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Brain-Computer Interface Research:
A State-of-the-Art Summary 9

Christoph Guger, Michael Tangermann, and Brendan Z. Allison

Abstract Brain-computer interface (BCI) systems can provide communication and
control without any physical movement. The BCI ResearchAwards are annual events
to select the bestBCI projects that year.Groups fromaround theworld submit projects
that are scored by a jury of international experts that selects twelve nominees and three
winners.We also produce books like this one that review that year’s nominees, awards
ceremony, and winners. This introductory chapter briefly reviews BCIs and the 2019
awards process, including the jury, selection criteria, and nominees. We mention
many chapters that might engage readers with different interests, including chapters
with project descriptions or interviews with nominees. Many of the chapters here
describe new approaches to BCIs that could be useful to patients and/or mainstream
users. The final chapter of this book reviews the Awards Ceremony, announces the
winners, and presents concluding comments.

Keywords Brain-computer interface · EEG · ECoG · BCI Research Awards · BCI
Foundation · BCI Society
In the introduction to last year’s book (Guger et al. 2020), we said that we were
preparing for the Tenth Annual Brain-Computer Interface (BCI) Research Award
ceremony as part of the 2020 BCI Meeting in Belgium. Since then, this conference
has been postponed due to COVID. However, many entities have hosted online
conferences, workshops, training sessions, and other events that show a strong
ongoing interest in BCI research. With recent and upcoming online events from
g.tec, NeurotechX, the organizers of the planned BCI Samara Conference, and other
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organizers, there are still many opportunities to become involved in BCI research or
just learn more about the newest advances in our field.

We have also moved ahead with our ninth book, which is based on the BCI
Research Award 2019. As with earlier books, we invited the authors of projects that
were nominated for a BCI Research Award to contribute chapters describing what
they did in their project, along with discussion and newer work from their group or
other groups. Several authors in this bookdiscuss next steps, future clinical directions,
important challenges, and other issues to add breadth to their chapters.

1 What Is a BCI?

There is still no official, universally accepted definition of a brain-computer interfaces
(BCI). Different articles have used slightly different definitions. However, journal
papers and chapters that introduce or reviewBCIs have generally stated that BCIs are
systems based on direct measures of brain activity that present real-time feedback to
the end user. Real-time systems with advanced feedback are increasingly common,
but the unique feature of BCIs is the reliance on brain signals that have not yet
traveled elsewhere in the body (Wolpaw and Wolpaw 2012; Nam et al. 2018). The
most widely cited review of BCIs states: “ABCI is a communication system in which
messages or commands that an individual sends to the external world do not pass
through the brain’s normal output pathways of peripheral nerves and muscles. For
example, in an EEG based BCI the messages are encoded in EEG activity. A BCI
provides its user with an alternative method for acting on the world (Wolpaw et al.
2002).”

BCI systems do not need to rely exclusively on direct measures of brain activity.
“Hybrid” BCIs might use BCIs along with other tools to convey information,
including other BCIs, keyboards, mice, or systems based on speech, eye movement,
or muscle activity. Hybrid BCIs began gaining attention in the literature about ten
years ago (Lee et al. 2010; Müller-Putz et al. 2011; Leeb et al. 2011), and numerous
more recent papers have presented or reviewed more advanced hybrid BCI systems
(e.g., He et al. 2019; Rezazadeh Sereshkeh et al. 2019; Allison et al. 2020).

BCIs are also changing in terms of the people who can benefit from them. For
many years, most BCI research sought to provide communication and/or control for
persons with severe motor disabilities. Lou Gehrig’s Disease, brainstem stroke, and
other causes can leave people with little or no voluntary motor control. Since BCIs
do not require voluntary motor control, they may be the only way for some people
to interact with the outside world. Hence, keyboards, mice, and even some or all
assistive technologies for disabled people may not be practical for them. However,
more recent advances have shown that BCIs might be practical for different types
of patients. As with prior books, the chapters in this book feature new ways to use
BCIs to help broader patient groups.

BCIs for healthy users have been gaining attention as well. The past few years
have seen high-profile announcements from Facebook and Elon Musk about large



Brain-Computer Interface Research … 3

scale projects devoted to new BCI systems meant for healthy users. BCIs for healthy
users are not new, and some applications meant for patients have also been validated
with healthy users (Israel et al. 1980; Jung et al. 1997; Münßinger et al. 2010; Nijholt
et al. 2019). However, most prior efforts have come from small research groups or
companies with relatively limited resources. Hopefully, large-scale BCI efforts will
push the field forward and foster new BCIs for healthy users and patients.

2 The Annual BCI Research Award

The Annual BCI Research Award is organized through the non-profit BCI Award
Foundation. The Foundation was founded in 2017 in Austria and is chaired by
Drs. Christoph Guger and Dean Krusienski. The BCI Award Foundation has Board
Members to organize the Award. Editor BrendanAllison is also on the Board (Fig. 1).

Jury members may not submit projects. The award is open to any other research
group, regardless of their location, equipment used, etc. The awards procedure this
year followed a procedure like prior years:

• The BCI Award Foundation selects a Chairperson of the Jury from a top BCI
research institute.

• The Chairperson selects a jury of international BCI experts to evaluate all projects
submitted for the Award.

• The Award website1 has instructions, scoring criteria, and the deadline for the
Award.

Fig. 1 The Board Members of the BCI Award Foundation

1https://www.bci-award.com/Home.

https://www.bci-award.com/Home
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• The chairperson and BCI experts judge each submission.
• The jury chooses the first, second, and third place winners.
• The Award website announces the nominees.
• We ask the nominees to contribute a chapter to this annual book series, which

may be a project summary and/or interview, and invite them to that year’s Awards
Ceremony within a major conference (such as an International BCI Meeting or
Conference).

• Each Awards Ceremony is a major conference event.

The third-place prize was generously donated by the BCI Society. The BCI Society
is a non-profit organization that organizes the BCI Meeting series (bcisociety.org).
Authors CG and BA are members of the BCI Society and former Board Members.
The other cash prizes were provided the Austrian company called g.tec medical
engineering (author CG is the CEO), which manufactures equipment and software
for BCIs and other applications.

The 2019 jury, shown in Fig. 2, included Dr. Ajiboye, who won the 2018 BCI
Research Award, and Dr. Tangermann, last year’s second place winner. Dr. Tanger-
mann was also a nominee in 2018 and a juror in 2011. The 2019 jury also had a good
mix of people with backgrounds in invasive and non-invasive BCIs who work in
different areas active in BCIs. This prior experience and breadth are both important
in juries, who need to evaluate a wide range of BCI projects each year.

The scoring criteria that the jury used to select the nominees and winners were
the same as all previous BCI Research Awards:

Fig. 2 The jury for the 2019 BCI Research Award
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• Does the project include a novel application of the BCI?
• Is there any new methodological approach used compared to earlier projects?
• Is there any new benefit for potential users of a BCI?
• Is there any improvement in terms of speed of the system (e.g. bit/min)?
• Is there any improvement in terms of accuracy of the system?
• Does the project include any results obtained from real patients or other potential

users?
• Is the used approach working online/in real-time?
• Is there any improvement in terms of usability?
• Does the project include any novel hardware or software developments?

After the jury tallies the resulting scores, the nominees are posted online and invited
to the Awards Ceremony. This ceremony has usually been part of the biggest BCI
conference for that year. The BCI Society2 coordinates BCI Meetings every even-
numbered year, while the Technical University of Graz organizes a BCI Conference
every odd-numbered year.3

This year’s ceremony was part of the 8th Graz BCI Conference 2019. Like most
years, the ceremonyoccurred in the evening to avoid conflictwith daytime conference
activities and provide a more relaxing atmosphere. The ceremony began with a short
introduction to the BCI Awards and the selection procedure. Next, we asked one or
more people whose project was nominated to join us onstage for a certificate. The
ceremony concluded with announcing the first, second, and third place winners. The
1st place winner earns $3000 USD and the prestigious Gert Pfurtscheller bread knife
trophy. The 2nd and 3rd place winners get $2000 USD and $1000 USD, respectively
(Fig. 3).

3 The BCI Research Award Book Series

The first BCI Research Award was in 2010, and we’ve been producing a book along
with the Award each year. Every year, we reviewed the main purpose of the awards
and books. We want to recognize and encourage the top projects in BCI research
worldwide. Each book contains chapters written by people who were nominated
for that year’s BCI Research Award. After the Awards Ceremony, we invite the
nominees to write chapters about their work. Almost all chapters have reviewed
the work nominated for the award. We provide the authors with several additional
months after the ceremony to add new discoveries or results (from their group or
other research groups), improved tables or figures, major challenges and possible
solutions, future directions, and other commentary.

2Bcisociety.org.
3Tugraz.at/institutes/ine/home/.

http://Bcisociety.org
http://Tugraz.at/institutes/ine/home/
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Fig. 3 TheChair of the Jury,Michael Tangermann, and jurymember SelinaWriessnegger announce
the projects nominated for the BCI Award at the Awards Ceremony at a BCI conference in Graz
called the 8th Graz BCI Conference 2019

This year, for the first time, we had to leave the formatting entirely to Springer
Publishing and their typesetters, with insufficient changes to proofs. The impact is
obvious, and we hope the quality content shines through nonetheless.

Last year and this year, some chapters have been interviews, providing a different
way to learn more about the nominee’s project and related issues. For example, in
chapter “Towards Brain-Machine Interface-Based Rehabilitation for Patients with
Chronic Complete Paraplegia”, we interviewed Dr. Solaiman Shokur, a Senior
Researcher at Swiss Federal Institute of Technology in Lausanne (EPFL). Dr. Shokur
discussed his team’s research using EEG-based BCIs to help patients with spinal
cord injury (SCI). Their BCI system included locomotion training and VR, and their
results were the first to show that patients with certain types of neurological injuries
could recover some brain function with this approach.

The introduction and discussion chapters are meant to be friendly and straight-
forward. Readers who are new to BCIs, the BCI Research Awards, our book series,
or the chapters in this year’s book can learn more about all these topics. However,
most of the chapters present more challenging material. Readers who are students
or otherwise motivated to understand new terms and topics should be able to learn
about BCI projects that interest them. Experts will also learn about some of the
newest advances and the authors’ perspectives. Interview chapters are often easier
to read.
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4 Projects Nominated for the BCI Award 2019

The twelve submissionswith the highest scoreswere nominated for theBCIResearch
Award 2019. These nominees, affiliations, and project names were:

4.1 BCI-Based Neurofeedback Training
for Quitting Smoking

JunjieBu1,KymberlyD.Young2,WeiHong1,RuMa1,HongwenSong5,YingWang1,
Wei Zhang1, Michelle Hampson3, Talma Hendler4, Xiaochu Zhang1,5.

1Hefei National Laboratory for Physical Sciences at the Microscale and School
of Life Sciences, University of Science & Technology of China, Hefei, China.

2Department of Psychiatry, University of Pittsburgh School of Medicine, Pitts-
burgh, USA.

3Department of Radiology and Biomedical Imaging, Yale School of Medicine,
New Haven, CT, USA.

4Functional Brain Center, Tel-Aviv University, Tel-Aviv, Israel.
5School of Humanities & Social Science, University of Science & Technology of

China, Hefei, China.

4.2 Decoding Speech from Intracortical Multielectrode
Arrays in Dorsal Motor Cortex

Sergey D. Stavisky1, Francis R. Willett1, Paymon Rezaii1, Leigh R. Hochberg2,
Krishna V. Shenoy1,3, Jaimie M. Henderson1.

1Stanford University, USA.
2Brown University, Harvard Medical School, Massachusetts General Hospital,

Providence VA Medical Center, USA.
3Howard Hughes Medical Institute, USA.

4.3 Neurofeedback of Scalp EEG Sensorimotor Rhythm
Guides Hemispheric Activation of Sensorimotor Cortex

MasaakiHayashi1,NobuakiMizuguchi2,3, Shohei Tsuchimoto1,2, ShokoKasuga1,4,5,
Junichi Ushiba3,4.

1School of Fundamental Science and Technology, Graduate School of Keio
University, Kanagawa, Japan.

2The Japan Society for the Promotion of Science, Tokyo, Japan.
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3Department of Biosciences and informatics, Faculty of Science and Technology,
Keio University, Kanagawa, Japan.

4Keio Institute of Pure and Applied Sciences, Kanagawa, Japan.
5Centre for Neuroscience Studies, Queen’s University, Ontario, Canada.

4.4 Developing a Closed-Loop Brain-Computer Interface
for Treatment of Neuropsychiatric Disorders Using
Electrical Brain Stimulation

Yuxiao Yang1, Omid G. Sani1, Morgan B. Lee2,3,4, Heather E. Dawes2,3,4, Edward
F. Chang2,3,4, Maryam M. Shanechi1,5.

1Ming Hsieh Department of Electrical Engineering, Viterbi School of Engi-
neering, University of Southern California, USA.

2Department of Neurological Surgery, University of California, USA.
3Weill Institute for Neuroscience, University of California, San Francisco, USA.
4Kavli Institute for Fundamental Neuroscience, University of California, San

Francisco, USA.
5Neuroscience Graduate Program, University of Southern California, USA.

4.5 StentrodeTM Neural Interface
System: Minimally-Invasive Brain-Computer Interface
Designed for Everyday Use

Peter Yoo1, Nicholas Opie1, Thomas Oxley1, Stephen Ronayne1, Gil Rind1, Amos
Meltzer1.

1Synchron Inc., Australia.

4.6 Interfacing Hearing Implants with the Brain: Closing
the Loop with Intracochlear Brain Recordings

Ben Somers1, Damien Lesenfants1, Jonas Vanthornhout1, Lien Decruy1, Eline
Verschueren1, Tom Francart1.

1KU Leuven—University of Leuven, Department of Neurosciences, ExpORL,
Leuven, Belgium.
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4.7 A Brain–Spine Interface Alleviating Gait Deficits
in a Primate Model of Parkinson’s Disease

TomislavMilekovic1,2, FlavioRaschellà3,MatthewG.Perich2, Shiqi Sun1,4, Eduardo
Martin Moraud6,7, Giuseppe Schiavone5, Yang Jianzhong8,9, Andrea Galvez2,
Christopher Hitz1, Alessio Salomon1, David Borton1,10, Jean Laurens1,11, Isabelle
Vollenweider1, Simon Borgognon1, Jean-Baptiste Mignardot1, Wai Kin D Ko8,9,
Cheng YunLong8,9, Li Hao8,9, Peng Hao8,9, Qin Li8,9, Marco Capogrosso12, Tim
Denison13, Stéphanie P. Lacour5, Silvestro Micera3,14, Chuan Qin9, Jocelyne
Bloch6,7, Erwan Bezard8,10,15,16, Grégoire Courtine1,6,7.

1Center for Neuroprosthetics and Brain Mind Institute, School of Life Sciences,
EPFL, Switzerland.

2Department of Fundamental Neuroscience, Faculty of Medicine, University of
Geneva, Switzerland.

3Center for Neuroprosthetics and Institute of Bioengineering, School of Engi-
neering, EPFL, Switzerland.

4Beijing Engineering Research Center for Intelligent Rehabilitation, College of
Engineering, Peking University, People’s Republic of China.

5Center for Neuroprosthetics, Institute of Microengineering and Institute of
Bioengineering, School of Engineering, EPFL, Switzerland.

6Department of Clinical Neuroscience, Lausanne University Hospital (CHUV)
and University of Lausanne, Switzerland.

7Department of Neurosurgery, CHUV, Switzerland.
8Motac Neuroscience, United Kingdom.
9Institute of Laboratory Animal Sciences, China Academy of Medical Sciences,

People’s Republic of China.
10Carney Institute for Brain Science, School of Engineering, Brown University,

USA.
11Department of Neuroscience, Baylor College of Medicine, USA.
12Translational Neuroscience platform, University of Fribourg, Switzerland.
13Oxford University, United Kingdom.
14The BioRobotics Institute, Scuola Superiore Sant’Anna, Italy.
15Université de Bordeaux, Institut des Maladies Neurodégénératives (IMN),

France.
16CNRS, IMN, France.
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4.8 Post-stroke Rehabilitation Training
with a Motor-Imagery-Based Brain-Computer Interface
(BCI)-Controlled Hand Exoskeleton: A Randomized
Controlled Multicenter Trial

Frolov Alexander1,2, Biryukova Elena1,2, Bobrov Pavel1,2, Bobrov Dmirty1, Lekin
Alexander1, Mokienko Olesya3, Lyukmanov Roman3, Kotov Sergey4, Kondur
Anna4, Ivanova Galina1, Bushkova Yulia1.

1Pirogov Russian National Research Medical University, Russia.
2Institute of Higher Nervous Activity, Russia.
3Research Centre of Neurology, Russia.
4Vladimirsky Moscow Regional Research Clinical Institute, Russia.

4.9 The Walk Again Neurorehabilitation Protocol:
A BMI-Based Clinical Application to Induce Partial
Neurological Recovery in Spinal Cord Injury Patients

Solaiman Shokur1, Debora S. F. Campos1, A. R. C. Donati1, Eduardo J. L. Alho1,
Mikhail Lebedev1, Miguel Nicolelis1.

1Neurorehabilitation laboratory AASDAP.

4.10 Hearables: In-Ear Multimodal Brain Computer
Interfacing

Metin Yarici1, Harry J. Davies1, Takashi Nakamura1, Ian Williams1, Danilo P.
Mandic1.

1Imperial College London, UK.

4.11 Power Modulations of ECoG Alpha/Beta and Gamma
Bands Correlate with Time Derivative of Force During
Sustained Hand Grasp

Tianxiao Jiang1, Priscella Asman1, Giuseppe Pellizzer2, Sudhakar Tummala3, Sujit
Prabhu3, Nuri F. Ince1.

1University of Houston, USA.
2University of Minnesota, USA.
3MD Anderson Cancer Center, USA.
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4.12 Next-Generation Microscale Wireless Implant System
for High-Density, Multi-areal Closed-Loop Brain
Computer Interfaces

Farah L. Laiwalla1, VincentW. Leung2, Jihun Lee1, PatrickMercier2, Peter Asbeck2,
Ramesh Rao2, Lawrence Larson1, Arto Nurmikko1.

1Brown University, USA.
2University of California San Diego, USA.

5 Summary

The subsequent chapters in this book present interviews and research directions that
may interest a myriad of different readers. Like chapters from preceding books, this
year’s chapters include both invasive and non-invasive BCIs, with different system
components, user interaction paradigms, signal processingmethods, and goals.Many
chapters present new approaches to help different patient groups.

For example, neurofeedbackwas prominent in several projects nominated in 2019.
Chapters “BCI-Based Neurofeedback Training for Quitting Smoking” and “Training
with BCI-Based Neurofeedback for Quitting Smoking” present a novel type of
BCI for quitting smoking, with one chapter focused on their project and another
chapter devoted to an interview. Their project used well-established EEG neuro-
feedback principles combined with advanced BCI techniques that was effective in a
double-blind trial. Chapters “Developing a Closed-Loop Brain-Computer Interface
for Treatment of Neuropsychiatric Disorders Using Electrical Brain Stimulation”
and “Closed-Loop BCI for the Treatment of Neuropsychiatric Disorders” describe a
different approach to use neurofeedback for patients with neuropsychiatric disorders.
The project in chapter “Neurofeedback of Scalp Bi-Hemispheric EEG Sensorimotor
Rhythm Guides Hemispheric Activation of Sensorimotor Cortex in the Targeted
Hemisphere” addressed neurofeedback for sensorimotor control. Different chapters
present BCI systems to help patients recover from stroke, produce or understand
speech, or use tactile feedback to support grasping and other activities. Like many
directions presented in different chapters, their work is not yet ready for widespread
clinical application, but could ignite new ideas and follow-up efforts that could help
many people. The last chapter of this book presents the winners of the 2019 BCI
Research Award and some discussion.
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BCI-Based Neurofeedback Training
for Quitting Smoking

Junjie Bu and Xiaochu Zhang

Abstract Neurofeedback is a psychophysiological protocol in which online feed-
back of brain activation is provided to the participant for self-regulation. As a
progenitor of brain–computer interfaces (BCIs), neurofeedback has provided a novel
way to improve brain function and investigate neuroplasticity. Previous EEG-based
neurofeedback protocols have been employed in drug addiction treatment for more
than four decades. However, the efficacy of these traditional EEG neurofeedback
approaches in the treatment of addiction remains dubious. Herewe developed a novel
cognition-guided neurofeedback protocol and evaluated its therapeutic efficacy on
nicotine addiction. We trained a personalized multivariate pattern analysis (MVPA)
classifier to identify an EEG activity pattern associated with drug cue reactivity using
the specific cognitive task (drug cue reactivity task) before neurofeedback, and subse-
quently trained participants to de-activate this pattern during neurofeedback (hereby
termed ‘cognition-guided neurofeedback’). In a double-blind, placebo-controlled,
randomized clinical trial, 60 nicotine-dependent participantswere assigned to receive
two neurofeedback training sessions (about 1 h/session) either from their own brain
(N = 30, real-feedback group) or from the brain activity pattern of a matched
participant (N = 30, yoked-feedback group). In the real-feedback group, partici-
pants successfully de-activated EEG activity patterns of smoking cue reactivity. The
real-feedback group showed significant decrease in cigarette craving and craving-
related P300 amplitudes compared with the yoked-feedback group. The rates of
cigarettes smoked per day at 1-week, 1-month and 4-month follow-up decreased
30.6, 38.2, and 27.4% relative to baseline in the real-feedback group, compared to
decreases of 14.0, 13.7, and 5.9% in the yoked-feedback group. The neurofeedback
effects on craving change and smoking amount at the 4-month follow-upwere further
predicted by neuralmarkers at pre-neurofeedback. This novel neurofeedback training
approach produced significant short-term and long-term effects on cigarette craving
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and smoking behavior, suggesting the neurofeedback protocol described herein is a
promising brain-based tool for treating addiction.

Keywords Brain-computer interface · Cognition-guided neurofeedback · Nicotine
addiction · Smoking cue reactivity

1 Introduction

Nicotine addiction is the leading preventable cause of disease and death worldwide.
With approximately 75%of patientswith nicotine dependence not responding fully to
the Gold Standard Programme (a comprehensive intervention consisting of manual-
based teaching sessions together with nicotine replacement therapy) for smoking
cessation interventions (Rasmussen et al. 2017), high relapse rates during long-term
follow-up periods remain a core feature of nicotine addiction. Therefore, there is an
urgent need to develop novel therapeutic approaches for nicotine addiction.

Neurofeedback, a psychophysiological procedure that helps participants self-
regulate their brain activity, has been of growing interest among basic and clinical
neuroscientists (Sitaram et al. 2017). Clinically, neurofeedback has been employed
in many psychiatric disorders, including Attention Deficit Hyperactivity Disorder
(Arns et al. 2009), depression (Young et al. 2017), anxiety (Scheinost et al. 2013)
and drug addiction (Sokhadze et al. 2008). Further, recent fMRI-based neurofeed-
back studies indicate preliminary efficacy in reducing cigarette craving in smokers
(Li et al. 2013; Hartwell et al. 2016). However, the feasibility of turning fMRI neuro-
feedback into a widely available clinical intervention is questionable. In contrast,
EEG is a relatively inexpensive and portable brain imaging technique that can be
easily implemented at any location and has more potential for wide-spread clin-
ical implementation than fMRI neurofeedback. Previous EEG-based neurofeedback
protocols, including alpha training, alpha/theta training, and SMR (sensorimotor
rhythm)/beta training, have been employed in drug addiction treatment for more
than four decades (Sokhadze et al. 2008). Using these training protocols, drug-
dependent patients received the power of a single and fixed EEG frequency and
self-regulated that signal (Schmidt et al. 2017). Most of these studies focused on
facilitating relaxation and reducing anxiety. However, the efficacy on drug addiction
has only been classified as “probably efficacious” in reports from the Association
for Applied Psychophysiology and Biofeedback and the International Society for
Neurofeedback and Research (Sokhadze et al. 2008; Schmidt et al. 2017). Addi-
tionally, recent studies question the clinical efficacy of previous EEG neurofeedback
protocols (Thibault and Raz 2016; Fovet et al. 2017; Schabus et al. 2017). Hence, a
new direction for EEG neurofeedback in treating drug addiction is warranted.

The efficacy of these traditional EEG neurofeedback approaches in the treat-
ment of addiction remains dubious, in part, because addiction process involves many
complex cognitive models (e.g. the cue reactivity model (Chiamulera 2005) and
negative reinforcement model Koob [2013]), but previous neurofeedback studies
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mainly targeted arousal and/or anxiety. Instead, drug cue reactivity can evoke the
impulse for drug-seeking behavior in addiction (Weiss et al. 2001). Previous studies
from our group and others indicate that smoking cue reactivity is a central charac-
teristic of nicotine addiction (Zhang et al. 2009; Engelmann et al. 2012) and can
predict relapse vulnerability (Janes et al. 2010); thus, there is evidential support for
a causal relationship between cue reactivity and relapse (Parvaz et al. 2011). There-
fore, reducing brain reactivity to smoking cues has the potential to improve smoking
cessation outcomes.

Recent EEG studies have reported that smoking cue reactivity is a complex brain
activity pattern that involvesmultiple EEG features, including both time domain (e.g.,
P300, slow positive wave) and frequency domain (e.g., alpha oscillation) features
(Cui et al. 2013; Littel and Franken 2007; Littel et al. 2012). Typically, multi-
variate pattern analysis (MVPA) can enhance sensitivity of detecting a particular
brain activity pattern by using multifeature combinations for input to multivariate
patterns (Haynes and Rees 2006). A number of neurofeedback studies combined
with MVPA have been impressively successful at improving attention and percep-
tual learning after only a few sessions (deBettencourt et al. 2015; Shibata et al.
2011), whereas some traditional EEG-based neurofeedback studies require dozens
of sessions for any effects to be detected (Sokhadze et al. 2008).

In the current study, we evaluated a novel EEG neurofeedback paradigm
(cognition-guided neurofeedback) effects on nicotine addiction by double-blind,
randomized, placebo-controlled design.

2 Cognition-Guided Neurofeedback

The cognition-guided neurofeedback training paradigm consisted of two parts
(Fig. 1a, b). First, we trained a personalized classifier to distinguish the EEG activity
patterns corresponding to smoking and neutral cue reactivity using the smoking cue
reactivity task. Raw signals were pre-processed offline based on the EEG signals
acquired during the smoking cue reactivity task. Afterwards, time domain (EEG
potential) and time-frequency domain (EEG power) features were calculated by
contrasting smoking with neutral cues using a permutation test. Time-frequency
domain features were calculated by wavelet analysis. Under the threshold (p < 0.05)
of the permutation test, the EEG potential and EEG power features surviving this
threshold were separately formed into temporal-spatial clusters by grouping them at
adjacent timepoints and electrodes using a cluster-based statistic (Groppe et al. 2011).
Once the temporal-spatial clusters were identified, the EEG features for constructing
the pattern classifier were extracted from these clusters. The mean values (potential
and power) from each temporal-spatial cluster were calculated and combined into
a linear support vector machine (SVM) classifier. The SVM classifier was selected
since it often outperforms other classifiers for neurofeedback (Lotte et al. 2018).
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Fig. 1 Cognition-guided neurofeedback paradigm (a, b) and experimental procedure (c)

Next, during neurofeedback training, participants were asked to repeatedly and
continuously de-activate their real-time EEG activity patterns of smoking cue reac-
tivity calculated using a previously constructed classifier. For each real-time raw
EEG signal lasting 1 s, the pre-processing was used by the same algorithm as in the
previous EEG pre-processing. The time domain and time-frequency domain features
were then extracted from the previous temporal-spatial clusters by calculating the
mean values (EEG potential and EEG power), and then input into the personalized
classifier. The classifier estimated the probabilistic score in real time reflecting the
extent to which the brain activity pattern matched the pattern for reactivity to the
smoking cue. We determined the probabilistic scores (from 0 to 1) for the classifier.
As a result, when a participant successfully deactivated the smoking cue pattern, the
probabilistic score decreased. That is, when the current activity patterns were more
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similar to neutral cue activity patterns, the score decreased, and when the current
activity patterns were more similar to the smoking cue activity patterns, the score
increased.

