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Abstract The history of quantum systems with zero-range interactions can be
traced back to the 1930s, with the pioneering paper of Bethe and Peierls on the
quantum theory of the diplon. The past two decades have witnessed a renewed
interest in this class of models among both physicists and mathematicians. Advances
in experimental techniques have made possible to produce systems of particles
whose two-body range of interactions is virtually zero, leading to a class of
phenomena yet to be understood in terms of basic principles of quantum mechanics.
The main focus here is on particularly relevant spectral properties of these systems,
such as their stability or the presence/absence of singular spectral phenomena
(e.g., Efimov effect), in dimension three. In particular, our work gives an (almost)
complete picture of the spectrum for two identical fermions interacting with a third
particle of a different nature in a three dimensional space, provided that the latter has
a sufficiently large mass compared to the fermions. Possible future developments are
also discussed.

Keywords Point interactions · 2+1 fermionic system

1 Introduction

Hamiltonians with singular potentials appeared in the physics literature in the 1930s,
in the attempt to describe strong nuclear forces with range negligible compared to
the wave-length of the particles. By means of heuristic argument and experimental
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observations, in [6] Bethe and Peierls argued that the two-particle wave function
should behave asymptotically

ψ(x1, x2) ∼
( 1

|x1 − x2| − 1

a

)
ξ(x1) + o(1), |x1 − x2| → 0. (1)

This boundary condition is named “Bethe-Peierls contact condition” after them.
Here the a is interpreted as the scattering length of the interaction, making it the
only physical parameter governing the interaction.

The study of more complicated systems, where more particles and various
symmetries are taken into account, led the scientific community to conjecture
the presence of interesting spectral phenomena. It took many decades for the
experimentalist to develop techniques, such as the Feschbach resonance, that made
it possible to tune the scattering length and the range of interaction of particles in
ultra-cold gases, thus enabling them to study the spectrum of zero-range interaction
systems in the laboratories. For an historical summary we refer to [28] and the
introduction in [16] (and references therein), while here we only point out two such
phenomena:

(a) The Thomas effect, which consists on a collapse to −∞ of the ground state
energy of a three particle system, while the two-body subsystems energy remain
bounded from below. Correspondingly, the ground state collapses onto the
barycenter of the system.

(b) The Efimov effect, which consists on a sequence of bound states whose energy
approach geometrically zero, while the corresponding two-body systems are
unstable. Correspondingly, the ground state spreads out to the whole space.

From the mathematical point of view, even the well-posedness for the Hamiltonian
of zero-range interactions, formally given by

H = −
n∑

i=1

1

2mi

Δxi +
∑
i<j

αij δ(xi − xj ) (2)

is not obvious. Here n is the number of particles, with respective masses m1, ..,mn

in R
3 and two-body point interaction between particle i and j of strength αij .

Indeed, this Hamiltonian cannot be viewed as a quadratic form perturbation in the
sense of Kato, since wave functions in the domain of the free Schrodinger operator
H 2(R3) are not necessarily continuous. Therefore, the delta-like perturbation is ill
defined.

Several ways to circumvent this issue have been proposed, the following three
being the most relevant:

(a) H can be realized as an opportune limit of Hε . Here Hε = H0 + Vε , H0 being
the free Schrodinger operator and Vε a family of potentials that shrinks around
the contact manifold Γij = {xi = xj } as ε → 0. The potentials are chosen so
that they have a zero-energy resonance, a condition that implies that existence
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of the limit in the strong resolvent sense. This approach appears, in [1] and,
more recently, in [3] and [13].

(b) Using a quadratic form approach, one can look for a closed semibounded
quadratic form (thus identifying a unique self-adjoint operator) reproducing the
formal action given by (2). This approach is due to the school of Dell’Antonio,
see [9], [8] and [30], and subsequently by Moser and Seringer in [26] and [27].

