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1 Introduction

This work has a two-fold purpose. On the one hand it aims at reproducing in their
original form the key results of the so-called Kreı̆n-Višik-Birman theory of self-
adjoint extensions of semi-bounded symmetric operators, providing an expanded
discussion, including missing details and supplementary formulas, of the original
works, that up to a large extent are written in a rather compact style and are
available in Russian only. On the other hand, the goal is to give evidence of how
the original results can be equivalently re-written into what is now the more modern
formulation of the theory, as it can be found in the (relatively limited) literature in
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English language on the subject, formulation which is derived by alternatives means,
typically boundary triplets techniques.

The whole field is nowadays undoubtedly classical, and in fact to some extent
even superseded by more modern mathematical techniques. Let us then give
evidence in this Introduction of the context and of the degree of novelty of this
work.

Self-adjointness and self-adjoint extension theory constitute a well-established
branch of functional analysis and operator theory, with deep-rooted motivations and
applications, among others, in the boundary value problems for partial differential
equations and in the mathematical methods for quantum mechanics and quantum
field theory. At the highest level of generality, it is von Neumann’s celebrated theory
of self-adjoint extensions that provides, very elegantly, the complete solution to
the problem of finding self-adjoint operators that extend a given densely defined
symmetric operator S on a given Hilbert space H . As well known, the whole family
of such extensions is naturally indexed by all the unitary maps U between the
subspaces ker(S∗ − z) and ker(S∗ − z) of H for a fixed z ∈ C \ R, the condition
that such subspaces be isomorphic being necessary and sufficient for the problem to
have a solution; each extension SU is determined by an explicit constructive recipe,
given U and the above subspaces.

A relevant special case is when S is semi-bounded—one customarily assumes it
to be bounded below, and so shall we henceforth—which is in fact a typical situation
in the quest for stable quantum mechanical Hamiltonians. In this case ker(S∗ − z)

and ker(S∗ − z) are necessarily isomorphic, which guarantees the existence of self-
adjoint extensions. Among them, a canonical form construction (independent of
von Neumann’s theory) shows that there exists a distinguished one, the Friedrichs
extension SF , whose bottom coincides with the one of S, which is characterised
by being the only self-adjoint extension whose domain is entirely contained in the
form domain of S, and which has the property to be the largest among all self-adjoint
extensions of S, in the sense of the operator ordering “�” for self-adjoint operators.

The first systematic extension theory for semi-bounded operators is due to Kreı̆n.
Kreı̆n’s theory shows that all self-adjoint extensions of S, whose bottom is above
a prescribed reference level m ∈ R, are naturally ordered, in the sense of “�”,
between the Friedrichs extension from above (the “rigid” (жёсткое) extension, in
Kreı̆n’s terminology), and a unique lowest extension SN from below, whose bottom
is not less than the chosen m, the so-called Kreı̆n-von Neumann extension (the “soft”
(мягкое) extension). In short: SF � ˜S � SN for any such extension ˜S. (Let us refer
to appendix A for a more detailed summary of von Neumann’s and Kreı̆n’s extension
theory, or to modern overviews such as [56, Chapter X] and [60, Chapter 13].)

By the Kreı̆n-Višik-Birman (KVB) theory (where the order here reflects the
chronological appearance of the seminal works of Kreı̆n [34], Višik [66], and
Birman [8]), one means a development of Kreı̆n’s original theory, in the form of
an explicit and extremely convenient classification of all self-adjoint extensions of a
given semi-bounded and densely defined symmetric operator S, both in the operator
sense and in the quadratic form sense.
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As the distinction “Kreı̆n vs KVB” may appear a somewhat artificial retrospec-
tive, let us emphasize the following. In Kreı̆n’s original work [34] each extension
of S is proved to be bijectively associated with a self-adjoint extension, with unit
norm, of the Kreı̆n transform (S − 1)(S + 1)−1 of S. This way, a difficult self-
adjoint extension problem (extension of S) is shown to be equivalent to an easier
one (extension of the Kreı̆n transform of S), yet no general parametrisation of the
extensions of S is given. The full KVB theory provides in addition a parametrisation
of the extensions, labelling each of them in the form SB where B runs over all self-
adjoint operators acting on Hilbert subspaces of ker(S∗+λ1), for some large enough
λ � 0.

The KVB theory has a number of features that make it in many respects more
informative as compared to von Neumann’s. First and most importantly, the KVB
parametrisation B ↔ SB identifies special subclasses of extensions of S, such
as those whose bottom is above a prescribed level, in terms of a corresponding
subclass of parameters B. In particular, both the Friedrichs extension SF and the
Kreı̆n-von Neumann extension SN of S relative to a given reference lower bound
can be selected a priori, meaning that the special parameter B that identifies SF or
SN is explicitly known. In contrast, the parametrisation U ↔ SU based on unitaries
U provided by von Neumann’s theory does not identify a priori the particular
U that gives SF or SN . An amount of further relevant information concerning
each extension, including invertibility, semi-boundedness, and special features of
its negative spectrum (finiteness, multiplicity, accumulation points) turn out to be
controlled by the analogous properties of the extension parameter. Furthermore, the
KVB extension theory has a natural and explicit re-formulation in terms of quadratic
forms, an obviously missing feature in von Neumann’s theory. On this last point,
it is worth emphasizing that whereas the KVB classification of the extensions as
operators is completely general, the classification in terms of the corresponding
quadratic forms only applies to the family of semi-bounded self-adjoint extensions
of S, while unbounded below extensions (if any) escape this part of the theory.1

For several historical and scientific reasons (a fact that itself would indeed
deserve a separate study) the mathematical literature in English language on the
KVB theory is considerably more limited as compared to von Neumann’s theory.
Over the decades the tendency has been in general to re-derive and discuss the main
results through routes and with notation and “mathematical flavour” that differ from
the original formulation.

1If the subspaces ker(S∗ − z1) and ker(S∗ − z1) have the same finite dimension, it is easy to
conclude that all self-adjoint extensions of S are bounded below, see, e.g., the Proposition on page
179 of [56]; if their common dimension is infinite instead, S may also admit self-adjoint extensions
that are unbounded below. The occurrence of such unbounded below extensions may be presented
as a mere “academic exercise” about operators on an infinite orthogonal sum of Hilbert spaces
(see [56, Chapter 10], Problem 26) but in fact examples are known where they arise as quantum
Hamiltonians of physical relevance—see, e.g., the possibility of unbounded below self-adjoint
extensions for particle Hamiltonians with point interaction [14, 20, 21, 39–41, 51, 52].
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At the price of an unavoidable oversimplification, we can say that while in the
applications to quantum mechanics von Neumann’s theory has achieved a dominant
role, and is nowadays a textbooks standard, on a more abstract mathematical level
the original results of Kreı̆n, Višik, and Birman, and their applications to boundary
value problems for elliptic PDE, have eventually found a natural evolution and
generalisation within the modern theory of boundary triplets. Thus, in modern
terms the deficiency space ker(S∗ + λ1) is referred to as a boundary value
space, this space is then equipped with a boundary triplet structure, and the
extensions of S are parametrised by linear relations on the boundary space, with
a distinguished position for the Friedrichs and the Kreı̆n-von Neumann extensions
that are intrinsically encoded in the choice of the boundary triplet.

However, this work is neither meant nor going to move from the point of view
of the boundary triplet theory, which is surely a beautiful and prolific scheme within
which one can indeed retrieve the old results of Kreı̆n, Višik, and Birman—in
fact, the latter approach is already available in the literature: for example a recent,
concise, and relatively complete survey of the re-derivation of Kreı̆n, Višik, and
Birman from the boundary triplet theory may be found in [60, Chapters 13 and 14],
and in the references therein.

Our perspective, instead, is primarily motivated by the use of the KVB theory in
the rigorous construction of quantum Hamiltonians of particle systems with contact
interactions and, more generally, in the extension theory of quantum Hamiltonians
of few-body and many-body systems where the interaction is singular enough
so as to make perturbative techniques inapplicable, and hence to give rise to a
multiplicity of self-adjoint realisations to qualify and classify. This is a realm where
customarily the largest part of the mathematics is worked out by means of the
‘dominant’ extension theory a la von Neumann, or by the theory of quadratic forms
on Hilbert space, and to a lesser extent by means of tools from non-standard analysis
or boundary triplets. However, results from Kreı̆n and Birman have been known
since long to bring in this context complementary or also new information: one
paradigmatic instance is the study of particle Hamiltonians of contact interaction
carried on by trailblazers such as Berezin, Faddeev, and above all Minlos and
his school [45, 50, 51]—an ample historical survey of which is in [41, Section
2], further references being provided here at the end of Sect. 4. In the above-
mentioned contexts, as we shall elaborate further later, comprehensive references
in the literature are, and have been over the decades, quite limited in number and
scope (as discussed in Sect. 4), due also to the circumstance that most of the original
sources were available in Russian only.

The last considerations constitute our motivations for the present note, the
object of which is therefore: first, to provide an exhaustive recapitulation of the
KVB theory and of its ‘elementary’ derivation in the original operator-theoretic
framework, thus with no reference to more modern superstructures such as boundary
triplets; second, to reproduce, neatly and directly from the original formulation, the
‘modern’ version of the main results of the theory, that is, the version appearing
essentially in all the (western) literature after Kreı̆n, Višik, and Birman, and derived
therein through more involved and more general schemes.
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To this aim, in Sect. 2 we devote a careful effort to replicate the original results
of the KVB theory, in order to make it accessible in its full rigour (and in English
language) with respect to its initial version, that is, by filling certain gaps of
the original proofs, supplementing the material with non-ambiguous notation and
elucidative steps, producing and highlighting intermediate results that have their
own independent interest. In a way, and this is our first novelty, the outcome is a
complete and self-consistent “reading guide” for the original results and for the route
to demonstrate them, together with a clean presentation of all the main statements
that are mostly referred to in the applications, significantly Theorem 1 (together
with the special cases (5) and (7)), Theorems 2, 3, and 4, and Proposition 2.

Mirroring such analysis, in Sect. 3 we reproduce an alternative, equivalent
version of the main results of the KVB theory. These statements are actually those
by which (part of) the KVB theory has been presented, re-derived, discussed,
and applied in the subsequent literature in English language. Typically this was
done by means of modern boundary-triplet-based extension techniques, whereas
the novelty here is to derive such results directly from the original ones, with the
minimum amount of operator theory (the key is the inversion mechanism of our
Proposition 3). Thus, Sect. 3 has the two-fold feature of proving the equivalence
between “modern” and “original” formulations and of providing another reference
scheme of all main results, significantly Theorems 5, 6, and 7, Proposition 4,
Theorem 8, and Proposition 5.

In Sect. 4 we place the KVB theory into a concise historical perspective of
motivations, further developments, and applications.

In Sect. 5 we complete the main core of the theory with results that characterise
relevant properties of the extensions, such as invertibility, semi-boundedness, and
other special features of the negative discrete spectrum, in terms of the correspond-
ing properties of the extension parameter.

In Sect. 6 we discuss, within the KVB formalism, the structure of resolvents of
self-adjoint extensions, in the form of Kreı̆n-like resolvent formulas. The results
emerging from Sects. 5 and 6 corroborates the picture that the KVB extension
parametrisation is in many fundamental aspects more informative than von Neu-
mann’s parametrisation.

Last, in Sect. 7 we show how the general formulas of the KVB theory apply to
simple examples in which the extension problem by means of von Neumann’s theory
is already well known, so as to make the comparison between the two approaches
evident.

For reference and comparison purposes, in the final Appendix we organised
an exhaustive summary of von Neumann’s and of Kreı̆n’s self-adjoint extension
theories, with special emphasis on the two “distinguished” extensions, the Friedrichs
and the Kreı̆n-von Neumann one.

Notation Essentially all the notation adopted here is standard, let us only emphasize
the following. Concerning the various sums of spaces that will occur, we shall
denote by � the direct sum of vector spaces, by ⊕ the direct orthogonal sum of
closed Hilbert subspaces of the same underlying Hilbert space H (the space where
the initial symmetric and densely defined operator is taken), and by � the direct sum
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of subspaces of H that are orthogonal to each other but are not a priori all closed.
For any given symmetric operator S with domain D(S), we shall denote by m(S)

the “bottom” of S, i.e., its greatest lower bound

m(S) := inf
f∈D(S)

f �=0

〈f, Sf 〉
‖f ‖2

. (1)

S being semi-bounded means therefore m(S) > −∞. Let us also adopt the
customary convention to distinguish the operator domain and the form domain of
any given densely defined and symmetric operator S by means of the notation D(S)

vs D[S]. To avoid ambiguities, V ⊥ will always denote the orthogonal complement
of a subspace V of H with respect to H itself : when interested in the orthogonal
complement of V within a closed subspace K of H we shall keep the extended
notation V ⊥ ∩ K . Analogously, the closure V of the considered subspaces will be
always meant with respect to the norm-topology of the underlying Hilbert space
H . As no particular ambiguity arises in our formulas when referring to the identity
operator, we shall use the symbol 1 for it irrespectively of the subspace of H it
acts on. As for the spectral measure of a self-adjoint operator A we shall use the
standard notation dE(A) (see, e.g., [60, Chapters 4 and 5]). As customary, σ(T ) and
ρ(T ) shall denote, respectively, the spectrum and the resolvent set of an operator T

on Hilbert space.

2 Fundamental Results in the KVB Theory: Original Version

In this Section we reproduce, through an expanded and more detailed discussion, the
pillars of the KVB theory for self-adjoint extensions of bounded below symmetric
operator, in the form they were established in the original works Kreı̆n [34], Višik
[66], and Birman [8]. The main statements are Lemma 1, Theorem 1, Remark 1,
Theorems 2, 3, and 4, and Proposition 2 below. The notation, when applicable, is
kept on purpose the same as that of those works.

2.1 General Assumptions: Choice of a Reference Lower Bound

In the following we shall assume that S is a semi-bounded (below), not necessarily
closed, densely defined symmetric operator acting on a Hilbert space H . Unlike the
early developments of the theory (Kreı̆n’s theory), no restriction is imposed to the
magnitude of the deficiency indices dim ker(S∗ ± i) of S: in particular, they can also
be infinite.

It is not restrictive to assume further

m(S) > 0 , (2)
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for in the general case one applies the discussion that follows to the strictly positive
operator S + λ1, λ > −m(S), and then re-express trivially the final results in terms
of the original S.

Associated to S are two canonical, distinguished self-adjoint extensions, the well-
known Friedrichs extension SF and Kreı̆n-von Neumann extension SN . Whereas a
complete summary of the construction and of the properties of such extensions is
presented in appendix A.2, which we will be making reference to whenever in the
following we shall need a particular attribute of SF or SN for the proofs, let us recall
here their distinguishing features.

The extension SF is semi-bounded and with the same bottom m(SF ) = m(S)

of S. Its quadratic form is precisely the closure of the (closable) quadratic form
associated with S. In fact, SF is the restriction of S∗ to the domain D[S] ∩ D(S∗).
Among all self-adjoint extensions of S, SF is the only one whose operator domain
is contained in D[S], and moreover SF is larger than any other semi-bounded
extension ˜S of S, in the sense of the ordering SF � ˜S (which, in particular, means
D[SF ] ⊂ D[˜S]).

Thus, the choice m(S) > 0 implies that the Friedrichs extension SF of S is
invertible with bounded inverse defined everywhere on H : this will allow S−1

F to
enter directly the discussion. In the general case in which SF is not necessarily
invertible, the role of S−1

F can be naturally replaced in many respects (but not all)
by the inverse ˜S−1 of any a priori known self-adjoint extension ˜S of S, which thus
takes the role of given “datum” of the theory. As an example see the role played by
the Friedrichs extension in the proofs of Lemma 5 and Theorems 3, 4.

With the choice m(S) > 0, the level 0 becomes naturally the reference value with
respect to which to express the other distinguished (canonically given) extension of
S, the Kreı̆n-von Neumann extension SN . It is qualified among all other positive
self-adjoint extensions ˜S of S by being the unique smallest, in the sense ˜S � SN .

We underline that unlike Kreı̆n’s original theory and many of the recent
presentations of the KVB theory, the discussion here is not going to be restricted
to the positive self-adjoint extensions of S. On the contrary, we shall present the
full theory that includes also those extensions, if any, with finite negative bottom, or
even unbounded below.

2.2 Adjoint of a Semi-Bounded Symmetric Operator: Regular
and Singular Part

The first step of the theory is to describe the structure of the domain of the adjoint
S∗ of S. Recall that a characterisation of D(S∗) is already given by von Neumann’s
formula

D(S∗) = D(S) � ker(S∗ − z1) � ker(S∗ − z1) for z ∈ C\R , (3)
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which is valid, more generally, for any densely defined S. The KVB theory works
with a “real” version of (3), with z = 0 and with the space

U := ker S∗ (4)

instead of the two deficiency spaces ker(S∗ − z1) and ker(S∗ − z1). With a self-
explanatory nomenclature, U shall henceforth be referred to as the deficiency space
of S, with no restriction on dim U .

The result consists of a decomposition of D(S∗) first proved by Kreı̆n (see also
Remark 21) and a further refinement, initially due to Višik, to which Birman gave
later an alternative proof.

Lemma 1 (Kreı̆n Decomposition Formula for D(S∗)) For a densely defined
symmetric operator S with positive bottom,

D(S∗) = D(SF ) � ker S∗. (5)

Proof D(S∗) ⊃ D(SF ) + ker S∗ because each summand is a subspace of D(S∗).
As for the opposite inclusion, one can always decompose an arbitrary g ∈ D(S∗) as
g = S−1

F S∗g + (g − S−1
F S∗g), where S−1

F S∗g ∈ D(SF ), and where g − S−1
F S∗g ∈

ker S∗, because S∗(g −S−1
F S∗g) = S∗g −S∗g = 0. Last, the sum in the r.h.s. of (5)

is direct because any g ∈ D(SF )∩ker S∗ is necessarily in ker SF (SF g = S∗g = 0),
and from 0 < m(S) = m(SF ) one has ker SF = {0}. ��
Theorem 1 (Višik-Birman Decomposition Formula for D(S∗)) For a densely
defined symmetric operator S with positive bottom,

D(S∗) = D(S) � S−1
F ker S∗ � ker S∗ . (6)

Proof Let U = ker S∗. As in the proof of Lemma 1, D(S∗) ⊃ D(S)�S−1
F U �U is

obvious and conversely any g ∈ D(S∗) can be written as g = S−1
F S∗g +u for some

u ∈ U = ker S∗. In turn, owing to H = ranS ⊕ ker S∗, one writes S∗g = h0 + ũ,
and hence S−1

F S∗g = S−1
F h0 + S−1

F ũ, for some ũ ∈ U and h0 = limn→∞ Sϕn for
some sequence (ϕn)n in D(S). From ϕn = S−1

F Sϕn → S−1
F h0 and Sϕn → h0 as

n → ∞, and from the closability of S, one deduces that f := S−1
F h0 ∈ D(S).

Therefore, g = f + S−1
F ũ + u, which proves D(S∗) ⊂ D(S) + S−1

F U + U . Last,
one concludes that the sum in (6) is direct as follows: if g = f + S−1

F ũ + u = 0,
then 0 = S∗g = Sf + ũ, which forces Sf = ũ = 0 because Sf ⊥ ũ; then also
f = S−1

F Sf = 0 and, from g = 0, also u = 0. ��
Remark 1 The argument of the proof above can be repeated to conclude

D(SF ) = D(S) � S−1
F ker S∗ . (7)
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and hence

D(SF ) ∩ ker S∗ = {0}. (8)

Indeed, while it is obvious that the r.h.s. of (7) is contained in the l.h.s., conversely
one takes a generic g ∈ D(SF ) and decomposes SF g = h0 + ũ with h0 ∈ ranS

and ũ ∈ U as above, whence, by the same argument, g = S−1
F h0 + S−1

F ũ with
S−1

F h0 ∈ D(S).

Remark 2 Precisely as in the remark above, one also concludes that

D(˜S) = D(S) �˜S−1 ker S∗ (9)

for any self-adjoint extension ˜S of S that is invertible everywhere on H .

