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Abstract. Leveraging data from multiple related domains to enhance
the model generalization performance is critical for transfer learning in
text classification. However, most existing approaches try to separate
the features into shared and private spaces regardless of correlations
between domains, resulting in the inadequate features sharing among
certain most related domains. In this paper, we propose a generic dual-
channels multi-task learning framework for multi-domain text classifica-
tion, which can capture global-shared, local-shared, and private features
simultaneously. Our novel framework incorporates Adversarial network
and Mixture of experts into a neural network for multi-domain text clas-
sification, which is very useful for sharing more features among domains.
The extensive experiments on the real-world text classification data-sets
across 16 domains demonstrate our proposed approach achieves better
results than five state-of-the-art techniques.

Keywords: Multi-domain classification · Multi-task learning ·
Transfer learning · Adversarial network · Mixture of experts

1 Introduction

The current generation of neural network-based natural language processing
models perform extremely well when large amounts of labelled data are avail-
able. However, they are prone to overfitting when faced with insufficient training
data in a target domain for a classification task. It is thus an intuitive idea to
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leverage data from some related domains to enhance the models’ generalization
performance for target domain.

A straightforward approach to utilizing data from multiple related domains is
to combine them into a single domain. This strategy, however, does not account
for distinct relations among examples from multiple domains. Transfer learn-
ing [1,2], as an effective approach to transfer knowledge across domains, can
be used to share knowledge for multiple domains and multiple languages [3,4].
Moreover, multi-task learning, as a branch of transfer learning, has become a
widely used approach for multi-domain text classification [5–8].

Fig. 1. Two sharing schemes for domain A, B and C. The overlap between three
domains is global shared space and the overlap between any two domains is local shared
space. The black and color solid icons denote the global shared features shared across
all domains and local shared features shared only between certain domains respectively.
Red, green and blue solid icons represent local shared features between domain A&C,
B&C, and A&B. The hollow icons represent private features. (Color figure online)

Nevertheless, most existing work on multi-task learning attempts to divide
the features of different domains into two spaces [5–8], namely, private and shared
spaces (See Fig. 1(a)). In particular, one is used to store domain-specific features,
while the other one is used to capture domain-invariant features. However, there
are two limitations in this framework. First, there is no explicit modeling of the
local correlations between the domains, and each domain is treated equally. For
example, given three domains: book, video and movie, video domain can share
more information with movie domain than with book domain besides common
features across three domains, because video and movie domain are more similar.
As shown in Fig. 1(a), suppose domain A is more similar to domain C, domain A
can share more features with domain C than domain B. We can regard domain A
is more important than domain B for domain C instead of equally important. In
shared-private framework, every domain is treated equally without considering
the correlations between domains. Second, separating feature space into shared
and private spaces causes inadequate use of inter-domain information. As shown
in Fig. 1(a), the color solid icons represent the local shared features. In shared-
private framework, these features are treated as private features, resulting in the
inadequate use of these local shared features.

To address these problems, in this paper we divide the feature space into
global shared, local shared and private space (See Fig. 1(b)), and propose an
generic framework for multi-domain text classification, in which the global
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shared, local shared and private features are modeled explicitly with a dual-
channels neural network. Specifically, one channel adopts a structure similar to
the adversarial network which is widely used to model the common and domain-
invariant global shared features in computer vision and natural language pro-
cessing [9,10,18]. The other channel is based on mixture of experts structure,
which explicitly models the domain relationships and allows parameters to be
automatically allocated to capture either local shared features or private features
[10–12]. Finally, the features from two channels are effectively combined into a
feature vector as an integrated representation.The contribution of this paper is
threefold:

– We extend the multi-task learning to mitigate data insufficient problem in
given domain by utilizing data from other related domains.

– We propose a novel generic framework for multi-domain text classification
which explicitly models global-shared, local-shared and private features.

– Our extensive experimental results on real benchmark data demonstrate the
efficiency and effectiveness of our proposed method.

2 Related Work

In recent years, multi-source domain adaptation has attracted the attention of
many researchers in NLP. Kim et al. use attention based on the base models’
representation to compute interpolation weights [13]. Sebastian et al. propose
a method to weight source domain models with the similarity between source
domain and the corresponding target domain [14]. Himanshu et al. utilize unla-
beled data of the target domain to find a distribution weighted combination of
the source domains [15]. Recent adversarial methods on multi-source domain
adaptation align source domains to the target domains globally [16,17]. Jiang
et al. express the target model as a mixture of source domain experts [10].