3 Adaptive Closed-Loop Design

To improve participants’ vigilance, and help them better self-monitor and evaluate
their brain state during neurofeedback, we used an adaptive closed-loop method in
which the neurofeedback stimulus and decoded brain state influenced each other in
real-time (deBettencourt et al. 2015).Different craving level pictures evoked different
degrees of smoking cue reactivity for smokers (Carter and Tiffany 1999). In the
current study, an approach of continually updating sensory stimuli (e.g., different
craving level pictures) based on changing brain states (e.g., different degrees of
smoking cue reactivity pattern) constituted a “closed-loop” design. The logic of this
closed-loop design is that, when a participant was unsuccessful in “deactivating”
the smoking cue pattern (i.e., the probabilistic score increased), a picture with a
higher craving level was displayed to amplify and externalize the consequences of
the participant’s smoking cue related brain activity pattern (deBettencourt et al. 2015;
deBettencourt and Norman 2016). This made unsuccessful deactivation more salient
and increased the self-monitoring demand of the task. In other words, we amplified
the consequences of their cue pattern, rewarding successful deactivation by reducing
difficulty with a lower craving level picture and punishing unsuccessful deactivation
by increasing difficulty with a higher craving level picture.

The probabilistic score was presented at the bottom half of the screen and trans-
ferred into a picture presented at the top half of the screen at the same time (Fig. 1b).
The association between the probabilistic score and the transferred picture was
controlled by a linear positive correlation function. To reduce fluctuations due to
noise in the EEG signal, the probabilistic score value of each trial was calculated
using a moving average of the current and two preceding values.

After neurofeedback practice, participants were required to identify ten cognitive
strategies that may be effective at de-activating the neurofeedback signal, but it was
emphasized that they should adjust their strategies to find a method that works best
for them during neurofeedback (Instruction: “Make the feedback curve move down
and the picture induce less craving”). Each neurofeedback training session consisted
of 8 cycles, with 40 trials per cycle. Each trial was updated every 2 s including 1
s acquisition and 1 s computing, with a 1 min rest between cycles. At the end of
each cycle, the self-regulation performance during the previous cycle was presented.
After each cycle, participants rated their perceived control over the neurofeedback
signal. The final cumulative performance was translated into an additional money
reward. Both groups received the same money after neurofeedback.
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4 Experimental Procedure and Participants

The study was a double blind, randomized, placebo-controlled design. The experi-
mental procedure consisted of four stages (Fig. 1c): (1) baseline session (Visit 1); (2)
two neurofeedback training sessions (Visit 2 andVisit 3); (3) post-training behavioral
session (Visit 4); and (4) follow-up session (Visit 5). Participants were required to be
abstinent from smoking cigarettes for two hours prior to every visit, which ensured
participants had some craving and responsiveness to the cues without the potential
confound of a ceiling effect from prolonged abstinence.

Sixty participants who met the following criteria participated in the experiment:
smoking 10 or more cigarettes per day for 2 years or more, right-handed, between
18 and 40 years of age, normal or corrected to normal vision, and in good mental
and physical health assessed by the Mini-International Neuropsychiatric Interview
(Sheehan et al. 1998).

Participants were randomly assigned to the real-feedback group (n = 30) or the
yoked-feedback group (n = 30). The real-feedback group regulated their own online
brain patterns. The yoked-feedback group regulated the brain activity pattern of a
matched participant in the real-feedback group (deBettencourt et al. 2015).

5 Cognition-Guided Neurofeedback Effects
on Nicotine Addiction

Figure 2 indicates that the real-feedback group successfully de-activated smoking
cue reactivity patterns after two neurofeedback visits. A linear regression analysis
revealed that there was a strong and significant negative correlation between training
cycle and the mean probabilistic score across participants in the real-feedback group
(r = −0.155, p = 0.001) (Fig. 2a). However, this finding was not observed in the
yoked-feedback group (r = 0.015, p = 0.77) (Fig. 2b) and the correlation was
significantly different from the real-feedback group (z = −2.47, p = 0.013). A
two-way mixed-design ANOVA using group (real-feedback, yoked-feedback) as a
between-subjects factor and cycle (first cycle of neurofeedback visit 1, last cycle of
neurofeedback visit 2) as a within-subjects factor on the probabilistic score revealed
a significant group-by-cycle interaction (F(1, 51) = 4.04, p = 0.04, d = 0.56).

A two-way mixed-design ANOVA using group (real-feedback, yoked-feedback)
as a between-subjects factor and time (pre-neurofeedback, post-neurofeedback)
as a within-subjects factor on the cigarette craving score revealed a signifi-
cant group by time interaction (F(1, 51) = 4.69, p = 0.03, d = 0.61)
(Fig. 3a). Furthermore, participants in the real-feedback group with lower levels
of average de-activated neurofeedback performance exhibited greater decreases
in craving scores (r = −0.40, p = 0.03), which was consistent with our hypothe-
sized mechanism of action for this intervention (Fig. 3b). This correlation was not
significant in the yoked-feedback group (r = −0.12, p = 0.53). In addition, we
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Fig. 2 Neurofeedback learning

compared the craving-related P300 component evoked by smoking-related cues.
A two-way mixed-design ANOVA using group (real-feedback, yoked-feedback)
as a between-subjects factor and time (pre-neurofeedback, post-neurofeedback)
as a within-subjects factor on average amplitude at selected group peak time
window (350 ms ~ 450 ms) revealed a significant group-by-time interaction effect
(F(1, 51) = 5.13, p = 0.028, d = 0.64). These findings indicated neurofeedback
produced short-term effects on cigarette craving.

A two-way mixed-design ANOVA using group (real-feedback, yoked-feedback)
as a between-subjects factor and time (pre-neurofeedback, 1-week follow-up, 1-
month follow-up, 4-month follow-up visit) as a within-subjects factor on daily
cigarette consumption revealed a significant group by time interaction (F(3, 126) =
3.68, p = 0.01, d = 0.59) (Fig. 3c). After two neurofeedback training visits,
the real-feedback group showed significantly decreased cigarette consumption per
day compared to the yoked-feedback group at the 1-week follow-up (t(48) =
−2.53, p = 0.01, d = 0.72), 1-month follow-up (t(47) = −2.98, p < 0.005, d =
0.86), and 4-month follow-up (t(42) = −2.21, p = 0.03, d = 0.67). In addition,
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Fig. 3 Neurofeedback effects on short-term cigarette craving and long-term smoking behavior. *p
< 0.05; **p < 0.01; ***p < 0.005; ns: not significant. NF: neurofeedback

the real-feedback group showed a significant correlation between the average de-
activated neurofeedback performance and the current cigarette amount at 4-month
follow-up (r = 0.58, p = 0.004) (Fig. 3d). These findings indicated neurofeedback
produced long-term effects on smoking behavior.

Figure 4a shows that the classification accuracy of the pre-neurofeedback clas-
sifier significantly predicted decreased craving scores in the real-feedback group
(r = 0.40, p = 0.03), while the same prediction was not significant in the yoked-
feedback group (r = 0.13, p = .54).Moreover, the correlation analysis revealed that
the degree of de-activation during the first cycle of the first neurofeedback success-
fully predicted the number of cigarettes smoked per day at the 4-month follow-up
(r = 0.45, p = 0.03, Fig. 4b) in the real-feedback group, but not in the yoked-
feedback group (r = 0.16, p = 0.45). These findings indicated short- and long-
term effects were predicted by the classification accuracy at pre-neurofeedback and
neurofeedback performance during the first training cycle, respectively.
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Fig. 4 Individual-level prediction of short-term (a) and long-term (b) effects. NF: neurofeedback

6 Conclusion

In conclusion, we developed and tested a novel cognition-guided neurofeedback
protocol to de-activate EEG activity patterns of smoking cue reactivity, which
produced short- and long-term effects on cigarette craving and smoking behavior.
In particular, the rate of smoking amount decreased as much as 38.2% during the
4-month follow-up period after only 2 h of neurofeedback training. These results
suggest this novel neurofeedback intervention is a promising treatment for addic-
tion, with potential to be a low-cost and high-portability brain-based treatment for
addiction. This approach therefore merits further testing.
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Neurofeedback of Scalp Bi-Hemispheric
EEG Sensorimotor Rhythm Guides
Hemispheric Activation of Sensorimotor
Cortex in the Targeted Hemisphere

Masaaki Hayashi, Nobuaki Mizuguchi, Shohei Tsuchimoto,
and Junichi Ushiba

Abstract Oscillatory electroencephalographic (EEG) activity is associated with
excitability of cortical regions. Visual feedback of EEG-oscillations may promote
increased excitability in targeted cortical regions, but is not truly guaranteed due
to its limited spatial specificity and signal interaction among interhemispheric
brain regions. Guiding spatially specific sensorimotor cortical activation is impor-
tant for facilitating neural rehabilitation processes. Here, we developed a spatially
bivariate EEG-based neurofeedback approach that monitors bi-hemispheric sensori-
motor activities during unilateral upper-limbmotor imagery (MI), and testedwhether
users could volitionally lateralize sensorimotor activity to the contralateral or ipsi-
lateral hemisphere using right shoulder MI-associated neurofeedback. Then, hand
MI-associated BCI-neurofeedback was tested as a negative control via the same
procedure. Lateralized EEG activity was compared between shoulder and hand MIs
to seehowdifferences in intrinsic corticomuscular projectionpatternsmight influence
activity lateralization. In right shoulder MI, ipsilaterally and contralaterally domi-
nant sensorimotor activation was guided via EEG-based neurofeedback. Conversely,
in right hand MI, only contralaterally (but not ipsilaterally) dominant sensori-
motor activation was guided. These results are compatible with neuroanatomy;
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shouldermuscles are innervated bihemispherically, whereas handmuscles aremostly
innervated contralaterally.

Keywords Brain-computer interface ·Motor imagery · Laterality · Sensorimotor
cortical activity · Neural plasticity

1 Introduction

Oscillatory brain activity is associated with the excitability of a cortical region.
Changes in frequency, amplitude, and phase of ongoing oscillation cycles visualized
in electro- or magnetoencephalograms (EEG/MEG) over the human sensorimotor
cortex (SM1) are associated with modulated responses in SM1. In particular, the
excitability of SM1 and the connected spinal motoneuron pool is significantly higher
when the amplitude of sensorimotor rhythms (SMR) in the alpha (8–13 Hz) and beta
(14–30 Hz) bands is lower (Neuper and Pfurtscheller 2001; Neuper et al. 2006;
Pfurtscheller et al. 2006). This concept has inspired neurofeedback interventions
via a brain-computer interface (BCI) whereby, for example, post-stroke hemiplegic
patients learn to volitionally desynchronize/synchronize SMR signals in the ipsile-
sional hemisphere through visual or sensory feedbacks, with the goal of bringing the
residual spared sensorimotor system into amore excitable/relaxed state as a precursor
for enhanced neural plasticity and accelerated recovery.

Although the sensorimotor circuit can be potentiated through BCI-neurofeedback
paradigms (Ang and Guan 2017; Ramos-Murguialday et al. 2013; Soekadar et al.
2015a), less is known about whether such BCI-neurofeedback can explicitly guide
sensorimotor cortical activation to a targeted hemisphere. This is crucial to under-
standing the brain’s intrinsic neural interferences (e.g., the interaction between the
left and right hemispheres through transcallosal connections, and interhemispheric
connectivity of the supplementarymotor area-SM1network) (Arai et al. 2011;Waters
et al. 2017). Sensorimotor circuits in left and right hemispheres might potentially
influence one another, suggesting that BCI-neurofeedback of the SMR signal from
one hemisphere does not always guarantee spatially specific activation of the sensori-
motor circuit in the targeted hemisphere (Buch et al. 2008; Caria et al. 2011). Indeed,
no previous study has shown that the sensorimotor cortical activity can be guided to
the targeted hemisphere with spatial specificity, either contralaterally or ipsilaterally.

Guiding spatially specific sensorimotor cortical activation is important, for
example, for facilitating neural rehabilitation processes. For instance, the remod-
eling process of the ipsilesional SM1 for finger motor recovery in the post-stroke
stagewas shown to impede shouldermovement recovery, as the enlargement ofmotor
areas associated with finger control can lead to erosion of motor areas responsible
for shoulder movement (Muellbacher et al. 2002). Furthermore, contralesional SM1
demonstrated better control of paralyzedmuscles than did ipsilesional SM1 (Takasaki
2017; McPherson et al. 2018). Thus, preventing competitive reinnervation processes
in the SM1 may aid in better motor improvement post-stroke. BCI-neurofeedback
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designed to guide sensorimotor cortical activation to a targeted hemisphere has great
potential to facilitate the neural remodeling process during post-stroke rehabilitation.

To resolve this uncertainty in the BCI-neurofeedback technique—that is, whether
the sensorimotor cortical activity can be guided to the targeted hemisphere—we
conducted a BCI experiment focusing on the neuroanatomical properties of skeletal
muscle innervation as a pre-clinical trial and a First-in-Person Proof-of-Concept
study. Recent studies suggested that there is a relationship between intrinsic func-
tional/structural architecture of the brain and successful learning of brain activity
(Halder et al. 2013; Young et al. 2016). In the present study, we selected two different
motor imageries (MIs): “shoulder” MI in a first setting and “hand” MI in a second
setting as a negative control. It is known that the deltoid anterior (DA) muscle for
flexing proximal muscles is innervated bilaterally (Carson 2005; Colebatch et al.
1990). Conversely, the extensor digitorum communis (EDC) muscle, which is for
extending distal muscles and is predominantly innervated from the contralateral
hemisphere (Carson 2005; Colebatch et al. 1990), was used as a contrast to the bilat-
eral corticomuscular connections of the DA muscle. Therefore, we hypothesized
that, if BCI-neurofeedback is a potent up-regulator of hemispheric activation to the
targeted side, shoulder MI-associated BCI-neurofeedback should enable the sensori-
motor excitability to be lateralized to the targeted hemisphere, either contralaterally
or ipsilaterally. In contrast, hand MI-associated BCI-neurofeedback might enable
the sensorimotor excitability to be lateralized to the contralateral hemisphere, while
limiting lateralization of the ipsilateral excitability by virtue of its neuroanatomical
constraint.

In this study, participants performed shoulder/hand MI-associated BCI-
neurofeedback to learn volitional regulation of sensorimotor cortical excitability in
the contralateral or ipsilateral hemisphere in a double-blind, randomized, within-
subject crossover design. We used a new BCI-neurofeedback approach during
unilateral repetitive kinesthetic MI to volitionally regulate sensorimotor cortical
excitability, as reflected by desynchronization/synchronization of SMR signals
(SMR-ERD/ERS), with the aim of guiding its intensity to only the targeted hemi-
sphere. To this end, we designed BCI-neurofeedback that displays both left and right
hemispheric SMR-ERDs concurrently, allowing participants to learn to regulate these
two variates at the same time and to modulate target-hemisphere-dependent SMR-
ERD. This neuroanatomically-inspired approach enabled us to investigate potent
neural remodeling functions that underlie EEG oscillation-based neurofeedback via
a BCI.

2 Spatially Bivariate EEG-Based Neurofeedback

All participants completed the four different neurofeedback sessions on separate
days; each session consisted of the pre- and post-evaluation blocks and the six training
blocks (Fig. 1).
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Fig. 1 Study design and experimental paradigm

2.1 Evaluation Block

In the pre- and post-evaluation blocks, no visual feedback was provided. The aim of
the pre-evaluation block was to evaluate the baseline brain activity and to calibrate
parameters in the neurofeedback settings each day. First, the target frequency was
calibrated for each participant in order to feedback the most reactive frequency. The
target frequency was selected from the alpha band (8–13 Hz) by calculating the mean
intensity of SMR-ERD with a 3-Hz sliding bin and 2-Hz overlap. SMR-ERD in the
alpha band is a reliable EEG biomarker representing increased neuronal excitability
in SM1, corticospinal tract, and thalamocortical systems. Second, the target level of
SMR-ERD during MI was normalized for each participant at the third quartile of the
contralateral or ipsilateral SMR-ERD in the pre-evaluation block. This setting was
empirically approved by the authors as a moderate load for effective operant learning
(Naros et al. 2016).

2.2 Training Block

In the training blocks, participants received visual feedback based on the SMR-
ERDs from both left and right hemispheres. The real-time SMR-ERD intensity in
each hemisphere (relative to the average power of the last 6 s of the resting epoch)was
obtained every 100 ms. To modulate target hemisphere-dependent SMR-ERD, we
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developed BCI-neurofeedback that displayed both left and right hemispheric SMR-
ERDs concurrently, allowing participants to learn to regulate these two variates at the
same time. Visual feedback was provided on a computer screen in the form of cursor
movements in a two-dimensional coordinate, in which each axis corresponded to the
degree of the contralateral or ipsilateral SMR-ERD (Fig. 1). The axis range was from
−100% (i.e., ERS) to 100%, and the cursors were presented at the origin-position
(x= 0, y= 0) at the initiation of a trial. A key point of this study is that participants
were always instructed to try to move the cursor toward the upper right in the two-
dimensional coordinate during MI in all four neurofeedback training sessions. In the
case of shoulder MI, for example, participants performed the same MI and tried to
move the cursor to the upper right regardless of whether it was a Shoulder-contra
or Shoulder-ipsi session. However, the coordinate systems during the two sessions
differed as follows: in theShoulder-contra session, the x-axis andy-axis corresponded
to the ipsilateral SMR-ERS and contralateral SMR-ERD, respectively. Conversely,
in the Shoulder-ipsi session, the x-axis and y-axis corresponded to the contralateral
SMR-ERS and ipsilateral SMR-ERD, respectively. Thus, the upper right position
always indicated a reduction in alpha rhythm in the targeted hemisphere with respect
to the baseline (i.e., SMR-ERD) and an increase in the non-targeted side (i.e., SMR-
ERS).Using such a gimmicked environment,we aimed at lateralizing cortical activity
in the sensorimotor cortex, blinding which task was being performed.

A score was calculated when the most recent cursor on the screen reached the
ten blue boxes representing the scoring range (Fig. 1b). The coordinates of each
blue box corresponded to the degree of bilateral SMR-ERDs, with the x-axis set in
steps of 10% SMR-ERS in the non-targeted hemisphere, and y-axis ranged from the
predefined threshold to 100% SMR-ERD in the target hemisphere. At the end of the
trial, the computer cursor returned to the origin position. A score for each segment
(each computer cursor updated every 100 ms) was obtained during the MI epoch to
provide feedback about the overall performance of each trial. The darkest blue box
in the upper left in Fig. 1b had a low score (5 points), whereas the lightest blue box
in the upper right had a high score (15 points). The boxes in the middle were set
in steps of 1 point. Finally, a cumulative sum calculated by adding all scores was
displayed for 5 s in the left side of the screen at the interval period in each trial (range:
0–765 points). To boost learning of self-regulation in sensorimotor cortical activity,
participants were encouraged to get a higher cumulative sum than during the previous
trial. Such screen presentation of the total score at the end of the trial is referred
to as ‘intermittent feedback’ (Johnson et al. 2012). Previous studies demonstrated
that providing intermittent feedback is a useful element for neurofeedback training
(Shibata et al. 2011; Posse et al. 2003) because it probably reduces cognitive loads
during MI.
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Fig. 2 Changes in BCI performance

3 BCI Performance

Figure 2 illustrates the changes in BCI performance (i.e., total cumulative score) in
each session. In shoulder MI, the total cumulative score was improved in both the
Shoulder-contra session (pre = 1170, post = 1651, difference = 481, Cohen’s d =
0.72, p= 0.007, paired t-test) and the Shoulder-ipsi session (pre= 891, post= 1310,
difference = 419, Cohen’s d = 0.84, p = 0.011, paired t-test). On the other hand,
in hand MI, the total cumulative score was improved in the Hand-contra session
(pre = 1783, post = 1136, difference = 647, Cohen’s d = 1.20, p = 0.018, paired
t-test), but not in the Hand-ipsi session (pre = 1249, post = 1253, difference = 4,
Cohen’s d = 0.01, p = 0.97, paired t-test). We also found that the total cumulative
score in the evaluation blocks was lower than that in the training blocks, which is in
keeping with the well-known information that visual feedback enhances MI-based
BCI performance (Ono et al. 2015; Pichiorri et al. 2015). Differences between the 6
training blocks for cumulative score were not statistically significant (all p > 0.05,
one-way rmANOVA).
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4 Effects of EEG-Based Neurofeedback
During Shoulder MI

Spatial patterns of SMR-ERD during the MI epoch in the pre- and post-evaluation
blocks of a representative participant are shown in Fig. 3a, b. The SMR-ERDs were
localized predominantly in the bilateral parieto-temporal regions during the pre-
evaluation block, regardless of whether it was a Shoulder-contra or Shoulder-ipsi
session. During the Shoulder-contra session, the contralateral SMR-ERD increased
after the neurofeedback training session, whereas the ipsilateral SMR-ERD did not
(Fig. 3a). Conversely, during the Shoulder-ipsi session, the contralateral SMR-ERD
did not increase, but the ipsilateral SMR-ERD did (Fig. 3b).

Figure 3c, d show Laterality Index (LI) changes during the Shoulder-contra and
Shoulder-ipsi sessions, respectively. During the Shoulder-contra session, the LI in
the post-evaluation block (−0.113 ± 0.072) was significantly lower than that in the
pre-evaluation block (−0.030 ± 0.089) (difference = 0.083, Cohen’s d = 1.76, p
= 0.023, paired t-test; Fig. 3c). By contrast, during the Shoulder-ipsi session, the
LI in the post-evaluation block (0.017 ± 0.103) was significantly higher than that
in the pre-evaluation block (−0.067 ± 0.103) (difference = 0.084, Cohen’s d =
0.86, p = 0.039, paired t-test; Fig. 3d). Target-hemisphere-dependent SMR-ERDs
were modulated during both the Shoulder-contra and Shoulder-ipsi sessions, even
though participants repeated the same MI under the neurofeedback setting with only
a change in the rule of cursor movement (i.e., reversal of x-axis and y-axis).

We assessed seed-based corrected imaginary part of coherence (ciCOH during the
resting-state in the pre- and post-evaluation blocks to evaluate interregional synchro-
nization (i.e., functional connectivity). Figure 4a, b showsignificant intrahemispheric
connections in each hemisphere of a representative participant. The number of signif-
icant connections in the contralateral hemisphere increased from the pre- to the post-

Fig. 3 Effects of shoulder MI-associated neurofeedback on SMR-ERD



32 M. Hayashi et al.

Fig. 4 Effects of shoulder MI-associated neurofeedback on resting-state functional connectivity

epochs during the Shoulder-contra session (Fig. 4a), whereas they increased in the
ipsilateral hemisphere during the Shoulder-ipsi session (Fig. 4b). Intrahemispheric
network intensity changes in the targeted hemisphere during the Shoulder-contra
and Shoulder-ipsi sessions are shown in Fig. 4c and d, respectively. Figure 4e, f
show significant interhemispheric connections of a representative participant, which
increased during both the Shoulder-contra and Shoulder-ipsi sessions. Changes in
interhemispheric network intensity for all participants during the Shoulder-contra
and Shoulder-ipsi sessions are outlined in Fig. 4g and h, respectively. During the
Shoulder-contra session, the interhemispheric network intensity was significantly
higher during the post-evaluation block (2.01± 0.28) than during the pre-evaluation
block (1.80 ± 0.19; difference = 0.21, Cohen’s d = 0.88, p = 0.030, paired t-test;
Fig. 4g). Similarly, during the Shoulder-ipsi session, the interhemispheric network
intensity was significantly higher in the post-evaluation block (2.09 ± 0.42) than in
the pre-evaluation block (1.77 ± 0.37) (difference = 0.31, Cohen’s d = 0.81, p =
0.006, paired t-test; Fig. 4h).
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5 Comparison of SMR-ERDs During Shoulder MI
and Hand MI

To further examine the effectiveness in BCI-neurofeedback training purported to
lateralize sensorimotor cortical activities, we compared the changes in SMR-ERD
during shoulderMI and handMI (Fig. 5). A three-wayANOVA revealed a significant
interaction between Session × Hemisphere × Limb (F(1, 88) = 4.98, p = 0.047) and
Session×Hemisphere (F(1, 88) = 26.7, p < 0.001), but no interaction between Session
×Limb (F(1, 88) = 1.44, p= 0.255) orHemisphere×Limb (F(1, 88) = 2.06 p= 0.179).
Although Limb had a significant main effect (F(1, 88) = 5.43, p = 0.040), Session
(F(1, 88) = 1.29, p = 0.28) and Hemisphere (F(1, 88) = 2.39, p = 0.15) did not have
any effects. Post hoc two-way ANOVA with Hemisphere × Limb in the sessions
aiming for lateralization to the contralateral hemisphere (i.e., Shoulder-contra and
Hand-contra) showed a significant main effect for Hemisphere (F(1, 44) = 12.39, p=
0.001); however, there was no main effect for Limb (F(1, 44) = 0.27, p = 0.608) and
no interaction (F(1, 44) = 0.30, p = 0.589). By contrast, post hoc two-way ANOVA
with Hemisphere × Limb in the sessions aiming for lateralization to the ipsilateral
hemisphere (i.e., Shoulder-ipsi and Hand-ipsi) indicated a significant main effect
for Hemisphere (F(1, 44) = 4.51, p = 0.039) and interaction (F(1, 44) = 5.70, p =
0.021), but no main effect for Limb (F(1, 44) = 1.99, p = 0.166). Thus, there were
interhemispheric differences in �SMR-ERD during the shoulder MI and hand MI
tasks. Moreover, a post hoc paired t-test demonstrated a significant difference in
Hemisphere (p = 0.001) during shoulder MI, but no difference in Hemisphere (p
= 0.859) during hand MI (Bonferroni corrected). Thus, the �SMR-ERD in the
ipsilateral hemisphere was significantly more positive than that in the contralateral

Fig. 5 Two-way interaction in �SMR-ERD during shoulder MI (dark gray) and hand MI (light
gray) tasks
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hemisphere during the shoulder MI task, but no significant difference was observed
during the hand MI task.

6 Discussion

6.1 The Lateralization of Sensorimotor Cortical Activity
to the Contralateral Hemisphere

The SMR-ERD contralateral to the imagined limb increased significantly after both
the shoulder-contra and Hand-contra sessions. Previous studies also demonstrated
up-conditioning of the contralateral SM1 using contralateral-based neurofeedback
during hand MI (Birbaumer and Cohen 2007; Ang et al. 2011; Prasad et al. 2010).
Repetitive induction of the SMR-ERD contralateral to the imagined limb through
visual or sensory feedback with neuromuscular electrical stimulation or robotic
movement supports are considered to induce the use-dependent, error-based, and/or
Hebbian-like plasticity of the contralateral SM1 (Gharabaghi et al. 2014; Soekadar
et al. 2015b; Ushiba and Soekadar 2016). As contralateral SMR-ERD is a surro-
gate monitoring marker of contralateral SM1 excitability (Takemi et al. 2013, 2015;
Hayashi et al. 2019), BCI-neurofeedback can promote operant learning of contralat-
eral sensorimotor cortical activity. This is an expected phenomenon because distal
muscles such as the EDC muscle are innervated from the contralateral hemisphere,
which ismost influential formuscle contraction (Carson 2005; Colebatch et al. 1990).

However, the BCI-neurofeedback-derived SMR signal from the contralateral
hemisphere does not always guarantee spatially specific activation of the contralat-
eral SM1 because both hemispheres are connected by intrinsic transcallosal projec-
tions and exhibit functional crosstalk (Arai et al. 2011; Waters et al. 2017). Indeed,
conventional contralateral-based BCI-neurofeedback has induced a global increase
including the ipsilateral SMR-ERD, indicating conventional BCI is considered as a
modulation technique without spatial specificity (Pichiorri et al. 2015; Birbaumer
and Cohen 2007; Ono et al. 2014). A key advantage of our study was that the
BCI-neurofeedback that we developed monitored both contralateral and ipsilateral
SMR-ERDs, demonstrating explicitly guided sensorimotor cortical activation in the
targeted contralateral hemisphere alone.

Guiding cortical sensorimotor activation to the targeted hemisphere is also crucial
in the context of neurorehabilitation. For example, it is known that an imbal-
anced interhemispheric inhibition due to excessive suppression from the ipsilateral
(contralesional) to the contralateral side results in further attenuation of the contralat-
eral sensorimotor cortical activity (Shimizu et al. 2002;Murase et al. 2004; Bütefisch
et al. 2008). A temporary guide to down-conditioning in the ipsilateral hemisphere
using non-invasive brain stimulation is also important to reduce interhemispheric
inhibition after stroke (Hummel and Cohen 2006; Takeuchi et al. 2012). Therefore,
the laterality shifting of sensorimotor cortical activity to the contralateral side may
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contribute to the degree of achievable functional recovery (Askim et al. 2009; Chieffo
et al. 2013).

