists of inserting code in places appropriate
for the specification given so that a dynamic run can be generated at runtime. To
achieve this, a specification built using PyCFTL generates a structure in memory
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that VyPR can use, along with the symbolic control-flow graph of each relevant
function in a system, to determine where to place new code. Placement of the
code is performed statically by 1) adding new entries to the abstract syntax tree
(easily obtained via Python’s standard library) for each instrumentation point;
2) compiling to bytecode and 3) renaming the original source code file. This
renaming prevents Python’s default behaviour of recompiling bytecode when
disparities between it and source code are detected.

The exact instrumentation code placed depends on the specification given.
For example, if the specification calls for the measurement of a duration, VyPR
will place code that records timestamps and computes their difference. The com-
munication between instrumentation code and the monitoring algorithm is per-
formed via a queue, since the monitoring algorithm runs asynchronously from
the monitored program. For more information on how VyPR performs instru-
mentation, see our previous work [33].

Monitoring. This algorithm is responsible for processing the dynamic runs gen-
erated by instrumentation code, generating verdicts and sending the data to
a central server for later analysis. So far, we have not needed our monitoring
algorithm to feed verdict information back into the running program, so our
implementation is asynchronous.

Since we work with Python, we face the challenge of the Global Interpreter
Lock (GIL) [6], the mechanism used to make the Python interpreter thread-safe.
Its major disadvantage is that threads running code that is not IO-heavy are
not run asynchronously because the GIL is based on mutual exclusion. However,
threads with IO activity can run asynchronously because the GIL is released
for IO. Since we developed VyPR primarily for web services, the significant IO
activity required for reading incoming requests, writing outgoing responses and
performing database queries release the GIL to allow VyPR to run.

If one were to consider applying VyPR elsewhere, we have already high-
lighted that the current implementation of VyPR can generate high overhead
if there is more work being done by monitoring than by the monitored pro-
gram [32]. However, either by using multiprocessing or existing techniques for
bypassing the GIL [3], we can remove this problem.

4.3 Storing Verdicts

Once our monitoring implementation generates verdicts, it sends them, along
with a collection of other data, to a central repository to be stored in a relational
database schema. This central repository of data, called the verdict server, is a
separate system in itself with which VyPR communicates via HTTP. The server
is responsible for:

– Storing verdicts, along with the measurements taken to reach those verdicts
and paths taken by monitored functions.

– Providing an API that VyPR uses to send all of the data collected during
instrumentation and monitoring.
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– Providing APIs for our analysis tools (see Sects. 5.1 and 5.2).
– Serving our web-based analysis environment (see Sect. 5.1).

The server is implemented in Python using the Flask [10] framework with
SQLite [8] as a backend database. The relational database is designed to store
the data generated by VyPR at runtime compactly, meaning that our analysis
tools are designed to enable straightforward access of data stored in a non-trivial
schema. Finally, while we have plans to move away from SQLite to use a more
robust database system, SQLite has met our needs so far.

5 Analysing Monitoring Results

An area that has received little attention from the RV community is the analysis
of results of program monitoring. Our experience with VyPR has shown that
the analysis tools provided by a program analysis framework are as important
as the specification tools.

This is especially true when one is attempting to help software engineers
explain violations of their specifications. In this direction, we have found that
the way in which the results of our explanation work described in Sect. 3.6 are
presented is just as important as the way in which the explanations are derived.

We now describe the analysis tools in the VyPR ecosystem, which include
1) a web-based environment for visual inspection of monitoring results; and
2) a Python library for writing analysis scripts. The aim of these tools is to
make investigation of monitoring data straightforward and facilitate engineers
in finding explanations of violations of their specifications. Details on usage can
be found at https://pyvypr.github.io/home/use-vypr.html.

5.1 A Web-Based Analysis Environment

Since inspection of some data generated by VyPR lends itself best to a graphical
user interface, part of the VyPR ecosystem is a web application. The application
enables sophisticated, in-depth inspection to be performed with just a few clicks
in the web browser. We now present key features.

Explicit Links Between Specifications and Source Code. In our analysis envi-
ronment, we allow engineers to select parts of their specifications to focus on
relevant parts of their source code. This allows understanding from the engineer
of precisely which part of their code they are analysing.

The Performance of Individual Statements. Similarly to existing work on per-
formance data visualisation performed by the Software Engineering commu-
nity [21,26,27], our analysis environment displays the data from monitoring in
the context of the relevant code. In fact, results from monitoring for specifica-
tions written in CFTL lend themselves easily to such a representation because of
CFTL’s low-level nature, meaning measurements can be linked directly to lines
of source code.

https://pyvypr.github.io/home/use-vypr.html
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Separating Performance Data by Verdict. When viewing a plot of measurements
taken during monitoring, it is reasonable for an engineer to want to see only the
measurements that generated either satisfaction or violation. With the analysis
environment, engineers can plot measurements and then filter them by whether
the specification being monitored was satisfied or violated.

Program Path Highlighting. Given the path reconstruction approach described in
Sect. 3.6, the analysis environment can highlight paths in code up to and between
measurements. It can also highlight paths taken by whole function calls.

Since it is expected that performance data is visualised across many func-
tion calls, we use colour-coding to highlight source code based on how well a
specification was satisfied or how severely it was violated on average.

Without the analysis environment, these tasks would require in-depth knowl-
edge of the schema in which data is stored and non-trivial post-processing.

5.2 A Python Analysis Library

For the cases in which the analysis environment is not suitable, we built a Python
library. This library helps software engineers to automate their inspection of
performance data by writing scripts.

In order to make writing scripts as intuitive as possible, the library is designed
similarly to an Object-Relational Mapping (ORM) [7,39]. That is, the library
provides classes that mirror tables in a relational schema so that each row in a
table becomes an instance of the table’s class. Methods defined on these instances
then reflect either foreign key relationships between tables, or perform more
complex queries. In practice, rather than operating directly on a database, the
library communicates with the verdict server via the server’s analysis API.

In addition to the ORM, the analysis library provides facilities for post-
processing of data generated by VyPR. These facilities greatly simplify other-
wise complex tasks, which we now describe.

Comparison of Program Paths. Each time a function monitored by VyPR is
executed, program path information is generated by additional instrumentation.
It is then coupled with the set of verdicts. Each measurement taken during
monitoring is mapped to this path information, so paths up to and between
measurements can be reconstructed.

The program path information generated is a sequence of integers, each of
which being the unique ID of a more complex path condition. Measurements
are mapped into this sequence of integers via a pair consisting of an offset and
a reaching path length, both also integers. The offset identifies the prefix of the
sequence whose path conditions lead to the branch on which the measurement
was taken. The reaching path length tells us how far along this branch to traverse
before the precise statement at which the measurement was taken is reached.

The algorithm that performs this transformation (described in [31]) is inte-
grated with the ORM. The result is that 1) objects representing function calls
define methods to reconstruct the entire path taken by those calls; and 2) objects
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representing measurements define methods that reconstruct paths up to those
measurements. Classes are also provided to help identify where paths disagree
and how, using the notion of path parameters described in Sect. 3.6.

Construction of Call Trees. If multiple functions in a system are monitored by
VyPR, enough information about each function call is stored that the call tree
can be partially reconstructed (it will be missing calls of any function that is not
monitored). Since VyPR associates measurements with the function call during
which they were taken, it is also possible to reconstruct the call tree occurring
during a measurement (if the measurement is over a function call).

Path Comparison with Call Trees. Suppose that a function f calls a function
g, both of which are monitored by VyPR. Suppose further that one of the
specifications written over f is the following

Forall(c = calls ("g")). Check(lambda c : c.duration () < 1)

Then, since path information exists for g, we can use comparison of the paths
taken through g to explain the verdicts generated by f. The analysis library
makes this straightforward again by implementing the notion of path parameters.

Call Trees over Multiple Machines. If programs on multiple machines are mon-
itored by VyPR, with both instances of VyPR pointing to the same verdict
server and synchronised via some global clock such as NTP [4], monitoring results
from each machine can be combined. In particular, the analysis library’s call tree
reconstruction algorithm can detect when a function call from one machine took
place during a function call on another. The advantage of this that we have so
far used is that one can use comparison of the paths traversed on one machine
to explain measurements on another.

6 VyPR in Practice

We conclude with a description of our operational experience with VyPR at
the CMS Experiment [9] at the LHC [11] at CERN. We discuss our experience
analysing a system to which VyPR has been applied extensively, resulting in
a detailed understanding of its performance. More detail on the investigations
presented here can be found in our tutorial material.

6.1 Finding Performance Problems

Our case study is a web service used at the CMS Experiment for uploading
certain data needed in physics analyses to a central database. The service consists
of a client program and a server; the client is responsible for reading in and
performing some initial checks on data, and the server is responsible for final
checks and all database operations. The investigation that we describe here is
purely on the server-side, but we have used VyPR’s analysis facilities to see how
the two components of the service behave together. To generate the data that
we use here, we replayed 4000 instances of data upload from a repository that
we have been building up over the past 3 years of data collection at the LHC.
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Defining Specifications. We consider a function that is responsible for performing
some checks which vary depending on the existing state of the target database.
Hence, there are two branches that can be taken and then a final database query.
We need to investigate the time taken to get from the start of these branches,
to the return of the database query at the end. Our specification for this is

Forall(q = changes ("tag ")).\

Forall(c = calls (" commit", after="q")).\

Check(lambda q, c : timeBetween(q, c.result ()) < 1.2)

This specification will actually lead to VyPR recording more data than we need
because of the structure of the monitored code. In our analysis script, we deal
with this.

We also need to measure the time taken by some key functions that are called
on the paths of interest. VyPR associates measurements with the statements in
code from which they were taken, so we write a specification placing an arbitrary
constraint over the function calls that we care about. It is then easy to get the
measurements that were taken along relevant paths in our monitored function.

Analysing Results. We give a brief description of how we used our analysis library
to write a script which generated the plot shown in Fig. 5. The script contains
the following steps:

1. Select the function in the system that we need to analyse. For that function,
choose the specifications.

2. Since our main specification contains two quantifiers, select the two state-
ments in code between which we will be comparing paths.

3. Get all measurements of the time taken for runs of the function to get between
the two statements that we have selected, such that the specification was
violated. Additionally get all measurements of function call durations taken
on the relevant paths.

Once all measurements have been obtained, we still need to separate them by
which path was taken. To do this, we use the analysis library’s implementation
of path parameters. This involves:

1. Intersecting all of the paths that we obtain between the two statements we
selected.

2. Finding the single point (in this case) where the paths disagree, which is
represented by a path parameter.

3. Finding the value given to this path parameter by each path, ie, the sub-path
taken in the region of disagreement.

It is then straightforward to group the measurements by the path that was taken,
allowing Fig. 5 to be divided with respect to the two possible sub-paths found.
It is clear from these plots that one path taken in the region of disagreement
resulted in far worse performance. Further, from the inclusion of the times taken
by the two key function calls on those paths, we see that one of the two tends
to be to blame for the peaks.
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Fig. 5. The plot we built with our analysis library to show the range of time measure-
ments for violations along two distinct paths through some source code.

Ultimately, the results of this investigation and others will be fed into the
development process at CMS to help consolidate the service. This will be helped
by our work on applying VyPR during Continuous Integration [37].

7 Future Work

There are many directions for future work, which we divide into the following
categories:

– Instrumentation. There are clear opportunities for improvement of VyPR’s
instrumentation process.

– Analysis environment improvements. We aim to minimise the need for the
analysis library.

– More expressive specifications. Classes of properties such as those written over
multiple functions currently cannot be expressed directly in CFTL.

– Performance analysis in Continuous Integration. Work is ongoing on extend-
ing VyPR to combine functional testing with performance analysis [37].

8 Conclusion

In this paper, we described the current state of VyPR, a framework for the
performance analysis of Python web services. We summarised our theoretical
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contributions, which include an engineer-friendly specification language, along
with instrumentation, monitoring and explanation strategies. We continued by
describing the implementation of the VyPR framework, while we also discussed
the challenges of making such a framework as useful as possible for software engi-
neers. We introduced our analysis tools which mark a significant contribution to
the area of analysing monitoring results. Finally, we summarised an investiga-
tion that improved our understanding of a critical service running at the CMS
Experiment at CERN.
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Abstract. Cyber-physical systems are inherently safety-critical. The
deployment of a runtime monitor significantly increases confidence in
their safety. The effectiveness of the monitor can be maximized by con-
sidering it an integral component during its development. Thus, in this
paper, I given an overview over recent work regarding a development
process for runtime monitors alongside a cyber-physical system. This
process includes the transformation of desirable safety properties into
the formal specification language RTLola. A compiler then generates
an executable artifact for monitoring the specification. This artifact can
then be integrated into the system.

1 Introduction

Cyber-physical systems (CPS) directly interact with the physical world, render-
ing them inherently safety-critical. Integrating a runtime monitor into the CPS
greatly increases confidence in its safety. The monitor assesses the health sta-
tus of the system based on available data sources such as sensors. It detects a
deterioration of the health and alerts the system such that it can e.g. initiate
mitigation procedures. In this paper I will provide an overview regarding the
development process of a runtime monitor for CPS based on recent work. For
this, I will use the RTLola [13,14] monitoring framework.

The process ranges from designing specifications to integrating the executable
monitor. It starts by identifying relevant properties and translating them into
a formal specification language. The resulting specification is type-checked and
validated to increase confidence in its correctness. Afterwards, it is compiled
into an executable artifact, either based on software or hardware. Lastly, the
artifact is integrated into the full system. This step takes the existing system
architecture of the CPS into account and enables the monitor to support a post-
mortem analysis. The full process is illustrated in Fig. 1.
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The first step of the process concerns the specification. It captures a detailed
analysis of the system behavior, which entails computationally challenging arith-
metic. Yet, since the monitor for the specification will be realized as an embed-
ded component, its resource consumption must be statically bounded. Thus, the
specification language has to provide sufficient expressiveness while allowing the
monitor to retain a predictable and low resource footprint. In particular, an ideal
specification language provides formal guarantees on the runtime behavior of its
monitors such as worst case execution time or memory consumption. In general,
however, expressiveness, formal guarantees, and predictably low resource con-
sumption cannot be achieved at the same time. Desirable properties like “every
request must be granted within a second” might come at the cost that the mem-
ory consumption of the monitor depends on the unpredictable input frequency
of requests. Consequently, specification languages providing input-independent
formal guarantees on the required memory must impose restrictions to prohibit
such properties. These restriction can be direct, i.e., the syntax of the language
renders the property inexpressible, or indirect, so the property can be expressed
but falls into a language fragment unsuitable for monitoring. RTLola falls into
the former category.

During the design phase of the CPS, the specifier defines properties spanning
from validation of low-level input sensor readings to high-level mission-specific
control decisions. The former are real-time critical, i.e., they demand a timely
response from the monitor, whereas the latter include long-term checks and sta-
tistical analysis [6] where slight delays and mild inaccuracies are unsubstantial.
Just like code is not a perfect reflection of what the programmer had in mind, the
specification might deviate from the specifiers intention. To reduce the amount
of undetected bugs, the specification needs to be validated. This increases confi-
dence in it and—by proxy—in the monitor. The validation consists of two parts:
type checks and validation based on log data. The former relies solely on the
specification itself and checks for type errors or undefined behavior. The lat-
ter requires access to recorded or simulated traces of the system and interprets
the specification over the given traces. The output of the monitor can then be
compared against the expected result.

After successfully validating the specification, a compiler for the specification
language generates an executable artifact. This artifact is either a hardware or a
software solution, depending on the requirements of the system architecture. If,
for example, the architecture does not allow for adding additional components,
a software solution is preferable as it does not require dedicated hardware; the
monitor can be part of the control computer. Hardware solutions, on the other
hand, are more resource efficient and allow for parallelization with nearly-0 cost.
In any case, the compiler can inject additional annotations for static code-level
verification [15] or traceability [5] to further increase confidence in the correctness
of the monitor.

Finally, deploying the monitor into the CPS harbors additional pitfalls. As
an external safety component, the monitor should not influence the regular oper-
ation of the system unless upon detection of a safety violation. As a result, the
system architecture needs to enable non-intrusive data flow from the system to
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Fig. 1. Illustration of the paper structure. It is divided into three phases: specification,
compilation, and integration.

the monitor and intrusive data flow from the monitor to the controller. The con-
troller then has to react on an alarm appropriately. Such a reaction can e.g. be
a switch from the regular controller to a formally verified controller with signifi-
cantly reduced complexity responsible for a graceful shutdown of the system [16],
as suggested in the Simplex Architecture [37].

After terminating a mission, the output of the monitor provides valuable data
for the post-mortem analysis. Regular system logs might be insufficient as they
do not contain the entire periphery data due to resource constraints. The mon-
itor, however, filters and aggregates the data specifically to assess information
regarding the system’s status w.r.t. safety, thus providing valuable feedback.

2 Specifications: From Sensors to Missions

When designing specifications for CPS, the specifier has to keep in mind that
not all properties are equal. They fall into a spectrum from low-level proper-
ties concerned with concrete sensor readings to high-level properties validating
mission-specific criteria. Properties on the least end of the spectrum work on
raw data points of single sensors. Most common are simple bounds checks (the
altitude may not be negative) or frequency checks (the barometer must provide
between 9 and 11 readings per second). Less low-level properties work on refined
data points, e.g. to check whether several sensors contradict each other (the
altitude measured by the sonic altimeter must not deviate more than ε from the
altitude based on the air pressure). Such a sensor cross-validation requires refine-
ment of raw values as they cannot be compared without further ado. While a
barometer provides the air pressure, it needs further information such as pressure
and temperature at sea level to accurately estimate the current altitude. Simi-
larly, validating the position provided by the global navigation satellite system
(GNSS) module against the position estimated by the inertial measurement unit
(IMU) requires double integration of the measured acceleration. On the highest
end of the spectrum reside mission-level properties. When checking such proper-
ties, the source of information is mostly discarded and the values are assumed to
be correct. For example, consider an aircraft that traverses a set of dynamically
received waypoints. Mission-level properties could demand that a waypoint is
reached in time or that the traveled distance does deviate more than a factor
from the actual distance between two points.
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Fig. 2. Illustration of monitor obligations for checking if a request (“r”) is granted
(“g?”) within a second. While the mtl interpretation is more precise, it requires stati-
cally unbounded memory. The RTLola under-approximation requires constant memory.

Properties are usually expressed in natural language as above and translated
into a specification language. Consider the first property: the altitude may not be
negative. Evidently, the properties harbors little challenge in terms of arithmetic.
However, timeliness is critical. If the altimeter reports a negative altitude, clearly
something is wrong and the system needs to be informed near-instantaneously.
In RTLola, the property translates to the following specification:

input altitude: Float32

input orientation: Float32

trigger altitude < 0 "Altimeter reports negative altitude."

trigger orientation > 2 * π "Orientation exceeds 2π."

The first two lines declare input streams of name altitude and orientation,
both with type Float32. The remaining lines contain trigger conditions with
message to be sent to the system for the case a condition turns true. Whenever
the monitor receives a new value from the altimeter or gyroscope, the respective
condition is checked immediately. Note that RTLola allows for asynchronous
input behavior, i.e., one input stream can produce a new value while the other
does not. Thus, when the gyroscope produces a value, the respective trigger
condition is checked regardless of the altimeter. This timing dependency from
inputs to expressions is part of RTLola’s type system.

The type system is two-dimensional: every stream and expression has a value
type and a pacing type. Value types are common within programming languages,
they indicate the shape and interpretation of data. The input streams, for exam-
ple, are of value type Float32, so storing a single value requires 32 bits and the
bits should be interpreted as a floating point number. The pacing type, how-
ever, states when expressions are evaluated and thus when streams produce new
values. In case of the trigger expressions, the pacing types are event-based, i.e.,
they are coupled to the reception of new values from the altimeter or gyroscope.

The pacing type can also be periodic, effectively decoupling the evaluation of
expressions from input streams in terms of timing. As an example, consider the
second low-level property: the barometer must provide between 9 and 11 readings
per second. An RTLola specification for this property is:

input pressure: Float32

output readings_per_sec @ 1Hz := pressure.aggregate(over: 1s, using:

count)

trigger readings_per_sec < 9 "Barometer produces too few readings."

trigger readings_per_sec > 11 "Barometer produces too many readings."
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Here, readings_per_sec is an output stream with a timing annotation @ 1 Hz

prompting the monitor to only evaluate the expression of the stream once per
second. Thus, the timing of the evaluation is decoupled from the reception of
new input values.

The expression itself is a sliding window aggregation, i.e., whenever evaluated,
the expression counts how many data points the barometer generated in the last
second. If the count falls below 9 or exceeds 11, the monitor raises an alarm.
While the logic behind a an efficient sliding window implementation is rather
complex and requires a great deal of bookkeeping, RTLola provides a simple
primitive for it. This alleviates the need for the specifier to manually take care
of the implementation details.

Note that the specification does not precisely represent the property. Assume
the system alternates between receiving 7 readings in the first half of a second
and receiving 3 readings in the second half. Then, every other second, the system
receives a total of 14 readings per second—unbeknownst to the monitor. In
RTLola, it is impossible to specify the property correctly as it lacks the necessary
expressiveness by design: sliding window expressions can only occur in streams
with a timing annotation. This annotation renders the stream isochronous, i.e.,
the point in time when its expression will be evaluated are determined statically.
The reason behind it is that the original properties lies in a category of properties
that generally need a statically unbounded amount of memory to be monitored.
To understand this, consider the property Every request must be granted within
one second. A sound monitor for the property needs to check whether a request
was granted exactly one second after receiving a request. However, there is no
static bound on the amount of requests the monitor receives within this frame
of time. Since it has to store their arrival times, the memory consumption might
exceed any bound. The problem is illustrated in Fig. 2. There are specification
logics such as metric temporal logic (mtl) [20], in which the property can be
expressed. In such a case, the memory consumption of the monitor is linear in the
number of events receives within the second. Since RTLola only provides constant
memory monitors, it rejects specifications for such properties and instead enables
constant-memory under-approximations. This design decision is a requirement
to guarantee that the monitor cannot possible run out of memory during the
execution.

RTLola provides primitives for more abstract constraints such as sensor cross-
validations as well:

input velocity_1: Int64

input velocity_2: Int64

output deviation := abs(velocity_1 - velocity_2)

output lasting_dev := deviation > 5 ∧ deviation.offset(by: -1,

default: 0) > 5 ∧ deviation.offset(by: -2, default: 0) > 5

trigger lasting_deviation "Lasting deviation in measured velocities."

The specification declares two input streams providing different readings for
the velocity of the system, and two output streams deviation and lasting_dev

that computes the absolut deviation of the readings and checks whether the
deviation exceeds a threshold three consecutive times. The first conjunct of the
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stream expression accesses the current, i.e., the latest value of the deviation

stream, whereas the offset(by: -n, default: v) function allows for accessing
the nth-to-latest value of the stream for n ∈ N1. This value does not exist at
the beginning of the monitor execution, so the specifier has to supply a default
value v. Here, the specification refers to the abstract notion of “the last value”
rather than considering the real-time behavior, assuming that low-level valida-
tion already took place.

Note that deviation accesses both velocity streams without supplying a
default value. This indicates a synchronous access and prompts the monitor to
only evaluate deviation when both input receive a new value. This is not nec-
essarily the case since RTLola considers inputs to be asynchronous. The pacing
type of deviation captures the information that the stream is only evaluated
when the two inputs happen to arrive at the same time: it is event-based and
the conjunction of both input streams. In contrast to that, a different definition
of deviation could look like:

output deviation_disj @ velocity_1 ∨ velocity_2 :=

abs(velocity_1.hold(or: 0) - velocity_2.hold(or: 0)

Here, the output stream has a disjunctive type, so when it is extended, at
least one of the two inputs received a new value, not necessarily both. In such
a case, RTLola forces the specifier to declare precisely how it should handle
potentially old values. The specifier can, as in the example of deviation_disj,
turn the synchronous accesses into sample and hold accesses. When evaluating
the expression, the monitor will access the latest—yet potentially old—value of
the input stream with a 0-order hold. If the specifier attempted to access either
stream synchronously, RTLola would reject the specification because it contains
an inner contradiction. These kinds of type checks greatly increase confidence in
the correctness of the specification as they point out imprecise and potentially
flawed parts.

Lastly, consider two mission-level properties for an aircraft flying a dynamic
list of waypoints: the monitor should issue a warning if the aircraft deviated
from the straight-line distance by at least ε, and it should issue an error if such
a deviation occurred more than 10 times.

input wp: (Float64, Float64)

input pos: (Float64, Float64)

output start: (Float64, Float64) := (0, 0)

output exp_dist @ wp := wp - wp.offset(by: -1, default: start)

output dist_since_wp @ pos := pos - pos.offset(by: -1, default: start)

+ dist_since_wp.offset(by: -1, default: 0)

output distance_deviation @ wp :=

abs(exp_dist.offset(by: -1, default: 0) - dist_since_wp.hold(or: 0))

trigger distance_deviation > ε "Warn: Path deviation detected."

output deviations := deviations.offset(by: -1, default: 0)

+ if distance_deviation > ε then 1 else 0

trigger deviations > 10 "Err: Too many path deviations!"

1 As a result, RTLola does not allow for accessing future values.
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The specification declares two clearly asynchronous input streams: the cur-
rent waypoint wp and the current position pos. The start stream is a constant
stream only containing the initial position of the aircraft. exp_dist contains the
distance between the current and the last waypoint whereas dist_since_wp aggre-
gates the distance the aircraft has traveled since reaching the last waypoint/s-
tarting the mission. The deviation in distance is then the absolut difference
between these two distances. Note that this value is only valid when the air-
craft just reached a new waypoint, hence the @ wp annotation. This prompts the
monitor to only evaluate the stream when it receives a new waypoint. Lastly,
the deviations stream counts the number of times the deviation exceeded its
threshold.

The specification contains several pacing type annotations. This, however,
is for illustration, as most of the time, RTLola can infer both types from the
stream expression. Yet, the specifier always has the option to annotate types for
clarity or if the timing of a stream should deviate from the standard behavior,
e.g. for disjunctive event-based types.

Note that this was only a brief overview of RTLola. For more details on the
theory, refer to [36], and for the implementation, refer to [13].

2.1 Specification Validation by Interpretation

RTLola’s type system already rules out several sources for incorrect behavior of
the monitor. Yet, a validation of the specification is crucial to increase confidence
in the correctness of the specification. The validation requires access to records
of previous runs of the system. These can be simulated, collected during test
runs, or logs from sufficiently similar systems. Just like when testing software,
developers annotate the trace data with points in time when they expect the
monitor to raise an alarm. Then, they execute a monitor for the given specifi-
cation on the trace and compare the result with their annotations. Deviations
mainly root from either an error when designing the specification, or a discrep-
ancy in the mental image of different people regarding the correct interpretation
of a property.

A key point for the specification validation is that the process should incur
as little cost as possible to enable rapid prototyping. Hence, interpreting the
specification rather than compiling it is preferable—especially when the target
platform is hardware-based. After all, realizing a specification on an fpga usually
takes upwards of 30 min [7]. While interpretation is considerably less performant
than compiled solutions, the RTLola interpreter manages to process a single
event in 1.5µs. This enables a reasonably fast validation of specifications even
against large traces.

2.2 Static Analysis for RTLola Specifications

After type checking the specification and validating its correctness based on test
traces, RTLola provides static checks to further analyze it. For this, RTLola gen-
erates a dependency graph where each stream is a node and each stream access is
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an edge. This information suffices to perform a memory analysis and a running
time analysis. The analysis identifies the resource consumption—both spatial
and temporal—of each stream, granting fine-grained control to the specifier.

Memory. For the memory consumption of stream s, the analysis identifies the
access of another stream to s with the greatest offset n∗

s. Evidently, the monitor
only has to retain n∗

s values of s to successfully resolve all accesses. Moreover,
note that all types in RTLola have a fixed size. Let Ts be the type of s with
bit-size |Ts|. Then, the memory consumption of s induced by accesses through
other streams amounts to n∗

s · |Ts|.
Sliding window expressions within the stream expression of s incur additional

memory overhead. Suppose w1, . . . , wk are the windows occurring in s where for
wi = (γi, di), γi is the aggregation function and di is the length of the window.
If k > 0, RTLola demands s to be periodic with frequency πs. The memory
consumption of s induced by sliding windows consists of the number of panes
required. Here, a pane represents the time interval between two consecutive
evaluations of the window. The pane consists of a single value which contains the
aggregated information of all values that arrived in the respective time interval.
This implementation of sliding windows is inspired by Li et al. [23] and only
works for list homomorphisms [25]. A window thus has di · πs panes, which has
to be multiplied by the size of the value stored within a pane: Tγi

. This value is
statically determined and depends on the aggregation function: for summation,
it is merely the sum of the values, for the average it is the intermediate average
plus the number of values that occurred within the pane.

The overall memory consumption of s is therefore

μ(s) = n∗
s |Ts| + 1k>0

k∑

i=1

diπi |Tγi
|

Here, 1ϕ is the indicator function evaluating to 1 if ϕ is true and 0 otherwise.

Running Time. The running time cannot be fully determined based on the spec-
ification alone as it depends on the hardware of the CPS. For this reason, RTLola
provides a preliminary analysis that can be concretized given the concrete target
platform. The preliminary analysis computes a) the complexity of each evalua-
tion cycle given a certain event or point in time, and b) the parallelizability of
the specification.

For the former metric, note that the monitor starts evaluation cycles either
when it receives an event, or at predetermined points in time (deadlines). An
event always updates a set of input streams and a statically determined set
of output streams. Recall the mission-level specification computing the devia-
tion from the flight path including the deviation_disj stream. The specification
declares two input streams, thus allowing for three possible non-empty events.
An event covering either velocity stream but not the other only triggers an
evaluation of deviation_disj. Only if the event covers both inputs, deviation

and the trigger are evaluated as well.
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Consider a specification containing periodic streams and suppose the monitor
has a deadline at time t. It then evaluates all periodic streams due at t, i.e., all
streams with frequency π where π ·t is a natural number. Thus, the set of streams
affected by an evaluation cycle is pre-determined.

The next step in the analysis is concerned with evaluation layers They
are closely related to the parallelizability of the monitor as they indicate how
many stream evaluations can take place at once. The analysis yields a parti-
tion of the set of streams where all streams within an element of the partition
are independent, enabling a parallel evaluation. The (in-)dependence relation is
based on the dependency graph. If a stream accesses another synchronously,
i.e., without an offset, than the target stream needs to be evaluated before the
accessing stream. This definition entails an evaluation order on output streams.
The aforementioned partition is then the coarsest partition such that any two
streams in the same set are incomparable with respect to the transitive closure
of the evaluation order. Each element of the partition is an evaluation layer. By
construction, streams within the same layer can be evaluated in an arbitrary
order—in particular also in parallel. The order in which layers are evaluated,
however, still needs to follow the evaluation order. In the example specification
before, the partition would be {{wp, pos, start} < {exp_dist, dist_since_wp}

< {distance_deviation} < {deviations, trigger_warn} < {trigger_err}}.
The evaluation layer analysis immediately provides information regarding

the parallelizability of the monitor. The running time analysis takes the num-
ber of evaluations into account as well as how many streams are affected by
an evaluation cycle, and how complex their expressions are. Intuitively, if an
event or deadline affects streams in a multitude of layers, then the evaluation
is slow as computations depend on each other and thus require a sequential
order. Conversely, if an event only affects few streams, all within the first layer,
the evaluations are independent and thus highly parallelizable. As a result, the
running time of the monitor is low.

Note, however, that for software monitors the degree to which computa-
tions should run in parallel requires careful consideration, since spawning threads
incurs a constant overhead. For hardware monitors, the overhead does not apply.

3 Compilation: Generating Monitors

While interpretation of specifications enables rapid prototyping, its logic is far
more complex than a compiled monitor, at the same time resulting in subpar
performance. This renders compilation preferable. Additionally, the compiler
can inject additional information into the generated code. Such annotations can
benefit the certification process of the CPS either by providing a notion of trace-
ability, or by outright enabling the static verification of the monitor. The target
platform of the compilation can either be hardware or software, both coming
with advantages and drawbacks.

In this section, I will present and discuss a hardware compilation for RTLola
specifications, and a software compilation for Lola, i.e., a subset of RTLola, with
verification annotations.
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3.1 RTLola on FPGA

Realizing an RTLola specification on hardware has several advantages. For one,
the hardware monitor does not share resources with the controller of the system
apart from power, eliminating potential negative interference. Moreover, special
purpose hardware tends to be smaller, lighter, and require less energy than their
general purpose counterparts. Secondly, hardware enables parallel computations
at minimal cost. This synergizes well with RTLola, where output streams within
the same evaluation layer can be evaluated in parallel.

The realization of RTLola on hardware [7] works in two steps: an RTLola
specification is translated into vhdl code, out of which an fpga (field-program-
mable gate array) implementation is synthesized. The synthesis provides addi-
tional static information regarding the required board size in terms of memory2

and lookup-up tables. This allows for validating whether the available hardware
suffices to host the monitor. Moreover, the synthesis indicates the idle and peak
power consumption of the monitor, information that is invaluable when integrat-
ing the monitor into the system.

The aforementioned advantages are not only valid for fpga but also for
other hardware realization such as application-specific integrated circuits (asic)
and complex programmable logic device (cpld). While asic have significant
advantages over fpga when it comes to mass-producibility, power consumption
and performance, fpga are preferable during the development phase as they
are orders of magnitude cheaper, have a lower entry barrier, and allow for rapid
development. cpld, on the other hand, are just too small to host realistic/non-
trivial specifications.

Hardware Realization. Managing periodic and event-based streams under a
common hardware clock poses the key challenging when realizing an RTLola
monitor in hardware. Yet, this distinction only affects the part of the monitor
logic deciding when to evaluate stream expressions; the evaluation itself is agnos-
tic to it. For this reason, the monitor is split into two modules. The high-level
controller (hlc) is responsible for scheduling evaluations, i.e., to decide when
and which streams to evaluation. It passes the information down to the second
module, the low-level controller (llc), which is responsible for managing the
evaluation. A fifo queue between the controllers buffers information sent from
the hlc to the llc.

Recall the specification from Sect. 2 checking for strong deviations in readings
of two velocimeters. As a running example for the hardware compilation, we
extend the specification by the following declarations.

output avg_dev @10mHz := dev.aggregate(over: 10min, using: avg)

trigger avg_dev > 4 "High average deviation."

2 The hardware realization might require temporary registers and working memory.
This can slightly increase the computed memory consumption.
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The specification checks whether two velocimeters disagree strongly over three
consecutive measurements and whether the average disagreement is close to the
disagreement-threshold. Note that all streams are event-based except for avg_dev

and the second trigger.
Figure 3 illustrates the overall structure of the monitor. As can be seen, the

hlc accepts input events from the monitored system. Such an event has a fixed
size of 2 · (32 + 1) bits, i.e., 32 due to the input types and an additional bit
per stream to indicate whether the stream received an update. For periodic
streams, the hlc has access to the system clock. Based on the current time and
arrival of events, the hlc triggers evaluation cycles by sending relevant informa-
tion to the queue while rising the push signal. Such a data package consists of
2 · (32 + 1) + 64 + 5 bits. The first component of the sum represents the poten-
tial input event. If the evaluation only serves to update periodic streams, these
bits will all be 0. The following 64 bits contain the timestamp of the evalua-
tion, crucial information for the computation of sliding window expressions. The
last 5 bits each represent an output stream or trigger and indicate whether the
respective entity is affected by the evaluation cycle. As a result, the llc does
not have to distinguish between event-based and periodic streams; it merely has
to evaluate all streams the hlc marked as affected.

The communication between the queue and the llc consists of three data
lines: the pop bit is set by the llc and triggers the queue to send another data
packet down to it—provided the empty bit is 0. In this case, the queue puts the
oldest evaluation information on the dout wires.

Internally, the llc consists of two state machines. The first one handles the
communication with the queue. While the first machines resides in the eval state,
the second state machine manages the evaluation. To this end, it cycles through
different states, each representing an evaluation layer. The first state (“1”) copies
the information about input stream updates into the respective memory region.
In each consecutive state, the monitor enables the modules responsible for eval-
uating the respective stream expression by raising the enable bit. It then waits
on the done bits. Upon receiving all of them, the monitor proceeds to the next
state. During this process, the outputs of trigger expressions are not persisted
locally, but directly piped down to the monitored system.

Resource Consumption. When compiling the specification into vhdl and
realizing it on a zynq-7 zc702 Evaluation Board, using the Vivado Design
Suite3, the hardware synthesizer provides information regarding the overall
resource consumption. In this case, the monitor requires 10,700 lookup tables
and 1735 bits of memory. The energy consumption amounts to 144 µW when
idle, and 1.699 W under peak pressure. Even though the specification is rather
small, it gives a glimpse at how low the resource consumption actually is.
Baumeister et al. [6] successfully synthesized larger specifications designed for
autonomous aircraft on the same fpga.

3 https://www.xilinx.com/products/design-tools/vivado.html.

https://www.xilinx.com/products/design-tools/vivado.html
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Fig. 3. Illustration of the hardware realization of an RTLola monitor. It is composed
of two components connected by a queue. The hlc receives inputs from the system
and manages the timing of periodic and event-based streams. The llc controls the
evaluation process with a state machine where each state represents an evaluation
layer of the underlying specification. The llc passes violations of safety properties on
to the system.

3.2 Lola to Rust

While a compilation of RTLola specifications into software is a topic for future
work, a compilation for Lola does exist, presented by Finkbeiner et al. [15].
Lola [10] is a synchronous and discrete-time subset of RTLola. As such, it does
not have a notion of real-time, thus neither sliding windows nor periodic streams
are an issue. Moreover, Lola assumes all input streams to receive new values at
the same time, prompting all output streams to be extended as well. This renders
sample and hold accesses obsolete. Lola does, however, allow for future lookups,
i.e., a stream may refer to the next value of another stream.

The example specification for the software compilation is another mild vari-
ation of the velocimeter cross-validation from Sect. 2. The modification replaces
the lasting_dev stream by the following:

output lasting_dev := dev > 5 ∧ dev.offset(by: +1, default: 0) > 5 ∧
dev.offset(by: -1, default: 0) > 5

Here, lasting_dev access the last, current and next value of deviation.
The compilation presented in this section translates the Lola specification

into Rust4 code that enables a static verification. Rust as a target language comes
with several advantages. First, as a system language with an LLVM5 backend,
it is compatible with a wide array of platforms. Secondly, a key paradigm of the
language is to enforce static checks on the code and thus reduce dynamic failures.
This goes hand in hand with the goal of verifying the functional correctness and
absence of dynamic failures of the generated monitor. Lastly, Rust allows for
fine-grained control low-level constructs such as memory management, enabling

4 https://www.rust-lang.org/.
5 https://llvm.org/.

https://www.rust-lang.org/
https://llvm.org/
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the programmer—or in the case, the Lola compiler—to write highly performant
code.

The compiler injects verification annotations into the code as well. This
enables the static verifier Viper to prove functional correctness of the monitor in
two steps. First, it relates the working memory of the monitor to the semantic
model of Lola. The key challenge here is that the semantics of Lola argues about
infinite data sequences while the monitor operates on a finite working memory.
Next, the verification relates the verdict of the monitor, i.e., the boolean indi-
cator of whether a trigger should go off is correct given the current state of the
working memory. In combination we can conclude that the monitor only emits
an alarm if the semantic model demands so.

Dealing with Fallible Accesses. While future offsets provide a natural way to
specify temporal dependencies, the monitor has to compensate for them by delay-
ing the evaluation of the accessing streams. Thus, the evaluation of lasting_dev
needs to be delayed by one step since they access a future value of dev. This delay
is propagated through the dependency graph: the trigger transitively accesses a
future value, so its evaluation needs to be delayed, too.

With the delay operation in place, accesses via a future offset will always
succeed up until the system terminates, and thus no longer produces new inputs.
In this case, the monitor continues to evaluate delayed streams until they have
the same length as the input streams. This phase is the postfix phase of the
monitor execution. Here, future offsets fail because the accesses values do not
exist and never will. Similarly, past offsets fail at the beginning of the monitor
execution, the prefix.

In the very first iteration of the monitor, only the inputs and dev can be
evaluated, the other output stream and the trigger are delayed. In the next iter-
ation, the input is updated and all output streams and the trigger are evaluated.
Evaluating lasting_dev accesses both values of dev. In addition to that, the past
lookup refers to the -1st value of altitude, a value, that will never exist. Thus,
the monitor statically substituted the access with the default value.

Clearly, the monitor goes through three phases: a prefix, in which past offsets
fail unconditionally, a loop phase, in which both past and future offsets succeed
unconditionally, and a postfix phase, in which future offsets fail unconditionally.
In light of this, the compiler faces a trade-off: it can generate a general-purpose
loop containing conditional statements resolving offsets dynamically, or it can
take the three phases into account by generating code specific to them. The for-
mer option contains conditional statements not found in the original specifica-
tion, resulting in far less performant code. The latter option, however, requires
more code, resulting in a larger executable file. The compiler outlined in this
section opts for the latter option.
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Prelude

Monitor Loop

Execution Prefix

Execution Postfix

struct Memory { ... }
impl Memory { . . . }
[[ Evaluation Functions ]]
fn get input() −>

Option<(Ts1 , . . . , Ts�
)> {

[[ Communicate with system ]]
}
fn emit(output: &(Ts1 , . . . , Tsn )) {
[[ Communicate with system ]]

}
fn main() {
let mut memory = Memory::new();
let early exit = prefix(&mem);
if !early exit {

while let Some(input) = get input() {
mem.add input(&input1);
[[ Evaluation Logic ]]

}
}
postfix(&mem);

}

fn prefix(mem: &mut Memory) −> bool {
if let Some(input) = get input() {

mem.add input(&input);
[[ Evaluation Logic ]]

} else {
return true // Jump to Postfix.

}
[[ Repeat η←

ϕ times. ]]
false // Continue with Monitor Loop.

}

fn postfix(mem &Memory) {
[[ Evaluation Logic ]]
[[ Repeat η→

ϕ times. ]]
}

Listing 1.1: Structure of the generated Rust code. The prelude is highlighted in
orange, the monitor loop in blue, the execution prefix in green, and the execution
postfix in violet.

Listing 1.1 illustrates the abstract structure of the generated Rust code. The
first portion of the code is the prelude containing declaration for data structures
and I/O functions. Most notably, the Memory struct represents the monitor’s
working memory and is of a fixed size. For this, it utilizes the memory analysis
from Sect. 2.2. Note also, that the get_input function returns an optional value:
either it contains new input data or it indicates that the system terminated.

The main function is the entry point of the monitor. It allocates the working
memory and transitions to the prefix. Here, the monitor code contains a static
repetition of code checking for a new input, and evaluating all streams. In the
evaluation, stream access are either translated into immediate access to memory
or substituted by constant default values. The prefix function returns a boolean
flag indicating whether the system terminated before the prefix was completed.
This prompts the main function to jump to the postfix immediately. Otherwise,
the main monitor loop begins following the same scheme of the prefix: retrieve
new input values, commit them to memory, evaluate streams, repeat until the
system terminates. Note that all stream accesses during the monitor loop trans-
late to accesses to the working memory. Lastly, the main function triggers the
computation of the postfix. The structure is similar to the prefix except that it
does not check for new input values.

The evaluation logic for streams is a straight-forward translation of the Lola
specification as conditional statements, constants, and arithmetic functions are
syntactically and semantically almost identical in Lola and Rust. Only stream
accesses requires special attention as they boil down to accesses to the Memory

struct. Lastly, the compilation has to order the evaluation of streams to comply
with the evaluation order from Sect. 2.2. Streams in the same evaluation can
be ordered arbitrarily or parallelized. The latter leads to a significant runtime
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overhead and only pays off if computational complexity of the stream expressions
is sufficiently high.

Verification. The compilation injects verification annotations in the Rust code
to enable the Prusti [1] plugin of the Viper framework [28] to verify functional
correctness of the monitor. The major challenge here is to verify that the finite
memory available to the monitor suffices to accurately represent the infinite eval-
uation model of Lola. The compilation achieves this by introducing a dynami-
cally growing list of values, the ghost memory. With this, the correctness proof
proceeds in two steps. First, whenever the monitor receives or computes a new
value, it commits it both to the ghost memory and the working memory. Here,
the working memory acts as a ring buffer: as soon as its capacity is reached, the
addition of a new value overwrites and thus evicts the oldest value. Therefore,
the working memory is an excerpt of the ghost memory and thus the evalua-
tion model. Ergo, the computation of new values is valid with respect to the
evaluation model because memory accesses yield the same values as the evalua-
tion model would. The newly computed, correct values, are then added into the
memory, concluding the inductive proof of memory compliance.

Secondly, the verdict of a trigger in the theoretical model needs to be equiva-
lent to the concrete monitor realization. This amounts to proving that the trigger
condition was translated properly. Here, memory accesses are particularly inter-
esting, because the theoretical computation uses entries of the ghost memory
whereas the realization accesses the working memory only. The agreement of
the ghost memory and the working memory for the respective excerpts conclude
this proof.

Note that for the monitor the ghost memory is write-only, whereas the verifi-
cation procedure “reads” it, i.e., it refers to its theoretical values. The evaluation
logic of the monitor uses data from the system to compute output values. Dif-
ferent components of the verification than access these values either directly or
over the ghost memory (GM). Clearly, the information flow is unidirectional:
information flows from the monitor to the verification but not vice versa. As a
result, upon successful verification, the ghost memory can safely be dissected
from the realization.

Conclusion. Not only does the compilation from Lola to Rust produce per-
formant runtime monitors, the injection of verification annotations answers the
question “Quis custodiet ipsos custodes? 6” rendering it an important step into
the direction of verified runtime monitor. The applicability of Lola for CPS is
limited to high-level properties where neither asynchrony, nor real-time play a
significant role. Further research in this direction especially relating to RTLola
can significantly increase the value and practical relevance of the compilation.

6 “Who will guard the guards themselves?”.
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4 Integration and Post-mortem

A key task when integrating a monitor into a CPS is finding a suitable spot in
the system architecture. Improper placement can lead to ineffective monitoring
or negative interference, jeopardizing the safety of the entire system.

4.1 Integration

The integration is considerably easier when the architecture is not yet fully
determined. When adding the monitor retroactively, only minimal changes to
the architecture are possible. Larger changes would render previous tests void
since the additional component might physically change the system, e.g. in terms
of weight distribution and power consumption, or logically offset the timing of
other components. Consider, for example, a monitor that relies on dedicated
messages from the controller as input data source. If the processor of the con-
troller was already almost fully utilized, the additional communication leads to
the controller missing deadlines. This can lead to safety hazards, as timing is
critical for the safe operation of a CPS. Taking the placement of the monitor
into account early on increases the degree of freedom, which helps avoid such
problems.

The amount of interference the monitor imposes on the system also depends
on the method of instrumentation. Non-intrusive instrumentation such as bus
snooping grants the monitor access to data without affecting other modules. The
effectiveness of this approach hinges on the amount of data available on the bus.

Consider, for example, the system architecture of the autonomous aircraft
superARTIS of the German Aerospace Center (DLR) depicted in Fig. 4. When
integrating a monitor for the optical navigation rail into the aircraft [6], the mon-
itor was placed near the logging component. By design, the logger had access
to all relevant data. This enabled monitoring of properties from the entire spec-
trum: The specification contained single-sensor validation, cross-validation, and
geo-fence compliance checks. Note that in this particular case, the utilization of
the logger was low. This allowed it to forward the information from the bus to the
monitor. In a scenario where performance is critical, snooping is the preferable
option.

4.2 Post-mortem Analysis

After termination of a flight, the post-mortem analysis allows for assessing the
performance of the system and finding culprits for errors. The analysis relies on
data recorded during the mission; a full record enables a perfect reconstruction of
the execution from the perspective of the system. Resource restrictions, however,
limit the amount of data, so full records are often not an option. Thus, data needs
to be filtered and aggregated rigorously.

A main task of the monitor is exactly this: refining input data by filtering
and aggregation to obtain an accurate assessment of the system state. Based on
this assessment, the monitor determines whether a property is violated. While
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(a) An image of the superARTIS aircraft.
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system architecture.

Fig. 4. Information on the superARTIS aircraft of the German Aerospace Center.

this binary verdict is the major output of the monitor, the intermediate results
provide valuable insight into the evolution of the system over time. Hence, log-
ging this data can improve the post-mortem analysis and alleviates the need to
filter and aggregate data in another component as well.

5 Bibliographic Remarks

Early work on runtime monitoring was mainly based on temporal logics [12,
17,18,21,22,33]. Their notion of time was limited to discrete time, leading to
the development of real-time logics like stl [24] and mtl [20]. Not only do
algorithms for runtime monitoring exist for these logics [3,4,11,29], there is
also work realizing it on an fpga [19]. The R2U2 [27,35] tool in particular
implements mtl monitors on fpga while allowing for future-time specifications.
Further, there are approaches for generating verified monitors for logics [2,34].

Apart from these temporal logics, there are other specification languages
specifically for CPS such as differential dynamic logic [32]. The ModelPlex [26]
framework translates such a specification into several verified components mon-
itoring both the environment w.r.t. the assumed model and the controller
decisions.

Other approaches—such as the one presented in this paper—completely forgo
logics. Similar to the compiler from Lola to Rust, there is a verified compiler
for synchronous Lustre [8] programs to C code. Moreover, the Copilot [30,31]
toolchain is based on a functional, declarative, stream language with real-time
capabilities. Copilot enables the verification of generated monitors using the
cbmc model checker [9]. As opposed to the verification with Viper, their verifi-
cation is limited to the absence of various arithmetic errors, lacking functional
correctness.

In terms of integration, both the R2U2 [27] and the Copilot [31] tool were
successfully integrated into an aircraft.
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6 Conclusion

In this paper, I provided an overview of recent work on the development of a run-
time monitor for cyber-physical systems from design to integration. The process
can roughly be divided into three phases. In the specification phase, specifiers
transform natural language descriptions of properties into a suitable formal spec-
ification language. Such properties range from low-level properties validating a
single sensor to high-level properties overseen the quality of the entire mission.
Type checking and validation based on log data from previous or simulated mis-
sions increase confidence in the specification. The compilation phase transforms
the specification into an executable software or hardware artifact, potentially
injecting annotations to enable static verification of the monitor. This process
can help increase the effectiveness of the monitor, which directly translates into
safer systems.

Acknowledgements. This paper is based on a tutorial at the 20th International
Conference on Runtime Verification. The work summarized in this paper is based
on several earlier publications [6,7,13–15] and I am grateful to all my co-authors. I
especially would also like to thank Jan Baumeister and Bernd Finkbeiner for providing
valuable feedback and comments.

References

1. Astrauskas, V., Müller, P., Poli, F., Summers, A.J.: Leveraging rust types for mod-
ular specification and verification. Proc. ACM Program. Lang. 3(OOPSLA), 147:1–
147:30 (2019). https://doi.org/10.1145/3360573

2. Basin, D., et al.: A formally verified, optimized monitor for metric first-order
dynamic logic. In: Peltier, N., Sofronie-Stokkermans, V. (eds.) IJCAR 2020. LNCS
(LNAI), vol. 12166, pp. 432–453. Springer, Cham (2020). https://doi.org/10.1007/
978-3-030-51074-9 25

3. Basin, D.A., Klaedtke, F., Müller, S., Zalinescu, E.: Monitoring metric first-order
temporal properties. J. ACM 62(2), 15:1–15:45 (2015). https://doi.org/10.1145/
2699444

4. Basin, D.A., Krstic, S., Traytel, D.: AERIAL: almost event-rate independent algo-
rithms for monitoring metric regular properties. RV-CuBES 2017, 29–36 (2017)

5. Baumeister: Tracing Correctness: a practical Approach to Traceable Runtime Mon-
itoring. Master thesis, Saarland University (2020)

6. Baumeister, J., Finkbeiner, B., Schirmer, S., Schwenger, M., Torens, C.: RTLola
cleared for take-off: monitoring autonomous aircraft. In: Lahiri, S.K., Wang, C.
(eds.) CAV 2020. LNCS, vol. 12225, pp. 28–39. Springer, Cham (2020). https://
doi.org/10.1007/978-3-030-53291-8 3

7. Baumeister, J., Finkbeiner, B., Schwenger, M., Torfah, H.: FPGA stream-
monitoring of real-time properties. ACM Trans. Embedded Comput. Syst. 18(5s),
88:1–88:24 (2019). https://doi.org/10.1145/3358220

8. Bourke, T., Brun, L., Dagand, P., Leroy, X., Pouzet, M., Rieg, L.: A formally
verified compiler for lustre. In: Cohen, A., Vechev, M.T. (eds.) PLDI 2017, pp.
586–601. ACM (2017). https://doi.org/10.1145/3062341.3062358

https://doi.org/10.1145/3360573
https://doi.org/10.1007/978-3-030-51074-9_25
https://doi.org/10.1007/978-3-030-51074-9_25
https://doi.org/10.1145/2699444
https://doi.org/10.1145/2699444
https://doi.org/10.1007/978-3-030-53291-8_3
https://doi.org/10.1007/978-3-030-53291-8_3
https://doi.org/10.1145/3358220
https://doi.org/10.1145/3062341.3062358


Monitoring Cyber-Physical Systems: From Design to Integration 105

9. Clarke, E., Kroening, D., Lerda, F.: A tool for checking ANSI-C programs. In:
Jensen, K., Podelski, A. (eds.) TACAS 2004. LNCS, vol. 2988, pp. 168–176.
Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24730-2 15

10. D’Angelo, B., et al.: Lola: runtime monitoring of synchronous systems. In: TIME
2005, pp. 166–174. IEEE Computer Society Press, June 2005
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Abstract. A BDD (Boolean Decision Diagram) is a data structure for the com-
pact representation of a Boolean function. It is equipped with efficient algorithms
for minimization and for applying Boolean operators. The use of BDDs for rep-
resenting Boolean functions, combined with symbolic algorithms, facilitated a
leap in the capability of model checking for the verification of systems with a
huge number of states. Recently BDDs were considered as an efficient represen-
tation of data for Runtime Verification (RV). We review here the basic theory of
BDDs and summarize their use in model checking and specifically in runtime
verification.

1 Introduction

Achieving compact representation of Boolean functions has the immediate benefit of
lowering the production costs and footprint of digital circuits. A later use of Boolean
functions is analysis of software and hardware [9], where BDDs represent sets of states
as Boolean functions. For these applications, there is a need not only to achieve a com-
pact representation, but also to have efficient procedures for applying Boolean oper-
ators. In particular, the conjunction of Boolean functions that represent sets of states
returns the intersection of these sets, and the disjunction returns their union.

More specifically, a Boolean Decision Diagram or BDD, is a rooted directed acyclic
graph (DAG), with nonleaf nodes labeled by Boolean variables, and leafs labeled with
0 (false) or 1 (true). BDDs were already used for representing Boolean functions since
the middle of the previous century [21]. However, it was only in the 80s that Bryant [6]
presented their reduced ordered version (ROBDD), where the ordering between the
Boolean variables are fixed along each path from the root to a leaf, and isomorphic
parts are combined.

The ability to encode sets of states and relations between values and to apply
Boolean operators on ROBDDs was exploited in model checking (see, [10]). It resulted
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in a huge increase in the size of systems that can be checked over previous techniques.
Recently ROBDDs have been used to support runtime verification of execution traces
containing large amounts of data, e.g., in monitoring of sequences with data-carrying
events against first-order past-time LTL formulas [15]. In this paper we survey these
applications of BDDs with emphasis on runtime verification.

The paper is organized as follows. Section 2 provides a brief introduction to BDDs.
Section 3 outlines how to represent sets and relations with BDDs. Section 4 gives a
brief introduction to their use in symbolic model checking. Section 5 presents the use
of BDDs in runtime verification of first-order past-time LTL for representing the data
quantified over in traces. Section 6 expands on this framework and illustrates how BDDs
can be used to monitor timed events against first-order past-time LTL with time con-
straints.

2 Introduction to OBDDs

A Boolean function f : {0,1}k �→ {0,1} maps k-tuples of Boolean values 1 and 0 (for
true and false, respectively) to Boolean values. Each k-tuple can be considered as an
assignment Γ : V �→ {0,1} from variables in a fixed set V to a Boolean value. A
Boolean function can be expressed using literals, which denote the Boolean variables,
and Boolean operators: conjunction (and), disjunction (or) and negation (not). Con-
junction is denoted here, in a standard way, using concatenation, disjunction is denoted
with + and negation is denoted by putting a line over the negated part; conjunction has
priority over disjunction. A minterm is a conjunction of literals, e.g., x1x3x4 (standing
for x1 ∧¬x3 ∧ x4). Each Boolean function can be written in disjunctive normal form as
a sum (disjunction) of minterms.

An OBDD G= ((Q,v0,E),V ,<,L) consists of the following components:

– (Q,v0,E) is a rooted directed acyclic graph where
• Q is finite set of nodes. Each non-leaf node has two distinguished successor

nodes l(v) and h(v).
• v0 ∈ Q is the root node.
• E ⊆ Q×Q is a finite set of directed edges. Each non-leaf node has exactly two

outgoing edges to its successors: the low edge (v, l(v)) ∈ E and the high edge
(v,h(v)) ∈ E.

– V is a finite set of Boolean variables (or BDD variables or simply bits).
– < is a total order on V , extended with two maximal values: 0 and 1.
– L : Q �→ V ∪{0, 1} is a mapping that satisfies the following conditions:

• The leafs are mapped to {0,1} and the non-leaf nodes are mapped to V .
• If (v,v′) ∈ E, then L(v) < L(v′), i.e., variables that label nodes on any path of

the graph appear according to the order <, hence the name Ordered BDD.

An OBDD G represents a Boolean function (expression) over the variables V . The
interpretation of a BDD as a formula is based on the Shannon expansion

f = x f [0/x]+ x f [1/x] (1)
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where f [0/x] ( f [1/x], respectively) denotes the function f when fixing x as 0 (1, respec-
tively); thus, Eq. (1) separates the function f into two components, according to the truth
value of the variable x. Each node v ∈ Q in the OBDD represents the formula

fv =

{
L(v), for a leaf v

L(v) fl(v) +L(v) fh(v), for a non-leaf v.
(2)

An OBDD G represents the formula fv0 of the root node v0. Another way to interpret
an OBDD is that a path F ⊂ E that starts at the root and ends at a leaf w corresponds to
an assignment Γ, where for each nonleaf node v ∈ Q,

Γ(L(v)) =

{
0, if (v, l(v)) ∈ F

1, if (v,r(v)) ∈ F
(3)

and where each variable x ∈ V that does not label any node on the path Γ(x) can be
either 0 or 1. The Boolean function returns for the assignment Γ the truth value L(w).
We will, from now on, use the convention of calling OBDDs simply BDDs.

Fig. 1. The effect of variable order.

BDDs are typically depicted as in Fig. 1 (both left and right), where each nonleaf
node is denoted with a circle, and the leafs are denoted with rectangles. Edges of the
form (v, l(v)) are dashed, while edges of the form (v,h(v)) are full lines.

A benefit of using BDDs is the ability to minimize them, often producing a rep-
resentation that is considerably smaller than other representations. The minimization
allows combining isomorphic subgraphs, using the following rules, applied from the
leafs upwards.
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1. Combine all the leaf nodes that are labeled 1 and all the leaf nodes that are labeled
0. Redirect incoming edges to the resulting leafs.

2. When l( f )= l(g) and h( f )= h(g), combine the nodes f and g and redirect incoming
edges to the single copy.

3. For a node f such that l( f ) = h( f ), remove f and redirect its incoming edges to
l( f ).

The term minimal BDD is sometimes used to emphasize that it is a Reduced Ordered
Boolean Decision Diagram. The algorithm is linear in the size of the BDD1.

As an example, consider the Boolean function f over the variables x1, x2 and x3

that returns the parity (the sum modulo 2) of x1 + x2 + x3. The full binary tree for this
function, where x1 < x2 < x3, appears in Fig. 2A. We obtain Fig. 2B by combining leafs
with the same Boolean values, then Fig. 2C by combining the middle two x3 nodes, and
finally Fig. 2D by combining the exterior two x3 nodes. No further minimization steps
are available.

The order of variables in the BDD can greatly impact the size of the BDD. A
classical example is the expression x1x2 + x3x4 + . . .xn−1xn. Given the variable order
x1 < x2 < .. . < xn−1 < xn, the BDD grows linearly with n. But for the order x1 < x3 <
.. .xn−1 < x2 < x4 < .. . < xn−2 < xn, the BDD grows exponentially with n. The two
BDDs for n = 6 appear in Fig. 1. Note that in the right BDD, the part above the dotted
line, with nodes labeled with x1,x3, . . . ,xn−1, is a full binary tree. For each Boolean
function, there is exactly one (minimized) BDD per each variable ordering [6]. How-
ever, in some pathological cases, for example, when describing bit-vector multiplication
circuits, the size of the minimal BDD grows exponentially with the number Boolean
variables for any variables ordering.

Another benefit of using BDDs, in addition to achieving compact representation
of Boolean functions, is the availability of efficient algorithms for applying Boolean
operators. This makes BDDs useful for applications that process sets of data elements,
such as model checking and runtime verification, as will be shown in Sects. 4 and 5.

The restrict operator computes from a BDD representing a function f a BDD rep-
resenting the function f [0/xi] ( f [1/xi], respectively). It replaces any edge that leads to
a node labeled with xi with an edge (from the same source node) into xi’s low (high,
respectively), as follows:

1. If, for the root node v, L(v) = xi, then f [0/xi] ( f [1/xi], respectively) is the BDD
rooted at l(v) (h(v), respectively).

2. Replace any edge (v,w)∈E, where L(w)= xi, by an edge (v, l(w)) ((v,h(w)), respec-
tively), and remove w.

3. Minimize the BDD.

In Fig. 3, the left BDD represents some function f , and the right BDD is f [1/x2].
The operator apply# applies an arbitrary Boolean operator # (e.g., and, or) on

BDDs. It is based on the fact that restriction distributes over function decomposition,

1 To achieve linearity, for rule 2, bucket sort is applied to cluster together the nodes with the
same variable and the same outgoing l edge. Then within each bucket, bucket sort is applied
again according to the outgoing h edge.
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Fig. 2. A: original, B: reduce leafs, C: combine middle x3’s, D: combine other x3’s.

i.e.,
( f #g)[a/x] = f [a/x]#g[a/x]

for a ∈ {0, 1} and x ∈ V . Then, using Shannon’s expansion, see Eq. (1), we have:

( f #g) = x( f #g)[0/x]+ x( f #g)[1/x] = x( f [0/x]#g[0/x])+ x( f [1/x]#g[1/x])

We calculate the BDD for f#g, for BDDs f and g, using the following recursive proce-
dure apply#(v f ,vg), called initially with the roots of the two BDDs.

1. If v f and vg are leafs, then return a leaf v with L(v) = L(v f )#L(vg). Otherwise,
2. if L(v f ) = L(vg) (both parameters are labeled with the same variable), then return a

node v with l(v) = apply#(l(v f ), l(vg)) and h(v) = apply#(h(v f ), h(vg)),
3. if L(v f )< L(vg) (there is no node labeled with L(v f ) in the current path of recursive

calls in the BDD g) then return a node v with l(v) = apply#(l(v f ),vg) and h(v) =
apply#(r(v f ),vg).
The symmetric case is handled similarly.

A naive application of this procedure can repeatedly recalculate subgraphs starting from
the same pair of BDD nodes. This is avoided by using a dynamic programming princi-
ple, where the results of the recursive calls are hashed according to the call parameters
(v f ,vg). This is demonstrated in Fig. 4, where some (arbitrary) Boolean operator # is
applied to the two BDDs that appear at the left. The tree in the middle of Fig. 4 is
obtained by using the recursive procedure without using dynamic programming. The
DAG on the right is obtained using dynamic programming. Further reduction may be
possible. Note that the leafs in the middle appear as pairs of nodes, whereas the cor-
responding leafs on the right appear as the Boolean # combinations between the leafs,
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e.g., R5,S4 in the middle part corresponds to L(R5)#L(S4) on the right. The size of the
resulting BDD and the time complexity of the apply operator is limited to the product
of the sizes of these BDDs.

Fig. 3. A BDD f on the left, and f [1/x2] on the right.

The negation operator on BDDs is trivial; it requires reversing the labeling on the
leafs, from 0 to 1 and from 1 to 0. Another useful operator is existential quantification
over a Boolean variable, i.e., calculating ∃x f for a BDD representing f . Since ∃x f =
f [0/x]∨ f [1/x], this operator can be implemented using restrict twice and then apply
with # = ∨ on the result.

Alternative Representations. ZDDs, for Zero-suppressed Decision Diagrams, were
suggested by Minato [23]. ZDDs typically demonstrate better reduction than BDDs for
Boolean functions in which the assignments that are satisfied are sparse. The reduction
of ZDDs is slightly different than for BDDs. Reduction rules 1 and 2 remain the same.
Reduction rule 3, which removes a node whose low and high edges point at the same
node and redirects any incoming edge to its successor, is replaced with the following
rule: a node v where its high successor is the constant 0, i.e., L(h(v)) = 0, is removed,
and any incoming edge is redirected to l(v).

Although ZDDs may produce a more compact representation than BDDs, the com-
paction that can be achieved is not exponential, but rather by a factor of the number of
BDD variables V .

Multi Terminal Binary Decision Diagrams (MTBDDs) [3] extend the BDD notation to
mappings from Boolean variables to a domain D that can be different than the Boolean
values. Then, the apply operator can be used with, e.g., arithmetic operators like addi-
tion and multiplication instead of the Boolean operators. This is useful, for example,
for the symbolic verification of probabilistic systems [1].
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Fig. 4. apply# on BDDs (left) without (middle) and with (right) dynamic programming.

3 Representing Sets and Relations Using BDDs

A Boolean function, and consequently a BDD, can represent a set of integer values.
Each integer value i is, in turn, represented as a bit vector (i.e., as a binary number)
xm . . .x1 where i= x1 ×1+ x2 ×2+ . . .xm ×2m. For example, the integer 6 can be rep-
resented as the bit vector x3x2x1 = 110. To represent a set of integers, the BDD returns
true for any bit vector that represents an element in the set. For example, to represent the
set {4, 6}, we first convert 4 into the bit vector x3x2x1 = 100 and 6 into x3x2x1 = 110.
The Boolean function over x1,x2,x3 is then x1x3, which returns true exactly for these
two bit vector combinations. To keep common conventions, we write a list of Boolean
variables with the least indexed variable at the left but bit vectors and binary numbers
with the least significant digit at the right.

This representation can be extended to represent relations, or, equivalently, a set
of tuples over integers. The Boolean variables are partitioned into n bit vectors x1 =
x1
k1
, . . . ,x1

1, xn = xnkn , . . . ,x
n
1, each one of them representing an integer value. These bit

vectors are then concatenated.

3.1 BDDs over Integers

BDDs can represent a set of integers, where each value is kept as a bit vector, i.e., using
its binary representation, using the BDD variables. This can be used, e.g., to represent
integer values that an ALU processes or values of discrete timers. An advantage of this
representation is that one can perform arithmetic operations and comparisons over sets
of values, e.g., add a constant value Δ to each value in a set, or restrict a set to values
that are bigger than a constant Δ, using BDD operations. We demonstrate how such
operations are translated to BDDs.

The Boolean formula addconst(t, t ′,Δ) is satisfied by a triple of integer values t, t ′
and Δ, represented as the bit vectors tm . . . t1, t ′m . . . t ′1 and Δm . . .Δ1, respectively, such that
t ′ = t+Δ. The formula uses additional bits r1, . . . ,rm, where ri is the carry-over from
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the ith bits. Existential quantification is applied to remove the BDD variables r1, . . . ,rm.
We ignore here the issue of addition overflow.

addconst(t, t ′,Δ) = ∧1≤i≤m (t ′i ↔ (ti ⊕Δi ⊕ ri))
where r1 = false and

for 1 ≤ i< m: ri+1 = ((ri ∧ (ti ∨Δi))∨ (¬ri ∧ ti ∧Δi))

This Boolean function can be translated into a BDD over the variables t1, . . . , tm,
t ′1, . . . , t

′
m and Δ1, . . . ,Δm. It represents a relation on triples (t, t ′,Δ). When Δ is restricted

to a fixed bit vector, the formula represents a relation on pairs (t, t ′).
Suppose that we want to update the set of values represented by a BDD B by adding

a constant 3 to each value. We can do that by using addconst with the bit vector Δ set
to the binary value 00 . . .011. The BDD obtained by

∃t1 . . .∃tm(B∧addconst(t, t ′,Δ)) (4)

is over the variables t ′1, . . . , t
′
m. It represents the values in B incremented by 3. Now we

need to rename the variables t ′1 . . .t
′
m back to t1, . . . , tm. Renaming variables is a standard

BDD operation, and we will denote this as rename(C, t ′, t), where C is a BDD and t ′
and t are bit vectors. We obtain

rename(∃t1 . . .∃tm(B∧addconst(t, t ′,Δ)), t ′, t) (5)

As another example, the formula gtconst(t,Δ) is satisfied by integers that are bigger
than Δ (limited to the value 2m −1, where the number of Boolean variables is m). Both
t and Δ are integers represented as bit vectors, as before. Again, this is encoded as
binary comparison, with Boolean variables r0, . . . ,rm used to propagate the result of the
comparison. As before, these variables are later removed using existential quantifiers

gtconst(t,Δ) = rm
where r0 = false and

for 1 ≤ i ≤ m: ri = ((ti ∧¬Δi)∨ ((ti ↔ Δi)∧ ri−1))

The functions addconst and gtconst can be adapted for signed integers as well.

3.2 BDDs over Enumerations of Values

A disadvantage of the representation suggested in Sect. 3.1 is that the number of BDD
variables required can be very large. Representing integers requires �log p� bits, where
p is the largest possible value. The problem can intensify when the represented data is
over strings with varying lengths.

To alleviate this problem, sets of values and relations can be represented as BDDs
over enumerations of values. When a value associated with a variable in the specifica-
tion appears for the first time in the computation (e.g., during runtime verification, see
Sect. 5), a new enumeration is associated with it. Enumeration values can be assigned
consecutively according to their binary value; however, a refined algorithm can reuse
enumerations that were used for values that can no longer affect subsequent results,



BDDs for Representing Data in Runtime Verification 115

see [13]. A hash table is used to point from the value to its enumeration so that in
subsequent appearances of this value the same enumeration will be used. The use of
enumerations instead of the actual values allows a representation with a smaller num-
ber of bits. In addition, enumerations of values that are not far apart often share large
bit patterns, which can also contribute to the BDD compactness.

BDDs can represent relations over mixed domains, where some of them are encoded
using enumerations, and others as binary numbers.

4 Using BDDs for Model Checking

BDDs have gained a huge popularity in the automated verification of finite state systems
referred to as model checking. Comprehensive analysis of systems requires reasoning
about their states and execution sequences, and the main bottleneck is state space explo-
sion. A BDD can represent a Boolean function that encodes a set of states. Then, it is
possible to apply operators on BDDs to process sets of states, rather than handling the
states one at a time.

Consider a finite-state system with state space St and initial states I ⊆ St. The prop-
erty we want to check is that its execution must never arrive at states from F ⊆ St (the
failure states). Let prec(s) ⊆ St be the set of states from which the system can move to
s ∈ St by performing one atomic transition, i.e., the predecessor states of s, and gen-
eralize it to P(S) =

⋃
s∈S prec(s). Checking that failure states cannot be reached from

initial states is equivalent to checking that I∩P∗(F) �= /0, where P∗ denotes applying P
repeatedly, 0 or more times. This can be described using the following pseudo-code:

X1 := /0; X2 := F ;
while X1 �= X2 do

X1 := X2; X2 := X1∪P(X1);
If X1∩ I �= /0 then Return(‘failed’);

Calculating P(X1) and X1 ∩ I �= /0 state by state is typically very expensive. This
can severely limit the number of states that can processed. In symbolic model check-
ing [9], all these operations are performed on BDDs, representing Boolean functions
that encode sets of states. States are assignments a some fixed set of system (or pro-
gram) variables, and a set of states corresponds to a relation over the domains of these
variables. Section 3.1 demonstrated how arithmetic operators can be applied to sets of
integer values. This would work for the simple case where states consist of the value
of a single integer variables but can be extended to operate on relations over mixed
domains.

Let I, F , X1 and X2 be represented as the BDDs f I, f F , f X1, and f X2, respectively.
A less trivial step is encoding P: instead of a function P, one can use a relation between
the current states, represented as bit vectors, using the Boolean variables x = xm . . .x1,
and the previous states, represented as bit vector using x′ = x′

m . . .x
′
1. The BDD R repre-

sents this relation over the BDD variables of x and x′. R∧ f X1 restricts this relation so
that the current state values satisfy f X1. Then ∃x1 . . .xn( f X1 ∧R) keeps only the state
values of the predecessors to states satisfying f X1. The BDD operation rename is used
to rename the variables of x′ back to x. Finally, we apply disjunction to the obtained
BDD and f X1 to obtain the union of the sets.
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f X1 := false; f X2 := f F ;
while f X1 �= f X2 do

f X1 := f X2; f X2 := f X1∨ rename(∃x1 . . .xn( f X1∧R),x′,x);
If ( f X1∧ f I) �= false then Return(‘failed’);

5 Using BDDs for Runtime Verification

Runtime verification provides techniques for monitoring system executions against a
formal specification. The monitored system is instrumented to report to the monitor on
the occurrence of relevant events. The monitor observes the input events and keeps an
internal summary of the prefix of the execution observed so far, which allows computing
whether an evidence for a violation of the specification is already available.

Propositional Linear temporal logic (LTL) asserts about the evolution of an execu-
tion in time, using the future-time modalities � (always), ♦ (sometimes), © (next-time)
and U (until) [22]. It is possible to add to these modalities their corresponding past-time
versions H (history), P (past), � (previous-time) and S (since), although adding them
does not increase the expressive power [12].

RV often focuses on properties expressed in past-time Linear Temporal Logic
(LTL), which includes the modalities H, P, � and S , where it is implicitly assumed that
the specification needs to hold for all the prefixes of the execution. This assumption is
equivalent to prefixing each property with the � operator. These properties correspond
to temporal safety properties [2], where a failure can always be detected on a finite
prefix as soon as it occurs [20].

First-order past-time LTL is obtained by adding predicates and quantification over
data. An example of a first-order temporal specification is the following.

∀ f (close( f ) → Popen( f )) (6)

It asserts that every file that is closed was opened before. Here, we need to keep in the
summary a set of all the opened files so that we can compare them to the closing of files.
In general, the summary in this case extends the one used for the propositional case by
keeping for each subformula the set of assignments, essentially a relation between the
free variables occurring in a formula and the values that make the formula true.

Traces. Assume a finite set of domains D1, . . . ,Dk. Assume further that the domains
are infinite, e.g., they can be the integers or strings2. Let P a set of names of unary
predicates with typical instances p, q, r. Each predicate name p is associated with some
domain Di = domain(p). A ground predicate is constructed from a predicate name and
a constant of the same type. Thus, if the predicate name is p one can form ground
predicates such as p(“gaga”) and q(42). The restriction to unary predicates is not due
to any principle limitation, but simplifies the presentation. An event is a finite set of
ground predicates. For example, if P = {p,q,r}, then the set {p(“gaga”),q(42)} is an
event. A trace σ = e1e2 . . .en is a finite sequence of events enumerated from 1. We
denote the ith event ei in σ by σ[i].

2 For dealing with finite domains see [15].
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5.1 Syntax

LetV be a finite set of variables, with typical instances x, y, z. A predicate is constructed
from a predicate name, and a variable or a constant (in which case it is a ground pred-
icate) of the same type. Thus, if the predicate name p and the variable x are associated
with the domain of strings, we have predicates like p(“gaga”) and p(x). The syntax is
as follows:

ϕ ::= true | p(a) | p(x) | ¬ϕ | (ϕ∧ϕ) |�ϕ | (ϕ S ϕ) | ∃x ϕ

The formula p(a), where a is a constant in domain(p), means that the ground predicate
p(a) occurs in the most recent event. The formula p(x), for a variable x ∈V , holds with
a binding of x to the value a if a ground predicate p(a) appears in the most recent event.
The formula ∃x ϕ has the obvious meaning that there exists some x such that ϕ (in
which x can appear free) holds. In addition, We can derive the universal quantification
as ∀x ϕ = ¬∃x¬ϕ and other forms: (ϕ ∨ ψ) = ¬(¬ϕ ∧ ¬ψ), (ϕ → ψ) = (¬ϕ ∨ ψ),
P ϕ = (true S ϕ), and H ϕ = ¬P ¬ϕ.

5.2 Semantics

Assignments of values to variables are at the core of this semantics. An assignment over
a set of variablesW ⊆V maps each variable x∈W to a value from its associated domain
domain(x). For example [x → 5,y → “abc”] maps x to 5 and y to “abc”. By γ [x �→ a]
we mean the overriding of the assignment γ with the binding [x �→ a]. We denote by ε
the empty assignment. Let free(ϕ) be the set of free (i.e., unquantified) variables of a
formula ϕ. Furthermore, let γ|free(ϕ) denote the restriction (projection) of an assignment
γ to the free variables appearing in ϕ.

Predicate Semantics. We define a classic semantics for first-order past-time LTL. The
assertion (γ,σ, i) |= ϕ means that the trace σ = e1e2 . . .en satisfies the formula ϕ for an
assignment γ over free(ϕ), where 1 ≤ i ≤ n (the relevant part of the execution is only
the prefix e1e2 . . .ei).

– (γ,σ, i) |= true.
– (γ,σ, i) |= p(a) iff p(a) ∈ σ[i].
– (γ[x �→ a],σ, i) |= p(x) iff p(a) ∈ σ[i].
– (γ,σ, i) |= ¬ϕ iff not (γ,σ, i) |= ϕ.
– (γ,σ, i) |= (ϕ∧ψ) iff (γ,σ, i) |= ϕ and (γ,σ, i) |= ψ.
– (γ,σ, i) |= �ϕ iff i> 1 and (γ,σ, i−1) |= ϕ.
– (γ,σ, i) |=(ϕ S ψ) iff there exists 1 ≤ j≤ i such that (γ,σ, j) |=ψ and for all j< k≤ i

it holds that (γ,σ,k) |= ϕ.
– (γ,σ, i) |= ∃x ϕ iff there exists a ∈ domain(x) such that (γ [x �→ a],σ, i) |= ϕ.

For a finite trace σ, we write σ |= ϕ to mean ∀i(1 ≤ i ≤ length(σ) → (ε,σ, i) |= ϕ).

Set Semantics. It helps the presentation of the BDD-based algorithm to first refine the
semantics of the logic as a function that calculates the set of assignments satisfying a
formula. Let I[ϕ,σ, i] be the interpretation function, defined below, that returns a set
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of assignments such that (γ,σ, i) |= ϕ iff γ|free(ϕ) ∈ I[ϕ,σ, i]. The empty set of assign-
ments /0 behaves as the Boolean constant false and the singleton set {ε} that contains
the empty assignment behaves as the Boolean constant true. We define the union

⋃

and intersection
⋂

operators on sets of assignments, even if they are defined over non
identical sets of variables. In this case, the assignments are extended to the union of
the variables. Thus intersection between two sets of assignments A1 and A2 is defined
like a database “join” operator; i.e., it consists of the assignments whose projection on
the common variables agrees with an assignment in A1 and with an assignment in A2.
Union is defined as the dual operator of intersection.

Furthermore, let A be a set of assignments over the set of variables W ; we denote
by hide(A,x) (for “hiding” the variable x) the set of assignments obtained from A after
removing from each assignment the mapping from x to a value. In particular, if A is a
set of assignments over only the variable x, then hide(A,x) is {ε} when A is nonempty,
and /0 otherwise. Afree(ϕ) is the set of all possible assignments of values to the variables
that appear free in ϕ. We add a 0 position for each sequence σ (an “initial state”), where
I returns the empty set for each formula. The assignment-set semantics is shown in the
following. For all occurrences of i, it is assumed that i ≥ 1.

– I[ϕ,σ,0] = /0.
– I[true,σ, i] = {ε}.
– I[p(a),σ, i] = if p(a) ∈ σ[i] then {ε} else /0.
– I[p(x),σ, i] = {[x �→ a] | p(a) ∈ σ[i]}.
– I[¬ϕ,σ, i] = Afree(ϕ) \ I[ϕ,σ, i].
– I[(ϕ∧ψ),σ, i] = I[ϕ,σ, i]

⋂
I[ψ,σ, i].

– I[�ϕ,σ, i] = I[ϕ,σ, i−1].
– I[(ϕ S ψ),σ, i] = I[ψ,σ, i]

⋃
(I[ϕ,σ, i]

⋂
I[(ϕSψ),σ, i−1]).

– I[∃x ϕ,σ, i] = hide(I[ϕ,σ, i],x).

5.3 Algorithm

A runtime verification algorithm for first-order LTL was presented in [4], based on
applying database operations to relations. We present here an RV algorithm that is based
on BDDs [15].

BDDs for Runtime Verification. We saw in Sect. 3 how a set of integers can be rep-
resented as a BDD: the BDD returning true for all bit-patterns corresponding to the
binary encoding of the integers in the set. It was also explained how a value from an
arbitrary value domain D, e.g. strings, can be represented as an integer while recording
the mapping from the value to the integer in a hash map. E.g. the string “abc” can be
represented as the number 6, which has the binary encoding 110. Consequently a set of
values from the domain D can be represented as a BDD that is satisfied by the binary
encodings of the corresponding integers.

First-order LTL formulas can contain multiple variables; a BDD can represent a set
of assignments to variables as tuples of integers, each tuple position corresponding to
a particular variable. This is the same as representing a relation over the domains of
the variables. As shown in Sect. 3, such a tuple can be represented by concatenating
the bit vectors of the individual tuple elements. For example, consider the assignment
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[x → 5,y → “abc”]. This can be thought of as the tuple (5,“abc”) if we associate the
first tuple position with x and the second tuple position with y. If we map 5 and “abc” to
integers, e.g. 1 and 2, the assignment can be thought of as being represented by the tuple
(1,2). This tuple can then finally be represented as the concatenation of the binary rep-
resentations 001 and 010 of these integers: 001010. This insight is the core idea in the
BDD representation, first presented in [15], and implemented in the tool DEJAVU. Oper-
ations on BDDs, such as negation (corresponding to set complementation), conjunction
(corresponding to set intersection), and disjunction (corresponding to set union) are
very efficient. With k bits used for representing the enumerations for a variable, the
BDD can represent 2k values for each variable [8]. Furthermore, we often do not pay
much in overhead for keeping surplus bits. Thus, we can start with an overestimated
number of bits k such that it is unlikely to see more than 2k different values for the
domain they represent. We can also incrementally extend the BDD with additional bits
when needed during runtime.

Example. Consider the formula ∃x Pp(x) (there exists an x such that p(x) occurred in
the past). Consider furthermore the two-event trace 〈{p(“ab”)},{p(“cd”)}〉. We will
focus on the sub-formulas p(x) and Pp(x) and the BDDs that need to be calculated for
them to keep a summary of the observed sequence of events during analysis of this trace.
Figure 5 shows the generated BDDs. After the first event p(“ab”), when computing the
BDD for p(x), x is bound to “ab”. We allocate an enumeration, an integer, in this case 0,
and map “ab” to 0 in a hashmap. For the subformula p(x) we create the BDD in Fig. 5a
that is satisfied exactly by its binary value 000. For the subformula Pp(x), we need a
BDD that is satisfied by all the binary encodings of enumerations for values seen so far.
Since we only observed the value “ab” as an argument to p, the same BDD in Fig. 5a is
also used for Pp(x). After the second event, the new value “cd” is mapped to the integer
1 (updating the hashmap), and the BDD in Fig. 5b that is satisfied by its binary value
001 is created for the subformula p(x). For the subformula Pp(x) we build the BDD
in Fig. 5c that represents the set {“ab”,“cd”}, satisfied by the binary values 000 and
001. This BDD is obtained using the ∨-operation on the BDD in Fig. 5b constructed at
the current step for p(“cd”) and the BDD in Fig. 5a, constructed in the previous step.
Splitting the variable x into its bits: x3x2x1, with x1 the least significant bit, the figure
shows the Boolean expressions over these bits corresponding to the BDDs.

Some Basic BDD Operations. We first introduce some basic functions used by the
algorithm. Given some ground predicate p(a) observed in the execution, matching with
p(x) in the monitored property, let lookup(x,a) be the enumeration of a in binary form.
If this is the first occurrence of a, then it will be assigned a new enumeration. Other-
wise, lookup returns the enumeration that a received before. We can use a counter3, for
each variable x, counting the number of different values appearing so far for x. When
a new value appears, this counter is incremented, and the value is converted to the
binary representation as discussed above. Enumerations that at any point in time have
not yet been used represent the values not yet seen. In particular, we always leave one

3 In [13] a form of garbage collection is applied, where enumerations for values that no longer
affect the checked property are reclaimed for later reuse. This involves a more complicated
enumeration mechanism.



120 K. Havelund and D. Peled

(a) BDD for p(x) and
Pp(x) after 1st event,
“ab” maps to 0 (000),
i.e.: x3x2x1

(b) BDD for p(x)
after 2nd event,
“cd” maps to 1 (001),
i.e.: x3x2x1

(c) BDD for Pp(x)
after 2’nd event,
000 and 001,
i.e.: x3x2

Fig. 5. BDDs for the sub-formulas p(x) and Pp(x) for the trace 〈{p(“ab”)}, {p(“cd”)}〉, mapping
“ab” to the integer 0 (binary 000), and mapping “cd” to the integer 1 (binary 001).

enumeration, 11 . . .11 (all 1’s), for this purpose. This enumeration is never allocated
to represent observed data but represents all data not yet seen. This allows us to use a
finite representation and quantify existentially and universally over all values in infinite
domains. Where 11 . . .11 represents the infinite set of values not yet seen. Even though
at any point we may have not seen the entire set of values that will show up during the
execution, we can safely (and efficiently) perform complementation: values that have
not appeared yet in the execution are being accounted for and their enumerations are
reserved already in the BDD before these values appear.

The function build(x,A) returns a BDD that represents the set of assignments where
x is mapped to (the enumeration of) v for v ∈ A. For example, assume that we use three
Boolean variables (bits) x1, x2 and x3 for representing enumerations over x (with x1

being the least significant bit), and assume that A = {a,b}, lookup(x,a) = 011 and
lookup(x,b) = 001. Then build(x,A) is a BDD representation of the Boolean function
x1 ∧¬x3.

Intersection and union of sets of assignments are translated simply to conjunc-
tion and disjunction of their BDD representation, respectively, and complementation
becomes BDD negation. We will denote the Boolean BDD operators as and, or and
not. To implement the existential (universal, respectively) operators, we use the BDD
existential (universal, respectively) operators over the Boolean variables that represent
(the enumerations of) the values of x. Thus, if Bϕ is the BDD representing the assign-
ments satisfying ϕ in the current state of the monitor, then exists(〈x1, . . . ,xk〉,Bϕ) is
the BDD that represents the assignments satisfying ∃x ϕ in the current state. Finally,
BDD(⊥) and BDD(�) are the BDDs that return always 0 or 1, respectively.
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The BDD Based Algorithm. The algorithm shown below extends the algorithm for
the propositional case shown in [18]. It is based on the observation that the semantics
of a formula in the current step can be cast in terms of the semantics of its subformulas
in the current and the previous step. In particular, �ϕ holds in the current step if ϕ held
in the previous step. The formula (ϕSψ) is equivalent to (ψ∨ (ϕ∧�(ϕSψ))), which
means that (ϕSψ) holds in the current step exactly if ψ holds now, or both ϕ holds
now and (ϕSψ) held in the previous step. Thus, one only needs to look one step, or
event, backwards in order to compute the new truth value of a formula. The algorithm
operates on a summary of the sequence of events observed so far that consists of two
vectors (arrays) of values indexed by subformulas: now calculated for the current event,
and pre calculated for the previous event. While in the propositional case [18] these
vectors contain Boolean values, here they contain BDDs.

1. Initially, for each subformula ϕ of the specification η, now(ϕ) := BDD(⊥).
2. Observe a new event s (a set of ground predicates) as input.
3. Let pre := now.
4. Make the following updates for each subformula. If ϕ is a subformula of ψ then

now(ϕ) is updated before now(ψ).
– now(true) := BDD(�).
– now(p(a)) := if p(a) ∈ s then BDD(�) else BDD(⊥).
– now(p(x)) := build(x,A) where A= {a | p(a) ∈ s}.
– now(¬ϕ) := not(now(ϕ)).
– now((ϕ∧ψ)) := and(now(ϕ),now(ψ)).
– now(� ϕ) := pre(ϕ).
– now((ϕ S ψ)) := or(now(ψ),and(now(ϕ),pre((ϕSψ)))).
– now(∃x ϕ) := exists(〈x1, . . . ,xk〉,now(ϕ)).

5. if now(η) = BDD(⊥) then report “error”.
6. Goto step 2.

Example. We shall illustrate the monitor generation using an example. Consider the
following property stating that if a file f is closed, it must have been opened in the past
with some access mode m (e.g. ‘read’ or ‘write’ mode):

∀ f (close( f ) −→ ∃m P open( f ,m)) (7)

Figure 6 (left) shows the monitor evaluation function generated by DEJAVU for this
property. It relies on the enumeration of the subformulas shown in the Abstract Syntax
Tree (AST) in Fig. 6 (right). Two arrays are declared, indexed by subformula indexes:
pre for the previous state and now for the current state, although here storing BDDs
instead of Boolean values as in [18]. For each observed event, the function evaluate()
computes the nowarray from highest to lowest index, and returns true (property is sat-
isfied in this position of the trace) iff now(0) is not BDD(⊥). At composite subformula
nodes, BDD operators are applied. For example for subformula 4, the new value is
now(5).or(pre(4)), which is the interpretation of the formula P open(f, m) correspond-
ing to the law: Pϕ = (ϕ∨� Pϕ). As can be seen, for each new event, the evaluation of
a formula results in the computation of a BDD for each subformula.
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0 : forall f . close(f) -> exists m . P open(f,m)

1 : close(f) -> exists m . P open(f,m)

2 : close(f) 3 : exists m . P open(f,m)

4 : P open(f,m)

5 : open(f,m)

Fig. 6. Monitor (left) and AST (right) for the property.

We shall evaluate the example formula on a trace. Assume that each variable f and
m is represented by three BDD bits: f3 f2 f1 and m3m2m1 respectively, with f1 and m1

being the least significant bits. Consider the input trace, consisting of three events:

〈{open(input,read)},{open(output,write)},{close(out)}〉 (8)

When the monitor evaluates subformula 5 on the first event open(input, read), it will
create a bit string composed of a bit string for each parameter f and m. As previously
explained, bit strings for each variable are allocated in increasing order: 000, 001, 010,
.... For this first event the bit pattern f3 f2 f1 is therefore mapped to 000 and the bit pattern
m3m2m1 is mapped to 000 as well. Hence, the assignment [ f �→ input, m �→ read ] is
represented by the concatenation of the two bit strings m3m2m1 f3 f2 f1 = 000000, where
the three rightmost bits represent the assignment of input to f and the three leftmost bits
represent the assignment of read to m. Figure 7a shows the corresponding BDD B1. In
this BDD all the bits have to be zero in order to be accepted by the function represented
by the BDD. We will not show how all the tree nodes evaluate, except observing that
node 4 (all the seen values in the past) assumes the same BDD value as node 5, and
conclude that since no close(. . . ) event has been observed, the top-level formula (node
0) holds at this position in the trace.

Upon the second open(output, write) event, new values (output, write) are observed
as argument to the open event. Hence a new bit string for each variable f and m
is allocated, in both cases 001 (the next unused bit string for each variable). The
new combined bit string for the assignments satisfying subformula 5 then becomes
m3m2m1 f3 f2 f1 = 001001, forming a BDD representing the assignment [ f �→ output,
m �→ write ], and appearing in Fig. 7b as B2. The computation of the BDD for node 4 is
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(a) B1 @ 5 and 4
after open

(b) B2 @ 5
after open

(c) B3 @ 4
after open

(d) B4 @ 2
after close

(e) B5 @ 3
after close

(f) B6 @ 1
after close

Fig. 7. Selected BDDs, named B1, . . . ,B6, computed after each event at various subformula
nodes, indicated by Bi @ node (see Fig. 6), during processing of the trace 〈{open(input,read)},
{open(output,write)}, {close(out)}〉.

computed by now(4) = now(5).or(pre(4)), which results in the BDD B3, representing the
set of the two assignments observed so far (B3 = or(B1,B2)).

Upon the third close(out) event, a new value out for f is observed, and allocated
the bit pattern f3 f2 f1 = 010, represented by the BDD B4 for subformula 2. At this
point node 4 still evaluates to the BDD B3 (unchanged from the previous step), and the
existential quantification over m in node 3 results in the BDD B5, where the bits m1,
m2 and m3 for m have been removed, and the BDD compacted. Node 1 is computed as
or(not(B4), B5), which results in the BDD B6. This BDD represents all the possible bit
patterns for f except for 010, which corresponds to the value out. This means, however,
that the top-level formula in node 0 is not true (it is violated by bit pattern 010), and
hence the formula is violated on the third event.
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6 Using BDDs for Runtime Verification with Time

The last extension of the logic we shall consider in this paper is to allow properties to
refer to the progress of time. The reported events are now assumed to appear with an
integer timing value. We leave open the unit of measurement for time values (millisec-
onds, seconds, minutes, etc.). An example of such a specification is

∀ f (closed( f ) → P≤20 open( f )) (9)

which asserts that every file f that is closed was opened not longer than 20 time units
before.

6.1 Syntax

The syntax for first-order past-time LTL with time is as follows, where we have added
two new formulas, each referring to a time constraint, a natural number δ ≥ 0:

ϕ ::= true | p(a) | p(x) | ¬ϕ | (ϕ∧ϕ) |�ϕ | (ϕSϕ) | (ϕS≤δϕ) | (ϕS>δϕ) | ∃x ϕ

The formula (ϕS≤δψ) has the same meaning as (ϕSψ), except that ψ must have
occurred within δ time units. The formula (ϕS>δψ) has the same meaning as (ϕSψ),
except that ψ must have occurred more than δ time units ago. Other operators can be
added, as shown in [14]. In addition to the previously defined derived operators we can
define derived timed operators as follows: P≤δϕ = (trueS≤δϕ), P>δϕ = (trueS>δϕ),
H≤δϕ = ¬P≤δ¬ϕ, and H>δϕ = ¬P>δ¬ϕ.

6.2 Semantics

A timed event is a pair (e, t) consisting of an event e and a time stamp t (a natural
number). A trace σ = (e1, t1)(e2, t2) . . .(en, tn) is a finite sequence of timed events, enu-
merated from 1. We denote the ith timed event (ei, ti) in σ by σ[i]. We let σe[i] denote
the event ei and we let σt [i] denote the time ti.

We define the predicate semantics for the two new timed operators below. The
semantic equations for the remaining formulas are as shown in Sect. 5.2, although
defined on timed traces, and where σ[i] should be read as σe[i].

– (γ,σ, i) |= (ϕ S≤δ ψ) iff there exists 1 ≤ j ≤ i such that σt [i] − σt [ j] ≤ δ and
(γ,σ, j) |= ψ, and for all j < k ≤ i it holds that (γ,σ,k) |= ϕ.

– (γ,σ, i) |= (ϕS>δψ) iff there exists 1 ≤ j< i such that σt [i]−σt [ j]> δ and (γ,σ, j) |=
ψ, and for all j < k ≤ i it holds that (γ,σ,k) |= ϕ.
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6.3 Algorithm

We describe now changes to the algorithm in Sect. 5.3 for handling the two new formu-
las with the timing constraints. Recall that for each subformula ϕ of a formula, the algo-
rithm in Sect. 5.3 updates two array positions: now(ϕ) and pre(ϕ). These BDDs repre-
sent assignments to free variables that occur in the formula, represented as a concate-
nated bit vector of the binary enumerations of the values assigned to the BDD variables:
xnk . . .x

n
1 . . .x

1
k . . .x

1
1. To keep track of the time, each such bit vector is augmented with a

bit vector tm . . . t1 being the binary code of the time that has passed since that assign-
ment was observed, obtaining tm, . . . , t1xnk , . . . ,x

n
1 . . .x

1
k , . . . ,x

1
1. xnk , . . . ,x

n
1, . . . ,x

1
k , . . . ,x

1
1

We add two new arrays, τpre(ϕ) and τnow(ϕ), which for each subformula records the
BDDs that include these time values. These BDDs are then used to compute now(ϕ) and
pre(ϕ) by removing the time values (by existential quantification over the time values).

Example. We add a timing constraint to the formula (7), stating that when a file is
closed it must have been opened within 3 time units in the past:

∀ f (close( f ) −→ ∃m P≤3 open( f ,m)) (10)

Let us apply this property to the following trace, which is the trace (8) augmented with
the time values 1, 2, and 3 respectively. We keep the time constraint and time values
small and consecutive to keep the BDD small for presentation purposes:

〈({open(input,read)},1),({open(output,write)},2),({close(out)},3)〉 (11)

The BDD for the subformula P≤3 open( f ,m) at the third event close(out), shown in
Fig. 8, reflects that two (010 in binary) time units have passed since open(input,read)
occurred (follow leftmost path), and one time unit (001 in binary) has passed since
open(output,write) has occurred (follow rightmost path). The BDD is effectively an
augmentation of the BDD in Fig. 7c, with the additional three BDD variables t1, t2, and
t3 for the timer values, with t1 being the least significant bit.

The BDD-Based Algorithm with Time. When a new event occurs, for a subformula
with a timing constraint δ, we need to update the timers in τnow that count the time that
has passed since a tuple (assignment) of values satisfying the formula was observed.
The difference between the clock value of the current event and the clock value of
the previous one is Δ. In order to keep the representation of time small, 2δ+ 1 is the
biggest value of t that is stored. To see that this is sufficient, and necessary, consider
the following. First, during computation, when we observe a Δ that is bigger than δ, we
cut it down to δ+1 before we add to t. This is valid since we just need to know that it
passed δ. Second, after we add Δ to t, we compare the new t against δ, and if now t goes
beyond δ we can store just δ+ 1. Finally, since adding Δ = δ+ 1 to a t ≤ δ (since we
only add Δ if t ≤ δ) gives max 2δ+1, then this is the biggest number we need to store
in a BDD. Consequently, the number of bits needed to store time for a formula with a
time constraint δ is log2(2δ+1).
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Fig. 8. The BDD for the formula P≤3 open( f ,m) at the third event.

The algorithm for first-order past-time LTL with time is obtained by adding the
statements below to step 4 of the algorithm shown in Sect. 5.3, and by adding the update
τpre := τnow in step 2.

Algorithm for (ϕ S≤δ ψ): We will use BDD0(x) to denote the BDD where all the xi bits
are a constant 0, representing the Boolean expression ¬x1 ∧ . . .∧¬xk. The statements
updating τnow and now are as follows.

τnow(ϕS≤δψ) := (now(ψ)
∧

BDD0(t))
∨
(¬now(ψ)

∧
now(ϕ)

∧

rename(∃t1 . . . tm (addconst(t, t ′,Δ)
∧¬gtconst(t ′,δ)∧τpre(ϕS≤δψ)), t ′, t)) ;

now(ϕS≤δψ) := ∃t1 . . .tm τnow(ϕS≤δψ)

That is, either ψ holds now and we reset the timer t to 0, or ψ does not hold now but
ϕ does, and the previous t value is determined by τpre(ϕS≤δψ)), to which we add Δ,
giving t ′, which must not be greater than δ. Then t is removed by quantifying over it,
and t ′ renamed to t (t ′ becomes the new t). The BDD for now(ϕS≤δψ) is obtained from
τnow(ϕS≤δψ) by projecting out the timer value.

Algorithm for (ϕS>δψ): We will use EQ(t,c) to denote that the bit sting t is equal
to c. This is technically defined as EQ(t,c) = ∃z1 . . .zm (BDD0(z)

∧
addconst(z, t,c)),

stating that z= 0 added to c yields t. The updates to τnow and now are as follows.

τnow(ϕS>δψ) :=
(now(ψ)

∧
(¬pre(ϕS>δψ)

∨¬now(ϕ))∧BDD0(t))
∨

(now(ϕ)
∧
rename(previous, t ′, t))

where previous= ∃t1 . . . tm (τpre(ϕS>δψ)
∧
((¬gtconst(t,δ)∧addconst(t, t ′, Δ))

∨

(gtconst(t, δ)
∧
EQ(t ′,δ+1))));

now(ϕS>δψ) := ∃t1 . . .tm (τnow(ϕS>δψ)
∧
gtconst(t,δ))

That is, when ψ currently holds and either ϕS>δψ did not hold in the previous step or
ϕ does not hold now, we reset the timer t to 0. Alternatively, when ϕ holds we compute
t ′ using the where-clause as follows and then rename it to t: t takes its value from
τpre(ϕS>δψ), which is calculated based on the previous step. This means that (ϕS>δψ)
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held in the previous step. If t was then not greater than δ, we add Δ to t to obtain t ′.
Otherwise (t was already greater than δ), we set t ′ to δ+1 to reduce the size of the time
values we have to store.
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Abstract. We study the problem of policy repair for learning-based con-
trol policies in safety-critical settings. We consider an architecture where
a high-performance learning-based control policy (e.g. one trained as a
neural network) is paired with a model-based safety controller. The safety
controller is endowed with the abilities to predict whether the trained
policy will lead the system to an unsafe state, and take over control when
necessary. While this architecture can provide added safety assurances,
intermittent and frequent switching between the trained policy and the
safety controller can result in undesirable behaviors and reduced per-
formance. We propose to reduce or even eliminate control switching by
‘repairing’ the trained policy based on runtime data produced by the
safety controller in a way that deviates minimally from the original pol-
icy. The key idea behind our approach is the formulation of a trajectory
optimization problem that allows the joint reasoning of policy update
and safety constraints. Experimental results demonstrate that our app-
roach is effective even when the system model in the safety controller is
unknown and only approximated.

1 Introduction

Data-driven methods such as imitation learning have been successful in learning
control policies for complex control tasks [4]. A major shortcoming that impedes
their widespread usage in the field is that the learnt policies typically do not
come with any safety guarantee. It has been observed that when encountering
states not seen in training, the learnt policy can produce unsafe behaviors [3,27].

A common approach to mitigate the safety problem at runtime is to pair
the learning-based controller1 (LC) with a high-assurance safety controller (SC)

1 We use the terms ‘controller’ and ‘control policy’ (or simply ‘policy’) interchangeably
in this paper. The latter is more common in the machine learning literature.
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that can take over control in safety-critical situations, such as the Simplex archi-
tecture first proposed in [32]. The safety controller is tasked with predicting
an impending safety violation and taking over control when it deems necessary.
Such controllers are often designed based on conservative models, has inferior
performance compared to its learning-based counterpart, and may require sig-
nificant computation resources if implemented online (e.g. model predictive con-
trol). Moreover, frequent and intermittent switching between the controllers can
result in undesirable behaviors and further performance loss.

In this paper, we propose to leverage the runtime interventions carried out
by the safety controller to repair the learnt policy. We do not assume access to
the original training data of the LC but we assume that the policy is parameter-
ized, differentiable and given as a white-box. This means that while fine-tuning
the LC from scratch is not possible, it is still possible to improve the controller
based on new data that is gathered during deployment. In particular, we intro-
duce the concept of policy repair which uses the outputs of the safety controller
to synthesize new training data to fine-tune the LC for improved safety. Further-
more, we formalize a notion of minimal deviation with respect to the original
policy in order to mitigate the issue of performance degradation during policy
repair. The main idea in minimally deviating policy repair is the formulation of
a trajectory optimization problem that allows us to simultaneously reason about
policy optimization and safety constraints. A key novelty of this approach is the
synthesis of new safe ‘demonstrations’ that are the most likely to be produced by
the original unsafe learnt policy. In short, we make the following contributions.

– We formalize the problems of policy repair and minimally deviating policy
repair for improving the safety of learnt control policies.

– We develop a novel algorithm to solve the policy repair problem by iteratively
synthesizing new training data from interventions by the safety controller to
fine-tune the learnt policy.

– We demonstrate the effectiveness of our approach on case studies including a
simulated driving scenario where the true dynamics of the system is unknown
and is only approximated.

2 Related Work

Model-based control is a well-studied technique for controlling dynamical sys-
tems based on the modelling of the system dynamics. Algorithms such as iter-
ative Linear Quadratic Regulator (iLQR) [33] have achieved good performance
even in complex robotic control tasks. One important advantage of model-based
control is its ability to cope with constraints on the dynamics, controls and
states. Constrained Model Predictive Control [15] has been studied extensively
and proven to be successful in solving collision avoidance problems [5,6] as well
as meeting complex high-level specifications [10]. In this paper, we utilize model-
based control techniques to verify the existence of safe control as well as synthe-
size new training data to guide the policy learning.
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Imitation learning provides a way of transferring skills for a complex task
from a (human) expert to a learning agent [20]. It has been shown that data-
driven methods such as behavior cloning are effective in handling robotics and
autonomous driving tasks [25,28] when an expert policy is accessible at training
time. Model-based control techniques have already been introduced to imitation
learning to guide the policy learning process [22]. Our work shares similarity with
[22] in using a model predictive controller to generate training examples. What
distinguishes our work from theirs is that in [22] the model predictive controller
operates based on a given cost function whereas in our work we do not assume we
know any cost function. An outstanding challenge in the imitation learning area
is the lack of safety assurance during both training and final deployment. Efforts
on addressing this challenge include [17,36], where multiple machine learning
models cooperate to achieve performance and safety goals. However, the learned
models can not provide guarantees on runtime safety by themselves. In fact,even
when the dynamical model is given, existing imitation learning algorithms lack
the means to incorporate explicit safety requirements. In this paper, we use
imitation learning to formulate the problem of minimally deviating policy repair
such that a repaired policy can match the performance of the original learnt
policy while being safe.

Safe Learning research has experienced rapid growth in recent years. Many
approaches consider safety requirement as constraints in the learning process.
For example, [1,9] encodes safety as auxiliary costs under the framework of Con-
strained Markov Decision Processes (CMDPs). However, the constraints can only
be enforced approximately. [9] developed a Lyapunov-based approach to learn
safe control policies in CMDPs but is not applicable to parameterized policy and
continuous control actions. Formal methods have also been applied to certain
learning algorithms for establishing formal safety guarantees. In [37], safety is
explicitly defined in probabilistic computational tree logic and a probabilistic
model checker is used to check whether any intermediately learned policy meets
the specification. If the specification is violated, then a counterexample in the
form of a set of traces is used to guide the learning process. Providing assur-
ance for runtime safety of learning-based controller has also garnered attention
recently. [12] combines offline verification of system models with runtime vali-
dation of system executions. In [2], a so-called shield is synthesized to filter out
unsafe outputs from a reinforcement learning (RL) agent. It also promotes safe
actions by modifying the rewards. A similar idea can be seen in [23] where a
so-called neural simplex architecture is proposed and an online training scheme
is used to improve the safety of RL agents by rewarding safe actions. However,
in the context of RL, choosing the right reward is in general a difficult task,
since incorrect choices often lead to sub-optimal or even incorrect solutions. In
[8], a model predictive approach is proposed to solve for minimum perturbation
to bend the outputs of an RL policy towards asymptotic safety enforced by a
predefined control barrier certificate. A similar idea also appears in [34] where
robust model predictive control is used to minimally perturb the trajectories
of a learning-based controller towards an iteratively expanding safe target set.
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Our method differs from [8,34] as we improve the runtime safety of the learning-
based control while preserving its performance from an imitation learning per-
spective.