(c) H can be viewed as a self-adjoint extension of the free Schrodinger operator
H̊ ∗ acting on wave functions compactly supported away from the coincidence
manifolds. This leads to a self-adjoint operator whose action differs from the
free Schrodinger operator only on the contact manifolds, thus being a suitable
candidate for point interactions. One then selects extensions (i.e., boundary
conditions) with local features, possibly reproducing the Bethe-Peierls contact
condition. This approach was introduced by Minlos et Faddeev for the model of
zero-range interacting particles (see [18, 19, 24, 25]), while Albeverio et al. in
[1] consider the case of fixed point interaction.

We will focus on the last approach. In particular, the semi-boundedness of the free
Laplacian makes possible the usage of the Krein, Visik, Birman (KVB) theory for
self-adjoint extensions of symmetric operators. We refer to [12] for a complete
overview on this theory, while here we only sketch the main idea.

Given a positive densely defined symmetric operator H̊ , KVB theory labels its
self-adjoint extensions HT with self-adjoint operators T acting on closed subsets
of ker(H̊ ∗). The recipe T → HT is explicit, and it enables us to detect interesting
features of HT through the corresponding property of T . This becomes particularly
significant for the study of spectral properties, such as finiteness of the spectrum
or the existence of a ground state, in that the operator T is usually much more
manageable.

From now on, we will focus on a particular system consisting in 2 identical
fermions of mass one and a third particle of mass m. In particular, in Sect. 2 we
sketch the main ideas from [16] and [17], in which the model is rigorously defined
by means of KVB theory. Sections 3, 4, 5, and 6 are dedicated to the spectral analysis
of this model, presenting the results from [5]: in particular, in Sect. 3 we reduce
the problem to the analysis of a certain pseudo-differential operator, which is then
study in full details in the subsequent ones. Finally, in Sect. 7 we present some open
questions for the same model and some variants of it.

2 The 2+ 1 Model

We consider a system of three particles, two identical fermions and a third one of a
different nature with ratio mass m with respect to the fermions, where the interaction
among the particles has zero range. To later use, we introduce the parameters

μ := 2

m + 1
, ν := m(m + 2)

(m + 1)2
= 1 − μ2

4
. (3)
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We will refer to this system as the 2 + 1 fermionic trimer with contact interaction.
Despite its small size, a rich class of spectral properties already emerges in certain
regime of the mass m.

We briefly recall the general scheme that gives a rigorous mathematical frame-
work to such a model. Due to translational invariance, we can work in relative
coordinates (x1, x2) ∈ R

6, where xi denotes the position of the i-th fermion with
respect to the third particle. The starting point is then the free Schrodinger operator
H̊ on L2

f (R3 × R
3) with dense domain

D(H̊ ) = C∞
0

(
R

6 \
(
Γ1 ∪ Γ2

))
. (4)

Here the subscript f denotes the closed subspace of antisymmetric functions, and
Γi := {xi = 0}, i = 1, 2, are called “contact manifolds”, in that they correspond
to the situation where a fermion comes on the top of the third particle. Notice that
there is no room for a contact interaction between the two fermions, due to the Pauli
exclusion principle. In [16] we show that the adjoint of this operator has domain

D(H̊ ∗) =

⎧
⎪⎪⎨
⎪⎪⎩

g ∈ L2
f (R3×R

3) such that

ĝ(p, q) = f̂ (p, q) + ûη(p, q)

p2 + q2 + μ p · q + λ
+ ûξ (p, q)

for f ∈ D(H̊ ) , η, ξ ∈ H−1/2(R3)

⎫
⎪⎪⎬
⎪⎪⎭

(5)

and action

(
̂

(H̊ ∗ + λ)g) (p, q)=(p2 + q2 + μ p · q + λ) F̂λ(p, q). (6)

Here, F̂λ(p, q) := f̂ (p, q)+ ûη(p,q)

p2+q2+μ p·q+λ
and ûλ

ξ (p, q) = ξ̂ (p)−ξ̂ (q)

p2+q2+μp·q+λ
. The

latter spans ker(H̊ ∗ + λ) as ξ runs in H−1/2(R3). The superscript λ will be dropped
when the choice of λ is understood.

We are interested in extensions of H̊ , i.e., restrictions of H̊ ∗, in that they act
as the free Schrodinger operator as long as the particles are far apart, and are thus
suitable candidates for modeling point interactions. Such extensions should satisfy
two properties: (1) self-adjointness, which guarantees a well-posed evolution and
real spectrum; (2) locality, in accordance with the local nature of the interactions.