Remark 3 Since S is closable and injective (m(S) > 0), then as well known

ranS = ranS . (10)

Thus, in the above proof one could claim immediately that h0 = Sf for some
f ∈ D(S), whence S−1

F h0 = S−1
F Sf = f ∈ D(S).

Remark 4 In view of the applications in which S and SF are differential operators
on an L2-space and hence D(SF ) indicates an amount of regularity of its elements,
it is convenient to regard D(SF ) = D(S)�S−1

F U in (6) as the “regular component”
and, in contrast, U = ker S∗ as the “singular component” of the domain of S∗.

Remark 5 In all the previous formulas the assumption m(S) > 0 only played a role
to guarantee the existence of the everywhere defined and bounded operator S−1

F .
It is straightforward to adapt the arguments above to prove the following: if S is a
symmetric and densely defined operator on H and ˜S is a self-adjoint extension of
S, then for any z ∈ ρ(˜S) (the resolvent set of ˜S)

D(S∗) = D(S) � (˜S − z1)−1 ker(S∗ − z1) � ker(S∗ − z1) (11)

D(S∗) = D(˜S) � ker(S∗ − z1) (12)

D(˜S) = D(S) � (˜S − z1)−1 ker(S∗ − z1) . (13)

2.3 Višik’s B Operator

To a generic self-adjoint extension of S one associates, canonically with respect to
the decomposition (6), a self-adjoint operator B acting on a Hilbert subspace of
ker S∗. This “Višik’s B operator” defined in (23) below (introduced first by Višik in
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[66]) turns out to be a convenient label to index the self-adjoint extensions of S: this
is going to be done in formula (24) proved in the end of this Subsection.

Let ˜S be a self-adjoint extension of S. Correspondingly, let U0 and U1 be the
two closed subspaces of U = ker S∗ (and hence of H), and let H+ be the closed
subspace of H , uniquely associated to ˜S by means of the definitions

U0 := ker˜S , U = U0 ⊕ U1 , H+ := ranS ⊕ U1 . (14)

Thus,

H = ranS ⊕ ker S∗ = ranS ⊕ U1 ⊕ U0 = H+ ⊕ ker˜S . (15)

Let P+ : H → H be the orthogonal projection onto H+.
The operator ˜S has the following properties.

Lemma 2

(i) ranS ⊕ U1 = H+ = ran˜S, i.e., ran˜S is dense in H+
(ii) ker˜S = (1 − P+)D(˜S)

(iii) D(˜S) = (D(˜S) ∩ H+) � ker˜S = P+D(˜S) � ker˜S and also D(˜S) ∩ H+ =
P+D(˜S)

(iv) D(˜S) ∩ H+ is dense in H+
(v) ˜S maps D(˜S) ∩ H+ into H+

(vi) ran˜S = ranS � ˜U1 where ˜U1 is a dense subspace of U1 uniquely identified by
˜S.

Proof (i) follows by (15), because ran˜S is the orthogonal complement to ker˜S in
H (owing to the self-adjointness of ˜S). In (ii) the “⊃” inclusion is obvious and
conversely, if u0 ∈ ker˜S ⊂ D(˜S), then u0 = (1 − P+)u0 ∈ (1 − P+)D(˜S). To
establish (iii), decompose a generic g ∈ D(˜S) as g = f+ + u0 for some f+ ∈ H+
and u0 ∈ U0 = ker˜S (using H = H+ ⊕ ker˜S): since f+ = g − u0 ∈ D(˜S),
then f+ ∈ D(˜S) ∩ H+ and therefore D(˜S) ⊂ (D(˜S) ∩ H+) � ker˜S. The opposite
inclusion is obvious, thus D(˜S) = (D(˜S) ∩ H+) � ker˜S. It remains to prove that
D(˜S)∩H+ = P+D(˜S): the inclusion D(˜S)∩H+ ⊂ P+D(˜S) is obvious, as for the
converse, if h = P+g ∈ P+D(˜S) for some g ∈ D(˜S), decompose g = f+ + u0 in
view of D(˜S) = (D(˜S) ∩ H+) � ker˜S, then h = P+g = f+ ∈ D(˜S) ∩ H+, which
completes the proof. To establish (iv), for fixed arbitrary h+ ∈ H+ let (fn)n∈N be a
sequence in D(˜S) of approximants of h+ (indeed D(˜S) is dense in H): then, as n →
∞, fn → h+ implies P+fn → h+. (v) is an immediate consequence of (i), because
˜S maps D(˜S) ∩ H+ into ran˜S. Last, let us prove (vi). Recall that ranS = ranS,
because S is closable and injective (m(S) > 0). Set ˜U1 := {ug ∈ U1 |˜Sg = Sfg +
ug for g ∈ D(˜S)}, where fg ∈ D(S) and ug ∈ U1 are uniquely determined by the

given g ∈ D(˜S) through (i) and the decomposition ran˜S = H+ = ranS ⊕ U1. The
inclusions ran˜S ⊂ ranS � ˜U1 and ran˜S ⊃ ranS are obvious, furthermore ran˜S ⊃ ˜U1
because each ũ1 ∈ ˜U1 is by definition the difference of two elements in ran˜S. Thus,
ran˜S = ranS � ˜U1. It remains to prove the density of ˜U1 in U1. Given an arbitrary
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u1 ∈ U1 ⊂ H+ and a sequence (˜Sgn)n∈N ∈ ran˜S of approximants of u1 (owing to
the density of ran˜S in H+), decompose ˜Sgn = Sfn + ũn, for some fn ∈ D(S) and
ũn ∈ ˜U1, in view of ran˜S = ranS� ˜U1: denoting by P1 : H+ → H+ the orthogonal
projection onto U1, one has u1 = P1u1 = P1 limn(Sfn + ũn) = limn ũn, which
shows that (̃un)n∈N is a sequence in ˜U1 of approximants of u1. ��

Since ˜S maps D(˜S)∩H+ into H+ and trivially U0 into itself, and since P+ maps
D(˜S) into itself (Lemma 2(iii)), then H+ and U0 are reducing subspaces for ˜S (see,
e.g., [60, Prop. 1.15]). The non-trivial (i.e., non-zero) part of ˜S in this reduction is
the operator

˜S+ := ˜S � D(˜S+) , D(˜S+) := D(˜S) ∩ ran˜S = P+D(˜S) , (16)

which is therefore a densely defined, injective, and self-adjoint operator on the
Hilbert space H+. Explicitly,

ran˜S = {˜Sg | g ∈ D(˜S)} = {˜SP+g | g ∈ D(˜S)}
˜S+P+g = ˜SP+g ∀g ∈ D(˜S)

ran˜S+ = ran˜S .

(17)

The inverse of ˜S+ (on H+) is the self-adjoint operator ˜S−1+ with

D(˜S−1+ ) = ran˜S ,

˜S−1+ (˜SP+g) = P+g ∀g ∈ D(˜S)
(18)

and hence

ran(˜S−1+ ) = ˜S−1+ ran˜S = P+D(˜S) (19)

˜S−1+ ranS = P+D(S) . (20)

((20) follows from ˜S−1+ (˜SP+f ) = P+f in (18), letting now f run on D(S) only:
the r.h.s. gives P+D(S), in the l.h.s. one uses that ˜SP+f = ˜Sf = Sf ∀f ∈ D(S)

and hence {˜SP+f | f ∈ D(S)} = ranS.)
Furthermore, by setting

D(S −1) := D(˜S−1+ ) � U0 = ran˜S � ker˜S

S −1
˜Sg := ˜S−1+ ˜Sg = g ∀g ∈ D(˜S)

S −1 � ker ˜S := O ,

(21)
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one defines a self-adjoint operator S −1 on the whole H , with reducing subspaces

H+ = ran˜S and U0 = ker˜S.
Two further useful properties are the following.

Lemma 3

(i) D(S) + U0 = P+D(S) � U0
(ii) P+D(˜S) = P+D(S) + S −1

˜U1.

Proof The inclusion D(S) + U0 ⊂ P+D(S) � U0 in (i) follows from the fact that
each summand in the l.h.s. belongs to the sum in the r.h.s., in particular, D(S) ⊂
P+D(S) + (1 − P+)D(S). Conversely, given a generic h = P+f ∈ P+D(S) for
some f ∈ D(S) and u0 ∈ U0, then h + u0 = f + u′

0 with u′
0 := u0 − (1 −

P+)f ∈ U0, which proves the inclusion D(S) + U0 ⊃ P+D(S) � U0. (ii) follows
by applying S −1 to the decomposition ran˜S = ranS � ˜U1 of Lemma 2(vi), for on
the l.h.s. one gets S −1ran˜S = P+D(˜S), owing to (21), whereas on the r.h.s. one
gets S −1ranS = P+D(S), owing to (20). ��

Summarising so far, the given operator S and the given self-adjoint extension ˜S

determine canonically (and, in fact, constructively) the closed subspace U1 of ker S∗,

the dense subspace ˜U1 in U1, the closed subspace H+ = ran˜S = ranS ⊕ U1 of H
(equivalently, the orthogonal projection P+ onto H+), and the self-adjoint operator
S −1 on H , with the properties discussed above. In terms of these data, one defines

B := S −1 − P+S−1
F P+

D(B) := D(S −1) = ran˜S � ker˜S ,
(22)

a self-adjoint operator on H with the following properties.

Lemma 4

(i) B is self-adjoint on H and it is bounded if and only if the inverse of ˜S �
(D(˜S) ∩ ran˜S

)

(i.e., ˜S−1+ ) is bounded as an operator on H+.
(ii) With respect to the decomposition (15) H = ranS⊕U1 ⊕U0, one has D(B) =

ranS � ˜U1 � U0, B ranS = {0}, B ˜U1 ⊂ U1, and B U0 = {0}.
Proof (i) is obvious from the definition of B and of S −1: the former is bounded if
and only if the latter is. As for (ii),D(B) = ran˜S � ker˜S = ranS � ˜U1 �U0 follows
from (22) and Lemma 2(vi). Moreover, BU0 = {0} is obvious from (21) and (22).
To see that B ranS = {0} let f ∈ D(S), then BSf = S −1Sf − P+S−1

F Sf =
˜S−1+ Sf − P+f = P+f − P+f = 0, where we used (22) and ranS ⊂ H+ in the
first equality, (21) in the second equality, and (20) in the third equality. In view of
the decomposition H = ranS ⊕ U1 ⊕ U0, D(B) = ranS � ˜U1 � U0, the self-
adjointness of B and the fact that B ranS = {0} and BU0 = {0} imply necessarily
B ˜U1 ⊂ U1. ��
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As a direct consequence of Lemma 4 above, the restriction of B to ˜U1, i.e., the
operator

B := (

S −1 − P+S−1
F P+

)

� D(B) , D(B) := ˜U1 (23)

is a self-adjoint operator on the Hilbert space U1 (with dense domain ˜U1), which
itself is canonically determined by ˜S. The interest towards this operator B is due the
following fundamental property.

Proposition 1 (B-Decomposition Formula)

D(˜S) = D(S) � (S−1
F + B)˜U1 � U0 (24)

Proof One has

D(˜S) = P+D(˜S) + U0 (Lemma 2(iii))

= P+D(S) + S −1
˜U1 + U0 (Lemma 3(ii))

= D(S) + S −1
˜U1 + U0 (Lemma 3(i))

= D(S) + (P+S−1
F P+ + B)˜U1 + U0 (by (23))

= D(S) + (P+S−1
F + B)˜U1 + U0 (˜U1 ⊂ H+)

= D(S) + P+(S−1
F + B)˜U1 + U0 (B˜U1 ⊂ U1 ⊂ H+, Lemma 4(ii)).

This identity, together with

P+(S−1
F + B)˜U1 + U0 = (S−1

F + B)˜U1 + U0 (*)

yields D(˜S) = D(S)+ (S−1
F +B)˜U1 +U0, and this sum is direct because if D(˜S) �

g = f +(S−1
F +B)ũ1+u0 = f +S−1

F ũ1+(Bũ1+u0), then, according to (6) and (14),
g = 0 implies f = 0, ũ1 = 0 and u0 = 0. Thus, in order to prove (24) it only
remains to prove (*). For the inclusion P+(S−1

F +B)˜U1 +U0 ⊂ (S−1
F +B)˜U1 +U0

pick ψ := P+(S−1
F + B)̃u1 + u0 for generic ũ1 ∈ ˜U1 and u0 ∈ U0. From (23), from

the fact that ũ1 = P+ũ1, and from P+S −1ũ1 = S −1ũ1 (which follows from (21)),
one has

P+(S−1
F + B)̃u1 = P+S−1

F P+ũ1 + P+S −1ũ1 − P+S−1
F P+ũ1 = S −1ũ1

as well as

(S−1
F + B)̃u1 = (S−1

F ũ1 − P+S−1
F ũ1) + S −1ũ1 = u′

0 + S −1ũ1 ,
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where u′
0 := S−1

F ũ1 − P+S−1
F ũ1 ∈ H � H+ = U0; therefore,

ψ = P+(S−1
F + B)̃u1 + u0 = S −1ũ1 + u0

= u′
0 + S −1ũ1 + u0 − u′

0 = (S−1
F + B)̃u1 + (u0 − u′

0) ,

which proves that ψ ∈ (S−1
F + B)˜U1 + U0. The opposite inclusion to establish (*),

that is, P+(S−1
F + B)˜U1 + U0 ⊃ (S−1

F + B)˜U1 + U0, is proved repeating the same
argument in reverse order. ��

2.4 Classification of All Self-Adjoint Extensions: Operator
Formulation

After characterising the structure (6) ofD(S∗) and providing the decomposition (24)
of D(˜S) for a generic self-adjoint extension ˜S in terms of its B-operator, the next
fundamental result in the KVB theory is the fact that the B-decomposition actually
classifies all self-adjoint extensions of S.

Theorem 2 (Višik-Birman Representation Theorem) Let S be a densely defined
symmetric operator on a Hilbert space H with positive bottom (m(S) > 0). There
is a one-to-one correspondence between the family of the self-adjoint extensions of
S on H and the family of the self-adjoint operators on Hilbert subspaces of ker S∗,
that is, the collection of triples (U1, ˜U1, B), where U1 is a closed subspace of ker S∗,
˜U1 is a dense subspace of U1, and B is a self-adjoint operator on the Hilbert space
U1 with domain D(B) = ˜U1. For each such triple, let U0 be the closed subspace of
ker S∗ defined by ker S∗ = U0 ⊕ U1. Then, in this correspondence SB ↔ B, each
self-adjoint extension SB of S is given by

SB = S∗ � D(SB)

D(SB) = D(S) � (S−1
F + B)˜U1 � U0 .

(25)

Proof The fact that each self-adjoint extension of S is precisely of the form SB is the
content of Proposition 1, where B is Višik’s B operator associated to the considered
self-adjoint extension. Conversely, one has to prove that each operator on H of the
form SB above is a self-adjoint extension of S, and that the correspondence SB ↔ B

is one-to-one.
Fixed (U1, ˜U1, B) as in the statement, let us consider the corresponding SB . One

sees from (25) that SB is densely defined (D(SB) ⊃ D(S)) and it is an operator
extension of S (SBf = Sf for all f ∈ D(S)). In fact, SB is a symmetric extension:
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for two generic elements of D(SB) one has

〈f ′+(S−1
F + B)̃u′

1 + u′
0, SB(f + (S−1

F + B)̃u1 + u0)〉 =
= 〈f ′, Sf 〉 + 〈f ′, ũ1〉 + 〈S−1

F ũ′
1, Sf 〉 + 〈S−1

F ũ′
1, ũ1〉 + 〈Bũ′

1, ũ1〉
= 〈Sf ′, f 〉 + 〈Sf ′, S−1

F ũ1〉 + 〈̃u′
1, f 〉 + 〈̃u′

1, S
−1
F ũ1〉 + 〈̃u′

1, Bũ1〉
= 〈SB(f ′ + (S−1

F + B)̃u′
1 + u′

0), f + (S−1
F + B)̃u1 + u0〉

(where in the first step we used that 〈Bũ′
1, Sf 〉 = 〈S∗Bũ′

1, f 〉 = 0, 〈u′
0, Sf 〉 =

〈S∗u′
0, f 〉 = 0, 〈u′

0, ũ1〉 = 0, in the second step we used the symmetry of S, the
self-adjointness of S−1

F and B, and the properties of the adjoint S∗, and in the last
step we used that 〈Sf ′, Bũ1〉 = 〈f ′, S∗Bũ1〉 = 0, 〈Sf ′, u0〉 = 〈f ′, S∗u0〉 = 0,
〈̃u′

1, u0〉 = 0). Therefore, S ⊂ SB ⊂ SB
∗ ⊂ S∗ and in order to show that SB = SB

∗
it suffices to prove that D(SB) ⊃ D(SB

∗).
Let us then pick h ∈ D(SB

∗), generic. Since SB
∗ ⊂ S∗, one has h = ϕ+S−1

F v+v

by (6) for some ϕ ∈ D(S) and v, v ∈ U = ker S∗, and SB
∗h = Sϕ + v. Actually

v ∈ U1, because U = U0 ⊕U1 and 〈v, u0〉 = 〈SB
∗h, u0〉− 〈Sϕ, u0〉 = 〈h, SBu0〉−

〈ϕ, S∗u0〉 = 〈h−ϕ, S∗u0〉 = 0 ∀u0 ∈ U0. Thus, representing v = v0 +v1, v0 ∈ U0,
v1 ∈ U1, one writes

h = ϕ + S−1
F v + v = ϕ + (S−1

F v + v1) + v0 .

In order to recognise this vector to belong to D(SB), let us exploit the identity
〈h, SBk〉 = 〈S∗

Bh, k〉, valid ∀k ∈ D(SB), for the k’s of the special form k = f +
(S−1

F + B)̃u1, f ∈ D(S), ũ1 ∈ D(B). In this case

〈h, SBk〉 = 〈(ϕ + S−1
F v) + v1 + v0, S

∗(f + S−1
F ũ1 + Bũ1)〉

= 〈(ϕ + S−1
F v), S∗(f + S−1

F ũ1)〉 + 〈v1 + v0, Sf + ũ1〉
= 〈(ϕ + S−1

F v), SF (f + S−1
F ũ1)〉 + 〈v1, ũ1〉

(indeed, SBBũ1 = S∗Bũ1 = 0, ϕ + S−1
F v ∈ D(SF ), f + S−1

F ũ1 ∈ D(SF ), 〈v1 +
v0, Sf 〉 = 〈S∗(v1 + v0), f 〉 = 0, and 〈v0, ũ1〉 = 0) and

〈S∗
Bh, k〉 = 〈Sϕ + v, (f + S−1

F ũ1) + Bũ1〉
= 〈SF (ϕ + S−1

F v), (f + S−1
F ũ1)〉 + 〈v,Bũ1〉

(indeed, 〈Sϕ,Bũ1〉 = ϕ, S∗Bũ1〉 = 0). Equating these two expressions and using
the self-adjointness of SF yields

〈v1, ũ1〉 = 〈v,Bũ1〉 ∀ ũ1 ∈ D(B)
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which implies, owing to the self-adjointness of B, v ∈ D(B) and Bv = v1. Thus,
the above decomposition for h reads now

h = ϕ + (S−1
F + B) v + v0

for some v ∈ D(B) = ˜U1 and v0 ∈ U0, thus proving that h ∈ D(SB).
Last, one proves that the operator B in the decomposition (25) is unique and

therefore the correspondence between self-adjoint extensions of S and operators of
the form SB is one-to-one. Indeed, if

D(SB) = D(S) � (S−1
F + B)˜U1 � U0 = D(S) � (S−1

F + B ′)˜U ′
1 � U ′

0

where ker S∗ = U0 ⊕U1 = U ′
0 ⊕U ′

1 and where B and B ′ are self-adjoint operators,
respectively on the Hilbert spaces U1 and U ′

1, with domain, respectively, ˜U1 and
˜U ′

1, then the action of SB on an arbitrary element g ∈ D(SB) gives, in terms of the
decomposition g = f + (S−1

F + B)̃u1 + u0 = f ′ + (S−1
F + B ′)̃u′

1 + u′
0, SBg =

Sf + ũ1 = Sf ′ + ũ′
1; each sum belongs to the orthogonal sum H = ranS ⊕ ker S∗,

whence ũ1 = ũ′
1 and, by injectivity of S, f = f ′ (whence also u0 = u′

0); thus,
˜U1 = ˜U ′

1 and, after taking the closure U1 = U ′
1 and U0 = U ′

0; this also implies
Bũ1 = B ′ũ1, whence B = B ′. ��

2.5 Characterisation of Semi-Bounded Extensions: Operator
Version

A further relevant feature of the KVB theory is that the general classification (25)
of Theorem 2 allows to identify special subclasses of self-adjoint extensions of S,
significantly those that are bounded below, or in particular positive or also strictly
positive, in terms of suitable subclasses of the corresponding B-operators in the
representation (25).

