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Abstract. We introduce a new subclass of chordal graphs that gener-
alizes split graphs, which we call well-partitioned chordal graphs. Split
graphs are graphs that admit a partition of the vertex set into cliques
that can be arranged in a star structure, the leaves of which are of size
one. Well-partitioned chordal graphs are a generalization of this con-
cept in the following two ways. First, the cliques in the partition can
be arranged in a tree structure, and second, each clique is of arbitrary
size. We provide a characterization of well-partitioned chordal graphs
by forbidden induced subgraphs, and give a polynomial-time algorithm
that given any graph, either finds an obstruction, or outputs a partition
of its vertex set that asserts that the graph is well-partitioned chordal.
We demonstrate the algorithmic use of this graph class by showing that
two variants of the problem of finding pairwise disjoint paths between k
given pairs of vertices is in FPT parameterized by k on well-partitioned
chordal graphs, while on chordal graphs, these problems are only known
to be in XP. From the other end, we observe that there are problems that
are polynomial-time solvable on split graphs, but become NP-complete
on well-partitioned chordal graphs.

Keywords: Well-partitioned chordal graph · Chordal graph · Split
graph · Disjoint paths · Forbidden induced subgraphs

1 Introduction

A central methodology in the study of the complexity of computationally
hard graph problems is to impose additional structure on the input graphs,
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Fig. 1. A well-partitioned chordal graph.

and determine if this can be exploited in the design of an efficient algorithm.
Typically, one restricts the input to be contained in a graph class, which is a set
of graphs that share a common structural property. Following the establishment
of the theory of NP-hardness, numerous problems were investigated in specific
classes of graphs; either providing a polynomial-time algorithm for a problem
Π on a specific graph class, while Π is NP-hard in a more general setting, or
showing that Π remains NP-hard on a graph class. A key question in this field is
to find for a given problem Π that is hard on a graph class A, a subclass B � A
such that Π is efficiently solvable on B. Naturally, the goal is to narrow down
the gap A\B as much as possible, and several notions of hardness/efficiency can
be applied. For instance, we can require our target problem to be NP-hard on
A and polynomial-time solvable on B; or, from the viewpoint of parameterized
complexity [6,7], we require a target parameterized problem Π to be W[1]-hard
on A, while Π is in FPT on B, or a separation in the kernelization complexity [8]
of Π between A and B.

Chordal graphs are arguably one of the main characters in the algorithmic
study of graph classes. They find applications for instance in computational biol-
ogy [21] and sparse matrix computations [10]. Split graphs are an important sub-
class of chordal graphs. The complexities of computational problems on chordal
and split graphs often coincide, however, this is not always the case. For instance,
several variants of graph (vertex) coloring problems are polynomial-time solv-
able on split graphs and NP-hard on chordal graphs, see the works of Havet
et al. [12], and of Silva [22]. Also, the Sparsest k-subgraph [24] and Dens-

est k-subgraph [5] problems are polynomial-time solvable on split graphs and
NP-hard on chordal graphs. Other problems, for instance the Tree 3-Spanner
problem [3], are easy on split graphs, while their complexity on chordal graphs
is still unresolved.

In this work, we introduce the class of well-partitioned chordal graphs, a sub-
class of chordal graphs that generalizes split graphs, which can be used as a
tool for narrowing down complexity gaps for problems that are hard on chordal
graphs, and easy on split graphs. The definition of well-partitioned chordal
graphs is mainly motivated by a property of split graphs: the vertex set of a
split graph can be partitioned into sets that can be viewed as a central clique
of arbitrary size and cliques of size one that have neighbors only in the central
clique. Thus, this partition has the structure of a star. Well-partitioned chordal
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Fig. 2. The set of obstructions O for well-partitioned chordal graphs.

graphs relax these ideas in two ways: by allowing the parts of the partition to
be arranged in a tree structure instead of a star, and by allowing the cliques
in each part to have arbitrary size. The interaction between adjacent parts P
and Q remains simple: it induces a complete bipartite graph between a subset
of P , and a subset of Q. Such a tree structure is called a partition tree, and
we give an example of a well-partitioned chordal graph in Fig. 1. Now, it is not
difficult to observe that the graphs constructed in the NP-hardness proofs in the
works [12,22] are in fact well-partitioned chordal graphs.