Notice that the self-adjointness, by KVB theory, is tantamount of restricting the
domain of the adjoint to g’s in D(H ∗) where uη = Aλuξ for some self-adjoint
Aλ. As far as the locality is concerned, an easy computation shows that functions in
D(H̊ ∗) satisfy the pointwise asymptotic

∫

q∈R3,|q|<R

ĝ(p, q)dq = 4πRξ̂(p) + (−T̂λξ(p) + 1

2
Ŵλη(p)) + o(1), R → +∞,

(7)
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where

(̂Wλ ξ)(p) := 2π2
√

νp2 + λ
ξ̂ (p) − 2

∫

R3

ξ̂ (q)

(p2 + q2 + μp · q + λ)2 dq. (8)

and

T̂λξ (p) = 2π2
√

νp2 + λ̂ξ (p) +
∫

R3

ξ̂ (q)

p2 + q2 + μp · q + λ
dq (9)

The asymptotic (7) gives information on the ultra-violet asymptotic of g, which
relates to its behavior close to the origin. If one formally prescribe for some α ∈ R

η = 2W−1
λ (Tλ + α)ξ, (10)

one obtains the so called Ter-Martirosyan-Skornyakov condition, introduced in [29],

(TMS)

∫

q∈R3,|q|<R

ĝ(p, q)dp2 = (4πR +α)̂ξ(p)+ o(1), R → +∞, (11)

which is the momentum analogue of the Bethe-Peierls condition (1) in the two-body
channels. The extensions for which (TMS) is satisfied are called Ter-Martirosyan-
Skornyakov (or simply TMS) extensions. However, TMS alone only may not be
sufficient to guarantee the self-adjointness. Indeed, one needs to give an appropriate
functional meaning to the pointwise identity (10) in order to select a self-adjoint
extension.

In [16] we proved that Wλ is a positive bounded operator from H−1/2(R3) to
H 1/2(R3), and moreover

〈uξ , uξ 〉L2
f (R3×R3) = 〈ξ,W−1

λ ξ〉H−1/2,H 1/2 =: 〈ξ, ξ〉
H

−1/2
Wλ

.

In particular, the map ξ → uξ is unitary between H−1/2(R3) equipped with the

scalar product induced by Wλ (denoted by H
−1/2
Wλ

) and ker(H ∗ + λ). Therefore,

self-adjoint extensions of H̊ are labeled by self-adjoint operators acting on H
−1/2
Wλ

.
Collecting everything, the problem of finding self-adjoint TMS extensions boils
down to that of finding a domain of self-adjointness for Aλ,α := 2W−1

λ (Tλ + α)

on H
−1/2
Wλ

.
In [16] and [17] we give a full classification and understanding of the TMS self-

adjoint extensions. In particular, there are three different regimes depending on the
mass ratio m:

(a) m ∈ (0,m∗): the TMS condition is not a self-adjoint condition, and for each α

there exist infinitely many self-adjoint extensions satisfying the TMS condition
for the given α. Moreover, some of them are unbounded from below.



168 A. Ottolini

(b) m ∈ (m∗,m∗∗): The TMS condition is not a self-adjoint condition, but for
each α there exists only a one-parameter family Hα,β of self-adjoint extensions
satisfying the TMS condition for the given α. The real parameter β is related to
a boundary condition when the three particle come all on the top of each other
simultaneously. We denote by Hα := Hα,∞ the smallest one.

(c) m ∈ (m∗∗,∞): the TMS condition is a self-adjoint condition. We denote this
unique self-adjoint extension by Hα.

The value of m∗ and m∗∗ are respectively about 1/13 and 1/8, and they are in perfect
accordance with the experiments. In the regimes (b) and (c) (i.e., for m > m∗) one
has, for every λ > 0,

D(Hα) :=

⎧
⎪⎨
⎪⎩

g = Fλ + uλ
ξ

∣∣∣∣∣∣∣

Fλ ∈ H 2
f (R3 × R

3) ,

ξ ∈ H
1
2 (R3) , (Tλ + α)ξ ∈ H

1
2 (R3) ,

plus the boundary conditions (TMS′)

⎫
⎪⎬
⎪⎭

(TMS′)
∫

R3
F̂ λ(p1, p2) dp2 = (

(Tλ + α) ξ
)̂

(p1) .