3 Preliminaries

In this paper we consider a discrete-time control system (X,U, f, d0) where X is
the set of states of the system and U is the set of control actions. The function
f : X ×U → X is the dynamical model describing how the state evolves when an
control action is applied, and d0 : X → R is the distribution of the initial states.
By applying control actions sequentially, a trajectory, or a trace, τ = {(xt, ut)|t =
0, 1, . . .} can be obtained where xt, ut are the state and control action at time t.
In typical optimal control problems, a cost function c : X × U → R is explicitly
defined to specify the cost of performing control action u ∈ U in state x ∈ X.
The cumulative cost along a trajectory τ can be calculated as

∑

(xt,ut)∈τ

c(xt, ut).

An optimal control strategy is thus one that minimizes the cumulative cost.
Model Predictive Control (MPC) leverages a predictive model of the

system to find a sequence of optimal control actions in a receding horizon fashion.
It solves the optimal sequence of control actions for T steps as in (1) but only
applies the first control action and propagates one step forward to the next state.
Then it solves for a new sequence of optimal control actions in the next state.

arg min
x0:T ,u0:T

T∑

t=0

c(xt, ut) (1)

s.t. xt+1 = f(xt, ut) t = 0, 1, 2, . . . , T (2)

When the dynamics f in constraint (2) is nonlinear, the iterative Linear
Quadratic Regulator (iLQR) algorithm [14] applies a local linearization of f
along an existing trajectory which is called the nominal trajectory. It computes
a feedback control law via LQR [13], which induces a locally optimal perturbation
upon the nominal trajectory to reduce the cumulative cost. Formally, given a
nominal trajectory {(x0, u0), ..., (xT , uT )}, perturbations can be added to each
state and control action in this trajectory, i.e. xt → xt + δxt, ut → ut + δut. The
relationship between δxt, δut and δxt+1 is locally determined by the dynamics
as well as the state and control actions in the nominal trajectory as in (4)
where ∇xf(xt, ut),∇uf(xt, ut) are the partial derivatives of f(xt, ut) w.r.t x, u.
Meanwhile, based on the nominal trajectory,

∑T
t=0 c(xt, ut) in the objective (1)

is substituted by
∑T

t=0 c(δxt+xt, δut+ut)−c(xt, ut) while the decision variables
become δx0:T , δu0:T . When adopting an online trajectory optimization strategy
[33], the optimal control law has a closed form solution δut = kt + Ktδxt in
which kt,Kt are determined by the dynamics and the cumulative cost along the
nominal trajectory.

xt+1 = f(xt, ut) xt+1 + δxt+1 = f(xt + δxt, ut + δut) (3)
δxT

t+1 ≈ δxT
t ∇xf(xt, ut) + δuT

t ∇uf(xt, ut) (4)



Runtime-Safety-Guided Policy Repair 135

A control policy in general is a function π : X → U that specifies the
behavior of a controller in each state. Given a deterministic policy π, its trajec-
tory can be obtained by sequentially applying control actions according to the
outputs of π. Specifically, for an LC such as a deep neural network, the policy is
usually parameterized and can be written as πθ where the parameter θ belongs
to some parameter set Θ (e.g. weights of a neural network). We assume that
πθ(x) is differentiable both in x and θ.

Imitation learning assumes that an expert policy πE (e.g. a human expert)
can demonstrate on how to finish a desired task with high performance. The
learning objective for an agent is to find a policy π that matches the performance
of πE in the same task. Traditional approaches such as behavioral cloning con-
sider the 0–1 error e(xt, πE ;π) = I{π(x) �= πE(x)} where I is an indicator func-
tion. In this setting, an optimally imitating policy minimizes Ex∼dπE

[e(x, πE ;π)]
where dπE

is state visitation distribution of πE . From another perspective, the
difference between π and πE can be estimated based on their trajectory distribu-
tions. When the trajectory distribution Prob(τ |πE) is known, one can empirically
estimate and minimize the KL divergence DKL[πE ||π] by regarding Prob(τ |π) as
the probability of π generating trajectory τ under an additional Gaussian noise,
i.e. ut ∼ N (π(xt),Σ),∀(xt, ut) ∈ τ . On the other hand, one can estimate and
minimize the KL divergence DKL[π||πE ] by treating Prob(τ |π) as being induced
from a Dirac delta distribution ut ∼ δ(π(xt)) ∀(xt, ut) ∈ τ . Both KL-divergences
are related to negative log-likelihoods.

4 Runtime Safety Assurance

In this section we discuss the runtime safety issues of LCs and introduce our basic
strategy for safe control. We consider a runtime safety requirement Φ for finite
horizon T , such as ‘if the current state is safe at step t, do not reach any unsafe
state within the next T steps’. Temporal logic can be used to formally capture
this type of safety requirements [16,24]. Given an LC with a deterministic policy
πθ, if πθ satisfies Φ globally, that is, at each time step along all its trajectories,
we denote it as πθ |= Φ; otherwise πθ �|= Φ.

We assume that for any satisfiable Φ, there exists an SC, which we represent
as πsafe, that checks at runtime whether Φ is satisfiable if the output û = πθ(x)
of the LC is directly applied. That is, whether there exists a sequence of control
actions in the next T − 1 steps such that Φ is not violated. If true, then the
final output πsafe(x, πθ(x)) = û. Otherwise it overrides the LC’s output with
πsafe(x, πθ(x)) �= û. We formally define the SC below.

Definition 1. Given a safety requirement Φ, the corresponding SC is a mapping
πsafe from X × U to U . In each state x ∈ X, πsafe(x, πθ(x)) = πθ(x) iff Φ is
satisfiable after applying the control action πθ(x); otherwise, πsafe intervenes by
providing a substitute πsafe(x, πθ(x)) �= πθ(x) to satisfy Φ.

We use 〈πθ, π
safe〉 to represent the LC and SC pair. Obviously the trajectories

generated by this pair satisfy Φ everywhere if πsafe exists. There are multiple
options of implementing the SC such as having a backup human safety driver
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or using automated reasoning. Depending on the safety requirement and task
environment, the difficulty of implementing safe control varies. In this paper, we
assume that a dynamical model of f is given, possibly constructed conservatively,
and adopt a scheme known as Model Predictive Safe Control as detailed below.

4.1 Model Predictive Safe Control

This scheme exploits the dynamical model to predict safety in the future.
Depending on the safety requirement Φ considered, a function ϕ : X → R

can be defined to quantify how safe any state x is, i.e. if ϕ(x) ≤ 0, then x is
safe; otherwise x is unsafe. Without loss of generality, we let the current step
be t = 0. Then the safety requirement can be translated into the constraints
∀t ∈ {1, 2, . . . , T}, ϕ(xt) ≤ 0. After the LC provides a candidate control output
u0 = πθ(x0), the SC first verifies the satisfiability of (7) by using an MPC-like
formulation as (5)–(8).

x0:T ,u0:T
min 0 (5)

s.t. xt+1 = f(xt, ut) t = 0, 1, 2, . . . , T − 1 (6)
ϕ(xt) ≤ 0 t = 1, 2, . . . , T (7)
u0 = πθ(x0) (8)

The formula differs from MPC in that it solves a feasibility problem to check the
existence of a sequence of control actions satisfying the constraints. It is easier
to solve than optimal control since optimality is not required here. If this prob-
lem is feasible, that is, (6)–(8) can be satisfied at the same time. Then πθ(x0)
is deemed safe and the final output is πsafe(x0, πθ(x0)) = πθ(x0). Otherwise,
the SC solves another feasibility problem which is the same as (5)–(7) and has
(8) removed because the unsafe candidate control action πθ(x0) is to be sub-
stituted. Note that it is possible that (7) is unsatisfiable, in which case there
is no feasible solution. This means a safety violation is inevitable based on the
given model, but the SC can predict such outcome T steps in advance and more
drastic actions (e.g. physically changing the model) may be applied to prevent
an accident from occurring. If a feasible solution to (5)–(7) can be obtained, we
let πsafe(x0, πθ(x0)) = u0 and use this solved u0 to evolve the system to the
next state.

There have been works on model predictive control of cyber-physical sys-
tems subject to formal specifications in signal temporal logic (STL) and its
probabilistic variant [26,29]. Techniques have been proposed to synthesize safety
constraints from formal specifications to accommodate optimal control of con-
tinuous systems and to reason about safety under uncertainty. In the semantics
of STL, ϕ can be viewed as the negation of the robustness satisfaction value.

In this paper, at the beginning of each time step, before solving the feasibility
problem (5)–(8), we forward simulate the policy πθ for T steps. If the simulated
trajectory satisfies the safety constraint (7) already, then there is no need to
query the SC at all. Otherwise, we use the constrained iLQR approach from [7]
to solve the feasibility problem. This approach treats the simulated trajectory
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as nominal trajectory and iteratively update the nominal trajectory. Also, this
approach turns the safety constraint (7) into a penalty

∑T
t=0 exp(Mtψ(xt)) with

sufficiently large {Mt}T
t=0. And the penalty is added to the objective. By using

this approach, even if the feasibility problem cannot be solved, at least a low-
penalty solution can be provided.

Monitoring Overhead. Model Predictive Safe Control (MPSC) can provide
assurance for a variety of runtime safety requirements. However, it can be more
expensive to implement in practice compared to an LC due to the need to repeat-
edly solve a (nonlinear) optimization online as opposed to performing inference
on a neural network [35]. Frequently using an SC to both verify safety and solve
safe control at runtime can be computationally taxing for the entire control sys-
tem. For instance, suppose the LC’s inference time is tLC , the time for solving
(5)–(8) is t

(1)
SC and the time for solving (5)–(7) is t

(2)
SC . Typically, tLC is much

smaller than t
(1)
SC or t

(2)
SC . At each step, forward simulation of the LC for T steps

takes at least T ∗ tLC time. If (7) is violated in the forward simulation, the SC
would need to be invoked and the total overhead will grow to T ∗ tLC + t

(1)
SC .

If the problem based on the LC’s candidate control output is infeasible and
the SC is required to intervene with a substitute control value, then the SC
will have to solve another MPC-like problem and the overhead will grow to
T ∗ tLC + t

(1)
SC + t

(2)
SC . Thus, it would be more economical to have an inherently

safe LC such that the SC is less triggered. Motivated by this, we propose to
repair the LC so that it becomes safer and requires less intervention from the
SC. In the next section, we formally introduce the policy repair problem and
describe our solution in detail.

5 Policy Repair

We first give a formal definition of the policy repair problem below.

Fig. 1. Architecture of pairing LC’s policy πθ with an SC πsafe.
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Definition 2. Given a deterministic policy πθ paired with an SC πsafe as
defined in Definition 1, policy repair is the problem of finding a new policy πθ∗

such that θ∗ = arg min
θ∈Θ

Ex∈X [I{πsafe(x, πθ(x)) = πθ(x)}] where I{·} ∈ {0, 1} is

an indicator function.

Definition 2 implies that a repaired policy generates safe controls most of
the time and thus the SC rarely intervenes. The first idea is to treat controls
generated by the SC as repairs at specific states, and then use this data to repair
the whole policy. A solution based on this idea is described as follows.

5.1 Naive Policy Repair

During the execution of the LC and SC pair 〈πθ, π
safe〉, due to the presence

of the SC, all the generated traces are safe. The basic idea of the naive policy
repair approach is to let the unsafe LC learn from the interventions produced
by the SC. Specifically, we iteratively execute the LC and SC pair to generate
new safe traces. After each iteration, the state-action pairs in all the previously
generated traces are used as training data to update the policy of the LC. We
present the steps in Algorithm 1 and illustrate them with a high-level diagram
in Fig. 1, where Γi is the set of traces of the 〈πθi

, πsafe〉 pair at the ith iteration.
We use supervised learning to fine-tune the policy parameter to minimize the
expected error E(x,u)∼∪Γi

[e(x, u;πθ)] as in line 9 of Algorithm1. Note that at this
stage, with a slight abuse of notation, we view Γi as a data set containing (x, u)
pairs. In line 5–7, if the SC no longer intervenes, then we have a high confidence
that the current policy is safe. According to the law of large numbers, this
confidence increases with increasing number of sampled traces. The algorithm
also terminates if a maximum iteration number is reached, in which case the SC
may still intervene and the policy repair is only partially successful.

Algorithm 1. Naive Policy Repair
1: Input an initial policy πθ0 ;
2: Given an SC πsafe; iteration parameter N > 0; policy parameter set Θ.
3: for iteration i = 0 to N do
4: Run the 〈πθi , π

safe〉 pair to generate a set Γi of trajectories.
5: if ∀(x, u) ∈ Γi, u = πθi(x) then
6: πsafe never intervenes ⇒ πθi |= Φ with high probability.
7: return πθi , Γi

8: end if
9: θi+1 = arg min

θ∈Θ
E(x,u)∼∪i

j=0Γj
[e(x, u; πθ)]

10: end for
11: return πθN , ∅
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5.2 Analysis of Performance Degradation Due to SC Intervention

In this section, we analyze the performance degradation due to the application of
safe controls from the SC and use it to motivate the study of better policy repair
strategies. We assume that the initial learnt policy πθ0 is given as a white-box and
its parameter θ0 has already been optimized for the control task. Inspired from
lemma 1 in [30], we analyze the performance degradation of naive policy repair
in a fixed-horizon task with maximum step length H. Recall the definition of cost
function c in Sect. 3. Without loss of generality, we simplify it into a function of
state, that is, from c(x, u) to c(x) and normalize it to the range [0, 1]. We use
η(π) = Eτ∼π[

∑H
t=0 c(xt)] to denote the expected cumulative cost of following

a policy π from initialization to step H. Define the value function Vπ(xt) =
Ext,ut,xt+1...∼π[

∑H
l=t c(xl)] as the expected cost accumulated by following π after

reaching state xt at step t till step H. Define the state-action value function
Qπ(xt, ut) = Ext,xt+1,ut+1...∼π,ut

[
∑H

l=t c(xl)] as the expected cost accumulated
by executing ut in state xt, then following π henceforth til step H. We use an
advantage function Aπ(xt, ut) = Qπ(xt, ut) − Vπ(xt) to evaluate the additional
cost incurred by applying control action ut in xt instead of adhering to π. Based
on the lemma 1 in [30] for infinite-horizon scenario, we have the Eq. (9) for any
two policies π, π̂ in finite-horizon scenario.

Eτ∼π̂[
H∑

t=0

Aπ(xt, ut)] = Eτ∼π̂[
H∑

t=0

c(xt) + Vπ(xt+1) − Vπ(xt)]

= Eτ∼π̂[−Vπ(x0) +
H∑

t=0

c(xt)] = Ex0∼d0 [−Vπ(x0)] + Eτ∼π̂[
H∑

t=0

c(xt)] = η(π̂) − η(π) (9)

Assuming that η(πθ0) is the minimum for the desired task, i.e. πθ0 is the
optimal policy with respect to a cost function c, we bound the additional cost
η(πsafe) − η(π) incurred by possible interventions of πsafe.

Theorem 1. Given a 〈πθ0 , πsafe〉 pair, let ε1, ε2 and ε3 be the probability of
〈πθ0 , πsafe〉 generating a H-length trajectory where πsafe(x, πθ0(x)) �= πθ0(x)
happens in at least one, two and three states respectively. Then, η(πsafe) −
η(πθ0) ≤ ε1H + ε2(H − 1) + ε3(H−1)H

2 .

The theorem2 shows the additional cost can grow quadratically in H when
the probability of multiple interventions from the SC becomes higher. The impli-
cation of this is that even if the repaired policy πθ∗ replicates πsafe with zero
error, the repaired policy can still suffer from significant performance degrada-
tion. Since the training error is non-zero in practice, πθ∗(x) �= πθ0(x) may happen
in more states where πsafe(x, πθ0(x)) �= πθ0(x). One major challenge in mitigat-
ing this performance loss is that the training information of πθ0 , especially the
cost function c, could be unknown. In the next section, we describe our approach
of repairing a policy so that it also minimally deviates from the original one.
2 Proof can be found in the extended version https://arxiv.org/abs/2008.07667.

https://arxiv.org/abs/2008.07667
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5.3 Minimally Deviating Policy Repair via Trajectory Synthesis

We firstly formally define the minimally deviating policy repair problem.

Definition 3. Given an initial policy πθ0 and an SC πsafe as defined in Def-
inition 1, minimally deviating policy repair is the problem of finding a
policy πθ∗ where θ∗ = arg min

θ∈Θ
Ex∼dπθ

[e(x, πθ0 ;πθ)] subject to πsafe(x, πθ(x)) =

πθ(x),∀x ∈ X.

Informally, the objective of this repair problem is to reduce the chance of
πθ∗(x) �= πθ0(x) while maintaining the safety of πθ∗ . Observe that the error
term e(·) in Definition 3 resembles the one in an imitation learning setting. Then
minimizing the expected error can be viewed as imitating πθ0 . On the other
hand, the equality constraint in Definition 3 can be understood as requiring πθ∗

to satisfy (7) at all steps in all its trajectories. Hence, the minimally deviating
policy repair is essentially a problem of optimizing an imitation learning objective
with safety constraints. The major challenge is that, the decision variable for the
imitation learning objective is the policy parameter θ while for safety constraints
(7) it is the state x.

Fig. 2. (a) The grey area is the lane. The green dashed curve is the trajectory of the
vehicle. (b) The red dashed curve is the trajectory of the initial policy. (c) The blue
dashed curve is the trajectory of the policy and safety controller pair. (d) The magenta
dashed curve is the trajectory produced by the repair policy that deviates minimally
from the original one. (Color figure online)

We use a simple example below to illustrate our problem setting and desired
solution. Consider a policy that was trained to steer a vehicle around a specific
corner as shown in Fig. 2(a). When deployed in a slightly different environment as
shown in Fig. 2(b), the policy fails to keep the vehicle inside the lane. Figure 2(c)
illustrates that with the basic simplex setup as shown in Fig. 1, although the
safety controller manages to keep the vehicle inside the lane, frequent switch-
ing between the two controllers can lead to undesirable behaviors such as an
oscillating trajectory. Fig. 2(d) shows a more desirable trajectory produced by a
new policy trained using minimally deviating policy repair. Our approach to the
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problem stated in Definition 3 is to ‘imitate’ the original policy by first synthe-
sizing and then learning from new trajectories that are similar to ones produced
by the original policy but instead do not violate the safety requirements. The
synthesis algorithm works by iteratively improving the trajectories produced by
a naively repaired policy such as the one in Fig. 2(c) until trajectories such as
the one in Fig. 2(d) are obtained. The improvement is achieved by solving a
trajectory optimization problem of which the objective is transformed from the
imitation learning objective in Definition 3. We mainly focus on showing such
transformation in the rest of this section.

As mentioned in Sect. 3, to solve an imitation learning problem, we can
minimize the KL-divergence which is related to maximal log-likelihood, i.e.
arg min

θ∈Θ
DKL[πθ||πθ0 ] = arg max

θ∈Θ
Eτ∼πθ

[log Prob(τ |πθ0)]. Note that Prob(τ |πθ)

is induced from a Dirac Delta distribution u ∼ δ(π(x)) and Prob(τ |πθ0) is car-
ried out by adding to πθ0 an isotropic Gaussian noise N (0,Σ) with diagonal
Σ = σ2I. When a finite set Γ of trajectories of πθ is obtained, the log-likelihood
is equivalent to (10).

Eτ∼πθ
[log Prob(τ |πθ0)] ≈ 1

|Γ |
∑

τ∈Γ

log Prob(τ |πθ0)

∝
∑

τ∈Γ

log{
∏

(xt,ut)∈τ

exp[− (πθ(xt) − πθ0(xt))T Σ−1(π(xt, θ) − πθ0(xt))
2

]}

∝ −1
2

∑

τ∈Γ

∑

(xt,ut)∈τ

||πθ(xt) − πθ0(xt)||22 (10)

Suppose that at iteration i ≥ 1, a safe policy πθi
is obtained and executed

to generate a set Γi of safe traces. Define lxt,πθi
= 1

2 ||πθ0(xt) − πθi
(xt)||22 and

JΓi
(πθi

) =
∑

τ∈Γi

∑
(xt,ut)∈τ lxt,πθi

. To decrease JΓi
, a new policy parameter

θi+1 = θi + δθi can be obtained by solving δθi = arg min
δθ

JΓi
(πθi+δθ) − JΓi

(πθ).

We further use the Gauss-Newton step [19] to expand this as shown in (11)
below.

arg min
δθ

δθT ∇θJΓi
(πθi

) +
1
2
δθT ∇θJΓi

(πθi
)∇θJΓi

(πθi
)T δθ

= arg min
δθ

∑

τ∈Γi

∑

(xt,ut)∈τ

δθi∇θπθi
(xt)∇πθi

lxt,πθi

+
1
2
δθT

i ∇θπθi
(xt)∇πθi

lxt,πθi
∇πθi

lTxt,πθi
∇θπθi

(xt)T δθi (11)

We note that the changes of the policy control output ut = πθi
(xt) at arbitrary

state xt can be locally linearized as from (12) to (13).

ut + δut = πθi+δθi
(xt + δxt) ut = πθi

(xt) (12)
δuT

t − δxT
t ∇xπθi

(xt) ≈ δθT
i ∇θπθi

(xt) (13)
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It implies that due to δθi, each trajectory τ = {(x0, u0), (x1, u1), . . .} of πθi

is approximately perturbed by δτ = {(δx0, δu0), (δx1, δu1), . . .}. Motivated by
the fact that πθi+δθi

is safe if all of the trajectories are still safe after such per-
turbations, we optimize w.r.t the trajectory perturbations δτ ’s instead of δθi by
exploiting the relation between each (δxt, δut) ∈ δτ and δθi as in (13). Interpo-
lating the LHS of (13) in (11), we obtain a trajectory optimization problem (14)
with linear and quadratic costs as shown in (15)–(19). Note that this trajectory
optimization problem treats the trajectories from Γi as nominal trajectories and
solves for optimal perturbations to update those nominal trajectories. Local lin-
earization is used to derive the dynamics constraints as in (20) for each noiminal
trajectory. By adding the safety constraints (21), the trajectories can remain
safe after adding the solved perturbations. Here, we use the constrained iLQR
approach from [7] to resolve this constrained trajectory optimization problem.

arg min
{δx0:H ,δu0:H}

1

4|Γi|
∑

τ∈Γi

∑

(xt,ut)∈τ

⎡

⎣
1

δxt

δut

⎤

⎦
T ⎡

⎣
0 QT

x QT
u

Qx Qxx Qxu

Qu QT
xu Quu

⎤

⎦

⎡

⎣
1

δxt

δut

⎤

⎦ (14)

where Qx = −2∇xπθi(xt)∇πθi
lxt,πθi

(15)

Qu = 2∇πθi
lxt,πθi

(16)

Qxx = ∇xπθi(xt)∇πθi
lxt,πθi

∇πθi
lTxt,πθi

∇xπθi(xt)
T (17)

Qxu = ∇xπθi(xt)∇πθi
lxt,πθi

∇πθi
lTxt,πθi

(18)

Quu = ∇πθi
lxt,πθi

∇πθi
lTxt,πθi

(19)

s.t. δxT
t+1 = δxT

t ∇xf(xt, ut) + δuT
t ∇uf(xt, ut) t = 0, 1, . . . , H − 1 (20)

ϕ(xt + δxt) ≤ 0 t = 0, 1, 2, . . . , H (21)

One major benefit of this formulation is that imitation learning objective
and safety constraints can be reasoned at the same time via optimal control. As
the optimization is now separable, (14)–(20) provide a lower bound for (11). By
solving the linear Eq. (13), δθi can be inferred from the solved perturbations
{δx0:H , δu0:H}, and then be used to modify θi. Alternatively, πθi+δθi

can be
obtained by training πθi

with the trajectories induced from {x1:H +δx1:H , u1:H +
δu1:H}.

Fig. 3. Key steps in our minimally deviating policy repair algorithm. πθ0 refers to the
initial learnt policy.
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The key steps of this iterative approach are shown in Fig. 3 and the details
are in Algorithm 2. As indicated by line 2 and 6, Algorithm1 is used to find
safe policies and generate safe nominal trajectories. This is because safe nominal
trajectories guarantee that the trajectory optimization problem (14)–(21) has
feasible solutions, e.g. δx = 0, δu = 0. We terminate Algorithm 2 if Algorithm 1
fails to output a set of safe trajectories. In each iteration, we solve for the tra-
jectory perturbations in line 4 and use them to update the policy as shown in
line 5. The algorithm ends in line 7 if the trajectory optimization step no longer
helps in decreasing the deviation.

Algorithm 2. Policy Repair for Minimal Deviation
1: Given an initial learnt policy πθ0 ; iteration parameters ε ∈ [0, 1], N > 1.
2: Initialization Obtain πθ1 , Γ1 from Naive Policy Repair(πθ0) via Algorithm 1;

if Γ1 is ∅, then return fail
3: for iteration i = 1 to i = N do
4: Solve the optimal {δx0:H , δu0:H} from (14)–(21).
5: Solve δθi via (13) and let θi+1 = θi + δθi.

Alternatively, search for θi+1 = arg min
θ∈Θ

E(x,u)∼Γi
[e(x+δx, u+δu; πθ)] by training

πθi with {(x + δx, u + δu)|(x, u) ∈ Γi}.
6: Obtain πθi+1 , Γi+1 from Naive Policy Repair(πθi+1) via Algorithm 1;

if Γi+1 is ∅, then return πθi

7: if |JΓi+1(πθi+1) − JΓi(πθi)| ≤ ε, then return πθi+1

8: end for
9: return πθN

Complexity Analysis. The main complexity of Algorithm 2 comes from solv-
ing the quadratic programming (QP) in (14)–(21). Since cost (14) is convex as
indicated by (10), if the constraint (21) is also convex, then the QP can be
solved in polynomial time [18]; otherwise, it is NP-hard [21]. The trajectory
optimization in line 4 needs to be solved only once off-line at the beginning of
each iteration based on the safe trajectories collected from the previous iteration.
In our experiments, the trajectory optimization is solved in a receding horizon
manner as an MPC. In this case, the QP will be solved repeatedly over time to
determine an appropriate sequence of control outputs. The nominal trajectories
are obtained at each step by forward simulating the policy for a number of steps.
The total computation time will be the same as that of a standard MPC. Besides
trajectory optimization, the time complexity of policy updates in line 5 is either
the same as that of solving an approximated linear Eq. (13) or training a neural
network in a standard supervised manner.

6 Experiments

We perform two case studies to evaluate the effectiveness of our proposed app-
roach. The key metrics of evaluation are (1) safety of the repaired policy and (2)
performance preservation with respect to the original policy. The experiments
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were performed on a computer with the following configurations: Intel Core i7-
8700 CPU @ 3.2 GHz × 12 Processors, 15.4 GiB Memory, GeForce GTX 1050Ti,
Ubuntu 16.04 LTS OS.

6.1 Mountaincar

Fig. 4. (a) The mountaincar environment. (b) The red patterns represent a set of tra-
jectories produced by executing the initial policy. The y-axis indicates the velocity and
the x-axis indicates the horizontal position of the car. The car reaches the right moun-
tain top in 83.8 steps on average with velocity higher than the safety threshold (0.02).
(c) The interventions by the SC are indicated by the blue dots. A naively repaired pol-
icy takes the 89.3 steps on average to reach the mountaintop. (d) A minimally deviating
repaired policy accomplishes the same task in 84.9 steps on average without violating
the safety requirement. (Color figure online)

Our first case study is Mountaincar3, as shown in Fig. 4(a). In this environment,
the goal is to push an under-powered car from the bottom of a valley to the
mountain top on the right with as few steps as possible. The state x = [p, v]
includes the horizontal position p ∈ [−1.2, 0.6] and the velocity v ∈ [−0.07, 0.07]
of the car. The control u ∈ [−1.0, 1.0] is the force to be applied to the car.
The car has a discrete-time dynamics that can be found in the source code the
simulator. For the LC, we train a neural network policy via the Proximal Policy
Optimization (PPO) algorithm [31]. The neural network takes the state variables
as input and generates a distribution over the action space. An additional layer is
3 https://gym.openai.com/envs/MountainCarContinuous-v0/.

https://gym.openai.com/envs/MountainCarContinuous-v0/
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added at the end of the network to calculate the expected action. In Fig. 4(b)–(d),
the x and y axes indicate the horizontal position and the velocity respectively.
The car starts from a state randomly positioned within [−0.6,−0.4] as indicated
by the black line above ‘init’. The step length for the PPO-trained policy to
reach the mountain top (p ≥ 0.45) is 83.8 averaged over 1000 runs.

Now consider the safety requirement ‘velocity v should not exceed 0.02 when
reaching the mountain top at p ≥ 0.45’. The goal states and unsafe states are
indicated by the green and grey areas in Fig. 4(b). It can be observed that the
PPO-trained policy does not satisfy this requirement as all the red trajectories
in Fig. 4(b) end up at p = 0.45 with v > 0.02. Then an SC is implemented
by following the Model Predictive Safe Control scheme introduced in Sect. 4.1.
The function ϕ(x) in (7) evaluates whether the state x is in the grey unsafe
area. The LC and SC pair generates the red trajectories in Fig. 4(c). The blue
dots indicate the intervention of the SC. While implementing Algorithm1 and
Algorithm 2, in each iteration we collect 20 trajectories in the trajectory set Γi.
Algorithm 1 produces a naively repaired policy that can reach the green area
with 89.3 steps on average. When using the minimally deviating policy repair
algorithm (Algorithm 2), the resulting policy produces the red trajectories in
Fig. 4(d). It shows that in all the runs the resulting policy satisfies the safety
requirement and in addition the SC does not intervene. In terms of performance,
the policy reaches the green area with only 84.9 steps on average, which is much
closer to the performance of the original policy.

6.2 Traction-Loss Event in Simulated Urban Driving Environment

In this experiment, we show that our approach is effective even with an approx-
imate dynamical model. The environment is in an open urban driving simula-
tor, CARLA [11], with a single ego car on an empty road. The state variables
include position, velocity and yaw angle of the car and the control variables
include acceleration and steering angles. We use a simple bicycle model from [7]
to approximate the unknown dynamical model of the car. The model simulates
a discrete-time system where the control actions are supplied to the system at
an interval of 0.03 s. For the LC, an initial neural network policy is trained with
data collected from manually driving the car on different empty roads while
maintaining a speed of 8 m/s and keeping the car to the middle of the lane.
During testing, we put the vehicle in a roundabout as shown in Fig. 5(a) where
the white curves are the lane boundary. The starting and finishing lines are
fixed. The safety requirement can be described informally as ‘once the vehicle
crosses outside a lane boundary, the controller should drive the vehicle back to
the original lane within 5 seconds’.

The initial, learnt policy drives the car well in the roundabout, as shown
in Fig. 5(a). We then consider an unforeseen traction-loss event, as shown by
the yellow rectangle in Fig. 5(a) where the friction is reduced to 0 (e.g. an icy
surface). As a result, the vehicle skids out of the outer lane boundary. The
initial policy alone does not satisfy the safety requirement, as it keeps driving
the vehicle outside the lane boundary after the traction-loss event, as shown by
the red trajectory in Fig. 5(a). An SC is implemented by following the Model



146 W. Zhou et al.

Fig. 5. The green trajectories represent normal trajectories of the car when there is
no traction loss. The occurrence of the traction-loss event is indicated by the yellow
rectangle. (a) Red trajectory: the initial policy fails to correct itself from skidding. (b)
With interventions by the SC (the blue segment), the vehicle manages to return to
the lane. (c) Magenta trajectory: policy repaired via Algorithm 2 corrects itself from
skidding and does so better than using the SC. (d) The Y-axis represents velocity
of the car and the X-axis represents time steps. The red curve indicates that the
initial policy is in control and the blue segments represents the interventions from the
SC. The cyan curve is generated by a policy repaired via Algorithm 1. The magenta
curve is generated by a minimally deviating policy repaired via Algorithm 2. (e) Cyan
trajectory: after the traction-loss area is removed, the naively repaired policy drives the
vehicle towards the center of the roundabout, even going out the inner lane boundary
for a short amount of time. (f) Magenta trajectory: after the traction-loss area is
removed, by using Algorithm 2, the vehicle stays close to the middle of the lane. (Color
figure online)

Predictive Safe Control scheme introduced in Sect. 4.1. The function ϕ(x) in (7)
checks whether the distance between the vehicle and the middle of the lane is
larger than half of the lane width. In Fig. 5(b), the blue segment indicates the
interventions of the SC. It shows that due to the coupling of the LC and SC, the
vehicle satisfies the safety requirement as it moves back to the lane.

We next consider repairing the LC using Algorithm 1 and 2. We set ε to
0.001 in our experiments. For every intermediate policy in each iteration, 10
trajectories are collected in its trajectory set Γ . It takes 5 iterations for Algo-
rithm1 to synthesize a safe policy that does not require the SC to intervene.
Starting with this safe policy, Algorithm2 runs for 25 iterations before termina-
tion. The magenta trajectory in Fig. 5(c) is from the minimally deviating policy
repaired via Algorithm2. Obviously the policy is able to correct itself without
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any intervention from the SC. In Fig. 5(d), we compare the velocities of the vehi-
cles controlled by different policies. It can be observed that the velocities of all
policies drop drastically due to traction-loss at around step 220. The minimally
deviating repaired policy performs the best in restoring the velocity back to
8 m/s. It is worth noting that velocity stability is important from the viewpoint
of passenger comfort.

We summarize the results in Table 1. The performances of the algorithms are
evaluated from multiple aspects. We evaluate how well the task is finished from
1) average speed (the closer to the target speed 8 m/s the better); 2) average
distance of the vehicle to the middle of the lane (the smaller the better); 3)
total time taken for the driving task in number of simulation steps (the fewer
the better). We evaluate the smoothness of the trajectories based on the vari-
ances/standard deviations of speeds, distances, changes of speed and distance
respectively in consecutive time steps. A smaller variance/standard deviation
indicates a smoother navigation.

Table 1. Avg. Speed: average speed of the vehicle in each run. Lowest Speed: the
lowest speed since the vehicle firstly reaches 8m/s in each run. Aveg. Distance: the
average distance between the vehicle and the middle of the lane at each step. Tot.
Steps: the total number of steps that the vehicle outputs control actions in one run.
Var. Speed: the variance of the speed at each step in each run. Std Dev. Speed Change:
the standard deviation of the speed changes between consecutive steps. Var. Distance:
the variance of the distance between the vehicle and the middle of the lane at each
step. Std Dev. Distance Change: the standard deviation of the distance (from vehicle
to the middle of the lane) changes between consecutive steps. Initial policy is tested
before and after the traction-loss area is placed. The initial policy and SC pair is tested
after the traction-loss event occurs. ‘Algorithm 1’ and ‘Algorithm 2’ respectively refer
to the policies repaired via those two algorithms.

Avg. Speed
(m/s)

Lowest Speed
(m/s)

Avg.
Distance
(m)

Tot. Steps
(0.03 s/step)

Initial Policy (No
Traction-Loss Event)

8.0 7.1 0.27 396

Initial Policy 8.0 5.2 1.7 420

Initial Policy w/ SC 7.1 1.2 0.81 454

Algorithm1 7.5 2.4 1.1 440

Algorithm2 7.9 5.2 0.63 413

Var. Speed Std Dev. Speed
Change

Var.
Distance

Std Dev.
Distance
Change

Initial Policy (No
Traction-Loss Event)

0.53 0.074 0.10 0.0096

Initial Policy 0.79 0.16 4.4 0.026

Initial Policy w/ SC 2.1 0.17 1.0 0.033

Algorithm1 2.4 0.17 1.4 0.042

Algorithm2 0.73 0.15 1.0 0.033
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Before the traction-loss area is placed, the initial policy drives the vehicle
at 8m/s on average and keeps the vehicle close to the middle of the lane. After
the traction-loss event occurs, the initial policy still maintains the speed but
the car slides out of the lane as indicated by the average distance. The initial
policy and SC pair has the lowest average and lowest speed. As a result, the task
time (represented by number of simulation steps) is also the longest. In terms
of policy repair, both Algorithm1 and 2 are successful in finding safe policies.
The policy repaired via Algorithm1 behaves similar to the initial policy and
SC pair – the vehicle experiences significant speed changes and takes longer to
finish the driving task. The minimally deviating policy repaired via Algorithm2
behaves similarly to the initial policy in terms of maintaining the target speed,
staying close to the middle of the lane while producing a smooth trajectory. In
summary, the repaired policy using Algorithm2 outperforms the initial policy
with SC and the repaired policy using solely Algorithm1 in almost all metrics.
In terms of runtime overhead savings, the average neural network inference time
on our machine configuration is 0.0003 s while the average time for SC to solve
(3)–(8) is 0.39 s.

To further measure the impact of policy repair and evaluate the performance
difference between a naive repair (using Algorithm1) and a minimally deviating
repair (using Algorithm 2), we remove the traction-loss area and execute both
repaired policies in the original environment. It can be observed in Fig. 5(e) that
the naively repaired policy cuts inside the lane, since it learns (possibly due to
overfitting) to steer inward in the states where traction loss is supposed to occur.
In contrast, the policy repaired using Algorithm2 manages to keep the car in
the lane, as it learns to imitate the original policy. This thus further validates
our approach of finding a minimally deviating repair.

7 Conclusion

We consider a Simplex architecture where a learning-based controller is paired
with a backup safety controller for ensuring runtime safety. We show that this
setup, while provides added safety assurance, can produce undesired outputs or
cause significant performance degradation. We propose to address this problem
by fine-tuning the learning-based controller using interventions from the safety
controller, and addressing the issue of performance degradation via imitation
learning. Our experiments indicate that our proposed approach is effective in
achieving both safety and performance even when the dynamical model used by
the safety controller is not exact. In the future, we plan to consider other types
of safety controllers and extend our techniques to end-to-end control settings.

Acknowledgements. We gratefully acknowledge the support from National Science
Foundation (NSF) grants 1646497.
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Abstract. This paper presents PatrIoT, which efficiently monitors the
behavior of a programmable IoT system at runtime and suppresses con-
templated actions that violate a given declarative policy. Policies in
PatrIoT are specified in effectively propositional, past metric tempo-
ral logic and capture the system’s expected temporal invariants whose
violation can break its desired security, privacy, and safety guarantees.
PatrIoT has been instantiated for not only an industrial IoT system
(EVA ICS) but also for two home representative automation platforms:
one proprietary (SmartThings) and another open-source (OpenHAB).
Our empirical evaluation shows that, while imposing only a moderate
runtime overhead, PatrIoT can effectively detect policy violations.

Keywords: Runtime monitoring · IoT systems · Policy enforcement

1 Introduction

Programmable IoT systems, that have seen deployments in regular households
as well as advanced manufacturing plants, enable one to carry out specialized
automation functions by instructing a group of (COTS) actuators to perform
different tasks based on sensor values, events, and business logic. For supporting
diverse automation tasks, these systems allow one to develop and deploy automa-
tion apps/units whose complexity can range from simple if-then-else rules to
complex machine learning based programs. As a simple example, an IoT app in
a metal melting plant can command a lifter-robot (i.e., actuator) to load scrap
metal on a conveyor belt only when the weight sensor reads more than 100 lbs.

These automation apps that (i) can be possibly obtained from unvetted
sources, (ii) can be malicious, (iii) may have logical bugs, or (iv) may interact
in unanticipated ways with other apps, can render the system to unexpected
states. Such unexpected state transitions can halt a production line, create
safety-hazards, or violate security and privacy guarantees of such systems. For
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instance, an IoT app in a melting plant can instruct the lifter-robot to load scrap
metal on an already loaded conveyor belt, severely damaging it and creating a
safety hazard. This paper focuses on developing a runtime policy enforcement
approach for ensuring that a system under monitoring does not reach such unex-
pected states.

A majority of the existing work relies on static analysis of apps to identify
such undesired behavior [17,20,24,30,37,39] but suffers from one of the following
limitations: (i) false positives due to conservative analysis; (ii) false negatives
due to single app analysis; or (iii) scalability issues due to state-space explosion.
Existing runtime enforcement based approaches [18,28,41], on the contrary, have
one of the following limitations: (i) requires constructing the whole state-space
of the global IoT system statically which is infeasible for large systems; (ii)
cannot enforce rich temporal policies; (iii) policy specification is based on the
transitions on the global state-space which is extremely inconvenient.

In this paper, we present PatrIoT which monitors the contemplated actions
of programmable IoT apps at runtime and denies them only when they vio-
late a declarative policy. The policy language of PatrIoT can refer to any past
events/actions/system states, impose explicit-time constraints between any past
events/states, and contain predicates over quantitative aspects of the system exe-
cution (e.g., number of times an event has occurred in the last 10 s). Technically,
this language can be automatically translated to a first-order, past-time metric
temporal logic (MTL) with some aggregation functions (e.g., count, mean). The
first-order logic portion of it, modulo aggregation functions, is restricted to a
fragment of the Bernays–Schönfinkel class (or, effectively proposition logic or
EPR). This conscious choice allows us not only to express a rich set of policies
but also to enforce our policies efficiently by drawing inspirations from exist-
ing runtime monitoring algorithms [12–15,35,36]. Unlike first-order MTL, for
enforcing our policies, it is sufficient to store only truth values of sub-formulas
with auxiliary structures of the immediate previous state instead of any past
variable substitutions.

To show PatrIoT’s generality, we instantiated it for 3 representative IoT
systems, namely, EVA ICS [4] in the context of Industrial IoT systems, and also
Samsung SmartThings [7] and OpenHAB [5], in the context of home automation.
For instantiating PatrIoT, we resort to inline reference monitoring in which we
automatically instrument each app by guarding high-level APIs for performing
actions with a call to the policy decision function. We develop automatic instru-
mentation approach for each of the platforms. In addition, as automation apps
can run concurrently, one has to also use appropriate synchronization mech-
anisms (e.g., mutex) to avoid any inconsistencies during state update of the
reference monitor. We needed to design such a synchronization mechanism for
SmartThings (e.g., mutex) as its programming interface did not provide any.

In an empirical evaluation with two case studies, one based on metal melting
plant and another based on home automation, we observed that PatrIoT was
able to mitigate all the undesired state transitions while incurring an average
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of 137 ms of runtime overhead. We have also designed PatrIoT as a standalone
library which other platforms can use to perform policy checking.

To summarize, the paper has the following technical contributions:

– We propose PatrIoT, which monitors the execution of an IoT system at
runtime and prevents it from entering an undesired state by denying actions
that violate a policy.

– We instantiate PatrIoT for three representative programmable IoT plat-
forms, namely, EVA ICS [4], SmartThings [7], and OpenHAB [5]. Our evalu-
ation with these instantiations show that they are not only effective in iden-
tifying non-compliant actions but also efficient in terms of runtime overhead.

2 Scope and Motivation

Most of the IoT ecosystems, despite being complex, share a similar architecture.
Figure 1 shows a general IoT system consisting of a wide range of devices (e.g.,
robot arm, surveillance cameras, smart lights ) and a programmable IoT plat-
form, which serves as a centralized backend of the system. The backend typically
exposes some programming interfaces for IoT apps (or a system control panel)
to automate the system (or directly control the devices, respectively).

The backend is a (logically) centralized server, dedicated for storage and
computation, is responsible to synchronize the physical world with the cyber
world. It can be physically co-located or placed in a remote cloud. Nevertheless,
it provides a human machine interface to enable remote control and monitoring.
Nowadays, most IoT platforms expose programming interfaces for programmers
to develop flexible and customized IoT apps. The app execution engine coordi-
nates the execution of all IoT apps in which the automated operations of the IoT
system occur as they directly guide (and possibly, alter) the physical processes.

All actions taking place in an IoT system form its behavior. The actions in
IoT apps are based on the automation tasks in that system. Given an IoT app’s
business logic, commanding an action might not only depend on the devices’
events for which the IoT app (issuing the action) is registered but also hinge on
the current context in the system. The current context for an action is formed
by the snapshot of the system state right before taking the action. As the com-
plexity of an IoT system (including its automation tasks) scales and grows, the
dependency between actions and the system state becomes more tangled. Hence,
to capture the expected behavior, this complexity of the dependency between
action and the system state needs to be taken into account.

Policy. The expected behavior of an IoT system can be captured via a set of
expressions, called policies. All policies must be invariably maintained by the
system at runtime while the IoT apps are active and operating. A policy is
maintained if it is satisfied by an impending action of any IoT app given the
current execution trace. Thus, if an action respects every policy, then the system
is considered to comply with the policies and allows the action to be executed. In
case of a violation, an action must be denied to prevent potential repercussions.
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Fig. 1. A programmable IoT platform with PatrIoT installed. Without PatrIoT,
every Action would be directly forwarded to the device API.

Threats. Any unwanted behavior, caused by single IoT app or unintended inter-
plays among multiple IoT apps, can impose security, privacy, or safety threats
to the IoT system. The security threats exist if an unwanted action impairs an
IoT system by changing its state such that it cannot perform its intended func-
tions (i.e., targeting system integrity) or gives an unauthorized access to the
protected data (i.e., violating data confidentiality). Depending on the criticality
level of the IoT apps, such unwanted actions can also threaten the safety of the
system (e.g., failing to turn on the fire sprinkler of the factory floor when there
is a fire). Not to mention that allowing some of those action can also violate
the privacy (e.g., posting a tweet by a medicine-reminder app unbeknown to the
user). An IoT system can face such threat due to a number of vulnerabilities
including cross-app interference, race conditions due to concurrent executions of
apps, a lack of fine-grained access control mechanisms in the underlying plat-
forms, and semantic bugs in apps. As an example, let us let us consider cross-app
interference vulnerabilities specialized for programmable IoT systems.

Since IoT app’s action can change a device state and/or a physical processes
(i.e., the environment), it can generate additional trigger(s) which in turn can
execute another IoT app. Such interplay among IoT apps can be either explicit
or implicit [20]. In an explicit interplay, the outcome of an action directly trig-
gers other IoT app. For instance, running “if the weight sensor detects some
weights then turn on the conveyor belt” explicitly triggers “if the conveyor belt is
rolling then turn on the object detector”. Contrarily, in an implicit interplay, the
outcome of an action changes some attributes of the physical environment which
can consequently trigger other IoT app. For example, “if water temperature is
greater than 200°F then open the outgoing valve of the cooler to drain hot water”
implicitly triggers “if water level is low then open the incoming valve to refill the
cooler with cold water”.

Attacker Model. In this paper, we assume an attacker is capable of launching
the unwanted behavior by (i) developing the malicious IoT apps exploiting the
above vulnerabilities or (ii) simply misusing the existing faulty IoT apps, where
the latter does not necessarily need to involve the attacker, yet is unwittingly
introduced by a developer. For smart home based systems, a malicious app can
creep in to the system through unvetted marketplaces from which users often
obtain IoT apps. Contrarily, IoT systems like IIoT may not have open market-
places, but they are prone to—(i) insiders who can carry and install malicious
apps, and (ii) untrusted third-party developers. Any undesired situation resulted
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from compromised IoT devices, by exploiting vulnerabilities in firmware or com-
munication protocols, and even the IoT backend itself is beyond our scope.

Motivating Example. Consider a smart building where access restrictions are
imposed on the entry of several rooms. An IoT integrated reader installed near
the entry unlocks the door when a presented credential (e.g., smart card) is
authenticated. This one-way security entrance operation is one of the most pop-
ular and simplest access control solutions for smart buildings in which once some-
one is authorized entering a room, then they can easily exit the room because
the door is unlocked from inside. In this situation, an unwanted behavior could
occur when an unauthorized person sneaks into the room through a window
or ventilation pipe and then they can freely open the door and enter into the
building. A security measure preventing this undesirable situation is to check
the following temporal policy before unlocking the door from inside:

Allow unlatching the door lock
only if the number of granted door access requests is
greater than the number of times door unlatched.

That is, unlatching the door from inside is allowed whenever someone entered
into the room before.

3 Overview of PATRIOT

In this section, we present an abstract programmable IoT system model, our
problem definition, and PatrIoT’s architecture.

3.1 Abstract Model

A programmable IoT system I is viewed as a labeled transition system defined
by the tuple 〈S,A,P,V, T 〉, where S is a non-empty, finite set of states, A is a
finite set of high-level activities in the IoT system, P refers to a finite set of all
possible IoT apps supported by the underlying platform, V refers to a finite but
arbitrary set of typed variables, and T is the transition relation T ⊆ S × A × S
regulates how I changes its states while reacting to the activities. A state is
total map that assigns each variable v ∈ V a value from an appropriate domain.

We consider T to be a deterministic and left-total relation (i.e., no dead
states). For all states sb, se ∈ S and activity a ∈ A, if 〈sb, a, se〉 ∈ T (alter-
natively, sb

a→ se), then it suggests that when the system is in state sb and
an activity a is performed, then I will move to the state se. Given a state
sb ∈ S such that sb = [vvalve1 �→ close, . . .] and an activity a = 〈caused by �→
app1, target device �→ valve1, activity value �→ open〉 by an app (called app1 ∈ P),
then I will transition to a state se, where se = [vvalve1 �→ open, . . .].
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3.2 Problem Definition

Given a programmable IoT system I, let σ be a finite execution trace of it. A
trace σ is a finite sequence of states σ = 〈s0, s1, s2, . . . , sn−1〉. We use |σ| to
denote the length of the trace σ. For each trace σ, we require that there exists
an activity a ∈ A such that si

a→ si+1 ∈ T where 0 ≤ i < |σ| − 1. Given
I and a policy Ψ , in this paper, we want to ensure that each action activity
performed by an app ∈ P is compliant with Ψ , formalized as below. Given a
programmable IoT system I, a policy Ψ , a valid trace σ = 〈s0, s1, . . . , sn−1〉 of
I, and an action activity ac, the policy compliance problem is to decide whether
σ′ = 〈s0, s1, . . . , sn−1, sn〉 is compliant with Ψ where sn−1

ac→ sn ∈ T .

3.3 Architecture of PATRIOT

PatrIoT’s reference monitor has the following three main components: Policy
Enforcement Point (PEP), Policy Decision Point (PDP), and Policy Informa-
tion Point (PIP). The PEP intercepts each action contemplated by apps installed
in a programmable IoT system. It then consults the PDP to decide whether the
action is compliant with the given policies. If the action is compliant, it is allowed
to be carried out; otherwise, the action is denied. The PDP implements the pol-
icy decision function which takes as input an action, and returns Allow or
Deny. It essentially solves the policy compliance problem. The PIP stores all the
relevant information regarding the policy (e.g., policy statements) and system
information (e.g., device status) that are necessary for policy decision.

4 Design of PatrIoT

In this section, we present the syntax and semantics of PatrIoT’s policy lan-
guage as well as PatrIoT’s solution to policy compliance problem.

4.1 Policy Language Syntax

Note that, in what follows, we discuss the abstract syntax of our language. A
policy consists of one or more policy blocks. Each policy block starts with a
Policy keyword followed by an identifier. The body of each block can have one
or more policy statements of the following form. Policy blocks are introduced to
allow modularity; grouping similar policy statements under a named block.

allow/deny <target clause>
[only if <condition clause>]
[except <condition clause>]

In a policy statement, we can use either allow or deny keyword to identify
allow or deny statements, respectively. The allow (or, deny) statements cap-
ture the conditions under which certain actions are permitted (or, discarded,
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respectively). The <target clause> is an expression that captures informa-
tion about the actions for which the policy statement is applicable. It has the
form of a non-temporal condition (i.e., Ψ) shown below. We allow a special wild-
card keyword, everything, in place of <target clause>, to denote all possi-
ble actions. The optional only if portion contains a <condition clause> that
expresses a logical condition under which the action, identified by the <target -

clause>, will be allowed (or, denied). The optional except portion contains
a <condition clause> that captures the exceptional cases under which the
restriction expressed by the <condition clause> in only if portion can be
disregarded.

(Term) t ::= v | c | f(Φ)

(Non-temporal Condition)Ψ ::= true | false | P(t1, t2) | notΨ1 | Ψ1orΨ2 | Ψ1andΨ2

(Temporal Condition)Φ ::= Ψ | Since[�,r](Φ1, Φ2) | Lastly[�,r](Φ1) | Once[�,r](Φ1) |
notΦ1 | Φ1orΦ2 | Φ1andΦ2

(〈condition clause〉) ::= Φ|Ψ
A condition clause can be either be a temporal condition or a non-temporal

condition. A non-temporal formula (i.e., Ψ) can be true, false, a predicate or
their logical combinations. We use and, or, and not to denote the logical conjunc-
tion, disjunction, and negation, respectively. We only consider binary predicates
P where one of its arguments is a constant. A term is either a variable v, a con-
stant c, or an aggregation function f . Currently, we have the following standard
predicates: >, ≥, =, �=, ≤, <. Examples of predicates could be Temperature ≥ 78
and Humidity < 30. We currently allow the Count aggregation function.

The condition clause can use three standard past temporal operators
Since[�,r](·, ·), Lastly[�,r](·), and Once[�,r](·). To enable condition clause to refer
to explicit time differences between different state values, each of the temporal
operators can optionally take an additional time interval [�, r], where � and r
denote the lowerbound and upperbound such that �, r ∈ R

+ ∪ {0,∞} and � ≤ r.
If � is 0, it points to the current state. r can be ∞ to allow temporal operators
to refer to arbitrarily in the past. Using � and r, we can adjust a time window
on which a temporal operator can be applied.

Examples. Having understood the basics of policy language syntax, we can
formally specify the policy given in motivating example 2 as follows:

POLICY Motivating_Example_1:
ALLOW action_command = unlatch and action_device = door
ONLY IF COUNT(ONCE(state(door_reader) = access_granted)) >

COUNT(ONCE(state(door) = unlatched))

4.2 Policy Language Semantics

We provide the semantics of policy language by converting any given policy to
a quantifier-free, first-order metric temporal logic (QF-MTL) formula.

A policy Ψ consists of a sequence of policy statements 〈ps1, ps2, . . . , psn〉.
Given that each policy statement psi can be converted into a QF-MTL formula



158 M. Yahyazadeh et al.

ϕi, the QF-MTL equivalent of Ψ denoted with ϕ can be logically viewed as
combining ϕi with logical conjunctions (i.e., ϕ ≡

∧n
i=1 ϕi). Conceptually, this is

similar to using the “Deny overrides Allow” conflict resolution mechanism to
combine compliance verdicts of the different policy statements. In this mecha-
nism, an action is thus allowed only if all the policy statements have the Allow
verdict (i.e., evaluates to true) for that action. Note that, if an action falsifies the
<target clause> component of each rule, then it is trivially allowed. It is also
possible to easily extend the language to support other conflict resolution mech-
anisms (e.g., “Allow overrides Deny”, “first applicable policy statement”).

Our discussion of formal semantics will thus be complete as long as we
describe how to convert each policy statement psi to its equivalent QF-MTL
formula. In our presentation, ϕapplicable action, ϕcondition, and ϕexception are meta-
variables representing corresponding QF-MTL formulas capturing the appli-
cable action, condition, and exception of a statement, respectively. We inter-
pret the allow statement as the following QF-MTL formula: ϕapplicable action ⇒
ϕcondition ∧ ¬ϕexception. In the similar vein, we interpret the deny statement as
the following QF-MTL formula: ϕapplicable action ⇒ ¬ϕcondition ∨ ϕexception.

In case either the optional condition or exception block is missing, we consider
them to be logical True (i.e., ϕcondition = True) or False (i.e., ϕexception =
False), respectively. When the condition block contains everything, we consider
ϕapplicable action = True. Otherwise, obtaining ϕapplicable action, ϕcondition, and
ϕexception from policy syntax are straightforward. Each syntactic element are
replaced by its logical equivalent (e.g., not with ¬, or with ∨, and and with ∧).
Similarly, the temporal operators will be replaced by their usual equivalent. For
a given temporal formula Φ, a trace σ, and a position i in it (i.e., 0 ≤ i <| Φ |),
we write σ, i |= Φ if and only if Φ evaluates to true in the ith position of σ [6].

4.3 Policy Decision Function

PatrIoT’s policy decision function (Δ) takes as input an attempted action ac,
the current execution trace σ = 〈s0, s1, . . . , sn−1〉, and a policy Ψ (whose QF-
MTL equivalent is ϕ), then decides whether ac is compliant with Ψ . In case
ac is compliant (i.e., ϕ evaluates to true), Δ returns Allow; it returns Deny,
otherwise. PatrIoT’s decision function checks whether σ′, n |=? ϕ where σ′ =
〈s0, s1, . . . , sn−1, sn〉 and sn−1

ac→ sn ∈ T . For checking σ′, n |=? ϕ, we rely on
standard runtime monitoring algorithms from the literature [11,13–15,22,35,36].

5 Implementation

To demonstrate the generality of PatrIoT, we have instantiated it for both
industrial IoT (EVA ICS [4]) and smart-home systems (SmartThings [7] and
OpenHAB [5]). Although these systems share similar design principles with
respect to other IoT platforms, each presents unique challenges for PatrIoT
instantiation. Since EVA ICS, SmartThings, and OpenHAB do not provide
native APIs support for policy enforcement, we hooked PatrIoT in these
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Fig. 2. The flowchart of automation tool to deploy PatrIoT with the necessary com-
ponents inside the target programmable IoT platform.

platforms automation unit execution engine (shown in Fig. 2) such that all
PatrIoT’s necessary components are realized by code snippets (automatically
generated by an accompanying toolchain, which we call as the instrumentor).
That is, the auto-generated code can be deployed inside the IoT platform along-
side the apps logics. This makes PatrIoT self-contained since it does not require
any custom service from the target platforms and can enforce policy compliance
by the platform’s app execution engine.

As shown in Fig. 2, PatrIoT’s instrumentor takes the policies and IoT apps
as inputs and automatically generates instrumented-, ready-to-be-deployed-apps
as outputs. The instrumentor is written as a Python script and internally uses
its own parser (generated by ANTLR [1]) to parse policy language syntax (step
❶). Once parsed, its semantics will be encoded as a part of Policy Decision
Point (PDP) in the platform’s supporting language (step ❷). The PDP code
is also accompanied by all the necessary codes retrieving information about the
system/devices states. The instrumentor also parses the apps source code to find
the actions of interest (i.e., the function calls sending command). These actions
are then guarded with an if block, predicated on a function call to PDP by
passing the request context as its arguments. With that in place, PatrIoT can
enforce the policies given the decision result from PDP at runtime. That is, the
requested action is either allowed to be taken or simply needs to be dropped.

Note that, there are two main aspects need to be considered in the design of
PDP. First, it should be deployed at a place reachable by every guarded action
in the apps inside the execution engine, whilst preserving a global view of the
entire system state. Second, each function call to PDP for each guarded action
needs be synchronized. This is due to the fact that multiple action commands
from different apps can be called roughly at the same time, which might cause
some state change while the current thread running inside PDP has already read
its old value. Therefore, once the decision has been made in PDP, it will be no
longer valid since its premise might have changed. This is a well-known con-
currency issue called Time-of-check Time-of-use (TOCTOU) race condition [3]
which can be addressed by some synchronization mechanism. Note that, allowing
only sequential actions is not restrictive, as eventually they will be serialized in
the network modem; however, it may affect the performance of the system. Once
the instrumentation is finished, the generated code can be run inside the automa-
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tion execution engine of a platform (step ❸), which automatically prevents the
system from entering into an undesirable state during its execution.

5.1 Platform-Specific Implementation Details

In the following subsections, we discuss the important details of the instrumen-
tation in our targeted IoT platforms.

EVA ICS. EVA ICS is an IoT platform for the automated system development
in both industrial and home environment [4]. The automation units in EVA ICS
is called macros which mainly supports Python as its scripting language.

PEP. EVA ICS provides uniform APIs (e.g., action(), action toggle()) for
performing actions in a macro. Calling these functions with appropriate argu-
ments result in a global state change. For instance, action(’zone1/lifter -

robot’, status=1) will activate lifter robot residing in zone1. Our instru-
mentor uses its own custom parser to spot these actions in macros’ source code.
Once identified, its arguments (e.g., ’zone1/lifter robot’ and 1) are extracted
to be then passed to PDP as part of the request context. The identified action
is then guarded with an if block, whose condition is a function call to PDP
to which the pre-extracted information such as the target device and command
name are passed as its arguments. EVA ICS also provides native support for
locking mechanism via lock() and unlock() functions, which can be used to
address synchronization issue discussed earlier.

PDP/PIP. EVA ICS runs macros whose source codes reside in a specific folder
in the system. If any piece of code needs to be shared among them, it has to be
stored in common.py and also located in the same folder with the apps. Given
that it can be readily accessed by the other macros and any code inside of it
can see the entire system states, common.py file is our target to store the policy
decision function encoding the semantics of policy language policies. There are
other platform-supported features used to capture the request context inside the
PDP function (e.g., 00 variable for obtaining current macro’s full identifier and
source variable to access the item generated the event).

SmartThings. SmartThings is a cloud-based smart-home platform with a pro-
prietary back-end that can provide automations among SmartThings-powered
IoT devices. The automation units in SmartThings are called SmartApps which
support a restricted subset of the groovy language [7].

PEP. SmartThings uses a variety of methods for performing an action. For
example, it uses on() method of an object with capability.switch to turn it on
(e.g., light1.on()). Given a pre-compiled action list, the instrumentor parses
the source code of SmartApps to find those actions and then guarding them
with PEP-related statements. Since SmartApps are groovy-based programs, we
use groovy meta-programming feature [2] which allows traversing the Abstract



PatrIoT: Policy Assisted Resilient Programmable IoT System 161

Syntax Tree (AST) of a SmartApp. To this end, we use a groovy script that
uses ASTTransformation class to write a custom ASTNode visitor to spot each
method call in the pre-compiled action list and then replacing it with a ternary
operator such that in the condition portion it checks whether the function call
to PDP is evaluated to be true. In the true branch, it performs the guarded
action while in the false branch it logs that the action is denied. The ASTNode

visitor also extracts the necessary request context and passes them to PDP as
arguments. After visitor’s pass, our groovy script translates the AST back to the
source code and spits it out as the instrumented SmartApp.

PDP/PIP. Recall that, PDP needs to have a global view of the entire system. In
SmartThings, this can be achieved through the Parent-Child SmartApps rela-
tionship structure in which the PDP is defined as a function inside a parent
SmartApp, so-called policy manager, while the previously instrumented Smar-
tApps are considered as its children. This setup not only features all SmartApps
to call the same PDP function but also enables the PDP to access the state of
all devices used by the SmartApps. Unfortunately, SmartThings does not pro-
vide any built-in synchronization primitives. To address concurrency issues, we
have built PatrIoT lock management server which is (i) RESTful: Smar-
tApps requests for a lock by a simple HTTP post (e.g., http://<domain :
port>/locks/PatriotLock). The server notifies them whether lock is acquired
or not by a HTTP response code (e.g., 201: The lock is acquired; 408: lock is not
acquired). SmartApps release the lock by a HTTP delete; (ii) Queue-based:
It simply uses FIFO approach to give the lock to the oldest request. The further
requests have to wait for the one who acquired the lock to release it and then
the older request can acquire it (if the request has not gotten timed-out); (iii)
Starving-free: The created lock has a lifetime in seconds which server starts
counting down from each request which successfully acquires the lock. So, if the
client does not release the lock before the lock lifetime, server simply releases
the lock; and (iv) Secure: It uses HTTPS for each request and release. Each
request/release is authenticated (using a pre-shared key) and replay protected;
therefore, a malicious entity cannot make illegal lock request/release.

OpenHAB. OpenHAB is an open-source smart-home platform that can be
deployed locally. The automation units in OpenHAB are called rules and are
written in a domain specific language (DSL).

PEP. OpenHAB has a well-structured category of actions that can be used
inside a rule to perform an action. Our instrumentor uses that to select the
actions of interest. For instance, sendCommand() and postUpdate() are methods
for sending a command to an item and updating an item’s status, respectively.
Since rules in OpenHAB are written in a DSL, we developed a custom parser
to instrument a rule’s source code. The synchronization issue in OpenHAB is
handled using mutex lock provided by the platform.
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Table 1. Item list used for EVA ICS chemical plant testbed

compound valve01 liquid level indicator01 (lli01)

compound valve02 presence sensor01 (ps01)

conveyor belt presence sensor02 (ps02)

drain valve quality control sensor01 (qc01)

lifter robot temperature sensor01 (ts01)

lifting arm weight sensor01(ws01)

mixing robot weight sensor02 (ws02)

stopper processed sensor

water valve

Table 2. Automation units used in EVA ICS testbed

PDP/PIP. In OpenHAB, rules written in the same file can share global vari-
ables and utilize the common functions. Given that, the instrumentor merge all
rules into the single rule file and encode PDP as a common function.

6 Evaluation

In this section, we evaluate our instantiations of PatrIoT. The main goal of
our evaluation is to demonstrate PatrIoT effectiveness in maintaining the user
expectations and its efficiency in terms of runtime overhead on a host platform.

6.1 Effectiveness

To showcase the effectiveness of PatrIoT in each platform, we built a testbed
containing several IoT devices and constructed different scenarios in which some
undesired action(s) can occur.

EVA ICS

Testbed. The testbed is similar to a realistic production line of a chemical plant
aiming to combine metal blocks with two other compounds in a furnace. Table 1



PatrIoT: Policy Assisted Resilient Programmable IoT System 163

and Table 2 show the item list and simplified apps used for this testbed, respec-
tively. To setup the testbed for EVA ICS, we deployed EVA ICS-3.2.4 [4] on a
machine powered by an Intel Core i7-6700 3.40 GHz CPU and with 32 GB RAM.

The testbed production line is designed to receive a metal block at a time
and deliver it to the furnace in order to be combined with two other compounds
and then drain the mixture into another production line (not covered here) and
start the whole process again for a new batch. In this periodic operation, each
element in the system takes a fixed amount of time to perform its task and deliver
its output to the next element. The design of the system guarantees that the
overall time needed for each iteration is significantly longer than the total time
needed by each element in isolation. Each iteration starts when a pallet carrying
a metal block has been placed on a weight sensor ws01, which activates AU1.
The robot then lifts the pallet and places it on the conveyor belt. The conveyor
belt’s weight sensor ws02 notifies the stopper in the middle-end of the line about
the incoming pallet via AU2. Once arrived, the stopper engages the pallet and
detaches it from conveyor belt. The presence sensor ps01 then detects package
arrival and AU3 activates the mixing robot. According to AU4, the mixing robot
then checks whether the liquid level indicator lli01 inside the furnace is off and
then activates the lifting arm to take the metal block off the pallet and puts it
inside the furnace. It then opens the compound valves 1 and 2, respectively. As
the result of some chemical process, the temperature of the mixture goes up until
the temperature sensor ts01 trips. In that case AU5 opens the water valve to
cool down the mixture. Once cooled, it reaches to the point making the quality
control sensor qc01 to indicate “passed” signal. Then, AU6 gets executed and
monitors ts01 to double check whether it is safe to open the drain valve and
reset the mixing robot. Deactivating the mixing robot then releases the stopper
(AU7) which puts the pallet back on the conveyor belt letting it to go towards the
end of the line where presence sensor ps02 resides. Once ps02 tripped, it signals
the batch process has completed (AU8) and pallet will be removed automatically
from the conveyor belt.

Although this production line works fine for most situations, there are some
undesired cases that can cause fatal physical damages such as conveyor belt
blockage, liquid overflow, and ruining the batch.

Scenario #1 - Conveyor Belt Blockage. There are several reasons that
can cause multiple pallets to be on conveyor belt at the same time making the
conveyor belt to break because of its weight tolerance limitation or crashing
a few pallets into each other. Having multiple pallets at the same time can
happen if the previous pallet got stuck on an obstacle next to conveyor belt
or malfunctioning stopper. Therefore, after passing the iteration time limit, our
simulation has shown that multiple pallets can be placed on the conveyor belt
causing the blockage. This undesirable situation has been prevented by PatrIoT
using the policy in the Listing 1.1 which says “deny activating the lifter robot
only if since the last time it was activated, no batch has been processed”.
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Listing 1.1. policy language Policy P1 to address conveyor belt blockage

POLICY P1:
DENY action_command = on and action_device = g1/lifter_robot
ONLY IF LASTLY(SINCE(state(unit:g1/lifter_robot) = on, value(g1/processed) = 0))

Scenario #2 - Liquid Overflow. The production line is also susceptible to
furnace overflow causing severe physical damages. According to our simulation,
this undesirable situation can occur if, for example, the drain valve is faulty
such that it cannot completely drain the previous batch and some significant
amount of mixture liquid has remained in the furnace, which is still below the
lli01 threshold. Therefore, once the next batch comes in (including the metal
block, compounds 1 and 2, and the water) it will cause liquid overflow. PatrIoT
prevents such undesirable situation via the following policies which simply checks
the liquid level before taking any actions causing adding a substance to the
furnace. This scenario with policies (P2-P5) in place could still create a conveyor
belt blockage which will be prevented by the policy P1.

Listing 1.2. policy language Policies to address liquid overflow

POLICY P2:
DENY action_command = on and action_device = g1/lifting_arm
ONLY IF value(sensor:g1/lli01) = on

POLICY P3:
DENY action_command = on and action_device = g1/compound_valve01
ONLY IF value(sensor:g1/lli01) = on

POLICY P4:
DENY action_command = on and action_device = g1/compound_valve02
ONLY IF value(sensor:g1/lli01) = on

POLICY P5:
DENY action_command = on and action_device = g1/water_valve
ONLY IF value(sensor:g1/lli01) = on

Scenario #3 - Ruining the Batch. This scenario is based on the requirement
which warrants that water will be added to the mixture only after compounds
1 and 2 have been poured. If the metal block is placed in the furnace containing
water, that batch will be considered as ruined. This situation can happen in
our testbed when for some reason (e.g., ts01) water valve opens before mixing
robot is activated in an iteration. PatrIoT uses the following policy to avoid
this situation. The policy “allows activating the mixing robot only if since the
last time it was activated, water valve has not been opened”.

Listing 1.3. policy language Policy P1 to address conveyor belt blockage

POLICY P6:
ALLOW action_command = on and action_device = g1/mixing_robot
ONLY IF LASTLY(SINCE(state(unit:g1/mixing_robot) = off, state(unit:g1/water_valve) =

off))

SmartThings and OpenHAB

Testbeds. To perform our evaluation on the smart-home platforms we built two
testbeds for SmartThings and OpenHAB in which we leveraged 48 IoT devices
for our setup [6].
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In order to setup the testbed for OpenHAB, we deployed OpenHAB 2.4 [5] on
a Raspberry Pi 3 Model B+ and created our virtual devices inside the platform.
Virtual devices in OpenHAB can be controlled and monitored via a web-based
interfaced provided by the platform. For SmartThings, we used SmartThings
web-based IDE to create these virtual devices. In order to control and monitor
the status of these devices, SmartThings provides a companion mobile app, so-
called SmartThings, which we used for this experiment.

IoT Apps. For our experiment, we used 122 SmartApps for SmartThings and 20
rules for OpenHAB which we collected from SmartThings official repository [8],
IoTBench [16], and the developer community forums. All rules have been man-
ually investigated to establish the ground-truth and understand their semantics
and intentions. Unlike static analysis approaches, PatrIoT provides runtime
protection; therefore, to evaluate its effectiveness, all these rules need to be exe-
cuted in different scenarios and through the pre-established ground-truth one
should validate whether PatrIoT can maintain user-specified policies.

Policies. In our experiment, we used 33 policies which are listed in Table 3.
These policies are specified after studying the literature and acquiring the nec-
essary knowledge by manually investigating the rules. Although the English
description of these policies are provided for exposition, the policy language
representation of these policies can be found in [6]. Table 3 also shows the main
goal of each policy. For instance, P1 restricts sending SMS by the rules to only
those that the user expects to do so. In that case, all other apps trying to send
SMS, whether maliciously or not, will be blocked by the policy. This policy aims
to protect the user against any privacy violation. Policy P27 also protects the
expensive appliances (e.g., water pump) from any damage that might be caused
by repeatedly turning them on and off which can be as a result of a loop of
actions because of a semantic bug or a malicious intent.

In order to evaluate the effectiveness of PatrIoT we created three sample
scenarios to illustrate that the specified policies are maintained by the system
at runtime.

– Privacy. In this scenario, the main focus is on Policies P1 and P2. Given
these policies, PatrIoT only allowed user’s authorized apps to send SMS
while denying the action for other apps. For instance, a malicious app pre-
tending to strobe the alarm when CO2 is detected while maliciously sending
an advertisement before strobing the alarm. However, PatrIoT is able to
successfully block that advertisement by sms at runtime.

– Overprivilege. This scenario mainly focuses on Policies such as P3 and P14
and PatrIoT only allowed the authorized apps to unlock the door and open
the garage. Those malicious apps such as the one that monitors the battery
level of the lock but sneakily detects that nobody is at home and then unlocks
the door, are successfully blocked.

– Interplay. The focus of this scenarios is on Policies that can protect users
from some hidden- unwanted actions such as P5. Based on fire-sprinkler app
and dry-the-wetspot app, actions might interfere and as a result water valve
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gets closed while there is still fire to contain. Given the policy PatrIoT
successfully blocked unwanted closing of water valve.

6.2 Efficiency

In order to measure the runtime overhead of PatrIoT incurred on EVA ICS,
SmartThings, and OpenHAB, we calculate the computation time of executing
each automation unit with and without PatrIoT in place and then compare them
to each other. Figure 3 illustrates the runtime overhead incurred by PatrIoT
in different platforms, which is on average 8.96%, 9.44%, and 11.52% for EVA
ICS, OpenHAB, and SmartThings, respectively. This runtime overhead depends
on: (i) the number of actions happening at the same time; (ii) the complexity of
the policies related to an impending action; and (iii) synchronization mechanism
support for a platform. To have a fair evaluation, we carefully established our
testbeds to closely reflect real-world IoT setups. For the application we had,
although this overhead is acceptable, this could be an interesting future work to
discover tighter overhead threshold for different applications. Figure 4 also shows
the portion of the PatrIoT overhead incurred by locking mechanism. Among
these platforms, SmartThings has the most locking overhead since it uses our
external https-based lock manager. The locking overhead can be reduced, if we
have native synchronization support form SmartThings.

7 Related Work

Prior efforts in IoT security are broadly focused on devices [10,23,27,31,33,38],
communication and authentication protocols [25,34,42,43]. There are significant
efforts focusing on unexpected behavior on programmable IoT systems [9,17–
21,24,26,28–30,32,37,40,44], which is also the focus of this paper. Broadly
speaking, there are two main approaches to address this issue: static and run-
time monitoring approaches. The static approaches [17,20,24,30,37] are mostly
pre-deployment techniques used for either: (i) further investigation like taint
analysis to find out how private data is consumed by the apps (i.e., whether or
not there is any unwanted operation performed on the data); (ii) verifying that it
satisfies a set of properties described as its correct behavior; or (iii) rectification
aiming to fix mistakes in writing the trigger-action rules in it. Runtime mon-
itoring based approaches, on the other hand, aim to provide post-deployment
solutions to prevent unsafe/undesired operations at runtime [18,28,41]. These
prior efforts, however, either require human intervention or cannot support rich
temporal policies. Extensive work has been done in developing efficient run-
time monitors using different types of logic [12–15,22,35,36]. Prior works on
IoT security, however, have not leveraged these rich policy languages and do
not take advantage of the developments in the runtime verification community.
Apart from these works, there have been efforts repairing or synthesizing rules
based on given properties [44] to make sure IoT apps behave as expected.
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Fig. 3. Runtime overhead (in millisec-
onds) incurred by PatrIoT because of
the instrumentation.

Fig. 4. Runtime overhead (in millisec-
onds) incurred by PatrIoT’s synchro-
nization mechanism.

8 Discussion

PatrIoT Policy Expressiveness. In contrast to existing IoT policy lan-
guages [18,28,41], PatrIoT policies have a formal semantics, are more expres-
sive, and can specify existing IoT policies in the literature. With respect to
MFOTL, however, PatrIoT policies neither support quantification nor arbi-
trary function symbols. Although such restrictions consciously limit the expres-
sive power of the language to applicable to general policies, they are not only
necessary for efficient monitoring but also sufficient to express existing IoT
policies.

Authoring PatrIOT Policies. For PatrIoT’s effectiveness, it is crucial for the
users to be able to write the correct and consistent policies. To be practically
deployable, one would require to consider the usability of the language as well as
tool support for identifying inconsistent policies. To limit the scope of this paper,
we focus on the technical foundations of PatrIoT and considering deployment
issues are subjects of future work.

Extending PatrIoT Applicability. Current instantiation of PatrIoT
assumes a centralized IoT architecture. However, one can envision extending
PatrIoT for decentralized IoT architectures. For this extension, however, one
would require the decomposition of global policies into local policies that are to
be enforced on the IoT devices themselves. Additionally, the device-centric policy
enforcement mechanisms would need to communicate to ensure the consistency
of the global system and policy states. This is a subject of future work.

Performance Overhead of PatrIoT. We observed that PatrIoT on-average
incurs <100 ms of runtime overhead in systems whose app programming interface
have native support for synchronization mechanism (e.g., mutex). For Samsung
SmartThings, PatrIoT on-average induces an overhead of 248 ms of which 48%
is due to its web-based locking mechanism. Such overheads are tolerable in a non-
safety-critical system such as a home automation system. For real-time systems,
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however, this overhead needs to be decreased. One possible solution to this high
overhead is to realize PatrIoT by incorporating it in the back-end.

Limitation. Currently, PatrIoT can only regulate actions contemplated by IoT
apps. Actions triggered by third-party service (e.g., IFTTT) or user interaction
with the companion mobile app cannot be regulated by PatrIoT. To mitigate
this limitation, one would require installing PatrIoT in the backend. Installing
PatrIoT in the backend may require app instrumentation for collecting context
information. Extending PatrIoT with such support is future work.

9 Conclusion

We presented PatrIoT, a runtime monitor that dynamically ensures that actions
performed by IoT apps installed in an IoT system do not violate desired policies
crucial for assuring the security, privacy, and safety of the users and system.
To express policies, PatrIoT provides a platform-independent policy language
policy language that can effectively capture system invariants as well as different
temporal behaviors including explicit timing restrictions and counting operator.
For compliance checking, PatrIoT uses an existing, efficient dynamic program-
ming algorithm which encodes the relevant information in the system’s execution
history into summary structures that can be quickly looked up during policy
checking. Finally, we evaluated PatrIoT’s generality, efficacy, and efficiency by
instantiating it for three popular open-source IoT platforms We tested 33 poli-
cies against 122 SmartThings, 10 policies against 20 OpenHAB, and 6 policies
against 8 EVA ICS automation units. The performance overhead induced by
PatrIoT is as low as 248 ms for SmartThings, 89 ms for OpenHAB, and 73 ms
for EVA ICS, demonstrating the efficiency of our proposed framework.
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Abstract. Urban driving simulators, such as CARLA, provide 3-D envi-
ronments and useful tools to easily simulate sensorimotor control systems
in scenarios with complex multi-agent dynamics. This enables the design
exploration at the early system development stages, reducing high infras-
tructure costs and high risks. However, due to the high-dimensional input
and state spaces of closed-loop autonomous driving systems, their testing
and verification is very challenging and it has not yet taken advantage
of the recent developments in theory and tools for runtime verification.
We show here how to integrate the recently introduced rtamt library, for
runtime verification of STL (Signal Temporal Logic) specifications, with
the CARLA simulator. Finally, we also present the obtained results from
monitoring quantitatively interesting requirements for an experimental
Adaptive Cruise Control system tested in CARLA.

Keywords: Autonomous driving · Simulation · Signal Temporal
Logic · Runtime verification

1 Introduction

Controllers design for autonomous driving systems is based, to a large extent, on
high-fidelity simulators, such as CARLA [7], for their validation in urban driv-
ing scenarios with traffic intersections, pedestrians, street signs, street lights
etc. CARLA is a versatile simulator that supports multiple approaches of
autonomous driving, including a system decomposition into perception, plan-
ning and control, as well as the training of autonomous systems with machine
learning (ML) components. CARLA is continuously developed towards a richer
set of environment models, driving scenarios and ML use cases, but little is
done for providing adequate means of model evaluation. CARLA and similar
simulators, in their basic configuration, can export simulation traces to be fur-
ther post-processed. However, this is not enough to effectively validate simulated
systems.

Recent advances in runtime verification render it a promising perspective, for
a multitude of reasons. First, closed-loop reachability analysis of control systems
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is characterized by theoretical limitations [1], which render them inapplicable
to real-scale industrial problems [9]. Second, runtime verification of simulation
traces allows validating systems in realistic urban driving scenarios with complex
dynamics between the traffic agents and the environment. Third, the runtime
verification of STL (Signal Temporal Logic) properties [11] enables systematic
design space exploration (e.g. through property falsification and parameter syn-
thesis) [4]. These analysis capabilities also open prospects for testing and veri-
fying the robustness of autonomous driving systems with ML components.

We present here the first step towards this perspective, i.e. the runtime verifi-
cation of STL properties for autonomous driving systems in CARLA. Specifically,
we have extended CARLA by integrating the rtamt library [12], for online run-
time verification of STL properties. rtamt supports the qualitative and quantita-
tive (property robustness) verification of STL specifications. This new tool com-
bination allowed (i) the design space exploration of an Adaptive Cruise Control
(ACC) system, with respect to various PID (proportional-integral-derivative)
control parameters and (ii) the quantitative verification of performance require-
ments that are necessary for an ACC system [14]. Our experimentation with the
CARLA model took place on a set of diversified scenarios, which guarantee that
the ACC system is effectively validated under realistic urban driving conditions.

Section 2 presents the CARLA simulator, its configuration and integration
with the rtamt library. Section 3 discusses the experimental results from our
ACC system. In Sect. 4, we review the related work and in the last section we
summarize the achievements and the future research prospects.

2 Online Runtime Verification of STL Properties
in CARLA

CARLA is a driving simulation environment [7] built on top of the Unreal Engine
4 game engine. It features a variety of digital assets for urban driving scenar-
ios, including a sensor suite, various actors placed/moving on the map and the
capability to control them, as well as the simulated environmental conditions.

A simulation is composed of: (i) the CARLA Simulator that computes the
physics and renders the scene and all actor properties, (ii) client scripts written
using a Python API, to spawn actors, attach sensors to them and, then, retrieve
the sensor data, process them and compute the parameters needed by the con-
troller (throttle, brake and steering). Computed values are then sent back to
CARLA Simulator, thus forming an ever-running client-server interaction loop.

A client script consists of two parts:

– In the first part, connection with the CARLA Simulator is established, sensors
are attached to the controlled vehicles and the actors of the simulated scenario
are spawned or destroyed.

– The second part (Fig. 1a) contains the control algorithm and the client-server
interaction loop. The client retrieves the simulated world (get world()) and
the sensor signals, and then responds (via the carla.VehicleControl object)
with the vehicle control signals that are subsequently applied to the Vehicle
object (method apply control()).
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The simulated world, maintained by the server, has its own clock and time. The
time-step can be fixed or variable depending on the user preferences. CARLA
runs, by default, in asynchronous mode: the server runs the simulation, without
waiting for the client, which receives sensor data via a callback function that
is called whenever there is new sensor data. In synchronous mode, the client
imposes total control over the simulation and its information: the server waits
for a client tick (world.tick()), before updating to the next simulation step.

Fig. 1. CARLA (a) main simulation loop, and (b) online monitoring

The time-step duration affects the computation of physics. As time progresses
and more variables are involved, the simulation may become imprecise. There-
fore, physics must be computed within time-steps not greater than 0.1 sec. An
important consideration is the reproducibility of simulation scenarios. This is
achieved using functions of the Python API that enable and stop a simulation
recorder. Then, the obtained file can be playback.

To inspect the actor behavior (e.g. location, velocity, acceleration), there are
client functions to access values at the latest tick. If the simulation runs in syn-
chronous mode (Fig. 1a), data is stored in signals and it is reliable. For online
monitoring (Fig. 1b), we use the synchronous mode with fixed time-step, ensur-
ing that the simulation time and physics will be in synchrony and the sensed
signals are reliable. There are, however, challenges regarding the properties that
can be monitored, since online monitoring is restricted to a single pass through
the simulation trace. To assess the performance of closed-loop autonomous sys-
tems, we need to be able to determine the satisfaction/violation of a property
specification based on a robustness degree function, i.e. a means to indicate how
far is the monitored trace from satisfying or violating a specification. This allows
to interpret the performance of the system design under various parameters, sce-
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nario events (e.g. street signs) and environment perturbations, as opposed to the
binary pass/fail answer of qualitative verification, which is not very informative.

We rely on the rtamt library [12] that generates online robustness monitors
from bounded-future STL specifications [4,11] that can express temporal proper-
ties for continuous signals. Monitoring takes place through evaluating the (equiv-
alent) past STL specification, according to its quantitative semantics, interpreted
in discrete or dense time [6]. For a signal given as a sequence of (time, value)
pairs, rtamt computes at different instants how far is the signal from satisfying
or violating the property. When using discrete-time monitors, sensing of inputs
and output generation are done at a periodic rate, whereas dense-time monitors
compute the min and max of a numeric sequence over a sliding window.

Fig. 2. STL runtime verification of CARLA simulations with the rtamt library

Figure 2 shows how an rtamt monitor is integrated with a CARLA simula-
tion in synchronous mode and fixed time-step. The (time, value(s)) pairs with
data, for every car with the autonomous system enabled, are stored by the client
at each step. This requires monitoring events, like that the host (ego) vehicle
is behind another car. If these conditions hold true, the monitor’s update func-
tion computes the robustness measures from the signals. This is a non-intrusive
solution, since all computations take place, while the simulated time is frozen.

3 Experimental Results for an ACC System

3.1 An Experimental ACC System

ACC systems extend the functionality of conventional cruise control systems by
the capability to adjust the host vehicle’s velocity and assuring a safety distance
to the preceding vehicle through controlling its throttle and/or brake. A key
part of ACC is the range sensor, which is used to measure the distance from the
preceding vehicle. We use the CARLA obstacle detector that detects obstacles,
including vehicles, located within a specified distance from the host vehicle,
towards its traveling direction. The ACC system of the host vehicle is enabled,
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when the preceding vehicle is too close (distance below a fixed threshold r) or
if it is moving slowly. In this case, the ACC controls the throttle and the brake,
in order to keep the distance higher or equal to the safety distance, which is
dynamically calculated, as in Definition 1. In the absence of a preceding vehicle,
the velocity of the host vehicle is controlled by the CARLA server.

Definition 1. [13] A longitudinal distance between a car ch that drives behind
another car cp, where both cars are driving at the same direction, is safe w.r.t.
a response time ρ, if for any braking of at most abrakemax

, performed by cp, if
ch will accelerate by at most aaccelmax

during the response time, and from there
on will brake by at least abrakemin

until a full stop, then it won’t collide with cp.

Let vh, vp be the longitudinal velocities of the cars. Then, the safe longitudinal
distance between ch and cp is ([x]+ := max{x, 0}):

SD =

[
vh · ρ +

1
2
aaccelmax

· ρ2 +
(vh + ρ · aaccelmax

)2

2 · abrakemin

− v2
p

2 · abrakemax

]
+

In our case, ρ is equal to the time elapsed between two simulation steps, since
we the simulation runs in synchronous mode this is fixed and set to 0.05 s.

For aaccelmax
, abrakemin

and abrakemax
we parameterized the simulation model

using values from vehicle specifications by car manufacturers. The values used
are: aaccelmax

= 5.4m/sec2, abrakemin = 2.9m/sec2, abrakemax = 9.8m/sec2.
The ultimate aim of ACC is to allow the host vehicle traveling with a velocity

vh at most equal to vp, lower than the road speed limit (imposed by CARLA),
while minimizing the distance d from the preceding vehicle, without violating
SD. The available time, before the two vehicles get closer than SD is:

timesafe =
d − SD

vh − vp

Thus, the target velocity vtar and target acceleration atar for the host vehicle to
have in next simulation sample (time-step) are:

atar =
min{vp, speedlimit} − vh

timesafe

vtar = vh + ρ · atar

Fig. 3. PID controller for the ACC system
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The ACC function is driven by the PID controller of Fig. 3, which computes
the needed throttle and brake based on vtar and the actual velocity (vh). The PID
controller continuously calculates an error value e(t), as the difference between
the desired set point (in our case vtar) and a measured process variable (vh), and
applies a correction based on three terms, namely the proportional, the integral,
and the derivative (denoted respectively by P, I and D). In practice, the PID
controller applies a responsive correction to the controlled function.

3.2 Design Space Exploration w.r.t. PID Parameters

When designing a PID controller, it is important to understand how to improve
the system’s performance. As a rule of thumb, by increasing the proportional
gain (KP ) we achieve a proportional increase of the control signal for the same
level of e(t). In this way, the system reacts more quickly, but it tends to exceed
its target more (overshoot). The parameter of derivative control (KD) affects
the capability of damping, which is important to decrease overshoot. The value
of integral parameter (KI) affects the capability to limit the steady error, but
the system may become more sluggish and oscillatory, if it is not properly tuned.

Our runtime verification approach can help to adjust the gains KP , KI , and
KD with the aim to eventually achieve a satisfactory overall response. We present
here the experimental results obtained for two different sets of parameter values:

KPA
= 1, KIA = 1, KDA

= 0.0005
KPB

= 2, KIB = 0.01, KDB
= 0.4

Since the primary aim of the ACC system is to keep the safe distance from the
preceding vehicle, we evaluate the requirement,

R := d − SD > 0

in order to find the parameter set that seems to be more appropriate. For the
runtime verification of R and for all other experiments that are reported hence-
forward, we employed the rtamt library to generate discrete-time monitors that
were integrated with the CARLA simulation of our ACC system.

Figure 4 shows the robustness of R, when monitoring similar driving scenarios
with the two mentioned sets of parameters (A and B). These scenarios refer to the
route of two cars moving one behind the other in the CARLA urban environment
with junctions, stop signs and traffic lights. While following the same route, the
scenarios differ slightly with respect to the duration of the red traffic lights.

In Fig. 4a, no robustness value is shown in specific simulation steps, when
the preceding vehicle was too far and the ACC of the host vehicle was disabled.
For parameters KPA

,KIA ,KDA
, R is strongly violated, when the cars stop at

the second traffic light, and it is violated, for more than 300 steps, while waiting
for the green traffic light. For KPB

,KIB ,KDB
(Fig. 4b), R is slightly violated at

the same instant, but the system adjusts quickly and the host vehicle stops at
the traffic light maintaining the safety distance. By simulating more similar sce-
narios, we found that R is violated for KPA

,KIA ,KDA
at the second traffic light
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Fig. 4. Robustness of R for (a) KPA ,KIA ,KDA and (b) KPB ,KIB ,KDB

and every next time the vehicles stop for a long period. The problem vanishes
for KPB

,KIB ,KDB
that was chosen for the experiments reported hereafter.

A more detailed view of the same scenario, extended by additional steps, is
shown in Fig. 5. These graphs show the distance between the two vehicles and
how it compares with the safety distance (Fig. 5a), and their velocities (Fig. 5b).
We observe that in a stop signal, the host car stops when the preceding has
already left and similarly in a traffic light, the vehicles stop and start moving
with a time difference. In Fig. 5a, we see that d gets closer to SD, as the PID
controller adjusts by using more historic data.
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Fig. 5. Distance (a) between host and preceding vehicle and (b) their velocities

3.3 Requirements for an ACC System

According to [14], any ACC system has to fulfill the following performance
requirements, in order to be used in public roads:

R1. Relative difference vp−vh should not be too high, except when the preceding
vehicle is out of range or the host vehicle has decelerated, due to a stop signal
or a red traffic light, while the preceding vehicle is moving ahead.

R2. Acceleration of the host vehicle (ah) must be greater than or equal to G,
except if the preceding vehicle’s acceleration (ap) is less than this limit,

G := −0.25 · Thw + 1
m

with m the vehicle’s mass and Thw a constant time headway, i.e. the distance
between the two vehicles in time expressing the degree to which the safety
distance varies proportionally to the vehicles velocity (spacing policy).

The STL property for the first mentioned requirement is:

R1 := vp − vh < c ∨ d > r ∨ stoppedh
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Fig. 6. Robustness of requirement (a) R1 and (b) R2

where c is a threshold for the relative difference between velocities, r is the
distance threshold under which the ACC system is enabled and stoppedh is
true, when the host vehicle decelerates, due to a stop signal or a red traffic
light. We set the threshold for the difference between the velocities c = 1.5m/s.

The STL property for the R2 requirement is (�− is the historically operator):

R2 := ah ≥ G ∨ �− [0:t]ap < G

where [0 : t] is the time interval for the host vehicle to adjust its acceleration
back to normal, after an extreme deceleration of the preceding vehicle.

Figure 6a shows the robustness of R1 for the scenario of Sect. 3.2. We observe
violations after stop signals and green traffic lights. In stop signals, when the
host vehicle stops, the preceding has already moved ahead, causing an excessive
difference in velocities. When a traffic light turns to green, the host vehicle needs
more steps to start accelerating and the velocities difference is also increased.
These performance perturbations, due to usual driving incidents, do not invali-
date our system. R1 is satisfied and robustness raises as time proceeds, showing
that the ACC adjusts to acceleration changes of the preceding vehicle.
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Figure 6b shows the robustness of R2 for the same scenario. In this experi-
ment, we have set Thw = 1.5 s, t = 3 and m = 1200 kg (mass of “Seat Leon”
that is the host vehicle in our experiments). The ACC fulfills the requirement,
although the robustness in some steps is low (host vehicle’s acceleration is close
to G). By increasing/decreasing Thw we could find the lowest time headway that
still fulfills R2 or a higher time headway, for which the robustness is increased.

4 Related Work

In contrast with other systems, automotive control systems exhibit complex
behaviors that are difficult to anticipate at design time. Their performance
requirements typically arise out of test driving scenarios.

The VerifAI toolkit [8] analyzes simulation traces (also from CARLA) of
systems with ML components. It has a wider scope from our work, aiming to
address the absence of specifications for perception components, the analysis of
ML components and environment modeling (e.g. distribution assumptions made
by ML components). It works through offline monitoring system-level properties
in Metric Temporal Logic (MTL) [2]. Monitors can output falsifying traces and
a feedback to direct sampling to find falsifying scenarios. Such an analysis may
be also possible in our case, since rtamt can be easily used for offline monitoring.

Through simulation-based analysis, we can also identify behaviours that can
be then captured as requirements. In [10], a set of automotive behavior classes
is identified that control engineers typically want to avoid (ringing, excessive
overshoot, slow response time, steady state error etc.) and a library of signal
templates for STL is proposed, such that it will be easier to specify STL require-
ments that exclude them. These requirements are easier to be checked over simu-
lation traces produced by a Simulink model of the system under design, whereas
for our ACC requirements (adopted from [14]) in Sect. 3.3, we advocate their
validation over realistic driving scenarios generated by CARLA.

Worth to mention are the S-TaLiRo [3] and Breach [5] tools, for sensitiv-
ity analysis and falsification testing over Simulink traces. Sensitivity analysis
of model robustness to STL requirements is based on uniformly varying model
parameters, whereas falsification looks for an input signal that violates a require-
ment. Another interesting prospect is the requirements-driven testing [15].

5 Conclusion and Future Research Prospects

We presented an approach for integrating CARLA simulations with runtime
monitors generated by the rtamt library1. Our proposal enables the validation
of autonomous driving control by online monitoring STL specifications over real-
istic driving scenarios. We believe that this is a means for design space explo-
ration and has the potential to uncover undesired behaviours or check important

1 The CARLA client scripts for our ACC system with the integrated rtamt monitors
can be accessed online at http://depend.csd.auth.gr/software/carla.

http://depend.csd.auth.gr/software/carla
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performance requirements. We showed the results from applying our approach,
in order to find appropriate parameters for the PID control of an experimental
ACC system and for checking it against important performance requirements.

Our work is a first step towards additional contributions that will allow
testing and verification of autonomous driving systems with ML components.
CARLA already supports the simulation of such systems, but we need to fur-
ther develop our approach towards automating property falsification, parameter
synthesis, sensitivity analysis and systematic scenario testing.
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Abstract. We present an implementation of SOTER, a run-time assur-
ance framework for building safe distributed mobile robotic (DMR) sys-
tems, on top of the Robot Operating System (ROS). The safety of
DMR systems cannot always be guaranteed at design time, especially
when complex, off-the-shelf components are used that cannot be veri-
fied easily. SOTER addresses this by providing a language-based app-
roach for run-time assurance for DMR systems. SOTER implements
the reactive robotic software using the language P, a domain-specific
language designed for implementing asynchronous event-driven systems,
along with an integrated run-time assurance system that allows program-
mers to use unfortified components but still provide safety guarantees.
We describe an implementation of SOTER for ROS and demonstrate
its efficacy using a multi-robot surveillance case study, with multiple
run-time assurance modules. Through rigorous simulation, we show that
SOTER enabled systems ensure safety, even when using unknown and
untrusted components.

Keywords: Distributed mobile robotics · Autonomous systems ·
Runtime assurance

1 Introduction

The design of runtime monitoring components has become an integral part of
the development process of distributed mobile robotic (DMR) systems. Runtime
monitoring is essential for maintaining situational awareness, assessing the health
of a robot, and most importantly for detecting any irregularities at runtime and
consequently deploying the necessary countermeasures when such irregularities
occur. The growing complexity of DMR systems, along with the utilization of
uncertified off-the-shelf components and complex machine-learning models that
are difficult to verify at design time, has made runtime assurance a crucial com-
ponent for building robust DMR systems [15].
c© Springer Nature Switzerland AG 2020
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Fig. 1. RTA module in SOTER.

In this paper, we present an implementation of SOTER [2], a runtime assur-
ance framework for building safe distributed mobile robotics, on top of the Robot
Operating System (ROS)1. In SOTER, components of a DMR system are defined
as runtime assurance (RTA) modules implementing a Simplex architecture [16].
An RTA module based on Simplex (see Fig. 1) consists of two controllers, an
advanced controller (AC) and a safe controller (SC), and a decision module
that implements a switching logic between the AC and SC. The AC is used
for operating the system under nominal circumstances. This is usually an opti-
mized controller based on advanced heuristics or complex learning-enabled com-
ponents such as machine-learning-based perception modules. This makes it hard
to provide any guarantees on the behavior of the AC, especially, when it is an
off-the-shelf component that cannot be verified at design time. To, nevertheless,
guarantee the safety of a system using such controllers, the system can always
default to a certified back-up controller, the SC, that takes over operating the
system when anomalies in the behavior of the AC are detected. For example, the
SC could be based only on reliable sensors that navigate a robot to a safe state.
The detection of faulty behavior is guaranteed by the decision module, which
is a certified monitor that observes the state of the robot. The decision module
decides whether it is necessary to switch from the AC to the SC to keep the robot
in a safe state and when to switch back to the AC to utilize the high performance
of the AC to optimally achieve the objectives of the robot. In DMR systems,
components within the robot as well as any systems connected to the robot are
communicating asynchronously. In SOTER, the various robot components are
implemented as asynchronously communicating RTA modules. This is realized
by implementing the modules in the language P [3], a verifiable programming
language designed for writing asynchronous event-driven code, which can be

1 https://www.ros.org.

https://www.ros.org
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compiled down to code executable on platforms such as widely used platforms
as the Robot Operating System (ROS).

The implementation of SOTER presented in this paper maintains a simi-
lar approach to implementing the robot components as RTA modules with the
following new extensions:

– A refactorization of SOTER to support portability onto various Robot SDK’s.
The refactorization separates the software stack implementing the robot from
the used robot SDK. Implemented in P, this allows us to provide a robot
implementation with formal guarantees on the behavior of the interacting
robot components. This also allows us to easily port this framework on to
other robot SDK’s.

– The refactorization also includes a separation between the implementation
of robot’s RTA modules’ logic and the actual AC and SC implementations
used in these RTA modules. This allows us, in a plug-and-play fashion, to
easily link the calls of the AC’s and SC’s in the RTA modules to external
implementations of the controllers.

– A concrete integration of the SOTER framework onto widely used robot SDK
ROS. We provide an implementation of a software interface that implements
the communication with the ROS SDK. Integration onto other robot SDK’s
can be done in a similar way.

The implementation of the framework, details and videos on the examples
presented in Sect. 3, and a guideline for using the framework can be found on the
following website https://github.com/Drona-Org/SOTERonROS. This includes
instructions on how to execute the examples presented in the paper.

2 Architecture of SOTER on ROS

In this section, we outline the architecture of the new implementation of the
SOTER framework. The framework borrows from the Drona framework [4] and
is similarly comprised of three layers. The application layer, the robot soft-
ware stack, and the robot SDK. The application layer implements an application
related task planner that is responsible for computing application related tasks
and distributing them amongst the robots for execution. The software stack of
each robot consists of an interface to establish the communication with task
planner, a motion planner, and a plan executor, in addition to a set of decision
modules. In contrast to the Drona framework, the motion planner and the plan
executor are implemented as RTA modules that are linked to one of the decision
modules and to implementations of their safe and advanced controllers.

The implementation of the monitors used by the decision modules, and also
the implementation of the safe and advanced controllers for both the motion
planner and the plan executor are provided as C++ modules in a separate library.
The library also plays the role of the interface which abstracts away many of the
underlying details needed for the robot SDK, and make them accessible to the
modules in the software stack as well as to the task planner.

https://github.com/Drona-Org/SOTERonROS
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Fig. 2. SOTER framework architecture.

In the following, we give some details on the implementation of each of the
three layers and the integration into robot SDK’s such as ROS. We use a robot
surveillance application to elaborate on some of the implementation details.

Task Planner. A task planner is implemented specifically for a certain applica-
tion. For example, a task planner for a surveillance application computes certain
way-points on the map that should be visited by the robots. A task planner
in our framework is implemented as a state machine in the language P [3].
This allows asynchronous communication between the task planner and P state
machines defining the robots. A state machine in P has its own event queue on
which it receives events published by other machines that communicate with this
machine. The task planner can send events defining tasks to the queues of the
robot machines for execution. In its initial state, the task planner state machine,
spawns a number of robots to execute application related tasks. After initializing
the robots, the task planner computes the tasks to be executed and publishes
the tasks to the event queues of the different robots.

Robot Software Stack. The software stack consists of three predefined P state
machines, the robot machine, the motion planner, and the plan executor, in
addition to other application-dependent P state machine defining the decision
modules used by the motion planner and the plan executor. When the task
planner spawns a robot, a new software stack is setup with a new robot machine,
motion planner, plan executor and all the decision modules, In the following, we
provide some details on the state machines defining the robot machine, motion
planner, and plan executor. All implementations can be found on the frameworks
webpage under the software stack directory.

The robot machine serves as the interface between the task planner and the
motion planner of a robot. The tasks assigned by the task planner are queued
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in the event queue of the robot machine. When an event is received, the robot
machines processes the event and forwards the event to the queue of the motion
planner. For each task, processed and sent by the robot machine, the motion
planner computes a plan to execute this task. For example, in the robot surveil-
lance application, the tasks are destinations the need to be visited and the plan
would be a series of way-points to reach each destination. The state machine pro-
cesses the tasks one by one. For each task a plan is computed and then sent to the
plan executor. A plan for the next task is only computed after the plan execu-
tor informs the motion planner that the plan has been executed. The motion
planner state machine is defined as an RTA module. Depending on the decisions
made by the associated decision module, the plan is computed by an advanced
or safe planner. Computing the plan can be done by calling external functions
for the safe and advanced controllers, for example, using functions from motion
planning libraries such as the Open Motion Planning Library (OMPL) [17].

When a plan is computed, it is forwarded to the plan executor. The plan
executor is a state machine that implements another RTA module. For each
step of the plan, the plan executor consults a decision module on what type of
controller to use. For example, in the surveillance application, if a step is leading
to a collision with another robot, the plan executor will use a safe controller
to guide the robot around the other robot. If the battery level is low, the safe
controller might decide to first go to the charging station before going to the next
point given by the plan. When the plan is executed, the plan executor informs
the motion planner and waits for the next plan to be sent by the motion planner.

ROS Integration. The software stack is built on top of a software interface given
as a library of C++ modules. The library contains all foreign functions that
implement the monitors for the decision modules and the safe and advanced
controller for the RTA modules. We chose C++ for writing the external func-
tion because P programs can be compiled in to C++ programs, which in turn
can compiled to ROS executables. To build the ROS executables, we used the
Catkin build system (http://wiki.ros.org/catkin/conceptual overview). Catkin
build system (popularly used for ROS projects) contains a source space where
programmers include their source code. We have modified it so that this source
space can support P files. This is done using the P compiler and Cmake to
compile the P programs into executables that can be run on ROS.

3 Case Studies

We present two case studies with multiple runtime assurance modules. We use
the case studies to show how to use SOTER on ROS framework to build safe
robotics that provide safety guarantees while maintaining performance, and to
demonstrate the re-usability of the framework on a variety of robotics applica-
tions. In SOTER, application task planners, the Cpp module layer, and their
RTA modules, need to be implemented independently for each application. The
software stack in SOTER on ROS is largely reusable for many applications. The
implementation and videos of these case studies can be found on https://github.
com/Drona-Org/SOTERonROS.

http://wiki.ros.org/catkin/conceptual_overview
https://github.com/Drona-Org/SOTERonROS
https://github.com/Drona-Org/SOTERonROS
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Fig. 3. Application level code for Drone Surveillance Protocol. This is a simplified
version of the task planner. For the full P state machine we refer the reader to the
surveillance application directory on the frameworks webpage.

3.1 Drone Surveillance Protocol

The Drone Surveillance Protocol case study demonstrates how to develop a
SOTER on ROS application. In this case study, there is a single drone explor-
ing a 5 × 5 grid with 4 walls on the boundaries of the workspace. The goal of
the drone is to explore the workspace (visit a series of locations), while ensur-
ing the drone does not collide with the walls. To implement the case study,
the programmer must first implement the application level goals in the task
planner, which is implemented as a P state machine. The task planner, as
depicted in Fig. 3, consists of two states, the initialization state (Init) and
the surveillance state (StartSurveillance). The former is used to initialize
the relevant workspace information and the robots within the application. The
surveillance state is used to send destination information to the different robots,
which in the case of the machine in Fig. 3 is done in the order of the robot’s
id’s. Here, DestinationsEvent is the event queued into the robot machine, and
destinations is the corresponding payload of the event.

The P state machine implementing the robot machine in the drone’s soft-
ware stack is responsible for setting up communication with the drone’s own
motion planner, and initializing with ROS, which is done using a foreign function
RobotROSSetup() that the programmer implements to connect the P machine
with its ROS node. The robot machine forwards the destination point from the
task planner to the motion planner, which then computes a series of way points
to reach that destination. In our case studies, we use the Open Motion Planning
Library’s motion planner [17], and make it accessible in P using a foreign func-
tion. Finally, these sequence of way points are sent to the drone’s plan executor,
that physically executes this plan on the drone. It does so, using a series of for-
eign functions from the C++ modules that implement the drone’s controllers,
which is provided by the programmer.