In this respect, the convenient characterisation is expressed in terms of the inverse
of B, more precisely of the self-adjoint operator B−1

� on the Hilbert space

HB := ranB ⊕ ker SB , (26)

which is a Hilbert subspace of ker S∗ (recall the notation ker SB ≡ U0, ker S∗ ≡ U ,
and observe that ranB ⊕ ker SB ⊂ U1 ⊕ U0 = U = ker S∗), defined by

D(B−1
� ) := ranB � ker SB

B−1
� � ranB := B−1

B−1
� � ker SB := O .

(27)
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It is fair to refer to B−1
� as “Birman’s operator”, for it is Birman who first determined

and exploited its properties (Lemma 5 and Theorem 3 below).
For reference purposes, in (27) we intentionally kept Birman’s original notation

[8]. A more precise definition of the operator B−1
� is the following

HB := ranB ⊕ (ker S∗ ∩ D(B)⊥)

= ranB ⊕ (ker S∗ � D(B) ) = D(B−1
� )

D(B−1
� ) := ranB � (ker S∗ ∩ D(B)⊥)

B−1
� Bz := z ∀z ∈ D(B) \ ker B = D(B) ∩ ranB

B−1
� u0 := 0 ∀u0 ∈ ker S∗ ∩ D(B)⊥

(28)

where we used the decompositions U1 = D(B) = ranB ⊕ker B and ˜U1 = D(B) =
(D(B) ∩ ranB)� ker B. Thus, the action of B−1

� on a generic element Bũ1 ∈ ranB

is given, in view of the decomposition ũ1 = z + z0 for some z ∈ D(B) ∩ ranB and
z0 ∈ ker B, by B−1

� Bũ1 = z.

Remark 6 One has

D(SB) ⊂ D(SF ) � D(B−1
� ) . (29)

Indeed, according to (25), any g ∈ D(SB) decomposes for some f0 ∈ D(S), ũ1 ∈
˜U1 = D(B), u0 ∈ U0 = ker S∗ ∩D(B)⊥ as g = f0 + (S−1

F + B)̃u1 + u0 = f + v,
where f := f0 +S−1

F ũ1 ∈ D(SF ) and (by (28)) v := Bũ1+u0 ∈ D(B−1
� ). The sum

in the r.h.s. of (29) is direct because if v ∈ D(SF ) ∩ D(B−1
� ), then v ∈ ker S∗ by

definition (27) and hence ‖v‖2 = 〈SF S−1
F v, v〉 = 〈S−1

F v, SF v〉 = 〈S−1
F v, S∗v〉 = 0.

Observe, conversely, that inclusion is generically strict. Indeed, for a generic h ∈
D(SF )�D(B−1

� ) one writes, according to (7) and (28), h = (f0 +S−1
F ũ1 + Bũ1 +

u0) + S−1
F (u − ũ1) for some f0 ∈ D(S), ũ1 ∈ D(B), u0 ∈ ker S∗ ∩ D(B)⊥,

u ∈ ker S∗, and this is not enough to use (25) and deduce that h ∈ D(SB).

Lemma 5

(i) If, with respect to the notation of (25) and (28), SB is a self-adjoint extension of
a given densely defined symmetric operator S with positive bottom (m(S) > 0),
then

D(B−1
� ) ⊂ D[SB ] ∩ ker S∗ . (30)

(ii) If in addition SB is bounded below, then

SB [v1, v2] = 〈v1, B
−1
� v2〉 ∀v1, v2 ∈ D(B−1

� ) . (31)
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Proof The fact that D(B−1
� ) ⊂ ker S∗ is stated in the definition (27). To prove

that D(B−1
� ) ⊂ D[SB ], decompose an arbitrary v ∈ D(B−1

� ), according to (28),
as v = Bũ1 + u0 for some ũ1 ∈ D(B)\ker B ⊂ ˜U1 and u0 ∈ U0 = ker SB .
From v = (

(S−1
F + B)̃u1 + u0

) − S−1
F ũ1 one can then regard v as the difference

between an element in D(SB), according to (25), and an element in D(SF ). Since
D(SB) ⊂ D[SB ] and D(SF ) ⊂ D[SF ] ⊂ D[SB ] (the Friedrichs extension has the
smallest form domain among all semi-bounded extensions, Theorem 15(vii)), then
v ∈ D[SB ], which proves D(B−1

� ) ⊂ D[SB ] and completes the proof of (30). To
prove (31), consider again an arbitrary v = Bũ1 + u0 in D(B−1

� ) as above: for
f := S−1

F ũ1 ∈ D(SF ) and g := f + v = S−1
F ũ1 + Bũ1 + u0 ∈ D(SB), one has

SBg = ũ1 = SF f , B−1
� v = ũ1, and

SB [g, g] = 〈g, SBg〉 = 〈f + v, ũ1〉 = 〈f, SF f 〉 + 〈v, ũ1〉
= SF [f, f ] + 〈v,B−1

� v〉 .

All this is still valid irrespectively of the semi-boundedness of SB . On the other
hand, if SB is bounded below, then a central result in Kreı̆n’s theory of self-adjoint
extensions (see (127) quoted in appendix A.3) states that SB [f, v] = 0 for any
f ∈ D[SF ] and any v ∈ D[SB ] ∩ ker S∗ (which is what holds for f and v in the
present case, owing to (i)), whence

SB [g, g] = SF [f, f ] + SB [v, v] .

Thus, by comparison, SB [v, v] = 〈v,B−1
� v〉 ∀v ∈ D(B−1

� ). (31) then follows by
polarisation. ��
Theorem 3 (Characterisation of Semi-Bounded Extensions) Let S be a densely
defined symmetric operator on a Hilbert space H with positive bottom (m(S) > 0).
If, with respect to the notation of (25) and (28), SB is a self-adjoint extension of S,
and if α < m(S), then

〈g, SBg〉 � α ‖g‖2 ∀g ∈ D(SB)

�
〈v,B−1

� v〉 � α‖v‖2+ α2〈v, (SF − α1)−1v〉 ∀v ∈ D(B−1
� ) .

(32)

As an immediate consequence, m(B−1
� ) � m(SB) for any semi-bounded SB . In

particular, positivity or strict positivity of the bottom of SB is equivalent to the same
property for B−1

� , that is,

m(SB) � 0 ⇔ m(B−1
� ) � 0

m(SB) > 0 ⇔ m(B−1
� ) > 0 .

(33)
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Moreover, if m(B−1
� ) > −m(S), then

m(B−1
� ) � m(SB) � m(S) m(B−1

� )

m(S) + m(B−1
� )

. (34)

Proof Let us start with the proof of (32). Observe that the fact that SB is bounded
below by α is equivalently expressed as SB [g] � α‖g‖2 ∀g ∈ D[SB ]. For generic
f ∈ D(SF ) and v ∈ D(B−1

� ), one has that g := f + v ∈ D[SB ] and SB [v] =
〈v,B−1

� v〉 (Lemma 5). On the other hand, since v ∈ D[SB ]∩ker S∗ (Lemma 5), then
SB [f, v] = 0 (owing to (127)). Therefore, SB [g] = SB [f + v] = SF [f ] + SB [v] =
〈f, SF f 〉 + 〈v,B−1

� v〉. Thus, the assumption that SB is bounded below by α reads,
for all such g’s,

〈f, SF f 〉 + 〈v,B−1
� v〉 � α

(〈f, f 〉 + 〈f, v〉 + 〈v, f 〉 + 〈v, v〉) (i)

whence also, replacing f �→ λf , v �→ μv,

(〈f, SF f 〉 − α‖f ‖2) |λ|2 − α〈f, v〉λμ − α〈v, f 〉λμ

+ (〈v,B−1
� v〉 − α‖v‖2) |μ|2 � 0 ∀λ,μ ∈ C .

(ii)

Since α < m(S), and hence 〈f, SF f 〉− α‖f ‖2 > 0, inequality (ii) holds true if and
only if

α2|〈f, v〉|2 �
(〈v,B−1

� v〉 − α‖v‖2) (〈f, SF f 〉 − α‖f ‖2) (iii)

for arbitrary f ∈ D(SF ) and v ∈ D(B−1
� ), which is therefore a necessary condition

for SB to be bounded below by α. Condition (iii) is in fact also sufficient. To see
this, decompose an arbitrary g ∈ D(SB) as g = f + v for some f ∈ D(SF ) and
v ∈ D(B−1

� ) (which is always possible, as observed in Remark 6) and apply (iii) to
this case: one then obtains (ii) owing to α < m(S), which in turns yields (i) when
λ = μ = 1; from (i) one goes back to SB [g] � α‖g‖2 following in reverse order
the same steps discussed at the beginning. Thus, (iii) is equivalent to the fact that
SB is bounded below by α. By re-writing (iii) as

〈v,B−1
� v〉 − α‖v‖2 � α2 |〈f, v〉|2

〈f, (SF − α1)f 〉
and by the fact that the above inequality is valid for arbitrary f ∈ D(SF ) and hence
holds true also when the supremum over such f ’s is taken, one finds

〈v,B−1
� v〉 − α‖v‖2 � α2〈v, (SF − α1)−1v〉
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by means of a standard operator-theoretic argument applied to the bottom-positive
operator SF − α1 (Lemma 6). This completes the proof of (32).

From (32) one deduces immediately both the first equivalence of (33), by taking
α = 0, and the implication “m(SB) > 0 ⇒ m(B−1

� ) > 0” in the second equivalence
of (33), because m(B−1

� ) � m(SB). Conversely, if m(B−1
� ) > 0, then it follows

from (27)–(28) that B−1
� has a bounded inverse, that U0 = ker SB = {0}, and that

B : D(B) ≡ ˜U1 ⊂ U1 → U1 is bounded; this, in turn, implies by Lemma 4(ii) and
by (23) that the operator B defined in (22) is bounded, which by Lemma 4(i) means
that SB has a bounded inverse (densely defined) on the whole H+ and therefore
(H = H+ ⊕ U0) on the whole H . This fact excludes that m(SB) = 0, and since
m(B−1

� ) > 0 ⇒ m(SB) � 0 by the first of (33), one finally concludes m(SB) > 0,
which completes the proof of (33).

Last, it only remains to prove m(SB) � m(S)m(B−1
� )(m(S)+m(B−1

� ))−1 in (34)
(assuming m(B−1

� ) > −m(S)). In this case, for

α := m(S) m(B−1
� )

m(S) + m(B−1
� )

one has α < m(S) = m(SF ) and m(B−1
� ) = α m(S)(m(S)−α)−1, whence (m(S)−

α)−1 � (SF − α)−1 and

〈v,B−1
� v〉 � m(B−1

� )‖v‖2 = α m(S)

m(S) − α
‖v‖2 = α‖v‖2 + α2

m(SF ) − α
‖v‖2

� α‖v‖2 + α2〈v, (SF − α1)−1v〉 ∀v ∈ D(B−1
� ) .

Owing to (32), the latter inequality is equivalent to m(SB) � α, which completes
the proof of (34). ��
Lemma 6 If A is a self-adjoint operator on a Hilbert space H with positive bottom
(m(A) > 0), then

sup
f ∈D(A)

|〈f, h〉|2
〈f,Af 〉 = 〈h,A−1h〉 ∀h ∈ H .

Proof Setting g := A1/2f one has

sup
f∈D(A)

|〈f, h〉|2
〈f,Af 〉 = sup

g∈H
|〈A−1/2g, h〉|2

‖g‖2 = sup
‖g‖=1

|〈g,A−1/2h〉|2

and since |〈g,A−1/2h〉| attains its maximum for g = A−1/2h/‖A−1/2h‖, the
conclusion then follows. ��
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2.6 Characterisation of Semi-Bounded Extensions: Form
Version

The operator characterisation of the semi-bounded self-adjoint extensions of S

provided by Theorem 3 has the virtue that it can be directly reformulated in terms of
the quadratic form associated with an extension. The result is a very clean expression
of D[SB ] in terms of the intrinsic space D[SF ] and the additional space D[B−1

� ],
where B (equivalently, B−1

� ) plays the role of the “parameter” of the extension also
in the form sense. This is a plus as compared to von Neumann’s characterisation
(Theorem 14), for the latter only classifies the self-adjoint extensions of S by
indexing each operator extension SU in terms of a unitary U acting between defect
subspaces, whereas the quadratic form associated with each SU has no explicit
description in terms of U .

Theorem 4 (Characterisation of Semi-Bounded Extensions—form Version)
Let S be a densely defined symmetric operator on a Hilbert space H with positive
bottom (m(S) > 0) and, with respect to the notation of (25) and (28), let SB be a
semi-bounded (not necessarily positive) self-adjoint extension of S. Then

D[B−1
� ] = D[SB ] ∩ ker S∗ (35)

and

D[SB ] = D[SF ] � D[B−1
� ]

SB [f + v, f ′ + v′] = SF [f, f ′] + B−1
� [v, v′]

∀f, f ′ ∈ D[SF ], ∀v, v′ ∈ D[B−1
� ] .

(36)

As a consequence,

SB1 � SB2 ⇔ B1
−1
� � B2

−1
� (37)

and

B−1
� � SB . (38)

Remark 7 Identity (35) is the form version of the inclusion (29) for operator
domains, the latter holding for a generic (not necessarily semi-bounded) extension
SB . Property (36) represents the actual improvement of the KVB theory, as
compared to Kreı̆n’s original theory, as far as the quadratic forms of the extensions
are concerned. Recall indeed that Kreı̆n’s original theory (see Sect. 7.2 and (126) in
the Appendix) establishes, for a generic semi-bounded self-adjoint extension ˜S of a
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densely defined symmetric operator S with positive bottom, the property

D[˜S] = D[SF ] � D[˜S] ∩ ker S∗

˜S[f + u, f ′ + u′] = SF [f, f ′] + ˜S[u, u′]
∀f, f ′ ∈ D[SF ], ∀u, u′ ∈ D[˜S] ∩ ker S∗.

(39)

What the KVB theory does in addition to (39), is therefore to characterise the space
D[˜S]∩ker S∗ in terms of the parameter B (equivalently, B−1

� ) of each semi-bounded
extension.

Proof (Proof of Theorem 4) Let us fix α ∈ R such that α < m(SB) and |α| > 1.
To establish the inclusion D[B−1

� ] ⊂ D[SB ] ∩ ker S∗ in (35) let us exploit the fact
that D[B−1

� ] is the completion of D(B−1
� ) in the norm associated with the scalar

product

〈v1, v2〉B−1
�

:= 〈v1, B
−1
� v2〉 − α〈v1, v2〉

(indeed, owing to Theorem 3), m(B−1
� ) � m(SB) > α), whereas D[SB ] is complete

in the norm associated with the scalar product

〈v1, v2〉SB := SB [v1, v2] − α〈v1, v2〉 .

Owing to Lemma 5, D(B−1
� ) ⊂ D[SB ] and

‖v‖2
B−1

�
= 〈v,B−1

� v〉 − α‖v‖2 = SB [v] − α‖v‖2 = ‖v‖2
SB

,

thus the ‖ ‖
B−1

�
-completion of D(B−1

� ) does not exceed D[SB ]. On the other hand,

‖v‖
B−1

�
� (m(B−1

� ) − α)‖v‖2

and the r.h.s. above is obviously a norm with respect to which ker S∗ is closed:
therefore the ‖ ‖

B−1
�

-completion of D(B−1
� ) does not exceed ker S∗ either. This

proves D[B−1
� ] ⊂ D[SB ] ∩ ker S∗. For the opposite inclusion, let us preliminarily

observe that the assumption m(SB) > α implies

α2|〈f, v〉|2 � ‖f ‖2
SB

‖v‖2
SB

∀f ∈ D(SF ) , ∀v ∈ D(B−1
� ) (*)

(where ‖v‖
B−1

�
= ‖v‖SB ∀v ∈ D(B−1

� ) was used), as seen already in the course
of the proof of Theorem 3, when condition (iii) therein was established. Let us
also remark that D[SF ] is a ‖ ‖SB -closed subspace of D[SB ] (which follows from
D[SF ] ⊂ D[SB ], from SB [f ] = SF [f ] ∀f ∈ D[SF ], and from m(SF ) � m(SB) >

α, see Theorem 15), and so is D[B−1
� ] (as discussed previously in this proof). Let

now u ∈ D[SB ] ∩ ker S∗, arbitrary, and let (gn)n∈N be a sequence in D(SB) of
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approximants of u in the ‖ ‖SB -norm. As remarked with (29), gn = fn + vn for
some fn ∈ D(SF ) and vn ∈ D(B−1

� ), which are both vectors in D[SB ]. From this
and from (*) above one has

‖gn − gm‖2
SB

� ‖fn − fm‖2
SB

− 2|〈fn − fm, vn − vm〉SB | + ‖vn − vm‖2
SB

� ‖fn − fm‖2
SB

− 2

α2
|‖fn − fm‖SB ‖vn − vm‖SB + ‖vn − vm‖2

SB

� (1 − α−2)
(‖fn − fm‖2

SB
+ ‖vn − vm‖2

B−1
�

)

.

Since 1 − α−2 > 0, one deduces that both (fn)n∈N and (vn)n∈N are Cauchy
sequences, respectively, in D[SF ] and D[B−1

� ], with respect to the topology of
the ‖ ‖SB -norm, with limits, say, fn → f ∈ D[SF ] and vn → v ∈ D[B−1

� ] as
n → ∞. Taking n → ∞ in gn = fn + vn thus yields u = f + v. Having proved
above that D[B−1

� ] ⊂ ker S∗, one therefore concludes f = u − v ∈ ker S∗, which
together with f ∈ D[SF ] implies f = 0 (indeed m(SF ) = m(S) > 0 and hence
D[SF ] ∩ ker S∗ = {0}). Then u = v ∈ D[B−1

� ], which complete the proof of
D[B−1

� ] ⊃ D[SB ] ∩ ker S∗ and establishes finally (35). Coming now to the proof of
(36), the identity D[SB ] = D[SF ] � D[B−1

� ] is a direct consequence of (35) and
of (39). Furthermore, owing to the fact that D[B−1

� ] is closed in D[SB ], identity (31)
lifts to SB [v1, v2] = B−1

� [v1, v2] ∀v1, v2 ∈ D[B−1
� ], which allows do deduce also

the second part of (36) from (39). ��

2.7 Parametrisation of Distinguished Extensions: SF and SN

One recognises in formulas (25) and (36) the special parameter B (equivalently,
B−1

� ) that selects, among all positive self-adjoint extensions SB , the Friedrichs
extension SF or the Kreı̆n-von Neumann extension SN . (The characterisation and
a survey of the main properties of SF and SN can be found, respectively, in
Theorems 15–16 and in Theorems 17–18.) This is another plus with respect to von
Neumann’s theory, where SF or SN are not identifiable a priori by a special choice
of the unitary that labels each extension.

The result can be summarised as follows

Friedrichs (SF ):
D[B−1

� ] = {0}
“B−1

� = ∞”
D(B) = ker S∗

B = O
(40)

Kreı̆n-von Neumann (SN):
D[B−1

� ] = ker S∗
B−1

� = O

D(B) = {0}
“B = ∞”

(41)

the details of which are discussed in the following Proposition.
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Proposition 2 Let S be a densely defined symmetric operator on a Hilbert space
H with positive bottom (m(S) > 0) and let SB be a positive self-adjoint extension
of S, parametrised by B (equivalently, by B−1

� ) according to Theorems 2 and 4.