6.2 The Lateralization of Sensorimotor Cortical Activity
to the Ipsilateral Hemisphere

During the shoulder-ipsi session, the ipsilateral SMR-ERD increased significantly.
Although increasing evidence suggests that the contribution of the ipsilateral hemi-
sphere is salient in motor control (Ward et al. 2003; Dodd et al. 2017; Bundy et al.
2017), no previous study has shown that sensorimotor cortical activity can be guided
to the ipsilateral hemisphere. Chiew and his colleagues indicated that different types
ofMI-based (right and left hands) fMRIneurofeedbackof theLI (i.e., the difference in
BOLD responses between the contralateralM1 and the ipsilateralM1 to the imagined
hand) is capable of lateralizing to the contralateral hemisphere (Chiew et al. 2012),
but lateralizing to the ipsilateral was not successful due to “hand” MI-associated
neurofeedback. Therefore, our study is the first to show that BCI-neurofeedback is
a potent up-regulator of hemispheric activation to the targeted hemisphere, either
contralaterally or ipsilaterally in the same participants, depending on the targeted
muscle.

Successful up-conditioning of the ipsilateral SM1 during shoulder MI may
be associated with its neuroanatomical properties, because ipsilateral SMR-ERD
reflects the excitability of the ipsilateral corticospinal tract (CST) (Hasegawa et al.
2017), which mainly innervates proximal muscles (Carson 2005; Alawieh et al.
2017). Unlike hand motor muscles, the functional recovery of axial or shoulder
muscles following stroke hemiplegia is promoted by unmasking the ipsilateral
pathway to the paretic hand (Muellbacher et al. 2002; Colebatch et al. 1990; Schw-
erin et al. 2008). Thus, neurofeedback aimed at ipsilateral lateralization would be
conceptually useful for stroke rehabilitation, particularly for functional maturation
of ipsilateral CST and proximal muscle motor recovery.

The ipsilateral SMR-ERD did not increase during the Hand-ipsi session, implying
that the extent of corticospinal projection from the ipsilateral hemisphere to the
imagined body part affected the modulation of the laterality of sensorimotor cortical
activity. With recent developments in neuroimaging techniques, there is an emerging
interest in understanding the intrinsic functional and structural architecture of the
brain that underlies successful learning of brain activity. For example, research
probing the prediction of BCI aptitude from individual brain structures demonstrated
that the integrity and myelination quality of deep white matter structures, such as the
corpus callosum, cingulum, and superior fronto-occipital fascicle, were positively
correlated with individual BCI-performance (Halder et al. 2013). Additionally, it
has been suggested that changes in the integrity of the contralesional CST may be
accompanied by improved BCI-performance after stroke (Young et al. 2016). The
current literature makes it clear that there is a relationship between neuroanatomical
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characteristics and voluntary control of brain activity. Therefore, our findings implied
that intrinsic neuroanatomical properties such as the CST constrains the effective-
ness in BCI-neurofeedback training purported to lateralize sensorimotor cortical
activities. Further work that approaches the further understandings of differences in
BCI-learning is warranted.

7 Conclusion

We addressed whether sensorimotor cortical activity can be guided to the targeted
hemisphere using a BCI-neurofeedback approach that displays both left and right
hemispheric SMR-ERDs tomodulate bilateral sensorimotor cortical activities. EEG-
based BCI-neurofeedback enabled us to up-regulate hemispheric activation to the
targeted hemisphere, both contralaterally or ipsilaterally, in the same participants,
which had not been reported prior to thiswork.During shoulderMI-associated neuro-
feedback, both the contralateral SMR-ERD and ipsilateral SMR-ERD increased.
Network intensity in the targeted hemisphere also increased in association with
increases in SMR-ERD, implying that the modulation of distributed interregional
neural communication influenced the up-regulation of sensorimotor cortical activity.
Conversely, the absence of an increase in ipsilateral SMR-ERD during handMI indi-
cated that the amount of corticospinal projection from the ipsilateral hemisphere to
the imagined body part can constrain the laterality of brain activity. These results
suggest that EEG-basedBCI-neurofeedback that guides sensorimotor cortical activa-
tion in a targeted hemisphere, either contralaterally or ipsilaterally, has great potential
to facilitate the resumption and shaping of the neural remodeling process.
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Next Generation Microscale Wireless
Implant System for High-Density,
Multi-areal, Closed-Loop Brain
Computer Interfaces

Farah Laiwalla, Vincent W. Leung, Jihun Lee, Patrick Mercier,
Peter Asbeck, Ramesh Rao, Lawrence Larson, and Arto Nurmikko

Abstract A major challenge to high-resolution, closed-loop Brain Computer Inter-
faces (BCIs) is the availability of implantable technologies facilitating vastly parallel,
large-scale access to cortical neural data representing complex, naturalistic tasks
or sophisticated therapeutic neuromodulation. The current technological bottle-
neck is scalability of systems employing intra or epicortical electrode arrays with
hard-wired tethers and bulky implant packaging. We address these challenges by
employing an approach relying on spatially-distributed, completely wireless clus-
ters of autonomous microscale neural interfaces, where each microdevice provides
a single bidirectional channel (read-out and write-in) of neural access, and occupies
a volume <0.01 mm2 inclusive of biocompatible packaging for long-term implan-
tation. Wireless power transfer, high-bandwidth bidirectional telecommunications
and adaptive networking across multi-areal clusters are managed by a wearable
external module to produce an implantable device system with anatomic flexibility
and scalability, forming a “cortical internet”.

Keywords Brain-Computer Interface (BCI) · Electrocorticographic (ECoG) ·
Bidirectional wireless neural interfaces · Neuroprosthetics · Cortical internet

1 Introduction

Modern high-performance Brain Computer Interfaces (BCIs) rely on high fidelity
sensors in the form of implanted multichannel electrocorticographic (ECoG) or
microelectrode arrays (MEAs). Several other chapters in this book demonstrate
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systems built upon these types of sensor technologies, which offer 100–200 channels
of neural access, typically through surgically implanted sensors with percutaneous
wired connections. While these state-of-the-art neural interface systems provide
adequate neural access to reliably decode for low-dimensional tasks such as the
constrained 2-D control of a computer cursor, it is anticipated that complex move-
ments would need significantly higher channel counts which may be incompatible
with the current monolithic, tethered implant platforms. Meanwhile, recent progress
in integrated microtechnologies and wireless communications has culminated in the
development of the first generation of wireless implantable neural interfaces (Gao
et al. 2012; Borton et al. 2013; Yin et al. 2013). Although these devices rely on the
same sensor front-end, their electronic integration has enabled, for example, research
in freely moving monkeys (Borton et al. 2013), as well as human pilot trials (Simeral
et al. 2019).

The next frontier in BCI technologies is to enable a large extension in the channel
count capabilities of implanted neural interfaces. Researchers at Columbia have
proposed a >65000 channel monolithic system leveraging CMOS camera design
techniques (Tsai et al. 2017), while the Neuropixel device developed at Janelia
Research Labs (Jun et al. 2017) has provided researchers an avenue to simultane-
ously access multiple cortical depths in their >1000 channel device (Juavinett et al.
2019; Dutta et al. 2019). The notion of a dense, vastly parallel neural implant imme-
diately raises the question of implant approaches for such a device, and researchers
at Neuralink, Inc. (Musk 2019), have offered one possible solution through their
demonstration of a robot-assisted surgical placement approach.

These valiant endeavors represent the cutting edge of technology. Yet they raise
critical questions regarding a system level approach enabling the deployment of
such large-scale implants, most notably the associated “implant burden” from the
footprint of a large monolithic device, as well as the challenges in managing the
placement, tethering and data transmission bandwidths. The view in our team is that
from a scalability perspective, a dynamic form factor and distributed deployment
are desirable—and the latter is critically tied to the capability for a robust wireless
communication link. This chapter describes our early development and validation
of an approach that addresses current technological bottlenecks by implementing a
distributed wireless microscale sensor system for neural interfaces.

2 System Architecture

It has recently been proposed that one way to achieve thousands or tens of thousands
of parallel channels of neural access is to develop small (sub-mm), autonomous
neural interfacing nodes, which may be distributed across the cortex (Seo et al.
2013; Yeon et al. 2016; Khalifa et al. 2018; Ahmadi et al. 2019). A distributed sensor
system is conceptually promising, so long as the individual sensor node is ultra-
miniaturized to minimize volume overhead while maintaining a high-fidelity neural
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interface. It is then possible to envision a “cortical internet”, comprising spatially-
distributed clusters of sensors and actuators, providing bidirectional access to cortical
neural networks from widespread brain areas in an adaptive fashion. We describe
the development and testing validation from an epi-cortical implementation of this
architecture, which we refer to as the “neurograin” system. To the authors’ best
knowledge at the time of this writing, this represents the first-ever reported demon-
stration of a completely wireless, synchronized, configurable network of sensors and
microstimulators in a neural application.

The neurograin systemconstitutes ensembles of implantable, sub-millimeter, indi-
vidually addressable, microelectronic chiplets. As shown in Fig. 1, each neurograin
is designed as a self-contained, hermetically sealed module measuring 500 µm ×
500 µm × 35 µm. For the initial prototype, we have chosen to implement a 1000-
channel system, with an overall system latency of <100 ms (compatible with neural
prosthetic applications). Design specifications such as uplink data rates (10 Mbps),
downlink data rates (1 Mbps), packet duration (100 µs per channel) and packet
periodicity (100 ms data frame) are derived from these considerations.

The neurograin device contains, at its core, a custom integrated chip (ASIC).
This chip implements a radio frequency (RF) micro-antenna and all the associated
sensor, stimulator, communication and networking circuits. The chip can be powered
through transcutaneous wireless power delivery via near-field inductive coupling at
approximately 1 GHz. The harvested energy activates on-chip analog and digital
circuits responsible for neural signal recording and/or micro-stimulation.

For ultra-low-power uplink communication, BPSK-modulated RF backscattering
has been employed. On the other hand, to accomplish robust downlink communica-
tion to free-floating implants without synchronous clocks and voltage references,
a novel Amplitude Shift Keying Pulse Width Modulation (ASK-PWM) scheme
has been designed. As shown in Fig. 2, neurograins’ operations can be adaptively
managed by an external wireless hub known as the “Epidermal Skinpatch” to form a
time-domain multiple-access (TDMA) network. This external radio module, is soft-
ware configurable (software defined radio or SDR), and has capabilities to leverage

Fig. 1 Neurograins on a US penny; Photomicrograph of a recording neurograin chiplet
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Fig. 2 Concept of spatially-distributed implanted wireless neurograin read-out-write-in network
with a wireless intra-cranial implant interfacing with an external wearable wireless hub, routing
neural information to a real-time computational processor to drive feedback in a closed-loop BCI

an integrated high-performance Field-Programmable Gate Array (FPGA) to provide
a host of modulation/demodulation functions in situ and in real-time. It thus provides
the gateway to neurocomputational processing units enabling prosthetic control as
well as neural encoding through patterned cortical stimulation.

Our network communication protocol is currently designed to accommodate up
to 1000 channels of broadband ECoG data in this prototype system, but extendable
via parallelization and other techniques to 10–100 × higher channel counts with
modest hardware changes. Neurograin microdevices may be implanted individually
or in ensembles (the latter as part of an ECoG grid or peripheral nerve cuff electrode,
for example) into selected areas of the brain or peripheral nervous system (PNS),
forming untethered, broadband, bidirectional neural interfacing elements usable for
a variety of diagnostic and therapeutic neural applications.

An example epicortical (ECoG) sensor system is shown in Fig. 3, where a large
number of untethered neurograins are organized into a 2-Dgrid that freely floats in the
cerebrospinal fluid (CSF) surrounding the brain. A 3-coil electromagnetic coupling
system (skinpatch transmit, relay and neurograin receive microantenna) have been
designed to concentrate electromagnetic flux and reduce RF attenuation across 1 cm
of biological tissues.

3 Neural Sensors and Stimulators

Recording neural activity with high signal to noise ratio (SNR) is a fundamental
requirement for the wireless neurograin sensors. We have designed a self-standing,
DC-coupled analog-front-end (AFE) with a merged amp-ADC architecture (Huang
et al. 2018). In addition to conventional noise-reduction through chopping, we have
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Fig. 3 Cortical Surface (ECoG) Neurograin Sensor System. Individual neurograin (0.5 mm ×
0.5 mm shown in inset) chips are embedded in a substrate to form a 2-D grid. Coupling between
the chip micro antennas and the transmit “Skinpatch” antenna is optimized by the relay antenna

Fig. 4 a Block diagram of the ultra-compact, low-noise AFE, and b IC micrograph of the AFE
integrated into a wireless recording neurograin

implemented a VCO-based ADC and a mixed-signal differential electrode offset
(DEO) cancellation servo loop (Fig. 4a) to eliminate capacitor use, which has led
both to large area savings as well as elimination of kT/C noise. The AFE, which
is designed for ECoG signals, has a bandwidth of 500 Hz and a dynamic range
of ± 1 mV (where the latter is adequate for differential signals from neurograin
electrodes with an inter-electrode spacing of ~100µm). The electrode-interface DC-
offset cancellation range is± 50 mV. Input-referred noise is 2.2 µVrms over 500 Hz
bandwidth for this implementation, and the total power consumption is 3.2µW from
a 0.6 V supply. Figure 4b shows a photomicrograph of the recording neurograin
highlighting the AFE, which occupies 0.01 mm2.

A programmable, charge-balanced biphasic current source is another required
building block for bidirectional neural interfaces. The key specification for this
current source is high voltage compliance, which would enable stimulation charge
delivery across a range of tissue impedances. We have implemented a voltage-
controlled resistor (VCR) based current-steering DAC as part of a source-reuse
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Fig. 5 a Schematic of the bi-phasic current source, and b IC micrograph of the stimulating
neurograin

architecture (Laiwalla et al. 2019). This scheme utilizes a single current source with
changing directionality to provide for both anodic and cathodic phases of a stimu-
lation pulse, thus providing intrinsic charge balance (Fig. 5a). The programmable
neurograin current source provides control over current amplitude (up to 25 µA),
pulse width (nominally 100 µs) and stimulation frequency (single pulse vs 100 Hz
pulse train) through the wireless communication link. Figure 5b shows the IC micro-
graph of the programmable current source integrated into a wireless stimulating
neurograin.

4 Wireless Power Transfer and Telecommunication

The neurograin implants are wirelessly powered in the near-field inductive coupling
regime at 915 MHz. This is to limit tissue absorption while benefiting from an RF
wavelength short enough to power sub-mm size micro-coils. The power budget for
an individual neurograin is ~40 µW, and this must be harvested across a transcranial
distance of ~1 cm. We have designed a multi-coil wireless power transfer (WPT)
system, in this case introducing a relay antenna with moderate coupling with both the
head-mounted transmitter and the implanted neurograinmicroreceiver antennas. This
stacked 3-coil system increases the efficiency of WPT at least 50-fold in comparison
with a conventional 2-coil approach. In addition, the transmit and relay antennas
are designed as 3-D structures which are electromagnetically optimized to yield a
uniform magnetic field over a large plane. This facilitates wireless access to a large
number of spatially distributed microdevices placed within the area defined by the
antenna perimeter. Figure 6 demonstrates one example of this multi-coil system, with
a 4-quadrant coil design covering 2 cm× 2 cm and providing simultaneous wireless
power and communication to 1000 neurograins as part of an anticipated human
implant (Lee et al. 2018). Furthermore, these design concepts may be adapted based
on anatomic considerations to be compatible with various animal models, with one
example for a rodent system shown in Fig. 7.

The neurograin system incorporates both wireless power and bidirectional
networked telecommunications into a single RF link (at ~1 GHz using the 3-coil
antenna system described above). Figure 8a describes the chip-level implementation
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Fig. 6 Transmit and relay antenna design a as area-matched 4-quadrant coils separated by 8 mm
of tissue with b characteristic current flows and c uniform magnetic field strengths in each quadrant

Fig. 7 aTransmit and relay coil geometries andpower-transfer efficiencies for a rodent-coil-system;
and b Rodent implant and coil-system

Fig. 8 a Block diagram of the Neurograin RF energy harvesting, uplink and downlink circuits; and
b the ASK-PWM scheme

of our approach, where a rectifier converts the coupled RF power to a DC supply
voltage, powering all on-chip circuits. This also starts up a free-running oscillator
which generates a ~30 MHz clock for on-chip digital logic. Neural data are sensed
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and sampled at 1 kilo Samples per second (kSa/s); 100 ms of data are held in an
on-chip buffer, and packetized for uplink communication at10 Mbps over 100 µs as
per the TDMA protocol. The neurograin on-chip clock is used to convert the data
into aManchester-coded BPSK-encoded signal, which is then used to drive a switch-
able capacitor to modulate the reflected RF waves (backscatter) in a data-dependent
way. This establishes a robust, ultra-low power uplink, with measured bit-error-rates
(BER) <1e−4 (Leung et al. 2018).

The skinpatch telecommunications hub is in charge of synchronization and
scheduling across the entire neurograin network through issuing downlink
commands. This is accomplished by varying transmittedRF power (amplitudemodu-
lation or ASK), which can then be sensed by an on-chip comparator. The neurograin
clocks, however, are free-running and not frequency/phase aligned with each other or
the downlink data stream. Therefore, data/frame synchronization cannot be achieved
by simple ASK modulation. To address this challenge, we adopt a form of ASK-
PWM(amplitude shift keying, pulsewidthmodulation) scheme for the downlink data
(Leung et al. 2019). This is described in Fig. 8b, where logic “1” and “0” are repre-
sented by high/low (H/L) pulse pairs with long/short (2T/T) and short/long (T/2T)
durations respectively. Bits are thus encoded in the relative pulse width duration,
and data synchronization is ensured by the low-to-high pulse transition, independent
of the individual clock frequencies and phases of each neurograin. The ASK-PWM
demodulation can be readily implementedwith two digital counters and simple logic.
For a downlink rate of 1Mbps, we use a T of 0.33µs (compared to a chip clock period
of ~30 ns), and this allows adequate headroom to account for the ~20% variation in
clock frequencies of different neurograins.

In order to arrange groups of neurograins into a network, each device is required
to have a unique ID. We have implemented two different types of IDs into the
neurograin devices. In Leung et al. (2019), 16-bit random addresses are achieved
by area-efficient, low-power PUF (Physically Unclonable Function) circuits that
leverage CMOS process variations to generate random-number IDs (Yang et al.
2017). InLaiwalla et al. (2019), 10-bit deterministic addresses are set by laser ablation
of fuses realized with top layer redistributionmetal during post-processing (Lee et al.
2020).

The external telecommunications hub is physically implemented using awearable
software-defined-radio, as shown in Fig. 9a. The latter has a field-programmable-

Fig. 9 a external RF communication hub (Skinpatch), and b Timing diagram of the Skin-
patch/neurograins TDMA network
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gate-array (FPGA) back-end, which is utilized to provide real-time wireless demod-
ulation, and has the computational capacity to serve as a processor for neural
decoding/encoding for closed-loop control. Thiswearablemodule is ultimately antic-
ipated to act as the bridge between the implant and remote computational resources,
including cloud computing to leverage, for example, machine learning approaches
to neural decoding.

We have demonstrated in our prototype devices, network-wide, synchronous
downlink communication, and subsequent targeted (addressable) triggering of uplink
backscattering in a “call-and-respond” manner. This forms a Time-DivisionMultiple
Access (TDMA) network between the Skinpatch and a population of neurograins,
with a timing-diagram shown in Fig. 9b. To the best of our knowledge, this work
presents the first experimental validation of simultaneous wireless power transfer
and Mbps bi-directional communications on a network of brain implant ICs over a
single inductive coupling link.

5 Neurograin Post-processing and Packaging

Chronic biocompatibility of the neural implant is a consideration of utmost impor-
tance for clinical viability. A robust physical electrode-tissue interface is a major
aspect of this challenge along with hermetic packaging of the implant. For the
recording neurograins, we utilize standard post-process microfabrication techniques
for patterned deposition of gold on top of the fabricated chiplet pads to form recording
electrodes with impedances in the 100 k� range.

In contrast, stimulating neurograins require a lower electrode impedance for effi-
cient charge transfer. For this purpose, we have investigated the integration of two
types of biocompatible electrode interfaces: planar ECoG electrodes versus intra-
cortically penetrating microwire electrodes. Both rely on direct post-process fabri-
cation. For the planar electrodes, we have used poly(3,4-ethylenedioxythiophene)
polystyrene sulfonate (PEDOT: PSS), an organic material with demonstrated history
of use for neural stimulation applications (Ludwig et al. 2006). We have developed
a photolithographic batch process to integrate 200 µm diameter PEDOT: PSS elec-
trodes with the neurograin chiplets, while simultaneously embedding ensembles of
devices in 25-µm thick liquid crystal polymer (LCP) sheets via thermocompression
for hermetic encapsulation (Fig. 10b). For the penetrating electrode prototype, we
have employed tungsten microwires with 75 µm diameter attached with conductive
epoxy overlaid by insulating epoxy, as shown in Fig. 10c (Lee et al. 2020).

We have also concurrently developed techniques for ALD-based stacked multi-
layer conformal coatings for neurograin hermetic packaging (Jeong et al. 2019),
as shown in Fig. 10a. The overall thickness profile of the packaging material is
100 nm, and the hermetically sealed chiplets have been tested in an accelerated
aging testbed with demonstrated viability well over 10 years in an extrapolated
physiological environment.
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Fig. 10 a Edge cross-section of a hermetically encapsulated neurograin, demonstrating stacked-
multilayer ALD coatings, b nine-channel Stim neurograin ensemble, with 120 µm PEDOT elec-
trodes, packaged via thermocompression between 25 µm thick LCP sheets, and c 3-D Stim
neurograin with intracortical penetrating microwire electrodes

6 Validation

We have validated the full neurograin system, comprising ensembles of packaged
microdevices and the wearable telecommunications hub in ex vivo rodent models
enroute to the ongoing acute and chronic in vivo rodent implant trials. The recording
and stimulation performance of epicortical neurograin arrays has been assessed in
GFAP Cre x ChR2YFP mouse brain slices using a model for seizure induction (Lee
et al. 2019). For this test, we overlaid 250 µm thick coronal cortical brain slices on
top of an array of active neurograins in a modified standard immersion chamber, with
the latter integrating the wireless telecommunication hardware (relay antenna). This
is shown in Fig. 11a, while Fig. 11b highlights the raw wireless data streamed from
a subset of active neurograins in the cortical area of interest. Baseline spontaneous
field potential activity (LFPs) and response to electrical stimulation is captured,

Fig. 11 a Ex vivo neurograin experiment showing small neurograin ensemble under a coronal brain
slice; b wireless data streaming from six neurograins visible in (a); c Characteristic stimulation-
evoked depolarizations in cortical neurons, captured by neurograins; and d Induced epileptic seizure
activity captured wirelessly by neurograin devices
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Fig. 12 a Neurograin implant in a freely moving rodent. Inset shows an ensemble of 56 neuro-
grains, integrated with a custom relay antenna. b Intraop ECoG from a rodent using the 56-channel
epicortical system in (a)

prior to applying chemical and electrical induction to produce epileptogenic activity.
Recordings from the slices prior to seizure induction show characteristic slow LFP
responses to electrical stimulation, which comprised 350 µA, 100 µs pulses at a
frequency of 40 Hz over 500 ms (Fig. 11c). These post-stimulation depolarizations,
lasting 10 to 20 ms, were recorded on multiple neurograins in a time-delayed manner
representative of the spatial spread of the effects of stimulation pulses. Subsequently,
we introduced the seizure inducing agent picrotoxin, which enables the capabilty to
evoke seizure activity with triggered by electical stimulation. Preictal discharges
and rhythmic bursts associated with the seizure activity were wirelessly recorded,
as shown in Fig. 11d. These results validate the AFE’s recording of physiological
signals and TDMA networking fidelity over the long period of time.

The brain slice testbed was also utilized to validate the performance of stimu-
lating neurograins. In this scenario, a hybrid network of stimulating and recording
neurograins was used to trigger and measure responses. A 100 Hz, 25 µA Also
symmetric pulse train was injected into the brain slices, and multiple stimulation
triggered subthreshold depolarizations were captures on the recording electrode.

We are continuing to work toward providing a proof-of-concept validation for the
neurograin system as a viable technology for chronic, implantable neural interfaces.
We have built and tested a 56-channel rodent implant shown in Fig. 12a, and recorded
wireless ECoG in an intra op setting using Ketamine anesthesia (Fig. 12b). Ongoing
work continues to focus on system level optimizations to obtain wireless recordings
from freely-moving and behaving rodents.

7 Summary

We present a system level implementation of a large scale, distributed wireless
neural interface system comprising ensembles of autonomous neurograins, which
integrate neural sensing and stimulation with wireless power delivery and bidirec-
tional networked communications. Engineering design considerations and bench top
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and early animal testing and validation are presented in the context of building a
robust, chronic implantable device system for early clinical translation.
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Interfacing Hearing Implants
with the Brain: Closing the Loop
with Intracochlear Brain Recordings

Ben Somers, Damien Lesenfants, Jonas Vanthornhout, Lien Decruy,
Eline Verschueren, and Tom Francart

Abstract The cochlear implant is one of the most successful rehabilitation pros-
theses, allowing deaf and severely hearing-impaired persons to hear again through
electrical stimulation of the auditory nerve. In order to properly understand speech
with a cochlear implant, a trained audiologist needs to adjust the sound processing
and stimulation settings, which are highly subject-specific. Furthermore, this fitting
procedure is time consuming, occurs only during infrequent visits to the clinic, and
relies on behavioral feedback from the subject,whichmakes it challenging to doprop-
erly in young children and persons with cognitive impairment. Integrating a brain-
computer interface (BCI) can alleviate the issueswith the current fitting paradigms. If
the implant canmeasure neural responses to speech, it can objectively assess howwell
the user understands speech and automatically adapt its sound processing settings
if needed. This neuro-monitoring can happen continuously in the user’s everyday
listening environment and does not rely on behavioral input. We present an overview
of our ongoing research towards such neuro-steered hearing implants.

Keywords Cochlear implant · Brain-computer interface · Neuro-steered hearing
prostheses · Speech intelligibility · Electroencephalography (EEG)

1 Introduction

The cochlear implant (CI) is one of the most successful man-made interfaces to
the neural system and is widely considered to be the most successful rehabilitation
tool for severely hearing-impaired persons. A CI system consists of two parts: an
external behind-the-ear piece and the implant itself (Dorman andWilson 2004; Zeng
et al. 2008) (see Fig. 1). The behind-the-ear piece is equipped with a microphone,
sound processor, and battery. Sound captured by the microphone is converted into a
sequence of electrical pulses and wirelessly transmitted to the implant. The internal
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Fig. 1 Cochlear implant systemwith external behind-the-ear piece (1, 2) and implant (3). A curved
electrode array is inserted in the cochlea where it can electrically stimulate the auditory nerve (4).
Copyright Cochlear Limited

part is surgically implanted, and contains a wireless receiver and an electrode array,
which is inserted in the cochlea. The electrodes stimulate the various frequency-
specific neural sites in the cochlea, restoring the user’s ability to hear and even
understand speech.

The conversion from sound to electrical stimulation involves many signal
processing parameters (Wouters et al. 2015).After implantation, a specialized audiol-
ogist adjusts these parameters in the clinic, referred to as “fitting”. A fitting is highly
subject-specific, time consuming and labor intensive. Therefore, only a subset of
stimulation settings can be adjusted during a fitting session. Furthermore, fittings
only happen during infrequent visits at a clinic, in between which the CI oper-
ates as an open-loop system (see Fig. 2a) that does not consider variable factors
that may affect the person’s speech understanding, such as physiological changes,
listening environment, or attentional state. The large variability in post-implantation
outcomes (e.g. speech intelligibility) is partly caused by limitations of the fitting. As
the current fitting paradigm is behavioral (i.e. active subject participation is required),
performing a good fitting is even more challenging in certain clinical populations,
such as young children, people with communication disorders, or elderly people with
cognitive impairment.
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Fig. 2 a Currently, CI settings are adjusted during infrequent visits to an audiologist, but the
system operates as an open loop. Fitting sessions require behavioral feedback to the audiologist.
b The envisioned closed-loop CI can continuously monitor the user’s speech intelligibility and
autonomously adapt its settings to improve performance. The system is objective as it does not rely
on user behavior

In our research, we aim to overcome these issues by incorporating neural feedback
in the implant, effectively introducing a continuous feedback mechanism into the
system. In such a closed-loop brain computer interface, usually referred to as a
“closed-loop CI” or “neuro-steered hearing prosthesis”, brain responses to sound are
recorded and processed in real-time to automatically and autonomously adapt the
sound processing parameters for improving the user’s speech understanding. This
novel brain-computer interface would eliminate the need for frequent hospital visits
and can operate without the need for behavioral feedback from the subject (Fig. 2b).