In our case study, the motion planner has no knowledge of the obstacles
present in the workspace. As a result, the drone occasionally visits points that
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are very close to the walls. In order to ensure the drone does not collide with the
walls, we construct a collision avoidance runtime assurance module. The RTA
module defining the plan executor guides the robot to visit a series of locations
across the workspace. The decision module monitors the location of the drone,
and specifically checks to see if the next way point is located in a problematic
location on the workspace. The decision module also has a parameter Δ, that
has the ability to look ahead to the next Δ way points of the drone’s current
motion plan and confirm none are in dangerous locations in the workspace. If
the decision module finds that the one of the next Δ way points bring the drone
too close to one of the walls, it transfers control to the safe controller. The safe
controller brings the drone back to safety in the middle of the workspace. The
decision module is able to perform this look ahead and return an answer in a
non-substantial amount of time (near instantaneous).

This decision module is implemented in the decision module P state machine,
where the programmer implements their decision logic to determine if the robot
is in a safe/unsafe state. The plan executor communicates with this decision
module machine to determined whether to execute the AC or the SC.

Fig. 4. Drone Surveillance Protocol. (Color figure online)

Figure 4 contains a snapshot of the simulation and the terminal used to run
our application. We execute our application by first launching our gazebo simu-
lator in one window (right) and executing the ROS executable (left). The ROS
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executable also displays application related information such as the controller
that is being used and the reason why the decision module decided to switch
to one of the controllers. We also demonstrate the effect of the Δ parameter of
the decision module in our case study. Increasing values of Δ cause the decision
module to look ahead further into the drone’s motion plan, and in turn makes
its behavior more conservative in how close the drone can fly near the walls.
Figure 4, compares the drone’s path with Δ = 1 in red and Δ = 2 in blue.

3.2 Robot Delivery

In the Robot Delivery case study, we demonstrate the ability to have multiple
robots running asynchronously using decision modules over multiple monitors.
There are two robots (TurtleBot3) that explore a grid with static obstacles.
The goal of the robots is to randomly visit points on the grid indefinitely, while
avoiding the static obstacles. The task planner sends each robot randomized
empty destinations on the grids. Each robot has its own copy of the motion
planner and plan executor. The robot machine forwards destination information
to the motion planner, which in this case is the third party Open Motion Plan-
ning Library’s motion planner [17]. The motion planner computes way points to
reach this destination while avoiding the static obstacles of the workspace. The
motion planner also forwards the plan to the plan executor to execute. This pro-
cess occurs concurrently on both robots so multiple robots can simultaneously
navigate the workspace.

In this case study, we define a decision module with 3 different runtime
monitors: (1) Battery Safety, (2) Geo Fencing, and (3) Collision Avoidance.

The first monitor is battery safety, where we prioritize safely bringing the
robot to its charging station. Here our advanced controller is a node that com-
putes control information given the current motion plan and drives the robot to
the next way point in the plan. The safe controller is a certified planner that
safely brings the robot to its corresponding charging station from its current
position. The decision module observes battery percentage at each way point to
ensure whether there is sufficient battery for executing the next Δ way points.

The geo-fencing monitor checks whether the robot moves outside of our 5×5
grid. The RTA using this monitor can then ensure that the robot does not
navigate to this region. Here our advanced controller is a node that computes
control information given the current motion plan and drives the robot to the
next way point in the plan. The safe controller prevents further execution of the
plan and skips to the next destination, ensuring the robot remains in the safe
region. The decision module observes the next Δ at each step, and determines
whether the current robot would eventually explore an unsafe region.

The third safety guarantee is collision avoidance. In the event that the two
robots are simultaneously trying to visit the same destination, we ensure that
a collision does not occur. The advanced controller executes the current motion
plan way point by way point. The safe controller has one of the robots wait
until the other finishes reaching the destination, and then proceeds. The decision
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module observes the next Δ way points of both robot, given their current location
and motion plan, and determines whether a collision is imminent.

In this case study, the decision module machine has 3 different aspects of the
robot it must monitor simultaneously. Each RTA module also has its own AC
and SC and each of the RTA modules must be composed to provide the desired
security guarantees. Hence, the decision module must have an implicit prioriti-
zation of the 3 monitors, to decide which safe controller the Plan executor must
run in the event multiple monitors report unsafe. In our case study, we priori-
tized the RTA modules in the following order: collision avoidance, geo-fencing,
and battery safety. The decision module is able to perform this monitoring task
and return an answer non-substantial time.

4 Related Work

There is a rich body of work on the design of runtime assurance components for
safety-critical systems [1,5–11,13]. Some of these works present language-based
approaches that instrument an implementation of a system to assure that cer-
tain executions are enforced to satisfy certain requirements, other approaches
combine design time techniques with runtime verification techniques to assure
that environment assumptions made at design time also hold at runtime [1]. For
black-box robotic systems, or robotic systems that include off-the-shelf machine-
learning-based components that are hard to verify at design time, Simplex-based
approaches like SOTER are more suitable. Frameworks based on the Simplex
(or Simplex-like) architecture include those presented in [9,11–13]. These frame-
works are however designed for single component systems, or wrap the entire
system using a single Simplex module, making the design of monitoring compo-
nents for a distributed setting extremely difficult and complicated. In compari-
son, with SOTER, we provide a framework for the design of Simplex-based RTA
modules for distributed robotic systems that builds on a formally verified robotic
software stack and is compatible with a variety of robot SDK’s. We also note
that decision modules in SOTER allow for a principled and safe way to switch
back from the safe controller to the advanced controller to keep performance
penalties to a minimum [2]; subsequently, an alternative approach for realizing
the reverse switching mechanism was presented by Phan et al. [12].

5 Outlook

With SOTER we presented a framework for building safe distributed robotics
with integrated runtime assurance modules. SOTER separates the implementa-
tion of the robot logic from the underlying robot SDK making it compatible with
many robotic platforms. For now combining multiple monitoring decisions of the
decision modules is still a manual step. For the future, we plan on providing a
systematic way to coordinate the different decisions. We also plan to integrate
the framework with a broader class of robotics platforms, planning tools, simu-
lators, and techniques such as introspective environment modeling [14].
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Abstract. Distributed systems are challenging for runtime verification.
Centralized specifications provide a global view of the system, but their
semantics requires totally-ordered observations, which are often unavail-
able in a distributed setting. Scalability is also problematic, especially
for online first-order monitors, which must be parallelized in practice to
handle high volume, high velocity data streams. We argue that scalable
online monitors must ingest events from multiple sources in parallel, and
we propose a general model for input to such monitors. Our model only
assumes a low-resolution global clock and allows for out-of-order events,
which makes it suitable for distributed systems. Based on this model,
we extend our existing monitoring framework, which slices a single event
stream into independently monitorable substreams. Our new framework
now slices multiple event streams in parallel. We prove our extension
correct and empirically show that the maximum monitoring latency sig-
nificantly improves when slicing is a bottleneck.

1 Introduction

Runtime verification (or monitoring) is a technique that verifies systems while
they run in their operational environment. It is realized using monitors, which are
programs that systematically validate a specification by searching for counterex-
amples in sequences of observations recorded during system execution. Online
monitors incrementally process the observations, which arrive as an unbounded
stream while the system is running [4].

The specification language used significantly influences the monitors’ effi-
ciency. Monitors for propositional languages are very efficient and can process
millions of observations per second [5,36,37]. However, these monitors are lim-
ited as they distinguish only a fixed, finite set of observations. The observa-
tions are often parameterized by values from (possibly) infinite domains, such
as IP addresses and user names. Propositional monitors cannot look for pat-
terns that take such parameters into account. In contrast, first-order moni-
tors [10,15,30,31,38,39,42] do not suffer from this limitation, but they must
be parallelized to reach the performance of propositional monitors [6,29,38–41].

In practice, even small IT systems are often built from many interacting
subsystems, which are distributed across multiple machines. When monitored,
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each subsystem provides information about its behavior as a separate obser-
vation sequence. Some approaches adopt specification languages that refer to
multiple observation sequences explicitly [21,33], or whose semantics is defined
on partially-ordered observations [35,43]. However, it is challenging to express
global system properties using such decentralized specification languages [25] as
they couple the system’s behavior with its distributed architecture. Moreover,
the specifications must be adapted whenever the system’s runtime architecture
changes, e.g., when the system is scaled up or down.

We instead focus on centralized specification languages [25] that provide
a global view of the distributed system. These languages abstract from the
system architecture and are thus resilient to its changes. However, central-
ized specifications often assume totally-ordered observations and without addi-
tional information, the multiple observation sequences obtained from distributed
systems induce only a partial order. Checking centralized specifications then
becomes intractable, since exponentially many compatible total orders must be
checked [8]. One therefore needs alternative solutions.

Some approaches opt for a global clock to tag every observation across every
subsystem with the time when it was made. A global clock abstracts over a col-
lection of local clocks used by each subsystem and synchronized using a clock
synchronization protocol like NTP [34]. A clock’s resolution is the number of its
increments in a time period. The global clock establishes the true total order of
observations if the local clocks have sufficient resolutions and are accurate [20]
up to a small-enough error. In practice, it is difficult to achieve both conditions
for distributed systems that provide observations at high rates [17]. Moreover,
even when the observations are totally ordered, they may be received by a mon-
itor in a different order. This can occur if the observations are transmitted over
unreliable channels where messages can be delayed, dropped, or reordered [11].

Finally, existing monitors for centralized specifications typically verify a sin-
gle observation sequence. This single-source design limits the monitors’ through-
put and thus their applicability to the online monitoring of large distributed
systems. In previous work, scalable monitors with more than one source have so
far been restricted to propositional [14,18] or decentralized specifications [23,33]
(Sect. 2).

In this paper we develop a multi-source monitoring framework for centralized
first-order specifications that takes multiple observation sequences as parallel
inputs. It extends our scalable monitoring framework [40,41], which parallelizes
the online monitoring of specifications expressed in Metric First-Order Temporal
Logic (MFOTL) [10]. The main idea behind the existing framework is to slice the
input stream into multiple substreams (Sect. 3). Each substream is monitored
independently and in parallel by a first-order (sub)monitor, treated as a black
box. When instantiated by a concrete submonitor, the framework becomes an
online monitor. However, the existing framework supports only a single source,
which hampers scalability. It also cannot handle partially-ordered observations,
which arise in distributed systems. We address both limitations in this work.
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Our new multi-source framework can be used to monitor distributed sys-
tems. The framework’s topology is independent of the system’s topology, and
the framework itself can be distributed. The notion of sources abstracts from
the nature of the observation’s origin. For example, each source could corre-
spond to an independent component of the monitored system, but it may also
be the result of aggregating other streams.

We require that all sources have access to a low-resolution global clock. Such
a clock must have sufficient resolution to decide whether the given specification is
satisfied, but it need not necessarily induce a total order on the observations. We
argue that global clocks cannot be avoided when monitoring metric specifications
as they refer to differences in real time. We account for the fact that observa-
tions may have the same creation time (according to the low-resolution clock)
and in such cases restrict the specification language to a fragment that guaran-
tees unambiguous verdicts [8]. Our multi-source framework additionally copes
with out-of-order observations. This is important even if the sources use reliable
channels, as the framework interleaves observations from different sources and
its internal components exchange information concurrently.

We generalize the concept of a temporal structure (TS), which models totally-
ordered observations, to a partitioned temporal structure (PTS), which represents
partially-ordered observations that may be received out-of-order from multiple
sources (Sect. 4.1). We introduce and explain the assumptions on the obser-
vation order in a PTS, which are sufficient to uniquely determine whether the
specification is satisfied. To monitor a PTS, we add multiple input sources and a
reordering step (Sect. 4.2) to our existing monitoring framework. We prove that
this extended framework remains sound and complete: the submonitors collec-
tively find exactly those patterns that exist in the input PTS. We extended the
implementation (Sect. 5) and empirically evaluated it, showing that it signifi-
cantly improves monitoring performance (Sect. 6).

In summary, our main contributions are: 1) the definition of the partitioned
temporal structure as an input model for multi-source monitors; 2) the exten-
sion of our monitoring framework to support multiple sources; 3) its correctness
proof, which has been formally verified in the Isabelle proof assistant; and 4)
an empirical evaluation showing a significant performance improvement over the
single-source framework. Overall, our work lays the foundations for the efficient,
scalable, online monitoring of distributed systems using expressive centralized
specifications languages like MFOTL.

2 Related Work

Centralized Monitors. Parametric trace slicing [38,39] performs data slicing on
a single input stream to improve monitoring expressivity, rather than its scala-
bility. The stream-based language Lola 2.0 [26] extends parametric trace slicing
with dynamic control over the active parameter instances. Lola 2.0 supports
multiple input streams, but they must be modeled explicitly in the specification
and, moreover, their monitoring is centralized.



200 D. Basin et al.

Basin et al. [8] monitor distributed systems using a single-source, centralized
monitor. They preprocess and merge locally collected traces prior to monitoring.
Preprocessing assumes that observations with equal time-stamps happen simul-
taneously and restricts the specification to a fragment where the order of such
observations does not influence the monitor’s output. Our approach generalizes
this idea, whereby it becomes a special case.

Monitors that handle missing and out-of-order observations [11,13] are
resilient to network failures, which commonly occur in large distributed sys-
tems. These centralized monitors, which support MTL and its variant with freeze
quantifiers, are orthogonal to our approach and can be instantiated within our
monitoring framework.

Decentralized Monitors. Our work builds on top of existing work on parallel
black-box monitoring. Basin et al. [6] introduce the concept of slicing temporal
structures. They provide composable operators that slice both data and time and
support parallel offline monitoring using MapReduce. In prior work [40,41], we
generalized their data slicer and implemented it using the Apache Flink stream
processing framework [19].

According to the distributed monitoring survey’s terminology [27], the orga-
nization of our monitoring framework can be seen as orchestrated or chore-
ographed. In the survey, the notion of a global clock implies the true total obser-
vation order, while we assume a low-resolution global clock. Our monitoring
framework supports a more expressive specification language than the state-of-
the-art alternatives reported on in the survey, which are mostly limited to LTL
and the detection of global state predicates.

Bauer and Falcone [14] exploit the locality of the observations in monitored
subsystems to organize the monitors hierarchically based on the structure of an
LTL formula. In contrast, our parallel monitors each monitor the same (global)
formula. By decomposing the specification, Bauer and Falcone reduce the com-
munication overhead, but the monitors still must synchronize on every time-point
in the trace. Similarly, El-Hokayem and Falcone [23,24] propose a framework for
decentralised monitoring of LTL and (automata-based) regular specifications.
However, they focus only on propositional specifications, which limits the expres-
siveness of their framework.

Leucker et al. [33] describe a concurrent online monitor for multiple non-
synchronized input streams. Unlike our work, the authors assume the existence
of a global clock that establishes a total order. It is difficult to compare their
specification language TeSSLa with ours. TeSSLa refers to multiple input streams
directly, while our specification language specifies (global) properties of dis-
tributed systems. It is generally easier to write a centralized specification when
observations can originate from multiple streams. In TeSSLA, one must either
encode all possible interactions between the streams, or merge the streams first,
which offsets any gains from the concurrent evaluation.

Stream Processing. A common mechanism for dealing with out-of-order obser-
vations in database and stream processing systems [3] is watermarks [2], which
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are special markers inserted in the data streams to provide a lower bound on
the progress of time. Alternatively, a slack parameter [1] can be specified, which
denotes the maximum number of positions that any observation can be delayed
at a stream operator. It is used to allocate an appropriately sized buffer for each
input of the stream operator to perform reordering. Observations delayed more
than the slack value are discarded. Punctuations [45] are more general than
watermarks in that they indicate the end of some subset of the stream. The
semantics of punctuations can vary, e.g., there will be no more observations hav-
ing certain attribute values in the stream. Heartbeats [44] resemble watermarks
and can be seen as special punctuations about temporal attribute values.

3 Preliminaries

We recap the syntax and semantics of Metric First-Order Temporal Logic [10]
and summarize our scalable monitoring framework [40], which slices a single
temporal structure.

Metric First-Order Temporal Logic (MFOTL). We fix a set of names E and for
simplicity assume a single infinite domain D of values. The names r ∈ E have
associated arities ι(r) ∈ N. An event r(d1, . . . , dι(r)) is an element of E × D

∗.
We further fix an infinite set V of variables, such that V, D, and E are pairwise
disjoint. Let I be the set of nonempty intervals [a, b) := {x ∈ N | a ≤ x < b},
where a ∈ N, b ∈ N∪{∞}, and a < b. Formulas ϕ are defined inductively, where
ti, r, x, and I range over V ∪ D, E, V, and I, respectively:

ϕ ::= r(t1, . . . , tι(r)) | t1 ≈ t2 | ¬ϕ | ϕ ∨ ϕ | ∃x.ϕ | �I ϕ | �I ϕ | ϕ SI ϕ | ϕ UI ϕ.

Formulas of the form r(t1, . . . , tι(r)) are called event formulas. The temporal
operators �I (previous), �I (next), SI (since), and UI (until) may be nested
freely. We derive other operators: truth 	 := ∃x. x ≈ x, inequality t1 
≈ t2 :=
¬(t1 ≈ t2), conjunction ϕ ∧ ψ := ¬(¬ϕ ∨ ¬ψ), implication ϕ → ψ := ¬ϕ ∨ ψ,
eventually ♦Iϕ := 	UI ϕ, always �Iϕ := ¬♦I¬ϕ, and once �Iϕ := 	 SI ϕ. The
set Vϕ denotes the set of free variables of ϕ. A formula has bounded future iff
all subformulas of the form �[a,b) α and α U[a,b) β (including derived operators)
satisfy b < ∞.

MFOTL formulas are interpreted over temporal structures (TS), which model
totally-ordered observation sequences (or streams). A temporal structure ρ is an
infinite sequence (τi,Di)i∈N, where τi ∈ N is a discrete time-stamp, and the
database Di ∈ DB = P(E×D

∗) is a finite set of events that happen concurrently
in the monitored system. Databases at different time-points i 
= j may have
the same time-stamp τi = τj . The sequence of time-stamps must be monotone
(∀i. τi ≤ τi+1) and progressing (∀τ. ∃i. τ < τi).

The relation v, i |=ρ ϕ defines the satisfaction of the formula ϕ for a valuation
v at an index i with respect to the temporal structure ρ = (τi,Di)i∈N; see Fig. 1.
Whenever ρ is fixed and clear from the context, we omit the subscript on |=.
The valuation v is a mapping Vϕ → D, assigning domain elements to the free
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Fig. 1. Semantics of MFOTL

variables of ϕ. Overloading notation, v is also the extension of v to the domain
Vϕ ∪ D, setting v(t) = t whenever t ∈ D. We write v[x �→ d] for the function
equal to v, except that the argument x is mapped to d.

Monitors. An online monitor for a formula ϕ receives time-stamped databases
that are a finite prefix π of some TS ρ (denoted by π ≺ ρ). The monitor incremen-
tally computes a verdict, which is a set of valuations and time-points that satisfy
ϕ given π. (Typically, one is interested in the violations of a specification � ψ,
which can be obtained by monitoring ¬ψ instead.) A monitor is sound if the ver-
dict for π contains (v, i) only if v, i |=ρ ϕ for all ρ � π. It is complete if whenever
π ≺ ρ is such that v, i |=ρ′ ϕ for all ρ′ � π, then there is another prefix π′ ≺ ρ for
which the verdict contains (v, i). In our formal treatment, we consider the mon-
itor’s output in the limit as the input prefix grows to infinity. Thus, a monitor
implements an abstract monitor function Mϕ : (N × DB)ω → P((Vϕ → D)× N)
that maps a TS ρ to the union of all verdicts obtained from all possible prefixes
of ρ. We shall assume that the monitor implementing Mϕ is sound and complete.
If ϕ has bounded future, it follows that Mϕ(ρ) = {(v, i) | v, i |=ρ ϕ}.

Slicing Framework. In prior work, we parallelized online first-order monitoring
by slicing [40,41] the temporal structure into N temporal structures that can
be independently monitored. Figure 2 shows the dataflow graph constructed
by our monitoring framework to monitor a given formula ϕ. The framework
utilizes N parallel submonitors, which are independent instances of the monitor
function Mϕ. Let [n] denote the set {1, . . . , n}. The slicer Sg is parameterized
by a slicing strategy g : [N ] → P(Vϕ → D) satisfying

⋃
k∈[N ] g(k) = (Vϕ → D).

The slicing strategy specifies the set of valuations g(k) for which the submonitor
k is responsible. Next, we describe which events the submonitor k receives to
evaluate ϕ correctly on all v ∈ g(k). Given an event e, let sfmatches(ϕ, e) be
the set of all valuations v for which there is an event subformula ψ in ϕ with
v(ψ) = e. (Here v is extended to event subformulas, such that v(r(t1, . . . , tι(r))) =
r(v(t1), . . . , v(tι(r))), and we assume that ϕ’s bound variables are disjoint from
its free variables.) For a database D and a set of valuations R, we write D ↓ R for
the restricted database {e ∈ D | sfmatches(ϕ, e) ∩ R 
= ∅}. The same notation
restricts the TS ρ = (τi,Di)i∈N pointwise, i.e., ρ ↓ R = (τi,Di ↓ R)i∈N. Then, it
is sufficient if the submonitor k receives the slice Sg,k(ρ) = ρ ↓ g(k). The slicer
Sg thus outputs N streams Sg,1(ρ), . . . , Sg,N (ρ).
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Fig. 2. Dataflow in the single-source monitoring framework

The output of the monitor function Mϕ on ρ can be reconstructed
from the parallel submonitors’ output on the N slices. Formally, Mϕ(ρ) =⋃

k∈[N ](Fg,k(Mϕ(Sg,k(ρ)))), where Fg,k(X) = X ∩ (g(k) × N). Note that Fig. 2
illustrates the right-hand side of the equation defining Mϕ(ρ). In [40], we proved
this equation assuming a stronger completeness property of the online monitor.
However, it can also be shown for the abstract function Mϕ, which operates on
a TS. The intersection with g(k) × N is needed to avoid spurious verdicts for
some formulas, such as those involving equality.

Example 1. Consider an access control policy for a service operating on medical
records, where whenever a user requests to process a record, the service does so
only if the user was authorized to access that record. The policy is formalized in
MFOTL as � Φ1 with Φ1 ≡ ∀u. proc(u, r) → �auth(u, r). The formula proc(u, r)
denotes that u requested to process r and auth(u, r) denotes that u is authorized
to access r. For the sake of this example, we leave r as the only free variable and
assume numeric identifiers for u and r.

We monitor ϕ ≡ ¬Φ1 as shown in Fig. 2, using the slicing strategy
g(k) = {v | v(r)mod 3 = k − 1} with N = 3 slices. Recall that the
set g(k) contains valuations, which are mappings from the free variables
{r} to D. The TS ρ models a service execution with the first database
D = {auth(1, 1), auth(1, 2), auth(1, 3), proc(1, 3), proc(1, 4)}. The submonitor 1
receives D ↓ g(1) = {auth(1, 1), proc(1, 4)} as its first database and reports
the verdict {({r �→ 4}, 0)} as a violation of Φ1, which is the only vio-
lation evident from D. Submonitors 2 and 3 receive databases {auth(1, 2)}
and {auth(1, 3), proc(1, 3)} and output empty verdicts after processing them,
respectively.

Example 2. Now consider a centralized system running many instances of the
service from the previous example. Each service handles user requests either by
directly processing a record, or by recursively triggering requests to other (local)
services. So, now a service is allowed to process a record only if this was initially
requested by a user authorized to access the record. Notice that data processing
can now happen after a chain of requests involving multiple services. Therefore,
we assume that the services attach a unique session number s to all requests
caused directly or indirectly by a user’s request.

The MFOTL formula � Φ2 with Φ2 ≡ (�req(u, s))∧ proc(s, r) → �auth(u, r)
formalizes the new specification, now with free variables {u, s, r}. The new
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event formulas are req(u, s) (user u sends a request, starting a session s),
and proc(s, r) (record r is processed within the session s). Let N = 8 and
g(k) = {v | 4 · (v(u)mod 2) + 2 · (v(s)mod 2) + v(r)mod 2 = k − 1} be a slicing
strategy. Note that according to g, submonitor 1 receives only valuations where
each variable has an even value. When we monitor ρ with the first database
D = {req(2, 2), auth(2, 1), proc(2, 2)}, each event in D is sent to two submonitors.
For instance, req(2, 2) is sent both to submonitors 1 and 2, whereas proc(2, 2) is
sent to submonitors 1 and 5. Such a slicing scheme ensures that submonitor 1
receives sufficient information to output the verdict {({u �→ 2, s �→ 2, r �→ 2}, 0)}.

4 Monitoring Distributed Systems

We consider the online monitoring of a distributed system. A first problem that
we must solve is the lack of a total order on the observations of the individual
subsystems (machines, processes, threads, etc.). As explained in the introduction,
such a total order is required by the semantics of centralized specifications, but
it does not exist unless the subsystems’ execution is perfectly synchronized.
This cannot be assumed in general as one usually desires some parallelism in
distributed systems.

A second problem is that distributed systems are often developed to achieve
scalability, and online monitors used with such systems should be scalable as
well. A monitor that physically combines observations from different sources into
a single stream cannot satisfy this requirement: if the workload increases and
additional events are generated, the processes working with the single stream
will eventually be overloaded. Scalable online monitors must therefore ingest
observations in parallel.

We solve the above problems by viewing online monitoring as an instance of
distributed stream processing. Observations enter the monitor in multiple par-
allel streams, called sources. We give a general model of sources that captures
a variety of distributed monitoring scenarios, while still allowing the efficient
monitoring of metric specifications (Sect. 4.1). The model logically decouples
the monitor from the monitored system, which ensures that the system’s topol-
ogy can be chosen independently. We then extend the slicing framework to uti-
lize multiple sources (Sect. 4.2). The resulting multi-source framework does not
require a total order on the observations, and it scales better than the single-
source version, even if the monitored system is not truly distributed.

4.1 Input Model

We model the monitor’s input as a Partitioned Temporal Structure (PTS), which
we define formally later in this section. We believe that this model is useful
beyond our implementation using slicing. The model is based on several assump-
tions about the problem at hand. Below, we explain these assumptions, show how
they are reflected in the PTS, and give examples of possible applications.
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Assumption 1. We assume that the monitored specification has the form Φ =
� ¬ϕ, where ϕ has bounded future. We also assume that the specification is
centralized, i.e., its event formulas are interpreted over all events from the entire
system.

The restriction on the formula’s structure is common for first-order moni-
tors. It guarantees that every violation can be detected in finite time [10]. The
assumption that the specification is centralized rules out various monitoring
approaches. We already argued that centralized monitors are ill-suited for scal-
able distributed systems. Moreover, note that centralized specifications cannot
be easily split into smaller parts that are handled by local monitors, as illustrated
by the following example.

Example 3. Consider now the services from Example 2 deployed on a microser-
vice architecture that is running on a cluster of machines. Each service generates
its own TS. As requests span arbitrarily many machines, the specification cannot
be checked locally.

We therefore treat the monitored system and the monitor as independent
entities. They are connected by M sources, which are parallel observation
streams. The sources may correspond the monitored system’s components, e.g.,
the services in Example 3. This is not required by the model, which we will show
in a later example.

The next assumption imposes an important restriction: it must be possible
to arrive at a definite monitoring verdict even if the observations are only par-
tially ordered. Otherwise, we would need to construct all possible interleavings
of the concurrent observations, which is generally infeasible. We avoid relying
on system-specific information, such as vector clocks, to reduce the number of
interleavings [35] as this would diminish the generality of our approach.

Assumption 2. There exists a TS ρ� that describes the actual sequence of
events as they occur in real time. The time-stamps in ρ� are obtained from the
real time truncated to the precision used in the specification. (We do not assume
that ρ� can be observed directly.) The sources must have access to a global clock
that provides time-stamps from ρ� as well as sufficient information about the
event order to decide whether ρ� satisfies Φ.

Note that the system satisfies the specification Φ iff ρ� satisfies Φ. We model
the information provided by the global clock using indices, which are natural
numbers attached to every observation. If the index of observation o1 is less
than the index of observation o2, then o1 must have happened before o2. At one
extreme, the index is simply the position of the observation in ρ�, i.e., a global
sequence number. Then every specification has a definite verdict. A distributed
system providing such sequence numbers would need a global clock with very
high resolution, which is often unrealistic. However, centralized applications,
which have access to sequence numbers, can be more efficiently monitored with
a multi-source monitor than with a single-source monitor.
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Example 4. Kernel event tracing creates streams with high event rates [22]. We
may improve the monitor’s throughput by distributing the events over multiple
streams (see Sect. 6). For a single processor, its hardware counters provide global
sequence numbers.

At the other extreme, the indices could simply be the time-stamps. We say
that a clock providing such indices is low resolution, as its resolution may not
be high enough to establish the true total order. Yet not all specifications can
be monitored if the indices have lower resolution than global sequence numbers.
We follow the collapse approach by Basin et al. [8], where events with the same
time-stamp are collapsed into a single instantaneous observation. We generalize
the collapse from time-stamps to indices, which unifies the presentation. We then
rephrase the requirement on the global clock from Assumption 2 in terms of the
collapse: monitoring the collapsed sequence must result in essentially the same
output as monitoring ρ�. To make this precise, we add the indices to ρ� itself,
which results in the indexed temporal structure ρ̂�.

Definition 1. An indexed temporal structure (ITS) is a TS over extended
tuples (αi, τi,Di), where αi ∈ N are indices. The indices must increase mono-
tonically (∀i. αi ≤ αi+1), and they must refine time-stamps (∀i. ∀j. αi ≤ αj =⇒
τi ≤ τj).

Definition 2. The generalized collapse C(ρ̂) = (τ c
i ,Dc

i )i of an ITS ρ̂ is char-
acterized by the unique monotone and surjective function f : N → N that maps
(only) positions with the same index to a common value (∀i. ∀j. αi = αj ⇐⇒
f(i) = f(j)). Then ∀i. τ c

f(i) = τi and ∀j. Dc
j =

⋃{Di | f(i) = j}.
Since ρ̂� is the idealized totally-ordered sequence, its indices must increase

monotonically. Indices must also refine time-stamps so that the generalized col-
lapse is a TS. This requirement, which may seem quite strong, is necessary
because the semantics of a metric specification language (like MFOTL) is defined
with respect to a TS. Note, however, that the resolution of time-stamps is not
fixed (Assumption 2). The resolution of time-stamps and thus indices can be
quite low as long as it is possible to formalize the specification faithfully.

Definition 3. We call ρ̂ adequate for the formula ϕ iff v, i |=C(ρ̂) ϕ ⇐⇒
(∃j. f(j) = i∧ v, j |=ρ ϕ) for all v and i, where ρ is obtained from ρ̂ by omitting
the indices.

Monitoring a formula ϕ on the generalized collapse of an adequate ITS finds
the same satisfying valuations as monitoring the ITS itself (modulo the remap-
ping of time-points).

Lemma 1. Suppose that ρ̂ is adequate for the formula ϕ. Then Mϕ(C(ρ̂)) =
{(v, f(j)) | (v, j) ∈ Mϕ(ρ)}, where f is as in Definition 2.

If the indices of an ITS are global sequence numbers (e.g., ∀i. αi = i), the ITS
is adequate for all ϕ. To gain intuition for other ITS, we focus again on the case
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where indices are time-stamps (time-ITS, ∀i. αi = τi). Basin et al. [8] define the
notion of collapse-sufficient formulas, which are essentially those formulas that
can be monitored correctly on a time-based collapse. They provide an efficiently
decidable fragment of formulas with this property. (More precisely, a time-ITS
ρ̂ is adequate for ϕ iff ϕ satisfies the properties (|=∃) and (
|=∀) given in [8],
which implies that Φ = � ¬ϕ is collapse-sufficient.) Often, a formula can be
made collapse-sufficient by replacing subformulas �[0,t]α (note the interval’s zero
bound) with �[0,t]♦[0,0]α, and dually for ♦[0,t]. More complicated replacements
are however needed for S and U.

Example 5. To obtain a collapse-sufficient formula from the specification in
Example 2, we restrict the authorizations to happen at least one second before
their use. Furthermore, we ignore the order of requests and process events (using
the ♦[0,0] operator) as long as they have the same time-stamp. The specification
is formalized as � Φ3 with Φ3 ≡ (�♦[0,0]req(u, s))∧ use(s, d) → �[1,60]auth(u, d).

It is common practice in distributed systems to process, aggregate, and store
logging information in a dedicated service. The observations fed to the monitor
are then taken from this service. In Example 3, the microservices could first
send their events to a distributed message broker such as Kafka [32]. As a result,
events from different services may be interleaved before they reach the monitor.
We therefore allow that individual sources provide observations in a different
order than their temporal order. This generalization adds almost no complexity
to the monitor’s design (Sect. 4.2): we must anyway reorder the observations,
even for correctly ordered streams, to synchronize them across sources. Handling
out-of-order observations thus comes almost for free.

Assumption 3. Sources may provide observations in any order. However, the
delay of each observation must be bounded.

The latter condition ensures that the monitor does not get stuck. We enforce
it by adding watermarks, which are lower bounds on future indices, to the
sources. Then, the observations’ delay is bounded if the watermarks always even-
tually increase. In our implementation, watermarks are interspersed between
regular observations. We simplify the formal definitions below by assuming that
every database has an associated watermark, which is the one most recently seen.
Note that an input model with watermarks is strictly more permissive than one
without. If we know that the observations will be in the correct order, we can
simply set each watermark equal to the next index.

We are now ready to give a formal definition of our input model. We recall
the main idea: The monitor’s input is a PTS, which partitions some ITS ρ̂� into
multiple sources. If ρ̂� is adequate for the formula ϕ, it suffices to monitor the
generalized collapse C(ρ̂�) via the PTS to achieve the goal of monitoring ρ�.

Definition 4. A partitioned temporal structure (PTS) is a finite list ρ1, . . . , ρM

of M ≥ 1 sources. A source ρk is an infinite sequence of tuples (αk,i, βk,i, τk,i,
Dk,i)i∈N, where αk,i ∈ N is an index, βk,i ∈ N is a watermark, and τk,i and Dk,i
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Fig. 3. Dataflow in the multi-source monitoring framework

are as in temporal structures. For all k ∈ [M ], ρk must satisfy (P1) monotone
watermarks (∀i. βk,i ≤ βk,i+1); (P2) progressing watermarks (∀β. ∃i. β ≤ βk,i);
(P3) watermarks bound future indices (∀i. ∀j. i < j =⇒ βk,i ≤ αk,j); and (P4)
progressing time-stamps (∀τ. ∃i. τ ≤ τk,i).

A PTS ρ1, . . . , ρn partitions an ITS (αj , τj ,Dj)j∈N iff it is (Q1) sound
(∀k. ∀i. ∃j. αk,i = αj ∧ τk,i = τj ∧ Dk,i ⊆ Dj); and (Q2) complete wrt. indices
(∀j. ∃k. ∃i. αk,i = αj ∧ τk,i = τj) and events (∀j. ∀e ∈ Dj . ∃k. ∃i. αk,i =
αj ∧ τk,i = τj ∧ e ∈ Dk,i).

Conditions P1–P3 have already been explained, while condition P4 is inher-
ited from temporal structures. Conditions Q1–Q2 encode that the PTS contains
the same information as the ITS. Specifically, the sources must have access to
a low-resolution global clock providing the time-stamps in ρ̂�. Its resolution is
defined by the specification. For instance, we could use NTP-synchronized time
in seconds in Example 5, where the specification requires recent authorization
on the order of seconds.

We need both completeness wrt. indices and events (Q2) because the latter
is trivially true for empty databases, but we must ensure that the corresponding
index (and time-stamp) occurs in the PTS. Note that for every ITS, there is at
least one PTS that partitions it into M ≥ 1 sources: let (αk,i, βk,i, τk,i,Dk,i) =
(αj , αj , τj ,Dj) with j = i · M + k − 1.

4.2 Slicing Framework with Multiple Sources

Figure 3 shows the slicing framework’s dataflow after extending it to multiple
sources. Arrows represent streams of elements, and rectangles are stream trans-
ducers with possibly multiple inputs and outputs. The input consists of the M
sources of a PTS. We apply the slicer Sg independently to each source, using
the given slicing strategy g. The input of Sg thus carries additional indices and
watermarks. Since slicing only affects the databases, we can easily lift it to source
streams. Let the stream ρk,k′ be the output of the kth slicer on its k′th outgo-
ing edge, where k′ ∈ [N ]. The k′th instance of R (described below) receives an
interleaving of the streams ρ1,k′ , . . . , ρM,k′ . Stream processor implementations
usually do not guarantee a particular order for such an interleaving. This also
applies to our implementation (Sect. 5). Therefore, we assume that the interleav-
ing is nondeterministic, with the only guarantee being one of fairness, namely
that every input stream is visited infinitely often. We further assume that the
elements in the streams ρk,k′ are tagged with their origin k.
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The crucial new component is the reordering algorithm R, which fulfills two
purposes. First, it collapses databases according to their indices. This has an
effect only if indices are time-stamps, i.e., the underlying ITS is time-indexed.
Second, R ensures that the input to the monitor function Mϕ is sorted correctly.
Even if observations arrive in the correct order at PTS sources, reordering is
necessary due to the shuffling between Sg and R.

The pseudocode for R is given in Algorithm 1. It uses two global variables,
marks and buffer , both finite associative maps. The expression keys(m) denotes
the set of keys in the associative map m. If x ∈ keys(m), then m[x] is the unique
value that m associates with x. The map marks stores the largest watermark
seen so far for each input stream. (Recall that the input to R is an interleaving
of one slice from each input stream.) The map buffer maps indices to pairs of
time-stamps and databases. Intuitively, buffer keeps all indices that may occur
in the future as the watermarks have not advanced past them.

The procedure initialize(M) is called once when the monitor starts, where
M is the number of sources. The watermarks are initially zero, which is a lower
bound for all indices. The procedure process(x) is called for every stream ele-
ment x received by R. The first element of the tuple x = (k, α, β, τ,D) identifies
the source from which it originates, while the remaining elements are from the
sliced PTS. Line 4 restores the invariant for marks. In lines 5–9, D’s contents
are added to the buffer. If the index α is already mapped by buffer , we take
the union with the previously stored database to implement the collapse. Oth-
erwise, τ and D are inserted into buffer . The value θ computed in line 10 is the
minimum of all the latest watermarks across all inputs. By condition P3 of PTS
(Definition 4), we know that all future indices that R will receive must be at
least θ. Therefore, it is safe (only) to output everything in buffer with a smaller
index. This happens in lines 11–13. Note that we iterate over the indices in
ascending order, which ensures that the output is sorted correctly. The sequence
of R’s output elements (which are pairs of time-stamps and databases) forms
the stream that is sent to the monitor Mϕ in Fig. 3.

The following theorem establishes the correctness of the multi-source frame-
work. It is formalized [7] and verified along with Lemma 1 in the Isabelle/HOL
proof assistant.

Theorem 1. Let ρ1, . . . , ρM be a PTS that partitions ρ̂�. For all slicing strate-
gies g, the result of the dataflow in Fig. 3 (with inputs ρ1, . . . , ρM ) is equal to
Mϕ(C(ρ̂�)).

Note that this theorem holds for all possible partitions of ρ̂� and all possible
interleavings that can result from the shuffling step. However, it is only a state-
ment about the infinite sequence of verdicts. Each verdict may be delayed by
an arbitrary (but finite) amount of time, depending on the watermarks in the
input and the shuffling implementation. Theorem 1 does not assume that ρ̂� is
adequate for ϕ because it refers directly to the generalized collapse C(ρ̂�). If we
additionally know that ρ̂� is adequate, we get the same verdicts as if we were
monitoring ρ� directly, modulo the mapping of time-points (Lemma 1).
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Algorithm 1. Reordering algorithm R
1: procedure initialize(M)
2: marks ← {k �→ 0 | k ∈ [M ]}, buffer ← {}
3: procedure process((k, α, β, τ, D))
4: marks[k] ← β
5: if α ∈ keys(buffer) then
6: (τ ′, D′) := buffer [α]
7: buffer [α] ← (τ ′, D ∪ D′)
8: else
9: buffer [α] ← (τ, D)

10: θ := min{marks[k] | k ∈ keys(marks)}
11: for i ∈ keys(buffer) in ascending order, while i < θ do
12: output buffer [i]
13: delete i from buffer

Example 6. We use the multi-source monitoring framework to monitor ϕ ≡
¬Φ3 (Example 5) on M = 2 distributed services (Example 3), using
N = 8 submonitors and the splitting strategy g (Example 2). The
dataflow is shown in Fig. 3. The input PTS consists of two sources ρ1 and
ρ2 with prefixes (0, 0, 0, {req(2, 2)}), (3, 0, 3, {proc(1, 1)}), (1, 0, 1, {req(2, 1)}),
(4, 4, 4, {}) and (0, 0, 0, {proc(2, 2), auth(2, 1)}), (4, 4, 4, {}), respectively. Note
that the indices are equal to the time-stamps. As in Example 2, submonitor 1
receives events req(2, 2) and proc(2, 2) and produces the same verdict. However,
the reordering algorithm sends these events only after receiving watermark 4
from both sources. All of the remaining events are sent to submonitor 3. The
reordering algorithm ensures that they are received in the order defined by their
indices. Hence, auth(2, 1) is received first, followed by req(2, 1), and then by
proc(1, 1). Due to the reordering, submonitor 3 correctly produces an empty
verdict for the given prefixes.

We conclude with a remark about the time and space complexity of Algo-
rithm 1. Both are unbounded in the worst case because of the problem with
unbounded watermark delays mentioned above. However, we obtain a more
meaningful result under reasonable additional assumptions. For example, assume
that each database in the input has size at most d, that every index occurs at
most c times, and that the number of stream elements between an index α and
the time that θ (line 10) becomes greater than α is at most z. The parameter c is
upper bounded by the time-point rate (Sect. 6) multiplied by M . The parameter
z depends on the watermark frequency and the maximum (event) delay (Sect. 6),
and also on the additional delay introduced by the shuffle step between slicing
and reordering.

There are at most z different keys in buffer at any given time, each mapping
to a database of size at most c · d. The space complexity is thus O(M + c · d · z)
in the uniform RAM model, where M is the number of sources. By using a
self-balancing search tree for buffer and hash tables for the databases contained
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therein, one invocation of process has an amortized average time complexity of
O(M +d+log z), again in the uniform model. The summand M can be reduced
to logM by using a binary heap to maintain θ instead of recomputing it in every
invocation.

5 Implementation

We implemented a multi-source online monitoring framework based on the ideas
outlined in Sect. 4. It extends our previous single-source framework [40,41] and
is available online [7]. The implementation instantiates the submonitors with
MonPoly [12], which supports a monitorable fragment of MFOTL [10] where, in
particular, formulas must have bounded future. We modified about 4k lines of
code (3.2k added and 0.8k deleted). In Sect. 4, we omitted many details, e.g.,
how events are delivered to and exchanged within the framework, which effect
the efficiency and usability of the framework. We explain some implementation
choices here and further details can be found in [28,40].

Our multi-source framework is built on top of Apache Flink [19], which pro-
vides an API and a runtime for fault tolerant distributed stream processing.
Fault tolerance is important for distributed online monitors since increasing the
number of machines on which a monitor runs also increases the risk of failures,
which would otherwise disrupt the monitor’s operation. The implementation’s
dataflow corresponds roughly to the dataflow in Fig. 3, except that the streams’
elements are individual events instead of databases. The events are interleaved
with other control elements that carry additional metadata. We use Flink’s API
to define the logical dataflow graph, whose vertices are operators that transform
potentially unbounded data streams. At runtime, operators can have multiple
instances as defined by their degree of parallelism. Each operator instance works
on a partition, i.e., a substream. Stream elements are repartitioned according to
some strategy if the degree of parallelism changes from one operator to the next.
In Fig. 3, the parallelism changes from M to N at the shuffling step. Each slicer
outputs is a single stream of elements labeled with their destination submonitor.
Based on these labels, a stream partitioner ensures that the elements reach their
intended destination.

We use two types of source operators (TCP and Kafka) with different trade-
offs. In Flink, sources are operators without incoming edges in the dataflow
graph. Their degree of parallelism, which must be chosen before execution starts,
determines the number M of input streams. The TCP source reads simple text
streams from multiple sockets by connecting to a list of address and port pairs. It
is fast and thus useful for benchmarking the other components, but it is not fault
tolerant. The Kafka [32] source operator implements a distributed persistent
message queue and provides fault tolerance. However, we exclude it from the
evaluation as it incurred a significant overhead in our preliminary experiments.

The slicer, submonitors, filtering, and verdict union are nearly unmodified
(see [40]). However, there are now multiple instances of the slicing operator.
The reordering function R is a straightforward implementation of Algorithm 1.
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Fig. 4. MFOTL formulas used in the evaluation

In our implementation, the buffer is simply a hash table, and we access it by
probing for increasing indices. A more efficient approach can be used if this
becomes a bottleneck. Our implementation currently supports time-points and
time-stamps as indices (see Sect. 4.1). With out-of-order input, only time-stamps
are supported, but it should be easy to generalize the framework to time-points.
We rely on order elements, which are a type of control elements, instead of asso-
ciating watermarks with every database. For in-order inputs, the order elements
are separators between databases, which are inserted by the input parser. In this
case, we can synthesize the watermark from the database’s time-point or time-
stamp. If the input is out-of-order, watermarks must be provided as annotations
in the input data. The input parser extracts the watermarks and embeds them
in newly created order elements.

6 Evaluation

To assess the scalability of our extended framework we organized our evaluation
(available online [7]) in terms of the following research questions (RQs).

RQ1: How do the input parameters affect the multi-source framework’s scalabil-
ity?
RQ2: What is the impact of imbalanced input sources on performance?
RQ3: Can multiple sources be used to improve monitoring performance?
RQ4: How much overhead does event reordering incur?

RQ1 and RQ2 assess the impact of input parameters (specifically, the event
rate and time-point rate, defined below, as well as the number of inputs and
submonitors) on our framework’s performance. When events arrive out of order,
we additionally control their maximum delay and the watermark frequency. We
assess RQ1 by monitoring multiple traces with the same event rate, while for
RQ2 we relax this restriction. RQ3 aims to evaluate the overall performance gain
of introducing multiple inputs. We aim to validate our hypothesis that the slicer
is no longer the performance bottleneck. We also assess the overhead introduced
by the newly added reorder function (RQ4).

We run our experiments on both synthetic and real traces. The former are
monitored with the collapse-sufficient formula ϕs (Fig. 4), which is the common
star database query [16] augmented with temporal operators. It contains only
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Table 1. Summary of the parameters used in the experiments

Experiment groups Synthetic1 Synthetic2 Synthetic3 Nokia1 Nokia2

Formulas � s � s � s �i, � d ¬�
Source distribution all uniform except in Synthetic3, which also has 2

3 ,
1
9 ,

1
9 ,

1
9
)
, 1

3 ,
1
3 ,

1
6 ,

1
6
)

Event order total, partial partial partial partial partial
Ingestion order in-order out-of-order in-order in-order in-order
No. of input sources 1, 2, 4 1, 2, 4 4 1, 2, 4 1, 2, 4
No. of submonitors 16 16 16 1, 4, 16 16
Acceleration 1 1 1 3k, 5k, 7k 3k, 5k, 7k
Trace time span 60s 60s 60s

a one day fragment
from the Nokia trace

with 9.5 million events

Event rate (1/ s) 500k, 700k,
900k 900k 500k, 700k,

900k
Time-point rate (1/ s) 1, 2k, 4k 1 1
Maximum delay (s) n/a 1, 2, 4 n/a
Watermark period (s) n/a 1, 2, 4 n/a
Use reorder function ,
Repetitions 10 5 1 1 5

past temporal operators because these can be monitored more efficiently, which
puts a higher load on the framework’s input and slicers. We use a trace genera-
tor [40] to create random traces with configurable time span, event names, rate,
and time-point rate. The trace’s time span is the difference between the highest
and the lowest time-stamp in the trace. Given a trace and a time-stamp, the event
rate is the number of events with that time-stamp, while the time-point rate is
the number of databases with that time-stamp. The generator synthesizes traces
with the same event and time-point rates at all time-stamps, choosing randomly
between the event names P , Q, and R. We configured the generator to produce
mostly R events (99.8%). The events’ parameters are sampled from the natu-
ral numbers less than 109. There is some correlation between the parameters of
events with different names (see [40]), which is not relevant for our experiments
because of the prevalence of R events. In general, it is highly unlikely that the
generated traces satisfy ϕs.

The generator is extended to determine the order in which the events are
supplied to the monitor by explicitly generating the emission time for each
event. The emission times are relative to the monitoring start time. For traces
received in-order, the events’ emission times correspond to their time-stamps
decreased by the value of the first time-stamp in the trace. Otherwise, each
event’s emission time is additionally delayed by a value sampled from a truncated
normal distribution N (0, σ2) over the interval (0, δmax). In our experiments we
fix σ = 2 and vary the maximum delay δmax of events. The generator also adds
a watermark after fixed time-stamp increments called watermark periods.

Besides the synthetic traces, we also use a real system execution trace from
Nokia’s Data Collection Campaign [8]. The trace captures how Nokia’s system
handled the campaign’s data. Namely, it collected phone data of 180 participants
and propagated it through three databases: db1, db2, and db3. The data was
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uploaded directly to db1, while the system periodically copied the data to db2,
where data was anonymized and copied to db3. The participants could query and
delete their own data stored in db1. The system must propagate the deletions
to all databases, which is formalized by formulas ϕi and ϕd (Fig. 4). Since the
trace spans a year, to evaluate our tool in a reasonable amount of time, we pick
a one day fragment (starting at time-stamp 1282921200) containing roughly 9.5
million events with a high average event rate of about 110 events per second.

To perform online monitoring, we use a replayer tool [40] that emits the trace
in real time based on its time-stamps or (the generated) explicit emission times.
The tool can be configured to accelerate the emission of the trace proportionally
to its event rate, which allows for a meaningful performance evaluation since
the trace characteristics are retained. For our multi-source monitor we use one
replayer instance per input source. We evaluate only the implementation that
uses TCP sockets. The k input sources are obtained by assigning each event
to one of the sources based on a discrete probability distribution called source
distribution, e.g., the source distribution

(
1
4 , 1

4 , 1
4 , 1

4

)
is the uniform distribution

for k = 4. We use other source distributions to investigate RQ2. Both the Nokia
and the synthetic traces have explicit time-points, which are used as the parti-
tions’ indices. To simulate partially-ordered events, we replace the indices with
the appropriate time-stamps.

Table 1 summarizes the parameters used in all our experiments. There are
five experiment groups: three using the synthetic traces and two using the Nokia
traces. We perform a separate monitoring run for each combination of parameters
within one group.

We used a server with two sockets, each containing twelve Intel Xeon 2.20GHz
CPU cores with hyperthreading. This effectively supports up to 48 independent
parallel computations. We measure the worst-case latency achieved during our
experiments.

In general, monitor latency is the difference between the time a monitor con-
sumes an event and the time it finishes processing the event. Thus, at regular
intervals, the replayer injects a latency marker, which is a special event tagged
with its creation time and a sequence number local to its source. Each such
marker is then propagated by our framework, preserving its order relative to
other events from the same input source. It is treated as part of the preced-
ing event, effectively measuring its processing time. The slicers duplicate and
forward latency markers to all parallel submonitors, such that each submonitor
receives every latency marker from each source. Finally, for every sequence num-
ber, the last operator in the framework aggregates all latency markers (coming
both from the different input sources and the different parallel submonitors)
and calculates the worst-case latency. For a single monitoring run, we report
the maximum of the worst-case latency aggregated over the entire run. To avoid
spurious latency spikes, some experiments are repeated (see Table 1) and the
mean value is reported with error bars showing two standard errors.

The results of our experiments are shown in Figs. 5, 6, 7 and 8. The experi-
ments Synthetic1 and Synthetic2 (Fig. 5) answer RQ1. Increasing the number of
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Fig. 5. Results of the Synthetic1 (first row) and Synthetic2 (second and third row)
experiment groups

input sources decreases the worst-case latency, which is particularly evident with
high event rates. For instance, when monitoring traces with event rate 900k, we
improve the maximum latency by 10 s if we double the number of input sources.
The relationship between the maximum event rate at a fixed latency and the
number of sources appears to be slightly sublinear. We conjecture that this is
due to duplicate events that the slicers necessarily emit for some formulas [40].
Therefore, having more slicers increases the framework’s total load.

As expected, Synthetic2 shows that the watermark period and the maximum
delay establish a lower bound on the maximum latency. These parameters deter-
mine the minimum amount of time the reorder function must buffer out-of-order
events, which our latency measurements capture. We note that the time-point
rate has not influenced the monitoring performance in our experiments; we there-
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Fig. 6. Results of the Synthetic3 experiment group

Fig. 7. Results of the Nokia1 experiment group

fore omitted the plots that show different time-point rates and fix the time-point
rate to 4000 in Synthetic1.

RQ2 is answered by experiment Synthetic3 (Fig. 6) where we fix the number
of input sources to 4 and change the source distribution. The maximum latency
is only affected for high event rates and highly skewed source distributions (i.e.,
when most of the events belong to one source). Otherwise, our framework shows
robust performance.
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Fig. 8. Results of the Nokia2 experiment group

The results of Nokia1 (Fig. 7) answer RQ3 and validate our hypothesis that
increasing the number of sources can improve monitoring performance in realistic
monitoring use cases. Increasing the number of sources is ineffective only when
parallel submonitors are themselves the performance bottleneck (e.g., when using
only one submonitor).

In Nokia2 we monitor the Nokia trace without using the reorder function
(RQ4). To retain soundness, we monitor the formula ¬	. The experiment shows
that the reorder function introduces negligible overhead: less than 1 s of maxi-
mum latency.

7 Conclusion

We have developed the first scalable online monitor for centralized, first-order
specifications that can efficiently monitor executions of distributed systems.
Specifically, we have defined a partitioned temporal structure (PTS) that models
an execution of a distributed system, i.e., a sequence of partially-ordered obser-
vations received out-of-order. We have extended our monitoring framework to
support multiple sources and proved its correctness. Moreover, we empirically
show a significant performance improvement over the framework’s single-source
variant. For example, in our experiments with real data, we could more than
double the event rate, from an average of about 330k to 770k events per sec-
ond by using two sources instead of one, while achieving the same maximum
latency. As future work, we plan to combine our framework with monitors that
inherently support out-of-order observations [13] or imprecise time-stamps [9],
and make our (now parallel) slicing adaptive [41] with respect to changes in the
trace characteristics.
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Abstract. This work presents a runtime verification approach imple-
mented in the tool MESA (MEssage-based System Analysis) which
allows for using concurrent monitors to check for properties specified in
data parameterized temporal logic and state machines. The tool is imple-
mented as an internal Scala DSL. We employ the actor programming
model to implement MESA where monitors are captured by concurrent
actors that communicate via messaging. The paper presents a case study
in which MESA is used to effectively monitor a large number of flights
from live US airspace data streams. We also perform an empirical study
by conducting experiments using monitoring systems with different num-
bers of concurrent monitors and different layers of indexing on the data
contained in events. The paper describes the experiments, evaluates the
results, and discusses challenges faced during the study. The evaluation
shows the value of combining concurrency with indexing to handle data
rich events.

1 Introduction

Distributed computing is becoming increasingly important as almost all modern
systems in use are distributed. Distributed systems usually refer to systems with
components that communicate via message passing. These systems are known to
be very hard to reason about due to certain characteristics, e.g. their concurrent
nature, non-determinism, and communication delays [16,27]. There has been a
wide variety of work focusing on verifying distributed systems including dynamic
verification techniques such as runtime verification [14,29] which checks if a run
of a System Under Observation (SUO) satisfies properties of interest. Properties
are typically captured as formal specifications expressed in forms of linear tem-
poral logic formulas, finite state machines, regular expressions, etc. Some of the
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proposed runtime verification techniques related to distributed computing them-
selves employ a distributed system for monitoring for a variety of reasons such as
improving efficiency [5,8,9,11,17,18]. Exploiting parallelism, one can use addi-
tional hardware resources for running monitors to reduce their online overhead
[9]. Moreover, using concurrent monitors instead of one monolithic monitor, one
can achieve higher utilization of available cores [17].

In this paper, we propose a runtime verification approach for analyzing dis-
tributed systems which itself is distributed. Our approach is generic and is not
tied to a particular SUO. It is motivated by a use case which aims to analyze
flight behaviors in the National Airspace System (NAS). NAS refers to the U.S.
airspace and all of its associated components including airports, airlines, air nav-
igation facilities, services, rules, regulations, procedures, and workforce. NAS is
a highly distributed and large system with over 19000 airports including public,
private, and military airports, and up to 5000 flights in the U.S. airspace at the
peak traffic time. NAS actively evolves under the NextGen (Next Generation
Air Transportation System) project, led by the Federal Aviation Administration
(FAA), which aims to modernize NAS by introducing new concepts, and tech-
nologies. Considering the size and complexity of NAS, efficiency is vital to our
approach. Our ultimate goal is to generate a monitoring system that handles
high volume of live data feeds, and can be used as a ground control station to
analyze air traffic data in NAS.

Our approach is based on employing concurrent monitors, and adopts the
actor programming model, a model for building concurrent systems. The actor
model was proposed in 1973 as a way to deal with concurrency in high per-
formance systems [23]. Concurrent programming is notoriously difficult due to
concurrency errors such as race conditions and deadlocks. These errors occur
due to lack of data encapsulation to avoid accessing objects’ internal state from
outside. Thus, mechanisms are required to protect objects’ state such as blocking
synchronization constructs which can impact scalability and performance. The
actor programming model offers an alternative which eliminates these pitfalls.
Primary building blocks in the actor programming model are actors, which are
concurrent objects that do not share state and only communicate by means of
asynchronous messages that do not block the sender. Actors are fully indepen-
dent and autonomous and only become runnable when they receive a message in
their buffer called mailbox. The model also guarantees that each runnable actor
only executes in one thread at a time, a property which allows to view an actor’s
code as a sequential program.

We create a framework, MESA, using the Akka toolkit [1,38], which provides
an implementation of the actor model in Scala. The actor model is adopted
by numerous frameworks and libraries. However, what makes Akka special is
how it facilitates the implementation of actor-based systems that refrain users
from dealing with the complexity of key mechanisms such as scheduling actors
and communication. We also use the Runtime for Airspace Concept Evaluation
(RACE) [30,31] framework, another system built on top Akka and extending it
with additional features. RACE is a framework to generate airspace simulations,
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and provides actors to import, translate, filter, archive, replay, and visualize data
from NAS, that can be directly employed in MESA when checking for properties
in the NAS domain.

MESA supports specification of properties in data parameterized tempo-
ral logic and state machines. The support for formal specification is provided
by integrating the trace analysis tools TraceContract [6,22] and Daut (Data
automata) [20,21], implemented as domain specific languages (DSLs) [2]. Trace-
Contract, which was also used for command sequence verification in NASA’s
LADEE (Lunar Atmosphere And Dust Environment Explorer) mission [7], sup-
ports a notation that combines data-parameterized state machines, referred to
as data automata, with temporal logic. Daut is a modification of TraceContract
which, amongst other things, allows for more efficient monitoring. In contrast
to general-purpose languages, external DSLs offer high levels of abstractions but
usually limited expressiveness. TraceContract and Daut are, in contrast, internal
DSLs since they are embedded in an existing language, Scala, rather than pro-
viding their own syntax and runtime support. Thus, their specification languages
offer all features of Scala which adds adaptability and richness.

As a basic optimization technique, MESA supports indexing, a restricted
form of slicing [32,36]. Indexing slices the trace up into sub-traces according to
selected data in the trace, and feeds each resulting sub-trace to its own sub-
monitor. As an additional optimization technique, MESA allows concurrency at
three levels. First, MESA runs in parallel with the monitored system(s). Second,
multiple properties are translated to multiple monitors, one for each property.
Third, and most importantly for this presentation, each property is checked by
multiple concurrent monitors by slicing the trace up into sub-traces using index-
ing, and feeding each sub-trace to its own concurrent sub-monitor. One can
configure MESA to specify how to check a property in a distributed manner.
We present a case study demonstrating the impact of using concurrent monitors
together with indexing. In this case study it is flight identifiers that are used
as slicing criteria. We evaluate how different concurrency strategies impact the
performance. The results are positive, demonstrating that concurrency used to
handle slices of a trace can be beneficial. This is not a completely obvious result
considering the cost of scheduling threads for small tasks. The main contribution
of the paper is providing an extensive empirical assessment of asynchronous con-
current monitors implemented as actors. The paper also presents a new runtime
verification tool, MESA, and its application on a real case study.

2 Related Work

Amongst the most relevant work is that of Basin et al. [8]. In this work the
authors use data parallelism to scale rst-order temporal logic monitoring by slic-
ing the trace into multiple sub-traces, and feeding these sub-traces to different
parallel executing monitors. The approach creates as many slices as there are
monitors. The individual monitors are considered black boxes, which can host
any monitoring system fitting the expected monitor interface. Another attempt
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in a similar direction is that of Hallé et al. [18], which also submits trace slices to
parallel monitors, a development of the author’s previous work on using MapRe-
duce for the same problem [5]. Reger in his MSc dissertation [35] experimented
with similar ideas, creating parallel monitors to monitor subsets of value ranges.
However, in that early work the results were not promising, possibly due to the
less mature state of support for parallelism in Java and hardware at the time.
Berkovich et al. [9] also address the splitting of the trace according to data into
parallel executing monitors. However, differently from the other approaches, the
monitors run on GPUs instead of on CPUs as the system being monitored does.
Their monitoring approach incurs minimal intrusion, as the execution of moni-
toring tasks takes place in different computing hardware than the execution of
the system under observation. Francalanza and Seychell [17] explore structural
parallelism, where parallel monitors are spawned based on the structure of the
formula. E.g. a formula p ∧ q will cause two parallel monitors, one for each con-
junct, co-operating to produce the combined result. El-Hokayem and Falcone
[13] review different approaches to monitoring multi-threaded Java programs,
which differs in perspective from the monitoring system itself to be parallel.
Francalanza et al. [16] survey runtime verification research on how to monitor
systems with distributed characteristics, solutions that use a distributed platform
for performing the monitoring task, and foundations for decomposing monitors
and expressing specications amenable for distributed systems.

The work by Burlò et al. [10] targets open distributed systems and relies on
session types for verification of communication protocols. It applies a hybrid ver-
ification technique where the components available pre-deployments are checked
statically, and the ones that become available at runtime are verified dynami-
cally. Their approach is based on describing communication protocols via session
types with assertions, from the lchannels Scala library, which are used to syn-
thesize monitors automatically. The work by Neykova and Yoshida [33] applies
runtime verification to ensure a sound recovery of distributed Erlang processes
after a failure occurs. Their approach is based on session types that enforce
protocol conformance. In [28], Lavery et al. present an actor-based monitoring
framework in Scala, that similar to our approach is built using the Akka toolkit.
The monitoring system does not, as our approach, provide a temporal logic API
for specifying properties, which is argued to be an advantage. Daut as well as
TraceContract allow defining monitors using any Scala code as well. A monitor
master actor can submit monitoring tasks to worker actors in an automated
round robin fashion manner. This, however, requires that the worker monitors
do not rely on an internal state representing a summary of past events. The work
by Attard and Francalanza [3] targets asynchronous distributed systems. Their
approach allows for generating partitioned traces at the instrumentation level
where each partitioned trace provides a localized view for a subset of the system
under observation. The work focuses on global properties that can be cleanly
decomposed into a set of local properties which can be verified against local
components. It is suggested that one could use the partitioned traces to infer
alternative merged execution traces of the system. The implementation of the
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approach targets actor-based Erlang systems, and includes concurrent localized
monitors captured by Erlang actors.

3 An Overview of MESA

MESA is a framework for building actor-based monitoring systems. An overview
of a system that can be built using MESA is shown in Fig. 1. A MESA system
is solely composed of actors that implement a pipeline of four processing steps.
The vertical lines between actors represent publish-subscribe communication
channels resembling pipelines where outputs from one step are used as inputs
for the following step. The first step is data acquisition which extracts data from
the SUO. The second step is data processing which parses raw data extracted
by the previous step and generates a trace composed of events that are relevant
to the properties of interest. Next step is monitoring which checks the trace
obtained from the previous step against the given properties. Finally, the last
step is reporting which presents the verification results. What MESA offers are
the building blocks to create actors for each step of the runtime verification.
Often one needs to create application specific actors to extend MESA towards
a particular domain. Besides the NAS domain, MESA is extended towards the
UxAS project which is developed at Air Force Research Laboratory and provides
autonomous capabilities for unmanned systems [34].

Data acquisition Data processing ReportMonitoringSUO

Fig. 1. Overview of a MESA actor-based monitoring system.

Akka actors can use a point-to-point or publish-subscribe model to com-
municate with one another. In point-to-point messaging, the sender sends a
message directly to the receiver, whereas, in publish-subscribe messaging, the
receivers subscribe to the channel, and messages published on that channel are
forwarded to them by the channel. Messages sent to each actor are placed on
its mailbox. Only actors with a non-empty mailbox become runnable. Actors
extend the Actor base trait and implement a method receiveLive of type
PartialFunction[Any, Unit] which captures their core behavior. It includes a
list of case statements, that by applying Scala pattern matching over param-
eterized events, determine the messages that can be handled by the actor and
the way they are processed. To create a MESA monitoring system (Fig. 1) one
needs to specify the actors and the way they are connected with communication
channels in a HOCON configuration file used as an input to MESA.
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Figure 2 shows the MESA framework infrastructure and the existing sys-
tems incorporated into MESA. These systems are all open source Scala projects.
MESA is also written in Scala and in the process of becoming open source.
Akka provides the actor model implementation. RACE, built on top of Akka, is
mainly used for connectivity to external systems. MESA employs a non-intrusive
approach since for safety-critical systems such as NAS, sources are either not
available or are not allowed to be modified for security and reliability reasons.
RACE provides dedicated actors, referred to as importers, that can subscribe
to commonly-used messaging system constructs, such as JMS server and Kafka.
Using an importer actor from RACE in the data acquisition step, we extract
data from the SUO, in a nonintrusive manner.

TraceContract and Daut are trace analysis DSLs where given a program
trace and a formalized property, they determine whether the property holds
for the trace. Monitor is a main class in these DSLs which encapsulates prop-
erty specification capabilities and implements a key method, verify, that for
each incoming event updates the state of the monitor accordingly. Instances of
Monitor are referred to as monitors from here on. Similar to actors receiveLive
method, Monitor.verify includes a series of case statements that determine the
events that can be handled by the monitor and the behavior triggered for each
event. The properties described in this paper are specified using Daut since it
also provides an indexing capability within monitors to improve their perfor-
mance. It allows for defining a function from events to keys where keys are used
as entries in a hash map to obtain those states which are relevant to the event.
Using indexing, a Daut monitor only iterates over an indexed subset of states.

conectivity
RACE

Akka Daut/TraceContract

JVM/Scala & Java libs

MESA

actor model

platform

Fig. 2. The MESA framework infrastructure.

Properties in MESA are defined as subclasses of Monitor. The actors in
the monitoring step (Fig. 1), referred to as monitor actors, hold an instance
of the Monitor classes and feed them with incoming event messages. MESA
provides components referred to as dispatchers which are configurable and can
be used in the monitoring step to determine how the check for a property is
distributed among different monitor actors. Dispatchers, implemented as actors,
can generate monitor actors on-the-fly and distribute the incoming trace between
the monitor actors, relying on identifiers extracted by data parametrized events.

4 Monitoring Live Flights in the U.S. Airspace

This section presents the case study where MESA is applied to check a property
known as RNAV STAR adherence, referred to as PRSA in this paper. A STAR
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is a standard arrival procedure designed by the FAA to transition flights from
the en-route phase to the approach phase where descent starts. Every STAR
specifies a set of flight routes that merge together, and each route is specified by
a sequence of waypoints, accompanied by vertical and speed profiles specifying
altitude and airspeed restrictions. A waypoint is a geographical position with
latitude and longitude coordinates. A STAR is a form of communication between
the flight crew and air traffic controllers. When the air traffic controller gives
a clearance to the pilot to take a certain STAR route, they communicate the
route, altitude, and airspeed. A STAR route, assigned to a flight, is encoded in
the flight plan presented to the pilot as a sequence of waypoints. STARs are
specfically designed for flights operated under Instrument Flight Rules under
which the aircraft is navigated by reference to the instruments in the aircraft
cockpit rather than using visual references. STAR routes can only be used by
aircrafts equipped with a specific navigation system called RNAV.

One of the ongoing focus points of the FAA is to increase the utilization of
STAR procedures. From 2009 to 2016, as part of the NextGen project, 264 more
STAR procedures were implemented on an expedited timeline [41] which led to
safety concerns raised by airlines and air traffic controllers including numerous
unintentional pilot deviations [12,24]. A possible risk associated with deviating
from a procedure is a loss of separation which can result in a midair collision.
The work presented in [40] studies RNAV STAR adherence trends based on a
data mining methodology, and shows deviation patterns at major airports [4].

The case study applies runtime verification to check if flights are compliant
with the designated STAR routes in real-time. A navigation specification for
flights assigned to a STAR requires a lateral navigation accuracy of 1 NM1 for
at least 95% of the flight time [25]. Our approach focuses on lateral adherence
where incorporating a check for vertical and speed profiles becomes trivial. We
informally define the RNAV STAR lateral adherence property as follows, adopted
by others [40].

PRSA : a flight shall cross inside a 1.0NM radius around each waypoint in the
assigned RNAV STAR route, in order.

4.1 Formalizing Property PRSA

For a sake of brevity, we say a flight visits a waypoint if the flight crosses inside
a 1.0 NM radius around the waypoint. We say an event occurs when the aircraft
under scrutiny visits a waypoint that belongs to its designated STAR route. For
example, in Fig. 3, where circles represent 1.0 NM radius around the waypoints,
the sequence of events for this aircraft is MLBEC MLBEC JONNE.

We define a state machine capturing Property PRSA. Let L be a set including
the labels of all waypoints in the STAR route. Let first and last be predicates on
L that denote the initial and final waypoints, respectively. Let next be a partial
function, L ↪→ L, where given a non-final waypoint in L it returns the subsequent

1 NM, nautical mile is a unit of measurement equal to 1,852 m.
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MLBEC

JONNE

MLBEC

JONNE

MLBEC

JONNE

MLBEC

JONNE

(1) (2) (3) (4)

Fig. 3. The sequence of events for the aircraft is MLBEC MLBEC JONNE.

waypoint in the route. For example, next(MLBEC) returns JONNE (Fig. 3). The
finite state machine for Property PRSA is the tuple (Q,Σ, q0, F, δ) where

– Q = L ∪ {init, err, drop}
– Σ = {et|t ∈ L ∪ {FC, SC}}
– q0 = init
– F = {err, drop} ∪ {q ∈ L | last(q)}
– δ : Q × Σ → Q

Q is the set of all states, and init is the initial state. Σ is the set of all possible
events. The event et where t ∈ L indicates that the aircraft visits the waypoint t.
The event eFC indicates that the flight is completed, and eSC indicates that the
flight is assigned to a new STAR route. Note that FC stands for flight completed
and SC stands for STAR changed. F is the set of final states where last represents
the set of accept states indicating that the flight adhered to the assigned STAR
route. The state err represents an error state indicating the violation of the
property. The state drop represents a state at which the verification is dismissed
due to assignment of a new STAR route. The transition function δ is defined as
below.

δ(q, et) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

t if(q = init & first(t))
or (q ∈ {x ∈ L | ¬last(x)} & t ∈ {q, next(q)})

err if(q = init & t �= SC&¬first(t))
or (q ∈ {x ∈ L | ¬last(x)} & t /∈ {q, next(q), SC})

drop if(q �= err & t = SC)

At init, if the flight visits the first waypoint of the assigned route, the state
machine advances to the state representing the first waypoint. Alternatively, if at
waypoint q, the flight can only visit q or the next waypoint in the route, next(q).
Otherwise, if at init, and it visits any waypoint other than the first waypoint of
the route, the state machine advances to err. Likewise, if the flight visits any
waypoint not on the route, the state advances to err. Finally, at any state other
than err, if the flight gets assigned to a new route (t = SC), the state machine
advances to drop.

4.2 PRSA Monitor Implementation

All the events and types encapsulated by them are implemented as Scala case
classes due to their concise syntax and built-in pattern matching support that
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Fig. 4. Implementation of Property PRSA.

facilitates the implementation of data-parametrized state machines. The class
Visit represents an event where the flight visits the given waypoint, Waypoint.
Completed indicates that the flight is completed. StarChanged indicates that
the given flight is assigned to a new STAR route.

case class Vi s i t ( i n f o : Info , wp : Waypoint )
case class Completed ( t rack : Track )
case class StarChanged ( t rack : Track )

We implement PRSA as a Daut monitor (Fig. 4). A Daut monitor maintains the
set of all active states representing the current states of the state machines. For
each incoming event, new target states of transitions may be created and the set
of active states updated. A state is presented by an object of type state, and the
set of transitions out of the state is presented by an instance of Transitions,
which is a partial function of type PartialFunction[E, Set[state]] where E is a
monitor type parameter.

The functions always and watch act as states. They accept as argument a
partial function of type Transitions and return a state object. The case state-
ments, representing transitions at states, are matched against incoming events.
The verification starts from the state always, and watch represents a state at
which the flight visits a waypoint. For case statements in always, isValid is
used as a pattern guard to narrow down the set of events triggered on the state
to the ones relevant to the STAR routes assigned to the monitor. Moreover, since
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always is always an active state, isValid ensures that only one event per flight
is triggered on always. The first case in always matches against the event Visit
where a flight visits a waypoint. Then, it checks if the waypoint, wp, visited by the
flight is the first waypoint of the route. If so, the method nextState is invoked
which advances the state to watch. Otherwise, the method error advances the
state to err. The second case matches against Completed, indicating that the
flight is completed without visiting any waypoints, and invokes error.

The watch state waits to receive an event that triggers one of its transitions
and then leaves the state. The input parameters of nextState, wp and cs, rep-
resent the waypoint being visited by the flight and the flight call sign. To ensure
that only events associated with this flight can match against case statements,
all the patterns match the call sign for the incoming event, cs, against the value
of the flight call sign. This is done by using back-quotes for associated param-
eter in the typed patterns, cs. The first case in watch matches against the
event where the flight visits the current waypoint, and calls nextState(wp, cs)
to remain in the current state. The variable next is set to the next waypoint in
the STAR route. The second case matches against the event where the flight
visits the waypoint next. It checks if next is the last waypoint, and if so, it calls
accept which returns the object ok, representing the accepting state. If next is
not the last waypoint, it calls nextState(next, cs) to advance to the state cor-
responding to next. Next case matches against Completed which calls error to
advance to the err state. Finally, last case matches against StarChanged which
calls drop to discard the analysis for the flight.

4.3 A MESA Monitoring System for PRSA

Figure 5 illustrates the MESA monitoring system used to verify Property PRSA.
The data acquisition step extracts the data relevant to the property which
includes flight information, position, navigation specification, flight plan, etc.
To get this data, we connect to an FAA system, SWIM (System Wide Informa-
tion Management) [19]. SWIM implements a set of information technology prin-
ciples in NAS which consolidates data from many different sources, e.g. flight
data, weather data, surveillance data, airport operational status. Its purpose
is to provide relevant NAS data, in standard XML formats, to its authorized
users such as airlines, and airports. SWIM has a service-oriented architecture
which adopts the Java Message Service (JMS) interface [37] as a messaging API
to deliver data to JMS clients subscribed to its bus. We use the RACE actor
SFDPS-importer which is a JMS client configured to obtain en-route real-time
fight data from a SWIM service, SFDPS (SWIM Flight Data Publication Ser-
vice) [15]. SFDPS-importer publishes the data to the channel sfdps.

The data processing step parses the SFDPS data obtained from the previous
stage and generates a trace, composed of event objects, relevant to the property.
This done via a pipeline of actors that parse the SFDPS messages in XML
(sfdps2track and sfdps2state), filter irrelevant data (filter), and finally
generate Visit, Completed, and StarChanged events, which are known to the
monitor P RSA (event-gen) and published to the channel trace.
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Fig. 5. A MESA instance for verifying Property PRSA for STARs at SFO.

Fig. 6. Flight deviation from assigned RNAV STARs detected at SFO.

The monitoring step includes monitor actors that encapsulate an instance of
the monitor P RSA (Fig. 4). They subscribe to the channel trace, and feed their
underlying P RSA object with incoming events. Each monitor actor in Fig. 5 is
associated to a STAR procedure at SFO which checks for the flights assigned to
that STAR, and published the verification result on the channel result. Using
the dispatcher feature of MESA, one can distribute the monitoring differently,
for example using one monitor actor per flight. Finally, the last step displays
the results. The actor display simply prints data published on result on the
console. We also use a RACE actor, ww-viewer, that uses NASA WorldWind
system to provide interactive geospatial visualization of flight trajectories.

Using the MESA system shown in Fig. 5, we discovered violations of PRSA.
Figure 6 includes snapshots from our visualization illustrating two cases where
PRSA was violated. It shows that the flight United 1738 missed the waypoint
LOZIT, and the flight Jazz Air 743 missed the initial waypoint BGGLO.

5 Experiments

This section presents our experiments evaluating the impact of using concurrent
monitors and indexing. More details on the experiments can be found in [39].
The experiments uses a property which checks if the sequence of SFDPS mes-
sages with the same call sign received from SWIM is ordered by the time tag
attached to the messages. This property is motivated by observations where the
SFDPS messages did not send in the right order by SWIM. We use the state of
flights as events captured by State instances, and specify the property p as a
data-parameterized finite state machine using Daut as follows, where t1 and t2
represent the event time.



232 N. Shafiei et al.

always {case State ( cs , , , t1)=>watch {case State ( ‘ cs ‘ , , , t2)=>t2 . i sA f t e r ( t1 )}}

This property is simple and it leads to a small service time, the time used to
process the message within the monitor object. To mitigate issues associated
with microbenchmarking, we use a feature of Daut that allows for defining
sub-monitors within a monitor object. We implement a Daut monitor P SEQ
which maintains a list of monitor instances, all capturing the same p, as its
sub-monitors.

We evaluate the impact of concurrency in the context of indexing. Indexing
can be applied both at the monitor level or the dispatcher level. Indexing at
the monitor level is supplied by Daut. We activate this feature by implementing
an indexing function in the Daut monitor that uses the call signs carried by
events to retrieve the set of relevant states for analysis instead of iterating over
all the current states. At the dispatcher level, indexing is applied by keeping the
monitor instances or references to monitor actors in a hash map, using the call
signs carried by events as entries to the hash map.

Fig. 7. Actor-based monitoring systems used in the experiment.

5.1 Monitoring Systems

The experiments use four different MESA systems which are only different in
their monitoring step. They all use the same actors to extract the recorded
SFDPS data, generate a trace composed of State objects, and publish the trace
to a channel, events, accessed in the monitoring step. The monitoring step for
each system is illustrated in Fig. 7. Let n be the total number of different call
signs in the input sequence. The outermost white boxes represent actors, and
gray boxes represent monitor instances held by the actor. Let M refer to P SEQ
monitor instances with no indexing capability, and MI refer to P SEQ instances
with indexing. The white box inside each monitor instance includes call signs
monitored by this instance. Next, we explain the monitoring step for the moni-
toring systems, the features of which are summarized in Table Fig. 8.

– monitor-indexing - the monitoring step includes one actor with a single MI
monitor which checks for all the events in the input sequence published to
events. In a way, the monitoring step of this configuration is equivalent to
directly using the Daut tool to process the trace sequentially.
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– dispatcher-indexing - the monitoring step includes a dispatcher actor which
creates monitor instances of type M, and feeds them with incoming events. The
dispatcher actor generates one monitor instance per call sign, and applies
indexing by storing the monitor instances in a hash map. The dispatcher
obtains event objects from the channel events, and starting with an empty
hash map, for each new call sign, it adds a new monitor instance to the hash
map. For an event object with the call sign csi, the dispatcher invokes the
verify method of the monitor instance Mi.

– concurrent - the trace analysis is performed concurrently by employing mul-
tiple monitor actors, generated on-the-fly. One can configure the dispatcher
to set a limit on the number of monitor actors. If no limit is set, one monitor
actor is generated for each call sign and the indexing within the monitor is
deactivated. By setting a limit, one monitor actor could be assigned to more
than one call sign. The latter is referred to as bounded-concurrent. Indexing
is also applied at the dispatcher level, using a hash map that stores monitor
actor references with call signs as entries to the map. For each event object,
the dispatcher forwards the event object to the associated monitor actor via
point-to-point communication. Then the monitor actor invokes the verify
method on its underlying monitor instance.

monitor indx dispatcher indx concurrency

monitor-indexing � × ×
dispatcher-indexing × � ×
concurrent × � �
bounded-concurrent � � �

Fig. 8. The main features of the monitoring systems presented in Fig. 7.

5.2 System Setup

All experiments are performed on an Ubuntu 18.04.3 LTS machine, 31.1 GB
of RAM, using a Intel R©Xeon R©W-2155 CPU (10 cores with hyperthreading,
3.30 GHz base frequency). We use an input trace, T, including 200,000 mes-
sages obtained from an archive of recorded SFDPS data in all experiments. T
includes data from 3215 different flights, that is, n in Fig. 7 is 3215. The number
of sub-monitors in P SEQ is set to 2000. The Java heap size is set to 12 GB.
Our experiment uses a default setting of the Akka scheduler which associates
all actors to a single thread pool with 60 threads, and uses the default value 5
for actors throughput, the maximum number of messages processed by the actor
before the assigned thread is returned to the pool.
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5.3 Evaluation

Using a bash script, each MESA monitoring system is run 10 consecutive times
on the trace T, and the average of the runs is used for evaluation. Figure 7
compares the run times for the monitoring systems presented in Fig. 9. The
legend bcon stands for bounded-concurrent followed by the number of monitor
actors. Considering the 3215 different call signs in T, monitor-indexing includes
one monitor actor including one monitor object that tracks all 3215 flights. The
dispatcher-indexing system creates one actor with a hash map of size 3215
storing the monitor objects where each object monitors events from one flight.
The concurrent monitoring system creates 3215 monitor actors where each
actor monitors events from one flight. The bounded-concurrent system creates
250 monitor actors where each actor monitors events from 12 or 13 flights.

The results show that the systems with concurrent monitors perform consid-
erably better than the systems with a single monitor actor. The system monitor-
indexing performs worse than dispatcher-indexing. Considering the similar-
ity between their indexing mechanisms, the difference mostly amounts to the
implementation. The CPU utilization profiles for the system are obtained by the
VisualVM profiler which represent the percentage of total computing resources
in use during the run (Fig. 10). The CPU utilization for monitor-indexing is
mostly under 30% and for dispatcher-indexing is mostly between 40% and
50%. For concurrent and bounded-concurrent, the CPU utilization is mostly
above 90% which shows the impact of using concurrent monitor actors. The
VisualVM heap data profiles reveal that all the system exhibit a similar heap
usage which mostly remains under 10G.

Fig. 9. Comparing the run times of different MESA actor systems.

Figure 9 shows that limiting the concurrent monitors to 250 results in a better
performance than using one monitor actor per flight in concurrent. To evaluate
how the number of monitor actors impact the performance, bounded-concurrent
is run with different numbers of monitor actors, 125, 250, 500, 1000, 2000, and
3215. We increase the number of monitor actors up to 3215 since this is the
number of total flights in the trace T. The results are compared in Table Fig. 11.
The system performs best with 250 monitor actors, and from there as the number
of monitor actors increases the run time increases. Increasing the number of
monitor actors decreases the load on each monitor actor, however, it increases the
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Fig. 10. The CPU utilization profiles obtained by VisualVM.

overhead from their scheduling and maintenance. Note that the optimal number
of monitor actors depends on the application and the value of input parameters.
Tweaking inputs parameters could lead to a different optimal number of monitor
actors. Our results also show that depending on the number of flights tracked
by each monitor actor, Daut indexing could lead to overhead, e.g. it leads to
11% overhead when using 3215 monitor actors, and improves the performance
by 45% when using 125 monitor actors.

Fig. 11. Comparing the run times of different MESA actor systems.

5.4 Actor Parameter Evaluation

We also evaluate performance parameters for individual dispatcher and monitor
actors in each monitoring system, including the average service time, and the
average wait time for messages in the mailbox. The relevant points for measuring
these parameters are when a message is enqueued into and dequeued from the
mailbox, and when the actor starts processing and finishes processing a mes-
sage. We provide mechanisms for actors to wrap the relevant data into container
objects and publish them to a channel accessed by an actor, stat-collector,
which collects this information and reports when the system terminates.

To measure service time, the default actor behavior, recieveLive, is replaced
by an implementation that for each message, invokes recieveLive, records the
time before and after the invocation, and publishes a data container with the
recorded times to the channel accessed by stat-collector. To obtain informa-
tion from actor mailboxes, we implement a new mailbox that extends the default
Akka mailbox implementation with a mechanism that records the message entry
time to and the exit time from the mailbox, and publishes a data container with
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the recorded times to the channel accessed by stat-collector. Any MESA actor
can be configured to use these features, referred as ASF. The ASF overheads for
monitor-indexing and dispatcher-indexing are about 20% and 11%. For sys-
tems with concurrent monitor actors, this overhead ranges between 20% to 28%
and increases as the number of monitor actors increases.

Figure 12 compares the performance parameters for individual actors.
Figure 12a and 12b show that the monitor actor in monitor-indexing has a
longer service time and longer wait time in the mailbox comparing to the dis-
patcher in dispatcher-indexing. Figure 12c and 12d compare the dispatcher
performance metrics for bounded-concurrent with different numbers of moni-
tor actors. Figure 12e and 12f present the monitor actors performance metrics
for the same systems. The average service time for the dispatcher and monitor
actors increases as the number of actors increases. Increasing the monitor actors
increases the load on the dispatcher since it needs to generate more monitor
actors. Decreasing the number of monitor actors increases the load on individual
monitor actors since each actor monitors more flights. On the other hand, apply-
ing indexing within the monitor actors improves their performance, however for
monitors that track small number of flights, indexing can lead to overhead lead-
ing to longer service times.

The message wait time in the dispatcher mailbox increases as the number of
actors increases (Fig. 12d). In general, with a constant thread pool size, increas-
ing actors in the system can increase the wait for actors to get scheduled, leading
to longer wait for messages in mailboxes. However, in the case of monitor actors
the mailbox wait is longer with smaller number of actors (Fig. 12f). This is due
to higher arrival rate of messages in these systems since each monitor actor is
assigned to higher number of flights.

6 Discussion

Applying MESA on NAS demonstrates that our approach can be used to effec-
tively detect violations of temporal properties in a distributed SUO. We show the
impact of using concurrent monitors for verification. Our evaluation includes a
setting that resembles using an existing trace analysis tool, Daut, directly. Com-
paring this setting to the concurrent monitoring setting reveals that employing
concurrent actors can considerably improve the performance. MESA is highly
extensible, and provides flexibility in terms of incorporating new DSLs. It can
be viewed as a tool that provides concurrent monitoring platform for existing
trace analysis DSLs.

To maximize the performance, one needs to limit the number of concurrent
monitor actors. Due to a variety of overhead sources, the optimal number of
actors is application specific and cannot be determined a priori. The following
factors need to be taken into consideration when configuring values of the related
parameters. Limiting the number of monitor actors on a multi-core machine can
lead to a low CPU utilization. One can elevate the CPU utilization by increasing
concurrency. However, there is overhead associated with actors. Assigning actors
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Fig. 12. Comparing the monitors performance metrics for MESA systems.

to threads from the thread pool and context switching between them impose
overhead. MESA is a highly configurable platform that can facilitate finding the
optimal number of monitor actors to maximize the performance. One can easily
tune relevant parameters in the configuration file to evaluate the monitoring
systems.

As shown in Fig. 2, our framework runs on top of JVM and relies on the Akka
framework. There are mechanisms, such as garbage collection at the JVM level
and actor scheduling at the Akka level, that cannot be controlled from a MESA
system. Therefore, MESA is not suitable for verifying hard real-time systems
where there are time constraints on the system response. One of the challenges
that we faced in this work is microbenchmarking on JVM which is a well-known
problem. Certain characteristics of JVM such as code optimization can impact
accuracy of the results, specially when it comes to smaller time measures such as
service time and wait time for messages in the actor mailboxes. However, there
are tools such as JMH that provide accurate benchmarking [26].

Several of the mentioned works [3,8,9,18], support the observation that con-
currency in one form or other, using asynchronous message passing, can improve
performance of runtime verification systems. The works most relevant to our
combination of slicing and concurrency are [8,18]. Basin et al. [8] provide perfor-
mance results for the use of slicing together with concurrency, but do not com-
pare these with runs without concurrency. However, the logs analyzed contain
billions of events, supporting the observation that exactly this use of concurrency
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is performance enhancing. Hallé et al. [18] do not provide performance results
for specifically the combination of slicing and concurrency.

Slicing does put a restriction on what properties can be monitored. Since
the trace is sliced into subtraces, each of which may be submitted to its own
actor, one cannot express properties that relate difference slices. An example of
a property that cannot be stated in e.g. this particular case study is that the
route taken by an airplane depends on the routes taken by other airplanes. In
MESA the slicing strategy is manually defined, and attention must be paid to
the property being verified to ensure a sound approach.

7 Conclusion

In this work we have presented a runtime verification tool that employs concur-
rent monitors as actors. Our approach allows for specifying properties in data-
parameterized temporal logic and state machines, provided by existing trace
analysis DSLs. We present a case study demonstrating how the tool is used to
obtain live air traffic data feeds and verify a property that checks if flights adhere
to assigned arrival procedures. We evaluate different combinations of indexing
and concurrency, and observe that there are clear benefits to monitor a single
property with multiple concurrent actors processing different slices of the input
trace. This is not an obvious result since there is a cost to scheduling of small
tasks.
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Abstract. Bitflips form an increasingly serious problem for the correct-
ness and security of software and hardware, whether they occur inadver-
tently as soft errors or on purpose as fault injections. Error Detection
Codes add redundancy and make it possible to check for faults during
runtime, making systems more resilient to bitflips. Codes require data
integrity to be checked regularly. Such checks need to be used sparingly,
because they cause runtime overhead.

In this paper, we show how to use static verification to minimize
the number of runtime checks in encoded programs. We focus on loops,
because this is where it is important to avoid unnecessary checks. We
introduce three types of abstractions to decide correctness: depending
on (i) whether we keep track of errors precisely or of their Hamming
weights, (ii) how we check whether faults can still be detected, and (iii)
whether we keep track of the data or not. We show that checks in loops
induce simple and natural loop invariants that we can use to speed up
the verification process.

The abstractions let us trade verification time against the number
of required runtime checks, allowing us to find efficient sets of integrity
checks for critical program fragments in reasonable time. Preliminary
experimental data shows that we can reduce the number of runtime
checks by up to a factor of ten.

1 Introduction

Fault injection attacks and soft errors [BBKN12] are a significant and grow-
ing concern in software security. By flipping bits, an attacker can reveal
cryptographic secrets, change branching decisions, circumvent privilege eval-
uations, produce system failures, or manipulate the outcome of calculations.
For instance, Boneh et al. [BDL97] showed how to break several implementa-
tions of cryptographic algorithms by injecting register faults. To prevent such
attacks, they propose to protect the data integrity with error detection measures.
Such countermeasures have been studied in detail for cryptographic algorithms
[LRT12,SFES18,MAN+18], but not as much for secure software in general,
where fault attacks may also be problematic [YSW18]. Similarly, radiation can
lead to random bit flips known as soft errors or single event upsets. Such errors
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were initially only problematic for hardware used in space, but with decreasing
feature sizes, they have also become relevant for consumer electronics [MER05].

We address error detection with Error Detecting Codes (EDCs) [Ham50,
Dia55]. The fundamental principle of EDCs is an injective mapping of data
words to code words in an encoded domain. The mapping cannot be surjective,
indeed, if a code word is valid (the image of a data word), then flipping a few bits
should not yield another valid code word. Thus, limited faults can be detected
using runtime checks.

We are interested in error detecting codes that are homomorphic over certain
operations. For example, arithmetic codes preserve (some) arithmetic operations,
and binary linear codes preserve bitwise logical operations. Thus, we can execute
certain programs in an encoded domain, without the need to decode and reencode
in-between operations.

We define the distance between code words as their Hamming distance (we
will be more precise below). For a given code, the minimal distance between two
valid code words is called the distance of the code, denoted by dmin. The maximal
number of bitflips that a code can detect is thus dmin − 1. In a program, bitflips
may propagate and grow. For instance, if a variable a contains one bitflip, 3 * a
may contain two.

We need to ensure that errors are not masked, which happens if combining
two invalid code words results in a valid code word. We prevent masking by
inserting runtime checks in the program that halt the program if the variable
passed to the check is not a valid code word. Because checks cost runtime, we
want to insert as few checks as possible.

In this paper, we show how to use static reasoning to minimize the number
of runtime checks in encoded programs, building on the formal verification tech-
niques presented in [KSBM19]. We pay special attention to the verification of
checks inside loops, as their impact on correctness and on verification complexity
is especially high. In order to help minimize the placement of checks, we make
two contributions.

As a first contribution, we introduce a refined abstraction scheme. Where
[KSBM19] only tracks the weight of the errors, we introduce a four-tiered
abstraction scheme in which an error is tracked either by weight or by pre-
cise value; checks are performed either by checking the weight of error or by
checking that a fault is not a valid code word itself, and finally the actual values
of the variables are either abstracted away or kept precisely.

The second contribution is based on the observation that checks that are
placed in loops induce simple loop invariants. We thus propose invariants that
along with generated checks are used to reduce the verification of the runtime
checks in the program to straight-line code.

We show experimentally that our approach allows us to significantly minimize
the number of necessary runtime checks, by up to a factor of ten. The different
levels of abstraction allow us to trade off the number of runtime checks in the
program (we can prove programs with fewer checks correct if we have a finer
abstraction) against the scalability of the approach (which is better if we abstract
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more strongly). The resulting approach allows us to insert efficient sets of checks
into programs with reasonable computational effort.

2 Preliminaries

2.1 Fundamentals of Error Detecting Codes

Before introducing specific arithmetic codes, let us introduce some theory that
is common across these types of codes. The fundamental operating principle of
EDCs is the extension of every value with additional, redundant information.
The key component of each EDC is the encode function. This function defines
how a data word w of the decoded domain W, w ∈ W, is mapped to a code
word c in the encoded domain C:

encode : W �→ C.

Typically, both domains are an interval of non-negative integers. The function
encode should be injective but not surjective, so that we can decode code words
and detect (some) corruptions of code words. We call code word c valid, if it
is part of the image of encode, i.e., ∃w ∈ W : c = encode(w), and invalid
otherwise.

For the error detecting codes that are of interest here, we can define a distance
function d : C × C ⇀ N on the encoded domain. (Distance functions fulfill the
usual properties of non-negativity, identity, symmetry, and the triangle inequal-
ity.) We use these distances to measure faults (as distances to the intended value)
and we will see below that they allow us to track these faults through certain
types of operations.

The error detection capabilities of an error detecting code are limited by
the minimum distance dmin between any two valid code words [Ham50]. We
define dmin as the minimum distance between any two valid code words, i.e.,
dmin = mincv,c′

v
d(cv, c′

v). We also define a weight function weight : C �→ N as
the distance between a code word and the identity encode(0), i.e., weight(c) =
d(c, encode(0)). Finally, we define a partial function decode : C ⇀ W, as the
inverse of the encode function, and a function isvalid : C �→ B, which maps
valid code words to true and invalid code words to false. The result of decode
is only defined for valid code words.

Most EDCs are homomorphic over a set of supported operations ◦, i.e.,

encode(w1 ◦ w2) = encode(w1) ◦ encode(w2),

which allows us to encode a whole program and execute the calculation directly
in the encoded domain.

2.2 Arithmetic Codes

Our work targets programs protected by codes that are homomorphic over arith-
metic operations.
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Arithmetic Codes are homomorphic over operations like addition. The dis-
tance and weight functions are defined as the (base-2) arithmetic distance and
weight, resp. [Mas64]:

weightarit(c) = min
{
n

∣
∣ c =

n∑

i=0

ai · 2ki for some ai ∈ {−1, 1} and ki ≥ 0
}

and
darit(c1, c2) = weightarit(|c2 − c1|).

For instance, darit(9, 2) = weightarit(7) = 2, because 7 = 8 − 1. The distance
between a value c and a value c′ that differ only in one bit is one.

For any linear operation ◦, we have the propagation laws darit(c1◦c2, c
′
1◦c′

2) ≤
darit(c1, c′

1) + darit(c2, c′
2) and darit(c ◦ c, c′ ◦ c′) ≤ darit(c, c′).

Example 1. Separate multiresidue codes. Separate multiresidue codes [Rao70,
RG71] are arithmetic codes. Every code word is a (k + 1)-tuple and operations
are performed separately on each element [Gar66,Pet58]. Every code is defined
by k constants, m1, . . . ,mk and we encode a data word as

encode(w) = (w, |w|m1 , . . . , |w|mk
),

where each check digit |w|mi
equals w mod mi. Every operation on the check

digits is performed modulo its check base, so that

|w1 ◦ w2|mi
= ||w1|mi

◦ |w2|mi
|mi

,

making separate multiresidue codes are homomorphic over these operations. The
constant dmin depends on the choice of the check bases m1, . . . mk [MS09].

Example 2. AN-codes. For AN-codes, we fix a constant A and we define
encode(w) = A · w. A code word is valid if its residue after division by A is
zero. Note that multiplication by A distributes over addition and subtraction.
The dmin of the code does not follow by easy inspection of A, but we often choose
A to be a prime. (Note that a power of two would be a particularly poor choice
with dmin = 1.)

2.3 Error Propagation

When considering computations, we consider both the correct value c0 of a
variable c, which occurs in an execution in which no faults are introduced, and
its possible faulty counterpart c∗, which occurs in the corresponding execution
where faults have been introduced. The error weight ec is defined as the distance
d(c∗, c0) between the correct and actual code values. Recall that if ec ≥ dmin,
then c∗ may equal the encoding of a different data word, and it may no longer be
possible to detect a fault. On the other hand, if we can guarantee that ec < dmin
for all variables c, then faults will remain detectable.
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We will assume that faults are introduced as one or more individual bitflips.
If a single bitflip is introduced in an otherwise correct variable c∗, we have that
d(c0, c∗) = 1 and a bitflip introduced in an existing variable increases the error
weight by at most one. By the propagation laws stated above, for any operation
◦, we have that ec◦c′ ≤ ec + ec′ . Thus, faults may spread across an execution
and “grow up”: a variable may eventually have an error weight that is larger
than the total number of bitflips introduced into the program. For example:
e(c◦c′)◦c ≤ 2 ∗ ec + ec′ which can be larger than the sum of the injected errors
ec + ec′ .

Table 1 summarizes the propagation rules, where we use arithmetic error
weights.

Table 1. Error propagation rules for arithmetic codes. The symbol ± stands for addi-
tion or subtraction.

ev±v′ ≤ ev + ev′

ev±v ≤ ev

e−v = ev

2.4 Fault Model

Our approach is relatively independent of the precise fault model chosen, as long
as it can be modeled by a program transformation.

We illustrate our approach using a simple fault model in which faults consist
of bit flips on memory variables. We model faults to be transient in the sense that
the occurrence of a failure at a given program location does not mean the failure
will occur again when the program location is visited again. We do, however,
assume that errors persist in the sense that when the value of a variable has
changed, it does not automatically change back again. This models faults in
memory rather that faults on, say, the data path of a processor.

To model faults, we assume a minimal programming language with assign-
ments, arithmetic operations, jumps, conditionals, and a runtime check state-
ment. When called on a code word c, check(c) halts the program when c is not
a valid code word and continues otherwise. Note that this check will not detect
code words that contain such a large error that they equal a different code word.

We model faults by a simple program transformation in which a program P is
transformed to an annotated program Pf . In Pf , we add a new statement flip(v)
before every use of a variable v. This statement may nondeterministically flip
one bit of the value of v. We will also typically have an error assumption ϕε that
limits the number of bit flips that can be inserted into a run of the program.
An example would be a specification that says that the total number of inserted
bit flips is smaller than dmin. We refer to [KSBM19] for a formalization of this
approach.
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We assume that the control flow of the program is protected using other
means [SWM18,WUSM18].

Fig. 1. Overview of the verification algorithm.

3 Error Tracking

In this section and the next, we describe how we verify the correctness of the
checks in a program. We will thus define a code transformation from a program
with loops into a set of loop-free programs with assumptions and assertions such
that the correctness of the original program under the fault model is guaranteed
if all of the loop-free code fragments are correct. This is done by tracking the
values of the arithmetic errors in addition to the values of the variables. This
section introduces increasingly precise abstractions for error variables, to make
the error tracking feasible. In the next section, we will describe how to generate
the invariants necessary to handle loops.

Figure 1 contains a schematic of our verification approach. Starting with an
encoded program P in the first step the fault model is made explicit resulting in
a program Pf . In the next step we apply one of the error abstractions described
in this section, abstract the control flow and add assertions. This program Pfa

is then given to a model checker, which gives a verdict whether the program is
secure.

The idea of the abstraction is to track the errors in the variables separately
from their (intended, uncorrupted) values. In order to do this, we need the
following property.

Definition 1. An error-correcting code is error-homomorphic for a set F of
operations, if for any f ∈ F there is an f ′ such that

f(a + εa) = f(a) + f ′(εa) and
f(a + εa, b + εb) = f(a, b) + f ′(εa, εb),

where + denotes addition, as we are dealing with arithmetic codes.

AN-codes and multiresidual codes are error-homomorphic for addition and mul-
tiplication with constants. Multiresidual codes are error-homomorphic for mul-
tiplication as well, but AN-codes are not.

In effect, these constraints state that we can track the values of the variables
separately from the errors. This is important for verification, because it means
we can distinguish between three situations: (1) a value may be correct, that is,
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the error is zero. We denote this by corr(ε); (2) the error may be detectable in a
given code, denoted by detect(ε); (3) the error may be masked, meaning that it
is not zero but cannot be detected using the given code, denoted by masked(ε).
The third case is the one we want to avoid.

Example 3. For an AN code with constant A, corr(ε) is defined as ε = 0,
detect(ε) = (ε mod A 
= 0) and masked(ε) = (ε > 0 ∧ ε mod A = 0)

We will construct a program Pfa from Pf . For every variable v in Pf , Pfa

will have two variables, v and εv. We distinguish our abstractions along three
dimensions:

1. The first question is how to keep track of errors that are introduced. We can
track the actual arithmetic error, or we can abstract it away by keeping track
of the weight of the error only.

2. We can vary how we check whether the induced errors can be handled by the
given code: we can either check whether the concrete error can be detected
by the given code, or we can abstract this to a check whether the weight of
the fault is greater than dmin.

3. Finally, we can keep the actual values of the variables or we can fully abstract
these away.

The abstractions are modeled as follows. In the following, we will assume
static single assignment form and we will introduce assumptions on relations
between variables when we cannot use assignments.

1. If we keep track of errors by their actual values, then for every v, εv is a
bitvector that models the error and the statement flip(v) is replaced by
a statement flipa(εv) that nondeterministically flips one of the bits in εv.
We replace an assignment u := f(v,w) in Pf by the two statements u :=
f(v,w); εu := f′(εv, εw), using error homomorphism.
If we keep only the weights of the errors, then εv is a positive number,
and flipa(εv) nondeterministically adds one to εv. In these cases we replace
an assignment u := f(v,w) by the statements u := f(v,w); assume(εu ≤
f′(εv,εw)). The value of εu can be anything satisfying the assumption. Note
that for arithmetic codes and additions, for instance, the weight of the error
of the sum of two variables can be smaller than the sum of the weights of the
errors.

2. A check whether the weight of a given error is greater than dmin is easily
implemented, whether or not we keep track of the concrete value of the error
or only of its weight. If we keep track of the concrete value of an error, we can
check make sure that the error value can be detected. For multiresidual codes
with constants m1, . . . ,mk, this is the case if εv is not a common multiple of
m1, . . . ,mk; for AN-codes it is the case if it is not a multiple of A.

3. Finally, if we abstract away the values of the concrete variable of the program,
we simply remove all assignments to the variables and replace conditionals
with nondeterministic choices.
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Based on these three dimensions, we define four levels of abstraction, as
sketched in Table 2.

The abstract program is extended by adding assumptions and assertions.
Whenever a variable gets assigned it may not contain error masking. The error
must be either zero or detectable by the code.

– For only checking the weight of the variables the assertion for a variable v is
assert(weight(εv) < dmin).

– If we check the actual code words the assertion instead is assert(corr(εv) ∨
detect(εv)).

After a check on variable we added an assumption that the error on this variable
is zero, as the program would abort otherwise. We can slightly reduce the number
of assertions by only checking the variables when they are checked or used in
some form of output.

Table 2. Abstraction levels

Level Errors Checks Values

3 Weight Weight Abstract

2 Precise Weight Abstract

1 Precise Code Word Abstract

0 Precise Code Word Precise

Theorem 1. If no assertion in the abstract program Pfa is violated then either
the program Pf with faults conforming to the fault model ϕε raises an error or
the output of P and Pf is equal.

We overapproximate the control flow and the propagation of errors. Thus if no
assertion is violated we can guarantee that no fault can lead to error masking and
no manipulated values are in the program output. The other direction, however,
is not true. There are programs that are rejected by our approach, that are
secure against the fault model.

Example 4. The different behaviors of these abstraction levels can be demon-
strated with a simple example. Let the following program, P , be protected by
an AN code with A = 7, for which we have dmin = 2:

m := m + a;
check(m); check(a);

For the sake of a simpler presentation we only consider one error injection loca-
tion on the variable a at the beginning of the program, so that our annotated
program Pf becomes
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flip(a);
m := m + a;
check(m); check(a);

Let us assume that at most one bit is flipped. Using Abstraction Level 3 we
obtain an abstract program Pfa. Combining that with the specification that
puts the error at zero at the beginning at the program and requires safe errors
at the end, we get the following.

assume(εa = 0 ∧ εm = 0);
ε′
a := flipa(εa); // ε′

a = 1, εm = 0
assume(ε′

m ≤ εm + ε′
a); // ε′

a = 1, ε′
m = 1

assert(ε′
m < dmin ∧ ε′

a < dmin);

The variables a and m are replaced by their respective error weights and the
comments on the right side of the code show one possible execution in which a
bitflip is introduced in a and the bitflip propagates to m. The final checks are
replaced by checks whether both errors are not masked, i.e., smaller than dmin.
It it easy to verify (by hand or mechanically) that the assertion always holds.