(12)

Both (12) and (5) holds for any choice of λ > 0, leading to different but equivalent
decomposition (as discussed in Remark 1 of [16]). In the next chapter, we will
analyze in details the spectrum of these operator Hα. For the regime m < m∗, some
results are known for similar, yet different, models (e.g. appearance of Efimov effect
for finite range potentials under mild assumptions proved in [2]), but a complete
understanding of the spectrum is yet to be achieved.

3 Properties of Tλ and Reduction Lemma

As pointed out in the previous sections, the study of the spectral properties of Hα

will eventually reduce to those of Tλ. Hence, we list the major properties of the
latter.

• First of all, for each λ the operator Tλ commutes with the action of the orthogonal
group O(3) on R

3. As such, if we decompose

L2(R3) =
⊕
�≥0

L2(R+, r2dr) ⊗ span{Y�,−�, .., Y�,�} =:
⊕
�≥0

L2
�(R

3),

the Y�,m’s being the spherical harmonics, then each L2
� is invariant under the

action Tλ, thus leading to the decomposition

Tλ =
⊕
�≥0

T
(�)
λ .
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Moreover, the same decomposition apply to every Sobolev space

Hs(R3) =
⊕
�≥0

Hs
� (R3).

The expression for T
(�)
λ can be obtained by means of Legendre polynomials

P�(y) = 1

2��!
d�

dy�
(y2 − 1)�,

and the formal action on f ∈ L2(R+, r2dr) is then

T
(�)
λ f (r) = 2π2

√
νr2 + 1f (r) + 2π

∫ 1

−1
dyP�(y)

∫ +∞

0

dr ′f (r ′)
r2 + r ′2 + μrr ′y + λ

.

(13)

The decomposition of Tλ in angular sector plays a role insofar as the odd and
even angular sectors behave very differently. In particular, we will see that all the
eigenfunctions sit in the angular sector � = 1.

• In order to give a rigorous meaning to the formal expression of Tλ, it is important
to understand its mapping properties. In [16], the following was proven

Theorem 1 Let λ > 0 and s ∈ (−1/2, 3/2). Then

‖Tλξ‖Hs−1 ≤ C‖ξ‖Hs , ∀ξ ∈ Hs. (14)

In particular, Tλ maps continuously Hs(R3) into Hs−1(R3) for such s’s. The
same holds true for s = {−1/2, 3/2} if one restricts its attention to angular
sectors � ≥ 1.

Together with the obvious symmetry with respect to the standard L2 scalar
product, we obtain that Tλ is a densely defined symmetric operator on L2(R3)

with domain Hs for every s ≥ 1.
• The dependence on m of Tλ is not immediately clear. However, in [5] it is proven

that for any given ξ for which the quadratic form 〈ξ, Tλξ〉 is well defined, the
map m → 〈ξ, Tλξ〉 is increasing.

Owing to (12), we restrict our attention to the ξ ’s in H 1/2 such that Tλξ ∈ H 1/2. For
such ξ ’s, the expression Aλ,αξ = 2W−1

λ (Tλ + α)ξ is meaningful in that Wλ maps
H 1/2 into H−1/2, and one has

〈uξ ,Aλuξ 〉H−1/2
Wλ

= 〈ξ, (Tλ + α)ξ〉H−1/2 ,H 1/2 . (15)

This quadratic form plays a major role in the study of semi-boundedness: in
particular, in [9] it is shown that its positivity (depending on α and λ) lead to the
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bound Hα ≥ 0 for α ≥ 0, and Hα ≥ − α2

4π4(1−Λ(m))2 if α < 0. The function Λ(m) is

an explicit monotone decreasing function, and m∗ := Λ−1(1) is precisely the value
for which the positivity of Tλ+α cannot be achieved for any λ, α. We are now ready
to state the reduction lemma from [5].

