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Preface

This volume contains the 32 papers presented at the 46th International Workshop on
Graph-Theoretic Concepts in Computer Science (WG 2020). The workshop was held
online during June 24–26, 2020, after the original plans to organise it in Leeds, UK,
had to be abandoned due to COVID-19. Over 200 computer scientists and mathe-
maticians from all over the world registered for the conference, although most talks
were attended by 65–75 participants.

WG has a long-standing tradition. Since 1975, WG took place 24 times in Germany,
5 times in The Netherlands, 3 times in France, 2 times in Austria, 2 times in the Czech
Republic, as well as in Greece, Israel, Italy, Norway, Slovakia, Spain, Switzerland, and
Turkey one time each. This was the second time the workshop was organised in the
UK.

WG aims to merge theory and practice by demonstrating how concepts from Graph
Theory can be applied to various areas in Computer Science, or by extracting new
graph theoretic problems from applications. The goal is to present emerging research
results and to identify and explore directions of future research. The conference is
well-balanced with respect to established researchers and junior scientists.

We received 96 submissions, 2 of which were withdrawn before entering the review
process. The Program Committee (PC) provided 3 to 5 independent reviews for each
submission. The PC accepted 32 papers – an acceptance ratio of nearly 1/3. As in
previous years, due to strong competition and limited space there were papers that were
not accepted although they deserved to be.

The prize for the Best Paper at WG 2020 was awarded to Jesper Nederlof, Michał
Pilipczuk, Céline Swennenhuis, and Karol Wȩgrzycki for their paper “Hamiltonian
cycle parameterized by treedepth in single exponential time and polynomial space.”
The prize for the Best Student Paper at WG 2020 was awarded to Sriram Bhyravarapu
for his paper “Combinatorial bounds for conflict-free coloring on open neighbor-
hoods,” coauthored by Subrahmanyam Kalyanasundaram. The program included two
inspiring invited talks, by Mihyun Kang (TU Graz, Austria) on “Topological aspects of
random graphs” and by Jaroslav Nešetřil (Charles University, Prague) on “Three
aspects of structural graph theory.”

Moreover, many individuals contributed to the success of WG 2020. In particular
our thanks go to:

– All authors who submitted their newest research results to WG
– The reviewers whose expertise supported the selection process
– The members of the PC, who graciously gave their time and energy
– The members of the Organizing Committee at the University of Leeds, UK
– The School of Computing at the University of Leeds, UK
– The EasyChair system for hosting the evaluation process



– Springer for supporting the Best Paper Awards
– The invited speakers, all speakers, the session chairs, and the participants for their

contributions and support to make WG 2020 an inspiring event

July 2020 Isolde Adler
Haiko Müller
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Combinatorial Bounds for Conflict-Free
Coloring on Open Neighborhoods

Sriram Bhyravarapu and Subrahmanyam Kalyanasundaram(B)

Department of Computer Science and Engineering, IIT Hyderabad, Hyderabad, India
{cs16resch11001,subruk}@iith.ac.in

Abstract. In an undirected graph G, a conflict-free coloring with
respect to open neighborhoods (denoted by CFON coloring) is an assign-
ment of colors to the vertices such that every vertex has a uniquely col-
ored vertex in its open neighborhood. The minimum number of colors
required for a CFON coloring of G is the CFON chromatic number of G,
denoted by χON (G).

The decision problem that asks whether χON (G) ≤ k is NP-complete.
Structural as well as algorithmic aspects of this problem have been well
studied. We obtain the following results for χON (G):

– Bodlaender, Kolay and Pieterse [WADS 2019] showed the upper
bound χON (G) ≤ fvs(G) + 3, where fvs(G) denotes the size of a
minimum feedback vertex set of G. We show the improved bound
of χON (G) ≤ fvs(G) + 2, which is tight, thereby answering an open
question in the above paper.

– We study the relation between χON (G) and the pathwidth of the
graph G, denoted pw(G). The above paper from WADS 2019 showed
the upper bound χON (G) ≤ 2tw(G) + 1 where tw(G) stands for the
treewidth of G. This implies an upper bound of χON (G) ≤ 2pw(G)+
1. We show an improved bound of χON (G) ≤ � 5

3
(pw(G) + 1)�.

– We prove new bounds for χON (G) with respect to the structural
parameters neighborhood diversity and distance to cluster, improv-
ing the existing results of Gargano and Rescigno [Theor. Comput.
Sci. 2015] and Reddy [Theor. Comput. Sci. 2018], respectively. Fur-
thermore, our techniques also yield improved bounds for the closed
neighborhood variant of the problem.

– We also study the partial coloring variant of the CFON coloring
problem, which allows vertices to be left uncolored. Let χ∗

ON (G)
denote the minimum number of colors required to color G as per
this variant. Abel et al. [SIDMA 2018] showed that χ∗

ON (G) ≤ 8
when G is planar. They asked if fewer colors would suffice for planar
graphs. We answer this question by showing that χ∗

ON (G) ≤ 5 for
all planar G. This approach also yields the bound χ∗

ON (G) ≤ 4 for
all outerplanar G.

All our bounds are a result of constructive algorithmic procedures.

1 Introduction

A proper coloring of a graph is an assignment of a color to every vertex of the
graph such that adjacent vertices receive distinct colors. Conflict-free coloring
c© Springer Nature Switzerland AG 2020
I. Adler and H. Müller (Eds.): WG 2020, LNCS 12301, pp. 1–13, 2020.
https://doi.org/10.1007/978-3-030-60440-0_1
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2 S. Bhyravarapu and S. Kalyanasundaram

is a variant of the graph coloring problem. A conflict-free coloring of a graph
G is a coloring such that for every vertex in G, there exists a uniquely colored
vertex in its neighborhood. This problem was first introduced in 2002 by Even,
Lotker, Ron and Smorodinsky [1]. This problem was originally motivated by
wireless communication systems, where the base stations and clients have to
communicate with each other. Each base station is assigned a frequency and if
two base stations with the same frequency communicate with the same client,
it leads to interference. So for each client, it is ideal to have a base station with
a unique frequency. Since each frequency band is expensive, there is a need to
minimize the number of frequencies used by the base stations.

Over the past two decades, this problem has been very well studied, see for
instance the survey by Smorodinsky [2]. The conflict-free coloring problem has
been studied with respect to the open neighborhood and the closed neighbor-
hood. In this paper, we focus on the open neighborhood variant of the problem.

Definition 1 (Conflict-Free Coloring). A CFON coloring of a graph G =
(V,E) using k colors is an assignment C : V (G) → {1, 2, . . . , k} such that for
every v ∈ V (G), there exists an i ∈ {1, 2, . . . , k} such that |N(v) ∩ C−1(i)| = 1.
The smallest number of colors required for a CFON coloring of G is called the
CFON chromatic number of G, denoted by χON (G).

The closed neighborhood variant of the problem, CFCN coloring, is obtained
by replacing the open neighborhood N(v) by the closed neighborhood N [v] in the
above. The corresponding chromatic number is denoted by χCN (G).

The CFON coloring problem and many of its variants are known to be NP-
complete [3,4]. It was further shown in [4] that the CFON coloring problem
is hard to approximate within a factor of n1/2−ε, unless P = NP. Since the
problem is NP-hard, the parameterized aspects of the problem have been studied.
The problems are fixed parameter tractable when parameterized by vertex cover
number, neighborhood diversity [4], distance to cluster [5], and more recently,
treewidth [6,7]. This problem has attracted special interest for graphs arising
out of intersection of geometric objects, see for instance, [8–10].

The CFON coloring problem is considered as the harder of the open and
closed neighborhood variants, see for instance, remarks in [8,11]. It is easy to
construct example graphs G, for which χCN (G) = 2 and χON (G) = Θ(

√
n).

Pach and Tardos [11] showed that for any graph G on n vertices, the closed
neighborhood chromatic number χCN (G) = O(log2 n). The corresponding best
bound [11,12] for open neighborhood is χON (G) = O(

√
n).

Another variant that has been studied [3] is the partial coloring variant:

Definition 2 (Partial Conflict-Free Coloring). A partial conflict-free col-
oring on open neighborhood, denoted by CFON*, of a graph G = (V,E) using k
colors is an assignment C : V (G) → {1, 2, . . . , k, unassigned} such that for every
v ∈ V (G), there exists an i ∈ {1, 2, . . . , k} such that |N(v) ∩ C−1(i)| = 1.

The corresponding CFON* chromatic number is denoted χ∗
ON (G).

The key difference between CFON* coloring and CFON coloring is that in the
partial variant, we allow some vertices to be not assigned a color. If a graph can
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be CFON* colored using k colors, then all the uncolored vertices can be assigned
the color k + 1, and thus is a CFON coloring using k + 1 colors.

1.1 Our Results and Discussion

In this paper, we obtain improved bounds for χON (G) under different settings.
More importantly, all our bounds are a result of constructive algorithmic proce-
dures and hence can easily be converted into respective algorithms. We summa-
rize our results below:

1. In Sect. 3, we show that χON (G) ≤ � 5
3 (pw(G) + 1)� where pw(G) denotes the

pathwidth of G. The previously best known bound in terms of pw(G) was
χON (G) ≤ 2pw(G) + 1, implied by the results in [6].
To the best of our knowledge, this is the first upper bound for χON (G) in
terms of pathwidth, which does not follow from treewidth. Our bound follows
from an algorithmic procedure and uses an intricate analysis. We are unable
to generalize our bound in terms of treewidth because we crucially use a fact
(stated as Theorem 6) that applies to path decomposition, but does not seem
to apply to tree decomposition. It will be of interest to see if this hurdle can
be overcome to obtain an equivalent bound in terms of treewidth.
There are graphs G for which χON (G) = tw(G) + 1 = pw(G). It would be
interesting to close the gaps between the respective upper and lower bounds.

2. In Sect. 4, we show that χON (G) ≤ fvs(G) + 2, where fvs(G) denotes the
size of a minimum feedback vertex set of G. This bound is tight and is an
improvement over the bound χON (G) ≤ fvs(G)+3 by Bodlaender, Kolay and
Pieterse [6].

3. In Sect. 5, we give improved bounds with respect to neighborhood diversity
parameter. Gargano and Rescigno [4] showed that χON (G) ≤ χON (H) +
cl(G) + 1 and χCN (G) ≤ χCN (H) + ind(G) + 1. Here H is the type graph
of G, while cl(G) and ind(G) denote the number of cliques and independent
sets respectively in the type partition of G. We present the improvements
χON (G) ≤ χON (H) + cl(G)/2 + 2 and χCN (G) ≤ χCN (H) + ind(G)/3 + 3.

4. In Sect. 5, we show that χON (G) ≤ dc(G) + 3, where dc(G) is the distance
to cluster parameter of G. This is an improvement over the previous bound
[5] of 2dc(G) + 3. Our bound is nearly tight since there are graphs for which
χON (G) = dc(G). Using a similar approach, we obtain the improved bound
χCN (G) ≤ max{3, dc(G) + 1}.
For the results in terms of parameters neighborhood diversity and distance
to cluster, the obvious open questions are to improve the bounds and/or to
provide tight examples.

5. When G is planar, we show that χ∗
ON (G) ≤ 5. This improves the previous

best known bound by Abel et al. [3] of χ∗
ON (G) ≤ 8. The same approach

helps us show that χ∗
ON (G) ≤ 4, when G is an outerplanar graph. These two

results are discussed in Sect. 6.
There are planar graphs G for which χ∗

ON (G) = 4, which shows that our
bound is nearly tight and leaves a gap of 1 between the upper and lower
bounds. It will be of interest to close this gap.
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6. For outerplanar graphs G, the bound χ∗
ON (G) ≤ 4 implies a bound of

χON (G) ≤ 5. We show a better bound of χON (G) ≤ 4.

2 Preliminaries

In this paper, we consider only simple, finite, undirected and connected graphs.
If the graph is not connected, we color each of the components independently.
Also, we assume that the graphs do not have isolated vertices as they cannot be
CFON colored. The graph induced by a set of vertices V ′ in G is denoted G[V ′].
For any two vertices u, v ∈ V (G), the shortest distance between them is denoted
dist(u, v). The open neighborhood of v, denoted N(v), is the set of vertices
adjacent to v. The closed neighborhood of v, denoted N [v], is N [v] = N(v)∪{v}.
The degree of a vertex v in the graph is denoted deg(v). The distance, degree
and neighborhood restricted to a subgraph H is denoted distH(u, v), degH(v)
and NH(v) respectively.

We denote the set {1, 2, . . . , q} by [q]. Throughout this paper, we use the
coloring functions C : V → [q] and U : V → [q] to denote the color assigned
to a vertex and a unique color in its neighborhood, respectively. For a vertex
v ∈ V (G), if there exists a vertex w ∈ N(v) such that {x ∈ N(v) \ {w}: C(x) =
C(w)} = ∅, then w is called a uniquely colored neighbor of v.

For theorems marked �, we provide the proofs in the full version of the
paper [13].

3 Pathwidth

Theorem 3 (Main Pathwidth Result). Let G be a graph and let pw(G)
denote the pathwidth of G. Then there exists a CFON coloring of G using at
most � 5

3 (pw(G) + 1)� colors.

The proof of this theorem is a constructive procedure that assigns colors to the
vertices of G from a set of size 5(pw(G)+1)/3. We first formally define pathwidth.

Definition 4 (Path decomposition [14]). A path decomposition of a graph G
is a sequence P = (X1,X2, . . . , Xs) of bags such that, for every p ∈ {1, 2, . . . , s},
we have Xp ⊆ V (G) and the following hold:

– For each vertex v ∈ V (G), there is a p ∈ {1, 2, . . . , s} such that v ∈ Xp.
– For each edge {u, v} ∈ E(G), there is a p ∈ {1, 2, . . . , s} such that u, v ∈ Xp.
– If v ∈ Xp1 and v ∈ Xp2 for some p1 ≤ p2, then v ∈ Xp for all p1 ≤ p ≤ p2.

The width of a path decomposition (X1,X2, . . . , Xs) is max1≤p≤s{|Xp| − 1}.
The pathwidth of a graph G, denoted pw(G), is the minimum width over all
path decompositions of G. For the purposes of our algorithm, we need the path
decomposition to satisfy certain additional properties too.
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Definition 5 (Semi-nice Path Decomposition). A path decomposition P =
(X1,X2, . . . , Xs) is called a semi-nice path decomposition if X1 = Xs = ∅ and
for all p ∈ {2, . . . , s}, exactly one of the following hold:

SN1. There is a vertex v such that v /∈ Xp−1 and Xp = Xp−1∪{v}. In this case,
we say that Xp introduces v. Further, when Xp introduces v, N(v) ∩ Xp �= ∅.

SN2. There is a vertex v such that v ∈ Xp−1 and Xp = Xp−1\{v}. In this case,
we say Xp forgets v.

SN3. There is a pair of vertices v, v̂ such that v, v̂ /∈ Xp−1 and Xp = Xp−1 ∪
{v, v̂}. We call such a bag Xp a special bag that introduces v and v̂. Further, in
a special bag Xp that introduces v and v̂, it must be true that N(v)∩Xp = {v̂}
and N(v̂) ∩ Xp = {v}.
We first note that the every graph without isolated vertices has a semi-nice

path decomposition of width pw(G).

Theorem 6 (�). Let G be a graph that has no isolated vertices. Then it has a
semi-nice path decomposition of width pw(G).

Algorithm. We start with a semi-nice path decomposition P =
(X1,X2, . . . , Xq) of width pw(G). We process each bag in the order
X1,X2, . . . , Xq. As we encounter each bag, we assign to the vertices in the bag
a color C : V (G) → [5(pw(G) + 1)/3]. We will also identify a unique color (from
its neighborhood) for each vertex U : V (G) → [5(pw(G) + 1)/3]. We color the
bags such that the below are satisfied:

Invariant 1. For any bag X, if v, v′ ∈ X, then C(v) �= C(v′).
Invariant 2. Suppose we have processed bags X1 to Xp, where p ≥ 2. At

this point, the induced graph G[∪1≤j≤pXj ] is CFON colored.
Invariant 3. For every vertex v that appears in the bags processed, U(v)

is set as C(w) for a neighbor w of v. Once U(v) is assigned, it is ensured
that for all “future” neighbors v′ of v, C(v′) �= U(v), thereby ensuring
that U(v) is retained as a unique color in N(v).

Definitions Required for the Algorithm: For each bag X, we define the set
of free colors, as F (X) = {U(x) : x ∈ X} \ {C(x) : x ∈ X}. That is, F (X) is the
set of colors that appear in X as unique colors of vertices in X, but not as colors
of any vertex. Further, we partition F (X) into two sets F1(X) and F>1(X).
They are defined as F1(X) = {c ∈ F (X) : |{x ∈ X : U(x) = c}| = 1} and
F>1(X) = {c ∈ F (X) : |{x ∈ X : U(x) = c}| > 1}. A vertex v that appears in a
bag X is called a needy vertex (or simply needy) in X, if U(v) ∈ F (X). For a bag
X, we say that a set S ⊆ X is an expensive subset if |∪w∈S {C(w), U(w)}| = 2|S|.

When going through the sequence of bags in the semi-nice path decompo-
sition, the bags X that forget a vertex only contain vertices that have already
been assigned colors and hence no action needs to be taken. When we move from
a bag X ′ to the next bag X that introduces either one vertex or two vertices,
we need to handle the introduced vertices. Below, we explain the rules to assign
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C(v) and U(v), when X is a bag that introduces one vertex v, and the rules to
assign C(v), C(v̂), U(v) and U(v̂), when X is a special bag that introduces two
vertices v and v̂.

For bags that introduce one vertex v

Rule 1 for assignment of C(v):
– If there exists a color c ∈ F1(X ′) \ {U(x) : x ∈ N(v) ∩ X ′}, then we

assign C(v) = c. If there are more than one such color c, choose a c such
that |{x : x ∈ X ′, C(U−1(c)) = U(x)}| is minimized. Note that for all
c ∈ F1(X ′), there is a unique vertex w ∈ X ′ such that U(w) = c, and
hence U−1(c) is well defined.

– If F1(X ′) \ {U(x) : x ∈ N(v) ∩ X ′} = ∅, we check if there exists a color
c ∈ F>1(X ′) \ {U(x) : x ∈ N(v) ∩ X ′}. If so, we assign C(v) = c. If there
are multiple such c, then we choose one arbitrarily.

– If F1(X ′)∪F>1(X ′) \ {U(x) : x ∈ N(v)∩X ′} = ∅, then there are no free
colors that can be assigned as C(v). We assign C(v) to be a new color
(a color not in ∪x∈X′{C(x), U(x)}).

Rule 2 for assignment of U(v): We assign U(v) = C(y), where y ∈ X ′ is
a neighbor of v. Such a y exists by Theorem 6. If v has multiple neighbors,
we follow the below priority order:
– If v has needy vertices in X ′ as neighbors, we choose y as a needy neighbor

such that |{x : x ∈ X ′, U(y) = U(x)}| is minimized.
– If v does not have needy vertices in X ′ as neighbors, then we choose

y ∈ X ′ arbitrarily from the set of neighbors of v.

For special bags that introduce two vertices v and v̂

For assignment of C(v) and C(v̂): We select one of v and v̂ arbitrarily,
say v, to be colored first. We use Rule 1 to assign C(v) and then C(v̂), in
that order. One point to note is that during the application of Rule 1 here,
the part {U(x) : x ∈ N(v) ∩ X ′} will not feature as neither v nor v̂ have
neighbors in X ′.

For assignment of U(v) and U(v̂): Assign U(v) = C(v̂) and U(v̂) = C(v).

It can easily be checked that the above rules maintain the invariants 1, 2 and
3 stated earlier and hence the algorithm results in a CFON coloring of G. What
remains is to show that 5(pw(G) + 1)/3 colors are sufficient. We first prove a
technical result.

Theorem 7 (Technical Pathwidth Result). During the course of the algo-
rithm, let k be the size of the largest expensive subset out of all the bags in the
path decomposition. Then there must exist a bag of size at least 3k/2.
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Proof. In the sequence of bags seen by the algorithm, let X be the first bag
that has an expensive subset of size k. We show that |X| ≥ 3k/2. Let S =
{v1, v2, . . . , vk} ⊆ X be an expensive subset of size k. For each vi, let C(vi) =
2i − 1 and U(vi) = 2i.

Let X ′ be the bag that precedes X in the sequence. By the choice of X, no
k-expensive subset is present in X ′. It follows that S �⊆ X ′. Hence the bag X
must introduce a vertex1 that belongs to S. Without loss of generality, let vk be
this vertex introduced in X. Further wlog, let v1, . . . , vr be the needy vertices
(in X ′) of S for some 1 ≤ r ≤ k. If none of the vertices in S are needy, then we
have that |X| ≥ 2|S| = 2k and the theorem holds. So we can assume that r ≥ 1.

Since the vertices v1, . . . , vr are needy in X ′, we have {2, 4, . . . , 2r} ⊆ F (X ′).
The vertices vr+1, . . . , vk are not needy because there exist distinct vertices
Z = {zr+1, . . . , zk} in the bag X such that C(zi) = U(vi) = 2i for r +1 ≤ i ≤ k.
We have three cases. In Cases 1 and 2, X is a bag that introduces one vertex
vk. Case 1 is when none of the colors in F (X ′) was eligible to be assigned
as C(vk). Hence C(vk) is assigned from outside the set ∪x∈X′{C(x), U(x)}.
Case 2 is when there are eligible colors in F (X ′), and C(vk) is chosen from
F (X ′) ⊆ ∪x∈X′{C(x), U(x)}. Case 3 is when X is a special bag that introduces
two vertices.

Case 1: X is a bag that introduces one vertex vk and 2k −1 /∈ {U(x) : x ∈ X ′}.
There is no vertex x ∈ X with U(x) = 2k − 1. To assign a color to vk, the
algorithm chose a new color. This means that F (X ′)\{U(x) : x ∈ N(vk)∩X ′} =
∅. In particular, for each 1 ≤ i ≤ r, there2 exists v′

i ∈ N(vk) ∩ X ′ such that
U(v′

i) = 2i. Hence the colors 2i, for 1 ≤ i ≤ r cannot be assigned as C(vk). By
Rule 2, we must set U(vk) to be the C(y) where y is a needy neighbor of vk.
Hence C(y) = 2k.

If U(y) /∈ {1, 2, 3, . . . , 2k − 2}, then (S ∪ {y}) \ {vk} is a k-expensive subset
in X ′, the predecessor of X. This contradicts the choice of X. Hence we can
assume that U(y) ∈ {1, 2, 3, . . . , 2k−2}. Since y is needy in X ′, U(y) is not C(v)
for any v ∈ X ′ and hence we conclude U(y) /∈ {1, 3, . . . , 2k − 3}. Further, colors
from {2(r+1), 2(r+2), . . . , 2k−2} appear as C(z) for the vertices z ∈ Z. Hence
U(y) ∈ {2, 4, 6, . . . , 2r}.

Let U(y) = 2j for some 1 ≤ j ≤ r. Notice that U(vj) = 2j as well, giving us
|{x : x ∈ X ′, U(y) = U(x)}| ≥ 2.

By Rule 2, we chose U(vk) = C(y), where y is the needy neighbor that
minimizes |{x : x ∈ X ′, U(y) = U(x)}|. We chose y over other needy neighbors
v′
1, . . . , v

′
r of vk. Hence there exist r distinct vertices Y = {y1, . . . , yr} in the bag

X, disjoint from S, such that U(yi) = U(v′
i) = 2i for each 1 ≤ i ≤ r.

Note that the set Y ∪Z must be disjoint from S, but Y and Z may intersect
with each other. Since |Y | + |Z| = k, we have |Y ∪ Z| ≥ k/2 and therefore
|X| ≥ |S| + |Y ∪ Z| ≥ 3k/2.

1 In the case where X is a special bag that introduces two vertices, at most one of the
two introduced vertices can be part of an expensive subset.

2 The vertex v′
i may or may not be the same as vi.
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Case 2 (�): X is a bag that introduces one vertex vk and 2k − 1 ∈ {U(x) :
x ∈ X ′}.
Case 3 (�): X is a special bag that introduces vk and v̂k.

The proofs of Cases 2 and 3 are omitted due to space constraints and can be
found in the full version of the paper [13]. ��

Now we give a sketch of the proof of the main theorem of this section.

Proof (Proof Sketch of Theorem 3). Theorem 7 limits the size of largest expensive
set in the bags during the course of the algorithm. Since the largest bag is of
size pw(G) + 1, the size of the largest expensive set is of size 2(pw(G) + 1)/3.

The reason for requiring more colors than the bag size is the presence of
“extra colors”, those that appear as U(v), but not as C(v). The extra colors can
be used to form an expensive set, the size of which is bounded by the above
argument. This helps us bring down the bound to 5(pw(G) + 1)/3. ��

4 Feedback Vertex Set

Definition 8 (Feedback Vertex Set). Let G = (V,E) be an undirected graph.
A feedback vertex set (FVS) is a set of vertices S ⊆ V , removal of which from
the graph G makes the remaining graph (G[V \S]) acyclic. The size of a smallest
such set S is denoted as fvs(G).

The main result of this section is the following. Though the full proof is
omitted, we present the key ideas and a sketch in this section.

Theorem 9 (�). χON (G) ≤ fvs(G) + 2.

The following graph (as observed in [6]), shows that the above theorem is
tight. Let K∗

n be the graph obtained by starting with the clique on n vertices,
and subdividing each edge with a vertex. Then K∗

n has an FVS of size n − 2,
and it can be seen that χON (K∗

n) = n.
The proof of this theorem is through a constructive process to CFON color

the vertices of the graph G, given a feedback vertex set F of G. By definition,
G[V \ F ] is a collection of trees.

Each tree T in G[V \ F ] is rooted at an arbitrary vertex rT . If |V (T )| ≥ 2,
we choose a neighbor of rT and call it the special vertex in T , denoted by sT .
Let v be a vertex not in T . The deepest neighbor of v in T , denoted by deepT (v),
is a vertex w ∈ V (T ) ∩ N(v) such that distT (rT , w) is maximized. If there are
multiple such vertices at the same distance, the deepest neighbor is chosen to be
a vertex which is not the special vertex sT .

Lemma 10. Let T be a tree with |V (T )| ≥ 2. Then χON (T ) ≤ 2.

Proof. We assign colors C : V (T ) → {1, 2} in the following manner.

– Assign C(rT ) = 1 and C(sT ) = 2.
– For each vertex v ∈ NT (rT ) \ {sT }, assign C(v) = 1.
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– For the remaining vertices v ∈ V (T ), assign C(v) = {1, 2} \ C(w), where w
is the grandparent of v.

For each vertex v ∈ V (T )\{rT }, the uniquely colored neighbor is its parent. For
rT , the uniquely colored neighbor is sT . This is a CFON 2-coloring of T . ��

We first prove a special case of Theorem 9.

Lemma 11. Let G = (V,E) be a graph and F ⊆ V be a feedback vertex set with
|F | = 1. Then G can be CFON colored using 3 colors.

Proof. Let F = {v}. First using Lemma 10, we color all the trees T ⊆ G[V \ F ]
using the colors 2 and 3, whenever |V (T )| ≥ 2. All the singleton components
of G[V \ F ] are assigned the color 2. We assign C(v) = 1. Now all the vertices,
except possibly v, have a uniquely colored neighbor. We explain how to fix this
and obtain a CFON coloring.

– Case 1: There exists a singleton component {w} ⊆ G[V \ F ].
Reassign C(w) = 1.

– Case 2: Else, if there exists a component T ⊆ G[V \ F ], such that
either (i) deepT (v) �= sT or (ii) deepT (v) = sT and {rT , v} /∈ E(G).
Reassign C(deepT (v)) = 1.

– Case 3: Else, for each component T ⊆ G[V \F ], N(v)∩V (T ) = {rT , sT }.
If there exists a component T ⊆ G[V \ F ], such that |V (T )| ≥ 3, choose a
vertex w ∈ V (T ) \ {rT , sT } and set w as the new root of T . Reassign sT and
the colors of V (T ) accordingly. Doing so will ensure that deepT (v) �= sT . We
apply Case 2.
Else, for all the components T ⊆ G[V \ F ], we have |V (T )| = 2. Choose a
component T ′ ⊆ G[V \ F ]. For all the other vertices w ∈ V \ ({v} ∪ V (T ′)),
reassign C(w) = 2.

All the trees in G[V \F ] are CFON colored as per the earlier described procedure.
Even after reassigning some colors, they remain CFON colored. The vertex v sees
another vertex w, with C(w) = 1 if in Case 1 or 2. In the last case, v sees a
unique vertex that is colored 3. ��
Proof (Proof Sketch of Theorem 9). When |F | = 1, three colors are sufficient
to CFON color G by Lemma 11. We may assume that |F | ≥ 2. The proof of
Lemma 11 indicates the key ideas and the structure, however the proof of Theo-
rem 9 will be longer and use more involved arguments. We start by coloring the
trees in G[V \ F ] using two colors. We proceed in phases. We first handle the
singleton components in G[V \F ]. Next, we consider trees in G[V \F ] that inter-
act with the uncolored vertices in F in certain specific ways. The final part of
the argument shows that the collection of cases is comprehensive. If none of the
cases apply, we show that the graph is not connected, which is a contradiction.

��
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5 Neighborhood Diversity and Distance to Cluster

In this section, we give improved bounds for χON (G) and χCN (G) with respect
to the parameters neighborhood diversity and distance to cluster.

Definition 12 (Neighborhood Diversity [4]). Give a graph G = (V,E), two
vertices v, w ∈ V have the same type if N(v) \ {w} = N(w) \ {v}. A graph
G has neighborhood diversity at most t if V (G) can be partitioned into t sets
V1, V2, . . . , Vt, such that all the vertices in each Vi, 1 ≤ i ≤ t have the same type.
The partition {V1, V2, . . . , Vt} is called the type partition of G.

It can be inferred from the above definition that all vertices in a Vi either form a
clique or an independent set, 1 ≤ i ≤ t. For two types Vi, Vj , either each vertex in
Vi is neighbor to each vertex in Vj , or no vertex in Vi is neighbor to any vertex in
Vj . This leads to the definition of the type graph H = ({1, 2, . . . , t}, EH), where
EH = {{i, j} : 1 ≤ i < j ≤ t, each vertex in Vi is adjacent to each vertex in Vj}.

In the above, cl(G) and ind(G) respectively denote the number of Vi’s that
form a clique and independent set in the type partition {V1, V2, . . . , Vt}.

Theorem 13 (�). χON (G) ≤ χON (H) + cl(G)
2 + 2.

Theorem 14 (�). χCN (G) ≤ χCN (H) + ind(G)
3 + 3.

Definition 15 (Distance to Cluster). Let G = (V,E) be a graph. The dis-
tance to cluster of G, denoted dc(G), is the size of a smallest set X ⊆ V such
that G[V \ X] is a disjoint union of cliques.

Theorem 16 (�). χON (G) ≤ dc(G) + 3.

Theorem 17 (�). χCN (G) ≤ max{3, dc(G) + 1}.
For the subdivided clique K∗

n, we have χON (K∗
n) = dc(K∗

n) = n. Hence
Theorem 16 is nearly tight.

6 CFON* Coloring of Planar Graphs

Definition 18 (Planar and Outerplanar graphs). A planar graph is a
graph that can be drawn in R

2 (a plane) such that the edges do not cross each
other in the drawing. An outerplanar graph is a planar graph that has a drawing
in a plane such that all the vertices of the graph belong to the outer face.

Abel et al. showed [3] that eight colors are sufficient for CFON* coloring of
a planar graph. In this section, we improve the bound to five colors.

We need the following definition:

Definition 19 (Maximal Distance-3 Set). For a graph G = (V,E), a max-
imal distance-3 set is a set S ⊆ V (G) that satisfies the following:
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1. For every pair of vertices w,w′ ∈ S, we have dist(w,w′) ≥ 3.
2. For every vertex w ∈ S, ∃w′ ∈ S such that dist(w,w′) = 3.
3. For every vertex x /∈ S, ∃x′ ∈ S such that dist(x, x′) < 3.

The set S is constructed by initializing S = {v} where v is an arbitrary vertex.
We proceed in iterations. In each iteration, we add a vertex w to S if (1) for
every v already in S, dist(v, w) ≥ 3, and (2) there exists a vertex w′ ∈ S such
that dist(w,w′) = 3. We repeat this until no more vertices can be added.

The main component of the proof is the construction of an auxiliary graph
G′ from the given graph G.
Construction of G′: The first step is to pick a maximal distance-3 set V0. Notice
that any distance-3 set is an independent set by definition. We let V1 denote the
neighborhood of V0. More formally, V1 = {w : {w,w′} ∈ E(G), w′ ∈ V0}. Let V2

denote the remaining vertices i.e., V2 = V \ (V0 ∪ V1).
We note the following properties satisfied by the above partitioning of V (G).

1. The set V0 is an independent set.
2. For every vertex w ∈ V1, there exists a unique vertex w′ ∈ V0 such that

{w,w′} ∈ E(G). This is because if there are two such vertices, this will
violate the distance-3 property of V0.

3. Every vertex in V0 has a neighbor in V1. If there exists v ∈ V0 without a
neighbor in V1, then v is an isolated vertex. By assumption, G does not have
isolated vertices.

4. There are no edges from V0 to V2.
5. Every vertex in V2 has a neighbor in V1, and is hence at distance 2 from some

vertex in V0. This is due to the maximality of the distance-3 set V0.

Now we define A = V0 ∪ V2. We first remove all the edges of G[V2] making
A an independent set. For every vertex v ∈ A we do the following: we identify
an arbitrary neighbor f(v) ∈ N(v) ⊆ V1. Then we contract the edge {v, f(v)}.
That is, we first identify vertex v with f(v). Then for every edge {v, v′}, we add
an edge {f(v), v′}. The resulting graph is G′.

Theorem 20. If G is a planar graph, χ∗
ON (G) ≤ 5.

Proof. Let G be a planar graph. We first construct the graph G′ as above. Since
the steps for constructing G′ involve only edge deletion and edge contraction,
G′ is also a planar graph. By the planar four-color theorem [15], there is an
assignment C : V (G′) → {2, 3, 4, 5} such that no two adjacent vertices of G′ are
assigned the same color. Now we have colored all the vertices in V (G′) = V1

Now, we extend C to get a CFON* coloring for G. For all vertices v ∈ V0,
we assign C(v) = 1. The vertices in V2 are not assigned a color.

We will show that C is indeed a CFON* coloring of G. Consider a vertex
v ∈ A which is contracted to a neighbor f(v) = w ∈ V1. The color assigned to
w is distinct from all w’s neighbors in G′. Hence the color assigned to w is the
unique color among the neighbors of v in G.

For each vertex w ∈ V1, w is a neighbor of exactly one vertex v ∈ V0. Every
vertex v ∈ V0 is colored 1, which is different from all the colors assigned to the
neighbors of w in G′. ��
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Outerplanar graphs have a proper coloring using three colors. By an argument
analogous to Theorem 20, we infer the following.

Corollary 21. If G is an outerplanar graph, χ∗
ON (G) ≤ 4.

For outerplanar graphs, a CFON* coloring using 4 colors implies a CFON
coloring using 5 colors. However, we can show the following improved bound.

Theorem 22 (�). If G is an outerplanar graph, χON (G) ≤ 4.

Acknowledgments. We would like to thank I. Vinod Reddy for suggesting the prob-
lem, Rogers Mathew and N. R. Aravind for helpful discussions and the anonymous
reviewer who pointed out an issue with the proof of Theorem 6.
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Abstract. Let G = (V, E) be a plane graph. A face f of G is guarded
by an edge vw ∈ E if at least one vertex from {v, w} is on the boundary
of f . For a planar graph class G we ask for the minimal number of edges
needed to guard all faces of any n-vertex graph in G. We prove that �n/3�
edges are always sufficient for quadrangulations and give a construction
where �(n−2)/4� edges are necessary. For 2-degenerate quadrangulations
we improve this to a tight upper bound of �n/4� edges. We further prove
that �2n/7� edges are always sufficient for stacked triangulations (that
are the 3-degenerate triangulations) and show that this is best possible
up to a small additive constant.

Keywords: Edge guard sets · Art galleries · Quadrangulations ·
Stacked triangulations

1 Introduction

In 1975, Chvátal [5] laid the foundation for the widely studied field of art gallery
problems by answering how many guards are needed to observe all interior points
of any given n-sided polygon P . Here a guard is a point p in P and it can
observe any other point q in P if the line segment pq is fully contained in P . He
shows that �n/3� guards are sometimes necessary and always sufficient. Fisk [8]
revisited Chvátal’s Theorem in 1978 and gave a very short and elegant new
proof by introducing diagonals into the polygon P to obtain a triangulated,
outerplanar graph. Such graphs are 3-colorable and in each 3-coloring all faces
are incident to vertices of all three colors, so the vertices of the smallest color
class can be used as guard positions. Bose et al. [4] studied the problem to guard
the faces of a plane graph instead of a polygon. A plane graph is a graph G =
(V,E) with an embedding in R

2 with not necessarily straight edges and without
crossings between any two edges. Here a face f is guarded by a vertex v, if v is
on the boundary of f . They show that �n/2� vertices (so called vertex guards)
are sometimes necessary and always sufficient for n-vertex plane graphs.

We consider a variant of this problem introduced by O’Rourke [13]. He shows
that only �n/4� guards are necessary in Chvátal’s original setting if each guard

A full version including all omitted proofs is available on arXiv [11].
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is assigned to an edge of the polygon that he can patrol along instead of being
fixed to a single point. Considering plane graphs again, an edge guard is an
edge vw ∈ E and it guards all faces having v and/or w on their boundary. For
a given planar graph class G, we ask for the minimal number of edge guards
needed to guard all faces of any n-vertex graph in G. Here and in the following
the outer face is treated just like any other face and must also be guarded.

General (not necessarily triangulated) n-vertex plane graphs might need at
least �n/3� edge guards, even when requiring 2-connectedness [4]. The best
known upper bounds have recently been presented by Biniaz et al. [1] and come in
two different fashions: First, any n-vertex plane graph can be guarded by �3n/8�
edge guards found in an iterative process. Second, a coloring approach yields an
upper bound of �n/3 + α/9� edge guards where α counts the number of quad-
rangular faces in G. Looking at n-vertex triangulations, Bose et al. [4] give a
construction for triangulations needing �(4n − 8)/13� edge guards.1 A corre-
sponding upper bound of �n/3� edge guards was published earlier in the same
year by Everett and Rivera-Campo [7].

Preliminaries. All graphs considered throughout this paper are undirected and
simple (unless explicitly stated otherwise). Let G = (V,E) be a graph. For an
edge {v, w} ∈ E we use the shorter notation vw or wv and both mean the same.
The order of G is its number of vertices and denoted by |G|. We say that G is k-
regular if each vertex v ∈ V has degree exactly k. Further G is called k-degenerate
if every subgraph contains a vertex of degree at most k. For the subgraph induced
by a subset X ⊆ V of the vertices we write G[X]. Now assume that G is plane
with face set F . The dual graph G∗ = (V ∗, E∗) is defined by V ∗ = {f∗ | f ∈ F}
and E∗ = {f∗g∗ | f, g ∈ F ∧ f, g share a boundary edge vw ∈ E}. Note that G∗

can be a multigraph. The dual graph G∗ of a plane graph G is also planar and
we assume below that a plane drawing of G∗ is given that is inherited from the
plane drawing of G as follows: Each dual vertex f∗ ∈ V ∗ is drawn inside face f ,
each dual edge f∗g∗ ∈ E∗ crosses its primal edge vw exactly once and in its
interior and no two dual edges cross.

Let Γ ⊆ E be a set of edges. We write V (Γ ) for the set of endpoints of all
edges in Γ . Further, Γ is an edge guard set if all faces f ∈ F are guarded by at
least one edge in Γ , i.e. each face f has a boundary vertex in V (Γ ).

Contribution. In Sect. 2 we consider the class of quadrangulations, i.e. plane
graphs where every face is bounded by a 4-cycle. We describe a coloring based
approach to improve the currently best known upper bound to �n/3� edge
guards. In addition we also consider 2-degenerate quadrangulations and present
an upper bound of �n/4� edge guards, which is best possible. Our motivation

1 The authors of [4] actually claim that �(4n − 4)/13� edge guards are necessary,
but this result is only valid for near -triangulations (this was noted first by Kaučič et
al. [12] and later clarified by one of the original authors [2]). For proper triangulations
an additional vertex is needed in the construction so only �(4n− 8)/13� edge guards
are necessary.
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to consider quadrangulations is that the coloring approaches developed earlier
for general plane graphs [1,7] fail on quadrangular faces. As a second result in
Sect. 3 we present a new upper bound of �2n/7� edge guards for stacked tri-
angulations and show that it is best possible. We saw above that no infinite
family of triangulations is known that actually needs �n/3� edge guards. With
the stacked triangulations we now know a non-trivial subclass of triangulations
for which strictly fewer edge guards are necessary than for general plane graphs.

2 Quadrangulations

Quadrangulations are the maximal plane bipartite graphs and every face is
bounded by exactly four edges. The currently best known upper bounds are
the ones given by Biniaz et al. [1] for general plane graphs (�3n/8� respec-
tively �n/3 + α/9�, where α is the number of quadrilateral faces). For n-vertex
quadrangulations we have α = n−2, so �n/3+(n−2)/9� = �(4n−2)/9� > �3n/8�
for n ≥ 4. In this section we provide a better upper bound of �n/3� and a con-
struction for quadrangulations needing �(n−2)/4� edge guards. Closing the gap
remains an open problem.

Theorem 1. For k ∈ N there exists a quadrangulation Qk with n = 4k + 2
vertices needing k = (n − 2)/4 edge guards.

Proof. Define Qk = (V,E) with V := {s, t} ∪ ⋃k
i=1{ai, bi, ci, di} and E :=

⋃k
i=1{sai, sci, tai, tci, aibi, aidi, cibi, cidi} as the union of k disjoint 4-cycles

and two extra vertices s and t connecting them. Figure 1 shows this and a pla-
nar embedding. Now for any two distinct i, j ∈ {1, . . . , k} the two quadrilateral
faces (ai, bi, ci, di) and (aj , bj , cj , dj) are only connected via paths through s or t.
Therefore, no edge can guard two or more of them and we need at least k edge
guards for Qk. On the other hand it is easy to see that {sa1, . . . , sak} is an edge
guard set of size k, so Qk needs exactly k edge guards. 	


Fig. 1. A quadrangulation with 4k + 2
vertices needing k edge guards (thick
red edges). (Color figure online)

Fig. 2. A quadrangulation G (black
edges) and its dual G∗ (purple edges)
with a 2-factor (thick edges). The ver-
tex coloring in orange and green is a
guard coloring. (Color figure online)
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The following definition and lemma are from Bose et al. [3] and we cite it using
the terminology of Biniaz et al. [1]. A guard coloring of a plane graph G is a
non-proper 2-coloring of its vertex set, such that each face f of G has at least
one boundary vertex of each color and at least one monochromatic edge (i.e.
an edge where both endpoints receive the same color). They prove that a guard
coloring exists for all graphs without any quadrangular faces.

Lemma 1 ([3, Lemma 3.1]). If there is a guard coloring for an n-vertex plane
graph G, then G can be guarded by �n/3� edge guards.

Bose et al. [3] even present a linear time algorithm to compute a guard coloring
for graphs without quadrangular faces. We extend their result by showing that
plane graphs consisting of only quadrangular faces also have a guard coloring.

Theorem 2. Every quadrangulation can be guarded by �n/3� edge guards.

Proof. Let G be a quadrangulation. We show that there is a guard coloring
for G, which is sufficient by Lemma 1. Consider the dual graph G∗ = (V ∗, E∗)
of G with its inherited plane embedding, so each vertex f∗ ∈ V ∗ is placed inside
the face f of G corresponding to it. Since every face of G is bounded by a 4-cycle,
its dual graph G∗ is 4-regular. Using Petersen’s 2-Factor Theorem [14]2 we get
that G∗ contains a 2-factor H (a spanning 2-regular subgraph). Therefore H is
a set of vertex-disjoint cycles that might be nested inside each other. Now we
define a 2-coloring col : V → {0, 1} for the vertices of G: For each v ∈ V let cv be
the number of cycles C of H such that v belongs to the region of the embedding
surrounded by C. The color of v is determined by the parity of cv as col(v) := cv
mod 2.

We claim that this yields a guard coloring of G: Any edge e = ab ∈ E has a
corresponding dual edge e∗. If e∗ ∈ E(H), then e crosses exactly one cycle edge
so |ca − cb| = 1 and therefore col(a) �= col(b). Otherwise e �∈ E(H) and its two
endpoints are in the same cycles, thus col(a) = col(b) and e is monochromatic.
Because H is a 2-factor, each face has exactly two monochromatic edges. 	

Figure 2 shows an example quadrangulation and a 2-factor in its dual graph. By
counting how many cycles each vertex lies inside, the vertices were colored in
green and orange to obtain a guard coloring.

In order to bridge the gap between the construction needing �(n − 2)/4�
edge guards and the upper bound of �n/3�, we also consider the subclass of 2-
degenerate quadrangulations in the master’s thesis of the first author [10, The-
orem 5.9]:

Theorem 3. Every n-vertex 2-degenerate quadrangulation can be guarded by
�n/4� edge guards.

2 Diestel [6, Corollary 2.1.5] gives a very short and elegant proof of this theorem in his
book. He only considers simple graphs there, but all steps in the proof also work for
multigraphs like G∗ that have at most two edges between any pair of vertices.
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Note that this bound is best possible, as the quadrangulations constructed in
Theorem 1 are 2-degenerate. The proof of Theorem3 follows the same lines as
the one we present in the following section for stacked triangulations.3

3 Stacked Triangulations

The stacked triangulations (also known as Apollonian networks, maximal planar
chordal graphs or planar 3-trees) are a subclass of the triangulations that can
recursively be formed by the following two rules: (i) A triangle is a stacked
triangulation and (ii) if G is a stacked triangulation and f = (x, y, z) an inner
face, then the graph obtained by placing a new vertex v into f and connecting
it with all three boundary vertices is again a stacked triangulation.

Definition 1. For a stacked triangulation G we define height(G) as

height(G) :=

{
0 if |G| = 3
1 + max{height(G1),height(G2),height(G3)} otherwise

where G1, G2, G3 are the stacked triangulations induced by (v, x, y), (v, y, z),
(v, z, x) and their interior vertices, respectively.

The stacked triangulations are a non-trivial subclass of the triangulations and we
shall prove that they need strictly less than �n/3� edge guards (which is the best
known upper bound for general triangulations). To start, we present a family of
stacked triangulations needing many edge guards allowing us to conclude that
the upper bound presented later is tight.

Theorem 4. For even k ∈ N there is a stacked triangulation Gk with n =
(7k + 4)/2 vertices needing at least k = (2n − 4)/7 edge guards.

Proof. Let S be a stacked triangulation with k faces and therefore (k + 4)/2
vertices (by Euler’s formula). Insert three new vertices af , bf , cf into each face f
of S such that the resulting graph is still a stacked triangulation and these three
vertices form a new triangular face tf , i.e. f and tf do not share any boundary
vertices. Figure 3 illustrates how the new vertices can be inserted into a single
face f . Then G has n = (k+4)/2+3k = (7k+4)/2 vertices. For any two distinct
faces f, g of S let P be a shortest path between any two boundary vertices of
the new faces tf and tg. By our construction P has length at least 2, so no edge
can guard both tf and tg. Therefore G needs at least k edge guards. 	

3 For every n-vertex 2-degenerate quadrangulation G there is an (n − k)-vertex 2-

degenerate quadrangulation G′ (k ≥ 4), such that an edge guard set Γ ′ for G′ can
be used to construct an edge guard set Γ for G with |Γ | = |Γ ′|+1. Obviously differ-
ent cases need to be considered compared to stacked triangulations and analogous
versions of the auxiliary lemmas are needed. But apart from that the proof strategy
is the same.
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Fig. 3. Three new vertices af , bf , cf are stacked into face f = (x, y, z) forming a new
face tf . Note that the graph remains a stacked triangulation.

Complementing this construction we state the following upper bound. The
remaining part of this section states additional observations and introduces tech-
niques that shall ultimately be combined into a proof.

Theorem 5. Every n-vertex stacked triangulation with n ≥ 4 can be guarded
by �2n/7� edge guards.

Before going into detail, let us start with a high-level description of the proof
strategy. We use induction on the number n of vertices. Given a stacked trian-
gulation G we create a smaller stacked triangulation G′ of size |G′| = |G| − k
for some k ∈ N. Applying the induction hypothesis on G′ yields an edge guard
set Γ ′ of size |Γ ′| ≤ �2(n − k)/7�. Then we extend Γ ′ into an edge guard set Γ
for G using � additional edges. In each step we guarantee �/k ≤ 2/7, such
that |Γ | = |Γ ′| + � ≤ �2(n − k)/7� + 2k/7 = �2n/7�.

We create G′ by choosing a triangle � and removing the set of vertices in
its interior. Call this set V −. Note that G′ is still a stacked triangulation. Under
all possible candidates we choose � such that V − is of minimal cardinality but
consists of at least four elements. By the choice of � we get that G[�∪V −] has at
most ten inner vertices: The triangle � consists of three vertices x, y, z and there
is a unique vertex v in its interior adjacent to all three of them. The remaining
vertices of G[� ∪ V −] are distributed along the three triangles (v, x, y), (v, y, z)
and (v, z, x). None of them can contain more than three vertices in its interior,
otherwise it would be a triangle �′ that would have been chosen instead of �.

Now that we have a bound on the size of G[� ∪ V −], we systematically
consider edge guard sets for small stacked triangulations.

Observation 1. Let f = (x, y, z) be a face of a stacked triangulation and let Γ
be an edge guard set. Now we add a new vertex v into f with edges to all x, y, z.

– If |V (Γ ) ∩ {x, y, z}| ≥ 2, we say that f is doubly guarded. In this case the
three new faces (v, x, y), (v, y, z) and (v, z, x) are all guarded.

– If |V (Γ ) ∩ {x, y, z}| = 3, we say that f is triply guarded. Furthermore the
three new faces (v, x, y), (v, y, z) and (v, z, x) are all doubly guarded.

Observation 2. Let G be a stacked triangulation, and v be a vertex of degree 3
with neighbors x, y, z. Then for any edge guard set Γ we have |{v, x, y, z} ∩
V (Γ )| ≥ 2. If v �∈ V (Γ ), then at least two of x, y, z must be in V (Γ ), because each
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Fig. 4. The three different planar embeddings of the unique 6-vertex stacked triangu-
lation. The thick red edge is the unique edge guard for all eight faces. (Color figure
online)

of them is incident to only two of the three faces inside (x, y, z). But if v ∈ V (Γ ),
it must be as part of an edge with one of its neighbors.

Lemma 2. Let G be a 6-vertex stacked triangulation. Then G can be guarded by
a unique edge guard. Further, if there is a vertex guard at an outer vertex x of G,
then there is an edge ab guarding the remaining faces where a �= x is another
outer vertex.

Proof. There is only a single 6-vertex stacked triangulation and it has three
substantially different planar embeddings, all shown in Fig. 4. We see that there
is indeed only one possible edge guard vw in all three cases. Further both v
and w are adjacent to all three outer vertices (or are one of them and adjacent
to the other two). 	

Lemma 3. Let G be a 7-vertex stacked triangulation with a vertex guard at an
outer vertex. Then one additional edge suffices to guard the remaining faces of G.

The proof of Lemma 3 is by complete case enumeration and omitted here for
space reasons. We refer the interested reader to the full version [11].
We can already see how Lemma 3 is used in our inductive step, namely in all
cases where |V −| = 4: After removing the vertices in V − the triangle � from G
is a face in G′ and this face gets guarded by any edge guard set Γ ′ for G′.
Using Lemma 3 we know that one additional edge is always enough to extend Γ ′

to an edge guard set Γ for G. However, for |V −| ≥ 5 the situation gets more
complex; just removing V − and applying the induction hypothesis might lead
to an edge guard set Γ ′ for G′ that cannot be extended to an edge guard set Γ
for G with � ≤ 2k/7 additional edges (remember that k = |G| − |G′|). See Fig. 5
as an example. To solve this we now describe how to extend G′ with some new
vertices and edges, such that there is always at least some edge guard set Γ ′

for G′ of size �2|G′|/7� that can be augmented into an edge guard set Γ for G
of size �2|G|/7�.
Lemma 4. Let f = (x, y, z) be a face of a stacked triangulation. By adding two
new vertices into f we can obtain a stacked triangulation G such that for each
edge guard set Γ there is an edge guard set Γ ′ of equal size with {x, y} ⊆ V (Γ ′).
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Fig. 5. Here � = (x, y, z) and G′ was created by removing all interior vertices V −. The
induction hypothesis then provided an edge guard set Γ ′ for G′ that guards face (x, y, z)
of G′ through x ∈ V (Γ ′). After reinserting V −, the faces shaded in red are already
guarded. But none of the other edges is strong enough to guard the remaining faces.
(Color figure online)

Fig. 6. (a) Add a, b as shown to get x, y ⊆ V (Γ ). (b) The thick dashed edges are all
possible edge guards containing b as an endpoint. The little arrows indicate that each
edge can be exchanged with edge xy. (c) The thick dashed edges are all possible edge
guards containing a as an endpoint if b, y �∈ V (Γ ). Again the little arrows indicate with
which edge these edge guards can be exchanged.

Proof. Add vertex a with edges ax, ay, az and then vertex b with edges ab, bx, by
to obtain G as shown in Fig. 6a. Now let Γ be an edge guard set for G with
|{x, y} ∩ V (Γ )| ≤ 1. If b ∈ V (Γ ) as part of an edge bv, we can set Γ ′ :=
(Γ \ {bv}) ∪ {xy}, see Fig. 6b. This is possible, because no matter what vertex v
is, edge xy guards a superset of the faces that bv guards. If otherwise b �∈ V (Γ ),
we assume without loss of generality that x ∈ V (Γ ) so that face (x, y, b) is
guarded. Face (a, b, y) can then only be guarded by edge av where v ∈ {x, z}.
Since N(a) ⊆ N(y) we can set Γ ′ := (Γ \ {av}) ∪ {vy}, see Fig. 6c. In both
cases {x, y} ⊆ Γ ′ and |Γ | = |Γ ′|. 	

With Lemma 4 at hand we can now consider the cases where |V −| ≥ 5, i.e.
stacked triangulations on eight or more vertices.

Lemma 5. Let G be an 8-vertex stacked triangulation with outer face (x, y, z),
such that the following configuration applies (see Fig. 7a):

– Vertex v is the only vertex adjacent to all x, y, z.
– (v, x, y) and its interior vertices induce a 6-vertex stacked triangulation GA.
– (v, z, x) and its interior vertex induce a 4-vertex stacked triangulation GB.
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Fig. 7. Configurations as described in (a) Lemma 5, (b) Lemma 6 and (c) Lemma 7.
Here �k is a placeholder for k additional vertices inside the surrounding triangle (such
that the graph is a stacked triangulation). The subgraphs induced by the vertices
highlighted in green (blue) induce the stacked triangulation GA (GB). (Color figure
online)

Then any edge guard set Γ ′ for the subgraph G′ induced by {v, x, y, z} can be
extended by one edge e to an edge guard set Γ for G.

Proof. By Observation 2 we have |{v, x, y, z} ∩ V (Γ ′)| ≥ 2. Face (v, y, z) is then
already guarded. If further |{v, x, z}∩V (Γ ′)| ≥ 2, then triangle (v, z, x) is doubly
guarded, so all faces of GB are guarded. In this case set e to be the unique edge
guarding GA, which exists by Lemma 2.

If otherwise |{v, x, z} ∩ V (Γ ′)| = 1, we have y ∈ V (Γ ′). By Lemma 2 an
edge ab exists that guards the remaining faces of GA with a ∈ {x, v} but also
a �∈ V (Γ ′). Then GB is doubly guarded so all of its faces are guarded. 	


Lemma 6. Let G be a 9-vertex stacked triangulation with outer face (x, y, z),
such that the following configuration applies (see Fig. 7b):

– Vertex v is the only vertex adjacent to all x, y, z.
– (v, x, y) and its interior vertices induce a 6-vertex stacked triangulation GA.
– (v, z, x) and its interior vertices induce a 5-vertex stacked triangulation GB.

Then we can create a 5-vertex stacked triangulation G′, such that any edge guard
set Γ ′ for G′ can be augmented into an edge guard set Γ for G with |Γ | = |Γ ′|+1.

Proof. Note that the 5-vertex stacked triangulation GB can always be guarded
by one of its outer edges vx, vz or xz. In all cases we first remove the interior
vertices of (x, y, z) and add two new vertices a and b into (x, y, z) to get a stacked
triangulation G′. By placing a and b appropriately, Lemma 4 allows us to force
one of the three sets {x, y}, {x, z}, {y, z} to be a subset of V (Γ ′). Depending
on which edge from {vx, vz, xz} guards GB , we force a different one of the
three sets. In the following let e = uw be the unique edge guarding GA such
that u ∈ {v, x, y} by Lemma 2.

Case 1: xz guards GB :
Place a and b such that x, z ∈ V (Γ ′). Then all faces of GB and face (v, y, z)
are guarded. We set Γ := Γ ′ ∪ {e} to also guard all faces of GA.
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Case 2: xv guards GB :
Place a and b such that x, y ∈ V (Γ ′). Then face (v, y, z) is already guarded.
If u = v, set Γ := Γ ′ ∪ {e} to guard all faces of GB and GA. Otherwise we
can use e′ := vw instead by Lemma 2 and set Γ := Γ ′ ∪ {e′}.