The realization of closed-loop hearing prostheses requires some fundamental
scientific research. Firstly, as the main purpose of a CI is to restore speech under-
standing, an objective brain-based measure that reflects speech intelligibility is
required (Sect. 2). Secondly, the simultaneous electrical stimulation of the CI inter-
feres with the recordings of neural activity in the auditory pathway. Signal processing
techniques to eliminate the effect of stimulation artifacts from neural recordings are
required (Sect. 3). In a practical closed-loop system, the recording system should
be integrated in the existing CI. We developed a technique to record neural activity
from the implanted intracochlear electrodes (Sect. 4). Finally, algorithms need to be
developed to adjust the stimulation settings of the CI based on the recorded objective
measure (Sect. 5).

2 Objective Measures of Speech Intelligibility

The current state of the art method for measuring speech intelligibility is a behavioral
test inwhich the subject repeats sentences froma standardized speechmaterial, which
are then manually scored by an audiologist. There exist clinical objective methods
of hearing based on neural responses, but these generally indicate lower-level func-
tioning of the auditory periphery. For instance, auditory brainstem responses can be
used to measure detection thresholds, using short sound stimuli such as clicks, tone
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bursts or vowels. However, showing that a person can hear a sound is not the same
as showing they can understand it.

The envelope of a speech signal is one of the most important features for speech
intelligibility (Shannon et al. 1995). When listening to natural speech, neural oscilla-
tions in the brain track these slowly varying modulations of the speech signal (Aiken
and Picton 2008; Peelle and Davis 2012). Neural recordings such as EEG or MEG,
obtained while the subject is listening to continuous speech, can be used to recon-
struct the original speech envelope (Ding and Simon 2012). In recent years, this
“decoding” of the speech envelope from the listener’s brain has been studied inten-
sively, as the representation of the speech envelope in the brain provides insights on
how we process and understand speech (Ding and Simon 2013).

We recently developed an EEG-based objective measure of speech intelligibility
using natural speech in normal hearing listeners (Lesenfants et al. 2019;Vanthornhout
et al. 2018;Verschueren et al. 2019b).A schematic overviewof themethod is depicted
in Fig. 3a. The intelligibility of a speech stimulus is altered by adding stationary
noise at different signal to noise ratios (SNRs). For reference, speech intelligibility
is assessed behaviorally by having the subject repeat the sentences and scoring. The
behavioral speech intelligibility score as a function of SNR follows a sigmoidal curve.
The midpoint of this sigmoid is the SNR at which the subject understands 50% of
the speech, and is referred to as the Speech Reception Threshold (SRT), a commonly

Fig. 3 a Schematic overview of method. Speech intelligibility is measured at different SNRs using
both a behavioral test (repeating sentences) and an objective measure (correlation between original
and reconstructed speech envelope). b Derivation of behavioral SRT and objective CT measures as
midpoint of sigmoidal curves. Figure adapted from Vanthornhout et al. (2018)
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used clinicalmeasure (Fig. 3b). For the objectivemeasure, EEG ismeasuredwhile the
subject listens to the speech stimulus. After preprocessing such as bandpass filtering,
artifact removal and noise reduction (Das et al. 2020; Somers et al. 2018), the speech
envelope is reconstructed from the EEG with a linear decoder. By correlating it with
the real envelope derived from the stimulus, we obtain a measure of neural tracking
of the speech envelope as a function of SNR. This graph can be used to derive an
objective measure of speech intelligibility referred to as the Correlation Threshold
(CT), which was shown to correlate well with the clinical SRT (Vanthornhout et al.
2018).

The CT measure can be further improved in several ways. The neural tracking
of the speech signal in the brain can be more accurately modeled by including
complementary speech representations. A model integrating both low-level acous-
tical features such as the envelope and high-level information such as a phoneme
representation obtains better results (Di Liberto et al. 2015; Di Liberto and Lalor
2016). By using such an integrated model combining both stimulus spectrogram
and phonetic features, the objective CT measure was improved compared to the
envelope-only based model (Lesenfants et al. 2019). For 80% of subjects, the differ-
ence between objective CT and behavioral, state-of-the art SRT was less than 2 dB,
which is comparable to the measurement precision of the SRT (Decruy et al. 2018;
Francart et al. 2010).

We demonstrated that the objective speech intelligibility measure can be obtained
without requiring the subject to attentively listen to the speech stimulus (Vanthorn-
hout et al. 2019), which is useful in designing a clinical test protocol, in particular
for small children. Importantly, the modeling of the brain-speech interaction could
be improved by considering the effect of focal attention on cortical tracking of the
speech envelope, objectively quantified using a measure of EEG entropy (Lesen-
fants and Francart 2019). While the objective measure of speech intelligibility has
not yet beenmeasured in children, there is evidence that neural tracking of the speech
envelope is present in young children (Ríos-López et al. 2020; Vander Ghinst et al.
2019). The objective measure for speech intelligibility can be measured across the
adult lifespan: while neural tracking of speech envelope increases with age (Presacco
et al. 2016), young, middle-aged and older adults also show increases in envelope
tracking with increasing speech intelligibility (Decruy et al. 2019a). Furthermore,
age-matched hearing-impaired adults show an additional increase in neural envelope
tracking compared to their normal-hearing peers. Nevertheless, envelope tracking
also increases as a function of speech intelligibility for adults with a disabling hearing
loss (Decruy et al. 2020). Additionally, there are indications that neural envelope
tracking in the delta band (0.5 to 4 Hz) is not confounded by listening effort (Decruy
et al. 2019b).
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3 EEG Recordings in Cochlear Implant Users

To establish a closed-loop CI system that interfaces with the brain, neural activity
needs to be recorded while the implant is stimulating the auditory nerve. EEG is seen
as a promising technology for this purpose, as it is relatively cheap and portable.
However, the electrical stimulation by the implant causes artifacts that may obscure
the recorded neural responses.

Many evoked response paradigms make use of short click or burst stimuli which
are repeated multiple times. Because the neural response occurs with a delay after
the stimulus, the contamination by the artifact is small or can be reduced with rela-
tively simple methods. For instance, electrical pulses of alternating polarities can be
used over different trials, causing the resulting artifacts to partially cancel out when
averaging over trials. Other methods based on modelling the artifact with a template
or an exponential fit and subsequently subtracting it are also effective in reducing
the artifact (Brown and Abbas 1990; Hofmann andWouters 2010; McLaughlin et al.
2012, 2013).

In paradigms with continuously ongoing stimulation, such as Auditory Steady
State Responses (ASSRs), there is no longer a temporal difference between the
instantaneous artifact and the delayed neural response that can be easily exploited.
The current state of the art methods for artifact removal are based on limiting the
pulse rate of the continuous stimulation (e.g. 500 pulses per second) (Deprez et al.
2014; Gransier et al. 2016; Hofmann and Wouters 2010, 2012). As this prevents the
artifacts from overlapping, EEG samples between subsequent artifact pulses can be
used for detecting artifact-free responses. In such paradigms, there are still multiple
trials which can be averaged to enhance the response SNR.

Translating the objective measure of speech intelligibility to CI users is chal-
lenging. Presenting intelligible speech to CI users requires continuous stimulation
at high pulse rates. Furthermore, the EEG experiments are usually carried out as a
single-trial paradigm: the natural speech stimulus (e.g. a story or audiobook) is only
presented once without repetitions. We developed a method to eliminate the contin-
uously ongoing and temporally overlapping artifacts based on periodic blanking of
the stimulus, without affecting the intelligibility of the stimulus (Somers et al. 2019).
This enabled themeasurement of neural envelope tracking in CI users. Further exper-
iments using this technique showed that neural envelope tracking also correlates with
speech intelligibility in CI users (Verschueren et al. 2019a), demonstrating the poten-
tial of neural envelope tracking as an objective measure of speech intelligibility in
CI users.

4 Intracochlear Neural Recordings

Another essential component of a closed-loop CI is the functionality to continuously
record brain responses to speech in an unobtrusive way. An elegant solution is to
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use the electrodes of the cochlear implant itself. This removes the need for scalp
electrodes and enables chronic monitoring of the user outside of the clinic. While
current commercial CIs already have basic telemetry capabilities, they are limited to
short recording windows, which can only capture very peripheral auditory measures
related to neural survival in the cochlea and auditory nerve (Tejani et al. 2019).
Objective measures that capture auditory processing on the cortical level require
longer recording windows (McLaughlin et al. 2012), or even continuous record-
ings such as our objective measure of speech intelligibility using running speech
(Vanthornhout et al. 2018). Some studies have demonstrated the recording of neural
responses evoked by auditory stimulation from implanted, non-cochlear electrodes,
for instance with a few surgically placed epidural electrodes (Haumann et al. 2019)
or an intracranial grid (Nourski et al. 2013). However, these electrodes were only
placed temporarily and were highly invasive.

To develop an EEG recording technique using implanted CI electrodes, we
recruited CI users with an experimental device containing a percutaneous connector,
providing direct access to the implanted electrodes (Somers et al. 2020). They are
enrolled in a program Cochlear Ltd., a leading CI manufacturer. This allowed us to
perform continuous EEG recordings from the implanted electrodes while simulta-
neously stimulating the other electrodes on the implant. Additionally, we applied
conventional scalp electrodes on the head to compare the recordings with the clin-
ical montages (Fig. 4a). We characterized the intra-cochlear EEG and how it is
influenced by acquisition parameters using electrically evoked auditory brainstem
responses and cortical evoked potentials, and varied parameters such as the stimula-
tion/recording electrode pairs. Furthermore, we investigated removal of the stimulus
artifact, which is exceptionally large when recording in the cochlea. The targeted
neural responses were successfully recovered from the continuous EEG recordings.
Figure 4b shows some long-latency cortical response complexes measured using the
percutaneous plug setup in various recording configurations. These results allow us

Fig. 4 a Schematic overview of percutaneous recording setup and electrode locations on a subject.
b Cortical evoked responses measured from implanted electrodes of CI. E21 is an intracochlear
electrode, MP1 is an implanted extracochlear reference electrode, Cz and P10 are scalp electrodes.
The stimulus occurred at 0 ms. The P1, N1, P2 and N2 response peaks are indicated
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to make informed decisions regarding the requirements for embedding a BCI system
in cochlear implants, such as the optimal recording electrode configurations and
amplifier specifications.

5 Future Directions—Closed-Loop Cochlear Implants

Closing the loop in cochlear implants by integrating a BCI into the system requires
a method to adjust the electrical stimulation based on the neural feedback: if the
user’s speech intelligibility is measured to be poor from the objective measures, how
should stimulation be changed to improve it? Not much research has been done yet
for cochlear implants; however, the concept of neuro-steered hearing aids has been
explored. Hearing aids perform a frequency-specific amplification of the sound and
stimulate acoustically to alleviate hearing loss. EEG responses to continuous speech
have mainly been used in this context for auditory attention detection: to which of
multiple speakers is a (hearing-impaired) person trying to attend? It has been shown
that the brain processes different speech streams as separate auditory objects (Shinn-
Cunningham 2008) and that attended speech is represented stronger when decoded
(O’Sullivan et al. 2015). These responses have been used to steer noise suppression
and gain control algorithms for application in neuro-steered hearing aids (Aroudi
and Doclo 2020; Das et al. 2018; Geirnaert et al. 2020; Van Eyndhoven et al. 2017).
These methods can also be translated to neuro-steered CIs.

When it comes to the actual fitting of cochlear implants, i.e. adapting the conver-
sion of sound to electrical stimulation rather than improving SNR at the microphone
input with the methods described above, paradigms based on evoked potentials have
been proposed (Finke et al. 2017; Visram et al. 2015). However, these evoked poten-
tials make use of artificial non-speech stimuli and therefore don’t predict speech
intelligibility well: they are generally suited for detection of thresholds and loud-
ness growth functions. Measures reflecting speech intelligibility will likely serve as
a better (additional) input to automated fitting algorithms. There is a large parameter
space of subject-dependent settings that affect CI outcomes such as speech intelli-
gibility, e.g. pulse rate, pulse width and threshold/comfortable level profiles. Due
to restrictions, many of these are not assessed during a behavioral fitting procedure
in the clinic and are kept at default values. Genetic algorithms have been proposed
in the literature to explore the large parameter space and determine a good fitting
(Durant et al. 2004; Wakefield et al. 2005). The main challenge in these studies
was the collection of enough behavioral subject responses and their variability. This
issue can be overcome in a closed-loop CI system that continuously measures neural
responses in everyday life.
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6 Conclusion

The research presented here gives an overview of recent scientific progress towards
closed-loop cochlear implants. In such systems, a brain-computer interface is
embedded into the cochlear implant to monitor neural responses, process them
into relevant measures of hearing outcomes, and automatically adapt the stimulation
settings. For unobtrusive, continuous monitoring of neural responses, the implanted
electrodes of the CI itself can be used. Together with audio signals recorded by
the microphone, the neural responses can be processed into an objective measure
of speech intelligibility, as speech intelligibility is still the most important hearing
outcome to optimize for CI users. In the future, closed-loop cochlear implants have
the potential to provide a better andmore comfortable hearing experience for severely
hearing-impaired persons.
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Abstract The project is aimed at investigating efficacy of a BCI-controlled palm
exoskeleton as a tool for motor function recovery in post-stroke patients. The idea
of using the system is grounded on vast amount of data supported by physiologic
literature and our own findings in healthy subjects, suggesting that kinesthetic motor
imagery (MI) requires activation of the brain areas involved in motion planning,
execution and control. Thus, the common idea of using a MI-based BCI for neurore-
habilitation is to reinforce motor imagery of intention to move with visual, propri-
oceptive and\or tactile feedback. Results of a four-year multi-center randomized
controlled study of post-stroke motor rehabilitation procedure with BCI-controlled
hand exoskeleton complex are presented. The study has the largest number of partic-
ipants so far. Statistical analysis of different clinical scales used to assess motor func-
tion recovery show that incorporating theBCI+exoskeleton procedure into rehabilita-
tion significantly improves its outcome. The analysis also revealed non-monotonical
dependency of motor function recovery rate on initial motor and sensory function
status, as well as on age, and BCI control accuracy. Hopefully, the reported data
combined with the results obtained by other groups in the world, would provide
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practice.
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1 Introduction

According to the World Health Organization, stroke incidences varies from 50 to
500 per 100,000 population depending on the world region, and the rate of stroke
mortalities amounts about 50%of stroke incidence (Thrift et al. 2014). Consequently,
tens of millions of people in the world suffer from the effects of stroke and mainly
frommotor disorders (Paolucci et al. 2000). Thus, the search of approaches to recov-
ering the motor functions in post-stroke patients is one of the most important tasks in
neurorehabilitation (Langhorne et al. 2009; Pollock et al. 2015). However, none of
the existing motor rehabilitation methods is assigned the highest evidence level and
recommendation grade for motor recovery. Levels 2–3 of evidence for post-stoke
upper extremity function recovery are demonstrated by a virtual reality technology,
robotic methods, constraint-induced movement therapy and “mental trainings”, in
particular motor imagery (Langhorne et al. 2009; Pollock et al. 2015). It should
be emphasized that techniques involving active motor paradigms, such as robotic
methods and constraint therapy, are applicable only in mild or moderate paresis.
In the case of either severe paresis or plegia, only motor imagery seems to be a
plausible technique to stimulate the mechanisms of brain plasticity directed to the
motor recovery. As shown in many works (Jeannerod 1994, 2001; Solodkin et al.
2004), motor imagery follows the same principles as the motor execution and, there-
fore, is likely to stimulate the brain plasticity by the same mechanisms as the actual
execution of movements (Frolov et al. 2016a; Mokienko et al. 2013). Monitoring of
the motor imagery can be done with the help of a brain-computer interface (BCI),
which records the EEG signals of the brain resulting from the motor imagery into the
controlling commands for an external device. The command execution provides a
patientwith biofeedback, allowing the patient to concentrate on performing themotor
imagery task. The BCI technology seems especially efficient if it is combined with
an exoskeleton or a manipulator as the external devices controlled via the BCI. The
patient receives not only visual feedback, but also haptic and kinesthetic feedback
that is contingent upon the imagination of a specific movement.

Several BCI studies involving this type of haptic and kinesthetic feedback have
demonstrated improvements in clinical parameters of post-stroke motor recovery
(Ang et al. 2011, 2015; Ramos-Murguialday et al. 2013; Ono et al. 2014; Frolov
et al. 2016b, 2017). The number of subjects with post-stroke upper extremity paresis
included in these studies was, however, relatively low (from 12 in [Ono et al. 2014]
to 55 in [Frolov et al. 2017]) patients. In the present paper, we report the study
investigating many more patients. Increasing the number of investigated patients,
first, allowed for more reliable estimation of the recovery efficiency, and second,
helped estimation of its dependence on patient features, such as age, gender, severity
of stroke, duration of post-stroke period, efficiency of BCI control, because it was
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possible to divide patients on the large representative groups according to these
features providing more reliable statistics. The study was blind, randomized and
controlled. It was performed for four years in four medical centers. These medical
centers were selected, first, because of the presence of a neurorehabilitation depart-
ment or motor rehabilitation service and, second, the availability of post-stroke
patients with various residual periods and hemiparesis of different severity. The
preliminary results of the studywere published in (Frolov et al. 2016b, 2017). Besides
the BCI and Control groups described in these papers, we added here a Comparison
group in which patients obtained only routine medical treatment.

2 Study Design

The study was approved by the Ethics Committee of the Research Center of
Neurology: #12/14 of 10 December 2014. All patients provided a signed informed
consent for participation in the study. The study protocol was registered in the system
clinicaltrials.gov: NCT02325947.

The study had the following inclusion criteria: male or female patients which
underwent inpatient treatment at the study centers, aged from 18 to 80 years, with
subacute (1–6 months) or chronic (more than 6 months from onset) stroke; hand
paresis, mild to severe plegia, according to theMedical Research Council Sum Score
scale (MRCSS); a single focus of ischemic or hemorrhagic stroke with a supraten-
torial localization (according to MRI or CT data); and a signed informed consent.
Such a heterogeneous group was chosen in order to find a target group of patients
for which the BCI procedure is the most efficient. The exclusion criteria were as
follows: left-handedness according to the Edinburgh Handedness Inventory; severe
cognitive impairment (<10 points according to the Montreal Cognitive Assessment
Scale); sensory aphasia; severe motor aphasia; severe vision impairment preventing
execution of visual instructions shown on the computer screen; muscle spasticity in
the upper extremity more than 3 points according to the Modified Ashworth Scale
(MAS, 1–5 points).

The withdrawal criteria were as follows: patient refusal to continue participating
in the study; development of an acute disease or decompensation of a chronic disease
with the risk of a potential impact on the study results (repeated stroke, acutemyocar-
dial infarction, non-compensated diabetes, etc.); prescription of systemic muscle
relaxants or changing their dose after inclusion in the study; injection of botulinum
toxin agents in muscles of the paretic upper extremity after inclusion of the patient
to the study.

The examination data of patients who signed the informed consent and met
the inclusion criteria were uploaded to an automated system for clinical research
information support (Imagery Soft, Russia). The system assigned an identification
number (ID) to each study participant. The IDswere randomized so that patientswere
assigned either to the BCI group with probability 2/3 or to the Control group with
probability 1/3. The Comparison group was formed later using to the same inclusion
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criteria as the BCI and Control groups. The number of patients in the Comparison
group was the same as in the Control group. The reduced number of patients in the
Control andComparison groups comparedwith theBCI group is the result of tradeoff
between the intention to increase the number of patients undergoing the intensive
motor imagery training and maintaining sufficient statistical power of the study.

The patients of the BCI and Control groups underwent the procedures in three
clinics. The procedures for the BCI and Control groups differed in the way the
exoskeletons were controlled. In the BCI group, the exoskeleton movements were
controlled via the BCI system. In the Control group, exoskeleton-driven hand move-
ments were not linked to the patients’ brain activity but followed a repetitive scheme.
The patients in each group performed 10 daily sessions. Each session lasted for
30–45 min. The sessions were conducted every day with breaks on weekends and
holidays (up to 3 consecutive days) so the total hospitalization duration was two
weeks. Patients in both groups were also provided with standard physical therapy:
instructor-supervised kinesiotherapy, medical massage, and passive neuromuscular
electrical stimulation in accordance with Russian treatment protocols and standards.
The patients of the Comparison group were only provided with standard treatment
in the fourth clinic.

3 The BCI Group Protocol

The patient sat on a chair in front of a computer monitor with the arms on the
armrests of the chair in a comfortable position. Two exoskeletons were attached
to the patient’s hands. The patient was instructed by cues on the monitor to either
sit relaxed or perform imagery of slowly expanding his\her left or right hand. The
three classes of mental activity were discriminated by the BCI classifier, since the
protocol required the patient to perform a lateralized motor imagery of both hands
rather than to imaginemovement of the impaired hand only. This setup also prevented
the BCI from triggering the exoskeleton movement based on recognizing a mental
state different from motor imagery, e.g. level of high concentration opposed to the
relaxed state.

At earlier stages of the study exoskeletons with pneumatic actuators (Neurobotics,
Russia) were used, while exoskeletons with electromotor actuators (Android Tech-
nics, Russia) were used for most the later sessions. The exoskeletons of both types
were completely equivalent functionally, however, the last ones were more reliable.

EEG signals were recorded with 30 electrodes placed according to the Interna-
tional 10–20 system (NVX52, Medical Computer Systems, Zelenograd, Russia).
EEG corresponding to the different mental tasks was classified using the Bayesian
classifier (Frolov et al. 2011). The information on classification accuracy is given
by a confusion matrix (Frolov et al. 2011). Diagonal elements of the matrix allow
to estimate average probability of correct classification, which is a measure of the
BCI control accuracy. It depends on both the classifier performance and the partic-
ipant’s ability to perform motor imagery. The chance level for correct classifying
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three different mental state is 33%. Our previous papers (Frolov et al. 2016b, 2017)
provide more details of BCI protocol.

4 The Control Group Protocol

In experiments with the Control group, we used the same arrangements as in the BCI
sessions, including putting the EEG cap on the patient’s head and fixing the hands to
the exoskeletons, but hand exoskeletons movements were not dependent on motor
imagery-related EEGmodulations. The patients were sitting relaxed while watching
for changes in the instruction on the monitor. The cues corresponding to right and
left hand were shown randomly. If the cue corresponded to movement of one of the
hands, the exoskeleton opened and closed the hand periodically independently of
EEG activity, which was recorded for the Control group as well as for the BCI group
for off-line analysis.

5 Clinical Assessment and Statistical Analysis

The patients in theBCI andControl groupswere assessed formovements and strength
in the upper limb before and after the total training course. The patients in the
Comparison group were assessed at the beginning and at the end of two weeks
hospitalization; that is, for all groups the time between two assessmentswas the same.
Motor recovery was assessed using the Fugl-Meyer Motor Assessment (FMMA) for
upper extremity (range, 0–126) and Action Research Arm Test (ARAT; range, 0–
57). Additionally, the changes across different FMMA domains were analyzed. The
spasticity severity was assessed using Modified Ashworth Scale (MAS) and hand
paresis by MRCSS. We also estimated the percentage of patients with clinically
significant improvement exceeding minimal clinically important difference (MCID)
in each study group. As recommended in the literature, MCIDwas chosen separately
for subacute and chronic stroke. MCID for the ARAT scale is accepted to be a 12-
point increase for dominant and 17-point increase for non-dominant hand in case of
subacute stroke, and 6-point increase in case of chronic stroke. MCID for the FMMA
motor domain is accepted to be a 10-point increase in case of subacute stroke and a
5-point increase in case of chronic stroke.

Statistical analysis was performed using Wilcoxon test and regression analysis
usingMATLAB.We also usedANOVAanalysis to estimate preliminary the effects of
different factors, although the data were not normally distributed. Utilizing ANOVA
was justified by the fact that, for each considered factor, the corresponding groups
consisted of at least 10 patients. All results revealed by ANOVA were checked by
the Wilcoxon test. In order to compare the binary data, i.e. the data which could be
represented by two values (0 and 1), such as gender, stroke lateralization etc., we
used a test based on an assumption that the data of the two compared groups come
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from Bernoulli distribution with parameters p1 and p2 respectively. The data are
presented as a median and 25 and 75% quartiles. Statistically significant differences
were considered at p < 0.05. They are marked in bold red in the tables.

6 Patient Group Characteristics

The study inclusion criteria were met by 171 patients of 841 screened in total. The
BCI group consisted of 92 patients, the Control group consisted of 41 patients, and
the Comparison group consisted of 38 patients. Eleven patients of the BCI group
and four patients of the Control group were withdrawn from the study after 1 or
2 procedures due to either their refusal or clinical requirements. Their results were
excluded from the analysis.

The patients’ demographics and baseline characteristics are presented in Table 1.

Table 1 Demographics and baseline characteristics of subjects by study group

Characteristic BCI group (n =
81)

Control group (n
= 37)

Comparison
group (n = 38)

Significance
(p-value)a

p12 p13 p23

Age, full years 59 [50.5; 68] 59 [57; 66.5] 66.5 [55; 71] 0.27 0.008 0.12

Men, %(n) 64.2 (52) 70.3 (26) 55.3 (21) 0.50 0.36 0.18

Time since
stroke in months

6.5 [3.5; 13] 8 [2.5; 13] 5 [3; 10] 0.81 0.26 0.56

Patients with
subacute stroke
(1–6 months),
%(n)

50.6 (41) 59.4 (22) 47.3 (18) 0.37 0.95 0.42

Patients with the
lesion in the left
hemisphere,
%(n)

48.2 (39) 59.5 (22) 50 (19) 0.26 0.85 0.42

Ischemic stroke,
%(n)

71.6 (58) 89 (33) 97.4 (37) 0.015 <10−4 0.16

Subcortical
lesions, %(n)

61.7 (50) 48.6 [18] 73 (28) 0.19 0.19 0.03

Initial ARAT
score

4 [0; 34.5] 27.5 [1; 40] 15 [2.5; 33] 0.18 0.26 0.53

Initial FMMA
score

76 [60; 95] 93 [62; 66.5] 79.5 [67; 98.5] 0.08 0.39 0.40

Spasticity
(MAS)

2 [1; 3] 1.5 [1; 2] 1 [1; 2] 0.04 0.02 0.95

MRCSS 2 [1; 3] 3 [1; 4] 3 [2; 3] 0.20 0.01 0.75

aAccording to Bernoulli test for the binary and Wilcoxon test for the non-binary data
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For binary data, only one category is presented. There were only a few patients
with lesion localization that was considered as cortical by the clinicians, 4 in the
BCI group, 7 in the Control group and none in the Comparison group. They were
included into the group of patients with cortico-subcortical lesions. Therefore, the
localization factor became binary (subcortical or cortico-subcortical).

The groups do not differ significantly with respect to most of the factors. Excep-
tions were that the patients from the Comparison group were significantly older than
the patients from the other groups, there were significantly more hemorrhagic stroke
cases in the BCI group compared to the other groups, and the average initial spasticity
was higher in the BCI group.

General population analysis revealed that there were significantly more males
(63%) than females (p < 10−4), more ischemic than hemorrhagic stroke cases (82%,
p < 10−5), and number of subcortical lesioned patients (61%) exceeded the number
of cortico-subcortical lesioned patients (p = 3·10−3).

7 Rehabilitation Outcome

Table 2 contains differences (gains) in the scales used to assess the patients’ motor
and sensory functions before and after intervention. The table contains both quartiles
and p-values for pairwise group comparison. The p-values were obtained using both
ANOVA statistics (left columns) andWilcoxon test (right columns). The significance
of MCID percentage was tested using the Bernoulli test. FMMA stands for total
FMMA score, FMMA-M stands for score in the motor function domain (Domain 1),
FMMA-D stands for score in the distal joint subdomains (VII and VIII), FMMA-P
stands for score in the proximal joint subdomains (I–VI, IX), FMMA-S stands for
sensory function (Domain 2), FMMA-JR stands for score in the range of motion
domain (Domain 4), FMMA-JP stands for score in the joint pain domain (Domain
5), and ARAT stands for total ARAT score.