Multi-source domain adaptation is similar to multi-domain classification in
some ways, but the research goal and applied scenario are different. We can not
directly use the methods of multi-source domain adaptation to multi-domain
classification tasks, although the theories on knowledge sharing are common.

With the development of deep learning, the neural-based model for multi-
task learning has been widely applied as a common technique in NLP. Liu et al.
first utilize different LSTM layers to construct multi-task learning framework
for text classification [6], and they subsequently propose a generic multi-task
framework [7]. Liu et al. propose a shared-private multi-task model, which uses
multiple LSTM to encode sentences from different domains [8]. Liu et al. adopt
self-attention to learn domain-specific descriptor vectors and Bi-LSTM to learn
general sentence-level vectors [5].

Different from these models, our model represents the text from multiple
domain in a more refined way that the features are divided into global-shared,
local-shared and private features.
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3 Preliminary

Multi-domain Text Classification. Suppose there are m domains {Dk}m
k=1,

and {Dk} contains |Dk| data points (sk
j , dk

j , yk
j ), where j ∈ {1, 2, ..., |Dk|}, sk

j is
a sequence of words {w1, w1, ..., w|sk

j |}, dk is a domain indicator (since we use 1
to m to indicate each domain, dk

j = k) and yk
j is class label (e.g. yk

j ∈ {−1,+1}
for binary sentiment classification). The task is to learn a function F which maps
each input (sk

j , dk
j ) to its corresponding class label yk

j .

Text Representation. This paper uses self-attention mechanism [23] to weight
the output of encoding network (such as LSTM) to form a text representation.
Suppose H = {h1, h2, ..., hn} is the output of encoding network whose input is
word embedding sequence x = {x1, x2, ..., xn}. The encoding function can be
implemented with RNN or one of its variants, which will be discussed in Sect. 4.
Then text representation function can be expressed as follows:

h = Rep(H) = αT H (1)

where α = softmax(tanh(HT )v) is attention vector over H, v is a parameter
vector; h is the vector representation of input sequence x .

4 The Proposed Method

In this paper, we propose a generic dual-channel multi-task learning framework
for multi-domain text classification based on global and local shared representa-
tion (GLR-MTL), which consists of four parts: embedding layer, global-shared
representation network, local-shared representation network and text classifica-
tion layer. Two representation networks, called dual-channel network, encode the
input from embedding layer into global-shared representation and local-shared
representation respectively in a parallel manner. Note that private representation
is regarded as a special case of local-shared representation, so we don’t mention
it above for simplicity. Then, the outputs of two channels are concatenated into
an integrated representation, and the text classification layer maps it into a label
distribution. The structure of GLR-MTL is illustrated in Fig. 2.

4.1 Global-Shared Representation

Global-shared representation should be domain-invariant, that is, the common
feature representation of all domains. Many researchers integrate the adversarial
network into the deep neural network to learn the domain-invariant representa-
tion. Inspired by these studies, this paper designs a novel global-shared represen-
tation network as a module for GLR-MTL, which consists of G-Encoder layer,
gradient reverse layer (GRL) and domain classifier layer, as shown in Fig. 2.
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Fig. 2. Overall framework for GLR-MTL. The solid arrows represent the direction of
data flow in forward propagation, and the dotted arrows represent the flow direction
of gradient in back-propagation.

G-Encoder. G-Encoder is used to model the input sequence and output the
global-shared representation with the help of adversarial training. Theoretically
G-Encoder can adopt any kind of recurrent neural network. Here we adopt
recurrent neural network with long short-term memory (LSTM) or bidirectional
LSTM (BiLSTM) due to their superior performance in various NLP tasks. Given
input x , G-Encoder can be expressed as follows:

Hg = G − Encoder(x , θg) (2)

where x is the input, and θg is the parameters.

Domain Discriminator. Domain Discriminator, as a part of adversarial net-
work, is used to predict domain label distribution of the input text. The neural
network architecture of domain discriminator consists of one fully connected
layer and one softmax layer. It can be defined as follows:

d̂ = softmax(WDRep(Hg) + bD) (3)

where d̂ is the distribution of domain label, Rep(Hg) is the text representation
of Hg, WD and bD are the parameter matrix and bias respectively. For the
simplicity of illustration, we use a function to represent the domain discriminator
as follows:

d̂ = Dc(Hg, θg) (4)

where Hg denotes the input of the function, and θg represents all parameters.