Case 3: vz guards GB :
If u = v, we can place a and b to force y, z ∈ V (Γ ′). Then Γ := Γ ′ ∪ {e}
guards all faces of GA and GB . Otherwise, place a and b so that u, z ∈ V (Γ ′)
and set e′ := vw by Lemma 2. Then Γ := Γ ′ ∪ {e′} fulfills the requirements. 	


Lemma 7. Let G be a 10-vertex stacked triangulation with outer face (x, y, z),
such that the following configuration applies (see Fig. 7c):

– Vertex v ∈ V is the unique vertex adjacent to all x, y and z.
– (v, x, y) and its interior vertices induce a 6-vertex stacked triangulation GA.
– (v, z, x) and its interior vertices induce a 6-vertex stacked triangulation GB.

Then we can create a 6-vertex stacked triangulation G′, such that any edge guard
set Γ ′ for G′ can be augmented to an edge guard set Γ for G with |Γ | = |Γ ′|+1.

The proof of Lemma 7 follows the same lines as the ones for Lemma 5 and
Lemma 6. It is omitted here for space reasons and can be found in the full
version [11]. Finally we are set up to prove Theorem 5 stating that �2n/7� edge
guards are always sufficient for any n-vertex stacked triangulation G.

Proof of Theorem 5. As described above, the proof is by induction on the num-
ber n of vertices. We find a smaller graph G′ for which the induction hypothesis
provides an edge guard set Γ ′ that we augment into an edge guard set Γ for G.
By guaranteeing that (|Γ | − |Γ ′|)/(|G| − |G′|) ≤ 2/7 we hereby obtain an edge
guard set for G of size at most �2n/7�.

For base case we note that if n ≤ 6, we need a single edge guard by Lemma 2.
So from now on assume n ≥ 7. Let � = (x, y, z) be a triangle such that there
are at least four vertices V − inside � but among all candidates |V −| is minimal.
Further let v ∈ V − be the unique vertex adjacent to all x, y, z. We consider
the following cases in the order they are given: If a case applies, then all others
before must not apply.

Case 1: |V −| = 4:
Set G′ := G[V \ V −] and use the induction hypothesis to get an arbitrary
edge guard set Γ ′ for G′. Triangle � is a face in G′ and as such guarded
by Γ ′ through at least one of its boundary vertices. Together with the vertices
in V − it forms a 7-vertex stacked triangulation with at least one guarded outer
vertex, so by Lemma 3 we can extend Γ ′ by one additional edge to an edge
guard set Γ for G. We get k = |G| − |G′| = 4 and � = 1, so �/k = 1/4 ≤ 2/7.

Case 2: |V −| ≥ 5 ∧ height(G[� ∪ V −]) ≤ 3:
Construct G′ by removing all vertices from V − except for v and let Γ ′ be an
edge guard set for G′ given by the induction hypothesis. By Observation 2 we
have |{v, x, y, z}∩V (Γ ′)| ≥ 2 and we set Γ to be Γ ′ plus one additional edge,
so that {v, x, y, z} ⊆ V (Γ ). This is always possible, because v, x, y, z induce
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a 4-clique in G. Because height(G[� ∪ V −]) ≤ 3, each face of G inside �
is incident to at least one vertex in {v, x, y, z}, so all faces are guarded. We
get k = |G| − |G′| ≥ 4 and � = 1, so �/k ≤ 1/4 ≤ 2/7.

At this stage we finished all cases where height(G[� ∪ V −]) ≤ 3. The following
cases all have height(G[� ∪ V −]) = 4. (Note equality instead of greater than
or equal. This is justified, because if one of the three triangles (v, x, y), (v, y, z)
or (v, z, x) has height at least five, it would contain at least four vertices in its
interior. This is impossible as � has a minimal number of vertices in its interior.)

Case 3: height(G[� ∪ V −]) = 4 ∧ [(v, x, y), (v, y, z) or (v, z, x) is a face]:
Without loss of generality we assume that (v, y, z) is a face. The other cases
are symmetric. If |V −| = 5/6/7, then G[� ∪ V −] induces an 8/9/10-vertex
stacked triangulation fulfilling the conditions of Lemma5/6/7, respectively.
In all three cases, the lemma describes how G′ is constructed and how an edge
guard set Γ ′ obtained by applying the induction hypothesis can be extended
to Γ . We always have k = |G| − |G′| ≥ 4 and � = 1, so �/k ≤ 1/4 ≤ 2/7.

Case 4: height(G[� ∪ V −]) = 4:
Partition V − into V − = {v} ∪ V −

1 ∪ V −
2 ∪ V −

3 , where V −
1 , V −

2 , V −
3 are the

vertices in the interior of (v, x, y), (v, y, z) and (v, z, x), respectively. At least
one of them has cardinality three, because height(G[�∪V −]) = 4. We assume
without loss of generality that |V −

2 | = 3.
Assume first that |V −| ≥ 7. Remove V −

2 from G to get a graph G̃. Then G̃
fulfills the condition of either Case 1, Case 2 or Case 3 and can be treated as
described there. In the corresponding case another k̃ ≥ 4 vertices are removed
from G̃ to get G′ and �̃ = 1 extra edge is needed to extend an edge guard
set Γ ′ for G′ to an edge guard set Γ̃ for G̃. After reinserting the vertices
in V −

2 we need only one extra edge to extend Γ̃ to an edge guard set Γ for G
by Lemma 2, because G[{v, y, z} ∪ V −

2 ] is a 6-vertex stacked triangulation. In
total we get k = k̃ + 3 ≥ 7 and � = �̃ + 1 = 2, so �/k ≤ 2/7.
Now assume that |V −| ≤ 6. Since |V −

2 | = 3 it must be |V −
1 | = |V −

3 | = 1.
Remove all vertices in V − and add two new vertices using Lemma 4 to get a
graph G′, such that there is an edge guard set Γ ′ for G′ with y, z ∈ V (Γ ′).
By Lemma 2 there is another edge e containing v as an endpoint such that
all faces of G[{v, y, z} ∪ V −

2 ] are guarded. Then Γ := Γ ′ ∪ {e} also doubly
guards triangles (v, x, y) and (v, z, x), so all faces inside triangle (x, y, z) are
guarded. In this case we get k = 6 − 2 = 4 and � = 1, so �/k = 1/4 ≤ 2/7. 	


4 Conclusion and Open Problems

We proved new bounds on the size of edge guard sets for stacked triangula-
tions and quadrangulations. Considering quadrangulations was motivated by
the fact that previous coloring-based approaches for general plane graphs failed
on quadrangular faces. Our upper bound of �n/3� as well as work from Biniaz et
al. [1] about quadrangular faces that are far apart from each other suggests that
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the difficulty is not due to the quadrangular faces themselves. Instead the cur-
rently known methods seem to be not strong enough to capture the complexity
introduced by a mix of quadrangular and non-quadrangular faces. Finding tight
bounds remains an open question, as our construction needs only �(n−2)/4� edge
guards. We proved that this is best possible for 2-degenerate quadrangulations
and verified exhaustively and computer assisted that �n/4� is an upper bound
for all quadrangulations with n ≤ 23 (master’s thesis of the first author [10]).

For stacked triangulations we proved tight bounds of �2n/7�. By this we
identified a non-trivial subclass of triangulations needing strictly less than �n/3�
edge guards. We hope that this can be used to improve the upper bound for
general triangulations, for example by combining it with bounds for 4-connected
triangulations along the lines of [9]. Lastly we want to highlight the open problem
for general graphs, namely: Can every n-vertex plane graph be guarded by �n/3�
edge guards?

Acknowledgements. We thank Kolja Knauer and Lukas Barth for interesting dis-
cussions on the topic.
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Abstract. For many algorithmic problems on graphs of treewidth t, a
standard dynamic programming approach gives an algorithm with time
and space complexity 2O(t) · nO(1). It turns out that when one consid-
ers the more restrictive parameter treedepth, it is often the case that a
variation of this technique can be used to reduce the space complexity
to polynomial, while retaining time complexity of the form 2O(d) ·nO(1),
where d is the treedepth. This transfer of methodology is, however, far
from automatic. For instance, for problems with connectivity constraints,
standard dynamic programming techniques give algorithms with time
and space complexity 2O(t log t) · nO(1) on graphs of treewidth t, but it is
not clear how to convert them into time-efficient polynomial space algo-
rithms for graphs of low treedepth.

Cygan et al. (FOCS’11) introduced the Cut&Count technique and
showed that a certain class of problems with connectivity constraints can
be solved in time and space complexity 2O(t) ·nO(1). Recently, Hegerfeld
and Kratsch (STACS’20) showed that, for some of those problems, the
Cut&Count technique can be also applied in the setting of treedepth, and
it gives algorithms with running time 2O(d) ·nO(1) and polynomial space
usage. However, a number of important problems eluded such a treat-
ment, with the most prominent examples being Hamiltonian Cycle
and Longest Path.

In this paper we clarify the situation by showing that Hamilto-
nian Cycle, Hamiltonian Path, Long Cycle, Long Path, and Min
Cycle Cover all admit 5d ·nO(1)-time and polynomial space algorithms
on graphs of treedepth d. The algorithms are randomized Monte Carlo
with only false negatives.
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1 Introduction

It is widely believed that no NP-hard problem admits a polynomial time algo-
rithm. However, actual instances of problems that we are interested in solving
often admit much more structure than a general instance. This observation gave
rise to the field of parameterized complexity, where the hardness of an instance
does not depend exclusively on the input size. In the parameterized regime,
we assume that each instance is equipped with an additional parameter k and
the goal is to give a fixed-parameter algorithm: an algorithm with running time
f(k)·nO(1), where f is a function independent of n. After settling that a problem
admits such an algorithm, it is natural to lookfor one with function f as low as
possible. We refer to [5,10,12] for an introduction to parameterized complexity.

One of the most widely used parameters is the treewidth t of the input graph.
Usually, problems that involve only constraints of local nature admit an algo-
rithm with running time of the form 2O(t) · nO(1) [5]. For a long time, such algo-
rithms remained out of reach for problems involving connectivity constraints, and
for those only 2O(t log t) · nO(1)-time algorithms were known. The breakthrough
came with the Cut&Count technique, introduced by Cygan et al. in [7], that
allows one to design randomized Monte-Carlo algorithms with running times of
the form 2O(t) · nO(1) for a wide range of connectivity problems, e.g., Hamil-

tonian Path, Connected Vertex Cover, Connected Dominating Set,
etc. The technique was subsequently derandomized [4,13].

One of the main issues with standard dynamic programming algorithms is
that they tend to have prohibitively large space usage. The natural goal is there-
fore to reduce the space complexity while not sacrificing much on the time com-
plexity. Unfortunately, Drucker et al. [11] and Pilipczuk and Wrochna [23] gave
some complexity-theoretical evidence that for dynamic programming on graphs
of bounded treewidth, such a reduction is probably impossible. For example,
they showed that under plausible assumptions, there is no algorithm that works
in time 2O(t) · nO(1) and uses 2o(t) · nO(1) space for the 3-Coloring or Inde-

pendent Set problem.

Treedepth. The aforementioned issues motivate the research on a different, more
restrictive parameterization, for which the reduction of space complexity would
be possible. In this paper we will consider the parameterization by treedepth,
defined as follows.

Definition 1. An elimination forest of a graph G is a rooted forest F on the
same vertex set as G such that for every edge uv of G, either u is an ancestor of
v in F or v is an ancestor of u in F . The treedepth of G is the minimum possible
depth of an elimination forest of G.

The treedepth of a graph is never smaller than its treewidth, but it is
also never larger than the treewidth times log n. In many concrete cases, the
two parameters have the same advantages. For example, planar graphs have
treewidth O(

√
n), but also treedepth O(

√
n).
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It has been recently realized that on graphs of treedepth d, many algorithmic
problems indeed can be solved in time 2O(d) · nO(1) and using only polynomial
space.1 For the most basic problems, such as 3-Coloring and Independent

Set, a simple branching algorithms achieves such complexity. However, in con-
trast to the treewidth parameterization, for many more complex problems it is
highly non-trivial, yet possible to establish similar bounds. One technique that
turns out to be useful here is the framework of algebraic transforms introduced
by Loksthanov and Nederlof [18], who demonstrated how to reduce the space
requirements of many dynamic programming algorithms to polynomial in the
input size by reorganizing the computation using a suitable transform. Fürer
and Yu [14] applied this framework to give 2O(d) · nO(1)-time and polynomial
space algorithms on graphs of treedepth d for the Dominating Set problem
and for the problem of counting the number of perfect matchings. Pilipczuk and
Wrochna [23] considered algorithms with even more restricted space require-
ments: they showed that 3-Coloring, Dominating Set, and Vertex Cover

admit algorithms that work in 2O(d) ·nO(1) time and use O(d+log n) space. For
Dominating Set they avoided the explicit use of algebraization and instead
provided a more combinatorial interpretation based on what one could call
inclusion-exclusion branching. Later, Pilipczuk and Siebertz [22] used color-
coding to give an 2O(d log d) · nO(1)-time and polynomial space algorithm for the
Subgraph Isomorphism problem. Recently, Belbasi and Fürer [1] presented
an algorithm for counting Hamiltonian cycles in time (4t)d · nO(1) and using
polynomial space, where t is the width of a given tree decomposition and d is its
(suitably defined) depth.

Treedepth and Cut&Count. Very recently, Hegerfeld and Kratsch [16] demon-
strated that the Cut&Count technique can be also applied in the setting of
the treedepth parameterization. Consequently, they gave randomized algorithms
with running times 2O(d) · nO(1) and polynomial space usage for a number of
problems with connectivity constraints such as Connected Vertex Cover,
Connected Dominating Set, Feedback Vertex Set, or Steiner Tree.
However, Hegerfeld and Kratsch found it problematic to apply the methodol-
ogy to several important problems originally considered by Cygan et al. [7] in
the context of Cut&Count. Specifically, these are problems based on selection
of edges rather than vertices, such as Hamiltonian Cycle or Long Cycle.
For this reason, Hegerfeld and Kratsch explicitly asked in [16] whether Hamil-

tonian Cycle, Hamiltonian Path, Long Cycle, and Min Cycle Cover

1 Throughout the introduction, when we speak about a graph of treedepth d, we mean
a graph supplied with an elimination forest of depth d. While in the case of treewidth,
a tree decomposition of approximately (up to a constant factor) optimum width
can be computed in time 8t · nO(1) [5,26], the existence of such an approximation
algorithm for treedepth is a notorious open problem.
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also admit 2O(d) · nO(1)-time and polynomial space algorithms2 on graphs of
treedepth d (see the full version of this paper [21] for problem definitions3).

Our Contribution. In this paper we introduce additional techniques that allow us
to extend the results of [16] and to answer the abovementioned open problem of
Hegerfeld and Kratsch in the affirmative. More precisely, we prove the following
theorem.

Theorem 1. There is a randomized algorithm that given a graph G together
with its elimination forest of depth d, and number k ∈ N, solves Hamiltonian

Cycle, Hamiltonian Path, k-Cycle, k-Path and Min Cycle Cover in
time 5d ·nO(1) and using polynomial space. The algorithm has a one-sided error:
it may give false negatives with probability at most 1

2 .

In fact, Theorem 1 is an easy corollary of the following result for a general-
ization of the considered problems. In the Partial Cycle Cover problem we
are given an undirected graph G and integers k and �, and we ask whether in
G there is a family of at most k vertex-disjoint cycles that jointly visit exactly
� vertices. We will prove the following theorem.

Theorem 2. There is a randomized algorithm that given a graph G together
with its elimination forest of depth d, and numbers k, � ∈ N, solves the Partial

Cycle Cover problem for G, k, � in time 5d ·nO(1) and using polynomial space.
The algorithm has a one-sided error: it may give false negatives with probability
at most 1

2 .

To see that Theorem 2 implies Theorem 1, note that Hamiltonian Cycle,
Min Cycle Cover and Long Cycle are special cases of the Partial Cycle

Cover (for fixed parameters k and �).
To solve Long Path, we can simply iterate through all pairs of non-adjacent

vertices s, t and apply the Long Cycle algorithm to the graph G with edge st
added; this increases the treedepth by at most 1 and the provided elimination
forest can be easily adjusted. It is easy to see that then the original graph G
contains a simple path on � vertices if and only if for some choice of s and t, we
find a cycle of length � in G augmented with the edge st. Finally, Hamiltonian

Path is just Long Path applied for � = |V (G)|.
We remark that our algorithmic findings have concrete applications outside

of the realm of structural parameterizations. For instance, Lokshtanov et al. [17]
gave a 2O(

√
� log2 �) · nO(1)-time polynomial space algorithm for the Long Path

problem on H-minor-free graphs, for every fixed H. In the full version of this
paper [21] we present how using our results one can improve the running time
to 2O(

√
� log �) · nO(1) while keeping the polynomial space complexity.

2 Note, that graphs of treedepth at most k cannot contain a path of length 2k. This
leads to trivial FPT algorithms for these problems, however with doubly-exponential
running time dependency on k.

3 Note that when discussing the Long Path and the Long Cycle problems, we use
the letter � to denote the required length of a path, respectively of a cycle, instead
of the letter k that is perhaps more traditionally used in this context.
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Our Techniques. Similarly to Hegerfeld and Kratsch [16] we use the Cut&Count
framework, but we apply a different view on the Count part, suited for problems
based on edge selection. The main idea is that instead of counting cycle covers,
as a standard application of Cut&Count would do, we count perfect matchings
in an auxiliary graph, constructed by replacing every vertex with two adjacent
copies. The number of such perfect matchings can be related to the number of
cycle covers of the original graph. However, the considered perfect matchings
can be counted within the claimed complexity by either employing the previ-
ous “algebraized” dynamic programming algorithm, or the algorithm based on
inclusion-exclusion branching (our presentation chooses the latter).

Applying this approach naïvely would give us a polynomial space algorithm
with running time 8d · nO(1). We improve the running time to 5d · nO(1) by
employing several observations about the symmetries of recursive calls of our
algorithms, in a similar way as in the algorithm for #k-Multi-Set-Cover of
Nederlof [20].

Organization of the Paper. The remainder of the paper is devoted to the proof
of Theorem 2. In Sect. 2 we introduce the notation and present basic definitions.
In Sect. 3 we discuss the Cut&Count technique in a self-contained manner and
explain the Cut part. In Sect. 4 we reduce the Count part to counting perfect
matchings in an auxiliary graph. In Sect. 5 we give an intuition behind counting
such matchings. We conclude with several open questions in Sect. 6. Due to space
restrictions, proofs of statements marked with ♦ are deferred to the full version
of this paper [21]. The full version [21] also contains applications of our results
to the Long Path problem in H-minor free graphs.

2 Preliminaries

Notation. For a graph G, by cc(G) we denote number of connected components
of G. Let F be a subset of edges of G. By cc(F ) we denote the number of
connected components of the graph consisting of all the edges of F and vertices
incident to them. For a vertex u, by degF (u) we mean the number of edges of F
incident to u. Then F is a matching if degF (u) ∈ {0, 1} for every vertex u, is a
perfect matching if degF (u) = 1 for every vertex u, and is a partial cycle cover if
degF (u) ∈ {0, 2} for every vertex u. Note that thus we treat partial cycle covers
as sets of edges.

A cut of a set U is just an ordered partition of U into two sets, that is, a pair
(L,R) such that L ∩ R = ∅ and L ∪ R = U . A cut (L,R) of the vertex set of a
graph is consistent with a subset of edges F if there is no edge in F with one
endpoint in L and second in R.

For a function f and elements x, y, where x is not in the domain of f , by
f [x �→ y] we denote the function obtained from f by extending its domain by x
and setting f(x) = y.

We use the O�(·) notation to hide factors polynomial in the input size. For
convenience, throughout the paper we assume the RAM model: every integer
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takes a unit of space and arithmetic operations on integers have unit cost. How-
ever, it can be easily seen that all the numbers appearing during the computation
have bit length bounded polynomially in the input size. Since we never specify
the polynomial factors in the time or space complexity of our algorithms, with-
out any influence on the claimed asymptotic bounds we may assume that the
representation of any number takes polynomial space and arithmetic operations
on the numbers take polynomial time.

Treedepth. A rooted forest is a directed acyclic graph T where every vertex
has outdegree at most 1. The vertices of outdegree 0 in T are called the roots.
Whenever a vertex u is reachable from a vertex v by a directed path in T , we
say that u is an ancestor of v, and v is a descendant of u. Note that every vertex
is its own ancestor as well as descendant. The depth of a rooted forest is the
maximum number of vertices that can appear on a directed path in it.

We use the following notation from previous works [16,23]. For a vertex u of
a rooted forest T , we denote:

subtree[u] := {v : u is ancestor of v}, subtree(u) := subtree[u] \ {u},

tail[u] := {v : v is ancestor of u}, tail(u) := tail[u] \ {u},

broom[u] := tail[u] ∪ subtree[u].

Additionally, children(u) denotes the set of children of u, whereas parent(u) is the
parent of u, that is, the only outneighbor of u. If u is a root, we set parent(u) = ⊥.

For a graph G, an elimination forest of G is a rooted forest T on the same
vertex set as G that satisfies the following property: whenever uv is an edge in
G, then in T either u is an ancestor of v, or v is an ancestor of u. The treedepth
of a graph is the minimum possible depth of an elimination forest of G.

Isolation Lemma. The only source of randomness in our algorithm is the Isolation
Lemma of Mulmuley et al. [19]. Suppose U is a finite set and ω : U → Z is a
weight function on U . We say that ω isolates a non-empty family of subsets
F ⊆ 2U if there is a unique S ∈ F such that

ω(S) = min
X∈F

ω(X),

where ω(X) :=
∑

x∈X ω(x). Then the Isolation Lemma can be stated as follows.

Lemma 1 (Isolation Lemma [19]). Let U be a finite set and F ⊆ 2U be a
non-empty family of subsets of U . Suppose for every u ∈ U we choose its weight
ω(u) uniformly and independently at random from the set {1, . . . , N}, where
N ∈ N. Then ω isolates F with probability at least 1 − |U |

N .

3 The Cut Part

We now proceed to the proof of Theorem 2. Throughout the proof we fix the input
graph G = (V,E), its elimination forest T of depth d, and numbers k, � ∈ N. We



Hamiltonian Cycle and Treedepth 33

may assume that G is connected, as otherwise we may apply the algorithm to
each connected component separately. Thus T has to be a tree, so we will call
it an elimination tree to avoid confusion. Also, we denote n := |V |.

As mentioned before, we shall apply the Cut&Count technique of Cygan
et al. [7]. This technique consists of two parts: the Cut part and the Count part.
The idea is that in the first part, we relax the connectivity requirements and show
that it is enough to count the number of relaxed solutions together with cuts
consistent with them, as this number is congruent to the number of non-relaxed
solutions modulo a power of 2. The Isolation Lemma is used here to ensure
that with high probability, the number of solutions does not accidentally cancel
out modulo this power of 2. More precisely, having drawn a weight function at
random, for each possible total weight w we count the number of solutions of
total weight w. Then the Isolation Lemma asserts that, with high probability,
for some w there will be a unique solution of total weight w. Then comes the
Count part, where the goal is to efficiently count the number of relaxed solutions
together with cuts consistent with them.

We refer the reader to [7] for a more elaborate discussion of the Cut&Count
technique, while now we apply it to the particular case of Partial Cycle

Cover. A relaxed solution is just a partial cycle cover consisting of � edges.
Then a solution is a relaxed solution that spans at most k cycles. Formally, the
sets of solutions (S) and relaxed solutions (R) are defined as follows:

R := {F ⊆ E : |F | = � and degF (u) ∈ {0, 2} for every u ∈ V };
S := {F ∈ R : cc(F ) � k }.

Suppose now that the input graph G is supplied with a weight function on edges
ω : E → Z. Then we can stratify the families above using the total weight. That
is, for every w ∈ Z we define:

Rw := {F ∈ R : ω(F ) = w} and Sw := {F ∈ S : ω(F ) = w }.

Now, let

Cw := { (F, (L,R)) : F ∈ Rw and (L,R) is a cut of V consistent with F }.

The following observation is the key idea in the Cut&Count technique.

Lemma 2 (♦). For every w ∈ Z, we have

|Cw| ≡
∑

F∈Sw

2n−�+cc(F ) mod 2n−�+k+1.

In the next sections we will present the Count part of the technique, which
boils down to proving the following lemma.

Lemma 3. Given w ∈ Z and a weight function ω : E → {1, . . . , N}, where
N = O�(1), the number |Cw| can be computed in time O�(5d) and space O�(1).

In the full version of this paper [21] we show how to combine Lemma 2 with
Lemma 3 to prove Theorem 2. Therefore, it remains to prove Lemma3.
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4 From Cycle Covers to Matchings

For the proof of Lemma3, instead of counting the number of suitable partial cycle
covers, we find it more convenient to count the number of perfect matchings in
an auxiliary graph. Note, that this concept is natural when using inclusion-
exclusion branching technique. A similar auxiliary graph arises in the algorithm
for #k-Multi-Set-Cover [20].

We define a graph G′ as follows. The vertex set V ′ of G′ is V ′ := {u0, u1 : u ∈
V }. That is, we put two copies of each vertex of G into the vertex set of G′. The
edge set E′ of G′ is the union of the following two sets:

E′
0 := {u0u1 : u ∈ V }, E′

1 := {u0v0, u0v1, u1v0, u1v1 : uv ∈ E }.

In other words, for every vertex u ∈ V we put an edge in E′
0 connecting the two

copies of u in V ′, while for every edge uv ∈ E we put four different edges in E′
1,

each connecting a copy of u with a copy of v in V ′.
Let π : E′

1 → E be the natural projection from E′
1 to E: for each uv ∈ E

and s, t ∈ {0, 1}, we set π(usvt) = uv. We extend the mapping π to all subsets
F ⊆ E′ by setting π(F ) := π(F ∩ E′

1). We also extend the weight function ω to
the edges of E′ by putting ω(e) = 0 for each e ∈ E′

0 and ω(e) = ω(π(e)) for each
e ∈ E′

1.
A set of edges F in G′ shall be called simple if for every e ∈ E, we have

|F ∩ π−1(e)| � 1.

For now, we mainly focus on simple perfect matchings in G′. We observe that
they are in correspondence with partial cycle covers in G, as explained next.

Lemma 4 (♦). For every simple perfect matching M in G′, the set π(M) is
a partial cycle cover in G of size |M ∩ E′

1|. Moreover, for every partial cycle
cover F in G, there are exactly 2|F | simple perfect matchings M in G′ for which
F = π(M).

Lemma 4 motivates introducing the following analogues of the sets Cw. For
w ∈ Z, we define

Mw := { (M, (L,R)) : M is a simple perfect matching in G′,
(L,R) is a cut of V consistent with π(M),
|M ∩ E′

1| = � and ω(M) = w }.

Since for every simple perfect matching M in G′ we have ω(M) = ω(π(M)),
from Lemma 4 we immediately obtain the following.

Corollary 1. For every w ∈ Z, we have |Mw| = 2� · |Cw|.
Therefore, to prove Lemma 3 it suffices to apply the algorithm provided by

the following lemma and divide the outcome by 2�.

Lemma 5 (♦). Given w ∈ Z and a weight function ω : E → {1, . . . , N}, where
N = O�(1), the number |Mw| can be computed in time O�(5d) and space O�(1).
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5 The Count Part

Due to space restrictions we defer the formal proof of Lemma 5 to the full ver-
sion of this paper [21]. In this section we discuss only the intuition behind the
approach.

The basic idea is that we will compute the number |Mw| using bottom-up
dynamic programming over the given elimination tree T . In order to achieve poly-
nomial space complexity, this dynamic programming will be cast as a standard
recursion, but for this to work, we need that the recurrence equations governing
the dynamic programming have a specific form. In essence, whenever we com-
pute an entry of the dynamic programming table at some vertex u, the value
should be obtained as a simple aggregation of single entries from the tables of the
children of u. The most straightforward approach to computing |Mw| would be
to count partial perfect matchings and to remember, in the states corresponding
to u, subsets of tail[u] consisting of vertices matched to subtree(u). This would
yield a dynamic programming algorithm that is not of the form required for
the space complexity reduction. However, we show that by counting different
objects than partial perfect matchings, and using the inclusion-exclusion prin-
ciple at every computation step, we can reorganize the computation so that the
space reduction is possible.

We remark that even though at the end of the day our algorithm relies only on
basic ideas such as branching and inclusion-exclusion, there is a deeper intuition
behind the definitions of the computed values. In fact, from the right angle our
algorithm can be seen as an application of the technique of saving space by
algebraization, introduced by Lokshtanov and Nederlof [18], which boils down to
applying the Fourier transform on the lattice of subsets in order to turn subset
convolutions into pointwise products. We refer the reader to [1,14,16,23] for
other applications of this technique in the context of treedepth-based algorithms.

6 Conclusion and Further Research

In this paper we answered the open question of Hegerfeld and Kratsch [16] by
presenting an O�(5d)-time and polynomial space algorithm for Hamiltonian

Path, Hamiltonian Cycle, Longest Path, Longest Cycle Min Cycle

Cover, where d is the depth of a provided elimination forest of the input graph.
However, there are still multiple open problems around time- and space-efficient
algorithms on graphs of bounded treedepth. We list here a selection.

Approximation of Treedepth. Recall that the treewidth of a graph can be approx-
imated up to a constant factor in fixed-parameter time. For instance, the classic
algorithm of Robertson and Seymour [26] (see also [5]) takes on input a graph
G and integer t, works in time 2O(t) · nO(1) and in polynomial space, and either
concludes that the treewidth of G is larger than t, or finds a tree decomposition
of G of width at most 4t + 4. This means that for the purpose of designing
2O(t) · nO(1)-time algorithms on graphs of treewidth t, we may assume that
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a tree decomposition of approximately optimum width is given, as it can be
always computed from the input graph within the required complexity bounds.
Unfortunately, no such approximation algorithm is known for the treedepth.
Namely, it is known that the treedepth can be computed exactly in time and
space 2O(d2) · n [25] and approximated up to factor O(t log3/2 t) in polynomial
time [8], where d and t are the values of the treedepth and the treewidth of the
input graph, respectively. A piece of the theory that seems particularly miss-
ing is a constant-factor approximation algorithm for treedepth running in time
2O(d) · nO(1); polynomial space usage would be also desired.

Faster Algorithms. The bases of the exponent of the running times of the algo-
rithms given by Hegerfeld and Kratsch [16] for the treedepth parameterization
match the ones obtained by Cygan et al. [7] for the treewidth parameteriza-
tion. In the case of our results, the situation is different: while Hamiltonian

Cycle can be solved in time 4t · nO(1) in graphs of treewidth t [7] and in time
(2 +

√
2)p · nO(1) in graphs of pathwidth p [6], we needed to increase the base

of the exponent to 5 in order to achieve polynomial space complexity for the
treedepth parameterization. As the treedepth of a graph is never smaller than
its pathwidth, it is natural to ask whether there is an (2 +

√
2)d · nO(1)-time

polynomial-space algorithm for Hamiltonian Cycle on graphs of treedepth d.
In fact, reducing the base 5 to any c < 5 would be interesting.

Derandomization. Shortly after its introduction, the Cut&Count technique for
the treewidth parameterization has been derandomized. Bodlaender et al. [4] pre-
sented two approaches for doing so. The first one, called the rank-based approach,
boils down to maintaining a small set of representative partial solutions along
the dynamic programming computation, and pruning irrelevant partial solutions
on the fly using Gaussian elimination. Fomin et al. [13] later reinterpreted this
technique in the language of matroids and extended it. The second approach,
called determinant-based, uses the ideas behind Kirchoff’s matrix-tree theorem
to deliver a formula for counting suitable spanning trees of a graph, which can
be efficiently evaluated by a dynamic programming over a tree decomposition.

It seems to us that none of these approaches applies in the context of the
treedepth parameterization, where we additionally require polynomial space
complexity. For the rank-based and matroid-based approaches, they are based
on keeping track of a set of representative solutions, which in the worst case
may have exponential size. In the determinant-based approach, when comput-
ing the formula for the number of spanning trees over a tree decomposition,
the aggregation of dynamic programming tables is done using operations that
are algebraically more involved, and which in particular are non-commutative.
See the work of Włodarczyk [27] for a discussion. It is unclear whether this
computation can be reorganized so that in the aggregation we use only point-
wise product—which, in essence, is our current methodology from the algebraic
perspective.
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Hence, it is highly interesting whether our algorithm, or the algorithms of
Hegerfeld and Kratsch [16], can be derandomized while keeping running time
2O(d) · nO(1) and polynomial space usage.

Other Graph Parameters. Actually, Hegerfeld and Kratsch [16] were not the
first to employ Cut&Count on structural graph parameters beyond treewidth.
Pino et al. [24] used Cut&Count and rank-based approach to get single-
exponential time algorithms for connectivity problems parametrized by branch-
width. Recently, Cut&Count was also applied in the context of cliquewidth [2],
and of Q-rankwidth, rankwidth, and MIM-width [3]. All these algorithms have
exponential space complexity, as they follow the standard dynamic programming
approach. One may expect that maybe for the depth-bounded counterparts of
cliquewidth and rankwidth—shrubdepth [15] and rankdepth [9]—time-efficient
polynomial-space algorithms can be designed, similarly as for treedepth.
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Abstract. We study the Independent Set problem in H-free graphs,
i.e., graphs excluding some fixed graph H as an induced subgraph. We
prove several inapproximability results both for polynomial-time and
parameterized algorithms.

Halldórsson [SODA 1995] showed that for every δ > 0 the Inde-
pendent Set problem has a polynomial-time ( d−1

2
+ δ)-approximation

algorithm in K1,d-free graphs. We extend this result by showing that
Ka,b-free graphs admit a polynomial-time O(α(G)1−1/a)-approximation,
where α(G) is the size of a maximum independent set in G. Further-
more, we complement the result of Halldórsson by showing that for some
γ = Θ(d/ log d), there is no polynomial-time γ-approximation algorithm
for these graphs, unless NP = ZPP.

Bonnet et al. [IPEC 2018] showed that Independent Set parameter-
ized by the size k of the independent set is W[1]-hard on graphs which do
not contain (1) a cycle of constant length at least 4, (2) the star K1,4, and
(3) any tree with two vertices of degree at least 3 at constant distance.

We strengthen this result by proving three inapproximability results
under different complexity assumptions for almost the same class of
graphs (we weaken condition (2) that G does not contain K1,5). First,
under the ETH, there is no f(k)·no(k/ log k) algorithm for any computable
function f . Then, under the deterministic Gap-ETH, there is a constant
δ > 0 such that no δ-approximation can be computed in f(k) · nO(1)

time. Also, under the stronger randomized Gap-ETH there is no such
approximation algorithm with runtime f(k) · no(k).

Finally, we consider the parameterization by the excluded graph H,
and show that under the ETH, Independent Set has no no(α(H))
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algorithm in H-free graphs. Also, we prove that there is no d/ko(1)-
approximation algorithm for K1,d-free graphs with runtime f(d, k)·nO(1),
under the deterministic Gap-ETH.

1 Introduction

The Independent Set problem, which asks for a maximum sized set of pairwise
non-adjacent vertices in a graph, is one of the most well-studied problems in algo-
rithmic graph theory. It was among the first 21 problems that were proven to be
NP-hard by Karp [22], and is also known to be hopelessly difficult to approximate
in polynomial time: Håstad [21] proved that under standard assumptions from
classical complexity theory the problem admits no (n1−ε)-approximation, for
any ε > 0 (by n we always denote the number of vertices in the input graph). This
was later strengthened by Khot and Ponnuswami [23], who were able to exclude
any algorithm with approximation ratio n/(log n)3/4+ε, for any ε > 0. Let us
point out that the currently best polynomial-time approximation algorithm for
Independent Set achieves the approximation ratio O(n (log log n)2

(log n)3 ) [17].
There are many possible ways of approaching such a difficult problem, in

order to obtain some positive results. One could give up on generality, and ask
for the complexity of the problem on restricted instances. For example, while
the Independent Set problem remains NP-hard in subcubic graphs [18], a
straightforward greedy algorithm gives a 3-approximation.

H-Free Graphs. A large family of restricted instances, for which the Indepen-

dent Set problem has been well-studied, comes from forbidding certain induced
subgraphs. For a (possibly infinite) family H of graphs, a graph G is H-free if it
does not contain any graph of H as an induced subgraph. If H consists of just
one graph, say H = {H}, then we say that G is H-free. The investigation of the
complexity of Independent Set in H-free graphs dates back to Alekseev, who
proved the following.

Theorem 1 (Alekseev [2]). Let s ≥ 3 be a constant. The Independent Set

problem is NP-hard in graphs that do not contain any of the following induced
subgraphs: (1) a cycle on at most s vertices, (2) the star K1,4, and (3) any tree
with two vertices of degree at least 3 at distance at most s.

We can restate Theorem 1 as follows: the Independent Set problem is NP-
hard in H-free graphs, unless H is a subgraph of a subdivided claw (i.e., three
paths which meet at one of their endpoints). The reduction also implies that
for each such H the problem is APX-hard and cannot be solved in subexponen-
tial time, unless the Exponential Time Hypothesis (ETH) fails. On the other
hand, polynomial-time algorithms are known only for very few cases. First let
us consider the case when H = Pt, i.e., we forbid a path on t vertices. Note
that the case of t = 3 is trivial, as every P3-free graph is a disjoint union of
cliques. Already in 1981 Corneil et al. [10] showed that Independent Set is
tractable for P4-free graphs. For many years there was no improvement, until
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the breakthrough algorithm of Lokshtanov et al. [25] for P5-free graphs. Their
approach was recently extended to P6-free graphs by Grzesik et al. [19]. We still
do not know whether the problem is polynomial-time solvable in P7-free graphs,
and we do not know it to be NP-hard in Pt-free graphs, for any constant t.

Even less is known for the case if H is a subdivided claw. The problem can
be solved in polynomial time in claw-free (i.e., K1,3-free) graphs, see Sbihi [32]
and Minty [31]. This was later extended to H-free graphs, where H is a claw
with one edge once subdivided (see Alekseev [1] for the unweighted version and
Lozin and Milanič [27] for the weighted one).

When it comes to approximations, Halldórsson [20] gave an elegant local
search algorithm that finds a (d−1

2 + δ)-approximation of the maximum inde-
pendent set in K1,d-free graphs for any constant δ > 0 in polynomial time.
Very recently, Chudnovsky et al. [9] designed a QPTAS (quasi-polynomial-time
approximation scheme) that works for every H, which is a subgraph of a subdi-
vided claw (in particular, a path). Recall that on all other graphs H the problem
is APX-hard.

Parameterized Complexity. Another approach that one could take is to look at
the problem from the parameterized perspective: we no longer insist on finding
the maximum independent set, but want to verify whether some independent
set of size at least k exists. To be more precise, we are interested in knowing
how the complexity of the problem depends on k. The best type of behavior
we are hoping for is fixed-parameter tractability (FPT), i.e., the existence of an
algorithm with running time f(k) · nO(1), for some function f (note that since
the problem is NP-hard, we expect f to be super-polynomial).

It is known [11] that on general graphs the Independent Set problem is
W[1]-hard parameterized by k, which is a strong indication that it does not admit
an FPT algorithm. Furthermore, it is even unlikely to admit any non-trivial fixed-
parameter approximation (FPA): a γ-FPA algorithm for the Independent Set

problem is an algorithm that takes as input a graph G and an integer k, and
in time f(k) · nO(1) either correctly concludes that G has no independent set of
size at least k, or outputs an independent set of size at least k/γ (note that γ
does not have to be a constant). It was shown in [5] that on general graphs no
o(k)-FPA exists for Independent Set, unless the randomized Gap-ETH fails.

Parameterized Complexity in H-Free Graphs. As we pointed out, none of the
discussed approaches, i.e., considering H-free graphs or considering parameter-
ized algorithms, seems to make the Independent Set problem more tractable.
However, some positive results can be obtained by combining these two set-
tings, i.e., considering the parameterized complexity of Independent Set in
H-free graphs. For example, the Ramsey theorem implies that any graph with
Ω(4p) vertices contains a clique or an independent set of size Ω(p). Since the
proof actually tells us how to construct a clique or an independent set in poly-
nomial time [16], we immediately obtain a very simple FPT algorithm for Kp-
free graphs. Dabrowski [12] provided some positive and negative results for the
complexity of the Independent Set problem in H-free graphs, for various H.
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The systematic study of the problem was initiated by Bonnet et al. [3] and con-
tinued by Bonnet et al. [4]. Among other results, Bonnet et al. [3] obtained the
following analog of Theorem 1.

Theorem 2 (Bonnet et al. [3]). Let s ≥ 3 be a constant. The Independent

Set problem isW[1]-hard in graphs that do not contain any of the following induced
subgraphs: (1) a cycle on at least 4 and at most s vertices, (2) the star K1,4, and
(3) any tree with two vertices of degree at least 3 at distance at most s.

Note that, unlike in Theorem1, we are not able to show hardness for C3-free
graphs: as already mentioned, the Ramsey theorem implies that Independent

Set is FPT in C3-free graphs. Thus, graphs H for which there is hope for FPT
algorithms in H-free graphs are essentially obtained from paths and subdivided
claws (or their subgraphs) by replacing each vertex with a clique.

Let us point out that, even though it is not stated there explicitly, the reduc-
tion of Bonnet et al. [3] also excludes any algorithm solving the problem in time
f(k) · no(

√
k), unless the ETH fails.

Our Results. We study the approximation of the Independent Set problem
in H-free graphs, mostly focusing on approximation hardness. Our first two
results are related to Halldórsson’s [20] polynomial-time (d−1

2 +δ)-approximation
algorithm for K1,d-free graphs. We extend this result to Ka,b-free graphs, for any
constants a, b. Moreover, we show that the approximation ratio of the algorithm
of Halldórsson [20] is optimal, up to logarithmic factors.

Theorem 3. Given a Ka,b-free graph G, an O
(
(a + b)1/a · α(G)1−1/a

)
-

approximation can be computed in nO(a) time.

Theorem 4. There is a function γ = Θ(d/ log d) such that the Independent

Set problem does not admit a polynomial time γ-approximation algorithm in
K1,d-free graphs, unless ZPP = NP.

The proofs of Theorems 3 and 4 can be find in the full version of the
paper [15]. Note that the factor γ determining the approximation gap in The-
orem4 is expressed as an asymptotic function of d, i.e., for growing d. In our
case however, it is an interesting question how small the degree d can be so that
we obtain an inapproximability result. We prove Theorem4 by a reduction from
the Label Cover problem, and a corresponding inapproximability result by
Laekhanukit [24]. By calculating the bounds given in [24] (which heavily depend
on the constant of Chernoff bounds) it can be shown that an inapproximability
gap exists for d ≥ 31 in Theorem 4.

Then in Sect. 3 we study the existence of fixed-parameter approximation
algorithms for the Independent Set problem in H-free graphs. We show the
following strengthening of Theorem 2, which also gives (almost) tight runtime
lower bounds assuming the ETH or the randomized Gap-ETH (for more infor-
mation about complexity assumptions used in Theorem 5 see Sect. 2).
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Theorem 5. Let s ≥ 4 be a constant, and let G be the class of graphs that do
not contain any of the following induced subgraphs: (1) a cycle on at least 5 and
at most s vertices, (2) the star K1,5, and (3) (i) the star K1,4 or (ii) a cycle
on 4 vertices and any tree with two vertices of degree at least 3 at distance at
most s. The Independent Set problem on G does not admit the following:

(a) an exact algorithm with runtime f(k) · no(k/ log k), for any computable func-
tion f , under the ETH,

(b) a γ-approximation algorithm with runtime f(k) · nO(1) for some constant
γ > 0 and any computable function f , under the deterministic Gap-ETH,

(c) a γ-approximation algorithm with runtime f(k) · no(k) for some constant
γ > 0 and any computable function f , under the randomized Gap-ETH.

Finally, in Sect. 4 we study a slightly different setting, where the graph H is
not considered to be fixed. As mentioned before, Independent Set is known
to be polynomial-time solvable in Pt-free graphs for t ≤ 6. The algorithms for
increasing values of t get significantly more complicated and their complexity
increases. Thus it is natural to ask whether this is an inherent property of the
problem and can be formalized by a runtime lower bound when parameterized
by t.

We give an affirmative answer to this question, even if the forbidden family
is not a family of paths: note that the independent set number α(Pt) of a path
on t vertices is �t/2�.

Proposition 1. Let d be an integer and let Hd be a family of graphs, such that
α(H) > d for every H ∈ Hd. The Independent Set problem in Hd-free graphs
is W[1]-hard parameterized by d and cannot be solved in no(d) time, unless the
ETH fails.

The proof of Proposition 1 can be found in the full version of the paper. We also
study the special case when H = K1,d and consider the inapproximability of
the problem parameterized by both α(K1,d) = d and k. Unfortunately, for the
parameterized version we do not obtain a clear-cut statement as in Theorem 4,
since in the following theorem d cannot be chosen independently of k in order
to obtain an inapproximability gap.

Proposition 2. Let ε > 0 be any constant and ξ(k) = 2(log k)1/2+ε

. The Inde-

pendent Set problem in K1,d-free graphs has no d/ξ(k)-approximation algo-
rithm with runtime f(d, k) · nO(1) for any computable function f , unless the
deterministic Gap-ETH fails.

Note that this in particular shows that if we allow d to grow as a polyno-
mial kε for any constant 1

2 > ε > 0, then no kδ-approximation is possible for
any δ < ε (since ξ(k) = ko(1)). This indicates that the (d−1

2 + δ)-approximation
for K1,d-free graphs [20] is likely to be best possible (up to sub-polynomial fac-
tors), even when parameterizing by k and d.
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2 Preliminaries

All our hardness results for Independent Set are obtained by reductions from
some variant of the Maximum Colored Subgraph Isomorphism (MCSI)
problem. This optimization problem has been widely studied in the literature,
both to obtain polynomial-time and parameterized inapproximability results,
but also in its decision version to obtain parameterized runtime lower bounds.
We note that by applying standard transformations, MCSI contains the well-
known problems Label Cover [24] and Binary CSP [26]: for Binary CSP

the graph J is a complete graph, while for Label Cover J is usually bipartite.

Maximum Colored Subgraph Isomorphism (MCSI)

Input: A graph G, whose vertex set is partitioned into subsets V1, . . . , V�, and
a graph J on vertex set {1, . . . , 	}.

Goal: Find an assignment φ : V (J) → V (G), where φ(i) ∈ Vi for every i ∈ [	],
that maximizes the number S(φ) of satisfied edges, i.e.,
S(φ) :=

∣
∣{ij ∈ E(J) | φ(i)φ(j) ∈ E(G)

}∣
∣.

Given an instance Γ = (G,V1, . . . , V�, J) of MCSI, we refer to the number of
vertices of G as the size of Γ . Any assignment φ : V (J) → V (G), such that for
every i it holds that φ(i) ∈ Vi, is called a solution of Γ . The value of a solution φ
is val(φ) := S(φ)/|E(J)|, i.e., the fraction of satisfied edges. The value of the
instance Γ , denoted by val(Γ ), is the maximum value of any solution of Γ .

When considering the decision version of MCSI, i.e., determining whether
val(Γ ) = 1 or val(Γ ) < 1, a result by Marx [29] gives a runtime lower bound
for parameter 	 under the Exponential Time Hypothesis (ETH). That is, no
f(	) · no(�/ log �) time algorithm can solve MCSI for any computable function f ,
assuming there is no deterministic 2o(n) time algorithm to solve the 3-SAT

problem. For the optimization version, an α-approximation is a solution φ with
val(φ) ≥ 1/α. When J is a complete graph, a result by Dinur and Manu-
rangsi [13,14] states that there is no 	/ξ(	)-approximation algorithm (where
ξ(	) = 2(log �)1/2+ε

for any constant ε > 0) with runtime f(	) ·nO(1) for any com-
putable function f , unless the deterministic Gap-ETH fails (see Theorem 9).
This hypothesis assumes that there exists some constant δ > 0 such that no
deterministic 2o(n) time algorithm for 3-SAT can decide whether all or at most a
(1−δ)-fraction of the clauses can be satisfied. A recent result by Manurangsi [28]
uses an even stronger assumption, which also rules out randomized algorithms,
and in turn obtains a better runtime lower bound at the expense of a worse
approximation lower bound: he shows that, when J is a complete graph, there is
no γ-approximation algorithm for MCSI with runtime f(	) · no(�) for any com-
putable function f and any constant γ, under the randomized Gap-ETH. This
assumes that there exists some constant δ > 0 such that no randomized 2o(n)

time algorithm for 3-SAT can decide whether all or at most a (1 − δ)-fraction
of the clauses can be satisfied. (Note that the runtime lower bound under the
stronger randomized Gap-ETH does not have the log(	) factor in the polynomial
degree as the runtime lower bound under ETH does.)
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For our results we will often need the special case of MCSI when the graph J
has bounded degree. We define this problem in the following.

Degree-t Maximum Colored Subgraph Isomorphism (MCSI(t))
Input: A graph G, whose vertex set is partitioned into subsets V1, . . . , V�, and

a graph J on vertex set {1, . . . , 	} and maximum degree t.
Goal: Find an assignment φ : V (J) → V (G), where φ(i) ∈ Vi for every i ∈ [	],

that maximizes the number S(φ) of satisfied edges, i.e.,
S(φ) :=

∣
∣{ij ∈ E(J) | φ(i)φ(j) ∈ E(G)

}∣
∣.

The bounded degree case has been considered before, and we harness some of the
known hardness results for MCSI(t) in our proofs. First, let us point out that the
lower bound for exact algorithms holds even for the case when t = 3, as shown
by Marx and Pilipczuk [30]. We also use a polynomial-time approximation lower
bound given by Laekhanukit [24], where t can be set to any constant and the
approximation gap depends on t. The complexity assumption of this algorithm is
that NP-hard problems do not have polynomial time Las Vegas algorithms, i.e.,
NP �= ZPP. For parameterized approximations, we use a result by Lokshtanov
et al. [26], who obtain a constant approximation gap for the case when t = 3
(see Theorem 6). It seems that this result for parameterized algorithms is not
easily generalizable to arbitrary constants t so that the approximation gap would
depend only on t, as in the result for polynomial-time algorithms provided by
Laekhanukit [24]: neither the techniques found in [24] nor those of [26] seem to
be usable to obtain an approximation gap that depends only on t but not the
parameter 	. However, we develop a weaker parameterized inapproximability
result for the case when t ≥ ξ(	) = 	o(1) (see Theorem 7 in Sect. 4), and use it to
prove Proposition 2.

3 Parameterized Approximation for Fixed H

In this section we prove Theorem 5. Let us define an auxiliary family of classes
of graphs: for integers 4 ≤ a ≤ b and c ≥ 3, let C([a, b], c) denote the class
of graphs that are K1,c-free and Cp-free for any p ∈ [a, b]. Let T (b) be the
class of trees with two vertices of degree at least 3 at distance at most b. Let
C∗([a, b], c) ⊆ C([a, b], c) be the set of those G ∈ C([a, b], c), which are are also
T (� b−1

2 �)-free. Actually, we will prove a stronger statement that Theorem5 holds
for G ∈ C∗([4, z], 5) ∪ C([5, z], 4) for a constant z ≥ 5.

The proof consists of two steps: first we will prove it for graphs in C∗([4, z], 5),
and then for graphs in C([5, z], 4). In both proofs we will reduce from the
MCSI(3) problem. Here, we sketch the proof for the class C∗([4, z], 5). The rest
of the proof can be found in the full version [15]. Let Γ = (G,V1, . . . , V�,H) be
an instance of MCSI(3). For ij ∈ E(H), by Eij = Eji we denote the set of edges
between Vi and Vj . Note that we may assume that H has no isolated vertices,
each Vi is an independent set, and Eij �= ∅ if and only if ij ∈ E(H).
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Lokshtanov et al. [26] gave the following hardness result (the first statement
actually follows from Marx [29] and Marx and Pilipczuk [30]). We note that
Lokshtanov et al. [26] conditioned their result on the Parameterized Inapprox-
imability Hypothesis (PIH) and W[1] �= FPT. Here we use stronger assumptions,
i.e., the deterministic and randomized Gap-ETH, which are more standard in the
area of parameterized approximation. The reduction in [26] yields the following
theorem, when starting from [13,14] and [28], respectively (see also [7, Corollary
7.9]).

Theorem 6 (Lokshtanov et al. [26]). Consider an arbitrary instance Γ =
(G,V1, . . . , V�,H) of MCSI(3) with size n.

1. Assuming the ETH, for any computable function f , there is no f(	)·no(�/ log �)

time algorithm that solves Γ .
2. Assuming the deterministic Gap-ETH there exists a constant γ > 0, such that

for any computable function f , there is no f(	) · nO(1) time algorithm that
can distinguish between the two cases: (YES-case) val(Γ ) = 1, and (NO-case)
val(Γ ) < 1 − γ.

3. Assuming the randomized Gap-ETH there exists a constant γ > 0, such that
for any computable function f , there is no f(	) ·no(�) time algorithm that can
distinguish between the two cases: (YES-case) val(Γ ) = 1, and (NO-case)
val(Γ ) < 1 − γ.

Let Γ = (G,V1, . . . , V�,H) be an instance of MCSI(3). We aim to build an
instance (G′, k) of Independent Set, such that the graph G′ ∈ C∗([4, z], 5).

For each ij ∈ E(H), we introduce a clique Cij of size |Eij |, whose every
vertex represents a different edge from Eij . The cliques constructed at this step
will be called primary cliques, note that their number is |E(H)|. Choosing a
vertex v from Cij to an independent set of G′ will correspond to mapping i and
j to the appropriate endvertices of the edge from Eij , corresponding to v.

Now we need to ensure that the choices in primary cliques corresponding to
edges of G are consistent. Consider i ∈ V (H) and suppose it has three neigh-
bors j1, j2, j3 (the cases if i has fewer neighbors are dealt with analogously).
We will connect the cliques Cij1 , Cij2 , Cij3 using a gadget called a vertex-cycle,
whose construction we describe below. For each a ∈ {1, 2, 3}, we introduce s
copies of Cija

and denote them by D1
ija

,D2
ija

, . . . , Ds
ija

, respectively. Let us call
these copies secondary cliques. The vertices of secondary cliques represent the
edges from Eija

analogously as the ones of Cija
. We call primary and secondary

cliques as base cliques. We connect the base cliques corresponding to the ver-
tex i ∈ V (H) into vertex-cycle Ci. Imagine that secondary cliques, along with
primary cliques Cij1 , Cij2 , Cij3 , are arranged in a cycle-like fashion, as follows:
Cij1 ,D

1
ij1

,D2
ij1

, . . . , Ds
ij1

, Cij2 ,D
1
ij2

,D2
ij2

, . . . , Ds
ij2

, Cij3 ,D
1
ij3

,D2
ij3

, . . . , Ds
ij3

, Cij1.
This cyclic ordering of cliques constitutes the vertex-cycle, let us point out that
we treat this cycle as a directed one. As we describe below we put some edges
between two base cliques D1 and D2 only if they belong to some vertex-cycle Ci.
See Fig. 1 for an example of how we connect base cliques.
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Now, we describe how we connect the consecutive cliques in Ci. Recall that
each vertex v of each clique represents exactly one edge uw of G, whose exactly
one vertex, say u, is in Vi. We extend the notion of representing and say that v
represents u, and denote it by ri(v) = u.

Let us fix an arbitrary ordering ≺i on Vi. Now, consider two consecutive
cliques of the vertex-cycle. Let v be a vertex of the first clique and v′ be a vertex
from the second clique, and let u and u′ be the vertices of Vi represented by v
and v′, respectively. The edge vv′ exists in G′ if and only if u ≺i u′. See Fig. 2
how we connect two consecutive base cliques in a vertex-cycle. This finishes the
construction of Ci. We introduce a vertex-cycle Ci for every vertex i of H, note
that each primary clique Cij is in exactly two vertex-cycles: Ci and Cj . The
number of all base cliques is

k := |E(H)|
︸ ︷︷ ︸
primary
cliques

+
∑

i∈V (H)
degH(i) · s

︸ ︷︷ ︸
secondary cliques

= |E(H)| ·
(
1 +

s

2

)
≤ 3	

2
·
(
1 +

s

2

)
= O(	).

This concludes the construction of (G′, k). Since V (G′) is partitioned into k
base cliques, k is an upper bound on the size of any independent set in G′, and
a solution of size k contains exactly one vertex from each base clique.

We claim that the graph G′ is in the class C∗([4, z], 5). Moreover, if val(Γ ) = 1,
then the graph G′ has an independent set of size k and if the graph G′ has an
independent set of size at least (1 − γ′) · k for γ′ = γ

6+3s , then val(Γ ) ≥ 1 − γ.

4 Parameterized Approximation with H as a Parameter

Now let us consider the Independent Set problem in K1,d-free graphs, param-
eterized by both k and d. In this case we are able to give parameterized approxi-
mation lower bounds based on the following sparsification of MCSI. Recall that
ξ(	) = 2(log �)1/2+ε

= 	o(1) for any constant 1
2 > ε > 0, i.e., the term grows slower

than any polynomial (but faster than any polylogarithm).

Theorem 7. Consider an instance Γ = (G,V1, . . . , V�, J) of MCSI(t) with
size n and t > ξ(	). Assuming the deterministic Gap-ETH, for any computable

Fig. 1. A part of the construction of G′ for s = 2. Cliques Cab representing edge sets
Eab ⊆ E(G) are connected through secondary cliques Dp

ab.
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function f , there is no f(	) · nO(1) time algorithm that can distinguish between
the two cases: (YES-case) val(Γ ) = 1, and (NO-case) val(Γ ) ≤ ξ(	)/t.