All scales indicate significantly higher increase of motor function scores in the
BCI group compared to other groups, except for comparison to the Control group for
the distal joint FMMA subdomains. The differences were significant both according
to the ANOVA and Wilcoxon tests. Notably, there was a higher percentage of the
patients who achieved MCID in the BCI group, which was two times higher than
the other groups according to FMMA and more than seven times higher according
to ARAT.

There were no significant differences between the BCI and other groups in the
FMMA sensory, pain, and range of motion domains. There were also no significant
differences between the Control and Comparison groups.
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8 Factors That Affect Motor Function Recovery
in the BCI Group

We investigated the possible effects of different factors onmotor recovery status in the
BCI group. FMMA and ARAT gains were chosen as the motor recovery indicators.
The factors were age, gender, residual period, stroke type, lesion lateralization and
localization, FMMA-M, FMMA-S, FMMA-JR, FMMA-JP, ARAT, MRCSS, and
MAS scores prior interventions, and BCI control accuracy. The results of comparing
the recovery outcomes for binary factors are shown in Table 3. The only significant
differencewas observed for the lateralization factor. The patients with lesions located
in the left hemisphere recovered significantly better.

The possible effect of non-binary factors was tested using quadratic regression
modelling. The procedure efficiency did not depend on initial MAS, FMMA-JR and
FMMA-JP scores. Its dependencies on age, FMMA-M, FMMA-S, ARAT, MRCSS
and BCI control accuracy for other factors are shown in Fig. 1. Except for the age,
the dependence from each other factor was significant for at least one of the shown
outcomes. Interestingly, these dependencies were non-monotonical, which is more
evident for FMMA-M outcome. Dependence on age was at the level of tendency.

Table 3 Clinical outcomes in the BCI group with respect to the binary factors

Factor FMMA-M
gain

ARAT gain FMMA-M
gain

ARAT gain pFMMA pARAT

Gender Female, n = 29 Male, n = 52

6.0 [2.0;
7.5]

1.0 [0; 3.0] 6.5 [4.0;
11.0]

2.0 [0; 6.0] 0.31 0.17

Residual
period

Subacute, n = 41 Chronic, n = 40

6.0 [2.0;
8.5]

1.0 [0.0; 3.0] 6.0 [2.0;
10.0]

2.0 [0.0; 5.8] 0.94 0.60

Stroke type Ischemic, n = 58 Hemorrhagic, n = 23

4.0 [1.5;
7.0]

1.0 [0; 2.0] 4.0 [2.0; 11] 1.0 [0; 6.0] 0.25 0.27

Lesion
localization

Subcortical, n = 50 Cortico-subcortical, n = 31

4.0 [1.0;
9.0]

1.0 [0; 3.0] 4.0 [2.0;
7.0]

1.0 [0; 3.0] 0.91 0.87

Lesion
lateralization

Left hemisphere, n = 39 Right hemisphere, n = 42

7.0 [4.5;
12.0]

2.0 [1.0; 6.0] 4 [2.0; 7.0] 1.0 [0; 2.0] 0.02 0.02
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Fig. 1 Dependence of clinical outcomes from different non-binary factors

9 Discussion

This work concludes four years of clinical trials of post-stroke motor rehabilitation
procedures with a BCI-controlled hand exoskeleton complex. The study method-
ology included two scales for assessing recovery of upper extremity motor function
and the recruitment of patients of BCI and Control groups from 3 clinical centers.
FMMA is the more versatile and detailed scale (Ang et al. 2014; Sanford et al. 1993),
while ARAT is a functional scale and evaluates different hand movements needed
for daily tasks (Doussoulin et al. 2012). Thus, coincidence of results obtained by
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2 scales increases their reliability. Testing of patients by specialists from different
clinical centers and applying a blind study design reduced the influence of subjective
factors (Sanford et al. 1993) on the assessment of clinical test performance.

Preliminary results of the study were published in (Frolov et al. 2016b, 2017) and
includedBCI andControl groups. The number of patientswas increased from55 to 81
in theBCI group and from19 to 37 in theControl group, and a newComparison group
of patients receiving routine treatment was added. Thus, the results presented in this
work are obtained from larger datasets than those published before (Ang et al. 2011,
2015; Ramos-Murguialday et al. 2013; Ono et al. 2014; Frolov et al. 2016b, 2017).
Motor function improvement was significantly higher in the BCI group compared
to the other groups for almost all the indices considered. At the same time, no
significant differences in motor function recovery were observed when the Control
and the Comparison groups were matched. The results suggest the BCI procedure is
effective, which might result from coupling the patients’ mental attempts to imagine
movement with actual proprioceptive and tactile feedback.

The results in general agree with those obtained before. However, increasing the
number of patients allowed us to investigate possible effect of different factors on
clinical outcome of the tested procedure.

We have considered the factors of age, gender, residual period, stroke type, lesion
lateralization and localization, FMMA,FMMAmotor, sensory, jointmotion and joint
pain domains, ARAT, MRCSS, and MAS scores prior interventions and BCI control
accuracy. No significant effect on clinical outcomes was observed for the factors of
gender, residual period, stroke type and localization (Table 3), initial MAS, FMMA
pain and joint motion range scores. Thus, the BCI procedure was effective for wide
range of the patients who met the inclusion criteria. In particular, the procedure
was effective in both subacute and chronic stroke patients, which is in agreement
with the results of (Ono et al. 2014). The insignificance of the other factors is,
to our knowledge, reported for the first time and should be further investigated in
more detail. For example, exploring the effect of the lesion localization may require
checking individual MRI scans to identify the lesioned areas.

The BCI procedure was significantly more effective in the patients with lesions
in the left hemisphere (p = 0.02 for both FMMA and ARAT gains). This result also
requires further investigation.

The regression analysis revealed significant dependencies of either FMMA or
ARAT outcomes on initial ARAT, FMMA domain 1 and 2, and MRCSS scores,
as well as on the BCI control accuracy (Fig. 1). Comparing the patients from the
second and the fourth age quartiles using Wilcoxon test also revealed a significant
difference (p = 0.04). The observed dependencies were non-monotonical and were
similar for the FMMA and ARAT outcomes. The procedure was shown to be more
effective for average levels of motor function impairment, which might be due to
the fact that dramatic improvement of motor function is unlikely to happen after two
weeks of treatment in severe lesioned patients, and the ARAT and FMMA scales
are not sensitive enough to detect motor function improvement in patients with mild
paresis.We have shown that motor function recovery in cases of both severe andmild
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paresis could be assessed with biomechanical analysis of performed and attempted
movements (Dzhalagoniya et al. 2018).

The not monotonic dependence of the outcome on the BCI control accuracy may
be explained as follows. The lower accuracy, which might indicate lack of effort and
concentration on the mental task, results in the lack of proprioceptive feedback. The
higher accuracy, e.g. typical for former sportsmen, might indicate that the task is
easy. Hence, a certain level of the task difficulty as well as adequate feedback might
be required to maximize the procedure efficiency.
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Hearables: In-Ear Multimodal Brain
Computer Interfacing

Metin C. Yarici, Harry J. Davies, Takashi Nakamura, Ian Williams,
and Danilo P. Mandic

Abstract The Brain Computer Interface (BCI) of the near future must be suitable
for widespread use in real-world environments. As such, it will be robust, portable,
user friendly and discreet—and ideally wearable. In addition, for ‘affective’ func-
tionality, standard electroencephalogram (EEG) based BCI needs to be augmented
with sensors for other physiological modalities. Our generic ‘Hearables’ earpiece,
equipped with miniature multimodal sensors, provides such a multimodal solution
for reliable measurement of both neural activity and vital signs. Real-world viability
is demonstrated through single-channel, multimodal digital noise removal in the
EEG, standard BCI responses and more than 100 h of out-of-clinic sleep analysis.
The benefits of collocated, multimodal sensing of the neural function and vital signs
within our Hearables are demonstrated to extend beyond the enhancement of current
BCIs, and into BCI-enabled eHealth. Finally, the advantages of our device are vali-
dated in an ‘affective’ BCI setting—where both the mental and physical state of the
user is integrated through simultaneous monitoring of brain and vital functions.

Keywords Affective brain-computer interface ·Multimodal vital signs
monitoring · Hearables · De-noising · Ear-EEG

1 Introduction

The application of BCI has significantly advanced since its inception as a communi-
cation or movement pathway for the severely disabled (Vidal 1973). Modern appli-
cations include BCI for entertainment, education, healthcare and workplace environ-
ments (Blankertz et al. 2010; Valeriani et al. 2017; Schuller 2017), through real-time,
closed-loop, affective brain monitoring of healthy and non-healthy individuals alike.
Almost all modern applications naturally require functionality outside the specialist
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setting, in the natural setting of the application. Of the numerous current devel-
opments in the field of real-world BCI, EEG-based devices are closest to leaving
the laboratory setting (Casson 2019). However, conventional systems remain bulky,
cumbersome and primarily operate in the specialist setting. In addition, for affective
functionality, wherein a profile of the user’s mental and physical state (e.g. their level
of stress, fatigue or motivation) is integrated into the interface (Liu et al. 2010; Muhl
et al. 2011), standard BCI devices need to be augmented with additional sensors for
monitoring multiple vital signs, such as the electrocardiogram (ECG), respiration
and blood oxygenation (Pantelopoulos and Bourbakis 2010; Xu et al. 2011; Troster
2005). Therefore, any future widely applicable EEG-based BCI should satisfy the
following design requirements:

R1: Portable, lightweight and easily carried,
R2: Discreet, worn without attracting attention,
R3: Robust, operated in real-world environments,
R4: Prolonged, functional over hours and days,
R5: Unobtrusive, compatible with the user’s activity,
R6: Multimodal, simultaneous monitoring of brain and vital signs activity.

2 Generic Multimodal Earpiece

The latest portable EEG headsets can offer up to 32 channels of continuous recording
over a 24 h period (Neurosky.com/; www.emotiv.com/epoc). However, their use
outside the specialist setting is limited by their stigmatising and obtrusive nature
(Waterhouse 2003). In 2010, we pioneered ear-EEG as an ultra-wearable alternative
to scalp-based portable EEG systems by utilising discreet and practical ear canal
and intra-auricular electrodes embedded inside a hard shell earpiece to record the
first BCI-related EEG signals (Looney et al. 2012; Looney and Mandic 2014). In the
ensuing years, we have witnessed the introduction of numerous ear-EEG systems, in
the context of BCI (Bleichner and Debener 2017), as well as objective audiometry
(Christensen et al. 2018a, b), sleep analysis (Mikkelsen et al. 2019a, b; Nakamura
et al. 2020; Alqurashi et al. 2019; Looney et al. 2016), cognitive load assessment
(Wascher et al. 2019) and biometric authentication (Nakamura et al. 2018). However,
early designs require a costly and time-consuming process to manufacture custom-fit
earpieces, and, as a result of their rigid structure, are highly susceptible tomotion arte-
facts. In addition, our initial designs, like the range of ear-EEG devices proposed thus
far (Liu et al. 2010; Muhl et al. 2011; Pantelopoulos and Bourbakis 2010; Xu et al.
2011; Troster 2005; Waterhouse 2003; Looney et al. 2012; Neurosky.com/; www.
emotiv.com/epoc), do not provide innovative methods to improve the reliability of
naturally compromised wearable EEG sensing, or take into consideration the impor-
tance of achieving simultaneous brain and vital signs monitoring. Our subsequent
device (Goverdovsky et al. 2017) comprises three key elements: generic viscoelastic
substrate, flexible electrophysiology electrode and MMS, each of which provides
solutions to the requirements R1:R6 above.

http://Neurosky.com/
http://www.emotiv.com/epoc
http://Neurosky.com/
http://www.emotiv.com/epoc
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Fig. 1 Construction of the multimodal in-ear sensing device. a Detailed structure of the device,
showing the placement of the microphone and the electrode on the substrate. b Construction of the
multimodal sensor underneath one of the textile electrodes. c Completed earpiece with electrodes
and inward-facing microphone visible. d Placement of the earpiece in the user’s ear

The substrate is a viscoelastic foam which, by virtue of its mechanical proper-
ties (significant relaxation and minimal outward pressure upon rapid compression
Goverdovsky et al. 2015), provides passive mitigation of artefacts by absorbing
energy that would otherwise create movement between the electrode and the surface
of the skin, the so-called motion artefact. In our previous work, we demonstrated the
foam’s ability to absorb sufficient energy to completely eliminate the strong blood
vessel-pulsation motion artefact in the ear-EEG signal (Goverdovsky et al. 2016).
Simultaneously, the substrate provides a generic (universal), comfortable and secure
fit that enables the user to move freely without the device dislodging. The second
key element is a flexible capacitive electrophysiology electrode (Goverdovsky et al.
2016) which compliments the substrate’s generic nature by conforming to any shape
ear canal. The flexible electrode is constructed by securing a 4 × 7 mm strip of
conductive textile to the surface of the substrate (see Fig. 1a–c). Electrical connec-
tions are provided through conductive yarn that is woven into the textile and passed
through the body of the substrate. The electrode requires only small amounts of saline
solution to provide prolonged, robust and low contact impedance with the ear canal
surface (see Fig. 3a). The third key component is our MMS, which provides both
EEG de-noising and vital signs monitoring capabilities. The sensor is constructed by
mechanically coupling amicroelectromechanical (MEMS)microphone to the bottom
surface of one of the textile electrodes (Goverdovsky et al. 2015) (see Fig. 1a, b).
In this way, once the device is placed inside the ear canal, mechanical interference
stemming frommotion at the recording site will be faithfully recorded by theMEMS
microphone. As such, the microphone’s signal can be used in digital noise removal
of the motion artefact on the electrical signal recorded by the flexible electrode. Note
that our MMS does not require extra room for artefact detection, in contrast with
other proposed sensors for electrophysiological recording systems (Ko et al. 2012;
Gibbs et al. 2005), and, unlike popular algorithmic methods for noise removal, does
not require multi-channel data (Blankertz et al. 2010); this is a must in the wearable
scenario where the use of fewer channels in a confined area is preferable. In addition,
serving a dual functionality, theMMSmicrophone detects other acoustic signals that
propagate through the body to the ear, including respiration, speech, and blood vessel
pulsation (note that this is simultaneously a mitigated artefact in the EEG electrode’s
signal and a faithful proxy of heart rate in the microphone’s signal).
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Fig. 2 De-noising of ear-EEG from mechanical jaw clench artefacts. a–c Best-case de-noising
scenario for which the artefact measurement with the MMS microphone was accurate. d–f Worst-
case accuracy of artefact measurement with the MMS microphone; note that the artefact was still
reduced. a, d Raw EEG with a strong artefact. b, e Output of the microphone within the MMS. c,
f De-noised EEG using MMS microphone signal as reference

3 MMS: EEG De-noising

As stated above, and comprehensively demonstrated inGoverdovsky et al. (2015), the
multimodal earpiece, by the very nature of its substrate, provides passive mitigation
of the noise component in the EEG stemming from the motion artefact. However, in
less favourable scenarios, such noise is not completely diminished by the properties
of the substrate alone, particularly during strong jaw clenches, as shown in Fig. 2a, d.
The MMS provides a solution for such stronger artefacts, as typically occur in real-
world environments. An example of MMS noise removal of strong jaw-clenching,
where the mechanical signal accurately detects the artefact, is depicted in Fig. 2a–c.
Note the significant reduction in amplitude of the jaw clench artefact in the ear-EEG
recording. Figure 2d–f illustrates results from a less favourable scenario, in which
the mechanical signal recorded by the microphone is compromised, but nevertheless
the motion artefact is still visibly attenuated. Whilst current BCIs often discard
considerable amounts of artefact polluted data, our multimodal device provides a
robust and practical solution for mitigating this loss.

4 BCI Responses in Ear-EEG: Standard EP’s and Alpha

The viability of long-term EEG monitoring in real-world environments is demon-
strated in a study of EEG-electrode impedance stability. The device is then validated
against Scalp-EEG for both auditory steady-state response (ASSR) and steady-state
visually evoked potential (SSVEP), in addition to visual evoked potentials (VEP) and
alpha band sensitivity, see Fig. 3. The ASSR at a 40 Hz modulation frequency was
obtained for both ear-EEG, the mastoid (M1), and the central (Cz) scalp electrodes,
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Fig. 3 Standard BCI responses. a Electrode impedance for 5 subjects over 8 h. b–d ASSR and
e–g SSVEP response measured from the ear, M1 and Cz scalp locations. h Visual evoked potential
measured with the earpiece. i Alpha rhythm recorded from the ear electrodes; the subjects closed
their eyes 30 s into the trial

and compared in Fig. 3b–d. Observe clear peaks at the modulation frequency for all
the recording positions, with the signal to noise ratio (SNR) of the ear-EEG compa-
rable to that from conventional on-scalp electrodes. The SSVEPwas induced in EEG
by presenting the subjects with an LED blinking at 15 Hz. As desired, a clear peak
was observed at the stimulus frequency and its first harmonic at 30 Hz, as shown in
Fig. 3e–g. We further demonstrate the functionality of our device to acquire transient
neural responses by presenting the subjects with an LED switchedON for 200ms and
then fully OFF for 1800 ms. Figure 3h shows that the shape and timing of the VEP
waveform, as measured from the generic earpiece, are a good match for the corre-
sponding waveforms from scalp electrodes. Figure 3a demonstrates the robustness of
the generic earpiece, as exemplified through impedancevalues of ear-EEGelectrodes,
measured at regular intervals over the course of an uninterruptedwork-day (including
activities such as walking, talking and eating) for five subjects. For all subjects, the
electrode impedance maintained a low value (predominantly below 10 k�). Finally,
the multimodal earpiece is shown to be capable of recording neural activity related
to fatigue, drowsiness and sleepiness (the alpha band), observed clearly in Fig. 3i
through a time-frequency representation of an alpha attenuation trial. Additional
detail of the BCI response experiments can be found in (Goverdovsky et al. 2017).

5 Augmented BCI: Sleep Analysis via Ear-EEG

Sleep quality is an indicator of the state of body and mind, and an opportunity
for BCI-enabled eHealth. Twenty-two healthy subjects took part in an overnight
sleep study with simultaneous ear-EEG from the generic earpiece, and conventional
full polysomnography (PSG) recordings (Nakamura et al. 2020). The ear-EEG and
scalp-EEG data were used in automatic sleep stage prediction through supervised
machine learning, whereby the PSG data, manually scored by a sleep clinician,
served as ground truth. For rigorous real-world testing, each overnight recording was
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Table 1 Performance of the sensor in automatic sleep stage classification

Sensor No. of subjects
included in
analysis

Average data
included in
analysis per
subject (hrs, %)

Algorithm performance

Sensitivity Precision Accuracy Kappa

Generic
earpiece

16/22 6.05, 76.8 72.28 72.64 74.1 0.61

Scalp-EEG 17/22 6.40, 81.7 56.76 80.66 85.9 0.79

Fig. 4 Classification accuracy (blue bars) and Cohen’s kappa values (orange points) for individual
participants, P1–17, in one overnight sleep trial. a Scalp-EEG based results, b ear-EEG based results

conducted in both an unsupervised (excluding equipment set-up and collection by a
sleep clinician) and natural setting in the homes of the participants. The capability of
the generic earpiece to record continuous and high-fidelity sleep-EEG is evidenced in
Table 1. The number of participants and mean number of hours of clean ear-EEG and
Scalp-EEG recorded data were, respectively, N= 16 (76.8%) and 6.05 h, and N= 17
(81.7%) and 6.40 h. The automatic sleep staging algorithm performed classification
between wake, N1, N2, N3 and REM periods and obtained classification accuracy of
74.1% with a corresponding Cohen’s κ value of 0.61 (Substantial Agreement) when
using data from the generic earpiece (Fig. 4).

6 Continuous Brain and Vital Signs Monitoring

BCI applications have typically focused on volitional control and superliminal feed-
back. However, just as in interpersonal relationships, subconscious communication
and context are vital. Understanding the mental and physical state of the user can
radically alter the relationship and effectiveness of the machine interface. In addi-
tion to EEG, the multimodal sensor detects blood vessel pulsation in the ear canal—a
mechanical plethysmogram (MPG)—and in our latest implementations this has been
combinedwith a reflective PPG sensor. The rawwaveforms, and the subsequent HRV
stress analysis for the ear-PPG, benchmarked against gold-standard chest-ECGHRV,
are displayed, respectively, in Fig. 5a and d.Observe closematching of the ear-PPG to
benchmark chest-ECG in HRV frequency analysis. In another modality supported by
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Fig. 5 Augmented sensing forBCI:Ear a photo- and bmechanical-plethysmogram rawwaveforms.
c Ear- and Lead- 1 Chest-ECG waveforms from one subject. e Spectrogram of a breathing signal
recorded from the inward facing microphone and normalised amplitude of the spectrogram, with
one of the single respiratory periods indicated by the black lines and arrows

the earpiece, the MMS combines mechanical and electrical signals to obtain an ear-
ECG, which has been comprehensively validated as an equivalent to standard Lead 1
chest-ECG (von Rosenberg et al. 2017). In addition, for blood pressure monitoring,
the pulse-arrival time (PAT) is also reliably extracted through combining information
from the mechanical/optical and electrical signals detected by our device (Gover-
dovsky et al. 2015, 2017; von Rosenberg et al. 2017). Another important feature of
affective monitoring is respiration analysis (Picard 2000). The inward-facing micro-
phone in our device detects endogenous acoustic (bone-conduction) signals that
preserve respiration patterns (as well as speech Goverdovsky et al. 2017), as can be
seen in a time-frequency representation of the acoustic signal depicted in Fig. 5e.

7 Summary

Stress, emotions and fatigue have major roles in determining the effectiveness of
a BCI, while real-world functionality is key for future uses of the technique. To
address this issue, we have demonstrated the potential of multimodal, integrated in-
ear sensing by validating the so-called Hearables in real-world and affective BCI
applications. Salient features of our multimodal BCI include single-channel enabled
digital noise removal, standard BCI response detection and continuous out-of-lab
sleep staging. By taking account of closed loop synchronisation between body and
mind, we have demonstrated conclusively the feasibility of augmented and user-
affected BCIs in the community via Hearable sensing.



86 M. C. Yarici et al.

References

Y. Alqurashi et al., The efficacy of a novel in-ear electroencephalography (EEG) sensor to measure
overnight sleep in healthy participants. Am. J. Respir. Crit. Care Med., 199 (2019)

B. Blankertz et al., TheBerlin brain-computer interface: non-medical uses of BCI technology. Front.
Neurosci. 4, 198 (2010)

M.G. Bleichner, S. Debener, Concealed, unobtrusive ear-centered eeg acquisition: cEEGrids for
transparent EEG. Front. Hum. Neurosci. 11, 163 (2017)

A.J. Casson, Wearable EEG and beyond. Biomed. Eng. Lett. 9(1), 53–71 (2019)
C.B. Christensen et al., Ear-EEG-based objective hearing threshold estimation evaluated on normal
hearing subjects. IEEE Trans. Biomed. Eng. 65(5), 1026–1034 (2018a)

C.B. Christensen et al., Toward EEG-assisted hearing aids: objective threshold estimation based
on ear-EEG in subjects with sensorineural hearing loss. Trends Hear. 22, 2331216518816203
(2018b)

EEG—ECG—Biosensors. Available: Neurosky.com/
P.T. Gibbs, L.B. Wood, H.H. Asada, Active motion artifact cancellation for wearable health moni-
toring sensors using collocated MEMS accelerometers. Smart Struct. Mater. 2005: Sens.S Smart
Struct. Technol. Civ., Mech., Aerosp., Pts 1 and 2 5765, 811–819 (2005)

V. Goverdovsky et al., Co-located multimodal sensing: a next generation solution for wearable
health. IEEE Sens. J. 15(1), 138–145 (2015)

V. Goverdovsky et al., In-ear EEG from viscoelastic generic earpieces: robust and unobtrusive 24/7
monitoring. IEEE Sens. J. 16(1), 271–277 (2016)

V. Goverdovsky et al., Hearables: multimodal physiological in-ear sensing. Sci. Rep. 7, 6948 (2017)
B. Ko et al., Motion artifact reduction in electrocardiogram using adaptive filtering based on half
cell potential monitoring. 2012 Annual International Conference of the IEEE Engineering in
Medicine and Biology Society (EMBC) (2012), pp. 1590–1593

Y. Liu, O. Sourina, M.K. Nguyen, Real-time EEG-based human emotion recognition and
visualization. (2010)

D. Looney, D. Mandic, Ear-EEG: user-centered and wearable BCI, in Brain-Computer Interface
Research (Springer, 2014)

D. Looney et al., The in-the-ear recording concept user-centered and wearable brain monitoring.
IEEE Pulse 3(6), 32–42 (2012)

D. Looney et al., Wearable in-ear encephalography sensor for monitoring sleep preliminary
observations from nap studies. Ann. Am. Thorac. Soc. 13(12), 2229–2233 (2016)

K.B. Mikkelsen et al., Accurate whole-night sleep monitoring with dry-contact ear-EEG. Scientific
Reports 9, 16824 (2019a)

K.B.Mikkelsen et al.,Machine-learning-derived sleep-wake staging from around-the-ear electroen-
cephalogram outperforms manual scoring and actigraphy. J. Sleep Res. 28(2), UNSP e12786
(2019b)

C. Muhl et al., Affective brain-computer interfaces (aBCI 2011). Affect. Comput. Intell. Interact.,
Pt Ii 6975, 435 (2011)

T. Nakamura, V. Goverdovsky, D.P. Mandic, In-ear EEG biometrics for feasible and readily
collectable real-world person authentication. IEEE Trans. Inf. Forensics Secur. 13(3), 648–661
(2018)

T. Nakamura et al., Hearables: automatic overnight sleep monitoring with standardized in-ear EEG
sensor. IEEE Trans. Biomed. Eng. 67(1), 203–212 (2020)

A. Pantelopoulos, N.G. Bourbakis, A survey on wearable sensor-based systems for health
monitoring and prognosis. IEEE Trans. Syst. Man Cybern. Part C—Appl. Rev. 40(1), 1–12
(2010)

R.W. Picard, Affective Computing (MIT Press, 2000)
B. Schuller, Can affective computing save lives? Meet mobile health. Computer 50(5), 13 (2017)
G. Troster, The agenda of wearable healthcare. Yearbook Med. Inform. 1, 125–138 (2005)

http://Neurosky.com/


Hearables: In-Ear Multimodal Brain … 87

D. Valeriani, C. Cinel, R. Poli, Group augmentation in realistic visual-search decisions via a hybrid
brain-computer interface. Sci. Rep. 7, 7772 (2017)

J.J. Vidal, Toward direct brain-computer communication. Annu. Rev. Biophys. Bioeng. 2, 157–180
(1973)

W. von Rosenberg et al., Hearables: feasibility of recording cardiac rhythms from head and in-ear
locations. R. Soc. Open Sci. 4(11), 171214 (2017)

E. Wascher et al., Evaluating mental load during realistic driving simulations by means of round
the ear electrodes. Front. Neurosci. 13, 940 (2019)

E. Waterhouse, New horizons in ambulatory electroencephalography. IEEE Eng. Med. Biol. Mag.
22(3), 74–80 (2003)

Wireless EEG Headset. Available: www.emotiv.com/epoc
P. Xu, X. Tao, S. Wang, Measurement of wearable electrode and skin mechanical interaction using
displacement and pressure sensors. (2011)

http://www.emotiv.com/epoc


Power Modulations of Gamma Band
in Sensorimotor Cortex Correlate
with Time-Derivative of Grasp Force
in Human Subjects
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Shreyas Bhavsar, Sudhakar Tummala, Sujit Prabhu, and Nuri F. Ince

Abstract Grasping objects of different size and weight is one of the most important
hand functions in our daily lives. For this reason, a hand neuroprosthetic needs to be
able to perform itwith high accuracy. Previous brain-machine interface (BMI) studies
often focused on decoding the kinematic part of the grasp such as individual finger
position or velocity. Less is known about the kinetic part such as the generation and
maintenance of grasp force. In this study, we recorded intraoperative high-density
electrocorticography (ECoG) from the sensorimotor cortex of four patients while
they executed a voluntary isometric hand grasp during awake surgeries. They were
instructed to squeeze a hand-held dynamometer and maintain the grasp for 2–3 s
before relaxing. We studied the power modulations of the neural oscillations during
the whole time-course of the grasp including onset, hold, and offset phases. Phasic
event-related desynchronization (ERD) in the low-frequency band (LFB) from 8 to
32 Hz and event-related synchronization (ERS) in the high-frequency band (HFB)
from 60 to 200 Hz were observed at grasp onset and offset. However, during the
holding period, the magnitude of LFB-ERD and HFB-ERS decreased near or at
the baseline level. More importantly, we found that the fluctuations of HFB-ERS
primarily, and of LFB-ERD to a lesser extent, correlated with the time-course of
the first time-derivative of force (yank), rather than with force itself. To the best
of our knowledge, this is the first study that establishes such a correlation. These
results have fundamental implications for the decoding of grasp in brain oscillatory
activity-based neuroprosthetics.
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1 Motivation

Brain-machine interfaces (BMI) provide away to restoremotor function by decoding
signals directly from the sensorimotor area of the brain (Collinger et al. 2013;
Hochberg et al. 2012; Wang et al. 2013; Wodlinger et al. 2015; Yanagisawa et al.
2011, 2012).While grasping and holding objects are frequently executed in daily life,
most BMI studies were focused on movement kinematics, such as individual finger
position and velocity (Acharya et al. 2010; Branco et al. 2017; Chen et al. 2014; Flint
et al. 2017; Hochberg et al. 2012; Hotson et al. 2016; Kubanek and Schalk 2014;
Miller et al. 2009). However, the significance of dexterous control of exerted forces
upon different objects, such as a cell phone versus an egg, can be easily overlooked.
In order to establish a hand neuroprosthetic that can replicate natural hand function,
it is crucial to understand the neural correlates of force control during a sustained
grasp.