Incorporating Adversarial Training. Inspired by Adversarial networks [8,
19], we design a new network similar to adversarial network for global-shared
representation, in which G-Encoder is working adversatively towards domain
discriminator, preventing it from making an accurate prediction about the labels
of domains. We assume that a shareable feature is one for which the domain
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discriminator cannot learn to identify the origin domain of the input observation
based on domain adaptation theory [9]. Therefore, during the training phase,
when G-Encoder and domain discriminator reach a point at which both cannot
improve and the domain discriminator is unable to differentiate among all the
domains, the output of G-Encoder is the global-shared representation for all
domains. To reach this goal, the adversarial training loss is incorporated into
our learning goal, and it is expressed as follows:

Ladv = min
θG

(max
θD

m∑

k=1

|Dk|∑

j=1

dk
j ) log[Dc(Hg

k
j , θD)] (5)

where θD and θG are the parameters of the domain discriminator and G-Encoder
respectively.

Gradient Reverse Layer (GRL). When the gradient descent method is used
to solve the above min-max loss, the parameters usually need to be solved by
alternating training. Yaroslav [20] proposed a gradient inversion method to trans-
form the problem into a single minimum objective problem without alternating
training. Thus, we insert a GRL between G-Encoder and the domain discrimi-
nator to simplify the training process.

4.2 Local-Shared Representation.

Global-shared presentation focuses on capturing the common information of all
domains, and pay attention equally to every domain. However, it is obvious
that the similarity or relatedness is different between any two domains, which
means two similar domains can share more features than less similar ones. For
example, given three domains: book, video and music, music domain can share
more information with video domain than with book-domain, besides common
features across three domains. As shown in Fig. 1-(b), the color icons denote
shareable features between any two domains. We call the features shared between
any two domains local-shared features that are not considered in global-shared
representation module. Next, we will discuss local-shared representation module
of GLR-MTL consisting of L-Encoder layer and Mixture of experts (Moe).

L-Encoder. L-Encoder is first used to encode the input sequence into interme-
diate representation and subsequently feed it into Moe. Here we adopt network
architecture as same as G-Encoder. Given input x , L-Encoder can be expressed
as follows:

HL = L − Encoder(x , θL) (6)

where x is the input, and θL is the parameters.
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Mixture of Experts (Moe). Inspired by previous studies on Moe [10–12],
GLR-MTL integrates Moe into the local shared representation module. As shown
in Fig. 3, our proposed Moe consists of one gate network and multiple expert
networks. The gate network is used to generate the probability distribution of
the domain to which the input sequence belongs to. On the other hand, each
expert network acts as a domain-specific encoder, and multiple experts encode
the input at each time step in a parallel manner. Finally, the weighted sum,
the results of the outputs of these experts multiplied by the outputs of the gate
networks as the weights, is used to represents the output of Moe at current time
step. In other words, given sequence HL = {h1, h2, ..., hn} from L-Encoder, at
time step t, Moe can be precisely expressed as follows:

ĝ = softmax(WgRep(HL) + bg) (7)

Ek(ht) = ReLU(Wkht + bk) (8)

hL
t =

m∑

k=1

ĝ[k]Ek(ht) (9)

where ĝ is the predicted probability distribution of domains and
∑m

k=1 ĝ[i] = 1,
Wg ∈ and bg are parameter matrix and bias of the gate network; Ek(.) is the
function of k-th domain-specific encoder, Wk and bk are parameter matrix and
bias of Ek(.); hL

t is the output of Moe at time step t, and Hl = {hL
1 , hL

2 , ..., hL
n}

is the local-shared representation of the input.

Fig. 3. Structure of Mixture of Experts

At time step t, hL
t integrates the information of multiple domain experts

into one representation, and the amount of fused information from each expert
depends on the probability distribution of gate output. For an input sample
belongs to domain k, we assume k = arg maxk∈{1,2,...,m}(ĝ). Then ĝ[i] should
be close to ĝ[i] if domain i is similar to domain k. The sample can share more
information from domain i by Function (9). In an extreme case, ĝ[k] is almost
equal to 1 if there is no similar domain to domain k, which means the presentation
Hl = {hL

1 , hL
2 , ..., hL

n} of the sample is totally private because Moe can only use
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the information from k-th expert. Therefore, it is essential to learn a precise ĝ ,
and the learning goal can be expressed as follows:

LMoe = min(−
m∑

k=1

|Dk|∑

j=1

dk
j log(ĝk

j )) (10)

4.3 Multi-domain Text Classification

Given an input text, we first concatenate its global-shared representation Hg and
local-shared representation Hl into a completed representation. Then we pass the
representation into text classification module, which has a fully connected layer
followed by a softmax non-linear layer that predicts the probability distribution
over classes. In particular, the classification module can be expressed as follows:

ŷ = softmax(WCRep([Hg;Hl]) + bC) (11)

where ŷ is prediction probabilities of text classes, and WC and bC are parameter
matrix and bias respectively. For multi-domain text classification, the learning
goal can be expressed as follows:

Ltask = min(−
m∑

k=1

|Dk|∑

j=1

yk
j log(ŷk

j )) (12)

4.4 GLR-MTL Objective

GLR-MTL incorporates adversarial network and Moe into classification model to
learn global-shared and local-shared representation. Therefore, we need to jointly
learn these supervised objectives, resulting in the following learning objective:

L = Ltask + δLMoe + ηLadv (13)

where δ and η are hyper-parameters.