The main structural contribution of this work is a characterization of well-
partitioned chordal graphs by forbidden induced subgraphs (see Fig. 2).

Theorem 1. A graph is a well-partitioned chordal graph if and only if it has no
induced subgraph isomorphic to a graph in O. Furthermore, there is a polynomial-
time algorithm that given a graph G, outputs either an induced subgraph of G
isomorphic to a graph in O, or a partition tree for each connected component
which confirms that G is a well-partitioned chordal graph.

Before we proceed with the discussion of the algorithmic results of this paper,
we would like to briefly touch on the relationship of well-partitioned chordal
graphs and width parameters. Each split graph is a well-partitioned chordal
graph, and there are split graphs of whose maximum induced matching width
(mim-width) depends linearly on the number of vertices [17]. This rules out the
applicability of any algorithmic meta-theorem based on one of the common width
parameters such as tree-width or clique-width, to the class of well-partitioned
chordal graphs. It is known that mim-width is a lower bound for them [23].

Besides narrowing the complexity gap between the classes of chordal and
split graphs, the class of well-partitioned chordal graphs can also be useful as
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Table 1. Complexity of the Disjoint Paths and Set-Restricted Disjoint Paths

problems parameterized by the number k of terminal pairs. Size bounds for kernels are
in terms of the number of vertices of the kernelized instances. �Given a partition tree.

Graph Class Disjoint Paths Set-Restricted Disjoint Paths

Chordal linear FPT [14] XP [1]

Well-partitioned chordal O(k3) kernel [T. 5] linear� FPT [T. 2, 3]

Split O(k2) kernel [13] O(k2) kernel [C. 1]

a step towards determining the yet unresolved complexity of a problem Π on
chordal graphs when it is known that Π is easy on split graphs. This is the case in
our current work. Specifically, we study the Disjoint Paths problem, formally
defined as follows, and generalizations thereof. Two paths P1 and P2 are called
internally vertex-disjoint, if for i ∈ [2], no internal vertex of Pi is contained in
P3−i. (Note that this excludes the possibility that an endpoint of one path is
used as an internal vertex in the other path.)

The classical Disjoint Paths problem takes as input a graph G and a set
X = {(s1, t1), . . . , (sk, tk)} of k pairs of vertices of G, called terminals, and
asks whether G contain k pairwise internally vertex-disjoint paths P1, . . . , Pk

such that for all i ∈ [k], Pi is an (si, ti)-path. This problem has already been
shown by Karp to be NP-complete [15], and as a cornerstone result in the early
days of fixed-parameter tractability theory, Robertson and Seymour showed that
Disjoint Paths parameterized by k is in FPT [16,19]. From the viewpoint of
kernelization complexity, Bodlaender et al. showed that Disjoint Paths does
not admit a polynomial kernel unless NP ⊆ coNP/poly [2].

Restricting the problem to chordal and split graphs, Heggernes et al. showed
that Disjoint Paths remains NP-complete on split graphs, and that it admits a
polynomial kernel parameterized by k [13], and Kammer and Tholey showed that
it has an FPT-algorithm with linear dependence on the size of the input chordal
graph [14]. The question whether Disjoint Paths has a polynomial kernel on
chordal graphs remains open. We go one step towards such a polynomial kernel,
by showing that Disjoint Paths has a polynomial kernel on well-partitioned
chordal graphs; generalizing the polynomial kernel on split graphs [13].