(i) SB is the Friedrichs extension when D[B−1
� ] = {0}, equivalently, when

D(B) = ker S∗ and Bu = 0 ∀u ∈ ker S∗.
(ii) SB is the Kreı̆n-von Neumann extension when D(B−1

� ) = D[B−1
� ] = ker S∗

and B−1
� u = 0 ∀u ∈ ker S∗; equivalently, when D(B) = {0}.

Proof Concerning part (i), D[B−1
� ] = {0} follows from (36) when SB = SF .

Hence also D(B−1
� ) = {0}, which implies ranB = {0} (owing to (27)), that is, B is

the zero operator on its domain. Comparing (7) and (25) one therefore has U0 = {0},
˜U1 = U1 = ker S∗, and hence D(B) = ker S∗. As for part (ii), D[B−1

� ] = ker S∗
follows by comparing (36), when SB = SN , with the property (119) of SN . This,
together with SN [u] = 0 ∀u ∈ ker S∗ (given by (118)) and with B−1

� [u] = SB [u] =
SN [u] ∀u ∈ D[B−1

� ] (given by (36) when SB = SN ), yields B−1
� [u] = 0 ∀u ∈

D[B−1
� ], that is, B−1

� [u] is the zero operator on its domain and hence D(B−1
� ) =

D[B−1
� ] = ker S∗. In turn, (119) now gives D(B−1

� ) = ker S∗ = ker SN , and
therefore (27) (when SB = SF ) yields ranB = {0}. Comparing (119) and (25) one
therefore has U0 = ker S∗, ˜U1 = U1 = {0}, and hence D(B) = {0}. ��
Remark 8 The customary convention, adopted in (40)–(41), to label the Friedrichs
extension formally with “B−1

� = ∞” and the Kreı̆n-von Neumann extension
formally with “B = ∞” (where it is understood that the considered operator has
trivial domain {0}), is to make the labelling consistent with the ordering (37).

Remark 9 In the case in which S−1
F is replaced by the inverse ˜S−1 of an invertible

self-adjoint extension ˜S of S, there is no canonical choice any longer for the
parameter B to select the Friedrichs extension SF . However, it remains true that
“B = ∞” parametrises the Kreı̆n-von Neumann extension (SN ) while B = O

parametrises ˜S instead of SF .

3 Equivalent Formulations of the KVB Theory

Theorems 2, 3, and 4, and Proposition 2 above are not in the form they have
customarily appeared in the mathematical literature in English language that
followed the original works [8, 34, 66], nor are their proofs. While we defer to the
next Section a more detailed comparison with the more recent formulations, let us
discuss in this Section a natural alternative parametrisation of the extensions which
is equivalent to the original one provided by the original KVB theory.

In fact, this alternative arises naturally when the roles of the parameters B and
B−1

� are interchanged. Both B and B−1
� are self-adjoint operators acting on Hilbert

subspaces of ker S∗. Although these two parameters are not exactly the inverse
of each other, the definition of B−1

� resembles very much an operator inversion.
Proposition 3 and Remarks 10 and 11 here below highlight the general properties
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of such an “inversion” mechanism. This will provide the ground to establish
Theorems 5, 6, and 7 as an equivalent version, respectively, of Theorems 2, 3, and 4.

Proposition 3 Let K be a Hilbert space and let S(K) be the collection of the self-
adjoint operators acting on Hilbert subspaces of K . Given T ∈ S(K), let V be the
closed subspace of K which T acts on, with domain D(T ) ≡ ˜V dense in V , and let
W := V ⊥, i.e., K = V ⊕ W . Let φ(T ) be the densely defined operator acting on
the Hilbert subspace ranT ⊕ W of K defined by

D(φ(T )) := ranT � W

φ(T )T v := v ∀v ∈ D(T )∩ker T

φ(T )w := 0 ∀w ∈ W .

(42)

Then:

(i) φ(T ) ∈ S(K),
(ii) the map φ : S(K) → S(K) is a bijection on S(K),

(iii) φ2 = ı, the identity map on S(K), that is, φ−1 = φ.

Remark 10 In shorts, φ provides a transformation of T that is similar to the
inversion. More precisely, although T is in general not invertible, φ(T ) inverts T on
ranT , while it is the zero operator on the orthogonal complement in K of the Hilbert
subspace where T was acting on. In particular, if T is densely defined in K itself
and invertible, then φ(T ) = T −1, that is, φ is precisely the inversion transformation.

Remark 11 By comparing (28) and (42) in the special case K = ker S∗, T = B,
V = U1, and W = U0 = ker SB , one concludes that B−1

� = φ(B), that is, the
Birman operator B−1

� is precisely the φ-inversion of the Višik operator B.

Proof (Proof of Proposition 3) The self-adjointness of φ(T ) on the Hilbert space
ranT ⊕W is a standard and straightforward consequence of its definition. For the rest
of the proof, it obviously suffices to show that φ(φ(T )) = T for any T ∈ S(K). By
definition the operator φ(T ) acts on the Hilbert space V ′ := ranT ⊕W with domain
˜V ′ := ranT � W dense in V ′. Setting W ′ := V ′⊥, in view of the decomposition
K = V ′ ⊕ W ′ the operator φ(φ(T )) is therefore determined, by definition, as the
operator that acts on the Hilbert subspace ran φ(T ) ⊕ W ′ of K according to

D(φ(φ(T ))) := ran φ(T ) � W ′

φ(φ(T ))φ(T )v′ := v′ ∀v′ ∈ D(φ(T ))\ker φ(T )

φ(φ(T ))w′ := 0 ∀w ∈ W ′ .
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Since V = ranT ⊕ ker T , and hence K = ranT ⊕ ker T ⊕ W , then W ′ = ker T .
Thus,

D(φ(φ(T ))) = ran φ(T ) � W ′ = (D(T ) ∩ ranT ) � ker T

= (D(T ) ∩ (V � ker T )) � ker T = D(T )

and φ(φ(T ))w′ = 0 = T w′ ∀w′ ∈ W ′ = ker T . It remains to show that φ(φ(T ))

and T agree also on D(T ) ∩ ranT ). In fact, if v is a vector in such a subspace, then
v = φ(T )T v and in view of φ(φ(T ))φ(T )T v = T v one has φ(φ(T ))v = T v.
This completes the proof that φ(φ(T ))v = T v for any v ∈ D(T ) and since the two
operators have also the same domain, the conclusion is φ(φ(T )) = T . ��

We are now in the condition of re-stating the main results of the KVB extension
theory established in Sect. 2 in the equivalent form that follows.

Theorem 5 (Classification of Self-Adjoint Extensions—Operator Version) Let
S be a densely defined symmetric operator on a Hilbert space H with positive
bottom (m(S) > 0). There is a one-to-one correspondence between the family of
all self-adjoint extensions of S on H and the family of the self-adjoint operators
on Hilbert subspaces of ker S∗. If T is any such operator, in the correspondence
T ↔ ST each self-adjoint extension ST of S is given by

ST = S∗ � D(ST )

D(ST ) =
{

f + S−1
F (T v + w) + v

∣

∣

∣

∣

f ∈ D(S) , v ∈ D(T )

w ∈ ker S∗ ∩ D(T )⊥
}

.
(43)

Theorem 6 (Characterisation of Semi-Bounded Extensions) Let S be a densely
defined symmetric operator on a Hilbert space H with positive bottom (m(S) > 0).
If, with respect to the notation of (43), ST is a self-adjoint extension of S, and if
α < m(S), then

〈g, ST g〉 � α ‖g‖2 ∀g ∈ D(ST )

�
〈v, T v〉 � α‖v‖2+ α2〈v, (SF − α1)−1v〉 ∀v ∈ D(T ) .

(44)

As an immediate consequence, m(T ) � m(ST ) for any semi-bounded ST . In
particular, positivity or strict positivity of the bottom of ST is equivalent to the same
property for T , that is,

m(ST ) � 0 ⇔ m(T ) � 0

m(ST ) > 0 ⇔ m(T ) > 0 .
(45)
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Moreover, if m(T ) > −m(S), then

m(T ) � m(ST ) � m(S) m(T )

m(S) + m(T )
. (46)

Theorem 7 (Characterisation of Semi-Bounded Extensions—form Version)
Let S be a densely defined symmetric operator on a Hilbert space H with positive
bottom (m(S) > 0) and, with respect to the notation of (43), let ST be a semi-
bounded (not necessarily positive) self-adjoint extension of S. Then

D[T ] = D[ST ] ∩ ker S∗ (47)

and

D[ST ] = D[SF ] � D[T ]
ST [f + v, f ′ + v′] = SF [f, f ′] + T [v, v′]

∀f, f ′ ∈ D[SF ], ∀v, v′ ∈ D[T ] .

(48)

As a consequence,

ST1 � ST2 ⇔ T1 � T2 (49)

and

T � ST . (50)

Proposition 4 (Parametrisation of SF and SN ) Let S be a densely defined
symmetric operator on a Hilbert space H with positive bottom (m(S) > 0) and
let ST be a positive self-adjoint extension of S, parametrised by T according to
Theorems 5 and 7.

(i) ST is the Friedrichs extension when D[T ] = {0} (“ T = ∞”).
(ii) ST is the Kreı̆n-von Neumann extension when D(T ) = D[T ] = ker S∗ and

T u = 0 ∀u ∈ ker S∗ ( T = O).

Proof (Proof of Theorem 5) Let SB be a generic self-adjoint extension of S,
parametrised by B according to Theorem 2, formula (25). Correspondingly, let
B−1

� be the Birman’s operator introduced in (27)–(28). First of all, we claim that
SB is precisely of the form ST in (43) above where T = B−1

� . To prove that,
consider a generic element g = f + (S−1

F + B)̃u1 + u0 of D(SB), as given
by the decomposition (25) for some f ∈ D(S), ũ1 ∈ ˜U1 = D(B), and u0 ∈
U0 = ker S∗ ∩ D(B)⊥ = ker SB . We write ũ1 = z + w for some w ∈ ker B

and some z ∈ D(B) ∩ ranB that are uniquely identified by the decomposition
U1 = D(B) = ranB ⊕ ker B, D(B) = (D(B) ∩ ranB) � ker B. Owing to (28),
v := Bũ1 + u0 = Bz + u0 ∈ D(B−1

� ) and B−1
� v = z. Moreover, from
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ker S∗ = U0 ⊕ U1 = ker SB ⊕ ranB ⊕ ker B = D(B−1
� ) ⊕ ker B

one deduces that ker B = ker S∗ ∩ D(B−1
� )⊥. Therefore,

g = f + S−1
F ũ1 + Bũ1 + u0 = f + S−1

F (z + w) + v

= f + S−1
F (B−1

� v + w) + v

v ∈ D(B−1
� ) , w ∈ ker S∗ ∩ D(B−1

� )⊥ ,

that is, g is an element of D(ST ) defined in (43) above with T = B−1
� . It is

straightforward to go through the same arguments and decompositions in reverse
order to conclude that any vector of the form S−1

F (B−1
� v + w) + v, where v ∈

D(B−1
� ) and w ∈ ker S∗ ∩ D(B−1

� )⊥, can be re-written as (S−1
F + B)̃u1 + u0 for

ũ1 ∈ ˜U1 = D(B), and u0 ∈ U0 determined by

B−1
� v + w = ũ1

v = Bũ1 + u0 ,

which proves that any g ∈ D(ST ) is also an element of D(SB). Thus, (25) and (43)
define the same domain: D(SB) = D(ST ) for T = B−1

� . Since SB and ST are the
restrictions to such a common domain of the same operator S∗, then SB = ST for
T = B−1

� , and the initial claim is proved. As a consequence of this and of the one-
to-one correspondence SB ↔ B of Theorem 2, the self-adjoint extensions of S are
all of the form ST of (43) for some self-adjoint operator T on a Hilbert subspace of
ker S∗. What remains to be proved is that when T runs in the family S(ker S∗) of
the self-adjoint operators on Hilbert subspaces of ker S∗, the corresponding ST ’s
give the whole family of self-adjoint extensions of S. This follows at once by
Proposition 3, since by (25) B−1

� = φ(B) and φ is a bijection in S(ker S∗). ��
Proof (Proof of Theorems 6, 7, and Proposition 4) All statements follow at
once from their original versions, respectively Theorems 3, 4, and Proposition 2,
and from the fact that the extension parameter T is precisely the parameter B−1

� in
Theorems 3, 4, and Proposition 2. ��
Remark 12 (Equivalence of Theorems 2 and 5) Our arguments in the proof of The-
orem 5 actually show also that the original Višik-Birman representation Theorem 2
can be deduced from Theorem 5 and that therefore the two Theorems are equivalent.
Indeed, assuming the representation (43) for a generic self-adjoint extension ST of
S, our argument shows that the φ-inverse B := φ(T ) of the parameter T allows to
rewrite D(ST ) in the form D(SB) of (25) and therefore all self-adjoint extensions
of S have the form SB = S∗ � D(SB) for some B ∈ S(ker S∗); moreover, since
by Proposition 3 φ is a bijection on S(ker S∗), one concludes that when B runs in
S(ker S∗) the corresponding SB exhausts the whole family of self-adjoint extensions
of S, thus obtaining Theorem 2.
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Let us discuss in the last part of this Section yet another equivalent formulation
of the general representation theorem for self-adjoint extensions.

Theorem 8 (Classification of Self-Adjoint Extensions—Operator Version) Let
S be a densely defined symmetric operator on a Hilbert space H with positive
bottom (m(S) > 0). There is a one-to-one correspondence between the family of
all self-adjoint extensions of S on H and the family of the self-adjoint operators
on Hilbert subspaces of ker S∗. If T is any such operator, PT : H → H is
the orthogonal projection onto D(T ), and P∗ : D(S∗) → D(S∗) is the (non-
orthogonal, in general) projection onto ker S∗ with respect to Kreı̆n’s decomposition
formula D(S∗) = D(SF )� ker S∗ (Lemma 1), then in the correspondence T ↔ ST

each self-adjoint extension ST of S is given by

ST = S∗ � D(ST )

D(ST ) =
{

g ∈ D(S∗)
∣

∣

∣

∣

P∗g ∈ D(T ) and
PT S∗g = T P∗g

}

.
(51)

Proposition 5 The parameter T in (51) is precisely the same as in (43), that is,
the representation given in Theorem 8 is the same as the one given in Theorem 5.
In other words, the two theorems are equivalent. In particular, given a self-adjoint
extension ˜S of S, its extension parameter T (i.e., the operator T for which ˜S = ST )

is the operator acting on the Hilbert space P∗D(˜S) with domain D(T ) = P∗D(˜S)

and action T P∗g = PT ST g ∀g ∈ D(˜S).

Proof (Proof of Theorem 8 and Proposition 5) All one needs to prove is the that
the domain D(ST ) given by (43) can be re-written in the form (51) with the same
T . If g = f + S−1

F (T v + w) + v is a generic element of the space D(ST ) defined
by (43), then P∗g = v (by Kreı̆n’s decomposition formula), S∗g = Sf + T v + w,
and PT S∗g = T v. Thus, P∗g ∈ D(T ) and T P∗g = T v = PT S∗g, which proves
that g belongs to the domain defined in (51). For the converse, recall that for any
g ∈ D(S∗) the Višik-Birman decomposition formula (6) gives g = f +S−1

F u+P∗g
for some f ∈ D(S) and u ∈ ker S∗. If now g belongs to the domain defined in (51),
then v := P∗g ∈ D(T ) ⊂ ker S∗ for some T ∈ S(ker S∗), and the decomposition
ker S∗ = D(T ) ⊕ (ker S∗ ∩ D(T )⊥) gives u = PT u + w for some w ∈ ker S∗ ∩
D(T )⊥: since PT S∗g = PT (Sf +u) = PT u and (51) prescribes also PT S∗g = T v,
then PT u = T v and u = T v + w: this proves that g = f + S−1

F (T v + w) + v,
which belongs to the domain D(ST ) given by (43). Thus, (43) and (51) define (for
the same T ) the same space D(ST ). ��

4 Comparisons with the Subsequent Literature in English

Before proceeding on to the further aspects of the theory (Sects. 5 and 6), the
discussion developed so far gives the opportunity of a short historical retrospective.
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The KVB self-adjoint extension theory was developed (in Russian) in the course
of a decade between the mid 1940s and the mid 1950s. This was not the result of a
coherent programme.

Kreı̆n’s focus in [34] was the complete answer to the problem, risen up by von
Neumann [67], of finding and characterising semi-bounded extensions of a given
semi-bounded and densely defined symmetric operator S. von Neumann himself
had provided one particular solution (the extension SN , in the present notation)
and later Stone [64, Theorem 9.21] had proved, for the finite deficiency indices
case, the existence of a self-adjoint extension ˜S with the much more interesting
feature that m(˜S) = m(S), followed by Friedrichs [19] who had constructed his
eponymous extension (SF , in the present notation). The framework for Višik’s
work [66] was instead the study of the boundary conditions needed for certain
resolvability properties of boundary value problems associated with an elliptic
differential operator L, say, Lu = h with datum h and unknown u in a region

 ⊂ Rd . Two operators on L2(
) are naturally associated to L, a “minimal”
operator L0 and a “maximal” L1 (with L0 ⊂ L1), and one considers a suitable
family of realisations ˜S of L between them (L0 ⊂ ˜S ⊂ L1) that are determined
by boundary conditions at ∂
; the question is to find such conditions for any
considered realisation ˜S, each boundary condition being expressed in terms of
boundary operators D(˜S) → D′(∂
) and operators between functional spaces over
∂
. Višik focused, among other cases, on the case where L0 = S is densely defined
and symmetric on L2(
), L1 = S∗, and ˜S is a self-adjoint extension of S, and
he provided the one-to-one representation ˜S ≡ SB ↔ B of Theorem 2, where
B is a suitable boundary operator. Concerning Birman, the motivation in [8] was
to characterise further the correspondence SB ↔ B along a two-fold direction: to
relate the semi-boundedness and other spectral properties of SB with the analogous
properties of the parameter B (both in the operator and in the quadratic form sense),
and to include also the case of infinite deficiency indices, which had not been
covered by Kreı̆n.

Since the mid 1950s, as already commented, the self-adjoint extension theory
based in the results of Kreı̆n, Višik, and Birman has found a rather limited space
within the mathematical literature in English, presumably for a multiplicity of
reasons that, language and geo-political barriers apart, are related with the distance
between the fields which such results were applied to, boundary value problems
for PDE on the one hand, and quantum-mechanical Hamiltonians on the other.
This refers both to Kreı̆n’s characterisation of the semi-bounded extensions (that
is, Theorem 20), which at least received a partial discussion in 1954s Riesz and
Nagy’s treatise on Functional Analysis [57, §125], and to a much larger extent to the
Višik-Birman representation Theorem 2 as well as its application to semi-bounded
extensions, Theorems 3, and 4.

As oversimplified as the following statement may appear, the main comprehen-
sive discussions of the KVB theory of self-adjoint extensions that were produced
within the “western” mathematical literature are,
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1. from the perspective of boundary value problems for elliptic differential opera-
tors: Grubb’s 1968 theory on the “universal parametrisation of extensions” [28];

2. from the perspective of general operator theory on Hilbert spaces (with the point
of view of quantum-mechanical and Schrödinger operator applications): Faris’s
1975 lecture notes on self-adjoint operators [18] and, above all, Alonso’s and
Simon’s 1980 “propaganda” article on the KVB theory [3].