5 Experiment

5.1 Datasets and Experimental Settings

To make an extensive evaluation, we use FuDan [8] datasets consisting of 16
different domains from several popular review corpora. The data is labelled with
either positive or negative. All the datasets in each domain are partitioned ran-
domly into training set, development set and testing set with the proportion of
70%, 20% and 10% respectively. The average data size of training set, develop-
ment set and testing test are 1386, 200 and 400 respectively. The average length
of sentences across domains ranges from 21 to 269.

For fair comparison, our GLR-MTL model and competing models use the
same pre-training word embedding (Glove 200-dimension embedding [24]) and



Multi-domain Transfer Learning for Text Classification 465

encoder module. LSTM and BiLSTM, as two different encoder settings, are
adopted to act as L-Encoder and G-Encoder.

The hidden state units of the encoder is set to 100. The dropout rate and
mini-batch size are set to 0.5 and 8 respectively. We employ Adam optimizer with
the learning rate of 0.002. We take the hyper-parameters which achieve the best
performance on the development set via an small grid search over combinations
of δ ∈ [0.01, 0.1] and η ∈ [0.01, 0.1]. Finally, we choose δ as 0.05 and η as 0.01.

5.2 Baselines

Multi-domain text classification can be solved in a single task manner or multiple
task manner. We choose two single task models and three recently proposed
multi-task models related to multi-domain text classification as baselines.

– SD-ST: Single-domain single-task model, which means we separately train
the model for each domain. These models can not share features among
domains. SD-ST uses vanilla LSTM or BiLSTM to encode the input text,
and uses the last hidden outputs as the text representation [22].

– CNN-ST: This model uses vanilla LSTM or BiLSTM as encoder, and use
CNN to represent the features. Different from SD-ST, multiple domains are
combined into a single domain before the model training [21].

– SP-MTL: This model is a multi-task model which uses one shared LSTM
and multiple private-LSTMs to represent the shared and private features
respectively. Then, these kinds of features are concatenated into a vector [8].

– ASP-MTL: This model is a variant of SP-MTL, which incorporates adver-
sarial network into the model [8].

– DSAM: This model adopts self-attention to learn a domain-specific descrip-
tor vector and uses BILSTM to learn the general sentence-level vector. Then,
the general and domain-specific are concatenated into one vector [5].

5.3 Results and Analysis

As shown in Table 1, we can see that the overall performance of our models
achieve the highest accuracy on 16 domains, no matter whether LSTM or BiL-
STM encoder is used. More concretely, compared with single-task models, the
performance of GLR-MTL has achieved much better results, indicating that
multi-task models which utilize multi-domain data simultaneously are helpful
to improve the model performance on each domain. It is noteworthy that, com-
pared to multi-task models, CNN-ST is a strong single task model in which all
domains are combined into one domain and it achieves a comparable results
with certain multi-task models (such as SP-MTL and ASP-MTL). These results
confirm our observation that separating feature space into shared-private spaces
causes inadequate use of inter-domain information.

Compared with multi-task models, GLR-MTL achieves 1.5% average
improvement, which indicates the importance of explicitly modeling the local



466 X. Su et al.

Table 1. Accuracy (averages across five random seeds) of our models on 16 domains
against existing baselines. The title in each parentheses below the model name repre-
sents the encoder type (LSTM or BiLSTM) used by the model.

Models Single-Task Multi-Task Ours

SD-ST

(LSTM)

SD-ST

(BiLSTM)

CNN-ST

(LSTM)

CNN-ST

(BiLSTM)

SP-MTL

(LSTM)

ASP-MTL

(LSTM)

DSAM

(BiLSTM)

GLR-MTL

(LSTM)

GLR-MTL

(BiLSTM)