We also study a generalization of the Disjoint Paths problem, where in a
solution, each path Pi can only use a restricted set of vertices Ui, which is speci-
fied for each terminal pair at the input. This problem was recently introduced by
Belmonte et al. and given the name Set-Restricted Disjoint Paths [1]. Since
this problem contains Disjoint Paths as a special case (setting all domains
equal to the whole vertex set), it is NP-complete. Belmonte et al. showed that
Set-Restricted Disjoint Paths parameterized by k is in XP on chordal
graphs, and leave as an open question whether it is in FPT or W[1]-hard on
chordal graphs. Towards showing the former, we give an FPT-algorithm on well-
partitioned chordal graphs. While we do not settle the kernelization complexity
of Set-Restricted Disjoint Paths on well-partitioned chordal graphs, we
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observe that our FPT-algorithm implies a polynomial kernel on split graphs. We
summarize these results in Table 1.

Finally, we also consider the Set-Restricted Disjoint Connected Sub-

graphs problem where we are given k terminal sets instead of pairs, and k
domains, and the question is whether there are k pairwise disjoint connected
subgraphs, each one connecting one of the terminal sets, using only vertices
from the specified domain. This problem was also introduced in [1] and shown
to be in XP on chordal graphs, when the parameter is the total number of ver-
tices in all terminal sets. Extending our ideas of the above mentioned algorithms,
we show that this problem is in fact FPT on well-partitioned chordal graphs.

Throughout, proofs of statements marked ‘♣’ are deferred to the full version.

2 Preliminaries

For a positive integer n, we let [n] ..= {1, 2, . . . , n}. All graphs considered here are
simple and finite. For a graph G we denote by V (G) and E(G) the vertex set and
edge set of G, respectively. Given uv ∈ E(G), we call u and v its endpoints. Let G
and H be two graphs. For a vertex v of a graph G, NG(v) ..= {w ∈ V (G) | vw ∈
E(G)} is the set of neighbors of v in G. The degree of v is degG(v) ..= |NG(v)|.
The subgraph induced by X, denoted by G[X], is the graph (X, {uv ∈ E(G) |
u, v ∈ X}). We denote by G−X the graph G[V (G) \X], and for a single vertex
x ∈ V (G), we use the shorthand ‘G−x’ for ‘G−{x}’. For two sets X,Y ⊆ V (G),
we denote by G[X,Y ] the graph (X ∪ Y, {xy ∈ E(G) | x ∈ X, y ∈ Y }). We say
that X is complete to Y if X ∩ Y = ∅ and each vertex in X is adjacent to every
vertex in Y . Let G be a graph. We say that G is complete if uv ∈ E(G) for
every u, v ∈ V (G). A set X ⊆ V (G) is a clique if G[X] is complete. A graph G
is connected if for each 2-partition (X,Y ) of V (G) with X �= ∅ and Y �= ∅, there
is a pair x ∈ X, y ∈ Y such that xy ∈ E(G). A tree with at most one vertex of
degree at least two is a star.

A hole in a graph G is an induced cycle of G of length at least 4. A graph is
chordal if it has no hole as an induced subgraph. A vertex is simplicial if NG(v) is
a clique. We say that a graph G has a perfect elimination ordering v1, . . . , vn if vi

is simplicial in G[{vi, vi+1, . . . , vn}] for each i ∈ [n− 1]. It is known that a graph
is chordal if and only if it has a perfect elimination ordering [9]. A graph G is a
split graph if there is a 2-partition (C, I) of V (G) such that C is a clique and I is
an independent set. For a family S of subsets of some set, the intersection graph
of S is the graph on vertex set S and edge set {ST | S, T ∈ S and S ∩ T �= ∅}.

3 Well-Partitioned Chordal Graphs

A connected graph G is a well-partitioned chordal graph if there exist a partition
P of V (G) and a tree T having P as a vertex set such that the following hold.
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(i) Each part X ∈ P is a clique in G.
(ii) For each edge XY ∈ E(T ), there are subsets X ′ ⊆ X and Y ′ ⊆ Y such

that E(G[X,Y ]) = {xy | x ∈ X ′, y ∈ Y ′}.
(iii) For each pair of distinct X,Y ∈ V (T ) with XY /∈ E(T ), E(G[X,Y ]) = ∅.