Grubb’s work [28] (see also its modern survey in [30, Chapter 13]) lies within
the general study of boundary conditions for elliptic partial differential operators
and the associated boundary value problem, therefore a field that is closely related
with Višik’s approach. As a tool, [28] develops an abstract extension theory for
closed and densely defined operators on Hilbert space, with a specific treatment
of the symmetric case and the corresponding self-adjoint extensions. This is done
by means of Hilbert space and operator graph methods that resemble very much
those used by Kreı̆n, Višik, and Birman some 20 years earlier, so that it is fair
to regard [28, Chapter II] as an independent route to the general self-adjoint
extension characterisation already provided by the KVB theory, together with a
novel generalisation to a wider class of extensions. The form by which the work
[28] classifies the self-adjoint extensions of a given densely defined (and closed)
symmetric operator S with positive bottom is essentially that of Theorem 8 (see [28,
Theorem II.2.1]), that here we have derived directly from (and actually proved to be
equivalent to) Višik-Birman representation Theorem 2.2 [28] reproduces also the
bound on m(ST ) in terms of m(T ), expressed here by (46) of Theorem 6 (see [30,
Theorem 13.17]), as well as Kreı̆n’s decomposition formula for quadratic forms,
here expressed by (126) of Theorem 20(iii) (see [30, Theorem 13.19]). Grubb’s
theory, however, does not cover the quadratic form side of the extension scheme, it
only concerns the operator level.

Faris’s presentation in [18], on the other hand, is explicitly motivated by general
mathematical problems for quantum mechanics (with no reference to Grubb’s
previous work). It includes a concise derivation of formula (48) of Theorem 7,
limited to the case of positive self-adjoint extensions of a given densely defined
symmetric operator S with positive bottom (see [18, Theorem 15.3]), which is
obtained independently in the same spirit as Birman’s work.

Along the same line, in fact independently from Grubb’s and Faris’s previous
discussions, Alonso and Simon in [3] revisit a large part of the KVB theory
(again, only for positive extensions of S, with m(S) > 0) with some originality
of viewpoint that gives primary emphasis to the notion of quadratic form. First,
they classify the positive extensions in terms of positive forms on ker S∗, thus
reproducing both Kreı̆n’s extension theorem, with a statement that is essentially
Theorem 20(ii), and Birman’s characterisation of the forms of positive extensions,

2The positivity of the bottom, m(S) > 0, is in fact only a special case of a more general assumption
discussed in [28, Section II §2], that is, the assumption that S has a bounded and everywhere
defined inverse: in this general case S−1

F is replaced by the inverse of another self-adjoint extension
˜S0 of S with bounded inverse—the existence of such ˜S0 is a result originally proved by Calkin [12].
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essentially stating it as (48) and (49) in Theorem 7 (see [3, Section 2]). Then,
by means of operator graph techniques, they derive the operator version of the
corresponding classification, with the same statement as in Theorem here 5 (see
[3, Section 3]).

It is worth remarking that all the above-mentioned works use the parametrisation
of the operator domains of the extensions in terms of the operator T used in Sect. 3,
instead of the original parameter B used by Višik and Birman for Theorem 2.

One further relevant contribution is the work of Ando and Nishio [5] that appears
immediately after Grubb’s and is practically ignored by Faris’s and by Alonso’s and
Simon’s. By means of an ad hoc analysis that in fact does not use the general tools
and formulas of the KVB theory, [5] investigates the structure of the (quadratic
form of the) Kreı̆n-von Neumann extension SN of a densely defined and positive
symmetric operator S, and characterises it in the form of Theorem 18 in the
Appendix. Ando and Nishio [5] also provides a necessary and sufficient condition
for S to admit positive self-adjoint extensions (even when the D(S) is not dense or
closed), as reviewed in Theorem 19.

The positive self-adjoint extensions of a given positive and densely defined sym-
metric operator are also the object of a recent study by Arlinskiı̆ and Tsekanovskiı̆
[6], where several results of the KVB theory are reproduced in a somewhat
alternative form.

As mentioned already, in more recent times the extension picture of Kreı̆n,
Višik, and Birman, as well as that of Grubb’s approach (following an idea that
can be traced back to Calkin [11]), has found at an abstract analytic and operator-
theoretic level a natural generalisation in the form of the modern theory of boundary
triplets (introduced by Kočubeı̆ [32] and Bruk [10]) and gamma fields and Weyl
functions associated with boundary triplets (invented by Derkach and Malamud
[15]). This is a vast subject with applications to abstract extension theory, to elliptic
boundary value problems, and to the theory of local point interactions, with many
fundamental contributions that can be traced in the works of Derkach and Malamud
[15], Gorbachuk, Gorbachuk, and Kochubeı̆ [25, 27], Albeverio and Kurasov [1],
Amrein and Pearson [4], Behrndt and Langer [7], Ryzhov [58, 59], Posilicano [54],
Brown, Grubb, and Wood [9], Grubb [30], Kostenko and Malamud [33], Malamud
[36, 37], Malamud and Neidhardt [38], Derkach, Hassi, Malamud and de Snoo [16],
and in the references therein. For example, in [60, Chapter 14] one may find a
detailed derivation of Theorems 5 and 7 (but only for positive extensions of S with
m(S) > 0) by means of boundary triplet techniques. Remark 14 below collects
further references to fundamental works of the modern theory of boundary triplets
that reproduce results that one can obtain directly within the original KVB theory.

One of the purposes of the present work is to avoid using these modern instances
and to discuss instead the emergence of the KVB theory, both in its original
formulation and in what today is the ‘boundary-triplet-derived’ modern formulation,
but using only the ‘elementary’ operator-theoretic setting. This makes the theory
particularly suited to the application we are concerned most, that is, models of
quantum mechanical Hamiltonians of particle systems with zero-range (or very
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singular) interaction. In this context, for the classification of all possible self-adjoint
realisation of the ‘physically driven’ Hamiltonian, the characterisation provided by
Theorems 5, 6, and 7, and Proposition 4, turns out to be the most applicable and
fruitful, as may be found in many past and recent works on the subject [20–23, 39–
53, 63].

5 Invertibility, Semi-Boundedness, and Negative Spectrum

In this Section we complete the discussion of the main results that can be proved
within the KVB theory, focusing on the link between relevant features (such as
invertibility, semi-boundedness, structure of the negative spectrum) of a self-adjoint
extension of a given densely defined symmetric operator S with positive bottom,
and the corresponding features of the extension parameter given by the theory.
Such a close link allows one to appreciate even more the effectiveness of the KVB
extension parameter, as compared to von Neumann’s parametrisation. We adopt here
the notation T ↔ ST for the parametrisation of the extensions—see Sect. 3.

A first link between ST and T , which is straightforward although it is not
explicitly present in Birman’s original work, is the following.

Theorem 9 (Invertibility) Let S be a densely defined symmetric operator on a
Hilbert space H with positive bottom (m(S) > 0) and let ST be a generic self-
adjoint extension of S according to the parametrisation (43) of Theorem 5. Then

(i) ST is injective ⇔ T is injective,
(ii) ST is surjective ⇔ T is surjective,

(iii) ST is invertible on the whole H ⇔ T is invertible on the whole D(T ).

Proof Assume that ST is injective and let v ∈ D(T ) be such that T v = 0. Then v

is an element in D(ST ), because it is a vector of the form (43), g = f + S−1
F (T v +

w) + v, with f = w = 0. Since ST v = 0, by injectivity of ST one concludes that
v = 0. Conversely, if T is injective and for some g = f +S−1

F (T v+w)+v ∈ D(ST )

one has ST g = 0, then Sf + T v + w = 0. Since Sf + T v + w ∈ ranS � ranT �
(ker S∗ ∩D(T )⊥), one must have Sf = T v = w = 0. Owing to the injectivity of S

and T , f = v = 0 and hence g = 0. This completes the proof of (i). As for (ii), in
the notation of (43) one has that ran ST = ranS � ranT � (ker S∗ ∩ D(T )⊥) and in
fact ranS = ranS (Remark 3). Thus, T is surjective ⇔ ranT � (ker S∗ ∩D(T )⊥) =
ranT ⊕ (ker S∗ ∩ D(T )⊥) = ker S∗ ⇔ ranST = ranS ⊕ ker S∗ = H ⇔ ST is
surjective. (iii) is an obvious consequence of (i) and (ii). ��
Remark 13 Noticeably, Višik-Birman’s original parametrisation SB ↔ B for the
extensions does not allow to control invertibility, as opposed to the parametrisation
ST ↔ T . Indeed, the identity ker SB = U0 ≡ ker S∗ ∩ D(B)⊥ (that follows
immediately from (14) and (25)) shows that the injectivity of SB and the injectivity
of B are unrelated, and the identity ranSB = ranS⊕D(B) shows that the surjectivity
of SB and the surjectivity of B are unrelated too.
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Semi-boundedness is another relevant feature of the self-adjoint extensions that
can be controlled in terms of the KVB extension parameter. The sub-family of the
semi-bounded self-adjoint extensions of S is the object of Theorem 3 (equivalently,
of Theorem 6). Here below we supplement the information of that theorem with
the answer to the question on whether the semi-boundedness of ST and of T

are equivalent. This is another result that is not explicitly present in Birman’s
discussion, although it follows from it. As a consequence, we derive within the
KVB theory the fact that when S has a finite deficiency index all its self-adjoint
extensions are bounded below.

Theorem 10 (Semi-Boundedness) Let S be a densely defined symmetric operator
on a Hilbert space H with positive bottom (m(S) > 0), PK : H → H be the
orthogonal projection onto ker S∗, and for each α < m(S) let

M(α) := PK(α1 + α2(SF − α1)−1)PK = PK(αSF (SF − α1)−1)PK . (52)

Let ST be a generic self-adjoint extension of S according to the parametrisation (43)
of Theorem 5. Assume that m(T ) ∈ [−∞, 0), that is, T is either unbounded below
or with finite negative bottom (otherwise it is already known by (45) in Theorem 6
that m(T ) � 0 ⇔ m(ST ) � 0). Then the two conditions

(i) ST is bounded below (on H)
(ii) T is bounded below (on D(T ))

are equivalent if and only if M(α) “diverges to −∞ uniformly as α → −∞”,
meaning that ∀R > 0 ∃ αR < 0 such that M(α) � −R1 for each α � αR .

Proof Since (i) ⇒ (ii) is always true (owing to (44) in Theorem 6), what must be
proven is the equivalence between the implication (ii) ⇒ (i) and the condition of
uniform divergence to −∞ for M(α). Assume (ii) ⇒ (i), that is, assume that for
arbitrary R > −m(T ) the condition T � −R1 implies ST � αR1 for some αR < 0
and hence also ST � α1 ∀α � αR (if the lower bound αR was non-negative, then
m(T ) would be non-negative too, against the assumption). In turn, owing to (44)
and (52), ST � α1 ∀α � αR is equivalent to T � M(α) ∀α � αR . Then, for
T � −R1 to imply T � M(α) ∀α � αR , necessarily M(α) � −R1 ∀α � αR .
Conversely, assume now that for arbitrary R > 0 there exists αR such that M(α) �
−R1 ∀α � αR: we want to deduce (ii) ⇒ (i). To this aim, assume that T is bounded
below and apply the assumption for R = −m(T ): for the corresponding αR one has
M(αR) � −R1 = m(T )1 � T , which by (44) implies ST � αR1. ��
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Corollary 1 (Finite Deficiency Index) If S is a semi-bounded and densely defined
symmetric operator on a Hilbert space H with finite deficiency index, then

(i) the semi-boundedness of ST is equivalent to the semi-boundedness of T ;
(ii) any self-adjoint extension of S is bounded below.

Proof It is not restrictive to assume m(S) > 0 and hence dim ker S∗ < ∞. Part (ii)
follows from (i) because T is now defined on a finite-dimensional Hilbert space and
is therefore bounded. Part (i) follows from Theorem 10 once one shows that M(α)

diverges uniformly to −∞. Irrespectively of whether dim ker S∗ is finite or not,

lim
α→−∞〈u,M(α)u〉 = −∞ ∀u ∈ ker S∗ . (53)

Indeed, for any u ∈ ker S∗ one has u /∈ D[SF ] (see (119)), whence

∫

[0,+∞)

λ d〈u,E(SF )(λ)u〉 = +∞ ,

where dE(SF ) denotes the spectral measure of SF ; therefore, since λα
λ−α

→ −λ as
α → −∞,

〈u,M(α)u〉 =
∫

[0,+∞)

λ α

λ − α
d〈u,E(SF )(λ)u〉 α→−∞−−−−−→ −∞ .

Under the additional assumption dim ker S∗ < ∞ let us now show that (53) implies
a uniform divergence in the sense of Theorem 10. For arbitrarily fixed R > 0
decompose u = fR + vR with

fR := E(SF )([0, 2R])u , vR := E(SF )((2R,+∞))u .

Observe that fR ∈ D(SF ), because

∫

[0,+∞)

λ2 d〈fR,E(SF )(λ)fR〉 =
∫

[0,2R]
λ2 d〈fR,E(SF )(λ)fR〉 � 4R2‖fR‖2 ,

while necessarily vR /∈ D(SF ) because u /∈ D(SF ). One has

〈u,M(α)u〉 = 〈u,M(α)u〉 =
∫

[0,+∞)

λ α

λ − α
d〈u,E(SF )(λ)u〉

=
∫

[0,2R]

λα

λ − α
d〈fR,E(SF )(λ)fR〉 +

∫

(2R,+∞)

λ α

λ − α
d〈vR,E(SF )(λ)vR〉 .

(a)
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In the second integral in the r.h.s above λ > 2R, whence 2R > 2Rλ
2λ−2R

: therefore,

choosing α < −2R implies −α > 2Rλ
2λ−2R

and the latter condition is equivalent to
λα

λ−α
< −R, thus

∫

(2R,+∞)

λ α

λ − α
d〈vR,E(SF )(λ)vR〉 < −R ‖vR‖2 (α < −2R) . (b)

Let us now exploit the assumption dim ker S∗ = d for some d ∈ N in order to
estimate the first integral in the r.h.s of (a). Obviously there is dR ∈ N, dR � d , such
that

dim E(SF )([0, 2R]) ker S∗ = dR (c)

and let {ϕR,1, . . . , ϕR,dR } be an orthonormal basis of this dR-dimensional subspace
of D(SF ). Decompose fR = fR,1 + · · · + fR,dR with fR,j := 〈ϕR,j , fR〉ϕR,j ,
j = 1, . . . , dR . Then

∫

[0,2R]

λα

λ − α
d〈fR,E(SF )(λ)fR〉 =

dR
∑

j=1

∫

[0,2R]

λα

λ − α
d〈fR,j , E

(SF )(λ)fR,j 〉

=
dR
∑

j=1

|〈ϕR,j , fR〉|2
∫

[0,2R]

λα

λ − α
d〈ϕR,j , E

(SF )(λ)ϕR,j 〉

=
dR
∑

j=1

|〈ϕR,j , fR〉|2〈ϕ̃R,j ,M(α)ϕ̃R,j 〉 .

Where the ϕ̃R,j ∈ ker S∗ are inverse images under E(SF )([0, 2R]) of the orthonor-
mal basis, so that the last line just uses the fact that E(SF )([0, 2R]) is a orthogonal
projection. Owing to (53), each 〈ϕ̃R,j ,M(α)ϕ̃R,j 〉 diverges to −∞ as α → −∞:
there is only a finite number of them (and it does not exceed d), so there is a common
threshold αR < 0 such that

sup
j∈{1,...,dR}

〈ϕ̃R,j ,M(α)ϕ̃R,j 〉 � −R ∀α � αR .

Therefore
∫

[0,2R]

λα

λ − α
d〈fR,E(SF )(λ)fR〉 � −R‖fR‖2 (α � αR) (d)
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(αR only depends on R (and on d), not on fR). Plugging the bounds (b) and (d) into
(a) yields

〈u,M(α)u〉 < −R‖fR‖2 − R‖vR‖2 = −R‖u‖2

for α < min{−2R,αR}. From the arbitrariness of u ∈ ker S∗ and of R > 0 one
concludes that M(α) → −∞ uniformly as α → −∞. ��
Corollary 2 If S is a semi-bounded and densely defined symmetric operator on
a Hilbert space H , whose bottom is positive (m(S) > 0) and whose Friedrichs
extension has compact inverse S−1

F , then the semi-boundedness of ST is equivalent
to the semi-boundedness of T .

Proof Since S−1
F is compact, the spectrum of SF only consists of a discrete set

of eigenvalues, each of finite multiplicity, whence the bound (c) in the proof of
Corollary 1 and the same conclusion as in Corollary 1(i). ��
Remark 14 The question of Theorem 10 and its corollaries deal with is sometimes
referred to as the “semi-boundedness problem”, that is, the problem of finding
conditions under which the semi-boundedness of ST and of T are equivalent (in
general or under special circumstances). The fact that the compactness of S−1

F is a
sufficient condition (that is, Corollary 2) was noted originally by Grubb [29] and
by Gorbačuk and Mihaı̆lec [26] in the mid 1970s. More than a decade later the
same property, and more generally the necessary and sufficient condition provided
by Theorem 10, was proved with a boundary triplets language by Derkach and
Malamud [15]. In fact, it is easy to recognise that the operator-valued function
α �→ M(α) defined in (52) is the Weyl function of a standard boundary triplet
[60, Example 14.12]. In [15, Section 3] one can also find examples in which such
a condition is violated. The conclusion of Corollary 1(ii) is easy to establish also
with general Hilbert space and spectral arguments, with no reference to the KVB
theory—see, e.g., [17, Lemma XIII.7.22] or [56, Theorem X.1, first corollary]).

Theorem 10 and (the proof of) Corollary 1 have a further noticeable consequence.

Corollary 3 (“Finite-Dimensional” Extensions are Always Semi-Bounded)
Given a semi-bounded and densely defined symmetric operator S on a Hilbert
space H , whose bottom is positive (m(S) > 0), all the self-adjoint extensions of
ST of S for which the parameter T , in the parametrisation (43) of Theorem 5,
is a self-adjoint operator acting on a finite-dimensional subspace of ker S∗ are
semi-bounded. For the occurrence of unbounded below self-adjoint extensions it is
necessary (not sufficient) that dimD(T ) = ∞.

Proof T is bounded (and hence also semi-bounded) because the Hilbert space D(T )

it acts on has finite dimension. Let PT : H → H be the orthogonal projection onto
D(T ) and set

˜M(α) := PT (α1 + α2(SF − α1)−1)PT = PT M(α) PT , α < m(S) .
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One can repeat for ˜M(α) the same arguments used in the proof of Corollary 1 to
establish the uniform divergence of M(α) to −∞, thus obtaining the same property
for ˜M(α) on the finite-dimensional space D(T ) (the assumption dimD(T ) = d <

+∞ implies dim E(SF )([0, 2R])D(T ) = dR � d , which is the analogue of formula
(c) in the proof of Corollary 1, whence the same conclusion). Therefore ∃ α < 0,
with |α| sufficiently large, such that

α‖v‖2 + α2〈v, (SF − α1)−1v〉 < m(T )‖v‖2 � 〈v, T v〉 ∀v ∈ D(T ) ,

which implies m(ST ) > α owing to (44). ��
Remark 15 It is also worth remarking that unless S is essentially self-adjoint, in
all other cases (i.e., whenever dim ker S∗ � 1) there is no uniform lower bound to
the bottoms of the semi-bounded self-adjoint extensions of S. This is an immediate
consequence of the bound m(T ) � m(ST ) given by (44) in Theorem 6, since it is
enough to consider extension parameters T = −γ1 for arbitrary γ > 0.

In the remaining part of this Section we turn to the negative spectrum of an
extension ST . It turns out that relevant properties of the negative discrete spectrum
of ST are controlled by the analogous properties for T . We cast in Theorem 11 and
Corollary 4 below results that are found in Birman’s original work [8] (formulated
therein with the original parametrisation SB ↔ B), apart from a number of
ambiguities and redundancies that we have cleaned up.

For convenience let us define

σ−(ST ) := σ(ST ) ∩ (−∞, 0)

σ−(T ) := σ(T ) ∩ (−∞, 0) .
(54)

Theorem 11 (Negative Spectrum) Let S be a densely defined symmetric operator
on a Hilbert space H with positive bottom (m(S) > 0) and let ST be a generic
self-adjoint extension of S according to the parametrisation (43) of Theorem 5.
Then σ−(ST ) consists of a bounded below set of finite-rank eigenvalues of ST whose
only possible accumulation point is 0 if and only if σ−(T ) has the same property.
When this is the case, and λ1 � λ2 � · · · < 0 and t1 � t2 � · · · < 0 are the
ordered sequences of negative eigenvalues (counted with multiplicity) of ST and of
T respectively, then

• ground state of ST = λ1 � t1 = ground state of T ,
• λk � tk for k = 1, 2, . . .