Previous studies have found a strong correlation between the activity of the flexor
digitorum profundus finger muscle and the power in the delta (1.4–4 Hz) and gamma
(50–90 Hz) subbands (Chen et al. 2014; Flint et al. 2014; Shin et al. 2012). However,
these studies either investigated grasp force and relaxation without the grasp force
being held for a prolonged period of time or analyzed only the onset (squeeze) phase
of the grasp. In addition, the decoding algorithms used in these studies assumed a
linear relation between neural oscillatory activity and grasp force. We hypothesized
that the restriction of grasp force to brief grasp/hand posture changes masks the true
nature of the relation between neural oscillations and grasp force.

To validate this hypothesis, we recorded high-density electrocorticography
(ECoG) over the sensorimotor areas of four patients during awake craniotomies
where each patient was instructed to perform an isometric grasp task. We observed
phasic low-frequency band (8–32 Hz) event-related desynchronization (LFB-ERD)
and high-frequency band (60–200 Hz) event-related synchronization (HFB-ERS)
patterns at the grasp onset and offset, but not during the hold period (Chen et al.
2014; Ince et al. 2010; Jiang et al. 2018; Jiang et al. 2017a; Miller et al. 2007, 2010;
Pfurtscheller and Lopes da Silva 1999; Ray et al. 2008; Sanes and Donoghue 1993;
Su and Ojemann 2013; Tzagarakis et al. 2010). With our results, we show that the
separation between the onset (squeeze), hold (steady force), and offset (relaxation)
phases of the grasp is crucial for elucidating the relation between the time-course
of grasp force and oscillatory neural activity. We found that the motor oscillatory
activity during sustained grip tasks correlated strongly with the first time-derivative
of force (or yank) rather than with force itself. Additional details of the recording
methods, data processing steps, and results are available in (Jiang et al. 2020).
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2 Methods

2.1 Subject Recruitments

We recruited four patients (2 females and 2 males; ages within 40–65 years) at
the University of Texas MD Anderson Cancer Center (Houston, TX), who were
diagnosed with a brain tumor and scheduled for a craniotomy in the vicinity of
the sensorimotor area. Behavioral task examinations were conducted a day prior to
the surgery to exclude motor deficits and to acquaint all patients to the experimental
paradigm. The study protocol was reviewed and approved by the Institutional Review
Boards (IRB) of the MD Anderson Cancer Center and the University of Houston.
Informed consent was obtained from all four patients before their participation in
the study in accordance with the Declaration of Helsinki.

2.2 ECoG Recordings

The surgery was performed using the sleep-awake-sleep anesthetic technique
(Huncke et al. 1998). After the dura was opened in all 4 patients (P1–4), motor and
sensory cortices were identified with cortical stimulation and/or median somatosen-
sory evoked potentials phase reversal technique (MSSEP-PRT) (deWitt Hamer et al.
2012; Giussani et al. 2010; Goldring 1978; Goldring and Gregorie 1984; Korvenoja
et al. 2006; Sheth et al. 2013; Simon et al. 2012, 2014). Functional mapping with
intraoperative ECoG was performed during the awake craniotomies. A customized
128 channel grid (16 × 8, 1.17 mm contact exposure and 4 mm spacing, platinum,
Ad-Tech,Michigan,MI)was used for P1, whiles customized 192 channel grids (16×
12, 1 mm contact exposure and 3 mm spacing, platinum, PMT, Chanhassen, MN)
were used for P2, P3, and P4, Fig. 1a, b. The portable data acquisition system setup
used in this study, shown in Fig. 1d, was specifically designed for intraoperative
neural and behavioral recordings (Jiang et al. 2017b).

During the awake surgery, the patients were asked to execute a sustained grasp
task and maintain the grasping force for at least two seconds before relaxing it.
An inter-trial interval of approximately three seconds was maintained between the
instruction of hand relaxation and the consecutive hand squeezing instruction. The
grasp force levelwasmeasuredwith an analog hand dynamometer (VernierHD-BTA)
and digitized using a microcontroller (Teensy 3.1) at 100 Hz and 12-bit A/D resolu-
tion before being transferred to a dedicated laptop over the User Datagram Protocol
using in-house custom-made software. Hand movements were monitored using a
high-definition webcam (Logitech HD C270). The neural data and forearm bipolar
electromyogram (EMG) were recorded with a 256-channel clinical bio-amplifier
(gHIamp, g.tecmedical engineeringGmbH,Graz, Austria) at 2.4 kHz.All behavioral
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Fig. 1 a High-density ECoG used in P1 (16× 8, 4 mm spacing). bHigh-density ECoG used in P2,
P3 and P4 (16 × 12, 3 mm spacing). The central sulcus is marked with a white line in each case.
c 3D cortical mesh obtained from patient MRI with electrode placement showing active channels.
d Recording system setup used in the operating room. The subject squeezed the force sensor for
at least 2–3 s. The sensor output was acquired with a microcontroller and transmitted to a nearby
laptop to be synchronized with the neural data streaming from the bioamplifier. e Raw ECoG from
selected channels is shown along with force sensor readings and EMG. We can notice that the
oscillatory activity in beta range (13–30 Hz) was suppressed at the grasp onset and that, although
the subject maintained the grip force, the amplitude of the oscillations recovered during the hold
period. During grasp offset, the oscillatory activity was suppressed again. High frequency gamma
activity can be observed in channels C58, C108, and C124. EMG and force traces are shown at the
bottom (Figure modified from Jiang et al. 2020)

and neural data were acquired, synchronized, and visualized in real-time intraoper-
atively using Simulink/Matlab and gHISYS block sets (g.tec medical engineering
GmbH, Graz, Austria).

2.3 Preprocessing

All ECoG recordings were visually examined to remove corrupted channels and
artifacts. The power line noise at 60 Hz and its harmonics were removed via a series
of second-order infinite impulse response (IIR) notch filters. We used the minimum
acceleration criterion with constraints (MACC) method to detect the beginning of
grasp onset and offset on the root mean square (RMS) of EMG (Botzer 2009; Jiang
et al. 2018) for event aligned analysis. As in our recent study (Jiang et al. 2017a),
we executed a visual inspection using synchronized video, EMG, and force sensors
to ensure that a detected onset point was a real grasp execution onset rather than
an artifact. Trials with clean ramping EMG at grasp onset and without spontaneous
EMG bursts over the 1.5 s baseline period before grasp onset were used. Figure 1e
shows an epoch of ECoG data, forearm EMG, synchronized force, as well as grasp
onset-offset from P2 data.
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2.4 Time-Frequency Analysis

Data segments around grasp onset and offset (−1.5–1.5 s) were extracted and time-
frequency analysiswas performed at each channel using short-time Fourier transform
(STFT). Specifically, the power spectral density (PSD) was estimated using a 512-
sample Hanning window. The window was shifted with a 480-sample overlap for
a smooth temporal transition. Smoothed spectrograms of grasp onset and offset for
each channel were obtained by averaging the spectrograms across trials. The average
spectrograms for grasp onset and offsetwere normalized using the samebaseline PSD
and transformed into a dB scale to yield the centered spectrograms.

2.5 Event-Related Synchronization and Desynchronization
Around Grasp Onset, Hold and Offset

The original signal was bandpass filtered in the low-frequency band (LFB: 8–32 Hz)
and the high-frequency band (HFB: 60–200 Hz) using a second-order Butterworth
IIR zero-phase filter (forward and backward). The filtered signals were squared to
compute the power traces for LFB and HFB. The temporal evolution of ERD and
ERS was computed by normalizing the power traces against their respective baseline
power preceding the grasp onset.

For grasp onset, ERD and ERS were computed from −0.1 to 0.7 s around the
grasp onset. For grasp offset, they were estimated from the 0.8 s of data following
immediately after grasp offset. For the hold phase, we used 1–1.5 s of data segments
in which the grip force reached a plateau. These segments were at least 1 s away
from the grasp onset and offset.

The statistical significance of ERD/ERS at each channel was tested using a one-
tailed Student’s t-test with a significance threshold p-value of 0.05 and corrected for
multiple comparisons using the False Discovery Rate (FDR) method at the level of
0.05 (Genovese et al. 2002). In order to select the most robust ERD and ERS events,
we selected channels that had significant changes of at least 25% from baseline in
either grasp onset or offset phase as previously done in (Jiang et al. 2018).

2.6 Electrode Localization

The grid localization was determined by the neurosurgeons based on the coregistra-
tion of the intraoperative photograph of the cortex and the preoperative MRI scan of
the brain using bio-landmarks such as blood vessels, sulci, and gyri, Fig. 1c.
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2.7 Data Analysis

For each patient,we performed a cross-correlation analysis between the average time-
series of LFB-ERD/HFB-ERS and the first time-derivative of grasp force (yank). The
time-series were averaged across trials to improve the signal to noise ratio and yield
a smooth estimation of the lag related to maximum/minimum cross-correlation coef-
ficients. After that, the Pearson correlation coefficient was computed for individual
trials by shifting LFB-ERD/HFB-ERS according to the identified lag from the aver-
aged data. The correlation around grasp onset and offset were analyzed separately
using the ECoG channels associated with significant LFB-ERD or HFB-ERS activa-
tions and using channels anterior or posterior to the central sulcus. Specifically, −1
to 1.5 s of data segment around grasp onset/offset was extracted to include the hold
phase.

3 Results

3.1 Time-Frequency Analysis of Individual Patients

Average time-frequencymaps for channels anterior and posterior to the central sulcus
around grasp onset and offset are shown for each patient in Fig. 2. For all four
patients, two distinct power modulations, one in LFB (8–32 Hz, blue) and the other
in HFB (60–200 Hz, red), can be observed at both grasp onset and offset. Note that,
although a sustained force level was maintained throughout the trial, the ERD and
ERS magnitude decreased and returned towards baseline between grasp onset and
offset. Overall, LFB-ERD lasted longer than HFB-ERS for all patients. LFB-ERD
in P1 and P2 decreased close to baseline level after grasp onset, whereas for P3
and P4, LFB-ERD lasted throughout the hold period with only a slightly decreased
magnitude. Figure 2 also shows channels that had significant activations at either
grasp onset, offset, or both on the ECoG grids for each patient.

3.2 Temporal Evolution of ERD/ERS Regarding Force
and Force Yank

The temporal evolution of average LFB-ERD (blue) and HFB-ERS (red) around
grasp onset and offset is shown together with the average force trace (black) and
force yank (dF) (red) in Fig. 3. In all patients, the power of LFB decreased and HFB
increased during the onset and offset phases of the grasp. Even though a sustained
force level was maintained throughout the hold phase, the magnitude of LFB-ERD
and HFB-ERS decreased and returned at or close to the baseline level. Both LFB-
ERD and HFB-ERS preceded grasp onset by 100 ms to 300 ms. At grasp offset,
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Fig. 2 Centered time frequencymaps averaged across significant channels anterior (A) or posterior
(P) to the central sulcus are shown around grasp onset and offset for each patient. Each time-
frequency map covered −1 to 1.25 s of the grasp onset/offset with a spectral range of 0 to 250 Hz.
All maps are displayed from−6 to 6 dB. The channels used for averaging were marked on the grids
below with upper triangles denoting significant channels during grasp onset, downward triangles
denoting channels significant during grasp offset, and stars denoting channels significant during
both grasp phases. The location of the central sulcus is marked by a red line on each electrode grid.
The orientation of each grid is indicated at the bottom (A: anterior, P: posterior, D: dorsal, L: lateral)
(Figure modified from Jiang et al. 2020. Supplementary Material)

Fig. 3 Temporal evolution of average LFB-ERD (blue), HFB-ERS (red), grip force (black), and
the first time-derivative of force (dF, orange) around grasp onset and offset phases. The ERD/ERS
were averaged across all significant channels and displayed from -14 to 14 dB for all patients while
the scales of Force and dF are different across patients and provided on the right side of each figure.
Both LFB-ERD and HFB-ERS started between 100 and 300 ms prior to the onset of the grasp
(Figure modified from Jiang et al. 2020)
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however, ERS generally started right at or after the beginning of the relaxation phase.
In contrast, LFB-ERD generally started before the relaxation phase. The peaks of
both LFB-ERD and HFB-ERS occurred after the peak of the force yank, that is, 200–
300ms after the start of the relaxation phase. Especially during grasp onset, the time-
course of HFB-ERS closely matched the force yank for all patients. The similarities
between ERD/ERS and force yank during grasp offset were not as high as during
grasp onset. Overall, at grasp onset, the correlation between HFB-ERS and force
yank (r = 0.79± 0.03) was significantly stronger than with raw force (r = 0.31±
0.2; paired t(3) = 10.1, p = 0.002). The correlation between HFB-ERS and force
yank (r = −0.61±0.1) was slightly weaker at grasp offset and was not significantly
different than the correlation with the raw force (r = 0.63 ± 0.1; paired t(3) =
0.23, p = 0.83). At grasp onset and offset, the correlation between LFB-ERD and
force yank was stronger (onset: r = −0.6± 0.08; offset: r = 0.35± 0.17) than the
raw force (onset: r = 0.44 ± 0.05; offset: r = 0.24 ± 0.4), and weaker than to the
HFB-ERS.

4 Discussion

4.1 Temporal Dynamics of LFB-ERD and HFB-ERS

Earlier ECoG BMI studies focusing on hand grasp have mainly investigated the
decoding of movement kinematics, such as finger positions, grasp aperture, and
velocity (Kubánek et al. 2009; Miller et al. 2009; Acharya et al. 2010; Pistohl et al.
2012; Nakanishi et al. 2014; Flint et al. 2017). The few studies that investigated the
decoding of the kinetic aspects of hand grasp often used grasp tasks with relatively
short (<0.1 s) or no explicit holding period (Chen et al. 2014; Flint et al. 2014). In this
study, intraoperative high-density ECoG was recorded from the sensorimotor cortex
of four patients while they were instructed to execute sustained hand grasps which
lasted for at least 2–3 s. We observed phasic power modulations in ECoG subbands
during the onset and offset phases. Although the subjects sustained the grasp, both
gamma ERS and alpha/beta ERD diminished or vanished during the hold period.

To the best of our knowledge, the earliest evidence regarding phasic modulations
in motor cortical oscillations was provided by Jasper and Penfield during the onset
and offset phases of hand clenching (Jasper and Penfield 1949). A study of sustained
hand grasp in non-human primates also showed distinct peaks of gammamodulations
at both grasp onset and offset (Waldert et al. 2015). Both studies coincide with our
observations in power modulation in LFB and HFB at movement onset and offset.
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4.2 Connections to the Dynamics of the Afferent Systems

During grasp onset, finger movements and the pressure exerted on the hand
dynamometer activate not only the muscle spindles but also the slowly-adapting,
low-threshold mechanoreceptors, such as the Merkel cell-neurite complex found
in the basal layer of the epidermis of fingers, as well as the slowly-adapting Ruffini
endings broadly expressed in the dermis. The handling of the hand dynamometer also
stimulates the rapidly-adapting Meissner corpuscles located in the dermal papillae
of the glabrous skin as well as the rapidly-adapting Pacinian corpuscles, by way of
skin deformation and indentation (Delhaye et al. 2018; Roudaut et al. 2012). It is
likely that the late HFB-ERS at grasp offset is associated with the burst activity of
fast adapting Meissner and Pacinian corpuscles due to the release of stimulation and
skin deformation recovery. In recent work on the response to deep, light and soft
touch (Kramer et al. 2019) with ECoG, elevations in high gamma (HG) power was
shownwithin selected electrodes over the hand area of primary somatosensory cortex
(S1), that lasted between around 300–500 ms, but extinguished prior to the end of
the tactile stimulus. This coincides with our findings regarding the S1 high-gamma
attenuation pattern during the hold period of a grasp task and Fig. 2 shows that high-
intensity gamma response (50–150 Hz) peaked between 50 and 400 ms after grasp
onset, within selected electrodes anterior and posterior to the central sulcus.

Interestingly, HFB-ERS was mostly at the lower end of the high gamma spec-
trum (60–200 Hz) during the hold period. Together with the phasic response of fast
adapting receptors, it is likely that the fast firings generated by the slowly adapting
Ruffini endings and Merkel cells contribute to the early high-intensity broadband
gamma response that we observed (Fig. 2) by way of skin deformation, indentation,
as well as pressure at the onset of the grasp (Delhaye et al. 2018; Kramer et al. 2019;
Roudaut et al. 2012; Ryun et al. 2017). The broadband high-frequency ERS later
reduces to a low-intensity gamma response at a lower frequency as time progresses,
and this behavior can be related to the activation patterns of the slowly adapting
receptors of the afferent system (Delhaye et al. 2018; Roudaut et al. 2012).

Both LFB-ERD and HFB-ERS started earlier than the grip onset, suggesting that
bothmodulations are associatedwith the efferentmovement command. Interestingly,
while LFB-ERD started earlier, the HFB-ERS lagged the grip offset. Since LFB-
ERD preceded both the onset and offset of the grasp and peaked after each, it is
likely that the efferent system modulates the 8–32 Hz range at each phase, but this
was later modulated by the afferent system. Consequently, the results suggest that
the initiation and termination of grasp are associated with a distinct neural activity
where the HFB-ERS represents the dynamics of the afferent and efferent systems
at the grip onset, whereas HFB-ERS reflects mainly the afferent system during the
offset that corresponds to the relaxation phase. The magnitude of LFB-ERD and
HFB-ERS were weaker in the offset phase compared to the onset phase. The grasp
onset phase does require more control than the relaxation phase, which may explain
why there is a less clear signature of neural involvement before the relaxation phase.



98 T. Jiang et al.

4.3 Spatial Profile of HFB-ERS and LFB-ERD

We found that HFB-ERS was generally more extended, and of greater amplitude in
posterior channels than anterior ones. In a recent study (Ryun et al. 2017), it was
also discovered that HG activity in S1 was more dominant than in M1 during active,
voluntary movement. Others have also confirmed that humans’ sensory information
is present in M1 recordings, in addition to motor responses in S1 (Sanes et al. 1995;
Schieber and Hibbard 1993; Schroeder et al. 2017). In addition, M1 and S1 are
reciprocally connected (Arce-McShane et al. 2016; Kunzle 1978). For these reasons,
it may not be entirely surprising that voluntary movement-related oscillatory activity
from M1 and S1 share similar characteristics and have relatively small quantitative
differences.

4.4 Possible Challenges in ECoG Decoding for Sustained
Hand Grasp

Published studies on decoding the force of hand grasp generally assumed a linear
relation between brain oscillatory activity, such as beta and gamma-band power
of ECoG or LFP, and grasp force (Chen et al. 2014; Flint et al. 2014; Milekovic
et al. 2015; Tan et al. 2016). However, in this study, we show that the dynamics
of LFB-ERD and HFB-ERS were more congruent with the first time-derivative of
force rather than with force itself. In spite of a wide spectrum of force generated
(1–30 kg), significant correlations between the time-course of LFB-ERD/HFB-ERS
and the first time-derivative of force (yank) were found across all four patients. At
grasp onset and offset, the correlation levels between HFB-ERS and force yank were
significantly higher in posterior channels compared to anterior channels. Compared
to HFB-ERS, LFB-ERD had weaker correlations with force yank. At grasp offset,
the correlation between HFB-ERS/LFB-ERD and force yank was inverted and both
neural activations lagged the force yank. Recently, Branco et al., also reported similar
dynamics in high-frequency band suggesting nonlinear relationship between grasp
force and neuralmodulations in sensorimotor cortex (Branco et al. 2019). In addition,
the correlation between HFB-ERS and force yank was smaller for both anterior
channels and posterior channels at grasp offset compared to grasp onset.

Moreover, the lack of HFB-ERS patterns forecasting the transition to the relax-
ation at the offset of the grasp will likely add challenges in decoding oscillatory
neural activity involving sustained hand grasp. It is likely that information across
multiple frequency bands and nonlinear dynamics of oscillatory activity need to be
integrated to accurately decode the state transitions and the details of the hand grasp.
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5 Conclusions

Understanding the neural encoding of force generation during a hand grasp task is
important for the development of neuroprosthesis for common daily motor activities.
In this study, we recorded high-density ECoG intraoperatively from the sensorimotor
cortex of four patients while they executed a sustained hand grasp. Although the
grasp force was maintained during hold, the magnitude of LFB-ERD and HFB-ERS
decreased towards the baseline.Consistently in all patients,we show that the temporal
dynamics of gamma ERS and beta ERDwere correlated with the first time-derivative
of force (yank) rather than with force itself. To the best of our knowledge, this is the
first study that establishes such a correlation. These results have fundamental impli-
cations for the decoding of grasp in brain oscillatory activity-based neuroprosthetics.
In general, due to the biphasic characters of HFB-ERS/LFB-ERD at grasp onset and
offset, force decoding algorithms based on the cortical oscillatory activity should be
carefully designed to preserve the memory of the system. Future strategies aimed at
decoding sustained grasp force from subband modulations will need to model the
first-time derivative of grasp force to develop useful neuroprostheses.
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Developing a Closed-Loop
Brain-Computer Interface for Treatment
of Neuropsychiatric Disorders Using
Electrical Brain Stimulation
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Edward F. Chang, and Maryam M. Shanechi

Abstract Neuropsychiatric disorders are a leading cause of disability worldwide.
In our research project we are developing brain-computer interface technology to
decode mood states that determine appropriate stimulation parameters for real-time
therapy.

Keywords Depressive disorder · Brain stimulation ·Mood states

1 Introduction

Neuropsychiatric disorders are a leading cause of disabilityworldwide, amongwhich
depressive disorders are the most debilitating (Whiteford et al. 2013). In the United
States alone, every year, an estimated 7.1% of adults (17.3 million) experience at
least one major depressive episode (“2018 National Survey of Drug Use and Health
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(NSDUH)” 2018). About 30% of major depressive cases do not respond to current
treatments, i.e., are treatment resistant (Rush et al. 2006). Electrical brain stimula-
tion holds promise as a new therapy for treatment-resistant depression. Early seminal
studies on open-loop stimulation—which applies stimulation continuously over time
without guiding it with neural activity—showed promise in relieving depression
symptoms (Mayberg et al. 2005; Lozano et al. 2008; Schlaepfer et al. 2008, 2013;
Malone et al. 2009) but had variable efficacy in recent clinical trials (Dougherty
et al. 2015; Holtzheimer et al. 2017). Since neuropsychiatric symptoms exhibit inter-
and intra-patient variabilities, developing a personalized closed-loop brain-computer
interface (BCI) approach could help improve efficacy by precisely tailoring the stim-
ulation therapy to the patient’s needs. For each patient, a personalized closed-loop
BCIwould use the neural activity to decode the relevantmood states related to depres-
sion and anxiety symptoms; then these decodedmood states would serve as feedback
to determine the appropriate stimulation parameters in real time for a desired ther-
apeutic outcome (Shanechi 2019; Yang et al. 2018). Despite the promise, such a
personalized closed-loop BCI is unrealized to date (Shanechi 2019). Indeed, a major
obstacle toward realizing such a BCI is the need to build models that can decode
mood state variations related to depression and anxiety symptoms over time and to
design closed-loop controllers for stimulation (Shanechi 2019; Yang et al. 2018).

The decoding of mood states entails distinct challenges compared with decoding
movements in traditional motor BCIs. In motor BCIs, motor intentions can be
decoded well from relatively local motor cortical areas (Shanechi 2019). Also, since
movements can be measured continuously in time, a large amount of training data
can be obtained to train the decoders. In contrast, for neuropsychiatric disorders,
distributed multisite brain networks underlie the symptoms (Drevets 2001; Kupfer
et al. 2012) which necessitates modelling a high-dimensional multisite neural feature
space (Shanechi 2019). Moreover, neuropsychiatric symptoms are difficult to assess,
and often need to be measured using questionnaires (Ekkekakis 2013; Widge et al.
2017). Thismeans that only sparsemeasurements of the symptomswouldbe available
for decoder training. Therefore, decoding mood states poses a challenging modeling
problem and had remained elusive (Sani et al. 2018).

2 Neural Decoder of Mood State

We developed a new modeling framework to build neural decoders of mood state
and demonstrated, for the first time, that mood state variations can be decoded in
human epilepsy patients from intracranial human brain activity (Sani et al. 2018).
Over multiple days in seven epilepsy subjects, we continuously recorded multisite
intracranial EEG (iEEG) and simultaneously collected self-reported mood states
that measured depression and anxiety symptoms. We devised a novel modelling
framework that can use the sparse mood state measurements to identify a minimal
network of brain regions that was sufficient for decodingwithin the high-dimensional
multisite iEEG recordings. The framework trained a mood decoder using the iEEG
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signals of the identified minimal network. We showed that our modelling framework
could significantly decode mood state variations in every individual subject. Across
the population, the cross-validated decoding had a correlation coefficient of 0.75with
its true value, leading to an explained variance of 0.57 (Sani et al. 2018). Interestingly,
our framework largely selected the limbic regions for decoding, consistent with prior
evidence from fMRI studies, which suggest a key role for these regions in depression
(Drevets 2001; Kupfer et al. 2012).

Beyond decoding mood variations, another challenge is to design a closed-loop
controller that takes the decoded mood as feedback to determine the stimulation
parameters to take a pathological brain state toward a healthy state (Shanechi 2019).
To design such a closed-loop controller, we need a system identification frame-
work for the effect of stimulation on symptoms (Shanechi 2019; Yang et al. 2018,
2021). To address this challenge, we have developed a control-theoretic system
identification framework that uses a novel clinically safe binary-noise modulated
stimulation pattern in our prior theoretical work (Yang et al. 2018). We have vali-
dated this system identification framework with hardware-in-the-loop simulations
(Yang et al. 2018) and more recently in animal models (Yang et al. 2021). We are
currently actively investigating how these computational techniques can be lever-
aged to develop novel models for the effect of brain stimulation in humans in the
future. We are also exploring the adaptive tracking of non-stationarity and state-
dependency in neural activity over time (Ahmadipour et al. 2020; Yang et al. 2020).
Our results to date help pave the way toward future personalized closed-loop BCIs
for precisely tailored electrical stimulation therapies for neuropsychiatric disorders,
which holds promise to improve the quality of life for millions of patients suffering
from treatment-resistant neuropsychiatric conditions. Our work to date has been
published in (Shanechi 2019; Yang et al. 2018, 2019, 2020, 2021; Sani et al. 2018;
Ahmadipour et al. 2020).
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Decoding Speech from Dorsal Motor
Cortex

Sergey Stavisky

Abstract Dr. Stavisky and his team won first place in the BCI Research Award
2019 with their project. Here, we interviewed him to learn more about his project,
including the technologies involved and possible clinical applications. Several figures
introduce the team and elucidate details about their winning project. The interview
concludes with new work and references.