The tree T is called a partition tree of G, and the elements of P are called its bags.
A graph is a well-partitioned chordal graph if all of its connected components
are well-partitioned chordal graphs. We remark that a well-partitioned chordal
graph can have more than one partition tree. Also, observe that well-partitioned
chordal graphs are closed under taking induced subgraphs.

A useful concept when considering partition trees of well-partitioned chordal
graphs is that of a boundary of a bag. Let T be a partition tree of a well-
partitioned chordal graph G and let X,Y ∈ V (T ) be two bags that are adjacent
in T . The boundary of X with respect to Y , denoted by bd(X,Y ), is the set of
vertices of X that have a neighbor in Y , i.e. bd(X,Y ) ..= {x ∈ X | NG(x) ∩ Y �=
∅}. By item (ii) of the definition of the class, bd(X,Y ) is complete to bd(Y,X).

We now consider the relation between well-partitioned chordal graphs and
other well-studied classes of graphs. It is easy to see that every well-partitioned
chordal graph G is a chordal graph because every leaf of the partition tree of a
component of G contains a simplicial vertex of G, and after removing this vertex,
the remaining graph is still a well-partitioned chordal graph. Thus, we may
construct a perfect elimination ordering. We show that, in fact, well-partitioned
chordal graphs constitute a subclass of substar graphs. A graph is a substar
graph [4] if it is an intersection graph of substars of a tree.

Proposition 1 (♣). Every well-partitioned chordal graph is a substar graph.

From the definition of well-partitioned chordal graphs, one can also see that
every split graph is a well-partitioned chordal graph. Indeed, if G is a split graph
with clique K and independent set S, the partition tree of G is a star, with the
clique K as its central bag and each vertex of S contained in a different leaf bag.
We show that, in fact, every starlike graph is a well-partitioned chordal graph.
A starlike graph [11] is an intersection graph of substars of a star.

Proposition 2 (♣). Every starlike graph is a well-partitioned chordal graph.

We show that the graph O1 in Fig. 2 is not a well-partitioned chordal graph.
On the other hand, O1 is a substar graph. Also a path graph on 5 vertices is a
well-partitioned chordal graph but not a starlike graph. These observations with
Propositions 1 and 2 show that we have the following hierarchy:

split
graphs �

starlike
graphs �

well-partitioned
chordal graphs �

substar
graphs �

chordal
graphs
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4 Characterization by Forbidden Induced Subgraphs

This section is entirely devoted to the proof of Theorem1. That is, we show
that the set O of graphs depicted in Fig. 2 is the set of all forbidden induced
subgraphs for well-partitioned chordal graphs, and give a polynomial-time recog-
nition algorithm for this graph class. For convenience, we say that an induced
subgraph of a graph that is isomorphic to a graph in O is an obstruction for
well-partitioned chordal graphs, or simply an obstruction.

Proposition 3 (♣). The graphs in O are not well-partitioned chordal graphs.

In the rest, we outline the implementation of the algorithm, which also
proves that the set O is a complete set of forbidden induced subgraphs of well-
partitioned chordal graphs.

Proposition 4. Given a graph G, one can in polynomial time output either an
obstruction in G or a partition tree of each connected component of G confirming
that G is a well-partitioned chordal graph.