Theorem 2 Given α < 0 and λ ∈
(

α2

4π4 , α2

4π4(1−Λ(m))2

]
, the following are

equivalent:

• −λ is an eigenvalue for Hα with corresponding eigenfunction g.
• g = uλ

ξ where ξ ∈ H 1/2 is an eigenfunction for Tλ with eigenvalue −α.

• g = uλ
ξ , where ξ̂ (p) = ̂̃

ξ(
p√
λ
) and ξ̃ ∈ H 1/2 is an eigenfunction for T1 with

eigenvalue |α|√
λ

.

The restrictions for α and λ are consistent with the results about the essential
spectrum we will present later and the lower bound on Hα . Indeed, combining the
two it is easy to show that the discrete spectrum may appear only in the energy

window
(

α2

4π4 , α2

4π4(1−Λ(m))2

]
, and only in the repulsive case α < 0.

The reduction lemma is useful because it relates the discrete spectrum of Hα

and that of T1. An easy application of min-max shows that the absence of discrete
spectrum for Hα is equivalent to the positivity of T1 − 2π2.

4 Essential Spectrum

We now address the problem of determine the essential spectrum of Hα. We recall
that is plays a major role in that the long time behavior of the evolution eitHα , and in
particular the associate scattering theory, are related to the structure of the essential
spectrum of Hα. The picture looks different in the case α ≥ 0 and α < 0: the former
correspond to a repulsive interaction, the latter to an attractive one.

Once more, we stress that Hα is not a small perturbation of the free Laplacian
in three dimension, therefore we do not expect to have necessary the same essential
spectrum of the free Laplacian. Indeed, here is the result from [5].

Theorem 3 Let m > m∗. One has

• σess(Hα) = [0,+∞) if α ≥ 0.

• σess(Hα) = [− α2

4π4 ,+∞) if α < 0.

For a full proof, we refer to [5], while here we only give a sketch. For the first
part, one notices that the quadratic form associated to Hα is positive for α positive.
This implies, in particular, that σ(Hα) ⊂ [0,+∞). Moreover, one can construct
a singular sequence at each λ ≥ 0 by choosing a singular sequence for the free
Laplacian (whose essential spectrum is [0,+∞)) that also belongs to D(Hα). This
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is easy to do since H 2
0 (R3 × R

3) ⊂ D(Hα), and singular sequences for the free
Laplacian can be chosen to have value 0 at 0.

For the second part, the situation is different. The same proof shows that
σess(Hα) ⊃ [0,+∞), while some works needs to be done in order to find a
singular sequence at λ ∈ [− α2

4π4 , 0). For a given λ, the candidate is a g = uξn

where ξn ∈ H
1/2
� (R3), and its radial part is an approximated delta at r0. Here r0

is defined to be the unique solution to 2π2
√

νr2
0 + λ = α. A careful use of the

mapping properties of Tλ,Wλ show that this is indeed a singular sequence at λ.

5 Discrete Spectrum: Finiteness and Existence of Eigenvalues

So far, we have ruled out the possibility of Thomas effect for the 2+1 system in
the regime m > m∗, owing to the semi-boundedness of the operator Hα. In this
section, we aim to prove the absence of Efimov effect as well in the same regime
of mass. We will actually prove a stronger statement, namely the finiteness of the
discrete spectrum for m > m∗. We point out that this result is not expected to hold
for masses below the threshold (cfr [28]).

The argument given in the previous section already shows that no discrete
spectrum can appear in the regime α ≥ 0. Concerning the case α < 0, here is
the main result from [5].

Theorem 4 Let m > m∗, α < 0. Then σdisc(Hα) consists of finitely many
eigenvalues (each of which has finite multiplicity).

While Yoshitomi in [31] proved the result for masses large enough, we pushed this
up to the (expected) optimal value m∗.