Proposition 2 follows from Theorem 7 by easy reduction (see the full ver-
sion [15]). To prove Theorem7 we need two facts. The first is the Erdős-
Gallai theorem on degree sequences, which are sequences of non-negative integers
d1, . . . , dn, for each of which there exists a simple graph on n vertices such that
vertex i ∈ [n] has degree di. We use the following constructive formulation due
to Choudum [8].

Theorem 8 (Erdős-Gallai theorem [8]). A sequence of non-negative inte-
gers d1 ≥ · · · ≥ dn is a degree sequence of a simple graph on n vertices if
d1 + · · · + dn is even and for every 1 ≤ k ≤ n the following inequality holds:∑k

i=1 di ≤ k(k−1)+
∑n

i=k+1 min(di, k). Moreover, given such a degree sequence,
a corresponding graph can be constructed in polynomial time.

We also need a parameterized approximation lower bound for MCSI, as given
by Dinur and Manurangsi [13].

Theorem 9 (Dinur and Manurangsi [13]). Consider an instance Γ =
(G,V1, . . . , V�, J) of MCSI with size n and J a complete graph. Assuming the
deterministic Gap-ETH, there is no f(	) · nO(1) time algorithm for any com-
putable function f , that can distinguish between the following two cases: (YES-
case) val(Γ ) = 1, and (NO-case) val(Γ ) ≤ ξ(	)/	.

Proof of Theorem 7. Let t < 	 and let Γ = (G,V1, . . . , V�, J) be an instance
of MCSI where J is a complete graph. To find an instance of MCSI(t), we
want to construct a graph J ′ on 	 vertices with maximum degree t, for which
we use the Erdős-Gallai theorem. By Theorem 8 it is easy to verify that a t-
regular graph on 	 vertices exists if t	 is even. However, if t	 is odd, there is a
graph with 	 − 1 vertices of degree t and one vertex of degree t − 1. Moreover,
the proof of Theorem 8 by Choudum [8] is constructive, and gives a polynomial
time algorithm. Hence we can compute a graph J ′ with maximum degree t and
|E(J ′)| ≥ (t	 − 1)/2. Since J is a complete graph, J ′ is a subgraph of J .

v1

v2

v3

v4

v5

v1

v2

v3

v4

v5

D1 D2

Fig. 2. Edges between two consecutive cliques D1 and D2 in a vertex-cycle Ci, where
Vi = {v1, . . . , v5}. We show only edges incident to u ∈ V (D1) such that ri(u) ∈ {v2, v4}.
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We create a graph G′ by removing edges from G according to J ′: we remove all
edges between sets Vi and Vj of G if and only if ij �∈ E(J ′), and call the resulting
graph G′. Thus, we get new instance Γ ′ = (G′, V1, . . . , V�, J

′) of MCSI(t).
It is easy to see that if val(Γ ) = 1, then val(Γ ′) = 1 as well: we just use the

optimal solution for Γ . Now suppose that val(Γ ) ≤ ν, which means that each
solution φ satisfies at most a ν-fraction of edges of J . Let φ be an arbitrary
solution of Γ ′, which is also a solution for Γ because V (G) = V (G′) and V (J) =
V (J ′). By our assumption we know that it satisfies at most ν · E(J) edges of J .
Thus, the solution φ satisfies at most ν · E(J) edges of J ′ as well. Hence we
obtain

val(Γ ′) ≤ ν · E(J)
E(J ′)

= ν · 	(	 − 1)
t	 − 1

≤ ν · 	

t − 1/	
.

Now, by Theorem 9 we know that under the deterministic Gap-ETH, no f(	)·
nO(1) time algorithm can distinguish between val(Γ ) = 1 and val(Γ ) ≤ ξ(	)/	
given Γ . By the above calculations, for Γ ′ we obtain that no such algorithm can
distinguish between val(Γ ′) = 1 and val(Γ ′) ≤ ξ(�)

t−1/� by setting ν = ξ(	)/	. Recall

that ξ(	) = 2(log �)1/2+ε

where ε can be set to any positive constant in Theorem 9.
Given any constant ε′ > 0, we choose ε such that 2(log �)1/2+ε

/2(log �)1/2+ε′
≤

(t− 1/	)/t. It can be verified that such a constant ε > 0 always exists, assuming
w.l.o.g. that 	 is larger than some sufficiently large constant. This implies that
val(Γ ′) ≤ ξ(�)

t−1/� ≤ 2(log �)1/2+ε′
/t. Note that val(Γ ′) < 1 if t > 2(log �)1/2+ε′

, and

so we obtain Theorem 7 (for ξ(	) := 2(log �)1/2+ε′
). �

5 Conclusion and Open Problems

Our parameterized inapproximability results of Theorem5 suggest that the
Independent Set problem is hard to approximate to within some constant,
whenever it is W[1]-hard to solve on H-free graphs, according to Theorem 2. In
most cases it is unclear though whether any approximation can be computed
(either in polynomial time or by exploiting the parameter k), which beats the
strong lower bounds for polynomial-time algorithms for general graphs. The
only known exceptions to this are the K1,d-free case, where a polynomial-time
(d−1

2 +δ)-approximation algorithm was shown by Halldórsson [20], and the Ka,b-
free case, for which we showed a polynomial-time O

(
(a + b)1/a · α(G)1−1/a

)
-

approximation algorithm in Theorem3. For K1,d-free graphs, we were also able
to show an almost asymptotically tight lower bound for polynomial-time algo-
rithms in Theorem 4. For parameterized algorithms, our lower bound of Proposi-
tion 2 for K1,d-free graphs does not give a tight bound, but seems to suggest that
parameterizing by k does not help to obtain an improvement. For Pt-free graphs,
for which the Independent Set problem is conjectured to be polynomial-time
solvable, we showed in Proposition 1 that the complexity of any such algorithm
must grow with the length t of the excluded path.
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Settling the question whether H-free graphs admit better approximations to
Independent Set than general graphs, remains a challenging open problem,
both for polynomial-time algorithms and algorithms exploiting the parameter k.

Let us point out one more, concrete open question. Recall from Theorem 2
Bonnet et al. [3] were able to show W[1]-hardness for graphs which simultaneously
exclude K1,4 and all induced cycles of length in [4, z], for any constant z ≥ 5. On
the other hand, we presented two separate reductions, one for (K1,5, C4, . . . , Cz)-
free graphs, and another one for (K1,4, C5, . . . , Cz)-free graphs. It would be nice
to provide a uniform reduction, i.e., prove hardness for parameterized approxi-
mation in (K1,4, C4, . . . , Cz)-free graphs.
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Abstract. While structural width parameters (of the input) belong to
the standard toolbox of graph algorithms, it is not the usual case in com-
putational geometry. As a case study we propose a natural extension of
the structural graph parameter of clique-width to geometric point con-
figurations represented by their order type. We study basic properties
of this clique-width notion, and relate it to the monadic second-order
logic of point configurations. As an application, we provide several linear
FPT time algorithms for geometric point problems which are NP-hard
in general, in the special case that the input point set is of bounded
clique-width and the clique-width expression is also given.

Keywords: Point configuration · Order type · Fixed-parameter
tractability · Relational structure · Clique-width

1 Introduction

An order type is a useful means to characterize the combinatorial properties of
a finite point configuration in the plane. As introduced in Goodman and Pol-
lack [17,18], the order type of a given set P of points assigns, to each ordered
triple (a, b, c) ∈ P 3 of points, the orientation (either clockwise or counter-
clockwise) of the triangle abc in the plane. More generally, if the point set P
is not in a general position, the triple (a, b, c) may also be collinear (as the
natural third option).

Knowing the order type of a point set P is sufficient to determine some useful
combinatorial properties of the geometric set P , such as the convex hull of P and
other. For example, problems of finding convex holes in P or dealing with the
intersection pattern of straight line segments with ends in P , can be solved by
looking only at the order type of P and not on its geometric properties. That is
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why order types of points sets are commonly studied from various perspectives
in the field of computational geometry, e.g., [2–6,16,19,27].

On the other hand, knowing the order type of P is obviously not sufficient to
answer questions involving truly “geometric” aspects of P , e.g., distances in P
(straight-line or geodesic), or angles between the lines or the area of polygons
within P . Nevertheless, even in such geometry-based problems, a more efficient
subroutine computing with the order type of P might speed-up the overall com-
putation, which can be a promising direction for future research.

Unlike in the area of graphs and graph algorithms, where structural width
parameters are very common for many years, at least since the 90’s, no similar
effort can be seen in combinatorial and computational geometry. We would like
to introduce, in this paper, possible combinatorial handling of “structural com-
plexity” of a given point configuration P through defining its “width” (which
we would assume to be small for the studied inputs).

Inspired by graph structure parameters, the obvious first attempt could be to
extend the traditional notion of tree-width [26]. Such an extension is technically
possible (cf. tree-width of the Gaifman graph of a relational structure), but the
huge problem is that for the tree-width to be upper-bounded, the underlying
structure must be “sparse” – in particular, it can only have a linear number of
edges/tuples. This is clearly not satisfied for the order type in which about half
of all triples are of each orientation.

A better option comes with another traditional, but not so well-known, notion
of clique-width [12]. Clique-width can be bounded even on dense graphs, such as
on cliques, and, similarly to the case of Courcelle’s theorem [9] for tree-width,
clique-width also enjoys some nice metaalgorithmic properties, e.g. [11,15]. This
includes solving any decision (and some optimization as well) problems formu-
lated in the monadic second-order (MSO) logic in linear time. Hence, alongside
the (Sect. 2) proposed definition of the clique-width of point configurations, we
will introduce the MSO language of their order types and discuss which problems
can be formulated in this language (and hence solved in linear time if a point
set with a decomposition of bounded clique-width is given on the input).

Arguments which were omitted due to space restrictions can be found in the
full paper preprint arXiv:2004.02282.

2 Order Types and Clique-Width

We now recall the notion of an order type in a formal setting, and propose
a definition of the clique-width of (the order type of) a point configuration,
based on a natural specialization of the very general concept of clique-width of
relational structures. A relational structure S = (U, RS

1 , . . . , RS
a ) of the signature

σ = {R1, . . . , Ra} consists of a universe (a finite set) U and a (finite) list of
relations RS

1 , . . . , RS
a over U . For instance, for graphs, U = V (G) is the vertex

set and RG
1 = E(G) is the binary symmetric relation of edges of G.

https://arxiv.org/abs/2004.02282
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For a set of points P , here always considered in the plane, consider a map
ω : P 3 → {+,−, 0} where ω(a, b, c) = 0 if the triple of points1 a, b, c is collinear,
ω(a, b, c) = + if abc forms a counter-clockwise oriented triangle, and ω(a, b, c) =
− otherwise. Then ω is traditionally called the order type of P , but we, for
technical reasons, prefer defining the order type of P as the ternary relation
Ω ⊆ P 3 such that (a, b, c) ∈ Ω iff ω(a, b, c) = +. Hence we have formally got a
relational structure (P,Ω) of the signature consisting of one ternary symbol. We
will also write Ω(P ) to emphasize that Ω is the order type of the point set P .

Observe that ω(a, b, c) = − iff (b, a, c) ∈ Ω, and ω(a, b, c) = 0 iff (a, b, c) �∈ Ω
and (b, a, c) �∈ Ω. Hence, the relation Ω fully determines the usual order type
of P . Furthermore, (a, b, c) ∈ Ω implies (b, c, a) ∈ Ω and (c, a, b) ∈ Ω, and so we
call the set of triples {(a, b, c), (b, c, a), (c, a, b)} the cyclic closure of (a, b, c) ∈ Ω.

Unary Clique-Width. We start with the definition of ordinary graph clique-
width. Let an �-expression be an algebraic expression using the following four
operations on vertex-labelled graphs using � labels:

(u1) create a new vertex with single label i;
(u2) take the disjoint union of two labelled graphs;
(u3) add all edges between the vertices of label i and label j (i �= j); and
(u4) relabel all vertices with label i to label j.

The clique-width cw(G) of a graph G equals the minimum � such that (some
labelling of) G is the value of an �-expression.

The idea behind this definition is that the edge set of a graph G can be
constructed with “bounded amount of information”; this is since we have only
a fixed number of distinct labels and vertices of the same label are, intuitively
speaking, further indistinguishable by the expression.

This definition has an immediate generalization to the unary clique-width of
an order type Ω(P ) of a point set P (the adjective referring to the fact that
labels occur as unary predicates in the definition): replace (u3) with

(u3’) add to Ω the cyclic closures of all triples (a, b, c) of distinct elements such
that a is labelled i, b is labelled j and c is labelled k.

Unfortunately, although being very simple, this definition is generally not sat-
isfactory due to problems discussed, e.g., in [1] and specifically illustrated for
order types in our Proposition 2.

Multi-ary Clique-Width. While in the case of graphs (whose edge relation is
binary) it is sufficient to consider clique-width expressions with unary labels,
for the ternary order-type relation (as well as for other relational structures of
higher arity) it is generally necessary to allow creation of “intermediate” binary
labels, which are labelled pairs of points of P .

This generalization, which is in agreement with the treatment by Blumensath
and Courcelle [7], leads to the proposed new definition:
1 Note that if any two of a, b, c are not distinct, then we automatically get ω(a, b, c) = 0.
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Definition 1 (Clique-width of a point configuration). Consider an alge-
braic expression E using the following five operations on labelled relational struc-
tures (of arity 3 in this case) over point sets:

(w1) create a new point with single label i;
(w2) take the disjoint union of two point sets;
(w3) for every two points, point a of label i and point b of label j (i �= j), give

the ordered pair (a, b) binary label k;2

(w4) for every three pairwise distinct points, a, b and c such that c is of (unary)
label i, and the pair (a, b) is of (binary) label k, add to the structure the
cyclic closure of the ordered triple (a, b, c);

(w4’) under the same conditions as in (w4), add the cyclic closure of (b, a, c);
(w5) relabel all tuples (singletons or pairs) with label i to label j of equal arity.

The value of such expression E is the ternary relational structure on the points
created by (w1) and consisting of the triples added by (w4) and (w4’). The
auxiliary labels introduced in E are no longer relevant after the evaluation of E .

The width of an expression E constructed as in (w1)–(w5) equals the sum of
arities of the labels occuring in E .3 The clique-width cw(P ) of a point configu-
ration P equals the minimum � such that the order type Ω(P ) of P is the value
of an expression of width at most �.

Note that, although the clique-width is a concrete natural number, we will
not be interested in the exact value of it, but instead study whether the clique-
width is bounded or unbounded on a given class of point configurations.

For a closer explanation of this concept, we present a basic example:

Proposition 2. Let P be an arbitrary finite set of points in a strictly convex
position.4 Then the clique-width of P is bounded by a constant, while the unary
clique-width of P is unbounded.

Proof Outline. Let the points of P be p1, p2, . . . , pn in the counter-clockwise order
(starting arbitrarily). We start with p1 and stepwise add p2, p3 etc., changing
previous points to label 1 and the added point created with unique label 2. See
Fig. 1. Along the steps, after the creation of pj , we add the binary label 3 to all
pairs labelled 1 and 2, i.e., to (pi, pj) for all i < j, and create the order triples
(pi, pi′ , pj) of three distinct points over all pairs (pi, pi′) of label 3 and pj of
label 2. This construction witnesses that the clique-width of P is at most 4.

On the other hand, take unary clique-width with � labels, and |P | ≥ 2� + 1.
An arbitrary �-expression for Ω(P ) must involve a union operation (the “last”
one) over two sets such that one has more than � points. Then, at the time of
taking the union, there are two points a, b of the same label in the set by the
pigeon-hole principle. Let c be any point from the other set. Then there is no
2 After this operation, (a, b) may hold more than one binary label, which is ok.
3 Note that this ‘sum of arities’ measure directly generalizes the number � of unary
labels in the expression of (u1)–(u4).

4 That is, in the convex hull of P every point of P is a vertex.
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way, based on the labels, to distinguish between the triples (a, b, c) and (b, a, c),
which must have the opposite orientations in Ω(P ). Therefore, the clique-with
of P must be at least � + 1.

pj

p1
p2 pi

pi

pn

Fig. 1. An illustration of the expression (width 4) in Proposition 2. Unary labels 1 are
blue (on p1, . . . , pj−1), the unique label 2 is orange (on pj just added), and the binary
labels 3 are with green arrows. We are just creating the red triple(s) (pi, pi′ , pj). (Color
figure online)

Annotated Point Configurations. In some situations, it may be useful to consider
a point configuration P with additional information (or structure) on the points
or selected pairs of them. An exemplary use case for such annotations is to study
polygons, with P as the vertex set, for which case we are considering an order
type Ω(P ) together with a directed Hamiltonian cycle on P representing the
counter-clockwise boundary of P .

Formally, we simply consider relational structures (over P ) with the signature
consisting of the ternary order type and arbitrary binary or unary symbols.
The clique-width of such an annotated point configuration P is, naturally, as in
Definition 1 with additional rules that some of the auxiliary unary and binary
labels are at the end turned into the desired unary and binary relations on P .

3 MSO Logic of Order Types

The beginning of this section is devoted to a short introduction of the monadic
second-order (MSO) logic of relational structures. Recall a relational structure
S = (U, RS

1 , . . . , RS
q ) of the signature σ = {R1, . . . , Rq}.

The language of MSO logic (of the signature σ) then consists of the standard
propositional logic, quantifiers ∀,∃ ranging over elements and subsets of the
universe U , and the relational symbols R1, . . . , Rq with the following meaning:
for Ri of arity a, we have S |= Ri(x1, . . . , xa) if and only if (x1, . . . , xa) ∈ RS

i .
In our specific case of order types Ω(P ) of point sets P , we use the relational

symbol ordccw(x1, x2, x3) for Ω within MSO logic. For example, we can express
that a point y lies strictly in the convex hull of points x1, x2, x3 as follows
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[
ordccw(x1, x2, x3) ∧

∧
i=1,2,3

ordccw(xi, xi+1, y)
]

∨ (1)
[
ordccw(x3, x2, x1) ∧

∧
i=1,2,3

ordccw(xi+1, xi, y)
]
,

where x4 is taken as x1.
More generally, we can express that a point y ∈ P belongs to the convex hull

(not necessarily strictly now) of a set X ⊂ P with the following formula:

convhull(X, y) ≡ y ∈ X ∨ ∀x, x′ ∈ X (2)[(
x �= x′ ∧ ∀z ∈ X¬ ordccw(x′, x, z)

) → ¬ ordccw(x′, x, y)
]

Then we may express, for example, that a set X ⊆ P is a convex hole (i.e., no
point outside of X belongs to the convex hull of X, and no point of X belongs
to the convex hull of the rest of X) with the following:

∀y �∈X (¬ convhull(X, y)) ∧ ∀Y ⊆X∀z∈X(convhull(Y, z) → z ∈ Y ) (3)

Further similar examples are easy to come up with.

Interpretations and Transductions. We sketch the concept of “translating”
between relational structures. Consider relational signatures σ = {R1, . . . , Rq}
and τ = {R′

1, . . . , R
′
t}. A (simple) MSO interpretation of τ -structures in σ-

structures is a t-tuple of MSO formulas Ψ = (ψi : 1 ≤ i ≤ t) of the signature σ,
where the number of free variables of ψi equals the arity ai of R′

i. A τ -structure
T is interpreted in a σ-structure S via Ψ if T and S share the same ground set U
and, for each 1 ≤ i ≤ t, we have (x1, . . . , xai

) ∈ R′
i
T ⇐⇒ S |= ψi(x1, . . . , xai

).
As a short example, consider a point set P and its mirror image P ′. Then

the order type Ω(P ′) can be interpreted in Ω(P ) simply by taking ψ1(a, b, c) ≡
ordccw(b, a, c). The true power of interpretations will show up in the following.

There is a more general concept of a transduction from a σ-structure S to a
set of τ -structures which, before taking an (MSO) interpretation, has abilities
(in this order of application); (i) to equip S with a fixed number of arbitrary
parameters given as unary labels (because of this, the result of a transduction is
not deterministic, but a set of τ -structures), (ii) to “amplify” the ground set of
S by taking a bounded number of disjoint copies of S, and (iii) to subsequently
restrict the ground set by an MSO formula with one free variable. See Courcelle
and Engelfriet [10] for more technical details on transductions.

Considering a transduction Ψ (as described above) and a σ-structure S, let
Ψ(S) denote the set of τ -structures which result from S under the transduction Ψ .
For a class of relational structures S, the image under a transduction Ψ of the
class S is the union of all transduction results, precisely, Ψ(S) :=

⋃
S∈S Ψ(S).

Note that one can come up with various notions of clique-width of relational
structures (also giving distinct numbers for the same structure), but the under-
lying essence is always “the same”. In order to smoothen out marginal technical
differences between the various definitions, we consider the following. We say
that a class S is of bounded clique-width if there exists a constant h such that the
clique-width of every S ∈ S is at most h. On such abstract level, we then have
the following crucial characterization (essentially a metadefinition):
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Theorem 3 (Blumensath and Courcelle [7, Proposition 27]). A class S of
finite relational structures (of the same signature) is of bounded clique-width, if
and only if S is contained in the image of the class of finite trees under an MSO
transduction.

For a very informal explanation of the meaning of this statement, we remark
that a tree which is the preimage of the mentioned transduction gives a hier-
archical structure to the clique-width expression in Definition 1. The arbitrary
transduction parameters then determine particular operations (and labelling)
used within the expression, and the formula(s) of a final interpretation roughly
encodes Definition 1 itself. No copying (“amplification”) is necessary there.

Since the concept of a transduction is transitive, Theorem3 implies:

Corollary 4. If a class S of order types (of points) is of bounded clique-width,
then the image of S under an MSO transduction is also of bounded clique-width.

Deciding MSO Properties. Perhaps the most important application of bounded
clique-width of point configurations P could be in faster deciding of MSO-
definable properties (and, in greater generality, of some optimization and count-
ing properties as well, see examples in [11]) of the order type of P .

Theorem 5 (Courcelle et al. [11], via Theorem 3). Consider a class S

of finite relational structures of signature σ and of bounded clique-width. For
any MSO sentence ϕ of signature σ, if a structure S ∈ S is given on the input
alongside with a clique-width expression of bounded width, then we can decide in
linear time whether S |= ϕ (i.e., whether S has the property ϕ).

Furthermore, under the same assumptions for S and for an MSO formula
ϕ(X) with a free set variable X, we can find in linear time a minimum- or
maximum-cardinality set X such that S |= ϕ(X), and we can enumerate all
sets X such that S |= ϕ(X) in time which is linear in the input plus output size.

4 Assorted Examples

First, to give readers a better feeling about how big the clique-width of “nicely
looking” point sets in the plane can be, we show the following:

Theorem 6. Let P be a point configuration, P0 ⊆ P and d = |P \ P0|.
(a) If all points of P0 are collinear, then the clique-width of P is in O(d).
(b) Assume the points of P0 are in a strictly convex position. If d ≤ 1, then the

clique-width of P is bounded (by a constant). On the other hand, there exist
examples already with d = 2 and unbounded clique-width of P .
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Proof Outline. In case (a), we first create the d points of P \ P0, each with its
unique label, and their counter-clockwise order triples. See Fig. 2(a). Then we
stepwise create the collinear points of P0, ordered from left to right. During the
steps, we add binary labels on P0 between each pair from left to right, and we
also in the right order create the needed order triples having one point in P0 and
two points in P \ P0. At the end, we easily create from the binary labels on P0

the remaining order triples having two points in P0 and one in P \ P0.
In case (b), if d = 1, we construct an expression similarly as in Proposition 2,

but we simultaneously proceed in two subsequences of the counter-clockwise
perimeter of P0, “opposite” to each other. This process of construction allows
us to create also the counter-clockwise order triples involving the sole point of
P \ P0 (in “the middle”).

a)

P0

b)

P0

m n

p0

q0

pk
p3k+1

Fig. 2. Illustrations of the two parts of Theorem6. (a) Labelling for an expression of
bounded width. (b) A sketch of interpreting a large grid within the point configuration.
(Color figure online)

In case (b) with d ≥ 2, we present a construction informally shown in
Fig. 2(b). The underlying idea is to use the points of P \P0 to “mutually relate”
opposite points of P0, such as the depicted collinear triples p0,m, q0 and q0, n, pk.
Collinear triples are easy to detect within the order type, hence we can this way
interpret the binary relation between p0 and pk, analogously between subsequent
p1 and pk+1, and so on (see the green dashed arrows in the picture). Together
with a description of neighbouring points of P0 – see x and x′ in (2), we can inter-
pret an arbitrarily large square grid graph on the points p0, p1, . . . , pk, pk+1, . . .
Since the square grid is a folklore basic example of unbounded clique-width [10],
Corollary 4 implies that the clique-width of such configurations P (with d = 2)
is unbounded. A similar construction, albeit more complicated, with “doubling”
the points qi, can show the same result without having collinear triples in P .

Some NP-Hard Problems of Point Configurations

As already mentioned, perhaps the most interesting computing application of
clique-width of point sets could be in designing algorithms which run in param-
eterized polynomial, or even linear, time with respect to the clique-width as the
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parameter. This is especially relevant for problems for which no such algorithms
are believed to exist in general, such as for NP-hard problems.

A parameterized problem has an FPT algorithm if the algorithm runs in
time O(f(d) · nc) where f is an arbitrary computable function of the (fixed)
parameter d, and c is a constant. If c = 1, then we speak about a linear FPT
algorithm (e.g., this is the complete case of Theorem 5).

Since, except the binary case such as that of graphs, there is no known FPT
algorithm (even approximation one) for finding a clique-width expression of rela-
tional structures of bounded clique-width, we must assume that an expression of
bounded width is given alongside with the input point configuration. Notice that
for the above presented examples of small clique-width, the relevant expressions
are very natural and easy to come with.

General Position Subset. This problem asks whether, for a given point set P
and integer k, there exists a subset Q ⊆ P such that no three points of Q are
collinear and |Q| ≥ k. This problem is NP-hard and APX-hard by [14].

Theorem 7. Assume a point set P is given alongside with a clique-width expres-
sion (for Ω(P )) of width d. Then the General position subset problem of P
is solvable in linear FPT time with respect to the parameter d.

Proof. We write the MSO formula

ϕ(X) ≡ ∀x, y, z ∈ X
[
x �= y �= z �= x → (

ordccw(x, y, z) ∨ ordccw(y, x, z)
)]

to say that no three points in X are collinear, and then compute using Theorem5
the value maxΩ(P ) |=ϕ(X) |X| and compare to k. ��

A very similar simple approach works also for the NP-hard problem Hitting
set for induced lines [25], which asks for a minimum-cardinality subset H ⊆
P such that the lines between each pair of points of P all contain a point of H.

Minimum Convex Partition. Consider a given point set P and an integer k. The
objective of this problem [13] is to decide whether the convex hull conv(P ) of P
can be partitioned into ≤ k convex faces. By a convex face in this situation we
mean the convex hull of a subset Q ⊆ P which is a convex hole of P (recall
(3)). Note that in our definition Q must be strictly convex, but we may as well
apply a non-strict variant in which some points of Q (possibly) are not vertices
of conv(Q) but lie on the boundary of conv(Q); the arguments would be similar.

This problem has been recently claimed NP-hard [20]. Unfortunately, inher-
ent limitations of MSO logic do not allow us to directly formulate the Min-
imum convex partition as an MSO optimization problem (one is not
allowed to quantify set families), but we can handle it if we take k as an addi-
tional parameter.

Theorem 8. Assume a point set P given alongside with a clique-width expres-
sion of width d. The Minimum convex partition problem of P into ≤ k convex
faces is solvable in linear FPT time with respect to the parameter d + k.
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Proof Outline. Let convhole(X) denote the MSO formula (3). We may now write

∃X1, . . . , Xk

[∧
1≤i≤k

convhole(Xi) ∧ convpartition(X1, . . . , Xk)
]

where the subformula convpartition checks whether the convex hulls of the sets
Xi partition conv(P ). At this point, we know that each Xi is a convex hole in P ,
and we further test for set inclusion and the following two conditions:

– the boundaries of conv(Xi) and conv(Xj) (1 ≤ i < j ≤ k) do not cross, and
– every boundary edge of conv(Xi) is, at the same time, a boundary edge of

exactly one of conv(Xj) (i �= j) or of conv(P ).

Both conditions can be, although not easily, stated in MSO over order types.

Terrain Guarding. Another NP-hard problem formulated on point sets [22] is
that of guarding an x-monotone polygonal line L with the given vertex set P . The
objective of guarding is to find a minimum-cardinality vertex guard set G ⊆ P
such that every point � on L is seen by some point g ∈ G “from above the
terrain”, that is, the straight line segment from g to � is never strictly below L.

Note that the point set P (no two points of the same x-coordinate) uniquely
determines the terrain L, with the vertices ordered by their x-coordinates as
P = (p1, p2, . . . , pn). However, the order type Ω(P ) does not (unless we would
add an auxiliary point “at infinity” in the y-axis direction). That is why we
assume the terrain L given as a relational structure consisting of ternary Ω(P )
and the binary successor relation consisting of the pairs (p1, pi+1) for 1 ≤ i < n.

Fig. 3. Guarding a terrain: the two black square vertices guard the whole terrain, but
the bottom horizontal segment is not seen by any single one of them. To turn this (pair
of guards) into a valid segmented terrain guarding instance with a solution, we may
subdivide the bottom segment into two segments with a new vertex (the hollow dot)
of the terrain – each guard would then see an entire one of the two segments.

There is one further complication in regard of the order type Ω(P ) of the
terrain in this problem: if, in an instance, some edge of L is seen together by two
guards, but no one sees the full edge, then knowing only Ω(P ) is not sufficient
to verify validity of such a solution (see Fig. 3). That is why we define here
the Segmented terrain guarding variant as follows: for every segment s of
L there must exist a vertex guard g seeing entire s and, moreover, there is a
dedicated subset P1 ⊆ P such that the guards g are selected from P1. By a
natural subdivision of terrains in the hard instances of terrain guarding [22] we
immediately get that also Segmented terrain guarding is NP-hard.

Theorem 9. Assume a polygonal terrain L given alongside with a clique-width
expression of width d (defining both the successor relation and the order type of
the vertices, cf. end of Sect. 2). The Segmented terrain guarding problem
of L is solvable in linear FPT time with respect to the parameter d.
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Proof Outline. We show a formula seguard(X) stating that every segment of the
terrain L is seen by one point of X. Then, we verify that, for every successive
pair of vertices (pi, pi+1) of L, there exists x ∈ X such that;

– the triple (x, pi, pi+1) is oriented counter-clockwise (for x to see the segment
pipi+1 “from above”), and

– no “peak” z on L between pi, pi+1 and x is oriented clockwise from (x, pi+1)
(if z is to the left of x) or counter-clockwise from (x, pi) (z to the right of x).

This suffices since L is x-monotone. Then Theorem5 finishes the argument.

We can similarly handle the orthogonal terrain guarding problem which is
also NP-hard [8]. Another possible extension is to minimize the sum of weighted
guards, using a weighted variant of Theorem5 (as in [11]). However, our app-
roach to terrain guarding cannot be directly extended to the traditional and
more general Art gallery (guarding) problem [23], not even in the adjusted case
when each edge of the polygon is seen by a single vertex guard. This is due to
possible presence of “blind spots” in the interior of the polygon which cannot
be determined knowing just the order type Ω(P ) and the boundary edges of the
polygon on P . Interested readers may find more in the full paper.

Polygon Visibility Graph. As we have mentioned the Art gallery problem, we
briefly add that people are also studying problems related to the visibility graph
of a given polygon Q. The visibility graph of Q has the same vertex set as Q
and the edges are those line segments with ends in the vertices of Q which are
disjoint from the complement of the polygon. We give the following toolbox:

Theorem 10. Assume a polygon Q with vertex set P given as a relational struc-
ture consisting of the order type Ω(P ) and the counter-clockwise Hamiltonian
cycle of edges of Q. Then the visibility graph of Q has an MSO interpreta-
tion in Q.

5 Conclusions

We managed to show, in this limited space, only few example applications of
bounding the clique-width in efficient parameterized algorithms for geometric
point problems. More examples of similar kind could be added but, as a future
work, we would especially like to investigate possible applications to “metric”
problems. Of course, MSO logic of order types cannot express metric properties
of a point set, but it could be possible that in some problems the enumerative
part of Theorem 5 provided us with a relatively short list of small subconfigu-
rations which would then be processed even by brute force, resulting in a faster
algorithm. For instance, we suggest to investigate in this manner the problem of
a minimum area triangle on a given point set, which is in general 3SUM-hard
(that is, not believed to have a subquadratic algorithm).

Another possible extension would be to consider order types in dimension 3
(or higher), but then even a strictly convex point set could easily have unbounded
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clique-width – the quaternary relational structures of such order types just seem
to be too complex even in very simple cases.

Lastly, we mention another very natural question; can the clique-width of
a point configuration be at least approximated by an FPT algorithm with the
width as the fixed parameter? Such an approximation is possible in the case of
graph clique-width [21,24], thanks to the close relation of graph clique-width to
rank-width and to binary matroids. Perhaps the natural correspondence of order
types to oriented matroids could be of some help in this research direction.

Acknowledgments. We would like to thank to Achim Blumensath and Bruno Cour-
celle for discussions about the clique-width of relational structures.
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Abstract. We study the complexity of the problems of finding, given a
graph G, a largest induced subgraph of G with all degrees odd (called
an odd subgraph), and the smallest number of odd subgraphs that par-
tition V (G). We call these parameters mos(G) and χodd(G), respectively.
We prove that deciding whether χodd(G) ≤ q is polynomial-time solv-
able if q ≤ 2, and NP-complete otherwise. We provide algorithms in time
2O(rw) ·nO(1) and 2O(q·rw) ·nO(1) to compute mos(G) and to decide whether
χodd(G) ≤ q on n-vertex graphs of rank-width at most rw, respectively,
and we prove that the dependency on rank-width is asymptotically opti-
mal under the ETH. Finally, we give some tight bounds for these param-
eters on restricted graph classes or in relation to other parameters.

Keywords: Odd subgraph · Odd coloring · Rank-width ·
Parameterized complexity · Single-exponential algorithm · Exponential
Time Hypothesis

1 Introduction

Gallai proved, around 60 years ago, that the vertex set of every graph can be
partitioned (in polynomial time) into two sets, each of them inducing a subgraph
in which all vertices have even degree (cf. [26, Exercise 5.19]). Let us call such
a subgraph an even subgraph, and an odd subgraph is defined similarly. Hence,
every graph G contains an even induced subgraph with at least |V (G)|/2 vertices.
The analogous properties for odd subgraphs seem to be more elusive. For a graph
G, let mos(G) and χodd(G) be the order of a largest odd induced subgraph of G
and the minimum number of odd induced subgraphs of G that partition V (G),
respectively. Note that for χodd(G) to be well-defined, each connected component
of G must have even order.

Concerning the former parameter, the following long-standing –and still
open– conjecture is cited as “part of the graph theory folklore” by Caro [7]:
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there exists a positive constant c such that every graph G without isolated ver-
tices satisfies mos(G) ≥ c · |V (G)|. In the following discussion we only consider
graphs without isolated vertices. Caro [7] proved that mos(G) ≥ (1−o(1))

√
n/6

where n = |V (G)|, and Scott [33] improved this bound to cn
logn for some c > 0.

The conjecture has been proved for particular graph classes, such as trees [30],
graphs of bounded chromatic number [33], graphs of maximum degree three [2],
and graphs of tree-width at most two [20], also obtaining best possible constants.

As for the complexity of computing mos(G), Cai and Yang [6] studied, among
other problems, two parameterized versions of this problem, and their reductions
imply that it is NP-hard. They also prove the NP-hardness of computing the
largest size of an even induced subgraph of a graph G, denoted mes(G). As a
follow-up of [6], related problems were studied by Cygan et al. [9] and Goyal et
al. [19].

The parameter χodd, which we call the odd chromatic number, has attracted
much less interest in the literature. To the best of our knowledge, it has only been
considered by Scott [34], who defined it (using a different notation) and proved
that the necessary condition discussed above for χodd(G) to be well-defined is
also sufficient. He also provided lower and upper bounds on the maximum value
of χodd(G) over all n-vertex graphs. In particular, there are graphs G for which
χodd(G) = Ω(

√
n).

Our Contribution. In this article we mostly focus on computational aspects
of the parameters mos and χodd. Note that, given a graph G, deciding whether
χodd(G) ≤ 1 is trivial. We prove that deciding whether χodd(G) ≤ q is NP-
complete for every q ≥ 3 using a reduction from q-Coloring. We obtain
a dichotomy on the complexity of computing χodd by showing that deciding
whether χodd(G) ≤ 2 can be solved in polynomial time, through a reduction to
the existence of a feasible solution to a system of linear equations over GF[2].

Given the NP-hardness of computing both parameters, we are interested in
its parameterized complexity [8,11], namely in identifying relevant parameters k
that allow for FPT algorithms, that is, algorithms running in time f(k) ·nO(1) for
some computable function f . Since the natural parameter, that is, the solution
size, for mos has been studied by Cai and Yang [6] (and its dual as well), and
for χodd the problem is para-NP-hard by our hardness results, we rather focus
on structural parameters. Two of the most successful ones are definitely tree-
width and clique-width, or its parametrically equivalent parameter rank-width
introduced by Oum and Seymour [29]. This latter parameter is stronger than tree-
width, in the sense that graph classes of bounded tree-width also have bounded
rank-width. We present algorithms running in time 2O(rw) · nO(1) for computing
mes(G) and mos(G) for an n-vertex graph G given along with a decomposition
tree of width at most rw, and an algorithm in time 2O(q·rw) · nO(1) for deciding
whether χodd(G) ≤ q. These algorithms are inspired by the ones of Bui-Xuan
et al. [3,4] to solve Maximum Independent Set parameterized by rank-width
and boolean-width, respectively. To the best of our knowledge, our algorithms
are the first ones parameterized by rank-width for an NP-hard problem running
in time 2o(rw

2) · nO(1) [1,3,17,18,28].
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We also show that the dependency on rank-width of the above algorithms
is asymptotically optimal under the Exponential Time Hypothesis (ETH) of
Impagliazzo et al. [21,22]. For this, it suffices to obtain a linear NP-hardness
reduction from a problem for which a subexponential algorithm does not exist
under the ETH. While our reduction to decide whether χodd(G) ≤ q already
satisfies this property, the NP-hardness proof of Cai and Yang [6] for computing
mes(G) and mos(G), which is from the Exact Odd Set problem [12], has a
quadratic blow-up, so only a lower bound of 2o(

√
n) can be deduced from it.

Motivated by this, we present linear NP-hardness reductions from 2in3-Sat to
the problems of computing mes(G) and mos(G). The reduction itself is not very
complicated, but the correctness proof requires some non-trivial arguments1.

Finally, motivated by the complexity of computing these parameters, we
obtain two tight bounds on their values. We first prove that for every graph G
with all components of even order, χodd(G) ≤ tw(G)+1, where tw(G) denotes the
tree-width of G. This result improves the best known lower bound on a parameter
defined by Hou et al. [20] (cf. Sect. 5 for the details). On the other hand, we prove
that, for every n-vertex graph G such that V (G) can be partitioned into two non-
empty sets that are complete to each other (i.e., a join), mos(G) ≥ 2 · ⌈

n−2
4

⌉
.

In particular, this proves the conjecture about the linear size of an odd induced
subgraph for cographs, which are the graphs of clique-width two. This adds
another graph class to the previous ones for which the conjecture is known to
be true [2,20,30,33]. It is interesting to mention that our proof implies that, for
a cograph G, χodd(G) ≤ 3, and this bound is also tight. While for cographs, or
equivalently P4-free graphs, we have proved that the odd chromatic number is
bounded, we also show that it is unbounded for P5-free graphs.

Organization. We start with some preliminaries in Sect. 2. In Sect. 3 we pro-
vide the linear NP-hardness reductions and the polynomial-time algorithm for
deciding whether χodd(G) ≤ 2. The FPT algorithms by rank-width are presented
in Sect. 4, and the tight bounds in Sect. 5. We conclude the article in Sect. 6
with a number of open problems and research directions. Additional results for
related problems can be found in the full version, available at https://arxiv.org/
abs/2002.06078. Due to space limitations, the proofs of the results marked with
‘(�)’ can be found in the full version.

2 Preliminaries

Graphs. We use standard graph-theoretic notation, and we refer the reader
to [10] for any undefined notation. Let G = (V,E) be a graph, S ⊆ V , and H be
a subgraph of G. We denote an edge between u and v by uv. The order of G is
|V |. The degree (resp. open neighborhood, closed neighborhood) of a vertex v ∈ V

1 We would like to mention that another NP-hardness proof for computing mes(G)
has very recently appeared online [32]. The proof uses a chain of reductions from
Maximum Cut and, although it also involves a quadratic blow-up, it can be avoided
by starting from Maximum Cut restricted to graphs of bounded degree.

https://arxiv.org/abs/2002.06078
https://arxiv.org/abs/2002.06078
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is denoted by deg(v) (resp. N(v), N [v]), and we let degH(v) = |N(v) ∩ V (H)|.
We use the notation G − S = G[V (G) \ S]. The maximum and minimum degree
of G are denoted by Δ(G) and δ(G), respectively. We denote by Pi the path on i
vertices. For two graphs G1 and G2, with V (G2) ⊆ V (G1), the union of G1 and
G2 is the graph (V (G1), E(G1) ∪ E(G2)). The operation of contracting an edge
uv consists in deleting both u and v and adding a new vertex w with neighbors
N(u) ∪ N(v) \ {u, v}. A graph M is a minor of G if it can be obtained from a
subgraph of G by a sequence of edge contractions. For a positive integer k ≥ 3,
the k-wheel is the graph obtained from a cycle C on k vertices by adding a new
vertex v adjacent to all the vertices of C. A join in a graph G is a partition of
V (G) into two non-empty sets V1 and V2 such that every vertex in V1 is adjacent
to every vertex in V2. For a positive integer i, we denote by [i] the set containing
every integer j such that 1 ≤ j ≤ i.

Parameterized Complexity. We refer the reader to [8,11,14,27] for basic
background on parameterized complexity, and we recall here only some basic
definitions. A parameterized problem is a decision problem whose instances are
pairs (x, k) ∈ Σ∗ ×N, where k is called the parameter. A parameterized problem
is fixed-parameter tractable (FPT) if there exists an algorithm A, a computable
function f , and a constant c such that given an instance I = (x, k), A (called an
FPT algorithm) correctly decides whether I ∈ L in time f(k) · |I|c. A parame-
terized problem is slice-wise polynomial (XP) if there exists an algorithm A and
two computable functions f, g such that given an instance I = (x, k), A (called
an XP algorithm) correctly decides whether I ∈ L in time f(k) · |I|g(k).

The Exponential Time Hypothesis (ETH) of Impagliazzo et al. [21,22] implies
that the 3-Sat problem on n variables cannot be solved in time 2o(n). We say
that a polynomial reduction from a problem Π1 to a problem Π2, generating an
input of size n2 from an input of size n1, is linear if n2 = O(n1). Clearly, if Π1

cannot be solved, under the ETH, in time 2o(n) on inputs of size n, and there
exists a linear reduction from Π1 to Π2, then Π2 cannot either.

Width Parameters. In this article we mention several width parameters of
graphs, such as tree-width, rank-width, clique-width, or boolean-width. However,
since we only deal with rank-width in our algorithms (cf. Sect. 4), we give only
the definition of this parameter here.

A decomposition tree of a graph G is a pair (T, δ) where T is a full binary
tree (i.e., T is rooted and every non-leaf node has two children) and δ a bijection
between the leaf set of T and the vertex set of G. For a node w of T , we denote
by Vw the subset of V (G) in bijection –via δ– with the leaves of the subtree of
T rooted at w. We say that the decomposition defines the cut

(
Vw, Vw

)
. The

rank-width of a decomposition tree (T, δ) of a graph G, denoted by rw(T, δ),
is the maximum over all w ∈ V (T ) of the rank of the adjacency matrix of
the bipartite graph G[Vw, Vw]. The rank-width of G, denoted by rw(G), is the
minimum rw(T, δ) over all decomposition trees (T, δ) of G.

Definition of the Problems. A graph is called odd (resp. even) if every vertex
has odd (resp. even) degree. The Maximum Odd Subgraph (resp. Maximum
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Even Subgraph problem consists in, given a graph G, determining the maxi-
mum order of an odd (resp. even) induced subgraph of G, that is, mos(G) (resp.
mes(G)). An odd q-coloring of a graph G = (V,E) is a set of q odd induced sub-
graphs H1, . . . , Hq of G such that V (H1) 	 · · · 	 V (Hq) is a partition of V . The
Odd q-Coloring problem consists in determining whether an input graph G
admits an odd q-coloring. In the Odd Chromatic Number problem, the objec-
tive is to determine the smallest integer q such that an input graph G admits an
odd q-coloring.

3 Linear Reductions and a Polynomial-Time Algorithm

We first present the linear reductions for Maximum Even Subgraph and Max-
imum Odd Subgraph, and then for Odd q-Coloring for q ≥ 3.

Theorem 1 (�). The Maximum Even Subgraph and Maximum Odd Sub-
graph problems are NP-hard. Moreover, none of them can be solved in time
2o(n) on n-vertex graphs unless the ETH fails.

Theorem 2. For every integer q ≥ 3, given a graph G on n vertices, determin-
ing whether χodd(G) ≤ q is NP-complete and, moreover, cannot be solved in time
2o(n) unless the ETH fails.

Proof: Membership in NP is clear. For every integer q ≥ 3, we present a linear
reduction from the q-Coloring problem, which is well-known to be NP-hard
and not solvable in time 2o(n) on n-vertex graphs unless the ETH fails [21,22]. We
will use the fact that any graph G = (V,E) such that |V |+ |E| is even admits an
orientation of E such that, in the resulting digraph, all the vertex in-degrees are
odd; we call such an orientation an odd orientation. Moreover, an odd orientation
can be found in polynomial time (for a proof, see for instance [16]).

Given an instance G = (V,E) of q-Coloring, we build from G an instance
G

�

of Odd q-Coloring as follows. First, if |V |+ |E| is odd, we arbitrarily select
a vertex v ∈ V and add a triangle on three new vertices v1, v2, v3 and the edge
vv1. Note that the resulting graph G′ = (V ′, E′) is q-colorable for q ≥ 3 if and
only if G is, and that |V ′| + |E′| is even. Hence, E′ admits an odd orientation φ.
We let G

�

be the graph obtained from G′ by subdividing every edge once. Note
that the size of G

�

depends linearly on the size of G, as required. We claim that
χ(G) ≤ q if and only if χodd(G

�

) ≤ q.
Assume first that we are given a proper q-coloring c : V → [q], which can

trivially be extended to a proper q-coloring of G′. We define an odd q-coloring
codd of G

�

as follows. If v ∈ V (G
�

) is an original vertex of V ′, we set codd(v) = c(v).
Otherwise, if v is a subdivision vertex between two vertices u and w of V ′, we set
codd(v) = c(u) if edge uw is oriented toward u in φ, and codd(v) = c(w) otherwise.
It can be easily verified that codd is indeed an odd q-coloring of G

�

.
Conversely, let codd : V (G

�

) → [q] be an odd q-coloring of G
�

, let uw be an
edge of G′, and let v be the subdivision vertex in G

�

between u and w. If follows
that codd(u) �= codd(w), as otherwise vertex v would have degree zero or two in
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its color class. Therefore, letting c(v) = codd(v) for every vertex v ∈ V (G) defines
a proper q-coloring of G, and the theorem follows. �

Theorem 2 establishes the NP-hardness of Odd q-Coloring for every q ≥
3. On the other hand, the Odd 1-Coloring is trivial, as for any graph G,
χodd(G) ≤ 1 if and only if G is an odd graph itself. Therefore, the only remaining
case is Odd 2-Coloring. In the next theorem we prove that this problem can
be solved in polynomial time.

Theorem 3. The Odd 2-Coloring problem can be solved in polynomial time.

Proof: We will express the Odd 2-Coloring problem as the existence of a
feasible solution to a system of linear equations over the binary field, which
can be determined in polynomial time using, for instance, Gaussian elimination.
Given an instance G = (V,E) of Odd 2-Coloring, let its vertices be labeled
v1, . . . , vn. For every vertex vi ∈ V we create a binary variable xi, and for every
edge vivj ∈ E, we create a binary variable xi,j . The interpretation of these two
types of variables is quite different. Namely, for a vertex variable xi, its value
corresponds to the color (either 0 or 1) assigned to vertex vi. On the other
hand, the value of an edge variable corresponds the whether this edge belongs
to a monochromatic subgraph, that is, to whether both its endvertices get the
same color. In this case, its value is 1, and 0 otherwise. We guarantee this latter
property by adding the following set of linear equations:

xi + xj + xi,j ≡ 1 for every edge vivj ∈ E. (1)

To guarantee that the degree of every vertex in each of the two monochro-
matic subgraphs is odd, we add the following set of linear equations (for an edge
variable xi,j , to simplify the notation we interpret xj,i = xi,j):

∑

j:vj∈N(vi)

xi,j ≡ 1 for every vertex vi ∈ V. (2)

Note that by Eq. (1), only monochromatic edges contribute to the sum of
Eq. (2). Therefore, the above discussion implies that χodd(G) ≤ 2 if and only if
the system of linear equations given by Eqs. (1) and (2) admits a feasible solution,
and the theorem follows. �

Note that the Even 2-Coloring problem could be formulated in a similar
way, just by replacing Eq. (2) with

∑
j:vj∈N(vi)

xi,j ≡ 0. However, this is not that
interesting, since all the instances of Even 2-Coloring are positive [26].

4 Dynamic Programming Algorithms

In this section, we present FPT algorithms for Maximum Odd/Even Sub-
graph and Odd q-Coloring, parameterized by the rank-width of the input
graph. The algorithms are similar to those of Bui-Xuan et al. [3,4] for Maximum



Finding Large Odd Induced Subgraphs and Odd Colorings 73

Independent Set parameterized by rank-width and boolean-width, respec-
tively, and also to the one by Bui-Xuan et al. [5] for so-called locally check-
able vertex partitioning problems. There are however two key differences with
our algorithms. First, while partial solutions for Maximum Independent Set
are, themselves, independent sets, this is not true in general for odd subgraphs,
where partial solutions may consist in a subgraph some vertices of which have
even degree. Those vertices will impose some extra constraints on the remain-
der of the solution. The second difference is that, while the equivalence classes
of [3] and [4] are based on neighborhoods of vertex sets, those for Maximum
Odd Subgraph only require “neighborhoods modulo 2”. This will allow us to
consider only 2O(rw) equivalence classes, compared to 2O(rw2) classes used in [3]
for Maximum Independent Set.

Throughout this section, we will rely on the notion of “neighborhood modulo
2” of a set of vertices, defined as follows. Given a graph G and X ⊆ V (G), the
neighborhood of X modulo 2, denoted by N2(X), is the set �u∈X(N(u)), where
the operator � denotes the symmetric difference. Note that N2(X) is exactly
the set of vertices in V (G) \X that have an odd number of neighbors in X. The
results in this section are stated using the O∗ notation, which hides polynomial
factors in the input size.

Theorem 4. Given a graph G along with a decomposition tree of rank-width rw,
the Maximum Odd Subgraph problem can be solved in time O∗(23rw).

Proof: We give a dynamic programming over the given decomposition tree
(T,L). Recall that there is a bijection between the leaves of T and V (G), and that
each edge of T corresponds to a cut (A,A) of G. We begin by defining the equiv-
alence relation over subsets of A, given a cut (A,A): two sets X,Y ⊆ V (G)
are odd neighborhood equivalent with regard to A, denoted by X ≡A

2 Y , if
N2(X) \ A = N2(Y ) \ A. Then, given a row basis B of the adjacency matrix
of (A,A) over GF[2], where we interpret a vertex set as the vector corresponding
to its vertices, we define the representative of a set X ⊆ A as the unique set
of vertices RA(X) ⊆ A such that RA(X) ⊆ B and X ≡A

2 RA(X). Observe that
since (A,A) is a cut of (T,L), its adjacency matrix has rank at most rw(G), and
therefore |RA(X)| ≤ rw(G). This implies, in particular, that there are at most
2rw(G) distinct representatives for subsets of a given set A.

We are now ready to define the tables of our algorithm. Given an edge e of
(T,L) and its associated cut (A,A) of G, we store in table TA, for every pair
R,R′ of representatives of subsets of A and A, respectively, a largest set S ⊆ A
such that S is odd neighborhood equivalent to R, and all the vertices that have
even degree in G[S] is exactly the set N2(R′) ∩ S. More formally:

(�) TA[R,R′] = maxset
S⊆A

{S ≡A
2 R ∧ {v ∈ S : |N(v) ∩ S| is even} = N2(R′) ∩ S},

where the notation ‘maxset’ indicates a largest set that satisfies the conditions.
In cases where edge e is incident with a leaf, the cut associated with e is of the
form ({u}, V (G)\{u}). We set T{u}[∅, ∅] = T{u}[∅, {v}] = ∅, and T{u}[{u}, {v}] =
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{u}, where v is the unique vertex of a basis of the adjacency matrix of the
cut (V (G) \ {u}, {u}), which is the only non-empty choice for R′. The entry
T{u}[{u}, ∅] is left empty, due to there being no subgraph of G[{u}] with the
same neighborhood as {u} in G − {u}, all vertices of which that have even
degree lying in N2(∅).

Given an edge e of (T,L) such that the tables of both edges incident with
one endvertex of e, say f, f ′, have been computed, we compute the table of e
as follows. Let us denote by (A,A), (X,X), and (Y, Y ) the cuts associated with
e, f , and f ′, respectively. For each pair of representatives RA, RA of the cut
(A,A), the value of TA[RA, RA] is the largest TX [RX , RX ] ∪ TY [RY , RY ], such
that RX , RX , RY , and RY satisfy the following conditions with regard to RA

and RA:
(i) RA ≡A

2 RX�RY , (ii) RX ≡X
2 RA�RY , and (ii’) RY ≡Y

2 RA�RX .
We proceed with this computation, starting from the leaves, in a bottom-up

manner, having previously rooted T by choosing an arbitrary edge, subdividing
it, and making the newly created vertex the root of T . Observe that in the final
stage of the algorithm, when the tables of both edges f, f ′ incident with the root
have been computed, we compute the table for the root node as described above,
with A = ∅, since X ∪ Y = V (G) in this case. Of the three conditions described
above, condition (i) becomes trivial, since RA = ∅, and conditions (ii) and (ii’)
simplify to RX ≡X

2 RY , and RY ≡Y
2 RX , respectively.

We first observe that since, as noted above, there are at most 2rw represen-
tatives on each side of each cut, and the choices of RX , RY and RA uniquely
determines RX , RY and RA through equations (i), (ii), and (ii’), and comput-
ing new tables can be carried out in time O∗(23rw), as desired. It now remains
to prove that the algorithm correctly computes an optimal solution. The cor-
rectness of the tables for the leaves of T follows from their description. We
now prove by induction that the tables are correct for internal edges of T as
well. Let us assume TX and TY have been fully and correctly computed for all
possible representatives RX , RX , RY , and RY as per the description above. We
first argue that the tables’ description is correct, i.e., given an optimal solution
OPT (that is, an induced subgraph of G achieving mos(G)) and a cut (A,A),
S = OPT ∩ A is a largest set that satisfies (�) for some pair R,R′ of repre-
sentatives. Indeed, assume for contradiction that there exists S∗ ⊆ A such that
S∗ ≡A

2 S, {v ∈ S∗ : |N(v) ∩ S∗| is even} = S∗ ∩ N2(OPT ∩ A), and |S| < |S∗|.
Then, OPT∗ = (OPT\S)∪S∗ induces an odd subgraph of G and |OPT∗| > |OPT|,
contradicting the optimality of OPT.

Finally, we argue that if TX and TY are computed correctly, then so is TA,
i.e., given any two representatives RA and RA of A and A, respectively, there
exist representatives RX , RX , RY , and RY of X,X, Y , and Y , respectively, that
satisfy conditions (i), (ii), and (ii’), and such that TX [RX , RX ] ∪ TY [RY , RY ] is
a largest set that satisfies (�) with respect to (RA, RA). Let RX , RX , RY , and
RY be representatives such that TA[RA, RA] = TX [RX , RX ] ∪ TY [RY , RY ] = S,
and let SX and SY denote S ∩ X and S ∩ Y , respectively. Note that, since X
and Y form a partition of A, SX and SY form a partition of S, which implies
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S = SX∪SY = SX�SY . We first show that S indeed satisfies (�) with respect to
(A,A), i.e., S ≡A

2 RA and {v ∈ S : |N(v)∩S| is even} = N2(RA)∩S. For the first
of those two conditions, combining it with the fact that S = SX ∪SY = SX�SY ,
we only need to prove that SX�SY ≡A

2 RX�RY . Observe first that, since X
and Y form a partition of A, we have that for every vertex v ∈ A, |N(v) ∩ A| =
|N(v) ∩ X| + |N(v) ∩ Y |. Therefore, for every sets X ′,X ′′ ⊆ X and Y ′, Y ′′ ⊆ Y ,
it holds that if X ′ ≡X

2 X ′′ and Y ′ ≡Y
2 Y ′′, then X ′�Y ′ ≡A

2 X ′′�Y ′′. From
the definition of representative we obtain that S ≡A

2 SX�SY ≡A
2 RX�RY , as

desired.
Let us now consider the second condition, i.e., {v ∈ S : |N(v)∩S| is even} =

N2(RA) ∩ S. Let us assume first that v ∈ SX . If |N(v) ∩ S| is even, then at least
one of the following cases holds:

• |N(v) ∩ SX | is even and v �∈ N2(SY ). Since |N(v) ∩ SX | is even, we obtain
from (�) in TX that v ∈ N2(RX), which when combined with (ii) implies
v ∈ N2(A)�N2(SY ). Since v �∈ N2(SY ), it follows that v ∈ N2(A), as desired.