We introduce the main concept in the algorithm, called a boundary-crossing
path. Let G be a connected well-partitioned chordal graph with a partition tree
T . For a bag X of T and B ⊆ X, a vertex z ∈ V (G) \ X is said to cross B in
X, if it has a neighbor both in B and in X \ B. In this case, we also say that
B has a crossing vertex. In the following definitions, a path X1X2 . . . X� in T
is considered to be ordered from X1 to X�. Let � ≥ 3 be an integer. A path
X1X2 . . . X� in T is called a boundary-crossing path if for each 1 ≤ i ≤ � − 2,
there is a vertex in Xi that crosses bd(Xi+1,Xi+2). If for each 1 ≤ i ≤ �−2, there
is no bag Y ∈ V (T )\{Xi} containing a vertex that crosses bd(Xi+1,Xi+2), then
we say the path is exclusive. If for each 1 ≤ i ≤ � − 2, bd(Xi,Xi+1) is complete
to Xi+1, then we say the path is complete. If a boundary-crossing path is both
complete and exclusive, then we call it good. For convenience, we say that any
path in T with at most two bags is a boundary-crossing path.

The outline of the recognition algorithm is as follows. First we may assume
that a given graph G is chordal, otherwise we find a hole in polynomial time [18].
We may also assume that G is connected. So, it has a simplicial vertex v, and by
an inductive argument, we can assume that G − v is a well-partitioned chordal
graph. As v is simplical, G − v is also connected, and thus it admits a partition
tree T . If v has neighbors in one bag of T , then we can simply put v as a new
bag adjacent to that bag. Thus, we may assume that v has neighbors in two
distinct bags, say C1 and C2. Then our algorithm is divided into three parts:

1. We find a maximal good boundary-crossing path ending in C2C1 (or C1C2).
To do this, given a good boundary-crossing path CiCi−1 . . . C2C1, find a bag
Ci+1 containing a vertex crossing bd(Ci, Ci−1). If there is no such bag, then
this path is maximal. Otherwise, we argue that in polynomial time either we
can find an obstruction, or verify that Ci+1Ci . . . C2C1 is good.
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2. Assume that CkCk−1 . . . C2C1 is the obtained maximal good boundary-
crossing path. Then we can in polynomial time modify T so that no vertex
crosses bd(C2, C1).

3. We show that if no vertex crosses bd(C2, C1) and no vertex crosses bd(C1, C2),
then we can extend T to a partition tree of G.

Steps 2 and 3 can be handled immediately. Step 1 is the most technically
involved one. We first prove a handful of auxiliary lemmas that we can use to
find pieces of obstructions in boundary-crossing paths that are not good, and
puzzle them together. We separately deal with the following three cases, and in
each case, we show that either one can in polynomial time find an obstruction
or output a partition tree of G.

• (Lemma A) C1 ⊆ NG(v).
• (Lemma B) bd(C1, C2) \ NG(v) �= ∅ and C2 \ NG(v) �= ∅.
• (Lemma C) C1 \ NG(v) �= ∅, C2 \ NG(v) �= ∅ and NG(v) = bd(C1, C2) ∪

bd(C2, C1).

In the proofs of these lemmas, we crucially use the aforementioned auxiliary
lemmas that came out of our line of attack at Step 1 above. We sketch the idea
of the proof of Lemma A.

Proof (Sketch of the proof of Lemma A). Since v is a simplicial vertex, we have
that bd(C1, C2) = C1. If NG(v) ∩ C2 = bd(C2, C1), then we can obtain a
partition tree for G by adding v to C1. Thus, we may assume that NG(v) ∩ C2 �=
bd(C2, C1). Assume that C2 = bd(C2, C1). Since bd(C2, C1) is complete to C1,
we have that C1 ∪ C2 is a clique. Hence, we can obtain a partition tree T ′ for
G from T by removing C1 and C2, adding a new bag C∗ = C1 ∪ C2, making all
neighbors of C1 and C2 in T adjacent to C∗, and adding a new bag Cv

..= {v}
and making Cv adjacent to C∗. Thus, we may assume that C2 \ bd(C2, C1) �= ∅.

Since C1 = bd(C1, C2), no vertex of G − v crosses bd(C1, C2). If no vertex
of G − v crosses bd(C2, C1), then using Step 3, we can obtain a partition tree
for G in polynomial time. Thus, we may assume that there is a bag C3 having a
vertex that crosses bd(C2, C1). So, C3C2C1 is a boundary-crossing path.