Corollary 4 For some N ∈ N, σ−(ST ) consists of N eigenvalues if and only if σ−(T )

consists of N eigenvalues. (Here the eigenvalues are counted with multiplicity.)

Remark 16 We observe that no restriction is assumed on the dimension of ker S∗,
that is, the deficiency index of S can be infinite as well. In fact, as long as
dim ker S∗ < +∞, Corollary 4 could be deduced directly by combining Theorems
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19 and 20 of Kreı̆n’s original work [34] with the subsequent results of Višik and
Birman that are stated here in Theorems 5 and 7.

A further consequence is the following.

Corollary 5

(i) If S has finite deficiency index (dim ker S∗ < +∞), then all self-adjoint exten-
sions of S have finite negative spectrum, with finite-dimensional eigenvalues.

(ii) If, in the sense of the parametrisation (43) of Theorem 5, ST is a self-adjoint
extension of S where the parameter T acts on a finite-dimensional subspace
of ker S∗, then the negative spectrum σ−(ST ) of ST is finite, with finite-
dimensional eigenvalues.

In preparation for the proof of Theorem 11 and its corollaries, let us denote by
dE(ST ) and by dE(T ), respectively, the spectral measure of ST and of T on R. For
generic v ∈ D(T ) one also has v ∈ D[ST ] with 〈v, T v〉 = ST [v], owing to (48)
(see also (31)), whence

∫

[m(T ),+∞)

t 〈v, dE(T )(t)v〉 =
∫

[m(ST ),+∞)

λ 〈v, dE(ST )(λ)v〉 �
∫

[m(ST ),0)

λ 〈v, dE(ST )(λ)v〉. (55)

Let us also single out two useful facts (the first is straightforward).

Lemma 7 If V and W are closed subspaces of H with dim V < +∞ and dim W >

dim V , then W ∩ V ⊥ �= {0}.
Lemma 8 If ε > 0 and, for some N ∈ N, g1, . . . , gN are linearly independent
elements in D(ST )∩E(ST )((−∞,−ε])H , then the corresponding v1, . . . , vN given
by the decomposition (43) gk = fk+S−1

F (T vk+wk)+vk , k = 1, . . . , N , are linearly
independent in D(T ).

Proof If
∑N

k=1 ckvk = 0 for some c1, . . . , cN ∈ C, then g := ∑N
k=1 ckgk =

∑N
k=1 ck(fk + S−1

F (T vk + wk)) ∈ D(SF ), whence 〈g, ST g〉 = 〈g, SF g〉 �
m(S)‖g‖2 � 0. On the other hand,

〈g, ST g〉 =
∫

[m(ST ),+∞)

λ 〈g, dE(ST )(λ)g〉 =
∫

[m(ST ),−ε]
λ 〈g, dE(ST )(λ)g〉

� −ε

∫

[m(ST ),−ε]
〈g, dE(ST )(λ)g〉 � 0

(where in the second identity we used that g ∈ D(ST ) ∩ E(ST )((−∞,−ε])H),
therefore g = 0 and hence, by assumption, c1 = · · · = cN = 0. ��
Proof (Proof of Theorem 11) Assume that σ−(ST ) consists of a bounded below
set of finite-rank eigenvalues of ST whose only possible accumulation point is 0.
In particular, −∞ < m(ST ) < 0 which, by (44)–(45), implies also m(ST ) �
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m(T ) < 0. If, for contradiction, σ−(T ) does not satisfy the same property of
σ−(ST ), then there exists ε > 0 such that dim E(T )([m(T ),−ε])D(T ) = +∞,
whereas by assumption dim E(ST )([m(ST ),− 1

2ε])H < +∞. By Lemma 7 ∃ v ∈
E(T )([m(T ),−ε])D(T ), v �= 0, v ⊥ E(ST )([m(ST ),− 1

2ε])H . As a consequence of
this and of (55),

−ε‖v‖2 �
∫

[m(T ),−ε)

t 〈v, dE(T )(t)v〉 =
∫

[m(T ),+∞)

t 〈v, dE(T )(t)v〉

�
∫

[m(ST ),0)

λ 〈v, dE(ST )(λ)v〉 =
∫

(− 1
2 ε,0)

λ 〈v, dE(ST )(λ)v〉 � −ε

2
‖v‖2 ,

which is a contradiction because v �= 0. For the converse, assume that σ−(T ) consists
of a bounded below set of finite-rank eigenvalues of T whose only possible accu-
mulation point is 0. In particular, −∞ < m(T ) < 0. If, for contradiction, σ−(ST )

does not satisfy the same property of σ−(T ), then dim E(ST )((−∞,−ε])H = +∞
for some ε > 0. Therefore also

dim E(ST )((−∞,−ε])H ∩ D(ST ) = +∞ (*)

because E(ST )((−∞,−ε])H ∩ D(ST ) is dense in E(ST )((−∞,−ε])H . Based on
the decomposition (43) for generic g ∈ D(ST ) (namely, g = f +S−1

F (T v+w)+v),
set

Vε :=
{

v ∈ D(T )

∣

∣

∣

∣

g − v ∈ D(SF ) for some
g ∈ E(ST )(−∞,−ε])H ∩ D(ST )

}

.

In fact, owing to Lemma 8, any v ∈ Vε identifies uniquely the corresponding g ∈
E(ST )(−∞,−ε])H ∩ D(ST ). Furthermore, Lemma 8 and (*) yield dim Vε = +∞.
On the other hand, let h ∈ R with 0 < h < min{−m(T ), εm(S)

2m(S)+ε
}: by assumption

dim E(T )([m(T ),−h])D(T ) < +∞ . (**)

Lemma 7 and (*)-(**) then imply the existence of a non-zero v ∈ Vε with v ⊥
E(T )([m(T ),−h])D(T ). For such v one has

〈v, T v〉 =
∫

[m(T ),+∞)

t 〈v, dE(T )(t)v〉 =
∫

(−h,+∞)

t 〈v, dE(T )(t)v〉 � −h‖v‖2

� − εm(S)

2m(S) + ε
‖v‖2
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which can be re-written equivalently as

〈v, T v〉 + ε

2
‖v‖2 � ε2

4

1

m(S) + 1
2ε

‖v‖2 .

The last inequality implies

〈v, T v〉 + ε

2
‖v‖2 � ε2

4
〈v, (SF + 1

2ε)−1v〉 .

If g is the vector in E(ST )(−∞,−ε])H ∩ D(ST ) that corresponds to such v ∈ Vε,
by repeating the very same reasoning as in the proof of Theorem 3 one sees that the
latter condition is equivalent to 〈g, ST g〉 � − ε

2‖g‖2. However, this last finding is
not compatible with the fact that

〈g, ST g〉 =
∫

[m(ST ),+∞)

λ 〈g, dE(ST )(λ)g〉 =
∫

[m(ST ),−ε)

λ 〈g, dE(ST )(λ)g〉 � −ε‖g‖2 ,

whence the contradiction. This completes the proof of the equivalence of the
considered condition for σ−(ST ) and σ−(T ). When such a condition holds and
the eigenvalues are labelled as in the statement of the theorem, obviously λ1 =
m(ST ) � m(T ) = t1 (by (44)), while the fact that λk � tk for k = 1, 2, . . . is
a consequence of the min-max principle for the self-adjoint operators ST and T ,
owing to the fact (Theorem 7) that ST � T . ��
Proof (Proof of Corollary 4) Owing to Theorem 11,

σ−(ST ) = {eigenvalues λ1 � · · · � λN < 0} for some N ∈ N

is equivalent to

σ−(T ) = {eigenvalues t1 � · · · � tM < 0} for some M ∈ N

and when this is the case λ1 = m(ST ) � m(T ) = t1. If M > N , then ∃ v ∈
(E(T )([m(T ),−ε])D(T )) ∩ (E(ST )([m(ST ), 0))H)⊥, v �= 0, for some ε > 0 (in
fact, ∀ε ∈ (0, |tM |)), as a consequence of Lemma 7. Moreover, v ∈ D(T ) because

∫

[m(T ),+∞)

t2〈v, dE(T )(t)v〉 =
∫

[m(T ),−ε]
t2〈v, dE(T )(t)v〉 < +∞ ,
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whence also v ∈ D[ST ] with ST [v] = 〈v, T v〉, owing to (48). As a consequence of
this and of (55),

0 >

∫

[m(T ),−ε]
t 〈v, dE(T )(t)v〉 =

∫

[m(T ),+∞)

t 〈v, dE(T )(t)v〉 �
∫

[m(ST ),0)

λ 〈v, dE(ST )(λ)v〉 = 0,

a contradiction. If instead M < N , let us use the fact that for some ε > 0
(in fact ∀ε ∈ (0, |λN |)) Lemma 8 applied to the space Vε introduced in the
proof of Theorem 11 yields dim Vε � N : then, owing to Lemma 7, ∃ v ∈ Vε ∩
(E(T )([m(T ), 0))D(T ))⊥, v �= 0. In turn, as already observed in the proof of Theo-
rem 11, this v identifies uniquely a non-zero element g ∈ E(ST )([m(ST ),−ε])H ⊂
D(ST ) for which g −v ∈ D(SF ). For such g and v, (48) yields 〈g, ST g〉 � 〈v, T v〉.
With these findings,

0 >

∫

[m(ST ),−ε]
λ 〈g, dE(ST )(λ)g〉 =

∫

[m(ST ),+∞)

λ 〈g, dE(ST )(λ)g〉 = 〈g, ST g〉

� 〈v, T v〉 =
∫

[m(T ),+∞)

t 〈v, dE(T )(t)v〉 �
∫

[m(T ),0)

t 〈v, dE(T )(t)v〉 = 0 ,

another contradiction. Thus, the conclusion is necessarily M = N . ��
Proof (Proof of Corollary 5) In either case (i) and (ii) the extension parameter T

is self-adjoint on a finite-dimensional space, therefore its spectrum only consists of
a finite number of (finite-dimensional) eigenvalues. This is true in particular for the
negative spectrum of T . Then the conclusion follows from Corollary 4. ��

6 Resolvents of Self-Adjoint Extensions

We turn now to the discussion of the structure of the resolvent of self-adjoint
extensions.

In fact, this is a context in which the theory of boundary triplets (the modern
theory that has “incorporated” the original KVB results, see Sect. 4) has deepest
results, including the appropriate abstract language to reproduce in full generality
the celebrated Kreı̆n-Naimark resolvent formula—see, e.g., the comprehensive
overview in [60, Chapter 14]. Here we content ourselves to discuss some direct
applications of the KVB theory. We thus derive the formula of the inverse of an
invertible extension in terms of its KVB extension parameter and of the “canonical”
Friedrichs extension (Theorem 12), and from it we derive resolvent formulas
(Corollary 6 and Theorem 13) originally established, in implicit form, by Kreı̆n
[34, Theorem 20].
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Theorem 12 (Resolvent Formula for Invertible Extensions) Let S be a densely
defined symmetric operator on a Hilbert space H with positive bottom (m(S) > 0).
Let, in terms of the decomposition and parametrisation (43) of Theorem 5, ST be a
generic self-adjoint extension of S and PT : H → H be the orthogonal projection
onto D(T ). If ST is invertible on the whole H , then T is invertible on the whole
D(T ) and

S−1
T = S−1

F + PT T −1PT . (56)

Proof The invertibility (with everywhere defined inverse) of T is guaranteed by
Theorem 9(iii). Thus, (56) is an identity between bounded self-adjoint operators
(their boundedness following by the inverse mapping theorem). For a generic h ∈
H = ran ST one has h = ST g for some g = f +S−1

F (T v +w)+ v = F + v, where
f ∈ D(S), v ∈ D(T ), w = ker S∗ ∩ D(T ) (Theorem 5), and hence F ∈ D(SF )

(Remark 1). Then

〈h, S−1
T h〉 = 〈g, ST g〉 = 〈F, SF F 〉 + 〈v, T v〉 .

On the other hand

〈F, SF F 〉 = 〈SF F, S−1
F SF F 〉 = 〈ST g, S−1

F ST g〉 = 〈h, S−1
F h〉

and

〈v, T v〉 = 〈T v, T −1T v〉 = 〈PT ST g, T −1PT ST g〉 = 〈h, PT T −1PT h〉 ,

whence the conclusion 〈h, S−1
T h〉 = 〈h, S−1

F h〉 + 〈h, PT T −1PT h〉. ��
Remark 17 In terms of the equivalent parametrisation SB ↔ B of the self-adjoint
extensions of S (Theorem 2), and denoting with PB : H → H the orthogonal
projection onto D(B), Theorem 12 takes the following form: if SB is invertible on
the whole H , then

S−1
B = S−1

F + PB B PB (57)

(and B is not the zero operator on the whole ker S∗, unless SB = SF ). Indeed,
re-doing the proof above, for generic g ∈ D(SB) the parametrisation (25) yields
g = f + (S−1

F + B)̃u1 + u0 for some f ∈ D(S), ũ1 ∈ D(B), and u0 ∈ ker S∗ ∩
D(B)⊥, whence F := f + S−1

F ũ1 ∈ D(SF ), h := SBg = SF F = Sf + ũ1, and
ũ1 = PBSBg. Therefore,

〈h, S−1
B h〉 = 〈g, SBg〉 = 〈F, SF F 〉 + 〈̃u1, Bũ1〉

= 〈h, S−1
F h〉 + 〈h, PBBPBh〉 .
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Remark 18 With reference to the historical perspective of Sect. 4, Theorem 12
appears, in a formulation that is virtually the same as the present one, both in Grubb
[28, Theorem 1.4] and, limited to ST ’s with positive bottom, in Faris [18, Theorem
15.1].

Corollary 6 Let ˜S be a self-adjoint extension of S and let z < m(S) be such that
˜S − z1 is invertible on the whole H (for example a semi-bounded extension ˜S and
a real number z < m(˜S)). Let T (z) be the extension parameter, in the sense of
the KVB parametrisation (43) of Theorem 5, of the operator ˜S − z1 considered
as a self-adjoint extension of the densely defined and bottom-positive symmetric
operator S(z) := S − z1. Correspondingly, let P(z) be the orthogonal projection
onto D(T (z)). Then

(˜S − z1)−1 = (SF − z1)−1 + P(z) T (z)−1P(z) . (58)

Proof Since m(S(z)) = m(S)−z > 0, the assumptions of Theorem 12 are matched
and (56) takes the form (58) owing to the fact that the Friedrichs extension of S(z)

is precisely SF − z1 (Theorem 15(vii)). ��
Remark 19 Formula (58), in particular, shows that the resolvent difference (˜S −
z1)−1 − (SF − z1)−1 has non-zero matrix elements only on a suitable subspace
of ker(S∗ − z1). (The dependence on z of the term P(z)T (z)−1P(z) remains
here somewhat implicit, although of course T (z) and P(z) are unambiguously
and constructively well defined in terms of the given ˜S − z1, as described in
Proposition 5.)

Let us now make (58) more explicit by reproducing a Kreı̆n-like resolvent
formula (see, e.g., [2, Theorems A.2-A.3]).

Theorem 13 (Kreı̆n’s Resolvent Formula for Deficiency Index = 1) Let S be
a densely defined symmetric operator on a Hilbert space H with positive bottom
(m(S) > 0) and with deficiency index dim ker S∗ = 1. Let ˜S be a self-adjoint
extension of S other than the Friedrichs extension SF . Let v ∈ ker S∗ \ {0} and
for each z ∈ (−∞,m(S)) ∩ ρ(˜S) set

v(z) := v + z(SF − z1)−1v . (59)

Then there exists an analytic function β : (−∞,m(S))∩ρ(˜S) → R, with β(z) �= 0,
such that

(˜S − z1)−1 = (SF − z1)−1 + β(z) |v(z)〉〈v(z)| . (60)

β(z), v(z), and (60) admit an analytic continuation to ρ(SF ) ∩ ρ(˜S).

Proof Because of the constance of the deficiency index, dim ker(S∗ − z1) =
dim ker S∗ = 1. ˜S is semi-bounded (Corollary 1). Since z < m(˜S), ˜S − z1 is a
bottom-positive self-adjoint extension of the densely defined and bottom-positive
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symmetric operator S(z) := S − z1. Its extension parameter T (z), in the sense
of the KVB parametrisation, is the bottom-positive self-adjoint operator T (z) on
the space ker(S∗ − z1) which acts as the multiplication by a positive number t (z).
(The positivity of the bottom of T (z) follows from m(T (z)) � m(˜S − z1) > 0,
Theorem 10.) Clearly, v(z) ∈ ker(S∗ − z1). Moreover, v(z) �= 0 for each
admissible z: this is obviously true if z = 0, and if it was not true for z �=
0, then z(SF − z1)−1v = −v �= 0, which would contradict D(SF − z1) ∩
ker(S∗ − z1) = {0} (Remark 1, formula (8)). Thus, v(z) spans ker(S∗ − z1)

and PT := ‖v(z)‖−2|v(z)〉〈v(z)| : H → H is the orthogonal projection onto
ker(S∗ − z1). In this case, the resolvent formula (58) takes precisely the form (60)
where β(z) := ‖v(z)‖−2t (z)−1. Being a product of positive quantities, β(z) > 0.
Moreover, z �→ (˜S − z1)−1 and z �→ (SF − z1)−1 are analytic operator-valued
functions on the whole ρ(SF ) ∩ ρ(˜S) (because of the analyticity of resolvents)
and so is the vector-valued function z �→ v(z) (because of the construction (59)).
Therefore, taking the expectation of both sides of (60) on v(z) shows at once that
z �→ β(z) is analytic on ρ(SF )∩ρ(˜S), and real analytic on (−∞,m(S))∩ρ(˜S). ��

7 Examples

7.1 “Free Quantum Particle” on Half-line

On the Hilbert space H = L2[0,+∞) one considers the densely defined symmetric
operator

S = − d2

dx2 + 1 , D(S) = C∞
0 (0,+∞) . (61)

S has bottom m(S) = 1. One has

S∗ = − d2

dx2
+ 1

D(S∗) = H 2(0,+∞) =
{

f ∈ L2[0 + ∞)

∣

∣

∣

∣

f, f ′ ∈ AC[0,+∞)

f ′′ ∈ L2[0,+∞)

}

,

(62)

thus all the extensions of S act as − d2

dx2 + 1 on suitable restrictions of H 2(0,+∞).
In particular,

D(S) = H 2
0 (0,+∞) = {f ∈ H 2(0,+∞) | f (0) = 0 , f ′(0) = 0} (63)
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and the Friedrichs extension of S has domain

D(SF ) = H 2(0,+∞) ∩ H 1
0 (0,+∞) = {f ∈ H 2(0,+∞) | f (0) = 0} ,

(64)

that is, D(S∗) with Dirichlet boundary condition at the origin.
Applying von Neumann’s theory one finds (see, e.g., [24, Chapter 6.2]) that the

self-adjoint extensions of S constitute the family {Sν | ν ∈ (−π
2 , π

2 ]}, where each Sν

acts as − d2

dx2 + 1 on the domain

D(Sν) = {g ∈ H 2(0,+∞) | g(0) sin ν = g′(0) cos ν} . (65)

By inspection one sees that the Friedrichs extension of S is Sπ/2.
In order to apply the KVB theory, one needs to identify ker S∗ and S−1

F . One
easily finds

ker S∗ = Span{e−x} . (66)

All self-adjoint extensions of S are therefore semi-bounded (Corollary 1). One also
finds that the integral kernel of S−1

F is

S−1
F (x, y) = 1

2

(

e−|x−y| − e−(x+y)
)

(67)

(see, e.g., [24, Chapter 6.2]). In fact, since S−1
F only enters the formulas as acting

on ker S∗, instead of (67) one can rather limit oneself to the problem

{

−η′′(x) + η(x) = e−x , x ∈ [0,+∞)

η(0) = 0 ,

whose only solution in L2[0,+∞) is η(x) = 1
2 x e−x . Thus, for fixed a ∈ C,

S−1
F (a e−x) = a

2
x e−x . (68)

According to Theorem 5, the self-adjoint extensions of S are operators of the
form ST where T is a self-adjoint operator on subspaces of ker S∗ = Span{e−x},
precisely the zero-dimensional subspace {0} or the whole Span{e−x}. In the former
case ST = SF (Proposition 4). In the latter, each such T acts as the multiplication
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Tβ : e−x �→ βe−x by a fixed β ∈ R, D(Tβ) = Span{e−x} = ker S∗, and ker S∗ ∩
D(Tβ)⊥ = {0}: by (43) and (68), the corresponding self-adjoint extension Sβ ≡ STβ

of S acts as − d2

dx2 + 1 on the domain

D(Sβ) =
{

g = f + S−1
F (β a e−x) + a e−x

∣

∣

∣

∣

f ∈ H 2
0 (0,+∞)

a ∈ C

}

=
{

g

∣

∣

∣

∣

g(x) = f (x) + a ( 1
2βx + 1) e−x

x ∈ [0, 1] , f ∈ H 2
0 (0,+∞) , a ∈ C

}

.