• |N(v)∩SX | is odd and v ∈ N2(SY ). Symmetrically to the case above, we have
that v �∈ N2(RX), hence v �∈ N2(A)�N2(SY ) from (ii), and since v ∈ N2(SY ),
it follows that v ∈ N2(A), as desired.

The case where v ∈ SY is proved similarly, replacing condition (ii) with (ii’).
Therefore, {v ∈ S : |N(v) ∩ S| is even} ⊆ S ∩ N2(RA). Let us now assume
that v ∈ SX ∩ N2(RA). From (ii), we obtain that v ∈ N2(S ∩ X) if and only
if v �∈ N2(SY ). Since TX satisfies (�), it holds that v ∈ N2(S ∩ X) if and only
if |N(v) ∩ SX | is even, and therefore v �∈ N2(SY ) if and only if |N(v) ∩ SX | is
even. Therefore, |N(v) ∩ S| = |N(v) ∩ SX | + |N(v) ∩ SY | is even, as desired. As
above, the case where v ∈ SY is proved similarly, replacing condition (ii) with
(ii’). Therefore, {v ∈ S : |N(v) ∩ S| is even} = S ∩ N2(RA).

Finally, we prove the maximality of S among all those sets that satisfy (�)
with respect to (RA, RA). Let us assume for a contradiction that there exists S∗

that satisfies (�) with respect to (RA, RA) and such that |S∗| > |S|. Let S∗
X and

S∗
Y denote S∗ ∩X and S∗ ∩Y , respectively. Observe that S∗

X and S∗
Y satisfy (�)

with respect to some pairs of representatives (RX , RX) and (RY , RY ), respec-
tively. In addition, observe that since S satisfies (�) with respect to (RA, RA),
it follows that S, SX , and SY satisfy conditions (i), (ii), and (ii’) with respect
to (RA, RA), contradicting the assumption that TX and TY were computed cor-
rectly. �

Small variations of Theorem4 allow us to prove the following two theorems.

Theorem 5 (�). Given a graph G along with a decomposition tree of rank-width
rw, the Maximum Even Subgraph problem can be solved in time O∗(23rw).

Theorem 6 (�). Given a graph G along with a decomposition tree of rank-width
w, the Odd q-Coloring problem can be solved in time O∗(2O(q·rw)).
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5 Tight Bounds

In this section we provide two tight bounds concerning odd induced subgraphs
and odd colorings. Namely, we first provide in Theorem7 a tight upper bound
on the odd chromatic number in terms of tree-width, and then we provide in
Theorem 8 a tight lower bound on the size of a maximum odd induced subgraph
for graphs that admit a join.

Theorem 7. For every graph G with all components of even order we have that
χodd(G) ≤ tw(G) + 1, and this bound is tight.

Proof: Scott proved [34, Corollary 3] that every graph G with all components
of even order admits a vertex partition such that every vertex class induces a
tree with all degrees odd. Consider such a vertex partition, and let G′ be the
graph obtained from G by contracting each of the trees to a single vertex. Since
G′ is a minor of G, we have that tw(G′) ≤ tw(G). Now note that every proper
vertex coloring of G′ using q colors can be lifted to a partition of V (G) into q
odd induced subgraphs (in fact, odd induced forests). Indeed, with every color
i of a proper q-coloring of V (G′) we associate an induced forest of G defined by
the union of the trees whose corresponding vertex in G′ is colored i. Therefore,

χodd(G) ≤ χ(G′) ≤ tw(G′) + 1 ≤ tw(G) + 1,

where we have used the well-known fact that the chromatic number of a graph
is at most its tree-width plus one [23].

To see that this bound it tight, consider a subdivided clique K
�

n, that is, the
graph obtained from a clique on n vertices, with n ≡ 0, 3 (mod 4), by subdividing
every edge once. Since no pair of original vertices of the clique can get the same
color, we have that χodd(K

�

n) = n = tw(K
�

n) + 1. �
Let us mention some consequences of Theorem 7. Hou et al. [20] define the

following parameter. Let Gk be the set of all graphs of treewidth at most k

without isolated vertices, and let ck = minG∈Gk

mos(G)
|V (G)| . In [20] the authors prove

that c2 = 2/5 and say that the best general lower bound is ck ≥ 1
2k+2 , which

follows from a result of Scott [33]. As an immediate corollary of Theorem 7 it
follows that ck ≥ 1

k+1 , which improves the lower bound by a factor two. As
it is known [20] that, for k ∈ [4], ck ≤ 2

k+3 , our lower bound implies that
1/4 ≤ c3 ≤ 1/3 and 1/5 ≤ c4 ≤ 2/7.

We now provide a lower bound on mos(G) for every graph that admits a join.

Theorem 8 (�). For every n-vertex graph G that admits a join we have

mos(G) ≥ 2 ·
⌈

n − 2
4

⌉
, and this bound is tight even for cographs.

Determining a tight lower bound for cographs that are not necessarily con-
nected remains open. The proof of Cases 1 and 2 of Theorem 7 together with the
fact that χodd(K2,2,2) = 3 (since mos(K2,2,2) = 2) yield the following corollary.
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Corollary 1. Let G be a cograph with every connected component of even order.
Then χodd(G) ≤ 3. Moreover, this bound is tight.

Note that cographs can be equivalently defined as P4-free graphs. It is inter-
esting to note that, in contrast to Corollary 1, P5-free graphs have unbounded
odd chromatic number. Indeed, let Hn be the graph obtained from the subdi-
vided clique K

�

n, with n ≡ 0, 3 (mod 4), by adding an edge between each pair
of original vertices of the clique. It can be checked that χodd(Hn) ≥ n and, in
fact, the proof of Theorem2 implies that χodd(Hn) = n. Note that Hn is a split
graph, hence split graphs have unbounded odd chromatic number.

6 Further Research

We considered computational aspects of the Maximum Odd Subgraph and
Odd q-Coloring problems. A number of interesting questions remain open.

We gave in Theorem 6 an algorithm that solves Odd q-Coloring in time
O∗(2O(q·rw)). Is the Odd Chromatic Number problem FPT or W[1]-hard
parameterized by rank-width? A strongly related question is how the odd chro-
matic number depends on rank-width. We proved in Theorem7 that χodd(G) ≤
tw(G) + 1, but we do not know whether χodd(G) ≤ f(rw(G)) for some function
f . Note that this would not only yield an FPT algorithm for Odd Chromatic
Number by rank-width, but would also prove the conjecture about the linear
size of a largest odd induced subgraph [7] for all graphs of bounded rank-width.
As a first step in this direction, we proved in Corollary 1 that cographs, which
have rank-width at most one, have odd chromatic number at most three. It
would be interesting to prove an upper bound for distance-hereditary graphs,
which can be equivalently defined as graphs of rank-width one.

In fact, we do not even know whether Odd Chromatic Number by rank-
width is in XP. In view of the algorithm of Theorem6, a sufficient condi-
tion for this would be that there exists a function f such that χodd(G) ≤
f(rw(G)) · log |V (G)| for every graph G with all components of even order.
Another promising strategy would be to generalize the XP algorithms of Rao [31]
to counting monadic second-odder logic. Toward an eventual W[1]-hardness
proof, a natural strategy is to try to adapt the reduction given by Fomin et
al. [15] to prove that Chromatic Number is W[1]-hard by clique-width (hence,
rank-width). This reduction is from Equitable Coloring parameterized by
the number of colors plus tree-width, proved to be W[1]-hard by Fellows et
al. [13]. By appropriately modifying the chain of reductions given in [13], we
have only managed to prove that the naturally defined Odd Equitable Col-
oring problem is W[1]-hard by tree-width, but not if we add the number of
colors as a parameter.

Concerning Odd q-Coloring parameterized by tree-width, a straightfor-
ward dynamic programming algorithm that guesses, for every vertex, its color
class and the parity of its degree within that class, runs in time O∗((2q)tw).
Note that this algorithm together with Theorem7 yield an algorithm for Odd
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Chromatic Number in time O∗((2tw + 2)tw). By the lower bound under the
ETH of Lokshtanov et al. [25] for Chromatic Number by tree-width and the
fact that our reduction of Theorem2 preserves tree-width, it follows that the
dependency on tree-width of this algorithm is asymptotically optimal under the
ETH. It would be interesting to prove lower bounds under the Strong Exponential
Time Hypothesis (SETH). Note that our reduction of Theorem2 together with
the lower bound under the SETH of Lokshtanov et al. [24] for q-Coloring by
tree-width yield a lower bound for Odd q-Coloring of O∗((q − ε)tw) under the
SETH.
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Cornuéjols, G., Burkard, R.E., Woeginger, G.J. (eds.) IPCO 1999. LNCS, vol. 1610,
pp. 183–190. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48777-
8 14

https://doi.org/10.1007/978-3-319-21275-3
https://doi.org/10.1007/978-3-319-21275-3
https://doi.org/10.1007/s00453-012-9667-x
https://doi.org/10.1007/978-1-4471-5559-1
https://doi.org/10.1007/3-540-29953-X
https://doi.org/10.1007/3-540-48777-8_14
https://doi.org/10.1007/3-540-48777-8_14


Finding Large Odd Induced Subgraphs and Odd Colorings 79
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Abstract. In this paper, we study knot diagrams for which the under-
lying graph has treewidth two. We give a linear time algorithm for the
following problem: given a knot diagram of treewidth two, does it repre-
sent the trivial knot? We also show that for a link diagram of treewidth
two we can test in linear time if it represents the unlink. From the algo-
rithm, it follows that a diagram of the trivial knot of treewidth 2 can
always be reduced to the trivial diagram with at most n untwist and
unpoke Reidemeister moves.

Keywords: Knot diagrams · Knot theory · Graph algorithms ·
Treewidth · Series parallel graphs

1 Introduction

A knot is a piecewise linear closed curve S1 embedded into the 3-sphere S3 (or
the three-dimensional Euclidean space R

3). Two knots are said to be equivalent
if there is an ambient isotopy between them. In other words, two knots are
equivalent if it is possible to distort one knot into the other without breaking
it. The basic problem of knot theory is the following unknotting problem: given
a knot, determine whether it is equivalent to a knot that bounds an embedded
disk in S3. Such a knot is called the trivial knot or simply the unknot.

Despite a significant progress, the computational complexity of the unknot-
ting problem remains open. Even the existence of any algorithm for this problem
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Fig. 1. A vertex of degree four representing a crossing of two strings
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Fig. 2. Reidemeister moves

is a highly non-trivial question. As was stated by Turing in 1954 in [17], “No
systematic method is yet known by which one can tell whether two knots are
the same.” The first algorithm resolving this problem is due to Haken [6]. By
the celebrated result of Hass, Lagarias, and Pippenger [8], unknot recognition is
in NP. The problem is also in co-NP, see Lackenby [12]. However, no polynomial
algorithm for the unknotting problem is known.

It was understood already in 1920s that the question about equivalence of
knots in R

3 is reducible to a combinatorial question about knot diagrams [1,14].
Knot diagrams are labeled planar graphs representing a projection of the knot
onto a plane. Thus every vertex of the graph in knot diagram is of degree 4 and
edges are marked as overcrossing and undercrossing, see Fig. 1 and Sect. 2.

It is one of the most fundamental theorems in knot theory from 1920s that
any two diagrams of a knot or link in R

3 differ by a sequence of Reidemeister
moves [14], illustrated in Fig. 2. We refer to these moves as (I) twist moves, (II)
poke moves, and (III) slide moves, with the reverse operation of a twist move
the untwist, and the reverse operation of a poke the unpoke.

With help of Reidemeister moves, see Fig. 2, we obtain an equivalence rela-
tion on knot diagrams: if a diagram can be obtained from another by zero or
more Reidemeister moves, then these diagrams are equivalent. In our paper, we
allow subdivision vertices (i.e., vertices of degree two), and extend the notion
of equivalence in the following trivial way: diagrams are equivalent if they can
be obtained from another by zero or more Reidemeister moves and additions or
removals of subdivisions.

In particular, the diagram of every unknot can be reduced to the trivial
diagram (a circle) by performing Reidemeister moves. While each of the Rei-
demeister moves can be performed in polynomial time, it is very unclear how
many of these moves are required to transform an unknot to the trivial diagram.
The problem is that sometimes a successful unknotting sequence of Reidemeis-
ter moves is not monotone, that is, it has to increase the number of crossings
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(vertices) in the knot diagram, see e.g. [9]. Bounding the number of required Rei-
demeister moves by any function on the number of vertices in the knot diagram
was a long-standing open question in the area. The answer to this question was
given by Hass and Lagarias [7] who gave the first (exponential) upper bound on
the number of Reidemeister moves. Later Lackenby in [11] improved the bound
significantly by showing that any diagram of the unknot with n crossings may
be reduced to the trivial diagram using at most (236n)11 Reidemeister moves.
Let us note that this also implies that the unknotting problem is in NP.

In this work we consider the unknotting problem when the given knot dia-
gram has treewidth at most 2. Our main algorithmic result is Theorem1.

Theorem 1. Deciding whether any diagram with n crossings and treewidth at
most 2 is a diagram of the unknot can be decided in time O(n).

Our proof yields also the following combinatorial result about the number of
Reidemeister moves. It is interesting to note that in Theorem 2 we do not use
any slide moves.

Theorem 2. Any diagram of treewidth 2 of the unknot with n crossings may be
reduced to the trivial diagram using at most n untwist and unpoke Reidemeister
moves.

Actually, the techniques developed to prove Theorems 1 and 2 can be used to
solve a slightly more general problems about links with diagrams of treewidth 2.

Related Work. To the best of our knowledge, the question whether the unknot-
ting problem with diagrams of bounded treewidth can be resolved in polynomial
time is open. Makowsky and Mariño in [13] studied the parametrized complexity
of the knot (and link) polynomials known as Jones polynomials, Kauffman poly-
nomials and HOMFLY polynomials on graphs of bounded treewidth. For the
Jones and HOMFLY polynomials no example of a non-trivial knot with trivial
polynomial is known [4]. Therefore, if e.g. the Jones polynomial recognizes the
unknot, then the algorithm from [13] also recognizes the unknot in time FPT in
the treewidth.

Rué et al. [16] studied the class of link-types that admit a K4-minor-free
diagram (which is of treewidth at most 2). They obtain counting formulas and
asymptotic estimates for the connected K4-minor-free link and unknot diagrams.
While Rué et al. [16] do not discuss algorithms in their work, the combinatorial
tools developed in their paper can also be used to obtain Theorem1. Our app-
roach is more direct, and gives a fairly simple algorithm which is very straight-
forward to implement. We believe that the notion of double edge is an interesting
concept of separate interest. Also, our work was done independently from the
work by Rué et al. [16].

Approach. Our main approach is the following. We introduce the notion of gen-
eralized knot diagrams—these extend knot diagrams with the notion of double
edges (see Sect. 2). The algorithm starts making the graph simple by adding
subdivision vertices. By repeatedly applying safe reduction rules (see Sect. 3),
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we obtain a series of generalized knot diagrams, that all are equivalent to the
input knot diagram, have treewidth at most two, and are simple. This continues
till we have classified the (generalized) diagram as knot, unknot, link or unlink.
The safe reduction rules come from a well known insight of graphs of treewidth
two (Theorem 3), and a case analysis for different types of vertices and edges in
the generalized knot diagram. The main algorithm is explained in Sect. 4.

2 Graphs and (Generalized) Knot Diagrams

2.1 Graphs

A subdivision in a graph G = (V,E) is a vertex of degree two. The operation
to add a subdivision is the following: take an edge {v, w}, and replace this edge
by edges {v, x} and {x,w} with x a new vertex. The operation to remove a
subdivision is the following: take a vertex of degree 2, add an edge between its
neighbors and then remove the vertex and its incident edges.

We do not need to give the definition of treewidth [15], but instead rely on
the following well known results on treewidth.

Theorem 3 (Folklore, see e.g., Theorem 33 and Lemma 90 in [2]).

(i) If G has treewidth at most two and is not the empty graph, then G has a
vertex of degree at most two.

(ii) If G has treewidth at most two, and G′ is obtained from G by removing a
vertex, removing an edge, adding a subdivision or removing a subdivision,
then the treewidth of G is also at most two.

2.2 Generalized Knot Diagrams

Our algorithm is based upon a generalization of knot diagrams, which we call
generalized knot diagrams. The main ingredient is a new type of edges, which
are created in the course of the algorithm. While a single edge in a knot diagram
represents a piece of a single string, a double edge in a generalized knot diagram
represents two pieces of strings between two pairs of vertices of degree two.
Specifically, consider any two pieces of strings not intersected by any other piece
of string. Let the two pieces of strings have the (four) endpoints at vertices of
degree two. Moreover, let the strings alternate at every two consecutive crossings
with respect to over- and under-crossing, i.e., if string s is over-crossing string
s′ at a crossing, then at the next (consecutive) crossing s′ is over-crossing s. In
accordance with Reidemeister terminology, we refer to these alternating crossings
as twists. Such two strings with twists between two pairs of vertices of degree
two are referred as double edges.

For each double edge we create an integer label that gives the number of
twists/crossings in the double edge. If the two pieces of string do not cross, the
label is zero. With labelings of endpoints of the strings with u (up) and d (down),
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Fig. 3. A three-twist double edge and its string representation

we can distinguish between overcrossings and undercrossings; details are given
later in this section.

See Fig. 3 for an illustration how a double edge represents two pieces of string
with three twists.

In the generalized knot diagram we identify a pair of degree two vertices
associated with an endpoint of a double edge as one double vertex, thus creating
a new simple graph with a mix of knot diagram (single) vertices, double vertices,
single and double edges, where double edges are labeled with numbers of twists.

Types of vertices. During the algorithm, we maintain that at each vertex of the
diagram, either two or four pieces of string meet. Thus, we have the following
types of vertices:

– A vertex of degree one, incident to one double edge (Type 1)
– A vertex of degree two, incident to two double edges (Type 2D)
– A vertex of degree two, incident to two single edges (Type 2S)
– A vertex of degree four, incident to four single edges (Type 4)
– A vertex of degree three, incident to one double edge and two single edges

(Type 3)

Type 1, 2D and 3 vertices are called double vertices. Each of these is incident
to a double edge. It is important to note that we do not have a crossing at a
double vertex, i.e., all crossings either are at Type 4 vertices or at double edges
with a non-zero label.

Each double edge whose integer label is non-zero has u and d-labelings
attached to it, that determine the over- and undercrossings for the part of the
diagram modelled by this edge. Each endpoint of the edge has a pair consisting
of a u and a d attached to it; one of these comes clockwise directly before the
edge, and one directly clockwise after the edge. (This can be represented by one
bit.)

Thus, the two endpoints at a double vertex of the strings represented by
a double edge have labels u and d, respectively. This models that the string
labeled by u starts with an overcrossing and the string labeled by d starts with
an undercrossing. See Fig. 4 at vertices v, w and x.

In this way, to each generalized knot diagram we can associate a knot dia-
gram: we replace each double edge by a subgraph. If the double edge has integer
label i, then we have i vertices of degree four. The u and d labels at these vertices
are determined by the d and u labels at the endpoints of the double edge, as
explained above. We add where necessary subdivision vertices of degree two to
ensure that the graph is simple. We say that two generalized knot diagrams are
equivalent when their associated knot diagrams are equivalent.
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Fig. 4. A knot diagram and a corresponding generalized knot diagram. v is Type 1; w
is Type 2D; x is Type 3; y is Type 2S; z is Type 4.

3 Safe Reduction Rules

In this section we introduce a number of reduction rules for generalized knot
diagrams. The result of a rule is always again a generalized knot diagram. Note
that we always remove one (single or double) vertex of degree at most 2, and
possibly add an edge between the neighbors of a removed vertex of degree 2.
Thus, when any of these rules is applied, the size of the generalized knot diagram
is decreased by at least one vertex.

A rule is safe, if whenever we obtain the generalized knot diagram G′ from
G by applying the rule, we have that:

– The knot diagram associated with G is equivalent to the knot diagram associ-
ated with G′. (I.e., it can be obtained from the other by applying Reidemeister
moves and adding or removing subdivision vertices.)

– If the treewidth of G is at most two, then the treewidth of G′ is at most two.

Note that safeness of a rule implies that application of the rule preserves the
ambient isotopy of the original and the resulting knots.

We will show that for all vertices of degree at most two, when G has at least
three vertices, we have a safe rule that decreases the number of vertices by at
least one, or we can resolve the problem. We have seven cases: vertices of Type 1,
2S, and 2D, where for the latter, their neighbors can be non-adjacent, adjacent
by a single edge, or adjacent by a double edge.

Several of the rules have a straightforward case analysis for the markings of
double edges. Many of these details can be found in the full version, see [3].

3.1 Vertices of Type 1

The first case is a vertex of Type 1: a vertex incident to one double edge. We
can remove this vertex with its incident edge. Safeness follows by observing that
the twists on this double edge can be removed with Reidemeister untwists. By
removing subdivision vertices, we obtain a knot diagram represented by the
diagram obtained by removing v and its incident double edge (Fig. 5).
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v w w
4 = v w w

Fig. 5. Removing a Type 1 vertex.

Rule 1. Let v be of Type 1, incident to double edge {v, w}. Remove v and its
incident edge.

3.2 Vertices of Type 2S

For a vertex of Type 2S, we have three cases, depending on whether its neighbors
are not adjacent, adjacent by a single edge, or adjacent by a double edge. The
next Rule 2 is trivially safe as we just remove an edge subdivision. See Fig. 6.

Rule 2. Let v be incident to two single edges {v, w} and {v, x}, where w and
x are not adjacent. Remove v and the edges {v, w} and {v, x}, and add a single
edge {w, x}.

w v x xw

Fig. 6. Removing a vertex with two single edges and non-adjacent neighbors.

The second case is when the neighbors of v are connected by a single edge.
This case has a number of different subcases. All are illustrated in Fig. 7.
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Fig. 7. The cases of Rule 3.
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Rule 3. Let v a Type 2S vertex with neighbors w and x, and suppose {w, x} is
a single edge.

1. If w and x are also Type 2S vertices, then G is a simple cycle of length three,
and we do not apply any further rules as the diagram represents the unknot.

2. If w is of Type 2S and w of Type 3 or 4, then delete vertices v and w together
with their incident edges.

3. If w and x are both Type 4 and the {u, d}-labels of the edge {w, x} at vertices
w and x are the same, we delete vertex v together with edges {v, w}, {v, x}
and {w, x}, and we create a double edge {w, x} with label 0.

4. If w and x are both Type 4 and the the {u, d}-labels of the edge {w, x} at ver-
tices w and x are different, we delete vertex v together with edges {v, w}, {v, x}
and {w, x}, and we create a double edge {w, x} of label 2.

5. If w is of Type 4 and x is of Type 3, we delete vertex v together with edges
{v, w}, {v, x} and {w, x}, and create a double edge {w.x} with label 1.

6. If both x and w are of Type 3, we delete vertex v together with edges {v, w},
{v, x} and {w, x}, and we create a double edge {w, x} with label 0.

Equivalence of the diagrams before and after the reduction step is easy to
see. In Case 2, when w is of Type 4, we do one untwist removing the crossing
at w; in Case 3, we do one unpoke. In the other cases, we do not perform Rei-
demeister moves, but by removing subdivisions, we can replace the generalized
knot diagram by one with fewer vertices that represents the same knot diagram.

We now look at the third case. Suppose v is adjacent by two single edges to
two double vertices, w and x, and there is a double edge between w and x with
label i, i.e., having i twists.

Rule 4. Suppose v is of Type 2S with neighbors w and x, and there is a double
edge between w and x with i twists.

1. If i = 0, then the generalized knot diagram represents an unlink. We recurse
on the generalized diagram obtained by removing v and incident edges, and
making the edge {w, x} a single edge.

2. If i �= 1 is odd, the generalized knot diagram represents a non-trivial knot;
3. If i �= 0 is even, the generalized knot diagram represents a non-trivial link.
4. If i = 1, then delete vertex v together with adjacent edges and delete double

edge {w, x}, make w and x single vertices adjacent by a single edge.

The cases are illustrated in Fig. 8. Correctness of the first three cases is
evident. Safeness of the fourth case follows as this step represents a single Rei-
demeister untwist with subsequent contraction of subdivision.

3.3 Vertices of Type 2D

For vertices of Type 2D (incident to two double edges), we have again three
cases: the neighbors are not adjacent, the neighbors are adjacent by a single
edge, or the neighbors are adjacent by a double edge.
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Fig. 8. The cases of Rule 4.
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Fig. 9. Rule 5 with agreeing (left) and disagreeing (right) labels at v.

Rule 5. Let v be of Type 2D where neighbors w and x are not adjacent. Suppose
{v, w} has label i, and {v, x} has label j. Remove v and the edges {v, w} and
{v, x}, and add a double edge {w, x}.
1. If i = 0 (j = 0), the double edge {w, x} gets label j (i), and the {u, d}-labels

are as for the edge {v, x} ({v, w}).
2. If the {u, d}-labels at v are at both sides equal (the left case in Fig. 9), then

the double edge {w, x} gets label |i − j|. If i �= j, keep the {u, d}-labels at the
side of the larger number i or j, and switch them at the other side.

3. If the {u, d}-labels at v differ at each of the sides (the right case in Fig. 9),
then the double edge gets label i + j. Set the labels of the new double edge at
w and x in the same way as the original double edges of these vertices to v.

Lemma 1. Rule 5 is safe.

Proof. In the case of agreement on labels, see Fig. 9 (left), we proceed with
min{i, j} Reidemeister unpoke moves followed by removing the subdivision. In
case of label disagreement, see Fig. 9 (right), we keep exactly the same knot
diagram, but simplify the generalized knot diagram by removing the subdivision
on the double edge. In the latter case the number of twists on the new double
edge is exactly the sum i+ j of the numbers of twists on the two original double
edges. ��
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Rule 5 . . .Rule 4
v v

w w w

x x x

Fig. 10. Rule 6 is reduced to rule Rule 4

Rule 6. Let v be of Type 2D, where neighbors w and x are adjacent by a single
edge. This case can be handled with help of earlier cases. First, we add a subdi-
vision of {w, x}. Then, we apply Rule 5 arriving in and applying one of the cases
of Rule 4, see Fig. 10. Therefore, we either classify the diagram or safely reduce
the graph.

Rule 7. Consider three double vertices v, w and x with three double edges,
{v, w}, {x, v} and {w, x} of labels i, j and k, respectively. Apply Rule 5 to w,
but instead of removing w, we set the new double edge (with label i+k or |i−k|,
say �) to be {v, w}, and let {w, x} be a double edge with label 0. Now, apply
Rule 5 to v, but instead of removing v, we set the new double edge (with label
j + � or |j − �|, say m) to be {v, w}, and let {v, x} be a double edge with label 0.
Depending on the value of m, we can classify the knot diagram.

1. If m = 0, then the generalized knot diagram represents the unlink.
2. If m �= 1 is odd, the generalized knot diagram represents the (m, 2)-torus knot,

for definition and notations see [18].
3. If m �= 0 is even, the generalized knot diagram represents the (m, 2)-torus

link.
4. If m = 1, then the generalized knot diagram represents the unknot as a single

Reidemeister untwist turns the diagram to a circle (see Fig. 11, right.)

v v v

w w wx x x

i j

k 0

j

0

0� m m = 1

Fig. 11. Illustration to Rule 7

4 Main Algorithm

The main algorithm starts by subdividing where necessary edges to obtain a
simple graph. Then, while there are at least three vertices, we repeatedly take
a vertex that is incident to at most two edges, and apply a safe rule. Each
rule application decreases the number of vertices, so after O(n) such steps we
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resolve the problem. Standard techniques (for details see [3]) give a linear time
implementation. Note that the safe rules only execute untwists and unpokes, but
no other Reidemeister moves. Each untwist and unpoke decreases the number
of twists by at least one. Thus we have shown Theorems 1 and 2. Next to these
main results we have the following two straightforward corollaries.

Corollary 1. Any knot/link having a diagram of treewidth 2 is a knot sum of
(·, 2)-torus knots/links.

Corollary 2 (See [3]). Given two knot diagrams of treewidth 2, the equivalence
of the knots is verifiable in linear time (by simply comparing the resulting torus
knots in Rules 4 and 7).

5 Conclusions

We conclude with the following questions.

– We gave a linear time algorithm deciding whether any diagram with n cross-
ings and treewidth 2 is a diagram of the unknot. The question arises: Is it
possible to extend our result to graphs of treewidth t ≥ 3? Even the existence
of a polynomial time algorithm for t = 3 is open. Extension of our results to
the graphs of treewidth t = 3 requires new arguments and techniques: Our
algorithm monotonically decreases the number of crossings in a treewidth 2
diagram as only untwist and unpoke Reidemeister moves are performed, while
there are unknot diagrams of treewidth 3 requiring increase of the number of
crossings for unknotting, e.g., the Culprit, the Goeritz unknot and some other
small but hard unknots [9].

– Koenig and Tsvietkova [10] conjectured and de Mesmay et al. [5] proved
that deciding if a diagram of the unknot can be untangled using at most
k Reidemeister moves (where k is part of the input) is NP-hard. Could this
problem be solved in polynomial time on knots with diagrams of treewidth 2?
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Abstract. Treewidth is an important graph invariant, relevant for both
structural and algorithmic reasons. A necessary condition for a graph
class to have bounded treewidth is the absence of large cliques. We
study graph classes in which this condition is also sufficient, which we call
(tw, ω)-bounded. Such graph classes are known to have useful algorithmic
applications related to variants of the clique and k-coloring problems. We
consider six well-known graph containment relations: the minor, topo-
logical minor, subgraph, induced minor, induced topological minor, and
induced subgraph relations. For each of them, we give a complete char-
acterization of the graphs H for which the class of graphs excluding H is
(tw, ω)-bounded. Our results imply that the class of 1-perfectly orientable
graphs is (tw, ω)-bounded, answering a question of Brešar, Hartinger,
Kos, and Milanič from 2018. We also reveal some further algorithmic
implications of (tw, ω)-boundedness related to list k-coloring and clique
problems.

Keywords: Graph class · Treewidth · Clique number

1 Introduction

1.1 Background and Motivation

The treewidth of a graph measures, roughly speaking, how similar the graph is
to a tree. This invariant played a crucial role in the theory of graph minors due
to Robertson and Seymour (see, e.g., [34]), and many decision and optimization
problems that are generally NP-hard are solvable in linear time for graph classes
of bounded treewidth [4,6,12]. A necessary condition for bounded treewidth
is the absence of large cliques. When is this condition also sufficient? We say
that a graph class G is (tw, ω)-bounded if there exists a function f : N → N
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such that tw(G) ≤ f(ω(G)) for all graphs G ∈ G, where tw(G) and ω(G)
denote the treewidth and the clique number of G, respectively. Such a func-
tion f is called a (tw, ω)-binding function for the class G. Many graph classes
studied in the literature are known to be (tw, ω)-bounded. For every positive
integer t, the class of intersection graphs of connected subgraphs of graphs with
treewidth at most t is (tw, ω)-bounded (see [3,40]). This includes the classes of
chordal graphs and circular-arc graphs. Further examples include graph classes
of bounded treewidth, classes of graphs in which all minimal separators are of
bounded size [45], and, as a consequence of Ramsey’s theorem, classes of graphs
of bounded independence number.

There are multiple motivations for the study of (tw, ω)-bounded graph
classes, from both algorithmic and structural points of view. The k-Clique
problem asks whether the input graph contains a clique of size k; the problem
is known to be W[1]-hard (see [16]). Given a graph G and a list of available col-
ors from the set {1, . . . , k} for each vertex, the List k-Coloring problem asks
whether G can be properly vertex-colored by assigning to each vertex a color
from its list. This is a generalization of the classical k-coloring problem and is
thus NP-hard for all k ≥ 3. Chaplick and Zeman gave fixed-parameter tractable
algorithms for k-Clique and List k-Coloring in any (tw, ω)-bounded classes
of graphs with a computable binding function f [9]. From the structural point of
view, identifying new (tw, ω)-bounded graph classes directly addresses a recent
question of Weißauer [46] asking for which classes can we force large cliques
by assuming large treewidth. Weißauer distinguishes graph parameters as being
either global or local (see [46] for precise definitions). In this terminology, (tw, ω)-
boundedness of a graph class is a sufficient condition for treewidth to become a
local parameter.

1.2 Our Results

The main aim of this paper is to further the knowledge of (tw, ω)-bounded
graph classes. We consider six well-known graph containment relations and for
each of them, give a complete characterization of the graphs H for which the
class of graphs excluding H (with respect to the relation) is (tw, ω)-bounded.
These six relations are the minor relation, the topological minor relation, the
subgraph relation, and their induced variants: the induced minor relation, the
induced topological minor relation, and the induced subgraph relation. (Precise
definitions will be given in Sect. 2.) To explain our results, we need to introduce
some notation. We denote by ⊆is the induced subgraph relation. By Kp,q we
denote the complete bipartite graph with parts of size p and q; if p = q, then,
the complete bipartite graph is said to be balanced. The claw is the complete
bipartite graph K1,3. A subdivided claw is the graph obtained from the claw by
replacing each edge with a path of length at least one. We denote by S the class
of graphs in which every connected component is either a path or a subdivided
claw. For q ≥ 1, we denote by K+

2,q the graph obtained from K2,q by adding
an additional edge between the two vertices in the part of size 2. Similarly, we
denote by K−

q the graph obtained from the complete graph Kq by removing an
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edge. Note that the graph K−
4 is sometimes called the diamond. The graph C�

is the cycle on � vertices, and the 4-wheel, also denoted by W4, is the graph
obtained from the C4 by adding a new vertex adjacent to all vertices of the C4.
A graph is subcubic if every vertex is incident with at most three edges.

Our characterizations are summarized in Table 1 where each entry corre-
sponds to one of the six containment relations and contains a description of
necessary and sufficient conditions for a graph H such that the class of graphs
excluding H with respect to the relation considered in the entry is (tw, ω)-
bounded.

Table 1. Summary of (tw, ω)-bounded graph classes excluding a fixed graph H for six
graph containment relations.

General Induced

Subgraph H ∈ S H ⊆is P3 or H is edgeless

Topological minor H is subcubic and planar H ⊆is C3, H ⊆is C4,
H ∼= K−

4 , or H is edgeless

Minor H is planar H ⊆is W4, H ⊆is K−
5 ,

H ⊆is K2,q or H ⊆is K+
2,q, for

some q ∈ N

To the best of our knowledge, these six dichotomies represent the first set
of results towards a systematic study of the problem of classifying (tw, ω)-
bounded graph classes. Furthermore, the (tw, ω)-boundedness of the class of
K2,3-induced-minor-free graphs, implies that the class of 1-perfectly orientable
graphs is (tw, ω)-bounded. This answers a question raised by Brešar et al. [7].

From the algorithmic point of view, we observe that for any fixed positive
integer k, the approach of Chaplick and Zeman from [9] can be adapted to obtain
a robust polynomial-time algorithm for List k-Coloring in any graph class
with a computable (tw, ω)-binding function. We also show how to approximate
the clique number to within a factor of opt1−1/O(1) in graph classes with a
polynomially bounded (tw, ω)-binding function, where opt is the clique number
of the input graph.

Our techniques combine the development and applications of structural prop-
erties of graphs in restricted classes, connections with Hadwiger number and with
minimal separators, as well as applications of Ramsey’s theorem and known
results on treewidth and graph minors. Results given by Table 1 are derived in
Sects. 3 to 5. The algorithmic results are presented in Sect. 6.

Due to lack of space, proofs of results marked by � are omitted.

1.3 Related Work

The (tw, ω)-boundedness property for the class of even-hole-free graphs was
studied in [8,43,44]. Dichotomy studies similar to ours exist for many other
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properties of graph classes, including boundedness of the clique-width [13,14],
well-quasi-ordering [2,15,31], and polynomial-time solvability of various graph
problems [20,27,35,41].

The concept of a (tw, ω)-bounded graph class is part of the following more
general framework. An (integer) graph invariant is a mapping from the class
of all graphs to the set of non-negative integers N that does not distinguish
between isomorphic graphs. Given two graph invariants ρ and σ and a graph
class G, we say that G is (ρ, σ)-bounded if there exists a (ρ, σ)-binding function
for G, that is, a function f : N → N such that ρ(G) ≤ f(σ(G)) for all graphs
G ∈ G. Probably the most well-known and well-studied case of (ρ, σ)-bounded
graph classes corresponds to the pair (ρ, σ) = (χ, ω), where χ(G) denotes the
chromatic number of G. Such graph classes are called simply χ-bounded. They
were introduced by Gyárfás in the late 1980s to generalize perfection [23] and
studied extensively in the literature (see [42] for a survey). Note that every
(tw, ω)-bounded graph class is also χ-bounded but not vice versa. Furthermore,
(tw, ω)-boundedness generalizes chordality in the same way that χ-boundedness
generalizes perfection. Several other variants of (ρ, σ)-bounded graph classes
were studied in the literature, though not to the same extent as the χ-bounded
ones (see, e.g., [5,24,28,30,36,48]).

2 Preliminaries

We now define the six graph containment relations studied in this paper. If a
graph H can be obtained from a graph G by only deleting vertices, then H is
an induced subgraph of G, and we write H ⊆is G. If H is obtained from G by
deleting vertices and edges, then H is a subgraph of G, and we write H ⊆s G.
Note that if H ⊆is G, then H ⊆s G. A subdivision of a graph H is a graph
obtained from H by a sequence of edge subdivisions. The graph H is said to
be a topological minor (or topological subgraph) of a graph G if G contains a
subdivision of H as a subgraph, and we write H ⊆tm G. Similarly, H is an
induced topological minor of G if G contains a subdivision of H as an induced
subgraph, and we write H ⊆itm G. Again, if H ⊆itm G, then H ⊆tm G. An edge
contraction is the operation of deleting a pair of adjacent vertices and replacing
them with a new vertex whose neighborhood is the union of the neighborhoods
of the two original vertices. We say that G contains H as induced minor if H
can be obtained from G by a sequence of vertex deletions and edge contractions,
and we write H ⊆im G. Finally, if H can be obtained from G by a sequence
of vertex deletions, edge deletions, and edge contractions, then H is said to be
a minor of G, and we write H ⊆m G. Here also, if H ⊆im G, then H ⊆m G.
Besides the already observed implications, one can notice that

H ⊆s G =⇒ H ⊆tm G =⇒ H ⊆m G and
H ⊆is G =⇒ H ⊆itm G =⇒ H ⊆im G .

If G does not contain an induced subgraph isomorphic to H, then we say
that G is H-free. Analogously, we may also say that G is H-subgraph-free, H-
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topological-minor-free, H-induced-topological-minor-free, H-minor-free, or H-
induced-minor-free, respectively, for the other five relations. It is well known
that G contains H as a minor if and only if there exists a minor model of H
in G, that is, a collection (Xu : u ∈ V (H)) of pairwise disjoint subsets of V (G)
called bags such that each Xu induces a connected subgraph of G and for every
two adjacent vertices u, v ∈ V (H), there is an edge in G between a vertex of Xu

and a vertex of Xv. Similarly, G contains H as an induced minor if and only if
there exists an induced minor model of H in G, which is defined similarly as a
minor model, except that for every two distinct vertices u, v ∈ V (H), there is an
edge in G between a vertex of Xu and a vertex of Xv if and only if uv ∈ E(H).

Given a set S ⊆ V (G), we denote by G − S the graph obtained from G by
removing all vertices S and by G[S] the subgraph of G induced by S, that is, the
graph G − (V (G) \ S). For u ∈ V , N(u) = {v ∈ V : uv ∈ E} is the neighborhood
of u and N [u] = N(u) ∪ {u} is the closed neighborhood of u. The degree of u
in G is the cardinality of its neighborhood. The clique number of a graph G,
denoted by ω(G), is the maximum size of a clique in G. A tree decomposition of
a graph G is a pair (T, {Xt : t ∈ V (T )}), where T is a tree and each t ∈ V (T )
is associated with a vertex subset Xt ⊆ V (G) such that

⋃
t∈V (T ) Xt = V , for

each edge uv ∈ E(G) there exists some t ∈ V (T ) such that u, v ∈ Xt, and
for every u ∈ V (G), the set Tu = {t ∈ V (T ) : u ∈ Xt} induces a connected
subtree of T . The width of a tree decomposition equals maxt∈V (T ) |Xt| − 1, and
the treewidth of a graph G, denoted by tw(G), is the minimum possible width
of a tree decomposition of G. A graph class G is said to be of bounded treewidth
if there exists a constant c such that tw(G) ≤ c for all G ∈ G; otherwise, G
is of unbounded treewidth. A hole in a graph G is an induced subgraph of G
isomorphic to a cycle of length at least four. A graph is said to be chordal if it
does not contain any hole.

Observation 1. A graph G is chordal if and only if G is C4-induced-minor-free,
if and only if G is C4-induced-topological-minor-free.

Some of our proofs will make use of the following classical result due to
Ramsey [38].

Ramsey’s theorem. For every two positive integers k and �, there exists a
least positive integer R(k, �) ≤ (

k+�−2
k−1

)
such that every graph with at least R(k, �)

vertices contains either a clique of size k or an independent set of size �.

Using Ramsey’s theorem, we can already derive the following.

� Lemma 1. Let H be an edgeless graph. Then the class of H-free graphs is
(tw, ω)-bounded, with a binding function f(k) = R(k + 1, |V (H)|) − 2.

A graph class that is not (tw, ω)-bounded is said to be (tw, ω)-unbounded.
Lemma 2 is about some specific (tw, ω)-unbounded graph classes, which will play
a crucial role in our proofs. The line graph of a graph G, denoted by L(G), is
the graph with vertex set E(G) where two vertices are adjacent if and only if the
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corresponding edges intersect. For the definition of an elementary wall, we refer
to [11]. For a non-negative integer q, we say that a graph is a q-subdivided-wall
if it can be obtained from an elementary wall by subdividing each edge q times.

� Lemma 2. The class of balanced complete bipartite graphs and, for all q ≥ 0,
the class of q-subdivided walls and the class of their line graphs are (tw, ω)-
unbounded.

3 Forbidding a Subgraph, a Topological Minor, or a
Minor

We use known results on treewidth and graph minors to derive characterizations
of (tw, ω)-bounded graph classes excluding a single graph as either a subgraph,
a topological minor, or a minor.

Theorem 1 (Robertson and Seymour [39]). For every planar graph H, the
class of H-minor-free graphs has bounded treewidth.

Lemma 3 (Golovach et al. [21]). For every H ∈ S, a graph G is H-subgraph-
free if and only if it is H-minor-free.

Theorem 2. Let H be a graph. Then, the class of H-subgraph-free graphs is
(tw, ω)-bounded if and only if H ∈ S.
Proof. Suppose that H ∈ S. Then following Lemma 3 every H-subgraph-free
graph is also H-minor-free. Hence, by Theorem 1, the class of H-subgraph-free
graphs has bounded treewidth. In particular, it is (tw, ω)-bounded.

Suppose now that the class of H-subgraph-free graphs is (tw, ω)-bounded.
Note that H must be a subgraph of an elementary wall, since otherwise the class
of H-subgraph-free graphs would contain the class of elementary walls, which,
following Lemma 2, would contradict the assumption that the class is (tw, ω)-
bounded. It follows that H is subcubic. Suppose that H contains a connected
component with two vertices u and v of degree 3 and let � be the distance between
u and v. Then the class of �-subdivided walls is a subclass of the class of H-
subgraph-free graphs. Following Lemma 2, this contradicts the assumption that
the class of H-subgraph-free graphs is (tw, ω)-bounded. Thus, every connected
component of H has at most one vertex of degree 3. Using a similar reasoning,
we can conclude that H is acyclic, and thus H ∈ S. 	


A similar approach can be used to prove Theorems 3 and 4.

� Theorem 3. Let H be a graph. Then, the class of H-topological-minor-free
graphs is (tw, ω)-bounded if and only if H is subcubic and planar.

� Theorem 4. Let H be a graph. Then, the class of H-minor-free graphs is
(tw, ω)-bounded if and only if H is planar.

The proofs actually show that when H is forbidden as a subgraph, topological
minor, or minor, (tw, ω)-boundedness is equivalent to bounded treewidth.



98 C. Dallard et al.

4 Forbidding an Induced Subgraph or an Induced
Topological Minor

The following characterization of (tw, ω)-bounded graph classes excluding a sin-
gle forbidden induced subgraph is derived using Lemmas 1 and 2.

� Theorem 5. Let H be a graph. Then, the class of H-free graphs is (tw, ω)-
bounded if and only if H ⊆is P3 or H is edgeless.

A cut-vertex in a connected graph G is a vertex whose removal disconnects
the graph. A block of a graph is a maximal connected subgraph without cut-
vertices. A block-cactus graph is a graph every block of which is a cycle or a
complete graph. In her PhD thesis [25], Hartinger proved that a graph is K−

4 -
induced-minor-free if and only if G is a block-cactus graph. In fact, the same
approach shows the following stronger claim.

� Lemma 4. A graph G is a block-cactus graph, if and only if G is K−
4 -

induced-minor-free, if and only if G is K−
4 -induced-topological-minor-free.

� Lemma 5. The class of block-cactus graphs is (tw, ω)-bounded, with a bind-
ing function f(k) = max{k − 1, 2}.

Graphs H such that the class of graphs excluding H as an induced topological
minor is (tw, ω)-bounded are characterized as follows.

Theorem 6. Let H be a graph. Then, the class of H-induced-topological-minor-
free graphs is (tw, ω)-bounded if and only if H ⊆is C4, H ⊆is K−

4 , or H is
edgeless.

Proof. If H is edgeless, then Lemma 1 applies. If H ⊆is C4, then H ⊆itm C4.
Hence, by Observation 1, the class of H-induced-topological-minor-free graphs
is a subclass of the class of chordal graphs, and thus (tw, ω)-bounded. If H ⊆is

K−
4 , then according to Lemma 4 the class of H-induced-topological-minor-free

graphs is a subclass of the class of block-cactus graphs, which is (tw, ω)-bounded
by Lemma 5.

For the converse direction, suppose that H �is C4, H �is K−
4 , H is not edge-

less, and that the class of H-induced-topological-minor-free graphs is (tw, ω)-
bounded. By Lemma 2, the class of line graph of 1-subdivided walls is (tw, ω)-
unbounded. It follows that H must be an induced topological minor of the line
graph of some 1-subdivided wall. Since the line graph of every 1-subdivided
wall is planar, subcubic, and claw-free, this implies that H is planar, subcubic,
and claw-free. Similarly, since the class of complete bipartite graphs is (tw, ω)-
unbounded, H must be an induced topological minor of some complete bipartite
graph. Since H is planar, subcubic, and not edgeless, it follows that H ⊆itm K2,3.
We obtain that H ∈ {P2, P3, C3, C4,K

−
4 }, a contradiction. 	
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5 Forbidding an Induced Minor

Finally, we consider graph classes excluding a single graph H as an induced
minor. Given a graph G, we denote by η(G) the Hadwiger number of G, defined
as the largest value of p such that Kp is a minor of G (see [33]). We first develop
some sufficient conditions for when sufficiently large Hadwiger number implies
large clique number and then apply these results to characterize the graphs H
such that the class of H-induced-minor-free graphs is (tw, ω)-bounded.

5.1 A Detour: Hadwiger Number Versus Clique Number

Theorems 7 and 8 show that excluding either a complete graph minus an edge
or a 4-wheel as an induced minor results in an (η, ω)-bounded graph class, with
a linear binding function.
Theorem 7. For each p ≥ 2, the class of K−

p -induced-minor-free graphs is
(η, ω)-bounded, with a binding function f(k) = max{2p − 4, k}.
Proof. Fix p ≥ 2 and k ∈ N, and let G be a K−

p -induced-minor-free graph with
ω(G) = k. Let q = max{2p − 4, k} + 1. We want to show that G contains no Kq

as a minor. Suppose for a contradiction that G contains Kq as a minor. Fix a
minor model M = (Xu : u ∈ V (Kq)) of Kq in G such that the total number of
vertices in the bags, that is, the sum

∑
u∈V (Kq)

|Xu|, is minimized.
If for all u ∈ V (Kq) we have |Xu| = 1, then the set

⋃
u∈V (Kq)

Xu is a clique
in G, implying that ω(G) ≥ |V (Kq)| = q ≥ k + 1, a contradiction. Therefore,
there exists some u ∈ V (Kq) such that |Xu| ≥ 2. Furthermore, note that for
every vertex y ∈ Xu there exists a vertex v(y) of Kq − u such that y has no
neighbors in Xv(y), since otherwise replacing the bag Xu with {y} would result
in a minor model of Kq smaller than M . Since |Xu| ≥ 2 and the subgraph of G
induced by Xu is connected, there exists a vertex x ∈ Xu such that the subgraph
of G induced by Xu \ {x} is connected. (For example, take x to be a leaf of a
spanning tree of G[Xu].)

Let Z be the set of vertices z ∈ V (Kq) \ {u} such that x has a neighbor in
Xz. Suppose first that |Z| ≥ (q − 1)/2. Recall that Xv(x) is a bag in which x
has no neighbor. In particular, v(x) �= u and v(x) �∈ Z. Then, the bags from
(Xz : z ∈ Z) along with {x} and Xv(x) form an induced minor model of K−

|Z|+2.
Since |Z| + 2 ≥ (q − 1)/2 + 2 ≥ (2p − 4)/2 + 2 = p, we obtain a contradiction
with the fact that G is K−

p -induced-minor-free.
Finally, suppose that |Z| < (q − 1)/2. The minimality of M implies that for

some w ∈ Z we have
⋃

v∈Xw
N(v) ∩ Xu = {x}. Let Z ′ = V (Kq) \ (Z ∪ {u}).

Note that for every vertex z ∈ Z ′ there exists an edge from Xz to Xu \ {x}.
Since |Z| + |Z ′| = q − 1 and |Z| < (q − 1)/2, we have |Z ′| ≥ (q − 1)/2. Thus,
the bags from (Xz : z ∈ Z ′) along with Xu \ {x} and Xw form an induced
minor model of K−

|Z′|+2, leading again to a contradiction with the fact that G is
K−

p -induced-minor-free. 	

� Theorem 8. The class of W4-induced-minor-free graphs is (η, ω)-bounded,
with a binding function f(k) = k + 5.
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5.2 Back to Treewidth

As explained by Belmonte et al. [1] (and observed also in [7]), the following fact
can be derived from the proof of Theorem 9 in [29].

Theorem 9. For every graph F and every planar graph H, the class of graphs
that are both F -minor-free and H-induced-minor-free has bounded treewidth.

Since excluding a complete graph as a minor is the same as excluding it as
an induced minor, Theorem 9 implies the following.

Corollary 1. For every positive integer p and every planar graph H, the class
of {Kp,H}-induced-minor-free graphs has bounded treewidth.

Observe that no graph G contains Kη(G)+1 as an (induced) minor.

� Corollary 2. Let H be a planar graph. The class of H-induced-minor-free
graphs is (η, ω)-bounded if and only if it is (tw, ω)-bounded.

From Theorem 7 we obtain that the class of K−
5 -induced-minor-free graphs

is (η, ω)-bounded. Since K−
5 is planar, a direct application of Corollary 2 implies

the following result.

Corollary 3. The class of K−
5 -induced-minor-free graphs is (tw, ω)-bounded.

Similarly, since W4 is planar, we can directly apply Theorem 8 and
Corollary 2 and obtain the following result.

Corollary 4. The class of W4-induced-minor-free graphs is (tw, ω)-bounded.

Our next result makes use of minimal separators. Given two non-adjacent
vertices u and v in a graph G, a u,v-separator in G is a set S of vertices such
that u and v are in different connected components of G − S. A u,v-separator is
minimal if it does not contain any other u,v-separator. A minimal separator in
a graph G is a minimal u,v-separator for some non-adjacent vertex pair u, v.

Theorem 10 (Skodinis [45]). Let s be a positive integer and let G be the class
of graphs in which all minimal separators have size at most s. Then, G is (tw, ω)-
bounded, with a binding function f(k) = max{k, 2s} − 1.

Using Theorem 10, we infer our next result.

Lemma 6. For every q ∈ N, the class of K2,q-induced-minor-free graphs is
(tw, ω)-bounded, with a binding function f(k) = max{k, 2R(k + 1, q) − 2} − 1.

Proof. Fix two positive integers q and k, and let G be a K2,q-induced-minor-
free graph with ω(G) = k. We claim that every minimal separator in G has
size at most R(k + 1, q) − 1. Suppose this is not the case, and let u and v be
two non-adjacent vertices in G such that |S| ≥ R(k + 1, q) for some minimal
u,v-separator S in G. Since |S| ≥ R(k + 1, q), Ramsey’s theorem implies that
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G[S] contains either a clique of size k + 1 or an independent set of size q. Since
ω(G[S]) ≤ ω(G) = k, we infer that G[S] contains an independent set I of size q.
Let Cu and Cv denote the connected components of G − S containing u and v,
respectively. By the minimality of S, every vertex in S has a neighbor in Cu and
a neighbor in Cv (see, e.g., [22]). But now, the sets V (Cu), V (Cv), and {x} for
all x ∈ I form the bags of an induced minor model of K2,q in G, a contradiction.
Therefore, every minimal separator in G has size at most R(k + 1, q) − 1. Using
Theorem 10, we obtain that tw(G) ≤ max{k, 2R(k + 1, q) − 2} − 1. 	


A graph G is said to be 1-perfectly orientable if it has an orientation D such
that for every vertex v ∈ V (G), the out-neighborhood of v in D is a clique
in G. The class of 1-perfectly orientable graphs is a common generalization of
the classes of chordal graphs and circular-arc graphs. Brešar et al. showed in [7]
that the treewidth of every 1-perfectly orientable planar graph is at most 21 and
asked whether the class of 1-perfectly orientable graphs is (tw, ω)-bounded. Since
every 1-perfectly orientable graph excludes K2,3 as an induced minor (see [26]),
Lemma 6 answers their question in the affirmative.

Corollary 5. The class of 1-perfectly orientable graphs is (tw, ω)-bounded with
a binding function f(k) = max{k, 2R(k + 1, 3) − 2} − 1.

Lemma 2 and Corollaries 3 and 4 lead to the following characterization.

� Theorem 11. Let H be a graph. Then, the class of H-induced-minor-free
graphs is (tw, ω)-bounded if and only if one of the following conditions holds:
H ⊆is W4, H ⊆is K−

5 , H ⊆is K2,q, or H ⊆is K+
2,q, for some q ∈ N.

6 Algorithmic Implications of (tw, ω)-Boundedness

As explained in the introduction, the (tw, ω)-bounded classes having a com-
putable binding function possess some algorithmically useful properties for vari-
ants of the clique and coloring problems. All the (tw, ω)-bounded graph classes
identified in this work have a computable binding function. For the (tw, ω)-
bounded graph classes discussed in Sect. 3, a result of Chekuri and Chuzhoy
applies stating that there is a universal constant c ≤ 100 such that, if G excludes
a planar graph H as a minor, then the treewidth of G is O(|V (H)|c) [10]. The
(tw, ω)-boundedness of graph classes discussed in Sects. 4 and 5 is derived either
using the structure of graphs in the resulting class (Theorem 5 and Lemma 5),
Ramsey’s theorem (Theorem 5 and Lemma 6), or graph minors theory (Corol-
laries 3 and 4). In the former two cases, the binding functions are explicit poly-
nomials. In the case of applications of graph minors theory, the key result to
deriving those bounds is Theorem 9, the proof of which relies on results of
Fomin et al. [18]. As explained in [19, Section 9], recent developments in the area
of graph minors imply that these bounds are computable, too.

As shown by Chaplick and Zeman, for every (tw, ω)-bounded class G with a
computable binding function and for every fixed k, List k-Coloring is solvable
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in linear time for graphs in G [9]. If we are satisfied with polynomial running time,
we can extend their approach to obtain an algorithm for List k-Coloring that
is robust in the sense of Raghavan and Spinrad [37]: it either solves the problem
or determines that the input graph is not in G.

� Theorem 12. Let G be a (tw, ω)-bounded graph class having a computable
(tw, ω)-binding function f . Then, for every positive integer k there exists a robust
polynomial-time algorithm for the List k-coloring problem on graphs in G.

We next discuss some possible implications of (tw, ω)-boundedness for
improved approximations for the Maximum Clique problem. For general
graphs, this problem is notoriously difficult to approximate: for every ε > 0,
there is no polynomial-time algorithm for approximating the maximum clique
in an n-vertex graph to within a factor of n1−ε unless P = NP [49]. For (tw, ω)-
bounded graph classes with a polynomial binding function, known approxima-
tion algorithms for treewidth (see, e.g., [17]) lead to an improved approximability
bound, provided that we allow the algorithm to output only a number approxi-
mating the value of the optimal solution and not the approximate solution itself.
We denote by opt the optimal solution value of the maximum clique problem on
the input graph G, that is, ω(G).

� Theorem 13. Let G be a graph class having a polynomial (tw, ω)-binding
function f(k) = O(kc) for some constant c. Then, for all ε > 0 the clique
number can be approximated for graphs in G in polynomial time to within a
factor of opt1−1/(c+ε).