We find either an obstruction or a maximal good boundary-crossing path
ending in C3C2C1. First check whether bd(C3, C2) is complete to C2. Otherwise,
choose a vertex p ∈ bd(C3, C2), and a non-neighbor q of p in C2. As p crosses
bd(C2, C1), p has a neighbor a in C2\bd(C2, C1) and a neighbor b in bd(C2, C1).
There are three possibilities; q is contained in one of NG(v) ∩ C2, bd(C2, C1) \
NG(v), or C2 \ bd(C2, C1). In each case, we can find an obstruction. So, we may
assume that bd(C3, C2) is complete to C2. Next, we check if there exists another
neighbor bag D �= C3 of C2 having a vertex q that crosses bd(C2, C1). In this
case, we can find O3. Otherwise, C3C2C1 is a good boundary-crossing path.

We now extend a given good boundary-crossing path CiCi−1 · · · C2C1 by
recursively finding a bag Ci+1 having a vertex crossing bd(Ci, Ci−1), and if the
new sequence is not good, then we output an obstruction. This recursive step
stops at some point, and we end up with a maximal good boundary-crossing
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path CkCk−1 · · · C1. Now, it is not difficult to see that replacing the sequence
Ck, Ck−1, . . . , C1 with Ck\bd(Ck, Ck−1), bd(Ck, Ck−1)∪(Ck−1\bd(Ck−1, Ck−2),
. . . , bd(C2, C1) ∪ C1 makes a new tree partition where no vertex crosses
bd(C ′

2, C
′
1) where C ′

2 and C ′
1 are the new last two bags. Then we can apply

Step 3 to obtain a partition tree for the entire graph G in polynomial time. ��

Proof (of Proposition 4). We use the polynomial-time algorithm of [18] to find
a hole1 in G if one exists. We may assume that G is chordal. Since a graph
is a well-partitioned chordal graph if and only if its connected components are
well-partitioned chordal graphs, it is sufficient to show it for each connected
component. From now on, we assume that G is connected. We can find a perfect
elimination ordering (v1, v2, . . . , vn) of G in polynomial time [20].

For each i ∈ {1, 2, . . . , n}, let Gi
..= G[{vi, vi+1, . . . , vn}]. Observe that since

G is connected and vi is simplicial in Gi for all 1 ≤ i ≤ n−1, each Gi is connected.
From i = n to 1, we recursively find either an obstruction or a partition tree of
Gi. Clearly, Gn admits a partition tree. Let 1 ≤ i ≤ n − 1, and assume that we
obtained a partition tree T of Gi+1. Recall that vi is simplicial in Gi.

Since vi is simplicial in Gi, NGi
(vi) is a clique. This implies that there are

at most two bags in V (T ) that have a non-empty intersection with NGi
(vi). If

there is only one such bag in V (T ), say C, we can construct a partition tree for
Gi by simply adding a bag consisting of vi and making it adjacent to C.

Hence, from now on, we can assume that there are precisely two distinct
adjacent bags C1, C2 ∈ V (T ) that have a non-empty intersection with NGi

(vi).
As NGi

(vi) is a clique, we can observe that NGi
(vi) ⊆ bd(C1, C2) ∪ bd(C2, C1).

If C1 ⊆ NGi
(vi) or C2 ⊆ NGi

(vi), then by Lemma A, we can in polynomial
time either output an obstruction or output a partition tree of Gi. Thus, we may
assume that C1 \ NGi

(vi) �= ∅ and C2 \ NGi
(vi) �= ∅. If bd(C1, C2) \ NGi

(vi) �= ∅
or bd(C2, C1)\NGi

(vi) �= ∅, then by Lemma B, we can in polynomial time either
output an obstruction or output a partition tree of Gi. Thus, we may further
assume that bd(C1, C2) \ NGi