To make things a little more interesting, let us extend the program by repeat-
ing the first statement:

m := m + a;
m := m + a;
check(m); check(a);

This program can no longer be verified using Abstraction Level 3, because a
single bitflip in a at the beginning can result in εm = 2 at the end, which is equal
to dmin. However, we can use Abstraction Level 2 to show that all errors will be
detected:

assume(εa = 0 ∧ εm = 0);
ε′
a := flipa(εa); // ε′

a = 2, εm = 0
ε′
m := εm + ε′

a; // ε′
a = 2, ε′

m = 2
ε′′
m := ε′

m + ε′
a; // ε′

a = 2, ε′′
m = 4

assert(weight(ε′′
m ) < dmin ∧ weight(ε′

a) < dmin);

The variables εa and εb now keep track of the precise faults. The comments show
possible values for one execution with a bitflip on the second bit, which in the
third line leads to a value with the third bit flipped. In general, injecting one bit
flip in a variable and adding it to itself always results in a value with only one
flipped bit, and such errors can be detected by a code with dmin = 2.

Extending our example once more, we get

m := m + a;
m := m + a;
m := m + a;
check(m); check(a);

An attempt to verify this program using Abstraction Level 2 fails, because the
error weight of m can reach dmin at the end. However, we can use Abstraction
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Level 1 to show that the check on m is still sufficient to find all faults in this
program.

assume(εa = 0 ∧ εm = 0);
ε′
a := flipa(εa); // ε′

a = 2, εm = 0
ε′
m := εm + ε′

a; // ε′
a = 2, ε′

m = 2
ε′′
m := ε′

m + ε′
a; // ε′

a = 2, ε′′
m = 4

ε′′′
m := ε′′

m + ε′
a; // ε′

a = 2, ε′′′
m = 6

assert((ε′′′
m = 0 ∨ ε′′′

m mod A 
= 0) ∧ (ε′
a = 0 ∨ ε′

a mod A 
= 0));

Instead of checking only the weight of the error variables we check if the error
variable is zero or a valid code word in the AN code. This is done by testing if
the value is divisible by A. The comments again show one possible execution of
the program. It is also easy to see that this is correct in general. The value of m
at the end is m+3∗a; any error introduced at the beginning is also multiplied by
3. Error masking cannot occur, since 3 is not a factor of A = 7.

Abstraction Level 0 keeps the precise values of all variables. Essentially, this
amounts to not using any abstraction. We will not go into details for this abstrac-
tion level, but of course, it is easy to come up with an example in which the
concrete values of the variables are needed to show the program is secure.

4 Invariants

The abstract program defined in the last section can be passed to a model checker
as is. However, such programs may be difficult for off-the-shelf model checkers to
handle, especially in the presence of loops. It may, however, be easy to generate
loop invariants for the classes of faults that we use, thus reducing the verification
of an annotated program to the verification of a set of loop-free code segments
in order to reduce the number of runtime checks.

Let us assume our annotated program Pf contains a loop body L that uses
a set of variables V = {v1, . . . , vn} with the associated error variables εV =
{ε1, . . . , εn} and let E ⊆ N

n be the set of possible values for εV . Without loss of
generality, let us assume that at the end of each loop iteration, we check variables
{v1, . . . , vk} for a detectable error.

We will assume that we have an error specified by ϕε on the level of the
loop that limits the bit flips to l, i.e., l is the total number of bit flips that can
be inserted during the execution of the loop. We denote the resulting value of
variable vi (error εi) of executing L with variable values a = (a1, . . . , an) and
error values e = (e1, . . . , en) and the total number of bitflips introduced in this
iteration b by a′

i(a, e, b) (e′
i(a, e, b), resp.).

Definition 2. For a loop L, a set E∗ ⊆ E × N is an error invariant if the
following two conditions hold.

1. For any (e1, . . . , en, b) ∈ E∗, we have
∧

i≤k corr(ei) and
∧

i>k ¬masked(ei)
and b ≤ l.
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2. For any (e, b) ∈ E∗, any valuation a of V , and any number of new bitflips
b′ ≤ l − b, one of two things holds
(a)

∨
i≤k detect(e′

i(a, e, b′)) or
(b) (e′

1(a, e, b′), . . . , e′
n(a, e, b′), b + b′) ∈ E∗.

Thus, if we start the loop body with the errors in the checked variables equal
to zero and no masked errors, we know that at the end of the loop the program
either terminates because it finds an error, or there are no masked errors. In
addition to the errors on the variables the invariant also tracks the number of
introduced bitflips and limits them to conform to the program wide fault model.

We will consider a loop to be correct if it has an error invariant, noting that
if required, we can check for detectable error on variables vk+1, . . . , vn after the
loop has finished.

Theorem 2. Assume E∗ is an error invariant for a loop with body L. If L is
executed with error values and introduced bitfilps in E∗ and at the end either an
error is raised or the values are in E∗ then executing the loop while(*): { L }
with values in E∗ either results in raising an error or after the loop all values
are in E∗.

The general definition of invariants is independent of the abstraction level,
but the invariants differ in the actual value of E∗. The main challenge is to find
a good E∗. Many programs can be verified by using a few simple invariants.

– If all variables are checked at every loop iteration, we use {(0, . . . , 0, b) | b ∈
[0, l]} as a (candidate) error invariant.

– For Abstraction Level 3 we can use the invariant that all unchecked error
variables are below dmin. The same can be done for Abstraction Level 2, but
in this case we require that the Hamming weight of all variables be below
dmin.

– For Abstraction Level 1 we can define E∗ as the set of detectable errors,
according to the used code.

– Another stricter version for Abstraction Level 1 is to restrict the values to only
what can be introduced with a single error injection and no accumulation.

These invariants assume a fault model that limits the amount of fault injec-
tions for one program execution. The invariants can be adapted to support other
fault models. For instance only the number of bitflips per loop iteration could
be bounded, without an upper limit for the whole execution.

Example 5. We use a variant of the example from the previous section to demon-
strate our invariants. A simple multiplication algorithm can be build from
repeated addition. The following code multiples a and b and stores the result in
m.

m := 0;
while(i<b):

i := i + 1;
m := m + a;
check(m); check(a);
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The variables i and b are assumed to be checked by the control flow protection.
We can therefore obtain the following program with abstracted control flow.

m := 0;
while(*):

m := m + a;
check(m); check(a);

Here both variables m and a are checked at the end of the loop body. Using
Abstraction Level 2, we keep track of the errors and check their weights, resulting
in the following program. In this case we can use the invariant that both εa and
εm are zero, which gives the following program Pfa using Definition 2.

assume(εa = 0 ∧ εm = 0);
ε′
a := flipa(εa);

ε′
m := εm + εa;
assert(0 < weight(ε′

m) < dmin ∨ 0 < weight(ε′
a) < dmin ∨ ε′

m = 0 ∧ ε′
a = 0);

We assume that both errors are zero at the start and we check that we can find
potential errors in the variables after executing the loop body.

Suppose we want to only check one of the variables. Using Abstraction Level 1
and checking only m, we can define an invariant inv(εa) that does not allow
masked values. We obtain the program:

assume(εm = 0 ∧ inv(εa));
ε′
a := flipa(εa);

ε′
m := εm + ε′

a;
assert(detect(ε′

m) ∨ ε′
m = 0 ∧ inv(εa))

The last line in the listing can be realized by checking ε′
m 
= 0 ∧ ε′

m mod A 
=
0 ∨ ε′

m = 0 ∧ inv(ε′
a). For the invariant on εa we could use εa = 0. This invariant

holds, because any bitflip that is introduced in the second line will be found by
the check on m.

5 Experimental Results

In order to evaluate how the overhead of runtime checks can be minimized using
our method, we ran our technique on two examples, The CORDIC algorithm
for numerical trigonometry [Vol59] and a Fibonacci number generator [Bon02].
These algorithms contain a loop in which almost all of the work is done, so that
small performance improvements can have a large impact on the overall perfor-
mance of the programs. To further reduce the number of required runtime check
we also consider variants of these programs where the loop has been unrolled n
times. In these cases, checks are only inserted every n iterations. We also use
these two algorithms to compare the static verification results and performance
of our approaches.

In our experiments, we used CPAchecker version 1.9 [BK11] running on a
laptop with an Intel i5-6200U CPU under Ubuntu 18.04 with 12 GB of RAM.
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Listing 1. CORDIC program and abstraction

// concrete program

for (k in 0 to n):

if (theta >=0 ):

t_cosin := cosin - (sin>>k);

t_sin := sin + (cosin>>k);

theta := theta - table[k];

else:

t_cosin := cosin + (sin>>k);

t_sin := sin - (cosin>>k);

theta := theta + table[k];

cosin := t_cosin;

sin := t_sin;

// abstraction

while(*):

if (*):

(cosin, sin) := (cosin - (sin>>k)), (sin + (cosin>>k));

else:

(cosin, sin) := (cosin + (sin>>k)), (sin - (cosin>>k));

To verify invariants, we use the following settings in CPAchecker: MATHSAT5
solver, disabled outputs and disabled Java assertions. For comparison, we also
verify the abstract programs when leaving the loops intact and not introduc-
ing invariants. Here we use the same settings with CPAchecker’s k-induction
configuration.1

5.1 CORDIC

The CORDIC algorithm is used to calculate sine and cosine on devices without
hardware support. It only requires addition, subtraction and right shifts. The
results of the algorithm become more precise the more iterations are performed.
Listing 1 shows an implementation for fixpoint arithmetic in two versions, first
the original program and second the program with abstract control flow. The
variable table refers to a precomputed array of constants that has been omit-
ted from this listing. The abstract version of the program no longer contains
the variables n and theta as they are already included in the control flow pro-
tection. The variable k is also checked as part of the control flow and we can
assume that it does not contain errors. This makes the shifts conform to the
error homomorphism property.

Our error assumption is that at most one arithmetic error is injected during
the execution of the program. Our baseline comparison is to check each variable
after each loop iteration. Using our abstractions we can show that it is sufficient
to only check the variables every three loop iterations without reducing the fault
resilience of the program, which reduces the runtime overhead by factor three.
1 Our scripts are available at https://extgit.iaik.tugraz.at/scos/rv20-fault-injection-

checks.

https://extgit.iaik.tugraz.at/scos/rv20-fault-injection-checks
https://extgit.iaik.tugraz.at/scos/rv20-fault-injection-checks
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Table 3 shows the experimental results for the CORDIC algorithm. It shows
the abstraction level, the number of iterations of the loop that are performed
before the variables are checked for errors, whether the technique can prove the
approach correct or not and how much time it needs. The latter two categories
are presented both for the techniques using invariants and for a plain run of
CPAchecker. The program is protected by an AN-code where A is the prime
number 7919, which results in dmin = 4. Using Abstraction Level 3 (only track-
ing the weight of the error) we can prove that performing checks every second
iteration is sufficient. However, this abstraction level is not precise enough to ver-
ify that we can perform three iterations of the loop before checking the variables.
All these checks are completed in under four seconds.

Listing 2. Fibonacci program

(a, b) := (1, 1);
while(*):

(a, b) := (a+b, a);
check(a); check(b);

A more precise abstraction allows us to prove programs with fewer checks,
at the cost of a longer verification time. We note that Abstraction Level 2 is
unsuitable for this specific program. Testing the Hamming weight instead of
the arithmetic weight performs worse than using Abstraction Level 3. However,
calculating the arithmetic weight during model checking is too expensive.

With Abstraction Level 1 we are able to establish that checks every three
loop iterations are sufficient. This takes around 45 min, significantly longer than
using the simpler abstraction. The runtime overhead of the checks, however, is
reduced by a further 33%. Although the runtime differences between a plain
run of CPAchecker and a run using invariants are not large, the most efficient
configuration (two checks for every three iterations) can only be proved using
invariants.

Table 3. CORDIC verification results

Invariants Loops

Abstr. Lvl Iterations Success Time [s] Success Time [s]

3 1 ✓ 2.71 ✓ 3.43

2 ✓ 3.19 ✓ 4.78

3 ✗ 3.77 ✗ 6.82

2 1 ✗ 4.37 ✗ 4.47

1 1 ✓ 9.25 ✓ 15.26

2 ✓ 224.00 ✓ 200.33

3 ✓ 2649.86 ? >3600

4 ? >3600 ? >3600
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5.2 Fibonacci

As a second case study we analyze a Fibonacci number generator. The program
consists of a loop and two variables a and b. We compare our techniques based
on the static verification time and the number of required runtime checks. To
do this, we vary both the number of iterations before checks are performed and
the variables that are checked. The program is protected by an AN code with
A = 13 and dmin = 2. The error assumption is that at most one arithmetic error
is injected during the execution of the program. Our baseline comparison is a
check on variables a and b after every iteration of the loop, giving us two checks
per iteration. The code of the Fibonacci program with abstracted control flow
is shown in Listing 2.

Table 4. Fibonacci experimental results

Configuration Invariants Loops

Abstr Lvl Checked Vars Iter Checks/Iter Success Time [s] Success Time [s]

3 a, b 1 2 ✓ 2.78 ✓ 3.03

a, b 2 1 ✗ 2.81 ✗ 3.54

a 1 1 ✓ 2.45 ✓ 3.81

a 2 0.5 ✗ 2.75 ✗ 3.51

2 a, b 1 2 ✓ 3.45 ✓ 4.48

a, b 2 1 ✓ 6.65 ✓ 10.16

a, b 3 0.67 ✗ 5.54 ✗ 9.34

a 1 1 ✓ 3.60 ✓ 6.33

a 2 0.5 ✓ 7.80 ✓ 17.61

a 3 0.33 ✗ 7.01 ✗ 9.41

1 a, b 1 2 ✓ 4.32 ✓ 8.76

a, b 2 1 ✓ 6.57 ✓ 16.00

a, b 3 0.67 ✓ 15.99 ✓ 46.62

a, b 4 0.5 ✓ 43.92 ✓ 56.80

a, b 5 0.4 ✓ 34.08 ✓ 190.94

a, b 6 0.33 ✗ 38.85 ✗ 82.52

a 1 1 ✓ 4.72 ✓ 15.26

a 2 0.5 ✓ 11.36 ✓ 88.84

a 3 0.33 ✓ 21.14 ? >600

a 4 0.25 ✓ 132.25 ? >600

a 5 0.2 ✓ 121.51 ? >600

a 6 0.17 ✗ 14.06 ✗ 85.99

Table 4 shows the results of the Abstraction Levels 3 to 1. As before, we
used both the approach with invariants and a vanilla run of CPAchecker. When
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checking only one variable we use the error invariant that the unchecked variable
has a error weight less than dmin for both Abstraction Levels 2 and 3. The number
of checks per iteration is our final measure of runtime overhead.

We can observe that lower levels of abstraction allow us to verify programs
with fewer runtime checks. When using Abstraction Level 3 we need at least one
check per loop iteration on average. The verification time is around two to four
seconds and using invariants performs slightly better than loops.

Moving to Abstraction Level 2 allows us to reduce the number of runtime
checks per iteration to 0.5 checks when checking only one variable. The verifica-
tion time increases, but is still relatively low.

Abstraction Level 1 provides the greatest benefits in terms of reducing the
runtime overhead of the program. It allows us to reduce the required checks to
only one check in every 5 iterations, an improvement of a factor of 10 over the
original. These cases could not be verified using plain CPA within ten minutes.

For this algorithm, the final reduction in runtime overhead for checks is a
factor of 10.

Table 5. Fibonacci encoding parameter selection

A Checks/Iter Checked Vars Max Iter Time [s]

7 0.33 a, b 6 61.03

0.2 a 5 93.39

0.25 b 4 36.43

10 0.67 a, b 3 17.05

0.33 a 3 12.36

0.33 b 3 22.53

11 0.25 a, b 8 68.07

0.2 a 5 74.20

0.25 b 4 39.45

13 0.4 a, b 5 33.02

0.2 a 5 127.20

0.25 b 4 27.34

17 0.29 a, b 7 189.06

0.2 a 5 472.71

0.25 b 4 29.55

Finding an Optimal Value for A. As a second experiment on the Fibonacci
program, we used invariants and Abstraction Level 1 to search for a good encod-
ing parameter A and the optimal placement of runtime checks. We tried five
different values for A: 7, 10, 11, 13, and 17 that all have the same dmin of 2.
Three patterns for placing checks are explored: checking both the variables a and
b, only checking a and only checking b. In all cases we maximize the number of



Placement of Runtime Checks to Counteract Fault Injections 257

loop iterations by increasing the iterations until the verification fails for the first
time.

The results of this experiment are presented in Table 5. The maximum num-
ber of loop iterations between checks varies greatly based on the used encoding
parameter. For A = 10 the program can only perform three iterations before it
needs to check the variables, whereas for A = 11 we can do eight iterations if
both variables are checked. The smallest runtime overhead can be achieved by
using one of the prime numbers and performing a check on the variable a every
five loop iterations. This results in only 0.2 checks per iteration, a significant
improvement over the 2 checks per iteration from the naive check placement. As
multiple coding parameters can achieve the same low runtime overhead we can
look at the memory overhead as a tiebreaker. A smaller encoding parameter also
results in a smaller memory overhead in the protected program. Thus, the most
runtime efficient protection for this program is to use A = 7 and place a check
on a every fifth iteration.

6 Conclusions

We have presented a method to analyze the necessity of runtime checks in pro-
grams using error correcting codes to achieve resilience against fault injections.
Our method uses a combination of novel abstractions and simple recipes for loop
invariants to achieve scalable verification times. We have shown that for simple
examples we can reduce the overhead of runtime checks by factor of up to 10.

In future work, we will look at the use of different error detection codes, and
we will consider combinations of secure hardware and software design to shield
against fault injections.
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Abstract. Given a program analysis problem that consists of a program
and a property of interest, we use an empirical approach to automatically
construct a sequence of abstractions that approach an ideal abstraction
suitable for solving that problem. This process begins with an infinite
concrete domain that maps to a finite abstract cluster domain defined by
statistical procedures. Given a set of properties expressed as formulas in
a restricted and bounded variant of CTL, we can test the success of the
abstraction with respect to a predefined performance measure. In addi-
tion, we can perform iterative abstraction-refinement of the clustering
by tuning hyperparameters that determine the accuracy of the cluster
representations (abstract states) and determine the number of clusters.

1 Introduction

Abstract interpretation [7] provides a practical and effective method to verify
properties of both finite and infinite state systems (programs). Classical abstrac-
tion frameworks, such as predicate abstraction [13], require the user to input
predicates that enable the creation of a “good” abstraction of the program. This
step necessitates that the user has a thorough understanding of the whole pro-
gram. However, the author of a program and the person verifying it may be
different; as such, the latter may not be well-versed in the intricacies of the
program. In classical abstraction-based program analysis [7], the behavior of a
program analysis tool is not quantitatively characterized through true positive
rate (TPR) [11], false positive rate (FPR) [11], and the number of abstract states.
There are no “hyperparameters” to tune to obtain “better abstractions” even-
tually approaching an optimal “operating point” for a given program analysis
problem.

In this paper, we present both a theoretical framework for empirical abstrac-
tion and a practical tool for program analysis, using a clustering technique based
on a distance metric that results in an abstract cluster domain. Our technique
applies an empirical, query-guided refinement process, which refines the abstract
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Fig. 1. A flow chart of empirical abstraction process (where CTS means concrete tran-
sition system).

model by tuning hyperparameters that in turn results in modification of the
abstract cluster domain.

Our empirical abstraction process is composed of the following steps. A flow
chart of our empirical abstraction procedure is shown in Fig. 1.

1. The program analysis problem in our case consists of a program P (along
with program points of interest) and a query ϕk specified in the verification
logic, a restricted variant of CTL that specifies properties over computation
trees of bounded depth.

Example 1. Consider a C program in Fig. 2. The program point of interest in
this case is “main A” (highlighted brown in Fig. 2). We want to determine if the
verification logic formula ϕk = EkX(Ek−1X(x > y)), k = 2, holds true for all
states at the program point “main A”. A state, in this case, is represented by
the pair (x, y) where x, y ∈ [0, 200). The property ϕk, (k = 2), holds true on a
state if, starting from it, it is possible to reach a state in exactly two steps where
x > y holds true.

2. The user instruments the program P to sample states occurring at the instru-
mented program points during the execution of the program. For example,
we instrument and execute the program in Fig. 2 to obtain a sample of states
occurring at the location “main A”. Other points in the program can be
instrumented (not shown in Fig. 2) to generate a sample of states.

3. Given a set of sampled program states, we show the existence of an abstract
domain of clusters of states in which states having similar behavior up to a
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Fig. 2. A simple C program; high-
lighted code indicates a program point
of interest.

Fig. 3. An estimated PDF for a cluster

certain number of transition steps belong to the “same” cluster. In Example 1,
the states (110, 192) and (5, 42) behave similarly for 9-steps starting from
program point “main A”. We then establish a Galois connection [7] linking
the concrete domain of program states and the abstract domain of clusters.

4. We then provide a procedure for drawing from each cluster a sample of pro-
gram states (call it a cluster sample) that satisfy a criterion depending on two
hyperparameters β and ε that modulate the characteristics of the clusters.

5. For each cluster, using the sample of program states drawn above, we estimate
a probability density function (PDF) representing the distribution of states
corresponding to that cluster. Each cluster can now be implicitly approxi-
mated by a PDF. The estimated PDF of a cluster obtained corresponding to
the set of states sampled at the program point “main A” in Fig. 2 is shown in
Fig. 3. The clusters form the basis of an abstract transition system (ATS), and
the PDFs form the basis of an abstract density transition system (ADTS),
approximating the semantics of the program.

6. As mentioned above, queries are specified in the verification logic, a restricted
and bounded variant of CTL. The ADTS allows us to answer queries about
the program with an error probability E that depends on the hyperparameters
β and ε.

7. We define a quantitative performance measure S for the program analyzer, in
terms of TPR, FPR, and the size of ADTS. In case S falls below a threshold δ,
we can refine the abstraction by tuning the hyperparameters β and ε towards
achieving an optimal operating point for the given program analysis problem.

Our framework is flexible, since users do not need to understand the logic or
intricacies of the entire program. Users need only provide program points of
interest and specifications to be verified.

Contributions. This paper makes the following contributions:

• It introduces a new paradigm of automated program analysis based on empir-
ical abstraction (Sects. 2 and 4). The key ideas are to treat a concrete program
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as a generative process and symbolically approximate a possibly infinite set of
states using a PDF. An abstraction of the concrete program is automatically
constructed from data sampled from the instrumented program using a clus-
tering technique. The abstractions can be created without full understanding
of the intricacies of the whole program under analysis.

• It introduces the verification logic, a bounded variant of CTL, for specifying
properties of programs (Sect. 3).

• Based on the empirical abstraction framework, we provide a program analysis
tool that can verify, within an error probability, if a given program satisfies
properties specified in the verification logic. We experimentally show the effec-
tiveness of the tool on a test suite of programs from GNU coreutils, diffutils,
and grep (Sect. 5).

• It quantitatively characterizes the behavior of a program analyzer in terms
of its true and false positive rates as well as the number of abstract states
(Sect. 5).

• The framework allows one to acquire different abstractions by tuning the
hyperparameters β and ε. This helps quantitative evaluation of the perfor-
mance of the tool at different abstraction levels. Based on a performance
measure, one can determine an “optimal operating point” that serves as an
“ideal” abstraction suitable to solve a program analysis problem (Sect. 5).

The proofs of all propositions and theorems, and details of experiments in
this paper are provided in [15].

2 Theory

2.1 Program States and Distances

A program P = (Σ,L, T , L) comprises a set Σ of all program states, a set L
of statement locations, a set T of transitions where each transition t ∈ T is a
relation t ⊆ Σ × Σ, and a proposition labeling function L, mapping each state
to a collection of atomic propositions true in that state [7]. A program state is
a mapping from program variables X to values in the corresponding program
domain D. We will denote a program state x ∈ Σ (consisting of � variables)
as x = (x1, . . . , x�), where xj ∈ R for 1 ≤ j ≤ �. For states p, q ∈ Σ and a
transition t ∈ T , we say p

t−→ q if (p, q) ∈ t.

We now define bounded bisimilarity between program states and a distance
metric over the program state space, that respects the bisimilarity relation. Let
N = N ∪ {0,∞}. Let k ∈ N. The idea of p being k-step bisimilar to q is that p
can imitate the behaviour of q for up to k steps, and vice versa, and “divergence”
takes place in (k + 1)th step, as shown in Fig. 4 (for simplicity, we consider only
one successor of a state for each transition). We say p and q are 0-step bisimilar
if L(p) = L(q) and they are not 1-step bisimilar. If two program states are
k-step bisimilar, they are not s-step bisimilar for any s ∈ N with s > k.
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Fig. 4. A sequence of program executions

Definition 1 (k-step bisimilarity). The k-step bisimilarity on Σ is defined
to be the largest symmetric relation ∼=k⊆ Σ × Σ such that for any two states
p, q ∈ Σ, p ∼=k q implies that L(p) = L(q), and k ∈ N is the largest number
for which the following hold: (1) for any sequence of transitions of length k,
p0

t1−→ p1
t2−→ · · · tk−→ pk with p0 := p, there exists a sequence of transitions of

length k, q0
t1−→ q1

t2−→ · · · tk−→ qk with q0 := q, such that pj
∼=k−j qj for each

1 ≤ j ≤ k; and (2) the same as (1) with the roles of pj and qj interchanged.

Given a bounded bisimilarity relation between program states, we would like
to construct a clustering which assigns bisimilar (at least k-step bisimilar for
some k) pairs of states into the same cluster. Therefore, a good metric needs to
respect the k-step bisimilarity relationships between program states, i.e., assign
small distances between bounded bisimilar pairs of states.

Definition 2 (Distances between program states). Let p, q ∈ Σ. The
distance between program states is a function d : Σ × Σ → [0, 1] defined by
d(p, q) = 2−k, where k ∈ N is the number such that p and q are k-step bisimilar.

It is possible that p and q are ∞-bisimilar and thus d(p, q) is zero even for
p 	= q . So the function d defines a pseudometric on the program state space Σ.

2.2 The Concrete and Abstract Domains of a Program

We equip both the set of program states and its power set with partial orders,
and use them to define the concrete and abstract domains required for abstract
interpretation.

Definition 3 (Concrete domain). Let P be a program with corresponding
space Σ of program states. The concrete domain for P , C = (Σ,≤), is the
set Σ of program states equipped with a partial order ≤ where for two states
x = (x1, . . . , x�) and y = (y1, . . . , y�), x ≤ y if xj ≤ yj for all 1 ≤ j ≤ �.

We assume the concrete domain is a subset of R
� that forms a complete

lattice1 with a supremum �C and an infimum ⊥C . In Example 1, the mentioned
1 The set of extended reals (R� ∪ {�, ⊥} where for all x ∈ R

�, ⊥ < x < �) with the
usual ordering is a complete lattice. This case also works for our framework.
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two elements are ordered by (5, 42) < (110, 192). We have Σ = ([0, 200) ∩ Z) ×
([0, 200) ∩ Z) ⊆ R

2, and this concrete domain (Σ,≤) is a complete lattice.
Our proposed empirical technique depends on the concept of a cluster, a

well-known concept in machine learning. Our technique does not learn clusters
from a set of points in the traditional sense. Instead we iteratively construct
clusters in an abstract domain based on root points. Each cluster consists of a
downset2 of the root. We shall define the abstract domain for a program P as a
set of clusters.

Definition 4 (Abstract cluster rooted at a point). Let p ∈ C. The abstract
cluster rooted at p is the downset Bp =↓ p := {q ∈ C | q ≤ p}.

The root of a cluster uniquely determines the cluster. When the context is
clear, we will refer to a cluster without specifying its root. Next, we establish a
hierarchy among all clusters in a domain, and define the abstract domain as the
set of all clusters rooted at points in the concrete domain.

Lemma 1. For root points p, q ∈ C we have q ≤ p if and only if Bq ⊆ Bp.

Definition 5 (Abstract domain). For a program P with concrete domain
C = (Σ,≤), let P = {Bp | p ∈ C} ⊆ 2Σ where for p ∈ Σ, Bp is the cluster
rooted at p. The abstract domain A = (P,⊆) is defined to be the set P of clusters,
partially ordered by inclusion ⊆.

Lemma 2. The abstract domain A defines a complete lattice.

2.3 Mappings and the Abstract Transition System

We begin by defining the abstraction mapping to take a state in the concrete
domain and map it to the cluster corresponding to the closest root above it. We
assume a finite set of n root points {r1, . . . , rn} with r i ∈ Σ. We assume that
d(r i, r j) ≥ ε for i 	= j, where ε is a hyperparameter. In Sect. 4, we will show how
these root points can be sampled from Σ satisfying this constraint.

Definition 6 (Abstraction Mapping). Let P be a program with correspond-
ing space Σ of program states. Let C be the concrete domain for P , and A the
abstract domain with C1, . . . , Cn the n clusters of A, each with unique respective
root r1, . . . , rn.

The abstraction mapping α : C → A is defined by α(p) = Ci, p ∈ C, where
Ci (for some 1 ≤ i ≤ n) is determined such that (1) p ≤ ri and (2) if p ≤ rj

then d(p, ri) ≤ d(p, rj) for all j 	= i with ties broken arbitrarily.

Definition 6 maps a state p in the concrete domain to the cluster in abstract
domain A whose root is greater than or equal to p and is closer to p than any
other root. In particular, α(p) identifies the element in A that most precisely
represents the state p.
2 Let (X, ≤) be a poset and A ⊆ X. Then A is a downset of X if x ∈ X, x ≤ y, y ∈ A

implies x ∈ A.
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Since a cluster is defined by a root point, we have a natural definition of
a concretization mapping from a cluster in the abstract domain to a state in
the concrete domain; specifically, a cluster is mapped to its root in the concrete
domain.

Definition 7 (Concretization Mapping). Let Bp ∈ A be a cluster rooted at
a state p ∈ C. The concretization mapping γ : A → C is defined by γ(Bp) = p.

The following result ensures that (α, γ) is a Galois connection [22].

Proposition 1. The maps α and γ in Definitions 6 and 7 satisfy a Galois
connection: p ≤ γ(α(p)) and α(γ(A)) ⊆ A for any p ∈ C and A ∈ A.

Definition 8 (Abstract Transitions). For each transition t ⊆ Σ × Σ, we
create an abstract transition t# ⊆ P × P such that t# = α ◦ t ◦ γ.

In abstraction-based verification, we would like to construct an abstraction
that strongly preserves properties, i.e., a property holds on the abstract domain if
and only if it holds on the concrete domain. In this case, the abstract transition
t# is a sound and complete approximation for the concrete transition t (see
Theorem 2).

Definition 9 (Concrete and Abstract Transition System). A (concrete)
transition system (CTS) is a pair (C, T ), with C being the concrete domain, and
T being the collection of transitions t ⊆ Σ×Σ. Similarly, the abstract transition
system is defined as (A, T #), with A being the abstract domain, and T # being
the set of abstract transitions on P × P.

3 Verification Logic

We define a logic CTLk, a bounded fragment of the standard computation tree
logic [10] that expresses properties that hold true over sequences of transitions
of length k with k ∈ N:

ϕk ::= ap | ¬ϕk | ϕ1
k ∨ ϕ2

k | EkX(ϕk−1) | EkG(ap) | Ek(ap1 U ap2) (3.1)

where ap is an atomic proposition. Setting k = ∞, we get full CTL from CTLk.
Restriction to a finite k allows respecting k-bisimilarity (as shown below) which
in turn is tied to the distance pseudometric d that will be used for clustering.
We naturally express bounded temporal properties of a program by the CTLk

logic. We show the correspondence between the behavioral equivalence defined
by k-bisimilarity between states and the logical equivalence induced by CTLk

logic.

Theorem 1. Let p, q ∈ Σ and k ∈ N. Then the following are equivalent: (1)
p ∼=k q; and (2) For all CTLk formulas ϕk, p |= ϕk if and only if q |= ϕk.

The following theorem relates the concrete transition system and the abstract
transition system with respect to verification of CTLk properties.
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Theorem 2. For a concrete transition system (C, T ) where C = (Σ,≤), p ∈ Σ,
a corresponding abstract transition system (A, T #) where A = (P,⊆), and a
CTLk formula ϕk, if d(p, γ(α(p))) ≤ 2−k then (C, T ),p |= ϕk if and only if
(A, T #), α(p) |= ϕk.

Based on Theorem 2, to verify (C, T ),p |= ϕk, where C = (Σ,≤), p ∈ Σ, one
needs to use the abstraction map α to determine the abstract cluster α(p) cor-
responding to p, and if d(p, γ(α(p))) ≤ 2−k then we verify (A, T #), α(p) |= ϕk

on the abstract transition system. However, computing α(p) requires comparing
among d(p, r) for each root r ≥ p; this may be computationally expensive.

We will use an approach where each cluster Ci will be approximately repre-
sented by a probability density function (PDF) that determines the probability
that Ci is the abstract cluster corresponding to a set of states U ⊆ Σ. To verify
(C, T ),p |= ϕk, one needs to check if (C, T ), U |= ϕk where U ⊆ Σ is a neigh-
borhood of p and (C, T ), U |= ϕk if and only if for all u ∈ U , (C, T ),u |= ϕk.

For a state p ∈ Σ, if α(p) = Ci, then the root r i is closest to p among all
root points r ≥ p. The probability density function approximately representing
Ci will provide a measure of the closeness of a set U of states to the root r i

of Ci. An abstract cluster Ci will correspond to a set of states U ⊆ Σ if the
probability of its closeness to the root r i is greater than that of its closeness
to all other roots r (ties broken arbitrarily). Let F be the set of all PDFs fC

corresponding to C ∈ A.
Probability density functions can be estimated using a kernel density esti-

mation procedure [28]. We use Gaussian kernels to estimate the desired PDFs
in the implementation (see Sect. 5).

4 Algorithms for Program Analysis

Sampling for Cluster Roots. We assume a program P with the corresponding
state space Σ. To induce the clusters in the abstract domain, we first sample
program states as root points of clusters. Specifically, we construct a net N from
the program state space Σ such that if p and q are in N , then d(p, q) ≥ ε where
ε is a hyperparameter. The size of N , n = |N |, is finite (we will estimate n in
Sect. 4.2). Each state in N will be the root of a cluster. Each state in the net
must be at least a distance of ε away from all other states in the net so that root
points are “spread out” enough, and the resulting clusters rooted at these root
points can cover the concrete domain (see Lemma 4).

Lemma 3. Let En[X] be the expectation of the number X of trials needed to get
n root points. There exists a constant χ, where 0 ≤ χ ≤ 1

ε , such that En[X] =
n · (1 − χε)n(1−n)/2.

4.1 Inducing the Abstract Domain

Assuming a finite net of the concrete state space, N ⊆ Σ, we construct a (sam-
pling) abstract domain. For each r ∈ N , we construct a cluster rooted at r .
Recall that the concrete domain C has the supremum element �C .
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Lemma 4 (Finite Coverage of Concrete Domain). For a program P with
the program state space Σ, a finite sample N ⊆ Σ will induce a set of clusters
CN = B�C ∪

(⋃
r∈N Br

)
that is a finite cover of the concrete domain C.

It is natural to define a (sampling) abstract domain to be A := CN .

Sampling for Clusters. To approximate a probability density function that can
be used to estimate for each abstract cluster Ci with root r i, the likelihood that
for a state p, α(p) = Ci, we need to draw a finite sample for each cluster that
is an approximate representation of states p such that α(p) = Ci (we call this
sample the cluster sample for Ci). Observe that if p ≤ r i and d(p, r i) < ε/2 then
α(p) = Ci (by triangle inequality). For a state p ≤ r i such that ε/2 ≤ d(p, r i) ≤
1, it is possible that α(p) = Ci with likelihood increasing with closeness to r i.

We form n cluster samples (for the n clusters) from the program state space
Σ such that (1) each cluster sample contains m program states (m can be pre-
specified; we assume m ≥ 30 for statistical significance); and (2) if r is the root
point of a cluster and x is any state in the cluster sample, then

d(r ,x ) ≤ β, and x ≤ r (4.1)

where β is a hyperparameter determining the accuracy of the sample.
Algorithm BuildCluster(Σ, r , β) (cf. Algorithm 2 in [15]) is based on the

condition (4.1), that acquires a cluster sample of program states. Choosing an
appropriate value for β depends on the coarseness of the desired abstraction.

4.2 Estimate the Number of Clusters

We introduce Algorithm 1 to determine the number n of clusters constructed
from observed data, using a stopping criterion. We fix a level of significance
ν ∈ (0, 1] to indicate the fraction of unclustered program states. The basic idea
is to make the probability of unclustered program states (i.e., states for which
equation (4.1) does not hold true for any of these n clusters) less than or equal
to the level of significance ν. The following proposition gives an upper bound for
the expected number n of clusters.

Proposition 2. An upper bound for the expected number n of clusters is given
by E[n] = log ν − log �, � := 2 − (c + χ1β) − cχ1β, where χ1 ∈ [0, 1

β ], and c is
the probability of a state being less than or equal to a root point.

Proposition 3 (Correctness of Algorithm 1). The following hold true for
Algorithm 1: (1) It determines the number n of clusters (this is also the number of
root points) and generates n cluster samples; (2) Each state in a cluster sample
is within β-distance from the root point of the cluster; and (3) Any two root
points of clusters are at least ε-distance away from each other.

Proposition 4 (Upper Bound on the Expected Runtime of Algorithm
1). Without loss of generality, we assume that each cluster sample has the same
size. The expected run time of Algorithm 1 is upper bounded by
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Algorithm 1. Determine the Number of Clusters
1: procedure NOC(Σ, β, ε, ν)
2: i ← 1, N ← ∅
3: pi ← choose(Σ), N ← N ∪ {pi}
4: Si ← BuildCluster(Σ,pi, β) � Si: cluster samples
5: while �i > ν do
6: i ← i + 1
7: repeat
8: pi ← choose(Σ \ (S1 ∪ · · · ∪ Si−1))
9: min ← d(pi,p1)

10: for all j = 2 : (i − 1) do
11: if d(pi,pj) < min then min ← d(pi,pj)

12: until min ≥ ε
13: N ← N ∪ {pi}
14: Si ← BuildCluster(Σ,pi, β)

return 〈i, N〉

Γ

(1 − χε)Γ (Γ−1)/2
+

mΓ

cχ1β
, Γ := log

( ν

�

)

where c, χ1 and � are the same as in Proposition 2, and χ is the same as in
Lemma 3.

4.3 Abstract Density Map and Abstract Density Transition System

For each cluster Ci corresponding to root ri ∈ N , we estimate a PDF fCi
from

its cluster sample. This fCi
provides an approximate representation of Ci. We

define an abstract density map η mapping U ⊆ Σ to the PDF fCi
for Ci ∈ A

if
∫

U
fCi

(x )dx ≥
∫

U
fCj

(x )dx for all j (ties broken arbitrarily). For instance, in
Example 1, the abstract density map assigns to the (neighborhood of the) state
p = (12, 139) at program point “main A” in Fig. 2 the PDF shown in Fig. 3.
Based on the abstract density map, we define an abstract density transition
system (ADTS) as follows.

Definition 10 (ADTS). For each abstract transition t# ∈ T #, we define an
abstract density transition θ# ⊆ F × F such that (fCi

, fCj
) ∈ θ# if and only if

(Ci, Cj) ∈ t#. Let Θ# be the set of all abstract density transitions. The abstract
density transition system (ADTS) is defined to be the pair (F , Θ#).

To verify (C, T ), U |= ϕk, we verify if (F , Θ#), η(U) |= ϕk. The ADTS
(F , Θ#) and (C, T ) are related by the following theorem.

Theorem 3. For a program P with the state space Σ and U ⊆ Σ, and a CTLk

formula ϕk, if η(U) = fC ∈ F and fC |= ϕk in the density transition system,
then in the concrete program P,U |= ϕk with an error probability E upper bounded
by 1 − (c′ε)/2k+1, where c′ ∈ [0, 2k+1

ε ] is a constant.
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4.4 Abstraction and Refinement

For a program together with a set of properties that it is supposed to satisfy,
our approach generates an abstraction on which we verify properties. The asso-
ciated abstract density transition system allows us to answer queries about the
program within an error probability E .

Performance Evaluation. We can compare the verification results obtained based
on the ADTS with ground truth, and can classify them into the following types:
true positives (TP), false positives (FP), true negatives (TN), and false negatives
(FN) [11]. The estimated probability of error for the program analyzer at an
abstraction level is computed by E = FP+FN

TP+FT+TN+FN [11].
We present a way to offer a viable performance measure for the empirical

abstraction framework. The performance measure is defined by a weighted sum
of true positive rate (TPR) [11] and false positive rate (FPR) [11], and the
number n of clusters:

S := w1 log2(TPR + 1) − w2 log2(FPR + 1) − w3 log2(n) (4.2)

where TPR = TP
TP+FN [11], FPR = FP

FP+TN [11], and wi’s (i = 1, 2, 3) are
weighting factors in [0, 1] that determine the relative strength of TPR, FPR,
and the number n of clusters, respectively. We can change these parameters to
control the relative importance of each term. A high value of w1 and a low value
of w2 will reward an abstraction that achieves a high TPR at the cost of a high
FPR. On the other hand, a high value of w1 and a high value of w2 will reward an
abstraction that has a low FPR even at the cost of a reduced TPR. A high value
of w3 will penalize those abstractions with a large number of abstract states (for
computational inefficiency). A good choice can be to assign high values to w1,
w2, and w3. The choices of these three factors are independent.

An abstraction enables ideal performances when it has high TPR, low FPR,
and relatively small number n of clusters (for computational efficiency). We
observe the relation between these three terms and the hyperparameter β, and
create an evaluation curve by plotting the weighted sum S against the (modi-
fied) hyperparameter log2 β. This curve illustrates the variation in performance
of the program analyzer created based on the empirical abstraction framework
as its discrimination hyperparameter is varied.

Refinement. We compute S for an abstraction generated by our method using
(4.2). If the value of S is below a threshold δ, we vary β and the least dis-
tance ε between cluster root points to generate distinct levels of abstractions, on
which we can again answer queries. Based on the computation of the quantita-
tive measure S, we may iteratively repeat this process until S reaches a stable
and optimal value: an ideal abstraction for the given program analysis problem
then occurs. The iterative process of varying the hyperparameters while search-
ing for an optimal operating point can be automated. More details on how the
hyperparameters β and ε are varied can be found in Sect. 5.
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Cross Validation. To understand whether the performance provided by the
empirical abstraction framework will generalize to other program analysis prob-
lems for the same program, we perform Monte Carlo cross validation (MCCV).
We randomly partition the set of concrete states sampled from a program point
of interest (instrumented) into two sets, the first of which is used to compute
abstractions (called the abstraction set) while the second is used to validate
their performance (we call the latter the validation set). For the validation set,
we obtain the ground truth by evaluating the property of interest on concrete
states in it. We vary the hyperparameters β and ε and iteratively compute a
sequence of abstractions (ADTS) from the abstraction set. The validation set is
used to compute the performance provided by these abstractions and an opti-
mal operating point is determined. This procedure is repeated κ times, randomly
partitioning the set of concrete states sampled from a program point of interest
into an abstraction set and a validation set and the average performance measure
for the optimal operating points determined in these iterations is computed; κ
is user-defined.

Revisiting Example 1. For the property ϕk, k = 2 in Example 1, we observe
that when β ≈ 2−44 and ε ≈ 2−43, the corresponding abstraction obtained the
performance measure S = 0.6613 and the error probability E = 0.146, that gives
an optimal operating point of our empirical abstraction approach for the given
program analysis problem.

5 Experimental Evaluation

Our experiments were executed on a desktop running Ubuntu Linux 4.4.0-53.
For details of the program instrumentation framework, we refer the reader to
Appendix in [15]. We present the verification results obtained by using the empir-
ical abstraction framework on a test suite of C programs mostly selected from
the open-source GNU coreutils, diffutils, and grep: base64, cat, cmp, comm, cp,
csplit, dd, diff, du, fmt, fold, grep, truncate, and wc.

Benchmark Selection. Programs were selected for instrumentation if they fulfilled
several criteria. Programs that utilized generic text file input were selected, as we
can vary the input easily by simply providing a variety of input files, generated
from dictionary data. We picked programs that were intended to take command
line input and run to completion with no user input during execution. Therefore,
we are able to run each instrumented program many times with little difficulty.

Generate Sample Data. We chose to instrument programs manually in this paper.
But users may use available automated instrumentation tools to instrument
programs, for example, one based on CIL [6] or LLVM [18].

To instrument a program, one needs to save the states of variables, and the
sequence of statements executed for one execution of the program. Then one
would develop a set of input arguments to run the program, and properties that
vary over those input arguments.
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Within an instrumented program, we record two types of information. The
first is the states of certain variables, global and local, in a set of meaningful
code locations3 of the program, for a variety of inputs. The first data set enables
comparing the actual variable values at particular locations. The second is the
sequential set of statements that were actually executed in a run. The second
data set, which we will call the traces, allows us to compare any two sequences
of executions across any of our runs and determine bisimilarity (we call the
resulting values bisimilarity data).

For our experiments we require data on variable values throughout the execu-
tion of a program. To gather this data we have instrumented the above mentioned
programs in the test suite.

Clustering Data. We next cluster the trace data based on the hyperparameter
β, which determines the quality of the abstraction, according to the clustering
algorithm (Algorithm 1). Kernel density estimation (with Gaussian kernel, band-
width = 0.15) is used to estimate PDFs to approximately represent the abstract
clusters. Suppose we are going to verify a property ϕk for a fixed k ∈ N. We set
β = 1/2k and ε ≥ 2β (to guarantee clusters do not mutually overlap), and tune
these hyperparameters (by varying k and ε) until the quality of the abstraction
is satisfactory. While tuning, we would like to achieve a trade-off between the
quality of the abstraction and the number of clusters which affect computational
efficiency.

Verify Properties. Properties of interest are specified as CTLk formulas. Atomic
propositions are boolean formulas on the values of variables from the instru-
mented program. At each location in a program’s execution at which we record
the variable values, we can also calculate the truth value of the atomic proposi-
tions based on those variable values.

Obtain an optimal operating point. Recall that we cluster the trace data (with
hyperparameters β = 2−k and ε ≥ 2β), and then use the resulting ADTS to
verify a given property ϕk. This abstraction may be too rough to verify ϕk, for
example, there may be an unacceptable number of false positives. We then per-
form abstraction refinement by tuning the hyperparameters β and ε to generate
a new abstraction. We may repeat the process until the abstraction can ver-
ify the properties accurately or within an acceptable error probability. At that
point, the abstraction obtained is an ideal one with respect to a given program
analysis problem.

To generate an ideal abstraction, we would like to determine optimal values
for the hyperparameters β and ε that determine the quality of the abstraction.
This amounts to tuning the values of k and ε ≥ 2 · 2−k until the performance
measure S cannot be significantly improved. This is the point where the values
of the hyperparameters β and ε reach an optimal value (and thus provide an
optimal operating point of the program analyzer).

3 A meaningful code location refers to a statement that has a side-effect.
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Fig. 5. Performance evaluation on cat: w1 = w2 = 1, w3 = 0.005 (Color figure online)

Table 1. Statistical results for program cat at location main EH

k n ϕk (k = 42) S Execution time (in sec)

TPR FPR E
1 1 0.2 0.2 0.2938 −0.005 0.3477

19 3 0 0 0.1597 −0.01 0.3572

25 4 0.2 0.0968 0.2046 0.118 0.3645

29 6 0.4667 0.0606 0.138 0.454 0.3751

31 9 0.5 0.0629 0.1287 0.48 0.3962

33 14 1.0 0.0257 0.0217 0.944 0.4327

37 22 1.0 0 0 0.978 0.5018

39 27 1.0 0 0 0.976 0.5516

42 32 1.0 0 0 0.975 0.6225

49 39 1.0 0 0 0.973 0.6837

59 39 1.0 0 0 0.973 0.6861

69 39 1.0 0 0 0.973 0.6890

79 39 1.0 0 0 0.973 0.7041

89 39 1.0 0 0 0.973 0.7223

Example. The following is one of our experimental results taken for the pro-
gram cat.c. The sample data was drawn at a chosen location main EH in the
instrumented cat.c program. Suppose we want to verify a property
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Table 2. Statistical results for observed benchmark programs

Program Point of interest n Verify property Optimal k Optimal S
ϕk k TPR FPR E

base64 main AO 3 (5.2) 12 1.0 0 0 8 0.9920

cat main AS 22 (5.3) 19 1.0 0 0 36 0.9778

cmp main J 5 (5.4) 18 0.81 0.03 0.1 50 0.8029

comm main AE 14 (5.5) 50 0.90 0.16 0.1158 43 0.6937

cp main BD 10 (5.6) 4 1.0 0.06 0.0519 3 0.9001

csplit main Q 4 (5.7) 88 0.8 0 0.0449 89 0.8379

dd main ABG 16 (5.8) 7 1.0 0.06 0.0273 28 0.8899

diff main DL 11 (5.9) 53 0.79 0.21 0.2135 101 0.5492

du main S 45 (5.10) 2 0.98 0.12 0.0676 44 0.7906

fmt main R 9 (5.11) 4 1.0 0 0 4 0.9841

fold main AB 11 (5.12) 13 0.91 0.04 0.0629 41 0.8676

grep main CO 5 (5.13) 63 1.0 0 0 63 0.9883

truncate main BF 4 (5.14) 3 1.0 0 0 3 0.99

wc main EU 4 (5.15) 19 0.66 0 0.0496 20 0.7217

ϕk = EkF(show ends = T ), k = 42 (5.1)

where show ends is a boolean variable in the program cat.c. The property ϕk

(k = 42) holds true on a state if a path of length 42 starting from that state
exists such that show ends=true at some state in that path.

Figure 5 provides quantitative evaluations for the performance of the pro-
gram analyzer on a set of program states (called the validation set; each state
corresponding to a neighborhood around itself) for different abstractions used
to verify the property (5.1), along with an optimal operating point. For each
abstraction, we compute a performance measure S after applying Monte Carlo
Cross Validation (MCCV) on the sample data. Figure 5 describes a plot of S
values for the different abstractions with respect to β on a log scale. Table 1
describes statistics about the performance of the program analyzer for different
abstractions. The column E (both in Tables 1 and 2) shows the estimated prob-
ability of error for the program analyzer at a particular abstraction level. We
notice two important things:

(1) an optimal k value (we set ε = 2(2−k) for this experiment) for which the
value of the performance measure S reaches its maximum (highlighted by
blue bullet) and

(2) the value of the performance measure S for the case k = 42 (highlighted by
red bullet).

It can be seen from Fig. 5 and the statistical result in Table 1, that the per-
formance of the abstraction (S = 0.9778) is optimal when k = 37 (with true
positive rate of 1 and false positive rate of 0; see Fig. 5 for the values of the
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Table 3. Properties chosen for verification on observed programs

Program base64

Property EkF(ignore garbage = T ∧ decode = T ) (5.2)

Program cat

Property EkF(show ends = T ) (5.3)

Program cmp

Property EkX
k(opt print bytes = T ) (5.4)

Program comm

Property EkX
k((both = T ) ∨ (only file 2 = F )) (5.5)

Program cp

Property EkX
k((no target directory = T ) ∨ (copy contents = T )) (5.6)

Program csplit

Property AkG((remove files = T ) ∨ (elide empty files = T )) (5.7)

Program dd

Property EkX
k((w partial = F ) ∧ (w full = F )) (5.8)

Program diff

Property EkF(new file = T ) (5.9)

Program du

Property AkG((hash all = F ) ∧ (human output opts = F )) (5.10)

Program fmt

Property EkX
k((crown = T ) ∧ (tagged = T )) (5.11)

Program fold

Property EkX
k(break spaces = T ) (5.12)

Program grep

Property EkF((out invert = T ) ∧ (suppress errors = F )) (5.13)

Program truncate

Property EkF((got size = T ) ∧ (errors = F )) (5.14)

Program wc

Property AkG((print chars = F ) ∧ (print lines = F )) (5.15)
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parameters w1, w2, and w3). For k = 42 (this is the k-value corresponding to
the one in equation (5.1)), the value of S reduces slightly to 0.9749, and reduces
to 0.973 for k > 42 and stabilizes to that value while the execution time keeps
increasing. The value k = 37 provides the optimal operating point (highlighted
by blue bullet) among all observed abstractions.

We also demonstrate empirically that even when we increased k to 90 or
further, both the ratio of TPR and FPR, and the number of generated clus-
ters did not have a significant improvement anymore. The performance of the
constructed abstraction stabilized after the hyperparameter β passed a critical
point (in this example, the critical point occurred at k = 37).

Last, we present in Table 2 the statistical results of the empirical abstraction
approach applied to the chosen benchmark programs. The values for the column
ϕk in Table 2 refer to properties of interest for that verification effort listed
in Table 3. Each row in Table 2 provides results obtained for the abstraction
corresponding to the optimal operating point for the analysis problem for a
benchmark program.

6 Related Work

Sharma et al. [26] theoretically quantified the precision of an abstraction using
Vapnik-Chervonenkis dimension [4]. They used trade-offs between bias and vari-
ance to understand how the performance of a program analyzer varies across
different abstractions. In contrast, our empirical abstraction framework quan-
tifies the performance of a program analyzer using a particular abstraction in
terms of TPR, FPR, and the number of abstract states. It uses this quantifi-
cation to determine an optimal operating point for a given program analysis
problem. There has been some research on generating [12,23–25], pre-conditions
and invariants from source code using an empirical approach. There has been
some research on generating [12,23], pre-conditions and invariants from source
code using an empirical approach.

In [21], the authors presented the Yogi program analyzer that combines static
analysis and testing to for verifying C programs.

Yogi [21] uses Synergy [14], defines an algorithm that combines a procedure
for finding bugs with a procedure for proof search.

Zhang et al. [30] used a counter-example guided query-driven analysis that
performs iterative refinement to identify the cheapest abstraction (minimal set of
parameters) or prove that no such abstraction can prove the query. In contrast,
our technique is empirical that refines abstractions by tuning hyperparameters.

Liang et al. [17] use machine learning techniques to determine the coarsest
possible abstraction needed to answer a set of points-to analysis queries. In con-
trast, our framework uses an empirical approach to obtain an optimal operating
point (abstraction) for a given program analysis problem.

Chen et al. [5] provided a PAC learning-based framework for creating a model
abstracting a program. In contrast, our framework uses an empirical approach
to obtain an ideal abstraction suitable for solving a program analysis problem.
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In [3], the authors provide an automatic technique that infers a static ana-
lyzer, from a dataset containing programs, approximating their behavior. In
contrast, our approach uses states sampled from an instrumented program to
approximate its semantics. In [2], the authors presented a generative model for
programs. We approximate the semantics of a program using an empirical app-
roach. In [16], the authors present a framework for learning disjunctive predicates
to distinguish between positive and negative examples drawn from a concrete
domain.

Probabilistic abstract interpretation [8,19,27] assumes that the distribution
of a program is known, while our approach uses a nonparametric density esti-
mation technique to approximately represent abstract states.

In [9], the authors used the Skorokhod metric for conformance checking for
dynamical systems. The pseudo-metric d in this paper is designed to respect
bounded bisimilarity between states.

7 Conclusions

This paper presents an empirical abstraction framework and experimental evi-
dence demonstrating its practicality for program analysis.

Given a program and a property, the aim is to find a “good” abstraction
that derive an accurate yet efficient program analysis to verify the property. We
compute abstractions from concrete states of program executions without the full
knowledge of the program. An abstract cluster is given by a set of program states
such that any two states in the same cluster have certain step bisimilarity to each
other. The coarseness of an abstraction can be controlled by parameterizing
how concrete states are clustered into abstract states. Abstract states (possibly
infinite sets of states) are approximated by probability density functions. At a
given level of abstraction, the property can be verified by the resulting abstract
densities. The performance of the abstraction is quantified by a measure in terms
of true and false positives and a regularization for computation efficiency. We
perform iterative query-guided refinements of the clustering in order to maximize
that measure and eventually generate an ideal abstraction with minimal manual
intervention.

While the framework relies on sampling program states for constructing
abstractions, there is no underlying assumption regarding any particular distri-
bution on the program state space from which the states are sampled. Moreover,
we apply a cross validation technique on sampling data of program states, to
assure the performance provided by the empirical abstraction framework can
generalize to other program analysis problems for the same program.

Future work includes application of the framework for analysis of timed sys-
tems [20] and object/service oriented systems [1,29].
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Abstract. Software enforcers can be used to modify the runtime behav-
ior of software applications to guarantee that relevant correctness poli-
cies are satisfied. Indeed, the implementation of software enforcers can be
tricky, due to the heterogeneity of the situations that they must be able
to handle. Assessing their ability to steer the behavior of the target sys-
tem without introducing any side effect is an important challenge to fully
trust the resulting system. To address this challenge, this paper presents
Test4Enforcers, the first approach to derive thorough test suites that
can validate the impact of enforcers on a target system. The paper also
shows how to implement the Test4Enforcers approach in the DroidBot
test generator to validate enforcers for Android apps.

Keywords: Runtime enforcement · Testing enforcers · Test case
generation · Android apps

1 Introduction

To prevent undesired behaviors that may result in software failures and crashes,
runtime enforcement techniques have been used to modify the runtime behavior
of software systems, forcing the systems to satisfy a set of correctness policies [16,
27]. So far, runtime enforcement has been already applied to multiple domains,
including security [21], resource management [35,36], and mobile computing [12,
43].

The enforcement logic is often defined with an input/output [29] or an edit
automaton [25] that is used to guide the implementation of the actual software
enforcer. Although sometimes part of the code of the enforcer can be obtained
automatically, the implementation of the final component that can be injected in
the actual system normally requires the manual intervention of the developers,
to make it fit well with the complexity of the runtime context. In particular,
manual intervention is necessary to handle those aspects that are abstracted (i.e.,
not represented) in the enforcement model, such as handling the values of the
parameters that are not represented in the model but must be used in function
calls, adding the code to extract data from the runtime events produced by the
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monitored system, adding the code necessary to obtain security permissions, and
more in general handling any other aspect or optimization not fully represented
in the model.

As a consequence, the correctness of the resulting enforcer is threaten by
three possible sources of problems:

– Model inaccuracies: This is the case of a wrong enforcement model that con-
sequently leads to the implementation of a wrong software enforcer. Wrong
models are the results of a bad design activity. When all the elements of
the system can be accurately modelled (e.g., the environment, the monitored
system, and the enforcer), this problem can be mitigated using verification
techniques [37];

– Inconsistent implementations: This is the case of a software implementation
that is not perfectly compliant with the model. This may happen when devel-
opers unintentionally introduce bugs while implementing an enforcer starting
from its enforcement model. In some cases, code generation techniques can be
used to obtain part of the code automatically and mitigate this problem [12];

– Faulty additional code: This is the case of a fault in the code that must be
added to the software enforcer, which is distinct from the code that directly
derives from the enforcement model, to obtain a fully operational enforcer
that can be deployed in the target environment. The amount of additional
code that is needed can be significant, depending on the complexity of the
involved elements (e.g., the environment, the monitoring technology, and the
monitored application). No simple strategy to mitigate the problem of veri-
fying the correctness of this code is normally available.

To guarantee the correctness of a software enforcer before it is deployed in the
target system, in addition to validating the enforcement model, it is necessary
to extensively test the enforcer against all these possible threats. Compared to a
regular testing scenario, testing software enforcers requires approaches that are
able to target the specific events relevant to the enforcer and assess their impact
on the runtime behavior of the system. In particular, test case generation should
check that a software enforcer both modifies executions according to the expected
strategy and leaves executions unaltered when the observed computation does not
require any intervention.

In this paper we present Test4Enforcers, the first test case generation app-
roach designed to address the challenge of testing the correctness of software
enforcers. Note that enforcers typically act on the internal events of a software
system, while test case generation works on its interface, and thus the testing
strategy must discover how to activate the proper sequences of internal events
from the application interface. Test4Enforcers originally combines the knowl-
edge of the enforcement strategy with GUI exploration techniques, to discover
how to generate the right sequences of interactions that validate the interactions
between the target software system and the enforcer. The resulting test cases
are executed on both the application with and without the enforcer in place to
detect undesired behavioral differences (e.g., side effects) and unexpected simi-
larities (e.g., lack of effect of the enforcer) to the tester. We also concretely show
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how to implement Test4Enforcers for Android apps by extending the DroidBot
test case generation technique [24].

The paper is organized as follows. Section 2 provides background information
about policy enforcement. Section 3 presents the Test4Enforcers test case gen-
eration strategy. Section 4 reports our experience with Test4Enforcers applied
to an Android app. Section 5 discusses related work. Finally, Sect. 6 provides
concluding remarks.

2 Policy Enforcement

In this section we introduce the notion of runtime policy and policy enforcement.

2.1 Runtime Policy

A runtime policy is a predicate over a set of executions. More formally, let Σ
be a finite set of observable program actions a. An execution σ is a finite or
infinite non-empty sequence of actions a1; a2; . . . ; an. Σ∗ is the set of all finite
sequences, Σω is the set of infinite sequences, and Σ∞ = Σ∗ ∪ Σω is the set of
all sequences. Given a set of executions χ ⊆ Σ∞, a policy is a predicate P on χ.
A policy P is satisfied by a set of executions χ if and only if P (χ) evaluates to
true.

Policies may concern different aspects of the runtime behavior of a soft-
ware, such as resource usages, security, and privacy. For example, a policy about
resource usage for the Android framework requires that anytime an app stops
using the Camera, the app explicitly releases the Camera to make it available
to the other applications [1]. More precisely, “if an activity1 is using the camera
and the activity receives an invocation to the callback method onPause()2, the
activity must release the camera”. We use this policy throughout the paper to
describe our approach.

2.2 Policy Enforcement Models

A policy enforcement model is a model that specifies how an execution can be
altered to make it comply with a given policy. Policy enforcers can be repre-
sented with both edit and input/output automata. In Fig. 1 we show the model
of an enforcer specified as an input/output automaton that addresses the before-
mentioned policy about the Camera. The inputs are requests intercepted at run-
time (these events are labeled with the req subscript) by the software enforcer
and the outputs are the events emitted by the enforcer in response to the inter-
cepted requests (these events are labeled with the api subscript). When the label
1 Activities are fundamental components of Android apps and they represent the entry
point for a user’s interaction with the app https://developer.android.com/guide/
components/activities.

2 onPause() is a callback method that is invoked by the Android framework when an
activity is paused.

https://developer.android.com/guide/components/activities
https://developer.android.com/guide/components/activities


282 M. Guzman et al.

of the output is the same than the label of the input (regardless of the subscript),
the enforcer is just forwarding the requests without altering the execution. If the
output is different from the input, the enforcer is manipulating the execution
suppressing and/or adding requests.

When the current state is state s0, the Camera has not been acquired yet and
the activity.onPause() callback can be executed without restrictions. If the
camera is acquired by executing camera.open() (transition from s0 to s1), the
camera must be released before the activity is paused (as done in the transition
with the input activity.release() from s1 to s0). If the activity is paused
before the camera is released, the enforcer modifies the execution emitting the
sequence camera.release() activity.onPause(), which guarantees that the
policy is satisfied despite the app is not respecting it.

s0start s1

camera.open()req?/camera.open()api!

activity.onPause()req?/activity.onPause()api!

camera.release()req?/camera.release()api!

activity.onPause()req?/camera.release()api!; activity.onPause()api!

Fig. 1. Enforcer for systematically releasing the camera when the activity is paused.

This enforcement strategy must be translated into a suitable software com-
ponent to achieve runtime enforcement. With reference to the main classes of
errors introduced in the paper, the following types of bugs may affects its imple-
mentation:

– Model Inaccuracies: Although the designer may believe the enforcement
model is correct, the strategy might end up being incorrect. For instance,
the enforcer in Fig. 1 releases the camera when an activity is paused but does
not acquire the camera back when the execution of the activity is resumed.
This is a source of problems when the activity does not automatically re-
acquire the camera once resumed. The strategy is thus inaccurate and should
be extended to also include this stage. For simplicity in this paper we use the
enforcer in Fig. 1 without complicating the model with the part necessary to
acquire again a forcefully released camera.
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– Inconsistent Implementations: The model must be translated into working
code. Concerning the behavior specified in the model, the corresponding code
can be easily produced automatically, thus preventing inconsistencies (unless
the generator is faulty). If the code is implemented manually, still the confor-
mance of the code with the model has to be verified.

– Faulty Additional Code: In order to achieve code that can be deployed, a
non-trivial amount of scaffolding code must be implemented, as well as many
details should be worked out at the code level. For instance, the software
enforcer derived from the model in Fig. 1 must be integrated with the moni-
toring solution used to capture events. This may already require a significant
amount of code to be implemented. Moreover, although not shown in the
model, an implementation of the enforcer that also acquires back the camera
has to track both all the parameters used to initialize the camera and all the
changes performed to these parameters to later recreate a correctly config-
ured camera. These details are typically worked out by the engineers at the
code level and are not present in the model.

Test4Enforcers automatically generates tests that target the above listed
issues.

3 Test4Enforcers

Test4Enforcers generates test cases in 4 steps, as illustrated in Fig. 2. The first
step, namely Generation of Test Sequences with HSI, generates the test sequences
that must be covered to thoroughly test the behavior of the enforcer based on
the behavior specified in the enforcement model. To obtain concrete test cases
that cover these sequences, Test4Enforcers explores (second and third steps)
the application under test to determine what user interface (UI) interactions
generate the events that belong to the alphabet of the enforcement model. In
particular, the second step, namely Monitor Generation, uses the events in the
alphabet of the enforcer to obtain a monitor that observes when these events
are executed. The third step, namely GUI Ripping Augmented with Runtime
Monitoring, runs a GUI Ripping process [31] that systematically explores the
UI of the application under test while logging the events relevant to the enforcer
with the generated monitor. The output is the Test4Enforcers model, which is a
finite state model that represents the GUI states that have been exercised, the UI
interactions that cause transitions between these states, and the events relevant
to the monitor that have been produced during transitions. Note that although
we present the steps in this order, the second and third steps can be executed
in parallel with the first step. Finally, the fourth step, namely Generation of
the Concrete Test Cases, looks for the sequences of UI interactions that exactly
cover the test sequences identified in the first step and deemed as relevant to
verify the behavior of the enforcer. These UI interactions, enriched with program
oracles, are the test cases that can be executed to validate the activity of the
enforcer. In the following, we describe each step in details.
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Fig. 2. Test case generation with Test4Enforcers.

3.1 Generation of Test Sequences

In this step, Test4Enforcers generates the sequences of operations that must be
covered with testing based on the behavior specified in the enforcement model.
A notable method to generate these sequences from finite state models is the
W-method [4,23,39].

The W-method has been designed to unveil possible errors in the implemen-
tation, such as, erroneous next-states, extra/missing states, etc. The main idea
of the method is that starting from a state-based representation of a system,
it is possible to generate sequences of inputs to reach every state in the model,
cover all the transitions from every state, and identify all destination states to
ensure that their counter-parts in the implementation are correct.

One limitation of the W-method is that it requires the model of the system
to be completely specified, that is, in every state of the model there must be a
transition for every possible input. This is however not the case for enforcers,
since the inputs are generated by other components and frameworks, and not
all the combinations of inputs can be feasibly generated (e.g., onPause() and
onResume() are callbacks produced when an activity is paused and resumed,
respectively, as a consequence it is impossible to produce a sequence of two
onPause() events without an intermediate onResume() event). In order to tackle
this limitation, we use the Harmonized State Identifiers (HSI) method, which is
a variante of the W-method that does not require the model of the system to be
completely specified [2,28]. HSI exploits a few key concepts that are introduced
below.

We first define an Input/Output Automaton A as a tuple 〈S, s0, sig, T 〉, where
S is a finite set of states; s0 ∈ S is the initial state; sig is the set of actions of A
partitioned into input actions in, internal actions int, and output actions out;
T ⊆ S × {in ∪ int} × out∗ × S is a set of transitions (the symbol ∗ denotes a
sequence of actions). Note that differently from classic Input/Output Automa-
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ton, here we consider models that are not input-enabled, that is, every input
cannot be received from every state, as mentioned due to the requirements of
the environment where the enforcer is executed. Moreover, the automaton can
produce zero or more outputs, denoted with out∗, in response to a single input
as a consequence of the activity of the enforcer.

A sequence in1, . . . , ink with inj ∈ in,∀j = 1 . . . k is an input sequence
for state s ∈ S, if there exist states s1, . . . , sk+1 such that s = s1 and
〈si, ini, o, si+1〉 ∈ T,∀i = 1 . . . k (note o is not bounded to any value). Ω(s)
is used to denote all input sequences defined for state s. Similarly, given a state
s and an input sequence γ = 〈in1, . . . , ink〉 ∈ Ω(s), the function λ(s, γ) denotes
the output sequence o1, . . . , om emitted by the automaton when accepting γ.

To generate an effective test suite, it is important to be able to distinguish
the covered states. We say that two states si, sj ∈ S are distinguishable if there
exists a separating sequence γ ∈ Ω(si) ∩ Ω(sj), such that λ(si, γ) 	= λ(sj , γ),
otherwise they are not distinguishable.

To generate a thorough test suite, HSI exploits the notions of transition cover
and separating families. We say that the set P is a transition cover of A if for each
transition x from state s there exists the sequence αx ∈ P such that α ∈ Ω(s0)
and s is the state reached by accepting α. By definition, P also includes ε.

For instance, a transition cover P for the enforcer in Fig. 1 is given by the
following set

P = {
ε,
activity.onPause()req,
camera.open()req,
camera.open()req activity.onPause()req,
camera.open()req camera.release()req

}.

The sequences in the transition cover, each one defined to cover a different
transition, are extended with actions aimed at determining if the right state has
been finally reached once the sequence is executed. To this end, HSI computes
the separating families, which are sets of input sequences, one set for each state,
that can be executed to distinguish a state from the other states of the system. In
particular, a separating family is a set of input sequences Hi ⊆ Ω(si) for si ∈ S
satisfying the following condition: For any two distinguishable states si, sj there
exist sequences β ∈ Hi, γ ∈ Hj , such that α is a common prefix of β and γ and
λ(si, α) 	= λ(sj , α).

Computing the separating families for the automaton in Fig. 1 is straight-
forward since the two states have a single input in common that produces
different outputs, allowing to distinguish the states. Thus H0 = H1 =
{activity.onPause()req}.

The HSI method can take into consideration the case the actual states of
the implementation differ from the number of states in the model. However,
we expect the software enforcer to have exactly the same number of states
reported in the model. In such a case, the resulting test sequences are obtained by
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concatenating the transition coverage set P with the separating families Hi. Note
that the concatenation considers the state reached at the end of each sequence
in P , namely si, to concatenate such a sequence with the sequences in the cor-
responding separating family, namely Hi.

In our example, this process generates the following sequences to be covered
with test cases:

activity.onPause()req,
activity.onPause()req activity.onPause()req,
camera.open()req activity.onPause()req,
camera.open()req activity.onPause()req activity.onPause()req,
camera.open()req camera.release()req activity.onPause()req

HSI also includes a step to remove duplicates and prefixes from the generated
set. Test4Enforcers only removes duplicates. In fact, removing a sequence that
is a prefix of another sequence may drop a feasible test sequence in favour of an
infeasible one (e.g., the longer sequence might be impossible to generate due to
constraints in the environment, while it might be still possible to test the shorter
sequence). In our example, since the list includes no duplicates, it is also the set
of sequences that Test4Enforcer aims to cover to assess the correctness of the
enforcer in Fig. 1.

3.2 Monitor Generation

This step is quite simple. It consists of the generation of a monitor that can trace
the execution of the events that appear in the enforcement model. Since we focus
on enforcers that intercept and produce method calls, the captured events are
either API calls (e.g., the invocation of open() and release() on the Camera)
or callbacks (e.g., the invocation of onPause() on the activity). In this phase,
the user of Test4Enforcer can also specialize the general enforcement strategy
to the target application, if needed. For instance, the user can specify the name
of the target activity that must be monitored replacing the placeholder name
activity that occurs in the model with the name of an actual activity in the
application (e.g., MainActivity). Multiple copies of the same enforcer can be
generated, if multiple activities must be monitored.

In our implementation, we consider Xposed [42] as instrumentation library
for Android apps. The monitoring module is implemented once and simply con-
figured every time with the set of methods in the alphabet of the enforcer.

3.3 GUI Ripping Augmented with Monitoring

GUI Ripping is an exploration strategy that can be used to explore the GUI of an
application under test with the purpose of building a state-based representation
of its behavior [31]. In particular, GUI ripping generates the state-based model
of the application under test by systematically executing every possible action
on every state encountered during the exploration, until a given time or action
budget expires. Our implementation of Test4Enforcers targets Android apps
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and uses DroidBot [24] configured to execute actions in a breadth-first manner
to build the state-based model.

The model represents each state of the app according to its set of visible
views and their properties. More rigorously, a state of the app under test is
a set of views s = {vi|i = 1 . . . n} ∈ Sapp, and each view is a set of properties
vi = {pi1, . . . , pik}. For instance, an EditText is an Android view that allows the
users to enter some text in the app. The EditText has a number of properties,
such as clickable, which indicates if the view reacts to click events, and text,
which represents the text present in the view.

Operations that change the set of visible views (e.g., because an activity is
closed and another one is opened) or the properties of the views (e.g., because
some text is entered in an input field) change the state of the app. DroidBot
uses the following set of actions Aapp during GUI ripping: touch and long touch,
which execute a tap and a long tap on a clickable view, respectively; setText,
which enters a pre-defined text inside an editable view; keyEvent, which presses
a navigation button; and scroll, which scrolls the current window.

The actual state-based representation of the execution space of an app pro-
duced by GUI Ripping consists of the visited states and the executed actions.
Test4Enforcers extends the model generated by GUI ripping by adding the infor-
mation generated by the monitor, that is, the list of the relevant internal events
(i.e., the events in the alphabet of the enforcer) executed during each transition.
The state-based model thus shows both the UI interactions that can be executed
on the app, their effect on the state of the app, and the internal events that are
activated when they are executed.

More formally, the model resulting from the GUI ripping phase is a
tuple (Sapp, s0, Tapp), where Sapp is the set of visited states, s0 ∈ Sapp is
the initial state, Tapp ⊆ Sapp × Aapp × in∗ × Sapp is a set of transitions
〈s1, aapp, 〈in1, . . . , ink〉, s2〉, where s1 and s2 are the source and target states
of the transition, respectively, aapp is the UI interaction that causes the transi-
tion, and 〈in1, . . . , ink〉 is a possibly empty sequence of internal events observed
during the transition (note these events are exactly the input actions of the
enforcer). The resulting model includes everything needed to obtain the con-
crete test cases (i.e., the sequences of UI operations that must be performed
on the app) that cover the test sequences derived with HSI (i.e., the sequences
of input operations of the enforcer that must be generated). Figure 3 shows an
excerpt of the model obtained by running the ripping phase on the fooCam app
while considering the alphabet of the enforcer shown in Fig. 1. The fooCam app
is briefly introduced in Sect. 4. For simplicity, we represent the states with the
screenshots of the app. The labels above transitions represent UI interactions,
while the labels below transitions, when present, represent internal events col-
lected by the monitor. For instance, when the KeyEvent(Back) UI interaction is
executed and the app moves from the state MainActivity to the state Launcher,
the sequence of internal events camera.release() activity.onPause() is observed.

Note that Test4Enforcers assumes that the software under test has a deter-
ministic behavior, that is, an action performed on a given state always produces
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the same computation. For Android apps this is often true, and even if this
constraint is sometime violated, the test case generation algorithm presented
in the next section can compensate this issue by trying multiple sequences of
operations, until emitting the correct sequence of events. However, if the behav-
ior of the tested software is highly non-deterministic, it might be difficult for
Test4Enforcer to obtain the right set of test cases.

Fig. 3. Excerpt of a model derived with GUI ripping.

3.4 Generation of Concrete Test Cases

Generating concrete (i.e., executable) test cases consists of finding the sequences
of GUI interactions that cause the execution of the desired sequences of internal
events, as identified by the HSI method. To this end, Test4Enforcers exploits
both the state-based model of the application under test and the sequences
generated with the HSI method. Algorithm1 shows the generation process, which
takes an app, its GUI model, and a set of sequences to be covered as input, and
returns a test suite that contains executable test cases that cover the identified
sequences of events. When the algorithm returns the test cases, the mapping
between the test case and the covered sequence is maintained.

Algorithm 1 starts by initializing the test suite to the empty set (line 1), then
for each sequence in the set of sequences to be covered, the algorithm searches
for a test that covers the sequence (for loop starting at line 2), and, if successful,
it both adds an oracle to the test and adds the test to the test suite (lines 8
and 9 respectively). To identify the concrete test case that can cover a sequence,
the algorithm searches for one or more paths in the model that generate the
desired sequence of events (line 3). For instance, if the sequence to be covered is
camera.open() camera.release() activity.onPause() and the GUI model is the one
in Fig. 3, the algorithm can derive the sequence TouchEvent(v1) TouchEvent(v2)
KeyEvent(BACK) as the concrete test to execute. In fact, the execution of the
identified UI events is expected to produce the desired computation (based on the
labels on the transitions). Since an arbitrarily large number of paths covering
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the desired sequence can be often determined, and not necessarily any path
will deterministically produce the desired set of events internal to the app, the
algorithm identifies the N (e.g., N = 10) shortest paths of the model that cover
the sequence (stored in variable testCases in the algorithm). Each path of UI
events is tested by actually running the application to make sure that both its
execution is feasible and it indeed generates the intended sequence of events (for
loop at line 5). Our implementation of Test4Enforcers uses again DroidBot to
reproduce a sequence of UI events.

Algorithm 1: Algorithm for generating concrete test cases
Input: App app, RippingModel appModel, TestSequences testSequences
Output: Set of <TestCase, TestSequences> testSuite

1 testSuite ← ∅
2 foreach ts ∈ testSequences do
3 testCases ← generateEventSequences(ts, appModel)
4 isCovered ← FALSE
5 foreach tc ∈ testCases ∧ ¬isCovered do
6 isCovered ← runTestCase(tc, ts, app)
7 if isCovered then
8 tc ← addOracle(tc, ts)
9 testSuite.add(tc, ts)

10 return testSuite

If the right test is found, the algorithm embeds a differential oracle in the
test case, before adding it to the test suite. A differential oracle is an oracle that
determines the correctness of a test execution by comparing two executions of
the same tests on two different programs. In our case, the compared programs
are the app with and without the enforcer deployed. Test4Enforcers can inject
two different differential oracles, depending on the characteristics of the sequence
of events in1, . . . , ink covered by the test tc = a1, . . . , an where the oracle must
be embedded: the transparent-enforcement oracle and the actual-enforcement
oracle.

Transparent-Enforcement Oracle. If the sequence is not the result of any
change performed by the enforcer, that is, it covers a path of the enforcement
model where the inputs and the outputs are always the same, the test is anno-
tated as a test that must produce the same result if executed on both the appli-
cation with and without the enforcer. More rigorously, if the output o1, . . . , om

is produced by the enforcement model for the inputs in1, . . . , ink, this oracle
applies when k = m and ini = oi,∀i = 1 . . . k. The resulting oracle checks the
correctness of the execution by first capturing the intermediate states traversed
during test execution, as done during the construction of the GUI model, and
comparing them when collected from the app with and without the enforcer
deployed. More rigorously, if the states csi and cs′

i are the states reached after
executing the action ai on the app without and with the enforcer, respectively,
the oracle checks if csi = cs′

i,∀i = 1 . . . n. If the check fails, the enforcer is not
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non-intrusive, although it was supposed to be, and a failure is reported. For
instance, the input sequence camera.open() camera.release() activity.onPause()
is not altered by the enforcer in Fig. 1 and thus the transparent-enforcement
oracle is used to determine the correctness of the test that covers this sequence,
that is, no behavioral difference must be observed when this sequence is executed
in both the app without and the app with the enforcer.

Actual-Enforcement Oracle. If the tested sequence corresponds to a path
that requires the intervention of the enforcer, the test is annotated as producing
an execution that may produce a different outcome when executed on the app
with and without the enforcer in place. In such a case, given a sequence of
events in1, . . . , ink, ∃v, s.t. ini = oi∀i < v and inv 	= ov. The resulting oracle
checks the equality of the states visited by the test case executed on the app
with and without the enforcer until the event inv is produced, and checks for
the possible presence of a difference in the following states. More rigorously, if
av is the GUI action that generates event inv, the actual-enforcement oracle
first checks csi = cs′

i,∀i < v. If the check fails, the enforcer is unexpectedly
intrusive and a failure is reported. For the remaining portion of the execution,
it is not possible to know a priori if the activity of the enforcer must result
in an effect visible on the GUI. The actual-enforcement oracle thus looks for
such a difference, and if the difference is not found, it only issues a warning,
suggesting that the enforcer may have failed its activity. Formally, the oracle
checks if ∃p, s.t., csp 	= cs′

p with p ≥ v, if it is not the case the warning is
issued. For instance, the input sequence camera.open() activity.onPause() causes
the intervention of the enforcer shown in Fig. 1, which outputs an extra event
camera.release(). The test corresponding to that sequence is thus labeled as
producing the same result until the activity.onPause() event, and a potentially
different result afterwards, and the actual-enforcement oracle is embedded in the
test.

4 Case Study

As initial validation of the approach, we applied Test4Enforcers to the software
enforcer that we implemented from the camera release policy shown in Fig. 1 and
validated its behavior when injected in the fooCam app, which is a HDR camera
app that can take multiple shots with different exposure settings. The app is
available on the Google Play Store3. We selected this app because it is rather
simple, although realistic, it is open source, and we can thus control its execution
by manually cross-checking the impact of the enforcer and the behavior of the
test cases generated by Test4Enforcers.

To consider both the scenario in which the app violates and does not violate
the policy, we produced a faulty version of the app by removing the invocation to
the release() operation that the app performs when paused. In the rest of this

3 https://play.google.com/store/apps/details?id=net.phunehehe.foocam2&hl=EN.

https://play.google.com/store/apps/details?id=net.phunehehe.foocam2&hl=EN


Test4Enforcers: Test Case Generation for Software Enforcers 291

section, we refer to the correct and faulty apps as fooCamc and fooCamf , respec-
tively. Moreover, we indicate the apps augmented with the software enforcer for
the Camera policy as fooCamc+enf and fooCamf+enf, respectively.

As reported in Sect. 3.1, Test4Enforcers identified the following 5 test
sequences that should be covered to test the enforcer:

activity.onPause()req,
activity.onPause()req activity.onPause()req,
camera.open()req activity.onPause()req,
camera.open()req activity.onPause()req activity.onPause()req,
camera.open()req camera.release()req activity.onPause()req

Note that, not all these sequences are necessarily feasible. In fact, depending
on the specific implementation of the app, some sequences might be impossible
to execute.

To obtain the concrete test cases, we performed steps 2 and 3 of the tech-
nique, that is, we configured the Xposed module [42] that we designed for
Test4Enforcers to trace the execution of the events in the alphabet of the
enforcer and we ran DroidBot on both fooCamc and fooCamf obtaining two
Test4Enforcers models. We configured DroidBot to produce 750 UI events, which
correspond to about 30 min of computation. We report information about the
size of the resulting models in Table 1.

Table 1. Size of Test4Enforcers models.

App Test4Enforcers model

#States #Transitions

fooCamc 54 295

fooCamf 63 276

The exploration covered a number of states considered the relative simplicity
of the app. The difference in the number of states and transitions is due to the
randomness of some choices taken during the exploration activity by the tool.
Interestingly, the model can now be used to derive the concrete test cases.

The behavior of the app immediately reveals that some sequences can-
not be covered in this case. For instance, since fooCam opens the Cam-
era when the MainActicity is started, it is infeasible to execute the
MainActivity.onPause() callback without first executing the Camera.open()
API call. As a consequence, all the test sequences starting with an invocation
to MainActivity.onPause() without a preceding invocation to Camera.open()
are infeasible in both fooCamc and fooCamf . We would like to remark two aspects:
(i) this is true for this app, but it is not necessarily true for another app that
may open the camera at a different point of the execution, for instance when
a button is pressed and not when an activity is started, thus obtaining more



292 M. Guzman et al.

feasible test sequences; (ii) the analysis of the model allows Test4Enforcers to
not waste time trying to cover sequences that cannot be covered, focusing on
the feasible combination of events.

Table 2. Tests automatically generated by Test4Enforcers.

App Test sequences Coverage

fooCamc activity.onPause()req infeasible:

camera.open()req must be

the first event

activity.onPause()req activity.onPause()req infeasible: see the above

reason

camera.open()req activity.onPause()req infeasible:

camera.release()req is

invoked from

activity.onPause()req , thus

it is impossible to have

activity.onPause()req
without camera.release()req

camera.open()req activity.onPause()reqactivity.onPause()req infeasible: see the above

reason

camera.open()req camera.release()req activity.onPause()req feasible: it is a legal sequence

of operations monitored by

the enforcer that does not

require its intervention. The

corresponding test is thus

associated with the

transparent-enforcement oracle

fooCamf activity.onPause()req infeasible:

camera.open()req must be

the first event

activity.onPause()req activity.onPause()req infeasible: see the above

reason

camera.open()req activity.onPause()req feasible: it is the sequence

that violates the policy and

requires the intervention of

the enforcer. The

corresponding test is thus

associated with the

actual-enforcement oracle

camera.open()req activity.onPause()req activity.onPause()req infeasible: once the activity

is paused, it must be resumed

to be paused again; resuming

the activity causes the

execution of

camera.open()req in

fooCam, thus the sequence is

infeasible

camera.open()req camera.release()req activity.onPause()req feasible: it is a legal sequence

of operations monitored by

the enforcer that does not

require its intervention. In

the faulty app this sequence

can be obtained by

interacting with view

elements that cause the

release of the camera, even if

the camere is not

automatically released on

activity.onPause()req . The

corresponding test is thus

associated with the

transparent-enforcement oracle
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Table 2 summarizes the results about the feasibility of covering the test
sequences in both apps. Column App indicates the app that is tested. Column
Test Sequences indicates the specific sequences of internal events that must be
covered. Column Coverage reports the outcome obtained using Test4Enforcers
in terms of the capability to cover the corresponding sequence. Interestingly,
different sequences are feasible in the faulty and correct apps.

Test4Enforcers derived test cases that cover all the feasible test sequences.
The execution of the tests on the apps with and without the enforcer confirmed
the correctness of the enforcer for the fooCam app. In particular, the test case
derived from the fooCamc confirmed that both fooCamc and fooCamc+enf behave
the same. In fact, the app is correct and the enforcer simply monitored the execu-
tion never altering it. The execution of the two test cases derived from fooCamf

on both fooCamf and fooCamf+enf revealed no differences in the behavior of
the app. This raised a warning for the test that was expected to activate the
intervention of the enforcer. However, the manual inspection of the execution
confirmed that a different behavior was observed, since an extra release opera-
tion that makes the execution to satisfy the policy is produced when the enforcer
is in place. In this specific case, to turn the impact of the enforcer into a visible
behavior the test should open a different app that uses the camera, which is
outside the capability of DroidBot.

We can conclude that Test4Enforcers interestingly generated different test
cases based on the implementation of the app under test to validate the effect
of the enforcers while covering the most relevant feasible test sequences.

5 Related Work

The contribution described in this paper spans three related research areas: run-
time enforcement, model-based testing, and verification of runtime enforcement.

Runtime enforcement solutions can be used to prevent a software system
from behaving incorrectly with respect to a set of known policies. In particular,
runtime enforcement strategies modify executions assuring that policies are satis-
fied despite the potentially incorrect behavior of the monitored software [14,22].
Enforcement strategies can be specified using a variety of models, including mod-
els specifically designed to represent runtime enforcement, such as All or Nothing
Automata [3], Late Automata [3], Mandatory Results Automata [9], and Edit
Automata [26]. Runtime enforcement solutions have been applied in multiple
application domains, including mobile applications [6,12,33,35] operating sys-
tems [40], web-based applications [30], and cloud systems [5]. An overview of
techniques to prevent failures by enforcing the correct behaviour at runtime has
been recently published by Falcone et al. [15]. Among these many domains, in
this paper we focus on the Android environment, which has been already con-
sidered in the work by Falcone et al. [12], who studied how to enforce privacy
policies by detecting and disabling suspicious method calls, and more recently
by Riganelli et al. [34–36], who studied how to augment classic Android libraries
with proactive mechanisms able to automatically suppress and insert API calls
to enforce resource usage policies.
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While runtime enforcement strategies focus on the definition of models and
strategies to specify and implement the enforcers, Test4Enforcers is comple-
mental to this effort, since it derives the test cases that should be executed
on applications with and without the enforcers to verify the correctness of the
implemented enforcer.

Model-based testing (MBT) refers to the automatic generation of a suite of
test cases from models extracted from requirements [7,8]. The purpose of the
generated test suite is to determine whether an implementation is correct with
respect to its specification. MBT approaches are often organized around three
main steps [41]: building the model, choosing the test selection criteria and build-
ing the test case specifications, and generating tests. MBT has been extensively
used in the software safety domain, where conformance of the implementation
with respect to the model is critical, as shown in the survey by Gurbuz et al. [19].
Test4Enforcers is also a MBT approach, in fact it uses a model, it defines a cov-
erage criterion, and it generates the corresponding test cases.

A variety of models have been used to guide test case generation, including
finite state machines, UML diagrams (statechart, class, activity, and others),
and Z specifications [8]. Indeed, finite-state models are among the most used
ones [20]. Interestingly, there are various methods to derive test cases from finite-
state machines. For instance, the W [4], Wp [17], UIO [38], DS [18], HSI [32], and
the H [11] are well-know test derivation methods [10]. Test4Enforcers exploits
HSI due to the characteristics of the models used to represent the behavior of the
enforcers. Furthermore, Test4Enforcers defines a strategy to produce the target
sequences of events while interacting with the UI of an application.

Verification of runtime enforcement concerns with checking that the software
enforcer is indeed delivering the intended behavior. In fact, although the enforcer
is meant to correct the behavior of a monitored software, the enforcer itself might
still be wrong and its activity might compromise the correctness of the system
rather than improving it. A recent work in this direction is the one by Riganelli
et al. [37] that provides a way to verify if the activity of multiple enforcers may
interfere. The proposed analysis is however entirely based on the models and
the many problems that might be introduced by the actual software enforcers
cannot be revealed with that approach. Test4Enforcers provides a complemental
capability, that is, it can test if the implementation of the enforcer behaves as
expected once injected in the target system.

6 Conclusions

Runtime enforcement is a useful technique that can be used to guarantee that
certain correctness policies are satisfied while a running software application.
However, specifying enforcement strategies and implementing the corresponding
software enforcers might be challenging. In particular, translating an enforcement
model into a software enforcer might be difficult because of the significant adap-
tation and instrumentation effort required to close the gap between the abstrac-
tion of the models and the actual implementation, which must take under consid-
eration the requirements of the target execution environment. Indeed, enforcers
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may easily introduce side effects in the attempt of modifying executions. These
are well-known shortcomings of software enforcement solutions [3,37].

To address these problems, this paper describes Test4Enforcers, a test case
generation technique that can automatically derive a test suite that can be used
to validate the correctness of the software enforcers derived from enforcement
models. The resulting test cases are executed on the same application with and
without the enforcer in place. The observed behavioral differences are used to
reveal faults and issue warnings.

Although the approach is not specific to the Android environment, in this
paper we focus on the case of software enforcement for Android apps. This
domain is particularly relevant because the apps that are downloaded and
installed by end-users have been often developed by unknown, and poten-
tially untrusted, parties. Enriching the environment with enforcers can improve
multiple aspects, including security and reliability. Studying how to apply
Test4Enforcers to other domains is indeed part of our future work.

In addition, Test4Enforcers is designed to reveal misbehaviors that relate
to the ordering of events, as represented in the enforcement model. There are
of course classes of misbehaviours that go beyond the ones considered in this
paper. For instance, timed properties can be used as policies and enforcers that
take time information into account can be designed [13]. Extending the test case
generation capabilities of Test4Enforcers to other class of properties is also part
of our future work.
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Abstract. Dynamic analysis is a popular approach to detecting pos-
sible runtime errors in software and for monitoring program behavior,
which is based on precise inspection of a single execution trace. It has
already proved to be useful especially in the case of multithreaded pro-
grams and concurrency errors, such as race conditions. Nevertheless,
usage of dynamic analysis requires good tool support, e.g. for program
code instrumentation and recording important events. While there exist
several dynamic analysis frameworks for Java and C/C++ programs,
including RoadRunner, DiSL and Valgrind, we were not aware of any
framework targeting the C# language and the .NET platform. There-
fore, we present SharpDetect, a new framework for dynamic analysis
of .NET programs — that is, however, focused mainly on programs
compiled from the source code written in C#. We describe the over-
all architecture of SharpDetect, the main analysis procedure, selected
interesting technical details, its basic usage via command-line, configu-
ration options, and the interface for custom analysis plugins. In addition,
we discuss performance overhead of SharpDetect based on experiments
with small benchmarks, and demonstrate its practical usefulness through
a case study that involves application on NetMQ, a C# implementation
of the ZeroMQ messaging middleware, where SharpDetect found one real
concurrency error.

1 Introduction

Dynamic analysis is a popular approach to detecting possible runtime errors in
software and for monitoring program behavior, which is applied within the scope
of testing and debugging phases of software development. A typical dynamic
analysis tool, such as Valgrind [5], records certain events and runtime values
of program variables during execution of a subject program, and based on this
information it can very precisely analyze behavior of the given program on the
particular observed execution trace (and on few other closely-related traces). For
example, dynamic bug detectors usually look for suspicious event sequences in
the observed trace. Usage of dynamic analysis has already showed as beneficial
especially in the case of multithreaded programs and search for concurrency
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errors, such as race conditions and deadlocks (cf. [2] and [6]), where the reported
errors and fragments of the execution trace can be further inspected offline.

The main benefits of dynamic analysis include a very high precision and
therefore also minimal number of reported false warnings, all of that because
the actual concrete program execution is observed. On the other hand, usage
of dynamic analysis requires good tool support, which is needed for tasks such
as program code instrumentation and processing of recorded important events.
Tools should also have practical overhead with respect to performance and mem-
ory consumption.

While robust dynamic analysis frameworks have been created for Java and
C/C++ programs, including RoadRunner [3], DiSL [4], Valgrind [5] and Thread-
Sanitizer [7], we were not aware of any framework targeting programs written
in C# and running on the .NET platform. For that reason, we have devel-
oped SharpDetect, a framework for dynamic analysis of .NET programs, that
we present in this paper.

SharpDetect takes executable .NET assemblies as input, performs offline
instrumentation of the CIL (Common Intermediate Language) binary interme-
diate code with API calls that record information about program behavior, and
runs the actual dynamic analysis of the instrumented subject program accord-
ing to user configuration. Although the .NET platform supports many different
programming languages, when developing and testing SharpDetect we focused
mainly on programs compiled from the source code written in C#. Still, most
programs written in other popular .NET languages, such as VB.NET and F#,
should be also handled without any problems because SharpDetect manipulates
the intermediate CIL binary code, but we have not tested it on any VB.NET and
F# programs. In particular, the F# compiler may generate CIL code fragments
different from those produced by C# compilers. We also want to emphasize that
SharpDetect targets the modern cross-platform and open-source implementation
of the .NET platform, which is called .NET Core. It runs on all major operat-
ing systems that are supported by .NET Core, that means recent distributions
of Windows, Linux and Mac OS X. The output of SharpDetect includes a log
of recorded events and a report of possibly discovered errors. Note, however,
that SharpDetect is primarily a framework responsible for the dynamic analysis
infrastructure. Specific custom analyses, including bug detectors, are actually
performed by plugins that are built on top of the core framework. In order to
demonstrate that the core framework (and its plugin API) is mature and can be
used in practice, we have implemented two well-known algorithms for detecting
concurrency errors, Eraser [6] and FastTrack [2], as plugins for SharpDetect. We
have used the Eraser plugin in a case study that involves the NetMQ messag-
ing middleware. Nevertheless, despite our focus on analyses related to concur-
rency, SharpDetect is a general framework that supports many different kinds
of dynamic analyses.
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Contribution and Outline. The main contributions presented in this paper
include:

– SharpDetect, a new general and highly extensible framework that enables
dynamic analysis of .NET programs;

– evaluation of runtime performance overhead incurred by usage of SharpDetect
based on experiments with several benchmark programs written in C#;

– realistic case study that involves NetMQ, a C# implementation of the
ZeroMQ messaging middleware, and demonstrates practical usefulness of
SharpDetect for the purpose of detecting real concurrency errors.

The source code of a stable release of SharpDetect, together with example pro-
grams, is available at https://gitlab.com/acizmarik/sharpdetect-1.0.

Due to limited space, we provide only selected information about SharpDe-
tect in this paper. Additional details can be found in the master thesis of the
first author [1].

Structure. The rest of this paper is organized as follows. We describe the overall
architecture and main workflow of SharpDetect in Sect. 2. Then we provide a
brief user guide (Sect. 3), discuss the case study involving NetMQ (Sect. 4) and
results of performance evaluation (Sect. 5), and finish with an outline of current
work in progress and plans for the future.

2 Architecture and Main Workflow

SharpDetect consists of two parts, compile-time modules and runtime modules,
that also correspond to main phases of its workflow, namely offline instrumen-
tation and run of the dynamic analysis. The compile-time modules, Console and
Injector, are responsible mainly for the offline CIL instrumentation. The runtime
modules, Core and Plugins, perform the actual dynamic analysis during execution
of the subject program. In addition, the module Common implements basic func-
tionality, including the definitions of analysis events and necessary data struc-
tures, that is used by all other modules. Figure 1 shows a high-level overview
of the architecture and workflow of SharpDetect. Both compile-time modules
are displayed in the left frame with the label “Instrumentation”, while runtime
modules are displayed in the right frame with the label “Output Program”. A
very important aspect of the architecture of SharpDetect is that dynamic anal-
ysis runs in the same process as the subject program, in such a way that both
our tool and the subject program share their memory address spaces. Now we
provide details about individual modules and phases of the whole process.

https://gitlab.com/acizmarik/sharpdetect-1.0
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Input Program
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Results of 
Dynamic Analysis

Software errors
detected by analysis

plugins

Fig. 1. High-level architecture and workflow of SharpDetect

The Console module is a .NET Core frontend of SharpDetect that has the form
of a console application. It parses all configuration files and the command-line
(Sect. 3), reads the input C# project and creates a self-contained package that
includes the .NET program to be analyzed, drives the offline instrumentation
process, and finally executes the actual dynamic analysis using the instrumented
assemblies.

The Injector module uses dnlib [8] for manipulation with CIL bytecode. Its
main purpose is to instrument the subject program with new code (classes,
methods, and fields) that records the relevant events and other information about
program state through calls of the SharpDetect API, when the dynamic analysis
is executing. Note that SharpDetect instruments also .NET System libraries,
especially the Base Class Library (BCL). This is needed, for example, to observe
usage of collections in the subject program.

During the first phase, SharpDetect also completely removes native code from
all the processed assemblies to enforce that CLR (Common Language Runtime),
the virtual machine of .NET Core, actually loads the instrumented CIL bytecode
instead of native images produced by the C# compiler based on the original CIL
bytecode.

The Core module is the main component of SharpDetect that is used at run-
time. It is responsible mainly for registering event handlers and dispatching of
recorded analysis events to plugins. Like in the case of some other dynamic
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analysis tools, the list of supported events includes: accesses to fields of heap
objects, accesses to array elements, dynamic allocation of new heap objects,
method calls (processing invocation and return separately), thread synchroniza-
tion actions (e.g., lock acquire, lock release, wait and notify signals), start of
a new thread, and termination of a thread (e.g., via the join operation). Infor-
mation about events of all these kinds is needed especially to enable detection
of concurrency errors. Figure 2 illustrates the main event processing loop on an
example involving the CIL instruction newobj for dynamic object allocation.

Process event

Return to original
control-flow

For each plugin
or until event not

consumed

Analyze collected 
information about 

object creation

Return from analysis

NEWOBJ

<get created object>

<call SharpDetect>

Analyzed
program

(thread T1)
SharpDetect Plugins

Fig. 2. Main event-processing loop illustrated on the CIL instruction newobj

The last part is the plugin API, an interface through which the core notifies
plugins about observed events. Developers of custom plugins have to be aware
of the fact that, due to SharpDetect running in the same process as the subject
program, analysis of each individual event is carried out by the same thread that
raised it. For each recorded event, the dynamic analysis engine takes control of
the corresponding thread in the subject program for the duration of event’s
processing by all plugins. We provide more details about the plugin API from
the user’s perspective in Sect. 3.

A closely related aspect, which is not specific just to SharpDetect, is that
when the analyzed program uses multiple threads, event handlers may be invoked
concurrently and, therefore, events may be received in a wrong order by the
analysis plugins. Consider the following example. Thread T1 releases a lock L
at some point during the program execution. But right before SharpDetect core
notifies plugins about the corresponding event, a thread preemption happens
and thread T2 now runs instead of T1. Immediately after the preemption, T2

takes the lock L and SharpDetect notifies all plugins about this event. Plugins
then receive information about T2 acquiring L before the notification from T1
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about the release of L. We plan to address this challenge in future, using an
approach that we discuss in Sect. 6.

One important limitation of the current version of SharpDetect is that it can
track only information about user-defined threads. Specifically, it does not track
analysis events related to threads retrieved from thread pools, because almost
no information about such threads is available from the managed C# code.

3 User Guide

SharpDetect currently provides only a simple command-line interface. Figure 3
shows all three commands that must be executed in order to analyze a given C#
program. The symbol rid in the first command stands for a runtime identifier,
which needs to be specified in order to create a fully self-contained package. A
complete list of supported runtime identifiers is provided in the official docu-
mentation for .NET Core [12].

Fig. 3. Example usage of SharpDetect through its command-line interface

Configuration. Before the subject program can be analyzed, the user has to
prepare the configuration of SharpDetect. In a local configuration file, specific
to a given program, the user can (1) disable some categories of analysis events
and (2) further restrict the set of reported events by defining patterns for names
of methods and object fields that should be tracked. Figure 4 shows an example
configuration, written in the JSON syntax, that:

– enables analysis events related to field accesses, method calls, and object
allocation;

– completely disables all events related to arrays;
– restricts the set of reported field access events for the assembly MyAssembly1.dll

just to the class C1 in the namespace nsA;
– and finally restricts the set of reported method call events for the assembly

just to the class C1 in the namespace nsA and the method Mth3 in the class
C2 from the namespace nsB.
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The main purpose of all these configuration options is to allow users to specify
events relevant for a particular run of dynamic analysis, so that the overall num-
ber of reported events is significantly reduced and the output can be therefore
more easily inspected.

Fig. 4. Example content of a local configuration for a specific dynamic analysis.

Users also need to decide upfront whether they want to enable JIT optimiza-
tions. The difference can be observed, for example, in the case of programs that
use multiple threads or the Task Parallel Library (TPL) with one simple lambda
function as a task body. If the JIT optimizations are enabled, then each execu-
tion of the lambda function might be performed by the same thread, regardless of
the usage of TPL. On the other hand, when the JIT optimizations are disabled,
each execution of the lambda function is performed by a different thread.

Plugins. We have already indicated that a very important feature of SharpDe-
tect is the possibility to use custom analysis plugins. Developers of such plugins
need to implement the abstract class BasePlugin that belongs to the Core mod-
ule. In Fig. 5, we show those methods of the abstract class that correspond to
the most commonly used analysis events. Signatures of the remaining methods
follow the same design pattern. The full source code of the BasePlugin class is
available in the project repository and it is also documented on the project web
site.

The command that executes actual dynamic analysis (Fig. 3) takes as one
parameter the list of plugin names in the format plugin1 | plugin2 | ... | pluginN.
SharpDetect then looks for available plugins in the directory specified by the
environment variable SHARPDETECT PLUGINS. During the analysis run, every
observed event is dispatched by SharpDetect to the first plugin in the chain. A
plugin that received an event may consume the event or forward it to the next
plugin. Note that the default implementation of all event handler methods on
the abstract class BasePlugin forwards the information about events to the next
plugin in the chain, if such plugin exists.

Additional technical details regarding the development of custom plugins are
illustrated by two example plugins that we released together with SharpDetect,
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Fig. 5. Selected methods defined by the abstract class BasePlugin

i.e. our implementations of the algorithms Eraser and FastTrack that can be
found in the module SharpDetect.Plugins.

4 Case Study

We have applied SharpDetect to the NetMQ library [9], which is a C# implemen-
tation of the ZeroMQ high-performance asynchronous messaging middleware, in
order to see how well it can help with debugging of concurrency issues in realistic
programs. To be more specific, the first author used SharpDetect when search-
ing for the root cause of a particular timing issue in NetMQ that occurred very
rarely.

The source code of a test program that uses NetMQ, together with
the configuration of SharpDetect, is in the directory src/SharpDetect/SharpDe-
tect.Examples/CaseStudy of the repository at https://gitlab.com/acizmarik/
sharpdetect-1.0. It is a standard .NET Core console application that runs two
threads (server and client). Here we describe just a fragment of the SharpDe-
tect’s output and a fragment of the NetMQ source code that contains the root
cause of this particular concurrency issue.

Figure 6 shows output produced by the run of dynamic analysis with the
Eraser plugin, which can detect possible data races. The last two entries in Fig. 6
represent the warning reported by Eraser, which points to possible data races on
the static fields s lastTsc and s lastTime defined by the class NetMQ.Core.Utils.Clock.
In the corresponding revision of NetMQ [10], both static fields are read and
written only by the method NowMS whose source code is displayed in Fig. 7.

https://gitlab.com/acizmarik/sharpdetect-1.0
https://gitlab.com/acizmarik/sharpdetect-1.0
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Fig. 6. Output produced by SharpDetect with the Eraser plugin for the program that
uses NetMQ

Log entries at the level INF, which are presented in Fig. 6, indicate that the
method NowMS is actually executed by multiple threads without any synchro-
nization of the critical section.

5 Performance Evaluation

In this section we report and discuss the overhead of dynamic analysis with
SharpDetect, and the impact on analyzed programs, in terms of the running
time and memory consumption. For that purpose, we performed experiments
with two small benchmark programs on the following hardware and software
configuration: Intel Core i7-8550U CPU with the clock speed 1.80 GHz and 4
cores, 16 GB of memory, 64-bit version of Windows 10, and .NET Core 2.1.

The first benchmark program uses Task Parallel Library (TPL) to process
a big array in an unsafe way, such that individual threads are not synchronized
and therefore a data race may happen at each access to array elements. The sec-
ond benchmark program is a simple implementation of the producer-consumer
pattern, where (i) both the producer and consumer are implemented as separate
Task objects that share a common queue and (ii) access to the queue is guarded by
a lock. Source code of both programs is available in the SharpDetect repository
in the directories src/SharpDetect/SharpDetect.Examples/(Evaluation1,Evaluation2).
Even though these programs are quite small, their execution generates a lot
of analysis events, which makes them useful for the purpose of measuring the
overhead of analysis with SharpDetect.
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Fig. 7. Source code of the method NowMS that contains root cause of the concurrency
issue.

Each measurement was repeated 50 times. In tables with results, we present
average values together with the corresponding standard deviations. The baseline
values of running time and memory consumption, respectively, were recorded
using the subject programs before instrumentation.

Table 1 contains results for the first benchmark and several configurations of
SharpDetect. Data in the table show that usage of SharpDetect, together with
the Eraser plugin, is responsible for a slow-down by the factor of 4 with respect
to the baseline. Memory overhead is caused by tracking analysis information for
each array element.