For graph classes having a linear (tw, ω)-binding function, Theorem 13
implies an optε approximation for all ε > 0. Note that this result cannot be
improved to a polynomial-time approximation scheme for the maximum clique
problem, unless P = NP, as there exist graph classes with a linear (tw, ω)-binding
function in which the clique number is APX-hard to compute, see [9].

7 Open Problems

We obtained a first set of results aimed towards classifying (tw, ω)-bounded
graph classes, by considering six well-known graph containment relations and for
each of them, characterizing the graphs H for which the class of graphs excluding
H is (tw, ω)-bounded. In conclusion, we pose the following open problems:

1. Which graph classes defined by larger finite sets of forbidden structures (with
respect to various graph containment relations) are (tw, ω)-bounded?

2. All the (tw, ω)-bounded graph classes identified in this paper have a polyno-
mial (tw, ω)-binding function. A natural question arises: Does every heredi-
tary (tw, ω)-bounded graph class have a polynomial (tw, ω)-binding function?
A positive answer to this question would answer the analogous question by
Esperet on χ-boundedness (see [32]) for the case of (tw, ω)-bounded graph
classes.
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3. Which graph classes have a linear (tw, ω)-binding function?
4. It is a well-known open problem whether treewidth can be approximated

within a constant factor (see, e.g., [17,47]). It seems plausible that the prob-
lem could be easier for (tw, ω)-bounded classes, especially if an additional
constraint is imposed on the binding function, for example that it is poly-
nomial or linear. Note that for graph classes with a linear (tw, ω)-binding
function, a constant factor approximation for treewidth would also imply a
constant factor approximation for the clique number.
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24. Gyárfás, A., Zaker, M.: On (δ, χ)-bounded families of graphs. Electron. J. Comb.
18(1), 108 (2011). https://doi.org/10.37236/595

25. Hartinger, T.R.: New Characterizations in Structural Graph Theory: 1-Perfectly
Orientable Graphs, Graph Products, and the Price of Connectivity. Ph.D. Thesis.
University of Primorska (2017)
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31. Kamiński, M., Raymond, J.F., Trunck, T.: Well-quasi-ordering H-contraction-free
graphs. Discret. Appl. Math. 248, 18–27 (2018). https://doi.org/10.1016/j.dam.
2017.02.018

https://doi.org/10.1017/9781108649094
https://doi.org/10.1017/9781108649094
https://doi.org/10.1016/j.jcss.2019.09.001
https://doi.org/10.1016/j.jcss.2019.09.001
https://doi.org/10.1002/jgt.3190160509
https://doi.org/10.1016/0304-3975(94)00097-3
https://doi.org/10.1137/05064299X
https://doi.org/10.1137/05064299X
https://doi.org/10.1016/j.jctb.2011.02.008
https://doi.org/10.1016/j.jctb.2011.02.008
https://doi.org/10.1007/s00453-018-0495-5
https://doi.org/10.1007/s00453-018-0495-5
https://doi.org/10.1002/jgt.22028
https://doi.org/10.1016/j.dam.2014.08.008
https://doi.org/10.1016/j.dam.2014.08.008
https://doi.org/10.37236/595
https://doi.org/10.1002/jgt.22067
https://doi.org/10.1016/0095-8956(90)90132-J
https://doi.org/10.1016/j.dam.2014.04.014
https://doi.org/10.1016/j.dam.2014.04.014
https://doi.org/10.1016/j.dam.2010.05.005
https://doi.org/10.1016/j.dam.2017.02.018
https://doi.org/10.1016/j.dam.2017.02.018


Treewidth Versus Clique Number 105

32. Karthick, T., Maffray, F.: Vizing bound for the chromatic number on some graph
classes. Graphs Comb. 32(4), 1447–1460 (2015). https://doi.org/10.1007/s00373-
015-1651-1

33. Kostochka, A.V.: Lower bound of the Hadwiger number of graphs by their average
degree. Combinatorica 4(4), 307–316 (1984). https://doi.org/10.1007/BF02579141

34. Lovász, L.: Graph minor theory. Bull. Am. Math. Soc. (N.S.) 43(1), 75–86 (2006).
https://doi.org/10.1090/S0273-0979-05-01088-8

35. Malyshev, D.S.: A complexity dichotomy and a new boundary class for the dom-
inating set problem. J. Comb. Optim. 32(1), 226–243 (2016). https://doi.org/10.
1007/s10878-015-9872-z

36. Markossian, S.E., Gasparian, G.S., Reed, B.A.: β-perfect graphs. J. Comb. Theor.
Ser. B 67(1), 1–11 (1996). https://doi.org/10.1006/jctb.1996.0030

37. Raghavan, V., Spinrad, J.: Robust algorithms for restricted domains. J. Algorithms
48(1), 160–172 (2003). https://doi.org/10.1016/S0196-6774(03)00048-8

38. Ramsey, F.P.: On a problem of formal logic. Proc. London Math. Soc. (2) 30(4),
264–286 (1929). https://doi.org/10.1112/plms/s2-30.1.264

39. Robertson, N., Seymour, P.D.: Graph minors. V. Excluding a planar graph.
J. Comb. Theor. Ser. B 41(1), 92–114 (1986). https://doi.org/10.1016/0095-
8956(86)90030-4

40. Scheffler, P.: What graphs have bounded tree-width? In: Proceedings of the 7th
Fischland Colloquium, III (Wustrow, 1988), pp. 31–38, no. 41 (1990)

41. Schweitzer, P.: Towards an isomorphism dichotomy for hereditary graph classes.
Theo. Comput. Syst. 61(4), 1084–1127 (2017). https://doi.org/10.1007/s00224-
017-9775-8

42. Scott, A., Seymour, P.: A survey of χ-boundedness. arXiv:1812.07500 [math.CO]
(2018)

43. Silva, A., da Silva, A.A., Sales, C.L.: A bound on the treewidth of planar even-hole-
free graphs. Discret. Appl. Math. 158(12), 1229–1239 (2010). https://doi.org/10.
1016/j.dam.2009.07.010

44. Sintiari, N.L.D., Trotignon, N.: (Theta, triangle)-free and (even hole, K4)-free
graphs. Part 1 : Layered wheels. arXiv:1906.10998 [cs.DM] (2019)

45. Skodinis, K.: Efficient analysis of graphs with small minimal separators. In: Wid-
mayer, P., Neyer, G., Eidenbenz, S. (eds.) WG 1999. LNCS, vol. 1665, pp. 155–166.
Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-46784-X 16

46. Weißauer, D.: In absence of long chordless cycles, large tree-width becomes a local
phenomenon. J. Comb. Theor. Ser. B 139, 342–352 (2019). https://doi.org/10.
1016/j.jctb.2019.04.004

47. Wu, Y., Austrin, P., Pitassi, T., Liu, D.: Inapproximability of treewidth and related
problems. J. Artif. Intell. Res. 49, 569–600 (2014). https://doi.org/10.1613/jair.
4030

48. Zaker, M.: On lower bounds for the chromatic number in terms of vertex degree.
Discret. Math. 311(14), 1365–1370 (2011). https://doi.org/10.1016/j.disc.2011.03.
025

49. Zuckerman, D.: Linear degree extractors and the inapproximability of max clique
and chromatic number. Theor. Comput. 3, 103–128 (2007). https://doi.org/10.
4086/toc.2007.v003a006

https://doi.org/10.1007/s00373-015-1651-1
https://doi.org/10.1007/s00373-015-1651-1
https://doi.org/10.1007/BF02579141
https://doi.org/10.1090/S0273-0979-05-01088-8
https://doi.org/10.1007/s10878-015-9872-z
https://doi.org/10.1007/s10878-015-9872-z
https://doi.org/10.1006/jctb.1996.0030
https://doi.org/10.1016/S0196-6774(03)00048-8
https://doi.org/10.1112/plms/s2-30.1.264
https://doi.org/10.1016/0095-8956(86)90030-4
https://doi.org/10.1016/0095-8956(86)90030-4
https://doi.org/10.1007/s00224-017-9775-8
https://doi.org/10.1007/s00224-017-9775-8
http://arxiv.org/abs/1812.07500
https://doi.org/10.1016/j.dam.2009.07.010
https://doi.org/10.1016/j.dam.2009.07.010
http://arxiv.org/abs/1906.10998
https://doi.org/10.1007/3-540-46784-X_16
https://doi.org/10.1016/j.jctb.2019.04.004
https://doi.org/10.1016/j.jctb.2019.04.004
https://doi.org/10.1613/jair.4030
https://doi.org/10.1613/jair.4030
https://doi.org/10.1016/j.disc.2011.03.025
https://doi.org/10.1016/j.disc.2011.03.025
https://doi.org/10.4086/toc.2007.v003a006
https://doi.org/10.4086/toc.2007.v003a006


Graph Isomorphism Restricted by Lists
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Abstract. The complexity of graph isomorphism (GraphIso) is a
famous problem in computer science. For graphs G and H, it asks
whether they are the same up to a relabeling of vertices. In 1981, Lubiw
proved that list restricted graph isomorphism (ListIso) is NP-complete:
for each u ∈ V (G), we are given a list L(u) ⊆ V (H) of possible images
of u. After 35 years, we revive the study of this problem and consider
which results for GraphIso can be modified to solve ListIso.

We prove: 1) Under certain conditions, GI-completeness of a class of
graphs implies NP-completeness of ListIso. 2) Several combinatorial
algorithms for GraphIso can be modified to solve ListIso: for trees,
planar graphs, interval graphs, circle graphs, permutation graphs, and
bounded treewidth graphs. 3) ListIso is NP-complete for cubic colored
graphs with sizes of color classes bounded by 8.

Keywords: Graph isomorphism · Restricted computational problem ·
NP-completeness

1 Introduction

For graphs G and H, a bijection π : G → H is called an isomorphism if uv ∈
E(G) ⇐⇒ π(u)π(v) ∈ E(H). The graph isomorphism problem (GraphIso)
asks whether there exists an isomorphism from G to H. It obviously belongs to
NP, and no polynomial-time algorithm is known, and it is unlikely NP-complete.
It is a prime candidate for an intermediate problem with complexity between
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P and NP-complete. The graph isomorphism problem is solved efficiently for
various restricted graph classes and parameters; see Fig. 1.

Fig. 1. Important graph classes for which the graph isomorphism problem is in P. Our
complexity results for the list restricted graph isomorphism problem are depicted.

Combinatorial Algorithms. A prime example is the linear-time algorithm
for testing graph isomorphism of trees. It is a bottom-up procedure compar-
ing subtrees. For other graph classes, graph isomorphism reduces to graph iso-
morphism of labeled trees: for planar graphs [17], interval graphs [25], circle
graphs [20], and permutation graphs [5]. Involved combinatorial arguments are
used to solve graph isomorphism for bounded genus graphs [21] and bounded
treewidth graphs [23].

Algorithms Based on Group Theory. The graph isomorphism problem is
closely related to group theory, in particular to computing generators of auto-
morphism groups of graphs. Assuming that G and H are connected, we can test
G ∼= H by computing generators of Aut(G ∪̇ H) and checking whether there
exists a generator which swaps G and H. For the converse relation, Mathon [28]
proved that generators of the automorphism group can be computed using O(n3)
instances of graph isomorphism.

Therefore, GraphIso can be attacked by techniques of group theory. The
seminal result of Luks [26] uses group theory to solve GraphIso for graphs
of bounded degree in polynomial time. If G has bounded degree, its automor-
phism group Aut(G) may be arbitrary, but the stabilizer Aute(G) of an edge
e is restricted. Luks’ algorithm tests GraphIso by an iterative process which
determines Aute(G) in steps, by adding layers around e.

Group theory can be used to solve GraphIso of colored graphs with bounded
sizes of color classes [12] and of graphs with bounded eigenvalue multiplicity [2].
Miller [29] solved GraphIso of k-contractible graphs (which generalize both
bounded degree and bounded genus graphs), and his results are used by Pono-
marenko [30] to show that GraphIso can be decided in polynomial time for
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Fig. 2. (a) Two isomorphic graphs G and H with no list-compatible isomorphism. (b)
It does not exist because there is no perfect matching between the lists of the leaves of
G and of H.

graphs with excluded minors. Luks’ algorithm [26] for bounded degree graphs is
also used by Grohe and Marx [14] as a subroutine to solve GraphIso on graphs
with excluded topological subgraphs. The recent breakthrough of Babai [1] heav-
ily uses group theory to solve the graph isomorphism problem in quasipolynomial
time.

Is Group Theory Needed? One of the fundamental problems for understand-
ing the graph isomorphism problem is to understand in which cases group theory
is really needed, and in which cases it can be avoided.1 For instance, for which
graph classes can GraphIso be decided by the classical combinatorial algorithm
called k-dimensional Weisfieler-Leman refinement (k-WL)? (See the full version
for details.)

Ponomarenko [30] used group theory to solve GraphIso in polynomial time
on graphs with excluded minors. Robertson and Seymour [31] proved that a
graph G with an excluded minor can be decomposed into pieces which are
“almost embeddable” to a surface of genus g, where g depends on this minor.
Recently, Grohe [13] generalized this to show that for G, there exists a treelike
decomposition into almost embeddable pieces which is automorphism-invariant
(every automorphism of G induces an automorphism of the treelike decompo-
sition). Using this decomposition, it is possible to solve graph isomorphism in
polynomial time and to avoid group theory techniques. In particular, k-WL can
decide graph isomorphism on graphs with excluded minors where k depends on
the minor.

It is a long-standing open problem whether the graph isomorphism problem
for bounded degree graphs, and in particular for cubic graphs, can be solved in
polynomial time without group theory. It is known that k-WL, for any fixed k,
cannot decide graph isomorphism on cubic graphs [4]. Very recently, fixed param-
eter tractable algorithms for graphs of bounded treewidth [23] and for graphs of
bounded genus [21] were constructed. On the other hand, the best known param-
eterized algorithms for graphs of bounded degree are XP algorithms [15,26], and
it is a major open problem whether an FPT algorithm exists.

List Restricted Graph Isomorphism. In 1981, Lubiw [24] introduced the
following computational problems. Let G and H be graphs, and the vertices of
G be equipped with lists: each vertex u ∈ V (G) has a list L(u) ⊆ V (H). We say

1 Ilya Ponomarenko in personal communication.
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that an isomorphism π : G → H is list-compatible if, for all vertices u ∈ V (G),
we have π(u) ∈ L(u); see Fig. 2a. A list-compatible isomorphism π : G → G is
called a list-compatible automorphism.

Problem: List restricted graph isomorphism – ListIso
Input: Graphs G and H, and the vertices of G are equipped by

lists L(u) ⊆ V (H).
Output: Is there a list-compatible isomorphism π : G → H?

Problem: List restricted graph automorphism – ListAut
Input: A graph G with vertices equipped with lists L(u) ⊆

V (G).
Output: Is there a list-compatible automorphism π : G → G?

These two problems are polynomially equivalent (see Lemma 3). Lubiw [24]
proved the following surprising result:

Theorem 1 (Lubiw [24]). The problems ListIso is NP-complete and the
problem ListAut is NP-complete.

Independently, ListIso was rediscovered in [9,11]. Given two graphs G and
H, we say that G regularly covers H if there exists a semiregular subgroup
Γ ≤ Aut(G) such that G/Γ ∼= H. The list restricted graph isomorphism problem
was used as a subroutine in [9,11] for 3-connected planar and projective graphs
to test regular covering when G is a planar graph. The key idea is that a planar
graph G can be reduced to a 3-connected planar graph Gr, for which Aut(Gr)
is a spherical group. Therefore, we can compute all regular quotients Gr/Γr.
Next, we reduce H towards Gr/Γr. The problem is that subgraphs of H may
correspond to several different parts in G, so we compute lists of all possibilities.
This leads to ListIso of 3-connected planar and projective planar graphs.

Our Results. We revive the study of list restricted graph isomorphism. The
goal is to determine which techniques for GraphIso can be modified to solve
ListIso. We believe that ListIso is a very natural computational problem, as
evidenced by its application in [9,11]. Moreover, the study of list-restricted prob-
lems is natural in computer science and discrete mathematics. These include for
example the list homomorphism problem [16], and the list coloring problem [8].
We informally state the results proved in this paper; see Fig. 1 for an overview:

Result 1. GI-completeness results for GraphIso with polynomial-time reduc-
tions using vertex-gadgets imply NP-completeness for ListIso.

For many classes C of graphs, it is known that GraphIso is equally hard
for them as for general graphs, i.e., it is GI-complete. For instance, GraphIso is
GI-complete for bipartite graphs, split and chordal graphs [25], chordal bipartite
and strongly chordal graphs [36], trapezoid graphs [33], comparability graphs
of dimension 4 [22], grid intersection graphs [35], line graphs [37], and self-
complementary graphs [6].
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The polynomial-time reductions are often done in a way that all graphs are
encoded into C, by replacing each vertex with a small vertex-gadget. We prove
in Theorem 2 that such reductions can be modified for ListIso: they imply NP-
completeness of ListIso for C. For instance, ListIso is NP-complete for all
graph classes mentioned above (Corollary 2).

Result 2. The problem ListIso can be solved in polynomial-time for trees,
planar graphs, interval graphs, circle graphs, permutation graphs, and bounded
treewidth graphs.

These algorithms are modifications of combinatorial techniques for
GraphIso. As a by-product, our paper gives an overview of these techniques
which can be modified to solve ListIso in a straightforward way. Moreover, we
can describe them more naturally with lists.

For example, the bottom-up linear-time algorithm for testing graph isomor-
phism of (rooted) trees can be modified to solve ListIso in Theorem 4, since it
captures all possible isomorphisms. The key difference is that the algorithm for
ListIso finds perfect matchings in bipartite graphs, in order to decide whether
lists of several subtrees are simultaneously compatible; see Fig. 2b. We use the
algorithm of Hopcroft and Karp [19], running in time O(

√
nm).

The algorithms for graph isomorphism of planar, interval, permutation and
circle graphs based on tree decompositions and can be modified to solve ListIso,
as we show in Theorems 9, 5, 6 and 7. The algorithm for graph isomorphism of
bounded treewidth graphs can be modified to solve ListIso, as we show in
Theorem 10. The complexity for graphs with bounded rankwidth and graphs
with excluded minors remains open, see Conclusions for details.

Result 3. The problem ListIso is NP-complete for 3-regular colored graphs
with all color classes of size at most 8 and with all lists of size at most 3.

This result contrasts with two fundamental results using group theory tech-
niques to solve graph isomorphism in polynomial time for graphs of bounded
degrees [26] and bounded color classes [12]. In general, our impression is that
group theory techniques probably cannot be modified in a straightforward way
to solve ListIso since list-compatible automorphisms of a graph G do not form a
subgroup of Aut(G). In Theorem 3, we prove Result 3 by describing a non-trivial
modification of the original NP-hardness reduction of Lubiw [24].

2 Preliminaries

Let G be an input graph of ListIso or ListAut. We denote the set of its vertices
by V (G) and the set of its edges by E(G). Let n = |V (G)|, m = |E(G)| and � be
the total size of all lists. To make the problem non-trivial, we can assume that
� ≥ n.

Bipartite Perfect Matchings. We frequently use bipartite perfect matching :
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Lemma 1 (Hopcroft and Karp [19]). The bipartite perfect matching problem
can be solved in time O(

√
nm), where n is the number of vertices and m is the

number of edges.

We repeatedly use this subroutine to solve ListIso for many graph classes.
Therefore, the running time of many of our algorithms O(

√
n�) while the input

size is Ω(n + �). This cannot be avoided for the following reason (see the full
version for a proof):

Lemma 2. There exists a linear-time reduction from the bipartite perfect match-
ing problem for n vertices and m edges to ListIso of two independent sets with
n vertices and � = m.

Similar reductions work for trees, etc. Therefore, finding bipartite perfect
matchings is the bottleneck in many of our algorithms and cannot be avoided.

Basic Results. We state some basic results concerning the complexity of Lis-
tIso and ListAut, all proofs are in the full version.

Lemma 3. Both problems ListAut and ListIso are polynomially equivalent.

Lemma 4. The problem ListIso can be solved in O(n + m) if � ≤ 2n.

Lemma 5. Let G1, . . . , Gk be the components of G and H1, . . . , Hk be the com-
ponents of H. If we can decide ListIso in polynomial time for all pairs Gi and
Hj, then we can solve ListIso for G and H in polynomial time.

Lemma 6. The problem ListIso can be solved for cycles in time O(�).

Lemma 7. The problem ListIso can be solved for graphs of maximum degree
2 in O(

√
n�).

3 GI-Completeness Implies NP-Completeness

We want to show that in most cases, the GI-completeness reductions can be
modified to show NP-completeness of ListIso for C′.

Vertex-Gadget Reductions. Suppose that GraphIso is GI-complete for a
class C. To show that GraphIso is GI-complete for another class C′, one builds
a polynomial-time reduction ψ from GraphIso of C: given graphs G,H ∈ C, we
construct graphs G′,H ′ ∈ C′ in polynomial time such that G ∼= H if and only if
G′ ∼= H ′. Such reductions were described for certain graph classes (e.g., chordal
graphs [25]) and they were systematically studied in [7].

We say that ψ uses vertex-gadgets, if to every vertex u ∈ V (G) (resp. u ∈
V (H)), it assigns a vertex-gadget Vu, and these gadgets are subgraphs of G′

(resp. of H ′), and satisfy the following two conditions:

1. Every isomorphism π : G → H induces an isomorphism π′ : G′ → H ′ such
that π(u) = v implies π′(Vu) = Vv.



112 P. Klav́ık et al.

2. Every isomorphism π′ : G′ → H ′ maps vertex-gadgets to vertex-gadgets and
induces an isomorphism π : G → H such that π′(Vu) = Vv implies π(u) = v.

Theorem 2. Let C and C′ be graph classes. Suppose that there exists a
polynomial-time reduction ψ using vertex-gadgets from GraphIso of C to
GraphIso of C′. Then there exists a polynomial-time reduction from ListIso
of C to ListIso of C′.

Corollary 1. Let C be a class of graphs with NP-complete ListIso. Suppose
that there exists a reduction ψ using vertex-gadgets from GraphIso of C to
GraphIso of C′. Then ListIso is NP-complete for C′.

Corollary 2. The problem ListIso is NP-complete for bipartite graphs, split
and chordal graphs, chordal bipartite graphs, strongly chordal graphs, trape-
zoid graphs, comparability graphs of dimension 4, grid intersection graphs, line
graphs, and self-complementary graphs.

We are not aware of any polynomial-time reduction for graph isomorphism
used in the literature which cannot be easily modified to use vertex-gadgets. The
reason is that most of the reductions use the following operations: (1) taking the
complement of the graph, (2) replacing all vertices by small disjoint isomorphic
gadgets, (3) replacing all edges by small disjoint isomorphic gadgets, (4) taking
disjoint copies of the graph or its complement, (5) adding a universal vertex,
(6) adding a complete subgraph on some vertices or a complete bipartite graph
between two sets of vertices. For instance, all reductions described in [7] can be
easily modified to use vertex-gadgets.

4 NP-Completeness for 3-Regular Colored Graphs

Using group theory techniques, graph isomorphism can be solved in polynomial
time for graphs of bounded degree [26] and for colored graphs with color classes of
bounded sizes [12]. We modify the reduction of Lubiw [24] to show that ListIso
remains NP-complete even for 3-regular colored graphs with color classes of
size at most 8 and each list of size at most 3. We use ListAut to solve 1-
in-3 Sat [32]: all literals are positive, each clause is of size 3 and a satisfying
assignment has exactly one true literal in each clause.

Variable Gadget. For each variable ui, we construct the variable gadget Hi

which consists of two isolated vertices ui(0) and ui(1). We assign L(ui(0)) =
L(ui(1)) =

{
ui(0), ui(1)

}
. There exist two list-compatible automorphisms of Hi:

the transposition αi swapping ui(0) and ui(1) and the identity βi fixing both
ui(0) and ui(1).

Clause Gadget. Let cj be a clause with the literals qj , rj , and sj . For every such
clause cj , the clause gadget Gj consists of the isolated vertices cj(0), . . . , cj(7).
For every k = 0, . . . , 7, we consider its binary representation k = abc2, for
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a, b, c ∈ {0, 1}. The vertex cj(k) has three neighbors qj(a), rj(b), and sj(c)
belonging to the variable gadgets of its literals. We assign the list

L(cj(k)) = {cj(k ⊕ 1002), cj(k ⊕ 0102), cj(k ⊕ 0012)},

where ⊕ denotes the bitwise XOR; i.e., L(cj(k)) contains all cj(k′) in which k′

differs from k in exactly one bit. Let G be the resulting graph consisting of all
variable and clause gadgets.

Lemma 8. Let π′ be a partial automorphism of G obtained by choosing αi or
βi on each Hi. There exists a unique automorphism π extending π′ such that
π(Gj) = Gj.

Proof. Let cj be a clause with the literals qj , rj , and sj . We claim that π(cj(k))
is determined by the images of its neighbors. Recall that βi preserves the vertices
of Hi, but αi swaps them. Therefore, one neighbor of π(cj(k)) is different from
the corresponding neighbor of cj(k) for every application of αi on qj , rj and sj .
Let p = abc2 such that a = 1, b = 1 and c = 1 if and only if αi is applied on
the variable gadget of qj , rj , and sj , respectively. Then π(cj(k)) = cj(k ⊕ p);
otherwise π would not be an automorphism.

Lemma 9. The 1-in-3 Sat formula is satisfiable if and only if there exists a
list-compatible automorphism of G.

Proof. Let T be a truth value assignment satisfying the input formula. We con-
struct a list-compatible automorphism π of G. If T (ui) = 1, we put π|Hi

= αi,
and if T (ui) = 0, we put π|Hi

= βi. By Lemma 8, this partial isomorphism has
a unique extension to an automorphism π of G. It is list-compatible since T
satisfies the 1-in-3 condition, so π(cj(k)) = cj(k ⊕ p), for p ∈ {1002, 0102, 0012}.

For the other implication, let π be a list-compatible automorphism. Then
π|Hi

is either equal αi, or βi, which gives the values T (ui). By Lemma 8,
π(cj(k)) = cj(k ⊕ p) and since π is a list-compatible isomorphism, we have
p ∈ {1002, 0102, 0012}. Therefore, exactly one literal in each clause is true, so all
clauses are satisfied in T .

The described reduction clearly runs in polynomial-time, so we have estab-
lished a proof of Theorem1. For colored graphs, we require that automorphisms
preserve colors. By altering the above reduction, we get the following:

Theorem 3. The problem ListIso is NP-complete for 3-regular colored graphs
for which each color class is of size at most 8 and each list is of size at most 3.

Proof. We modify the graph G to a 3-regular graph. For a clause gadget Gj

representing cj , every vertex cj(k) already has degree 3. Suppose that a variable
ui has o literals in the formula. Then both vertices of Hi have degrees 4o, so we
modify the variable gadgets.

We replace Hi by two cycles of length o, with the vertices ui,1(0), . . . , ui,o(0)
and ui,1(1), . . . , ui,o(1), respectively. To each of these vertices, we attach a small
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gadget depicted in Fig. 3a. We have L(ui,t(0)) = L(ui,t(1)) =
{
ui,t(0), ui,t(1)

}
.

There are two list-compatible automorphisms: αi exchanging these two cycles by
swapping ui,t(0) with ui,t(1), and βi which is the identity fixing all 2o vertices.
We note that when o ≤ 2, we get parallel edges or loops; to avoid this, we replace
edges of two cycle by some 3-regular subgraphs.

Fig. 3. (a) The variable gadget Hi. (b) The connection between Hi and Gj . Suppose
that the variable ui has a literal in the clause cj , so k = yzx2. We connect Hi with
Gj as depicted. Suppose that an automorphism π maps cj(k) to cj(k ⊕ p). We show
the action of π on the vertices of Hi when p = 001 (in white), p = 010 (in gray), and
p = 100 (in black).

Consider the attached gadgets to the vertices ui,t(0) and ui,t(1) corresponding
to one literal of a clause cj . Each vertex depicted in gray is adjacent to exactly
one cj(k) of Gj , as depicted in Fig. 3b. Each k consists of three bits, denoted
x, y and z (in some order). The bit x corresponds to this literal of ui (i.e, x is
the first bit for qj being a literal of ui, and so on). The gray vertices of gadgets
attached to ui,t(j) are adjacent to cj(k) with x = j. Adjacent pairs of gray
vertices are connected to cj(k) where k differs in the bit y. Non-adjacent pairs
of gray vertices in one gadget are connected to cj(k) where k differs in the bit z.

In Fig. 3b, the action of Z3
2 is depicted. Lemma 8 translated to the modified

definitions of variable gadgets which implies correctness of the reduction. The
lists for the vertices of the attached gadgets are created as images of three
depicted automorphisms; they clearly are of size at most 3. The constructed
graph G is 3-regular and all lists of G are of size at most 3. We color the vertices
by the orbits of all list-compatible automorphisms and their compositions. Notice
that each color class is of size at most 8.

With Lemma 7, we get a dichotomy for the maximum degree: ListIso can be
solved in time O(

√
n�) for the maximum degree 2, and it is NP-complete for the

maximum degree 3. Similarly, Lemma 4 implies a dichotomy for the list sizes:
ListIso can be solved in time O(n + m) where all lists are of size 2, and it is
NP-complete for lists of size at most 3. For the last parameter, the maximum
size of color classes, there is a gap. Lemma 4 implies that ListIso can be solved
in time O(n + m) when all color classes are of size 2 while it is NP-complete for
size at most 8.
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5 Polynomial-Time Algorithms

We start by modifying the standard algorithm for tree isomorphism to solve
list restricted isomorphism of trees. We may assume that both trees G and H
are rooted, otherwise we root them by their centers (and possibly subdivide the
central edges). The algorithm for GraphIso processes both trees from bottom
to the top. Using dynamic programming, it computes for every vertex possible
images using possible images of its children. This algorithm can be modified to
ListIso.

Theorem 4. The problem ListIso can be solved for trees in time O(
√

n�).

Proof. We apply the same dynamic algorithm with lists and update these lists
as we go from bottom to the top. After processing a vertex u, we compute an
updated list L′(u) which contains all elements of L(u) to which u can be mapped
compatibly with its descendants. To initiate, each leaf u of G has L′(u) = {w :
w is a leaf and w ∈ L(u)}.

Next, we want to compute L′(u) and we know L′(ui) of all children U =
{u1, . . . , uk} of u. For each w ∈ L(u) with k children w1, . . . , wk, we want to
decide whether to put w ∈ L′(u). Let W = {w1, . . . , wk}. Each ui can be mapped
to all vertices in L′(ui) ∩ W . We need to decide whether all ui’s can be mapped
simultaneously. Therefore, we form a bipartite graph B(U,W ) between U and
W : we put an edge uiwj if and only if wj ∈ L′(ui). Simultaneous mapping is
possible if and only if there exists a perfect matching in this bipartite graph.

Let r be the root of G and r′ be the root of H. We claim that there is a list-
compatible isomorphism π : G → H, if and only if L′(r) = {r′}. Suppose that
π exists. When π(u) = w, its children U are mapped to W . Since this mapping
is compatible with the lists, w ∈ L(u), and the mapping of u1, . . . , uk gives a
perfect matching in B(U,W ). Therefore, w ∈ L′(u), and by induction r′ ∈ L′(r).
On the other hand, we can construct π from the top to the bottom. We start by
putting π(r) = r′. When π(u) = w, we map its children U to W according to
some perfect matching in B(U,W ) which exists from the fact that w ∈ L′(u).

It remains to argue details of the complexity. We process the tree which takes
time O(�) (assuming n ≤ �) and we process each list constantly many times which
takes O(�). To compute L′(u), we consider all vertices w1, . . . , wp ∈ L(u), and let
W j be the children of wj . We go through all lists of L′(u1), . . . ,L′(uk) in linear
time, and split them into sublists L′(uj

i ) of vertices whose parent is wj . Only
these sublists are used in the construction of the bipartite graph B(U,W j). Using
Lemma 1, we decide existence of a perfect matching in time O(

√
k�j) which is

at most O(
√

n�j), where �j is the total size of all sublists L′(uj
i ). When we sum

this complexity for all vertices u, we get the total running time O(
√

n�).

Interval, Permutation and Circle Graphs. Standard algorithms solving
GraphIso on interval, circle and permutation graphs can be modified to solve
ListIso. The structure of these graph classes can be captured by graph-labeled
trees which are unique up to isomorphism and which capture the structure of
all automorphisms; see [22] and the references therein.
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For interval graphs, circle graphs, and permutation graphs we use MPQ-trees,
split trees, and modular trees, respectively. We apply a bottom-up procedure sim-
ilarly as in the proof of Theorem4. The key difference is that nodes correspond
to either prime, or degenerate graphs. Degenerate graphs are simple and lead
to perfect matchings in bipartite graphs. Prime graphs have a small number of
automorphisms [22], so all of them can be tested.

Theorem 5. The problem ListIso can be solved for interval graphs in
O(

√
n� + m).

Theorem 6. The problem ListIso can be solved for permutation graphs in
O(

√
n� + m).

Theorem 7. The problem ListIso can be solved for circle graphs in O(
√

n� +
m · α(m)), where α is the inverse Ackermann function.

Planar Graphs. We sketch how to solve ListIso on planar graphs. It is done in
two steps. When G is a 3-connected planar graph, it has a unique embedding into
the sphere (up to the reflection). It implies that Aut(G) is a spherical group, so
it is small and we can test all automorphisms whether they are list-compatible.

Lemma 10. The problem ListIso (with lists on both vertices and darts) can be
solved for 3-connected planar graphs in time O(�).

Seminal papers by Mac Lane [27] and Trakhtenbrot [34] introduced reduction
which decomposes a graph into its 3-connected components. We use an augmen-
tation described in [9–11] (and the references therein) which behaves well with
respect to automorphism groups. We get a rooted reduction tree whose nodes are
either (essentially) 3-connected graphs or simple graphs (paths, cycles, dipoles).
This tree can be computed in linear time [18].

Theorem 8. Let C be a class of connected graphs closed under contractions and
taking connected subgraphs. Suppose that ListIso with lists on both vertices and
darts can be solved for 3-connected graphs in C in time ϕ(n,m, �). We can solve
ListIso on C in time O(

√
m� + m + ϕ(n,m, �)).

Theorem 9. The problem ListIso can be solved for planar graphs in time
O(

√
n�).

Bounded Treewidth Graphs. We prove that ListIso can be solved in FPT
with respect to the parameter treewidth tw(G). We follow the approach of Bod-
laender [3] which describes the following XP algorithm for GraphIso of bounded
treewidth graphs, running in time nO(tw(G)). It is a dynamic programming algo-
rithm running over all potential bags of all tree decompositions, and it can be
modified with lists. The recent FPT-time algorithm by Lokshtanov et al. [23] can
also be modified to solve ListIso.

Theorem 10. ListIso can be solved in FPT-time 2O(tw(G)5 log tw(G))n5.
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Abstract. Many NP-complete graph problems are polynomial-time
solvable on graph classes of bounded clique-width. Several of these prob-
lems are polynomial-time solvable on a hereditary graph class G if they
are so on the atoms (graphs with no clique cut-set) of G. Hence, we ini-
tiate a systematic study into boundedness of clique-width of atoms of
hereditary graph classes. A graph G is H-free if H is not an induced
subgraph of G, and it is (H1, H2)-free if it is both H1-free and H2-free. A
class of H-free graphs has bounded clique-width if and only if its atoms
have this property. This is no longer true for (H1, H2)-free graphs, as evi-
denced by one known example. We prove the existence of another such
pair (H1, H2) and classify the boundedness of clique-width on (H1, H2)-
free atoms for all but 18 cases.

1 Introduction

Many hard graph problems become tractable when restricting the input to some
graph class. The two central questions are “for which graph classes does a graph
problem become tractable” and “for which graph classes does it stay compu-
tationally hard?” Ideally, we wish to answer these questions for a large set of
problems simultaneously instead of considering individual problems one by one.

Graph width parameters [26,39,41,45,54] make such results possible. A graph
class has bounded width if there is a constant c such that the width of all its

The research in this paper received support from the Leverhulme Trust (RPG-2016-
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members is at most c. There are several meta-theorems that provide sufficient
conditions for a problem to be tractable on a graph class of bounded width.

Two popular width parameters are treewidth (tw) and clique-width (cw). For
every graph G the inequality cw(G) ≤ 3 ·2tw(G)−1 holds [19]. Hence, every prob-
lem that is polynomial-time solvable on graphs of bounded clique-width is also
polynomial-time solvable on graphs of bounded treewidth. However, the converse
statement does not hold: there exist graph problems, such as List Colouring,
which are polynomial-time solvable on graphs of bounded treewidth [44], but NP-
complete on graphs of bounded clique-width [23]. Thus, the trade-off between
treewidth and clique-width is that the former can be used to solve more prob-
lems, but the latter is more powerful in the sense that it can be used to solve
problems for larger graph classes.

Courcelle [20] proved that every graph problem definable in MSO2 is
linear-time solvable on graphs of bounded treewidth. Courcelle, Makowsky and
Rotics [22] showed that every graph problem definable in the more restricted
logic MSO1 is polynomial-time solvable even for graphs of bounded clique-width
(see [21] for details on MSO1 and MSO2). Since then, several clique-width
meta-theorems for graph problems not definable in MSO1 have been devel-
oped [32,36,46,51].

All of the above meta-theorems require a constant-width decomposition
of the graph. We can compute such a decomposition in polynomial time for
treewidth [4] and clique-width [50], but not for all parameters. For instance,
unless NP = ZPP, this is not possible for mim-width [52], another well-known
graph parameter, which is even more powerful than clique-width [54]. Hence,
meta-theorems for mim-width [2,16] require an appropriate constant-width
decomposition as part of the input (which may still be found in polynomial
time for some graph classes).

Our Focus. In our paper we concentrate on clique-width1 in an attempt to
find larger graph classes for which certain NP-complete graph problems become
tractable without the requirement of an appropriate decomposition as part of the
input. The type of graph classes we consider all have the natural property that
they are closed under vertex deletion. Such graph classes are said to be hereditary
and there is a long-standing study on boundedness of clique-width for hereditary
graph classes (see, for example, [3,6–8,10–13,24,25,27,28,30,31,39,45,48]).

Besides capturing many well-known classes, the framework of hereditary
graph classes also enables us to perform a systematic study of a width parameter
or graph problem. This is because every hereditary graph class G is readily seen
to be uniquely characterized by a minimal (but not necessarily finite) set FG
of forbidden induced subgraphs. If |FG | = 1 or |FG | = 2, then G is said to be
monogenic or bigenic, respectively. Monogenic and bigenic graph classes already
have a rich structure, and studying their properties has led to deep insights into
the complexity of bounding graph parameters and solving graph problems; see
e.g. [18,26,37,40] for extensive algorithmic and structural studies and surveys.

1 See Sect. 2 for a definition of clique-width and other terminology used in Sect. 1.
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It is well known (see e.g. [31]) that a monogenic class of graphs has bounded
clique-width if and only if it is a subclass of the class G with FG = {P4}. The sur-
vey [26] gives a state-of-the-art theorem on the boundedness and unboundedness
of clique-width of bigenic graph classes. Unlike treewidth, for which a complete
dichotomy is known [5], and mim-width, for which there is an infinite number of
open cases [15], this state-of-the-art theorem shows that there are still five open
cases (up to an equivalence relation). From the same theorem we observe that
many graph classes are of unbounded clique-width. However, if a graph class has
unbounded clique-width, then this does not mean that a graph problem must be
NP-hard on this class. For example, Colouring is polynomial-time solvable on
the (bigenic) class of (C4, P6)-free graphs [35], which contains the class of split
graphs and thus has unbounded clique-width [48]. In this case it turns out that
the atoms (graphs with no clique cut-set) in the class of (C4, P6)-free graphs
do have bounded clique-width. This immediately gives us an algorithm for the
whole class of (C4, P6)-free graphs due to Tarjan’s decomposition theorem [53].

In fact, Tarjan’s result holds not only for Colouring, but also for many
other graph problems. For instance, several other classical graph problems, such
as Minimum Fill-In, Maximum Clique, Maximum Weighted Indepen-
dent Set [53] (see [1] for the unweighted variant) and Maximum Induced
Matching [14] are polynomial-time solvable on a hereditary graph class G if
and only if this is the case on the atoms of G. Hence, we aim to investigate, in
a systematic way, the following natural research question:

Which hereditary graph classes of unbounded clique-width have the property that
their atoms have bounded clique-width?

Known Results. For monogenic graph classes, the restriction to atoms does
not yield any algorithmic advantages, as shown by Gaspers et al. [35].

Theorem 1 ([35]). Let H be a graph. The class of H-free atoms has bounded
clique-width if and only if the class of H-free graphs has bounded clique-width
(so, if and only if H is an induced subgraph of P4).

The result for (C4, P6)-free graphs [35] shows that the situation is different for
bigenic classes. We are aware of two more hereditary graph classes G with this
property, but in both cases |FG | > 2. Split graphs, or equivalently, (C4, C5, 2P2)-
free graphs have unbounded clique-width [48], but split atoms are complete
graphs and have clique-width at most 2. Cameron et al. [17] proved that
(cap, C4)-free odd-signable atoms have clique-width at most 48, whereas the
class of all (cap, C4)-free odd-signable graphs contains the class of split graphs
and thus has unbounded clique-width. See [33,34] for algorithms for Colouring
on hereditary graph classes that rely on boundedness of clique-width of atoms
of subclasses.

Our Results. Due to Theorem 1, and motivated by algorithmic applications,
we focus on the atoms of bigenic graph classes. Recall that the class of (C4, P6)-
free graphs has unbounded clique-width but its atoms have bounded clique-
width [35]. This also holds, for instance, for its subclass of (C4, 2P2)-free graphs
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and thus for (C4, P5)-free graphs and (C4, P2 + P3)-free graphs. We determine
a new, incomparable case where we forbid 2P2 and P2 + P3 (also known as the
paraglider [43]); see Fig. 1 for illustrations of these forbidden induced subgraphs.

2P2 P2 + P3

Fig. 1. The two forbidden induced subgraphs from Theorem 2.

Theorem 2. The class of (2P2, P2 + P3)-free atoms has bounded clique-width
(whereas the class of (2P2, P2 + P3)-free graphs has unbounded clique-width).

We sketch the proof of Theorem 2 in Sect. 3 after first giving an outline. Our
approach shares some similarities with the approach Malyshev and Lobanova [49]
used to show that (Weighted) Colouring is polynomial-time solvable on
(P5, P2 + P3)-free graphs. We explain the differences between both approaches
and the new ingredients of our proof in detail in Sect. 3. Here, we only discuss
a complication that makes proving boundedness of clique-width of atoms more
difficult in general. Namely, when working with atoms, we need to be careful
with performing complementation operations. In particular, a class of (H1,H2)-
free graphs has bounded clique-width if only if the class of (H1,H2)-free graphs
has bounded clique-width. However, this equivalence relation no longer holds for
classes of (H1,H2)-free atoms. For example, (C4, P5)-free (and even (C4, P6)-
free) atoms have bounded clique-width [35], but we prove that (C4, P5)-free
atoms have unbounded clique-width.

We also identify a number of new bigenic graph classes whose atoms already
have unbounded clique-width. We prove this by modifying existing graph con-
structions for proving unbounded clique-width of the whole class (proofs omitted
due to space restrictions). Combining these constructions with Theorem 2 and
the state-of-art theorem on clique-width from [26] yields the following summary.

Theorem 3. For graphs H1 and H2, let G be the class of (H1,H2)-free graphs.

1. The class of atoms in G has bounded clique-width if
(i) H1 or H2 ⊆i P4

(ii) H1 = paw or Ks and H2 = P1 + P3 or tP1 for some s, t ≥ 1
(iii) H1 ⊆i paw and H2 ⊆i K1,3 + 3P1, K1,3 + P2, P1 + P2 + P3, P1 + P5,

P1 + S1,1,2, P2 + P4, P6, S1,1,3 or S1,2,2

(iv) H1 ⊆i P1 + P3 and H2 ⊆i K1,3 + 3P1, K1,3 + P2, P1 + P2 + P3,
P1 + P5, P1 + S1,1,2, P2 + P4, P6, S1,1,3 or S1,2,2

(v) H1 ⊆i diamond and H2 ⊆i P1 + 2P2, 3P1 + P2 or P2 + P3
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(vi) H1 ⊆i 2P1 + P2 and H2 ⊆i P1 + 2P2, 3P1 + P2 or P2 + P3

(vii) H1 ⊆i gem and H2 ⊆i P1 + P4 or P5

(viii) H1 ⊆i P1 + P4 and H2 ⊆i P5

(ix) H1 ⊆i K3 + P1 and H2 ⊆i K1,3,
(x) H1 ⊆i 2P1 + P3 and H2 ⊆i 2P1 + P3

(xi) H1 ⊆i P6 and H2 ⊆i C4, or
(xii) H1 ⊆i 2P2 and H2 ⊆i P2 + P3.

2. The class of atoms in G has unbounded clique-width if
(i) H1 �∈ S and H2 �∈ S
(ii) H1 /∈ S and H2 �∈ S
(iii) H1 ⊇i K3 + P1 and H2 ⊇i 4P1 or 2P2

(iv) H1 ⊇i K1,3 and H2 ⊇i K4 or C4

(v) H1 ⊇i diamond and H2 ⊇i K1,3, 5P1, P2 + P4 or P1 + P6

(vi) H1 ⊇i 2P1 + P2 and H2 ⊇i K3 + P1, K5, P2 + P4 or P6

(vii) H1 ⊇i K3 and H2 ⊇i 2P1 + 2P2, 2P1 + P4, 4P1 + P2, 3P2 or 2P3

(viii) H1 ⊇i 3P1 and H2 ⊇i 2P1 + 2P2, 2P1 + P4, 4P1 + P2, 3P2 or 2P3

(ix) H1 ⊇i K4 and H2 ⊇i P1 + P4, 3P1 + P2 or 2P2

(x) H1 ⊇i 4P1 and H2 ⊇i gem, 3P1 + P2 or C4

(xi) H1 ⊇i gem, P1 + 2P2 or P2 + P3 and H2 ⊇i P1 + 2P2 or P6

(xii) H1 ⊇i P1 + P4 and H2 ⊇i P1 + 2P2, or
(xiii) H1 ⊇i 2P2 and H2 ⊇i P2 + P4, 3P2 or P5.

Due to Theorem 3, we are left with 18 open cases, listed in Sect. 4, where we
discuss directions for future work.

2 Preliminaries

Let G be a graph. For a subset S ⊆ V (G), the subgraph of G induced by S is the
graph G[S], which has vertex set S and edge set {uv |uv ∈ E(G), u, v ∈ S}. If
S = {s1, . . . , sr}, we may write G[s1, . . . , sr] instead of G[{s1, . . . , sr}]. We write
F ⊆i G to denote that F is an induced subgraph of G. We say that G is H-free
if G does not contain H as an induced subgraph, and that G is (H1, . . . , Hp)-
free if it is Hi-free for all i ∈ {1, . . . , p}. A (connected) component of G is a
maximal connected subgraph of G. A clique K ⊆ V (G) is a clique cut-set of G
if G \ K = G[V (G) \ K] is disconnected. A graph with no clique cut-sets is an
atom; note that such graphs are connected. The complement G of G has vertex set
V (G) = V (G) and edge set E(G) = {uv |u, v ∈ V (G), u �= v, uv /∈ E(G)}. The
neighbourhood of a vertex u ∈ V (G) is the set N(u) = {v ∈ V (G) |uv ∈ E(G)}.
Let X and Y be two disjoint vertex subsets of G. A vertex x ∈ V (G) \ Y is
(anti-)complete to Y if it is (non-)adjacent to every vertex in Y . Similarly, X is
complete to Y if every vertex of X is complete to Y and anti-complete to Y if
every vertex of X is anti-complete to Y .

The graph G1 + G2 is the disjoint union of two vertex-disjoint graphs G1

and G2 and has vertex set V (G1) ∪ V (G2) and edge set E(G1) ∪ E(G2). The
graph rG is the disjoint union of r copies of a graph G. The graphs Ct, Kt,
and Pt denote the cycle, complete graph, and path on t vertices, respectively.
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The paw is the graph P1 + P3, the diamond is the graph 2P1 + P2, and the gem
is the graph P1 + P4. The subdivided claw Sh,i,j , for 1 ≤ h ≤ i ≤ j is the tree
with one vertex x of degree 3 and exactly three leaves, which are of distance h, i
and j from x, respectively. We let S denote the class of graphs every connected
component of which is either a subdivided claw or a path on at least one vertex.
Note that S1,1,1 = K1,3.

The clique-width of a graph G, denoted by cw(G), is the minimum number
of labels needed to construct G using the following four operations:

1. create a new graph consisting of a single vertex v with label i;
2. take the disjoint union of two labelled graphs G1 and G2;
3. add an edge between every vertex with label i and every vertex with label j

(i �= j);
4. relabel every vertex with label i to have label j.

A class of graphs G has bounded clique-width if there is a constant c such that
cw(G) ≤ c for every G ∈ G; otherwise the clique-width of G is unbounded.

For an induced subgraph G′ of a graph G, the subgraph complementation
acting on G with respect to G′ replaces every edge of G′ by a non-edge, and
vice versa. Hence, the resulting graph has vertex set V (G) and edge set (E(G) \
E(G′)) ∪ E(G′). For two disjoint vertex subsets S and T in G, the bipartite
complementation acting on G with respect to S and T replaces every edge with
one end-vertex in S and the other in T by a non-edge and vice versa.

For a constant k ≥ 0 and a graph operation γ, a graph class G′ is (k, γ)-
obtained from a graph class G if (i) every graph in G′ is obtained from a graph
in G by performing γ at most k times, and (ii) for every G ∈ G, there exists
at least one graph in G′ obtained from G by performing γ at most k times.
Then γ preserves boundedness of clique-width if for every constant k and every
graph class G, every graph class G′ that is (k, γ)-obtained from G has bounded
clique-width if and only if G has bounded clique-width.

Fact 1. Vertex deletion preserves boundedness of clique-width [47].
Fact 2. Subgraph complementation preserves boundedness of clique-width [45].
Fact 3. Bipartite complementation preserves boundedness of clique-width [45].

A graph is split if its vertex set can be partitioned into a clique K and an
independent set I. Note that if there is a vertex v ∈ I with N(v) � K, then N(v)
is a clique cut-set. Furthermore, if |I| > 1 then K is a clique cut-set. It follows
that split atoms are complete graphs. Since complete graphs have clique-width
at most 2, this means that split atoms have bounded clique-width.

3 The Proof of Theorem 2

Here, we prove Theorem 2, namely that the class of (2P2, P2 + P3)-free atoms
has bounded clique-width. Our approach is based on the following three claims:
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(i) (2P2, P2 + P3)-free atoms with an induced C5 have bounded clique-width.
(ii) (2P2, P2 + P3)-free atoms with an induced C4 have bounded clique-width.
(iii) (C4, C5, 2P2, P2 + P3)-free atoms have bounded clique-width.

We prove Claims (i) and (ii) in Lemmas 4 and 5, respectively, whereas Claim (iii)
follows from the fact that (C4, C5, 2P2)-free graphs are split graphs and so the
atoms in this class are complete graphs, which therefore have clique-width at
most 2. We partition the vertex set of an arbitrary (2P2, P2 + P3)-free atom G
into a number of different subsets with according to their neighbourhoods in an
induced C5 in Lemma 4 or an induced C4 in Lemma 5. We then analyse the
properties of these different subsets of V (G) and how they are connected to each
other, and use this knowledge to apply a number of appropriate vertex deletions,
subgraph complementations and bipartite complementations. These operations
will modify G into a graph G′ that is a disjoint union of a number of smaller
“easy” graphs known to have “small” clique-width. We then use Facts 1–3 to
conclude that G also has small clique-width.

This approach works, as we will:

– apply the vertex deletions, subgraph complementations, and bipartite com-
plementations only a constant number of times;

– not use the properties of being an atom or being (2P2, P2 + P3)-free once we
“leave the graph class” due to applying the above graph operations.

Our approach is similar to the approach used by Malyshev and Lobanova [49]
for showing that Colouring is polynomial-time solvable on the superclass of
(P5, P2 + P3)-free graphs. However, we note the following two differences:

1. Prime atoms restriction: OK for Colouring, but not for clique-
width. A set X ⊆ V (G) is said to be a module if all vertices in X have the same
set of neighbours in V (G) \ X. A module X in a graph G is trivial if it contains
either all or at most one vertex of G. A graph G is prime if it has no non-trivial
modules. To solve Colouring in polynomial time on some hereditary graph
class G, one may restrict to prime atoms from G [42]. Malyshev and Lobanova
proved that (P5, P2 + P3)-free prime atoms with an induced C5 are 3P1-free or
have a bounded number of vertices. In both cases, Colouring can be solved in
polynomial time. We cannot make the pre-assumption that our atoms are prime.
To see this, let G be a split graph. Add two new non-adjacent vertices to G and
make them complete to the rest of V (G). Let G be the (hereditary) graph class
that consists of all these “enhanced” split graphs and their induced subgraphs.
These enhanced split graphs are atoms, which have unbounded clique-width
due to Fact 1 and the fact that split graphs have unbounded clique-width [48].
However, the prime atoms of G are the complete graphs, which have clique-width
at most 2.

2. Perfect graphs restriction: OK for Colouring, but not for clique-
width. Malyshev and Lobanova observed that (P5, P2 + P3, C5)-free graphs
are perfect. Hence, Colouring can be solved in polynomial time on such
graphs [38]. However, being perfect does not imply boundedness of clique-width
(for instance, split graphs are perfect graphs with unbounded clique-width).
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We omit the proof of the next lemma.

Lemma 4. The class of (2P2, P2 + P3)-free atoms that contain an induced C5

has bounded clique-width.

Lemma 5. The class of (2P2, P2 + P3)-free atoms that contain an induced C4

has bounded clique-width.

Proof. Suppose G is a (2P2, P2 + P3)-free atom containing an induced cycle C on
four vertices, say v1, . . . , v4 in that order. By Lemma 4, we may assume that G
is C5-free. For S ⊆ {1, . . . , 4}, let VS be the set of vertices x ∈ V (G)\V (C) such
that N(x) ∩ V (C) = {vi | i ∈ S}.

To simplify notation, in the following claims, subscripts on vertices and vertex
sets should be interpreted modulo 4 and whenever possible we will write Vi

instead of V{i}, write Vi,j instead of V{i,j}, and so on.

Claim 1. For i ∈ {1, . . . , 4}, Vi,i+1,i+2 is empty.

Proof of Claim. Suppose, for contradiction, that x ∈ V1,2,3. Then G[v1, v3,
v2, v4, x] is a P2 + P3, a contradiction. The claim follows by symmetry. 


Claim 2. For i ∈ {1, . . . , 4}, V∅ ∪ Vi ∪ Vi+1 ∪ Vi,i+1 is an independent set.

Proof of Claim. Suppose, for contradiction, that x, y ∈ V∅ ∪ V1 ∪ V2 ∪ V1,2 are
adjacent. Then G[x, y, v3, v4] is a 2P2, a contradiction. The claim follows by
symmetry. 


Claim 3. For i ∈ {1, . . . , 4}, Vi,i+1∪Vi,i+2 and Vi,i+1∪Vi+1,i+3 are independent
sets.

Proof of Claim. Suppose, for contradiction, that x, y ∈ V1,2 ∪ V1,3 are adjacent.
By Claim 2, x and y cannot both be in V1,2, so assume without loss of generality
that x ∈ V1,3. Now G[x, v2, v1, v3, y] or G[v1, v3, x, v2, y] is a P2 + P3 if y ∈ V1,2

or y ∈ V1,3, respectively, a contradiction. The claim follows by symmetry. 


Claim 4. G[V1,2,3,4] is (P1 + P2)-free and so it has bounded clique-width.

Proof of Claim. Suppose, for contradiction, that x, y, y′ ∈ V1,2,3,4 induce a P1 +
P2 in G. Then G[v1, v3, y, x, y′] is a P2 + P3, a contradiction. Therefore G[V1,2,3,4]
is (P1 +P2)-free and so P4-free, so it has bounded clique-width by Theorem 1. 


Claim 5. For i ∈ {1, 2}, Vi,i+2 is complete to V1,2,3,4.

Proof of Claim. Suppose, for contradiction, that x ∈ V1,3 is non-adjacent to
y ∈ V1,2,3,4. Then G[v1, v3, v2, x, y] is a P2 + P3, a contradiction. The claim
follows by symmetry. 


Claim 6. For i ∈ {1, 2, 3, 4} either Vi−1 ∪ Vi−1,i or Vi,i+1 ∪ Vi+1 is empty.
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Proof of Claim. Suppose, for contradiction, that x ∈ V1 ∪V1,2 and y ∈ V2,3 ∪V3.
Then G[v1, x, y, v3, v4] is a C5 or G[x, v1, y, v3] is a 2P2 if x is adjacent or non-
adjacent to y, respectively, a contradiction. The claim follows by symmetry. 


Claim 7. If x ∈ V∅ then x has at least two neighbours in one of V1,3 and V2,4 and
is anti-complete to the other. Furthermore, in this case x is complete to V1,2,3,4.