(vi) = ∅ and bd(C2, C1) \ NGi
(vi) = ∅. Then by

Lemma C, we can in polynomial time either output an obstruction or output a
partition tree of Gi, and this concludes the proposition. ��

5 Algorithmic Applications

In this section, we give several FPT-algorithms and kernels for problems on
well-partitioned chordal graphs. Specifically, we consider variants of the Dis-

joint Paths problem, called the Set-Restricted Disjoint Paths and Set-

Restricted Totally Disjoint Paths problems, where each path additionally
has to be from a predefined domain. Recall that P1 and P2 are internally vertex-
disjoint, if for i ∈ [2], (V (Pi) \ {si, ti}) ∩ V (P3−i) = ∅. Given a graph G, a set

1 Note that holes in the sense of [18] are chordless cycles on at least five vertices; we
can check for C4 separately by brute force. While there are algorithms that verify
chordality more directly, we use this procedure to fulfil the promise that we can
always output an obstruction if there is one.
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X = {(s1, t1), . . . , (sk, tk)} of k pairs of vertices of G, called terminals, and a set
U = {U1, . . . , Uk} of k vertex subsets of G, called domains, the Set-Restricted

Disjoint Paths problem asks if G contains k pairwise internally vertex-disjoint
paths P1, . . . , Pk such that for i ∈ [k], Pi is an (si, ti)-path with V (Pi) ⊆ Ui.

First, we can remove any adjacent terminal pair from the input, since we
can always use the corresponding edge as the path in a solution. Next, we
observe that finding pairwise internally vertex-disjoint paths is equivalent to
finding pairwise internally vertex-disjoint induced paths. We call such a solu-
tion a minimal solution. We then use the following marking procedure. For each
i ∈ [k], we consider the path in T that connects that bag containing si with the
bag containing ti. For each edge C1C2 on the path, we mark a maximal subset
of Ui ∩ bd(C1, C2) of size at most 2k, and a maximal subset of Ui ∩ bd(C2, C1)
of size at most 2k. We show that if our instance is a Yes-instance, then it has
some minimal solution that only uses marked vertices. We can therefore guess
the intersection of such a solution with each bag, and we only have to consider
its marked vertices. Formally, this is captured by the following notion.

Definition 1 (I-Feasible Bag). Let I ⊆ [k]. Let B ∈ V (T ) be a bag and
Mi ⊆ V (G), i ∈ I, be sets of vertices. Then, we say that B is I-feasible w.r.t.
{Mi | i ∈ I}, if there is a set X ⊆ B and a labeling λ : X → [k] such that
the following hold. For each i ∈ I such that B lies on the path from the bag
containing si to the bag containing ti in T , and each neighbor C of B on that
path, either {si, ti} ∩ bd(B,C) �= ∅, or there is a vertex xi ∈ X ∩ Mi ∩ bd(B,C)
such that λ(xi) = i. We use the shorthand ‘feasible’ for ‘[k]-feasible’.

The algorithm works as follows. We apply the above marking procedure to
obtain the marked sets M1, . . . ,Mk. Note that for each bag B, |B ∩

⋃
i∈[k] Mi| =

O(k2): for each i ∈ [k] we marked at most 4k vertices in B, and only if B lies
on the path from the bag containing si to the bag containing ti in T . Then, for
each bag B ∈ V (T ), we verify whether B is feasible w.r.t. M1, . . ., Mk. If this is
the case for all bags, then we conclude that we are dealing with a Yes-instance,
and otherwise, that we are dealing with a No-instance.

Theorem 2 (♣). There is an algorithm that solves each instance (G, k,X ,U) of
Set-Restricted Disjoint Paths where G is a well-partitioned chordal graph
given along with a partition tree T , in time 2O(k log k) · n.