Table 1. The running time and memory consumption of the first benchmark program

Configuration Results

Instrumented Plugins Time (s) Memory (KiB)

No (baseline) – 0.19 ± 0.01 333

Yes EmptyPlugin 0.44 ± 0.01 541 ± 5

Yes FastTrack 0.56 ± 0.01 4223 ± 37

Yes Eraser 0.79 ± 0.03 7216 ± 6

Table 2 contains results for the second benchmark. In this case, we observed
slow-down at most by the factor of 3.7. Memory consumption apparently
increased by the factor of 16, but, in fact, there is a constant memory over-
head of about 4000 KiB, regardless of the configuration. The main cause is that
SharpDetect needs to track a lot of information during the program execution,
such as method call arguments and return values, even when plugins do not use
much of the data.



308 A. Čižmárik and P. Paŕızek

Table 2. The running time and memory consumption of the second benchmark
program

Configuration Results

Instrumented Plugins Time (s) Memory (KiB)

No (baseline) – 0.145 ± 0.003 261.1

Yes EmptyPlugin 0.51 ± 0.01 4265.7 ± 0.5

Yes Eraser 0.53 ± 0.02 4267.5 ± 0.5

Yes FastTrack 0.54 ± 0.02 4268.3 ± 0.7

Overall, results of our experiments indicate that SharpDetect has a relatively
small overhead that enables usage of the tool in practice. Note that baseline mea-
surements of the memory consumption did not deviate at all for both programs,
because non-instrumented variants of the programs allocate very few objects on
the heap.

6 Future Work

We plan to continue our work on SharpDetect in various directions, implementing
new features and improving its performance.

One way to reduce the effects of dynamic analysis with SharpDetect on the
behavior and performance of subject programs is to use the .NET Profiling
API [11], which enables online instrumentation at the level of CIL bytecode
during execution of a subject program. In addition, usage of the .NET Profiling
API allows clients to observe specific events raised by the .NET execution engine,
CoreCLR, even without code instrumentation. We are currently working on the
implementation of a new version, SharpDetect 2.0, that will (1) utilize the .NET
Profiling API, (2) execute dynamic analysis using the out-of-process approach
where the analysis runs in a different process than the subject program, and (3)
contain many additional improvements. The process of the subject program will
contain just the minimal necessary amount of injected code to record events and
forward them to the analysis process (which involves all the plugins, too).

Another goal is to address the issues related to possible concurrent invocation
of event handlers that we described at the end of Sect. 2. We plan to implement
a solution that will impose more strict ordering of analysis events from multiple
threads, based on some form of vector clock, such that SharpDetect could delay
dispatching of an event until all observed preceding events are processed.

Acknowledgments. This work was partially supported by the Czech Science Founda-
tion project 18-17403S and partially supported by the Charles University institutional
funding project SVV 260588.
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Abstract. Runtime assertion checking is the discipline of detecting at
runtime violations of program properties written as formal code anno-
tations. These properties often include numerical properties, which may
rely on either (bounded) machine representations or (unbounded) math-
ematical numbers. The verification of the former is easier to implement
and more efficient at runtime, while the latter are more expressive and
often more adequate for writing specifications. This short paper explains
how the runtime assertion checker E-ACSL reconciles both approaches
by presenting a type system that allows the tool to generate efficient
machine-number based code when it is safe to do so, while generating
arbitrary-precision code when it is necessary. This type system and the
code generator not only handle integers but also rational arithmetics. As
far as we know, it is the first runtime verification tool that supports the
verification of properties over rational numbers.

Keywords: Typing · Runtime assertion checking · Numerical
properties · Rational numbers · Optimized code generation

1 Introduction

Runtime assertion checking is the discipline of detecting at runtime violations of
program properties written as formal code annotations [1,2]. This way, it allows
the developer to better support testing, to make debugging easier by reducing
the distance between the execution of a bug and the manifestation of its effects,
to serve as executable comments about preconditions and postconditions1, and
can act as an intermediate step before applying formal proof. Its main drawback
is the slowdown of the program execution. It may also lead to additional runtime
failures when used incorrectly by a developer.

1 https://blog.regehr.org/archives/1091.
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Formal code annotations usually express properties about program variables
or/and program inputs and outputs. Most of them are mathematical proper-
ties or, at least, involve some mathematical operations. The semantics of these
properties may involve either bounded machine representations (e.g., machine
integers and floating-point numbers), or unbounded mathematical numbers (e.g.,
mathematical integers in Z and real numbers in R). The former one allows for
efficient runtime checking and remains close to the semantics of the underly-
ing programming language, so easy to grasp for a developer. However, it is less
expressive than the latter and, most often, it does not correspond to the informal
specifications that writers or readers have in mind because they usually think
in terms of usual mathematics [3]. It can lead to incorrect specifications [4]. Yet
the latter is harder to implement and leads to less efficient code [5].

The oldest formal specification languages such as Eiffel [6] and Spec# [7]
rely on a bounded semantics. JML [8] historically used this semantics but now
accepts three different modes (bounded integers with modulo when overflow-
ing, bounded integers that raises exceptions when overflowing, and unbounded
integers). Spark2014 [9] also offers both bounded and unbounded integer modes.
ACSL [10] and Why3 [11] rely on an unbounded semantics. Kosmatov et al. [12]
provide a more complete comparison of Spark2014, ACSL and Why3.

This paper presents a type system that allows to rely on the unbounded
mathematical semantics when writing formal specifications, while soundly using
bounded machine integers most of the time when executing the code. This way, it
reconciles both approaches by combining the expressiveness of the mathematical
semantics and the efficiency of machine integers. It supports not only integers,
but also rational numbers in Q, thus making it possible to conveniently express
and verify at runtime many useful numerical accuracy properties. This technique
is implemented in E-ACSL [13], the runtime assertion checker of Frama-C [14].
This type system has also been adapted to Spark2014 by Adacore (but only for
integers). As far as we know, E-ACSL is the only tool that supports runtime
assertion checking of properties over rational numbers. The paper also provides
initial experiments that demonstrate the gain of efficiency of E-ACSL because of
its type system. To sum up, the contributions of this paper are threefold:

– a type system that allows a runtime assertion checker to soundly rely on
machine code for evaluating mathematical integers and rational numbers;

– an implementation of this type system in E-ACSL that allows the tool to
efficiently check at runtime properties over both integer and rational numbers;

– an initial evaluation of this type system to measure the gain of efficiency.

The outline of the paper is as follows. Section 2 gives a general overview and
a motivating example. Section 3 introduces a small formal specification language
on which the type system is designed in Sect. 4. Section 5 provides some insights
about our evaluation and experiments before concluding in Sect. 6.
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Fig. 1. Toy example computing an average, and an ACSL assertion on its precision.

2 Overview and Motivating Example

To illustrate a property with mathematical numbers, consider a simple example
of Fig. 1, broadly inspired by well-known numerical accuracy issues (in critical
software2 or in computations of stock prices3). It computes, given daily prices of
a merchandise (say, in cents), its average price (as a floating-point value) over
a week. The considered property states that, for a given ε > 0, the computed
average avg has a maximal (absolute) error ε with respect to the exact (ideal)
average Aid: Aid −ε ≤ avg ≤ Aid +ε. For ε = 0.0001, this property can fail: e.g.,
17293/7 ≈ 2470.428571 while the division result in a float is 2470.428467.

The ACSL semantics guarantees that all computations in annotations remain
mathematically precise. It allows us to specify the numerical accuracy property
of the result in the simplest form, as in the assertion. Indeed, unlike ACSL, in C
code, a sum of integers can overflow, and a division in floating-point numbers can
be rounded. In our example, the developer avoids the risk of an integer overflow
by taking the prices in short, automatically promoted to int to compute the
sum (line 5), but the rounding cannot be avoided.

The expression (Mo + ... + Su)/7.0 in the assertion (lines 7–8) can have a dif-
ferent value than in the code (line 5) because it assumes mathematical numbers
and operators in Z or R. To verify the assertion at runtime, it cannot be trans-
lated into C by the same expression in machine numbers. In our example, the
property translated in such a way would be always true, while the assertion can
in fact fail. Precise computations in mathematical integer and rational numbers
can rely e.g. on the GMP library4 for C programs, but its usage has a cost.

The purpose of our work is twofold. First, we present a pre-analysis step that
allows to identify computations for which machine numbers (of a suitable type)
can be used without loss of precision. In our example, the sums on lines 7–8
can be safely computed in an int variable without GMP calls. Second, we add a
support for rational numbers that makes it possible to easily specify and verify at
runtime properties over rational numbers, including some accuracy properties.

2 See e.g. http://www-users.math.umn.edu/∼arnold/disasters/patriot.html.
3 See e.g. https://en.wikipedia.org/wiki/Vancouver Stock Exchange.
4 https://gmplib.org/.

http://www-users.math.umn.edu/~arnold/disasters/patriot.html
https://en.wikipedia.org/wiki/Vancouver_Stock_Exchange
https://gmplib.org/
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Fig. 2. Formal syntax of the specification language.

3 Formal Specification Language

Our work is based on the E-ACSL specification language [15], derived from the
ACSL specification language [10]. The differences between both languages [5] are
of no importance for our work. This section introduces a small common sub-
language sufficient for presenting our type system. It is rich enough to express
the assertion at lines 7–8 of Fig. 1. Its formal syntax is shown in Fig. 2.

Logic statements are assertions enclosed in special comments /*@ ...*/ that
may be written before any C instruction. Assertions are typed predicates which
include logical relations, comparison operators over terms, local bindings à la
ML and bounded first-order quantifiers over integers. Terms are logic binders,
C left-values (variables, pointer dereferences, array and struct accesses, etc.),
mathematical constants (either integers or rationals; e.g., the constant 7.0 on
lines 7–8 in Fig. 1 is seen as a rational number because of the decimal nota-
tion)5, numerical operators, and (explicit) casts. Terms are typed. Types are the
standard C types extended with mathematical integers and rationals. The typ-
ing rules are left implicit here, but are straightforward. A numerical operation is
an integer one if both arguments are integers; otherwise it is an operation over
rational numbers (and the integer argument, if any, is automatically promoted
to the corresponding rational number).

It is worth noting that all constants and numerical operators are over math-
ematical numbers (either integers in Z, or rationals in Q depending on the con-
text). C integers and floating-point values (that come from C left values) are
implicitly coerced to their mathematical counterparts. For the sake of simplic-
ity, we assume no NaN, -0.0 nor ±∞ values, as well as no runtime errors when
evaluating C left-values. In practice, the necessary code for checking the absence
of runtime errors is generated by an independent mechanism [5,16].

4 Type System

Preamble. The illustrative examples of this section assume a toy architecture
that supports a set of C types limited to {char, int, float} in which the values
of type char are included in the interval [−32; 31], while those of type int are
included in [−128; 127]. The possible floating-point values are left unspecified.

5 E-ACSL also supports floating-point constants such as 0.1f but they are excluded
here for the sake of simplicity.
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Fig. 3. GMP code generated by E-ACSL for /*@ assert x + 1 ≤ 127; */ on a toy
architecture. The comments have been manually inserted for readibility.

Illustrative Examples. Consider the assertion /*@ assert x + 1 ≤ 127; */ with
x of type int. When x = 127, it is invalid. Yet, using machine-integer code
for evaluating it would be unsound since x + 1 would overflow. To circumvent
this issue, a code generator should rely on a dedicated mathematical library
such as GMP in C. For instance, the E-ACSL runtime assertion checker [13] of
Frama-C [14] would generate the (slightly simplified) code of Fig. 3.

While sound, the generated arbitrary-precision code is not as efficient as
machine-number based code, while not being always necessary. Consider for
instance the assertion /*@ assert c + 1 ≡ 0; */ with c of type char: it would be
more efficient and fully sound to use machine-number based code for evaluating
the assertion since c + 1 cannot overflow if computed over type int (the values
of c vary from −32 to 31, thus the values of c + 1 are included in [−128; 127]).

Based on (over-approximated) intervals of possible values of integer-valued
expressions, our type system decides whether the code generator can soundly
rely on machine-number based code. On our small examples, it infers that the
type of x + 1 should be Z because its possible values vary from −128 to 128,
so does not fit in any existing type of our toy architecture, while the type of
c + 1 can be int because its possible values vary from −32 to 32. The domains
of values are computed thanks to a simple interval analysis. In most cases, using
a machine-number based code instead of arbitrary-precision code is possible.

Our type system also supports rational arithmetics. Yet, our type system
allows to optimize only comparisons between floating-point variables (e.g., f ≤ g)
but no rational operations. Indeed, an interval-based reasoning does not allow
optimizing rational arithmetics (e.g., f +1.) by floating-point operations without
being unsound (as any non-singular interval of rationals contains an infinite
number of values non-representable as floating-point numbers). It explains why
the rational extension of our type system does not rely on interval arithmetics: it
directly infers either a floating-point type for variables and comparisons between
them, or type Q for any other rational number or operator.
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Language Type System. We assume the existence of a type system at the level
of the formal specification language: Σ(t) denotes the type of a term t and the
primitive isinteger(t) (resp., isfloat(t)) is true if and only if Σ(t) is a subtype
of Z (resp., a floating-point type). The relation �τ is the subtyping relation
(expressing that all values of one type are also values of the other). On our
illustrative examples, Σ(x) = int and Σ(c) = char because x (resp. c) is an int
(resp. a char), while Σ(x+1) = Σ(c+1) = Z since any logical integer operation
relies on an unbounded semantics. Furthermore, char �τ int �τ Z.

Integer Intervals. We consider (unbounded) integer intervals with partial
order �I . Let ∅ be the empty interval, T(I) be the smallest C integral type
containing interval I (e.g., int if I = [18; 42] since I � [−32; 31]), or Z other-
wise, and I(t) be an interval that contains all the possible values of the term t.
On our illustrative examples, I(x + 1) = [−128; 128] and I(c + 1) = [−32; 32],
thus T(x + 1) = Z and T(c + 1) = int. In practice, E-ACSL relies on a simple
syntactic type-based inference system to compute I(t) [17].

Kinds. Kinds extend integer intervals to floating-point and rational numbers.
They are required since integer arithmetics and rational arithmetics should
remain separated: as already explained, integer type inference relies on interval
arithmetics, while it is not the case for rationals. Kinds define a lattice struc-
ture. They are the core information used by our type system. More formally, let
(K,�) be the lattice of kinds defined as follows:

K ::= Z I an integer interval I

| F γ a floating-point type γ

| Q the set of rationals Q

Z I1 � Z I2 ⇐⇒ I1 �I I2

F γ1 � F γ2 ⇐⇒ γ1 �τ γ2

Z I � F γ ⇐⇒ T(I) �τ γ

K � (for all K K).∈

The kind Z ∅ (resp., Q) is the minimum (resp., maximum) element of the
lattice. Let � (resp., �) denote the union (resp., intersection) over kinds induced
by their lattice structure. The kind of a term t, denoted κ(t), and the type of a
kind k, denoted θ(k), are defined as follows:

κ(t) = Z I(t) if isinteger(t)
κ(t) = F Σ(t) if isfloat(t)
κ(t) = Q if ¬ isfloat(t)

θ(Z I) = T(I)
θ(F τ) = τ

θ(Q) = Q.

While we will use an integer interval I for soundly representing a range of
machine-integer values as soon as T(I) is not Z, it would be unsound to use a
non-singular rational interval R to do the same for a range of floating-point values
since R contains (an infinite number of) rationals that are not representable as
floating-point values. The operator κ naturally extends from terms to types. The
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Fig. 4. Type system inferring the types of terms and predicates for the generated code.

operator θ converts a kind to a type. For integers, it means converting intervals
to types, while, for rationals, it means choosing between a floating-point types
and rationals. On our illustrative examples, one gets:

θ(κ(x + 1)) = θ(Z [−128; 128]) = Z

θ(κ(c + 1)) = θ(Z [−32; 32]) = int
θ(κ(f + 1.)) = θ(Q) = Q.

Type System. Figure 4 presents the type system. An earlier version limited to
integers has already been published in French [17]. A type judgment, written
Γ 	 t : τ1 ←↩ τ2 for terms (resp., Γ 	p p : τ1 ←↩ τ2 for predicates), means
“in the typing environment Γ , the C expression generated for t (resp., p) may
soundly have type τ1, but, in the case of an operator (resp., a comparison), it
must be computed over type τ2”. The type τ2 is omitted when irrelevant (e.g. for
constants). Actually, it may only differ from τ1 for comparisons and decreasing
arithmetic operators (the division “/” in our formal specification language).
Predicates return an int. For instance, assuming two variables x and y of type
char and int respectively, the term x/(y + 1) requires GMP code because y + 1
does not fit into any C type of our toy architecture. However, its result fits into
an int, so it may soundly be compared to 42 with the usual C equality. Therefore,
its type is int ←↩ Z. Figure 5 details the derivation tree of x/(y + 1) ≡ 42 and
f − 0.1 ≤ g (with both f and g of type float).

A constant is evaluated within the smallest possible type with respect to its
value (rule [Cst]), but this type is actually never more precise than int (e.g.,
never char). This optimization avoids superfluous casts in the generated code,
because of the C99 promotion rule [18, §6.3.1.1] that states (among others) that
any expression more precise than int is automatically promoted to int when used
in arithmetic operands. A left-value keeps its C type ([Lv]), while a logic binder
takes it from the typing context ([Bind]). A cast (τ)t uses the interval inference
system to downcast the resulting type of t to a possibly more precise type τ ′

(e.g. char for both (int)4 and (char)42, cf. rule [Cast]). As usual with explicit
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Fig. 5. Derivation trees for predicates x/(y + 1) ≡ 42 (top), f − 0.1 ≤ g (middle) and
∀ int x; 0 ≤ x < 4, 2 × x ≤ 6 (bottom). The unlabeled rules are axioms or [Sub].

coercions, it is up to the user to enforce safety. E-ACSL is also able to verify this
safety property but that is outside the scope of this paper. The typing rule [Op]
for an operator computes the kind of its operands and its result, merges them to
get the most precise interval containing all of their possible values, and converts
the result into the corresponding C type. The last two rules for terms are coercion
rules. Rule [Sub] is a standard subsumption rule [19] (e.g., stating that any term
of type char may have type int as well), while rule [↓] soundly downcasts a term
to a smaller type than its own type if its inferred kind fits in. For instance, the
term x/(y+1) of Fig. 5 has type Z ←↩ Z after applying rule [Op], but since any
possible result of the division fits into an int (i.e., θ(κ(x/(y + 1))) �τ int), it
may soundly be coerced to this type. Yet its operands are still computed over Z.
Typing rules [Rel] and [Neg] for relations are straightforward. Rule [Cmd] for
comparisons is similar to rule [Op], but the result is necessarily an int (actually
either 0 or 1). A let-binding extends the typing context when evaluating the
predicate ([Let]). A quantifier does the same ([Quantif]). In this latter case,
the type associated to x is the smallest possible type with respect to its declared
type and the one of its bounds. For instance, the inferred type of x is char for
both ∀ char x; − 3 ≤ x < 4, 2 × x ≤ 6 and ∀ int x; 0 ≤ x < 4, 2 × x ≤ 6
because x fits in [0; 4] in each case. Figure 5 shows the derivation for the latter
formula. As for casts, it is up to the user to enforce safety of the type declaration,
but this property may be verified independently.

Code Generation. Generating code from the information computed by the type
system is quite straightforward. Yet we may notice that the inference system is
not an algorithm since several rules can be applied for a given term because of the
coercion rules. A good implementation strategy consists in applying these coer-
cions rules only when no other rules apply. This way, a cast must be introduced
in the generated code if and only if a coercion rule is applied. Thus, this strategy
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introduces a minimal number of casts in the generated code. For instance, the
code generated for the assertion /*@ assert x/(y + 1) ≡ 42 ∧ f − 0.1 ≤ g; */
with the first operand of ≡ of type int ←↩ Z, and f and g of type double would
be as follows (the comments are manually added for readibility).
1 /* compute x/(y+1) with GMP intege rs */

2 mpz_t _x , _y , _cst_1 , _add , _div; int _div2 , _and;

3 mpz_init_set_si(_x , x); mpz_init_set_si(_y , y); mpz_init_set_si(_cst_1 , 1);

4 mpz_init(_add); mpz_add(_add , _y , _cst_1);

5 mpz_init(_div); mpz_tdiv_q(_div , _x, _add);

6 /* soundly downcast the result of the division from GMP to int;

7 it corresponds to the application of rule [↓] in Fig 5. */

8 _div2 = mpz_get_si(_div);

9 if (_div2 == 42) {

10 /* compute f-0.1 ≤ g with GMP rationals */

11 mpq_t _f , _cst , _g , _sub; int _le;

12 mpq_init(_cst); mpq_set_str(_cst ,"01/10" ,10);

13 mpq_init(_f); mpq_set_d(_f, f);

14 mpq_init(_sub); mpq_sub(_sub , _f , _cst);

15 mpq_init(_g); mpq_set_d(_g, g);

16 /* getting the result of the predicate as an int */

17 _le = mpq_cmp(_sub , _g);

18 _and = _le ≤ 0;

19 /* de -allocate the allocated GMP variables for rationals */

20 mpq_clear(_cst); mpq_clear(_f); mpq_clear(_sub); mpq_clear(_g);

21 } else

22 _and = 0;

23 /* runtime check the conjunction */

24 assert(_and);

25 /* de-allocate the allocated GMP variables for intege rs */

26 mpz_clear(_x); mpz_clear(_y); mpz_clear(_cst_1); mpz_clear(_add);

27 mpz_clear(_div);

It is worth noting that, at line 9, the code uses the C equality “==” to compare
the result of the division to 42 thanks to our type system. The rational opera-
tions (lines 10–20) cannot be optimized because of the rational subtraction that
cannot be soundly computed in any floating-point type, as we explained above.
If the comparison were f ≤ g, then the generated code would use a floating-
point comparison. The effect of the type system is even clearer for the assertion
/*@ assert c + 1 ≡ 0; */ in which the term c + 1 has type int: the generated
code is as simple as the C assertion assert(c+1 == 0);

5 Experiments

We evaluate the benefits of the optimized code generation on several simple
examples (cf. Fig. 6). The first one is a simple computational program similar
to Fig. 1. It computes, given daily prices of a merchandise, its average price
(as a floating-point value) over a year. The considered property states that the
returned average has a maximal error ε with respect to the exact average. The
other four examples are simple C programs with ACSL annotations involving
integer numbers: three programs manipulating an array (binary search, search
for a maximal element, search for repetitions), and a program dealing with a
matrix (checking if a matrix is symmetric).

Since these examples are rather simple and their execution is very fast, we
perform N runs (for various values of parameter N) of the computational part
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N = 100 N = 1, 000 N = 10, 000 N = 100, 000 N = 1, 000, 000

average
All-GMP 0.008s 0.070s 0.719s 7.167s 73.817s
Optimized 0.001s 0.006s 0.053s 0.567s 5.428s
Speedup 88% 91% 93% 92% 93%

binary search
All-GMP 0.041s 0.413s 4.625s — —
Optimized 0.001s 0.005s 0.045s 0.474s 4.797s
Speedup 98% 99% 99%

max seq
All-GMP 0.155s 1.620s 15.413s — —
Optimized 0.003s 0.028s 0.278s 2.815s 29.793s
Speedup 98% 98% 98%

pair
All-GMP 0.142s 1.524s 15.813s — —
Optimized 0.003s 0.026s 0.273s 2.603s 26.437s
Speedup 98% 98% 98%

symmetry
All-GMP 0.073s 0.758s — — —
Optimized 0.003s 0.021s 0.211s 2.106s 22.293s
Speedup 96% 97%

Fig. 6. Execution time of the intrumented examples with and without optimization,
where “—” indicates that the execution exceeded the heap allocation limit of 128MB
and thus the speedup cannot be computed.

of each example, including annotations to be evaluated. This is done for two
reasons. First, a unique execution is always instantaneous and thus the speedup
computed for it is meaningless. Second, performing several iterations of the com-
putational part simulates more complex examples where the evaluation of anno-
tations represents a more significant part of the whole execution.

Figure 6 shows the execution time of the non-optimized (all-GMP) and opti-
mized versions for different values of parameter N . It shows that the optimized
code brings a speedup between 88% and 99% by replacing GMP code by machine-
number based code. Moreover, some of the executions of the non-optimized ver-
sion ran out-of-memory because of numerous heap allocations performed by the
GMP code. Thanks to our optimization, this problem did not happen on the opti-
mized version, where no GMP calls were required. Finally, the results of both
versions were identical, giving confidence in the soundness of the optimization.
Regarding the average example, it was executed with ε = 0.001. Our experi-
ments also demonstrate that if the result type is float, the specified precision
property is true for ε = 0.001, but fails for ε = 0.0001. If the computation result
type is double, a much greater precision is achieved.

In general, the benefit of the proposed optimization for other programs can
depend on the considered annotations and the amount of computation necessary
to evaluate them with respect to the rest of the code. An evaluation of this
optimization on real-life programs is left as future work, even if this optimization
was already turned-on when benchmarking [20] or experimenting [21] E-ACSL.

These experiments also suggest that runtime assertion checking with the E-
ACSL tool can be a very useful and easily performed step to empirically identify
numerical properties (in particular, with respect to the exact result in mathe-
matical numbers specified in ACSL) of a given code before attempting to perform
their formal proof.
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6 Conclusion and Future Work

We presented a type system parameterized by an interval analysis in order to rely
on machine-number based code as often as possible when checking at runtime
properties over integer and rational numbers. It is implemented in the E-ACSL
tool and has been adapted (for integers only) by Adacore to Spark2014. To the
best of our knowledge, E-ACSL is the only runtime verification tool that is able
to verify numerical properties over rational numbers. Our initial experiments
confirm the soundness and the efficiency of our approach. More generally, it
has already been used on large use cases a number of times without detecting
soundness issues. Yet, evaluating the precise efficiency gain on larger use cases,
as well as proving the soundness of the type system, are left as future work.
Future work also includes more efficient generated code when dealing with Q,
and a richer support when dealing with numbers in R.

Code Generation. When dealing with rationals, arbitrary-precision code can be
further reduced by using floating-point arithmetics when appropriate. Indeed,
floating-point computations are exact under precisely defined circumstances.
First, any multiplication and division by an integer power of two is exact: it
simply corresponds to a change of the exponent in the binary representation of
the floating-point number. Then, the Hauser theorem states that any floating-
point addition is exact if both operands are small enough, while the Sterbenz
lemma states that any floating-point subtraction is exact if the second operand is
small enough [22, Theorem 3 and Lemma 2]. Several other floating-point number
properties can be used in a similar way.

Expressiveness. The Richardson theorem states that equality over rational
expressions extended with the sine function is undecidable [23]. Hence formal
specifications that use the sin function, and any other trigonometric function
by extension, cannot always be translated into terminating code. More generally,
exact runtime assertion checking of properties over real numbers is not possible
in finite time. To circumvent this issue, we could rely on sound approximations
and partial verdicts (i.e., the tool would sometimes answer “I don’t know”).
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References

1. Clarke, L.A., Rosenblum, D.S.: A historical perspective on runtime assertion check-
ing in software development. SIGSOFT Softw. Eng. Notes 31(3), 25–37 (2006)

2. Kosmatov, N., Signoles, J.: A lesson on runtime assertion checking with frama-C.
In: Legay, A., Bensalem, S. (eds.) RV 2013. LNCS, vol. 8174, pp. 386–399. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-40787-1 29

https://doi.org/10.1007/978-3-642-40787-1_29


Efficient Runtime Assertion Checking for Properties 321

3. Chalin, P.: JML support for primitive arbitrary precision numeric types: definition
and semantics. J. Object Technol. 3(6), 57–79 (2004)

4. Chalin, P.: Improving JML: for a safer and more effective language. In: Araki, K.,
Gnesi, S., Mandrioli, D. (eds.) FME 2003. LNCS, vol. 2805, pp. 440–461. Springer,
Heidelberg (2003). https://doi.org/10.1007/978-3-540-45236-2 25

5. Delahaye, M., Kosmatov, N., Signoles, J.: Common specification language for
static and dynamic analysis of C programs. In: Symposium on Applied Computing
(SAC), March 2013

6. Meyer, B.: Eiffel: The Language. Prentice-Hall, Upper Saddle River (1992)
7. Barnett, M., Leino, K.R.M., Schulte, W.: The spec# programming system: an

overview. In: Barthe, G., Burdy, L., Huisman, M., Lanet, J.-L., Muntean, T. (eds.)
CASSIS 2004. LNCS, vol. 3362, pp. 49–69. Springer, Heidelberg (2005). https://
doi.org/10.1007/978-3-540-30569-9 3

8. Leavens, G.T., Baker, A.L., Ruby, C.: JML: a notation for detailed design. In:
Kilov, H., Rumpe, B., Simmonds, I. (eds.) Behavioral Specifications of Businesses
and Systems. SECS, vol. 523, pp. 175–188. Springer, Boston (1999). https://doi.
org/10.1007/978-1-4615-5229-1 12
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Abstract. BISM (Bytecode-level Instrumentation for Software Moni-
toring) is a lightweight Java bytecode instrumentation tool which fea-
tures an expressive high-level control-flow-aware instrumentation lan-
guage. The language follows the aspect-oriented programming paradigm
by adopting the joinpoint model, advice inlining, and separate instru-
mentation mechanisms. BISM provides joinpoints ranging from byte-
code instruction to method execution, access to comprehensive context
information, and instrumentation methods. BISM runs in two modes:
build-time and load-time. We demonstrate BISM effectiveness using two
experiments: a security scenario and a general runtime verification case.
The results show that BISM instrumentation incurs low runtime and
memory overheads.

Keywords: Instrumentation · Runtime verification · Monitoring ·
Java bytecode · Aspect-oriented programming · Control flow · Static
and dynamic contexts

1 Introduction

Instrumentation is essential to the software monitoring workflow [2,9]. Instru-
mentation allows extracting information from a running software to abstract the
execution into a trace that is fed to a monitor. Depending on the information
needed by the monitor, the granularity level of the extracted information may
range from coarse (e.g., a function call) to fine (e.g., an assignment to a local
variable, a jump in the control flow).

Aspect-oriented programming (AOP) [13] is a popular and convenient
paradigm where instrumentation is a cross-cutting concern. For Java programs,
runtime verification tools [1,7] have for long relied on AspectJ [12], which is one
of the reference AOP implementations for Java. AspectJ provides a high-level
pointcut/advice model for convenient instrumentation. However, AspectJ does
not offer enough flexibility to perform some instrumentation tasks that require
to reach low-level code regions, such as bytecode instructions, local variables of
a method, and basic blocks in the control-flow graph (CFG).

Yet, there are several low-level Java bytecode manipulation frameworks such
as ASM [5] and BCEL [18]. However, instrumenting programs with such frame-
works is tedious and requires expertise on the bytecode. Other Java bytecode
c© Springer Nature Switzerland AG 2020
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instrumentation frameworks, from which DiSL [15] is the most remarkable,
enable flexible low-level instrumentation and, at the same time, provide a high-
level language. However, DiSL does not allow inserting bytecode instructions
directly but provides custom transformers where a developer needs to revert
to low-level bytecode manipulation frameworks. This makes various scenarios
tedious to implement in DiSL and often at the price of a considerable bytecode
overhead.

Contributions. In this paper, we introduce BISM (Bytecode-Level Instrumen-
tation for Software Monitoring), a lightweight Java bytecode instrumentation
tool that features an expressive high-level instrumentation language. The lan-
guage inspires from the AOP paradigm by adopting the joinpoint model, advice
inlining, and separate instrumentation mechanisms. In particular, BISM pro-
vides a separate Java class to specify instrumentation code, and offers a variety
of joinpoints ranging from bytecode instruction to basic block and method execu-
tion. BISM also provides access to a set of comprehensive joinpoint-related static
and dynamic contexts to retrieve some relevant information, and a set of instru-
mentation methods to be called at joinpoints to insert code, invoke methods,
and print information. BISM is control-flow aware. That is, it generates CFGs
for all methods and offers this information at joinpoints and context objects.
Moreover, BISM provides a variety of control-flow properties, such as capturing
conditional jump branches and retrieving successor and the predecessor basic
blocks. Such features provide support to future tools using a control-flow anal-
ysis, for instance, in the security domain, to detect control-flow attacks, such as
test inversions and arbitrary jumps.

We demonstrate BISM effectiveness using two complementary experiments.
The first experiment shows how BISM can be used to instrument a program
to detect test inversion attacks. For this purpose, we use BISM to instrument
AES (Advanced Encryption Standard). The second experiment demonstrates
a general runtime verification case where we use BISM to instrument seven
applications from the DaCapo benchmark [4] to verify the classical HasNext,
UnsafeIterator and SafeSyncMap properties. We compare the performance
of BISM, DiSL, and AspectJ in build-time and load-time instrumentation, using
three metrics: size, memory footprint, and execution time. In build-time instru-
mentation, the results show that the instrumented code produced by BISM is
smaller, incurs less overhead, and its execution incurs less memory footprint.
In load-time instrumentation, the load-time weaving and the execution of the
instrumented code are faster with BISM.

Paper Organization. Section 2 overviews the design goals and the features of
BISM. Section 3 introduces the language featured by BISM. Section 4 presents
the implementation of BISM. Section 5 reports on the case studies and a com-
parison between BISM, DiSL, and AspectJ. Section 6 discusses related work.
Section 7 draws conclusions.
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2 BISM Design and Features

BISM is implemented on top of ASM [5], with the following goals and features.
Instrumentation Mechanism. BISM language follows the AOP paradigm.
It provides a mechanism to write separate instrumentation classes. An instru-
mentation class specifies the instrumentation code to be inserted in the target
program at chosen joinpoints. BISM offers joinpoints that range from bytecode
instruction to basic block and method execution. It also offers several instru-
mentation methods and, additionally, accepts instrumentation code written in
the ASM syntax. The instrumentation code is eventually compiled by BISM into
bytecode instructions and inlined in the target program.

Access to Program Context. BISM offers access to complete static infor-
mation about instructions, basic blocks, methods, and classes. It also offers
dynamic context objects that provide access to values that will only be available
at runtime such as values of local variables, stack values, method arguments,
and results. Moreover, BISM allows accessing instance and static fields of these
objects. Furthermore, new local variables can be created within the scope of a
method to (for instance) pass values between joinpoints.

Control Flow Context. BISM generates the CFGs of target methods out-
of-the-box and offers this information within joinpoints and context objects. In
addition to basic block entry and exit joinpoints, BISM provides specific control-
flow related joinpoints such as OnTrueBranchEnter and OnFalseBranchEnter,
which capture conditional jump branches. Moreover, it provides a variety of
control-flow properties within the static context objects. For example, it is pos-
sible to traverse the CFG of a method to retrieve the successors and the pre-
decessors of basic blocks. Furthermore, BISM provides an optional feature to
display the CFGs of methods before and after instrumentation.

Compatibility with ASM. BISM uses ASM extensively and relays all its
generated class representations within the static context objects. Furthermore,
it allows for inserting raw bytecode instructions by using the ASM data types.
In this case, it is the responsibility of the user to write instrumentation code
free from compilation and runtime errors. If the user unintentionally inserts
faulty instructions, the code might break. The ability to insert ASM instructions
provides highly expressive instrumentation capabilities, especially when it comes
to inlining the monitor code into the target program.

Bytecode Coverage. BISM can run in two modes: build-time (as a standalone
application) with static instrumentation, and load-time with an agent (utilizing
java.lang .instrument) that intercepts all classes loaded by the JVM and
instruments before the linking phase. In build-time, BISM is capable of instru-
menting all the compiled classes and methods1. In load-time, BISM is capable
1 Excluding the native and abstract methods, as they do not have bytecode represen-

tation.



326 C. Soueidi et al.

of instrumenting additional classes, including classes from the Java class library
that are flagged as modifiable. The modifiable flag keeps certain core classes
outside the scope of BISM. Note, modifying such classes is rather needed in
dynamic program analysis (e.g., profiling, debugging).

3 BISM Language

We demonstrate the language in BISM, which allows developers to write trans-
formers (i.e.,instrumentation classes). The language provides joinpoints which
capture exact execution points, static and dynamic contexts which retrieve rele-
vant information at joinpoints, and instrumentation methods used to instrument
a target program.

Joinpoints. Joinpoints identify specific bytecode locations in the tar-
get program. BISM offers joinpoints that capture bytecode instruction
executions: BeforeInstruction and AfterInstruction, conditional jump
branches: OnTrueBranchEnter and OnFalseBranchEnter, executions of basic
blocks: OnBasicBlockEnter and OnBasicBlockExit, method executions:
OnMethodEnter and OnMethodExit, and method calls: BeforeMethodCall and
AfterMethodCall.

Static Context. Static context objects provide relevant static information at
joinpoints. These objects can be used to retrieve information about a byte-
code instruction, a method call, a basic block, a method, and a class. BISM
performs static analysis on target programs and provides additional control-
flow-related static information such as basic block successors and predeces-
sors. Listing 1.1 shows a transformer using joinpoints onBasicBlockEnter and
onBasicBlockExit to intercept all basic block executions. The static context
BasicBlock bb is used to get the block id, the method name, and the class
name. Here, the instrumentation method print inserts a print invocation in the
target program before and after every basic block execution.
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Dynamic Context. Dynamic Context objects provide access to dynamic
values that are possibly only known during execution. BISM gathers this
information from local variables and operand stack, then weaves the neces-
sary code to extract this information. In some cases (e.g., when accessing
stack values), BISM might instrument additional local variables to store them
for later use. We list the methods available in dynamic contexts: getThis,
getLocalVariable, getStackValue, getInstanceField and getStaticField,
and the values related to these methods: getMethodReceiver, getMethodArgs,
and getMethodResult. BISM also allows inserting and updating new local vari-
ables within the scope of a method. Listing 1.2 presents a transformer using
afterMethodCall joinpoint to capture the return of an Iterator created from
a List object, and retrieving dynamic data from the dynamic context object
MethodCallDynamicContext dc. The example also shows how to limit the scope
using an if-statement to a specific method. Note that BISM also provides a gen-
eral notion of scope that can be specified as an argument to match packages,
classes, and methods by names (using possibly wildcards).

Instrumentation Methods. A developer instruments the target program
using specified instrumentation methods. BISM provides print methods with
multiple options to invoke a print command. It also provides (i) invoke meth-
ods for static method invocation and (ii) insert methods for bytecode instruc-
tion insertion. These methods are compiled by BISM into bytecode instructions
and inlined at the exact joinpoint locations. Listing 1.1 shows the use of print
to print the constructed id of a basic block. Listing 1.2 shows how a method
invocation is instrumented after a method call.
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4 BISM Implementation

BISM is implemented in Java with about 4,000 LOC and 40 classes distributed in
separate modules [16]. It uses ASM for bytecode parsing, analysis, and weaving.
Figure 1 shows BISM internal workflow.

ASM
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 Bytecode
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CFG

Transformer 
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Instrumented
Program
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Generate 
Joinpoints &

Context Objects

Transformer 
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CFG
.htmlCFG
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Fig. 1. Instrumentation process in BISM.

(1) User Input. In build-time mode, BISM takes a target program bytecode
(.class or .jar) to be instrumented, and a transformer which specifies the instru-
mentation logic. In load-time mode, BISM only takes a transformer used to
instrument every class being loaded by the JVM. BISM provides several built-in
transformers that can be directly used. Moreover, users can specify a scope to
filter target packages, classes, or methods. %, and can enable storing CFGs into
html files.
(2) Parse Bytecode. BISM uses ASM to parse the bytecode and to generate
a tree object which contains all the class details, such as fields, methods, and
instructions.
(3) Build CFG. BISM constructs the CFGs for all methods in the target class.
If the specified transformer utilizes control-flow joinpoints (i.e., onTrueBranch
and onFalseBranch), BISM eliminates all critical edges from the CFGs to avoid
instrumentation errors. This is done by inserting empty basic blocks in the mid-
dle of critical edges. Note, BISM keeps copies of the original CFGs. Users can
optionally enable the visualizer to store CFGs in HTML files on the disk.
(4) Generate Joinpoints and Context Objects. BISM iterates over the tar-
get class to generate all joinpoints utilizing the created CFGs. At each joinpoint,
the relevant static and dynamic context objects are created.
(5) Transformer Weaving. BISM evaluates the used dynamic contexts based
on the joinpoint static information and weaves the bytecode needed to extract
concrete values from executions. It then weaves instrumentation methods by
compiling them into bytecode instructions that are woven into the target pro-
gram at the specified joinpoint.
(6) Output. The instrumented bytecode is then output back as a .class file in
build-time mode, or passed as raw bytes to the JVM in load-time mode. In case
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of instrumentation errors, e.g., due to adding manual ASM instructions, BISM
emits a weaving error. If the visualizer is enabled, instrumented CFGs are stored
in HTML files on the disk.

5 Evaluation

We compare BISM with DiSL and AspectJ using two complementary experi-
ments. To guarantee fairness, we switched off adding exception handlers around
instrumented code in DiSL. In what follows, we illustrate how we carried out
our experiments and the obtained results2.

5.1 Inline Monitor to Detect Test Inversions

We instrument an external AES (Advanced Encryption Standard) implementa-
tion in build-time mode to detect test inversions. The instrumentation deploys
inline monitors that duplicate all conditional jumps in their successor blocks to
report test inversions. We implement the instrumentation as follows:

– In BISM, we use built-in features to duplicate conditional jumps utilizing
insert instrumentation method to add raw bytecode instructions. In par-
ticular, we use the beforeInstruction joinpoint to capture all conditional
jumps. We extract the opcode from the static context object Instruction
and we use the instrumentation method insert to duplicate the needed
stack values. We then use the control-flow joinpoints OnTrueBranchEnter
and onFalseBranchEnter to capture the blocks executing after the jump.
Finally, at the beginning of these blocks, we utilize insert to duplicate con-
ditional jumps.

– In DiSL, we implement a custom InstructionStaticContext object to
retrieve information from conditional jump instructions such as the index of a
jump target and instruction opcode. Note, we use multiple BytecodeMarker
snippets to capture all conditional jumps. To retrieve stack values, we use
the dynamic context object. Finally, on successor blocks, we map opcodes to
Java syntax to re-evaluate conditional jumps using switch statements.

We use AES to encrypt and then decrypt input files of different sizes, line by
line. The bytecode size of the original AES class is 9 KB. After instrumentation, it
is 10 KB (+11.11%) for BISM, and 128 KB (+1,322%) for DiSL. The significant
overhead in DiSL is due to the inability to inline the monitor in bytecode and
having to instrument it in Java. We note that it is not straightforward in DiSL
to extract control-flow information in Markers, whereas BISM provides this out-
of-the-box. Figure 2 reports runtime and memory footprint with respect to file
size (KB)3. For each input file, we performed 100 measurements and reported

2 More details about the experiments are at https://gitlab.inria.fr/monitoring/bism-
experiments.

3 Note, AspectJ is not suited for inline monitoring, and that is why it is not included.

https://gitlab.inria.fr/monitoring/bism-experiments
https://gitlab.inria.fr/monitoring/bism-experiments
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Fig. 2. Runtime and memory footprint by AES on files of different sizes.

the mean and the standard deviation. The latter is very low. We use Java JDK
8u181 with 4 GB maximum heap size on a standard PC (Intel Core i7 2.2 GHz,
16 GB RAM) running macOS Catalina v10.15.5 64-bit. The results show that
BISM incurs less overhead than DiSL for all file sizes. Table 1 reports the number
of events (corresponding to conditional jumps).

Table 1. Number of events according to the file input to AES (in millions).

Input File (KB) 20 21 22 23 24 25 26 27 28

Events (M) 0.92 1.82 3.65 7.34 14.94 29.53 58.50 117.24 233.10

5.2 DaCapo Benchmarks

Experimental Setup. We compare BISM, DiSL, and AspectJ in a general
runtime verification scenario4. We instrument the benchmarks in the DaCapo
suite [4] (dacapo-9.12-bach), to monitor the classical HasNext, UnSafeIter-
ator, and SafeSyncMap properties5. We only target the packages specific to
each benchmark and do not limit our scope to java.util types; instead, we
match freely by type and method name. We implement an external monitor
library with stub methods that only count the number of received events.

We implement the instrumentation as follows:

– In BISM, we use the static context provided at method call joinpoints to filter
methods by their names and owners. To access the method calls’ receivers and
results, we utilize the methods available in dynamic contexts.

4 We use the latest DiSL version from https://gitlab.ow2.org/disl/disl and AspectJ
Weaver 1.9.4.

5 HasNext property specifies that a program should always call hasNext() before
calling next() on an iterator. UnSafeIterator property specifies that a collec-
tion should not be updated when an iterator associated with it is being used.
SafeSyncMap property specifies that a map should not be updated when an iter-
ator associated with it is being used.

https://gitlab.ow2.org/disl/disl
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– In DiSL, we implement custom Markers to capture the needed method calls
and use argument processors and dynamic context objects to access dynamic
values.

– In AspectJ, we use the call pointcut, type pattern matching and joinpoint
static information to capture method calls and write custom advices that
invoke the monitor.

We use Java JDK 8u251 with 2 GB maximum heap size on an Intel Core i9-
9980HK (2.4 GHz. 8 GB RAM) running Ubuntu 20.04 LTS 64-bit. All our mea-
surements correspond to the mean of 100 runs on each benchmark, calculating
the standard deviation. We run our experiment in two modes: load-time and
build-time. The first mode is to compare the performance of the tools in load-
time instrumentation and the second mode to examine the performance of the
generated instrumentation bytecode.

0

2500

5000

7500

avrora batik fop h2 pmd sunflow xalan

Original DiSL AspectJ BISM

7500

Fig. 3. Load-time instrumentation runtime (ms).

Load-time Evaluation. Figure 3 reports the execution time in ms for the
benchmarks. We do not measure the used memory since DiSL performs instru-
mentation on a separate JVM process. BISM shows better performance over
DiSL and AspectJ in all benchmarks. DiSL shows better performance than
AspectJ except for the pmd benchmark. For the pmd benchmark, this is mainly
due to the fewer events emitted by AspectJ (see Table 2). We notice that AspectJ
captures fewer events in benchmarks batik, fop, pmd, and sunflow. This is due to
its inability to instrument synthetic bridge methods generated by the compiler
after type erasure in generic types.

Build-time Evaluation. We replace the original classes in the benchmarks
with statically instrumented classes from each tool. Figure 4 reports the execu-
tion time and memory footprint of the benchmarks. For memory, we measure
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Fig. 4. Build-time execution.

the used heap and non-heap memory after a forced garbage collection at the end
of each run6. BISM shows less overhead in all benchmarks in execution time,
except for batik where AspectJ emits fewer events. BISM also shows less over-
head in used-memory footprint, except for sunflow, where AspectJ emits much
fewer events.

Table 2 compares the instrumented bytecode and the number of events emit-
ted after running the code. We report the number of classes in scope (Scope)
and the instrumented (Instr.), we measure the overhead percentage (Ovh.) on
the bytecode size for each tool. We also report the number of generated events.
BISM and DiSL emit the same number of events, while Aspect (AJ) produces
fewer events due to the reasons mentioned above. The results show that BISM
incurs less bytecode size overhead for all benchmarks. We notice that even with
exception-handlers turned off, DiSL still wraps a targeted region with try-finally
blocks when the @After annotation is used. This guarantees that an event is
emitted after a method call, even if an exception is thrown.

Table 2. Generated bytecode size and events emitted.

Scope Instr. Ref BISM DiSL AspectJ Events (M)
KB KB Ovh.% KB Ovh.% KB Ovh.% # AJ

avrora 1,550 35 257 264 2.72 270 5.06 345 34.24 2.5 2.5
batik 2,689 136 1,544 1,572 1.81 1,588 2.85 1,692 9.59 0.5 0.4
fop 1,336 172 1,784 1,808 1.35 1,876 5.16 2,267 27.07 1.6 1.5
h2 472 61 694 704 1.44 720 3.75 956 37.75 28 28

pmd 721 90 756 774 2.38 794 5.03 980 29.63 6.6 6.3
sunflow 221 8 69 71 2.90 74 7.25 85 23.19 3.9 2.6
xalan 661 9 100 101 1.00 103 3.00 116 16.00 1 1

6 The DaCapo callback mechanism captures the end of each run.
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6 Related Work and Discussion

Low-level code instrumentation is widely used for monitoring software and imple-
menting dynamic analysis tools. To this end, several tools and frameworks, in
different programming languages, have been proposed and adopted. We focus
our comparison on Java-related instrumentation tools. Yet, there are several
tools to instrument programs in different programing languages. For instance, to
instrument C/C++ programs AspectC/C++ [6,17] (high-level) and LLVM [14]
(low-level) are widely used.

ASM [5] is a bytecode manipulation framework utilized by several tools,
including BISM. ASM offers two APIs that can be used interchangeably to parse,
load, and modify classes. However, to use ASM, a developer has to deal with the
low-level details of bytecode instructions and the JVM. BISM offers extended
ASM compatibility and provides abstraction with its aspect-oriented paradigm.

DiSL is a bytecode-level instrumentation framework designed for dynamic
program analysis [15]. DiSL adopts an aspect-oriented paradigm. It provides an
extensible joinpoint model and access to static and dynamic context informa-
tion. Even though BISM provides a fixed set of joinpoints and static context
objects, it performs static analysis on target programs to offer out-of-the-box
additional and needed control-flow joinpoints with full static information. As
for dynamic context objects, both BISM and DiSL provide equal access. How-
ever, DiSL provides typed dynamic objects. Also, both are capable of inserting
synthetic local variables (restricted to primitive types in BISM). Both BISM
and DiSL require basic knowledge about bytecode semantics from their users.
In DiSL, writing custom markers and context objects also requires additional
ASM syntax knowledge. However, DiSL does not allow the insertion of arbitrary
bytecode instructions but provides a mechanism to write custom transformers
in ASM that runs before instrumentation. Whereas, BISM allows to directly
insert bytecode instructions, as seen in Sect. 5.1. Such a mechanism is essential
in many runtime verification scenarios. All in all, DiSL provides more features
(mostly targeted for writing dynamic analysis tools) and enables dynamic dis-
patch amongst multiple instrumentations and analysis without interference [3],
while BISM is more lightweight as shown by our evaluation.

AspectJ [12] is the standard aspect-oriented programming [13] framework
highly adopted for instrumenting Java applications. It provides a high-level lan-
guage used in several domains like monitoring, debugging, and logging. AspectJ
cannot capture bytecode instructions and basic blocks directly, forcing develop-
ers to insert additional code (like method calls) to the source program. With
BISM, developers can target single bytecode instructions and basic block levels,
and also have access to local variables and stack values. Furthermore, AspectJ
introduces a significant instrumentation overhead, as seen in Sect. 5.2, and pro-
vides less control on where instrumentation snippets get inlined. In BISM, the
instrumentation methods are weaved with minimal bytecode instructions and
are always inlined next to the targeted regions.
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7 Conclusions

BISM is an effective tool for low-level and control-flow aware instrumentation,
complementary to DiSL, which is better suited for dynamic analysis (e.g., pro-
filing). Our first evaluation (Sect. 5.1) let us observe a significant advantage of
BISM over DiSL due to BISM’s ability to insert bytecode instructions directly,
hence optimizing the instrumentation. Our second evaluation (Sect. 5.2) con-
firms that BISM is a lightweight tool that can be used generally and efficiently
in runtime verification. We notice a similar bytecode performance between BISM
and DiSL after static instrumentation since, in both tools, the instrumentation
(monitor invocation) is always inlined. On the other hand, AspectJ instruments
calls to advice methods that, in turn, invoke the monitors. In load-time instru-
mentation, the gap between BISM and DiSL is smaller in benchmarks with a
large number of classes in scope and a small number of instrumented classes.
This stems from the fact that BISM performs a full analysis of the classes in
scope to generate its static context. While DiSL generates static context only
after marking the needed regions, which is more efficient.

Overall, we believe that BISM can be used as an alternative to AspectJ for
lightweight and expressive runtime verification and even runtime enforcement
(cf. [8,10,11]) thanks to its ability to insert bytecode instructions.
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7. Falcone, Y., Krstić, S., Reger, G., Traytel, D.: A taxonomy for classifying run-
time verification tools. In: Colombo, C., Leucker, M. (eds.) RV 2018. LNCS, vol.
11237, pp. 241–262. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-
03769-7 14

8. Falcone, Y.: You should better enforce than verify. In: Barringer, H., Falcone, Y.,
Finkbeiner, B., Havelund, K., Lee, I., Pace, G., Roşu, G., Sokolsky, O., Tillmann, N.
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Abstract. Signal Temporal Logic monitoring over numerical simulation
traces has emerged as an effective approach to approximate verification
of continuous and hybrid systems. In this paper we explore an exact
verification procedure for STL properties based on monitoring verified
traces in the form of Taylor model flowpipes as produced by the Flow*
verified integrator. We explore how tight integration with Flow*’s sym-
bolic flowpipe representation can lead to more precise and more efficient
monitoring. We then show how the performance of monitoring can be
increased substantially by introducing masks, a property-directed refine-
ment of our method which restricts flowpipe monitoring to the time
regions relevant to the overall truth of a complex proposition. Finally,
we apply our implementation of these methods to verifying properties of
a challenging continuous system, evaluating the impact of each aspect of
our procedure on monitoring performance.

1 Introduction

Signal Temporal Logic (STL) [35] is an established and effective framework for
describing and monitoring temporal properties of real-valued signals in contin-
uous time, enabling verification of both continuous and hybrid systems. Much
work on STL has focused on monitoring signals derived from numerical simula-
tion traces. This is a powerful technique, but the approximate nature of such
traces can lead to erroneous signal values at some timepoints whilst the sig-
nals do not account for uncertainties in the underlying model. Recently Ishii,
Yonezaki and Goldsztejn [27] have explored combining signal-based monitoring
techniques with interval analysis to perform exact verification of STL properties
over traces produced via verified integration.

In this paper we propose a new verified STL monitoring algorithm based on
preconditioned Taylor model flowpipes [34] generated with the Flow* verified
integrator [13]. Our algorithm starts from such a Flow* flowpipe, which tracks
our uncertain knowledge of the system state at each point in time (whether due
to numerical errors or uncertain model parameters), and produces a three-valued
signal reflecting our resulting uncertain knowledge in the truth value of a STL
property over time. One of Flow*’s key features is its sophisticated symbolic
flowpipe representation, which allows it to handle a wide range of non-linear
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continuous and hybrid systems [15], but poses challenges to effectively monitor-
ing properties over these flowpipes, since over-approximating the value of the
flowpipe at a given timepoint can be expensive and requires a careful tradeoff
between accuracy and efficiency. We tackle these challenges by tightly integrating
our monitoring strategy for atomic propositions with Flow*’s flowpipe represen-
tation, in contrast to most previous verified monitoring approaches which treat
the flowpipe as a closed box by evaluating it as an interval function. This allows
us to vary our evaluation strategy on demand at each timepoint, as required
to verify a given atomic proposition. We are thus able to maximize precision
for complex atomic propositions by utilizing Taylor model arithmetic to avoid
the dependency problem [9], or fall back to simpler interval evaluation strategies
when this suffices to determine the value of the signal at the current timepoint.

We further refine our method by introducing masks, a special type of signal
representing the region of time for which each proposition of a STL formula is
required by the overall monitoring process. We present methods for computing
masks in a top-down manner, complementing the normal bottom-up signal mon-
itoring process. We also see how to efficiently monitor each atomic proposition
under a given mask. This allows us to handle the monitoring of each atomic
proposition as a single-pass offline verification problem with a mask providing
a condensed view of the regions of interest; we are hence able to utilize Tay-
lor model methods to refine the signal in the most crucial time regions whilst
avoiding unnecessary work elsewhere. Altogether, this gives a property-directed
algorithm for efficient and precise STL monitoring over Flow* flowpipes.

The structure of this paper is as follows. In Sect. 1.1 we review related work.
Section 2 covers necessary background information regarding interval arithmetic,
Taylor Models, Flow*, and STL, and establishes our notation. In Sect. 3 we
introduce our verified monitoring algorithm by defining three-valued signals and
our method of monitoring atomic propositions over Flow* flowpipes. In Sect. 4
we present masks and show how they may be used to perform property-directed
monitoring. In Sect. 5 we evaluate the benefits of each part of our method for
monitoring STL properties in a complex continuous system. Finally, in Sect. 6
we present our conclusions and discusses future directions.

1.1 Related Work

The most closely related work is the verified STL monitoring algorithm of
Ishii et al. [25–27]. We build upon their approach of monitoring atomic proposi-
tions using interval root finding to derive verified signals; however, whilst their
method treats the result of verified integration as a generic interval function, we
work directly with the symbolic Taylor model flowpipes produced by Flow*. Our
formulation of verified signals is also quite different, representing signals using
three-valued logic rather than inner and outer interval approximations. Other
works have looked at three-valued extensions of STL [5,32], but have not applied
this in the context of exact, interval-based, formal verification of continuous sys-
tems. Three-valued logic has also been applied to model checking Linear Tem-
poral Logic (LTL) properties over discrete systems with partially known state
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spaces [11]. Fisman and Kugler [23] also investigated a more general semantics
for LTL and STL over a number of different forms of incomplete traces.

A variety of different approaches have been explored for formal verification of
temporal logics over hybrid and continuous systems. Early methods include [2]
which initially focused on linear systems and the temporal logic TCTL. Piazza
et al. [40] developed methods for temporal logic verification of semi-algebraic
hybrid systems based on quantifier elimination. Bresolin [10] developed a method
for encoding LTL properties of hybrid systems as hybrid automata reachability
problems, extending the common automata theoretic approach [42] to temporal
logic verification, allowing existing reachability tools to be applied to LTL model
checking. Cimatti et al. [16] presented another approach to reducing LTL verifi-
cation on hybrid systems to reachability analysis. The dynamic temporal logic
dTL2 [28] takes a rather different approach, including both hybrid systems and
nested temporal modalities as part of the logic whilst providing a proof calculus.

A number of recent works have focused specifically on exact STL verifica-
tion using ideas from reachability analysis. Roehm et al. [41] provided an app-
roach to STL verification for hybrid automata based on checking (discrete) time
sampled versions of STL formulae against reachsets produced by reachability
analysis tools such as CORA [1]. Bae and Lee [4] introduced an approach to
STL verification which translates properties into constraint problems which can
be verified exactly using a SMT solver such as Z3 for linear systems [17] or
the ε-complete decision procedure dReal for non-linear systems [24,30]. Their
work is the closest to providing an automated property-directed model checking
procedure for STL. The constraint solving tools on which this work relies are
very different from verified integration tools such as Flow*, and currently which
approach performs better depends heavily on the system at hand [15,31]. These
exact verification-based methods also compete with approximate methods such
as [3,5,19,22] which attempt to verify properties by sampling trajectories and
may use quantitative measures of satisfaction [20,21] to give some assurance of
robustness.

Our method has some similarities with online monitoring in that in both cases
we have partial knowledge of the underlying signal, and wish to avoid unneces-
sary monitoring for atomic propositions. Deshmukh et al. [18] introduced an
interval quantitative semantics for STL in order to perform online monitoring
over partial traces. In their method partiality of traces is used to record the
fact that part of the trace has not yet been received whereas in our method it
reflects uncertainty in the underlying system. Both [18] and the earlier incremen-
tal marking procedure [36,38] attempt to avoid reevaluation of atomic proposi-
tions at timepoints unnecessary for the operators in which they occur similarly
to masks, however, we statically calculate a mask for the timepoints of interest
for a proposition, whilst online monitoring algorithms track (contiguous) time
horizons for propositions each time they are revisited. Masks also play a quite
different role to these optimizations, since masks are computed in a top-down
manner to allow specific parts of the verified monitoring process to be avoided
on a non-contiguous region throughout the time domain, whilst the role of these
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optimizations in online monitoring is to reduce memory usage by allowing time
points outside of a proposition’s time horizon to be forgotten or to allow early
termination of simulations.

2 Background

In this section we review some background material including interval arithmetic
and Taylor models, which will be central to our monitoring process.

2.1 Interval Arithmetic

We will work with interval arithmetic [37] over closed intervals and denote the
lower and upper endpoint of interval I =

[
lI , uI

]
�

{
x ∈ R

∣
∣ lI ≤ x ≤ uI

}

by lI , uI ∈ R ∪ {−∞,∞} respectively. Arithmetic operations can be computed
using interval endpoints so that

I + J �
{
x + y

∣
∣ x ∈ I, y ∈ J

}
=

[
lI + lJ , uI + uJ

]

and IJ and I − J are computed similarly. We can also define set operations
on intervals so I ∩ J =

[
max{lI , lJ},min{uI , uJ} ]

, and whilst the set-theoretic
union I ∪ J is not necessarily an interval, we may over-approximate and use
I ∪ J �

[
min{lI , lJ},max{uI , uJ} ]

in its place.
Given a real-valued function f : I → R over interval domain I, an interval

valued function F is an interval extension of f if f(x) ∈ F (X) for every point
x and interval X such that x ∈ X. Assuming f is differentiable and we have an
interval extension F ′ of its derivative f ′, we may apply the Extended Interval
Newton method, a generalisation of the Newton root finding method, which uses
interval evaluation of F to produce guaranteed interval enclosures of all roots of
f [27,37, Chapter 8.1]; we denote the set of such intervals as roots(F, F ′, I).

2.2 Taylor Model Arithmetic

When used in verified numerical computation, interval arithmetic often leads
to imprecise or inconclusive results due to the so called dependency problem in
which the functional dependencies within an expression are ignored by an inter-
val over-approximation, causing the approximation errors to be compounded
throughout the computation. This motivates the use of symbolic methods such
as Taylor models [9,33], which give a higher-order symbolic over-approximation
of a function based on a Taylor series expansion and an interval remainder bound.

Definition 1. Given a function f : D → R
n with domain D ⊆ R

m, a kth-order
Taylor model for f is a pair (p, I) of an n-dimensional vector p of kth-order
m-variable polynomials and an n-dimensional box I such that f(x) ∈ p(x) + I
for all x ∈ D.
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The precision of the approximation increases as the order of the Taylor model
increases and the size of the remainder decreases. Given two Taylor models (p, I)
and (q,J) enclosing functions f and g respectively, we can carry out various oper-
ations symbolically. Addition and subtraction can be carried out componentwise,
whilst other common operations including multiplication, division, and differen-
tiation can be carried out with a suitable expansion of the remainder intervals [9].
Finally, we may define symbolic composition (q,J)� (p, I), which symbolically
substitutes (p, I) into (q,J) and is guaranteed to enclose the composition g ◦ f
of the underlying functions [8].

2.3 Flow* Verified Integration

Consider a continuous system described by an n-dimensional collection of ODEs

dx
dt

= f(x, t) (1)

with initial conditions x(0) in some starting set S ⊆ R
n and with f being, for

example, Lipschitz continuous. Such a system has a unique solution xs for any
given initial condition s ∈ S [29]. The aim of verified integration is to find
an interval function F : [0, T ] → R

n enclosing every solution xs for s ∈ S
over a bounded time window [0, T ]. Flow* [13] uses verified integration based
on Taylor models [9] to compute such an enclosure covering the whole set S,
soundly accounting for the uncertainty in the initial point s as well as floating
point rounding errors. Flow* represents the solution as a flowpipe consisting of
a sequence of preconditioned Taylor models [34], that is, over each interval time
step [tk, tk+1] ⊆ [0, T ], the solution is enclosed in a composition of two Taylor
models (

p(k), I(k)
)

�
(
p(k)
post, I

(k)
post

)
�

(
p(k)
pre, I

(k)
pre

)
.

Whilst this representation is extremely powerful, allowing Flow* to handle non-
linear systems with complex continuous dynamics, it can be expensive to work
with the generated flowpipes: each pair of preconditioned Taylor models must be
composed symbolically (and then be placed into Horner form [12,39]) in order
to carry out accurate interval evaluation. This step is a prerequisite for apply-
ing most forms of analysis to the flowpipe including reach-avoidance checking,
plotting [13], and the verified monitoring algorithm [26].

2.4 Signal Temporal Logic

Signal Temporal Logic [35] specifies properties of continuous trajectories in
dynamical systems such as Eq. (1). Propositions are defined according to the
grammar,

ϕ,ψ ::= ρ | ϕ ∧ ψ | ϕ ∨ ψ | ¬ϕ | ϕ UI ψ,

where I is an interval and atomic propositions consist of inequalities ρ � p > 0
defined by polynomials p over the system’s variables.
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The semantics for the connectives are defined by specifying when a system
trajectory x satisfies a property ϕ at time t, written (x, t) |= ϕ. Then the
semantics for atomic propositions is given by (x, t) |= p > 0 iff p(x(t)) > 0
and the normal boolean connectives are extended to each time point so that,
for example, (x, t) |= ϕ ∧ ψ iff (x, t) |= ϕ and (x, t) |= ψ. The fundamental
temporal modality until is defined by (x, t) |= ϕ UI ψ iff there exists t′ ∈ t + I,
such that (x, t′) |= ψ and for all t′′ ∈ [t, t′], (x, t′′) |= ϕ. We can also define
the derived temporal modalities FI(ϕ) ≡ T UI ϕ (eventually) and GI(ϕ) ≡
¬FI(¬ϕ) (globally).

The problem of verified monitoring of a STL property ϕ at a time point
t ∈ [0, T ] is to determine whether or not (x, t) |= ϕ for every possible trajectory
x of a given system.

3 Three-Valued Monitoring over Flow* Flowpipes

In this section we present our basic verified monitoring algorithm for Signal
Temporal Logic. In Sect. 3.1 we introduce three-valued signals and specify rules
to combine these to derive signals for complex propositions. We then develop
an efficient algorithm for monitoring signals of atomic propositions based over
Flow* flowpipes in Sects. 3.2 and 3.3.

We have omitted some of the longer proofs which may be found in the
extended technical report version of this paper [44].

3.1 Three-Valued Signals

Our verified monitoring algorithm is based on three-valued signals:

Definition 2. A three-valued signal is a function s : [0,∞) → {T,U,F}.
These extend the boolean signals s : [0,∞) → {T,F} used in numerical STL
monitoring algorithms to track the validity of the answer at each time point
t ∈ [0,∞), to allow a third answer, Unknown (U), if we can neither verify
nor refute the proposition. We interpret these logic values under the rules of
Kleenian three-valued logic so F ∨ U ≡ U ≡ T ∧ U. A three-valued signal
is consistient with the (boolean) truth values of a proposition ϕ if it soundly
under-approximates the time-regions on which ϕ is True and False:

Definition 3. Given a proposition ϕ and a three-valued signal s, we say s is a
signal for ϕ (over the trajectories of a given system) if at every time t,

s(t) = T =⇒ (x, t) |= ϕ for every trajectory x

s(t) = F =⇒ (x, t) �|= ϕ for every trajectory x.

This definition allows a single proposition ϕ to be approximated by many differ-
ent signals to differing degrees of precision. Indeed, the signal which is unknown
everywhere is a valid (but uninformative) signal for every proposition.
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For concrete computation we work with those three-valued signals s that
can be represented by a finite set of nonempty disjoint intervals Ij = [aj , bj ]
and logical values sj ∈ {T,F}, with j ranging over some index set Γ. These
values determine signal s on those intervals, with U assumed elsewhere, and we
write s = (Ij , sj)j . For convenience we also admit some improper representa-
tions including empty intervals, values sj = U, and intervals with overlapping
endpoints (but consistent logical values); these may all be rewritten as proper
representations.

Given propositions ϕ and ψ with s = (Ij , sj)j a signal for ϕ and w = (Ij , wj)j

a signal for ψ, we have the following constructions:

¬ϕ has a signal given by ¬s = (Ij ,¬sj)j

ϕ ∧ ψ has a signal given by s ∧ w = (Ij , sj ∧ wj)j

F[a,b] ϕ has a signal given by F[a,b] s = (Kj ∩ [0,∞), sj)j where

Kj =

{
Ij − [a, b] if sj = T
(Ij − a) ∩ (Ij − b) if sj = F

In the above we have assumed, without loss of generality, that s and w are
represented using a common set of intervals Ij ; this is always possible by taking
a common refinement of the representations of s and w respectively.

Whilst the pointwise semantics of the until operator could be extended
directly to three-valued logic, it is somewhat trickier to define a closed rep-
resentation, as required for interval-based verified monitoring. In the case of
boolean signals, the until signal s UJ w is usually computed by subdividing s
into disjoint unitary signals sj (that is, signals which are indicator functions
sj(t) = χ

Ij (t) = (T if t ∈ Ij otherwise F) of pairwise disjoint intervals) [35].
For three-valued signals we will follow a similar approach, however we need an
appropriate three-valued generalisation of unitary signals. To this end we define
a connected signal.

Definition 4. We say a three-valued signal s is connected if for every interval
[a, b] we have that,

s(a) ∧ s(b) ≤ s(t) for all t ∈ [a, b].

under the ordering F � U � T.

Proposition 1. A three-valued signal s is connected iff there exist intervals
J ⊆ I such that s is equal to the three-valued indicator signal,

χ
J, I(t) �

⎧
⎪⎨

⎪⎩

T if t ∈ J

U if t ∈ I \ J

F if t �∈ I

Proof. Given in [44].
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We note that it is straightforward to compute a signal for ϕ UK ψ on con-
nected signals.

Proposition 2. If s and w are respectively signals for ϕ and ψ, and s is con-
nected then

s UK w � s ∧ FK(s ∧ w)

is a signal for ϕ UK ψ.

Proof. Suppose (s UK w)(t) = T. Then s(t) = T and for some t′ ∈ t + K,
s(t′) = T and w(t′) = T. But then since s is connected, s(t′) = T for all
t′′ ∈ [t, t′], showing that (x, t) |= ϕ UK ψ.

Suppose (s UK w)(t) = F. Then either s(t) = F in which case (x, t) �|=
ϕ UK ψ, or for all t′ ∈ t + K, s(t) = F or w(t) = F, in which case again
(x, t) �|= ϕ UK ψ.

We next decompose a three-valued signal into connected signals.

Proposition 3. Given a three-valued signal s and disjoint intervals Ij such that
s−1({T,U}) =

⊎
j Ij, we have a decomposition s =

∨
j

∨
k sj,k of s into the

connected components:

– sj,0 = χ
∅, Ij whenever Ij ∩ s−1({T}) = ∅;

– sj,k = χ
Jj,k, Ij given intervals Jj,k such that Ij ∩ s−1({T}) =

⊎
k Jj,k.

Proof. Given in [44].

Example 1. Given the three-valued signal

s = (([0, 1],F), ([2, 3],T), ([4, 5],T), ([6, 7],F), ([7.5, 8],T), ([8.5, 9],F))

we have the decomposition (Fig. 1)
s = (s1,1 ∨ s1,2) ∨ s2,1 ∨ s3,0 = (χ[2,3], (1,6) ∨ χ

[4,5], (1,6)) ∨ χ
[7.5,8], (7,8.5) ∨ χ

∅, (9,∞).

s1,1
s1,1 ∨ s1,2

s2,1 s3,0

s1,2

s2,1

s3,0

Fig. 1. The decomposition of s into components s ≡ (s1,1 ∨ s1,2) ∨ s2,1 ∨ s3,0.

We now use this decomposition to construct a signal for ϕ UK ψ:

Proposition 4. If ϕ has a three-valued signal s =
∨

j

∨
k sj,k with connected

components sj,k and ψ has a signal w, then ϕ UK ψ has a signal given by,

s UK w �
∨

j

∨

k

sj,k ∧ FK(sj,k ∧ w) . (2)

Proof. Given in [44].
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3.2 Signals for Atomic Propositions

We now turn our attention to generating a signal for an atomic proposition
ρ � p > 0 with defining polynomial p, based on a Flow* flowpipe.

We do this in a single pass algorithm which iterates over each time seg-
ment of the flowpipe and encloses all roots of p for the current timestep. For
each timestep [tk, tk+1], Flow* provides two Taylor models,

(
q(k)
post, I

(k)
post

)
and

(
q(k)
pre, I

(k)
pre

)
whose composition encloses all trajectories of the system over the

time step. The value of p over system trajectories is hence enclosed by the Taylor
model G

(k)
p (s, t) defined by the composition

G(k)
p � p �

(
q(k)
post, I

(k)
post

)
�

(
q(k)
pre, I

(k)
pre

)
(3)

where t ∈ [tk, tk+1] and s ranges over the n-dimensional box [−1, 1]n [12,34].
Therefore, we have an interval extension of p over the time interval [tk, tk+1]
given by the interval function H

(k)
p (t) � G

(k)
p ([−1, 1]n, t) which may be evaluated

using interval arithmetic.
We may then determine a signal for ρ.

Proposition 5. Given atomic proposition ρ = p(x) > 0, the three-valued signal
s � (Ij , sj)j is a signal for ρ where Ij are the interval components of

[0, T ] \
⋃ {

x0

∣
∣
∣ x0 ∈ roots

(
H(k)

p ,
d
dt

H(k)
p , [tk, tk+1]

)
for some k

}
,

and sj is T iff H
(k)
p (t′) > 0 for some k and t′ ∈ Ij ∩ [tk, tk+1].

The unknown regions are given by amalgamating the roots of H
(k)
p over each

time step. These roots are found by applying Interval Newton method [7,27,37]
to H

(k)
p (using its derivative d

dtH
(k)
p which may be derived by Taylor model

differentiation [9]), and are guaranteed to soundly enclose the roots of p. Then
ρ must have a consistent boolean value in between these roots, which we may
sample by performing interval evaluation of H

(k)
p (see Fig. 2).

3.3 Efficient Monitoring of Composed Taylor Models

The method described in Sect. 3.2 relies on being able to efficiently compute
the interval function H

(k)
p defined as a symbolic composition of Taylor models

(Eq. 3). This is potentially very expensive since the composition involves symbolic
operations on high-order polynomials and a Flowpipe may consist of thousands
of time steps, each requiring a separate composition.

However, since we only need to deduce the signal for the atomic proposition,
rather than the exact function value at each point, it will often be sufficient to
inexpensively over-approximate the range of Eq. 3 over the current time step
via interval arithmetic, which we do by replacing some of the Taylor model
compositions (denoted �) with functional compositions (denoted ◦). Hence, we
use the following adaptive algorithm:
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Fig. 2. Transition from root finding to three-valued signals.

– Perform the interval evaluation stepwise using interval arithmetic to check if

0 ∈ range
[
p ◦

(
q(k)
post, I

(k)
post

)
◦

(
q(k)
pre, I

(k)
pre

)]

– If so, perform one stage of symbolic composition and check if

0 ∈ range
[
p ◦

(
q(k)
post, I

(k)
post

)
�

(
q(k)
pre, I

(k)
pre

)]

– If the result is still ambiguous, perform full symbolic composition of G
(k)
p for

the current time step and apply root finding.

Hence, we are able to generate a precise signal for an atomic proposition over
the whole time domain, whilst only performing symbolic Taylor model composi-
tion and root finding on demand where necessary to disambiguate the result of
the signal (i.e. near the roots of the atomic proposition). We may additionally
skip the composition of the preconditioned Taylor model on dimensions which
do not correspond to any variable of p.

This method may, however, still spend effort trying to determine the truth
value of the signal of an atomic proposition in regions of time which are not
crucial to the truth of the overall signal; this issue is addressed in the next
section with the introduction of masks.

4 Masks

In this section we introduce masks which allow us to direct the monitoring pro-
cess to certain time-regions on the flowpipe. We then see how the mask required
for each proposition may be constructed in a top-down manner, taking into
account the context of an atomic proposition in the overall STL monitoring pro-
cess (Sects. 4.2 and 4.3). Once we have an appropriate mask, in Sect. 4.4 we see
how to reduce the cost of monitoring an atomic proposition by avoiding work
associated within time points outside of the mask.
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4.1 Basic Notions

Firstly we introduce masks as follows:

Definition 5. A mask is a finite sequence m = (Ij)j of disjoint intervals Ij.
We refer to these intervals as the regions of interest under the mask m.

We can interpret a mask m as a boolean signal m : [0,∞) → {T,F} such that
m(x) = T iff x ∈ ⋃

j Ij .
Such a mask represents the region of time for which we wish to monitor

a given proposition. Since for soundness of monitoring we only need to over-
approximate these regions of interest, in a practical implementation we may
restrict ourselves to masks whose components are all closed intervals Ij � [aj , bj ]
(using e.g. floating point endpoints) and consistently round outwards. We will
however sometimes use other types of interval endpoints in what follows in order
to state crisp results.

We can apply a mask to an existing signal, erasing any truth values that lie
outside the mask.

Definition 6. Given a signal s and a mask m, the masked signal of s by m is
the signal s|m defined as

s|m(t) �
{

s(t) if m(t) = T
U otherwise.

Examples of Masking. Before laying out rules for using and computing masks,
we will illustrate their use in two different examples, demonstrating the impor-
tance of the temporal and logical context of a proposition within a STL formula.

Example 2. Suppose we want to monitor the property ϕ � F[5,6] ψ for 2 s (that
is, over the time-domain I � [0, 2]). This would naively require computing a
signal for ψ over 8 s, despite the fact that ϕ only looks at the behaviour of ψ
between 5 and 6 s in the future—that is, within the absolute time-domain

I + [5, 6] = [0, 2] + [5, 6] = [5, 8].

This means that in checking ϕ it is sufficient to compute a signal for ψ under
the mask m � ([5, 8]), allowing us to ignore more than half of the time-domain.

Example 3. Suppose we want to monitor the property ϕ � ψ ∨ σ for 5 s (that is,
over the time-domain I � [0, 5]). This would normally require computing signals
for ψ and σ over the whole time domain I. However, if we have already computed
a signal for ψ such as

s � (([0, 1],F), ([2, 4],T))

then it is evident that computing a signal for ϕ only depends on the truth value
of σ on the intervals [0, 2) and (4, 5]. It thus suffices to compute a signal for σ
under the mask m � ([0, 2), (4, 5]). This demonstrates how masks can enable a
form of temporal short-circuiting.
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Whilst in both of the above examples the required masks are quite simple,
in general they quickly become much more complex depending on what signals
we have already computed for other parts of the property (as in Example 3) and
the position of the current proposition in a larger property. Later in this section
we will see how the reasoning in these two examples can be generalised and
combined to build up masks for arbitrary properties in a compositional manner.

Operations on Masks. We next need to define the operations with which
masks can be build. Firstly, masks inherit all of the normal logical operations
on boolean signals [35]. In particular, given masks mI = (Ik)k and mJ = (Jl)l

we have that mI ∧ mJ = (Ik ∩ Jl)l,k, and we write the negation of a mask m as
¬m.

We will also need the temporal operators PJ m (past) and HJ m (historically)
defined on masks by,

Definition 7. Given a mask mI = (Ik)k and an interval J = [a, b], the past
mask is defined by,

PJ mI � (Ik + J)k

whilst the historically mask is defined by,

HJ mI � ¬PJ (¬m) = ((Ik + a) ∩ (Ik + b))k .

4.2 Monitoring Contexts

Before we specify how the masks for the monitoring algorithm should be com-
puted, we must first formalise what is required of a mask for it to be used at
a given stage of the monitoring algorithm. This motivates us to define contexts
which capture our existing knowledge at each recursive step of the monitoring
algorithm, by recording the position of an argument ψ within the STL operator
currently being monitored and the signals s we have already computed for any
other arguments.

Definition 8. A monitoring context is defined similarly to a STL formula
except with subformulae replaced by concrete signals s and, in exactly one place,
a hole [·]. That is, a monitoring context is defined according to the grammar

C([·]) ::= [·] | s ∨ C([·]) | s ∧ C([·]) | ¬C([·])
| FI(C([·])) | GI(C([·])) | s UI C([·]).

A monitoring context C([·]) is a monitoring context of the subformula ψ of a
STL formula ϕ, if C([·]) has the same structure as ϕ except that, in the place of
each atomic proposition ρ of ϕ, C([·]) has a signal sρ that is a signal for ρ, and
the hole [·] in place of ψ.

Given a signal s, we can evaluate a monitoring context C([·]) to give a sig-
nal C(s) by substituting s in the place of the hole [·] and following the usual rules
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for combining signals. This means that a monitoring context captures how the
signal for the overall formula depends on the signal for the proposition which
remains to be monitored.

We are now able to define when a mask is sufficient for monitoring in a
context.

Definition 9. A mask m is sufficient for a monitoring context C([·]) under mask
n, if for any signal s we have that

C(s)|n = C(s|m)|n.

That is, a mask is sufficient if signals masked by it are just as good as unmasked
signals for monitoring the overall formula.

We also wish to know when a mask is as small as possible for monitoring in
a given context.

Definition 10. A mask m is the optimal mask in context C([·]) under mask n
if it is the smallest sufficient mask in context C([·]) under mask n with respect
to the pointwise logical ordering ≤.

It follows directly that the mask defined above is unique (for a given context
and overall mask), allowing us to talk about the mask for a given context.

4.3 Monitoring Under a Mask: Complex Propositions

We are now ready to detail how our masked monitoring algorithm deals with
complex propositions, by introducing suitable masks for each temporal and log-
ical context.

Negation. Suppose we want to monitor a negation ¬ϕ under mask m, then
this is equivalent to monitoring ϕ under mask m and then negating the resulting
signal. That is, m is sufficient and optimal in the context C([·]) = ¬[·] under m.

Eventually (F [a,b]ϕ) and Globally (G[a,b]ϕ). Suppose we want to monitor
the property F[a,b] ϕ or G[a,b] ϕ, under mask m = (Ij)j . In this case we should
monitor ϕ under the past mask

P[a,b] m = (Ij + [a, b])j .

because the truth of ϕ at time t could determine the truth of either F[a,b] ϕ
or G[a,b] ϕ at any point between a and b seconds ago (in the former case by
witnessing its truth, and in the latter case, by witnessing its falsehood)—this
generalises the reasoning given in Example 2.

Proposition 6. Given a context

C([·]) = F[a,b][·] or C([·]) = G[a,b][·]
under the overall mask m, in each case the mask P[a,b] m is sufficient and optimal
for C([·]).
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Proof. Here we just prove sufficiency for C([·]) = F[a,b][·] the results for C([·]) =
G[a,b][·] follow since G[a,b] ϕ ≡ ¬F[a,b] ¬ϕ. For sufficiency we need to show that

C(
s|P[a,b] m

)
(t) = F[a,b]

(
s|P[a,b] m

)
(t) = F[a,b](s)(t) = C(s)(t)

for any three-valued signal s and time point t such that m(t) = T. We do this by
showing that P[a,b] m(t′) = T and hence s|P[a,b] m(t′) = s(t′) at each of the future
time points t′ ∈ t + [a, b] to which both of the above F[a,b] operators refer. This
holds by contrapositive since if we had some t′ ∈ t + [a, b] for which P[a,b] = F,
then we would have m(t′′) = F for all t′′ ∈ t′ − [a, b] and, in particular, m(t) = F.

Disjunctions and Conjunctions. Suppose we want to monitor a disjunction
ϕ ∨ ψ under mask m. We should first monitor ϕ under the mask m to give the
signal s. Then, generalising Example 3, we can use the signal s to generate a
mask m∨

s , the or-mask of s.

Definition 11. Given a three-valued signal s = (Ij , sj)j, the or-mask of s is the
mask m∨

s defined by m∨
s (t) = T iff s(t) ∈ {F,U} so

m∨
s =

∧

sj=T

mj

where mj �
(
C

(�)
j , C

(u)
j

)
is the mask consisting of the two interval complements

C
(�)
j , C

(u)
j of Ij in [0,∞).

If this mask turns out to be empty (i.e. if s(t) = F = m∨
s (t) for all x ∈ m),

then we can stop and conclude s is a signal for ϕ ∨ ψ under m. Otherwise, we
monitor ψ under the mask m∨

s giving a signal w, and hence the signal s ∨ w for
ϕ ∨ ψ under m.

We see that the mask m∨
s is optimal and sufficient for the context C([·]) =

s∨[·]. We treat conjunctions similarly, and can see that the and-mask m∧
s defined

by m∧
s (t) =

∧
sj=F mj is an optimal and sufficient mask for conjunctions C([·]) =

s ∧ [·].
Until (ϕ U [a,b] ψ). Finally, suppose we wish to monitor the signal for the
property ϕ U[a,b] ψ under the mask m. As in Sect. 3, we will compute the signal
for ϕ U[a,b] ψ based on signals for ϕ and ψ using Eq. (2), however we now need
to monitor ϕ and ψ under appropriate masks. We start by monitoring ϕ under
the mask m ∨ P[a,b] m (taking into account the two places in which it appears
in Eq. (2)). Then we could find a suitable mask for ψ by applying the above
rules for ∨, ∧, and F[a,b] to Eq. (2). However, it turns out that this mask may be
computed directly using the historically operator, giving us the following result.

Proposition 7. The mask

mUa
s � H[0,a] (m∧

s )

is optimal and sufficient for monitoring context C([·]) = s U[a,b] [·].
Proof. Given in [44, Appendix A].
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4.4 Monitoring Under a Mask: Atomic Propositions

Once we have determined a mask m = (Ij)j for a given atomic proposition ρ
given its context in the monitoring process, we then aim to directly monitor
a signal s for ϕ under the mask m. This means that we only care about the
value of s(t) at time points t for which m(t) is true, and so can increase the
efficiency of monitoring by avoiding work associated with time points outside
of the mask. Whilst there is no way to save Flow* from having to generate the
flowpipes for these time points (since they may be required for determining the
future evolution of the system), we can avoid the effort associated with every
subsequent step of the monitoring process.

We do this by modifying how we carry out monitoring of ρ (via H
(k)
p ) on

each flowpipe segment (Sect. 3.3) over its associated time domain Tk = [tk, tk+1]
as follows:

– if m∧ (Tk) = ∅ then we set s(t) = U for all t ∈ Tk and avoid monitoring over
this segment;

– otherwise, we restrict the time domain to the interval T ′
k =

⋃
j Tk ∩ Ij and

apply the normal monitoring process.

This immediately saves us from performing root finding on regions outside of the
mask. Additionally, since we have already seen how the symbolic composition
of the two halves of the flowpipe and between the flowpipe and the atomic
propositions may be performed on demand, these expensive operations may also
be avoided outside of the mask. Thus masks allow us to direct the monitoring
of each atomic proposition based on its context within a wider STL formula.

5 Demonstration and Performance Analysis

We have implemented the monitoring techniques discussed in this paper as a
Python library with Cython [6] code implementing interval and Taylor model
operations by interfacing with Flow*’s internal C++ libraries; our implementa-
tion is available as part of the source repository1. In this section we will use
this implementation to demonstrate the application of our method to verifying
STL properties of a known challenging continuous system, the 9-dimensional
genetic oscillator [14,43] involving non-linear (polynomial) ODEs over the vari-
ables x1, . . . , x9 and an uncertain box of interval initial conditions xi ∈ [ai, bi]
(given in full along with other details of our benchmarking approach in [44,
Appendix B]). The evolution of the variables x4 and x6 over 5 s is shown in
Fig. 3 which includes numerical traces from a sample of many different fixed
initial conditions alongside a coarse interval over-approximation of a Flow* flow-
pipe covering the whole box of uncertain initial conditions. We can describe the
temporal behaviour of this system much more precisely with STL properties such
as ϕ � G[0,1]

(
P ∨ G[3,3.5](Q)

)
in which we have polynomial atomic propositions

1 https://github.com/twright/Logic-of-Behaviour-in-Uncertain-Contexts.

https://github.com/twright/Logic-of-Behaviour-in-Uncertain-Contexts
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Fig. 3. An interval over-approximation
of the Flow* flowpipe at each time step

is illustrated in blue , numerical trajec-
tories for different initial conditions in
black , initial conditions in red , and the

regions involved in properties P and Q
are in orange and green respectively.

(Color figure online)

(a) Functional composition

(b) Symbolic composition

(c) Mask for Q in context

Fig. 4. Monitoring Q.

P � x6 − 1 > 0 and Q � 0.032 − 1252(x4 − 0.003)2 − 3(x6 − 0.5)2 > 0. The
property ϕ states that at any point within the first second, the system will either
remain within the half-space P or, at any point between 3 and 3.5 s in the future
will be within the elliptical region Q.

In Fig. 5 we break down the time taken to monitor ϕ for 0.5 s using a number
of variants of our monitoring algorithm in order to evaluate the impact of each
of its elements on monitoring cost and precision. First we consider the closed box
monitoring approach where we first run Flow* to perform verified integration
and flowpipe composition, before using interval analysis and functional compo-
sition to monitor ϕ over the entire flowpipe. Whilst the monitoring cost for the
propositions P and Q is very small in comparison to the time it took Flow* to
perform verified integration, the flowpipe composition stage is more expensive
and takes almost as long as the verified integration itself. Next we monitor ϕ
in the same way, but perform the flowpipe composition on demand as described
in Sect. 3.3. We see that if we just monitor the simple atomic proposition P we
save most of the cost of flowpipe composition, although once we also monitor Q
we need to pay the full cost. These two methods also do not yield sufficient pre-
cision to verify ϕ, both producing a useless signal which is unknown everywhere.
This imprecision can be seen in Fig. 4a which shows the result of monitoring
the complex polynomial atomic proposition Q over the flowpipe using functional
composition and the corresponding signal.
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In order to produce a useful signal for ϕ we need to run our full monitoring
algorithm, permitting symbolic composition at each stage. Whilst the monitoring
cost for the simple proposition P is similar to before, the cost for the complex
proposition Q is significantly higher. This, however, now gives a much more
precise signal for Q as shown in Fig. 4b. This means we now get the overall
signal s = (([0, 0.0237],T)) for ϕ, allowing us to verify that ϕ is true at time 0
and that P ∨G[3,3.5](Q) holds for at least the first 1.0237 s. Finally, we reran our
monitoring algorithm but monitored each atomic proposition under appropriate
masks. For example, Q is monitored under the mask shown in Fig. 4c. This
produced the same overall signal as the full unmasked monitoring algorithm but
reduced the monitoring time for Q by 65%.

Fig. 5. Combined Flow* verified integration and STL monitoring times in seconds,
showing the cost of each stage for a number of variants of our monitoring algorithm.

6 Conclusion and Future Work

In this paper we explored a symbolic algorithm for monitoring STL properties
over Taylor model flowpipes via three-valued signals and introduced masking to
direct the monitoring process to time regions critical to the property at hand.
We saw that, whilst direct integration with the symbolic structure of flowpipes
can add some overhead for complex propositions, it significantly increases the
precision of the results generated and is sometimes necessary to produce defini-
tive results at all. We have also seen that masking can have an important impact
on reducing this cost, by avoiding the need to carry out symbolic operations for
regions of time not necessary for the overall result of the monitoring algorithm.

Our current method relies on interval arithmetic to evaluate flowpipes over
the whole set of uncertain initial conditions, whereas Flow*’s flowpipes in fact
track the functional dependency of each system variable on the initial condi-
tion [9]. In future we intend to use this additional information to extend our
algorithm to produce spatio-temporal signals exploring refinements of the ini-
tial conditions and introduce spatio-temporal masks to enable spatio-temporal
short-circuiting.
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Abstract. What is the frequency content of temporal logic formulas?
That is, when we monitor a signal against a formula, which frequency
bands of the signal are relevant to the logic and should be preserved, and
which can be safely discarded? This question is relevant whenever signals
are filtered or compressed before being monitored, which is almost always
the case for analog signals. To answer this question, we focus on moni-
tors that measure the robustness of a signal relative to a specification in
Signal Temporal Logic. We prove that robustness monitors can be mod-
eled using Volterra series. We then study the Fourier transforms of these
Volterra representations, and provide a method to derive the Fourier
transforms of entire formulas. We also make explicit the measurement
process in temporal logic and re-define it on the basis of distributions
to make it compatible with measurements in signal processing. Experi-
ments illustrate these results. Beyond compression, this work enables the
integration of temporal logic monitoring into common signal processing
tool chains as just another signal processing operation, and enables a
common formalism to study both logical and non-logical operations in
the frequency domain, which we refer to as Logical Signal Processing.

Keywords: Robustness monitoring · Temporal logic · Volterra series ·
Fourier transform

1 Introduction: The Place of Runtime Verification
in the Signal Processing Chain

Runtime monitors in Cyber-Physical Systems (CPS) process analog signals: that
is, continuous-time, continuous-valued signals generated by the physics of the
system, rather than digital signals generated by computations on values stored
in memory. These analog signals are never pristine: to begin with, they are mea-
sured, and so incur some measurement distortion; they are noisy, and therefore
are usually filtered to reduce noise; and if they get transmitted, they are com-
pressed and de-compressed, which introduces further distortions. All of these
operations are very common in signal processing toolchains - indeed, the act of
measurement is inevitable. And all of these operations affect, a priori, the verdict
of the runtime monitor. Yet we have little theory to systematically account for
c© Springer Nature Switzerland AG 2020
J. Deshmukh and D. Ničković (Eds.): RV 2020, LNCS 12399, pp. 359–382, 2020.
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these effects. For instance, Fourier analysis is a standard powerful tool in signal
processing, which is used to synthesize optimal filters meeting certain output
requirements. If we want to synthesize a filter subject to monitorability require-
ments, how would we go about it? Conversely, how can we synthesize a monitor
that accounts for the modifications introduced by a filter earlier in the process-
ing chain? Today we have no way of answering these questions systematically,
because we lack an account of the frequency content of temporal logic. That is,
we lack a Fourier representation of the operation of a temporal logic monitor.
Lacking such a uniform formalism, we remain in the awkward position of having
to study the impact of frequency-domain operations in the time domain, using
ad hoc assumptions like the availability of Lipschitz constants, and combining
them somehow with the time-domain representation of monitors.

This paper presents a way of analyzing the frequency content of temporal
logic, or equivalently, of analyzing temporal logic monitors in the Fourier domain.
Because monitors are nonlinear operators, we resort to Volterra series, which
generalize the convolution representation of time-invariant linear operators to
time-invariant nonlinear operators, and have generalized Fourier representations.
To apply the machinery of Volterra series, we work exclusively with robustness
monitors, which output analog robustness signals.

As soon as we start thinking in the Fourier domain, we also realize that
the basic measurement model in temporal logic is broken from a physical, and
therefore, cyber-physical, perspective: in almost all temporal logics, it is assumed
that one can make an instantaneous measurement. I.e., that it is possible to
measure x(t) exactly at t, and this is used to determine the truth value of an
atomic proposition, e.g. ‘x(t) ≥ 0’. However, it is well-known that instantaneous
measurements of analog signals are impossible! Any measurement device has a
finite resolution, so at best we can measure some aggregate of infinitely many
signal values. For instance, in a camera the value recorded by a pixel equals
the average illumination incident on that pixel, not the illumination in a spe-
cific point in space. This matters to us because an instantaneous measurement
requires infinite bandwidth, thus rendering the entire frequency analysis trivial
or useless. Instantaneous measurements also produce mathematical complica-
tions when working with sup norms and Lebesgue integrals which ignore sets of
measure zero. We therefore re-define atomic propositions (and the measurement
model) on the basis of the theory of distributions, and demonstrate that the
resulting robust semantics are still sound and still yield robustness tubes that
can be used in falsification.

Figure 1 shows an example of the results made possible by the methods of
this paper, which we refer to as Logical Signal processing. The figure shows the
first four Generalized Frequency Response Functions (GFRFs) of the formula
[1,1.2] p, read ‘Historically p’. Here, p is a given atomic proposition and is

the Historically operation, the past equivalent of Always/Globally. The way to
interpret Fig. 1 is, roughly, as follows: let X be the Fourier transform of the input
monitored signal, and Y be the Fourier of the output robustness signal computed
by the monitor. Then H1(ω) weighs the contribution of X(ω) to Y (ω), H2(ω1, ω2)
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Fig. 1. Frequency response of the temporal logic formula Historically p. H1(ω) captures
the linear, or first-order, transfer function, while H2(ω1, ω2), H3(ω1, ω2, ω3), etc., are
higher-order generalized frequency responses that capture the non-linear effects. By
studying these response functions we can determine which frequencies of the monitored
signal affect the monitor output. (Color in digital copy).

Fig. 2. Monitoring-safe compression enabled by Logical Signal Processing. (Left) Sig-
nal x (red) is compressed by eliminating frequencies above the formula’s cut-off fre-
quency (1.5 Hz). Resulting signal is in blue. (Second panel) Robustness of original and
compressed signals relative to a formula φ. Despite the marked difference between
the monitored signals, the robustness signals are almost identical, validating the fact
that the compression was monitoring-safe. Right two panes show the order-1 and -2
frequency responses of the formula. (Color in digital copy). (Color figure online)

weighs the contribution of the product X(ω1)X(ω2), H3(ω1, ω2, ω3) weighs the
contribution of X(ω1)X(ω2)X(ω3), etc. (Product terms appear because the mon-
itor is a non-linear operator, as will be explained later). Using these GFRFs Hn,
we can, for example, calculate frequencies ω s.t. X(ω) contributes very little to
the output Y (ω), that is, frequencies of the signal that are irrelevant to the mon-
itor. This is shown in Fig. 2: using the methods of this paper, we obtained the
frequency responses of formula [0.2,0.4] p, read ‘Once p’. From the responses we
determined (roughly) that the Hn’s are negligible above ω = 3π rad/s. There-
fore, setting X(ω) to 0 above the cut-off should change the monitoring output
very little. This analysis is confirmed by the experiment: Fig. 2 shows that there’s
a marked difference between original and compressed signals, and a priori there
is no reason to assume that their robustnesses would be similar. And yet, the
calculated robustness signals are almost indistinguishable, confirming that com-
pression was done in a monitoring-safe manner. Thus, a codec can suppress all
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frequencies above the cut-off before transmitting the signal, thus reducing the
amount of transmitted bits in a monitoring-safe manner.

In this paper, our contributions are:

– a definition of atomic propositions on the basis of distributions to ensure
measurements have finite bandwidth, such that the resulting logic has sound
robust semantics. The new logic differs from standard Signal Temporal Logic
only in the atomic propositions.

– a modeling of temporal logic monitors using Volterra series
– the first frequency analysis of temporal logic formulas and their robustness

monitors.

The proposed analysis using Volterra series can be used as a signal processing
tool for frequency domain analysis of temporal logic monitors but it is not sup-
posed to replace the monitors themselves. It can be used for example to design
filters which respect the monitorability requirements.

Related Work. There are few works dealing with the dual aspects of time and
frequency in temporal logic. In [8] the authors introduce a variant of Signal
Temporal Logic (STL), called Time-Frequency Logic (TFL), to explicitly specify
properties of the frequency spectrum of the signal - e.g. one formula might read
“|X(ω, t)| > 5 over the next three time units” (where X(ω, t) is obtained by
a windowed Fourier transform and ω is given). What we do in this paper is
orthogonal to [8]: given a standard STL formula, we want to analyze which
frequencies of signal x contribute to the monitoring verdict. We do not require the
formula to tell us that explicitly, as in TFL. In fact, our techniques are applicable
to TFL itself: a TFL formula like the one above has a ‘hidden’ frequency aspect,
namely the temporal restriction “in the next three time units”. Our methods
allow an automatic extraction of that.

The works [14] and [11] provide a general algebraic framework for the seman-
tics of temporal logic based on semi-rings, opening the way to producing new
semantics automatically by concretizing the semi-ring operations. In the special
case of Metric Temporal logic, [14] shows a formal similarity between convolu-
tion and the classical semantics of some logical operations. However, no frequency
analysis is made (and indeed that is not the objective of [14]).

In [16], the logic SCL is introduced which replaces the usual temporal oper-
ators (like Eventually) with a cross-correlation between the signal and a kernel,
which resembles our use of it for atomic propositions (we preserve all temporal
operators). The objective of [16] is to measure the fraction of time a property is
satisfied, and no frequency analysis is made. We also mention [9] which derives
continuous-time verdicts from discrete-time reasoning. The modified measure-
ment in this paper should allow us to connect that work to the sampling process
and therefore optimize it for monitoring (but we do not carry out that connection
here).

Finally, the works [1,2] consider the impact of representation basis and out-of-
order reconstruction on monitoring verdicts, thus also contributing to the study
of how signal processing affects runtime verification. The work [2] implicitly
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replaces instantaneous measurements in the temporal operators with a scram-
bled, or locally orderless, measurement, but maintains instantaneous measure-
ments in atoms. No frequency analysis is made.

2 Preliminaries: Signal Temporal Logic and Volterra
Series

Terminology. Let R = (−∞,∞),R+ = [0,∞),R = R ∪ {±∞},N = {0, 1, 2, . . .}.
We write C for the set of complex numbers and i =

√−1. Given an interval
I ⊂ R and t ∈ R, t − I := {t′ | ∃s ∈ I.t′ = t − s}. E.g. t − [a, b] = [t − b, t − a].

For a vector x ∈ R
d, |x| is its 2-norm and if x ∈ C, |x| is its modulus (i.e.

|a + ib| =
√

a2 + b2). For a function f , ‖f‖ is its essential supremum, defined as
‖f‖ := inf{a | |f(t)| ≤ a on all sets of non-zero measure in the domain of f}.

Given two sets A and B, AB is the set of all functions from B to A. The
space of bounded continuous functions f : Rn → R

m is denoted by C(Rn,Rm).
An n-dimensional function is one whose domain is Rn. The Fourier transform of
function h will be written F{h}. We adopt the convention of using capitalized
letters for the transform, e.g. F{h} = H,F{g} = G, etc. The magnitude |H| of
a Fourier transform will be called the spectrum.

Dirac’s delta distribution is δ. It is common to abuse notation and treat δ
as a function; in that case recall that for any continuous function f and τ ∈ R,∫

f(t)δ(t − τ)dt = f(τ), δ(0) = ∞ and δ(t) = 0 ∀t = 0.
In this paper, we reserve the word operator to mean a function N that maps

signals to signals, e.g. N : C(R,R) → C(R,R). The composition of operators N
and M is N ◦ M. A logical operation, on the other hand, refers to an operation
of a temporal logic, like negation, disjunction, Since and Once. Logical True is
�, False is ⊥.

2.1 Signal Temporal Logic (STL)

Signal Temporal Logic (STL) [7,13] is a logic that allows the succinct and unam-
biguous specification of a wide variety of desired system behaviors over time,
such as “The vehicle reaches its destination within 10 time units while always
avoiding obstacles” and “While the vehicle is in Zone 1, it must obey that zone’s
velocity constraints”.

We use a variant of STL which uses past temporal operators instead of future
ones. For simplicity in this paper we work with scalar-valued signals. Formally,
let X ⊆ R be the state-space and let E ⊆ R+ be an open interval (which could
be all of R+). A signal x is a continuous bounded function. Let {μ1, . . . , μL} be
a set of real-valued functions of the state: μk : X → R. Let AP = {p1, . . . , pL}
be a set of atomic propositions.

Definition 1 (Past Bounded STL). The syntax of the logic STLpast
bdd is given

by

φ := � | p | ¬φ | φ1 ∨φ2 | I φ | I φ | φ1 SI φ2
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where p ∈ AP and I ⊂ R is a compact interval. The semantics are given relative
to signals as follows.

(x, t) |= � iff �
∀pk ∈ AP, (x, t) |= pk iff μk(x(t)) ≥ 0

(x, t) |= ¬φ iff (x, t) �|= φ

(x, t) |= φ1 ∨ φ2 iff (x, t) |= φ1 or (x, t) |= φ2

(x, t) |= I φ iff ∃t′ ∈ t − I . (x, t′) |= φ

(x, t) |= I φ iff ∀t′ ∈ t − I (x, t′) |= φ

(x, t) |= φ1 SI φ2 iff ∃t′ ∈ t − I . (x, t′) |= φ2 and ∀t′′ ∈ (t′, t], (x, t′′) |= φ1

It is possible to define the Once ( ) and Historically ( ) operations in terms
of Since S, but we make them base operations because we will work extensively
with them.

The requirement of bounded intervals and past time is needed to enable the
Volterra approximation of temporal logic operations, as will be made explicit in
Sect. 4.

2.2 Robust Semantics

The robust semantics of an STLpast
bdd formula give a quantitative measure of how

well a formula is satisfied by a signal x. Usually, robustness is thought of as a
functional that maps a signal x and time instant t to a real value ρφ(x, t) which
is the robustness of x relative to φ at t. In this paper, instead, we will think of
it as an operator mapping signals x to robustness signals ρφ(x). This forms the
starting point of our Volterra approximation and frequency domain modeling.

Definition 2 (Robustness [7,9]). Let φ be a STLpast
bdd formula. The robustness

ρφ of φ is an operator which maps signals x : E → X to signals ρφ(x) : R → R,
and is defined as follows: for any t ∈ R,

ρ�(x)(t) = +∞
ρpk

(x)(t) = μk(x(t))∀pk ∈ AP

ρ¬φ(x)(t) = −ρφ(x)(t)
ρφ1 ∨ φ2(x)(t) = max{ρφ1(x)(t), ρφ2(x)(t)}
ρ

I φ(x)(t) = max
t′∈t−I

ρφ(x)(t′)

ρ
I φ(x)(t) = min

t′∈t−I
ρφ(x)(t′)

ρφ1 SI φ2(x)(t) = max
t′∈(t−I)

{

min{ρφ2(x)(t′), min
t′′∈(t′,t]

ρφ1(x)(t′′)}
}

The following soundness property allows us to use robustness to monitor
signals.
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Theorem 1 (Soundness [9]). For any signal x and STLpast
bdd formula φ, if

ρφ(x)(t) < 0 then x violates φ at time t, and if ρφ(x)(t) > 0 then x satisfies φ
at t. Moreover, for every signal y s.t. ‖x− y‖ < ρφ(x)(t), (y, t) |= φ if (x, t) |= φ
and (y, t) |= φ if (x, t) |= φ.

2.3 Fourier Analysis

We give a brief overview of the Fourier transform and LTI systems; readers
familiar with this material can skip this section without loss of continuity. Fourier
analysis allows us to decompose a signal into its constituent frequencies, e.g. by
decomposing it into a weighted sum of sinusoids or complex exponentials. We
can then also compute how much energy is placed in a given frequency band.

The Fourier transform X : R → C of an input signal x is defined as:

X(ω) =
∫ ∞

−∞
x(t)e−iωtdt (1)

The real variable ω is the angular frequency measured in rad/sec and relates
to the usual frequency f in Hz as ω = 2πf . The magnitude |X| is called the
amplitude spectrum of x; the energy in frequency band [ω1, ω2] is

∫ ω2

ω1
|X(ω)|2dω.

The Fourier transform is invertible and x can be obtained using the inverse
Fourier transform:

x(t) =
1
2π

∫ ∞

−∞
X(ω)eiωtdω (2)

Thus we can see that x at t is a weighted sum of complex exponentials, in which
eiωt is weighted by X(ω). For a quick implementation on computers, the discrete
version of Fourier transform is evaluated using the Fast Fourier Transform (FFT)
algorithm.

The Fourier transform is a powerful tool for studying linear time-invariant
(LTI) systems. An LTI system is characterized by its impulse response h : R → R.
For an input signal x, the system’s output signal y is given by the convolution
(represented by operator ∗) of x with the impulse response as follows

y(t) = (x ∗ h)(t) =
∫ ∞

−∞
h(τ)x(t − τ)dτ (3)

The Fourier Transform reduces this convolution to simply the product of the
Fourier transforms:

y(t) = (x ∗ h)(t) ↔ Y (ω) = X(ω)H(ω) (4)

Thus if we choose an LTI system such that H(ω) = 0 above some frequency
ωc, we would get y(t) without high frequency noise. Hence, the Fourier domain
can be done for designing filters that pass or block specific frequency components
of the input signal.