Proof of Claim. Suppose x ∈ V∅. Since G is not an atom, N(x) cannot be a
clique, and so must contain two non-adjacent vertices y, y′. By Claims 1 and 2,
and the definition of V∅, it follows that y, y′ ∈ V1,3 ∪ V2,4 ∪ V1,2,3,4. If y, y′ ∈
V1,2,3,4, then G[y, y′, v1, x, v2] is a P2 + P3, a contradiction. By Claim 5, V1,2,3,4

is complete to V1,3 ∪ V2,4, so it follows that y, y′ ∈ V1,3 ∪ V2,4. If y ∈ V1,3

and y′ ∈ V2,4, then G[v1, v2, y′, x, y′] is a C5, a contradiction. It follows that
y, y′ ∈ V1,3 or y, y′ ∈ V2,4.

Suppose y, y′ ∈ V1,3. If z ∈ V2,4 is a neighbour of x, then z must be adjacent
to y and y′ (since, as shown above, x cannot have a pair of non-adjacent neigh-
bours one of which is in V1,3 and the other of which is in V2,4), in which case
G[y, y′, x, v1, z] is a P2 + P3, a contradiction. Therefore x cannot have a neigh-
bour in V2,4. If z ∈ V1,2,3,4 is a non-neighbour of x, then z must be adjacent to y
and y′ by Claim 5, so G[y, y′, v1, x, z] is a P2 + P3, a contradiction. Therefore x
is complete to V1,2,3,4. The claim follows by symmetry. 


Claim 8. For i ∈ {1, 2}, |Vi,i+1 ∪ Vi+2,i+3| ≤ 2.

Proof of Claim. Suppose, for contradiction, that |V1,2 ∪ V3,4| ≥ 3. First note
that if x ∈ V1,2, y ∈ V3,4 are non-adjacent, then G[v1, x, v3, y] is a 2P2, a contra-
diction. Therefore V1,2 is complete to V3,4. By Claim 2, both V1,2 and V3,4 are
independent sets. If x ∈ V1,2 and y, y′ ∈ V3,4, then G[y, y′, v3, x, v4] is a P2 + P3,
a contradiction. By symmetry, we conclude that either V1,2 or V3,4 is empty.
Suppose V3,4 is empty, so V1,2 contains at least three vertices and let x ∈ V1,2

be such a vertex. Since G is an atom, N(x) cannot be a clique, so x must have
two neighbours y, y′ that are non-adjacent. By Claims 1, 2, 3 and 6, and the
definition of V1,2, every neighbour of x ∈ V1,2 lies in {v1, v2} ∪ V1,2,3,4. Since v1
is complete to {v2} ∪ V1,2,3,4 and v2 is complete to {v1} ∪ V1,2,3,4, it follows that
y, y′ ∈ V1,2,3,4. Now G[y, y′, v1, v3, x] is a P2 + P3, a contradiction. The claim
follows by symmetry. 


Claim 9. For i ∈ {1, 2, 3, 4}, Vi is complete to V1,2,3,4 and at most one vertex
of Vi,i+2 has neighbours in Vi.

Proof of Claim. Suppose x ∈ V1. Since G is an atom, x must have two neighbours
y, y′ that are non-adjacent. By Claims 1, 2 and 6, and the definition of V1,
every neighbour of x lies in {v1} ∪ V1,3 ∪ V2,4 ∪ V1,2,3,4. If y, y′ ∈ V1,3 ∪ V1,2,3,4,
then G[y, y′, v1, v3, x] is a P2 + P3, a contradiction. The vertex v1 is complete
to V1,3 ∪ V1,2,3,4. Therefore without loss of generality, we may assume y ∈ V2,4.
Furthermore, note that V1,3 is an independent set by Claim 3, so x has at most
one neighbour in V1,3. Since V1 is an independent set by Claim 2, it follows
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that G[V1 ∪ V1,3] is a bipartite graph with parts V1 and V1,3. Since G is 2P2-
free, it follows that no two vertices in V1 can have different neighbours in V1,3.
Therefore at most one vertex of V1,3 has a neighbour in V1. Now if z ∈ V1,2,3,4,
then z is adjacent to y by Claim 5. If x is non-adjacent to z, then G[v1, y, v2, x, z]
is a P2 + P3, a contradiction. We conclude that V1 is complete to V1,2,3,4. The
claim follows by symmetry. 


We now proceed as follows. By Claim 1, the set V1,2,3 ∪ V2,3,4 ∪ V1,3,4 ∪ V1,2,4 is
empty. By Claims 6 and 8, there are at most two vertices in V1,2∪V2,3∪V3,4∪V1,4,
so after doing at most two vertex deletions, we may assume these sets are empty
(note that the resulting graph may no longer be an atom). Applying four further
vertex deletions, we can remove the cycle C from G. By Claim 6, we may assume
without loss of generality that V3 and V4 are empty. The remaining vertices
of G all lie in V∅ ∪ V1 ∪ V2 ∪ V1,3 ∪ V2,4 ∪ V1,2,3,4 and by Fact 1, it suffices to
show that this modified graph has bounded clique-width. By Claims 5, 7 and 9,
V1,2,3,4 is complete to V∅ ∪ V1 ∪ V2 ∪ V1,3 ∪ V2,4, and so applying a bipartite
complementation between these two sets disconnects G[V1,2,3,4] from the rest of
the graph. By Claim 4, G[V1,2,3,4] has bounded clique-width, so by Fact 3, we
may assume V1,2,3,4 is empty. By Claim 9, at most one vertex of V1,3 (resp. V2,4)
has a neighbour in V1 (resp. V2). Applying at most two further vertex deletions,
we may assume that V1,3 is anti-complete to V1 and V2,4 is anti-complete to V2.
By Claim 7, we can partition V∅ into the set V 1,3

∅ of vertices that have neighbours
in V1,3 and the set V 2,4

∅ of vertices that have neighbours in V2,4. Now Claims 2
and 3 imply that V 2,4

∅ ∪ V1 ∪ V1,3 and V 1,3
∅ ∪ V2 ∪ V2,4 are independent sets,

and so G[V∅ ∪ V1 ∪ V2 ∪ V1,3 ∪ V2,4] is a 2P2-free bipartite graph. Such graphs
are also known as bipartite chain graphs and are well known to have bounded
clique-width (see e.g. [30, Theorem 2]). By Fact 1, this completes the proof. ��
The class of split graphs is the class of (C4, C5, 2P2)-free graphs. Since split
graphs therefore form a subclass of the class of (2P2, P2 + P3)-free graphs, and
split graphs have unbounded clique-width, it follows that (2P2, P2 + P3)-free
graphs also have unbounded clique-width. Recall that split atoms are complete
graphs, which therefore have clique-width at most 2. The (2P2, P2 + P3)-free
atoms that are not split must therefore contain an induced C4 or C5. Applying
Lemmas 4 and 5, we obtain Theorem 2, which we restate below.

Theorem 2 (restated). The class of (2P2, P2 + P3)-free atoms has bounded
clique-width (whereas the class of (2P2, P2 + P3)-free graphs has unbounded
clique-width).

4 Conclusions

Motivated by algorithmic applications, we determined a new class of (H1,H2)-
free graphs of unbounded clique-width whose atoms have bounded clique-width,
namely when (H1,H2) = (2P2, P2 + P3). We also identified a number of classes
of (H1,H2)-free graphs of unbounded clique-width whose atoms still have
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unbounded clique-width. The latter results show that boundedness of clique-
width of (H1,H2)-free atoms does not necessarily imply boundedness of clique-
width of (H1,H2)-free atoms. For example, (C4, P5)-free atoms have bounded
clique-width [35], but we proved that (C4, P5)-free atoms have unbounded clique-
width (Theorem 3). Note however that while it is not known whether the class
of (K3, S1,2,3)-free graphs has bounded clique-width, we can show that the class
of (K3, S1,2,3)-free atoms has bounded clique-width if and only if the class of
(3P1, S1,2,3)-free atoms has bounded clique-width (proof omitted).

We also presented a summary theorem (Theorem 3), from which we can
deduce the following list of 18 open cases. The cases marked with a ∗ are those
for which even the boundedness of clique-width of the whole class of (H1,H2)-
free graphs is unknown.

Open Problem 6. Does the class of (H1,H2)-free atoms have bounded clique-
width if

(i) H1 = diamond and H2 = P6

(ii) H1 = C4 and H2 ∈ {P1 + 2P2, P2 + P4, 3P2}
(iii) H1 = P1 + 2P2 and H2 ∈ {2P2, P2 + P3, P5}
(iv) H1 = P2 + P3 and H2 ∈ {P2 + P3, P5}
*(v) H1 = K3 and H2 ∈ {P1 + S1,1,3, S1,2,3}
*(vi) H1 = 3P1 and H2 = P1 + S1,1,3

*(vii) H1 = diamond and H2 ∈ {P1 + P2 + P3, P1 + P5}
*(viii) H1 = 2P1 + P2 and H2 ∈ {P1 + P2 + P3, P1 + P5}
*(ix) H1 = gem and H2 = P2 + P3, or
*(x) H1 = P1 + P4 and H2 = P2 + P3.

In particular, we ask if boundedness of clique-width of (2P2, P2 + P3)-free atoms
can be extended to (P5, P2 + P3)-free atoms. Could this explain why Colouring
is polynomial-time solvable on (P5, P2 + P3)-free graphs [49]? Is boundedness
of clique-width the underlying reason? Brandstädt and Hoàng [9] showed that
(P5, P2 + P3)-free atoms with no dominating vertices and no vertex pairs {x, y}
with N(x) ⊆ N(y) are either isomorphic to some specific graph G∗ or all their
induced C5s are dominating. Recently, Huang and Karthick [43] proved a more
refined decomposition. However, it is not clear how to use these results to prove
boundedness of clique-width of (P5, P2 + P3)-free atoms, and additional insights
seem to be needed.
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42. Hoàng, C.T., Lazzarato, D.A.: Polynomial-time algorithms for minimum weighted
colorings of (P5, P5)-free graphs and similar graph classes. Discrete Appl. Math.
186, 106–111 (2015). https://doi.org/10.1016/j.dam.2015.01.022

43. Huang, S., Karthick, T.: On graphs with no induced five-vertex path or paraglider.
CoRR abs/1903.11268 (2019). https://arxiv.org/abs/1903.11268

44. Jansen, K., Scheffler, P.: Generalized coloring for tree-like graphs. Discrete Appl.
Math. 75(2), 135–155 (1997). https://doi.org/10.1016/S0166-218X(96)00085-6
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Martin Milanič2,3, Nevena Pivač2,3, Robert Scheffler1(B), and Martin Strehler1

1 Brandenburg University of Technology, Cottbus, Germany
{jesse.beisegel,ekkehard.koehler,robert.scheffler,martin.strehler}@b-tu.de

2 FAMNIT, University of Primorska, Koper, Slovenia
nina.chiarelli@famnit.upr.si, {matjaz.krnc,martin.milanic}@upr.si

3 IAM, University of Primorska, Koper, Slovenia
nevena.pivac@iam.upr.si

Abstract. Edge-weighted graphs play an important role in the theory of
Robinsonian matrices and similarity theory, particularly via the concept
of level graphs, that is, graphs obtained from an edge-weighted graph by
removing all sufficiently light edges. This naturally leads to a generaliza-
tion of the concept of a graph class to the weighted case by requiring that
all level graphs belong to the class. We examine some types of monotonic-
ity of graph classes, such as sandwich monotonicity, to construct edge
elimination schemes of edge-weighted graphs. This leads to linear-time
recognition algorithms of weighted graphs for which all level graphs are
split, threshold, or chain graphs.

Keywords: Edge elimination · Weighted graphs · Split graphs ·
Threshold graphs · Chain graphs · Linear-time recognition algorithm

1 Introduction

Background and Motivation. Vertex and edge elimination orderings are well
established concepts in graph theory (see Chap. 5 in [6]). For example, chordal
graphs can be characterized as the graphs with a perfect vertex elimination order-
ing [13,34]. In 2017 Laurent and Tanigawa [27] extended the classical notion of
perfect (vertex) elimination ordering for graphs to edge-weighted graphs, giv-
ing a framework capturing common vertex elimination orderings of families of
chordal graphs, Robinsonian matrices, and ultrametrics. They showed that an
edge-weighted graph G has a perfect elimination ordering if and only if it has a
vertex ordering that is a simultaneous perfect elimination ordering of all its level
graphs. Here, the i-th level graph of G is the graph obtained from G by removing
all edges with weights smaller than i. In particular, this latter condition implies
that all the level graphs must be chordal.

Similarly, edge elimination orderings can be used to characterize graph
classes. Adding an edge between a two-pair of a weakly chordal graph always
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maintains weak chordality [37]. Since the class of weakly chordal graphs is self-
complementary, a graph is weakly chordal if and only if it has an edge elimina-
tion ordering where every edge is a two-pair in the complement of the current
graph. On a bipartite graph, an edge elimination ordering is said to be perfect
(also called perfect edge-without-vertex-elimination ordering) if every edge is
bisimplicial at the time of elimination, that is, the closed neighborhood of both
endpoints of the edge induces a complete bipartite subgraph. A bipartite graph
is chordal bipartite if and only if it admits a perfect edge elimination ordering
(see, e.g., [24]).

What the above concepts have in common is that a certain property of the
graph is maintained even after a certain vertex or edge has been deleted. Some
graph properties achieve this in a trivial way. A graph class G is said to be mono-
tone if every subgraph of a graph in G is also in G. For example, planar graphs
and bipartite graphs are monotone graph classes. In particular, an arbitrary
edge can be deleted without leaving the monotone graph class. This definition
can be relaxed as follows. A graph class G is said to be weakly monotone if every
graph G = (V,E) in G is either edgeless or has a G-safe edge, that is, an edge
e ∈ E such that G − e is in G. Obviously, a monotone graph class is also weakly
monotone. Note that we do not delete vertices here.

Instead of deleting edges one at a time, one can also consider the deletion
of sequences of pairwise disjoint sets of edges. Every set is deleted at once, and
the requirement is that all the intermediate graphs belong to a fixed graph class
G. Here, the level graphs of an edge-weighted graph, as used by Laurent and
Tanigawa [27], are equivalent to such edge set eliminations. Another example is
given by the class of threshold graphs (see [7]), where edges are deleted when
the threshold is raised.

Such more general edge elimination sequences are naturally related to the
following concept also studied in the literature. A graph class G is said to be
sandwich monotone if for any two graphs G and G′ in G such that G is a spanning
subgraph of G′, graph G can be obtained from G′ by a sequence of edge deletions
such that all intermediate graphs are in G. This property was studied in 1976
by Rose et al. [35] who showed that chordal graphs have this property. In 2007
Heggernes and Papadopoulos [18] (see also [19]) introduced the term sandwich
monotonicity for this property and showed that the classes of threshold graphs
and chain graphs are sandwich monotone. The same was shown for split graphs
by Heggernes and Mancini [16] as well as for both strongly chordal graphs and
chordal bipartite graphs by Heggernes et al. [17].

Our Contributions. Applying edge elimination orderings on edge-weighted
graphs, we generalize the definition of a graph class as follows. Given a graph class
G, we say that an edge-weighted graph is level-G if all its level graphs are in G. A
particularly nice situation occurs when G is sandwich monotone. In this case, all
the edges of an edge-weighted level-G graph can be eliminated one at a time, from
lightest to heaviest, so that all the intermediate graphs are in G, which yields an
edge elimination ordering with increasing edge weights. Such an edge elimination
ordering is called a sorted G-safe edge elimination ordering of G.
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In Sect. 3 we discuss relations between various types of monotonicity of graph
classes and identify several examples of weakly monotone graph classes.

In Sect. 4 we consider weighted analogs of split, threshold, and chain graphs.
Furthermore, we introduce the concept of a degree-minimal edge in a given set
of edges and show that for the classes of split, threshold, and chain graphs,
every degree-minimal member of a safe set of edges is a safe edge. Additionally,
we develop our key technical contribution, a linear-time algorithm for comput-
ing a degree-minimal edge elimination scheme of an arbitrary weighted graph.
Combining this algorithm with known results yields linear-time recognition algo-
rithms of level-split, level-threshold and level-chain weighted graphs. This is a
significant improvement over the naive O(m2)-algorithm which checks for each
level graph whether it belongs to the respective class. Due to lack of space, most
proofs are omitted and will appear in the full version of this work.

Related Work. Our results related to elimination schemes of weighted graphs
can be seen as part of a more general research framework aimed at general-
izing theoretical and algorithmic aspects of graphs to (edge-)weighted graphs,
or, equivalently, from binary to real-valued symmetric matrices. For example,
Robinsonian similarities are weighted analogues of unit interval graphs [29,33],
Robinsonian dissimilarities (see [32]) are weighted analogues of co-comparability
graphs [12], and Similarity-first search is a weighted graph analogue of Lex-
icographic breadth-first search [25]. Other concepts that were generalized to
the weighted case include perfect elimination orderings [27] and asteroidal
triples [26].

All these works, including ours, share a common feature that is often appli-
cable to weighted problems: instead of the exact numerical values of the input,
only the structure of these values, that is, the ordinal aspects of the distances
or weights, matter. This is a common situation for problems arising in social
network analysis (see, e.g., [11]), combinatorial data analysis (see, e.g., [28]), in
phylogenetics (see, e.g., [20,22]), as well as in greedy algorithms for some com-
binatorial optimization problems such as Kruskal’s or Prim’s algorithms for the
minimum spanning tree problem, or the greedy algorithm for the problem of
finding a minimum-weight basis of a matroid [8].

Unsurprisingly, concepts similar to that of an edge-weighted graph and its
level graphs appeared in the literature in different contexts and under different
names. For example, Berry et al. were interested in weighted graphs derived from
an experimentally obtained dissimilarity matrix, motivated by questions related
to phylogeny reconstruction [4]. The level graphs of a weighted graph can also be
seen as a special case of a temporal graph, a dynamically changing graph in which
each edge can appear and disappear over a certain time period (see, e.g., [31]). In
the terminology of Fluschnik et al. [9], the level graphs of a weighted graph form
a “1-monotone temporal graph” (see also [23]). Furthermore, the special case of
weighted graphs when all edges have different weights corresponds to an edge
ordered graph, a concept of interest in extremal graph theory (see, e.g., [39]).
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2 Preliminaries

All graphs considered in this paper are finite, simple, and undirected. A graph
is nontrivial if it has at least two vertices and edgeless if it contains no edge. For
definitions of standard terms like neighborhood, degree, and induced subgraphs
we refer to [40]. For definitions of graph classes such as weakly chordal graphs,
interval graphs, and comparability graphs see [6].

In the following we present the definitions of the three main graph classes
considered in this paper. A split graph G is a graph whose vertex set can be
partitioned into sets C and I such that C is a clique and I is an independent
set in G (see [10]). We call (C, I) a split partition of G.

A graph G = (V,E) is said to be threshold if there exists a labeling � : V → N0

and a threshold value t ∈ N0 such that a set X ⊆ V is independent in G if and
only if

∑
x∈X �(x) ≤ t (see [7]).

A bipartite graph G = (V,E) is a chain graph if its vertex set can be parti-
tioned into two independent sets X and Y such that vertices in X can be ordered
linearly with respect to set inclusion of their neighborhoods (see [41]). We will
refer to such a pair (X,Y ) as a chain bipartition of G.

An ordering of the vertices in G is a bijection σ : V (G) → {1, 2, . . . , n}. For
an arbitrary ordering σ of the vertices in G we denote by σ(v) the position of
vertex v ∈ V (G). Given two vertices u and v in G, we say that u is to the left
(resp. to the right) of v if σ(u) < σ(v) (resp. σ(u) > σ(v)) and we denote this by
u ≺σ v (resp. u �σ v). Analogously, we define an ordering of the edges of G as
a bijection τ : E(G) → {1, 2, . . . ,m}. Given an edge ordering τ = (e1, . . . , em)
of G we denote by Gi

τ its spanning subgraph G − {e1, . . . , ei}.

3 Monotonicity Properties of Graph Classes

A graph class is said to be hereditary if every induced subgraph of every graph in
that class belongs to the class. This can also be defined in a different way by say-
ing that we can delete arbitrary vertices from the graph and remain in the same
class, a concept that is also known as vertex monotonicity. Edge monotonicity is
defined in the same way: we can remove arbitrary edges from a graph and remain
in the class. If a class is both edge and vertex monotone, we simply call it mono-
tone. Edge monotonicity is a rather restrictive property and many well-studied
graph classes are not edge monotone. In order to include more graph classes we
also consider a relaxation of this property called weak (edge) monotonicity. A
graph class G is called weakly (edge) monotone if every member G of this class is
either edgeless, or there is an edge e in G such that G− e ∈ G. We say that such
an edge is G-safe for G. More generally, a set F of edges of a graph G ∈ G is said
to be G-safe if G−F is a member of G. Note that weak (edge) monotonicity was
already mentioned by Heggernes and Papadopoulos [19] as “edge monotonicity”.

For a graph class G and a graph G ∈ G, a G-safe edge elimination scheme
of G is defined as an ordering τ = (e1, . . . , em) of the edges of G such that for
each i ∈ {1, . . . ,m} the spanning subgraph Gi

τ is in G. Such elimination schemes
always exist precisely for weakly monotone graph classes.
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Theorem 1. Let G be a graph class. Then, every graph in G has a G-safe edge
elimination scheme if and only if G is weakly monotone.

In [19] Heggernes and Papadopoulos introduce the concept of sandwich mono-
tonicity. A graph class G is sandwich monotone if for each graph G ∈ G and each
non-empty G-safe set F ⊆ E(G) there is a G-safe edge in F . Equivalently, one
can say that a graph class is sandwich monotone if between two of its mem-
bers G = (V,E) and G′ = (V,E ∪ F ) with E ∩ F = ∅ there is sequence of
graphs (G = G0, G1, . . . , G|F | = G′) such that for all i ∈ {1, . . . , |F |} we have
Gi = Gi−1 + e with e ∈ F and each graph Gi is a member of G. Therefore, it
makes no difference whether we say that we can delete edges one by one from
the larger graph until we get the smaller one such that all intermediate graphs
are in G, or we consider in a similar way the reverse process of adding edges to
the smaller graph until we obtain the larger one. This also leads to the obser-
vation already stated in [19] that for a sandwich monotone graph class G the
complementary graph class co-G is also sandwich monotone.

Note that this property does not hold for weak monotonicity, i.e., there are
weakly monotone graph classes whose complementary graph class is not weakly
monotone. An example is the class of bipartite graphs, which is monotone and,
therefore, also weakly monotone. However, the class of co-bipartite graphs is not
weakly monotone. Counterexamples are the complements of complete bipartite
graphs with at least two vertices in one part.

Many known graph classes are weakly monotone. Obviously, monotone graph
classes fulfill this condition. But not every weakly monotone graph class is mono-
tone. For example, the class of graphs with at most one nontrivial component is
weakly monotone but not monotone. Furthermore, monotone graph classes are
also sandwich monotone.

On the other hand, there are graph classes which are sandwich monotone but
not weakly monotone. An example is the class of connected graphs. However,
for many graph classes it can be shown that weak monotonicity is a generaliza-
tion of sandwich monotonicity. A graph class is called grounded if it fulfills the
following condition for every positive integer n: If there is a graph G ∈ G with
n vertices, then the edgeless graph with n vertices is also in G. Obviously, every
weakly monotone graph class is grounded. Furthermore, we have the following
proposition.

Proposition 2. Let G be a graph class. If G is grounded and sandwich mono-
tone, then G is weakly monotone.

The above connection between sandwich monotone and weakly monotone
graph classes was already mentioned by Heggernes and Papadopoulos [19]. How-
ever, there they did not emphasize the fact that the implication only holds for
grounded graph classes. We summarize the implications between the mentioned
properties of graph classes in Fig. 1.

The following graph classes have been shown to be sandwich monotone:
chordal graphs [2,35], split graphs [16], threshold and chain graphs [19], as well
as strongly chordal and chordal bipartite graphs [17]. Since all these graph classes
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Monotone

HereditaryGrounded and sandwich monotone

Weakly monotoneSandwich monotone

Grounded

Fig. 1. Relationships between various monotonicity properties of graph classes. Arrows
represent implications, e.g., every monotone graph class is also hereditary.

are grounded, by Proposition 2 they are also weakly monotone. The following
proposition gives further examples of weakly monotone graph classes.

Proposition 3. The classes of interval graphs, unit interval graphs, compara-
bility graphs, co-comparability graphs, weakly chordal graphs, and permutation
graphs are weakly monotone.

With the possible exception of weakly chordal graphs, none of these graph
classes are sandwich monotone (see [19] for counterexamples). For weakly chordal
graphs it is an open question whether they are sandwich monotone.

On the other hand, many graph classes are not weakly monotone. We have
already seen that graph classes that are not grounded cannot be weakly mono-
tone. There are also grounded graph classes that are not weakly monotone. An
example of this are the perfect graphs, as verified by the line graph of K3,3.
Moreover, as shown in [5], there exists an infinite family of perfect graphs that
become non-perfect upon either deletion or addition of any single edge.

4 Degree-Minimal Edge Elimination Schemes and
Recognition of Level-G Weighted Graphs

Before moving on to the main results of this article, we state a formal definition
of the notion of weighted graphs already mentioned in the introduction. Given
a positive integer k, a k-weighted graph is a pair (G,ω) where G is a graph and
ω : E(G) → {1, . . . , k} is a surjective weight function. We will often denote a
k-weighted graph (G,ω) simply by G and call it weighted. In many applications
a graph is equipped with a weight function of arbitrary real values. In this case,
sorting the edges by weight yields the required surjective function ω : E(G) →
{1, . . . , k}, where k is the number of distinct weights.

Definition 4. The i-th level graph of a weighted graph (G,ω) is the graph
obtained from G by removing all edges e with ω(e) < i. Given a graph class G,
we say that a weighted graph (G,ω) is level-G if all level graphs of G are in G. A
G-safe edge elimination scheme (e1, . . . , em) of a weighted graph G ∈ G is called
sorted if for any pair of edges ei and ej with i < j it holds that ω(ei) ≤ ω(ej).
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Recall that by Theorem 1 the graph classes in which G-safe edge elimina-
tion schemes always exist are exactly the weakly monotone graph classes. Anal-
ogously, the existence of sorted G-safe edge elimination schemes of weighted
graphs is guaranteed exactly by the sandwich monotonicity property.

Theorem 5. Let G be a graph class. Then, every level-G graph has a sorted
G-safe edge elimination scheme if and only if G is sandwich monotone.

In the remainder of this section, we will discuss how to compute such a sorted
G-safe edge elimination scheme and how this scheme can be used to recognize
level-split, level-threshold, and level-chain weighted graphs.

4.1 Degree-Minimal Edge Elimination Schemes of Weighted Graphs

The first step in the computation of a sorted G-safe edge elimination scheme is
to efficiently identify a safe edge among all edges with minimal weight. In the
following we will show that an edge with “minimal degree” is in fact G-safe for
the considered graph classes.

Definition 6. Let G be a graph and let F be a set of edges of G. A degree-
minimal edge in F is an edge xy ∈ F such that:

1. Vertex x has the smallest degree in G among all vertices incident to an edge
in F , and

2. The degree of y in G is the smallest among all neighbors of x that are adjacent
to x via an edge in F .

In other words, a degree-minimal edge in F is a lexicographically small-
est edge e = xy ∈ F with respect to the pair (d1(e), d2(e)), where d1(e) =
min{dG(x), dG(y)} and d2(e) = max{dG(x), dG(y)}.

For split, threshold and chain graphs degree minimality can be used to find
a safe edge, giving a very simple certificate for this property which, however, is
only sufficient and not necessary.

Theorem 7. Let G be one of the following graph classes: split graphs, threshold
graphs, chain graphs. Then, for every two graphs G = (V,E) and G′ = (V,E ∪ F )
in G, where E ∩ F = ∅, every degree-minimal edge in F is G-safe.

We now introduce a particular edge elimination scheme of weighted graphs,
where each edge is degree-minimal among all edges with minimal weight in
the remaining graph, and devise a linear-time algorithm that constructs such a
scheme for arbitrary graph. Furthermore, we show that for special graph classes G
these orderings are the G-safe edge elimination schemes. In particular, Theorem 7
implies that this holds for the classes of split, threshold, and chain graphs. The
proposed elimination scheme is used for a linear-time recognition for level-split,
level-threshold, and level-chain graphs in the subsequent subsection.

Recall that given an edge ordering τ = (e1, . . . , em) of G and an integer
i ∈ {1, . . . , m}, we denote by Gi

τ its spanning subgraph G − {e1, . . . , ei}.
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Definition 8. Let (G,ω) be a weighted graph. A linear ordering τ = (e1, . . . , em)
of edges in G is said to be a degree-minimal edge elimination scheme of (G,ω)
if for every i ∈ {1, . . . , m} the edge ei is a degree-minimal edge in the set of all
minimum-weight edges in the graph Gi−1

τ .

The next result connects the concepts of degree-minimal and sorted G-safe
edge elimination schemes for sandwich monotone graph classes satisfying an
additional condition.

Theorem 9. Let G be a sandwich monotone graph class such that for every
graph G ∈ G and every G-safe set F ⊆ E(G), each degree-minimal edge in F is
G-safe. Then, for any level-G weighted graph (G,ω) every degree-minimal edge
elimination scheme is also a sorted G-safe edge elimination scheme.

Theorems 7 and 9 have the following consequence.

Corollary 10. Let G be one of the following graph classes: split graphs, threshold
graphs, chain graphs. Then, for any level-G weighted graph (G,ω) every degree-
minimal edge elimination scheme is also a sorted G-safe edge elimination scheme.

We now present a linear-time algorithm that computes a degree-minimal edge
elimination scheme for an arbitrary weighted graph.

Theorem 11. Given a k-weighted graph (G = (V,E), ω), we can compute a
degree-minimal edge elimination scheme of G in time O(|V | + |E|).
Proof. We describe and analyze an algorithm with the above properties. We
start with the description of the main ideas of the algorithm. For every vertex v
and every weight i appearing on an edge incident with v we create a copy of v
named vi. Then, we order the vertex copies non-decreasingly with respect to their
indices. The vertex copies with the same index are ordered such that the resulting
linear order σ of all the vertex copies satisfies the following condition: For every
copy vi vertex v is a vertex of smallest degree in the graph obtained from G by
deleting from it all edges e = xy with xω(e) ≺σ vi or yω(e) ≺σ vi. For every vertex
copy vi we define the vi-star as the edge set Φ(vi) = {vw | ω(vw) = i and vi ≺σ

wi}. We create an ordered partition of the edge set based on the order σ of the
vertex copies by replacing each vertex copy vi with its respective vi-star Φ(vi).
Any ordering ρ = (e1, . . . , em) of the edges of G respecting this partition is sorted
with respect to the edge weights and satisfies the following condition: For every
edge ei one of the two incident vertices has minimal degree in Gi−1

ρ among all
vertices that are incident to an edge with weight ω(ei). Finally, we reorder the
edges within the sets Φ(vi) such that also Condition 2 of Definition 6 holds for
every edge.

Phase 1: Slicing the Input Graph. For all i ∈ {1, . . . , k} we compute the set
Vi defined as Vi = {vi | v ∈ V is a vertex of G incident to an edge with weight
i}. We will refer to vi ∈ Vi as the i-th copy of v. We denote by Ξ the set

⋃k
i=1 Vi

and we will call the sets Vi the slices of Ξ. Note that |Ξ| ≤ 2|E|, since each edge
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e = xy ∈ E can generate at most two vertex copies, namely xω(e) and yω(e). For
all i ∈ {1, . . . , k} and all vi ∈ Vi, we compute the value of di(v), where di(v)
denotes the degree of v in the i-th level graph of (G,ω).

Phase 2: Ordering of Ξ. We construct an ordering σ of Ξ which respects the
fact that degrees of the vertices change during the transition from one level graph
to the next, while the edges are eliminated one by one. The ordering σ has to
fulfill the following properties. First, if i < j, then vi ≺σ wj for any two vertices
v, w ∈ V . Secondly, for vertex copies vi and wi it holds that vi ≺σ wi if the degree
of v is smaller or equal to the degree of w in the graph G−⋃

xj≺σvi
Φ(xj). This is

achieved by processing Vi one element at a time. Suppose that we have already
appended some (possibly none, but not all) elements of Vi to σ. Let V ′

i denote
the set of remaining elements of Vi and let Z be the set of vertices of V for which
there still exist copies in V ′

i . Furthermore, let Fi be the set of edges vw with
weight i such that {vi, wi} ⊆ V ′

i . For all j > i let Fj be the set of edges vw with
weight j and let F =

⋃
j≥i Fj . We choose a vertex v in Z with smallest degree

in the graph (V, F ) and append vertex vi to σ.

Phase 3: Ordering the Edges. The linear order σ induces an ordered partition
of the edges of G by replacing each vertex copy vi with its respective vi-star Φ(vi)
in σ. Any ordering ρ = (e1, . . . , em) of the edges of G respecting this partition
is sorted with respect to the edge weights and satisfies the following condition:
For every edge ei one of the two incident vertices has minimal degree in Gi−1

ρ

among all vertices that are incident to an edge with weight ω(ei). However, such
an order ρ does not necessarily satisfy Condition 2 of Definition 6. This phase
of the algorithm computes the final edge order τ of the edges by sorting the
elements of the vi-stars. For every i ∈ {1, . . . , k} and every copy vi we order the
edges vw of the vi-star non-decreasingly with respect to the degree of w in the
graph (V, F ) where F is the union of all wj-stars where wj = vi or vi ≺σ wj .

Implementation Details. We will now describe how we can achieve a linear
running time. First we sort the edges in E non-decreasingly according to their
weights, which can be done in time O(|E|) using counting sort. To create Ξ we
store for every vertex the copy created last. We traverse the edges according to
their order. If for one of the vertices incident to the current edge e there is no
copy for the weight of e, we create it. All edges are assigned a pointer to their
corresponding vertex copies. This process can be done in linear time.

The values di(v) can be computed in linear time by traversing the edges
according to their order and updating the degrees. We assign the value di(v) to
vi. Since the degrees lie between 0 and |V | − 1, we can order all vertex copies in
linear time with counting sort with regard to the values di and then place them
in their corresponding sets Vi in the order of their degrees.

In Phase 2 we use a data structure introduced by Ibarra [21] to dynamically
recognize split graphs. It contains a list of vertices ordered by their degree, can
be constructed in linear time and can be updated in constant time when an edge
is deleted. We use such a data structure for every slice of Ξ separately, where the
copies correspond to the vertices and as degrees the values di are used. Since the
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slices are disjoint and have an overall size in O(|E|), we can create these data
structures in linear time. Furthermore, the vertex copy vi with minimal degree
can be found in constant time and updating the degrees of the other copies when
the vi-star is deleted only costs linear time overall.

In Phase 3 we compute for every edge e = vw with vω(e) ≺σ wω(e) the
degree of w in the graph obtained by deleting all xi-stars with xi ≺σ vω(e). As in
Phase 1, this can be done in linear time by traversing the xi-stars with respect
to σ. Afterwards we sort all edges with respect to the computed degrees in linear
time with counting sort and reinsert them into their vi-stars according to the
computed degree ordering leading to the desired edge ordering τ . ��

4.2 Linear-Time Recognition of Level-Split, Level-Threshold, and
Level-Chain Weighted Graphs

Combining the results of the previous sections we present linear-time algo-
rithms that decide whether a given weighted graph (G,ω) is a level-split, level-
threshold, or level-chain graph, respectively. The idea is the following. First we
check whether G is in G, which can be done in linear time for all three graph
classes [14,15,30]. If this is not the case, then (G,ω) is not a level-G graph.
Next, we compute a degree-minimal edge elimination scheme τ of G in linear
time, using Theorem 11. By Corollary 10, we see that (G,ω) is a level-G weighted
graph if and only if τ is a sorted G-safe edge elimination scheme of (G,ω), or,
equivalently if and only if τ is a G-safe edge elimination scheme of G. To check
this we use different approaches for the three graph classes. For chain graphs we
introduce a characterizing vertex partition.

Definition 12. Let G = (V,E) be a chain graph. A chain partition of G is an
ordered partition (A1, B1, . . . , Ak, Bk, I) of V where I is the (possibly empty) set
of isolated vertices in G, sets Ai and Bi are non-empty for all 1 ≤ i ≤ k, and
xy ∈ E if and only if x ∈ Ai and y ∈ Bj or vice versa with i ≤ j.

Note that Heggernes and Papadopoulos give a different but equivalent defi-
nition in [19]. Chain partitions are a very efficient way of storing chain graphs
and can be computed in linear time.

Lemma 13. A graph is a chain graph if and only if it has a chain partition.
For a given chain graph G = (V,E) we can compute a chain partition in time
O(|V | + |E|).

Using this notion of chain partitions, we can characterize chain-safe edges.

Lemma 14. Let G = (V,E) be a chain graph with chain partition (A1, B1, . . . ,
Ak, Bk, I). Then, an edge xy ∈ E is chain-safe if and only if x ∈ Ai and y ∈ Bi

or vice versa.

This property can be checked in constant time and the chain partition can
also be updated in constant time. For split graph we use the algorithm presented
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by Ibarra [21] which constructs a data structure in linear time that allows to
check whether a graph is still split after the deletion of an edge in constant
time. For threshold graphs we use a similar algorithm presented by Shamir and
Sharan [36].

Therefore, we can check whether a computed degree-minimal edge elimina-
tion scheme is also a G-safe edge elimination scheme for each of the three classes
in linear time. Combining these two algorithms leads to our main theorem.

Theorem 15. Let G be one of the following graph classes: split graphs, threshold
graphs, chain graphs. Then, for a given weighted graph (G = (V,E), ω) we can
decide whether G is a level-G graph in time O(|V | + |E|).

5 Conclusion

By combining the concepts of level graphs – an important tool for the theory
of Robinsonian matrices – and edge elimination schemes, we give a sufficient
condition for split-, threshold-, and chain-safe edges in order to generate so-
called sorted safe-edge elimination schemes. This yields linear-time recognition
algorithms for level-split, level-threshold, and level-chain weighted graphs. Fur-
thermore, we study the notion of weak edge-monotonicity – an analog to weak
vertex-monotonicity studied in [1]. We show that, among others, the classes
of permutation graphs, comparability graphs, and co-comparability graphs are
weakly edge-monotone.

The above-mentioned contributions raise some interesting questions. As the
classes of chordal, chordal bipartite, and strongly chordal graphs are all sandwich
monotone, it is natural to ask whether the weighted analogs of these classes can
be recognized faster than checking every level graph separately. Also, it would
be interesting to find similar results for graph classes which are not sandwich
monotone, for example comparability graphs or interval graphs. Furthermore, it
remains open whether weakly chordal graphs are sandwich monotone, a question
raised already in [3,17,38].

Finally, let us mention some natural extensions of the concepts discussed in
this article that seem worthy of future investigations. One could define and study
the concepts of weakly k-monotone and sandwich k-monotone graph classes for
a positive integer k, by replacing the condition requiring the existence of a G-safe
edge in a particular set with the existence of a non-empty G-safe subset of edges
of cardinality at most k. For graph classes that are not hereditary (for example,
the connected graphs), one could examine their vertex-weighted analogs in which
the level graphs are defined by deleting all sufficiently light vertices.
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Abstract. We introduce a new subclass of chordal graphs that gener-
alizes split graphs, which we call well-partitioned chordal graphs. Split
graphs are graphs that admit a partition of the vertex set into cliques
that can be arranged in a star structure, the leaves of which are of size
one. Well-partitioned chordal graphs are a generalization of this con-
cept in the following two ways. First, the cliques in the partition can
be arranged in a tree structure, and second, each clique is of arbitrary
size. We provide a characterization of well-partitioned chordal graphs
by forbidden induced subgraphs, and give a polynomial-time algorithm
that given any graph, either finds an obstruction, or outputs a partition
of its vertex set that asserts that the graph is well-partitioned chordal.
We demonstrate the algorithmic use of this graph class by showing that
two variants of the problem of finding pairwise disjoint paths between k
given pairs of vertices is in FPT parameterized by k on well-partitioned
chordal graphs, while on chordal graphs, these problems are only known
to be in XP. From the other end, we observe that there are problems that
are polynomial-time solvable on split graphs, but become NP-complete
on well-partitioned chordal graphs.
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Fig. 1. A well-partitioned chordal graph.

and determine if this can be exploited in the design of an efficient algorithm.
Typically, one restricts the input to be contained in a graph class, which is a set
of graphs that share a common structural property. Following the establishment
of the theory of NP-hardness, numerous problems were investigated in specific
classes of graphs; either providing a polynomial-time algorithm for a problem
Π on a specific graph class, while Π is NP-hard in a more general setting, or
showing that Π remains NP-hard on a graph class. A key question in this field is
to find for a given problem Π that is hard on a graph class A, a subclass B � A
such that Π is efficiently solvable on B. Naturally, the goal is to narrow down
the gap A\B as much as possible, and several notions of hardness/efficiency can
be applied. For instance, we can require our target problem to be NP-hard on
A and polynomial-time solvable on B; or, from the viewpoint of parameterized
complexity [6,7], we require a target parameterized problem Π to be W[1]-hard
on A, while Π is in FPT on B, or a separation in the kernelization complexity [8]
of Π between A and B.

Chordal graphs are arguably one of the main characters in the algorithmic
study of graph classes. They find applications for instance in computational biol-
ogy [21] and sparse matrix computations [10]. Split graphs are an important sub-
class of chordal graphs. The complexities of computational problems on chordal
and split graphs often coincide, however, this is not always the case. For instance,
several variants of graph (vertex) coloring problems are polynomial-time solv-
able on split graphs and NP-hard on chordal graphs, see the works of Havet
et al. [12], and of Silva [22]. Also, the Sparsest k-subgraph [24] and Dens-
est k-subgraph [5] problems are polynomial-time solvable on split graphs and
NP-hard on chordal graphs. Other problems, for instance the Tree 3-Spanner
problem [3], are easy on split graphs, while their complexity on chordal graphs
is still unresolved.

In this work, we introduce the class of well-partitioned chordal graphs, a sub-
class of chordal graphs that generalizes split graphs, which can be used as a
tool for narrowing down complexity gaps for problems that are hard on chordal
graphs, and easy on split graphs. The definition of well-partitioned chordal
graphs is mainly motivated by a property of split graphs: the vertex set of a
split graph can be partitioned into sets that can be viewed as a central clique
of arbitrary size and cliques of size one that have neighbors only in the central
clique. Thus, this partition has the structure of a star. Well-partitioned chordal
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Fig. 2. The set of obstructions O for well-partitioned chordal graphs.

graphs relax these ideas in two ways: by allowing the parts of the partition to
be arranged in a tree structure instead of a star, and by allowing the cliques
in each part to have arbitrary size. The interaction between adjacent parts P
and Q remains simple: it induces a complete bipartite graph between a subset
of P , and a subset of Q. Such a tree structure is called a partition tree, and
we give an example of a well-partitioned chordal graph in Fig. 1. Now, it is not
difficult to observe that the graphs constructed in the NP-hardness proofs in the
works [12,22] are in fact well-partitioned chordal graphs.

The main structural contribution of this work is a characterization of well-
partitioned chordal graphs by forbidden induced subgraphs (see Fig. 2).

Theorem 1. A graph is a well-partitioned chordal graph if and only if it has no
induced subgraph isomorphic to a graph in O. Furthermore, there is a polynomial-
time algorithm that given a graph G, outputs either an induced subgraph of G
isomorphic to a graph in O, or a partition tree for each connected component
which confirms that G is a well-partitioned chordal graph.

Before we proceed with the discussion of the algorithmic results of this paper,
we would like to briefly touch on the relationship of well-partitioned chordal
graphs and width parameters. Each split graph is a well-partitioned chordal
graph, and there are split graphs of whose maximum induced matching width
(mim-width) depends linearly on the number of vertices [17]. This rules out the
applicability of any algorithmic meta-theorem based on one of the common width
parameters such as tree-width or clique-width, to the class of well-partitioned
chordal graphs. It is known that mim-width is a lower bound for them [23].

Besides narrowing the complexity gap between the classes of chordal and
split graphs, the class of well-partitioned chordal graphs can also be useful as
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Table 1. Complexity of the Disjoint Paths and Set-Restricted Disjoint Paths
problems parameterized by the number k of terminal pairs. Size bounds for kernels are
in terms of the number of vertices of the kernelized instances. �Given a partition tree.

Graph Class Disjoint Paths Set-Restricted Disjoint Paths

Chordal linear FPT [14] XP [1]

Well-partitioned chordal O(k3) kernel [T. 5] linear� FPT [T. 2, 3]

Split O(k2) kernel [13] O(k2) kernel [C. 1]

a step towards determining the yet unresolved complexity of a problem Π on
chordal graphs when it is known that Π is easy on split graphs. This is the case in
our current work. Specifically, we study the Disjoint Paths problem, formally
defined as follows, and generalizations thereof. Two paths P1 and P2 are called
internally vertex-disjoint, if for i ∈ [2], no internal vertex of Pi is contained in
P3−i. (Note that this excludes the possibility that an endpoint of one path is
used as an internal vertex in the other path.)

The classical Disjoint Paths problem takes as input a graph G and a set
X = {(s1, t1), . . . , (sk, tk)} of k pairs of vertices of G, called terminals, and
asks whether G contain k pairwise internally vertex-disjoint paths P1, . . . , Pk

such that for all i ∈ [k], Pi is an (si, ti)-path. This problem has already been
shown by Karp to be NP-complete [15], and as a cornerstone result in the early
days of fixed-parameter tractability theory, Robertson and Seymour showed that
Disjoint Paths parameterized by k is in FPT [16,19]. From the viewpoint of
kernelization complexity, Bodlaender et al. showed that Disjoint Paths does
not admit a polynomial kernel unless NP ⊆ coNP/poly [2].

Restricting the problem to chordal and split graphs, Heggernes et al. showed
that Disjoint Paths remains NP-complete on split graphs, and that it admits a
polynomial kernel parameterized by k [13], and Kammer and Tholey showed that
it has an FPT-algorithm with linear dependence on the size of the input chordal
graph [14]. The question whether Disjoint Paths has a polynomial kernel on
chordal graphs remains open. We go one step towards such a polynomial kernel,
by showing that Disjoint Paths has a polynomial kernel on well-partitioned
chordal graphs; generalizing the polynomial kernel on split graphs [13].

We also study a generalization of the Disjoint Paths problem, where in a
solution, each path Pi can only use a restricted set of vertices Ui, which is speci-
fied for each terminal pair at the input. This problem was recently introduced by
Belmonte et al. and given the name Set-Restricted Disjoint Paths [1]. Since
this problem contains Disjoint Paths as a special case (setting all domains
equal to the whole vertex set), it is NP-complete. Belmonte et al. showed that
Set-Restricted Disjoint Paths parameterized by k is in XP on chordal
graphs, and leave as an open question whether it is in FPT or W[1]-hard on
chordal graphs. Towards showing the former, we give an FPT-algorithm on well-
partitioned chordal graphs. While we do not settle the kernelization complexity
of Set-Restricted Disjoint Paths on well-partitioned chordal graphs, we
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observe that our FPT-algorithm implies a polynomial kernel on split graphs. We
summarize these results in Table 1.

Finally, we also consider the Set-Restricted Disjoint Connected Sub-
graphs problem where we are given k terminal sets instead of pairs, and k
domains, and the question is whether there are k pairwise disjoint connected
subgraphs, each one connecting one of the terminal sets, using only vertices
from the specified domain. This problem was also introduced in [1] and shown
to be in XP on chordal graphs, when the parameter is the total number of ver-
tices in all terminal sets. Extending our ideas of the above mentioned algorithms,
we show that this problem is in fact FPT on well-partitioned chordal graphs.

Throughout, proofs of statements marked ‘♣’ are deferred to the full version.

2 Preliminaries

For a positive integer n, we let [n] ..= {1, 2, . . . , n}. All graphs considered here are
simple and finite. For a graph G we denote by V (G) and E(G) the vertex set and
edge set of G, respectively. Given uv ∈ E(G), we call u and v its endpoints. Let G
and H be two graphs. For a vertex v of a graph G, NG(v) ..= {w ∈ V (G) | vw ∈
E(G)} is the set of neighbors of v in G. The degree of v is degG(v) ..= |NG(v)|.
The subgraph induced by X, denoted by G[X], is the graph (X, {uv ∈ E(G) |
u, v ∈ X}). We denote by G−X the graph G[V (G) \X], and for a single vertex
x ∈ V (G), we use the shorthand ‘G−x’ for ‘G−{x}’. For two sets X,Y ⊆ V (G),
we denote by G[X,Y ] the graph (X ∪ Y, {xy ∈ E(G) | x ∈ X, y ∈ Y }). We say
that X is complete to Y if X ∩ Y = ∅ and each vertex in X is adjacent to every
vertex in Y . Let G be a graph. We say that G is complete if uv ∈ E(G) for
every u, v ∈ V (G). A set X ⊆ V (G) is a clique if G[X] is complete. A graph G
is connected if for each 2-partition (X,Y ) of V (G) with X �= ∅ and Y �= ∅, there
is a pair x ∈ X, y ∈ Y such that xy ∈ E(G). A tree with at most one vertex of
degree at least two is a star.

A hole in a graph G is an induced cycle of G of length at least 4. A graph is
chordal if it has no hole as an induced subgraph. A vertex is simplicial if NG(v) is
a clique. We say that a graph G has a perfect elimination ordering v1, . . . , vn if vi

is simplicial in G[{vi, vi+1, . . . , vn}] for each i ∈ [n− 1]. It is known that a graph
is chordal if and only if it has a perfect elimination ordering [9]. A graph G is a
split graph if there is a 2-partition (C, I) of V (G) such that C is a clique and I is
an independent set. For a family S of subsets of some set, the intersection graph
of S is the graph on vertex set S and edge set {ST | S, T ∈ S and S ∩ T �= ∅}.

3 Well-Partitioned Chordal Graphs

A connected graph G is a well-partitioned chordal graph if there exist a partition
P of V (G) and a tree T having P as a vertex set such that the following hold.
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(i) Each part X ∈ P is a clique in G.
(ii) For each edge XY ∈ E(T ), there are subsets X ′ ⊆ X and Y ′ ⊆ Y such

that E(G[X,Y ]) = {xy | x ∈ X ′, y ∈ Y ′}.
(iii) For each pair of distinct X,Y ∈ V (T ) with XY /∈ E(T ), E(G[X,Y ]) = ∅.

The tree T is called a partition tree of G, and the elements of P are called its bags.
A graph is a well-partitioned chordal graph if all of its connected components
are well-partitioned chordal graphs. We remark that a well-partitioned chordal
graph can have more than one partition tree. Also, observe that well-partitioned
chordal graphs are closed under taking induced subgraphs.

A useful concept when considering partition trees of well-partitioned chordal
graphs is that of a boundary of a bag. Let T be a partition tree of a well-
partitioned chordal graph G and let X,Y ∈ V (T ) be two bags that are adjacent
in T . The boundary of X with respect to Y , denoted by bd(X,Y ), is the set of
vertices of X that have a neighbor in Y , i.e. bd(X,Y ) ..= {x ∈ X | NG(x) ∩ Y �=
∅}. By item (ii) of the definition of the class, bd(X,Y ) is complete to bd(Y,X).

We now consider the relation between well-partitioned chordal graphs and
other well-studied classes of graphs. It is easy to see that every well-partitioned
chordal graph G is a chordal graph because every leaf of the partition tree of a
component of G contains a simplicial vertex of G, and after removing this vertex,
the remaining graph is still a well-partitioned chordal graph. Thus, we may
construct a perfect elimination ordering. We show that, in fact, well-partitioned
chordal graphs constitute a subclass of substar graphs. A graph is a substar
graph [4] if it is an intersection graph of substars of a tree.

Proposition 1 (♣). Every well-partitioned chordal graph is a substar graph.

From the definition of well-partitioned chordal graphs, one can also see that
every split graph is a well-partitioned chordal graph. Indeed, if G is a split graph
with clique K and independent set S, the partition tree of G is a star, with the
clique K as its central bag and each vertex of S contained in a different leaf bag.
We show that, in fact, every starlike graph is a well-partitioned chordal graph.
A starlike graph [11] is an intersection graph of substars of a star.

Proposition 2 (♣). Every starlike graph is a well-partitioned chordal graph.

We show that the graph O1 in Fig. 2 is not a well-partitioned chordal graph.
On the other hand, O1 is a substar graph. Also a path graph on 5 vertices is a
well-partitioned chordal graph but not a starlike graph. These observations with
Propositions 1 and 2 show that we have the following hierarchy:

split
graphs �

starlike
graphs �

well-partitioned
chordal graphs �

substar
graphs �

chordal
graphs
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4 Characterization by Forbidden Induced Subgraphs

This section is entirely devoted to the proof of Theorem1. That is, we show
that the set O of graphs depicted in Fig. 2 is the set of all forbidden induced
subgraphs for well-partitioned chordal graphs, and give a polynomial-time recog-
nition algorithm for this graph class. For convenience, we say that an induced
subgraph of a graph that is isomorphic to a graph in O is an obstruction for
well-partitioned chordal graphs, or simply an obstruction.

Proposition 3 (♣). The graphs in O are not well-partitioned chordal graphs.

In the rest, we outline the implementation of the algorithm, which also
proves that the set O is a complete set of forbidden induced subgraphs of well-
partitioned chordal graphs.

Proposition 4. Given a graph G, one can in polynomial time output either an
obstruction in G or a partition tree of each connected component of G confirming
that G is a well-partitioned chordal graph.

We introduce the main concept in the algorithm, called a boundary-crossing
path. Let G be a connected well-partitioned chordal graph with a partition tree
T . For a bag X of T and B ⊆ X, a vertex z ∈ V (G) \ X is said to cross B in
X, if it has a neighbor both in B and in X \ B. In this case, we also say that
B has a crossing vertex. In the following definitions, a path X1X2 . . . X� in T
is considered to be ordered from X1 to X�. Let � ≥ 3 be an integer. A path
X1X2 . . . X� in T is called a boundary-crossing path if for each 1 ≤ i ≤ � − 2,
there is a vertex in Xi that crosses bd(Xi+1,Xi+2). If for each 1 ≤ i ≤ �−2, there
is no bag Y ∈ V (T )\{Xi} containing a vertex that crosses bd(Xi+1,Xi+2), then
we say the path is exclusive. If for each 1 ≤ i ≤ � − 2, bd(Xi,Xi+1) is complete
to Xi+1, then we say the path is complete. If a boundary-crossing path is both
complete and exclusive, then we call it good. For convenience, we say that any
path in T with at most two bags is a boundary-crossing path.

The outline of the recognition algorithm is as follows. First we may assume
that a given graph G is chordal, otherwise we find a hole in polynomial time [18].
We may also assume that G is connected. So, it has a simplicial vertex v, and by
an inductive argument, we can assume that G − v is a well-partitioned chordal
graph. As v is simplical, G − v is also connected, and thus it admits a partition
tree T . If v has neighbors in one bag of T , then we can simply put v as a new
bag adjacent to that bag. Thus, we may assume that v has neighbors in two
distinct bags, say C1 and C2. Then our algorithm is divided into three parts:

1. We find a maximal good boundary-crossing path ending in C2C1 (or C1C2).
To do this, given a good boundary-crossing path CiCi−1 . . . C2C1, find a bag
Ci+1 containing a vertex crossing bd(Ci, Ci−1). If there is no such bag, then
this path is maximal. Otherwise, we argue that in polynomial time either we
can find an obstruction, or verify that Ci+1Ci . . . C2C1 is good.
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2. Assume that CkCk−1 . . . C2C1 is the obtained maximal good boundary-
crossing path. Then we can in polynomial time modify T so that no vertex
crosses bd(C2, C1).

3. We show that if no vertex crosses bd(C2, C1) and no vertex crosses bd(C1, C2),
then we can extend T to a partition tree of G.

Steps 2 and 3 can be handled immediately. Step 1 is the most technically
involved one. We first prove a handful of auxiliary lemmas that we can use to
find pieces of obstructions in boundary-crossing paths that are not good, and
puzzle them together. We separately deal with the following three cases, and in
each case, we show that either one can in polynomial time find an obstruction
or output a partition tree of G.

• (Lemma A) C1 ⊆ NG(v).
• (Lemma B) bd(C1, C2) \ NG(v) �= ∅ and C2 \ NG(v) �= ∅.
• (Lemma C) C1 \ NG(v) �= ∅, C2 \ NG(v) �= ∅ and NG(v) = bd(C1, C2) ∪

bd(C2, C1).

In the proofs of these lemmas, we crucially use the aforementioned auxiliary
lemmas that came out of our line of attack at Step 1 above. We sketch the idea
of the proof of Lemma A.

Proof (Sketch of the proof of Lemma A). Since v is a simplicial vertex, we have
that bd(C1, C2) = C1. If NG(v) ∩ C2 = bd(C2, C1), then we can obtain a
partition tree for G by adding v to C1. Thus, we may assume that NG(v) ∩ C2 �=
bd(C2, C1). Assume that C2 = bd(C2, C1). Since bd(C2, C1) is complete to C1,
we have that C1 ∪ C2 is a clique. Hence, we can obtain a partition tree T ′ for
G from T by removing C1 and C2, adding a new bag C∗ = C1 ∪ C2, making all
neighbors of C1 and C2 in T adjacent to C∗, and adding a new bag Cv

..= {v}
and making Cv adjacent to C∗. Thus, we may assume that C2 \ bd(C2, C1) �= ∅.

Since C1 = bd(C1, C2), no vertex of G − v crosses bd(C1, C2). If no vertex
of G − v crosses bd(C2, C1), then using Step 3, we can obtain a partition tree
for G in polynomial time. Thus, we may assume that there is a bag C3 having a
vertex that crosses bd(C2, C1). So, C3C2C1 is a boundary-crossing path.