In the Set-Restricted Totally Disjoint Paths problem, we addition-
ally require the paths in a solution to be pairwise distinct, i.e. if there is an edge
xy in the graph and {si, ti} = {sj , tj} = {x, y}, then only one of the paths Pi

and Pj may consist of the edge xy. We call edges xy such that for some w ≥ 2,
{x, y} = {si1 , ti1} = . . . = {siw , tiw} a heavy edge of weight w. We call the indices
i1, . . ., iw heavy indices. Instead of looking for minimal solutions, we look for
minimum solutions, meaning that no other solution has fewer edges. In such
a solution, in any chordal graph, the paths corresponding to a heavy edge of
weight w are w−1 paths of length two, and one path consisting only of the edge
itself. For each such index ij , either sij and tij are in a common bag, or they are
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contained in the union of the boundaries of adjacent bags. In the former case,
the middle vertex of a length two path may be from the bag itself, or from one
of its neighbors, if both terminals are in the boundary to that neighbor. In the
latter case, the middle vertex has to be in the union of the boundaries.

These observations allow for an adaption of the marking procedure to take
into account heavy indices; the remaining indices can be treated as before. The
algorithm works as follows. First, we apply the adapted marking procedure to
obtain M1, . . . ,Mk. Then, we guess the part of the solution corresponding to
heavy indices, again among the marked vertices. Let I be the indices that are
not heavy. It then suffices to check whether for one of these guesses, all bags are
I-feasible w.r.t. {Mi | i ∈ I}. If we have a successful guess, then we conclude
that we have a Yes-instance, and otherwise, that we have a No-instance.

Theorem 3 (♣). There is an algorithm that solves each instance (G, k,X ,U)
of Set-Restricted Totally Disjoint Paths where G is a well-partitioned
chordal graph given along with a partition tree T , in time 2O(k log k) · n.

We then observe that the techniques used in the previous algorithms can
solve the more general Set-Restricted Disjoint Connected Subgraphs

problem on well-partitioned chordal graphs as well. Here, the parameter s is the
sum of the sizes of all terminal sets.

Theorem 4 (♣). There is an algorithm that solves each instance (G, k,X ,U)
of Set-Restricted Disjoint Connected Subgraphs where G is a well-
partitioned chordal graph given with a partition tree T , in time 2O(s log s) · n.

As a consequence of the marking procedures, we have the following polyno-
mial kernels on split graphs.

Corollary 1 (♣). Set-Restricted Disjoint Paths and Set-Restricted

Totally Disjoint Paths on split graphs admit kernels on O(k2) vertices.

Moreover, with two more reduction rules, we obtain polynomial kernels on
well-partitioned chordal graphs. This can be seen as follows. The subgraph of the
partition tree that only has bags with marked vertices has at most 2k degree one
bags, and therefore O(k) bags of degree at least three. In the Disjoint Paths

and Totally Disjoint Paths problems, where we do not need to consider the
domains of the paths, we can get rid of degree two bags that do not contain ter-
minals as follows. If in such a degree two bags, the boundaries are large enough,
then we can always bypass that bag in any solution. If one of the boundaries is
too small, then no solution can pass through the bag.

Theorem 5 (♣). Disjoint Paths and Totally Disjoint Paths on well-
partitioned chordal graphs parameterized by k admit kernels on O(k3) vertices.

6 Conclusions

In this paper, we introduced the class of well-partitioned chordal graphs, a sub-
class of chordal graphs that generalizes split graphs. We provided a characteriza-
tion by a set of forbidden induced subgraphs which also gave a polynomial-time
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recognition algorithm, together with algorithmic applications in variants of the
Disjoint Paths problem. Another typical characterization of (subclasses of)
chordal graphs is via vertex orderings. For instance, chordal graphs are famously
characterized as the graphs admitting perfect elimination orderings [9]. It would
be interesting to see if well-partitioned chordal graphs admit a concise character-
ization in terms of vertex orderings as well. While the degree of the polynomial
in the runtime of our recognition algorithm is moderate, our algorithm does not
run in linear time. We therefore ask if it is possible to recognize well-partitioned
chordal graphs in linear time; and note that a characterization in terms of vertex
orderings can be a promising step in this direction.
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