(69)

Observing that g(0) = a and g′(0) = a( 1
2β − 1) for any g ∈ D(Sβ), (69) can be

re-written as

D(Sβ) =
{

g ∈ H 2(0,+∞) | g′(0) =
(β

2
− 1

)

g(0)
}

. (70)

Comparing (70) with (65) above, we see that Sβ is the extension Sν of von
Neumann’s parametrisation with

β/2 − 1 = tan ν (71)

which includes the Friedrichs extension (ν = π
2 ) if one let β = +∞.

The same analysis can be equivalently performed in terms of the quadratic
forms of the self-adjoint extensions of S, following Theorem 7 (which applies to
this example since all extensions are semi-bounded). The reference form is the
Friedrichs one, that is,

D[SF ] = H 1
0 (0,+∞) = {f ∈ H 1[0,+∞) | f (0) = 0}

SF [F1, F2] =
∫ +∞

0
F ′

1(x) F ′
2(x) dx +

∫ +∞

0
F1(x) F2(x) dx ,

(72)

as one deduces from (64). Owing to (48), the form domain of any other extension is
obtained by taking the direct sum of D[ST ] = D[SF ]�D[T ] where T ≡ Tβ = the
multiplication by a real β on D(T ) = Span{e−x} = D[T ]. Then (48) and (72) yield

D[Sβ ] = H 1
0 (0,+∞) � Span{e−x} = H 1(0,+∞)

Sβ [g1, g2] = Sβ [F1 + a1 e−x, F2 + a2 e−x]

=
∫ +∞

0
F ′

1(x) F ′
2(x)dx +

∫ +∞

0
F1(x) F2(x) dx + β

2
a1 a2

=
∫ +∞

0
g′

1(x) g′
2(x)dx +

∫ +∞

0
g1(x) g2(x) dx +

(β

2
− 1

)

g1(0) g2(0) .

(73)
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Going backwards from this (closed and semi-bounded) form to the uniquely
associated self-adjoint operator, a straightforward exercise would yield the domain
D(Sβ) already determined by (70).

Concerning the bottom and the negative spectrum of a generic extension Sβ , one
has m(Tβ) = β and σ(Tβ) = {β}, therefore Theorem 6 gives

m(Sβ) � min{1, β} ∀β ∈ R

β

1 + β
� m(Sβ) � min{1, β} if β > −1

(74)

and Corollary 4 implies that σ−(Sβ) consists of one single eigenvalue whenever β <

0. The explicit spectral analysis of Sβ gives σ−(Sβ) = ∅ if β � 2 and σ−(Sβ) = {1−
(β/2 − 1)2)} if β < 2 with normalised eigenfunction gβ(x) = √

2 − β e−(1−β/2)x,
whence

m(Sβ) =
{

1 β � 2

1 − (β/2 − 1)2 β < 2 .
(75)

We thus see that the bounds (74) are consistent with the “exact result” (75) (and that
there are extensions other than the Friedrichs one whose bottom coincide with that
of S).

As for the resolvents, for z > 0 one sees that e−zx ∈ ker(S∗ + (z2 − 1)1) and by
means of the formula ([24, Chapter 6.2])

(SF + (z2 − 1)1)−1(x, y) = 1

2z

(

e−z|x−y| − e−z(x+y)
)

(z > 0) (76)

one finds

(Sβ + (z2 − 1)1)−1 =

= (SF + (z2 − 1)1)−1 + 1

(β/2 − 1) + z
|e−zx〉〈e−zx | , z > 0,

(77)

for z > 0 and z �= −(β/2 − 1) if β < 2. This is precisely a Kreı̆n resolvent formula
of the type (60). The corresponding integral kernel is

(Sβ + (z2 − 1)1)−1(x, y) = 1

2z

(

e−z|x−y| − β/2 − 1 − z

β/2 − 1 + z
e−z(x+y)

)

. (78)

This expression can be continued analytically to complex z’s as stated in general in
Theorem 13, see (83) below.

The shift by a unit constant introduced in the definition (61) of S guarantees
that S has positive bottom. After having determined with (72)–(73) the quadratic
forms of a generic self-adjoint extension of S, one can remove the shift and deduce
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that the self-adjoint extensions of the operator S′ = − d2

dx2 , D(S′) = C∞
0 (0,+∞),

constitute the family {S′
β | β ∈ (−∞,+∞]} where for each β ∈ R the element S′

β

is the extension with quadratic form

D[S′
β ] = H 1(0,+∞)

S′
β [g1, g2] =

∫ +∞

0
g′

1(x) g′
2(x)dx +

(β

2
− 1

)

g1(0) g2(0) ,
(79)

and hence with

D(S′
β) =

{

g ∈ H 2(0,+∞) | g′(0) =
(β

2
− 1

)

g(0)
}

S′
βg = −g′′ ,

(80)

whereas for β = ∞ one has the Friedrichs extensions

D[S′
F ] = H 1

0 (0,+∞) , S′
β [g1, g2] =

∫ +∞

0
g′

1(x) g′
2(x)dx ,

D(S′
F ) = H 2(0,+∞) ∩ H 1

0 (0,+∞) , S′
F f = −f ′′ .

(81)

Similarly, one deduces from (78)

(S′
β + z21)−1(x, y) = 1

2z

(

e−z|x−y| − β/2 − 1 − z

β/2 − 1 + z
e−z(x+y)

)

(82)

for z > 0 and z �= −(β/2 − 1) if β < 2. This expression admits the analytic
continuation

(S′
β − k21)−1(x, y) = i

2k

(

eik|x−y| − (β/2 − 1) + ik

(β/2 − 1) − ik
eik(x+y)

)

(83)

for k ∈ C with Imk > 0 and k �= −i(β/2 − 1) if β < 2, that is, the operator-valued
map C � k2 �→ (S′

β − k21)−1 is holomorphic.

7.2 “Free Quantum Particle” on an Interval

On the Hilbert space H = L2[0, 1] one considers the densely defined symmetric
operator

S = − d2

dx2 , D(S) = C∞
0 (0, 1) . (84)
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The positivity of the bottom of S can be seen by applying twice (to f, f ′ and to
f ′, f ′′) Poincaré’s inequality

∫ 1

0
|f ′(x)|2dx � π2

∫ 1

0
|f (x)|2dx ∀f ∈ C∞

0 (0, 1) ,

thus obtaining

m(S) = π2 . (85)

One has

S∗ = − d2

dx2

D(S∗) = H 2(0, 1) =
{

f ∈ L2[0, 1]
∣

∣

∣

∣

f, f ′ ∈ AC[0, 1]
f ′′ ∈ L2[0, 1]

}

,

(86)

thus all the extensions of S act as − d2

dx2 on suitable restrictions of H 2(0, 1). In
particular,

D(S) = H 2
0 (0, 1) =

{

f ∈ H 2(0, 1)

∣

∣

∣

∣

f (0) = 0 = f (1)

f ′(0) = 0 = f ′(1)

}

(87)

and the Friedrichs extension of S has domain

D(SF ) = H 2(0, 1) ∩ H 1
0 (0, 1) = {f ∈ H 2(0, 1) | f (0) = 0 = f (1)} , (88)

that is, SF is the negative Laplacian with Dirichlet boundary conditions. Considering
its spectrum, σ(SF ) = {n2π2 | n ∈ N}, one re-obtains (85) without using Poincaré’s
inequality.

Applying von Neumann’s theory one finds (see, e.g., [24, Chapter 6.2]) that the
self-adjoint extensions of S constitute the family {SU | U ∈ U(2)} where each SU

acts as − d2

dx2 on the domain

D(SU ) =
{

g ∈ H 2(0, 1)

∣

∣

∣

∣

(

g(1) − ig′(1)

g(0) + ig′(0)

)

= U

(

g(1) + ig′(1)

g(0) − ig′(0)

)}

. (89)

By inspection one sees that in this case the Friedrichs extension of S is the extension
SU indexed by U = −1.

Let us apply now the KVB theory, identifying first of all ker S∗ and S−1
F . One has

ker S∗ = Span{1, x} . (90)
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All self-adjoint extensions of S are therefore semi-bounded (Corollary 1). As for
S−1

F , all what we need here is its action on ker S∗ (the general inversion formula for
the problem SF η = h with datum h can be found, for instance, in [24, Chapter 6.2]),
therefore we consider the problem

{

−η′′(x) = a + bx , x ∈ [0, 1]
η(0) = 0 = η(1)

for given a, b ∈ C, whose only solution is η(x) = ( a
2 + b

6 )x − a
2 x2 − b

6x3. Thus,

S−1
F (a + bx) =

(a

2
+ b

6

)

x − a

2
x2 − b

6
x3 , x ∈ [0, 1] . (91)

Owing to (87), (90), and (91) above, the decomposition (7) reads

H 2(0, 1) ∩ H 1
0 (0, 1) = H 2

0 (0, 1) � S−1
F Span{1, x}

i.e., any F ∈ H 2(0, 1) ∩ H 1
0 (0, 1) determines uniquely f ∈ H 2

0 (0, 1) and a, b ∈ C

such that F(x) = f (x) + ( a
2 + b

6 )x − a
2 x2 − b

6x3. Explicitly,

F(x) = f (x) + F ′(0)x − (2F ′(0) + F ′(1))x2 + (F ′(0) + F ′(1))x3 .

Analogously, the decomposition (5) reads

H 2(0, 1) = H 2(0, 1) ∩ H 1
0 (0, 1) + Span{1, x} ,

that is, any g ∈ H 2(0, 1) can be written as

g(x) = F(x) + g(0) + (g(1) − g(0))x

for a unique F ∈ H 2(0, 1) ∩ H 1
0 (0, 1).

According to Theorem 5, the self-adjoint extensions of S are operators of the
form ST where T is a self-adjoint operator on subspaces of ker S∗ = Span{1, x},
precisely

• the zero-dimensional subspace {0}, in which case ST = SF (Proposition 4)
• or the one-dimensional subspaces Span{1} or Span{a1+x}, a ∈ C, in which case

T acts as the multiplication by a real number,
• or the whole two-dimensional space Span{1, x} ∼= C2, in which case T acts as

the multiplication by a hermitian matrix.

For concreteness, let us work out in detail the case of the one-dimensional space
Span{1} and of the self-adjoint operator Tβ on it, defined by Tβ1 := β1 for fixed
β ∈ R. In this case D(Tβ) = Span{1} and ker S∗ ∩ D(Tβ)⊥ = Span{2x − 1}:
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therefore, according to (43), the corresponding self-adjoint extension Sβ ≡ STβ of

S acts as − d2

dx2 on the domain

D(Sβ) =
{

g = f + S−1
F (βγ 1 + δ(2x − 1)) + γ 1

∣

∣

∣

∣

f ∈ H 2
0 (0, 1)

γ, δ ∈ C

}

.

By means of (91) (upon renaming the coefficients γ, δ), this is re-written as

D(Sβ) =
{

g

∣

∣

∣

∣

g(x) = f (x) + 2γ + (βγ − δ)x − (βγ − 3δ)x2 − 2δx3

x ∈ [0, 1] , f ∈ H 2
0 (0, 1) , γ, δ ∈ C

}

(92)

which in turn, observing that g(0) = 2γ = g(1) and g′(0) − g′(1) = 2βγ for any
g ∈ D(Sβ), can be further re-written as

D(Sβ) =
{

g ∈ H 2(0, 1)

∣

∣

∣

∣

g(0) = g(1)

g′(0) − g′(1) = βg(0)

}

. (93)

The special case β = 0 corresponds to the self-adjoint extension with periodic
boundary conditions: in the parametrisation (89) of von Neumann’s theory, this is

the extension SU with U =
(

0 1
1 0

)

. Concerning the bottom of the extensions of the

form Sβ , clearly m(Tβ) = β, thus Theorem 6 gives

m(Sβ) � min{π2, β} ∀β ∈ R

βπ2

β + π2 � m(Sβ) � min{π2, β} if β > −π2 .
(94)

This is consistent with the explicit knowledge of σ(Sβ): for example σ(Sβ=0) =
{4π2n2 | n ∈ Z}, whence indeed m(Sβ=0) = 0. Moreover, since σ(Tβ) =
{β} (simple eigenvalue), Corollary 4 implies that σ−(Sβ) consists of one single
eigenvalue whenever β < 0.

All other cases of the above list can be discussed analogously: along the same
line, (43) and (91) produce each time an expression like (92) for D(ST ) that can
be then cast in the form (93). For completeness, we give here the summary of all
possible conditions of self-adjointness. The family of all self-adjoint extension of S

is described by the following four families of boundary conditions:

g′(0) = b1g(0) + cg(1) , g′(1) = −cg(0) − b2g(1) , (95)

g′(0) = b1g(0) + cg′(1) , g(1) = cg(0) , (96)

g′(1) = −b1g(1) , g(0) = 0 , (97)

g(0) = 0 = g(1) , (98)
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where c ∈ C and b1, b2 ∈ R are arbitrary parameters. For each boundary condition,

the corresponding extension is the operator − d2

dx2 acting on the H 2(0, 1)-functions
that satisfy that one boundary condition. For instance, the extension Sβ determined
by (93) correspond to the boundary condition of type (96) with c = 1 and b1 = β.
In term of the Višik-Birman extension parameter T , conditions of type (95) occur
when dimD(T ) = 2, conditions of type (96) or (97) occur when dimD(T ) = 1, and
condition (98) is precisely that occurring when dimD(T ) = 0 (Dirichlet boundary
conditions, Friedrichs extension). The well-known conditions (95)–(98) can be also
found by means of boundary triplet techniques: see, e.g., [60, Example 14.10].

The same analysis can be equivalently performed in terms of the quadratic forms
of the self-adjoint extensions of S, according to Theorem 7 (in the present case all
extensions are semi-bounded). The reference form is the Friedrichs one, that is,

D[SF ] = H 1
0 (0, 1) =

{

f ∈ L2[0, 1]
∣

∣

∣

∣

f ∈ AC[0, 1], f ′ ∈ L2[0, 1],
f (0) = 0 = f (1)

}

SF [F1, F2] =
∫ 1

0
F ′

1(x) F ′
2(x) dx ∀F1, F2 ∈ D[SF ] ,

(99)

as one deduces from (88). The property m(SF ) = π2 reads

∫ 1

0
|f ′(x)|2dx � π2

∫ 1

0
|f (x)|2dx ∀f ∈ H 1

0 (0, 1) , (100)

that is, Poincaré’s inequality. Owing to (48), the form domain of each extension is
obtained by taking the direct sum of D[ST ] = D[SF ] �D[T ]: in the present case
D[T ] = D(T ), because of the finiteness of the deficiency index of S. For example,
in the concrete case worked out above, that is, T ≡ Tβ = multiplication by a real β

on D(T ) = Span{1}, (48) and (99) yield

D[Sβ ] = H 1
0 (0, 1) � Span{1} = {g ∈ H 1(0, 1) | g(0) = g(1)}

Sβ [g1, g2] = Sβ [F1 + γ11, F2 + γ21] =
∫ 1

0
F ′

1(x) F ′
2(x)dx + β γ1 γ2

=
∫ 1

0
g′

1(x) g′
2(x)dx + βg1(0) g2(0) .

(101)

Then, going from this (closed and semi-bounded) form to the uniquely associated
self-adjoint operator, a straightforward exercise would yield the domain D(Sβ)

already determined by (93).
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As for the Kreı̆n-von Neumann extension SN of S, this is the extension ST with
T : ker S∗ → ker S∗, T v = 0 ∀v ∈ ker S∗ (Proposition 4), in which case (48)
and (99) yield the quadratic form

D[SN ] = H 1
0 (0, 1) � Span{1, x} = H 1(0, 1)

SN [g1, g2] = SN [F1 + a11 + b1x, F2 + a21 + b2x]

=
∫ 1

0
F ′

1(x) F ′
2(x) dx

=
∫ 1

0
g′

1(x) g′
2(x) dx − (g1(1) − g1(0))(g2(1) − g2(0)) .

(102)

The corresponding SN is either found by determining the self-adjoint operator asso-
ciated to SN [·] or by applying directly (43) to the operator T under consideration:

D(SN ) = H 2
0 (0, 1) � Span{1, x}

= {g ∈ H 2(0, 1) | g′(0) = g′(1) = g(1) − g(0)} .
(103)

(The latter boundary condition is of the form (95) with b1 = b2 = −c = 1.)
SN has not to be confused with the self-adjoint extension with Neumann boundary

conditions SN.bc, that is, the operator SN.bc = d2

dx2 with domain

D(SN.bc) = {g ∈ H 2(0, 1) | g′(0) = 0 = g′(1)} (104)

and quadratic form

D[SN.bc] = H 1(0, 1) , SN.bc[g1, g2] =
∫ 1

0
g′

1(x) g′
2(x) dx . (105)

Although SN and SN.bc have the same form domain and the same (zero) bottom, SN

is the smallest among all positive self-adjoint extensions of S (Theorem 17(i))—
the inequality SN [g] � SN.bc[g] (which is strict whenever g(0) �= g(1)) can be
also checked explicitly by comparing (102) with (105). In fact it is easy to compute
explicitly (see, e.g., [3, Example 5.1])

σ(SN ) = {λn | n ∈ N} with λn =
{

(n − 1)2π2 n odd

k2
n/2 n even

σ(SN.bc) = {(n − 1)2π2 | n ∈ N} ,
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where kj is the unique solution to 1
2k = tan( 1

2k) in (2π(j − 1), 2π(j − 1
2 ))

(moreover, kj → 2π(j − 1
2 ) as j → +∞), thus any even eigenvalue of SN is

strictly smaller then the corresponding eigenvalue of SN.bc .

A. Appendix: Summary of von Neumann’s vs Kreı̆n’s
Extension Theory

The material of this Appendix is completely classical and stems from the original
works of von Neumann [67], Stone [64], Friedrichs [19], and Kreı̆n [34]. We give
here a concise summary from a more modern perspective (see, e.g., [56, 60])
that includes also the Ando-Nishio characterisation of the Kreı̆n-von Neumann
extension (first obtained in the work of Ando and Nishio [5] and later generalised by
Coddington and de Snoo [13], and by Prokaj, Sebestyén, and Stochel [55, 61, 62])
as well as Kadison’s characterisation of the Friedrichs extension [31].

Roughly speaking, von Neumann’s theory can be regarded as the “complex
version” and Kreı̆n’s theory as the “real version” of the same idea, that consists
of checking whether a complex number w is real by seeing whether w−i

w+i is a phase
(complex version), or alternatively checking whether w is real positive by seeing
whether w−1

w+1 lies in [−1, 1) (real version), based on the fact that w �→ w−i
w+i is a

bijection of the real axis onto the complex unit circle without the point 1, and that
w �→ w−1

w+1 is a bijection of the non-negative half-line onto the interval [−1, 1).