We find either an obstruction or a maximal good boundary-crossing path
ending in C3C2C1. First check whether bd(C3, C2) is complete to C2. Otherwise,
choose a vertex p ∈ bd(C3, C2), and a non-neighbor q of p in C2. As p crosses
bd(C2, C1), p has a neighbor a in C2\bd(C2, C1) and a neighbor b in bd(C2, C1).
There are three possibilities; q is contained in one of NG(v) ∩ C2, bd(C2, C1) \
NG(v), or C2 \ bd(C2, C1). In each case, we can find an obstruction. So, we may
assume that bd(C3, C2) is complete to C2. Next, we check if there exists another
neighbor bag D �= C3 of C2 having a vertex q that crosses bd(C2, C1). In this
case, we can find O3. Otherwise, C3C2C1 is a good boundary-crossing path.

We now extend a given good boundary-crossing path CiCi−1 · · · C2C1 by
recursively finding a bag Ci+1 having a vertex crossing bd(Ci, Ci−1), and if the
new sequence is not good, then we output an obstruction. This recursive step
stops at some point, and we end up with a maximal good boundary-crossing
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path CkCk−1 · · · C1. Now, it is not difficult to see that replacing the sequence
Ck, Ck−1, . . . , C1 with Ck\bd(Ck, Ck−1), bd(Ck, Ck−1)∪(Ck−1\bd(Ck−1, Ck−2),
. . . , bd(C2, C1) ∪ C1 makes a new tree partition where no vertex crosses
bd(C ′

2, C
′
1) where C ′

2 and C ′
1 are the new last two bags. Then we can apply

Step 3 to obtain a partition tree for the entire graph G in polynomial time. ��

Proof (of Proposition 4). We use the polynomial-time algorithm of [18] to find
a hole1 in G if one exists. We may assume that G is chordal. Since a graph
is a well-partitioned chordal graph if and only if its connected components are
well-partitioned chordal graphs, it is sufficient to show it for each connected
component. From now on, we assume that G is connected. We can find a perfect
elimination ordering (v1, v2, . . . , vn) of G in polynomial time [20].

For each i ∈ {1, 2, . . . , n}, let Gi
..= G[{vi, vi+1, . . . , vn}]. Observe that since

G is connected and vi is simplicial in Gi for all 1 ≤ i ≤ n−1, each Gi is connected.
From i = n to 1, we recursively find either an obstruction or a partition tree of
Gi. Clearly, Gn admits a partition tree. Let 1 ≤ i ≤ n − 1, and assume that we
obtained a partition tree T of Gi+1. Recall that vi is simplicial in Gi.

Since vi is simplicial in Gi, NGi
(vi) is a clique. This implies that there are

at most two bags in V (T ) that have a non-empty intersection with NGi
(vi). If

there is only one such bag in V (T ), say C, we can construct a partition tree for
Gi by simply adding a bag consisting of vi and making it adjacent to C.

Hence, from now on, we can assume that there are precisely two distinct
adjacent bags C1, C2 ∈ V (T ) that have a non-empty intersection with NGi

(vi).
As NGi

(vi) is a clique, we can observe that NGi
(vi) ⊆ bd(C1, C2) ∪ bd(C2, C1).

If C1 ⊆ NGi
(vi) or C2 ⊆ NGi

(vi), then by Lemma A, we can in polynomial
time either output an obstruction or output a partition tree of Gi. Thus, we may
assume that C1 \ NGi

(vi) �= ∅ and C2 \ NGi
(vi) �= ∅. If bd(C1, C2) \ NGi

(vi) �= ∅
or bd(C2, C1)\NGi

(vi) �= ∅, then by Lemma B, we can in polynomial time either
output an obstruction or output a partition tree of Gi. Thus, we may further
assume that bd(C1, C2) \ NGi

(vi) = ∅ and bd(C2, C1) \ NGi
(vi) = ∅. Then by

Lemma C, we can in polynomial time either output an obstruction or output a
partition tree of Gi, and this concludes the proposition. ��

5 Algorithmic Applications

In this section, we give several FPT-algorithms and kernels for problems on
well-partitioned chordal graphs. Specifically, we consider variants of the Dis-
joint Paths problem, called the Set-Restricted Disjoint Paths and Set-
Restricted Totally Disjoint Paths problems, where each path additionally
has to be from a predefined domain. Recall that P1 and P2 are internally vertex-
disjoint, if for i ∈ [2], (V (Pi) \ {si, ti}) ∩ V (P3−i) = ∅. Given a graph G, a set

1 Note that holes in the sense of [18] are chordless cycles on at least five vertices; we
can check for C4 separately by brute force. While there are algorithms that verify
chordality more directly, we use this procedure to fulfil the promise that we can
always output an obstruction if there is one.
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X = {(s1, t1), . . . , (sk, tk)} of k pairs of vertices of G, called terminals, and a set
U = {U1, . . . , Uk} of k vertex subsets of G, called domains, the Set-Restricted
Disjoint Paths problem asks if G contains k pairwise internally vertex-disjoint
paths P1, . . . , Pk such that for i ∈ [k], Pi is an (si, ti)-path with V (Pi) ⊆ Ui.

First, we can remove any adjacent terminal pair from the input, since we
can always use the corresponding edge as the path in a solution. Next, we
observe that finding pairwise internally vertex-disjoint paths is equivalent to
finding pairwise internally vertex-disjoint induced paths. We call such a solu-
tion a minimal solution. We then use the following marking procedure. For each
i ∈ [k], we consider the path in T that connects that bag containing si with the
bag containing ti. For each edge C1C2 on the path, we mark a maximal subset
of Ui ∩ bd(C1, C2) of size at most 2k, and a maximal subset of Ui ∩ bd(C2, C1)
of size at most 2k. We show that if our instance is a Yes-instance, then it has
some minimal solution that only uses marked vertices. We can therefore guess
the intersection of such a solution with each bag, and we only have to consider
its marked vertices. Formally, this is captured by the following notion.

Definition 1 (I-Feasible Bag). Let I ⊆ [k]. Let B ∈ V (T ) be a bag and
Mi ⊆ V (G), i ∈ I, be sets of vertices. Then, we say that B is I-feasible w.r.t.
{Mi | i ∈ I}, if there is a set X ⊆ B and a labeling λ : X → [k] such that
the following hold. For each i ∈ I such that B lies on the path from the bag
containing si to the bag containing ti in T , and each neighbor C of B on that
path, either {si, ti} ∩ bd(B,C) �= ∅, or there is a vertex xi ∈ X ∩ Mi ∩ bd(B,C)
such that λ(xi) = i. We use the shorthand ‘feasible’ for ‘[k]-feasible’.

The algorithm works as follows. We apply the above marking procedure to
obtain the marked sets M1, . . . ,Mk. Note that for each bag B, |B ∩

⋃
i∈[k] Mi| =

O(k2): for each i ∈ [k] we marked at most 4k vertices in B, and only if B lies
on the path from the bag containing si to the bag containing ti in T . Then, for
each bag B ∈ V (T ), we verify whether B is feasible w.r.t. M1, . . ., Mk. If this is
the case for all bags, then we conclude that we are dealing with a Yes-instance,
and otherwise, that we are dealing with a No-instance.

Theorem 2 (♣). There is an algorithm that solves each instance (G, k,X ,U) of
Set-Restricted Disjoint Paths where G is a well-partitioned chordal graph
given along with a partition tree T , in time 2O(k log k) · n.

In the Set-Restricted Totally Disjoint Paths problem, we addition-
ally require the paths in a solution to be pairwise distinct, i.e. if there is an edge
xy in the graph and {si, ti} = {sj , tj} = {x, y}, then only one of the paths Pi

and Pj may consist of the edge xy. We call edges xy such that for some w ≥ 2,
{x, y} = {si1 , ti1} = . . . = {siw , tiw} a heavy edge of weight w. We call the indices
i1, . . ., iw heavy indices. Instead of looking for minimal solutions, we look for
minimum solutions, meaning that no other solution has fewer edges. In such
a solution, in any chordal graph, the paths corresponding to a heavy edge of
weight w are w−1 paths of length two, and one path consisting only of the edge
itself. For each such index ij , either sij and tij are in a common bag, or they are
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contained in the union of the boundaries of adjacent bags. In the former case,
the middle vertex of a length two path may be from the bag itself, or from one
of its neighbors, if both terminals are in the boundary to that neighbor. In the
latter case, the middle vertex has to be in the union of the boundaries.

These observations allow for an adaption of the marking procedure to take
into account heavy indices; the remaining indices can be treated as before. The
algorithm works as follows. First, we apply the adapted marking procedure to
obtain M1, . . . ,Mk. Then, we guess the part of the solution corresponding to
heavy indices, again among the marked vertices. Let I be the indices that are
not heavy. It then suffices to check whether for one of these guesses, all bags are
I-feasible w.r.t. {Mi | i ∈ I}. If we have a successful guess, then we conclude
that we have a Yes-instance, and otherwise, that we have a No-instance.

Theorem 3 (♣). There is an algorithm that solves each instance (G, k,X ,U)
of Set-Restricted Totally Disjoint Paths where G is a well-partitioned
chordal graph given along with a partition tree T , in time 2O(k log k) · n.

We then observe that the techniques used in the previous algorithms can
solve the more general Set-Restricted Disjoint Connected Subgraphs
problem on well-partitioned chordal graphs as well. Here, the parameter s is the
sum of the sizes of all terminal sets.

Theorem 4 (♣). There is an algorithm that solves each instance (G, k,X ,U)
of Set-Restricted Disjoint Connected Subgraphs where G is a well-
partitioned chordal graph given with a partition tree T , in time 2O(s log s) · n.

As a consequence of the marking procedures, we have the following polyno-
mial kernels on split graphs.

Corollary 1 (♣). Set-Restricted Disjoint Paths and Set-Restricted
Totally Disjoint Paths on split graphs admit kernels on O(k2) vertices.

Moreover, with two more reduction rules, we obtain polynomial kernels on
well-partitioned chordal graphs. This can be seen as follows. The subgraph of the
partition tree that only has bags with marked vertices has at most 2k degree one
bags, and therefore O(k) bags of degree at least three. In the Disjoint Paths
and Totally Disjoint Paths problems, where we do not need to consider the
domains of the paths, we can get rid of degree two bags that do not contain ter-
minals as follows. If in such a degree two bags, the boundaries are large enough,
then we can always bypass that bag in any solution. If one of the boundaries is
too small, then no solution can pass through the bag.

Theorem 5 (♣). Disjoint Paths and Totally Disjoint Paths on well-
partitioned chordal graphs parameterized by k admit kernels on O(k3) vertices.

6 Conclusions

In this paper, we introduced the class of well-partitioned chordal graphs, a sub-
class of chordal graphs that generalizes split graphs. We provided a characteriza-
tion by a set of forbidden induced subgraphs which also gave a polynomial-time
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recognition algorithm, together with algorithmic applications in variants of the
Disjoint Paths problem. Another typical characterization of (subclasses of)
chordal graphs is via vertex orderings. For instance, chordal graphs are famously
characterized as the graphs admitting perfect elimination orderings [9]. It would
be interesting to see if well-partitioned chordal graphs admit a concise character-
ization in terms of vertex orderings as well. While the degree of the polynomial
in the runtime of our recognition algorithm is moderate, our algorithm does not
run in linear time. We therefore ask if it is possible to recognize well-partitioned
chordal graphs in linear time; and note that a characterization in terms of vertex
orderings can be a promising step in this direction.
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3. Brandstädt, A., Dragan, F.F., Le, H.O., Le, V.B.: Tree spanners on chordal graphs:
complexity and algorithms. Theoret. Comput. Sci. 310(1–3), 329–354 (2004)

4. Chang, Y.W., Jacobson, M.S., Monma, C.L., West, D.B.: Subtree and substar
intersection numbers. Discret. Appl. Math. 44(1–3), 205–220 (1993)

5. Corneil, D.G., Perl, Y.: Clustering and domination in perfect graphs. Discret. Appl.
Math. 9(1), 27–39 (1984)

6. Cygan, M.: Parameterized Algorithms. Springer, Cham (2015). https://doi.org/
10.1007/978-3-319-21275-3

7. Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity. TCS.
Springer, London (2013). https://doi.org/10.1007/978-1-4471-5559-1

8. Fomin, F.V., Lokshtanov, D., Saurabh, S., Zehavi, M.: Kernelization. Cambridge
University Press, Cambridge (2019)

9. Fulkerson, D., Gross, O.: Incidence matrices and interval graphs. Pac. J. Math.
15(3), 835–855 (1965)

10. George, A., Gilbert, J.R., Liu, J.W.: Graph Theory and Sparse Matrix Compu-
tation. IMA, vol. 56. Springer, New York (2012). https://doi.org/10.1007/978-1-
4613-8369-7

11. Gustedt, J.: On the pathwidth of chordal graphs. Discret. Appl. Math. 45(3),
233–248 (1993)

12. Havet, F., Sales, C.L., Sampaio, L.: b-coloring of tight graphs. Discret. Appl. Math.
160(18), 2709–2715 (2012)

13. Heggernes, P., van’t Hof, P.V., van Leeuwen, E.J., Saei, R.: Finding disjoint paths
in split graphs. Theor. Comput. Syst. 57(1), 140–159 (2015)

14. Kammer, F., Tholey, T.: The k-disjoint paths problem on chordal graphs. In: Paul,
C., Habib, M. (eds.) WG 2009. LNCS, vol. 5911, pp. 190–201. Springer, Heidelberg
(2010). https://doi.org/10.1007/978-3-642-11409-0 17

15. Karp, R.M.: On the computational complexity of combinatorial problems. Net-
works 5(1), 45–68 (1975)

16. Kawarabayashi, K.I., Kobayashi, Y., Reed, B.: The disjoint paths problem in
quadratic time. J. Combin. Theor. Ser. B 102(2), 424–435 (2012)

https://doi.org/10.1007/978-3-319-21275-3
https://doi.org/10.1007/978-3-319-21275-3
https://doi.org/10.1007/978-1-4471-5559-1
https://doi.org/10.1007/978-1-4613-8369-7
https://doi.org/10.1007/978-1-4613-8369-7
https://doi.org/10.1007/978-3-642-11409-0_17


160 J. Ahn et al.

17. Mengel, S.: Lower bounds on the mim-width of some graph classes. Discret. Appl.
Math. 248, 28–32 (2018)

18. Nikolopoulos, S.D., Palios, L.: Detecting holes and antiholes in graphs. Algorith-
mica 47(2), 119–138 (2007)

19. Robertson, N., Seymour, P.D.: Graph minors. XIII. The disjoint paths problem. J.
Combin. Theor. Ser. B 63(1), 65–110 (1995)

20. Rose, D.J., Tarjan, R.E., Lueker, G.S.: Algorithmic aspects of vertex elimination
on graphs. SIAM J. Comput. 5(2), 266–283 (1976)

21. Semple, C., Steel, M.: Phylogenetics. Oxford Lecture Series in Mathematics and
its Applications, vol. 24. Oxford University Press, Oxford (2003)

22. Silva, A.: Graphs with small fall-spectrum. Discret. Appl. Math. 254, 183–188
(2019)

23. Vatshelle, M.: New Width Parameters of Graphs. Ph.D. thesis, University of
Bergen, Norway (2012)

24. Watrigant, R., Bougeret, M., Giroudeau, R.: Approximating the Sparsest k-
subgraph in chordal graphs. Theor. Comput. Syst. 58(1), 111–132 (2016)



Plattenbauten: Touching Rectangles
in Space

Stefan Felsner1, Kolja Knauer2,3, and Torsten Ueckerdt4(B)

1 Institute of Mathematics, Technische Universität Berlin (TUB), Berlin, Germany
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Abstract. Planar bipartite graphs can be represented as touching
graphs of horizontal and vertical segments in R

2. We study a generaliza-
tion in space, namely, touching graphs of axis-aligned rectangles in R

3.
We prove that planar 3-colorable graphs can be represented as touching
graphs of axis-aligned rectangles in R

3. The result implies a characteriza-
tion of corner polytopes previously obtained by Eppstein and Mumford.
A by-product of our proof is a distributive lattice structure on the set of
orthogonal surfaces with given skeleton.

Moreover, we study the subclass of strong representations, i.e., fam-
ilies of axis-aligned rectangles in R

3 in general position such that all
regions bounded by the rectangles are boxes. We show that the resulting
graphs correspond to octahedrations of an octahedron. This generalizes
the correspondence between planar quadrangulations and families of hor-
izontal and vertical segments in R

2 with the property that all regions are
rectangles.

Keywords: Touching graphs · Contact graphs · Boxicity · Planar
graphs

1 Introduction

The importance of contact and intersection representations of graphs stems not
only from their numerous applications including information visualization, chip
design, bio informatics and robot motion planning (see for example the references
in [2,9]), but also from the structural and algorithmic insights accompanying the
investigation of these intriguing geometric arrangements. From a structural point
of view, the certainly most fruitful contact representations (besides the “Kiss-
ing Coins” of Koebe, Andrew, and Thurston [1,16,23]) are axis-aligned segment

Omitted proofs and more figures can be found in the full version [11].
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contact representations: families of interior-disjoint horizontal and vertical seg-
ments in R

2 where the intersection of any two segments is either empty or an
endpoint of at least one of the segments. The corresponding touching graph1

has the segments as its vertices and the pairs of segments as its edges for which
an endpoint of one segment is an interior point of the other segment, see the
left of Fig. 1. It has been discovered several times [15,21] that any such touching
graph is bipartite and planar, and that these two obviously necessary condi-
tions are in fact already sufficient: Every planar bipartite graph is the touching
graph of interior-disjoint axis-aligned segments in R

2. In fact, edge-maximal
segment contact representations endow their associated plane graphs with many
useful combinatorial structures such as 2-orientations [9], separating decomposi-
tions [4], bipolar orientations [22,24], transversal structures [12], and Schnyder
woods [26].

Fig. 1. An axis-aligned segment contact representation (left) and a Plattenbau (right)
together with the respective touching graphs.

In this paper we extend axis-aligned segment contact representations in R
2

to axis-aligned rectangle contact representations in R
3. That is, we consider

families R of axis-aligned closed and bounded rectangles in R
3 with the property

that for all R,R′ ∈ R the intersection R ∩ R′ is a subset of the boundary of at
least one of them, i.e., the rectangles are interiorly disjoint. We call such a family
a Plattenbau2. Given a Plattenbau R one can consider its intersection graph IR.
However, for us the more important concept is a certain subgraph of IR, called
the touching graph GR of R. There is one vertex in GR for each rectangle in R
and two vertices are adjacent if the corresponding rectangles touch, i.e., their
intersection is non-empty and contains interior points of one and only one of the
rectangles. We say that G is a Plattenbau graph if there is a Plattenbau R such
that G ∼= GR. In this case we call R a Plattenbau representation of G.

Plattenbauten are a natural generalization of axis-aligned segment contact
representations in R

2 and thus Plattenbau graphs are a natural generalization of

1 We use the term touching graphs rather than the more standard contact graph
to underline the fact that segments with coinciding endpoints (e.g., two horizontal
segments touching a vertical segment in the same point but from different sides, but
also non-parallel segments with coinciding endpoint) do not form an edge.

2 Plattenbau (plural Plattenbauten) is a German word describing a building (Bau)
made of prefabricated concrete panels (Platte).
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planar bipartite graphs. While clearly all Plattenbau graphs are tripartite (prop-
erly vertex 3-colorable), it is an interesting challenge to determine the exact topo-
logical properties in R

3 that hold for all Plattenbau graphs, thus generalizing the
concept of planarity from 2 to 3 dimensions (for tripartite graphs). We present
results towards a characterization of Plattenbau graphs in three directions.

Our Results and Organization of the Paper. In Sect. 2 we provide some simple
examples of Plattenbau graphs and give some simple necessary conditions for all
Plattenbau graphs. We observe that unlike touching graphs of segments, general
Plattenbau graphs are not closed under taking subgraphs. We circumvent this
issue by introducing the subclass of proper Plattenbauten where for any two
touching rectangles R,R′ the intersection R ∩ R′ must be a boundary edge of
one of R,R′. Moreover, we introduce boxed Plattenbauten where every bounded
region of R

3 is a box, and discuss questions of augmentability.
In Sect. 3 we show that within planar graphs the necessary condition of 3-

colorability is also sufficient for Plattenbau graphs. Thus, the topological char-
acterization of Plattenbau graphs must fully contain planarity (which is not
obvious as we consider 3-colorable graphs and not only bipartite graphs).

Theorem 1. Every 3-colorable planar graph is the touching graph of a proper
Plattenbau.

Along the proof of Theorem1, we obtain a characterization of skeletons of
orthogonal surfaces which is implicit already in work of Eppstein and Mum-
ford [6]. Another proof of Theorem1 can be obtained from Gonçalves’ recent
proof that 3-colorable planar graphs admit segment intersection representations
with segments of 3 slopes [13]. A consequence of our approach is a natural partial
order - namely a distributive lattice - on the set of orthogonal surfaces with a
given skeleton.

In Sect. 4 we consider proper and boxed Plattenbau graphs as the 3-
dimensional correspondence to the edge-maximal planar bipartite graphs, the
quadrangulations. We give a complete characterization of these graphs.

Theorem 2. A graph G is the touching graph of a proper boxed Plattenbau R
if and only if there are six outer vertices in G such that each of the following
holds:

(P1) G is connected and the outer vertices of G induce an octahedron.
(P2) The edges of G admit an orientation such that

– the bidirected edges are exactly the outer edges,
– each vertex has exactly 4 outgoing edges.

(P3) The neighborhood N(v) of each vertex v induces a spherical quadrangula-
tion SQ(v) in which the out-neighbors of v induce a 4-cycle.

– If v is an outer vertex, this 4-cycle bounds a face of SQ(v).
(P4) For every edge uv of G with common neighborhood C = N(u) ∩ N(v), the

cyclic ordering of C around u in SQ(v) is the reverse of the cyclic ordering
of C around v in SQ(u).
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A spherical quadrangulation is a graph embedded on the 2-dimensional sphere
without crossings with all faces bounded by a 4-cycle. Spherical quadrangulations
are 2-connected, planar, and bipartite. We remark that Theorem2 does not
give a complete characterization of proper Plattenbau graphs since some proper
Plattenbau graphs are not contained in any proper boxed Plattenbau graph as
discussed in Sect. 2.

Omitted figures and omitted proofs can be found in the full version [11].

2 Types of Plattenbauten and Questions of Augmentation

Let us observe some properties of Plattenbau graphs. Clearly, the class of all
Plattenbau graphs is closed under taking induced subgraphs. Examples of Plat-
tenbau graphs are K2,2,n and the class of grid intersection graphs, i.e., bipartite
intersection graphs of axis-aligned segments in the plane [15]. For the latter take
the segment intersection representation of a graph, embed it into the xy-plane
in R

3 and thicken all horizontal segments a small amount into y-direction and
all vertical segments a bit into z-direction outwards the xy-plane. In particu-
lar, Km,n is a Plattenbau graph. In order to exclude some graphs, we observe
some necessary properties of all Plattenbau graphs.

Observation 1. If G is a Plattenbau graph, then

1. the chromatic number of G is at most 3,
2. the neighborhood of any vertex of G is planar.
3. the boxicity of G, i.e., the smallest dimension d such that G is the intersection

graph of boxes in R
d, is at most 3.

Proof. Item 1: Each orientation class is an independent set.
Item 2: Let v be a vertex of G represented by R ∈ R. Let H be the sup-

porting hyperplane of R and H+,H− the corresponding closed halfspaces. The
neighborhood N(v) consists of rectangles R+ intersecting H+ and those R−

intersecting H−. The rectangles in each of these sets have a plane touching
graph, since it corresponds to the touching graph of the axis-aligned segments
given by their intersections with R. The neighboring rectangles in R+ ∩ R− are
on the outer face in both graphs in opposite order, so identifying them gives a
planar drawing of the graph induced by N(v).

Item 3: A Plattenbau R can be transformed into a set B of boxes such that the
touching graph of R is the intersection graph of B as follows: First, shrink each
rectangle orthogonal to the i-axis by a small enough ε > 0 in both dimensions
different from i. As a result, we obtain a set of pairwise disjoint rectangles. Then,
expand each such rectangle by ε in dimension i. The obtained set B of boxes are
again interiorly disjoint and all intersections are touchings. ��

Note that for Items 2 and 3 of Observation 1 it is crucial that G is the touching
graph and not the intersection graph. Moreover, Observation 1 allows to reject
some graphs as Plattenbau graphs:
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– K4 is not a Plattenbau graph (by Item 1 of Observation 1),
– K1,3,3 is not a Plattenbau graph (by Item 2 of Observation 1).
– The full subdivision of K225+1 is not a Plattenbau graph (by Item 3 of Obser-

vation 1 and [3]).

In particular, some bipartite graphs are not Plattenbau graphs. Together
with Km,n being a Plattenbau graph, this shows that the class of Plattenbau
graphs is not closed under taking subgraphs; an unusual situation for touching
graphs, which prevents us from solely focusing on edge-maximal Plattenbau
graphs. To overcome this issue, we say that a Plattenbau R is proper if for any
two touching rectangles an edge of one is contained in the other rectangle. (Note
the ambiguity of the term “edge” here, which refers to a maximal line segment
in the boundary of a rectangle as well as to a pair of adjacent vertices in a
graph.) If R is proper, then each edge of the touching graph GR can be removed
by shortening one of the participating rectangles slightly. That is, the class of
graphs with proper Plattenbau representations is closed under subgraphs.

We furthermore say that a Plattenbau R is boxed if six outer rectangles
constitute the sides of a box that contains all other rectangles and all regions
inside this box are also boxes. (A box is an axis-aligned full-dimensional cuboid,
i.e., the Cartesian product of three bounded intervals of non-zero length.) For
boxed Plattenbauten we use the additional convention that the edge-to-edge
intersections of outer rectangles yield edges in the touching graph, even though
these intersections contain no interior points. In particular, the outer rectangles
of a proper boxed Plattenbau induce an octahedron in the touching graph.

Observation 2. The touching graph GR of a proper Plattenbau R with n ≥ 6
vertices has at most 4n − 12 edges. Equality holds if and only if R is boxed.

Proof. For a proper Plattenbau R with touching graph GR there is an injection
from the edges of GR to the edges of rectangles in R: For each edge uv in GR
with corresponding rectangles Ru, Rv ∈ R, take the edge of Ru or Rv that forms
their intersection Ru ∩ Rv. This way, each of the four edges of each of the n
rectangles in R corresponds to at most one edge in GR.

Moreover, if R contains at least two rectangles of each orientation, the
bounding box of R contains at least 12 edges of rectangles in its boundary,
none of which corresponds to an edge in GR. Thus, in this case GR has
at most 4n − 12 edges. Otherwise, for one of the three orientations, R con-
tains at most one rectangle in that orientation. In this case, GR is a planar
bipartite graph plus possibly one additional vertex. In particular, GR has at
most 2(n − 1) − 4 + (n − 1) < 4n − 12 edges, as long as n ≥ 6.

Finally, in order to have exactly 4n − 12 edges, the above analysis must be
tight. This implies that R has at least two rectangles of each orientation and its
bounding box contains exactly 12 edges of rectangles, i.e., R is boxed. ��

An immediate consequence of Observation 2 is that K5,6 is a Plattenbau
graph which has no proper Plattenbau representation. Contrary to the case of
axis-aligned segments in R

2, not every proper Plattenbau in R
3 can be com-

pleted to a boxed Plattenbau. This example can also easily be extended to give
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a graph G that is the touching graph of a proper Plattenbau, but that is not a
subgraph of any Plattenbau graph with a proper and boxed Plattenbau repre-
sentation.

3 Planar 3-Colorable Graphs

Let us recall what shall be the main result of this section:

Theorem 1. Every 3-colorable planar graph is the touching graph of a proper
Plattenbau.

The proof of this theorem is in several steps. First we introduce orthogonal
surfaces and show that the dual graph of the skeleton of an orthogonal surface
is a Plattenbau graph (Proposition 1). In the second step we characterize tri-
angulations whose dual is the skeleton of an orthogonal surface (Proposition 2).
One consequence of this is a natural very well-behaved partial order, namely a
distributive lattice, on the set of orthogonal surfaces with given skeleton. We
then show that a Plattenbau representation of a 3-colorable triangulation can
be obtained by patching orthogonal surfaces in corners of orthogonal surfaces.

We begin with an easy observation.

Observation 3. Every 3-colorable planar graph G is an induced subgraph of a
3-colorable planar triangulation.

Proof (Sketch). Consider G with a plane embedding. It is easy to find a 2-
connected 3-colorable G′ which has G as an induced subgraph.

Fix a 3-coloring of G′. Let f be a face of G′ of size at least four and c be a
color such that at least three vertices of f are not colored c. Stack a vertex v
inside f and connect it to the vertices on f that are not colored c. The new
vertex v is colored c and the sizes of the new faces within f are 3 or 4. After
stacking in a 4-face, the face is either triangulated or there is a color which is
not used on the newly created 4-face. A second stack triangulates it. ��

A plane triangulation T is 3-colorable if and only if it is Eulerian. Hence,
the dual graph T ∗ of T apart from being 3-connected, cubic, and planar is also
bipartite. The idea of the proof is to find an orthogonal surface S such that T ∗

is the skeleton of S. This is not always possible but with a technique of patching
one orthogonal surface in an appropriate corner of a Plattenbau representation
obtained from another orthogonal surface, we shall get to a proof of the theorem.

Consider R
3 with the dominance order, i.e., x ≤ y if and only if xi ≤ yi for i =

1, 2, 3. The join and meet of this distributive lattice are the componentwise max
and min. Let V ⊆ R

3 be a finite antichain, i.e., a set of mutually incomparable
points. The filter of V is the set V↑ := {x ∈ R

3 | ∃v ∈ V : v ≤ x} and the
boundary SV of V↑ is the orthogonal surface generated by V.

Orthogonal surfaces have been studied by Scarf [14] in the context of test
sets for integer programs. They later became of interest in commutative algebra,
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cf. the monograph of Miller and Sturmfels [20]. Miller [19] observed the connec-
tions between orthogonal surfaces, Schnyder woods and the Brightwell-Trotter
Theorem about the order dimension of polytopes, see also [7].

A maximal set of points of an orthogonal surface which is constant in one
of the coordinates is called a flat. A non-empty intersection of two flats is an
edge. A point contained in three flats is called a vertex. An edge incident to
only one vertex is a ray. We will only consider orthogonal surfaces obeying the
following non-degeneracy conditions: (1) The boundary of every bounded flat is
a simple closed curve. (2) There are exactly three rays. Note that from (1) it
can be deduced that every vertex is contained in exactly three flats.

The skeleton graph GS of an orthogonal surface consists of the vertices and
edges of the surface, in addition there is a vertex v∞ which serves as second vertex
of each ray. The skeleton graph is planar, cubic, and bipartite. The bipartition
consists of the maxima and minima of the surface in one class and of the saddle
vertices in the other class. The vertex v∞ is a saddle vertex. The dual of GS is
a triangulation with a designated outer face, the dual of v∞.

The boundary of a bounded flat consists of two zig-zag paths sharing the two
extreme points of the flat. The minima of the lower zig-zag are elements of the
generating set V, they are minimal elements of the orthogonal surface S. The
maxima of the upper zig-zag are maximal elements of S, they can be considered
to be dual generators.

With the following proposition we establish a first connection between orthog-
onal surfaces and Plattenbau graphs.

Proposition 1. The dual triangulation of the skeleton of an orthogonal sur-
face S is a Plattenbau graph and admits a proper Plattenbau representation.

Proof. Choose a point not on V on each of the three rays of S and call these
points the extreme points of their incident unbounded flats.

The two extreme points af , bf of a flat f of S span a rectangle R(f). Note
that the other two corners of R(f) are max(af , bf ) and min(af , bf ). We claim
that the collection of rectangles R(f) is a weak rectangle contact representation
of the dual triangulation T of the skeleton of S. Here weak means that the
contacts of pairs of rectangles of different orientation can be an edge to edge
contact. If f and f ′ share an edge e of the skeleton, then since one of the ends
of e is a saddle point of S and thus extreme in two of its incident flats, it is
extreme for at least one of f and f ′. This shows that e is contained in the
boundary of at least one of the rectangles R(f), R(f ′), i.e., the intersection of
the open interiors of the rectangles is empty.

Let f and f ′ be two flats which share no edge. Let Hf and Hf ′ be the
supporting planes. If f is contained in an open halfspace O defined by Hf ′ ,
then max(af , bf ) and min(af , bf ), the other two corners of R(f), are also in O,
hence R(f) ⊂ O and R(f) ∩ R(f ′) = ∅. If f intersects Hf ′ and f ′ intersects Hf ,
then consider the line � = Hf ′ ∩Hf . This line is parallel to one of the axes, hence
it intersects S in a closed interval IS. If If and If ′ are the intervals obtained
by intersecting � with f and f ′ respectively, then one of them equals IS and the
other is an edge of the skeleton of S, i.e., (f, f ′) is an edge of T .
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It remains to expand some of the rectangles to change weak contacts into
true contacts. Let e = f ∩f ′ be an edge such that the contact of R(f) and R(f ′)
is weak. Select one of f and f ′, say f . Now expand the rectangle R(f) with a
small parallel shift of the boundary segment containing e. This makes the contact
of R(f) and R(f ′) a true contact. The expansion can be taken small enough as
to avoid that new contacts or intersections are introduced. Iterating over the
edges we eventually get rid of all weak contacts. ��

Recall that we aim at realizing T ∗, the dual of the 3-colorable triangulation T
as the skeleton of an orthogonal surface. Since T is Eulerian its dual T ∗ is
bipartite. Let U (black) and U ′ (white) be the bipartition of the vertices of T ∗

such that the dual v∞ of the outer face of T is in U . The critical task is to assign
two extreme vertices to each face of T ∗ which does not contain v∞. This has to
be done so that each vertex in U (except v∞) is extremal for exactly two of the
faces.

To solve the assignment problem we will work with an auxiliary graph HT .
The faces of T ∗ which do not contain v∞ are the interior vertices of T , we denote
this set with V ◦. As the vertices of T ∗ are the facial triangles of T , we think
of U as representing the black triangles of T . We also let U◦ = U − v∞, this
is the set of bounded black triangles of T . The vertices of HT are V ◦ ∪ U◦

the edges of HT correspond to the incidence relation in T ∗ and T respectively,
i.e., v, u with v ∈ V ◦ and u ∈ U◦ is an edge if vertex v is a corner of the
black triangle u. A valid assignment of extreme vertices is equivalent to an
orientation of HT such that each vertex v ∈ V ◦ has outdegree two and each
vertex u ∈ U◦ has indegree two, i.e., the outdegrees of the vertices are prescribed
by the function α with α(v) = 2 for v ∈ V ◦ and α(u) = deg(u) − 2 for u ∈ U◦.
Since |V ◦| = |U◦| = n − 3 it is readily seen that the sum of the α-values of all
vertices equals the number of edges of HT .

Orientations of graphs with prescribed out-degrees have been studied
e.g. in [8], there it is shown that the following necessary condition is also sufficient
for the existence of an α-orientation. For all W ⊂ V ◦ and S ⊂ U◦ and X = W ∪S

∑

x∈X

α(x) ≤ |E[X]| + |E[X,X]|. (α)

Here E[X] and E[X,X] denote the set of edges induced by X, and the set of
edges in the cut defined by X, respectively.

Inequality (α) does not hold for all triangulations T and all X. We next
identify specific sets X violating the inequality, they are associated to certain
badly behaving triangles, we call them babets. In Proposition 2 we then show
that babets are the only obstructions for the validity of (α).

Let Δ be a separating triangle of T such that the faces of T bounding Δ from
the outside are white. Let W be the set of vertices inside Δ and let S be the
collection of black triangles of T which have all vertices in W . We claim that X =
W ∪ S is violating (α). If |W | = k and |S| = s, then

∑
x∈X α(x) = 2|W | + |S| =

2k + s. The triangulation whose outer boundary is Δ has 2(k + 3) − 4 triangles,
half of them, i.e., k + 1, are black and interior. The right side of (α) is counting
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the number of incidences between W and black triangles. Black triangles in Δ
have 3(k + 1) incidences in total. There are k + 1 − s black triangles have an
incidence with a corner of Δ and 3 of them have incidences with two corners
of Δ. Hence the value on the right side is 3(k + 1) − (k + 1 − s) − 3 = 2k + s − 1.
This shows that the inequality is violated. A separating triangle Δ of T with
white touching triangles on the outside is a babet.

Proposition 2. If T has no babet, then there is an orientation of HT whose
outdegrees are as prescribed by α.

First, we construct a Plattenbau representation in the babet-free case based
on an auxiliary graph G arising from the bipartition of T ∗, and a Schnyder
wood S for G. We then find an orthogonal surface S based on the Schnyder
wood S and show that the skeleton GS of S is T ∗, which together with Propo-
sition 1 gives a Plattenbau for T . Then, in case T contains some babets, we cut
the triangulation T along an innermost babet, find orthogonal surfaces for the
orthogonal surfaces for the inside and outside, and patch the former into a saddle
point of the latter.

The set of α-orientations of a fixed planar graph carries the structure of a
distributive lattice [8]. With Proposition 2 we can establish a correspondence of
such a set with the orthogonal surfaces having a given skeleton. We obtain that
this set carries such a structure.

4 Proper Boxed Plattenbauten and Octahedrations

In this section we characterize the touching graphs of proper boxed Platten-
bauten, that is, we prove Theorem2.

First, in any proper Plattenbau any two touching rectangles R,R′ have a
proper contact, i.e., a boundary edge of one rectangle, say R, is completely
contained in the other rectangle R′. We denote this as R → R′ and remark that
this orientation has already been used in the proof of Observation 2.

Secondly, in any proper boxed Plattenbau R there are six rectangles that
are incident to the unbounded region. We refer to them as outer rectangles and
to the six corresponding vertices in the touching graph G for R as the outer
vertices. The corners incident to three outer rectangles are the outer corners,
and the inner regions/cells of R will be called rooms.

Whenever we have specified some vertices of a graph to be outer vertices,
this defines inner vertices, outer edges, and inner edges as follows: The inner
vertices are exactly the vertices that are not outer vertices; the outer edges are
those between two outer vertices; the inner edges are those with at least one
inner vertex as endpoint. We shall use these notions for a Plattenbau graph, as
well as for some planar quadrangulations we encounter along the way.

Let us start with the necessity of Items (P1) to (P4) in Theorem 2.

Proposition 3. Every touching graph of a proper boxed Plattenbau satisfies
Items (P1) to (P4) in Theorem2.



170 S. Felsner et al.

Next, we prove the sufficiency in Theorem 2, i.e., for every graph G satisfying
Items (P1) to (P4) we find a proper boxed Plattenbau with touching graph G.

Fix a graph G = (V,E) with six outer vertices and edge orientation fulfill-
ing Items (P1) to (P4). For each vertex v ∈ V denote by SQ(v) the spherical
quadrangulation induced by N(v) given in Item (P3). By Item (P3), the out-
neighbors of vertex v induce a 4-cycle in SQ(v), which we call the equator Ov

of SQ(v). The equator Ov splits the spherical quadrangulation SQ(v) into two
hemispheres, each being a plane embedded quadrangulation with outer face Ov

with the property that each vertex of SQ(v) − Ov is contained in exactly one
hemisphere. The vertices of Ov are the outer vertices of either hemisphere. Note
that one hemisphere (or even both) may be trivial, namely when the equator
bounds a face of SQ(v).

We proceed with a number of claims.

Claim 1. In each hemisphere, each inner vertex has exactly two outgoing edges
and no outer vertex has an outgoing inner edge.

Each equator edge of SQ(v) induces together with v a triangle in G, and we
call these four triangles the equator triangles of v.

Claim 2. Every triangle in G is an equator triangle.

Clearly, a vertex w forms a triangle with two vertices u and v if and only if uv
is an edge and w is a common neighbor of u and v. Equivalently, w is adjacent
to v in SQ(u), which in turn is equivalent to w being adjacent to u in SQ(v).
Hence, the set N(u)∩N(v) of all common neighbors (and thus also the set of all
triangles sharing edge uv) is endowed with the clockwise cyclic ordering around v
in SQ(u), as well as with the clockwise cyclic ordering around u in SQ(v). By
Item (P4), these two cyclic orderings are reversals of each other.

Let us define for a triangle Δ in G with vertices u, v, w the two sides of Δ as
the two cyclic permutations of u, v, w, which we denote by [u, v, w] and [u,w, v].
So triangle Δ has the two sides [u, v, w] = [v, w, u] = [w, u, v] and [u,w, v] =
[w, v, u] = [v, u, w]. We define a binary relation ∼ on the set of all sides of
triangles in G as follows.

[u, v, a] ∼ [v, u, b] if

⎧
⎪⎨

⎪⎩

a comes immediately before b

in the clockwise cyclic ordering
of N(u) ∩ N(v) around v in SQ(u)

(1)

Note that by (P4) a comes immediately before b in the clockwise ordering
around v if and only if b comes immediately before a in the clockwise order-
ing around u. Thus [u, v, a] ∼ [v, u, b] also implies [v, u, b] ∼ [u, v, a], i.e., ∼ is a
symmetric relation and as such encodes an undirected graph H on the sides of
triangles.

Claim 3. Each connected component of H is a cube. The corresponding sub-
graph in G is an octahedron.
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With Claim 3 we have identified a family of octahedra in G such that each
side of each triangle in G is contained in exactly one octahedron. We call these
octahedra the cells of G, as these correspond in the 2-dimensional case to the
4-cycles bounding faces of the quadrangulation. As Eq. (1) puts two triangle
sides [u, v, a] and [v, u, b] into a common cell if and only if the edges va and vb
bound the same facial 4-cycle in SQ(u), we obtain the following correspondence
between the cells of G and the faces in the spherical quadrangulations.

Claim 4. If O ⊆ G is a cell of G and C is an induced 4-cycle in O, then C
bounds a face of SQ(v) and a face of SQ(u) for the two vertices u, v ∈ O − C.
Conversely, if C is a 4-cycle bounding a face of SQ(v), then there is a cell O
of G containing {v} ∪ V (C).

Having identified the cells, we can now construct a proper boxed Plattenbau
for G by identifying two opposite vertices in a particular cell, calling induction,
and then splitting the rectangle corresponding to the identification vertex into
two. The cells of G will then correspond to the rooms in R, except that one cell
in G will correspond to the unbounded region of R (which is not a room). To
this end, we prove the following stronger statement:

Lemma 1. Let G be a graph satisfying Items (P1) to (P4) and let A,B,C be
three outer vertices forming a triangle in G. Then there exists a proper boxed
Plattenbau R whose touching graph is G such that each of the following holds.

(I1) The six outer vertices of G correspond to the outer rectangles of R.
(I2) The cells of G correspond to the rooms of R, except for one cell that is

formed by all six outer vertices.
(I3) For any two vertices u, v with corresponding rectangles Ru, Rv we have u →

v in the orientation of G if and only if Ru ∩ Rv contains an edge of Ru.
(I4) For each vertex v corresponding to rectangle Rv, the rectangles touching Rv

come in the same spherical order as their corresponding vertices in SQ(v).

Lemma 1 shows the sufficiency of Items (P1) to (P4) . The necessity is given
in Proposition 3. Together this proves Theorem 2 and concludes this section.

5 Conclusions

Touching graphs of proper boxed Plattenbauten are natural generalizations of
quadrangulations from the plane to space. As we have shown these graphs are
octahedrations of 3-space. This can be seen as a novel way of going beyond
planarity. A question in this spirit was asked by Jean Cardinal at the Order
& Geometry Workshop at Gu�ltowy Palace in 2016: What is the 3-dimensional
analogue of Baxter permutations? This is based on Baxter permutations being
in bijection with boxed arrangements of axis-parallel segments in R

2 [10].
A continuation of this project to higher dimensions would be to consider

proper boxed Plattenbauten in R
d and study the resulting touching graphs as

generalizations of plane quadrangulations to arbitrary dimensions.
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Considering the intersection graph IR instead of the touching graph of a
Plattenbau, yields a very different graph class. Its plane analogue is known as
B0-CPG graphs, see [5]. For example, every 4-connected triangulation has a
rectangle contact representation in R

2, see [17,18,22,25,27]. Also K12 is the
intersection graph of the Plattenbau R consisting of the twelve axis-parallel unit
squares in R

3 that have a corner on the origin.
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Abstract. We introduce and study the problem of constructing geomet-
ric graphs that have few vertices and edges and that are universal for
planar graphs or for some sub-class of planar graphs; a geometric graph
is universal for a class H of planar graphs if it contains an embedding,
i.e., a crossing-free drawing, of every graph in H.

Our main result is that there exists a geometric graph with n vertices
and O(n log n) edges that is universal for n-vertex forests; this extends to
the geometric setting a well-known graph-theoretic result by Chung and
Graham, which states that there exists an n-vertex graph with O(n log n)
edges that contains every n-vertex forest as a subgraph. Our O(n log n)
bound on the number of edges is asymptotically optimal.

We also prove that, for every h > 0, every n-vertex convex geometric
graph that is universal for the class of the n-vertex outerplanar graphs
has Ωh(n2−1/h) edges; this almost matches the trivial O(n2) upper bound
given by the n-vertex complete convex geometric graph.

Finally, we prove that there is an n-vertex convex geometric graph
with n vertices and O(n log n) edges that is universal for n-vertex cater-
pillars.

1 Introduction

A graph G is universal for a class H of graphs if G contains every graph in
H as a subgraph. The study of universal graphs was initiated by Rado [20] in
the 1960s. Obviously, the complete graph Kn is universal for any family H of
n-vertex graphs. Research focused on finding the minimum size (i.e., number
of edges) of universal graphs for various families of sparse graphs on n vertices.
Babai et al. [3] proved that if H is the family of all graphs with m edges, then the
size of a universal graph for H is in Ω(m2/ log2 m) and O(m2 log log m/ log m).
Alon et al. [1,2] constructed a universal graph of optimal Θ(n2−2/k) size for
n-vertex graphs with maximum degree k.
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Significantly better bounds exist for minor-closed families. Babai et al. [3]
proved that there exists a universal graph with O(n3/2) edges for n-vertex planar
graphs. For bounded-degree planar graphs, Capalbo [10] constructed universal
graphs of linear size, improving an earlier bound by Bhatt et al. [5], which extends
to other families with bounded bisection width. Böttcher et al. [7,8] proved
that every n-vertex graph with minimum degree Ω(n) is universal for n-vertex
bounded-degree planar graphs. For n-vertex trees, Chung and Graham [12,13]
constructed a universal graph of size O(n log n), and showed that this bound is
asymptotically optimal apart from constant factors.

In this paper, we extend the concept of universality to geometric graphs. A
geometric graph is a graph together with a straight-line drawing in the plane in
which the vertices are distinct points and the edges are straight-line segments not
containing any vertex in their interiors. We investigate the problem of construct-
ing, for a given class H of planar graphs, a geometric graph with few vertices and
edges that is universal for H, that is, it contains an embedding of every graph
in H. For an (abstract) graph G1 and a geometric graph G2, an embedding of
G1 onto G2 is an injective graph homomorphism ϕ : V (G1) → V (G2) such that
(i) every edge uv ∈ E(G1) is mapped to a line segment ϕ(u)ϕ(v) ∈ E(G2); and
(ii) every pair of edges u1v2, u2v2 ∈ E(G1) is mapped to a pair of noncrossing
line segments ϕ(u1)ϕ(v1) and ϕ(u2)ϕ(v2) in the plane.

Previous research in the geometric setting was limited to finding the smallest
complete geometric graph that is universal for the planar graphs on n vertices.
The intersection pattern of the edges of a geometric graph is determined by the
location of its vertices; hence universal complete geometric graphs are commonly
referred to as n-universal point sets. De Fraysseix et al. [16] proved that the 2n×n
section of the integer lattice is an n-universal point set. Over the last 30 years,
the upper bound on the size of an n-universal point set has been improved from
2n2 to n2/4 + O(n) [4]; the current best lower bound is (1.293 − o(1))n [21]
(based on stacked triangulations, i.e., maximal planar graphs of treewidth three;
see also [11,19]). It is known that every set of n points in general position is
universal for n-vertex outerplanar graphs [6,18]. An O(n3/2 log n) upper bound
is known for n-vertex stacked triangulations [17].

Our Results. The results on universal point sets yield an upper bound of O(n4)
for the size of a geometric graph that is universal for n-vertex planar graphs and
O(n2) for n-vertex outerplanar graphs, including trees. We improve the upper
bound for n-vertex trees to an optimal O(n log n), and show that the quadratic
upper bound for outerplanar graphs is essentially tight for convex geometric
graphs. More precisely, we prove the following results:

– For every n ∈ N, there is a geometric graph G with n vertices and O(n log n)
edges that is universal for forests with n vertices (Theorem 1 in Sect. 2). The
O(n log n) bound is asymptotically optimal, even in the abstract setting, for
caterpillars (a caterpillar is a tree such that the removal of its leaves results
in a path, called spine), and if the universal graph is allowed to have more
than n vertices [12, Theorem 1]. The proof of universality is constructive and
yields a polynomial-time algorithm that embeds any n-vertex forest onto G.
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– For every h ∈ N and n ≥ 3h2, every n-vertex convex geometric graph
that is universal for the family of n-vertex cycles with h disjoint chords
has Ωh(n2−1/h) edges (Theorem 2 in Sect. 3); this almost matches the triv-
ial O(n2) bound, which hence cannot be improved by polynomial factors
even for n-vertex outerplanar graphs of maximum degree three. For n-vertex
cycles with 2 disjoint chords, there is an n-vertex convex geometric graph
with O(n3/2) edges (Theorem 3 in Sect. 3), which matches the lower bound
above.

– For every n ∈ N, a convex geometric graph with n vertices and O(n log n)
edges exists that is universal for n-vertex caterpillars (Theorem 4 in Sect. 3).

A full version of the paper can be found in [14].

2 Universal Geometric Graphs for Forests

In this section, we prove the following theorem.

Theorem 1. For every n ∈ N, there exists a geometric graph G with n vertices
and O(n log n) edges that is universal for forests with n vertices.

Construction. We adapt a construction of Chung and Graham [13] to the geo-
metric setting. For n ∈ N, they construct an n-vertex graph G with O(n log n)
edges that contains every n-vertex forest as a subgraph. We present this con-
struction. For simplicity assume n = 2h − 1 with h ≥ 2. Let B be an n-vertex
complete rooted ordered binary tree. A level is a set of vertices at the same
distance from the root. The levels are labeled 1, . . . , h, from the one of the root
to the one of the leaves. A preorder traversal of B (visiting first the root, then
recursively the vertices in its left subtree, and then recursively the vertices in
its right subtree) determines a total order on the vertices, which also induces a
total order on the vertices in each level. On each level, we call two consecutive
elements in this order level-neighbors; in particular, siblings are level-neighbors.
We denote by B(v) the subtree of B rooted at a vertex v. The graph G contains
B and three additional groups of edges (see Fig. 1): (E1) Every vertex v is adja-
cent to all vertices in B(v); (E2) every vertex v with a level-neighbor u in B is
adjacent to all vertices in B(u); and (E3) every vertex v whose parent has a left
level-neighbor p is adjacent to all vertices in B(p).

Number of Edges. The tree B has 2i−1 vertices on level i, for i = 1, . . . , h.
A vertex v on level i has 2h−i+1 − 1 descendants (including itself), and its at
most two level-neighbors have the same number of descendants. In addition, the
left level-neighbor of the parent of v (if present) has 2 · (2h−i+1 − 1) descendants
(excluding itself). Altogether v is adjacent to less than 5 · 2h−i+1 vertices at
the same or at lower levels of B. Hence, the number of edges in G is less than
5 · ∑h

i=1 2i−1 · 2h−i+1 = 5 · 2h · h = 5(n + 1) · log2(n + 1) ∈ O(n log n).
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Fig. 1. A schematic drawing of the 15-vertex universal graph (left) and a geometric
drawing of the 7-vertex universal graph. The edges of B are black; the edges of the
groups (E1), (E2), and (E3) are red, orange, and blue, respectively. Edges in several
groups have the color of the first group they belong to. (Color figure online)

Chung and Graham [13] showed that G is universal for n-vertex forests.1

Geometric Representation. We next describe how to embed the vertices of G
into R2; see Fig. 2(left) for an illustration. First, the x-coordinates of the vertices
are assigned in the order determined by a preorder traversal of B. For simplicity,
let us take these x-coordinates to be 0, . . . , n − 1, so that the root of B is placed
on the y-axis. The vertex of G with x-coordinate i is denoted by vi.

The y-coordinates of the vertices are determined by a BFS traversal of B
starting from the root, in which at every vertex the right sibling is visited before
the left sibling. If a vertex u is visited before a vertex v by this traversal, then u
gets a larger y-coordinate than v. The gap between two consecutive y-coordinates
is chosen so that every vertex is above every line through two vertices with
smaller y-coordinate; this implies that, for any vertex v, all vertices with larger
y-coordinate than v, if any, see the vertices below v in the same circular order
as v. The vertices of G are in general position, that is, no three are collinear.

Our figures display the vertices of B in the correct x- and y-order, but—with
the exception of Fig. 1(right)—they are not to scale. The y-coordinates in our
construction are rapidly increasing (similarly to [9,17]). For this reason, in our
figures we draw the edges in B as straight-line segments and all other edges as
Jordan arcs. We have the following property (refer to Fig. 2(right)).

Observation 1. If ab, cd ∈ E(G) are such that (1) a has larger y-coordinate
than b, c, and d, and (2) b has smaller or larger x-coordinate than both c and d,
then ab and cd do not cross.

Intervals. A geometric graph is plane if it contains no crossings. For every
interval [i, j] ⊆ [0, n − 1] we define G[i, j] as the subgraph of G induced by the

1 The construction by Chung and Graham uses fewer edges: in the edge groups (E2)
and (E3), they use siblings instead of level-neighbors. But we were unable to verify
their proof with the smaller edge set, namely we do not see why the graph G2 in [13,
Fig. 7] is admissible. However, their proof works with the edge set we define here.
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G[i, j]

G

a

b

c

d

Fig. 2. Illustration for the assignment of x- and y-coordinates to the vertices of G, and
for the definition of interval (left). Illustration for Observation 1 (right).

vertices with x-coordinate in [i, j]. Then G[i, j] is an interval of G. The length of
G[i, j] is defined as |G[i, j]| = j − i+1, which is the number of vertices in G[i, j].
If I is an interval of integers, then we denote by G(I) the corresponding interval
of G. For a subset U ⊂ V (G), we denote by G[U ] the subgraph of G induced by
U . We will show eventually that every tree on h vertices admits an embedding
onto every interval of length h of G. We now present the following lemma.

Lemma 1. Every interval G[i, j] of G on at least two vertices contains two plane
spanning stars, centered at the highest vertex vk and at the second highest vertex
vs of G[i, j]. If k < j, then G[i, j] contains a plane spanning star centered at the
highest vertex of G[k + 1, j] (which may or may not be vs).

Our upcoming recursive algorithm sometimes embeds a subtree of T onto an
induced subgraph of G that is “almost” an interval, in the sense that it can be
obtained from an interval of G by deleting its highest vertex or by replacing its
highest vertex with a vertex that does not belong to the interval.

We first prove that the “structure” of an interval without its highest vertex
is similar to that of an interval. Let U and W be two subsets of V (G) with
h = |U | = |W |. Let u1, . . . , uh and w1, . . . , wh be the vertices of U and W ,
respectively, ordered by increasing x-coordinates. We say that G[U ] and G[W ]
are crossing-isomorphic if: (C1) for any p, q ∈ {1, . . . , h}, the edge upuq belongs
to G[U ] if and only if the edge wpwq belongs to G[W ]; (C2) for any p, q, r, s ∈
{1, . . . , h} such that the edges upuq and urus belong to G[U ], the edges upuq

and urus cross if and only if the edges wpwq and wrws cross; and (C3) if ui is
the highest vertex of G[U ], for some i ∈ {1, . . . , h}, then wi is the highest vertex
of G[W ]. The graph isomorphism given by λ(ui) = wi, for all i = 1, . . . , n, is
a crossing-isomorphism. Clearly, the inverse of a crossing-isomorphism is also a
crossing-isomorphism. We have the following.

Lemma 2. Let vk be the highest vertex in an interval G[i, j], and assume that
G[i, j] contains neither the right child of vk nor any descendant of the left child
of its left sibling (if it exists). Then G[i, j] − vk is crossing-isomorphic to some
interval G(I) of G; the interval I can be computed in O(1) time.

We now present our tools for embedding trees onto “almost” intervals.
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Lemma 3. Let vk be the highest vertex in an interval G[i, j] with h+1 vertices.
Suppose that there is a crossing-isomorphism λ from G[i, j]−vk to some interval
G(I) of G with h vertices. Further, suppose that a tree T with h vertices admits
an embedding ϕ onto G(I). Then ϕ′ = λ−1 ◦ ϕ is an embedding of T onto
G[i, j] − vk, and if a is the vertex of T such that ϕ(a) is the highest vertex of
G(I), then ϕ′(a) is the highest vertex of G[i, j] − vk.

Lemma 4. Let G[i, j] be an interval of G with h vertices and let vk be its highest
vertex. Let vx be a vertex of G that is higher than all vertices in G[i, j] − vk and
that does not belong to G[i, j]. Suppose that a tree T with h vertices admits an
embedding ϕ onto G[i, j]. Let a be the vertex of T such that ϕ(a) = vk; further,
let ϕ′(a) = vx and ϕ′(b) = ϕ(b) for every vertex b of T other than a. Then ϕ′ is
an embedding of T onto G[i, j] − vk + vx.