But Eq. (4) holds only for LTI systems, because complex exponentials are
the eigenfunctions for linear, time invariant systems. Since robustness operators
used in monitoring temporal logic monitors are nonlinear, they require separate
treatment. A nonlinear extension is necessary which is provided by Volterra
series.
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2.4 Volterra Series Approximation of Non-Linear Operators

A finite Volterra series operator N is one of the form

(Nx)(t) := h0 +
N∑

n=1

∫
. . .

∫
hn(τ1, . . . , τn) ·x(t− τ1) . . . x(t− τn)dτ1 . . . dτn (5)

where x is the input signal. A Volterra series generalizes the convolution descrip-
tion of linear time-invariant (LTI) systems to time-invariant (TI) but nonlinear
systems. We will drop the parentheses to simply write Nu for the output signal
of N . The n-dimensional functions hn : Rn → R, n ≥ 1, are known as Volterra
kernels, and their Fourier transforms Hn : C

n → C are know as Generalized
Frequency Response Functions (GFRFs):

Hn(Ω) :=
∫

τ ∈Rn

exp(−iΩT τ )hn(τ )dτ

We will use Volterra series to approximate the robustness nonlinear operator
because there exists a well-developed theory for studying their output spectra
using the GFRFs. For instance, the Fourier of the output signal y = Nx is
Y (ω) =

∑
n Yn(ω) where [12]

Yn(ω) =
1√

n(2π)n−1

∫

ω1+...+ωn=ω

Hn(ω1, . . . , ωn)X(ω1) . . . X(ωn)dω1 . . . dωn

(6)
Equation 6 gives one way to determine which frequencies of signal x affect the
output robustness signal. If a frequency ω∗ is s.t. for almost all ω1, ω2, ω3, . . .,
all the following spectra are below some user-set threshold

H1(ω
∗), H2(ω

∗, ω2), H2(ω1, ω
∗), H3(ω

∗, ω2, ω3), H3(ω1, ω
∗, ω3), H3(ω1, ω2, ω

∗), etc.
(7)

then X(ω∗) contributes very little to the formation of the monitoring output,
and can be safely discarded.

Volterra series can approximate time-invariant (TI) operators with fading
memory. Intuitively, an operator has fading memory if two input signals that
are close in the near past, but not necessarily the distant past, yield present
outputs that are close.

Definition 3 (Fading memory). Operator N has fading memory on a sub-
set K of C(R,R) if there is an increasing function w : (−∞, 0] → (0, 1],
limt→−∞ w(t) = 0 s.t. for each u ∈ K and ε > 0 there is a constant δ > 0
s.t.

∀v ∈ K, sup
t≤0

|u(t) − v(t)|w(t) < δ → |Nu(0) − N v(0)| < ε

Such a w is called a weight function for N .
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Theorem 2 (Volterra approximation [5]). Let KM1,M2 := {u ∈ C(R,R) |
‖u‖ ≤ M1, ‖u(· − τ) − u‖ ≤ M2τ ∀τ ≥ 0} for some constants M1,M2, and let
ε > 0. Let R be any TI operator with fading memory on KM1,M2 . Then there is
a finite Volterra series operator N such that for all u ∈ KM1,M2 , ‖Ru−Nu‖ < ε

In practice, how one obtains the Volterra approximation of a given non-linear
operator depends on the operator. The probing method [12] can be used for
systems given by ODEs or auto-regressive equations. However, it is not applicable
in our case because it requires feeding complex exponentials to the operator,
whereas our robustness operators can only be applied to real-valued signals. If
the operator’s behavior is given by a set of input-output pairs of signals, one can
first fit a function to the data, then obtain the Volterra representation of that
function - see [5,12].

2.5 Measurement Devices and the Spaces D(E) and D′
1

A measurement device is modeled in classical Physics using the theory of dis-
tributions. Giving even a cursory overview of this theory is beyond the scope of
this paper. We will provide the necessary mathematical definitions and refer the
reader to [10] for a more comprehensive CS and Engineering-oriented introduc-
tion to this topic.

Let D(E) be the space of infinitely differentiable functions with compact
support in E. A measurement kernel in this paper is a non-zero function f :
R → R with L1 norm at most 1, i.e., ‖f‖1 :=

∫ |f(t)|dt ≤ 1. Let D′
1 be the space

of all such functions. Note that f ∈ D′
1 iff −f ∈ D′

1 and that the shifted kernel
f(· − t) is in D(E) for every t whenever f ∈ D(E). The measurement signal y is
then obtained by taking the following inner product:

y(t) = 〈f(· − t), x〉 :=
∫ ∞

−∞
f(τ − t)x(τ)dτ ∀t (8)

One can think of the measurement device as taking an f -weighted average of the
values of x centered on t. Informally, the width of f dictates the resolution of the
measurement: the narrower f , the higher the resolution. Different measurement
devices use different filters f ∈ D′

1. Note that Dirac’s δ is not in D′
1, but can be

approximated arbitrarily well with narrow integrable functions.

3 Bounded-Bandwidth STL

The semantics of an atomic proposition, given in Definition 1, requires the ability
to measure the instantaneous value x(t). However, it is physically impossible to
do an instantaneous measurement [10]: in (8), y(t) = x(t) iff f = δ, Dirac’s delta.
But δ is not realizable because it has infinite energy:

∫
δ2(t)dt = δ(0) = ∞. In

this paper, we must pay closer attention to how measurements are actually made
in the physical world for two reasons:
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– we are interested in analyzing runtime monitors when they are a part of a
signal processing chain. If something is not physically possible, e.g., because it
requires infinite energy, it makes little sense to model how other components
in the chain will process its output.

– We are interested in analyzing the input-output relation of a temporal logic
monitor in the frequency domain (its transfer function, as it were). Even if we
kept using instantaneous measurements in the theory for convenience sake,
we’d end up with the trivial result that all robustness monitors have infinite
essential bandwidth [17] since F{δ}(ω) = 1 ∀ω. I.e., all frequency bands are
relevant - clearly a useless analysis.

This motivates our introduction of a new logic, Bounded-Bandwidth STL
(BB-STL, pronounced ‘baby Steel’), that does away with punctual measurements
while preserving the logical relations and the soundness of robust semantics.

BB-STL formulas are interpreted over signals in D(E), defined in Sect. 2.5.
Let AP be a set of atomic propositions s.t. there exists a bijection between D′

1

and AP . We write pf for the atom corresponding to filter f .

Definition 4 (Bounded-Bandwidth STL). The syntax of BB-STL is iden-
tical to that of STLpast

bdd :

φ := � | pf | ¬φ | φ1 ∧φ2 | I φ | I φ | φ1 SI φ2

where pf ∈ AP and I ⊂ R is a compact interval. Its boolean semantics are
identical to those of STLpast

bdd except for the atomic proposition case given here:

(x, t) |= pf iff 〈f(· − t), x〉 ≥ 0

Its robust semantics are identical to those of STLpast
bdd except for the base case

below.
ρpf

(x)(t) = 〈f(· − t), x〉
The robustness of any signal relative to any atomic proposition is finite:

letting Sx be the compact support of signal x, it holds that 〈f, x〉 ≤ ∫
Sx

|f |dt ·
∫

Sx
|x|dt, which is finite since f is absolutely integrable and x is continuous

and therefore bounded on any compact set. Thus ρφ(x) ≤ ρ�(x) for any φ, as
required for an intuitive interpretation of robustness.

The following theorem establishes that BB-STL can be monitored via its
robust semantics.

Theorem 3 (Soundness of robust semantics). For every signal x ∈ D(E)
and BB-STL formula φ, if ρφ(x)(t) < 0 then x violates φ at time t, and if
ρφ(x)(t) > 0 then x satisfies φ at t. Moreover, for every signal y s.t. d(x, y) <
ρφ(x)(t), (y, t) |= φ if (x, t) |= φ and (y, t) |= φ if (x, t) |= φ.

Before proving the theorem, we make several remarks about the definition of
BB-STL and the various restrictions we placed on the signal and kernel spaces.
The measurement process x → 〈x, f(· − t)〉 can be written as a convolution
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(x ∗ f−)(t), where f−(t) = f(−t). So F{f−} is the transfer function of the
measurement process. By selecting an appropriate set of filters, we get rid of the
problem of infinite bandwidth measurements. In particular, we make sure that
δ is not in D′

1.
STL and STLpast

bdd use arbitrary functions μk in their atoms, which allows
arbitrary processing of the signal. E.g. if some x is 1 − D, and we want to express
the requirement x2−ex ≥ 0∧ x ≥ 1, we can do that by using μ1(x) = x2−ex and
μ2(x) = x−1. BB-STL does not have that expressiveness, but we are nevertheless
able to compute arbitrary linear functionals of x and compare them. E.g. the
requirement 〈x, f〉 ≥ 2〈x, g〉 is captured as 〈x, f − 2g〉 ≥ 0. So the difference
between STL and BB-STL, at the level of atomic propositions, is in the ability
to generate auxiliary signals in a non-linear vs linear fashion.

The Volterra approximation of an operator requires the latter to be causal
and have fading memory (causality is implied by the conditions of Theo-
rem 2 [5]). Causality requires working with past time operations, and fading
memory requires working with bounded temporal operators. This is why we
derived BB-STL from STLpast

bdd rather than STL.
To prove Theorem 3, we will first need to define a distance function d :

D(E) × D(E) → R:

d(x, y) := sup{〈x − y, f〉 | f ∈ D′
1} (9)

Lemma 1. Function d is a metric on D(E).

Proof. d is non-negative: indeed for all x ∈ D(E) and g ∈ D′
1, supf 〈x, f〉 ≥

max(〈x, g〉, 〈x,−g〉) = |〈x, g〉|. Since x − y ∈ D(E) whenever x, y ∈ D(E), the
conclusion follows.

d is symmetric: d(x, y) = supf 〈x − y, f〉 = supf 〈y − x,−f〉 = supf∈−D′
1
〈y −

x, f〉 = supf∈D′
1
〈y − x, f〉 = d(y, x).

d satisfies the triangle inequality: for any x, y, z ∈ D(E),

d(x, y) = sup{〈x+ z − z −y, f〉 | f ∈ D′
1} ≤ sup

D′
1

{〈x− z, f〉}+sup
D′

1

{〈z −y, f〉} = d(x, z)+d(z, y)

d separates points: that is, if d(x, y) = 0 then x = y. We will argue by
contradiction. Define function ε by ε(t) = x(t) − y(t). Assume x = y so there
exists a t′ ∈ E s.t. ε(t′) = 0 and without loss of generality we may assume
ε(t′) > 0 (since −ε ∈ D(E)) and that t′ = 0. Since ε is continuous, there exists a
neighborhood I of 0 over which ε(t) > 0. So pick g ∈ D′

1 s.t. g(t) > 0 over I and
0 elsewhere. It then holds that 〈g, ε〉 > 0, contradicting d(x, y) = 0. Therefore
ε = 0 and x = y. �

Metric d takes the distance between signals to be the largest measurement
that can be made of their difference; this is consistent with the view that we have
no access to a signal without a measurement device. The only way to differentiate
between signals is to measure a difference between them. (Eq. (2.6) in [3] gives
a more widely applicable metric but d above is much more interpretable). We
can now proceed with the proof of Theorem3.
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Proof. Let Lt(φ) be the set of all x s.t. (x, t) |= φ and for a subset S ⊂ D(E) let
dist(x, S) = infy∈S d(x, y). By convention set dist(x, ∅) = ∞. Following [9], and
given that d is a metric, it suffices to show that the following inequality holds
for the base cases φ = � and φ = pf :

−dist(x,Lt(φ)) ≤ ρφ(x)(t) ≤ dist(x,D(E) \ Lt(φ))

The remaining cases then follow by structural induction on φ.

φ = � Then x ∈ Lt(φ) for any x and so dist(x,Lt(φ)) = 0 ≤ ∞ = ρφ(x)(t) =
dist(x, ∅) = dist(x,D(E) \ Lt(φ)).
φ = pf . Suppose x ∈ Lt(φ). For all y ∈ D(E) \ Lt(φ)

d(x, y) ≥ 〈x − y, f(· − t)〉 since f(· − t) ∈ D′
1

= 〈x, f(· − t)〉 − 〈y, f(· − t)〉
≥ 〈x, f(· − t)〉 since 〈y, f(· − t)〉 < 0
= ρpf

(x)(t)

Thus, dist(x,Lt(φ)) = 0 ≤ ρφ(x)(t) ≤ dist(x,D(E) \ Lt(φ)).
Now suppose x /∈ Lt(φ). As before infy∈Lt(φ) d(x, y) ≥ infy∈Lt(φ)〈y, f(· −

t)〉 − 〈x, f(· − t)〉 so dist(x,Lt(φ)) ≥ −〈x, f(· − t)〉. Thus, −dist(x,Lt(φ)) ≤
〈x, f(· − t)〉 = ρpf

(x)(t) < 0 = dist(x,D(E) \ Lt(φ)). �

4 Volterra Approximations and Frequency Response
of BB-STLFormulas

Having defined the logic BB-STL, we are now in a position to answer the ques-
tion: what is the frequency content of temporal logic? The strategy will be to
show that the robustness of each logical operation (pf ,¬,∨, I , I ,SI) can be
approximated by a Volterra series, and derive its GFRF. Then using a com-
position theorem, we can derive the GFRF of entire formulas to deduce which
frequencies are given significant weight by the GFRF, and which aren’t.

We note at the outset that the robustness operator for �, ρ�, maps any
signal to the improper constant function t �→ +∞. Because this function is not
in C(R,R), ρ� is not approximable by a finite Volterra series on the basis of
Theorem 2. This is not a serious impediment, since it is highly unlikely that an
engineer would explicitly include � in a specification (e.g. φ = p∨ �), so there
is no need to approximate ρ� to begin with. As for formulas that accidentally
turn out to be tautologies, like p∨ ¬p, their STL robustness is not infinite, and
neither is their BB-STL robustness.
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4.1 Approximability by Volterra Series

We state and prove the main technical result of this paper.

Theorem 4. For any BB-STL formula φ that does not explicitly include �, the
robustness operator ρφ : D(E) → R

R

can be approximated by a finite Volterra
series.

Recall the set KM1,M2 from Theorem 2, and recall that for a function f ,
‖f‖ is its essential supremum. We will first show that ρφ is TI and has fading
memory. However, the domain of ρφ is not a set of the form KM1,M2 so we can’t
apply Theorem 2 directly. So we show how to roughly decompose D(E) into sets
of the form KM1,M2 and leverage Theorem 2 to conclude. In all that follows, it
is understood that φ does not explicitly include �.

Lemma 2. The operator ρφ is TI and has fading memory.

Proof. Time invariance is immediate. To prove fading memory we argue by
induction on the structure of φ.

Base Cases. Fix an arbitrary pf . We must exhibit a weight function s.t. for all
ε > 0 and u, v ∈ D(E), supt′≤0 |u(t) − v(t)|w(t) < δ =⇒ |Nfu(0) − Nfv(0)| =
| ∫ f(τ)(u(τ) − v(τ))dτ | < ε. Fix ε > 0, and let w be a continuous increasing
function from (−∞, 0] to (0, 1]. For every u, v ∈ D(E), g := u− v is in D(E); let
C be its compact support. If supt′≤0 |g(t′)|w(t′) < δ then
∣
∣
∣
∣

∫

f(t)g(t)dt

∣
∣
∣
∣
=

∣
∣
∣
∣

∫

C

f(t)g(t)dt

∣
∣
∣
∣
≤

∫

C∩(−∞,0]

|f(t)||g(t)|dt < δ

∫

C∩(−∞,0]

|f(t)|/w(t)dt

The integral is finite and non-zero so choosing δ = ε/(
∫ |f(t)|/w(t)dt) yields the

desired result.

Inductive Cases. The case of ¬φ is immediate.

• For φ1 ∨ φ2: by the induction hypothesis there exist weight function wk for
ρφk

, k = 1, 2 s.t. for all ε > 0, supt≤0 |u(t) − v(t)|wk(t) < δ =⇒ |ρφk
(u)(0) −

ρφk
(u)(0)| < ε. Then w = max{w1, w2} is easily shown to be a weight function

for ρφ1 ∨ φ2 .
• For I φ: By the induction hypothesis, there exists a weight function w s.t.

for all ε > 0 and u, v ∈ D(E) there exists δ > 0 s.t.

sup
t≤0

|u(t) − v(t)|w(t) < δ =⇒ |ρφ(u)(0) − ρφ(v)(0)| < ε/2 (10)

Fact. If supt≤0 |u(t) − v(t)|w(t) < δ then supτ≤0 |ρφ(u)(τ) − ρφ(v)(τ)| ≤ ε/2.
Indeed, if supt≤0 |u(t) − v(t)|w(t) < δ then it holds that for all τ ≥ 0,

supt≤−τ |u(t) − v(t)|w(t) < δ, which is equivalent (by a change of variables)
to supt≤0 |u(t − τ) − v(t − τ)|w(t − τ) < δ. But w(· − τ) ≤ w so

sup
t≤0

|u(t − τ) − v(t − τ)|w(t − τ) < δ =⇒ sup
t≤0

|u(t − τ) − v(t − τ)|w(t) < δ
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Since u(·−τ), v(·−τ) are in D(E) it follows that |ρφ(u)(−τ)−ρφ(v)(−τ)| < ε/2
for all τ ≥ 0, and therefore supτ≤0 |ρφ(u)(τ) − ρφ(v)(τ)| ≤ ε/2.

Now we claim that w is a weight function for ρ
I φ. Indeed |ρ

I φ(u)(0) −
ρ

I φ(v)(0)| = |maxt∈−I ρφ(u)(t) − maxt∈−I ρφ(v)(t)|. Let tu = argmax−Iρφ

(u)(t) and tv = argmax−Iρφ(v)(t); both exist since I is compact and ρφ is
continuous. Assume the left-hand side of Eq. (10) holds. Then we finally find the
string of inequalities

−ε < ε/2 ≤ ρφ(u)(tv) − ρφ(v)(tv) ≤ max
t∈−I

ρφ(u)(t) − max
t∈−I

ρφ(v)(t) ≤ ρφ(u)(tu) − ρφ(v)(tu) ≤ ε/2 < ε

Therefore |ρφ(u)(0) − ρφ(v)(0)| < ε as desired.

• The case of I φ is similar.
• For ψ = φ1 SI φ2: suppose there exist weight functions wu and wv for u

and v respectively. Write ρk = ρφk
, k = 1, 2. Set w = max{wu, wv}: this

will be the weight function for ρψ. Given ε > 0, there exists a δ > 0 s.t.
supt≤0 |u(t) − v(t)|w(t) < δ =⇒ |ρku(0) − ρkv(0)| < ε. By the above Fact,
it also follows that

|ρku(t′) − ρkv(t′)| < ε ∀t′ ≤ 0, k = 1, 2 (11)

We will show that |ρψu(0) − ρψv(0)| < ε, where ρψu(0) = maxt′∈−I{min
{ρ2u(t′),mint′′∈(t′,0] ρ1u(t′′)}}. Given t′ ≤ 0, define tu := argmin(t′,0]ρ1u(t′′),
tv := argmin(t′,0]ρ1v(t′′). The following inequalities are immediate:

ρ1v(tv) − ε ≤ ρ1v(tu) − ε < ρ1u(tu) ≤ ρ1u(tv) < ρ1v(tv) + ε

Therefore
|ρ1u(tu) − ρ1v(tv)| < ε (12)

From Eqs. (12) and (11) it follows that

∀t′ ∈ −I, |min{ρ2u(t′), min
t′′∈(t′,0]

ρ1u(t′′)}
︸ ︷︷ ︸

a(t′)

−min{ρ2v(t′), min
t′′∈(t′,0]

ρ1v(t′′)}
︸ ︷︷ ︸

b(t′)

| < ε

With ta := argmaxt′∈−Ia(t′), tb := argmaxt′∈−Ib(t′)

b(tb) − ε ≤ b(ta) − ε < a(ta) ≤ a(tb) < b(tb) + ε

and we get the desired conclusion: |a(ta) − b(tb)| = |ρψu(0) − ρψv(0)| < ε. �

We continue with the main proof. A signal x in D(E) is infinitely differen-
tiable and compactly supported, so there exist M1 and M2 s.t. x ∈ KM1,M2 .
Moreover for every M ′

1 ≥ M1 and M ′
2 ≥ M2, KM1,M2 ⊆ KM ′

1,M ′
2
. Thus if we

take any ascending sequence (M1,a,M2,a)a∈N with first element (0, 0) and which
is unbounded in both dimensions, we have that D(E) ⊂ ∪a∈NKM1,a,M2,a

. (The
lexicographic order is used: (M1,a,M2,a) ≤ (M1,a,M2,a) iff M1,a ≤ M1,a′ and
M2,a ≤ M2,a′). For conciseness write Ka := KM1,a,M2,a

.
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Lemma 3. The restriction of ρφ to any Ka is an operator over Ka, i.e. ρφ :
Ka → Ka.

Proof. Take x ∈ Ka, we show that y = ρφ(x) ∈ Ka. For any kernel f and
t ∈ R, Hölder’s inequality gives 〈f(· − t), x〉 ≤ ∫ |f(τ)|dτ · ‖x‖ ≤ M1,a, so
‖ρpf

(x)‖ ≤ M1,a. Since the robustness of any formula other than � is obtained
by taking max and min of atomic robustness values, ‖ρφ(x)‖ ≤ M1,a. Moreover
for all t, s ∈ E

|y(t) − y(s)| =
∣
∣
∣
∣

∫

f(τ)[x(τ + t) − x(τ + s)]dτ

∣
∣
∣
∣
≤ ‖f‖1 · ‖x(· + t) − x(· + s)‖ ≤ M2,a|t − s|

This shows that y ∈ Ka. �

Lemma 4. Consider an operator N : D(E) → R
R such that its restriction Na

to Ka is an operator over Ka. If N is TI and with fading memory, then it has
a finite Volterra series approximation N̂ over D(E).

Proof. It is immediate that if N is TI and with fading memory, then so is every
Na. Thus, fixing ε > 0, Na has a finite Volterra series approximation over Ka

by Theorem 2, call it N̂a, so that for all x ∈ Ka, ‖N̂ax − Nax‖ < ε.
For every signal x ∈ D(E), let x′ be its time derivative. Then x ∈ K‖x‖,‖x′‖,

and for all M ′
1 < M1 and M ′

2 < M2, x /∈ KM ′
1,M ′

2
. (The first part of the last

statement is immediate; for the second part, note first that there exists t∗ in
the support of x s.t. M2 = |x′(t∗)|, so pick b, c s.t. b ≤ t∗ ≤ c and x(c) =
x(b) + x′(t∗)(c − b), or |x(c) − x(b)| = |x′(t∗)|(c − b) > M ′

2(c − b)). So there
exists a unique smallest pair (M1,a,M2,a) s.t. x ∈ Ka, namely the smallest pair
s.t. M1,a ≥ ‖x‖ and M2,a ≥ ‖x′‖. For a given x let a(x) be the index in N

corresponding to this smallest pair.
Define the operator N̂ : D(E) → R

R by N̂x := N̂a(x)x. Then for all x ∈
D(E), ‖N̂x−Nx‖ = ‖N̂a(x)x−Na(x)x‖ < ε, which establishes that N̂ is a finite
Volterra approximation of N over D(E). �

Combining the three lemmas allows us to conclude the main proof. Even
though it is only strictly correct to speak of the Volterra kernels of the Volterra
series that approximates the robustness operator ρφ, we will often abuse language
and speak directly of the ‘Volterra kernels of φ’.

4.2 Calculating the Volterra Approximations and Their GFRFs

We seek the Volterra series that approximates ρφ for a given formula in the
sense of Theorem 2. Operator ρφ is built by composing a few basic operators.
The strategy will be to first approximate each basic operator by a Volterra
series, then use a composition theorem to compose these into a Volterra series
for the entire formula. We exclude the Since operation from the remainder of this
discussion because, even though its robustness is approximable by Theorem4,
we don’t currently have the tools to compute that approximation. We expand
on the technical difficulty of performing that approximation in Sect. 4.3.
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Basic Operators. Fix an interval [a, b] ⊂ R+, ε > 0 and f ∈ D′
1, let u, v denote

arbitrary signals in D(E). The basic operators are:

Nfu(t) = 〈f(· − t), u〉 N−u(t) = −u(t) �[a,b]u(t) = min
t−b≤t′≤t−a

u(t′)

�(v, u)(t) = max{v(t), u(t)} �[a,b]u(t) = max
t−b≤t′≤t−a

u(t′)

(13)
The following relations hold:

ρpf
= Nf ρ¬φ = N− ◦ ρφ ρ

[a,b] φ = �[a,b] ◦ ρφ

ρφ1 ∧ φ2 = �(ρφ1 , ρφ2) ρ
[a,b] φ = �[a,b] ◦ ρφ

We approximate each basic operator, on a representative set of signals, using
a structure made of delays followed by a read-out polynomial; this structure
can then be represented exactly with Volterra series. It is shown in [5] that this
structure (delays followed by polynomial) can approximate any discrete-time
operator and is a special case of a structure for approximating any continuous-
time operator on C(R,R).

There are many ways to derive Volterra approximations. Here we give a
practical and simple way of computing such an approximation numerically. The
first two operators can be represented exactly as Volterra series.

•Nfu(t) = 〈f(· − t), u〉. Then h0 = 0, h1(t) = f(−t), hn ≡ 0 when n > 1.
•N−u(t) = −u(t). Then h0 = 0, h1(t) = −δ(t), hn ≡ 0 when n > 1. Note that
N− is never applied directly to a source signal (i.e. monitored signal x) but
only to robustness signals. Robustness signals are produced by previous mon-
itors and their values are stored (perhaps symbolically) in computer memory,
so it is possible to access their instantaneous values. So this does not contra-
dict our earlier point about the inability to instantaneously sample an analog
source signal.
•�[a,b]u. We approximate this operator by a polynomial P (u(t−t1), . . . , u(t−
tD)) for a given choice of polynomial degree d and delays tj , a ≤ tj ≤ b. P is
of the form

∑
r αru(t − t1)r1 . . . u(t − tD)rD where the sum is over all integer

vectors r = (r1, . . . , rD) s.t. 0 ≤ rj ≤ d,
∑

j rj ≤ d, and the αr ’s are the
unknown polynomial coefficients. Then given a set of L signals u� and the
corresponding output signals �[a,b]u�, and given a set T of sampling times,
we setup the linear system in the αr ’s:

∑

r

αru�(t − t1)r1 . . . u�(t − tD)rD = �[a,b]u�(t), 1 ≤ � ≤ L, t ∈ T (14)

A least-squares solution yields the α’s. We force α0 = 0 since the � operator
has 0 response to 0 input. Therefore h0 = 0. Given this approximation we
seek the kernels hn s.t.

P (u(t − t1), . . . , u(t − tD)) =
∑

r

αr u(t − t1)
r1 . . . u(t − tD)

rD =
N∑

n=1

∫

τ ∈Rn
hn(τ )

n∏

j=1

u(t − tj)dτ
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Define ΔD
d (n) = {r = (r1, . . . , rD) ∈ N

D | 0 ≤ rj ≤ d,
∑

j rj = n} and let
ΔD

d = ∪0≤n≤dΔ
N
d (n). For a given r ∈ ΔD

d (n),

u(t − t1)r1 . . . u(t − tD)rD

=
∫

δ(τ1 − t1) . . . δ(τr1 − t1)︸ ︷︷ ︸
r1terms

δ(τr1+1 − t2) . . . δ(τr1+r2 − t2)︸ ︷︷ ︸
r2terms

. . . δ(τn−rD+1 − tD) . . . δ(τn − tD)
︸ ︷︷ ︸

rDterms

n∏

j=1

u(t − τj)dτ

Therefore define hr
n(τ1, . . . , τn) := αr

∏r1
j=1 δ(τj−t1) . . .

∏n
j=n−rD+1 δ(τj−tD).

We can now express

P (u(t − t1), . . . , u(t − tD)) =
∑

r∈ΔD
d

αru(t − t1)r1 . . . u(t − tD)rD

=
d∑

n=1

∑

r∈ΔD
d (n)

∫

τ ∈Rn

hr
n(τ )

n∏

j=1

u(t − τj)dτ

=
d∑

n=1

∫
⎡

⎣
∑

r∈ΔD
d (n)

hr
n(τ )

⎤

⎦
n∏

j=1

u(t − τj)dτ

:=
d∑

n=1

∫
hn(τ )

n∏

j=1

u(t − τj)dτ

Therefore H0 = 0 and the nth-order GFRF is

Hn(Ω) =
∑

r∈ΔD
d

(n)

F{hr
n}(Ω) =

∑

r

αr exp(−i · t1

r1∑

j=1

ωj) . . . exp(−i · tD

n∑

j=n−rD+1

ωj)

(15)
The same approach is used with �[a,b].
•�(u, v)(t) = min{u(t), v(t)}. Here we must use a separable approximation of
the form �(u, v) ≈ Uu + Vv. This avoids product terms involving u and v
which cause the loss of the nice GFRF representation of Volterra kernels [4].
The Volterra operators U and V are obtained, again, by polynomial fitting.
Specifically, Uu(t) = R(u(t)) for a polynomial R and Vv(t) = Q(v(t)) for a
polynomial Q. Both polynomials have a 0 constant term since zero inputs
produce a zero output from �. Note also that only the present value of the
signal, u(t), is used, since it doesn’t make sense to use past values u(t − τ)
when approximating the instantaneous min operator. The coefficients of the
polynomials are obtained by least-squares as before. Once the coefficients of
R and Q are calculated, the following easily established proposition gives the
kernels of the equivalent Volterra series.
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Proposition 1. The polynomial operator defined by Nu(t) =
∑

0≤k≤d αku(t)k

has an exact Volterra representation given by h0 = α0, hn(τ1, . . . , τn) =
αnδ(τ1) . . . δ(τn), n ≥ 1. The corresponding GFRFs are H0 = 2πα0δ(ω),
Hn(Ω) = αn ∀Ω.

This concludes the derivation of Volterra series for the basic operators. The
following theorem allows us to calculate the GFRFs of entire formulas. Given
Ω ∈ R

n and m ∈ Δk
n(n), we can divide Ω into k sub-vectors, Ω = (Θ1, Θ2,

. . . , Θk), s.t. sub-vector Θj has length mj . Define the mixing matrix S(k,n) of
dimensions k-by-n whose jth row is (01×(m1+...+mj−1),11×mj

,01×(mj+1+...+mk)),
so S(k,n)Ω = (

∑m1
j=1 ωj ,

∑m1+m2
j=m1+1 ωj , . . . ,

∑n
j=n−mk+1 ωj)T .

Theorem 5 ([6]). Let A,B be Volterra operators with GFRFs {An}nA
n=1 and

{Bn}nB
n=1 respectively. Then the operator H := B ◦ A has Volterra GFRFs

given by

H0 =
nB∑

k=0

Bk(0)Ak
0

Hn(Ω) =
nB∑

k=1

∑

m∈Δk
n(n)

Bk(S(k,n)Ω)
k∏

j=1

Amj
(Θj), n ≥ 1

Thus for instance, to get the GFRF of φ = [0,0.5] g for some atom g, we
derive the GFRF {Bk} of �[0,0.5] and {Ak} of g, then compute the GFRF of Nφ

using Theorem 5.

4.3 Why Is Approximating φ1 SI φ2 Different?

For convenience, we write ψ = φ1 SI φ2. The robustness ρψ is an operator on
C(R,R), and we have shown that it is approximable by a Volterra series. However
it is constructed out of operators that change the dimensions of the signals, which
adds difficulties to the actual computation of the approximation.

Specifically: fix an interval [a, b] ⊂ R+, ε > 0 and f ∈ D′
1; let u denote

an arbitrary signal in D(E) and let y ∈ C(R2,R), i.e. a continuous bounded
function from R

2 to R. We define three operators: �2→1 : C(R2,R) → C(R,R),
�1→2 : C(R,R) → C(R,R2), and �2→2 : C(R2,R2) → C(R2,R). They are:

�2→1y(t) = max
t−b≤t′≤t−a

y(t
′
, t) 	1→2u(t

′
, t) = min

t′<t′′≤t
u(t

′′
) 	2→2(u, y)(t

′
, t) = min{u(t

′
), y(t

′
, t)}

The following relation holds:

ρφ1 S[a,b] φ2 = �2→1 ◦ �2→2(ρφ2 ,�1→2ρφ1)

The approximation of ρψ by Volterra series therefore requires the approxi-
mation of the above basic operators, then composing them. Multi-dimensional
Volterra series exist (i.e., Volterra operators over C(Rn,R)), e.g., see [18]. How-
ever what we have above are operators that change the dimensions of the signals.
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Sandberg [15] provides a generalization of [5] which allows the approximation of
certain operators that map C(Rn,Rm) to C(Rm,R). However this still falls short
of our needs because of the presence of �1→2.

A ‘quick-and-dirty’ way to produce a Volterra series representation of a given
formula ψ with Since - that is, with given atoms and structure - is to approximate
its input-output relation on a representative set of signals by fitting Volterra
kernels. However this requires a new fit every time we change atoms or formula
structure. It does not provide a generic approximation that can be composed
with others, as we did in Sect. 4.

5 Experiments: Fourier Analysis of Temporal Logic

We implemented the above calculations in a toolbox which we’ll make available
with the paper. In this section we demonstrate the derivation of Generalized
Frequency Response Functions for temporal logic robustness operators. In all
experiments, the GFRFs were generated by solving appropriate versions of (14)
with degree-4 polynomials and test signals generated as random combinations
of sinusoids. Sinusoids are dense in C(R,R) so approximating the operators on
sinusoids is a sensible thing to do. The approximation error in all cases was in
the order of 10−12. That said, our objective here is not to provide the most
efficient or the most general approximation scheme - that is for future work.

We reiterate that the Volterra approximations are not meant to replace the
monitoring algorithms that exist. They are used as analysis tools that provide
a rigorous quantitative Fourier analysis of temporal logic: one that does not
depend on intuition, is automatic, and such that once the GFRFs of a formula
are obtained, the formula (and its monitor) are treated as just another signal
processing box.

In what follows, g = G(μ, s) means that g is a Gaussian measurement kernel
with mean μ and standard deviation s.

5.1 GFRFs of BB-STL Formulas

• We first consider the spectra of [1,T2] pg shown in Fig. 3a, with g = G(0, 0.04).
Increasing T2 has a first-order effect (observed in H1) of distributing the
energy more uniformly over the range [0, 2.5] Hz, and suppressing less the
higher frequencies. |H2| on the other hand shows a more complex picture:
while there’s an increase of magnitude at higher values of f1 or f2 (top left
and bottom right corners), the increase at higher f1 and f2 is less marked.

• Consider next the formula [0,T ] p for a fixed atom p, shown Fig. 3b. As T
increases, H1 becomes more low-pass, but H2 becomes more high-pass! This
emphasizes the need to study all orders of the response, not only the linear
first-order response.

• We now study the effect of using non-instantaneous measurements. Figure 4a
shows the spectra H1 of [0,0.5] pg and [0,0.5] pg where g = G(0, s) for three
values of s. As s increases, the Gaussian atom acts more like a low-pass filter
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Fig. 3. GFRFs with varying temporal intervals. Color in digital copy.

(the measurement is lower resolution) and the overall formula has a more
low-pass nature. By the same token, high-frequency noise is ignored by the
formula and does not affect the monitoring verdict. Similarly, the 2nd-order
spectra for these two formulas are shown in Fig. 4b with increasing s.
In practice, the filter f used in atomic propositions is imposed by the applica-
tion and is derived from first-principles modeling of the physics of the system.
This Fourier analysis allows us to trace these effects quantitatively.
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Fig. 4. Effect of support size s for the atomic proposition filters. In (a), s is larger than
temporal interval width, which is 0.1. In (b) s is much smaller. (Color in digital copy)

• Consider now the more complex formula φT , which says that a is true, pre-
ceded by b T units earlier, preceded by c T units earlier than that. Here a, b
and c are atoms with Gaussian filters of various widths.

φT = a∧( [0,T ](b∧ [0,T ] c)) (16)

It is not possible to read, from the formula, how the frequency responses of the
various sub-monitors (for the sub-formulas) interact or cancel each other out.
By contrast, Fig. 5 shows the signal block diagram for computing this formula’s
Volterra series. This can be read as just another signal processing chain with
non-linear filters. On top of each box, we display the GFRF H1 of the entire
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Fig. 5. Block diagram of the Volterra representation of ϕT given in 16. Every displayed
|H1| is the first-order spectrum of the entire composite formula up to that point. Un
and V n are the GFRFs of the separable Volterra operators U , V that approximate 

(Sect. 4.2.)

Fig. 6. Filtering signals without accounting for downstream logic monitors leads to
incorrect monitoring results. The frequency responses (right two panels) indicate a
safe cut-off frequency around 1.5 Hz. If an upstream low-pass filter applies a cut-off
of 0.5 Hz (left panel), the robustness signal is significantly changed (second panel).
In particular, the truth values differ between red (original) and blue (post-filtering).
(Colors in digital copy)

chain up to and including that box. This shows how the relevant frequencies
evolve with the addition of each monitoring component).

5.2 Compression’s Effect on Monitoring

We now illustrate what happens if attention is not paid to the frequency repre-
sentation of temporal logic formulas when designing compression or filtering algo-
rithms. In Fig. 2, we The proposed method can be used as a signal processing tool
for frequency domain analysis of temporal logic monitors but it is not supposed
to replace the monitors themselves. Thus, it is more of an offline analysis tool
that can be used to design filters which respect the monitorability requirements.
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Had shown how knowledge of the GFRFs allows us to perform monitoring-safe
compression: even though the post-compression signal is markedly different from
the original x, the monitoring results for the two signals were almost identical.

By contrast, in Fig. 6, we show the same signal but now compressed (via
low-pass filtering) without regard to the GFRF or the monitored formula. The
resulting monitoring result (in blue) is significantly affected, and the truth value
(determined by checking where ρφ is positive or negative) is modified.

6 Conclusions

We have presented a Fourier analysis of temporal logic using Volterra approx-
imations of the robustness operators. Doing so has necessitated re-defining the
semantics of atomic propositions using bounded-bandwidth filters, which led us
to introduce the logic Bounded-Bandwidth STL. Using this analysis, it is possi-
ble to incorporate temporal logic monitors into signal processing chains as ‘just
another’ signal processing box.

Future work will seek to relax the constraints on the signal space. In partic-
ular, we conjecture that it is possible to remove the compact-support require-
ment. We will also seek more general approximations of the basic operators
and extend them to Since. Finally, the frequency representation in this paper
presents a unifying formalism which we will leverage for optimal filter design that
is monitoring-safe, i.e., that does not remove any signal content that is relevant
to the output robustness signal.

Acknowledgments. The authors would like to thank the anonymous reviewers for
helpful comments regarding the definition of kernel space.
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Abstract. We investigate the formalization, using the Coq proof assis-
tant, of a procedure for constructing online monitors from specifications
written in past-time metric temporal logic (MTL). We employ an alge-
braic quantitative semantics that encompasses the Boolean and robust-
ness semantics of MTL and we interpret formulas over a discrete tempo-
ral domain. The class of Moore machines, a kind of string transducers,
is used as a formal model of online monitors. The main result is that
there is a compositional construction from formulas to monitors, so that
each monitor computes (in an online fashion) the semantic values of the
corresponding formula over the input stream. From our Coq formaliza-
tion, we extract OCaml code for executable online monitors. We have
compared the performance of our monitoring framework with Reelay, a
state-of-the-art tool for monitoring temporal properties.

Keywords: Online monitoring · Formal verification · Quantitative
semantics

1 Introduction

Runtime verification is a lightweight technique for checking that a system
exhibits the desired behavior. It is often performed in an online fashion, which
means that the execution trace of the system is observed as it is being gener-
ated. This trace typically consists of one or more signals and event streams. A
monitor program runs in parallel with the system, consumes the system trace
incrementally, and outputs at every step a value that summarizes the current
state of the system. This value can be a Boolean indication of whether an inter-
esting event or pattern has been identified, or it can contain richer quantitative
information. There is a substantial amount of existing work on formalisms for
specifying monitors, as well as on algorithms for their efficient execution.

The specification of temporal patterns is often driven by logical formalisms.
Linear Temporal Logic (LTL) is one such widely utilized formalism which admits
efficient algorithms. Since many applications in the domain of cyber-physical sys-
tems frequently deal with comparison between numerical signals, Signal Tem-
poral Logic (STL), an extension of LTL with predicates allowing comparison
c© Springer Nature Switzerland AG 2020
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with numerical values, is also popular. It is also common to constrain certain
temporal behaviors within specified time intervals, which is a capability referred
to as a metric extension of temporal logic (MTL).

While temporal logic facilitates the specification of temporal properties, it is
equally important to have accompanying algorithms. The notion of a monitor is
an algorithm which analyzes given traces for a specific temporal property. In an
offline setting, the trace is available in its entirety. In contrast, online monitors
are meant to be attached to running systems, so that they may report interesting
(or critical) events as they happen, potentially so that a supervisor can act in
real time. Thus, they must analyze system traces incrementally (fragment by
fragment) as they evolve and this must be done efficiently: each update should
be handled quickly.

The standard semantics for temporal logic is qualitative, which means that
monitors classify traces only in a binary pass/fail manner. However, this is less
than sufficiently informative: some violations can be more serious than others,
and on the other hand, some cases of satisfaction could be close to the edge
of failure. In some cases, we may be able to apply some corrective actions if
we could tell that our system is approaching a potential violation. Indeed, in
realistic systems with continuous dynamics, some degree of tolerance must be
allowed since every value is accurate only up to the extent of measurement errors.
This encourages us to consider quantitative semantics for our formalisms, so that
we can quantify how robustly the observed behavior fits the desired specification
[18].

The variant of metric temporal logic we consider in this paper is interpreted
over a discrete temporal domain. We also consider a past-time only fragment of
the logic. In the setting of online monitoring we need to reactively respond to
the patterns in what we have seen so far. So, using a past-time fragment makes
sense and provides a clean semantics. Online monitoring with future obligations
has been considered, but these can be more expensive.

With Coq, an interactive theorem prover, we formalize the semantics of
our temporal logic. The implementation of our monitoring algorithms are done
within Coq, and a proof of correctness is given. Formal proofs, like the ones
described in Coq, are thoroughly rigorous and machine checkable. This gives us
confidence in the correctness of our implementations. With the extraction mech-
anism of Coq, we can obtain executable OCaml code directly from our verified
implementation.

As mentioned earlier, a strong motivation for using a quantitative semantics
is to quantify how robustly a signal fits a given specification in view of potential
perturbations. A very effective way to do so for STL specifications is to inter-
pret formulas over real numbers and interpret the logical connectives ∨ and ∧
as max and min respectively [16]. In our work, we use a slightly more general
framework, interpreting our formulas over arbitrary bounded distributive lat-
tices. This abstract algebraic framework enables a simpler verification approach
and, as we will discuss soon, does not hurt the performance of our algorithms.
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In our formalization, we model online monitors as Moore machines. They
are abstract machines whose state evolves as fragments of a trace are fed in.
Each state of the machine is associated with a value that represents the current
output of the monitor. We follow a compositional approach for our implementa-
tion and proofs. This is done with the help of combinators, which are constructs
that compose Moore machines in different ways (possibly with other data struc-
tures) so that their behaviors can be composed or combined. Corresponding to
each Boolean or temporal connective in our specification language, we identify
a combinator on Moore machines which implements the desired behavior.

We observe that formulas in our temporal logic can be rewritten so that
only a few combinators are necessary: (1) combinators which combine the out-
put of Moore machines running in parallel by applying a binary operation on
their respective outputs, (2) combinators which compute a running aggregate
on the results of a Moore machine, (3) combinators which compute running
aggregates on sliding windows, and (4) combinators which withhold the results
of a machine until a given number of updates. We can see that most of these
can be approached in a straightforward way. Applying a binary operation to
the current output values of two running machines can be done with a stateless
construction. Computing running aggregates efficiently can be achieved by stor-
ing the aggregate of the trace seen so far. In order to withhold the results of a
given machine, we can simply store them in a queue of a fixed length. Comput-
ing aggregates over sliding windows is slightly trickier. This is usually achieved
with an algorithm that maintains monotonic wedges [23]. However, this assumes
that the semantic values are totally ordered, which is not necessarily true in
our setting of lattices. Instead, we use an algorithm that is inspired from the
well-known implementation of a queue data structure using two stacks, popular
in functional programming. A variant of this algorithm can be used for comput-
ing sliding-window aggregates for any associative operation in a way that every
execution step of the monitor needs O(1) amortized time.

Outline of the Paper. In Sect. 2, we first introduce lattices and then present the
syntax and semantics of our temporal specification language. In Sect. 3, we give a
formal definition of Moore machines, present a collection of Moore combinators,
and discuss in detail their implementation. In Sect. 4, we discuss the extraction
of executable OCaml code from the Coq scripts and we compare its performance
against the Reelay tool [32]. Finally, in Sect. 5, we discuss several different quan-
titative semantics for Signal Temporal Logic, various algorithmic approaches to
online monitoring, and we also give a brief overview of related efforts to produce
formally verified monitors.

2 Metric Temporal Logic

In this section, we review Metric Temporal Logic, which will be the formalism
that we consider here for specifying quantitative properties. We use bounded
distributive lattices as the semantic domain for our logic. While this abstract
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setting is not usually where Metric Temporal Logic is interpreted, we will see
that the standard qualitative (Boolean) and quantitative (robustness) semantics
can be obtained simply by choosing the appropriate lattice.

2.1 Lattices

A lattice is a partial order in which every two elements have a least upper bound
and a greatest lower bound. We will use an equivalent algebraic definition.

Definition 1. A lattice is a set A together with associative and commutative
binary operations � and �, called meet and join respectively, that satisfy the
absorption laws, i.e, x � (x � y) = x and x � (x � y) = x for all x, y ∈ A.

Let A be a lattice. Using the absorption laws it can be shown that � is
idempotent: x � x = x � (x � (x � x)) = x for every x ∈ A. Similarly, it can
also be shown that � is idempotent. Define the relation � as follows: x � y iff
x � y = y for all x, y ∈ A. The relation � is a partial order. It also holds that
x � y iff x � y = x. For all x, y ∈ A, the element x � y is the supremum (least
upper bound) of {x, y} and the element x � y is the infimum (greatest lower
bound) of {x, y} w.r.t. the order �.

Definition 2. A lattice A is said to be bounded if there exists a top element � ∈
and a bottom element ⊥ ∈ A such that ⊥ � x = x and x � � = x (equivalently,
⊥ � x � �) for every x ∈ A.

Let A be a bounded lattice. It is easy to check that x�� = � and ⊥�x = ⊥
for every x ∈ A. For a finite subset X = {x1, x2, . . . xn} of a bounded lattice,
we write

⊔
X for x1 � x2 � · · · � xn and similarly ⊔X for x1 � x2 � · · · � xn.

Moreover, we define
⊔ ∅ to be ⊥ and ⊔∅ to be �. So,

⊔
X is the supremum of

X and ⊔X is the infimum of X.

Definition 3. A lattice A is said to be distributive if x�(y�z) = (x�y)�(x�z)
and x � (y � z) = (x � y) � (x � z) for all x, y, z ∈ A.

Example 4. Consider the two-element set B = {�,⊥} of Boolean values, where
� represents truth and ⊥ represents falsity. The set B, together with conjunction
as meet and disjunction as join, is a bounded and distributive lattice.

Example 5. The set R of real numbers, together with min as meet and max as
join, is a distributive lattice. However, (R,min,max) is not a bounded lattice. It
is commonplace to adjoin the elements ∞ and −∞ to R so that they serve as
the top and bottom element respectively.

2.2 Syntax and Semantics

We fix a set D of data items. A trace is a finite sequence over D, and D
∗ is the

set of all traces. We write ε for the empty trace, and |w| for the length of a trace
w ∈ D

∗. For i ∈ N and w ∈ D∗ with i ≤ |w|, we write w[−i] to denote the prefix
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of w obtained by removing the last i elements of w. In particular, it holds that
w[−0] = w and w[−i] = ε when i = |w|. We also fix a bounded distributive
lattice V, whose elements are quantitative truth values that represent degrees of
truth or falsity. Our quantitative semantics will associate a truth value with each
formula-trace pair. The set Φ of temporal formulas that we consider are given
by the following grammar:

ϕ,ψ ::= f : D → V | ϕ ∨ ψ | ϕ ∧ ψ | PIϕ | HIϕ | ϕ SI ψ | ϕ SI ψ,

where I is an interval of the form [a, b] or [a,∞) with a, b ∈ N. For every temporal
connective X ∈ {P,H,S}, we will write Xa as an abbreviation for X[a,a] and X
as an abbreviation for X[0,∞). We interpret formulas from Φ over traces D∗ using
the robustness interpretation function ρ : Φ × D

∗ → V, defined as follows:

ρ(f, ε) = ⊥
ρ(f, w · d) = f(d), where d ∈ D

ρ(ϕ ∨ ψ,w) = ρ(ϕ,w) � ρ(ψ,w)
ρ(ϕ ∧ ψ,w) = ρ(ϕ,w) � ρ(ψ,w)

ρ(PIϕ,w) =
⊔

i∈I
i<|w|

ρ(ϕ,w[−i])

ρ(HIϕ,w) = ⊔
i∈I

i<|w|

ρ(ϕ,w[−i])

ρ(ϕ SI ψ,w) =
⊔

i∈I
i<|w|

(
ρ(ψ,w[−i]) � ⊔

j<i

ρ(ϕ,w[−j])
)

ρ(ϕ SI ψ,w) = ⊔

i∈I
i<|w|

(
ρ(ψ,w[−i]) �

⊔

j<i

ρ(ϕ,w[−j])
)

Notice that ρ(Paϕ,w) = ⊥ and ρ(Haϕ,w) = � whenever a ≥ |w|. Note that the
temporal language that we consider does not include negation. However, this
does not limit expressiveness as we discuss in the examples below.

Example 6. Extending Example 4, choose D to be B
k and set V to B. The

set of functions from B
k → B considered may be restricted to projections

πi(b1, . . . bi, . . . bk) = bi and negated projections πi(b1, . . . bi, . . . bk) = bi. This
gives us the standard qualitative semantics for metric temporal logic. Formulas
with negation can be expressed as equivalent formulas in negation normal form
(NNF) in a fairly standard way by pushing negation inside while interchanging
operators for their dual operators.

Example 7. We may also express a past time version of STL interpreted over
discrete time in this framework. To do so, take D = R

k. A qualitative semantics
is obtained by taking V to be B and restricting the functions to comparisons
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of the form (r1, . . . ri . . . rk) �→ ri ∼ c where c ∈ R and ∼ ∈ {≤,≥,=}. A
quantitative semantics can be obtained by taking V to be R ∪ {∞,−∞} (as in
Example 5) and considering functions of the form (r1, . . . ri . . . rk) �→ ri − c or
(r1, . . . ri . . . rk) �→ c − ri. Even in the quantitative setting, STL formulas with
negation can be presented in our framework by considering a NNF, again by
‘pushing’ negation inside while interchanging operators for their dual operators
and replacing ri − c with c − ri.

Since we are interpreting formulas over discrete traces, our logic is essentially
equivalent to LTL with a “Previous” operator. In other words, temporal connec-
tives (including S and S; see Lemma 13) with bounded intervals can be rewritten
in terms of multiple compositions of the Previous operator instead.

3 The Monitoring Problem

Monitoring is analyzing a trace for specific patterns. For quantitative properties,
this could be thought of as applying a valuation function on a trace. In an online
setting, the trace is supplied to the monitor incrementally. To elaborate, the
monitor is fed in fragments of the trace one at a time and the monitor is required
to evaluate the quantitative property on the trace prefix seen so far. We intend
to discuss a mechanism for monitoring quantitative properties denoted by MTL
formulas.

3.1 Moore Machines

We will use Moore machines, a class of sequence transducers, as a formal model
of online monitoring algorithms.

Definition 8. Let A and B be sets. A Moore machine with input items from A
and output values in B is a tuple (St, init, mNext, mOut) where St is a (possibly
infinite) set of states, init ∈ St is the initial state, mNext : S × A → S is a
transition function which transitions the state of the machine upon seeing an
input from A, and mOut : S → B associates an output with the current state.
We write Moore(A,B) for the set of all Moore machines with inputs from A and
outputs from B.

While this is the standard definition of Moore Machines found in the liter-
ature, we use an equivalent, co-inductive definition in our formalization. In the
co-inductive view, the states are not explicitly expressed, but described directly
in terms of their extensional behavior.

CoInductive Moore (A B: Type) := {
mOut: B;
mNext: A -> Moore A B;

}.

The functions mNext and mOut denote the incremental update and the current
output of the machine. More generally, the machine also associates with every
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trace a value, which can be simply obtained by feeding in the entire trace, element
by element. In this sense, a machine denotes a quantitative property, formally
captured in the definition of gFinal below.

Definition 9. Let m ∈ Moore(A,B). Then, gNext(m) : A∗ → Moore(A,B)
is defined by gNext(m, ε) = m and gNext(m,w · a) = mNext(gNext(m,w), a).
gFinal(m) : A∗ → B is defined as gFinal(m,w) = mOut(gNext(m,w)).

For a quantitative property of traces, i.e, a function f : D∗ → V, we wish to
construct a Moore machine that computes f . We restrict our focus to quantita-
tive properties which can be expressed by MTL formulas.

Definition 10. Let ϕ ∈ Φ and m ∈ Moore(D,V). We say that the Moore
machine m implements a monitor for ϕ if gFinal(m,w) = ρ(ϕ,w) for all w ∈ D

∗.

Example 11. Following Definition 8, consider the machine m : Moore(V,V)
with states V × V, initial state (⊥,⊥), mOut((u, v)) = u and mNext((u, v), w) =
(v, w). It holds that gFinal(m, ε) = gFinal(m, v1) = ⊥ and gFinal(m, v1v2) =
v1, gFinal(m, v1v2v3) = v2, etc. The machine m implements a monitor for the
formula P1(v �→ v) in the sense of Definition 10.

Stated formally, the monitoring problem is to find a translation toMonitor :
Φ → Moore(D,V) so that given any ϕ ∈ Φ, toMonitor(ϕ) is a monitor for ϕ.

3.2 Moore Combinators

Combinators are compositional constructs that let one define new machines in
terms of existing ones. Our approach towards solving the monitoring problem is
to find combinators which correspond to the temporal and Boolean connectives
of MTL. With these combinators, a monitor for a given formula can be specified
by induction on the structure of the formula.

Proceeding with the idea above, we identify the key constructs which are
necessary in achieving the expressive power of MTL. We say that the formulas
ϕ and ψ are equivalent, and we write ϕ ≡ ψ, if ρ(ϕ,w) = ρ(ψ,w) for all w ∈ D

∗.

Lemma 12. The following identities hold:

P[a,b]ϕ ≡ PaP[0,b−a]ϕ (1)
H[a,b]ϕ ≡ HaH[0,b−a]ϕ (2)

ϕ S[a+1,b] ψ ≡ H[0,a]ϕ ∧ Pa+1

(
ϕ S[0,b−a] ψ

)
(3)

ϕ S[a+1,b] ψ ≡ P[0,a]ϕ ∨ Ha+1

(
ϕ S[0,b−a] ψ

)
(4)

P[a,∞)ϕ ≡ PaP[0,∞)ϕ (5)
H[a,∞)ϕ ≡ HaH[0,∞)ϕ (6)

ϕ S[a+1,∞) ψ ≡ H[0,a]ϕ ∧ Pa+1

(
ϕ S[0,∞) ψ

)
(7)

ϕ S[a+1,∞) ψ ≡ P[0,a]ϕ ∨ Ha+1

(
ϕ S[0,∞) ψ

)
(8)
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The proofs of these identities are straightforward. Proving the identities
involving S (or S) requires the distributivity axioms, which motivates the need
for considering distributive lattices.

Lemma 13. The following identities hold:

ϕ S[0,a] ψ ≡ (ϕ S ψ) ∧ P[0,a]ψ (9)

ϕ S[0,a] ψ ≡ (ϕ S ψ) ∨ H[0,a]ψ (10)

Proof. We will only prove the first identity, since the second one can be proved
with analogous arguments. Let w ∈ D

∗ be an arbitrary trace. We define si =
ρ(ϕ,w[−i]) and ti = ρ(ψ,w[−i]) for every i ∈ N. Then, we have that

ρ(ϕ S[0,a] ψ,w) =
⊔

i≤K

(
ti � ⊔

j<i

sj

)

ρ(ϕ S ψ,w) =
⊔

i≤|w|−1

(
ti � ⊔

j<i

sj

)
= ρ(ϕ S[0,a] ψ,w) �

⊔

K<i≤|w|−1

(
ti � ⊔

j<i

sj

)

ρ(P[0,a]ψ,w) =
⊔

i≤K

ti

where K = min(a, |w| − 1). We have to prove that L = R � Q, where L =
ρ(ϕ S[0,a] ψ,w), R = ρ(ϕ S ψ,w) and Q = ρ(P[0,a]ψ,w). From K ≤ |w| − 1 we
obtain that L � R. It also holds that L � Q because ti � ⊔j<i sj � ti for every
i ≤ K. It follows that L � R � Q. It remains to show that R � Q � L. Since

R � Q =
(
L �

⊔

K<i≤|w|−1

(
ti � ⊔

j<i

sj

))
� Q

= (L � Q) �
⊔

K<i≤|w|−1

(
ti � ⊔

j<i

sj � Q
)

= (L � Q) �
⊔

K<i≤|w|−1

⊔

k≤K

(
ti � tk � ⊔

j<i

sj

)
,

it suffices to establish that L � Q � L (which is true) and ti � tk � ⊔j<i sj � L
for every i and k with K < i ≤ |w| − 1 and k ≤ K. Since k < i, we conclude
that ti � tk � ⊔j<i sj � tk � ⊔j<k sj � L. ��
Remark 14. In the qualitative setting, the identities in Lemma13 are intu-
itively clear, but they require a more careful argument in the quantitative set-
ting. They have been used and proven in [15] for the lattice (R,min,max), but
the given proof does not generalize to the class of lattices that we consider here.
As we can see in the proof of Lemma 13, there is a subtlety in dealing with the
terms of ρ(ϕ S ψ,w) with index i = K + 1, . . . , |w| − 1.

The first set of identities allows us to express P[•,•], S[•,•] in terms of P[0,•],
S[0,•] and P•. The second set of identities implies that S[0,•] can be replaced by S
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f : D → V

mAtomic f : Moore(D,V)
m : Moore(D,V) k : N
mDelay k m : Moore(D,V)

m : Moore(D,V) k : N

mDelay k m : Moore(D,V)

m1 : Moore(D,V) m2 : Moore(D,V)
mAnd m1 m2 : Moore(D,V)

m1 : Moore(D,V) m2 : Moore(D,V)
mOr m1 m2 : Moore(D,V)

m1 : Moore(D,V) m2 : Moore(D,V)
mSince m1 m2 : Moore(D,V)

m1 : Moore(D,V) m2 : Moore(D,V)

mSince m1 m2 : Moore(D,V)

m : Moore(D,V)
mSometime m : Moore(D,V)

m : Moore(D,V)
mAlways m : Moore(D,V)

m : Moore(D,V) k : N
mSometimeWithin k m : Moore(D,V)

m : Moore(D,V) k : N
mAlwaysWithin k m : Moore(D,V)

Fig. 1. Summary of Moore combinators

and P•. Thus, the only additional constructs required in expressing the bounded
temporal operators are P• and P[0,•] (and their duals).

We present in Fig. 1 a summary of the combinators that we will consider.
Each combinator can be thought of as the implementation of the corresponding
Boolean or temporal connective. The key observation is that this association
between combinators on Moore machines and connectives respect the implemen-
tation relation (Definition 10) between machines and formulas. E.g., if m is a
monitor for ϕ, we expect mSometimeWithin k m to be a monitor for P[0,k]ϕ.

We define the translation function toMonitor : Φ → Moore(D,V) as in Fig. 2.
We can think that toMonitor(ϕ) is computed by recursively replacing the con-
nectives in ϕ with Moore combinators. The correctness of toMonitor is a con-
sequence of the correctness of the combinators in the sense described above.

Before we start describing each combinator in detail, we make some remarks
about the general organization of our implementation and formal proofs. There
is a lot of symmetry among these combinators that can be leveraged for econ-
omy of effort. One example is the presence of dual connectives, such as ∨ and
∧. This is why in many cases we focus on presenting these combinators in a
slightly general way before instantiating them specifically to Moore(D,V). As
discussed before, the correctness for each combinator is phrased in terms of pre-
serving the implementation relation – these theorems are indexed with the suffix
correctness. These theorems are proven via lemmas indexed with the suffix
final which characterize the most recent output of the Moore machine at a
fixed point in the computation. The proofs proceed by induction on the trace
seen so far. They require additional lemmas that establish invariants about the
state of a Moore machine as it evolves during the computation. These latter
lemmas are indicated with the suffix state. These ideas are illustrated in the
construction of mAtomic in Fig. 3.
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Fixpoint toMonitor {A : Type} (f : Formula) : Moore A Val :=
match f with
| FAtomic _ g => mAtomic g
| FDelay _ n g => mDelay n (toMonitor g)
| FDelayDual _ n g => mDelayDual n (toMonitor g)
| FAnd _ g h => mAnd (toMonitor g) (toMonitor h)
| FOr _ g h => mOr (toMonitor g) (toMonitor h)
| FSometime _ g => mSometime (toMonitor g)
| FAlways _ g => mAlways (toMonitor g)
| FSince _ g h => mSince (toMonitor g) (toMonitor h)
| FSinceDual _ g h => mSinceDual (toMonitor g) (toMonitor h)
| FSometimeWithin _ hi g => mSometimeWithin hi (toMonitor g)
| FAlwaysWithin _ hi g => mAlwaysWithin hi (toMonitor g)
end.

Theorem toMonitor_correctness {A : Type} (f : Formula):
implements (toMonitor f) f.

Fig. 2. The toMonitor function

Atomic Functions. In order to lift functions f : A → B to Moore(A,B), we
define the mLift combinator, as in Fig. 3. Given an f : A → B and a value
init : B, it defines a Moore machine which computes f on the latest input and
initially emits init. We use the lemma mLift state to describe the evolution
of the machine when an arbitrary stream prefix is fed. Using this, we also prove
mLift final, which describes the final output of the machine after accepting
an arbitrary stream prefix. We define mAtomic by instantiating the parameter
init of mLift to ⊥. The Lemma titled mAtomic correctness establishes that
mAtomic correctly translates atomic functions to corresponding monitors.

Pointwise Binary Operations. In Fig. 4, we define the combinator mBinOp
that combines the output of two given machines using a binary operation. By
plugging in � and � as op, we can use mBinOp to implement the ∨ and ∧
connectives, respectively. Like in the case of mAtomic, the correctness of this
combinator is proven by establishing appropriate lemmas which describe the
behavior of mBinOp with gNextand gFinal. These let us prove, in particular,
that mAnd and mOr correctly implement formulas involving ∧ and ∨, respectively.

Delay Monitors. We view the implementation of Pa and Ha as a mecha-
nism that delays the output of a Moore Machine. For instance, the sequence
〈ρ(P2ϕ, a1a2a3), ρ(P2ϕ, a1a2a3a4)〉 is same as 〈ρ(ϕ, a1), ρ(ϕ, a1a2)〉. These oper-
ators preserve the order of the outputs, but delay them by a given constant.

This can be achieved using a queue maintained at a fixed length. For instance,
to implement Paϕ, we maintain a queue of length a. Upon being given an input
item a ∈ D, we feed a to toMonitor(ϕ), enqueue the result and then return
what we obtain by dequeuing. This works since the dequeued element was the
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CoFixpoint mLift {A B: Type} (f : A -> B) (init : B) : Moore A B := {|
mOut := init;
mNext (a : A) := mLift f (f a) |}.

Lemma mLift_state {A B : Type}
(xs : list A) (x : A) (f : A -> B) (init : B) :

gNext (mLift f init) (xs ++ [x]) = mLift f (f x).
Lemma mLift_final {A B : Type}
(xs : list A) (x : A) (f : A -> B) (init : B):

gFinal (mLift f init) (xs ++ [x]) = f x.
Definition mAtomic {A : Type} (f : A -> Val) : Moore A Val :=

mLift f bottom.
Lemma mAtomic_correctness {A : Type} (f : A -> Val):

implements (mAtomic f) (FAtomic Val f).

Fig. 3. Establishing correctness of mAtomic.

result of toMonitor(ϕ) a turns ago. The queue needs to be initially filled with
a instances of ⊥ (or � in the case of Ha) since we have that ρ(Paϕ,w) = ⊥ (or
ρ(Haϕ,w) = �) when |w| > a.

Since Coq is based on a functional programming environment, functional
lists are the ordered collections that are the easiest for us to reason about and
work with. Functional lists are typically implemented via linked lists, which
means that in order to access the kth element of the list, one would have to
traverse k links and would spend O(k) time. This makes appending to the end
of the list expensive. However, obtaining or adding elements at the head (the
beginning) of the list is straightforward. Thus, these lists effectively behave as
stacks and sometimes we refer to them as such. We use the well-known technique
of implementing a queue with two functional lists, which we briefly discuss below.

A queue is represented by two lists front and rear. When an element is
enqueued, it is added to the head of the rear list. Thus, the rear list effectively
stores the elements of the queue in an order opposite to that in which they
were enqueued. When dequeing an element is required, the elements of rear
are reversed and placed in the front (thus restoring the order) and the head of
front is returned. As long as front is non-empty, subsequent dequeues may be
directly handled by returning the head of front.

In our use case, the queue is maintained at a fixed length, say k and every
enqueue is followed by a subsequent dequeue. Reversing rear into front takes
time O(k). However, we only need to do this every k turns, since front is filled
with k items whenever the reversal happens. Thus, every k turns, we do O(k)
work and only O(1) work is needed otherwise. This gives us an amortized time
complexity of O(1).

We implement this idea in the delayWith combinator in Fig. 5. The key
lemma required in proving the correctness of the delayWith combinator shows
that the queue maintained always stores the last k-many outputs of the sub-
monitor. To formalize this, we define gCollect : Moore(A,B) × D

∗ → V
∗ as
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CoFixpoint mBinOp {A B C D: Type} (op : B -> C -> D)
(m1: Moore A B) (m2 : Moore A C) : Moore A D :=

{|
mOut := op (mOut m1) (mOut m2);
mNext (a : A) := mBinOp op (mNext m1 a) (mNext m2 a)

|}.
Definition mAnd {A : Type} (m1 : Moore A Val)

(m2 : Moore A Val) : Moore A Val := mBinOp meet m1 m2.
Definition mOr {A : Type} (m1 : Moore A Val)

(m2 : Moore A Val) : Moore A Val := mBinOp join m1 m2.
Lemma mAnd_correctness {A : Type} (m1 m2 : Moore A Val) (f1 f2 : Formula):

implements m1 f1 -> implements m2 f2
-> implements (mAnd m1 m2) (FAnd Val f1 f2).

Lemma mOr_correctness {A : Type} (m1 m2 : Moore A Val) (f1 f2 : Formula):
implements m1 f1 -> implements m2 f2
-> implements (mOr m1 m2) (FOr Val f1 f2).

Fig. 4. The mBinOp combinator

Lemma delayWith_state {A B : Type} (init : B) (inf inb : list B)
(m : Moore A B) (xs : list A) (x : A):

forall initSeg, initSeg = [init] ++ inf ++ rev inb ->
forall k, k = length initSeg ->
forall str, str = initSeg ++ gCollect m xs ->
forall lastSeg, lastSeg = lastn k str ->

exists fr ba ii,
[ii] ++ fr ++ rev ba = lastSeg /\
k = length lastSeg /\
gNext (delayWith init inf inb m) (xs ++ [x])

= delayWith ii fr ba (gNext m (xs ++ [x])).

Fig. 5. Delay monitors.

gCollect(m,a1a2 · · · an) =
〈gFinal(m, ε), gFinal(m,a1), · · · , gFinal(m,a1a2 · · · an)〉.

We may now write the mentioned invariant as in delayWith state, which is
established by induction on the input stream.

Temporal Folds. The unbounded operators P and H can be thought of as a
running fold on the input stream, since ρ(Pϕ,w · a) = ρ(Pϕ,w) � ρ(ϕ,w · a).
Thus, to evaluate these operators in an online fashion, we only need to store
the robustness value for the trace seen so far. For P (resp., H), the robustness
of the current trace can then be obtained by computing the join (resp., meet)
of the current value and the stored one. In Fig. 6, mAlways (resp., mSometime)
computes the robustness values corresponding to the H (resp., P) connectives by
computing the meet (resp., join) of the current value with the stored one.



A Verified Online Monitor for MTL with Quantitative Semantics 395

CoFixpoint mFoldAux {A : Type} (m : Moore A B)
(op : B -> B -> B) (st : B) : Moore A B :=
{| mOut := st;

mNext (a : A) := mFoldAux (mNext m a) (op st (mNextOut m a)) |}.
Definition mSometime {A : Type} (m : Moore A B) :=

mFoldAux m meet bottom.
Definition mAlways {A : Type} (m : Moore A B) :=

mFoldAux m join top.

Fig. 6. Temporal Folds

CoFixpoint mSinceAux {A : Type}
(m1 m2 : Moore A Val) (pre : Val) : Moore A Val :=
{| mOut := pre;

mNext (a : A) :=
mSinceAux (mNext m1 a) (mNext m2 a)
(join (mNextOut m2 a) (meet (mNextOut m1 a) pre)) |}.

Definition mSince {A : Type} (m1 m2 : Moore A Val) :=
mSinceAux m1 m2 (mOut m2).

Fig. 7. Monitoring Since

Using the following identity, we may also view the computation of S as a
temporal fold, i.e, the robustness for ϕ S ψ may be calculated incrementally by
only storing the robustness value for the stream prefix so far.

Lemma 15. For all w ∈ D
∗ and a ∈ D, we have that

ρ(ϕ S ψ,w · a) = ρ(ψ,w · a) � (ρ(ϕ S ψ,w) � ρ(ϕ,w · a)).

This is a well known equality and can be proved by using distributivity in a
straightforward way. A proof of this for the (R,max,min) lattice appears in [13].

Using the equality of Lemma 15, mSince can be implemented as in Fig. 7.
The correctness of mSince is established by proving invariants on mSinceAux,
which is straightforward once the equality above has been established.

Windowed Temporal Folds. For the operators P[0,a] or H[0,a], the strategy
above needs to be modified, since the fold is over a sliding window, rather than
the entire trace. For this purpose, we use a queue like data structure (dubbed
aggQueue, henceforth) which also maintains sliding window aggregates, in addi-
tion. An extended discussion of such a data structure can be found in [8].

Similar to the queues used in the delay monitors, aggQueue consists of two
functional lists, the rear into which elements are inserted upon enqueing and
the front out of which elements are evicted upon dequeing. The elements of
rear and front are pairs: one of them is the enqueued element and the other
represents a partial aggregate. For convenience, we denote by contentsff(resp.,
contentsrr) the enqueued elements currently in front (resp., rear) and by



396 A. Chattopadhyay and K. Mamouras

CoFixpoint mWinFoldAux {A : Type} (qq : aggQueue)
(m : Moore A B) : Moore A B :=
{| mOut := op (aggOut qq) (mOut m);

mNext (a : A) :=
mWinFoldAux (aggDQ (aggEnQ (mOut m) qq)) (mNext m a); |}.

Definition initAggQ (n : nat) : aggQueue :=
{| front := repeat (unit, unit) (S n)
; rear := [] |}.

Definition mWinFold {A : Type} (m : Moore A B) (n : nat) : Moore A B :=
mWinFoldAux (initAggQ n) m.

Lemma mWinFold_state {A : Type} (m : Moore A B)
(n : nat) (xs : list A) (x : A) : exists qq,
gNext (mWinFold m n) (xs ++ [x]) = mWinFoldAux qq (gNext m (xs ++ [x]))
/\ contentsQ qq = lastn (S n) (repeat unit (S n) ++ gCollect m xs)
/\ aggsffInv qq
/\ aggsrrInv qq.

Fig. 8. Windowed Temporal Folds

aggsff(resp., aggsrr) the partial aggregates currently in front (resp., rear).
The aggregate values and the enqueued items are related in the following manner:
(1) The ith-last element of aggsff is the aggregate of the last i elements of
contentsff (2) The ith-last element of aggsrr is the aggregate of the last i
elements of contentsrr taken in the reverse order. Given these invariants, it
is easy to see that the aggregate of the entire queue can be computed as the
aggregate of the heads of aggsff and aggsrr.

We maintain these invariants in the following way: Upon enqueue, we simply
add the enqueued element to the head of rear along with the aggregate of the
element with the head of aggsff. Performing a dequeue is easy when front is
non-empty: we simply remove the element at its head. When front is empty, the
contents of contentsrr are added to front while recalculating the aggregate,
maintaining the invariant above.

Writing op for � (resp., �) and unit for ⊥ (resp., �) in Fig. 8, we define the
combinator mWinFold. Given a constant k, mWinFold maintains an aggQueue
initialized with k instances of ⊥ (or �). When a new input is available, mWinFold
enqueues the result of the corresponding submonitor into queue and dequeues
the element which was enqueued k turns ago. The output of mWinFold is simply
set to be the aggregate of the elements in the queue. Using a similar argument
as before, we can see that the invocations of mNexton mWinFold run in O(1)
amortized time. See Fig. 9 for an illustration of the running of mWinFold.

The correctness of the algorithm can be established via mWinFold state. In
essence, it states that the contentsff and contentsrr together store the last
k elements of the stream, and that the invariants on aggsff and aggsrr are
maintained.
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contentsff aggsff contentsrr aggsrr aggOut

〈⊥,⊥,⊥〉 〈⊥,⊥,⊥〉 〈〉 〈〉 ⊥
〈⊥,⊥〉 〈⊥,⊥〉 〈a〉 〈a〉 ⊥ � a

〈⊥〉 〈⊥〉 〈b, a〉 〈ab, a〉 ⊥ � ab

〈〉 〈〉 〈c, b, a〉 〈abc, ab, a〉 ⊥ � abc

〈b, c〉 〈bc, c〉 〈d〉 〈d〉 bc � d

〈c〉 〈c〉 〈e, d〉 〈de, d〉 c � de

Fig. 9. A run of mWinFold while maintaining a queue of 3 elements. The elements
a, b, c, d, e are fed in, incrementally. The binary operation � has been omitted in this
figure except in a few places for the sake of brevity.

Remark 16. The space required by the described algorithm is constant in terms
of the size of the input trace but exponential in the size of the constants that
appear in the formula. This exponential is unavoidable since computing the value
of Pap would require storing the last a values of p.

4 Extraction and Experiments

We use Coq’s extraction mechanism to produce OCaml code for our toMonitor
function. For this purpose, we instantiate the lattice V with the concrete OCaml
type float.

We extract monitors for formulas involving atomic functions (involving pro-
jection and subtraction emulating STL, as explained in Example 5), Boolean
operators and other temporal operators. As a measure of performance, we use
throughput, which is the number of items that can be processed in a fixed dura-
tion. Since Pa and P[0,a] are the main constructs used to express various other
ones, we measure their performance for varying values of a (see Fig. 10). We also
measure the throughput for monitors corresponding to similar formulas produced
by Reelay [32].

We generate a trace consisting of three random floating point values in each
trace item. For the purpose of our tool, we perform experiments on traces of
length 20 million as well as 200 million. We observe that this difference on the
length of the trace has no significant effect on the throughput. It appears that
Reelay has a throughput which is slower by orders of magnitude. For this reason,
we perform our experiments on Reelay on smaller traces - of 500 thousand items.
The experiment corresponding to each formula was run 10 times and the reported
value is their mean. The standard deviation of the results were less than 3% in
all cases.

A potential explanation for the comparative worse performance of Reelay is
that Reelay stores data values in string-indexed maps. Interval Maps are also
used in Reelay’s implementation of operators such as P[a,b]. Since our tool does
not use any map-like data structure, we do not incur these costs.
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Fig. 10. Throughput for formulas with large constants

In Fig. 11, we use formulas similar to the ones used in the Timescales [31]
benchmark. The formulas used in the Timescales benchmark are in propositional
MTL, so we define the propositions p, q, r and s as x > 0.5, y > 0.25, z > 0.3
and z > 0.6 respectively, where x, y and z are projections of the current trace
item. For convenience, also define k and � to be 1000 and 2000 respectively. The
formulas F1 through F10 in Fig. 11, in order, are: H(P[0,k]q → (¬p S q)), H(r →
P[0,k](¬p), H((r ∧ ¬q ∧ Pq) → (¬p S[k,�] q)), H(P[0,k]q → (p S q)), H(r → H[0,k]p),
H((r ∧ ¬q ∧ Pq) → (pS[k,�]q)), HP[0,k]p, H((r ∧ ¬q ∧ Pq) → (P[0,k](p ∨ q)Sq)),
H((s → Pk,�p)∧¬(¬sS[k,∞)p)), and H((r∧¬q∧Pq) → ((s → P[k,�]p)∧¬(¬sS[k,∞)

p))). Implications α → β were encoded as ¬α ∨ β and negations were encoded
using their negation normal form.

All experiments were run on a computer with Intel Xeon CPU3.30 GHz with
16 GB memory running Ubuntu 18.04.

5 Related Work

Fainekos and Pappas [18] introduce the notion of robustness for the interpre-
tation of temporal formulas over discrete and continuous time signals. In their
setting, signals are functions from a temporal domain to a metric space and the
distance function of the metric space is used to endow the space of signals with
a metric. The robustness is essentially the largest amount by which a signal can
be perturbed while still satisfying the specification. In the same paper, an alter-
nate quantitative semantics is proposed which is defined in an inductive fashion
by replacing disjunction with max and conjunction with min. This inductive
semantics can be used to under-approximate the robustness value. The frame-
work used in our paper essentially is this under-approximating semantics. This
approach is extended by Donzé and Maler [16] to include temporal robustness.

In [21], the authors describe a general algebraic framework for defining
robustness based on the monoidal structure of traces using the semiring structure
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Fig. 11. Throughput for formulas from the Timescales benchmark

on the semantic domain. They suggest the use of symbolic weighted automata for
the purpose of monitoring. With this approach, they are able to compute the pre-
cise robustness value for a property-signal pair. The construction of a weighted
automaton from a temporal formula incurs a doubly exponential blowup, if one
assumes a succinct binary representation of the constants appearing in an MTL
formula. We consider here a class of lattices, which are also semirings. With
our approach, however, we do not calculate the precise robustness value, but an
under-approximation in the sense discussed in the previous paragraph. One may
also consider a semantics in which disjunction is replaced with + and conjunction
with × from the semiring. With our approach, we would not be able to monitor
formulas with this semantics since we make crucial use of the absorption laws in
Lemma 13. The most interesting semiring which does not form a lattice which
might be relevant in the monitoring of cyber-physical systems is (R,max,+).

The distance between two signals can be defined to be the maximum of the
distance between the values that the signals take at corresponding points of
time. However, other ways to define this distance have been considered. In [20],
a quantitative semantics is developed via the notion of weighted edit distance.
Averaging temporal operators are proposed in [2] with the goal of introducing
an explicit mechanism for temporal robustness. The Skorokhod metric [12] has
been suggested as a distance function between continuous signals. In [1], another
metric is considered, which compares the value taken by the signal within a
neighbourhood of the current time. Another interesting view of temporal logic
is in [29], where temporal connectives are viewed as linear time-invariant filters.

Signal Regular Expressions (SREs) [33] are another formalism for describing
patterns on signals. They are based on regular expressions, rather than LTL. A
robustness semantics for SRE has been proposed in [5] along with an algorithm
for offline monitoring. In [4], STL is enriched by considering a more general (and
quantitative) interpretation of the Until operator and adding specific aggregation
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operators. They also give a semantics of their formalism using dual numbers,
which are the real numbers with an adjoined element ε satisfying ε2 = 0.

In [24], a monitoring algorithm for STL is proposed and implemented in the
AMT tool. A later version, AMT 2.0 [28] extends the capabilities of AMT to
an extended version of STL along with Timed Regular Expressions. In [15], an
efficient algorithm for monitoring STL is discussed whose performance is linear
in the length of the input trace. This is achieved by using Lemire’s [23] sliding
window algorithm for computing the maximum. This is implemented as a part
the monitoring tool Breach [14]. A dynamic programming approach is used in
[13] to design an online monitoring algorithm. Here, the availability of a predictor
is assumed which predicts the future values, so that the future modalities may
be interpreted. A different approach towards online monitoring is taken in [17]:
they consider robustness intervals, that is, the tightest interval which covers
the robustness of all possible extensions of the available trace prefix. There are
also monitoring formalisms that are essentially domain-specific languages for
processing data streams, such as LOLA [11] and StreamQRE [26]. LOLA has
recently been used as a basis for RtLOLA in the StreamLAB framework [19],
which adds support for sliding windows and variable-rate streams. A detailed
survey on the many extensions to the syntax and semantics of STL along with
their monitoring algorithms and applications is presented in [6].

In [10], a framework towards the formalization of runtime verification com-
ponents are discussed. MonPoly [9] is a tool developed by Basin et al. aimed
at monitoring a first order extension of temporal logic. In [30], the authors put
forward Verimon, a simplified version of MonPoly which uses the proof assistant
Isabelle/HOL to formally prove its correctness. They extend this line of work
in Verimon+ [7] which verifies a more efficient version of the monitoring algo-
rithms and uses a dynamic logic, which is an extension of the temporal logic
with regular expression-like constructs.

6 Conclusion

We have presented a formalization in the Coq proof assistant of a procedure
for constructing online monitors for metric temporal logic with a quantitative
semantics. We have extracted verified OCaml code from the Coq formalization.
Our experiments show that our formally verified online monitors perform well
in comparison to Reelay [32], a state-of-the-art monitoring tool.

The construction of monitors that we presented can be extended and made
more compositional by using classes of transducers that can support dataflow
combinators [22] (serial, parallel and feedback composition), as seen in [25,27].
We leave an exploration of this direction as future work. It is also worth devel-
oping a more thorough benchmark suite to compare the presented monitoring
framework against the tools Breach [14], S-TaLiRo [3], and StreamLAB [19]. We
have extracted OCaml code from a Coq formalization, but a formally verified
C implementation would be preferable from a performance standpoint. Another



A Verified Online Monitor for MTL with Quantitative Semantics 401

interesting direction is to increase the expressiveness of our specification formal-
ism: one possible candidate is the extension to dynamic logic, as has been done
in [7] in a qualitative setting.
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Abstract. This paper presents the Temporal Logic Toolkit (TLTk), a
modular falsification tool for signal temporal logic specifications devel-
oped in Python and C. At the core of the tool, an algorithm for robustness
computation is utilized that supports multi-threaded CPU/GPU compu-
tation. The tool enables memory-efficient, parallel, robustness computa-
tion of system traces. In addition, the python implementation enables the
addition and modification of temporal operators for application-specific
scenarios. The performance of the tool is evaluated against state-of-the-
art robustness computation engines DP-TaLiRo and Breach on a num-
ber of benchmark problems.

Keywords: Testing · Temporal logic · Robustness

1 Introduction

The theory of robustness of temporal logics [13] has been utilized in a wide-array
of problems, from testing and verification of Cyber-Physical Systems (CPS) to
monitoring and planning for autonomous systems [10,13,15,29]. It enables the
formulation of the falsification problem [22,25], i.e. the problem of finding system
behaviors that do not meet system requirements, as a non-convex, non-linear
optimization problem. The falsification process uses a notion of robustness to
indicate how well a trajectory satisfies a requirement. This robustness estimate
is defined using quantitative semantics of temporal logics such as STL (see [4]
for an overview). The robustness indicates by how much a trajectory may be
perturbed without changing the Boolean truth value of the specification. In the
falsification process, the robustness is used to guide the optimization function
to search for regions in the set of inputs and initial conditions of the system in
which falsification is more likely.

Falsification, and the related problem of parameter mining [18,19,21], have
been used successfully for testing industrial-size CPS. Both of these methods
c© Springer Nature Switzerland AG 2020
J. Deshmukh and D. Ničković (Eds.): RV 2020, LNCS 12399, pp. 404–416, 2020.
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have been successfully used in a wide array of applications, from medical device
testing [6], engine control testing [17,18,20], Unmanned Aerial Vehicles (UAV)
scenario generation [29], to Automated Driving Systems [16,28]. In each opti-
mization loop in the falsification process, the two main computational elements
are the system simulator and the robustness computation engine. To improve
this process, we introduce TLTk1, a Python/C toolkit for requirements-based
testing of CPS. TLTk is developed with the goal of optimizing the robustness
computation engine as much as possible. At the core of the tool, a robustness
computation engine that supports multi-threaded CPU and GPU computations
is utilized. The memory-efficient algorithm enables robustness computations of
large system traces. In addition, the robustness algorithm written in Python/C
allows for easy modification/addition of temporal logic operators for application-
specific implementations. This is particularly useful in areas such as planning for
robotic applications since notions of robustness are usually application-specific.

TLTk supports falsification for STL specifications using only open-source
software. Also, we provide a repository through the OS-virtualization engine
Docker that allows easy integration with other tools or deployment in large-
scale cloud systems like Amazon AWS, Google Cloud or Microsoft Azure. TLTk
has been successfully utilized with several benchmark problems from the CPS
community. The performance of the tool in comparison to state-of-the-art tools
Breach [9] and DP-TaLiRo [11] is presented.

2 Overview and Features

TLTk is an object-oriented toolbox developed in python3 (front-end) and C
(back-end). An overview of the tool is presented in Fig. 1. The toolbox has the
following core modules:

1) The Stochastic Optimizer module is developed in python and is uti-
lized to generate candidate initial conditions and input signals for the system
[1]. Our implementation utilizes global optimization algorithms provided by the
SciPy library2 such as Dual Annealing [30], as well as local optimization algo-
rithms such as Nelder-Mead [24] for refinement. In addition, due to the modular
architecture of the tool, the user may develop their own or utilize any other
optimization libraries in python to conduct the search.

2) The System Simulator module may be a standalone function, an inter-
face for Matlab/Simulink, or other simulators that support python-integration
such as SymPy and Mathematica.

3) The Robustness Computation Engine module utilizes our C back-
end implementation for fast robustness computation. The module utilizes multi-
threaded CPU/GPU processing to compute the robustness of a trace with

1 The source code for TLTk is publicly available through the git repository: https://
bitbucket.org/versyslab/tltk/. Docker image: https://hub.docker.com/r/bardhh/
tltk. Python package through PyPi: https://pypi.org/project/tltk-mtl/. User Guide:
http://www.bhoxha.com/tltk.

2 SciPy Optimize: https://docs.scipy.org/doc/scipy/reference/optimize.html.

https://bitbucket.org/versyslab/tltk/
https://bitbucket.org/versyslab/tltk/
https://hub.docker.com/r/bardhh/tltk
https://hub.docker.com/r/bardhh/tltk
https://pypi.org/project/tltk-mtl/
http://www.bhoxha.com/tltk
https://docs.scipy.org/doc/scipy/reference/optimize.html
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Fig. 1. An overview of TLTk and its major components.

respect to a specification in parallel. A python implementation is also available.
Although much slower than the C implementation, the python implementation
is developed to make the tool more accessible and also so that modifications
to the robustness algorithm can be made easily for utilization in application-
specific case studies and even topics such as planning. For example, in [15,23],
the authors consider a smooth cumulative robustness, which modifies the seman-
tics of temporal operators to include smoothing functions in order to make it
more suitable for planning problems. For specifications with higher dimensional
predicates, an optimization problem needs to be solved in order to compute the
distance between a point in a trajectory to an unsafe set. Therefore, the back-end
robustness calculation module additionally calls the quadratic program solver
QuadProg3. To setup and run the tool, several options are available:

– Building from Source (Linux). This option provides the best performance.
However, it is restricted to the Linux OS since we are using OpenMP4 for
parallel computation. The user needs to follow a set of commands provided
in the User Guide to install software dependencies and compile the programs.

– Running through Docker (Linux, Windows, Mac). Docker enables a single
command setup for the tool and all the required dependencies. Currently,
GPU functionality is accessible only on Linux hosts5. The TLTk docker image
can be pulled using the following command: docker pull bardhh/tltk.

– Python API (Linux). In addition to the previous methods, TLTk is available
as a python package and can be installed through the pip3 Python package
installer using the following command: pip3 install tltk mtl. Once the
package is installed, it can be imported in any python3 script and used for
robustness computation.

3 QuadProg: https://github.com/rmcgibbo/quadprog.
4 OpenMP: https://www.openmp.org/.
5 Nvidia has announced that support for this functionality in Windows OS

is under development. https://devblogs.nvidia.com/announcing-cuda-on-windows-
subsystem-for-linux-2/.

https://github.com/rmcgibbo/quadprog
https://www.openmp.org/
https://devblogs.nvidia.com/announcing-cuda-on-windows-subsystem-for-linux-2/
https://devblogs.nvidia.com/announcing-cuda-on-windows-subsystem-for-linux-2/
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3 Robustness Computation

First, we review the quantitative semantics of STL specifications that enable us
to define the robustness estimate. After that we propose a parallel algorithm for
computing the robustness estimate efficiently.

3.1 Quantitative Semantics of STL Specifications

STL is an extension of LTL that enables reasoning over real-time properties of
CPS. The syntax of STL is defined as follows:

where � is true and I is a nonsingular interval of positive reals. The eventually
operator is defined as and the always operator is defined as �Iφ ≡
¬♦I¬φ. In order to define the quantitative semantics of STL over arbitrary
predicates p(x) ≥ 0, we use a metric d [13] to define the distance of a point
x ∈ X from a set S ⊆ X as follows:

Definition 1 (Signed Distance). Let x ∈ X be a point, S ⊆ X be a set and
d be a metric on X. Then, we define the Signed Distance from x to S to be

Distd(x, S) :=
{− inf{d(x, y) | y ∈ S} if x �∈ S

inf{d(x, y) | y ∈ X\S} if x ∈ S

The signed distance returns positive values when x is inside set S and negative
values when x is outside of set S.

Given a signal x and an STL specification ϕ, the quantitative semantics of
STL enable us to obtain a robustness degree ρ that indicates how far the signal
is from satisfying or violating the specification starting from a time instance t.
Formally, the robustness of STL specifications is defined as follows:

3.2 Parallel Robustness Computation Algorithm in TLTk

The parallel robustness computation engine builds on the sliding window/dy-
namic programming algorithm developed in [9,31]. A tabular representation of
subformulas of the specification (rows) and the trace samples (columns) of the
signal is utilized. In the rows that contain only atomic predicates, quadratic
programming is utilized to compute the cells since robustness requires compu-
tations of distances between a point and a set [12]. Since the sets defined by the
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predicates are strictly convex, we can use quadratic programming with low time
complexity. This step is simplified when the predicates define a halfspace in R.
In this case, the distance may be computed analytically. Following the seman-
tics of the robustness of temporal logic operators, the table can be dynamically
collapsed to return a single robustness value for the entire trace.

Consider the specification φ = �¬r1. The specification states that region r1
should not be reached. In Fig. 2, an example trace and an illustration of the
robustness computation process is presented. The robustness value of the trace
with respect to the specification should return the minimum distance ρ∗ between
the sample point μ∗ and the unsafe set r1. To compute this, the distance of each
sample μ0, μ1, ..., μi, ..., μn to the unsafe set is computed (see Fig. 2 (b)). For
each sample, a quadratic program is solved to return the distance to the unsafe
set.
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Fig. 2. An example system trajectory is presented. The specification on the system
φ = �¬r1 states that the trajectory should not enter set r1. For each sample point μi

the minimum distance ρi to the unsafe set r1 is computed in parallel. The robustness
of the trace is ρ∗, which indicates how much disturbance the trace can tolerate before
it does not satisfy the requirement φ = �¬r1 any more.

The worst-case time complexity of the robustness computation algorithm is
O(|ϕ||τ |c), where |ϕ| is the length of the formula, |τ | is the number of samples,
and c is the number of samples in the longest interval indicated by the timing
constraints. We note that each temporal operator has a time interval associated
with it and that the sampling rate is not necessarily constant. Even though the
worst-case time complexity is the same as in the algorithm presented in [31], the
modifications presented in this section significantly improve the running-time
of the algorithm. Specifically, performance improvements are achieved due to
parallel computation and more efficient memory management.

Parallel Computation: (i) Given a discrete output trace of the system com-
posed of n time-value pairs, the robustness computation requires that for each
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predicate in the formula, the robustness should be computed n times. This
process is parallelized in TLTk with multi-threaded CPU/GPU support. The
dynamic programming algorithm generates a table with entries for each subfor-
mula and predicate. The bottom rows of the table are reserved for predicates
and each distance to the unsafe set is computed in parallel. (ii) Once this is com-
pleted, the tree of subformulas is traversed in parallel to return the robustness.
Furthermore, for rows with temporal operators that contain timing intervals,
the computation of each cell in the table may be computed independently from
the results in the adjacent cells, and therefore the entire row may be computed
in parallel. The computation of n cells is broken up in n/c groups based on the
number of threads c available. For each thread, a consecutive number of cells is
computed. In this case, the sliding window algorithm utilizes the results from the
adjacent cell to the right to compute the current cell. This reduces the number
of operations within a thread by limiting the min/max operations to only new
data in the window.

Average Running-time: For time bounded formulas, two improvements are
made. (i) A modified binary search algorithm is developed that determines the
indices that correspond to the time bounds. For every iteration of the algorithm,
the indices are approximated based on the previous indices and then verified.
In addition, as the formula is evaluated, the time bound under consideration
is restricted to the remaining trace. (ii) For time bounded formulas, there is a
sliding window reflecting the time bound of the formula. Since robustness com-
putation is a sequence of min/max operations and most of the data in the current
sliding window overlap with the previous window, we only need to consider the
changes between the sliding windows to calculate the min/max of the current
window.

Memory Management: By dynamically allocating and deallocating memory
based on the structure of the formula, TLTk operates with a significantly smaller
memory footprint. Initially, a formula ϕ is decomposed into a tree structure. For
example, for ϕ = ♦(¬r1 ∧ r2), memory is allocated for predicates r1 and r2
and robustness is computed for the two predicates. Instead of allocating a new
row for ¬r1, an existing row where r1 was stored is overwritten with the new
values. After, the memory allocated for r2 is utilized to store the robustness with
respect to ¬r1 ∧ r2. The only additional row added is for the final expression
of the eventually operator. This process is illustrated in Fig. 3. The worst case
space complexity for the robustness computation is O(β × |τ |), where β is the
number of predicates in the formula and |τ | is the number of timestamps. A row
is preallocated for each predicate in the formula. We note that if a predicate is
repeated in the formula, a memory row is allocated for each repetition. For any
number of temporal operators, only one additional row needs to be preallocated.
The length of each row is defined by the number of timestamps.

The robustness computation of the Always (�), Eventually (♦), And (∧),
Or (∨), Not (¬) and Until (U) operators is done in parallel in the C back-
end. The main program and interface of TLTk is implemented in Python. A
wrapping function is utilized to ensure the execution of the C code from the
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Fig. 3. A sample memory flow for the formula φ = ♦(¬r1 ∧ r2). The initial memory
allocation is shown in table (i) on the upper left corner. There are three rows allocated
in total: two for the system output signals and one for the timestamps. In the next
step, in table (ii), the memory that is allocated for the robustness calculations for r1
is utilized. Similarly, in the next two steps, in tables (iii and iv), there is a memory
overwrite for the formula ¬r1 and robustness calculations for r2. Next, in table (v),
a memory overwrite occurs for the formula ¬r1 ∧ r2 and a memory deallocation for
the r2 distance row. Finally, in table (vi), there is a new memory allocation for the
formula ♦(¬r1 ∧ r2), and memory deallocation for ¬r1 ∧ r2. The number of columns is
divided by the number of available processor cores into groups. Each of these groups
is processed in parallel.

Python interface. The algorithm and implementation details are presented in
the extended technical report [7].

4 Evaluation and Experimental Results

In the following, we evaluate the robustness computation times on various trace
sizes and temporal logic specifications. We compare the outcome to the well-
known tools DP-TaLiRo [31] and Breach [9]. In more detail, we compare
TLTk with Breach and DP-TaLiRo separately so that we may focus in the
areas where they have the strongest performance. The comparison with Breach
is focused on specifications with single-dimensional predicates, where the robust-
ness of the predicates is computed through a subtraction of samples in a trajec-
tory to the bound of the unsafe set. The comparison with DP-TaLiRo is focused
on specifications with multi-dimensional predicates, where the robustness com-
putation for the predicates requires a solution to a quadratic program. Note
that Breach does not directly support robustness computations over multi-
dimensional signal predicates. We highlight that in the following results, the
TLTk robustness algorithm utilizes parallel processing, while the algorithms
in DP-TaLiRo and Breach do not. We have verified the correctness of the
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robustness computation algorithm for each experimental result and, for ease of
exposition, we focus the presentation on the computation time for the tools. The
experiments were conducted on a desktop computer with the following specifica-
tions: CPU i7-8700K CPU @ 3.70 GHz, GPU GTX 1080Ti, 32 GiB DDR4 RAM
and Ubuntu 18.04.3 LTS.

Comparison with Breach (version 1.7)6. We present the experimental com-
parison of TLTk with Breach in Table 1. We compare the robustness compu-
tation of STL formulas with trace lengths ranging from 210 to 229. The traces
are checked against three STL specifications. A performance improvement of at
least one order of magnitude can be observed.

Table 1. Comparison of computation times in seconds for TLTk and Breach with
various specifications and trajectory lengths. × indicates out of memory error instances.

Comparison with DP-TaLiRo (version 1.6)7. The experimental comparison
of TLTk with DP-TaLiRo is presented in Table 2. The comparison is conducted
using formulas that are defined for several benchmark problems. Specifically,
requirements for the aircraftODE [27] (φs1), Navigation [27] (φs2), Heat Transfer
[14] (φs6) and Nonlinear [1] (φs3−s5) Systems. The specifications are defined in
Table 3. A performance improvement of at least two orders of magnitude can be
observed.

6 Breach 1.7 downloaded on 01.16.2020 from https://github.com/decyphir/breach.
7 DP-TaLiRo is part of S-TaLiRo toolbox version 1.6. The tool was downloaded on

01.16.2020 from https://app.assembla.com/spaces/s-taliro public/.

https://github.com/decyphir/breach
https://app.assembla.com/spaces/s-taliro_public/
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Table 2. Comparison of computation times in seconds for TLTk and DP-TaLiRo with
various trajectory sizes. Specifications ϕs1 through ϕs6 and the predicate definitions
can be found in Table 3. Symbol × indicates out of memory instances.

5 Related Works

TLTk was inspired by the Matlab toolboxes S-TaLiRo [3,11] and Breach
[9]. All three tools provide an automated test-case generation process for find-
ing system behaviors that falsify temporal logic specifications. In addition to
falsification, these tools provide methods for requirement mining, conformance
testing and real-time monitoring. They provide various optimization algorithms
for black-box and grey-box testing. A different approach to falsification is utilized
in the tool FalStar [32]. In FalStar, the falsifying system behavior is gener-
ated by constructing the input signal incrementally in time. This is particularly
useful for reactive specifications. In another tool, falsify [2], the program solves
the falsification problem through reinforcement learning. The tool attempts to
find a falsification by observing the output signal and modifying the input sig-
nal during system simulation. A trajectory splicing/multiple shooting approach
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Table 3. Specifications and predicates for the Signal Temporal Logic specifications
utilized for the comparison between TLTk and S-TaLiRo.

is utilized in the tool S3CAM [33], which explores the state-space of CPS and
splices trace segments to find a path from one state to another. This approach
was later extended to incorporate symbolic reachability techniques in the tool
XSpeed [5]. To enable monitoring of temporal logic specifications in robotic sys-
tems, in [26], the authors present RTAMT, which offers integration with ROS
and supports monitoring of past and future time specifications.

6 Conclusion and Future Work

We have presented TLTk, a tool for falsification and parallel robustness com-
putation of STL specifications. The modular architecture of the tool enables
integration with any stochastic optimization algorithm or system simulator avail-
able in Python. The experimental results demonstrate that the multi-threaded
CPU/GPU robustness engine shows a runtime improvement of at least one order
of magnitude in comparison to Breach and DP-TaLiRo.

The robustness computation engine may be improved through syntactic anal-
ysis of the specifications to remove potentially redundant subformulas [8], or
prioritizing results that imply results for other subformulas. In addition, as part
of future work, the GPU algorithm may be improved further. In the current
implementation, GPU computations are called for each predicate and temporal
operator in the formula. This process causes an overhead when transferring the
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system trace to the GPU memory for each call. In addition, we plan to add
requirement mining functionality as well as integration with ROS. Among our
goals is to use the tool for planning and control of robotic systems.
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Abstract. We present MoonLight, a tool for monitoring temporal and
spatio-temporal properties of mobile and spatially distributed cyber-
physical systems (CPS). In the proposed framework, space is represented
as a weighted graph, describing the topological configurations in which
the single CPS entities (nodes of the graph) are arranged. Both nodes
and edges have attributes modelling physical and logical quantities that
can change in time. MoonLight is implemented in Java and supports
the monitoring of Spatio-Temporal Reach and Escape Logic (STREL)
introduced in [6]. MoonLight can be used as a standalone command
line tool, as a Java API, or via Matlab TM interface. We provide here
some examples using the Matlab TM interface and we evaluate the tool
performance also by comparing with other tools specialized in monitoring
only temporal properties.

1 Introduction

Cyber-physical systems [24] (CPS) are a widespread class of technological arte-
facts that include contact tracing devices, self-driving cars, mobile ad-hoc sensor
networks and smart cities. CPS are controlled by a computational device and
interact within the physical space. As such, they are described by discrete states,
controlling actuators, and continuous quantities, measured by sensors, which can
both change in time. CPS are arranged in spatial configurations that can be static
or dynamic. Their network connectivity can typically change in time.

A fundamental task in engineering CPS is monitoring their behaviors, speci-
fied in a suitable formal language, such as Signal Temporal Logic (STL) [18,19].
Monitoring can be performed on a deployed system or on simulations of a model,
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as typically done in the design phase to test different initial conditions, param-
eters and inputs [4,7]. Monitoring a trace returns either a Boolean value, wit-
nessing whether the requirement is satisfied or not, or a quantitative value, for
instance a real-value indicating how much the specification is satisfied or violated
according to a chosen notion of distance [5,10,13,14,25].

Current tools available for monitoring formal specifications are restricted to
temporal properties, mostly ignoring the spatial dimension of CPS [4,7].

Our Contribution. We present MoonLight, a lightweight tool for monitoring
temporal and spatio-temporal properties of spatially distributed CPS, which
can move in space and change their connectivity (mobile CPS). MoonLight
is implemented in Java and supports monitoring of Spatio-Temporal Reach
and Escape Logic (STREL), a spatio-temporal specification language intro-
duced in [6]. STREL extends STL [18,19] with two main spatial operators
reach and escape from which is possible to derive many other spatial operators
(e.g., everywhere, somewhere and surround). Our implementation is available at:
https://github.com/MoonLightSuite/MoonLight. MoonLight can be used: as
a standalone command line tool, as a Java API, or via Matlab TM interface.
In this paper, we describe the usage of MoonLight via Matlab TM interface
because several CPS models and analysis tools are available for this framework.
We refer to the documentation for the other usage possibilities.

MoonLight takes as input a STREL formula and a spatio-temporal tra-
jectory. Space is represented as a weighted graph, describing the topological
configurations in which the CPS entities are arranged. Nodes represent single
entities. Both nodes and edges have attributes modelling physical and logical
quantities that can change in time. Therefore, a spatio-temporal signal, in the
most general case, is described by a sequence of such weighted graphs, allowing
both spatial arrangement and attributes to change in time. MoonLight mon-
itors such a sequence of graphs with respect to a STREL formula, returning a
Boolean or a quantitative verdict, according to the semantic rules of [6].

Related Work. Monitoring tools for CPS are generally agnostic of the spatial
configuration of the entities such as sensors and computational units. They are
limited to monitor temporal specifications over time series of data. Examples are
S-Taliro [2] for Metric Temporal Logic (MTL) [15], R2U2 [20] for Mission Lin-
ear Temporal Logic (MLTL) [20], AMT [23] and Breach [9] for Signal Temporal
Logic (STL) [18,19], TeSSLa [16] and RTLola [8] for temporal stream-based spec-
ification languages and Montre [26] for Timed Regular Expressions (TRE) [3].
However, temporal specification languages are not always expressive enough to
capture the rich and complex spatio-temporal patterns that CPS display. For this
reason, many researchers have extended temporal specification languages such
as STL to express also spatial requirements. Examples include Spatial-Temporal
Logic (SpaTeL) [11], the Signal Spatio-Temporal Logic (SSTL) [21], the Spatial
Aggregation Signal Temporal Logic (SaSTL) [17] and STREL [6]. Despite many
developed prototypes built more for demonstration purposes rather than becom-
ing usable tools, we are aware only about jSSTL [22] as offline monitoring tool

https://github.com/Quanticol/MoonLight
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for spatio-temporal properties. jSSTL [22] supports SSTL and operates over a
static topological space, while the tool proposed in this paper can also monitor
dynamical locations, such as in mobile wireless sensor networks.

2 MoonLight in a Nutshell

The main component of MoonLight is its Java Application Programming Inter-
face (API): a set of specialized classes and interfaces to manage data domains and
signals, to represent spatial models that can evolve in time, to monitor tempo-
ral and spatio-temporal properties and to manage input/output to/from generic
data sources. Moreover, it also contains a compiler that generates the necessary
Java classes for monitoring from a MoonLight script. The latter are built and
dynamically loaded to enable the monitoring of the specified properties.

MoonLight provides also an interface that enables the integration of its
monitoring features in MatlabTM. We now first introduce a simple running
example to guide the reader on how to monitor spatial-temporal properties.
Then, we present a MoonLight script together with a gentle introduction of
formulas semantics. Finally, we show how MoonLight can be used in the Mat-
labTM environment.

2.1 Running Example

A running example is used to describe the behaviour of our tool. We consider a
wireless ad-hoc sensor network [1] consisting of three different types of mobile
device: coordinator, router, end-device. For each network, there is only one coordi-
nator that is responsible to initialize the network. The routers are responsible for
passing data on from other devices and they establish a mesh network of interme-
diate devices to reach more distant ones. The end-devices can only communicate
with router or coordinator, and they cannot relay data from other devices. We
assume that all the devices are battery-powered and they are equipped with
sensors enabling them to measure and collect data from the environment (e.g.
pollution, temperature, etc.).

Figure 1 illustrates a network with 10 nodes (1 coordinator (C) in violet, 2
routers (R) in cyan and 7 end devices (E) in yellow). The nodes are distributed in
an Euclidean space, i.e. axis represent their coordinates in the space. The edges
represent the connectivity graph of the network, expressing the fact that two
devices can directly interact (i.e. they are within their communication range).