Keywords Brain-computer interface · Intracortical · Utah array · Actual speech ·
Attempted speech · BCI awards

1 Introduction

Sergey D. Stavisky from Stanford University, USA and his team detected speech-
related neural activity from Utah arrays that had already been placed in the dorsal
“arm/hand” area of motor cortex of an intracortical BCI clinical trial participant with
tetraplegia. This enabled them to study the motor cortical dynamics during speech
production at the unprecedented resolution of populations of single neurons. Their
prototype work could identify one of nine spoken syllables with 84.6% accuracy,
with 83.5% accuracy among ten words. Their project was:
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Fig. 1 Sergey Stavisky (top row, right) andmost of the team that contributed to their award-winning
project, including FrankWillett (top row, second from left), JaimieHenderson (top row,middle), and
Krishna Shenoy (top row, second from right). Other current and former members of the Stanford
Neural Prosthetics Translational Laboratory in this photo are Eli Stein, Donald Avansino, Guy
Wilson, Darrel Deo, and Sharlene Flesher

Sergey and his team won 1st place in the BCI Award 2019 (Fig. 4). We inter-
viewed him about their project and future applications, then edited the interview and
added figures and references. In addition to the references that Dr. Stavisky cited
in his interview, we provided additional references for readers interested in related
publications.

2 Interview

Sergey, you submitted your BCI research “Decoding speech from intracortical
multielectrode arrays in dorsal motor cortex” to the BCI Award 2019 and won
1st place. Could you briefly describe what this project was about?

Sergey: We recorded directly from inside an area of the brain traditionally thought
of as controlling arm and hand movements, and we found that the neural
signals there also reflected what the person was speaking. This allowed us
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to prototype ways to identify what the person was saying, which is a first
step to building a BCI for restoring speech.

What was your goal?

Sergey: This was our team’s first foray into speech BCIs, so initially we just wanted
to see if we would even see any speech-related neural activity. We already
had electrode arrays implanted in the “arm and hand” area of motor cortex
of participants in the BrainGate2 BCI pilot clinical trial, and much of
our previous work focused on decoding attempted arm movements (for
example, see our consortium’s 2018 BCI Award submission). While there
had been some incredible recent demonstrations of speech decoding using
electrocorticography, those studies used signals from much more ventral
brain areas than where our arrays were. I didn’t have high expectations
going in: it was a bit of a “let’s take a look and see what we see” if we ask
our participants to speak. When we did find speech-related activity, this
was both surprising and exciting! From there, we shifted into high gear to
try to decode these signals.

What technologies did you use?

Sergey: Wemade these recordings using twoBlackrockMicrosystems 96-electrode
arrays (Fig. 2). It’s the only intracortical sensor approved for long-term
human use, and it’s allowed us to learn a great deal about the brain and to
demonstrate what is possible using implanted BCI. Looking to the future,
I’m excited about the possibility of getting even better neural signals using
new and improved implanted neural recording devices. In terms of the

Fig. 2 Panel a shows where the two arrays were placed on the cortex. Panel b shows that 73 out
104 functioning electrodes’ TC firing rates showed a significance response during speaking, and
most responded to speaking multiple syllables
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Fig. 3 Panel a shows a two-dimensional representation of individual trials’ neural features, demon-
strating clustering within syllables and phonetic groupings across syllables. Panel b shows classifier
confusionmatrices: cross-validated prediction accuracieswere 84.6%for syllables (10 classes,mean
chance accuracy was 10.1% across shuffle controls) and 83.5% for words (11 classes, chance was
9.1%)

algorithms, in this initial work we used conventional statistics techniques,
but we’re now applying modern deep learning techniques to much larger
human speaking datasets (Figs. 2 and 3).

What kinds of people could benefit from your research?

Sergey: Showing that we can decode speech-related activity from implanted elec-
trode arrays is a first step towards building BCIs to restore speech. This
couldmake a tremendous difference for peoplewho have lost their ability to
speak, for example due to stroke, traumatic brain injury, ALS, or vocal tract
injury. In doing so, we’re studying speech production with single neuron
resolution, which I hope will lead to fundamental scientific discoveries in
addition to the more direct translational applications (Fig. 3).

Do you think your work has potential for clinical use?

Sergey: I absolutely do, but there’s a long road to get there. First of all, here we
showed that we can identify which of a small number of syllables or words
was spoken, in isolation.A clinical speechBCI should be capable of synthe-
sizing a full range of continuous speech. Second, we identified sounds that
the participants actually spoke out loud. There are additional challenges in
building themap fromneural activity to speech if the user isn’t able to speak
at all. Third, we recorded neural activity using electrodes that have external
wires coming out through the scalp. In a clinical system, the sensors need
to become fully implanted. Fortunately, there’s a lot of work being done on
all of these fronts by many groups, including ours (Fig. 4).

Can you recommend examples of new articles from other groups that address
these fronts?

Sergey: Yes, there’s really been a hot streak in the speech BCI subfield—exciting
times! Just in the past year, there have been multiple very impressive
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Fig. 4 3D reconstruction of the two 100-electrode Utah arrays in the participant’s dorsal precentral
gyrus (the so-called ‘hand knob’ area of motor cortex). An example of the simultaneously recorded
speech audio waveform (blue) and neuron action potentials (yellow and pink ticks) are shown

recent studies for decoding continuous speech using ECoG recordings.
GopalaAnumanchipalli and JoshChartier ledone such study reconstructing
the produced speech movements and sounds during spoken sentences
(Anumanchipalli et al. 2019),whileChristianHerff andMiguelAngrick led
two other studies using a mix of unit selection and deep learning methods,
respectively, to reconstruct spoken words (Herff et al. 2019; Angrick et al.
2019). There was also an innovative study by Joseph Makin which used
end-to-end machine translation methods to decode spoken sentences, and
this work was a finalist for the 2020 BCI Award (Makin et al. 2020).

Another approach is to decode from auditory areas, with the idea being that one
might decode the imagined “inner voice” of patients unable to speak. To that end,
a recent study from Hassan Akbari and colleagues (Akbari et al. 2019) showed
reconstruction of heard speech from human auditory cortex, while a team led by
Christopher Heelan and Jihun Lee reconstructed heard speech frommonkey auditory
cortex using Utah arrays (Heelan et al. 2019).

For moving speech BCIs towards closed-loop systems, a project led by David
Moses (Moses et al. 2019) showed a real-time question-and-answer decoder
(restricted to a small number of possible response). Other groups are also exploring
intracortical approaches in people. For example, one way to get intracortical data
while people speak is stereotactic-EEG, and there’s a nice recent review by Herff,
Krusienski, and Kubben summarizing their (and others’) recent work in that domain
(Herff et al. 2020).

Do you have any new work since the award ceremony related to your project?
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Sergey: Yes, we’ve recently published two additional studies that built upon this
discovery of speech-related activity in dorsal motor cortex.

The first of these new studies addressed the concern that this speech-related
activity would be a “nuisance variable” during arm/hand BCI use. For example,
imagine if a BCI user speaks while trying to control an arm prosthesis (or a computer
cursor): would the accompanyingmodulation of the same neurons that also are linked
to moving the arm inadvertently affect the BCI output and interfere with achieving
the intended reach goal? To answer this, we conducted a follow-up study inwhich our
participant spoke while simultaneously using a cursor BCI. Fortunately, we found
that the interference scenario just was not the case: when the participant spoke while
simultaneously attempting arm movements, speech-related activity in dorsal motor
cortex was attenuated and did not affect the decoder. We also asked the participant
whether it was difficult to talk while using the cursor BCI, and he said it was not. This
is encouraging as it shows that the “biomimetic” motor BCIs we are developing—
meaning, where the person attempts to move their arm as they normally would—are
intuitive and not overly cognitively demanding. This study is now published in the
Journal of Neural Engineering (Stavisky et al. 2020).

In the second study (Wilson et al. 2020), my colleague GuyWilson and I extended
our dorsal motor cortex speech decoding results to cover more than the 9 or 10-
class prediction from our 2019 BCI Award project (and associated eLife paper).
Specifically, we trained decoders to discriminate amongst a comprehensive speech
basis set of 39 English phonemes, or to directly reconstruct speech audio using
the ‘brain-to-text’ approach from the aforementioned Herff et al. (2019) study. We
achieved up to 39% accuracy for the phoneme prediction and r = 0.52 correlation
between true and reconstructed audio, which is competitive with prior ECoG work
despite our recording from what is almost certainly a suboptimal area of the brain.
These results give me a lot of confidence that we can do even better with intracortical
measurements from more ventral speech areas of cortex.

What was it like to win the BCI Award 2019?

Sergey: It was fantastic news! The whole team was delighted. There’s so much
effort over many, many months that goes into BCI research (for example,
we started this project in Autumn 2017), so it’s really nice to have awards
like this that come as a pleasant surprise and recognize the work.

How was your research funded?

Sergey: We are very grateful for support from a number of funders, including
both U.S. federal sources and private foundations, which are listed in the
Acknowledgements section, which made this research possible.
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Training with BCI-Based Neurofeedback
for Quitting Smoking

Junjie Bu

Abstract Dr. Bu and his team won second place in the BCI Research Award 2019
with their project that used neurofeedback training to help people quit smoking.
Chapter “BCI-based Neurofeedback Training for Quitting Smoking” of this book
describes this project in detail, while this chapter presents an interview with Dr.
Bu. This interview addresses non-technical issues such as how the idea for their
project developed, the importance of working with people from different back-
grounds, advice for people new to BCI research, recent work since the BCI Research
Award, and how they plan to extend their work in the next several years.

Keywords Brain-computer interface · Cognition-guided neurofeedback · Nicotine
addiction · Smoking cue reactivity · BCI Research Awards

1 Introduction

Dr. Junjie Bu studied at the University of Science & Technology of China and is
currently with Anhui Medical University. His team developed a closed-loop neuro-
feedback training using a brain-computer interface to help smokers quit. Their
approach reduced cigarette craving and smoking behaviour and is a promising
BCI-based tool for treating addiction. Their project was:
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This project won 2nd place at the BCI Award 2019. Dr. Bu and the senior author,

Prof. Zhang, describe their project in chapter “BCI-based Neurofeedback Training
for Quitting Smoking” of this book. That chapter includes background information,
figures describing the approach and results, statistical analyses, references, and other
details. This interview complements that chapter with an easier overview of their
project, along with how their project developed, new work, and future directions.

This interview chapter is based on an interview that Dr. Guger conducted with
Dr. Bu. The book editors then worked with Dr. Bu via email to edit the interview and
add additional text, figures, acknowledgments, and references.

2 Interview

Junjie, you submitted your BCI research “BCI-based neurofeedback training
for quitting smoking” to the BCI Award 2019 and won 2nd place. Could you
briefly describe what this project was about?

Junjie: Yes! In this project, we developed a novel cognition-guided neurofeed-
back system and tested its therapeutic efficacy on nicotine addiction using a random-
ized clinical trial. Using this neurofeedback, smokers were trained to de-activate
their EEG activity patterns related to smoking cue reactivity. We found that this
neurofeedback produced short-term and long-term effects on cigarette craving and
smoking behaviour. In particular, the rate of smoking decreased as much as 38.2%
during the 4-month follow-up period after only two sessions of this neurofeedback
training.

What was your goal?

Junjie: We have been applying the cognition-guided neurofeedback approach for
treating methamphetamine addiction and alcohol addiction. As we know, they are
more severe than nicotine addiction. However, there are few effective treatments for
them. We hope that our neurofeedback could help patients reduce the symptoms of
addiction and change their lives.We are alsoworking to improve training for different
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patients by optimizing different aspects of our neurofeedback system, such as the
cognitive task, machine learning algorithm, training sessions and so on.

What technologies did you use?

Junjie: Our cognition-guided neurofeedback consisted of two parts. First, we
trained a personalized classifier to distinguish the EEG activity patterns corre-
sponding to smoking and neutral cue reactivity using the specific cognitive task
(smoking cue reactivity task). Next, during neurofeedback training, participants were
asked to repeatedly and continuously deactivate their real-time EEG activity patterns
of smoking cue reactivity calculated using a previously constructed classifier.

How did you develop the idea to work on that project?

Junjie: My undergraduate background is biomedical engineering. I like cognitive
neuroscience and I wanted to applymy knowledge of brain science tomake a change,
especially to help people. Then, I met my PhD advisor, Prof. Xiaochu Zhang. He is
a cognitive psychologist. We used our strengths together to start the neurofeedback
project.

Which disciplines are involved?

Junjie: First, we designed a cognitive task based on cognitive psychology. Then,
we recorded and analysed the EEG data based on biomedical engineering. Third, we
applied amachine learning algorithm for brain pattern recognition based on computer
science. Finally, we designed a randomized clinical trial to test the effects based on
psychiatry medicine. So it is really interdisciplinary.

How effective was your approach?

Junjie: Well, after two visits of the neurofeedback training, smokers showed a
significant decrease in cigarette craving and craving-related P300 amplitudes. The
rates of cigarettes smoked per day at 1 week, 1 month and 4 months follow-up
decreased 30.6%, 38.2%, and 27.4% relative to baseline.

How did it feel to be one of the BCI Award winners?

Junjie: It is a great honor to win second place. My good friend Haohao came
with me to take part in the ceremony. The ceremony was great (Fig. 1). When I heard
my name, it was really surprising. At the ceremony, I was very grateful and very
thankful to g.tec, the BCI Award committee, my PhD advisor Prof. Xiaochu Zhang,
my current affiliation with Anhui Medical University (Fig. 2) and my family.

In Chapter “BCI-based Neurofeedback Training for Quitting Smoking” of this
book, you and Prof. Zhang said that this approach merits further testing. Have
you conducted any new research to follow up on neurofeedback for quitting
smoking?

Junjie: Yes. We published some papers recently with relevant research. Some of
these papers detailwork based on our project submission (Bu et al. 2019a;Cheng et al.
2020).We also have related newwork involving hypnosis to help people quit smoking
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Fig. 1 This image shows five people onstage during the Awards Ceremony. From left to right:
Emcee Dr. Krausz, Interviewee Dr. Bu, Chair of the Jury Dr. Tangermann, Jury Member Dr.
Wreissneggar, and Emcee Dr. Allison

Fig. 2 Anhui Medical University is one of the oldest universities in the province of Anhui and
spans over 850,000 square meters
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and advancedEEG imaging to study effects such as reduced cravings (Bu et al. 2019b;
Li et al. 2019a, 2019b). In addition, we plan to combine our neurofeedbackwith other
methods (e.g., hypnosis and tDCS) in order to help them quit smoking better.

What are the remaining steps before this approach is ready for clinical
practice?

Junjie:Althoughwe did conduct a studywithmany patients, morework is needed
before this approach is safe for the public. For example, we need to knowmore about
possible risks or side effects, especially for some groups of patients at higher risk.
We might make the approach more effective with more research. Clinical device
approval is also necessary.

Do you have advice for undergraduate or graduate students who want to
work on BCIs?

Junjie: You’d better communicate with people who have different backgrounds,
including neuroscience, cognitive psychology, psychiatry medicine and so on. Don’t
restrict your thoughts based on what you have learned and what you previously
thought.

How was your research funded?

Junjie: We appreciate support from the National Key Basic Research Program
(2016YFA0400900 and 2018YFC0831101), The National Natural Science Foun-
dation of China (31771221, 31471071, 61773360, 71874170, and 32000750),
Anhui Provincial Natural Science Foundation (2008085QH369), China Postdoctoral
Science Foundation (2019TQ0312 and 2019M662203), and School Foundation of
Anhui Medical University (2020xkjT020, 2019xkj016 and XJ201907).
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Closed-Loop BCI for the Treatment
of Neuropsychiatric Disorders

Omid G. Sani, Yuxiao Yang, and Maryam M. Shanechi

Abstract Prof. Shanechi and team submitted a project about developing neuro-
feedback to help patients with neuropsychiatric disorders such as depression. Their
project won third place in the BCI Award 2019. In this chapter, we interviewed Prof.
Shanechi and two other members of her team about their project. We asked about
why their research is important for patients, how their system operates and might be
adapted to real-world use, remaining challenges, and new work from their group and
other groups.

Keywords Brain-computer interface · Intracranial electroencephalography ·
Depression · Neurofeedback · BCI Awards

1 Introduction

Many patients with depression find therapy, medication, cognitive and behavioral
changes, and/or other treatments helpful. However, these methods are not effective
for about a quarter of patients with major depression, and thus tens of millions of
peopleworldwide need newways to treat their depression. The 3rdwinner in the 2019
BCI Award presented their work toward realizing a BCI system that could provide an
alternative therapy to help patients with major depression for whom other treatments
are not effective. Chapter “Developing a Closed-loop Brain-Computer Interface for
Treatment of Neuropsychiatric Disorders Using Electrical Brain Stimulation” of this
book contains details about their project, while this chapter presents an interview
with some members of the winning team. Their project, including the teammembers
behind the project and their affiliations, was:
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Developing a Closed-loop Brain-computer Interface for Treatment of Neuropsy-
chiatric Disorders Using Electrical Brain Stimulation

Yuxiao Yang1,†, Omid G. Sani1,†, Morgan B. Lee2,3,4, Heather E. Dawes2,3,4,
Edward F. Chang2,3,4, Maryam M. Shanechi1,5.

1Ming Hsieh Department of Electrical and Computer Engineering, Viterbi School
of Engineering, University of Southern California, USA.

2Department of Neurological Surgery, University of California, USA.
3Weill Institute for Neuroscience, University of California, San Francisco, USA.
4Kavli Institute for Fundamental Neuroscience, University of California, San

Francisco, USA.
5Neuroscience Graduate Program, University of Southern California, USA.
†Equal author contribution.
This interview chapter is unique in thatwe had the opportunity to interviewnot one

but three members of the team behind a winning project. Maryam Shanechi, and her
PhD students Omid Sani, and Yuxiao Yang answered questions about their project,
which won third place in the BCI Award. Their project entailed a collaboration
between Maryam Shanechi’s Lab at the University of Southern California (USC)
and Edward Chang’s Lab at the University of California at San Francisco (UCSF):

Figure 1 shows the three interviewees. Dr. Guger initially interviewed them, and
then we worked together to develop this chapter, including introductory text, new
questions and answers, figures, and references. Readers might also be interested in
two chapters in this book fromDr.Bu and colleagues,whowon second place this year.
These chapters feature a project description (Chapter “BCI-based Neurofeedback
Training for Quitting Smoking”) and an interview with Dr. Bu about their team’s
work involving neurofeedback with implanted BCIs to help people quit smoking
(Chapter “Decoding Speech from Dorsal Motor Cortex”). Chapter “Neurofeedback
of ScalpBi-HemisphericEEGSensorimotorRhythmGuidesHemisphericActivation
of Sensorimotor Cortex in the Targeted Hemisphere” from Hayashi and colleagues
describes an EEG-based neurofeedback system to support sensorimotor feedback,
which could support neural rehabilitation. Hence, both invasive and non-invasive

Fig. 1 From left to right: Yuxiao Yang, Maryam Shanechi, and Omid Sani
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BCIs that centered on neurofeedback to help different patient groups were prominent
among this year’s nominees and winners.

2 Interview

Maryam, Yuxiao, and Omid, you submitted your BCI research project titled
“Developing a closed-loop brain-computer interface for treatment of neuropsy-
chiatric disorders using electrical brain stimulation” to the BCI Award 2019
and won 3rd place. Could you briefly describe what this project was about?

Maryam: Neuropsychiatric disorders such as major depression are a leading
cause of disability worldwide. Currently, about 20–30% of major depression patients
are not responsive to any available treatments. This is about 5 million people in the
US alone who could greatly benefit from a novel treatment. Motivated by the view
that neuropsychiatric disorders are signs of abnormal brain network activity, our goal
is to provide a new treatment in the form of a novel closed-loop BCI that aims to
normalize these brain activity patterns using electrical stimulation.

To do so, we take a principled engineering approach to designing this BCI. Our
aim is to design a BCI that can decide in real time how to stimulate the brain guided
by novel decoders that track a patient’s mood state that is related to their depression
and anxiety symptoms from their brain activity (Shanechi 2019). The goal of the BCI
is to alleviate these symptoms by applying the stimulation at the right time, with the
right amount, and in a manner that is precisely tailored to the patient’s needs. Such
a BCI is unrealized to date. In this project, we describe our recent progress toward
realizing such a BCI centered around developing decoders and system identification
methods for stimulation.

What technologies did you use?
Yuxiao: We use tools from machine learning and control theory to develop novel

mathematical models that explain how a patient’s mood symptoms are represented
in their brain activity (Sani et al. 2018; Yang et al. 2019). We also use these compu-
tational tools to understand how stimulation might normalize the abnormal brain
activity patterns (Yang et al. 2018; Shanechi 2019; Yang et al. 2021). For example,
to decode mood from brain activity, in collaboration with Edward Chang’s team at
UCSF, we recorded multi-site intracranial electroencephalography (iEEG) signals
from seven epilepsy patients and concurrently measured their mood using a vali-
dated self-report questionnaire (Sani et al. 2018). Then, we developed a novel model
that can match each patient’s iEEG signal with the mood report.

Based on this model, we built a decoder that automatically estimates real-time
mood variations from the patient’s brain activity. Our future goal is to develop a
controller that optimally adjusts the amount of electrical stimulation in real-time
to alleviate mood symptoms, thus realizing a closed-loop brain stimulation system
(Shanechi 2019).

How would therapy for the treatment of neuropsychiatric disorders work
using your invention?
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Omid: We envision that, in the future, our BCI will be able to help provide a
precisely-tailored alternative therapy for treatment-resistant major depression. The
BCI will tailor the delivery of electrical stimulation to each individual patient’s need
by monitoring their mood symptoms in real time based on their brain activity. The
future goal will be to alleviate symptoms by applying electrical stimulation only
when needed, and only with the minimal optimal amount needed.

From the patient’s point of view, the treatment will be similar to how standard
deep brain stimulation (DBS) systems are currently implanted to treat Parkinson’s
disease for thousands of patients each year. But, of course, the algorithmic technology
within the implantwill need to enable closed-loop stimulation and address the distinct
challenges for neuropsychiatric disorders. The vision is that after implantation, the
patient will be able to go back to their normal lifewhile the devicewill keep providing
the right amount of therapy. Of course, we still have to do much more work to realize
this vision in the future. We hope that the progress we have made so far will help
facilitate such a BCI.

Do you work together with other institutions?
Maryam: Yes, the mood decoding work was a close collaboration with Edward

Chang’s team at UCSF. We believe collaborations are key to success in this truly
interdisciplinary domain of BCI design.

How long will it take to have your technology available?
Omid: We are only at the early stages of moving toward making closed-loop

stimulation treatments for neuropsychiatric disorders clinically feasible. So far, we
have provided the first demonstration that mood symptoms related to depression and
anxiety can be decoded frombrain activity.Our next step is to developmodels that can
decide how to change the stimulation to normalize brain activity patterns underlying
these disease symptoms, and to test these models in animal and human experiments.
We have recentlymade progress toward validating such stimulationmodels in animal
models (Yang et al. 2021). We are also exploring the adaptive tracking of state-
dependency and non-stationarity in neural signals over time (Ahmadipour et al.
2020; Yang et al. 2020). Finally, we will need to build a real-time optimal controller
that can deliver the stimulation at the right time and with the right amount. Once
we develop the technology and rigorously validate it in animal models and human
experiments, the technology needs to be tested in carefully designed clinical trials to
assess efficacy and longevity for a larger group of patients and to validate safety.

How did it feel to be one of the winners of the BCI Award 2019?
Yuxiao: This is a great recognition of our work toward developing novel BCI

technologies that can provide alternative new therapies for millions of patients
with treatment-resistant neuropsychiatric disorders. We sincerely thank the jury for
selecting our work as one of the winners.

Can you tell us a little more about your backgrounds?
Omid: I am currently a postdoctoral scholar at USC, where I work with Prof.

Shanechi on developing new techniques for studying the brain and building BCIs for
treatment of neural disorders. I got the opportunity to work on this project as a part
my PhD in electrical engineering in Prof. Shanechi’s lab.
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Yuxiao: I am currently an Assistant Professor at the Department of Electrical and
Computer Engineering (ECE) in University of Central Florida (UCF). I worked on
this project during my PhD in electrical engineering in Prof. Shanechi’s lab at USC.

Maryam: I am assistant Professor and Viterbi Early Career Chair at USC Viterbi
School of Engineering. I received my PhD at MIT in electrical engineering and
computer sciences. My lab develops neurotechnology and studies the brain through
decoding and control of neural dynamics.
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The StentrodeTM Neural Interface
System

Nicholas Opie

Abstract Dr.Opie and his teamdeveloped the StentrodeTM Neural Interface System,
which records brain activity from inside the brain without requiring open-brain
surgery. This approach could have many medical applications. Although it has been
validated successfully so far, clinical trials, device approval, and more research will
be necessary before widespread application in people. This chapter presents an inter-
view with Dr. Opie about the project that his team submitted to the BCI Award 2019,
which was nominated for an award. Readers can learn about their team’s work devel-
oping the StentrodeTM, how it works, the research they conducted within the project
submission, new work, and future directions.

Keywords Brain-Computer Interface · StentrodeTM Neural Interface System ·
Paralysis · Electrode array · BCI Awards

1 Introduction

The StentrodeTM Neural Interface System is aminimally invasive, wireless BCI tech-
nology that records brain signals from electrodes positioned within cerebral blood
vessels. This approach overcomes limitations of existing BCIs, including the need for
open-brain surgeries, degradation of signals due to inflammation, tissue reactions to
penetratingmicroelectrodes, unilateral neural signal recording and required expertise
for system use. The StentrodeTM Neural Interface System can sense bilateral brain
signals from information-rich cortical areas without penetrating the skull or dura and
perform processing tasks to achieve BCI control using a custom-built software plat-
form requiring no expert knowledge for use. Feasibility of this approach is supported
by promising results from large-animal studies, which demonstrate the potential for
the StentrodeTM Neural Interface System to become the first minimally invasive
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Fig. 1 This team photo shows the people behind the StentrodeTM work presented in this book
chapter

Brain-Computer Interface designed for everyday use. First-in-human clinical trials
of the StentrodeTM Neural Interface System are currently underway.

Figure 1 shows Nicholas Opie and his colleagues. They submitted a project
involving the StentrodeTM Neural Interface System to the 2019 BCI Award, and
their project was nominated as one of the best projects that year. We interviewed
Dr. Opie about this project, including some questions about how it addressed the
different scoring criteria that the jurors used to evaluate the projects described in the
introduction chapter of this book. Then, we (the book editors) worked with Dr. Opie
via email to develop the interview into this book chapter. Their project was:

StentrodeTM Neural Interface System: Minimally-invasive Brain-Computer
Interface Designed for Everyday Use.

Peter Yoo1, Nicholas Opie1, Thomas Oxley1, Stephen Ronayne1, Gil Rind1, and
Amos Meltzer1.

1Synchron Inc., Australia.
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2 Interview

What was the goal of your project?

Nicholas: Over the last few years, it has been our goal to design, develop and
demonstrate the safety and efficacy of a novel endovascular neural interface that has
the potential to restore communication and independence to people with paralysis
(Fig. 2). Our technology is designed to record neural information from the motor
cortex without subjecting patients to risky surgery to remove the skull to access the
brain—surgery that is currently required by all existing implantable brain-machine
interfaces.

How did you approach this goal?

Nicholas: We believe that patient safety is paramount. Consequently, we
approached this challenge by identifying methods to access the brain fromwithin the
skull, without skull removal. Tomitigate the risks associatedwith open-brain surgery,
we developed a method of accessing the brain and motor cortex via blood vessels,
using angiographic surgical techniques commonly practiced to remove cortical blood
clots. We have built a human-grade device, validated preclinical testing and have
implanted Australian participants with large success (Fig. 2).

What technology did you use and why?