Apparel 83.2 86.0 84.5 87.7 86.5 87.0 85.3 88.5 88.2

Baby 84.7 83.5 88.0 89.0 86.7 88.2 89.6 90.3 92.3

Books 79.5 81.0 84.8 86.0 81.2 84.0 84.4 89.5 88.3

Camera 85.2 86.0 86.8 89.5 88.0 89.2 89.3 90.5 89.5

Electronics 81.7 80.5 86.0 87.0 84.0 85.5 86.3 87.8 90.3

DVD 80.5 78.5 85.0 86.5 84.7 86.8 87.0 86.0 87.3

Health 84.5 78.7 87.8 90.3 87.2 88.2 89.3 90.0 90.5

IMDB 81.7 85.0 83.8 85.3 84.7 85.5 86.8 83.0 87.5

Kitchen 78.0 81.2 87.0 86.8 85.2 86.2 90.0 90.3 89.8

Magazines 89.2 91.5 92.3 93.3 92.0 92.2 93.0 91.5 92.3

MR 72.7 74.7 68.4 69.2 76.0 76.7 76.8 72.7 72.7

Music 76.7 77.2 82.8 82.3 83.0 82.5 82.3 86.8 87.5

Software 84.7 85.7 89.3 88.8 87.0 87.2 86.8 89.5 91.8

Sports 81.7 84.0 89.0 86.5 87.2 85.7 88.5 89.1 87.8

Toys 83.2 84.7 87.3 87.5 85.2 88.0 89.3 91.0 89.8

Video 81.5 83.7 87.3 88.0 83.2 84.5 87.0 87.3 90.8

Avg.acc 81.8 82.6 85.6 86.5 85.1 86.1 87.0 87.7 88.5

correlations between the domains and capturing global-shared, local-shared and
private features simultaneously. Note for GLR-MTL, the performances on cer-
tain domains are degraded, since this model puts all features into a unified space
and optimizes the overall goal for all domains as a whole.

5.4 Ablation Analysis

To analyze the influence of Adversarial network and Moe module on the model
performance, we design the ablation experiments based on GLR-MTL(BiLSTM).
From Table 2, we can see that both Adversarial network and Moe are helpful for
GLR-MTL to improve its performance, since the model performance is degraded
without each of them. We also observe that both global-shared and local-shared
features are important to improve the performance of the model, as the model
performance is degraded with only using one kind of features.

5.5 Transferability Analysis

GLR-MTL can transfer knowledge from related domains to the target domain
through feature sharing, which can enhance the generalization performance on
target domain with limited training data. To test the transferability of GLR-
MTL, we take turns using different percentage (See Fig. 4) of training data of
target domain combined with all data of source domains to train the model.

As shown in Fig. 4, we can see that the accuracy of each domain rises with
the amount of training data increasing, and almost reach its upper-bound with
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Table 2. Average accuracy of GLR-MTL with different settings on 16 domains. GLR-
MTL(w/o Moe) represents the model in which δ = 0 and the parameters of Moe
module is fixed, and GLR-MTL(w/o adv) represents the model in which η = 0 and the
parameters of Domain-classifier module is fixed. GR-MTL and LR-MTL represent the
model use only global-shared and local-shared representation respectively.

Models Avg.acc

GLR-MTL 88.5

GLR-MTL(w/o Adv) 87.8

GLR-MTL(w/o Moe) 87.9

GR-MTL 87.7

LR-MTL 87.3

0% 20% 40% 60% 80% 100%

84

85

86

87

88

89

Ac
cu

ar
cy

Percentage of training data  

 Books
 DVD
 Apparel

Fig. 4. Transferability on three randomly choosed domains: Books, DVD and Apparel.
Solid lines denote the accuracy of each domain with different percentage of training
data. Dotted lines represent the accuracy upper bound which is the accuracy of the
model trained with all data of 16 domains.

using only 60%–80% of training data, which means the GLR-MTL framework
can use less data to achieve nearly same accuracy through the features shar-
ing. Moreover,the accuracy of target domain Books and DVD both achieves
87.5% without using target domain data that is higher than the single-domain
model as shown in Table 1, while Apparel achieves 84% nearly the same as the
single-domain model. This indicates Books and DVD domains can share more
features from other domains than Apparel domain does, because the related-
ness of Apparel with other domains is relative weak while DVD domain is much
similar to Video and IMDB domains. It is noteworthy that the performance on
DVD and Books domains declines with very limited training data, such as 20%
and 40% of training data, which indicates very limited training data may causes
negative transfer and certain amount of training data is necessary.

6 Summary

This paper proposed a framework GLR-MTL for multi-domain text classifica-
tion, which can model global-shared features and local-shared features respec-
tively with the help of adversarial network and Moe. Experiments on datasets
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of 16 domains show that the overall performance of GLR-MTL is significantly
better than five baseline models. Moreover, this framework can transfer features
from multi-domains to one target domain, which makes the model achieve com-
parative performance on target domain with very limited training data.
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