In MoonLight, the space is modelled as a graph, where each node repre-
sents a location containing mixed-analog signals while each edge represents a
topological relation. Edges are labelled with one or more quantitative attributes
describing additional information about the spatial structure. In our example,
the sensor network is our graph, each device represents a node/location of the
network and contains three signals evolving in time: the type of node (coordina-
tor, router, end-device), the level of battery, and the temperature. The edges are
labelled with both their Euclidean distance and with the integer value 1. This
last value is used to compute the hop (shortest path) count between two nodes,
that is the number of intermediate network nodes through which data must pass
between source node and target one.
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Fig. 1. Sensor network with 1 coordinator (C, in violet), 2 routers (R, in cyan) and 7
end devices (E, in yellow). (Color figure online)
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Fig. 2. (left) Boolean satisfaction of formula P1, (blue nodes (V) satisfy the formula),
red nodes do not satisfy the formula.(right) Boolean satisfaction of formula P4, (blue
nodes (V) satisfy the formula), red nodes do not satisfy the formula. (Color figure
online)

Moonlight evaluates properties specified in the linear-time spatio-temporal
logic STREL over spatio-temporal signals, i.e. functions mapping each node and
time instant into a vector of values, describing the internal state of each location.
In the following, we show how to use the MoonLight scripting language to
specify spatio-temporal properties and how to monitor them.
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1 signal { int nodeType; real battery; real temperature; }
2 space { edges { int hop; real dist; } }
3 domain boolean;
4 formula atom = (nodeType ==3);
5 formula P1 = atom reach(hop)[0,

1]{( nodeType ==1)|( nodeType ==2)};
6 formula Ppar(int k) = atom reach(hop)[0, k] (nodeType == 1);

Fig. 3. Example of Moonlight monitor script specification, corresponding to the sen-
sorNetMonitorScript.mls of line 1 in Fig. 5.

2.2 MoonLight Script

A monitor in MoonLight is specified via a MoonLight script. Figure 3
reportes an example that specifies the necessary information to instrument a
monitor for our sensor network.

The script (line 1) starts with the definition of the domains of input signal. We
recall that STREL is interpreted over spatio-temporal signals. In our scenario,
these values are: the type of node, the temperature level and the battery level.
As domains, the node type is represented by an integer (int) and the battery
and temperature by real values (real). Spatial structures in STREL can change
over time. This enables the modelling of the mobile network of sensors as in our
example by updating edges and edge labels. The edges can have more than one
label with different domains. These are specified in line 2 of our example. In this
case we have two labels: hop having type int domain, and dist with type real.
Note that, if one is only interested in temporal properties, this part is omitted
in the script.

MoonLight, like STREL, supports different semantics for monitoring. A
user can specify the desired one by indicating the specific monitoring domain (see
line 3). Currently, MoonLight supports qualitative (boolean) and quantitative
(minmax) semantics of STREL.

After this initial declaration, the script contains the list of formulas that can
be monitored (see lines 4–6). Formulas can have parameters that are instantiated
when monitoring is performed. A formula can be used within another formula.

The syntax of STREL is summarized in Fig. 4. The atomic expression consists
of Boolean expressions on signal variables like, for instance, (battery > 0.5) or
(nodeType == 2). As expected, the interpretation of atomic formulas depends
on the domain of the monitoring.

Formulas are built by using standard Boolean operators (negation !, con-
junction &, disjunction |, and implication =>) together with a set of temporal
and spatial modalities.

Temporal properties are specified via the standard until and since oper-
ators (see e.g. [18,19]) from which we can derive the future eventually
and globally operators and the corresponding past variants, once and
historically. All these operators may take an interval of the form [a,b],
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with a,b ∈ R≥0, to define where the property should be evaluated. The interval
can be omitted in case of unbounded temporal operators.

Spatial modalities, instead, are reach and escape operators, and the deriv-
able operators somewhere and everywhere. All these operators may be decorated
with a distance interval [a,b] and a distance expression. The distance expres-
sion consists of an expression that is used to compute the length of an edge. If
omitted, the real value 1.0 is used.

1 (atomicExpression)
2 | ! Formula
3 | Formula & Formula
4 | Formula | Formula
5 | Formula => Formula
6 | Formula until [a b] Formula
7 | Formula since [a b] Formula
8 | eventually [a b] Formula
9 | globally [a b] Formula

10 | once [a b] Formula
11 | historically [a b] Formula
12 | escape(distanceExpression)[a b] Formula
13 | Formula reach (distanceExpression)[a b] Formula
14 | somewhere(distanceExpression) [a b] Formula
15 | everywhere (distanceExpression) [a b] Formula
16 | {Formula}

Fig. 4. STREL syntax.

To describe the spatial operators, we consider some examples. Let us first
consider the following property of the script:

P1 = (nodeType==3)reach(hop)[0, 1]{(nodeType==1)|(nodeType==2)}
P1 holds if from a node of type 3 (an end device), we can reach a node of type 1
or 2 (a coordinator or a router), following a path in the spatial graph such that
the hop distance along this path (i.e. its number of edges) is not bigger than 1.
This property specifies that “end device should be directly connected to a router
or the coordinator”.

The reach operator allows us to express properties related to the existence
of a path. The other operator of STREL, escape, can be used to express the
ability of move away from a given point. Let us consider the following property:

P2 = escape(hop)[5,inf] (battery > 0.5)

P2 states that from a given location, we can find a path of (hop) length at
least 5 such that all nodes along the path have a battery level greater than 0.5,
i.e. that a message will be forwarded along a connection with no risk of power
failure.
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To specify properties around a given location, operators somewhere and
everywhere can be used. For instance, we can consider the following property:

P3 = somewhere(dist)[0,250] (battery > 0.5))

P3 is satisfied (at a given location) whenever there is a node at a distance between
0 and 250 having a battery greater than 0.5. In this formula the distance
is computed by summing the value dist of traversed edges. The everywhere
operators works in a similar way, however it requires that its subformula holds
in all nodes satisfying the distance constraints.

Note that both reach and escape are existential operators, as they predi-
cate the existence of a path with certain properties, and all the properties are
interpreted at a given location, at a given time. Temporal and spatial operators
can be nested as for example:

PT1 = (battery <= 0.5)reach(hop)[0, 10] eventually(battery > 0.5)

PT1 holds if each node can reach a node in less than 10 hops where the battery
is greater than 0.5 in at least one time step in the next 5 time units. We will
show a second example later, but for more formal details and examples about
STREL, we refer to [6] and the to tool documentation.

2.3 Using MoonLight in Matlab TM

To use MoonLight in Matlab TM one has just to run the installation script
(named install.m) distributed with MoonLight. A detailed description of
the installation process is available at the tool web site. After this installation,
MoonLight becomes available to be used in the Matlab TM environment. In
Fig. 5 a simple example is presented showing the main features of this module.

1 s = ScriptLoader.loadFromFile("sensorNetMonitorScript");
2 m = s.getMonitor("Ppar");
3 param = 5;
4 br = m.monitor(spatialModel ,time ,values ,param);
5 script.setMinMaxDomain ();
6 rr = m.monitor(spatialModel ,time ,values ,param);

Fig. 5. Example of MatlabTM script that uses MoonLight

The function ScriptLoader.loadFromFile loads the script. It takes as
parameter the file name containing the script to load (see line 1). After this
operation is performed, a Java class is generated from the script and dynamically
loaded. A reference to this object is returned to be used later. In the provided
code, the script of Fig. 3 is loaded from the file sensorNetMonitorScript.

After a script is loaded, the monitors defined inside can be instantiated. In the
example of Fig. 5 the monitor associated with formula named Ppar is retrieved
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(line 2). When we have the monitor we can use it to verify the satisfaction of
the property over a given spatio-temporal signal. This is done by invoking the
method monitor of the just loaded monitor. This function takes the following
parameters:

– spatialModel is an array of Matlab TM graph structures specifying the
spatial structure at each point in time; in the sensor network example, for
each time step i, spatialModel{i}.Edges represents the adjacent list of the
graph. This input is omitted when purely temporal models are considered.

– time is an array of time points at which observations are provided.
– values is a map (a cell array), with a cell for each node. In each cell, there

is a matrix n × m where each row represents the values of the signals at the
time points specified by time (with n equal to the number of time points and
m the number of the considered signals); in the sensor network example, each
node has a 3 signals representing the node’s type, battery, and temperature.
We represent different types of nodes using integer numbers, 1, 2, and 3 to
represents coordinator, router, and end-device respectively. This input is a
simple matrix in case of purely temporal models.

– param is used to instantiate the parameter k of formula Ppar.

The output br from line 4 in Fig. 5 is similar to the input signal. It
is a map that associates a Boolean-value (for the Boolean semantics) or a
real-value signal (for the quantitative semantics) with each node, i.e. the
Boolean or quantitative satisfaction at each time in each node. Finally,
line 5 shows how to set the quantitative semantics ( in the Boolean case:
moonlightScript.setBooleanDomain()).

In Fig. 2 (left), we can see the Boolean satisfaction at time zero of each
node with respect the formula P1 of our script example in Fig. 3. The blue
nodes (marked with a V) on the plot of Fig. 2(left) correspond to the nodes that
satisfies the property, i.e. the end devices that reach a router or a coordinator
with at most 1 hop. Figure 2 (right) shows the satisfaction of formula:

P4=(nodeType==3)reach(hop)[0,1]{(nodeType==2)reach(hop)[0,5](nodeType==1)}

P4 holds only in the nodes connected directly to the coordinator or to routers
that can reach the coordinator through a maximum of four other routers. We can
see that nodes 3, 4, 5 and 9 satisfy P1 but not P4. Property PT2 = globally P4
can be used to check that P4 is true in each time step.

3 Experimental Evaluation

Our experiments were performed on a workstation with an Intel Core
i7-5820K (6 cores, 3.30GHz) and 32GB RAM, running Linux Ubuntu 16.04.6
LTS, Matlab TM R2020a and OpenJDK 64-Bit Server VM 1.8.0 252.
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3.1 Temporal Evaluation: Monitoring Signal Temporal Logic

We consider the Automatic Transmission example in [12]. This benchmark con-
sists of a Matlab TM/Simulink deterministic model of an automatic transmis-
sion controller. The model has two inputs (the throttle and the break) and two
outputs: the speed of the engine ω (RPM) and the speed of the vehicle v (mph).
We monitor the robustness of four requirements in [12]:

(R1) The engine speed never reaches ω̄: globally (ω < ω̄)

(R2) The engine and the vehicle speed never reaches ω̄ and v̄ resp.:
globally ((ω < ω̄) & (v < v̄))

(R3) If engine speed is always less than ω̄, then vehicle speed can not exceed v̄
in less than T sec.: !(eventually [0, T] (v > v̄) & globally (ω < ω̄))

(R4) Within T sec. the vehicle speed is above v̄ and from that point on the engine
speed is always less than ω̄: eventually [0,T] ((v ≥ v̄) & globally (ω < ω̄))

We randomly generated 20 different input traces with 6400 samples and
another 20 with 12800 samples (0.01 sec. of sampling time). For each input trace,
we simulated the model and we monitored the robustness of the four require-
ments over the outputs by varying the parameters v̄ ∈ {120, 160, 170, 200},
w̄ ∈ {4500, 5000, 5200, 5500} and T ∈ {4, 8, 10, 20}. For a fixed combination of
parameters and output traces, we repeated the monitoring experiment 20 times
and we considered the mean of the execution times. In Fig. 6, we compare the
performance of our Moonlight monitors with S-Taliro [2] and Breach [9]
using bloxplots representing the quartiles of the execution times distribution for
monitoring each requirement with each tool. The graph shows a good perfor-
mance of Moonlight with respect to the other tools. However, it is important
to note that Breach considers piece-wise linear signals and computes the inter-
polation between two consecutive samples when necessary, while our tool and
S-Taliro interpret the signal step-wise.

MoonLight
6400 samples

MoonLight
12800 samples

Breach
6400 samples

Breach
12800 samples

S-Taliro
6400 samples

S-Taliro
12800 samples

0

2

4

6

·10−2

ti
m
e
(s
)

Fig. 6. The comparison of the computational time (in sec.) between MoonLight,
Breach and S-Taliro for simulation traces with different length. The different colors
represent the result for different requirements: (R1), (R2), (R3) and (R4). (Color figure
online)
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3.2 Spatio-Temporal Evaluation

We evaluate the scalability of the spatial operators in the running example vary-
ing the number of nodes of the graph: N = 10, 100, 1000. Note that the number
of edges is around 1700 for N = 100 and 8000 for N = 1000. We monitor the
Boolean (B) and the quantitative (Q) semantics of the requirements presented
in Sect. 2.2, excluding P1. For the spatio-temporal requirements we consider K
time step, for K = 10, 100. We repeat the monitoring experiments 50 times
for each N. Table 1 shows the average execution time. For spatial formulas, we
can see that formula (P4) performs better than the other two. (P2) is slower
because monitoring algorithms of the reach and somewhere are O(n2) i.e. lin-
ear in the number of edges and quadratic in the number of vertexes, while the
one for escape is O(n3). As expected, the Boolean semantics is faster than the
quantitative one: it can reach sooner the fixed point. Formula (P3) is the slowest
due to the fact that uses the euclidean distance while formula (P2) and (P4)
the lighter hop distance. For spatio-temporal formulas, the reason why (PT1)
is much faster than (PT2) is that (PT1) has a temporal subformula, hence the
number of time steps can be dramatically reduced before monitoring the spatial
part. This does not happen for (PT2), where the operators are inverted. In this
case the difference between the two semantics is more evident. For static graphs
and properties restricted to everywhere and somewhere spatial modalities, the
performances are similar to jSSTL [21,22]. Further experiments can be found
in the tool release.

Table 1. The comparison of the computational time (in sec) with respect the number of
nodes of the graph N for formulas (P2), (P3), (P4), and with respect N and the number
of time steps K for formulas (PT1), and (PT2) for Boolean (B) and quantitative (Q)
semantics.

K = 1 K = 10 K = 100

P2 P3 P4 PT1 PT2 PT1 PT2

N B Q B Q B Q B Q B Q B Q B Q

10 0.0031 0.0032 0.0031 0.0029 0.0027 0.0026 0.021 0.021 0.026 0.021 0.0.24 0.17 0.17 0.17

100 0.013 0.020 0.042 0.0419 0.0088 0.0084 0.067 0.081 0.10 0.14 0.76 0.73 1.02 1.5

1000 0.86 4.97 16.91 16.95 0.11 0.12 0.60 0.76 6.18 14.74 6.68 7.29 99.17 276.8

4 Conclusion

MoonLight provides a lightweight and very flexible monitoring tool for tem-
poral and spatio-temporal properties of mobile and spatially arranged CPS. The
possibility to use a dedicated Matlab TM interface enables to easily integrate
MoonLight as a component in other tool chains implementing more sophisti-
cated computer-aided verification and synthesis techniques such as falsification
analysis and parameter synthesis. In the near future, we plan to add also a
Python interface and to extend the tool with new functionalities such as the
support parallelized and online monitoring.
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Abstract. The safety of cyber-physical systems rests on the correctness
of their monitoring mechanisms. This is problematic if the specification
of the monitor is implemented manually or interpreted by unreliable
software. We present a verifying compiler that translates specifications
given in the stream-based monitoring language Lola to implementations
in Rust. The generated code contains verification annotations that enable
the Viper toolkit to automatically prove functional correctness, absence
of memory faults, and guaranteed termination. The compiler parallelizes
the evaluation of different streams in the monitor based on a dependency
analysis of the specification. We present encouraging experimental results
obtained with monitor specifications found in the literature. For every
specification, our approach was able to either produce a correctness proof
or to uncover errors in the specification.

1 Introduction

Cyber-physical systems are inherently safety-critical, because failures immedi-
ately impact the physical environment. A crucial aspect of the development of
such systems is therefore the integration of reliable monitoring mechanisms. A
monitor is a special system component that typically has broad access to the
sensor readings and the resulting control decisions. The monitor assesses the
system’s health by checking its behavior against a specification. If a violation is
detected, the monitor raises an alarm and initiates mitigation protocols such as
an emergency landing or a graceful shutdown.

An obvious concern with this approach is that the safety of the system rests
on the correctness of the monitor. Quis custodiet ipsos custodes? For simple spec-
ifications, this is not a serious problem. An ltl [29] specification, for example,
can be translated into a finite-state automaton that is proven to correspond to

This work was partially supported by the German Research Foundation (DFG) as part
of the Collaborative Research Center “Foundations of Perspicuous Software Systems”
(TRR 248, 389792660), and by the European Research Council (ERC) Grant OSARES
(No. 683300).

c© Springer Nature Switzerland AG 2020
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the semantics of the specification. Implementing such an automaton correctly as
a computer program is not difficult. For more expressive specification languages,
establishing the correctness of the monitor is much more challenging. Especially
problematic is the use of interpreters, which read the specification as input and
then rely on complicated and error-prone software to interpret the specifica-
tion dynamically at runtime [6,12,14–16]. Recently, however, much effort has
gone into the development of compilers. Compared to a full-scale interpreter,
the code produced by a compiler for a specific specification is fairly simple and
well-structured. Some compilers even include special mechanisms that increase
the confidence in the monitor. For example, the RTLola compiler [7] generates
vhdl code that is annotated with tracing information that relates each line
of code back to the specific part of the specification it implements. The Copilot
compiler [26] produces a test suite for the generated C code. The framework even
includes a bounded model checker, which can check the correctness of the out-
put for input sequences up to a fixed length. However, none of these approaches
actually proves the functional correctness of the monitor.

In this paper, we present a verifying compiler that translates specifications
given in the stream-based monitoring language Lola [13] to implementations in
Rust1. The generated code is fully annotated with formal function contracts, loop
invariants, and inline assertions, so that functional correctness and guaranteed
termination can be automatically verified by the Viper [22] toolkit, without any
restriction on the length of the input trace. Since the memory requirements of
a Lola specification can be computed statically, this yields a formal guarantee
that on any platform that satisfies these requirements, the monitor will never
crash and will always compute the correct output.

A major practical concern for any compiler is the performance of the gener-
ated code. Our Lola-to-Rust compiler produces highly efficient monitor imple-
mentations because it parallelizes the code for the evaluation of the specifica-
tions. Since Lola is a stream-based specification language, it exhibits a highly
modular and memory-local structure, i.e., the computation of a stream writes
only in its own local memory, although it may read from the local memory of sev-
eral other processes. The compiler statically analyzes the dependencies between
the streams, resulting in a partial evaluation order. To prove correctness, it is
shown that streams that are incomparable with respect to the evaluation order
can indeed be evaluated in parallel.

We have used our compiler to build monitors from specifications of varying
sizes found in the literature. In our experience, the compiler itself scales very
well. The verification in Viper, however, is expensive. It appears that the running
times of the underlying smt solver Z3 [21] vary greatly, even for different runs
on the same monitor and specification. Nevertheless, we have been successful
in all our benchmarks in the sense that the compiler either generated a verified
monitor or uncovered an error in the specification. This is a major step forward
towards the verified monitoring of real-life safety-critical systems.

1 See https://www.rust-lang.org/.

https://www.rust-lang.org/
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2 Introduction to Lola

The source language of our verifying compiler is the stream-based monitoring
language Lola [13]. A Lola monitor is a reactive component that translates, in an
online fashion, input streams into output streams. In each time step, the monitor
receives new values for the input streams and produces new values for the out-
put streams in accordance with the specification. In principle, the monitoring
can continue forever; if the monitor is terminated, it wraps up the remaining
computations, produces a final output, and shuts down. Lola specifications are
declarative in the sense that the semantics leaves a lot of implementation free-
dom: the semantics defines how specific values are combined arithmetically and
logically, but the precise evaluation order and the memory management are
determined by the implementation.

A Lola specification defines a set of streams. Each stream is an ordered
sequence of typed values that is extended throughout the monitor execution.
There are three kinds of streams:

Input Streams constitute the interface between the monitor and an external
data source, i.e., the system under scrutiny.

Output Streams compute new values based on input streams, other output
streams, and constant values. The computed values contain relevant infor-
mation regarding the performance and health status of the system.

Triggers constitute the interface between the monitor and the user. Trigger
values are binary and indicate the violation of a property. In this case, the
monitor alerts the user.

Syntactically, a Lola specification is given as a sequence of stream decla-
rations. Input stream declarations are of the form ij : Tj , where ij is an input
stream and Tj is its type. Output stream and trigger declarations are of the form
sj : Tj = ej(i1, . . . , im, s1, . . . , sn), where i1, . . . , im are input streams, s1, . . . , sn

are output streams, and the ej are stream expressions. A stream expression con-
sists of constant values, streams, arithmetic and logic operators f(e1, . . . , ek),
if-then-else expressions ite(b, e1, e2), and stream accesses e[k, c], where e is a
stream, k is the offset, and c is the constant default value. Stream accesses are
either synchronous, i.e., a stream accesses the latest value of a stream, or asyn-
chronous, i.e., a stream accesses a past or future value of another stream.

The example specification shown in Listing 1.1 monitors the altitude of a
drone, detects whether the drone flies below a given minimum altitude or above
a given maximum altitude for too long, and raises an alarm if needed. The input
stream altitude contains sensor information of the drone. The output stream
tooLow checks whether the altitude is lower than the given minimum alti-
tude of 200 in the last, current, and next step, denoted by altitude[-1,0],
altitude, and altitude[1,0], respectively. If this is the case, a trigger is
raised. Analogously, tooHigh checks whether the altitude is above the given
maximum altitude in the last, current, and next step, and a trigger is raised in
this case. The evaluations of tooHigh and tooLow try to access the second to
last value of altitude as well as the last and the next one. If altitude
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input altitude: Int32
output tooLow: Bool :=

altitude[-1,0] < 200 ∧ altitude < 200 ∧ altitude[1,0] < 200
output tooHigh: Bool :=

altitude[-1,0] > 600 ∧ altitude > 600 ∧ altitude[1,0] > 600
trigger tooLow "Flying below minimum altitude."
trigger tooHigh "Flying above maximum altitude."

Listing 1.1. A Lola specification monitoring the altitude of a drone. The output
stream tooLow (tooHigh) checks whether the drone flies below (above) a given
minimum (maximum) altitude in the last, current, and next step. If this is the case,
an alarm is raised.

t

b

a

−1 0 1.1 1.2 2.1 2.2 3.1 3.2 . . .

− − 1 2 3 . . .

− − 1 2 3 . . .

(a) The result of evaluating the output
streams respecting the evaluation order.

t

a

b

−1 0 1.1 1.2 2.1 2.2 3.1 3.2 . . .

− − 1 1 2 . . .

− − 1 2 3 . . .

(b) The result of evaluating the output
streams in order of their declaration.

Fig. 1. Two different evaluations of the output streams a and b, where a accesses b
synchronously and b accesses its previous value. Both accesses default to 0 and both a
and b increase the obtained value by 1.

does not have at least two values, the accesses with offset −1 fail and the default
value, in this case 0, is used. If altitude ceases to produce values, the accesses
with offset 1 fail. Hence, in contrast to negative offsets, the default value for
accesses with positive offset is used at the end of the execution.

The semantics of Lola is defined in terms of evaluation models. Intuitively,
an evaluation model consists of evaluations of each output stream of the speci-
fication. The evaluation is a natural translation of the stream expressions. The
full formal definition is given in [13].

Definition 1 (Evaluation Model [13]). Let ϕ be a Lola specification over
input streams i1, . . . , i� and output streams s1, . . . , sn. The tuple 〈σ1, . . . , σn〉
of streams of length N + 1 is called an evaluation model if for each equation
sj = ej(i1, . . . , i�, s1, . . . , sn) in ϕ, 〈σ1, . . . , σn〉 satisfies σj(k) = v(ej)(k) for
0 ≤ k ≤ N , where v(ej)(k) evaluates the stream expression ej at position k.

Synchronous accesses harbor a pitfall for the monitor realization as illustrated
in Fig. 1. Consider the corresponding Lola specification:

output a: Int32 := b[ 0, 0] + 1
output b: Int32 := b[-1, 0] + 1
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Here, a accesses b synchronously, while b accesses its previous value. The
evaluation of a tries to access the current value of b and increases the result by
one, which yields the next stream value of a. In contrast, the evaluation of b tries
to access the last value of b and increases the result by one to determine the next
stream value of b. Figure 1a depicts the resulting output. If the monitor evaluates
the streams in order of their declaration, however, the resulting output, shown
in Fig. 1b, differs from the expected one. The reason is that the current value
of b changes depending on whether or not b has already been extended when
accessing the value. This problem is solved by respecting the evaluation order,
a partial order on the output streams. It is induced by the dependency graph of
a Lola specification.

Definition 2 (Dependency Graph [13]). The dependency graph Dϕ =
(V,E) of a Lola specification ϕ is a weighted directed multigraph. Each vertex
represents a stream and each edge an access operation. Thus, s ∈ V iff s is a
stream or trigger in ϕ and (s1, n, s2) ∈ E for s1, s2 ∈ V , n ∈ N iff the stream
expression of s1 contains an access to s2 with offset n.

Based on the dependency graph, d’Angelo et al. define the shift of a
stream [13]. Intuitively, the shift of s indicates how many steps the evaluation
of its expression needs to be delayed. For instance, suppose the delay is n > 0.
Then the value of s for time t can be computed at time t + n.

Definition 3 (Shift [13]). For a Lola specification ϕ, the shift Δ(s) of a stream
s is the greatest weight of a path through the dependency graph of ϕ originating
in s: Δ(s) = max(0,max {w + Δ(s′)|(s, w, s′) ∈ E}).

The shift allows us to define an order in which streams need to be evaluated.
For this, we define the set of synchronized edges E∗ where the weight of a
synchronized edge (s, n, s′) ∈ E∗ indicates when s can access s′ successfully
with an offset of n. Let E∗ = {(s,Δ(s) − w − Δ(s′), s′) | (s, w, s′) ∈ E}.

Definition 4 (Evaluation Order). The evaluation order ≤eo is a partial order
on the output streams of a Lola specification ϕ. Let Dϕ = (V,E) be the depen-
dency graph of ϕ. The evaluation order is the transitive closure of a relation ≺
with s ≺ s′ iff (s′, 0, s) ∈ E∗.

Clearly, we obtain b ≤eo a for the above Lola specification, yielding the
expected result depicted in Fig. 1a. For the Lola specification from Listing 1.1,
however, the output streams tooLow and tooHigh are incomparable accord-
ing to the evaluation order. A total evaluation order on the output streams,
denoted ≤+

eo , is obtained by relating incomparable streams arbitrarily.

Remark 1 (On Asynchronous Accesses and Off-by-one Errors). It is fairly easy
to make off-by-one errors in asynchronous stream accesses. When two streams
within one layer access each other asynchronously, one of the offsets needs to be
decreased by 1, depending on which stream is evaluated first. This cannot be
avoided for any ≤+

eo . To simplify the presentation, we will ignore this issue in the
remainder of the presentation, the correct adjustment of the indices is, however,
implemented in the compiler.
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i
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− −
. . .

− −

− − − −

Fig. 2. Illustration of stream accesses in different phases of the execution. An output
stream o accesses an input stream i with offsets −2 and +2. In the prefix (postfix) of
the execution, the past (future) accesses need to be substituted by their default values.

Specifications where the dependency graph has no positive cycles are called
efficiently monitorable: such specifications can be monitored with constant mem-
ory, and an output value can always be produced after a constant delay [13]. All
example specifications considered in this paper are efficiently monitorable.

3 From Lola to Rust

The compilation proceeds in two steps. First, the Lola specification is analyzed
to determine inter-stream dependencies, the overall memory requirement, and
the different phases of the monitoring process. Second, the compiler produces
Rust code that implements the specification.

3.1 Specification Analysis

Execution Pre- and Postfix. Refer back to the Lola specification in Listing 1.1.
Another beneficial property of the synchronous input model is that, starting from
t = 2, both stream accesses with offset −1 to altitude will always succeed since
the offset refers to the last evaluation of altitude which did already happen at
t ≥ 1. For a more general analysis, suppose an output stream s accesses another
stream s′ with an offset of n. If n is non-positive, then accesses may fail until
t = Δ(s) − n − Δ(s′), i.e., they will not fail from Δ(s) − n − Δ(s′) + 1 on. If n is
strictly positive, however, the evaluation of s needs to be delayed by Δ(s) − n,
i.e., until s′ received the respective value. By generally delaying the execution
of s, all accesses to s′ continue to succeed until s′ ceases to produce new values.
As soon as this is the case, the monitor needs to evaluate s for Δ(s) − n more
times to compensate for the delay. For instance, the evaluations of tooLow and
tooHigh both have to be delayed by one step.

This behavior induces the structure of the monitor execution: it starts with
a prefix where past accesses always fail, loops in the regular execution where all
accesses always succeed, and ends in a postfix where future accesses always fail.

Figure 2 illustrates stream accesses in the different phases. It shows an output
stream o that accesses an input stream i with an offset of −2 and 2. In the first
two iterations of the monitor execution, i.e., in the prefix, the accesses to the
past values will fail, requiring the monitor to use the default values instead.
Afterwards, all accesses succeed until the input stream ends. In the last two
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evaluations, i.e., in the postfix, the future accesses fail and need to be replaced
by the default values.

While the shift only concerns time, it can also be used to compute the memory
requirement of a stream, i.e., the number of values of a single stream that can
be relevant at the same time. If a stream s of type T has a memory requirement
μ(s) = i, the monitor needs to reserve i · size(T ) bytes of memory for s.

Definition 5 (Memory Requirement). The memory requirement of a
dependency (s′, w, s) ∈ E is determined by the shifts of the streams as well as the
weight w of the dependency, i.e., the offset of the stream access: Δ(s)−Δ(s′)−w.
The memory requirement of a stream is thus the maximum requirement of any
outgoing dependency: μ(s) = max {Δ(s) − Δ(s′) − w | (s′, w, s) ∈ E}.

Hence, the compilation determines three key values for each specification.

Definition 6 (Memory Consumption, Prefix- and Postfix Length). Let
μ∗

ϕ, η←
ϕ , and η→

ϕ be the memory consumption, prefix length and postfix length
of ϕ, respectively, defined as follows:

μ∗
ϕ =

∑

s∈ϕ

{μ(s) · size(Ts)}

η←
ϕ = max

s∈ϕ
{Δ(s) + μ(s)}

η→
ϕ = max

s∈ϕ
{Δ(s)}

Furthermore, the evaluation order ≤eo of the output streams of a Lola spec-
ification induces the so-called evaluation layers.

Definition 7 (Evaluation Layer). Let ϕ be a Lola specification and let ≤eo
be the evaluation order induced by its dependency graph. If Layer(s) = k for an
output stream s, then there is a strictly decreasing sequence of k streams with
respect to ≤eo starting in s.

Intuitively, an evaluation layer consists of all streams that are incomparable
according to the evaluation order. For the Lola specification from Listing 1.1, for
instance, the output streams tooLow and tooHigh are incomparable according
to the evaluation order. Thus, they are contained in the same evaluation layer.
Evaluation Layers are also used to identify independent streams and thus to
enable their concurrent evaluation as described in Sect. 5.

3.2 Code Generation

The monitor code starts with a prelude which declares data structures and helper
functions. It also contains the main function starting with the static allocation
of the working memory. The remainder of the main function is the operative
monitoring code consisting of three components: the execution prefix, the monitor
loop, and the execution postfix. The general structure is illustrated in Listing 1.2,
details follow in the remainder of this section.
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Prelude

Monitor Loop

Execution Prefix

Execution Postfix

struct Memory { ... }
impl Memory { . . . }
[[ Evaluation Functions ]]
fn get input() −>

Option<(Ts1 , . . . , Ts�
)> {

[[ Communicate with system ]]
}
fn emit(output: &(Ts1 , . . . , Tsn )) {
[[ Communicate with system ]]

}
fn main() {
let mut memory = Memory::new();
let early exit = prefix(&mem);
if !early exit {

while let Some(input) = get input() {
mem.add input(&input1);
[[ Evaluation Logic ]]

}
}
postfix(&mem);

}

fn prefix(mem: &mut Memory) −> bool {
if let Some(input) = get input() {

mem.add input(&input);
[[ Evaluation Logic ]]

} else {
return true // Jump to Postfix.

}
[[ Repeat η←

ϕ times. ]]
false // Continue with Monitor Loop.

}

fn postfix(mem &Memory) {
[[ Evaluation Logic ]]
[[ Repeat η→

ϕ times. ]]
}

Listing 1.2. Structure of the generated Rust code.

Prelude. The prelude declares several functions required throughout the monitor
execution and declares as well as allocates the working memory. The functions
consist of two I/O functions and evaluation functions.

The function, where Ts1 , . . . , Ts�

are the types of all input streams, models the receipt of input data. It pro-
duces either None if the execution of the system under scrutiny terminated, or
Some(v), where v is an �-tuple containing the latest input values. Conversely,
the function emit(&(Ts�+1 , . . . , Tsk

)) conveys a (k − �)-tuple of output values
to the system.

For each stream, there are evaluation functions in several variants depending
on whether they will be called in the prefix, the loop, or the postfix. The imple-
mentations differ only in the logic accessing other streams. The Lola semantics
dictates that the evaluation needs to check whether the accessed value exists and
to substitute it with the respective default value if needed. However, an analysis
of the dependency graph reveals statically which accesses will fail. Thus, pro-
viding several implementations makes the need for such a check during runtime
redundant.

The working memory is a struct aptly named Memory. It consists of a static
array for each stream in the specification and reads as follows:

struct Memory { s1: [Ts1, μ(s1)], . . . , sk: [Tsn, μ(sn)] }

Here, s1, . . . , sk are all input and output streams with types T1, . . . , Tk. The
monitor allocates Memory once in its main function, keeps it on the stack, and
grants read access to functions evaluating stream expressions.

Execution Prefix. The prefix consists of η←
ϕ conditional blocks, each processing

an input event of the system under scrutiny. If the system terminates before
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the prefix concludes, the function returns true, indicating an early termina-
tion, which prompts the main function to initiate the postfix. Otherwise, the
input is added to the working memory and, evaluation layer by evaluation
layer, each output stream is evaluated in a dedicated function as can be seen
in the following code snippet. For this, assume that the specification has λ∗

evaluation layers, i.e., λ∗ = max {x | ∃s1, . . . , sx : s1 ≤eo · · · ≤eo sx} Moreover,
λi = |{s | Layer(s) = i}| denotes the number of streams within evaluation layer
i ≤ λ∗. Lastly, let si,j ≤+

eo si,j+1 with Layer(si,j) = Layer(si,j+1) = i.

let val_s1,1 = eval_pre_1_s1,1(&Memory);
...
let val_s1,λ1 = eval_pre_1_s1,λ1(&Memory);
memory.write_layer_1(val_s1,1, ..., val_s1,λ1)
...
let val_sλ∗,1 = eval_pre_sλ∗,1(&Memory);
...
let val_sλ∗,λλ∗ = eval_pre_sλ∗,λλ∗(&Memory);
Memory.write_layer_λ∗(val_sλ∗,1, ..., val_sλ∗,λλ∗);
if val_st1 == true { emit(mt1) }

Note that, as indicated in the prelude, each conditional block calls a different
set of evaluation functions. This allows for a fine-grained treatment of stream
accesses, improving the overall performance at the cost of greater code size. Also,
the call passes a single argument to the evaluation function: an immutable refer-
ence for Memory. As a result, the Rust type system guarantees that the evalua-
tion does not mutate its state. The function returns a value that is committed to
Memory after fully evaluating the current layer. The bodies of these functions are
straight-forward translations of stream expressions: each arithmetic and logical
expression has a counterpart in Rust. Stream lookups access the only argument
passed to the function, i.e., a read-only reference to the working memory.

The write layer i functions commit computed stream values to Memory.
After μ(s) iterations, the memory evicts the oldest data point for stream s, thus
constituting a ring buffer.

Monitor Loop. The main difference between the monitor loop and the prefix is,
as the name indicates, that the former consists of a loop. The loop terminates
as soon as the system ceases to produce new inputs. At this point, the monitor
transitions to the execution postfix.

Within the loop, the monitor proceeds just as in the prefix except that the
evaluation functions are agnostic to the current iteration number. In the evalua-
tion, all stream accesses are guaranteed to succeed rendering the evaluation free
of conditionals except when the stream expression itself contains one.

Execution Postfix. The structure of the execution postfix closely resembles the
prefix except for two differences: The postfix does not check for the presence
of new input values and calls a different set of evaluation functions, specifically
tailored for the postfix iteration.
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Fig. 3. Information flow between the monitor and the ghost memory.

Code Characteristics. The generated code exhibits two advantageous character-
istics. First, the trade-off between an increase in code size by quasi-duplicating
the evaluation functions leads to an excellent performance in terms of running
time. The functions require few arguments, avoid conditional statements as much
as possible, and utilize memory locality. This is further emphasized by the lack of
dynamic memory allocation and utilization of native datatypes. Second, the clear
code structure, especially with respect to memory accesses, drastically simplifies
reasoning about the correctness of the code.

4 Verification

Our goal is to prove that the verdicts produced by the monitor correspond to
the formal semantics. The main challenge is that the the evaluation model of the
Lola semantics refers to unbounded data sequences, disregarding any memory
concerns. The implementation, however, manages the monitoring process with
only a finite amount of memory. As a result, the Lola semantics may refer to
data values long after they have been discarded in the implementation. Hence,
the relation between the memory content and the evaluation model, and thus
the correctness of the computation, is no longer apparent.

We solve this problem with the classic proof technique of introducing so-
called ghost memory. The compilation introduces another data structure named
Ghost Memory (GM) which is a wrapper for Rust vectors, i.e., dynamically grow-
ing sequences of data. Whenever the monitor receives or computes any data, it
commits it to the GM. The GM’s size thus obviously exceeds any bound, voiding
the memory guarantees. However, the ghost memory’s sole purpose is to aid the
verification and not the monitor; information flows from the program into the
GM and the proof, but remains strictly separated from the monitor execution.
This allows for removing the GM after successfully verifying the correctness of
the monitor without altering its behavior. Figure 3 illustrates the flow of infor-
mation between the monitor and GM. Clearly, the monitor remains unaffected
when removing any proof artifacts.

The correctness proof has two major obligations: proving compliance between
values in the GM and the working memory, and proving the correctness of the
trigger evaluations with respect to the ghost memory. These obligations are
encoded as verification annotations, such that the Viper framework verifies them
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automatically. The compilation generates additional annotations to guide the
verification process. Viper annotations fall into the following categories:

Function Contracts. Annotations in front of a function f consist of precondi-
tions and guarantees. Viper imposes constraints on the function caller and
the function body itself. Each call to f is replaced by an assertion of the
preconditions of f, prompting Viper to prove their validity, and an assump-
tion of the guarantees. In a separate step, Viper assumes the preconditions
and verifies that the guarantees hold after executing the function body. Note
that the Rust type system already ensures that references passed to the func-
tion are accessible and cannot be modified or freed unless they are explicitly
declared mutable.

Loop Invariants. Viper analyzes while-loops similarly to functions in three
steps. First, the code leading to the loop needs to satisfy the invariants.
Second, Viper assumes both the loop invariant and the loop condition to hold
and verifies that the invariant again holds after the execution of the body.
Lastly, Viper assumes the invariant and the negation of the loop condition
to hold for the code after the loop.

Inline Assertions. Both loop invariants and function contracts impose implicit
assertions on the code. Viper allows for supplementing them with explicit
inline assertions using the Rust assert! macro. Usually, the macro checks
an expression during runtime. Viper, however, eliminates the need for this
dynamic check as it verifies the correctness statically and transforms it into
an assumption for the remainder of the verification. Thus, the assertions
serve a similar function as the ghost memory: they are a proof construct and
do not influence the monitor per se (cf. Fig. 3).

Annotation Generation. The compilation inserts annotations at several key loca-
tions. First, as an example for function annotations, consider a function that
retrieves a value of the stream s from the working memory. The function takes
the relative index of the retrieved value as single argument, i.e., an index of 1
accesses the second to newest value. The annotation requires that the index
must not exceed the memory reserved for s. Syntactically, this results in the fol-
lowing annotation in front of the function head: .
Moreover, the function needs to guarantee that the return value corresponds
to the respective value stored in Memory. This is expressed by the annota-
tion for each i ≤ μ(s).
The remaining function annotations follow a similar pattern, i.e., they require
valid arguments, and ensure correct outputs as well as the absence of undesired
changes. Note that the ghost memory is essentially a wrapper for Rust vectors
as they represent a growing list of values. Thus, functions concerning the ghost
memory carry the standard annotation ensuring correctness of the vector as
presented in the Viper examples.2

2 See e.g. the verified solution for the Knapsack Problem: https://github.com/
viperproject/prusti-dev/blob/master/prusti/tests/verify/pass/rosetta/Knapsack P
roblem.rs.

https://github.com/viperproject/prusti-dev/blob/master/prusti/tests/verify/pass/rosetta/Knapsack_Problem.rs
https://github.com/viperproject/prusti-dev/blob/master/prusti/tests/verify/pass/rosetta/Knapsack_Problem.rs
https://github.com/viperproject/prusti-dev/blob/master/prusti/tests/verify/pass/rosetta/Knapsack_Problem.rs
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Second, the loop has several entry checks that are expressed as inline asser-
tions. These ensure that the iteration count is η←

ϕ and that the length of the
ghost memory for a stream s is η←

ϕ − Δ(s). This is necessary because the loop
invariant asserts equivalence between an excerpt of the ghost memory and the
working memory. While the existence of all accessed values in the working mem-
ory is guaranteed due to the static allocation, the GM grows dynamically. Hence,
the compilation adds the entry checks.

In terms of memory equivalence, it remains to be shown that all values in
the working memory correspond to the respective entry in the ghost memory.
Formally, let m be the working memory and let g be the ghost memory where
index 0 marks the latest value. Furthermore, let η be the current iteration count.
Then, the invariant checks:

∀s : ∀i : (0 ≤ i < μ(s) =⇒ ms[i] = gs[i]). (1)

At loop entry, μ(s) = η←
ϕ −Δ(s) = η−Δ(s) is the number of iterations in which

a value for s was computed. In each further iteration of the loop, the invariant
checks that the former μ(s) − 1 entries remained the same and that the new
values in the ghost memory g and the working memory m are equal. The first of
these checks is not strictly necessary for the proof because it immediately follows
from the function contracts of the helper functions. However, after completing
one loop iteration, Viper deletes prior knowledge about all variables that were
mutated in the loop. Further reasoning about these variables is thus solely based
on the loop invariants.

To express Eq. (1) in Viper, the compilation needs to statically resolve the
universal quantification over the streams. Thus, for each stream s, the com-
pilation generates the annotation

, where iter

is a variable denoting the current iteration, mem is the working memory, and
gm is the ghost memory. Viper is able to handle the remaining universal quan-
tification over i. However, the compilation reduces the verification effort further
by unrolling it. This is possible since the memory requirement μ(s) of a stream
s is determined statically.

Lastly, the compilation introduces inline assertions after the evaluation of
stream expressions, i.e., in the prefix, postfix, and loop body. These annotations
show that computed values are correct when assuming that the values retrieved
from the working memory are correct as well. This argument is well-founded
because the compilation substitutes failing stream accesses by their respective
default values. Thus, any value retrieved from Memory was computed in an earlier
iteration or layer and therefore proven correct by Viper.

It only remains to be shown that the stream expression is properly evaluated.
Expressions consist of arithmetic or logical functions, constants, and stream
accesses. The former two can be trivially represented in Viper. Since the memory
is assumed to be correct and failing accesses are substituted by constants when
possible, accesses also translate naturally into Viper.

Conclusion. The validity of the assertions after the evaluation logic shows that
newly computed values are correct if the values in the working memory m and



Verified Rust Monitors for Lola Specifications 443

the ghost memory g coincide. This fact is guaranteed by the loop invariant.
Furthermore, the inductive argument of the loop invariants allows us to conclude
that, if m were to never discard values, ms[i] = gs[i] for all streams s and i ≤ η.
Thus, m is a real subsequence of g, which is a perfect reflection of the evaluation
model. As a result, any trigger violation detected by the monitor realization
corresponds to a violation in the evaluation model for the same sequence of
input values; The realization is verifiably correct.

5 Concurrent Evaluation

Evaluating independent streams concurrently can significantly improve the per-
formance of the monitor. In the following, we devise an analysis of Lola specifica-
tions that enables safe parallelization. We observe two characteristics of Lola: the
computation of a stream expression can only read the memory of other streams,
and inter-stream dependencies are determined statically. The evaluation layers
are a manifestation of the second observation. They group streams which are
incomparable according to the evaluation order. Combined with the first obser-
vation, we can conclude that all streams within one layer may be computed in
parallel. Thus, the compilation spawns a new thread for each stream within the
layer with read access to the global memory. We add annotations to the code
that enable Viper to verify that the parallel execution remains correct.

The compilation capitalizes on Rust’s concurrency capabilities by evaluat-
ing different output streams in parallel. A major advantage of Rust is that its
ownership model enforces a strict separation of mutable and immutable data.
Any data point has exactly one owner who can transfer ownership for good or
let other functions borrow the data. Borrowing data is again either mutable or
immutable. If a function mutably borrows data, no other function, including the
owner, can read or write this data. Similarly, if a function immutably borrows
data, other functions and the owner can only read it. A consequence of this fine-
grained access management with static enforcement is that enabling concurrency
becomes rather easy when compared to languages like C.

Enabling the concurrent evaluation requires slight changes in the code gen-
eration. First, evaluation functions are annotated with #[pure]. This indicates
that a function mutates nothing but its local stack portion. For the evaluation
logic, the compiler still proceeds layer by layer, opening a scope for each of them.
In the scope, it generates code following the total evaluation order ≤+

eo . However,
rather than calling the respective evaluation functions directly, the parallelized
version spawns a thread for each stream and starts the evaluation inside it.
Assume s1, . . . , sn constitute a single layer of a specification. The evaluation
then looks as follows:

let (v_1, ..., v_n) = crossbeam::scope(|scope| {
let handle_s1 = scope.spawn(move |_| {

eval_s1(&memory)
});
...
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let handle_sn = scope.spawn(move |_| {
eval_sn(&memory)

});
(handle_s1.join().unwrap(), ..., handle_sn.join().unwrap())

}).unwrap()

Note that the code snippet uses the Rust crate crossbeam, a standard concur-
rency library. A similar result can be achieved without external code by moving
the global memory to the heap and using the standard Rust thread logic.3

The correctness of this approach is an immediate consequence of the correct-
ness of the evaluation order and memory locality of streams. In particular, the
independence of streams within the same evaluation layer and the pureness of
the functions are crucial. The latter ensures that the function does not mutate
anything outside of its local stack. The former ensures that using pure evaluation
functions within the same layer is indeed possible. Thus, the order of execution
cannot change the outcome of the function, enabling the concurrent evaluation.

Note that spawning a thread for each stream evaluation is a double-edged
sword. While it can drastically reduce the monitor’s latency, each spawn induces
a constant overhead. Thus, reducing the number of spawns while increasing
the parallel computation time maximizes the gain. Consequently, the monitor
benefits stronger from the parallel evaluation when its dependency graph is wide,
enabling several cores to compute in parallel. Similarly, specifications with large
stream expressions benefit from the multi-threading because the share of parallel
computations increases. This lowers the relative impact of the constant thread-
spawning overhead.

6 Experimental Evaluation

The implementation of the compiler is based on the RTLola4 framework written
in Rust. The code verification uses the Rust-frontend of the Viper framework
called Prusti [3]. Prusti translates a Rust program into the Viper intermedi-
ate verification language, followed by a translation into an smt model, which
is checked by the Z3 [21] smt solver. Thus, our toolchain enables completely
automatic proof checking.

The experiments were conducted on a machine with a 3.1GHz Dual-Core
Intel i5 processor with 16GB of ram. The artifacts for the evaluation are avail-
able on github.5 In all experiments, the compilation itself has a negligible run-
ning time of under ten milliseconds and memory consumption of less than 4 MB,

3 On a technical note: Rust’s type system requires the programmer to guarantee that
the global memory will not be dropped until all threads terminate. Thus, the memory
needs to be wrapped into an Atomically Reference Counted (Arc) pointer. This has
two disadvantages: all accesses to memory require generally slower heap access and
the evaluation suffers from the overhead accompanying atomic reference counting.

4 http://www.rtlola.org/.
5 https://github.com/reactive-systems/Lola2RustArtifact.

http://www.rtlola.org/
https://github.com/reactive-systems/Lola2RustArtifact


Verified Rust Monitors for Lola Specifications 445

mainly due to the RTLola frontend. As expected, the verification of the anno-
tated rust code using Prusti and the Viper toolkit takes significant time and
memory. While the translation into the smt model is deterministic and can be
parallelized, the verification with Z3 exhibits generally high and unpredictable
running time.
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(a) Altitude Monitor
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(b) Network Traffic Monitor

Fig. 4. Results of 20 runs in terms of running time (blue, in seconds) and memory
consumption (orange, in MB) for the verification of the annotated Rust code of the
specification, where the altitude of a drone is monitored (cf. Listing 1.1), and the net-
work traffic monitor specification. (Color figure online)

We discuss the results of compiling and verifying three Lola specification of
varying size. The process works flawlessly on two of them while the third one
occasionally runs into timeouts and inconclusive verification results.

First, we consider the specification from Listing 1.1, where the altitude of
a drone is monitored. The results in terms of both running time and memory
consumption for 20 runs are depicted in Fig. 4a. Note that the y-axis displays
both the running time in seconds (left plot) and the memory consumption in
megabytes (right plot). The plot shows that the running time never exceeds 600 s
with a median of 225 s. The memory consumption is significantly more stable
ranging between 648 and 711MB with one outlier (914MB).

While the first specification was short and illustrative, the second one is more
practically relevant. The specification monitors the network traffic of a server
based on the source and destination IP of requests, tcp flags, and the length
of the payload [7]. The specification counts the number of incoming connections
and computes the workload, i.e., the number of bytes received over push requests.
If any of these numbers exceeds a threshold, the specification raises an alarm.
Moreover, it keeps track of the number of open connections. A trigger indicates
when the server attempts to close a connection even though none is open. The
full specification can be found in Listing 1.3. Figure 4b depicts the results both
in terms of running time and memory consumption for 20 runs. Again, the y-axis
represents both running time in seconds and memory consumption in megabytes.
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input src, dst, length: Int32
input fin: Bool, push: Bool, syn: Bool
constant server: Int32 := ...

output count : Int32 := if count[-1,0] > 201 then 0 else count[-1,0] + 1
output receiver : Int32 := if dst=server then receiver[-2,0] + 2 else

if count > 200 then 0 else receiver[-1,0]
trigger receiver > 50 "Many incoming connections."

output received : Int32 := if dst=server ∧ push then 0 else length
output workload : Int32 := if count > 200 then workload[-1,0] + 1 else 0
trigger workload > 25 "Workload too high."
output opened : Int32 := opened[-1,0] + int(dst=server ∧ syn)
output closed : Int32 := closed[-1,0] + int(dst=server ∧ fin)
trigger opened - closed < 0 "Closed more connections than have been opened."

Listing 1.3. Lola specification for monitoring network traffic

The increase in resource consumption clearly reflects the increase in complexity
and size of the input specification. While the longest run took nearly 90min,
most of the runs took less than 25min with a median of roughly 15min. Like
before, the memory consumption is relatively stable ranging around 3GB.

Lastly, we considered a Lola specifications that shows the limitations of our
approach. It detects different flight phases of a drone and raises an alarm if actual
velocity and a reference velocity provided by the flight controller deviate strongly.
The specification is based on a Lola specification for flight phase detection shown
in Listing 1.4.

After a successful compilation, the verification was able to reveal potential
arithmetic errors in the original specification [1]. The errors arose from division
in which the denominator was an input stream access. The resulting value is not
necessarily non-zero, so Viper reported that the respective annotation cannot
be verified. Hence, our approach is able to detect flaws in specifications stem-
ming from implicit assumptions on the system. These assumptions may not hold
during runtime, causing the monitor to fail.

Thus, we modified the flight phase detection specification to work without
division. Yet, only four of our runs terminated successfully. The running time
varies between 6 and 16min and the memory consumption between 1.38GB and
1.66GB. The successful runs show that our approach is able to verify monitor
realizations of large and arithmetically challenging Lola specifications. However,
two runs did not terminate within three hours. The reason lies within the under-
lying smt solver: an unfavorable path choice in the solving procedure can result
in extended running times. Additionally, for four runs, the verification reported
that some assertions might not hold or crashed internally. While restarting the
verification procedure can lead to finding a successful run, the incident shows
the reliance of our approach on external tools. Hence, the applicability increases
with advances in research on automated proof checking of annotated code. This
constitutes another reason for the continued development of valuable tools like
Prusti and the Viper framework.
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input time_s, time_micros, velo_x, velo_y, velo_r_x, velo_r_y: Int32

output time := time_s + time_micros / 1000000
output count := count[-1,0] + 1
output frequency := 1 / (time - time[-1,0])
output freq_sum := frequency + freq_sum[-1,0]
output freq_avg := freq_sum / count
output velo : Int32 := vel_x*vel_x + vel_y*vel_y
output velo_max : Int32 := if res_max[-1,false] then velo

else max(velo_max[-1,0], velo)
output velo_min : Int32 := if res_max[-1,false] then velo

else min(velo_min[-1,0], velo)
output res_max: Bool := (velo_max - velo_min) > 1
output unchanged: Int32 := if res_max[-1,false] then 0 else unchanged[-1,0] + 1
output velo_dev : Int32 := velo_r_x - velo_x + velo_r_y - velo_y
output worst_dev: Int32 := if unchanged > 15 then velo_dev else max(velo_dev,

worst_dev[-1,-10])

trigger freq_avg < 10 "Low input frequency."
trigger velo_dev > 10 "Deviation between velocities too high."
trigger worst_dev > 20 "Worst velocity deviation too high."

Listing 1.4. Lola specification for flight phase detection

6.1 Performance of Generated Monitors

As expected, the compiled monitors exhibit superior running time when com-
pared against the RTLola [14] interpreter. The comparison is based on randomly
generated input data for the Altimeter6 and Network Traffic Monitor. For the
first specification, the interpreter required 438 ns per event on average out of
10 runs, whereas the compiled version took 6.2 ns. The second, more involved
specification shows similar results: 1.535µs for the interpreter and 63.4 ns for
the compiled version.

7 Related Work

The development of a verifying compiler was identified by Tony Hoare as a grand
challenge for computing research [18]. Milestone results have been the concept of
proof-carrying code (pcc) [23] and the technique of checking the result of each
compilation instead of verifying the compiler’s source code [24]. pcc architec-
tures [10] and certifying compilers [11] exist for general purpose languages like
Java. A variation of the pcc, abstraction-carrying code [2,8] was developed for
constraint logic programs, where a fixpoint of an abstract interpretation serves
as certificate for invariants. This enables automatic proof generation.

In this paper, we present a verifying compiler for the stream-based monitoring
language Lola. Compared to general programming languages, the compilation of
monitoring languages is still a young research topic. Some work has focused
on compiling specifications immediately into executable code. Rmor [17], for
instance, generates constant memory C code.
6 The specification was adapted to be compliant with RTLola: rather than accessing

the input with a future offset, the specification used a negative offset of −2.
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Similarly, a Copilot [26] specification can be compiled into a constant mem-
ory and constant time C realization. The Copilot toolchain [27] enables the
verification of the monitor using the cbmc model checker [9]. As opposed to our
approach, their verification is limited to the absence of various arithmetic errors,
lacking functional correctness. While cbmc can verify arbitrary inline assertions,
Copilot does not generate them. Note that, in contrast to Lola, Copilot can
express real-time properties.

RTLola [15,32], on the other hand, is a real-time, asynchronous extension
of Lola, for which a compilation into the hardware description language vhdl
exists [7]. The vhdl code contains traceability annotations [5] and can then be
realized on an fpga. Similarly, Pellizzoni et al. [25] and Schumann et al. [20,31]
realize their runtime monitors on fpgas, yet without verification or traceability.

Rather than using a dedicated specification language, there are several log-
ics for which verified compilers exist. Differential dynamic logic [28], for exam-
ple, was specifically designed to capture the complex hybrid dynamics of cyber-
physical systems. The ModelPlex [19] framework translates such a specification
into several verified components monitoring both the environment with respect
to the assumed model and the controller decisions. Lastly, there is work on ver-
ifying monitors for metric first-order temporal [30] and dynamic logic [4].

8 Conclusion

We have presented a compilation of Lola specifications into Rust code. Using
Rust as the compilation target has the advantage that the executables are
highly performant and can be used directly on many embedded platforms. The
generated code contains annotations that enable the verification of the code
using the Viper framework. With the guiding assertions in the code, as well as
function contracts and loop invariants, Viper can verify monitors even for large
specifications.

Our results are promising and encourage further research in this direction,
such as compiling more expressive dialects of Lola such as RTLola [15,32].
RTLola extends Lola with real-time aspects and can handle asynchronous inputs.
The added functionality is highly relevant in the design of monitors for cyber-
physical systems [6,14]. While generating verifiable RTLola monitors in Rust will
require additional effort, such an extension would further improve the practical
applicability of our approach.
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Abstract. Runtime monitors that are specified in a stream-based mon-
itoring language tend to be easier to understand, maintain, and reuse
than those written in a standard programming language. Because of
their formal semantics, such specification languages are also a natural
choice for safety-critical applications. Unlike for standard programming
languages, there is, however, so far very little support for automatic code
optimization. In this paper, we present the first collection of code trans-
formations for the stream-based monitoring language RTLola. We show
that classic compiler optimizations, such as Sparse Conditional Constant
Propagation and Common Subexpression Elimination, can be adapted to
monitoring specifications. We also develop new transformations—Pacing
Type Refinement and Filter Refinement—which exploit the specific mod-
ular structure of RTLola as well as the implementation freedom afforded
by a declarative specification language. We demonstrate the significant
impact of the code transformations on benchmarks from the monitoring
of unmanned aircraft systems (UAS).

Keywords: Runtime verification · Stream monitoring · Compiler
optimizations · Specification languages

1 Introduction

The spectrum of languages for the development of monitors ranges from stan-
dard programming languages, like Java and C++, to formal logics like LTL and
its many variations. The advantage of programming languages is the univer-
sal expressiveness and the availability of modern compiler technology; program-
ming languages lack, however, the precise semantics and compile-time guarantees
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needed for safety-critical applications. Formal logics, on the other hand, are suf-
ficiently precise, but have limited expressiveness. A good trade-off between the
two extremes is provided by stream-based monitoring languages like RTLola.
Stream-based languages have the expressiveness of a programming language,
and, at the same time, the formal semantics and compile-time guarantees of a
formal specification language.

For standard programming languages, the development of effective code opti-
mizations is one of the most fundamental research questions. By contrast, there
is, so far, very little support for the automatic optimization of monitoring spec-
ifications. In this paper, we present the first collection of code transformations
for the stream-based monitoring language RTLola [7].

Our starting point are compiler optimizations known from imperative pro-
gramming languages like Sparse Conditional Constant Propagation and Common
Subexpression Elimination. Adapted to stream-based specifications, such trans-
formations allow the user to write code that is easy to read and maintain, without
the performance penalty resulting, for example, from unnecessarily recomputing
the value of subexpressions.

We also develop optimizations that are specific to stream-based monitoring.
Stream-based languages have several features that make them a particularly
promising target for code optimization. Stream-based languages are declara-
tive in the sense that it is only the correct computation of the trigger condi-
tions that matters for the soundness of the monitor, not the specific order in
which intermediate data is produced. This leaves much more freedom for code
transformation than in an imperative language. Another feature of stream-based
languages that is beneficial for code transformation is that the write-access to
memory is inherently local : the computation of a stream only writes once in its
local memory while potentially reading multiple times from other streams1. This
means that expressions used for the computation of one stream can be modified
without affecting the other streams. Finally, our code optimization exploits the
clear dependency structure of stream-based specifications, which allows us to effi-
ciently propagate type changes made in one stream to all affected streams in the
remainder of the specification. We present two transformations that specifically
exploit these advantages. Pacing Type Refinement optimizes the points in time
when a stream value is calculated, eliminating the computation of stream val-
ues that are never used. Filter Refinement avoids the unnecessary computation
of expressions that appear in the scope of an if statement, ensuring that the
expression is only evaluated if the condition is actually true.

RTLola specifications are used both in interpretation-based monitors [7]
and as the source language for compilers, for example to VHDL [3]. Our code
transformations are applicable in both approaches, because the transformations
are applied already on the level of intermediate representations (AST, IR). In
transpilation backends, the optimized code is compiled one more time, and thus

1 This is related to the functional programming paradigm where function calls are
pure, i.e., free of side effects.



Automatic Optimizations for Stream-Based Specification Languages 453

additionally benefits from the standard compiler optimizations for the target
platform.

A prime application area for our optimizations is the monitoring of unmanned
aircraft systems (UAS) [2]. Monitoring aircraft involves complex computations,
such as the crossvalidation of different sensor modules. The performance of the
monitor implementation is critical, because the on-board monitor is executed
on a platform with limited computing power. Our experience with the code
transformations (for details see Sect. 5) is very encouraging.

1.1 Related Work

This paper presents the first collection of code transformations for the stream-
based monitoring language RTLola. There is, of course, a vast literature on
compiler optimization. For an introduction, we refer the reader to the standard
textbooks on compiler design and implementation (cf. [1,14,17]). Kildall [13]
gives a comprehensive overview on the classic code transformations. The founda-
tion for the code transformations is provided by methods from program analysis
such as abstract interpretation [6].

The programming paradigm that most closely resembles stream-based mon-
itoring languages like RTLola is synchronous programming. Examples of syn-
chronous programming languages are Lustre [12], Esterel [4], and Signal [9].
These languages are supported by optimization techniques like the annotation-
based memory optimization of Lustre [10] and the low-level elimination of
redundant gates and latches in Esterel [15]. There are, however, important
differences to the transformations presented in this paper. Our transformations
work on the level of intermediate representations, which makes them uniformly
applicable to interpretation and compilation. The new Pacing Type and Fil-
ter Refinements furthermore exploit the specific modular structure of RTLola
as well as the much greater implementation freedom afforded by a declarative
specification language.

Our focus on RTLola is motivated by recent work on RTLola-based mon-
itoring for UAS [2] and other cyber-physical systems [3,7]. It should be possible,
however, to develop similar optimizations for other stream-based monitoring
languages like TeSSLa [5] and Striver [11].

2 RTLOLA

RTLola [7,8] is a runtime monitoring framework. In its core, it takes a specifi-
cation in the eponymous specification language and analyzes whether and when
input data violates the specification. To this end, it interprets sequences of incom-
ing data points as input streams. The RTLola stream engine then transforms
these values according to stream expressions in the specification to obtain output
streams. The specification also contains trigger conditions, i.e., boolean expres-
sions indicating whether a certain property is violated or not. Stream expressions
and trigger conditions depend either on input or output stream values.
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Consider the following RTLola specification.

input gps: (Float64, Float64)

output gps_readings: Bool@1Hz := gps.aggregate(over:2s,using:count)

trigger gps_glitch < 10 "GPS sensor frequency < 5Hz"

The specification first declares an input stream with the name gps. The
output stream gps_readings analyzes the input stream by counting how many
readings the monitor received within the last 2s. This computation is a sliding
window, so when the gps_readings stream computes a new value at point in
time t, RTLola takes all data points of the gps stream into account, which were
received in the interval [t − 2s, t]. The trigger then checks whether the number
of GPS readings in such a 2s interval falls below 10. If so, it raises an alarm
such that the observed system can react accordingly e.g. by initiating mitigation
procedures.

2.1 Type System

Types in RTLola are two-dimensional consisting of the value type and the pac-
ing type. The former is drawn from a set of types representable with a static
amount of bits. The pacing type consists of two components: an evaluation trig-
ger and a filter condition. The monitor will compute a new value for a stream
as soon as the evaluation trigger occurred unless the filter condition is false. Let
us ignore filter conditions for now. The evaluation trigger can be a real-time fre-
quency as was the case for gps_readings. In this case, the stream is a periodic
stream. Otherwise, the evaluation trigger is a positive boolean formula ϕ over the
set of input streams, in which case the stream is event-based. The reason behind
this lies within the input model of RTLola. RTLola assumes input values to
arrive asynchronously, i.e., if a specification declares several input streams I, an
incoming data point I ′ can cover an arbitrary non-empty subset ∅ �= I ′ ⊆ I.
Only streams in I ′ receive a new value. Thus, the monitor evaluates event-based
streams with evaluation trigger ι iff I ′ =⇒ ι. I.e., it replaces all occurrence
of the input stream name i in ι by true if ι ∈ I ′ and false otherwise. Conse-
quently, any input stream i has evaluation trigger {i} intuitively meaning “i
will be extended when the system provides a new value for it.” For event-based
streams, the evaluation trigger is called the activation condition.

Note that the type annotation of gps in the previous example does not con-
tain information about the pacing type at all. In many cases, RTLola infers
the types of streams automatically based on the stream expression rendering
type annotations largely optional. While the type inference for value types is
straight-forward because RTLola requires input streams to have type annota-
tions, the inference for pacing types is mainly based on stream accesses. There are
three kinds of stream accesses: synchronous, asynchronous, and aggregations. If
a stream x accesses a stream y synchronously, then the evaluation of x demands
the nth-to-latest value of y where n is the offset of the access. This ties the
evaluation of both streams together, so if y has an evaluation frequency of 5 Hz,
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x cannot be evaluated more frequently, nor can x be event-based. Asynchronous
accesses refer to the last value of a stream, no matter how old it may be. Here,
the pacing of x and y remain decoupled. Aggregating accesses—such as the one
in gps_readings—decouple the pacing as well.

Lastly, filter conditions are regular RTLola expressions. Assume stream x
has the evaluation condition π with filter φ. Whenever π is true, the monitor
evaluates the filter φ. Only if the filter is true as well, the monitor evaluates the
stream expression and extends x.

2.2 Evaluation

An RTLola specification consists of input streams, output streams, and triggers.
The monitor for a specification computes a static schedule containing informa-
tion on which a periodic stream needs to be computed at which point in time.
When such a point in time is reached or the monitor receives new input values,
it starts an evaluation cycle. Here, the monitor first determines which streams
could be affected by checking their frequencies or activation conditions. It then
orders them according to an evaluation order ≺. Following this order, the moni-
tor checks the filter condition of each stream. If it evaluates to true, the monitor
extends the stream by evaluating the stream expression to obtain a new value.

This process only works correctly if the evaluation order complies with the
dependency graph of the specification. The annotated dependency graph is a
directed multigraph consisting of one node for each trigger, stream, and filter
condition. Each edge in the graph represents a stream access in the specification.
For the evaluation order, only synchronous lookups matter: if node s access node
s′ synchronously, s′ needs to be evaluated before s.

After the evaluation, the monitor checks whether a trigger conditions was
true. If so, passes the information on to the system under scrutiny. This consti-
tutes the observable behavior of the monitor, any other computation is considered
internal behavior. Consequently, any computation that does not impact a trigger
condition is completely irrelevant.

This is just a rough outline of RTLola. For more information refer to [16].

Remark 1 (Transformations Preserve Observable Behavior). The point behind
the compiler transformations presented in this paper is to improve the running
time and thus decrease the latency between the occurrence and report of a
violation. Yet, the correctness, i.e., the observable behavior of the monitor needs
to remain unchanged. Thus, the transformations may alter the behavior of the
monitor arbitrarily granted the observable behavior remains the same.

3 Classical Compiler Optimizations

In this section, we explain the adaption of classical compiler optimization tech-
niques to the specification language RTLola. These techniques focuses on the
expression of a stream under consideration of the pacing type. We exemplarily
introduce transformations for the Sparse Conditional Constant Propagation and
the Common Expression Elimination.
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3.1 Sparse Conditional Constant Propagation

Sparse Conditional Constant Propagation (SCCP) allows the programmer to
write maintainable specifications without a performance penalty of constant
streams. It inlines them, pre-evaluates constant expressions, and deletes never
accessed streams that includes a simple dead-code elimination. This procedure
works transitively, i.e., a stream that turns constant due to the inlining will again
be subject to the same transformation. Note that evaluating a constant expres-
sion might change the activation condition of a stream. Thus, the transformation
annotates types explicitly before changing expressions.

3.2 Common Subexpression Elimination

The Common Subexpression Elimination (CSE) identifies subexpressions that
appear multiple times and assigns the subexpressions to new streams. These
new streams might increase the required memory but save computation time by
eliminating repeated computations.

In RTLola, finding common subexpressions is simple compared to impera-
tive programing languages for several reasons. First, RTLola as a declarative
language is agnostic to the syntactic order in which streams are declared; the
evaluation order only depends on the dependency graph. Secondly, expression
evaluations are pure, i.e., free of side effects. As a result, the common subexpres-
sion elimination becomes a syntactic task except that it requires access to the
inferred types. Here, two subexpressions are only considered common, if their
pacing is of the same kind: periodic or event-based. This is necessary because
RTLola strictly separates the evaluation of expressions with different pacing
type kinds.

After identifying a common subexpression, the transformation creates a new
stream and replaces occurrences of the expression by stream accesses. The pac-
ing type of the newly created stream is either the disjunction of the activation
conditions of accessing streams, or the least common multiple of their evaluation
frequencies. The latter case is an over-approximation that introduces additional,
irrelevant evaluations of the common subexpression. This might decrease the
performance of the monitor, so CSE is only applied if the least common multiple
coincides with one of the accessing frequencies. In this case, the transformation
is always beneficial.

4 RTLOLA Specific Optimizations

This section introduces transformations around the concept of pacing types.
Since these types are specific to the specification language RTLola, the trans-
formations are as well. The concepts, however, apply to similar languages as
well. We introduce the Pacing Type Refinement and the Filter Refinement as
such transformations.
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4.1 Pacing Type Refinement

In this subsection, we describe a transformation refining the pacing type of
output streams. Consider the following specification as an example. Note, the
inferred pacing types are marked gray, whereas the black ones are annotated
explicitly.

input alt, lat: Float64

output check_alt @{alt}
:= alt < b0

output check_lat @{lat}
:= lat ∈ [b1, b2]

trigger @{alt ∧ lat}
¬(check_alt ∧ check_lat)

input alt, lat: Float64

output check_alt @{alt ∧ lat}

:= alt < b0
output check_lat @{alt ∧ lat}

:= lat ∈ [b1, b2]
trigger @{alt ∧ lat}
¬(check_alt ∧ check_lat)

The specification shows a simple geofence, i.e., it checks if the altitude and
latitude values are in the specified bounds. Each expression only accesses one
input stream, so the specification infers the pacing types @{alt} and @{lat}
for the output streams. The trigger then accesses all output stream values and
notifies the user if a bound is violated. Transitively, the trigger accesses all
input streams, so its inferred pacing type is @{alt lat}. With this type, the
monitor evaluates the trigger iff all input streams receive a new value at the
same time. Consequently, whenever an event arrives that does not cover both
input streams, the output stream computations are in vain. This justifies refining
the pacing types of the output streams to mirror the pacing type of the trigger,
which is exactly what the Pacing Type Refinement transformation does.

For event-based streams, the transformation finds the most specific activation
condition that does not change the observable behavior. This goal is achieved
by annotating a stream with a pacing type that is the disjunction of all pacing
types accessing it. For periodic streams, the transformation proceeds similarly.
Here, the explicit type annotation is the slowest frequency such that each stream
access is still valid, i.e., the least common multiple of each accessing frequency,
similar to Sect. 3.2.

Note that the pacing type transformation of a stream s is only possible if all
accesses to s are synchronous, i.e., (s−

j , 0, s↑) ∈ E. Otherwise, the transformation
might change the observable behavior, as illustrated with the following example.
Consider a sliding window in a trigger condition targeting a stream s↑. Assume
further that the transformation changes the pacing type s↑.pt from 2 Hz to 1 Hz.
As a result, s↑ produces fewer values, changing the result of the sliding window
and thus the trigger as well.

The transformation resolves transitive dependencies by applying a fix-point
iteration.

4.2 Filter Refinement

RTLola is free of side effects and thanks to its evaluation order, it has a static
program flow. The static program flow, however, also has a drawback: if a stream
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s conditionally accesses a stream s′, s′ will always be evaluated before the condi-
tion is resolved. This problem can be circumvented by integrating the condition
occurring in the expression of s into the filter of s′.

Consider the following specifications:

input pilots : Float64

input emergency : Bool

output check_1

@{emergency ∧ pilots}

:= num_pilots > 0

output check_2

@{emergency ∧ pilots}

:= num_pilots == 2

trigger @{emergency ∧ pilots}
if !emergency then check_1 else

check_2

input pilots : Float64

input emergency : Bool

output check_1

@{emergency ∧ pilots}

{ filter !emergency }

:= pilots > 0

output check_2

@{emergency ∧ pilots}

{ filter emergency }

:= num_pilots == 2

trigger @{emergency ∧ pilots}

if !emergency then

check_1.hold(or: true)

else check_2.hold(or: true)

Both specifications check the number of pilots in the cockpit. Depending on
whether or not the plane is in emergency mode, one or two pilots are adequate.
Because of the static evaluation order, the monitor with the specification on
the left always computes the values of both output streams. However, the final
trigger only uses one of the streams, depending on the emergency input. Thus,
the monitor can avoid half of the output computations. The specification on
the right show how this can be achieved using Filter Refinement. The transfor-
mation adds filters to all streams accessed in the consequence or alternative of
a conditional expression. Additionally, it replaces the synchronous lookups to
these streams with asynchronous lookups and adds explicit type annotations.
The former prevents the type inference from adding the filter to the trigger as
well. The latter is necessary because the type of the trigger can no longer be
inferred without the synchronous lookups. Similar to previous transformations,
Filter Refinement takes direct and transitive dependencies into account.

The algorithm for this transformation consists of four parts: In the first step,
it identifies conditional expressions. Afterward, it constructs the filter condition
for the synchronously accessed streams based on the condition following four
rules. If a stream is accesses in a) the condition, it does not add any filter
condition. b) the consequence, it adds a filter containing the if-condition. c) the
alternative, it adds a filter containing the negation of the if-condition. d) a nested
conditional, it builds the conjunction of the conditions. e) the consequence and
the alternative of a nested conditional, it combines the filter conditions with a
disjunction. f) the consequence and the alternative of a non-nested conditional,
it does not add a filter.

After building the filter conditions for the synchronously accessed streams,
the transformation adds the filter to the stream. If the stream already had one,
the transformation builds the conjunction of both. It then changes the affected



Automatic Optimizations for Stream-Based Specification Languages 459

synchronous lookups to asynchronous ones to prevent the type inference from
adapting its own filter. This process is repeated until a fix-point is reached. Note
that the transformation is only possible for synchronous lookups, otherwise the
transformation alters the observable behavior.

5 Evaluation

We evaluate our transformations using the interpreter of the RTLola frame-
work [7].2 We compare the monitor executions with enabled and disabled com-
piler transformations for a specification checking whether an aircraft remains
within a geofence [2]. The traces for the evaluation consists of 10,000 randomly
generated events. Each execution was performed ten times on a 2.9 GHz Dual-
Core Intel Core i5 processor.

The geofence specification was selected due to its high practical relevance. It
checks if the monitored aircraft leaves a polygonal area, i.e., the zone for which
the aircraft has a flight permission. If the monitor raises a trigger, the vehicle
has to start an emergency landing to prevent further damage. The specification
computes the approximated trajectory of the vehicle to decide whether a face of
the fence was crossed.

The shape of the fence is determined statically, so the gradient and y-intercept
of the faces are constants in the original specification. We generalized the specifi-
cation slightly for our case study. This makes the specification more maintainable
without forsaking performance thanks to the SCCP transformation. In a geo-
fence with five faces, the SCCP propagates and eliminates 48 constants streams.
This roughly halves the execution time of the monitor as can be seen in the first
graph of Fig. 1.

In the second evaluation, we extended the specification by a third dimension,
also taking the altitude of the aircraft into account. The altitude of the aircraft
is independent of the longitude and latitude, rendering computations of the
output streams unobservable for events not covering all three dimensions. Here,
the Pacing Type Refinement places explicit type annotations on 32 streams in
the specification with five faces. The new trace contains a new reading for the
altitude every 100ms and for the longitude and latitude every 10ms. The impact
of the Pacing Type Refinement can be seen in the second graph of Fig. 1: the
monitor for the transformed specification is roughly three times faster.

To evaluate the impact of the Filter Refinement, we adapt the specification
to perform a violation check for an under-approximation of the geo-fence. The
more costly precise geo-fence check is only performed if the under-approximation
reports a violation. This specification shows the potential impact of the Filter
Refinement transformation, which adds filters to 27 output streams for a geo-
fence with five faces. The first two columns in the third graph of Fig. 1 illustrate
the results of the executions with a trace that is most of the time within the
under-approximated fence. Surprisingly, the specification after the transforma-
tion is about three times slower than the original specification.
2 http://rtlola.org.

http://rtlola.org
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Fig. 1. From left to right, the graphs show the impact of SCCP, Pacing Type Refine-
ment, Filter Refinement without, and with pre-existing filters. Red boxes are the run-
ning time before applying the respective transformation, blue after, and green by addi-
tionally applying CSE. (Color figure online)

The reason lies within the evaluation process of the monitor. Filters increase
the number of nodes in the dependency graph, thus triggering new evaluation
steps. In our example, this produces an overhead that is higher than the perfor-
mance benefits gained by adding filters. The last graph in Fig. 1 shows the results
for a specification like that for the same input trace. Here, the transformation
reduces the execution time by about 30%.

When now also applying the CSE as well, 27 filter conditions and one if
condition can be summarized in a common subexpression. This yields another
5% performance gain as can be seen in the last two graphs in Fig. 1.

6 Conclusion

Since the safety of the monitored system rests on the quality of the monitor-
ing specification, it is crucially important that specifications are easy to under-
stand and maintain. The code transformations presented in this paper contribute
towards this goal. By taking care of performance considerations, the transfor-
mations help the user to focus on writing clear specifications.

Monitoring languages are, in many ways, similar to programming languages.
It is therefore not surprising that classic compiler optimization techniques like
Sparse Conditional Constant Propagation and Common Subexpression Elimi-
nation are also useful for monitoring. Especially encouraging, however, is the
effect of our new Pacing Type and Filter Refinements. In our experiments, the
transformations improved the performance of the monitor as much as threefold.
This could be a starting point for a new branch of runtime verification research
that, similar to the area of compiler optimization in programming language the-
ory, focusses on the automatic transformation and optimization of monitoring
specifications.

In future work, our immediate next step is to integrate further common
code transformations into our framework. We will also investigate the interplay
between the different transformations and develop heuristics that choose the
best transformations for a specific specification. A careful understanding of the
impact on the monitoring performance is especially needed for transformations
that prolong the evaluation order, such as Common Subexpression Elimination
and Filter Refinement.
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Abstract. We study the spectra of time-event and of synchronous-
asynchronous models of computation for runtime verification, in partic-
ular in the context of stream runtime verification (SRV). Most runtime
verification formalisms do not involve a notion of time, either by hav-
ing inputs at all instants (like LTL or Lola) or by reacting to external
events in an event-driven fashion (like MOP). Other formalisms consider
notions of real-time, ranging from the collection and periodic processing
of events to complex computations of the times at which events exist or
are produced (like TeSSLa or Striver). Also, some monitoring languages
assume that all inputs and outputs change values at once (synchronous),
while others allow changes independently (asynchronous).

In this paper we present a unifying view of the event-time and
synchronous-asynchronous dimensions in the general setting of SRV. We
first prove that the Striver event-based asynchronous language can exe-
cute synchronous untimed specifications (written in Lola), and empiri-
cally show that this simulation is efficient. We then prove that Lola can
simulate real-time Striver monitors under the assumption of the existence
of temporal backbones and study two cases: (1) Purely event-driven or
when reactions can be precomputed (for example periodic intervals),
which results in an efficient simulation but restricted to a fragment. (2)
When the time has a minimum quantum: which allows full expressiv-
ity but the performance is greatly affected, particularly for sparse input
streams.

1 Introduction

Runtime verification (RV) is a dynamic technique for software quality assurance
that consists of generating a monitor from a formal specification, that then
inspects a single trace of execution of the system under analysis. Stream runtime
verification, pioneered by Lola [7], defines monitors by declaring the dependencies
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between output streams of results and input streams of observations. In this
paper we study different models of streams and how the corresponding languages
compare to each other in terms of expressivity and efficiency.

Motivated by the counterparts in static verification, early approaches for RV
specification languages were based on temporal logics [3,9,15], regular expres-
sions [20], timed regular expressions [1], rules [2], or rewriting [18]. SRV is a
more expressive formalism that goes beyond Boolean verdicts, like in logical
techniques, to allow specifying the collection of statistics and the generation
of richer (non-Boolean) verdicts. Examples include counting events, specifying
robustness or generating models or quantitative verdicts. See [7,8,12,14] for
examples illustrating the expressivity of SRV languages. Some SRV formalisms
consider streams to be sequences of raw data (as in LTL propositions), so the
data observed in different streams at the same index in their sequences are con-
sidered to have occurred at the same time. In this regard, stream sequences are
synchronized and thus we say that formalisms following this paradigm are syn-
chronous SRV formalisms. Examples of synchronous formalisms include Lola [7],
LTL, regular-expressions, Mision-time LTL [17], Functional Reactive Program-
ming (FRP) [11] and systems like Copilot [16].

On the other hand, new formalisms have been proposed that consider streams
to be sequences of events formed by data values that are time-stamped with
the time at which the data is produced (either observed or generated). In this
paradigm, streams can be of different length, and the only condition is that
the time-stamps are monotonically increasing. As a result, the same position of
different streams are not necessarily time-correlated. In this regard, we can say
that stream sequences are asynchronous, and thus we say that formalisms follow-
ing this paradigm are asynchronous SRV formalisms. Examples of asynchronous
SRV formalisms include RTLola [13], Striver [14] and TeSSLa [5].

Synchronous SRV formalisms are best suited for cases when data is period-
ically gathered for every input stream at the same time from the system under
analysis. Asynchronous formalisms are best suited for situations when data on
the input streams can be received at unpredictable moments—when something
of interest happens—and results can be calculated at any time, not only when
an event is observed. By these characteristics, we say that synchronous SRV for-
malisms are sample based, while asynchronous SRV formalisms are event based.

In this paper we will use Lola and Striver to show how the semantics of a
synchronous SRV formalism can be mimicked by an asynchronous SRV formalism
and vice versa. As a corollary, the languages subsumed by each formalism can be
automatically translated to the other under the conditions of our results. We also
study the impact on efficiency of each approach, and the different alternatives
to deal with the loss in performance.

The example specifications and empirical evaluation are based on the real-
world data in the dataset Orange4Home [6], which comprises the recording of
activities of a single person in an instrumented apartment over the span of four
consecutive weeks of work days. This dataset was studied previously in RV using
an Execution History Encoding (EHE) in [10].
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Contributions and Structure. Section 2 contains the preliminaries. Section 3
contains the main contribution: the comparison of two formalisms from differ-
ent paradigms, and the proof that they are equally expressive. We also describe
different alternatives to translate a Striver specification to Lola, which are empir-
ically evaluated in Sect. 4. Finally, Sect. 5 concludes.

2 Preliminaries

We recall now Stream Runtime Verification (SRV) briefly (see [7] and the tuto-
rial [19]). The fundamental idea of SRV, pioneered by Lola [7] is to cleanly
separate the temporal dependencies from the individual operations to be per-
formed at each step, which leads to the generalization of monitoring algorithms
for logics to the computation of richer values.

A value stream is a sequence of values from a domain1. In this paper we
use sequences to refer to value streams to distinguish them from event streams.
We can refer to the value at the n-th position in a sequence z writing z(n). For
example, the sequence co2 = [350, 360, 289, 320, 330] contains samples of the level
of CO2 in the air (measured in parts-per-million). In this sequence co2(0) = 350
and co2(2) = 289.

An event stream is a succession of events (t, d) where d is a value from a
value domain (as in sequences) and t is a time-stamp. Time-stamps are ele-
ments of a temporal domain (for example R, Q, Z), a set whose elements are
totally ordered. The interpretation of the time domain is a global clock, which
is common to all the streams in a monitor. The time-stamps in the events of
a legal event-stream are monotonically increasing. Nothing prevents a tempo-
ral domain from being used as a value domain of some stream, and in fact
it is common to define streams that compute and store the passage of time.
Given an element t in the temporal domain of an event stream r, we use r(t)
to refer to the value with time-stamp t in r. For example, the event-stream
tv status = {(1.5, off), (4.0, on), (6.0, off), (7.5, on), (8.0, off)} indicates when a
television is turned on or off. The event (4.0, on) in tv status or the fact that
tv status(4.0) = on, indicate that the TV is switched on at time 4.0. We will use
z, w . . . for sequences and s, r, . . . for event streams. Also, we use t to denote a
value of the time domain, and n to range over sequence indices.

Given a positive number N we use [N ] for the set {0, . . . , N − 1}. Given a
sequence z, we also use [z] for the set of indices of the sequence [z] = {0 . . . |z|−1}.
For example, [co2] = {0, 1, 2, 3, 4}. Given an event stream s, dom(s) is the set
of elements in the temporal domain which have an associated value for s. For
example, dom(tv status) = {1.5, 4.0, 6.0, 7.5, 8.0}.

Streams and sequences are typed using arbitrary (interpreted) multi-sorted
first-order theories. A type has a collection of symbols used to construct expres-
sions, together with an interpretation of these symbols. The domain of the types
is the set of values to be used as data values in sequences and streams, and
1 Even though for past-only specifications the results can be extended to infinite

sequences, we use here finite sequences as in [7].
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the interpretation of the symbols is used to evaluate ground expressions. A Lola
specification describes monitors by declaratively specifying the relation between
output sequences (verdicts) and input sequences (observations). Similarly, a
Striver specification describes the relation between output event-streams and
input event-streams. We describe these formalisms separately.

2.1 Lola

Syntax. Given a set Z of (typed) stream variables, the set of stream expressions
consists of (1) offsets v[k, d] where v is a stream variable of type D, k is an integer
number and d a value from D, and (2) function applications f(t1, . . . , tn) using
constructors f from the theories to previously defined terms. Stream variables
represent value streams (a.k.a sequences). The intended meaning of expression
v[−1, false] is the value of sequence v in the previous position of the trace (or false
if there is no such previous position, that is, at the beginning). The particular
case for an offset with k = 0 requires no default value as the index is guaranteed
to be within the range of the sequence. Therefore, we will use v[now] for a 0 offset
expression. We assume that all theories have a constructor if · then · else ·
that given an expression of type Bool and two expressions of type D constructs
a term of type D. We use TermD(Z) for the set of stream expressions of type
D constructed from variables from Z (and drop Z if clear from the context).

Definition 1 (Lola Specification). A Lola specification ϕ〈I,O〉 consists of a
set I = {x1, . . . , xm} of input stream variables, a set O = {y1, . . . , yn} of output
stream variables, and a set of defining equations, yi = ei(x1, . . . , xm, y1, . . . , yn)
one per output variable yi ∈ O, where every ei is an expression from TermD(I ∪
O), and D is the type of yi.

A specification describes the relation between input sequences and output
sequences. We will use v for an arbitrary variable (where xi and yj refer to input
and output stream variables respectively).

Example 1. The specification “the mean level of CO2 in the air in the last 3
instants”, can be expressed as follows, where denom calculates the number of
instants that are taken into account:

input num co2

output num denom := min(3, denom[-1|0]+1)

output num mean:=(co2[-2|0]+co2[-1|0]+co2[now ])/ denom[now] ��

Semantics. An input valuation ρ contains one sequence ρx of length L for each
input stream variable x, of values of the domain of the type of x. Note that
ρx(n) is the value at position n of sequence ρx (with 0 ≤ n < L). We call ρx a
valuation of x, and ρI the collection of valuations of the set of stream variables
I. The intended meaning of a Lola specification is to associate sequences to
output stream variables (of the same length L) that satisfy the equations in
the specification. Formally, this semantics are defined denotationally as follows.
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Given a valuation ρ (of all variables in I ∪ O) the evaluation �e�ρ of a term e is
a sequence of length L of values of the type of e defined as follows:

– If e is v[i, c] then �v[i, c]�ρ(j) = �v�ρ(j + i) if 0 ≤ j + i < L, and c otherwise.
– If e is f(e1, . . . , ek) then �f(e1, . . . , ek)�ρ(j) = f(�e1�ρ(j), . . . , �ek�ρ(j))

Note that in particular, �v[now]�ρ(j) = ρv(j).

Definition 2 (Evaluation Model). A valuation ρ = (ρI , ρO) satisfies a Lola
specification ϕ whenever for every output variable yi, �yi�ρ = �ei�ρ. In this case
we say that σ is an evaluation model of ϕ and write (σI , σO) � ϕ.

These semantics capture when a candidate valuation is an evaluation model, but
the intention of a Lola specification is to compute the unique output sequences
given input sequences. A dependency graph Dϕ of a specification ϕ〈I,O〉 is a
weighted multi-graph (V,E) whose vertices are the stream variables V = I ∪ O,
and E contains a directed weighted edge v

k−→ y whenever v[k, d] is a sub-term
in the defining equation of y. If a dependency graph Dϕ contains no cycles with
0 weight then the specification is called well-formed. Note that well-formedness
is equivalent to stating that all cycles in a given maximal strongly connected
component (MSCC) M of the dependency graph are positive, or all cycles of M
are negative. Well-formedness guarantees that for every ρI there is a unique ρO

such that (ρI , ρO) � ϕ. Essentially, this is because acyclicity guarantees that the
value of a sequence at a given position does not depend on itself. A well-formed
Lola specification has a unique evaluation model for each input valuation ρI and
we write ρO = ϕ(ρI) for this unique output valuation.

Another important concept is the evaluation graph which given a length L
contains one vertex vj for every stream variable v and position k. There is an

edge from vj → yj+k whenever there is an edge v
k−→ y in the dependency graph.

For example, if the defining equation of y contains x[−1, d] then y16 points to
x15 in all the evaluation graphs with L ≥ 16. In well-formed specifications there
are no cycles in any evaluation graph, which enables us to reason by induction
on evaluation graphs. See [7,19] for details of these definitions as well as online
and offline monitoring algorithms for Lola specifications.

2.2 Striver

Syntax. The syntax of Striver is:

α ::= {c}
∣
∣ r.ticks

∣
∣ delay ε s

∣
∣ α ∪ α (tick-expr)

τx ::= x<~τ
∣
∣ x<<τ

∣
∣ x>~τ

∣
∣ x>>τ τ ::= t

∣
∣ τz for z ∈ Z (offset-expr)

E := d
∣
∣ x(τx)

∣
∣ f(E1, . . . , Ek)

∣
∣ τ

∣
∣ -out

∣
∣ +out

∣
∣ notick (value-expr)
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There are three kinds of expressions:

– Ticking Expressions, which define those instants at which a stream may con-
tain a value. Here c ∈ T, ε ∈ T

+ are constants (with ε �= 0), r is a stream
variable, and ∪ is used for the union of instants.

– Offset Expressions: which allow fetching time instants at which streams con-
tain values. The expression t represents the current instant. The expression
x<<τ is used to refer to the previous instant at which x ticked in the past of
τ (or ⊥-out if there is not such an instant). The expression x<~τ also consid-
ers the present as a candidate instant. Analogously, the intended meaning of
x>>τ is to refer to the next instant strictly in the future of τ at which x ticks
(or ⊥+out if there is not such an instant). The expression x>~τ also considers
the present as a candidate.

– Value Expressions, which compute values. Here, d is a constant of type D, x is
a stream variable of type D and f is a function symbol of return type D. Note
that in x(τx) the value of stream x is fetched at an offset expression indexed
by x, which captures the ticking points of x and guarantees the existence
of an event if the point is within the time boundaries. Expressions t and
τx build expressions of sort Tout. The three additional constants -out, +out
and notick allow reasoning (using equality) about accessing both ends of the
streams, or not generating an event at a ticking candidate instant.

We use x(<t,d) and x(~t,d) as syntactic sugar (mimicking x[-1|d] and x[now]
from Lola) as follows

x(<t,d)
def
= if x<<t ==-out then d else x(x<<t)

x(˜t,d)
def
= if x<˜t ==-out then d else x(x<˜t)

We define the duals x(t>,d) and x(t~,d) analogously.

Definition 3 (Striver Specification). A Striver specification ψ〈I,O〉 for input
stream variables I and output stream variables O, consists of one value expression
Vy and one ticking expression Ty for each y ∈ O (where Vy is of the same type
as y, plus the reserved constant notick).

As for Lola, Striver specifications are often given programmatically as illustrated
in the following example.

Example 2. The property “count for how long has the tv been on”, can be
expressed as follows, where stream variable tv on computes the result.

input TV_Status tv

ticks tv_on := tv.ticks

define int tv_on := if tv(<t,off) == on

then tv_on(<t,0) + t - tv<<t else 0 ��
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Semantics. The semantics of Striver are again defined denotationally. A valu-
ation σ contains one event-stream σx for each stream variable in x ∈ {I ∪ O}.

The semantics use valuations to evaluate expressions:

– Ticking Expressions. The map �.�σ assigns a set of instants to each ticking
expression:

• �{c}�σ
def= {c} and �a1 ∪ · · · ∪ ak�σ

def= �a1�σ ∪ · · · ∪ �ak�σ,
• �r.ticks�σ

def= dom(σr), and
• �delay ε s�σ contains the instants t + v such that (t, v) ∈ σs, unless
|v| < |ε| or sign(v) �= sign(ε) or there is a (t′, v′) ∈ σs with t′ between t
and t + v.

– Offset Expressions: �.�σ provides, given an instant t, another instant in a
valuation σ. In particular, �t�σ(t) def= t is the current instant, and

• �x <<e�σ is the previous instant at which x contains a value strictly
before �e�σ(t), or ⊥-out if either there is no such instant, or if �e�σ(t) =
⊥-out. The expression �x <~e�σ is similar but considers �e�σ(t) as a can-
didate, and
• �x >>e�σ is the dual of �x <<e�σ, looking into the future and returning
⊥+out in case it fails. Again, �x >~e�σ is similar to �x >>e�σ but considers
the instant �e�σ(t) as a candidate.

– Value Expressions. The semantics are given in terms of t:
• �x(e)�σ(t) is v for (�e�σ(t), v) ∈ s, or simply �e�σ(t) if it is not an instant,
• �f(E1, . . . , Ek)�σ(t) def= f(�E1�σ(t), . . . , �Ek�σ(t)),
• �τx�σ(t) def= �τx�σ(t), and �c�σ(t) def= c, for the constants in the domain
and the reserved constants -out, +out and notick.

Evaluating expressions allows defining evaluation models, like in Lola, as those
valuations that satisfy all equations (in this case ticking and value equations):

Definition 4 (Evaluation Model). Given a valuation σ of variables I ∪ O
the evaluation of the equations for stream y ∈ O is:

�Ty,Vy�σ
def
= {(t, d) | t ∈ �Ty�σ and d = �Vy�σ(t) and d �= ⊥notick}

An evaluation model is a valuation σ such that for every y ∈ O: σy =
�Ty,Vy�σ.

Similar definitions of dependency graph and well-formedness as the ones
stated above for Lola can be given for Striver specifications. The well-formedness
condition for Striver includes the condition for Lola (absence of zero-weight
cycles). Additionally, well-formedness for Striver requires that closed paths in
a given MSCC do not mix positive and negative edges. That is, cycles in a
positive MSCC cannot contain negative edges (and cycles in a negative MSCC
cannot contain positive edges). Again, we write σO = ψ(σI) for the unique out-
put valuation that corresponds to an input valuation. See [14] for details.
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3 Time vs Event-Based Runtime Verification

In this section we study how Lola can simulate Striver and vice versa.
We start by introducing transformations between sequences and streams.

Since events happen only at time instants, we reserve a special fresh con-
stant ⊥ (read as “none”) to model the absence of an event in a sequence. We
extend every value domain A into A⊥ = A ∪ {⊥}. For example, the sequence
[350,⊥,⊥, 360,⊥, 289, 320, 330, 382] is a sequence of Z

⊥ values. A sequence of
A⊥ is called a maybe sequence of A values.

We say that a set τ of totally ordered elements with a minimum element such
that |τ | ≥ |[z]| covers z. When a subset τ of the temporal domain contains the
set of time-stamps in a stream s, we say that τ covers s. If τ covers every stream
in a valuation σ, we say that τ covers σ and we say that τ is a temporal backbone
of σ. When ordered, τ can be seen as a sequence of increasing time-stamps.

Definition 5. Let τ = {t0, t1 . . .} be a temporal backbone that covers an event-
stream s of sort A, and let z be a maybe sequence of type A (that is, a sequence
of A⊥ values). We say that s and z are equivalent for τ(and we write s ≡τ z)
whenever |z| = |τ |, τ covers s and for all n ∈ [z]

z(n) =

{

s(τ(n)) if τ(n) ∈ dom(s)
⊥ otherwise

Note that if s ≡τ z and dom(s) = τ then z(n) �= ⊥ for any n, this is, z is a value
sequence of type A when the backbone contains exactly the time-stamps of the
events in s.

We now define two maps that transform sequences into event streams and vice
versa. The map tostream takes a sequence z and a backbone τ and generates an
event stream with underlying time-domain T ⊇ τ , provided that τ covers z. The
map toseq takes an event stream s and a backbone τ and produces a sequence,
provided that τ covers s. These maps are defined as follows:

tostream(z, τ) def= {(τ(n), z(n)) | n ∈ [z] and z(n) �= ⊥}

toseq(s, τ)(n) def=

{

s(τ(n)) if τ(n) ∈ dom(s)
⊥ otherwise

Example 3. We show the transformations for co2 and tv status for a backbone
τ

def= {1.0, 1.5, 2.0, 2.5, 4.0, 4.5, 6.0, 7.0, 7.1, 7.2, 7.5, 8.0, 9.0}:

tostream(co2, τ) def= {(1.0, 350), (1.5, 360), (2.0, 289), (2.5, 320), (4.0, 330)}
toseq(tv status, τ) def= [⊥, off,⊥,⊥, on,⊥, off,⊥,⊥,⊥, on, off,⊥] ��

The following lemma relates tostream and toseq.

Lemma 1. For every sequence z, event-stream s and backbone τ that covers s:
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– z ≡[z] tostream(z, [z]) and z = toseq(tostream(z, [z]), [z])
– s ≡τ toseq(s, τ) and s = tostream(toseq(s, τ), τ).

The previous definitions can be extended to collections of streams and to
valuations as follows. Let V be a set of stream variables, σ be a collection of
event-streams with one stream σv in σ for every v ∈ V , and let τ be a backbone
that covers σ. Let ρ be a collection of A⊥, with a sequence ρv for each variable
v. We say that σ is equivalent to ρ for backbone τ over the streams V , and write
σ ≡V

τ ρ whenever for all v ∈ V , σv ≡τ ρv.
Figure 1 shows the main result proven in the rest of this section.

ϕ
Lola

ψ
Striver

ρO

σO′

ρI

σI

tostream striver ≡O
τ

ψ
Striver

ϕ
Lola

σO

ρO′

σI

ρI

toseq lola ≡O
τ

Fig. 1. Commutative diagrams for Theorems 1 and 2.

3.1 From Lola to Striver

We show now how to translate a synchronous specification (written in Lola) into
an event-based specification (written in Striver) that generate equivalent outputs
from equivalent inputs. Formally, we start from a well-formed Lola specification
ϕ〈I,O〉 and generate a well-formed Striver specification ψ〈I,O′〉 with O ⊆ O′

(the equivalence will be restricted to I ∪ O as O′ \ O are auxiliary streams). We
will show that for an evaluation model ρ of ϕ, if we choose τ = [ρ] (the instants
of time {0 . . . |ρ − 1|}) as the time backbone, then for every evaluation model of
ψ such that σ ≡I

τ ρ then σ ≡O
τ ρ. This is, if the evaluation models coincide in

their inputs with respect to the backbone τ , then the evaluation models coincide
in the output streams of the Lola specification with respect to τ . We assume that
the Lola specification is flattened, this is, the specification only contains stream
accesses with offsets −1, 0 or 1. This has been proved to be feasible in [7].

Recall that well-formed Lola specifications require that each MSCC of the
dependency graph has only positive cycles or only negative cycles. Additionally,
well-formed Striver specifications also require that cycles in positive MSCCs have
no negative edges and cycles in negative MSCCs have no positive edges. The
reason is that in real-time, a single negative edge (corresponding to a future ref-
erence fetching an event in the past) can compensate for any number of positive
edges and vice versa, and create a zero-weight cycle. Therefore, if we attempt
to simply translate a Lola successor access x[+1|d] as a Striver next event access
x(t>, d), we may turn a well-formed Lola spec into an illegal Striver spec.
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To overcome this issue, the translation proceeds in two stages. First, we
translate the initial Lola specification into an equivalent Lola specification that
does not contain positive edges in negative MSCCs or negative edges in positive
MSCCs. This can be done for every Lola specification. In the second stage, we
translate the resulting Lola specification into a Striver specification.

Eliminating Mixed Edges in MSCCs. We show now the translation for removing
positive offsets from negative MSCCs. Removing negative offsets from positive
MSCCs is dual. We introduce an auxiliary function expM (e, k) that expands
recursively the offsets within a negative MSCC M by the constant k. The expan-
sion substitutes the definition of the referred stream making all offsets become
non-negative:

expM (x[i|d], k) def=

⎧

⎪⎪⎪⎨

⎪⎪⎪⎩

x[i + k|d] if x /∈ M or k + i ≤ 0
⎛

⎜
⎝

if true[k + i|false]
then expM (ex, k + i)
else d

⎞

⎟
⎠ otherwise

expM (d, i) def= d

expM (f(E1, . . . , El), i)
def= f(expM (E1, i), . . . , expM (El, i))

Note that the recursive expansion terminates because each expansion corre-
sponds to following an additional edge and all paths in the negative MSCC
eventually either leave the MSCC, or make the path negative. Finally, we rewrite
the term of every stream x = e ∈ M as

output x :=expM (ex, 0)

Example 4. Take for example the following Lola specification:

output x = y[1|999] + 1
output y = x[-2|5] * 2

The resulting specification after the expansion is:

x = ((if true[1|false] then x[-1|5] * 2) else 999) + 1
y = x[-2|5] * 2

The correctness of the translation is provided by the following lemma.

Lemma 2. Let ϕ be a Lola spec and ϕ′ be the resulting specification after the
defining equation ex is replaced by expM (ex, 0). Then, ϕ and ϕ′ are equivalent.

The proof essentially proceeds by showing that given a candidate valuation
�ex�, then �ex� = �exp(ex, 0)� by structural induction on the expressions.

The application of expM guarantees that, given a well-formed Lola specifica-
tion ϕ, the obtained equivalent Lola specification ϕ′ satisfies that every MSCC
in its dependency graph contains only positive edges or only negative edges in
every cycle.
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Translation to Striver . In the second stage of the translation, we define a function
striver that generates a Striver value expression from the defining expression of
a Lola stream.

striver(x[−1|d]) def= x(<t, d)

striver(x[now]) def=

{

x(~t) if x belongs to a non-positive MSCC
x(t~) otherwise

striver(x[1|d]) def= x(t>, d)
striver(d) def= d

striver(f(E1, . . . , Ek)) def= f(striver(E1), . . . , striver(Ek))

For every output stream x = ex of type A in ϕ, we define its equivalent in
ψ as:

ticks x := r.ticks

define a x := striver(ex)

where r is any input stream.
We use striver(ϕ) to refer to the Striver specification resulting by translating

all output streams of ϕ as described above. We prove now that ϕ and striver(ϕ)
are equivalent, so therefore Striver can simulate Lola specifications.

Theorem 1. Let ϕ be a well-formed Lola specification and ρI a valuation of its
inputs of length N . Let ψ = striver(ϕ) be the Striver specification obtained by
translating ϕ and let σI = tostream(ρI , [N ]). Then, ψ(σI) ≡[N ] ϕ(ρI).

Proof. Let ϕ be a Lola specification, and ψ = striver(ϕ) its translation to Striver.
Let ρI be an input valuation of ϕ of size N , and let τ = 0 . . . N − 1, and let
ρO = ϕ(ρI). Let σI = tostream(σI , τ) be the corresponding input valuation for
ψ and σO = ψ(σI).

If N = 0, then ρx = 〈〉 and σx = {} for every stream x in I ∪ O.
We see now the case of N > 0. First, we observe that for the case of specs ϕ

without mixed-edges the dependency graphs of ϕ and ψ are identical.
We proceed by induction over a topological sort of the acyclic graph of

MSCCs in the dependency graphs (the graph of MSCCs). By induction over
0 . . . N − 1 for negative MSCCs (and by induction over N − 1 . . . 0 for positive
MSCCs). Internally, we reason by induction over a topological sort of the MSCC
with −−→ and +−→ edges removed.

Let x be a stream variable in a non-positive MSCC, and let i ∈ τ . We know
that i ∈ dom(x) because i ∈ dom(r), for any input stream r. Let v = ρx(i) be
the value at position i in σx. We consider the cases separately.

– The definition of x in ϕ is x=v, and thus the definition of the value of x in ψ
is x=v and σx(i) = v, or

– The definition of x in ϕ is x=y[now]. Then, the corresponding definition of x
in ψ is x=y(~t). Since ρy(i) = v then also σy(i) = v (by induction hypothesis),
and hence σx(i) = v
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– The definition of x in ϕ is x=y[-1|d], and thus the definition of the value of
x in ψ is x=y(<t,d). Then, either:

• i = 0 and d = v, and σx(i) = v, or
• i > 0 and ρy(i − 1) = v, and σy(i − 1) = v (by induction hypothesis
over i), and σx(i) = v.

– The definition of x in ϕ is x=f(e1,...,ek), and thus the definition of the
value of x in ψ is x=f(e1’,...,ek’). In this case, we proceed by struc-
tural induction over the expression. The leaves fall within one of the previous
cases. Since the arguments of every function are the same, they produce the
same result. We apply this reasoning until we get to the topmost expression
f(e1’,...,ek’), where f is applied to the same arguments as in its Lola
counterpart expression f(e1,...,ek), and thus the result is v in both cases;
and σ′

x(i) = v.

The proof for positive MSCCs is analogous. ��

Example 5. Let ϕ be the specification from Example 1 and the sequence for co2
in the preliminaries. The equivalent flattened specification is:

input num co2

output num aux := co2[-1|0]

output num denom := min(3, denom [-1|0]+1)

output num mean :=(aux[-1|0]+co2[-1|0]+co2[now ])/ denom[now]

The evaluation model for ρco2 = [350, 360, 289, 320, 330] is

ρaux = [ 0, 350, 360, 289, 320] ρdenom = [ 1, 2, 3, 3, 3]
ρmean = [ 350, 355, 333, 323, 313]

The translated Striver specification is:

input num co2

ticks aux := co2.ticks

define num aux := co2(<t,0)

ticks denom := co2.ticks

define num denom := min(3, denom(<t,0)+1)

ticks mean := co2.ticks

define num mean :=(aux(<t,0)+co2(<t,0)+co2(˜t))/ denom(˜t)

And its evaluation model for τ
def= 0, . . . , 4 is:

σco2 = {(0, 350), (1, 360), (2, 289), (3, 320), (4, 330)}
σaux = {(0, 0), (1, 350), (2, 360), (3, 289), (4, 320)}

σdenom = {(0, 1), (1, 2), (2, 3), (3, 3), (4, 3)}
σmean = {(0, 350), (1, 355), (2, 333), (3, 323), (4, 313)}
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3.2 Striver to Lola

We show now how to translate a well-formed Striver specification ψ〈I,O〉 to an
equivalent well-formed Lola specification ϕ〈I,O′〉 with the same input I and
output stream variables O′ (again O ⊆ O′ because O′ contains some auxiliary
stream variables). In this case we do not impose a temporal backbone τ . Instead,
we will show the conditions that τ must meet for the translation to be correct.
We reserve the word notick in the syntax of Lola to refer to the reserved constant
⊥. To ease the translation we introduce a new Lola stream variable called time
and assume that toseq(σ, τ) assigns time(i) = τ(i) for every instant i in σ.