Nicholas:Wehave fabricated amonolithic stent electrode array (the StentrodeTM)
for permanent implantation within a blood vessel. This device is delivered to the
motor cortex through a small catheter. When in the desired location, the catheter is
removed, and the StentrodeTM self-expands to conform to the curvature of the vessel,
placing the electrodes against the vessel wall in close proximity to neural tissue. Elec-
trodes pick up neural signals and relay these to a transcutaneous telemetry unit placed
in the chest. In turn, the signals are wirelessly transmitted to an external processing

Fig. 2 These two images illustrate the StentrodeTM system. The left panel depicts the self-
expanding electrode array being deployed from within a catheter inside the superior sagittal sinus
over the motor cortex and the right panel shows a schematic of a patient using the wireless system
to operate a personal computer
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unit that interprets and decodes the information, translating it into commands that
can be used to control assistive technology such as computers, wheelchairs and
exoskeletons.

Does the approach work online/in real-time?

Nicholas: Yes. The system is designed for real-time decoding and has been
bench tested with simulated and pseudo-signals for real-time feature extraction,
classification, translation into digital commands and interfacing with devices and
applications.

Does the project include any novel hardware or software developments, or a
novel application of the BCI?

Nicholas: The StentrodeTM Neural Interface is the first fully-implanted wire-
less endovascular BCI capable of recording high-fidelity broadband neural signals
without the need for invasive open brain surgeries or percutaneous connections.
Unlike previous research systems, the StentrodeTM Neural Interface System incor-
porates deliberate design features, such as fully implanted battery-less ITU, a wire-
less ETU for device powering and data transfer and a custom-built software that
enables everyday use of BCIs for digital device control without specialist knowledge
to maximize the effective use by real-life users.

Is there anynewmethodological approachused compared to earlier projects?

Nicholas:The StentrodeTM overcomes limitations of the existing BCI technology,
addressing both issues of safety and efficacy. We performed numerous proof-of-
concept studies to investigate demonstrate the safety and efficacy of our technology,
which have been published in peer-reviewed journals, including Nature Biotech-
nology (Oxley et al. 2016; Opie et al. 2016, 2017, 2018). Our website1 has a full
publication list. These studies demonstrated that our device can be implanted in
between the two hemispheric motor cortices within a blood vessel in a large animal
model, that StentrodeTM can record contralateral movement-related neural informa-
tion chronically.Using surgical procedures comparable to those practiced for vascular
clot removal, we have optimised our technology and demonstrated the capacity to
deliver device in an ovine model. Further, we have empirically demonstrated that
our technology can record high-frequency bandwidth signal, similar to conventional
surface electrode arrays. Further, we have demonstrated preliminary safety of our
technology using high-resolution x-ray imaging and histology data of 20 animals
implanted for durations of up to 190 days (Opie et al. 2017). We observed that after
eight days, endothelial growth covered the stent and mounted electrodes, signifi-
cantly reducing the potential for clotting and thrombosis caused by exposure of bare
metal. No evidence of vascular occlusion of the implanted sinus was observed in any
of the animals throughout the 190-day timeframe. We have also conducted rigorous
preclinical testing of the StentrodeTM under the guidance of the FDA and local IRBs

1https://www.synchronmed.com/research/.

https://www.synchronmed.com/research/
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to ensure the device meets functional and safety requirements required for implan-
tation in humans. We have also developed a custom-built software that focuses on
user-experience and robustness that can perform an exhaustive list of tasks required
for real-time BCI control of digital devices. We have commenced the first-in-human
clinical trial of the StentrodeTM Neural Interface system, with the primary outcome
of safety and secondary outcome of efficacy.

What were the results?

Nicholas: Our preclinical studies have demonstrated a 95% endothlelialisation at
45 days, indicative that the Stentrode is quickly incorporated into the blood vessel.
Not only does this help tomaintain vessel patency, but it also anchors the electrodes in
place. Further, we have observed that signal quality increases following endothelial-
isation. Through substantial FDA-required mechanical and biocompatibility testing,
we have also observed that the Stentrode is safe for human implantation, and can
remain safe and function over a chronic duration.

How important are the results for clinical environments?

Nicholas:The preclinical testing, incorporatingmechanical, biocompatibility and
safety assessment of the technology in conjunction with Australian first-in-human
evidence are critical for our submission to the FDA for approval under IDE to
commence an early feasibility study in the USA. We have demonstrated and docu-
mented the manufacturing capabilities of our team, and are poised to continue our
journey towards commercial approval.

Are your results applicable in clinical/real-life environments?

Nicholas: The results we have obtained provide us and the paralysed commu-
nity with hope that a treatment to their condition is on the horizon. While we
are still a number of years away from achieving FDA approval, the results we
have obtained provide preliminary evidence of safety and efficacy of a novel brain
computer interface that is implanted without open brain surgery.

Is there any new benefit for potential users of a BCI? Is there any
improvement in terms of usability?

Nicholas: The deliberate design features of the StentrodeTM Neural Interface
System geared toward everyday use, provide many new benefits for the potential BCI
users. As mentioned above, the implantation procedure does not involve invasive
open-brain surgery or percutaneous connections, in turn, negating the associated
health risks. The ITU is battery-less,meaning that time-domain datawith full spectral
information can be acquired without power consumption/device longevity issues and
improve the likelihood of recording useful features.
The ETU that powers the ITU and acquires the data can be easily aligned by a lay
person guided by an intuitive LED indicator. The custom-built software is entirely
graphic-user-interface based, performs all necessary tasks to achieve BCI control,
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translates the decoded events into customizable HID standard inputs, operates in full
performance on a laptop and does not require special programming knowledge for
operation. Importantly, all components of the StentrodeTM Neural Interface System
are portable andmountable onto a wheelchair and the entire system fits inside a small
bag, which enables in-home and everyday use of the system.

Is there any improvement in terms of speed of the system (e.g. bit/min)?

Nicholas: Bench-top testing of the system with simulated signal with tentative
settings (window size = 100 ms, temporal smoothing = 1 s boxcar, Fs = 2000 Hz)
resulted in average decoding latency of between approximately 30–50 ms, thus,
effective latency of ~150 ms. However, the actual information transfer rate of an
actual user is unknown until the first participant of the clinical trial engages in user
training.

Is there any improvement in terms of accuracy of the system?

Nicholas:We do not have performance data currently but expect to soon with the
clinical trial. However, as mentioned above, the advantage of being able to record
time-domain data with full spectral information (within the Nyquist limit—sampling
rate of 2000 Hz) should favorably influence the decoder accuracy. Furthermore,
because the StentrodeTM will be implanted in the Superior Sagittal Sinus (SSS) that
is placed in between the left and right medial wall of the motor cortex, we are
expecting to record robust and characterizable features upon a variety of mental
strategies, which should further favorably improve the likelihood of achieving high
accuracy.

What are the next steps regarding your research?

Nicholas: Our first in-human study is underway (Oxley et al. 2020), with results
anticipated to be published and released publicly in the near future. Following exten-
sion of this trial to different countries and conditions, we believe that our technology
will restore independence through direct brain-controlled communication to those
in need.
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Towards Brain-Machine Interface-Based
Rehabilitation for Patients with Chronic
Complete Paraplegia

Solaiman Shokur

Abstract We recently interviewed Solaiman Shokur about the project that his team
submitted to the BCI Research Award in 2019. We then edited the interview and
added images that Dr. Shokur kindly shared to provide more information about
the team and project. Their project showed how a BMI-based protocol could provide
partial neurological improvements for personswith spinal cord injuries. This is a very
promising research direction, and several projects focused on improved rehabilitation
therapy have been nominated for BCI Research Awards.

Keywords Brain-Machine Interface (BMI) · Spinal cord injury (SCI) ·
Neurorehabilitation · Treadmill ·Multisensory integration

1 Introduction

In the first few decades of BMI research, most works aimed to help severely disabled
patients by providing tools for communication (such as spelling) and/or control
(such as a robotic arm). The prospect of using BMIs to help people recover motor
function had been considered, but not well explored (Kuebler et al. 2001; Wolpaw
et al. 2002). However, over the last decade, numerous papers have explored BMIs to
support motor rehabilitation for people with stroke (e.g., Mrachacz-Kersting et al.
2014; Guger et al. 2018; Mane et al. 2020).

This chapter presents an interview with Dr. Solaiman Shokur about his work
with the Walk Again Project team in São Paulo, Brasil, to extend this approach for

S. Shokur (B)
Bertarelli Foundation Chair in Translational NeuroEngineering, Center for Neuroprosthetics and
Institute of Bioengineering, Ecole Polytechnique Federale de Lausanne, Lausanne, Switzerland
e-mail: solaiman.shokur@epfl.ch

The BioRobotics Institute and Department of Excellence in Robotics and AI, Scuola Superiore
Sant’Anna, Pisa, Italy

Neurorehabilitation Laboratory, Associação Alberto Santos Dumont para Apoio à Pesquisa
(AASDAP), São Paulo, Brazil

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021
C. Guger et al. (eds.), Brain-Computer Interface Research,
SpringerBriefs in Electrical and Computer Engineering,
https://doi.org/10.1007/978-3-030-60460-8_14

133

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-60460-8_14&domain=pdf
mailto:solaiman.shokur@epfl.ch
https://doi.org/10.1007/978-3-030-60460-8_14


134 S. Shokur

patients with chronic complete spinal cord injury (SCI). Recovering motor function
is currently considered difficult or impossible for patients with some types of SCI,
but Dr. Shokur describes how a new system integrating EEG-based BMI, with visuo-
tactile feedback and locomotion could lead to new forms of treatment. Their project,
team, and affiliation was (Fig. 1).

TheWalk Again Neurorehabilitation Protocol: A BMI-based Clinical Appli-
cation to Induce Partial Neurological Recovery in Spinal Cord Injury Patients.

Solaiman Shokur1, Debora S. F. Campos1, Ana R. C. Donati1,2, Eduardo J. L.
Alho1, Mikhail Lebedev3,4, Miguel Nicolelis1,3,4,5,6,7,8,9.

1Neurorehabilitation Laboratory, Associação Alberto Santos Dumont para Apoio
à Pesquisa (AASDAP), São Paulo, Brazil, 05440-000;

2Associação de Assistência à Criança Deficiente (AACD), São Paulo, Brazil,
04027-000;

3Department of Neurobiology, Duke University Medical Center, Durham, NC,
USA 27710;

4Duke Center for Neuroengineering, Duke University, Durham, NC, USA 27710;
5Department of Biomedical Engineering, Duke University, Durham, NC, USA

27708;
6Department of Neurology, Duke University, Durham, NC, USA 27710;
7Department of Neurosurgery, Duke University, Durham, NC, USA 27710;
8Department of Psychology and Neuroscience, Duke University, Durham, NC,

USA 27708;
9Edmond and Lily Safra International Institute of Neuroscience, Macaíba, Brazil;
Laboratory, Associação Alberto Santos Dumont para Apoio à Pesquisa

(AASDAP), São Paulo, Brazil.

2 Interview

What was the goal of your project?

Solaiman: The goal was to study the neurological effects of BMI-based neurore-
habilitation protocols for spinal cord injury (SCI) patients. The classical use of BMIs
for SCI patients is as an assistive device. Simply said, it’s a technique to bypass the
lesion using a compensatory approach. We were interested to see how, under some
conditions, it is possible to induce neurological recovery. We studied a neurorehabil-
itation protocol that integrated non-invasive (EEG-based) BMI with virtual reality
and tactile feedback, with eight SCI patients with chronic lesion.

How did you approach this goal?

Solaiman: The current study was a follow-up to our work in 2016 when we
observed improvements that, to our knowledge, had never been reported before to
this extent in patients with severe motor injury (also referred to as motor-complete
SCI patients; Donati et al. 2016; Shokur et al. 2018). In that study, we observed
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Fig. 1 (Top) Dr. Solaiman Shokur, Senior scientist at the Walk Again Project, at the 2019 BCI
AwardCeremony (right). The left andmiddle persons areDrs. Gunther Krausz andBrendanAllison.
(Middle) Prof. Miguel Nicolelis, Principal Investigator of the Walk Again Project. (Bottom) The
Walk Again Project consortium included researchers from 25 countries
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significant motor and sensory recovery levels below the lesion of the patient. These
were patients at the chronic phase of their lesion and had a complete loss of motor
functions (some also sensory). After twelve months of training, they had recovered
significant levels of sensation below the lesion andmotor function in the lower limbs.
Our goal for this second study was to isolate the effects of the non-invasive BMI to
see if we could (a) reproduce our initial results and (b) investigate the impact of the
BMI on top of locomotion training.

Our approachwas to do a small clinical trialwith a group of eight chronic complete
SCI patients.We divided them into two subgroups. One group performed locomotion
training only. The other group did the same locomotion training and had, additionally,
one BMI session per week.

Which technologies did you use?

Solaiman: We chose a purely noninvasive approach with EEG-based BMI,
including event-related synchronization (mu rhythms in the motor cortex). We were
looking specifically for leg motor imagery. We wanted to encourage our patients
to imagine moving their legs—not imagining locomotion in an abstract way—and
alternate between the left leg and right leg motor imagery. We used this decoding to
move the corresponding leg of a 3D avatar in a virtual reality (VR) environment.

The BMI was connected to a VR simulation of walking? Are you extending
this to robotic devices?

Solaiman:Absolutely.We also did itwith robotic devices and functional electrical
stimulation (FES). The work is presented in another published paper from last year
(Selfslagh et al. 2019), where we had BMI and FES, alone or in combination. We
have also observed motor improvements in BMI-FES and BMI-exoskeleton.

How did you use exoskeletons and treadmills?

Solaiman: In the study presented for the BCI Award, we used two modalities
for locomotion training. We call it active locomotion training, as opposed to passive
mobilization. In one paradigm, the patient was using a robotic gait trainer (Lokomat,
Hokoma), and the physiotherapist was constantly motivating the patient to try to
perform the task. So, the patient had an incentive to perform the task. The second
locomotion paradigm was with body-weight supports on a rail (the ZeroG system,
Aretech). Both subgroups had the exact same physical training and the same number
of sessions (Fig. 2).

What results did you get?

Solaiman: First, we observed some improvement in both motor and sensory
functions for patients that followed the locomotion training alone. Therefore, the
first conclusion is that even patients who were completely paraplegic and in the
chronic stage of their lesion could benefit from an active locomotion training with the
Lokomat and the body weight support. Second, importantly, we observed a system-
atically larger improvement for the group that followed both the locomotion and
BMI training. When we reviewed their progress after five months, and again after
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Fig. 2 (A) The assisted locomotion training included training with a Lokomat and body weight
support system (B) During the BMI task, the patient used left/right leg motor imagery to trigger the
stepping of the corresponding leg of a 3D avatar seen in the first-person view

nine months, we saw that the BMI+locomotion group was always better than the
locomotion-only group. This was specifically true in the motor domain. The biggest
differences we saw were in the motor domain and proprioception.

Howmany training sessions did you perform, and how longwas each session?

Solaiman: The patients came two times per week for approximately 30 weeks.
The Locomotion-only group would do one day of Lokomat training and another day
of body-weight support training. The BMI+Locomotion group would do the BMI
the same day as the Lokomat (the BMI training was done right before the Lokomat),
and then the body-weight training on another day. Therefore, both groups came twice
per week.

The Lokomat and body-weight training lasted 45min each. The BMI training was
4 times 6-minute runs.

How important are these results for patients?

Solaiman:Our result was quite important for demonstrating, for the first time, that
AISAorAISBpatients could recover neurological functions. To our knowledge, that
had not been systematically shown to that extent. From a rehabilitation point of view,
it is crucial to show that it is possible to improve those patients. The original paper had
an important impact on the neurorehabilitation field. For clinicians, it’s interesting
because it’s a relatively cheap technology. For hospitals or other clinical environments
that already have Lokomats, adding a BMI is not very complicated. Even for the BMI
itself, we are using well-known technologies, and you (Christoph) are engineering
them and already using them for stroke patients. Since those techniques already exist
and are even commercially available for stroke patients, they could be used in this
protocol without changing too much. So, both the locomotion and BMI components
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Fig. 3 Patients who were initially diagnosed with complete loss of sensory-motor functions due to
Spinal Cord Injury recovered significant motor function levels after training with the Walk Again
Neurorehabilitation Protocol. Some of them could voluntarily contract their leg without external
help (from Shokur et al. 2018)

are relatively easy, and the results were stronger thanwe expected and quite important
for the field. However, the protocol is not yet optimized in time, and 30 weeks of
training is certainly too long for this protocol to be deployed in an extended manner.
We are currently working on optimizing the protocol and believe that intense training
over a shorter time might induce the same recovery level, or maybe better (Figs. 3
and 4).

How are your results applicable in clinical or real-life environments? Could
you imagine this could be used in hospitals, rehab centers, or homes in a few
years?

Solaiman: All of the above. Our idea is to use BMIs in a neurorehabilitation
protocol for SCI patients. Our protocol integrates BMI and locomotion training; we
believe both aspects were essential to induce recovery. Indeed, other groups that have
trained patients with the same kind of trauma with BMI alone did not observe this
type of improvement. In the future, it might be possible to have the BMI part done
at home and the locomotion part in a rehab center, but we have not tested it yet. So,
it could be done to some extent at home.

What are the next steps in your research?

Solaiman: I think this first pilot-test was essential to show a proof of concept
and reproduce our results from 2016; seeing the same effect in the second group
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Fig. 4 Prior work (Shokur et al. 2018) showed that training integrating non-invasive BMI, locomo-
tion and visuotactile feedback induced significant recovery in a group of SCI patients. As a result,
all seven patients that followed the protocol for 28 months improved to AIS C. Patient P7 volun-
tarily dropped out from the protocol after 12 months (personal reasons). Baseline measurement
(B) was done by the clinical institution that followed the patients before they joined the protocol,
and was done 1-3 years after the lesion. T = 0 stands for the first measurement done at the onset
of the training, the ‘Level’, corresponds to the neurological level of the injury measured via with
the ASIA test (see https://asia-spinalinjury.org/wp-content/uploads/2019/04/ASIA-ISCOS-IntlWo
rksheet_2019.pdf)

was very interesting. Similar results have been reported in animal models, such as
by Courtine and colleagues at EPFL (Bonizzato et al. 2018). We are interested in
understanding the mechanism of what is going on because this is something missing
at the moment. We have some hypotheses about why the patients improved to this
extent. We are trying to understand this mechanism through fMRI protocols. One
important step would be to understand what happens at the spinal cord level and the
brain level and reproduce results with a larger group of patients and a sham BMI
control group, which was not the case in our protocol.

What is your experience in terms of the BMI performance of your spinal
cord injury patients? Did they perform well?

Solaiman: Yes. The results were good. There are differences among patients.
There were good performers and some average ones. We didn’t have people who
were completely at chance level. We didn’t observe the effect that has been reported
in the past called BMI illiteracy, which has been a major challenge for many years
(Allison and Neuper 2010; Viduarre and Blankertz 2010; Thompson 2019). Maybe
that’s because the number of patients we had was small, but we didn’t observe that.
The peoplewhowere really goodwere so from the beginning. The other ones reached

https://asia-spinalinjury.org/wp-content/uploads/2019/04/ASIA-ISCOS-IntlWorksheet_2019.pdf
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around 80% accuracy after a few sessions. We had six sessions at the beginning to
check how they were performing, and then people stabilized around 75–80%.

This is also our experience. In my understanding, a patient doesn’t exist who
is not able to control a BMI. Everybody can control it. Just people are doing
something wrong if they don’t reach an accuracy above chance level.

Solaiman: That was our observation, too, absolutely.

Thank you. That was a very nice explanation of what you did.

Solaiman: Thank you
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Recent Advances in Brain-Computer
Interface Research: A Summary
of the 2019 BCI Award and Online BCI
Research Activities

Christoph Guger, Michael Tangermann, and Brendan Z. Allison

Abstract The introduction chapter of this book described theBCIResearchAwards,
selection criteria, nominees, and jury. Developing a good submission for a BCI
Research Award is a formidable goal, and being nominated is even more demanding.
This book has presented thirteen chapters by the authors of projects nominated for a
BCI Research Award in 2019. Some of these chapters detailed the projects that were
nominated,while other chapters comprised interviewswith nominees. In this chapter,
we review the2019BCIResearchAwardsCeremonyandpresent thewinners.Wealso
discuss emerging directions such as online BCI-related activities that have become
much more prominent during 2020 due to COVID concerns.

Keywords Brain-computer Interface · EEG · ECoG · BCI Research Awards · BCI
Foundation

1 The 2019 Awards Ceremony

The Awards ceremony for the 2019 BCI Research Award was part of the 8th Graz
BCI Conference 2019 in Graz, Austria. This is consistent with prior years; we have
typically announced the winners as part of a major international BCI conference.
We announced the first, second, and third place winners at the Awards Ceremony at
a rooftop venue at the Old University in Graz, with gorgeous views of the eastern
Alps during late September. Figures 1 and 2 show that the dining, meeting, and
balconies were filled with conference attendees eager to see the evening ceremony
while enjoying local food and drinks.
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Fig. 1 The rooftop balcony area during the 2019 BCI Research Award Ceremony

Figure 3 shows Michael Tangermann introducing the BCI Award to the audience.
Then, he and Gunther Krausz invited a representative from each of the nominated
groups to join them on the stage. They announced the nominees, who received a
certificate and other prizes, then remained onstage as Brendan Allison announced
the winners.

2 The 2019 Winners

The 2019 BCI Research Award winners were:

First Place Winner:
Decoding Speech from Intracortical Multielectrode Arrays in Dorsal Motor

Cortex (Fig. 4)
Sergey D. Stavisky1, Francis R. Willett1, Paymon Rezaii1, Leigh R. Hochberg2,

Krishna V. Shenoy1,3, Jaimie M. Henderson1.
1Stanford University, USA.
2Brown University, Harvard Medical School, Massachusetts General Hospital,

Providence VA Medical Center, USA.
3Howard Hughes Medical Institute, USA.
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Fig. 2 Jury member Selina Wriessnegger and other conference attendees during the BCI Award
ceremony

Second Place Winner:
BCI-based Neurofeedback Training for Quitting Smoking
Junjie Bu1, Kymberly D. Young2, Wei Hong1, Ru Ma1, Hongwen Song5, Ying

Wang1, Wei Zhang1,
Michelle Hampson3, Talma Hendler4, Xiaochu Zhang1,5.
1Hefei National Laboratory for Physical Sciences at the Microscale and School

of Life Sciences, University of Science & Technology of China, Hefei, China.
2Department of Psychiatry, University of Pittsburgh School of Medicine, Pitts-

burgh, USA.
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Fig. 3 Michael Tangermann, Chair of the jury, presents the 2019 BCI Award

Fig. 4 First place winners attend the Awards Ceremony from California via web

3Department of Radiology and Biomedical Imaging, Yale School of Medicine,
New Haven, CT, USA.

4Functional Brain Center, Tel-Aviv University, Tel-Aviv, Israel.
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Fig. 5 The second place team receives their award from the jury and emcee

5School of Humanities & Social Science, University of Science & Technology of
China, Hefei, China (Fig. 5).

Third Place Winner:
Developing a Closed-loop Brain-computer Interface for Treatment of

Neuropsychiatric Disorders using Electrical Brain Stimulation
Yuxiao Yang1, Omid G. Sani1, Morgan B. Lee2,3,4, Heather E. Dawes2,3,4, Edward

F. Chang2,3,4, Maryam M. Shanechi1,5.
1Ming Hsieh Department of Electrical Engineering, Viterbi School of Engi-

neering, University of Southern California, USA.
2Department of Neurological Surgery, University of California, USA.
3Weill Institute for Neuroscience, University of California, San Francisco, USA.
4Kavli Institute for Fundamental Neuroscience, University of California, San

Francisco, USA.
5Neuroscience Graduate Program, University of Southern California, USA.
Michael Tangermann concluded the ceremony by thanking the 2019 jury and the

conference chair, Prof. Gernot Müller-Putz, shown in Fig. 6. Prof. Gernot Müller-
Putz is the Head of the Institute of Neural Engineering and the Laboratory of Brain-
Computer Interfaces at the Graz University of Technology. This institute has hosted
several BCI Conferences in Graz.

3 Conclusion and Future Directions

We have always concluded our annual BCI Research Award books with a discussion
chapter that presents the winners and explores emerging directions. In the discussion
chapter from last year’s book (Guger et al. 2020) other recent work, we addressed
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Fig. 6 Prof. Gernot Müller-Putz thanks the attendees of the awards ceremony

the rise of activities to help inform and educate people about BCIs, especially people
new to the field. Many of these activities were public, hands-on events such as BCI
hackathons, conferences, Cybathlons, and live, real-time BCI competitions (Vala-
jame et al. 2017; Guger et al. 2019; Ortiz et al. 2019; Allison et al. 2020). Other
groups have also published work about such activities (Statthaler et al. 2017; Novak
et al. 2018; Perdikis et al. 2017, 2018; Lotte et al. 2019). Since then, concerns with
COVID and future pandemics has made live activities with many people unfeasible.
How can the BCI community adapt?

As noted in the introduction to this book, some adaptations toCOVIDhave already
been successful, such as online conferences, workshops, and training opportunities.
Different organizers have told us their events had hundreds or thousands of online
attendees, with strong interest in future online events. Some other public BCI activ-
ities, such as Virtual Users’ Fora or offline BCI data analysis competitions, have not
required in-person participation (Blankertz et al. 2006; Huggins and Wolpaw 2014;
Peters et al. 2015; Huggins et al. 2017, 2019).

Other events may substitute for events like in-person BCI hackathons and inter-
active demonstrations. For example, online courses could include exercises that
students could perform at homewith BCIs, which is becomingmore feasible as BCIs
become cheaper and easier to use. Webinars in which hosts demonstrate different
aspects of hands-on BCI use, including time for questions from attendees, have been
effective for many years. While we hope that concerns about pandemics abate and
in-person activities becomeprevalent again soon, these activities are not only replace-
ments for events that have been cancelled or postponed. Online events focused on
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BCIs or other activities will become more prominent even after a possible “return to
normalcy.”

Organizing and executing high-quality BCI activities is time-consuming and diffi-
cult, even without the challenges of managing in-person interaction. Booking guest
speakers, planning, scheduling, advertising, and executing BCI events is not for the
timid nor overconfident. Aside from common challenges like a good internet connec-
tion and software to handle presentations and questions effectively, the audience may
have a wide range of BCI backgrounds. Thus, some material may be too simple or
advanced, and discussions may flounder amidst a confused audience. This challenge
might be offset by announcing the difficulty level of specific talks or the entire event
to help people decide whether they wish to participate and prepare accordingly.

We’ve made some changes to the BCI Research Awards and book series since
2010. The BCI Research Awards began with only ten nominees and one winner, and
now has twelve nominees and first, second, and third place, winners. We explored
special chapters that address major topics in BCIs or other noteworthy BCI projects.
We recently added interviews with winners. The interviews with winners were well-
received in last year’s book, and we plan to continue these interviews in future
books.

We may expand the BCI Research Award and books in different ways. The
annual Awards Ceremony could aim to attract even more attendees, with more
publicity. We are considering online or in-person discussion panels with nominees,
perhaps in addition to the Awards Ceremony. Instead of simply summarizing trends
in discussion chapters, we could instead develop a paper with a ten-year retrospective
analyzing trends across all awards. We are still open to different chapters that would
be consistent with other themes in each book and interest our readers.

Dr. Tangermann, the Chair of the 2019 Jury, said: “The strong growth BCI-related
publications in the recent years shows its attractiveness to the community, but comes
with the drawback that it became harder to follow this rapid development. The BCI
Award provides a remedy to this problem, as highly attractive novel projects are
carefully selected by an international committee and highlighted to the community.”
Like previous years, this year’s BCI Research Award and book aimed to recognize
and encourage the top projects in our field. Some chapters could provide background
information, connections, or inspiration for readers who are new to the field as well
as experts doing related work. You might have ideas for your own BCI project. We
might someday give you a certificate for being nominated or even winning a BCI
Award and/or cite your work in our books or other papers. Despite the uncertainty
with pandemics, we still expect an ongoing increase in BCI activity in the near future
and beyond. BCI systems have many challenges to overcome for practical use with
healthy people and varied patient groups, and hence new ideas and applications can
have a very strong impact. The field needs people from various disciplines including
neuroscience, programming, mathematics, medicine, ethics, human-computer inter-
action, and many engineering domains including hardware, mechanical, electrical,
and biomedical. BCIs for gaming, music art, robotics, or other goals require special-
ists in relevant fields as well. Healthy users and patients can contribute as volunteers
or paid participants to helpmany BCI labs develop and test systems. Hence, whatever
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your background or interests, you might be able to contribute to BCI research and
development. Thank you for reading this book, which we hope has been informative
and helpful.
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