A.1 von Neumann’s Theory

Fixed z ∈ C\R and a Hilbert space H , the Cayley transform

S �→ VS := (S − z1)(S − z1)−1 , D(VS) = ran(S − z1) , (106)

is a bijective map of the set of densely defined symmetric operators on H onto the
set of all isometric (i.e., norm-preserving) operators V on H for which ran(1 − V )

is dense in H . One has

ran(1 − VS) = D(S) . (107)

S is closed if and only if VS is, and if S′ is another symmetric operator on H , then
S ⊂ S′ if and only if VS ⊂ VS ′ . The inverse map is the inverse Cayley transform

V �→ SV := (z1 − zV )(1 − V )−1 . (108)



294 M. Gallone et al.

As a consequence, a densely defined symmetric operator S is self-adjoint if and
only if its Cayley transform VS is unitary: indeed, S = S∗ if and only if H =
ran(S − z1) = ran(S − z1), which is equivalent to H = ran(VS) = D(VS).

Thus, finding a self-adjoint extension of S, call it ˜S, is equivalent to finding a
unitary extension of VS , which turns out to be V

˜S , and this is in turn equivalent
to (taking the operator closure and) finding a unitary operator from D(VS)⊥ to
(ranVS)⊥, i.e., from ker(S∗ − z1) to ker(S∗ − z1). This way the isometric VS is
extended to the unitary V

˜S on the whole H so that

VS : ran(S − z1)
∼=−→ ran(S − z1)

V
˜S � ker(S∗ − z1) : ker(S∗ − z1)

∼=−→ ker(S∗ − z1) .

(109)

Obviously, this is possible if and only if dim ker(S∗ − z1) = dim ker(S∗ − z1).
For a generic densely defined symmetric operator S each of the two dimensions

above is actually constant in z throughout each of the two complex half-planes.3

This justifies the unambiguous (z-independent) terminology of “deficiency indices”
of S.

When the condition of equal deficiency indices is matched, then from (107) and
from (1 − V

˜S) = (1 − V
˜S) � D(VS) + (1 − V

˜S) � D(VS)⊥ one has

D(˜S) = ran(1 − V
˜S) = D(S) + (1 − V

˜S) ker(S∗ − z1) , (110)

and on a generic f + u − V
˜Su in D(˜S) (f ∈ D(S), u ∈ ker(S∗ − z1)) the action of

˜S, in view of (108), gives

˜S(f + u − V
˜Su) = Sf + (z1 − z V

˜S)(1 − V
˜S)−1(1 − V

˜S)u

= Sf + zu − z V
˜Su .

(111)

Because of (109), V
˜S in the r.h.s. of (110) and of (111) has to be thought of as a

unitary map ker(S∗ − z1)
∼=−→ ker(S∗ − z1). Thus, summarising:

Theorem 14 (von Neumann’s Theorem on Self-Adjoint Extensions) A densely
defined symmetric operator S on a Hilbert space H admits self-adjoint extensions
if and only if S has equal deficiency indices. In this case there is a one-to-one
correspondence between the self-adjoint extensions of S and the isomorphisms
between ker(S∗ −z1) and ker(S∗ −z1), where z ∈ C\R is fixed and arbitrary. Each

3In fact, this is a result of Krasnosel’skii and Kreı̆n [35].
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self-adjoint extension is of the form SU for some U : ker(S∗−z1)
∼=−→ ker(S∗−z1),

where

D(SU ) = D(S) � (1 − U) ker(S∗ − z1)

SU (f + u − Uu) = Su + zu − z Uu = S∗(f + u − Uu) .
(112)

For each SU , the unitary U is the restriction to ker(S∗ −z1) of the Cayley transform
of SU .

A.2 Friedrichs Extension and Kreı̆n-von Neumann Extension

If a given densely defined symmetric operator S on a Hilbert space H is bounded
below, then it surely admits self-adjoint extensions (see, e.g., [56], Corollary to
Theorem X.1). In fact, in this case S has two distinguished extensions (possibly
coinciding), the Friedrichs extension and Kreı̆n-von Neumann extension.

Theorem 15 (Friedrichs Extension) Let S be a semi-bounded and densely defined
symmetric operator on a Hilbert space H .

(i) The form (f, g) �→ 〈f, Sg〉 with domain D(S) is closable. Its closure is the
form whose domain, denoted by D[S], is given by the completion of D(S)

with respect to the norm f �→ 〈f, Sf 〉 + (1 − m(S))‖f ‖2, where m(S) is
the bottom of S, and whose value S[f, g] on any two f, g ∈ D[S] is given
by S[f, g] = limn→∞〈fn, Sgn〉, where (fn)n and (gn)n are two sequences in
D(S) that converge, respectively, to f and g in the above norm.

(ii) The form (S[·],D[S]) is bounded below and closed. Therefore, the operator
associated with (S[·],D[S]) is self-adjoint. It is called the Friedrichs exten-
sion of S and denoted by SF . By definition

D(SF ) =
{

f ∈ D[S]
∣

∣

∣

∣

∃ uf ∈ H such that
S[f, g] = 〈uf , g〉 ∀g ∈ D[S]

}

SF f := uf .

(113)

(iii) SF is a bounded below self-adjoint extension of S with the same greatest lower
bound as S, i.e.,

m(SF ) = m(S) , (114)

and whose associated quadratic form coincides with the closure if the form
(f, g) �→ 〈f, Sg〉 considered in (i)–(ii), i.e.,

D[SF ] = D[S] , SF [f, g] = S[f, g] . (115)
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(iv) D(SF ) = D(S∗) ∩ D[S] and SF = S∗ � D[S].
(v) SF is the only self-adjoint extension of S whose operator domain is contained

in D[S].
(vi) If ˜S is another bounded below self-adjoint extension of S, then SF � ˜S.

(vii) (S + λ1)F = SF + λ1 for λ ∈ R.

Theorem 16 (Friedrichs Extension—Kadison’s Construction [31]) Let S be a
semi-bounded, closed, and densely defined symmetric operator on a Hilbert space
H .

(i) The inner product (f, g) �→ 〈f, Sg〉 + (1 − m(S))〈f, g〉 on D(S) is positive
definite. The corresponding completion D′ is a subspace of H (in fact, D′ =
D[S]) with ‖g‖ � ‖g‖D′ .

(ii) For each g ∈ H , the functional f �→ 〈g, f 〉 on D(S) extends to a
bounded linear functional on (D′, ‖ ‖D′) with norm not exceeding ‖g‖, and
consequently ∃ ! g′ ∈ D(S∗) ∩ D′ such that

〈g, f 〉 = 〈g′, (S + 1 − m(S)1)f 〉 = 〈g′, f 〉D′ ∀f ∈ D(S) .

The map g �→ g′ is realised by a linear operator K (i.e., g′ = Kg) such that
K ∈ B(H), ‖K‖ � 1, K � O, and K is injective.

(iii) The operator SK := K−1 − 1 + m(S)1 is a self-adjoint extension of S with
m(SK) = m(S) and D(SK) ⊂ D′. It is the unique extension of S satisfying
the last two properties.

By comparison with Theorem 15(v) one has that SK is precisely the Friedrichs
extension of S: SK = SF .

Corollary 7 Under the assumptions of Theorem 16, the Friedrichs extension SF

(= SK ) of S is characterised by

D(SF ) =
{

g′ ∈ H
∣

∣

∣

∣

〈g′, (S + 1 − m(S)1)f 〉 = 〈g, f 〉 ∀f ∈ D(S)

for some g ∈ H
}

〈SF g′, f 〉 = 〈g′, Sf 〉 ∀f ∈ D(S) , ∀g′ ∈ D(SF ) .

(116)

The uniqueness of the Friedrichs extension (in the sense of Theorem 15(v)
or Theorem 16(iii)) implies the additional noticeable property that follows. It is
through this property that the Friedrichs extension plays a crucial, albeit somewhat
hidden, role in the Tomita–Takesaki duality theory for von Neumann algebras and
positive cones [65, §15].

Proposition 6 (The Friedrichs Extension Preserves the Affiliation with a von
Neumann Algebra)

(i) Let S be a closed, densely defined, and positive symmetric operator on a
Hilbert space H and let SF its Friedrichs extension. If U is a unitary operator
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on H that commutes with S, in the sense that UD(S) ⊂ D(S) and USU∗ = S

on D(S), then U commutes with all the spectral projections of SF .
(ii) More generally, if S is a closed, densely defined, and positive symmetric

operator on a Hilbert space H affiliated 4 with a von Neumann algebra M on
H , then its Friedrichs extension SF too is affiliated with M.

The Friedrichs extension of S is a form construction, obtained canonically given
the datum S. In contrast, the Kreı̆n-von Neumann extension of S is relative to a
chosen reference lower bound to the bottom of S. Up to a trivial shift S �→ S + λ1
for λ � 0 sufficiently large, one can always assume S to be a positive and densely
defined symmetric operator and the reference lower bound to be zero.

Theorem 17 (Kreı̆n-von Neumann Extension) Let S be a positive and densely
defined symmetric operator on a Hilbert space H .

(i) Among all positive self-adjoint extensions of S there exists a unique smallest
extension SN in the sense of the operator ordering, that is, a unique extension
with the property that ˜S � SN for any positive self-adjoint extension ˜S of S.
It is called the Kreı̆n-von Neumann extension.

(ii) One has

D(SN) = D(S) + ker S∗

SN(f + u) = Sf ∀f ∈ D(S), ∀u ∈ ker S∗ (117)

and (recall that D[S] = D[SF ])
D[SN ] = D[SF ] + ker S∗

SN [f + u, f ′ + u′] = SF [f, f ′] ∀f, f ′ ∈ D[SF ], ∀u, u′ ∈ ker S∗.
(118)

In particular, SNu = 0 ∀u ∈ ker S∗.
(iii) If, in addition, S has positive bottom (m(S) > 0), then the sums in (117)

and (118) are direct, that is,

D(SN ) = D(S) � ker S∗

D[SN ] = D[SF ] � ker S∗,
(119)

and SN is the only positive self-adjoint extension of S satisfying the two
properties ker S∗ ⊂ D(SN ) and SNu = 0 ∀u ∈ ker S∗.

4By definition a closed and densely defined operator S on a Hilbert space H is affiliated with a
von Neumann algebra M on H when for any unitary U ∈ M′ (the commutant of M) one has
UD(S) ⊂ D(S) and USU∗ = S on D(S).
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Theorem 18 (Kreı̆n-von Neumann Extension: Ando-Nishio Version) Let S be a
positive and densely defined symmetric operator on a Hilbert space H .

(i) The linear space

E(S) :=
{

g ∈ H
∣

∣

∣

∣

∃ cg � 0 such that
|〈g, Sf 〉|2 � cg 〈f, Sf 〉 ∀f ∈ D(S)

}

(120)

contains D(S) as well as the domain of any positive symmetric extension of
S, in particular the domain of the Friedrichs extension SF . E(S) is therefore
dense in H .

(ii) The Kreı̆n-von Neumann extension SN of S satisfies

D[SN ] = D(S
1/2
N ) = E(S)

SN [g] = ‖S1/2
N g‖2 = ν(g)

(121)

where ν(g) := the smallest number cg satisfying, for g ∈ E(S), the property
|〈g, Sf 〉|2 � cg 〈f, Sf 〉 ∀f ∈ D(S).

Remark 20 One has ν(g) = 〈g, Sg〉 ∀g ∈ D(S) and ν(g) = 0 ∀g ∈ ker S∗,
consistently with (118) above.

Theorem 18 above has a counterpart when S is positive and symmetric with
no a priori assumption on the density of D(S) in H . In this case elementary
counter-examples (see, e.g., [60, Example 13.2]) show that symmetry plus semi-
boundedness of S is not enough to claim the existence of the Friedrichs extension
or any other positive self-adjoint extension. On the other hand, there is a class of
positive symmetric operators on H , with possibly neither dense nor closed domain,
for which it is crucial for general theoretical purposes to have conditions that ensure
the existence of positive self-adjoint extensions: this is the class of shifted Kreı̆n
transforms of positive and densely defined symmetric operators on H , see Sect. 7.2.
Whence the relevance of the following result.

Theorem 19 (Ando-Nishio Bound and Existence Theorem) Let S be a positive
symmetric operator on a Hilbert space H whose domain is not necessarily a dense
or a closed subspace of H .

(i) S admits a positive self-adjoint extension on H if and only if the set E(S)

defined in (120) is dense in H .
(ii) For given γ > 0, S has a bounded positive self-adjoint extension ˜S on H such

that ‖˜S‖ � γ if and only if ‖Sf ‖2 � γ 〈f, Sf 〉 for all f ∈ D(S).
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A.3 Kreı̆n’s Theory

Unlike von Neumann’s theory, Kreı̆n’s extension theory only deals with densely
defined symmetric operators that are semi-bounded. In this case the existence of
self-adjoint extension(s) is not an issue, as proved by Stone [64, Theorem 9.21]
and Friedrichs [19]. In fact, in terms of the tools of von Neumann’s theory, semi-
boundedness implies the coincidence of the two deficiency indices.5

The Kreı̆n transform

S �→ KS := (S − 1)(S + 1)−1 , D(KS) := ran(S + 1) , (122)

is a bijective map of the set of all positive symmetric operators on a Hilbert space
H onto the set of all bounded symmetric operators K on H for which ‖K‖ � 1
and ker(1 − K) = {0}, where for the operators of both sets the domain is possibly
neither densely defined nor closed. In particular, if S is unbounded, then ‖KS‖ = 1.
The inverse map is the inverse Kreı̆n transform

K �→ SK := (1 + K)(1 − K)−1 , D(SK) = ran(1 − K) . (123)

In terms of the Kreı̆n transform, S is self-adjoint if and only if KS is self-adjoint.
The Kreı̆n transform preserves the operator inclusion:

S1 ⊂ S2 ⇒ KS1 ⊂ KS2 , (124)

and on self-adjoint operators it preserves the operator ordering:

S1 = S∗
1 , S2 = S∗

2 , and S1 � S2 ⇒ KS1 � KS2 . (125)

Theorem 20 (Kreı̆n’s Theorem on Self-Adjoint Extensions) Let S be a densely
defined and positive symmetric operator on a Hilbert space H . Assume further that
S is unbounded (otherwise the only self-adjoint extension of S is its operator closure
S).

(i) There is a one-to-one correspondence between the positive self-adjoint ex-
tensions of S and the self-adjoint extensions ˜K of the Kreı̆n transform KS

5The coincidence of the two deficiency indices of a semi-bounded and densely defined symmetric
operator is a classical result (see, e.g., the first corollary to Theorem X.1 in [56]) which is a
direct consequence of the above-mentioned Krasnosel’skii-Kreı̆n result [35] on the constance of
the deficiency indices throughout each of the two complex half-planes. In fact, such an argument
is more general and proves as well the coincidence of the deficiency indices of a symmetric and
densely defined operator S such that S has a real point in its resolvent set (see, e.g., the second
corollary to Theorem X.1 in [56]). It is worth highlighting that the existence of a self-adjoint
extension of a symmetric and densely defined S with a real point in the resolvent set of S is an
independent result, proved first by Calkin [12] and later re-proved by Kreı̆n [34].
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that are bounded with ‖˜K‖ = 1. For each such ˜K one necessarily has
ker(1− ˜K) = {0}, which makes the inverse Kreı̆n transform of ˜K well defined.
Any such ˜K identifies, via its inverse Kreı̆n transform, a positive self-adjoint
extension ˜S of S (that is, ˜K = K

˜S), and any positive self-adjoint extension of
S is of this form.

(ii) The family of the self-adjoint extensions ˜K of KS with ‖˜K‖ = 1 admits two
elements, KS,F and KS,N , such that a self-adjoint operator ˜K belongs to this
family if and only if KS,N � ˜K � KS,F . The corresponding inverse Kreı̆n
transforms of KS,F and KS,N are two positive self-adjoint extensions of S,
respectively SF and SN , such that a self-adjoint operator ˜S is a positive self-
adjoint extension of S if and only if SN � ˜S � SF . SF and SN are nothing but
the Friedrichs and the Kreı̆n-von Neumann extensions of S (where the latter
is defined with respect to the value zero as a reference lower bound), as given
by Theorems 15 and 17.

(iii) In the special case when S has positive bottom (m(S) > 0), for any semi-
bounded self-adjoint extension ˜S of S one has

D[˜S] = D[SF ] + D[˜S] ∩ ker S∗

˜S[f + u, f ′ + u′] = SF [f, f ′] + ˜S[u, u′]
∀f, f ′ ∈ D[SF ], ∀u, u′ ∈ D[˜S] ∩ ker S∗.

(126)

In particular,

˜S[f, u] = 0 ∀f ∈ D[SF ], ∀u ∈ D[˜S] ∩ ker S∗ (127)

and

˜S � 0 ⇔ ˜S[u, u] � 0 ∀u ∈ D[˜S] ∩ ker S∗. (128)

The sum in (126) is direct for any positive self-adjoint extension of S:

D[˜S] = D[SF ] � D[˜S] ∩ ker S∗ (m(S) > 0, m(˜S) � 0) . (129)

Remark 21 In part (iii) of Theorem 20 above one actually first establishes (127),
which is an independent result, valid for any semi-bounded extension of a bottom-
positive and densely defined symmetric operator S (see, e.g., [34, Lemma 8]). This
automatically implies ˜S[f + u, f ′ + u′] = SF [f, f ′] + ˜S[u, u′] in (126). The
decomposition D[˜S] = D[SF ] + D[˜S] ∩ ker S∗ in (126) requires an additional
analysis, but in the special case of positive self-adjoint extensions it is a straight-
forward consequence of SN � ˜S � SF given by part (ii) and of the property (118)
for the domain of SN . In the general case of semi-bounded extensions, the route to



Kreı̆n-Višik-Birman Self-Adjoint Extension Theory Revisited 301

D[˜S] = D[SF ] + D[˜S] ∩ ker S∗ (see, e.g., [34, Lemma 7 and Theorem 15]), goes
through (118) again and the structural property

D(S∗) = D(SF ) � ker S∗ (m(S) > 0) (130)

for the domain of S∗. For the relevance of the technique used to establish (130) we
have included it, together with its proof, in the main part of this article (Sect. 2.2,
Lemma 1).

Remark 22 Without the assumption m(S) > 0, the decomposition (126) for D[˜S]
fails to be true for arbitrary semi-bounded extensions of S: the inclusion D[˜S] ⊃
D[SF ] + D[˜S] ∩ ker S∗ remains trivially valid, but can be proper.

Remark 23 The Kreı̆n transform reduces the (difficult) problem of describing all
positive self-adjoint extensions of S to the (possibly easier) problem of finding all
the self-adjoint extensions of KS with unit norm. The price, though, is that KS is
not necessarily densely defined in H , which makes the search for the “minimal”
extension KS,N and the “maximal” extension KS,F of KS on H different from
the “ordinary” extension theory of densely defined symmetric operators. A more
explicit identification of KS,N and KS,F is due to Ando and Nishio [5] (and further
developments) and proceeds as follows.

• One considers the positive symmetric operators K± := 1 ± KS with common
domain D(KS).

• Although D(KS) is not necessarily dense (which prevents one from intro-
ducing the Friedrichs extension), from the elementary inequality ‖K±x‖2 �
2〈x,K±x〉 ∀x ∈ D(K±) one sees that they satisfy a Ando-Nishio bound as
in Theorem 19(ii).

• Therefore, both K+ and K− admit a bounded positive self-adjoint extension on
H with norm below 2, whence also (Theorem 17(ii)) the smallest positive self-
adjoint extension K±

N , for which ‖K±
N ‖ � 2 too.

• One then checks that among all the self-adjoint extensions ˜K of KS on H which
are bounded with ‖˜K‖ = 1, the extension KS,N := −(1 − K+

N ) is the smallest
and KS,F := 1 − K−

N is the largest.
• The corresponding inverse Kreı̆n transforms

SN = (1 + KS,N)(1 − KS,N)−1

SF = (1 + KS,F )(1 − KS,F )−1
(131)

are self-adjoint extensions of S (Theorem 20(i)) that, because of (125), are,
respectively, the Kreı̆n-von Neumann and the Friedrichs extension of S.
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