The main idea of the translation is to create a defining expression for every
stream variable x ∈ O of type A, with ticking expression Tx and value expression
Vx, as follows:

output A x := if ticks(Tx) then value(Vx) else notick

where ticks(Tx) is a Boolean expression that is true whenever x has a value at the
time corresponding to the instant, and value(Vx) is an expression that computes
the corresponding value.

We first define ticks, which given a ticking expression in Striver, returns a
Boolean expression in Lola.

ticks({c}) def= time[now]==c

ticks(x.ticks) def= x[now]!=notick

ticks(x U y) def= ticks(x)||ticks(y)

ticks(delay ε x) def=

{

delay_eps_x [-1|noalarm]==time[now] if ε > 0
ndelay_eps_x [+1|noalarm]==time[now] otherwise

where, for each x and ε used in an expression delay ε x, we add to lola(ψ) the
following stream variable delay_ε_x and ndelay_ε_x with defining expressions:

output Time ∪{noalarm} delay_ε_x := if x[now]<ε then noalarm

else if x[now] == notick then delay_ε_x [-1| noalarm]

else x[now] + time[now]

output Time ∪{noalarm} ndelay_ε_x := if x[now]>ε then noalarm

else if x[now] == notick then ndelay_ε_x [+1| noalarm]

else x[now] + time[now]

Here, noalarm is a fresh value not in T.
We now define the function value, which translates Striver value expressions

into Lola expressions of the same type. We assume that the Striver specification
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is flattened so it does not contain nested offset expressions.2

value(x(x <<t)) def= prev_x[now] value(d) def= d

value(x(x <~t)) def= preveq_x[now] value(-out) def= -out

value(x(x >>t)) def= succ_x[now] value(+out) def= +out

value(x(x >~t)) def= succeq_x[now] value(notick) def= notick

value(t) def= time[now] value(f(E1, . . .))
def= f(value(E1), . . . )

where, for every stream x, we define

preveq_x:=if x[now]!=notick then x[now] else preveq_x[-1|-out]
prev_x := preveq_x [-1|-out]

succeq_x:=if x[now]!=notick then x[now] else succeq_x[+1|+out]
succ_x := succeq_x [+1|+out]

Essentially, the new streams preveq_x search for the previous value in x that
contains an actual value. The other auxiliary streams are analogous. Note that
offsets are restricted to values, not times. A specification that contains offset
expressions that access time can be translated to an equivalent one accessing
values creating a Striver stream times_of_x. As a result, we will get a stream
prev_times_of_x, along with the rest of the auxiliary streams in the translated
Lola specification.

We use lola(ψ) for the Lola specification obtained by transforming every out-
put stream variable in ψ as described above. Theorem 2 below captures whether
the transformation gives an equivalent Lola specification, which depends on the
temporal backbone being covering.

Theorem 2. Let ψ〈I,O〉 be a well-formed Striver specification, σI a valuation
of the inputs of ψ, τ be a covering temporal backbone, and ρI = toseq(σI , τ). Let
ϕ = lola(ψ). Then, ψ(σI) ≡O

τ ϕ(ρI).

Proof (sketch). The proof proceeds by complete induction on the evaluation
graph of ψ for ρ (which is an acyclic graph). Essentially, if the equivalence
does not hold there is a node (corresponding to a stream variable at a concrete
position) that is minimal—in the sense that it violates the stated equivalence
but all the lower nodes satisfy it—. Since in both cases the value of the node only
depends on lower nodes with two expressions that guarantee the same results
(given the values on the nodes they depend on), a contradiction is reached. ��

Example 6. Let ψ be the specification of Example 2 and the sequence for
tv status from Sect. 2 The evaluation model is:

σtv status = {(1.5, off), (4.0, on), (6.0, off), (7.5, on), (8.0, off)}
σtv on = {(1.5, 0.0), (4.0, 0.0), (6.0, 2.0), (7.5, 0.0), (8.0, 0.5)}

The translated specification is:
2 An algorithm to get a flatten specification for a past-only Striver specification has

been shown in [14].
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input TV_Status tv_status

output int tv_on :=

if tv_status[now] != notick then

if prev_tv_status[now] then

prev_tv_on[now]+time[now]-prev_times_of_tv_status [now]

else 0

else notick

Its evaluation model for the covering backbone τ = {1.5, 4.0, 6.0, 7.5, 8.0} is,
assuming ρtv status = [off, on, off, on, off]:

ρtv on = [0.0, 0.0, 2.0, 0.0, 0.5] ρtime = [1.5, 4.0, 6.0, 7.5, 8.0] ��

3.3 Time Backbone Election

The main result of the previous section is Theorem 2, which establishes a trans-
lation from Striver to Lola, and a condition under which the translation is correct.
Namely, that a temporal backbone is chosen in the translation satisfying that
the sequence of times in the backbone contains all the instants where events
may happen at runtime. We now describe three cases to compute a temporal
backbone that satisfies the conditions of Theorem 2 and later in Sect. 4 evaluate
the efficiency of the resulting monitors.

Full Time-Domain. The first obvious choice is to use the minimum granularity
of time that the monitoring system considers (this can be one millisecond, one
second, etc. depending on the setting). In this case, T is a finite set (given a
starting and finishing time) and choosing τ = T guarantees trivially to cover all
event-streams of any valuation of the Striver specification. We call the resulting
Lola specification the full-time translation. As we will see, this approach becomes
very inefficient if |T| � |

⋃

x∈I∪O dom(x)|. We use density to refer to the ratio
of instants at which there are events in a given valuation, and sparsity for how
close together events are statistically. The less dense a valuation is, the more
inefficient lola(ψ) is compared to ψ when a full-time translation is used.

Input Timestamps. Sometimes, it can be guaranteed that a Striver specifica-
tion is purely event-driven. In other words, all output events of all valuations
happen only at instants where there are input-events. The fragment of Striver
specifications whose tick operators are restricted to ticks and U (i.e. { c } and
delay are not used) is called event-driven and satisfies the following proposition.

Proposition 1. Let ψ be an event-driven Striver specification, σI an input val-
uation and σO = ψ(σI). Then,

⋃

y∈O dom(y) ⊆
⋃

x∈I dom(x).

In other words,
⋃

v∈I∪O dom(v) =
⋃

x∈I dom(x) for event-driven specifications.
As a result, we can incrementally define τ as the witnessed input timestamps,
and an incremental online Lola engine will be correct. We call the corresponding
Lola specification the event-driven translation. As we will see, this translation
is very efficient regardless of the density or sparsity of the streams observed.
However, unfortunately, this choice of backbone only supports a fragment of the
Striver language.
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Input-Independent Timestamps. A third translation considers the case
under which one can statically determine that any valuation will only contain
either time instants dictated by the input (event-driven) or a set of instants
which may require time calculation but that does not depend on the input.

This happens, for example, when delay is used in a controlled way to define
periodic clocks (that only depend on themselves in a recursive definition with
delay), and not depending on instants in the input. Mixing event-driven and
periodic clocks allows us to capture the assumptions of the RTLola real-time SRV
tool [13]. We call the resulting Lola specification the isochronous translation.

4 Empirical Evaluation

In this section we report an empirical evaluation, executed on a MacBook
Pro with a Dual Core Intel-i5 at 2.5 GHz with 8 GB of RAM running MacOS
Catalina. The Lola monitors are generated using HLola, a Haskell implemen-
tation of Lola described in [4] and the Striver monitors are generated using
HStriver, a similar infrastructure for Striver3. We evaluate empirically the fol-
lowing hypotheses:

– (H1) Lola can be simulated by Striver with little penalty in time.
– (H2) Striver can be simulated by Lola via a full-time translation, but the

resource penalty can be very large, particularly for low density inputs.
– (H3) If the Striver specification is purely event-driven then the event-driven

translation into Lola can simulate it very efficiently.
– (H4) If the Striver contains only event driven streams or periodic streams, it

can also be efficiently simulated via an isochronous translation.
– (H5) In practice, embedded monitoring execution platforms can either enter

idle mode immediately after processing an event or remain awake waiting for
events to be received shortly. Resources for sparse inputs can be reduced by
choosing an optimal patience time before entering idle mode.

To evaluate these hypotheses we have written a number of specifications
in HLola and HStriver for properties over the Orange4Home data-set [6]. The
translations were computed manually following the algorithms in Sect. 3. Con-
sider for example S1: “the person does not watch TV for longer than 3 h a day”,
which involves detecting the beginning and end of a TV watching session and
computing the total TV watching time during a day. A second specification S2:
“the person does not watch TV more than 30min more than the daily average
in the past”, requires also computing and maintaining numerical calculations
from previous days (note that this specification is not expressible in LTL). This
specification also requires events to be generated on the fly at time instants that
are neither input-driven nor periodic.

3 Both HLola and HStriver are open source available from http://github.com/imdea-
software. All executions in this empirical evaluation are packaged as a docker con-
tainer downloadable from http://hub.docker.io/imdea-software/rv2020/.

http://github.com/imdea-software
http://github.com/imdea-software
http://hub.docker.io/imdea-software/rv2020/


478 F. Gorostiaga et al.

In the first experiment we assess (H1) starting from Lola specifications for S1
and S2, and translating them into Striver. We assume that the events are spaced
roughly by one minute during a day and ignore the seconds, which is reasonable
in our dataset.

In the second experiment we assess (H2) by re-implemening S1 and S2 in
Striver to consider the time of the inputs for their computation. This makes the
monitor more precise and allows it to report the excess of TV exactly at the
moment the property is violated (at that time no input event occurs in general).
The HLola implementation is slightly changed to expect events to be one second
apart, making the HLola specification as precise as its HStriver counterpart, but
also causing it to be much more inefficient.

In the third experiment we evaluate (H3) running a simpler event-driven
Striver Boolean specification S3: “there is some TV on in the house” and the
numeric S4: “total TV time when TV is switched-off ”, as well as the Lola equiv-
alent that uses the timestamps of the TV events as a backbone.

In the fourth experiment we evaluate (H4) running a spec S5 that calculates
the summary of TV time at the end of every hour.

Table 1. Experiments data

Event throughput

2h38m 9h18m 1d8h46m 11d4h27m 25d2h6m

HStriver HLola HStriver HLola HStriver HLola HStriver HLola HStriver HLola

Exp 1 6666 5050 7142 5577 7692 5900 8064 5830 8130 5279

Exp 2 4000 6407 7142 6377 7407 6264 7692 6145 7462 6149

Exp 3 6666 12900 11111 8933 11764 10650 11904 10432 12195 10528

Exp 4 4000 6550 10000 9083 10000 8438 12345 9182 12820 9376

We calculate, for each experiment and a number of running traces, the aver-
age number of processed events per second. In each experiment we use a trans-
lator that generates the equivalent sequences and event-streams of varying time
spans. The summary of the observations can be found in Table 1, Fig. 2, Fig. 3(a)
and Fig. 3(b).

The results in Table 1 suggest that the event processing throughput is unaf-
fected by the number of events/instants being processed (all specifications are
trace-length independent), as predicted. Also, we observe that the event process-
ing throughput for both HLola and HStriver are similar for the same experiment.
Figure 2 shows that the second experiment increases exponentially for Lola with
respect to the trace length (note that the y axis has a logarithmic scale), but
increases linearly with respect to the trace length in all other cases. The number
of events processed by Striver is roughly twice as its Lola counterpart (except in
experiment 2), since data from two different origins with the same timestamp
accounts for one event in Lola, but Striver processes them separately.

Figure 3(a) reports a variation of experiment 3 where the input sequence is
padded with empty data to evaluate the impact on the performance of Lola. For
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Fig. 3. Event density (left) and costs (right).

reference, the blue line at 1.64 indicates the execution time of the corresponding
HStriver specification. We can conclude that the execution time increases linearly
with respect to the density of the input data, as expected.

Finally, we run an additional experiment to evaluate (H5), with a synthetic
cost model that considers the energy of going idle and waking up (Fig. 3(b)).
The brown line indicates the accumulated costs of a monitor that never goes idle.
The red line represents a monitor that goes idle immediately after processing
every event. The jumps in the red line correspond to the times at which an event
was received. The blue line corresponds to a monitor that waits for half an hour
after the last event processed to go idle. The outcome illustrates that waiting is
favourable if the next event comes soon, while sleeping is preferred if the next
event takes long to arrive.
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5 Conclusions

We have studied the conditions under which synchronous monitoring and fully
asynchronous monitoring can simulate each other, particularly in the context
of stream runtime verification. Our first result is that every Lola specification
can be efficiently simulated by Striver. The second result is the definition of
a condition of the temporal backbone under which Lola can simulate Striver,
via a general translation, leading to three practical translations: (1) the full-
time translation that uses the minimum granularity of time, which is general
but inefficient; (2) the event-driven translation, which is efficient but restricted
to event-driven Striver specs; and (3) the asynchronous translation, a mixed
approach that supports event-driven execution plus simple time-driven events
like periodic clocks.

A simple analysis of the translations (from Lola to Striver and vice versa)
presented in Sect. 3 reveals that the resulting specification is linear in the size of
the original one, and that the algorithm takes linear time. Similar translations
can be made for other SRV specification languages like TeSSLa and RTLola. Our
empirical evaluation using the Orange4Home dataset illustrates the expressivity
of the SRV languages used and allowed us to empirically confirm the predictions
on the runtime efficiency of the corresponding monitors.
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Abstract. We present a randomized benchmark generator for attest-
ing the correctness and performance of online first-order monitors. The
benchmark generator consists of three components: a stream generator, a
stream replayer, and a monitoring oracle. The stream generator produces
random event streams that conform to user-defined characteristics such
as event frequencies and distributions of the events’ parameters. The
stream replayer reproduces event streams in real time at a user-defined
velocity. By varying the stream characteristics and velocity, one can ana-
lyze their impact on the monitor’s performance. The monitoring oracle
provides the expected result of monitoring the generated streams against
metric first-order regular specifications. The specification languages sup-
ported by most existing monitors are either a subset of or share a large
common fragment with the oracle’s language. Thus, we envision that our
benchmark generator will be used as a standard correctness and perfor-
mance testing tool for online monitors.

Keywords: Online monitoring · Temporal logic · Benchmark

1 Introduction

Monitors lie at the core of runtime verification (RV) [4]. Given a sequence of
time-stamped events and a specification (i.e., a property formulated in a spec-
ification language), a monitor checks that the specification holds at each point
in the sequence and otherwise reports the violations. The monitored properties
can range from simple state invariants to complex patterns expressing qualita-
tive [14,22] and quantitative [11,18] temporal relations between events. Partic-
ularly challenging are first-order [5,8] and aggregation [7,13] properties, which
additionally refer to the events’ parameters. The implementation of such moni-
tors is a non-trivial task, which can introduce bugs that are difficult to detect.
Moreover, the theoretical analysis of a monitor’s algorithm often does not pro-
vide sufficient insight into its performance. These two reasons motivate thorough,
automated testing. In this paper, we present a benchmark generator that tests
the correctness and evaluates the performance of monitors for expressive speci-
fication languages.
c© Springer Nature Switzerland AG 2020
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We distinguish between online and offline monitors [16]. Offline monitors
read events from a finite event stream (called an event log) in an arbitrary fash-
ion, while online monitors must sequentially read from a (potentially unbounded)
event stream. Due to the nature of streams, each event can be read only once.
Hence, an online monitor must keep all relevant events in its memory. Another
challenge for online monitors is events arriving out-of-order, which may be caused
by unreliable communication channels over which the events are transmitted.

The performance of an online monitor can be assessed in terms of its mem-
ory usage and its latency. The latency of processing a single event is the time
difference between the moment the event is read and the moment it has been
fully processed by the monitor. Latency and memory usage depend on two main
factors: the complexity of the monitored specification and the characteristics of
the event stream, such as its velocity (i.e., the number of events per second), the
distribution of the different event types, and the maximum delay of out-of-order
events.

The benchmark generator presented in this paper focuses mainly on the event
stream characteristics. They are not only useful for evaluating a monitor’s perfor-
mance, but also for testing its correctness, as streams with specific characteristics
can trigger corner cases in the monitoring algorithm. We provide three tools: a
stream generator, a stream replayer, and a monitoring oracle.

The generator randomly generates a stream with user-defined character-
istics. The generator has two modes. In the first mode, it supports arbitrary
specifications by generating events independently at random. This mode is useful
for the correctness testing of a monitor against a large number of specifications
involving different event types. The second mode is restricted to a family of spec-
ifications for which a monitor must compute joins over three relations. This is
known to be a difficult problem [12,21] and a core task in first-order monitoring.
The second mode is thus tailored to the performance evaluation of first-order
monitors. For the restricted family of specifications, the generator uses biased
sampling to match the average violation frequency specified by the user.

The replayer feeds the generated stream to an online monitor at a user-
defined velocity, which allows for latency measurements under realistic condi-
tions. The replayer can optionally simulate out-of-order streams by exploiting
the randomized emission time-stamps that the generator adds to the stream.

The oracle provides the expected correct result (a stream of verdicts) for
the generated stream, given a property specified in a monitorable fragment of
metric first-order dynamic logic (MFODL) [5]. Since MFODL is very expressive,
our benchmark generator can be used to test the correctness of the majority of
the existing monitors over a large class of specifications.

The generator and replayer were originally developed to assess the per-
formance of our online first-order monitor [6,26,28], which is sensitive to the
event stream characteristics. Together with the oracle, the generator can
be used to test the correctness of monitoring tools, which we have already
done [5,29] for a number of existing monitors via differential testing [20]. We
summarize these applications of our benchmark in Sect. 4.
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An earlier version of this work, called FOStreams, was presented in the bench-
mark challenge [1] at the RV 2018 conference. Since then, we extended our bench-
mark generator to 1) generate streams with arbitrary event signatures; 2) use
the correct-by-design monitor VeriMon [5,29] as the oracle; and 3) generate
out-of-order event streams.

Related Work. From 2014 to 2016, the RV community organized an annual tool
competition to address a lack of standardized benchmarks in the field [3]. Its
goals (among others) were to design and discuss evaluation methods for RV
tools and to inspire new efficient implementations of such tools. A follow-up
workshop [25], which replaced the competition in 2017, concluded that one of
the obstacles in achieving standardized benchmarks is the diversity of the tools’
specification languages. Our benchmark generator focuses on the event streams
characteristics, which avoids a strong dependence on the specification language.
Such a dependence still exists in the oracle, but we hope that its highly expres-
sive language allows meaningful testing of the majority of existing tools.

The community continued to collect and curate benchmarks after 2017 [1].
The benchmark by Li and Rozier [19] uses SMT solvers to generate satisfying
or violating event streams for propositional monitors. In contrast, our work sup-
ports first-order specifications and it relies on an orthogonal approach to stream
generation: the oracle provides verdicts which are correct by design, while the
generator uses a best-effort strategy to reach the user-defined violation rate.
Ulus [30] provides a benchmark generator tailored to propositional monitors and
common specification patterns [15] involving parameterized time constraints,
whereas we focus on data constraints and the reproduction of real-time streams.

2 The Benchmark Generator

In this section, we first introduce event streams and define the stream charac-
teristics that can be configured in our benchmark generator. We then describe
the benchmark generator’s three main components.

2.1 Event Streams and Stream Characteristics

An event is a tuple of data values that is labeled with an event type. The values’
domain D typically includes strings and integers. Every event type R has an
associated arity α(R) defining the number of data values for this type. We call
1, . . . , α(R) the attributes of the type R. For example, the following line in the
/var/log/auth.log file

Jul 7 17:14:11 mbp sshd[375]: Accepted publickey for root from 10.11.1.3:5161

can be represented by the event login(“10.11.1.3”, 5161, “mbp”, “root”, 375, “pub-
lickey”) with type login and arity α(login) = 6. Every event has an associated
time-stamp, modeled as a natural number. The use of naturals is realistic as
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Table 1. Summary of stream characteristics for the event stream (τi, Di)i∈N

Name Notation Definition

Index rate ιτ |{i ∈ N | τ = τi}|
Event rate ετ |{e ∈ Di | τ = τi}|
Relation rate ρτ (R) |{R(d1, ..., dα(R)) ∈ Di | τ = τi}|
Relation frequency fτ (R) ρτ (R)/ετ

Data rate τ (d, R, k) |{R(d1, . . . , dα(r)) ∈ Di | dk = d ∧ τ = τi}|
Heavy hitters τ (R, k)

{
d ∈ D

∑
0≤τ ′≤τ τ ′(d, R, k)

0≤τ ′≤τ ρτ ′(R)
>

1
p

}

time is often recorded in the UNIX format. For example, the event in the above
log line has the associated time-stamp 1594142051, which encodes July 7 2020,
17:14:11 in UNIX format, assuming the GMT time zone and a one second time
granularity.

We group a finite set of events that happen concurrently (from the event
source’s point of view) into databases. An (event) stream is thus an infinite
sequence (τi,Di)i∈N of databases Di with associated time-stamps τi. We distin-
guish between the time-stamp τi and its index in the stream i, also called a time-
point. Specifically, a stream may have the same time-stamp τi = τj at different
indices i �= j, i.e., event sources may record the order of events with higher pre-
cision than the time-stamps’ granularity. Time-stamps must be non-decreasing
(∀i. τi ≤ τi+1) and always eventually strictly increasing (∀τ. ∃i. τ < τi). The
above example can be represented by the tuple (1594142051,D) where D is a
singleton database containing the login event.

In the following, we introduce the relevant stream characteristics. Their def-
initions are summarized in Table 1, where we fix a stream (τi,Di)i∈N. The index
rate ιτ at time τ is the number of time-points in one time unit. The event rate
ετ at time τ is the total number of events in one time unit. The rate of events
with type R is called R’s relation rate. The relation frequency of R at τ , denoted
by fτ (R), is the ratio of R’s relation rate and ετ . The data rate δτ (d,R, k) of a
data value d at time τ with respect to the kth attribute of R is the number of
events R that carry the value d in the kth attribute. Finally, we define the sets
of heavy hitters Hτ (R, k). A heavy hitter is a data value that occurs as the kth
attribute of R events disproportionately often in the stream prefix up to τ . This
characteristic differs from the previous ones in that it is computed over a prefix
instead of a single time-stamp. A value is a heavy hitter if its data rate, relative
to the corresponding relation rate, exceeds the threshold 1/p. The parameter
p ∈ N − {0} is typically the monitor’s level of parallelism [27].

We exemplify all the stream characteristics using the stream ρex depicted
in the following figure, which shows the first four time-points as black circles.
Databases are drawn above, while time-stamps are the numbers below the circles.
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0 0 5 8

{A(1),A(2)} {A(3),B(7)} {A(1)} {}
ρex:

Table 2 lists all the stream characteristics for this stream, where p = 3 and
τ ∈ {0, 8}. For example, the index rate ι0 is two because there are two time-
points, 0 and 1, with time-stamp 0. Note that two out of the three A events in
the time interval [0, 8] carry the data value 1, and 2/3 is greater than the heavy
hitter threshold 1/p = 1/3. Therefore, the set H8(A, 1) contains 1 as the single
heavy hitter (as of time-stamp 8) in the first attribute of A events.

2.2 Specification and Oracle

Our benchmark generator can be used with arbitrary specifications. Depending
on the benchmark’s mode, the generated streams are either compatible with all
specifications that use a given signature, or they are tailored to a single speci-
fication from a fixed family (see Sect. 2.3). A specification’s signature describes
the finite set of relevant event types together with their arities.

The oracle provides the expected output of monitoring any specification
expressible in monitorable metric first-order dynamic logic (MFODL) [5] on any
in-order event stream. MFODL extends MFOTL [8] with regular expressions.
The oracle is implemented using VeriMon [5], a correct-by-design monitor
that has been formally verified in a proof assistant. Its high trustworthiness and
expressiveness allows us to attest the correctness of a wide variety of existing
monitors [5,29] by comparing their output to the oracle’s output.

2.3 Generating Streams

The generator produces a random but reproducible event stream. Since it gen-
erates output as quickly as possible, one must use the replayer (see Sect. 2.4)

Table 2. Stream characteristics of the example stream ρex

Name Examples

Index rate ι0 = 2, ι8 = 1
Event rate ε0 = 4, ε8 = 0
Relation rate ρ0(A) = 3, ρ0(B) = 1, ρ8(A) = ρ8(B) = 0
Relation frequency f0(A) = 3

4
, f0(B) = 1

4
, f8(A) = f8(B) = undefined

Data rate 0(1,A, 1) = 0(2,A, 1) = 0(3,A, 1) = 0(7,B, 1) = 1
8(1,A, 1) = 8(2,A, 1) = 8(3,A, 1) = 8(7,B, 1) = 0

Heavy hitters 0(A, 1) = , 0(B, 1) = 8(B, 1) = 7 , 8(A, 1) = 1
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to simulate a more realistic real-time stream for an online monitor. The gener-
ator can be operated in two different modes, which we detail below.

Mode I (Arbitrary Specifications). When used with arbitrary specifications, the
generator expects a signature file describing all the event types and their
arities. Users can also configure the event rate, the index rate, and the value
of the first time-stamp. The generator then creates a random stream with
consecutive time-stamps and constant event and index rates. Event types are
chosen uniformly at random. The generator maintains a configurable number
of unique most recently sampled data values. It samples from this pool with a
configurable probability, which ensures common data values across events and
thus increases the likelihood of exercising non-trivial computation inside the
monitor. Otherwise, a fresh value is sampled uniformly from the set {1, . . . , 109}.

Mode II (Temporal Three-Way Conjunctions). The generator gives more con-
trol over the stream generation process for a special family F3 of specifications,
which we call temporal three-way conjunctions. For example, it is possible to
define the expected violation frequency. The family F3 is inspired by query
patterns that are commonly used in database systems to benchmark the perfor-
mance of relational joins [12]. Joins are an important operation also for first-order
monitors because (the negations of) many specifications contain conjunctions,
e.g., any specification involving a response constraint [15]. We augment the con-
junctions with temporal operators to increase the joins’ input size.

A three-way conjunction is a temporal pattern referring to three event types
A, B, and C with integer data values. The specifications differ only in the way
these events are related among each other. They can be formalized using the
parametric MFODL formula �∀v.

(
�[0,w)A(vA)

)∧B(vB) → �[0,w)¬C(vC), where
is w is a positive integer and vA, vB, and vC are lists of variables. Informally, the
formula states that whenever there is a B event that was preceded by a matching
A event less than w time units ago, there must not be a matching C event within
the next w time units. Two events with different types match if their data values
coincide according to the variables vA, vB, and vC, respectively. For example,
if vA = (x, y) and vB = (y, z), then the events A(1, 2) and B(2, 5) match, but
A(1, 2) and B(1, 5) do not.

The variable lists, which must be non-empty, can be chosen freely by the
user. There are three built-in configurations: star (vA = (w, x), vB = (w, y),
vC = (w, z)), linear (vA = (w, x), vB = (x, y), vC = (y, z)), and triangle (vA =
(x, y), vB = (y, z), vC = (z, x)). These configurations are again well-known in
the database literature [12].

For F3, the events of type A, B and C are generated randomly and inde-
pendently according to the user-specified relation frequencies fτ (A), fτ (B), and
fτ (C), which are constant with respect to τ . The data values are also chosen
randomly and independently under the following constraints: (1) every A event
must be matched with a B event within the interval w to ensure that the premise
of the specification is satisfied frequently; (2) a user-specified percentage of viola-
tions must be generated. Constraint (2) is enforced by generating an appropriate
number of C events matching both a proceeding B event and an A event before
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that (both within the appropriate time intervals). The above constraints imply
some restrictions on the user-specified frequencies: the sum of all three frequen-
cies must be 1, fτ (A) can be at most fτ (B), and the frequency of violations can
be at most the minimum of fτ (A) and fτ (C).

By default, values are sampled uniformly from D = {1, . . . , 109}. It is also
possible to select a Zipf distribution per variable, which has the probability mass
function p(x) = (x−s)−z/

∑109

n=1 n−z for x ∈ {s+1, s+2, . . . , s+109}. The larger
the exponent z > 0 is, the fewer values have a correspondingly larger relative
frequency and are thus more likely to be heavy hitters. The parameter s is the
start value, which can be used to further control the specific heavy hitter values.
Events that form a violation are always drawn from the uniform distribution
to prevent unintended matchings. Likewise, Zipf-distributed values of C events
are increased by 1 000 000. Note that there is still a nonzero probability that
additional violations occur, even though the set D is large.

Out-of-Order Streams. The generator optionally attaches an emission time to
every event. The emission times, which are time differences relative to the start of
the stream, may be used to determine the order in which the events are supplied
to the monitor. For in-order event streams, the emission times correspond to the
events’ time-stamps decreased by the value of the first time-stamp in the stream.
To create out-of-order streams, the generator increases each event’s emission
time by a value sampled from the truncated normal distribution N (0, σ2) over
the interval [0, δmax]∩N. Both the standard deviation σ and the maximum delay
δmax are configurable. The generator also adds watermarks after configurable
time-stamp increments called watermark periods to the stream. A watermark
is a time-stamp which is a strict lower bound on all time-stamps of the events
received in the future. They are commonly used in stream processing systems to
handle out-of-order events [2].

2.4 Replaying Streams

The time-stamps in an event stream do not necessarily correlate to the (real)
times at which the corresponding events are received by an online monitor.
Therefore, we distinguish the ingestion time of an event from its time-stamp.
The ingestion rate is the total number of events received by the monitor per unit
of (real) time. The replayer tool reproduces an event stream (or log) with an
ingestion rate proportional to the stream’s event rate. The proportionality con-
stant, called acceleration, is chosen by the user. For example, an acceleration of 2
will replay the stream twice as fast. Thus the replayer can be used to generate
workloads with different ingestion rates from the same data. This allows for a
meaningful performance evaluation as the stream characteristics are retained.

Upon startup, the replayer immediately outputs all events with the small-
est time-stamp in its input. The subsequent events with the next time-stamp are
delayed proportionally to the difference between the two time-stamps (which are
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interpreted as seconds), where the delay factor is the inverse of the acceleration
parameter. This process is repeated for each unique time-stamp in the stream.

To reproduce streams with out-of-order events, the replayer uses the emis-
sion times provided by the generator instead of the events’ time-stamps.

3 Usage Examples

We provide our benchmark generator as a ready-to-use Docker image.1 The
source code is available online.2 In the following, we assume that Docker version
19.03.8 or higher is installed and configured properly. The components of the
benchmark generator can be invoked with the command

$ docker run -iv `pwd`:/work infsec/benchmark component [options ...]

where component is one of generator, replayer, or oracle. The command
makes the current working directory available to the Docker container. Hence,
one can access all the files below the current directory using relative paths in
the components’ options. Each component prints detailed usage information if it
is invoked with the --help option. In the examples below, we omit the Docker
part of the invocation and only show the component and its arguments.

Example: Differential Testing with Mode I. We explain the steps needed to test
the correctness of a monitor against the oracle. An MFODL formula and, if nec-
essary, its translation to the monitor’s native language must be provided. Here,
we use the MFODL formula �∀ip, port . login(ip, port) → ♦[0,60]logout(ip, port),
which is loosely inspired by the example from the beginning of Sect. 2.1. In
words, every login from some IP address and port combination must be even-
tually followed by a matching logout within 60 time units. For simplicity, we
assume that the time unit is minutes. Note that the interpretation of the time
unit is irrelevant for the generator; the replayer interprets time-stamps in
seconds.

We first describe the signature in a text file ssh.sig with the content

login(ip,port) logout(ip,port)

and the specification (without the prefix �∀) in a separate file ssh.spec:

login(ip,port) IMPLIES EVENTUALLY[0,60] logout(ip,port)

The syntax for the MFOTL subset is described in [9]. Next, the following com-
mand generates a random log for the signature with a length of 300 min.

$ generator -sig ssh.sig -i 10 -q 20 -r 0.01 300 > ssh.csv

1 https://hub.docker.com/r/infsec/benchmark/ (version 1.2.1).
2 https://bitbucket.org/krle/scalable-online-monitor.

https://hub.docker.com/r/infsec/benchmark/
https://bitbucket.org/krle/scalable-online-monitor
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The generator prints the events to its standard output. We use a shell
redirection to save them in a file. The option -i 10 sets the index rate to 10.
Together with the default event rate (option -e), which is also 10, this implies
ten databases per minute with one event each. Options -q and -r define the
number of the most recently sampled unique data values and the probability to
sample a fresh data value. Here we use few values (20) and a low probability
(0.01) because otherwise there would be many violations of the specification.

The generator outputs the CSV format from the first RV competition [3].
For example, the ssh.csv file begins with the line

login, tp=0, ts=0, x0=569872521, x1=373321178

representing the event login(569872521, 373321178) at time-stamp 0. The ran-
dom generator’s seed is fixed and the output is deterministic. The seed can be
customized using the -seed option. Since VeriMon expects a different format
for the input event stream, we invoke the replayer to translate the formats:

$ replayer -f verimon -a 0 < ssh.csv > ssh.log

Note that -a 0 disables the real-time replay and events are emitted as quickly
as possible. Finally, the oracle provides the reference verdicts:

$ oracle -sig ssh.sig -formula ssh.spec < ssh.log
@0. (time point 7): (703748452,559514287)
[...]

Each line in the output represents a violation, showing the time-stamp, the time-
point, and values of ip and port . If we now ran another monitoring tool on the
same specification and log, we could compare its output to this reference.

Example: Online Performance Measurements with Mode II. Here, we illustrate
the generation of a real-time stream with out-of-order events for the specification
family F3 (Sect. 2.3). By varying the stream characteristics, one can analyze their
impact on the monitor’s throughput, latency, and memory usage.

Recall that F3 is parameterized by three variable lists. One can select either
a built-in or a custom variable configuration. The options -S (star), -L (linear),
and -T (triangle) select the respective built-in configuration. A custom pattern is
supplied as a single argument after the option -P. In this example, we will use the
triangle specification, i.e., �∀x, y, z.

(
�[0,w)A(x, y)

) ∧ B(y, z) → �[0,w)¬C(z, x).

$ generator -T -pA 0.1 -pB 0.5 -z "x=1.5+3,z=2" -e 100

The relation frequencies of the three event types are set with -pA and -pB.
The frequency of type C is implied by the frequencies of type A and B because
their sum is always 1. In the invocation above, the relation frequency of A events
is approximately 10%, that of B events is 50%, and that of C events is 40%. To
obtain values from a Zipf distribution, the exponent of the distribution can be
specified per variable. The exponents of all Zipf-distributed variables are passed
as a single argument after option -z. In our case, the values of variables x and z
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follow a Zipf distribution with exponents 1.5 and 2. The start value for variable
x is 3, while for variable z it is 0 (default). Variable y is distributed uniformly.

We did not specify the frequency of violations (option -x) nor the interval size
w (option -w), so they assume their default values of 0.01 and 10, respectively.
No log length was specified either, which prompts the generator to produce
an unbounded stream as quickly as possible. We can pipe its output into the
replayer to obtain a real-time stream, which can be further sent to the monitor
under test:

$ generator [...] | replayer | some monitor tool

The replayer outputs 100 events per second because the generated stream’s
event rate is 100 (option -e 100 in the generator’s invocation). With the
replayer option -a 2, the stream would be replayed twice as fast at 200 events
per second. If a pipeline connects the generator and the replayer, the former
needs to be fast enough for the events to be replayed at the proper time. For
higher accelerations or event rates, a finite log should be generated and written
to a file from where the replayer can read it.

To obtain an out-of-order stream, we must pass additional options:

$ generator [...] -et -md 5 -s 2 -wp 1 | replayer -e

The flag -et instructs the generator to add explicit emission times to the
events based on maximum delay (option -md) and standard deviation (option
-s). The generator also outputs watermarks after configurable periods (option
-wp), which appear as lines of the form >WATERMARK time-stamp < in the stream.

4 Applications

We used previous versions of our benchmark generator to assess the perfor-
mance of our scalable monitoring framework [28], which relies on first-order
(sub)monitors to monitor event streams in parallel. The framework initially
supported only MonPoly [9] as a submonitor, but it was later extended [27] to
also support DejaVu [17]. The framework’s performance depends on the stream
characteristics shown in Sect. 2.1. We used the generator in Mode II during
the evaluation, which revealed a noticeable impact of the index rate and the
specific variable configurations on the monitoring framework’s throughput. The
framework was later extended to adapt to dynamically changing stream charac-
teristics [26] and to handle multiple event streams with events arriving out-of-
order [6]. The evaluation of these extensions was again driven by the generator
and replayer. For example, we could confirm a direct relationship between the
monitoring latency and both the maximum delay and the watermark period.

In conjunction with the development of VeriMon [29], the generator
(in Mode I) and the oracle were used to perform differential testing of both
propositional (Aerial [10] and Hydra [23,24]) and first-order monitors (Mon-
Poly [9] and DejaVu [17]). Bugs were discovered in each tool [5].
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5 Conclusion and Future Work

Online first-order monitors implement complex algorithms, whose correctness is
rarely obvious. Furthermore, they require a highly optimized join implementa-
tion to achieve competitive performance. We proposed a benchmark generator
for evaluating first-order monitors. It consists of three components: a stream
generator, stream replayer, and a monitoring oracle. The stream generator and
replayer produce random event streams in real time with highly customizable
characteristics suitable for evaluating the performance of join implementations
in monitors. The monitoring oracle provides the correct monitoring output for
monitorable metric first-order regular specifications, which allows for the cor-
rectness testing of a large class of first-order monitors.

In the future, we would like to support other event stream formats (e.g.,
JSON) and additional data value types (e.g., strings). Moreover, the current
stream generator determines the time-stamps based on the event rate and log
length only. We would like to give the users additional control over the distribu-
tion of the time-stamp values. Finally, we plan to improve and publish a version
of the generator that provides multiple randomized event streams resembling
those obtained from distributed systems [6].
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Raszyk. This research is supported by the US Air Force grant “Monitoring at Any
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Abstract. A weakly-hard fault model can be captured by an (m, k)
constraint, where 0 ≤ m ≤ k, meaning that there are at most m bad
events (faults) among any k consecutive events. In this paper, we use a
weakly-hard fault model to constrain the occurrences of faults in system
inputs. We develop approaches to verify properties for all possible values
of (m, k), where k is smaller than or equal to a given K, in an exact
and efficient manner. By verifying all possible values of (m, k), we define
weakly-hard requirements for the system environment and design a run-
time monitor based on counting the number of faults in system inputs.
If the system environment satisfies the weakly-hard requirements, the
satisfaction of desired properties is guaranteed; otherwise, the runtime
monitor can notify the system to switch to a safe mode. Experimental
results with a discrete second-order controller demonstrate the efficiency
of the proposed approaches.
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constraints. In this paper, we use a weakly-hard model to constrain the occur-
rences of faults, and verify properties of discrete systems under such weakly-hard
fault model. In particular, we leverage the (m, k) constraint for fault modeling
(0 ≤ m ≤ k), which specifies that there are at most m bad events (faults) among
any k consecutive events. Verifying system properties under this fault model has
various applications, such as the ones below:

– In a real-time system, a deadline miss can be considered as a bad event
(fault). Our approach can help find the maximum number of deadline misses
allowed for ensuring system properties, which can then be used to reduce
computation/communication load and maximize resource saving (e.g., CPU
or network resource) with a less critical mode of the system.

– In a networked system, a message without authentication can be modeled
as a bad event (fault), and again, our approach can be applied to maximize
resource saving (e.g., reduce the computation and transmission of message
authentication codes) by allowing messages without authentication, while still
ensuring system properties. Note that a system that only authenticates partial
messages has also been proposed [16].

– In the systems above, a deadline miss (e.g., due to a denial-of-service attack)
or a compromised message can be caused by a malicious attacker. From the
perspective of the attackers, our approach can be applied to minimize attack-
ing cost while still causing the system to reach a state violating properties.

More generally speaking, our verification approach under the (m, k) weakly-
hard fault model provides two important properties for system engineering:

– If the environment and system design (e.g., via scheduling) ensures that the
fault occurrences satisfy the (m, k) constraint, the system properties are sat-
isfied.

– If the environment and system design cannot ensure that the fault occurrences
always satisfy the (m, k) constraint, a runtime monitor should be developed
to monitor the occurrences of faults and adapt the system to a safe (more
conservative) mode when the (m, k) constraint is violated.

For example, applications of connected vehicles, such as intersection man-
agement and cooperative adaptive cruise control, rely on periodic messages from
other vehicles or roadside units. However, a message may be missing due to net-
work faults or even malicious attacks. With the verification results, a connected
vehicle can monitor the number of missing messages during runtime. If the cor-
responding (m, k) constraint is violated, the connected vehicle should switch to
a safe mode (e.g., slowing down or stopping immediately). It should be empha-
sized that, in practice, the cost of a network without missing messages is too
high, or even it may not be possible to predict how the environment behaves,
so the satisfaction of the (m, k) constraint cannot be guaranteed. Therefore, a
runtime monitor for the (m, k) constraint is really desired.

In this paper, given a labelled transition system S, a property P , and a
positive integer K, we aim to develop a runtime monitor to verify whether the
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environment satisfies a subset of the (m, k) constraints, where 1 ≤ m ≤ k ≤
K and the subset is sufficient to enforce P , i.e., if the environment satisfies
the subset of the (m, k) constraints, it implies that S guarantees to satisfy P ;
otherwise, S cannot guarantee to satisfy P , which should lead S to switch to
a safe mode. Different from some existing runtime-monitoring approaches that
do not have the model of S, in this paper the model of S is given, but the
satisfaction of an (m, k) constraint can only be verified during runtime.

The runtime monitor relies on a safety table which stores the satisfaction
condition of the property under each (m, k) constraint. As there are K(K+1)

2
constraints in the safety table, a straightforward approach evaluating each (m, k)
constraint one by one needs to verify the property K(K+1)

2 times, where each
individual verification may be expensive to carry out. To remedy this problem,
we propose approaches to compute the safety table in a more efficient way. The
main contributions include:

– We derive theorems of logical relationships between weakly-hard constraints.
Based on the logical relationships, we reduce a safety table to its satisfaction
boundary and propose approaches which only need to verify the property at
most 2K times to compute the satisfaction boundary.

– Based on the computed satisfaction boundary, we define weakly-hard require-
ments for the system environment and design a lightweight runtime monitor
monitoring the satisfaction of the weakly-hard requirements.

– We consider a special case of reachability of finite-state machines. We propose
a mask-compressing approach which can be plugged into (called by) the pro-
posed approaches above. We further propose a layered Breadth-First Search
(BFS) approach which computes the satisfaction boundary for all (m, k) con-
straints (1 ≤ m ≤ k ≤ K) with the same computational complexity as
evaluating a single (m,K) constraint.

– Experiment results with a discrete second-order controller demonstrate the
efficiency of the proposed approaches.

The paper is organized as follows. Section 2 provides the problem formula-
tion, and Sect. 3 overviews the proposed approaches. Section 4 describes how we
solve the problem for general properties and systems and design a runtime mon-
itor. Section 5 considers the special case of reachability for finite-state machines.
Section 6 presents the experimental results. Section 7 reviews the related work,
and Sect. 8 concludes the paper.

2 Problem Formulation

In this paper, we consider a labelled transition system S = 〈Q,Σ,R,Q0〉 where
Q is the set of states, Σ is the set of alphabet, R ⊆ Q × Σ × Q is the transition
relation, and Q0 ∈ Q is the set of initial states. Without loss of generality, a
subset of alphabet represents input events {0, 1} ⊆ Σ, where 0 and 1 represent
a normal and faulty environmental event, respectively. We use σ ∈ Σ = {0, 1}∗

to represent an input trace. We are interested in evaluating whether a property
P is satisfied with inputs under the constraints of weakly-hard fault models.
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Fig. 1. (a) An example safety table and (b) its satisfaction boundary.

Definition 1. Weakly-Hard Fault Model. A weakly-hard fault model is
defined by (m, k), meaning that there are at most m faulty events (denoted as 1’s)
among any k consecutive events in the input trace. The corresponding constraint
is denoted as W (m, k).

Based on the definition, an input trace σ |= W (m, k) if and only if σ has at
most m 1’s in any size-k window of σ.

Definition 2. Weakly-Hard Constraint Set. Given K ∈ Z
+, the weakly-

hard constraint set is defined as C(K): = {W (m, k) | 1 ≤ m ≤ k ≤ K}.
Given a system S, a property P , and a positive integer K, the goal in this

paper is to develop a runtime monitor to verify whether the environment sat-
isfies a subset of C(K), where the subset is sufficient to enforce P , i.e., if the
environment satisfies the subset of C(K), it implies that S guarantees to satisfy
P ; otherwise, S cannot guarantee to satisfy P , which should lead S to switch to
a safe mode. We do not consider the case of m = 0 as, if there is no faulty event,
S should be designed to satisfy P , which should be regarded as a design-time
problem (although our approach can also fit it).

The runtime monitor relies on a safety table, which stores the satisfaction
condition of P under each W (m, k) in C(K). A safety table is defined as follows.
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Table 1. The proposed approaches, where the monotonic approach (Algorithm 1),
the monotonic approach with dynamic upper bound of satisfaction boundary (Algo-
rithm 2), and the lowest-cast-first heuristic (Algorithm 3) decide the order of evaluating
the weakly-hard constraints and need to call a verification approach (not covered for
general properties and general systems in this paper) for a single (m, k) constraint to
complete the verification for multiple (m, k) constraints.

Property & System Single (m, k) Constraint Multiple (m, k) Constraints

Reachability &
Finite-State Machine

Mask-Compressing
(Sect. 5.2)

Layered BFS (Sect. 5.3)

General Property &
General System

Not Covered Algorithms 1, 2, and 3
(Sects. 4.3, 4.5, and 4.6)

Definition 3. Safety Table. Given K ∈ Z
+, a safety table T ∈ {True,False,

N/A}K×K is defined as

T [m, k] =

⎧
⎪⎨

⎪⎩

True if m ≤ k and ∀σ |= W (m, k), S |= P ;
False if m ≤ k and ∃σ |= W (m, k), S 	|= P ;
N/A if m > k.

(1)

For m > k, T [m, k] is not applicable as the corresponding weakly-hard fault
model is undefined. Note the a safety table is computed off-line in design phase,
and the satisfaction of P under each W (m, k) in C(K) needs to be stored and
accessed during runtime. An example safety table is shown in Fig. 1(a).

3 Overview of Proposed Approaches

We list the proposed approaches in this paper in Table 1. There will be five
approaches: the monotonic approach (Algorithm 1) in Sects. 4.3, the monotonic
approach with dynamic upper bound of satisfaction boundary (Algorithm2) in
Sects. 4.5, the lowest-cast-first heuristic (Algorithm 3) in Sects. 4.6, the mask-
compressing approach in Sects. 5.2, and the layered BFS approach in Sects. 5.3.

The first three approaches are for general properties, general systems, and
multiple weakly-hard constraints. They decide the order of evaluating the
weakly-hard constraints and need to call a verification approach for a single
weakly-hard constraint. Note that the first three approaches assume that one
can verify a property P under a single weakly-hard constraint—this paper does
not cover how to achieve that, except in the special case of reachability for
finite-state machines. The last two approaches are exactly for the special case of
reachability for finite-state machines. The mask-compressing approach is for a
single weakly-hard constraint, and thus it can be plugged into (called by) the first
three approaches, while the layered BFS approach is for multiple weakly-hard
constraints.
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4 General Approaches and Runtime Monitor Design

In this section, we first define the strength of weakly-hard constraints (Sect. 4.1).
We then derive the fundamental theorems of logical relationships between
weakly-hard constraints (Sect. 4.2) and propose an algorithm to compute the
safety table and its corresponding satisfaction boundary based on these theo-
rems (Sect. 4.3). We further derive advanced theorems of logical relationships
between weakly-hard constraints (Sect. 4.4) and propose an improved algorithm
(Sect. 4.5) and a lowest-cost-first heuristic (Sect. 4.6) taking all properties into
account. Based on the computed safety table and the satisfaction boundary, we
can design a runtime monitor (Sect. 4.7).

4.1 Strength of Weakly-Hard Constraint

Definition 4. Strength of Weakly-Hard Constraint. Given two two wea-
kly-hard constraints W (m, k) and W (m′, k′), we define that W (m, k) is stronger
than W (m′, k′), denoted as W (m, k) 
 W (m′, k′), if and only if any input trace
that satisfies W (m, k) also satisfies W (m′, k′).

Understanding the logical relationships between constraints allows us to
determine the satisfaction of properties under some W (m, k) constraints directly
from the known verification results of other W (m′, k′) constraints. From an algo-
rithm design perspective, exploiting these relationships by evaluating the con-
straints in a proper order leads to a significant improvement in efficiency.

4.2 Fundamental Theorems

Theorem 1. For any m,m′, k ∈ Z
+,m < m′ ≤ k, W (m, k) 
 W (m′, k).

Proof. By definition, for any input trace σ |= W (m, k), it has at most m 1’s in
any size-k window of σ. Since m < m′, it follows that σ |= W (m′, k).

Corollary 1. For any m,m′, k ∈ Z
+,m < m′ ≤ k, if a property P is not

satisfied under W (m, k), then P is not satisfied under W (m′, k); if a property P
is satisfied under W (m′, k), then P is satisfied under W (m, k).

Theorem 2. For any m, k, k′ ∈ Z
+,m ≤ k′ < k, W (m, k) 
 W (m, k′).

Proof. By definition, for any input trace σ |= W (m, k), it has at most m 1’s
in any size-k window of σ. If we reduce the window size to k′, the maximum
number of 1’s in the window only remains the same or decreases, so it follows
that σ |= W (m, k′).

Corollary 2. For any m, k, k′ ∈ Z
+,m ≤ k′ < k, if a property P is not satis-

fied under W (m, k), then P is not satisfied under W (m, k′); if a property P is
satisfied under W (m, k′), then P is satisfied under W (m, k).
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Algorithm 1. Monotonic Approach
1: procedure Get satisfaction boundary(S, P, K)
2: B ← [ ]
3: m ← 0
4: for k ← 1 to K do � Get satisfaction boundary for each k
5: while m < k do
6: if S �|= P under W (m + 1, k) then
7: break
8: end if
9: m ← m + 1

10: end while
11: B[k] ← m
12: end for
13: return B
14: end procedure

By Corollary 1, the problem of computing a safety table can be reduced to
the problem of computing the satisfaction boundary of the safety table. The
satisfaction boundary is defined as follows.

Definition 5. Satisfaction Boundary. For each k, the satisfaction boundary
B(k) is the maximum m such that T [m, k] (in the safety table) is True.

The satisfaction boundary of the safety table in Fig. 1(a) is shown in Fig. 1(b).
The reduction is crucial because we only need to store the satisfaction boundary
rather than the whole safety table for the runtime monitor.

4.3 Monotonic Approach

Corollaries 1 and 2 imply that evaluating constraints in a monotonic manner
(i.e., increasing m and increasing k until a given K) can compute the satisfaction
boundary without evaluating all constraints in C(K). We assume that we can
verify a property P under a single W (m, k)—an example of verifying reachability
under a single W (m, k) is described in Sect. 5.

We propose Algorithm 1 to compute the satisfaction boundary B(k) for each
k ≤ K. For each k ≤ K, the algorithm increases m until P is not satisfied
and obtains B(k) (Lines 5–11). By Corollary 1, since P is not satisfied under
W (B(k)+1, k), P is not satisfied under W (m, k) where m > B(k)+1, and thus
there is no need to verify P under W (m, k) where m > B(k) + 1. For example,
as shown in Fig. 2(a), if P is not satisfied under W (3, 4), then P is not satisfied
under W (4, 4), which does not need to be evaluated. Then, k is increased by 1
(Line 4), and the same procedure repeats and starts with m = B(k − 1) + 1
(not m = 1). By Corollary 2, since P is satisfied under W (B(k − 1), k − 1), P
is satisfied under W (B(k − 1), k), and thus there is no need to verify P under
W (B(k−1), k). For example, as shown in Fig. 2(b), if P is satisfied under W (3, 4),
then P is satisfied under W (3, 5) (and W (3, k) where k ≥ 5), which does not
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Fig. 2. An illustration of Algorithms 1 (which applies Corollaries 1 and 2 only) and 2
(which applies Corollaries 1, 2, 3, and 4). To have a clear comparison, we focus on
the implications of W (3, 4) only. (a) If P is not satisfied under W (3, 4), then P is
not satisfied under W (4, 4). Algorithm 2 further implies that P is not satisfied under
W (6, 8) and W (m, k) where k ≥ 5 and m ≥ k − 1. (b) If P is satisfied under W (3, 4),
then P is satisfied under W (3, k) where k ≥ 5.

need to be evaluated. The algorithm terminates when B(k) is computed for each
k ≤ K, and the satisfaction boundary is returned (Line 13).

Assuming the complexity of verifying P under a single weakly-hard constraint
is O(X), the complexity of Algorithm 1 is O(2K ·X) = O(K ·X), since both m, k
are non-decreasing in the algorithm and bounded above by K. It is a significant
improvement over brute-forcing each W (m, k) in C(K), which has the complexity
O(K2 · X).

4.4 Advanced Theorems

Theorem 3. For any m, k, x ∈ Z
+,m < k, x ≥ 2, W (m, k) 
 W (xm, xk).

Proof. For any input trace σ |= W (m, k) and size-(xk) window of σ, the window
can be constructed by x size-k windows, and each of which has at most m 1’s.
Thus, there are at most xm 1’s in the size-(xk) window, and it follows that
σ |= W (xm, xk).

Corollary 3. For any m, k, x ∈ Z
+,m < k, x ≥ 2, if a property P is not

satisfied under W (m, k), then P is not satisfied under W (xm, xk); if a property
P is satisfied under W (xm, xk), then P is satisfied under W (m, k).
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Algorithm 2. Monotonic Approach with Dynamic Upper Bound of Satisfaction
Boundary
1: procedure Get satisfaction boundary(S, P, K)
2: B ← [ ]
3: m ← 0
4: for k ← 1 to K do � Initialize satisfaction boundary
5: B[k] = k
6: end for
7: for k ← 1 to K do � Get satisfaction boundary for each k
8: while m < B[k] do
9: if S �|= P under W (m + 1, k) then

10: x ← 2
11: while x · k ≤ K do � Corollary 3
12: B[xk] ← min(B[xk], x · (m + 1) − 1)
13: x ← x + 1
14: end while
15: x ← 1
16: while k + x ≤ K do � Corollary 4
17: B[k + x] ← min(B[k + x], (m + 1) + x − 1)
18: x ← x + 1
19: end while
20: break
21: end if
22: m ← m + 1
23: end while
24: B[k] ← min(B[k], m)
25: end for
26: return B
27: end procedure

Theorem 4. For any m, k, x ∈ Z
+,m < k, W (m, k) 
 W (m + x, k + x).

Proof. For any input trace σ |= W (m, k) and size-(k + x) window of σ, the win-
dow can be constructed by combining two windows of sizes k and x, respectively.
Since σ |= W (m, k), there are at most m 1’s in the size-k window. On the other
hand, there are at most x 1’s in the size-x window. Thus, there are at most
(m+x) 1’s in the size-(k +x) window, and it follows that σ |= W (m+x, k +x).

Corollary 4. For any m, k, x ∈ Z
+,m < k, if a property P is not satisfied

under W (m, k), then P is not satisfied under W (m + x, k + x); if a property P
is satisfied under W (m + x, k + x), then P is satisfied under W (m, k).

4.5 Monotonic Approach with Dynamic Upper Bound
of Satisfaction Boundary

Corollaries 3 and 4 imply the satisfaction of a property P beyond the same
m or k. Integrating with the previously proposed monotonic approach which
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Algorithm 3. Lowest-Cost-First Heuristic
1: procedure Get safety table(S, P, K)
2: T ← {undefined} � Initialize as undefined for the safety table
3: while T has undefined element do
4: Select the lowest-cost undefined W (m, k)
5: if S |= P under W (m, k) then
6: T [m, k] ← True
7: else
8: T [m, k] ← False
9: end if

10: Recursively update T by Corollaries 1, 2, 3, and 4
11: end while
12: return T
13: end procedure

increases m and k, we exploit the corollaries and propose Algorithm2 to compute
the satisfaction boundary B(k) for each k ≤ K. The main difference between
Algorithm 1 and Algorithm 2 is that the former one considers the search range
for the satisfaction boundary from an m to k, while the latter one dynamically
reduces the search range whenever P is not satisfied under a constraint.

Specifically, suppose the algorithm is in the process of computing B(k), and
P is not satisfied under W (m + 1, k) (Line 9). By Corollary 3, P is not satisfied
for each W (x · (m + 1), xk), x ≥ 2, and thus x · (m + 1) − 1 is an upper bound
of B(xk) (Lines 10–14). Similarly, by Corollary 4, P is not satisfied for each
W ((m + 1) + x, k + x), x ∈ Z

+, and thus (m + 1) + x − 1 is an upper bound of
B(k + x) (Lines 15–19). An example is shown in Fig. 2(a), if P is not satisfied
under W (3, 4), then P is not satisfied under W (4, 4), W (6, 8), and W (m, k)
where k ≥ 5 and m ≥ k − 1, which do not need to be evaluated. If P is satisfied
under W (3, 4), then the implication is the same as Algorithm 1, as shown in
Fig. 2(b).

4.6 Lowest-Cost-First Heuristic

Since the implications of the theorems do not necessarily restrict the order of
evaluating each W (m, k) in C(K), the efficiency can be further improved by a
good evaluation order. We suppose that we can estimate the verification (time)
cost for each W (m, k) in C(K), e.g., based on the complexity as a function
of m and k. Intuitively, evaluating lower-cost constraints which implies more
constraints or higher-cost constraints is preferred. We propose Algorithm3 which
iteratively selects a not-yet-evaluated constraint in C(K) by the estimated cost
(Line 4), evaluates it (Lines 5–9), and processes all implied constraints after each
evaluation (Line 10). The lowest-cost-first heuristic, though not optimal, provides
the flexibility of evaluating constraints in C(K) by different orders. The lowest-
cost-first heuristic, though not optimal, provides the flexibility of evaluating
constraints in orders different from the previous monotonic approaches. System
designers can decide the order according to the system features.
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Algorithm 4. Runtime Monitoring
1: procedure Runtime Monitoring(K, B[])
2: for k ← 1 to K do
3: I[k] ← 0 � Store the last k-th input
4: N1[k] ← 0 � Store the number of 1’s among the last k inputs
5: end for
6: i ← 0
7: while 1 do � During runtime
8: x = Get Input()
9: for k ← 1 to K do

10: N1[k] ← N1[k] + x − I[(i − k)%K]
11: if N1[k] > B[k] then � Exceed the satisfaction boundary
12: Switch to a safe mode
13: end if
14: end for
15: I[i] ← x
16: i ← (i + 1)%K
17: end while
18: end procedure

4.7 Runtime Monitor Design

Based on the satisfaction boundary computed above, we design a runtime moni-
tor to verify whether the environment satisfies each W (m, k) in C(K). Depending
on the satisfaction boundary, we can then determine whether a property P can
be guaranteed. If P cannot be guaranteed, we can switch the system to a safe
mode. As shown in Algorithm 4, the runtime monitor only needs to store the
satisfaction boundary B[], instead of the safety table, in advance, reducing the
space complexity from O(K2) to O(K).

Besides the satisfaction boundary, the runtime monitor only needs two addi-
tional arrays, I[k] for the last k-th inputs and N1[k] for the number of 1’s among
the last k inputs, where 1 ≤ k ≤ K. During runtime (Lines 7–17), the runtime
monitor reads an input (Line 8) and, for each k (Line 9), it updates the num-
ber of 1’s among the last k inputs, N1[k] (Line 10), and check if it exceeds the
satisfaction boundary B[k] (Line 11). If yes, it means that P is not guaranteed
to be satisfied, and the system switches to a safe mode (Line 12). The runtime
monitor then stores the input (Line 15) and continues monitoring.

5 Reachability Analysis for Finite-State Machines

In this section, we consider a special case of system verification with weakly-hard
constraints—reachability analysis for finite-state machines. We first propose a
mask-compression approach to verify reachability under a single weakly-hard
constraint. The mask-compression approach serves as the example of verifying a
property P (reachability) under a single constraint in C(K), and thus it can be
plugged into (called by) the approaches in Sect. 4. Then, we propose a layered
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BFS approach which computes the safety table in a more efficient way—the
layered BFS approach computes the safety table with the same computational
complexity as evaluating a single (m,K) constraint.

5.1 Problem Definition

A non-deterministic finite-state machine model S is defined as 〈Q,Σ, δ, Pr, q0, F 〉
where Q is the finite set of states, Σ = {0, 1} is the set of input symbols,
δ ⊆ Q×Σ ×Q is the transition table, Pr : δ → (0, 1] is the transition probability
satisfying

∀(q, x) ∈ Q × Σ,
∑

q∈Q,(q,x,q)∈δ

Pr(q, x, q) = 1, (2)

where q0 is the initial state, and F ⊆ Q is the finite set of unsafe states. Given a
finite-state machine S and a positive integer K, the goal is to determine whether
the property P of “never reaching an unsafe state” is satisfied with all possible
traces under each W (m, k) in C(K).

5.2 Mask-Compressing Approach

We develop the masking-compressing approach to verify the reachability prop-
erty P under a single weakly-hard constraint W (m, k). Again, it should be
emphasized that the mask-compression approach serves as the example of veri-
fying a property P (reachability) under a single constraint in C(K), and thus it
can be plugged into (called by) the approaches in Sect. 4. The mask-compressing
approach traverses a finite-state machine with all possible traces that satisfy
the weakly-hard constraint. It records the previous k − 1 inputs and considers
the possibility of the next input. Since there are at most m 1’s among any k
consecutive inputs, if there have been m 1’s among previous k − 1 inputs, then
the next input must be 0.

Given the previous k−1 inputs, we encode them by compressing them into a
(k − 1)-bit mask. Formally, given a finite state machine S = 〈Q,Σ, δ, Pr, q0, F 〉,
we define a graph to perform verification for a single weakly-hard constraint
W (m, k) as follows:

– The vertex set is the set product of the states of S and the (k − 1)-bit mask.
– There is a directed edge from vq,mask to vq,mask if and only if

(q, mask % 2, q) ∈ δ, (3)

(mask · 2) % 2k−1 + mask % 2 = mask, (4)

Count1(mask) + mask % 2 ≤ m, (5)

where Count1() counts the number of 1’s in a mask.
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Note that Eq. (3) is for the transition in S, Eq. (4) is for the 1-bit “shift” of the
mask, and Eq. (5) is for the number of 1’s bounded by the weakly-hard fault
model. After constructing the graph, we can apply the depth-first search from
vq0,0, and P is not satisfied if and only if we can reach a vertex vq,mask where
q ∈ F .

The graph has at most |Q| · 2k vertices and |δ| · 2k edges, and thus the
complexity is O(N ·2k), where N = |Q|+ |δ|, for the mask-compressing approach
verifying the reachability property P under a single W (m, k). When plugging the
masking-compressing approach into the approaches in Sect. 4, the complexities
are as follows:

– Algorithm 1: O
(∑K

k=1

∑k
m=1 N · 2k

)
.

– Algorithm 2: O
(∑K

k=1

∑B(k)
m=1 N · 2k

)
.

– Algorithm 3: it depends on the cost estimation and constraint implication.

All of them are bounded by

O

(
K∑

k=1

k · N · 2k

)

= O
(
(K − 1) · N · 2K+1 + N

)
= O

(
K · N · 2K

)
. (6)

5.3 Layered BFS Approach

The key insight of the layered BFS approach is that multiple weakly-hard con-
straints W (m, k) with the same k can be verified together within a BFS.

Theorem 5. For W (m, k),W (m + 1, k) ∈ C(K), the graph for W (m, k) con-
structed by the mask-compressing approach is a subgraph of the graph for
W (m + 1, k).

Proof. It is straightforward by Eq. (5).

Theorem 5 implies that evaluating W (m, k) leads to the results for all W (m′, k),
where 0 ≤ m′ ≤ m. Thus, only the graph for W (k, k) needs to be traversed. The
problem boils down to finding the correct order to perform graph traversal such
that all verification results can be collected. Formally, we let Em and Vm denote
the set of edges and vertices of the graph for W (m, k). At the m-th iteration
(as a layer), we perform a BFS on the graph Gm = (Vm, Em). We exploit the
previous result of the BFS on Gm−1 = (Vm−1, Em−1) and thus avoid redundancy
as Gm−1 ⊆ Gm.

Since we aim to expand the smallest graph for W (1, k) incrementally up to
W (k, k) in a bottom-up manner, we iteratively allow parts of the graph for
W (k, k) to be “visitable” and perform a BFS on visitable vertices. Initially,
E0 = ∅ and V0 = {vq0,0k}. At the beginning of the m-th iteration, the layered
BFS approach marks each vertex vq,mask, where mask satisfies W (m, k), to be
visitable. Then, in the same iteration, the layered BFS approach performs a BFS
on visitable vertices to find reachable vertices and mark them to be “reachable”.
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If an unsafe state is reached at the m-th iteration, P is only guaranteed to be
satisfied under W (m′, k), where m′ < m.

Since each vertex in the graph for W (k, k) only needs to be traversed once, the
complexity for a given k is O(N · 2k), where N = |Q|+ |δ|. The total complexity
for all k is

O

(
K∑

k=1

N · 2k

)

= O
(
N · 2K+1 − N · 2

)
= O(N · 2K). (7)

This shows that the layered BFS approach computes the satisfaction boundary
with the same complexity as verifying a single (m,K). Compared with Algo-
rithms 1, 2, and 3 with the complexity O(K ·N · 2K) in Eq. (6), the layered BFS
approach is asymptotically K times faster, demonstrating that white or grey box
system models allow more efficient verification.

6 Experiment Results

6.1 Setting

The case study is a discrete second-order controller under perturbation attacks.
We denote the control value, its first-order derivative, and its second-order
derivative at time t as x(t), ẋ(t), and ẍ(t), respectively. The objective of the
controller is to maintain x at a fixed value (0 in our case), and the attacker
attempts to shift x away from the fixed value. The controller is formally defined
as 〈xmin, xmax, ẋmin, ẋmax, ẍC , Satk〉, where

– [xmin, xmax] is the safe range. If x exceeds the range, the safety property is
violated.

– [ẋmin, ẋmax] is the physical constraint for the first order derivative of x. If the
controller attempts to set ẋ to a value larger (smaller) than ẋmax (ẋmin), ẋ is
set to the corresponding limit.

– ẍC is the constant magnitude for the second order derivative of x, i.e., ẍ(t) ∈
{−ẍC , 0, ẍC}.

– Satk is the set of possible attack values on x.

Suppose the control value x deviates away from 0, the policy of the controller
is to accelerate until ẋ reaches the limit (ẋmin, ẋmax) and decelerate when the
control value x is approaching 0. The timing to start the deceleration is deter-
mined such that ẋ = 0 when x = 0, and we denote the value of x at which the
deceleration starts as xdec, which is

xdec(t) = ẋ(t) · tdec(t) − 1
2

· sign(ẋ(t)) · ẍC · tdec(t)2, (8)

where tdec(t) = |ẋ(t)|
ẍC

is the time required to decelerate ẋ(t) to 0. The transition
functions of the controller can be expressed as

x(t + 1) ← x(t) + ẋ(t) + patk(t), (9)
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ẋ(t + 1) ← max
(

min
(

ẋ(t) + ẍ(t), ẋmax

)

, ẋmin

)

, (10)

ẍ(t + 1) ← −sign
(

x(t) + patk(t)
)

· sign
(

|x(t) + patk(t)| − |xdec(t)|
)

· ẍC , (11)

where patk denotes the perturbation attack. Equation (9) is for the transition of
x, where the control value is affected by both the first-order derivative and the
perturbation attack. Equation (10) is for the transition of ẋ, with the updated
value clipped to [ẋmin, ẋmax] to satisfy the physical constrain. Equation (11) is
for the transition of ẍ, where the sign of ẍ is determined by the relative position
of x with respect to 0 and whether the system is decelerating as x approaches 0.

For any controller configuration 〈xmin, xmax, ẋmin, ẋmax, ẍC , Satk〉 we can
define a finite state machine 〈Q,Σ, δ, Pr, q0, F 〉, where

– Q = {(x, ẋ, ẍ)|x, ẋ ∈ Z, x ∈ [xmin, xmax], ẋ ∈ [ẋmin, ẋmax], ẍ ∈ {−ẍC , 0, ẍC}}∪
{qunsafe}.

– Σ = Satk ∪ {0}.
– δ is defined exactly from the transition functions above.
– Pr((x, ẋ, ẍ), patk, (x′, ẋ′, ẍ′)) = 1

|Satk| .
– q0 = (0, 0, 0).
– F = {qunsafe}.

qunsafe represents the state where the control value x is out of the range
[xmin, xmax]. Verifying whether the control value is in the safe range under per-
turbation attacks is reduced to solving for the reachability of qunsafe for the
finite-state machine.

We implemented a brute-force approach which evaluates all constraints in
C(K) one by one, the monotonic approach (Algorithm1), the monotonic app-
roach with dynamic upper bound of satisfaction boundary (Algorithm2), the
lowest-cost-first heuristic (Algorithm 3) which defines the estimated cost for eval-
uating W (m, k) as

∑m
i=0

(
k−1

i

)
, and the layered BFS approach. Except the lay-

ered BFS approach, the other four approaches call the mask-compressing app-
roach when they need to evaluate a single constraint in C(K). The approaches
were implemented in C++ and run in the environment with 2.4GHz Quad-Core
Intel Core i5 CPU and 16GB LPDDR3 RAM. Any reported runtime is the aver-
age of 5 runs.

6.2 Results

Experiment on |Q|. We experimented on how each approach scales with respect
to the number of states in the finite-state machine, |Q|. To create different num-
bers of states, we fixed ẋmin = −4, ẋmax = 4, ẍC = 2, and Satk = {5} and
experimented with (xmin, xmax) = {±30,±40,±50,±60,±70,±80,±90,±100},
resulting |Q| from 931 to 3,031. A larger safe range [xmin, xmax] of the control
value x allows the controller to have a larger margin to recover from attacks. K
is set to 20.
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Fig. 3. The runtime over the number of states, |Q| (the out-of-range runtimes of
the brute-force approach are 26.972, 29.578, 31.760, 33.975, and 36.047 seconds in
an increasing-|Q| order).

Fig. 4. The computed satisfaction boundaries.

The results are shown in Fig. 3, and the corresponding satisfaction bound-
aries are illustrated in Fig. 4, where all approaches generate the same satisfaction
boundaries. The monotonic approach runs significantly faster than the brute-
force approach because the verification results under many weakly-hard con-
straints are implied by Corollaries 1 and 2. For larger number of states, the run-
time differences are even larger, and only the monotonic approach can complete
the system verification within reasonable time. We then compare the monotonic
approach, the monotonic approach with dynamic upper bound of satisfaction
boundary (monotonic-dynamic), and the lowest-cost-first heuristic. The results
are aligned with the theoretical expectations. The monotonic-dynamic approach
runs strictly faster than the monotonic approach for every setting with the addi-
tion implications by Corollaries 3 and 4, and the lowest-cost-first heuristic per-
forms faster than the monotonic-dynamic approach when the number of states
is larger. The layered BFS approach runs faster than the monotonic approach,
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Fig. 5. The runtime over K (the out-of-range runtimes of the brute-force approach are
6.924 and 28.704 seconds in an increasing-K order).

and it has comparable runtime as the monotonic-dynamic approach and the
lowest-cost-first heuristic.

Experiment on K. We experimented on how each approach scales with respect
to K. We fixed xmin = −50, xmax = 50, ẋmin = −4, ẋmax = 4, ẍconst = 2,
and Satk = {5}. The results are shown in Fig. 5, where we report the results
with K = 14, 16, 18, 20, 22. Similar to the previous experiment, the proposed
approaches outperform the brute-force approach significantly. This is aligned
with the theoretical complexity analysis that the brute-force approach needs
to evaluate O(K2) weakly-hard constraints, and the other approaches need to
evaluate O(K) weakly-hard constraints only. It should be emphasized that the
verification of a property under a single weakly-hard constraint W (m, k) usually
needs to store the last k inputs, and thus the complexity is at least O(2k). If the
property is more complicated (e.g., in Linear Temporal Logic), the complexity
can be even higher. Therefore, reducing the number of evaluations of weakly-
hard constraints is really advantageous to the efficiency of computing the safety
table or the satisfaction boundary. It should also be mentioned that the layered
BFS approach is especially for the reachability of finite-state machines, and the
other proposed approaches are general and compatible with other verification
approaches for a single weakly-hard constraint.

7 Related Work

Starting from [10], which is the first work that introduced the notion of (m, k)
constraint, weakly-hard systems have been studied from various perspectives
in the last two decades. Research interests range from real-time systems [2] to
network systems [15]. Most of the works focus on the schedulability analysis
for periodic tasks under various assumptions such as bi-modal execution and
non-preemptiveness [3,5,17,23], or the temporal behavior analysis of overloaded
systems [1,9,11,21,24].

Stable controller synthesis is another important topic in the context of
weakly-hard constraints. Based on the extensive studies on the stability under
probabilistic deadline misses [20,22], authors in [4] propose a switched controller



514 S.-L. Wu et al.

to stabilize a weakly-hard system with linear dynamic, while a non-switched
controller is discussed in [19].

The most related work is the safety verification for weakly-hard systems,
where however, only a few prior works have been devoted to this topic. [7] was
the first work that attempts to provide a formal analysis for linear dynamical
systems with weakly-hard constraints. In this paper, a weakly-hard system with
linear dynamic is modeled as a hybrid automaton and then the reachability of the
generated hybrid automaton is verified by the tool SpaceEx [8]. [6] transforms
the behavior of a linear weakly-hard system into a program, and then uses pro-
gram verification techniques, such as abstract interpretation and SMT solvers
to analyze the safety. In contrast, the infinite-time safety problem of general
nonlinear weakly-hard systems is considered in [14]. By modeling a weakly-hard
system as a hybrid automaton, which is similar as that in [8], authors in [14]
convert the infinite-time safety problem into a finite one and then apply linear
programming to obtain a sufficient condition of the initial state to ensure the
safety, which is further improved in [13].

The fundamental difference between the above works, and this paper, is that
we focus on discrete systems rather than continuous systems. Since a variety of
systems are discrete in practice, we believe the study on specific discrete systems
is necessary. Benefiting from this, our technique is able to generate sound and
complete verification result with respect to the weakly-hard constraints for large
scale problems.

8 Conclusion

In this paper, we used a weakly-hard fault model to constrain the occurrences of
faults in system inputs. We developed approaches to verify properties for multiple
weakly-hard constraints in an exact and efficient manner. By verifying multiple
weakly-hard constraints and storing the verification results as a safety table or
the corresponding satisfaction boundary, we defined weakly-hard requirements
for the system environment and designed a runtime monitor that guarantees
desired properties or notifies the system to switch to a safe mode. Experiments
with a discrete second-order controller demonstrated the efficiency of the pro-
posed approaches. Future directions include properties in Linear Temporal Logic
under weakly-hard constraints, other models of computation under weakly-hard
constraints, and system-specific cost estimation for the lowest-cost-first heuristic.

References

1. Ahrendts, L., Quinton, S., Boroske, T., Ernst, R.: Verifying weakly-hard real-time
properties of traffic streams in switched networks. In: Euromicro Conference on
Real-Time Systems, vol. 106, pp. 15:1–15:22 (2018)

2. Bernat, G., Burns, A., Liamosi, A.: Weakly hard real-time systems. IEEE Trans.
Comput. 50(4), 308–321 (2001)

3. Bernat, G., Cayssials, R.: Guaranteed on-line weakly-hard real-time systems. In:
IEEE Real-Time Systems Symposium, pp. 22–35 (2001)



Weakly-Hard Verification for Runtime Monitoring 515
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Abstract. We propose a framework for monitoring and updating, at
run-time, the probabilities of temporal properties of stochastic timed
automata. Our method is based on Bayesian networks and can be use-
ful in various real-time applications, such as flight control systems and
cardiac pacemakers. The framework has been implemented by exploit-
ing the statistical model checking engine of Uppaal-SMC. By run-time
monitoring a set of interesting temporal properties of a given stochastic
automaton we update their probabilities, modeled through a Bayesian
Network. The main advantages of our method are the capacity to discover
non-trivial dependencies between properties and to efficiently update
probabilities of unobserved properties given real-time observations. We
present empirical results on three application scenarios, showing that the
query time can keep up with the speed of some realistic real-time appli-
cations. We also present experiments demonstrating that the Bayesian
Network approach performance-wise enables run-time monitoring while
maintaining or even increasing the accuracy of probability estimation
compared to statistical model checking.

Keywords: Timed automata · Bayesian networks · Statistical model
checking

1 Introduction

Stochastic timed automata are powerful modeling tools for designing and ver-
ifying a wide variety of real-time system models, such as real-time monitors
for resource management [9], cruise control system [18] in a car, flight control
systems [23], and cardiac pacemakers [4,15]. Precise verification of probabilis-
tic properties for such models quickly becomes intractable, and statistical model
checking (SMC) (e.g. [2,10,14]) has emerged as a more scalable alternative. How-
ever, SMC in many cases will still not be suitable for querying at runtime under
real-time constraints, since each probability computation is based on first sam-
pling a number of runs of the stochastic automaton, and the required number of
sample runs can become very large when querying probabilities of rare proper-
ties. In particular, when we are interested in queries that can be conditioned on
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partial observations of the system behavior, the SMC approach will often not be
viable, since the probability estimation then can only be based on the sampled
runs that are consistent with the given observations.

In this paper we therefore develop an alternative, model-based approach. We
assume that there is a certain number of key system properties of interest. We
then construct a Bayesian network model that represents the joint probability
distribution for these selected properties, and that can be efficiently queried
for probabilities that are conditioned on complex observations. For example, in
a model for a production system involving several processes accessing shared
resources, the key properties might be when and for how long which process has
accessed which resource, and one could be interested in conditional queries for
the expected finishing time of the whole production, given that we have observed
the resource usage of some processes up to the present point in time.

We use machine learning algorithms to construct Bayesian network models
from the same kind of randomly sampled system runs as used by SMC. As we will
see, not only does the Bayesian network model then enable much faster, repeated
querying for different conditional probabilities, it also turns out to be more data
efficient: a Bayesian network learnt from the same amount of random runs often
provides more accurate probability values for the queries of interest, than what
is obtained by SMC. This is because the Bayesian network also identifies the
(conditional) independence structure between the properties, and thereby can
provide accurate probability values even for combinations of properties that
never occurred once in the sampled run data.

In this paper we focus on application scenarios where the goal is forecasting
properties of system runs based on observations made at runtime. For example,
we may want to continuously update a probability estimate for the event that a
system’s battery reaches a critically low level before the current process on the
system terminates. Our method can support other types of applications, however.
For example, a Bayesian network model learned from a timed automaton model
M could be used for fault-diagnosis of a real-world implementation S. Internal
system states that can be observed in simulations of M may be unobservable in
S, and a model learned from traces of M can therefore be used to infer hidden
(failure) system states of S.

The use of Bayesian networks for diagnostics and forecasting of biological and
technical systems is, of course, very well established. However, the usual scenario
is that the Bayesian network is either manually constructed by experts, or learned
from observational data of the same type of system to which it later will be
applied. The novelty of our approach lies in the fact that we base the construction
of the Bayesian network on a behavioral model (timed automaton) of the system
that we later want to diagnose or monitor, and that a Bayesian network modeling
and inference approach then becomes a computational alternative to statistical
model checking techniques.

Bayesian networks have previously been used as tools in a runtime verification
scenario [16]. However, the nature of the Bayesian networks used in [16], their
construction and use is very different from what we propose here. The authors
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of [16] use dynamic Bayesian networks (DBNs) which are obtained by a product
construction from a system model given as a Hidden Markov Model (HMM), and
a property monitor given as a deterministic finite automaton. The nodes of the
DBNs then represent time-indexed internal system and monitor states. This is
very different from the nodes in our Bayesian networks, which directly represent
properties of interest of entire system traces. Whereas the DBNs of [16] are
obtained by a deterministic constructions, ours are learned from simulation data.
Finally, the objective of [16] is online monitoring of the current system state. As
explained above, our focus is on forecasting future events and properties in the
full system run.

We implemented and evaluated our approach based on Uppaal-SMC [10] as
the modeling platform for stochastic timed automata, as the sample generator
for random system runs, and as the SMC tool that we compare against.

The paper is organized as follows. In Sect. 2 we formally review some back-
ground concepts related to timed automata, statistical model checking, and
Bayesian Networks. In Sect. 3 we present the proposed framework. In Sect. 4
we report an experimental evaluation of our method on a real-case scenario,
introduced at a first as toy example for a better explanation and then two con-
creted cases. We also perform a comparison between statistical model checkers
and Bayesian Networks in Sect. 5. Finally, in Sect. 6 we draw some conclusions
and discuss possible extensions as future work. The code we used for the exper-
iments can be downloaded from https://github.com/alessandro-t/uppaal-bn.

2 Background

In this section we will review the ingredients of our framework: timed automata
models, statistical model checking, and Bayesian Networks.

2.1 Timed Automata

Timed Automata are finite automata enriched with real-valued variables called
clocks [3]. Clocks measure the progress of time which elapses while an automaton
is residing in some location. Transitions between locations can be constrained
based on clock values and clocks may be reset on transitions. In the tool Uppaal
[19] the modelling formalism is extended to networks of timed automata, includ-
ing handshake and broadcast communication primitives, communication over
shared variables as well as a C-like imperative programming language which
allows transitions to be conditioned on and perform complex updates of discrete
structured variables.

Consider the small safety critical Bridge Scenario depicted in Fig. 1. Here a
Car needs to cross over bridge, while at the same time a Ship wants to pass
under the bridge. However, for the Ship to make the passing safely the bridge
needs to be open. Conversely, the bridge needs to be closed in order for the Car
to safely cross over the bridge. Obviously, the bridge is only allowed to be opened
in case the Car is not on the bridge.

https://github.com/alessandro-t/uppaal-bn
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Fig. 1. Safety critical bridge scenario
involving a Car and a Ship.

Figure 2 provides a timed automata
based model of the Bridge Scenario in
Uppaal. The model consists of two timed
automata Car and Ship with their respec-
tive clocks x and y used to constrain the
timing of their transitions: e.g. the combi-
nation of the invariant x<=10 of the loca-
tion Car.Init and the guard x<=5 implies
that the output action carW! will take
place after a delay of d time-units with
5 ≤ d ≤ 10. When reaching the various
locations, both Car and Ship broadcast
relevant output actions, Car broadcasts
carB! when entering the bridge-location Car.B. The two timed automata syn-
chronize exclusively using the two boolean variables Bcl (indicating that the
bridge is closed) and Bus (indicating that the Car is on the bridge). Seman-
tically, a timed automaton describes a timed labelled transition systems, with
states being pairs (�, ν), where � is a location and ν is a valuation for the clocks,
and with transitions being either delays or discrete actions. In a network of
extended timed automata, states are vectors of states – one per component –
together with concrete values of discrete variables. E.g. in the Bridge Scenario
model of Fig. 2 [(Car.B, x= 0), (Ship.W, y= 11.9), Bus= 1, Bcl= 1] is a reachable
state, witnessed by the following transition sequence:

[
(Car.Init, x = 0), (Ship.Init, y = 0), Bus = 0, Bcl = 1

]

7.28→ carW!→ [
(Car.W, x = 0), (Ship.W, y = 7.28), Bus = 0, Bcl = 1

]

4.62→ carB!→ [
(Car.B, x = 0), (Ship.W, y = 11.9), Bus = 1, Bcl = 1

]
.

Given the timed automata model of the Bridge Scenario in Fig. 2, the symbolic
verification engine of Uppaal allows us to verify the crucial safety property
A[] !(Car.B and Ship.B), which is a CTL formula expressing that the Ship
and the Car cannot be under/at the bridge at the same time. In addition, we
may be interested in knowing whether the Car or the Ship may reach their

Fig. 2. Timed automata model of the Bridge Scenario of Fig. 1.
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respective END-location first. In fact, both outcomes are possible as may be wit-
ness by model checking the reachability properties E<> !Car.END and Ship.END
and E<> Car.END and !Ship.END.

2.2 Statistical Model Checking

15 20 25 30 35 40 45 50
t

0.0

0.2

0.4

0.6

0.8

1.0

Fig. 3. Cumulative distributions obtained by
Pr[<=T](<>Ship.END) and Pr[<=T](<> Car.END)

Beyond crucial safety properties,
we are often interested in more
refined performance analysis of
a system. E.g. for the Bridge
Scenario, we would be inter-
ested in the probabilities that
the Car or the Ship finishes first.
For such performance queries
to be meaningful, we need
a stochastic semantics of net-
works of timed automata, where
the non-deterministic choices of
delays are refined by probabil-
ity distributions, and where non-
deterministic choices between
discrete actions are refined by probabilistic choices. In the branch Uppaal-SMC,
delays of components are by default resolved by a uniform distribution (e.g. in
Fig. 2 the delay of Car in Init is uniform between 5 and 10 time-units) or an
exponential distribution (e.g. in Fig. 2 the delay of Ship in W is given by an
exponential distribution with rate 7). Other distributions may be specified by
the user. For composite systems, the choice of which component will perform the
next output action (and at which time) is a race between the components set-
tled stochastically by the independent delay distributions of these. We refer the
reader to [10–12] for more details on the semantics of stochastic timed automata
adopted in Uppaal-SMC.

Crucially, the stochastic semantics of timed automata offers the basis of
a probability measure on measurable sets of runs (obtained from a natural
cylinder-construction). In fact, time-bounded reachability, safety properties as
well as Metric Interval Temporal Logic (MITL) properties all describe measur-
able sets of runs [6]. Based on Monte Carlo simulation, the engine of Uppaal-
SMC allows to estimate the probabilities of such (time-bounded) properties by
confidence intervals (the user-desired size and confidence of which determines the
number of simulations needed). In Fig. 3, we see that the most likely “winner” of
the Car and Ship depends highly on the timing bound.

Rather than using MITL or (other logics) for expressing properties of runs,
we will use monitors, being purely inputting, deterministic timed automata, that
are added as extra parallel components to the system. Given a set of (absorb-
ing) accept locations, a monitor M describes all the timed words φM over the
alphabet of the system, that will lead to an accept location. Now, the engine
of Uppaal-SMC allows to estimate p(φM ), i.e. the probability that a random
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run of the system will be accepted by M . In [13] monitors are used to express
properties of continuous-time Markov chains. In [1] the logical power of timed
automata monitors is characterized.

Monitors M express logical properties φM of runs, i.e. for any given run
π, φM (π) is either true or false. In this paper, we consider the generalization
to categorical properties ψ, which for any run π returns a value ψ(π) from a
finite domain V = {v1, . . . , vn}. A categorical monitor C over V is a monitor,
but with n designated terminal and absorbing states Sa = {s1, . . . sn} rather
than a set of accept states. Now the categorical property ψC realized by C is
simply ψC(π) = vj whenever the run π reaches the terminal state sj . For the
purpose of this paper, we shall assume that monitors reach an absorbing state
with probability one. In fact, for the models we use in our examples, the stronger
property holds that there exists a fixed upper time bound T , such that monitors
will reach an absorbing state after a most T time-units of the underlying system.

Fig. 4. Monitors from left to right, representing the properties φW, φB, φC, and φEND.

For our bridge example, we can consider for S ∈ {W, B, C, END} the categorical
properties φS, all with domain V = {Car, Ship}, and defined such that φS(π) =
Car iff in the run π car is first to reach S. Figure 4 shows the monitors for these
four properties.

From general stochastic timed automata and the very powerful specification
language of monitors, we obtain probabilistic queries P (ψC(π) = vj) =? that are
undecidable, and therefore outside the reach of exact probabilistic model check-
ing [5]. Approximate estimation techniques like SMC, or the Bayesian network
model-based approach we introduce here, therefore are required.

2.3 Bayesian Networks

A (categorical) Bayesian Network is a directed acyclic graph G = (V,E), where
each node vi ∈ V is associated with a categorical random variables Xi, and
edges represent dependencies between the random variables [17]. Let N := |V |.
G defines the joint probability of the random variables as a product of conditional
distributions:

p(X1, . . . , XN ) :=
N∏

i=1

p(Xi|Parents(Xi)),
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where Parents(Xi) = {Xj |j : (vj , vi) ∈ E}. In our application, we need to solve
the following computational problems:

Structure Learning. Given a dataset of K observations (xi
1, . . . , x

i
N ) (i =

1, . . . ,K) of the random variables, learn the edges E of G by optimizing an objec-
tive that combines the maximum likelihood criterion with a simplicity objective
(sparser structures are preferred). Out of several objective functions that embody
similar principles, we choose the Bayesian Information Criterion [21] (BIC) score.
The BIC score is asymptotically consistent in the sense that in the large sam-
ple limit the BIC-optimal structure will be a minimal structure (in terms of
the number of numerical parameters it contains) over which the data generat-
ing distribution can be represented [8]. Identifying the BIC-optimal Bayesian
network structure is in general NP-hard in the number of variables [7]. On the
other hand, it can be shown that, again in the large sample limit, greedy search
strategies are sufficient to identify the optimal structure [8]. However, these opti-
mal greedy strategies operate in complex and highly connected search spaces, so
that even though the number of search steps they require is polynomial, their
overall complexity is not. In all our experiments, we maximize BIC score via
greedy Hill Climbing [20], as implemented in the Python library bnlearn [22] for
structure learning. We note that even though hill climbing does not necessarily
give us the BIC-optimal structure, it will give us in the large sample limit an
over-approximation, i.e., a structure that can represent the data-generating dis-
tribution, even though not necessarily the sparsest possible such structure. As
in our context we are able to generate arbitrary amounts of training data, we
can, in principle, approximate the true distribution with arbitrary precision.

Parameter Learning. Once the structure of G is learnt, the parameters of the
conditional distributions p(Xi|Parents(Xi)) are estimated by maximizing the
likelihood. In our case of categorical random variables, and the availability of
complete data (the values of all random variables Xi are observed in all of the
K samples), this amounts to nothing more than calculating relative frequencies
of the value configurations that are needed for a tabular representation of the
conditional distributions.

Inference. The learnt Bayesian network is used to compute conditional prob-
ability distributions p(Xi|Xh1 = xh1 , . . . , Xhm

= xhm
) of a query variable Xi

given observed values for a subset of the remaining variables. In the worst case,
this probabilistic inference is still NP-hard in the size of the Bayesian network.
However, several inference techniques exist that often lead to efficient inference
in practice. We make use of the Variable Elimination [24] (VE) algorithm, as
implemented in the python library bnlearn [22].

3 Methodology

We now describe in detail our approach to combine the power of stochastic
timed automata for modeling complex systems with the ability of Bayesian net-
works for fast and flexible computations of conditional probability distributions.
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The fundamental assumption of our approach is that we have at our disposal a
stochastic timed automaton, and that we have identified a number of relevant
categorical path properties φ1, . . . , φN represented by monitors, such that we
need to compute conditional probability distributions involving these properties
either over-and-over again, or under real time constraints at run time (or both).
In the first case our approach will have an advantage over SMC in terms of amor-
tized time complexity (the time needed to construct the Bayesian network will
be more than compensated by much faster computations of query probabilities).
In the second case SMC may not be feasible at all because of its inability to
meet the time constraints.

φB

φW φC φEND

Fig. 5. The Bayesian network learnt from data generated by the model of Fig. 2 and
monitors of Fig. 4.

We collect data by running K simulations of the stochastic timed automaton,
and recording for each simulation the values returned by the N monitors. This
data is collected in a data table D of dimensions K × N , where the ith column
then contains values from the domain of φi.

From D we learn both the structure and the parameters for a Bayesian Net-
works G, as described in Sect. 2. Figure 5 shows a Bayesian network for the path
properties defined by the monitors of Fig. 4 that was learnt from 10, 000 random
executions of the model shown in Fig. 2. The model learning has identified the
φB property as the central random variable, and correctly shows that given the
information which of Car or Ship first passes the bridge, the random variables
φC and φEND become independent of φW.

G can be now used to query the probability distribution of any of the prop-
erties, given arbitrary observations of other properties. We illustrate two pro-
totypical query scenarios. The first one is runtime forecasting : here we want
to continuously update the prediction of a variable as the system run evolves.
Figure 6 shows an example where the query random variable is φEND, and we
update the probability distribution for φEND each time the value of one of the
other variables becomes known. Figure 7 shows instead the explicit updates of
the Bayesian network of Fig. 5 as new properties are observed. We observe that
during this particular run of the system the believed probability of the Car being
the first at END decreases radically at time-point t = 10.53. The second scenario is
diagnostic prediction for unobservable properties. Even though all the properties
in the Bayesian network correspond to monitors in the timed automata model,
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Table 1. p(φW = Car) given the four possible combinations for φC and φEND.

φEND = Car φEND = Ship

φC = Car 0.961 0.5
φC = Ship 0.005 0.005

in the real world some of these properties may not be observable. We can then
use the Bayesian network to make predictions about the unobservable properties
based on what we could observe. In our example, we may assume that only φC
and φEND are observable, due to suitably positioned cameras. We may then be
interested in inferring the state of φW given the available observations. φW is an
interesting property, for example, if one aims to minimize the waiting time of the
boat as this latter pollutes more than a car. Table 1 shows the probability values
for φW = Car given the four possible configurations of the observable variables.

Car
Ship

Car
Ship

t

p(φEND) p(φEND|φW) p(φEND|φW, φB) p(φEND|φW, φB, φC)

φW = Car φB = Ship φC = Ship

t = 9.15 t = 10.53 t = 19.12

Car
Ship

Car
Ship

Fig. 6. Evolution of p(φEND) as new properties are observed. Note that right after
t = 9.15 the Car most likely arrives first to the end. However, at t = 10.53 the situation
drastically changes due to the observation of φB = Ship.

4 Experiments

We evaluated our method on three different scenarios.

4.1 Bridge Crossing

We consider a more complex set of properties for the Bridge scenario described
in Sect. 1. We now define properties ψCar,S, ψShip,S for S ∈ {W, B, C, END}. Asso-
ciated with these properties are domains TCar,S, TShip,S that each consist of 8
time intervals.

For example, TCar,B = {[0, 5.931], [5.931, 6.601], . . . , [19.195, 28.614]}, and
ψCar,B = [19.195, 28.614] means that the car has arrived at the bridge between
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Fig. 7. The explict Bayesian network updates as new properties are observed. The red
block represents properties observations. (Color figure online)

time points 19.195 and 28.614. To define the time interval domains for each vari-
able we used a random sample of system runs, and quantized the empirically
observed arrival times into 8 bins so that all bins contain an equal numbers of
sample points. As a consequence, prior to any observations, the probability dis-
tribution for each ψ variable is uniform over its domain (cf. Fig. 9 at T = 0). We
also retain the property φEND with domain {Car, Ship} as introduced in Sect. 3.

We here consider a runtime forecasting scenario, where we want to main-
tain a continuously updated prediction for the time ψCar,END at which the car
reaches its destination. We learnt a Bayesian network for the joint probability
distribution of the properties from a dataset of K = 10, 000 model simulations.
The resulting Bayesian Network is depicted in Fig. 8. Figure 9 reports for one
particular run the evolution of p(ψCar,END) as new properties are observed, and
hence used as evidence. Here, new evidence is obtained at 4 distinct points in
time T1, . . . , T4. The figure shows for each of these timepoints the newly acquired
observation, and the conditional probability distribution of p(ψCar,END) given all
observations up to that point in time.

Finally, we estimated the time per query by averaging the query time on
10, 000 model traces, which results to be 0.08 ± 0.05 s. Those results confirm
that the Bayesian Network query can keep up with the speed of this real-time
application.
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ψCar,B

ψCar,W

ψShip,C

ψShip,B ψShip,W

ψCar,C

ψShip,END

ψCar,END

φEND

Fig. 8. The Bayesian Network structure for the Bridge Scenario.
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T4 : ψShip,W = t5

Fig. 9. The evolution of p(ψCar,END) as new properties are observed:

4.2 Job Shop

Three persons Kim, Manfred, and Alessandro, want to read the four sections
com, spo, pol, and loc (Commerce, Sport, Politics, and Local news) of a shared
newspaper. Each person can read one section at a time and the sections can-
not be shared among the persons. A person must wait until a section becomes
available before reading it. Furthermore, each person reads the sections in a
given order for a different amount of time. Figure 10 depicts an example of
ordered section requests for each person. For each person, we designed a tem-
plate in Uppaal-SMC, an example of which is shown in Fig. 11. During each
simulation of the model we are interested in several temporal properties. Let
U = {Kim, Manfred, Alessandro} be the set of persons, S = {com, spo, pol, loc}
the set of sections, and TU = {t0, . . . , tW } and TS = {t0, . . . , tZ} sets of time
intervals. We are interested in evaluating the following properties during each
simulation of the model

– for each u ∈ U the property φu with domain TU representing the time interval
in which u finishes the reading or all sections.

– for each u ∈ U and s ∈ S the property ψu,s with domain TS representing the
time interval in which u finishes to read section s.

We again learnt a Bayesian network for the joint probability distribution of
the properties from a dataset of K = 10, 000 model simulations. The resulting
Bayesian Network is depicted in Fig. 12. For this case, the learnt structure shows
two main clusters which involves Alessandro and Kim properties. The cluster
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Fig. 10. Example of ordered section requests for Kim, Manfred, and Alessandro. TU
represents the time units for which each section is requested by a person, e.g. Kim asks
for the com section for at least 10 TU and for at most 11 TU.

Fig. 11. Uppaal-SMC template for Kim. The green statements represent conditions
for executing a transition. The blue statements represent variable updates right after a
transition is executed. The purple statements represents invariants. com, pol, loc, and
spo are boolean variables representing whether the corresponding section (Commerce,
Sport, Politics, and Local news) is free. x is a clock.

related to Alessandro connects more specific Alessandro properties. A similar
behaviour happens for Kim, while the properties related to Manfred are more
distributed over the network.

φKim

ψKim,spoψManfred,spo ψKim,loc

ψManfred,com

φManfred

φAlessandro

ψAlessandro,loc ψAlessandro,spo

ψAlessandro,com

ψManfred,eco

Fig. 12. The Bayesian Network structure for the Job Shop Scenario. Four of the prop-
erties are represented by nodes not connected to any other nodes. For the sake of better
visualization they are not shown in the figure.
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With the trained Bayesian Network we can now infer (on new simulations)
probabilities of unobserved properties given the knowledge of real-time observed
properties. Figure 13 shows an example of the evolution of p(φKim) as new prop-
erties are observed and hence used as evidence. Finally, we report in Fig. 14 the
empirical query time distribution on 10, 000 model traces, similarly to Sect. 4.1.
We point out the fact that the estimated query time distribution has small vari-
ance and is concentrated around 0.04 s.
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T1: ψManfred,eco = t7

t0 t1 t2 t3 t4 t5 t6 t7 t8 t9

T2: ψManfred,spo = t5

t0 t1 t2 t3 t4 t5 t6 t7 t8 t9

T3: ψAlessandro,eco = t5
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t0 t1 t2 t3 t4 t5 t6 t7 t8 t9

T7: ψManfred,com = t7

t0 t1 t2 t3 t4 t5 t6 t7 t8 t9

T8: φManfred = t9

Fig. 13. The evolution of p(φKim) as new properties are observed.

4.3 Process Resource Model

In this section we introduce a general process resource model, which can be seen
as a common abstraction of the two previous examples. Here, we assume that
we monitor a set of processes which, for being able to complete their execution,
have to access a set of resources in a certain order. Each resource can be accessed
only by one process at a time and each process can use only one resource at a
time. Furthermore, each process cannot reuse the same resource.

We are here interested in studying the scalability of our approach by mea-
suring the execution time for the queries, when the complexity of the system,
as given by the number of processes and resources, increases. We consider three
different instantiation of the generic system model:

– System A: 5 processes and 5 resources;
– System B: 10 processes and 10 resources;
– System C: 20 processes and 20 resources.

For this scenario we consider two sets of properties: one that contains properties
which capture the ending time for each process, and one that contains properties
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Fig. 14. Empirical time distribution estimated on 10, 000 traces.

which capture the duration for which each process uses a certain resource. Each
property has a domain of 5 time intervals. For a system with n processes and n
resources, this gives us a total of C(n) := n+n2 properties. Similarly to the pre-
vious experimental sections, for each of the three systems we trained a Bayesian
Network on data from 5, 000 sample runs. The learnt models for A, B, C have
C(n) nodes, and 14,16 and 22 edges, respectively. This very sparse connectivity
is due to the fact that the properties are mostly very weakly dependent, and the
BIC score used for training will approximate sufficiently weak dependence by
independence assumptions. The computation times for learning the structure of
the three Bayesian Networks are 38 s, 373 s, and 1914 s (averaged over 5 different
learning runs).1

We simulated a runtime forecasting scenario as follows: for each system we
generated another 5,000 random runs. For each run, we selected the property
whose value was observed last on that run (i.e., the finishing time of the process
that finished last on the run) as the query property. Then, similar to what is
shown in Figs. 9 and 13, we computed over each run the sequence of conditional
probability distributions of the query property, given the incremental observation
sequence. Thus, for a system of size n, a total of 5, 000 ·C(n) probability queries
conditioned on 0 to C(n) − 1 observed properties were computed.

Figure 15 shows the resulting empirical query time distribution for System
A, System B, and System C. The results show that here our approach scales very
well as the size of the system increases. The almost constant query time here
is enabled by the weak dependencies among the properties, and the resulting
sparse connectivity of the Bayesian network. Such an independence structure
cannot be exploited in a similar manner by SMC, as our following results show.

1 All the experiments ran on an Apple MacBook Pro Mid 2015, 2.5 GHz Quad-Core
Intel Core i7, with 16 GB of RAM and only one core has been used.
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Fig. 15. Distribution of the query time execution for System A, System B, and
System C.

We ran the same queries that give the results of Fig. 15 in Uppaal-SMC.
Since these are conditional probability queries which are not directly supported
by SMC, we calculate a conditional probability p(A|B) as the ratio p(A,B)/p(B),
using two separate SMC estimates for p(A,B) and p(B). Uppaal-SMC requires
the specification of a confidence parameter ε for the width of a confidence interval
that will be returned for the query probability. When [lA,B , uA,B ] and [lB , uB ]
are the confidence intervals for p(A,B) and p(B), respectively, we compute the
confidence interval for p(A|B) as [ lA,B

uB
,
uA,B

lB
]. This can lead to very wide con-

fidence intervals for the conditional, even when [lA,B , uA,B ] and [lB , uB ] have a
small width ε. Ideally, we would use for this experiment ε values such that the
confidence intervals for the conditional probabilities become reasonably small,
and the accuracy of the SMC estimate matches the accuracy of the Bayesian
network values. This is not an easy task, and as the results of the next section
will show, would probably require ε values that are much smaller than what
can feasibly be computed. For the purpose of this runtime comparison we there-
fore simply consider the three values ε = 0.1, 0.01, 0.001, which will only give
very rough estimates for conditionals once the probabilities of the conditioning
observations become small.

Table 2 shows the average query time for the three models and three ε val-
ues. We set a timeout at 5min. We observe that SMC computation here scales
neither as a function of the system complexity, nor as a function of the precision
parameter ε.

Table 2. Average time per query in Uppaal-SMC

ε System A System B System C

0.1 0.13 s 0.52 s 3.68 s
0.01 1.60 s 8.22 s > 5m
0.001 > 5m > 5m > 5m
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Fig. 16. p(φEND = Car|ψCar,W, ψShip,W, ψCar,B, ψShip,B) estimated with Bayesian Net-
work in blue and Uppaal-SMC in orange. In green the true probability. Left/right: esti-
mated probabilities for the rare/common configuration of observed properties. (Color
figure online)

5 Accuracy Analysis

In this section we investigate the accuracy of probabilities calculated with learnt
Bayesian networks, and compare against the accuracy that is obtained by SMC
using a comparable amount of data.

We return to the Bridge scenario described in Sects. 1 and 4.1. We consider
the conditional probability distribution

p(φEND = Car|ψCar,W, ψShip,W, ψCar,B, ψShip,B).

For the conditioning variables ψCar,W, . . . , ψShip,B we identify a rare and a com-
mon joint configuration of time-interval values. The rare and common configu-
ration occur 1177, respectively 6147 times in a sample of 1M traces.

We estimated the true query probabilities by repeating 10 simulations of
1M traces each. The mean empirical values of the query probabilities, and the
standard deviation over the 10 simulations is shown in Fig. 16 as “Real”. The
negligible standard deviation shows that we can treat the obtained estimate as
the ground truth probability.

We learnt Bayesian networks from K sampled traces for 14 distinct values of
K ranging from K = 50 to K = 600, 000. The probabilities obtained from the
learnt networks for the two different queries are plotted in Fig. 16 as a function
of K. As described in Sect. 4.3, SMC in Uppaal-SMC is not directly con-
trolled by specifying a sample size, but through a confidence parameter ε. We
ran Uppaal-SMC multiple times, continuously varying ε from 0.05 to 0.00005,
and computing a confidence interval for the conditional query from the confi-
dence intervals at the specified ε level for the two unconditional probabilities. In
Fig. 16 the resulting confidence interval is plotted against the size of the sample
that was actually required to obtain the confidence intervals at the specified ε.
The plot also shows the mid-point of the obtained confidence intervals as point
estimates for the query probabilities.
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There are a number of observations we can make from these plots: first,
we see that even for very small ε values (i.e., large sample sizes), the width of
the SMC confidence interval for the conditional probability decreases only very
slowly. This, in particular, indicates that the ε values shown in Table 2 are still
larger than what would be required to obtain reasonably accurate probability
estimates. The point estimates obtained from the Bayesian network converge
to the true probability much faster than the SMC point estimates. This is more
pronounced in the ‘rare’ configuration, where SMC is handicapped by the smaller
number of samples that will be relevant for the query probability. The Bayesian
network estimates are less affected by the rarity of the observed values, since
its probabilities are derived from a combination of empirical frequencies, and
inferred conditional independence relationships.

6 Conclusions

We have introduced a framework which links statistical model checking with
machine learning. We exploited Bayesian Networks to learn dependencies among
interesting temporal properties of a stochastic timed automaton. We have iden-
tified real-time application scenarios where our approach can be used. In partic-
ular, we highlight the advantages of the Bayesian Network approach in compar-
ison with SMC for real-time updating of probabilities of unobserved properties
as new property are observed during the evolution of a real-time system. We
empirically validated our framework on three real-time scenarios, showing that
Bayesian Network inference is able to keep up with the evolution of a real-time
system. Furthermore, the estimated probabilities are at least as accurate as what
is obtained from Uppaal-SMC.

It is a interesting subject of future work to extend our approach to learn
also a set of interesting properties, rather than defining the properties a priori.
This research direction might lead to strengthen the connections between the
machine learning and the statistical model checking domains.
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