Again, we refer to [5] for a complete proof. Here, we only sketch the main idea:
first of all, we have already seen how every eigenvalue −λ of Hα below the bottom
of the essential spectrum corresponds to an eigenvalue −α for Tλ. Then, by means
of a Birman-Schwinger type of argument, one can reduce the problem to that of the
behavior of the off-diagonal part of Tλ + α relative to the diagonal part. Concretely,
one has the identity

〈ξ, Tλ + αξ〉H 1/2 ,H−1/2 = 〈ξ, (1 − Zλ,n)ξ〉H λ,n ,

where Hλ,n is a suitable Hilbert space, and Zλ,n is an Hilbert-Schmidt (hence
compact) operator on Hλ,n. Using the finiteness of the spectrum of a compact
operator outside a compact containing the origin, one can obtain the result.

The core of the proof we just outlined relies on the finiteness of the discrete
spectrum away from 0 for a compact operator. In particular, it is not clear whether
eigenvalues may exist. Equivalently, using Theorem 2, the question becomes
whether the operator T1

2π2 − 1 may fail to be positive for same value of m.
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This question (and more) are also answered in [5]: the first (trivial) observation is
that this cannot happen for even angular sectors, exploiting. The second (non-trivial)
observation is that the same holds for angular odd sectors with � ≥ 3. Therefore,
the question can be formulated for the angular sector � = 1, and here the mass starts
playing a role. Rather than presenting the proof, we want to give an heuristic of why
the problem is non trivial, and how an eigenfunction should look like.

If ξ(p) = f (|p|)pY1(Ω), where Ω is a variable on the sphere, Y1 is the first
harmonic function in R

3 and f ∈ L2(R+,
√

r2 + 1), then the quadratic form
〈ξ, ( T1

2π2 − 1)ξ〉 becomes (after integrating in the angular variables)

〈ξ, (
T1

2π2 − 1)ξ 〉 =
∫ +∞

0
(
√

νr2 + 1 − 1)|f (r)|2dr + 1

2μπ

∫ +∞

0

∫ ∞

0
drdr ′f (r)f (r ′)G(z),

(16)

where

z = r2 + r ′2 + 1

μrr ′ , G(z) = 2 − z ln
(z + 1

z − 1

)
.

Notice that z ∈ (1 + m,+∞). The left extreme correspond to r = r ′ → +∞,
insofar as z → 2

μ
= 1 + m, while the right extreme corresponds to r → 0. The

function G(z) is easily seen to be negative, strictly increasing, approaching −∞
when z → 1− and approaching 0 as z → +∞.

In order for the quadratic form (16) to be negative, we need to trade between the
mass that f puts close to 0, for which the diagonal part is positive and small but the
off-diagonal part is also small, and the mass that f puts at ∞, where the diagonal
term becomes huge while the off-diagonal term is significantly larger.

In particular, it is clear that m being smaller and smaller corresponds to z taking
values closer and closer to the critical value z = 1, where the off-diagonal term
becomes arbitrary big (in absolute value). By carefully checking this trade-off, in [5]
we explicit exhibit ξ ’s on which the quadratic form (16) have negative expectation
(i.e., presence of eigenvalues) for small values of m > m∗, and we proved the
positivity of the quadratic form (i.e., absence of eigenvalues) when the mass is large
enough.

Summarizing, in [5] we proved the existence of masses m∗ < M∗ ≤ M∗, with
the following properties:

1. For m∗ < m < M∗, there exists a bound states with energy below the bottom of
the essential spectrum for the Hamiltonian Hα.

2. For m > M∗, no bound states appear below the bottom of the essential spectrum.
3. One has M∗ = M∗, and the analytic estimates (8.587)−1 ≤ M∗ ≤ (2.617)−1.

The first two points, as well as the lower and upper bound, originate from the proof
of the above results. In the next section, we will deal with the equivalence of M∗
and M∗ and the accuracy of our bounds.
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6 Monotonicity and Number of Eigenvalues: Rigorous
Results and Open Questions

Since, for fixed ξ , the quadratic form m → 〈ξ, (Tλ + α)ξ〉 is monotone increas-
ing, one may expect, in the spirit of the Hellmann-Feynman-type theorems, the
monotonicity of the ground state energy (and other bound states energy) itself in
the mass parameter. Moreover, experiments (see, e.g., [10]) naturally lead to the
same conjecture, which we eventually proved in [5].

An immediate consequence of this is the equivalence of M∗ and M∗, since the
monotonicity of eigenvalues implies that their existence below the bottom of the
essential spectrum occurs in a whole interval. Another interesting fact emerging
from our analysis is that the upper bound (which originates from the variational
argument) seems to be almost sharp from the point of view of the experiments (cfr
[28]). It would be interesting to increase the lower bound and narrow the window
for the threshold mass M∗, which is a current work in progress.

Here is another natural question for both physicists and mathematicians. Despite
its mathematical elegance and simplicity, the Birman-Schwinger-like argument used
in the proof of the finiteness of the discrete spectrum is not immediately suited
to draw further conclusions about the number of bound states, like for instance
estimating their number, which would follow if one was able to extract an analogous
estimate out from the auxiliary compact operator Zλ,n.

The monotonicity argument ensures that for m close to M∗ only the ground state
appears, but of much more interest is the region m close to m∗: is the number
of eigenvalues uniformly bounded in m, or does it explode to infinity? In the
experiment (e.g., [10]), no more than two bound states are observed, regardless for
the value of α. In this sense, m∗ seems to represent a real phase transition, since the
number of bound states goes from infinity to 2 crossing this value.

7 N+1/N+M Fermionic System: Known Results and Open
Questions

In this section we briefly survey known results and open questions about general
fermionic models of N+M fermions. These are topical models, of great physical
relevance, and for which the 2+1 is a prototype, consisting of two different species
of identical fermions with an inter-species zero-range two-body interaction. In
particular, the N+1 model describes a polaron particle embedded in a fermionic gas
of different species.Once more, because of Pauli exclusion principle, interactions
can only take place among different particles.

The operator-theoretic construction of the model should follow the same lines as
for the 2+1 Hamiltonian: however, to the author knowledge, no such construction
within the framework of KVB theory has been done, though in [8, 11] these systems
are studied via a quadratic form approach. Consequently, a complete classification
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of local (TMS in the two-body channels) self-adjoint extensions is lacking, as well
as the presence/absence of other boundary conditions to determine a well-posed
Hamiltonian.

Even putting aside the classification problem and focusing only on relevant self-
adjoint realisations (e.g., the one obtained in [8, 11]), some natural questions arise:

• Are those system stables? And for which values of the mass ratio m between the
mass of the probe particle and the mass of each of the N fermions?

• In which regimes of m do interesting spectral phenomena such as the Thomas or
the Efimov effect occur?

As for the first question, it was first proved in [8] that above a threshold m =
m(N) a self-adjoint Hamiltonian can be constructed by quadratic form methods
which is also bounded from below, and subsequently in [26] such a threshold was
ameliorated from a growing-to-infinity m(N) to a uniform-in-N one, thus ruling
out the occurrence of the Thomas effect for sufficiently large mass ratios. However
such bounds are still far from the values expected from theoretical-physical heuristic
arguments and from experiments. For the few-body problem, sharper results are
avaiable via a numerical approach [14, 15].

So far no rigorous derivation of the sharp mass threshold for stability has been
established.

Regarding the Efimov effect, the picture is even more challenging. To our
knowledge, no rigorous result on the presence of Efimov effect is appeared in
the mathematical literature (even in the 2 + 1 system). An extremely inspiring
demonstration of such an effect is proposed in the series of works [20–23], however
with a mistake in the identification of the correct space of charges, as was first
noticed in [16, 17], which makes the argument not immediately adjustable into the
correct setting.

An amount of heuristic arguments are being made within the counterpart physical
literature, and we refer to the very recent and comprehensive review [28]. In
particular:

1. For the 3 + 1 system, there exists a mass m∗
3 > m∗ such that in the region

m ∈ (m∗,m∗
3), four-body Efimov effect is expected to occur. Notice that the

condition m > m∗ comes from the very definition of four-body Efimov effect
(no three-body subsystem should be linked). As in the 3-body case, eigenvalues
only seems to occur in the angular sector � = 1.

2. Various partial conjectures and numerical calculations are proposed for generic
N , not supported yet by rigorous mathematics.

3. Almost nothing is known about higher N .

We trust to tackle these and further questions in future works!
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