The following lemma is a variant of the (unique) lemma in [13].

Lemma 5. Given a rooted tree T on m ≥ 2 vertices and an integer s, with
1 ≤ s ≤ m, there is a vertex c of T such that |V (T (c))| ≥ s but |V (T (d))| ≤ s−1,
for all children d of c. Such a vertex c can be computed in time O(m).

Proof Strategy. Given a tree T on h vertices and an interval G[i, j] of length
h, we describe a recursive algorithm that constructs an embedding ϕ of T onto
G[i, j]. For a subtree T ′ of T , we denote by ϕ(T ′) the image of ϕ restricted to T ′.
A step of the algorithm explicitly embeds some vertices; the remaining vertices
form subtrees that are recursively embedded onto pairwise disjoint subintervals
of G[i, j]. We insist that in every subtree at most two vertices, called portals, are
adjacent to vertices not in the subtree. We also ensure that whenever a subtree
is embedded onto a subinterval, the vertices not in the subtree that connect to
the portals of that subtree are embedded above the subinterval.

For a point p, we denote Q+(p) = {q ∈ R2 : x(p) < x(q) and y(p) < y(q)}
and Q−(p) = {q ∈ R2 : x(q) < x(p) and y(p) < y(q)}.

We inductively prove the following lemma, which immediately implies
Theorem 1 with G[i, j] = G[0, n − 1] and a portal a chosen arbitrarily.

Lemma 6. We are given a tree T on h vertices, an interval G[i, j] of length h,
and either (1) a single portal a in T , or (2) two distinct portals a and b in T .
Then there exists an embedding ϕ of T onto G[i, j] with the following properties:

1. If only one portal is given, then
(a) ϕ(a) is the highest vertex in G[i, j]; and
(b) if degT (a) = 1 and a′ is the unique neighbor of a in T , then Q−(ϕ(a′))

does not intersect any vertex or edge of the embedding ϕ(T (a′)).
2. If two distinct portals are given, then

(a) ϕ(a) is to the left of ϕ(b);
(b) Q−(ϕ(a)) does not intersect any edge or vertex of ϕ(T ); and
(c) Q+(ϕ(b)) does not intersect any edge or vertex of ϕ(T ).
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Fig. 3. Case 1.1: Tree T (left) and its embedding onto G[i, j] (right).

Proof sketch: We proceed by induction on h. In the base case h = 1, hence T
has one vertex, which must be the portal a, and the map ϕ(a) = vi maps a to
the highest vertex of G[i, i]. For the induction step we assume that h ≥ 2.

Case 1: There is only one portal a. Let vk denote the highest vertex in G[i, j].
We need to find an embedding of T onto G[i, j] where ϕ(a) = vk. Consider T to
be rooted at a. We distinguish two cases depending on the degree of a in T .

Case 1.1: degT (a) ≥ 2. Assume that a has t children a1, . . . , at. Refer to
Fig. 3. Partition the integers [i, j] \ {k} into t contiguous subsets I1, . . . , It such
that |Ix| = |V (T (ax))|, for x = 1, . . . , t. W.l.o.g. assume that Iq contains k − 1
or k + 1, and so Iq ∪ {k} is an interval of integers.

By induction, there is an embedding ϕx of T (ax) onto G(Ix) such that ϕx(ax)
is the highest vertex of G(Ix), for all x 
= q, and there is an embedding ϕq of
T −⋃

x�=q T (ax) onto G(Iq ∪{k}) such that ϕq(a) = vk. Then the combination of
these embeddings is an embedding ϕ of T onto G[i, j] satisfying Properties 1(a)
and 1(b). In particular, the edges ϕ(a)ϕ(ax) are in G[i, j] by Lemma 1, and an
edge ϕ(a)ϕ(ax) does not cross ϕ(T (ay)), where y 
= x, by Observation 1. �

Case 1.2: degT (a) = 1. Let a′ be the neighbor of a in T and let T ′ = T (a′).
Case 1.2.1: k = j. Set ϕ(a) = vk and recursively embed T ′ onto G[i, k − 1]

with a single portal a′, which is mapped to the highest vertex in G[i, k − 1].
Clearly, ϕ is an embedding of T onto G[i, j] satisfying Properties 1(a) and 1(b),
since the edge ϕ(a)ϕ(a′) is above, and hence does not cross, ϕ(T ′). �

Case 1.2.2: k = i. This case is symmetric to Case 1.2.1. �
Case 1.2.3: i < k < j and the left sibling v� of vk exists and is in G[i, j]. It

follows that � = i, as if � > i, then v�−1, which is the parent of v� and vk, would
be a vertex in G[i, j] higher than vk. By construction, vi is the second highest
vertex in G[i, j]. Recursively construct an embedding ψ of T ′ onto G[i + 1, j]
with a single portal a′. By Property 1(a), we have ψ(a′) = vk. By Lemma 4,
there exists an embedding ϕ of T ′ onto G[i + 1, j] − vk + vi = G[i, j] − vk in
which ϕ(a′) = vi (hence ϕ satisfies Property 1(b)). Finally, set ϕ(a) = vk (hence
ϕ satisfies Property 1(a)). As in Case 1.2.1, the edge ϕ(a)ϕ(a′) = vkvi does not
cross ϕ(T ′), hence ϕ is an embedding of T onto G[i, j]. �

Case 1.2.4: i < k < j, the left sibling of vk does not exist or is not in G[i, j],
and the right child of vk is not in G[i, j]. Refer to Fig. 4. By construction, the
left child of vk is vk+1, which is in G[i, j]. By the assumptions of this case, vk+1

is the second highest vertex in G[i, j].
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Fig. 4. Case 1.2.4. Tree T (left) and its embedding onto G[i, j] (right).

Set s = j −k+1; then s < h, given that k > i. By Lemma 5, there is a vertex
c in T ′ such that |V (T ′(c))| ≥ s but |V (T ′(d))| ≤ s − 1 for all children d of c.
Label the children of c as c1, . . . , ct in an arbitrary order and let � ∈ [1, t] be the
smallest index such that 1 +

∑�
x=1 |V (T (ci))| ≥ s. Since |V (T (c�))| ≤ s − 1, we

have s ≤ 1 +
∑�

x=1 |V (T (ci))| ≤ 2s − 2.
Let c′ be the parent of c in T . Let H denote the subtree of T induced by c and

by V (T (c1)), . . . , V (T (c�)), and let m = |V (H)|. By the above inequalities, we
have s ≤ m ≤ 2s−2. On the one hand, j−k+1 ≤ m implies that the subinterval
G[j−m, j] contains vk, and so vk is the highest vertex in G[j−m, j]. On the other
hand, the interval G[j −m, k − 1] contains k − 1− j +m+1 = m− s+1 ≤ s− 1
vertices, given that m ≤ 2s − 2; however, since the right child of vk is not in
G[i, j], we know that the size of a subtree of B rooted at any vertex at the level
below vk is larger than or equal to s − 1. It follows that G[j − m, j] does not
contain any descendants of the left child of the left sibling of vk (if it exists). By
Lemma 2, G[j − m, j] − vk is crossing-isomorphic to an interval G(I) of size m.

Recursively embed H onto G(I) with one portal c. By Lemma 3, there exists
an embedding ϕ of H onto G[j−m, j]−vk such that ϕ(c) = vk+1. Set ϕ(a) = vk.
If c has more than � children, then embed the subtrees T (c�+1), . . . , T (ct) onto
subintervals to the left of G[j−m, j], with single portals c�+1, . . . , ct, respectively.
Finally, by induction, we can embed T ′ −T (c) onto the remaining subinterval of
G[i, j] with two portals a′ and c′. Then ϕ is an embedding of T onto G[i, j] sat-
isfying Properties 1(a) and 1(b). In particular, the edge ϕ(c)ϕ(c′) does not cross
ϕ(T ′ −T (c)), since this satisfies Property 2(c) (note that ϕ(c) is in Q+(ϕ(c′))).�

Case 1.2.5: i < k < j, the left sibling of vk does not exist or is not in G[i, j],
and the right child vr of vk is in G[i, j]. By assumption, we have k + 1 < r ≤ j;
further, the second highest vertex in G[i, j] is vr. Set s = j − r + 1. Lemma 5
yields a vertex c in T ′ such that |V (T (c))| ≥ s but |V (T (d))| ≤ s − 1 for all
children d of c. Let T (c) be the subtree of T rooted at c, set m = |V (T (c))|, and
label the children of c by c1, . . . , ct in an arbitrary order. Let c′ be the parent of
c and denote by Tc(c′) the subtree of T induced by c′ and V (T (c)).

Case 1.2.5.1: m ≤ j −k−1. Then the interval [j −m, j] contains r but does
not contain k, hence vr is the highest vertex in G[j −m,m]. By induction, there
is an embedding ψ1 of T ′ − T (c) onto G[i, j − m − 1] with two portals a′ and c′.
By Lemma 4, there is an embedding ϕ of T ′ −T (c) onto G[i, j −m−1]−vk +vr.
Set ϕ(a) = vk. Again by induction, there is an embedding ψ2 of Tc(c′) onto
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Fig. 5. Case 2. Tree T (left) and its embedding onto G[i, j] (right).

G[j − m, j] with a single portal c′. Let ϕ(T (c)) = ψ2(T (c)) and note that ϕ(c′)
may be different from ψ2(c′) = vr. This completes the definition of ϕ(T ), which is
an embedding of T onto G[i, j] satisfying Properties 1(a) and 1(b). In particular,
we argue that the edge ϕ(c)ϕ(c′) is in G[i, j]. Let vp = ϕ(c′) and vq = ϕ(c), and
note that p < q or p = r. In the latter case, ϕ(c)ϕ(c′) exists as ψ2(c′) = vr and the
edge cc′ belongs to Tc(c′); hence, assume that p < q. By Property 2(c) of ψ1, we
have that Q+(ψ1(c′)) does not intersect ψ1(T ′ −T (c)), hence k < p, as otherwise
vk would be in Q+(ψ1(c′)); hence, vp is the highest vertex in G[p, j − m − 1].
Further, by Property 1(b) of ψ2, we have that Q−(ψ2(c)) does not intersect
ψ2(T (c)); hence, vq is either the highest or the second highest vertex in G[j−m, q]
(as vr might belong to such an interval). Overall, one of vp or vq is the highest or
the second highest vertex in G[p, q]. By Lemma 1, G[p, q] contains a star centered
at vp or vq, and so it contains the edge vpvq = ϕ(c′)ϕ(c).

Case 1.2.5.2: j−k−1 < m. Then [j−m, j] contains both k and r. Partition
[j −m, j]\{k, r} into t contiguous subsets I1, . . . , It such that |Ix| = |V (T (cx))|,
for x = 1, . . . , t. W.l.o.g. assume that Iq contains r − 1.

Let I(c) be the collection of the sets Iq ∪ {vr} and Ix, for x ∈ [1, t] \ {q}. At
least t−1 of these sets are intervals, and at most one of them, say Ip, is an interval
minus its highest element. Since every tree T (ci) has at most s − 1 vertices, Ip

has at most s elements. Since s = j − r − 1, we have |Ip| ≤ |V (B(vr))|, hence
Ip contains neither the right child of vk nor any descendant of its left sibling.
By Lemma 2, G(Ip) is crossing-isomorphic to an interval. By Lemma3, we can
embed T (cp) onto G(Ip). We also recursively embed T (cx) onto G[Ix] for all
x ∈ [1, t] \ {p, q} and T (c) − ⋃

x�=q Tx onto G(Iq ∪ {u}). Embed a at vk. Finally,
embed T ′ − T (c) onto G[i, j − m − 1] with portals a′ and c′. The combination of
these embeddings is an embedding ϕ of T onto G[i, j] satisfying Properties 1(a)
and 1(b). �

Case 2: Two portals a and b; refer to Fig. 5. Let P = (a = c1, . . . , ct = b) be
the path between a and b in T , where t ≥ 2. The deletion of the edges in P splits
T into t trees rooted at c1, . . . , ct. Partition [i, j] into t subintervals I1, . . . , It

such that |Ix| = |V (T (cx))|, for x = 1, . . . , t.
For x = 1, . . . , t, recursively embed T (cx) onto G(Ix) with one portal cx. The

combination of these embeddings is an embedding ϕ of T onto G[i, j] satisfying
Properties 2(a), 2(b), and 2(c). ��
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3 Convex Geometric Graphs

Every graph embedded onto a convex geometric graph is outerplanar. Clearly,
an n-vertex complete convex geometric graph has O(n2) edges and is universal
for the n-vertex outerplanar graphs. We show that this trivial bound is almost
tight. For h ≥ 0 and n ≥ 2h+2, let Oh(n) be the family of n-vertex outerplanar
graphs consisting of a spanning cycle plus h pairwise disjoint chords.

Theorem 2. For every positive integer h and n ≥ 3h2, every convex geometric
graph C on n vertices that is universal for Oh(n) has Ωh(n2−1/h) edges.

Proof. Denote by ∂C the outer (spanning) cycle of C. The length of a chord uv
of ∂C is the length of a shortest path between u and v along ∂C. For k ≥ 2,
denote by Ek the set of length-k chords in C, and let m ∈ {2, . . . , n/(3h)�} be
an integer such that |Em| = min{|E2|, . . . , |E�n/(3h)�|}.

Let L be the set of labeled n-vertex outerplanar graphs that consist of a
spanning cycle (v0, . . . , vn−1) plus h pairwise-disjoint chords of length m such
that one chord is v0vm and all h chords have both vertices on the path P =
(v0, . . . , v�n/3�+hm−1). Every graph G ∈ L has a unique spanning cycle H, which
is embedded onto ∂C. Since they all have the same length, the h chords of
H have a well-defined cyclic order along H. A gap of G is a path between
two consecutive chords along H. Note that G has h gaps. The length of P is
n/3�+hm−1 ≤ n/3�+h · n/(3h)�−1 < 2n/3�, hence the length of the gap
between the last and the first chords is more than n − 2n/3� = �n/3�. This is
the longest gap, as the lengths of the other gaps sum up to at most n/3�.

Let U denote the subset of unlabeled graphs in Oh(n) that correspond to
some labeled graph in L. Each graph in L is determined by the lengths of its
h − 1 shortest gaps. The sum of these lengths is an integer between h − 1 and
(n/3� + hm − 1) − hm < n/3�. The number of compositions of n/3� into
h positive integers (i.e., h − 1 lengths and a remainder) is

(�n/3�
h−1

) ∈ Θh(nh−1).
Each unlabeled graph in U corresponds to at most two labeled graphs in L, since
any graph automorphism setwise fixes the unique spanning cycle as well as the
longest gap. Hence, |U| ∈ Θ(|L|) ⊆ Θh(nh−1).

Since C is universal for Oh(n) and U ⊂ Oh(n), every graph G in U embeds
onto C. Since every embedding of G maps the spanning cycle of G onto ∂C
and the h chords of G into a subset of Em, we have that C contains at most(|Em|

h

) ≤ |Em|h graphs in U . The combination of the lower and upper bounds for
|U| yields |Em|h ∈ Ωh(nh−1), hence |Em| ∈ Ωh(n1−1/h). Overall, the number of
edges in C is at least

∑�n/(3h)�
i=1 |Ei| ≥ n/(3h)� · |Em| ∈ Ωh(n2−1/h). ��

For the case h = 2, the lower bound of Theorem2 is the best possible.

Theorem 3. For every n ∈ N, there exists a convex geometric graph C with n
vertices and O(n3/2) edges that is universal for O2(n).

Proof. The vertices v0, . . . , vn−1 of C form a convex n-gon and the edges of this
spanning cycle are in C. Let S = {0, . . . , √n� − 1} ∪ {i √n� : 1 ≤ i ≤ √n�}
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and add a star centered at vs, for every s ∈ S, to C. Clearly, C contains O(n3/2)
edges. Moreover, for every d ∈ {1, . . . , n/2�} there exist a, b ∈ S so that b−a =
d. For any G ∈ O2(n), let a, b ∈ S so that the distance along the outer cycle
between the two closest vertices of the two chords of G is b − a. As C contains
stars centered at both va and vb, the graph G embeds onto C. ��

We next construct a convex geometric graph G with n vertices and O(n log n)
edges that is universal for n-vertex caterpillars; this bound is asymptotically
optimal [12]. In order to construct G, we define a sequence πn of n integers.
Let π1 = (1). For every integer m of the form m = 2h − 1, where h ≥ 2, let
πm = π(m−1)/2(m)π(m−1)/2. For any n ∈ N, the sequence πn consists of the first
n integers in πm, where m ≥ n and m = 2h − 1, for some h ≥ 1. For example,
π10 = (1, 3, 1, 7, 1, 3, 1, 15, 1, 3). Let πn(i) be the ith term of πn.

Property 1 [15]. For every n ∈ N and for every x with 1 ≤ x ≤ n, the maximum
of any x consecutive elements in πn is at least x.

The graph G has vertices v1, . . . , vn, placed in counterclockwise order along
a circle c. Further, for i = 1, . . . , n, we have that G contains edges connecting vi

to the πn(i) vertices preceding vi and to the πn(i) vertices following vi along c.

Theorem 4. For every n ∈ N, there exists a convex geometric graph G with n
vertices and O(n log n) edges that is universal for n-vertex caterpillars.

Proof sketch: The number of edges of G is at most twice the sum of the integers
in πn; the latter is less than or equal to the sum of the integers in πm, where
m < 2n and m = 2h − 1, for some integer h ≥ 1. Further, πm is easily shown to
be equal to (h − 1) · 2h + 1 ∈ O(n log n).

Let C be an n-vertex caterpillar and let (u1, . . . , us) be the spine of C. For i =
1, . . . , s, let Si be the star composed of ui and its adjacent leaves; let ni = |V (Si)|.
Let m1 = 0; for i = 2, . . . , s, let mi =

∑i−1
j=1 nj . For i = 1, . . . , s, we embed Si

onto the subgraph Gi of G induced by the vertices vmi+1, vmi+2, . . . , vmi+ni
:

This is done by embedding ui at the vertex vxi
of Gi whose degree (in G) is

maximum, and by embedding the leaves of Si at the remaining vertices of Gi.
By Property 1, we have that vxi

is adjacent in G to the ni vertices preceding
it and to the ni vertices following it along c, hence it is adjacent to all other
vertices of Gi; thus, the above embedding of Si onto Gi is valid. The arguments
showing that the edge vxi

vxi+1 belongs to G for all i = 1, . . . , s−1 are analogous.
The proof is concluded by observing that the edges of the spine (u1, . . . , us) do
not cross each other, since the vertices u1, . . . , us appear in this order along c. ��

4 Conclusions and Open Problems

In this paper we introduced and studied the problem of constructing geometric
graphs with few vertices and edges that are universal for families of planar
graphs. Our research raises several challenging problems.
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What is the minimum number of edges of an n-vertex convex geometric graph
that is universal for n-vertex trees? We proved that the answer is in O(n log n)
if convexity is not required, or if caterpillars, rather than trees, are considered,
while it is close to Ω(n2) if outerplanar graphs, rather than trees, are considered.

What is the minimum number of edges in a geometric graph that is universal
for all n-vertex planar graphs? For abstract graphs, Babai et al. [3] constructed a
universal graph with O(n3/2) edges based on separators. Can such a construction
be adapted to a geometric setting? The current best lower bound is Ω(n log n),
same as for trees [13], while the best upper bound is only O(n4).

Finally, the problems we studied in this paper can be posed for topological
(multi-)graphs, as well, in which edges are represented by Jordan arcs.

Theorem 5. For every n ∈ N, there is a topological multigraph with n vertices
and O(n3) edges that contains a planar drawing of every n-vertex planar graph.

Theorem 6. For every n ∈ N, there is a topological multigraph with n vertices
and O(n2) edges that contains a planar drawing of every n-vertex subhamiltonian
planar graph.
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Abstract. We study the computational complexity of two well-known
graph transversal problems, namely Subset Feedback Vertex Set
and Subset Odd Cycle Transversal, by restricting the input to H-
free graphs, that is, to graphs that do not contain some fixed graph H as
an induced subgraph. By combining known and new results, we deter-
mine the computational complexity of both problems on H-free graphs
for every graph H except when H = sP1 + P4 for some s ≥ 1. As part
of our approach, we introduce the Subset Vertex Cover problem and
prove that it is polynomial-time solvable for (sP1 + P4)-free graphs for
every s ≥ 1.

1 Introduction

The central question in Graph Modification is whether or not a graph G can be
modified into a graph from a prescribed class G via at most k graph operations
from a prescribed set S of permitted operations such as vertex or edge dele-
tion. The transversal problems Vertex Cover, Feedback Vertex Set and
Odd Cycle Transversal are classical problems of this kind. For example,
the Vertex Cover problem is equivalent to asking if one can delete at most k
vertices to turn G into a member of the class of edgeless graphs. The problems
Feedback Vertex Set and Odd Cycle Transversal ask if a graph G can
be turned into, respectively, a forest or a bipartite graph by deleting vertices.

We can relax the condition on belonging to a prescribed class to obtain
some related subset transversal problems. We state these formally after some
definitions. For a graph G = (V,E) and a set T ⊆ V , an (odd) T -cycle is a cycle
of G (with an odd number of vertices) that intersects T . A set ST ⊆ V is a
T -vertex cover, a T -feedback vertex set or an odd T -cycle transversal of G if ST

has at least one vertex of, respectively, every edge incident to a vertex of T , every
T -cycle, or every odd T -cycle. For example, let G be a star with centre vertex c,
whose leaves form the set T . Then, both {c} = V \ T and T are T -vertex covers
of G but the first is considerably smaller than the second. See Fig. 1 for some
more examples.
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Fig. 1. In both examples, the square vertices of the Petersen graph form a set T and
the black vertices form an odd T -cycle transversal ST , which is also a T -feedback vertex
set. In the left example, ST \ T �= ∅, and in the right example, ST ⊆ T .

The Subset Feedback Vertex Set and Subset Odd Cycle Transversal

problems are well known. The Subset Vertex Cover problem is introduced
in this paper, and we are not aware of past work on this problem. On general
graphs, Subset Vertex Cover is polynomially equivalent to Vertex Cover:
to solve Subset Vertex Cover remove edges in the input graph that are not
incident to any vertex of T to yield an equivalent instance of Vertex Cover.
However, this equivalence no longer holds for graph classes that are not closed
under edge deletion.

As the three problems are NP-complete, we consider the restriction of the
input to special graph classes in order to better understand which graph prop-
erties cause the computational hardness. Instead of classes closed under edge
deletion, we focus on classes of graphs closed under vertex deletion. Such classes
are called hereditary. The reasons for this choice are threefold. First, hereditary
graph classes capture many well-studied graph classes. Second, every hereditary
graph class G can be characterized by a (possibly infinite) set FG of forbidden
induced subgraphs. This enables us to initiate a systematic study, starting from
the case where |FG | = 1. Third, we aim to extend and strengthen existing com-
plexity results (that are for hereditary graph classes). If FG = {H} for some
graph H, then G is monogenic, and every G ∈ G is H-free. Our research question
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is: How does the structure of a graph H influence the computational complexity
of a subset transversal problem for input graphs that are H-free?

As a general strategy one might first try to prove that the restriction to
H-free graphs is NP-complete if H contains a cycle or an induced claw (the 4-
vertex star). This is usually done by showing, respectively, that the problem is
NP-complete on graphs of arbitrarily large girth (the length of a shortest cycle)
and on line graphs, which form a subclass of claw-free graphs. If this is the case,
then it remains to consider the case where H has no cycle, and has no claw
either. So H is a linear forest, that is, the disjoint union of one or more paths.
Existing Results. As NP-completeness results for transversal problems carry
over to subset transversal problems, we first discuss results on Feedback Ver-

tex Set and Odd Cycle Transversal for H-free graphs. By Poljak’s con-
struction [28], Feedback Vertex Set is NP-complete for graphs of girth at
least g for every integer g ≥ 3. The same holds for Odd Cycle Transver-

sal [6]. Moreover, Feedback Vertex Set [30] and Odd Cycle Transver-

sal [6] are NP-complete for line graphs and thus for claw-free graphs. Hence,
both problems are NP-complete for H-free graphs if H has a cycle or claw. Both
problems are polynomial-time solvable for P4-free graphs [4], for sP2-free graphs
for every s ≥ 1 [6] and for (sP1+P3)-free graphs for every s ≥ 1 [9]. In addition,
Odd Cycle Transversal is NP-complete for (P2+P5, P6)-free graphs [9]. Very
recently, Abrishami et al. showed that Feedback Vertex Set is polynomial-
time solvable for P5-free graphs [1]. We summarize as follows (F ⊆i G means
that F is an induced subgraph of G; see Sect. 2 for the other notation used).

Theorem 1. For a graph H, Feedback Vertex Set on H-free graphs is
polynomial-time solvable if H ⊆i P5, H ⊆i sP1 + P3 or H ⊆i sP2 for some
s ≥ 1, and NP-complete if H ⊇i Cr for some r ≥ 3 or H ⊇i K1,3.

Theorem 2. For a graph H, Odd Cycle Transversal on H-free graphs is
polynomial-time solvable if H = P4, H ⊆i sP1+P3 or H ⊆i sP2 for some s ≥ 1,
and NP-complete if H ⊇i Cr for some r ≥ 3, H ⊇i K1,3, H ⊇i P6 or H ⊇i

P2 + P5.

We note that no integer r is known such that Feedback Vertex Set

is NP-complete for Pr-free graphs. This situation changes for Subset Feed-

back Vertex Set which is, unlike Feedback Vertex Set, NP-complete for
split graphs (that is, (2P2, C4, C5)-free graphs), as shown by Fomin et al. [12].
Papadopoulos and Tzimas [26,27] proved that Subset Feedback Vertex Set

is polynomial-time solvable for sP1-free graphs for any s ≥ 1, co-bipartite graphs,
interval graphs and permutation graphs, and thus P4-free graphs. Some of these
results were generalized by Bergougnoux et al. [2], who solved an open problem
of Jaffke et al. [17] by giving an nO(w2)-time algorithm for Subset Feedback

Vertex Set given a graph and a decomposition of this graph of mim-width w.
This does not lead to new results for H-free graphs: a class of H-free graphs has
bounded mim-width if and only if H ⊆i P4 [5].

We are not aware of any results on Subset Odd Cycle Transversal for
H-free graphs, but note that this problem generalizes Odd Multiway Cut, just
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as Subset Feedback Vertex Set generalizes Node Multiway Cut, another
well-studied problem. We refer to [7,8,12,13,15,16,19–22] for further details,
in particular for parameterized and exact algorithms for Subset Feedback

Vertex Set and Subset Odd Cycle Transversal. These algorithms are
beyond the scope of this paper.

Our Results. By a significant extension of the known results for the two prob-
lems on H-free graphs we obtain two almost-complete dichotomies:

Theorem 3. Let H be a graph with H �= sP1 + P4 for all s ≥ 1. Then Subset

Feedback Vertex Set on H-free graphs is polynomial-time solvable if H = P4

or H ⊆i sP1 + P3 for some s ≥ 1 and NP-complete otherwise.

Theorem 4. Let H be a graph with H �= sP1 + P4 for all s ≥ 1. Then Subset

Odd Cycle Transversal on H-free graphs is polynomial-time solvable if H =
P4 or H ⊆i sP1 + P3 for some s ≥ 1 and NP-complete otherwise.

Though the proved complexities of Subset Feedback Vertex Set and
Subset Odd Cycle Transversal are the same on H-free graphs, the algo-
rithm that we present for Subset Odd Cycle Transversal on (sP1 + P3)-
free graphs is more technical compared to the algorithm for Subset Feed-

back Vertex Set, and considerably generalizes the transversal algorithms for
(sP1+P3)-free graphs of [9]. There is further evidence that Subset Odd Cycle

Transversal is a more challenging problem than Subset Feedback Vertex

Set. For example, the best-known parameterized algorithm for Subset Feed-

back Vertex Set runs in O∗(4k) time [16], but the best-known run-time for
Subset Odd Cycle Transversal is O∗(2O(k3 log k)) [22]. Moreover, it is not
known if there is an XP algorithm for Subset Odd Cycle Transversal in
terms of mim-width in contrast to the known XP algorithm for Subset Feed-

back Vertex Set [2].
In Sect. 2 we introduce our terminology. In Sect. 3 we present some results for

Subset Vertex Cover: the first result shows that Subset Vertex Cover is
polynomial-time solvable for (sP1+P4)-free graphs for every s ≥ 1, and we later
use this as a subroutine to obtain a polynomial-time algorithm for Subset Odd

Cycle Transversal on P4-free graphs. We present our results on Subset

Feedback Vertex Set and Subset Odd Cycle Transversal in Sects. 4
and 5, respectively. In Sect. 6 on future work we discuss Subset Vertex Cover

in more detail.

2 Preliminaries

We consider undirected, finite graphs with no self-loops and no multiple edges.
Let G = (V,E) be a graph, and let S ⊆ V . The graph G[S] is the subgraph of G
induced by S. We write G − S to denote the graph G[V \ S]. Recall that for a
graph F , we write F ⊆i G if F is an induced subgraph of G. The cycle and path
on r vertices are denoted Cr and Pr, respectively. We say that S is independent
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if G[S] is edgeless, and that S is a clique if G[S] is complete, that is, contains
every possible edge between two vertices. We let Kr denote the complete graph
on r vertices, and sP1 denote the graph whose vertices form an independent set
of size s. A (connected) component of G is a maximal connected subgraph of G.
The graph G = (V, {uv | uv �∈ E and u �= v}) is the complement of G. The
neighbourhood of a vertex u ∈ V is the set NG(u) = {v | uv ∈ E}. For U ⊆ V ,
we let NG(U) =

⋃
u∈U N(u) \ U . The closed neighbourhoods of u and U are

denoted by NG[u] = NG(u) ∪ {u} and NG[U ] = NG(U) ∪ U , respectively. We
omit subscripts when there is no ambiguity.

Let T ⊆ V be such that S ∩ T = ∅. Then S is complete to T if every vertex
of S is adjacent to every vertex of T , and S is anti-complete to T if there are no
edges between S and T . In the first case, S is also said to be complete to G[T ],
and in the second case we say it is anti-complete to G[T ].

We say that G is a forest if it has no cycles, and, furthermore, that G is
a linear forest if it is the disjoint union of one or more paths. The graph G is
bipartite if V can be partitioned into at most two independent sets. A graph is
complete bipartite if its vertex set can be partitioned into two independent sets X
and Y such that X is complete to Y . We denote such a graph by K|X|,|Y |. If X
or Y has size 1, the complete bipartite graph is a star; recall that K1,3 is also
called a claw. A graph G is a split graph if it has a bipartition (V1, V2) such that
G[V1] is a clique and G[V2] is an independent set. A graph is split if and only if
it is (C4, C5, 2P2)-free [11].

Let G1 and G2 be two vertex-disjoint graphs. The union operation + creates
the disjoint union G1 +G2 of G1 and G2 (recall that G1 +G2 is the graph with
vertex set V (G1) ∪ V (G2) and edge set E(G1) ∪ E(G2)).

We also consider optimization versions of subset transversal problems, in
which case we have instances (G,T ) (instead of instances (G,T, k)). We say that
a set S ⊆ V (G) is a solution for an instance (G,T ) if S is a T -transversal (of
whichever kind we are concerned with). A solution S is smaller than a solution
S′ if |S| < |S′|, and a solution S is minimum if (G,T ) does not have a solution
smaller than S, and it is maximum if there is no larger solution. We will use the
following general lemma, which was implicitly used in [27].

Lemma 1. Let S be a minimum solution for an instance (G,T ) of a subset
transversal problem. Then |S \ T | ≤ |T \ S|.

Let T ⊆ V be a vertex subset of a graph G = (V,E). Recall that a cycle
is a T -cycle if it contains a vertex of T . A subgraph of G is a T -forest if it has
no T -cycles. Recall also that a cycle is odd if it has an odd number of edges. A
subgraph of G is T -bipartite if it has no odd T -cycles. Recall that a set ST ⊆ V is
a T -vertex cover, a T -feedback vertex set or an odd T -cycle transversal of G if
ST has at least one vertex of, respectively every edge incident to a vertex of T ,
every T -cycle, or every odd T -cycle. Note that ST is a T -feedback vertex set if
and only if G[V \ ST ] is a T -forest, and ST is an odd T -cycle transversal if and
only if G[V \ ST ] is T -bipartite. A T -path is a path that contains a vertex of T .
A T -path is odd (or even) if the number of edges in the path is odd (or even,
respectively).
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We will use the following easy lemma, which proves that T -forests and
T -bipartite graphs can be recognized in polynomial time. It combines results
claimed but not proved in [22,27].

Lemma 2. Let G = (V,E) be a graph and T ⊆ V . Then deciding whether or
not G is a T -forest or T -bipartite takes O(n+m) time.

3 Subset Vertex Cover

We need the following two results on Subset Vertex Cover (proofs omitted).

Lemma 3. Subset Vertex Cover can be solved in polynomial time for P4-
free graphs.

Lemma 4. Let H be a graph. If Subset Vertex Cover is polynomial-time
solvable for H-free graphs, then it is for (P1 +H)-free graphs as well.

Lemma 3, combined with s applications of Lemma 4, yields the following result.

Theorem 5. For every integer s ≥ 1, Subset Vertex Cover can be solved
in polynomial time for (sP1 + P4)-free graphs.

4 Subset Feedback Vertex Set

To prove Theorem 3. We require two lemmas. In the first lemma (whose proof
we omit), the bound of 4s− 2 is not necessarily tight, but suffices for our needs.

Lemma 5. Let s be a non-negative integer, and let R be an (sP1+P3)-free tree.
Then either

(i) |V (R)| ≤ max{7, 4s − 2}, or
(ii) R has precisely one vertex r of degree more than 2 and at most s−1 vertices

of degree 2, each adjacent to r. Moreover, r has at least 3s − 1 neighbours.

We can extend “partial” solutions to full solutions in polynomial time as follows.

Lemma 6. Let G = (V,E) be a graph with a set T ⊆ V . Let V ′ ⊆ V and
S′
T ⊆ V ′ such that S′

T is a T -feedback vertex set of G[V ′], and let Z = V \ V ′.
Suppose that G[Z] is P3-free, and |NG−S′

T
(Z)| ≤ 1. Then there is a polynomial-

time algorithm that finds a minimum T -feedback vertex set ST of G such that
S′
T ⊆ ST and V ′ \ S′

T ⊆ V \ ST .

Proof. Since G[Z] is P3-free, it is a disjoint union of complete graphs. Let G′ =
G−S′

T , and consider a T -cycle C in G′. Then C contains at least one vertex of Z.
If NG′(Z) = ∅, then C is contained in a component of G[Z]. On the other hand,
if NG′(Z) = {y}, say, then y is a cut-vertex of G′, so there exists a component
G[U ] of G[Z] such that C is contained in G[U∪{y}]. Hence, we can consider each
component of G[Z] independently: for each component G[U ] it suffices to find



Computing Subset Transversals in H-Free Graphs 193

the maximum subset U ′ of U such that G[U ′ ∪ NG′(U)] contains no T -cycles.
Then U ′ ⊆ FT and U \ U ′ ⊆ ST , where FT = V \ ST .

Let U ⊆ Z such that G[U ] is a component of G[Z]. Either NG′(U) ∩ T = ∅,
or NG′(U) = {y} for some y ∈ T . First, consider the case where NG′(U)∩T = ∅.
We find a set U ′ that is a maximum subset of U such that G[U ′ ∪ NG′(U)] has
no T -cycles. Clearly if |U | = 1, then we can set U ′ = U . If |U ′| ≥ 3, then, since
U ′ is a clique, U ′ ⊆ V \ T . Thus, if |U \ T | ≥ 2, then we set U ′ = U \ T . So it
remains to consider when |U | ≥ 2 but |U \ T | ≤ 1. If there is some u ∈ U that
is anti-complete to NG′(U), then we can set U ′ to be any 2-element subset of U
containing u. Otherwise NG′(U) = {y} and y is complete to U . In this case, for
any u ∈ U , we set U ′ = {u}.

Now we may assume that NG′(U) = {y} and y ∈ T . Again, we find a set U ′

that is a maximum subset of U such that G[U ′∪{y}] has no T -cycles. Partition U
into {U0, U1} where u ∈ U1 if and only if u is a neighbour of y. Since y ∈ V ′ \S′

T ,
observe that U ′ contains at most one vertex of U1, otherwise G[U ′ ∪ {y}] has
a T -cycle. Since U ′ is a clique, if |U ′| ≥ 3 then U ′ ⊆ U \ T . So if |U0 \ T | ≥ 2
and there is an element u ∈ U1 \ T , then we can set U ′ = {u} ∪ (U0 \ T ). If
|U0 \T | ≥ 2 but U1 \T = ∅, then we can set U ′ = U0 \T . So we may now assume
that |U0 \ T | ≤ 1. If U0 �= ∅ and |U | ≥ 2, then we set U ′ to any 2-element subset
of U containing some u ∈ U0. Clearly if |U | = 1, then we can set U ′ = U . So it
remains to consider when U0 = ∅ and |U1| ≥ 2. In this case, we set U ′ = {u} for
an arbitrary u ∈ U1. ��

We now prove the main result of this section.

Theorem 6. For every integer s ≥ 0, Subset Feedback Vertex Set can be
solved in polynomial time for (sP1 + P3)-free graphs.

Proof. Let G = (V,E) be an (sP1 + P3)-free graph for some s ≥ 0, and let
T ⊆ V . We describe a polynomial-time algorithm for the optimization version of
the problem on input (G,T ). Let ST ⊆ V such that ST is a minimum T -feedback
vertex set of G, and let FT = V \ ST , so G[FT ] is a maximum T -forest. Note
that G[FT ∩ T ] is a forest. We consider three cases: either

1. G[FT ∩ T ] has at least 2s components;
2. G[FT ∩ T ] has fewer than 2s components, and each of these components

consists of at most max{7, 4s − 2} vertices; or
3. G[FT ∩ T ] has fewer than 2s components, one of which consists of at least

max{8, 4s − 1} vertices.

We describe polynomial-time subroutines that find a set FT such that G[FT ] is
a maximum T -forest in each of these three cases, giving a minimum solution
ST = V \ FT in each case. We obtain an optimal solution by running each of
these subroutines in turn: of the (at most) three potential solutions, we output
the one with minimum size.
Case 1: G[FT ∩ T ] has at least 2s components.
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We begin by proving a sequence of claims that describe properties of a maximum
T -forest FT , when in Case 1. Since G is (sP1 + P3)-free, FT ∩ T induces a P3-
free forest, so G[FT ∩ T ] is a disjoint union of graphs isomorphic to P1 or P2.
Let A ⊆ FT ∩ T such that G[A] consists of precisely 2s components. Note that
|A| ≤ 4s. We also let Y = N(A)∩FT , and partition Y into {Y1, Y2} where y ∈ Y1

if y has only one neighbour in A, whereas y ∈ Y2 if y has at least two neighbours
in A.

Claim 1. |Y2| ≤ 1.

Proof of Claim 1. Let v ∈ Y2. Then v has neighbours in at least s + 1 of the
components of G[A], otherwise G[A ∪ {v}] contains an induced sP1 + P3. Note
also that v has at most one neighbour in each component of G[A], otherwise
G[FT ] has a T -cycle. Now suppose that Y2 contains distinct vertices v1 and v2.
Then, of the 2s components of G[A], the vertices v1 and v2 each have some
neighbour in s+1 of these components. So there are at least two components of
G[A] containing both a vertex adjacent to v1, and a vertex adjacent to v2. Let A′

and A′′ be the vertex sets of two such components. Then A′∪A′′∪{v1, v2} ⊆ FT ,
but G[A′ ∪ A′′ ∪ {v1, v2}] has a T -cycle; a contradiction. 
Claim 2. |Y | ≤ 2s+ 1.

Proof of Claim 2. By Claim 1, it suffices to prove that |Y1| ≤ 2s. We argue
that each component of G[A] has at most one neighbour in Y1, implying that
|Y1| ≤ 2s. Indeed, suppose that there is a component CA of G[A] having two
neighbours in Y1, say u1 and u2. Then G[V (CA)∪ {u1, u2}] contains an induced
P3 that is anti-complete to A \V (CA), contradicting that G is (sP1+P3)-free. 
Claim 3. Y1 is independent, and no component of G[A] of size 2 has a neighbour
in Y1.

Proof of Claim 3. Suppose that there are adjacent vertices u1 and u2 in Y1.
Let ai be the unique neighbour of ui in A for i ∈ {1, 2}. Note that a1 �= a2, for
otherwise G[FT ] has a T -cycle. Then {a1, u1, u2} induces a P3, so G[{u1, u2}∪A]
contains an induced sP1 + P3, which is a contradiction. We deduce that Y1 is
independent.

Now let {a1, a2} ⊆ A such that G[{a1, a2}] is a component of G[A], and
suppose that u1 ∈ Y1 is adjacent to a1. Then a1 is the unique neighbour of u1

in A, so G[{u1, a1, a2}] ∼= P3. Thus G[{u1} ∪ A] contains an induced sP1 + P3,
which is a contradiction. 
Claim 4. Let Z = V \ N [A]. Then N(Z) ∩ FT ⊆ Y2.

Proof of Claim 4. Suppose that there exists y ∈ Y1 that is adjacent to a vertex
c ∈ Z. Let a be the unique neighbour of y in A. Then G[{c, y} ∪ A] contains an
induced sP1 + P3, which is a contradiction. So Y1 is anti-complete to Z. Now,
if c ∈ Z is adjacent to a vertex in N [A] ∩ FT , then c is adjacent to y2 where
Y2 = {y2}. 
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Fig. 2. An example of the structure obtained in Case 1 when Y2 = {y2}.

We now describe the subroutine that finds an optimal solution in Case 1. In this
case, for any maximum forest FT , there exists some set A ⊆ T of size at most 4s
such that A ⊆ FT , and G[A] consists of exactly 2s components, each isomorphic
to either P1 or P2. Moreover, there is such an A for which N(A) ∩ T ⊆ ST .
Thus we guess a set A′ ⊆ T in O(n4s) time, discarding those sets that do not
induce a forest with exactly 2s components, and those that induce a component
consisting of more than two vertices.

For any such FT and A′, the set N(A′) ∩ FT has size at most 2s + 1, by
Claim 2. Thus, in O(n2s+1) time, we guess Y ′ ⊆ N(A′) with |Y ′| ≤ 2s+ 1, and
assume that Y ′ ⊆ FT whereas N(A′) \Y ′ ⊆ ST . Let Y ′

2 be the subset of Y ′ that
contains vertices that have at least two neighbours in A′. We discard any sets
Y ′ that do not satisfy Claims 1 or 3, or those sets for which G[A′ ∪ Y ′] has a
T -cycle on three vertices, one of which is the unique vertex of Y ′

2 .
Let Z = V \N [A′] (for example, see Fig. 2). Since G[A′] contains an induced

sP1, the subgraph G[Z] is P3-free. Now N(Z) ∩ FT ⊆ Y ′
2 by Claim 4, where

|Y ′
2 | ≤ 1 by Claim 1. Thus, by Lemma 6, we can extend a partial solution

S′
T = N [A′] \ (A′ ∪ Y ′) of G[N [A′]] to a solution ST of G, in polynomial time.

Case 2: G[FT ∩ T ] has at most 2s − 1 components, each of size at most
max{7, 4s − 2}.
We guess sets F ⊆ T and S ⊆ V \T such that FT ∩T = F and ST \T = S. Since F
has size at most (2s−1)max{7, 4s−2} vertices, there are O(nmax{14s−7,8s2−8s+2})
possibilities for F . By Lemma1, we may assume that |ST \T | ≤ |F |. So for each
guessed F , there are at most O(nmax{14s−7,8s2−8s+2}) possibilities for S. For each
S and F , we set ST = (T \ F ) ∪ S and check, in O(n + m)-time by Lemma 2,
if G − ST is a T -forest. In this way we exhaustively find all solutions satisfying
Case 2, in O(nmax2{14s−7,8s2−8s+2}) time; we output the one of minimum size.

Case 3: G[FT ∩T ] has at most 2s−1 components, one of which has size at least
max{8, 4s − 1}.
By Lemma 5, there is some subset BT ⊆ FT ∩T such that |B| ≥ max{8, 4s− 1},
and G[B] is a component of G[FT ∩ T ] that is a tree satisfying Lemma5(ii). In
particular, there is a unique vertex r ∈ B such that r has degree more than 2 in
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G[B]. Moreover, G[FT ] has a component G[D] that contains B, where G[D] is
a tree that also satisfies Lemma 5(ii). Note that there are at most s− 1 vertices
in NG[B](r) having a neighbour in V \ T .

We guess a set B′ ⊆ T such that |B′| = max{8, 4s − 1}. We also guess a set
L′ ⊆ V \ T such that |L′| ≤ s − 1. Let D′ = B′ ∪ L′. We check that G[D′] has
the following properties:

– G[D′] is a tree,
– G[D′] has a unique vertex r′ of degree more than 2, with r′ ∈ B′,
– G[D′] has at most s − 1 vertices with distance 2 from r′, and each of these

vertices has degree 1, and
– each vertex v ∈ L′ has degree 1 in G[D′], and distance 2 from r′.

We assume that D′ induces a subtree of the large component G[D], where
r = r′, and D′ contains r, all neighbours of r with degree 2 in G[D], and all
vertices at distance 2 from r. In other words, G[D′] can be obtained from G[D]
by deleting some subset of the leaves of G[D] that are adjacent to r. In particular,
D′ ⊆ FT . We also assume that L′ is the set of all vertices of V (D) \ T that have
distance 2 from r.

It follows from these assumptions that N(D′ \ {r}) \ {r} ⊆ ST . Let Z =
V \ N [D′ \ {r}], and observe that each z ∈ Z has at most one neighbour in D′

(if it has such a neighbour, this neighbour is r). So N(Z) ∩ FT ⊆ {r}.
Towards an application of Lemma 6, we claim that G[Z] is P3-free. Let B1 =

B′ ∩ N(r). As r has at least 3s − 1 neighbours in G[B′], by Lemma 5, G[B1]
contains an induced sP1. Moreover, N(B1) ∩ FT ⊆ D′. Since G is (sP1 + P3)-
free, G[Z] is P3-free. We now apply Lemma 6, which completes the proof. ��

We are now ready to prove Theorem 3.

Theorem 3 (restated). Let H be a graph with H �= sP1+P4 for all s ≥ 1. Then
Subset Feedback Vertex Set on H-free graphs is polynomial-time solvable
if H = P4 or H ⊆i sP1 + P3 for some s ≥ 1 and is NP-complete otherwise.

Proof. If H has a cycle or claw, we use Theorem 1. The cases H = P4 and
H = 2P2 follow from the corresponding results for permutation graphs [26] and
split graphs [12]. The remaining case H ⊆i sP1 + P3 follows from Theorem 6.

��

5 Subset Odd Cycle Transversal

At the end of this section we prove Theorem 4. We show three new results (proofs
omitted). Our first result uses the reduction of [26] which proved the analogous
result for Subset Feedback Vertex Set. Our third result is the main result
of this section. Its proof uses the same approach as the proof of Theorem 6 but
we need more advanced arguments for distinguishing cycles according to parity.

Theorem 7. Subset Odd Cycle Transversal is NP-complete for the class
of split graphs (or equivalently, (C4, C5, 2P2)-free graphs).
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Theorem 8. Subset Odd Cycle Transversal can be solved in polynomial
time for P4-free graphs.

Theorem 9. For every integer s ≥ 0, Subset Odd Cycle Transversal can
be solved in polynomial time for (sP1 + P3)-free graphs.

We are now ready to prove our almost-complete classification.

Theorem 4 (restated). Let H be a graph with H �= sP1 + P4 for all s ≥ 1.
Then Subset Odd Cycle Transversal on H-free graphs is polynomial-time
solvable if H = P4 or H ⊆i sP1+P3 for some s ≥ 1 and NP-complete otherwise.

Proof. If H has a cycle or claw, we use Theorem 2. The cases H = P4 and
H = 2P2 follow from Theorems 7 and 8, respectively. The remaining case, where
H ⊆i sP1 + P3, follows from Theorem 9. ��

6 Conclusions

We gave almost-complete classifications of the complexity of Subset Feedback

Vertex Set and Subset Odd Cycle Transversal for H-free graphs. The
only open case in each classification is when H = sP1+P4 for some s ≥ 1, which
is also open for Feedback Vertex Set and Odd Cycle Transversal for
H-free graphs. Our proof techniques for H = sP1 + P3 do not carry over and
new structural insights are needed in order to solve the missing cases where
H = sP1 + P4 for s ≥ 1.

We also introduced the Subset Vertex Cover problem and showed that
this problem is polynomial-time solvable on (sP1+P4)-free graphs for every s ≥
0. Lokshtanov et al. [23] proved that Vertex Cover is polynomial-time solvable
for P5-free graphs. Grzesik et al. [14] extended this result to P6-free graphs. What
is the complexity of Subset Vertex Cover for P5-free graphs? Does there
exist an integer r ≥ 5 such that Subset Vertex Cover is NP-complete for Pr-
free graphs. By Poljak’s construction [28], Vertex Cover is NP-complete for
H-free graphs if H has a cycle. However, Vertex Cover becomes polynomial-
time solvable on K1,3-free graphs [24,29]. We did not research the complexity
of Subset Vertex Cover on K1,3-free graphs and also leave this as an open
problem for future work.

Finally, several related transversal problems have been studied but not yet
for H-free graphs. For example, the parameterized complexity of Even Cycle

Transversal and Subset Even Cycle Transversal has been addressed
in [25] and [19], respectively. Moreover, several other transversal problems have
been studied for H-free graphs, but not the subset version: for example, Con-

nected Vertex Cover, Connected Feedback Vertex Set and Con-

nected Odd Cycle Transversal, and also for Independent Feedback

Vertex Set and Independent Odd Cycle Transversal; see [3,6,10,18] for
a number of recent results. It would be interesting to solve the subset versions of
these transversal problems for H-free graphs and to determine the connections
amongst all these problems in a more general framework.
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Abstract. The classical, linear-time solvable Feedback Edge Set
problem is concerned with finding a minimum number of edges inter-
secting all cycles in a (static, unweighted) graph. We provide a first
study of this problem in the setting of temporal graphs, where edges are
present only at certain points in time. We find that there are four natu-
ral generalizations of Feedback Edge Set, all of which turn out to be
NP-hard. We also study the tractability of these problems with respect
to several parameters (solution size, lifetime, and number of graph ver-
tices, among others) and obtain some parameterized hardness but also
fixed-parameter tractability results.

1 Introduction

A temporal graph G = (V, E , τ) has a fixed vertex set V and each time-edge in E
has a discrete time-label t ∈ {1, 2, . . . , τ}, where τ denotes the lifetime of the
temporal graph G. A temporal cycle in a temporal graph is a cycle of time-edges
with increasing time-labels. We study the computational complexity of searching
for small feedback edge sets, i.e., edge sets whose removal from the temporal graph
destroys all temporal cycles. We distinguish between the following two variants
of feedback edge set problems.

1. Temporal feedback edge sets, which consist of time-edges, that is, connections
between two specific vertices at a specific point in time.

2. Temporal feedback connection sets, which consist of vertex pairs {v, w} causing
that all time-edges between v and w will be removed.

Defining feedback edge set problems in temporal graphs is not straight-
forward because for temporal graphs the notions of paths and cycles are more
involved than for static graphs. First, we consider two different, established mod-
els of temporal paths. Temporal paths are time-respecting paths in a temporal
graph. Strict temporal paths have strictly increasing time-labels on consecutive
time-edges. Non-strict temporal paths have non-decreasing time-labels on con-
secutive time-edges. Non-strictness can be used whenever the traversal time per
edge is very short compared to the scale of the time dimension.
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We focus on finding temporal feedback edge sets and temporal feedback con-
nection sets (formalized in Sect. 2) of small cardinality in unweighted temporal
graphs, each time using both the strict and non-strict temporal cycle model. We
call the corresponding problems (Strict) Temporal Feedback Edge Set
and (Strict) Temporal Feedback Connection Set, respectively.

(Strict) Temporal Feedback Edge Set ((S)TFES)
Input: A temporal graph G = (V, E , τ) and k ∈ N.
Question: Is there a (strict) temporal feedback edge set E ′ ⊆ E of G with
|E ′| ≤ k?

(Strict) Temporal Feedback Connection Set ((S)TFCS)
Input: A temporal graph G = (V, E , τ) and k ∈ N.
Question: Is there a (strict) temporal feedback connection set C ′ of G with
|C ′| ≤ k?

Related Work. In static connected graphs, removing a minimum-cardinality feed-
back edge set results in a spanning tree. This can be done in linear time via depth-
first or breadth-first search. Thus, it is natural to compare temporal feedback
edge sets to the temporal analogue of a spanning tree. This analogue is known
as the minimum temporally connected (sub)graph, which is a graph containing a
time-respecting path from each vertex to every other vertex. The concept was
first introduced by Kempe et al. [16], and Axiotis and Fotakis [4] showed that
in an n-vertex graph such a minimum temporally connected subgraph can have
Ω(n2) edges while Casteigts et al. [7] showed that complete temporal graphs
admit sparse temporally connected subgraphs. Additionally, Akrida et al. [2]
and Axiotis and Fotakis [4] proved that computing a minimum temporally con-
nected subgraph is APX-hard. Considering weighted temporal graphs, there is
also (partially empirical) work on computing minimum spanning trees, mostly
focusing on polynomial-time approximability [15].

While feedback edge sets in temporal graphs seemingly have not been studied
before, Agrawal et al. [1] investigated the related problem α−Simultaneous
Feedback Edge Set, where the edge set of a graph is partitioned into α
color classes and one wants to find a set of at most k edges intersecting all
monochromatic cycles. They show that this is NP-hard for α ≥ 3 colors and give
a 2O(kα)poly(n)-time algorithm.

Another related problem is finding s-t-separators in temporal graphs; this
was studied by Berman [5], Kempe et al. [16], and Zschoche et al. [23]. Already
here some differences were found between the strict and the non-strict setting,
a distinction that also matters for our results.

Our Contributions. Based on a polynomial-time many-one reduction from 3-
SAT, we show NP-hardness for all four problem variants. The properties of the
corresponding construction yield more insights concerning special cases. More
specifically, the constructed graph uses τ = 8 distinct time-labels for the strict
variants and τ = 3 labels for the non-strict variants. Similarly, we observe that
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our constructed graph has at most one time-edge between any pair of vertices
(i.e., is simple), implying that the problems remain NP-hard when restricted
to simple temporal graphs. Assuming the Exponential Time Hypothesis, we
can additionally prove that there is no subexponential-time algorithm solving
(S)TFES or (S)TFCS. Moreover, we show that all four problem variants are
W[1]-hard when parameterized by the solution size k, using a parameterized
reduction from the W[1]-hard problem Multicut in DAGs [17].

Table 1. Overview of our results for (Strict) Temporal Feedback Edge Set
(marked with *) and (Strict) Temporal Feedback Connection Set (marked with
**). Unmarked results apply to both variants. The parameter k denotes the solution
size, τ the lifetime of the temporal graph, L the maximum length of a minimal temporal
cycle, and tw↓ resp. td↓ the treewidth resp. treedepth of the underlying graph.

Param. Complexity

Strict variant Non-strict variant

None NP-hard
[Theorem 10*/Corollary 11**]

NP-hard [Corollary 12]

k W[1]-hard [Theorem 14] W[1]-hard [Theorem 14]

τ τ ≥ 8: NP-h.
[Theorem 10*/Corollary 11**]

τ ≥ 3: NP-h. [Corollary 12]

k + L O(Lk · |E|2) [Observation 6] O(Lk · |E|2 log |E|) [Observation 6]

k + τ O(τk · |E|2) [Corollary 7] Open

k + td↓ 2O(td↓ ·k) · |E|2 [Corollary 8] 2O(td↓ ·k) · |E|2 log |E| [Corollary 8]

|V | O(22|V |2 · |V |3 · τ)* [Theorem 15*]

O(2
1
2 (|V |2−|V |) · |E|2)**

[Observation 9**]

O(23|V |2 · |V |2 · τ)* [Theorem 15*]

O(2
1
2 (|V |2−|V |) · |E|2 log |E|)**

[Observation 9**]

tw↓ + τ FPT [Theorem 21] FPT [Theorem 21]

On the positive side, based on a simple search tree, we first observe that
all problem variants are fixed-parameter tractable with respect to the combined
parameter k + L, where L is the maximum length of a minimal temporal cycle.
For the strict problem variants, this also implies fixed-parameter tractability for
the combined parameter τ + k. Our main algorithmic result is to prove fixed-
parameter tractability for (S)TFES with respect to the number of vertices |V |.
(For (S)TFCS, the corresponding result is straightforward as there are 1

2 (|V |2 −
|V |) vertex pairs to consider.) Finally, studying the combined parameter τ plus
treewidth of the underlying graph, we show fixed-parameter tractability based
on an MSO formulation.

Our results are summarized in Table 1. Notable distinctions between the dif-
ferent settings include the combined parameter k + τ where the non-strict case
remains open, and the parameter |V | where the proof for (S)TFES is much more
involved than for (S)TFCS.
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Due to space constraints, several details (marked with (�)) are omitted and
can be found in a long version [12].

2 Preliminaries and Basic Observations

We assume familiarity with standard notion from graph theory and from (param-
eterized) complexity theory. We denote the set of positive integers with N. For
a ∈ N, we set [a] := {1, . . . , a}.

We use the following definition of temporal graphs in which the vertex set
does not change and each time-edge has a discrete time-label [13,14,19].

Definition 1 (Temporal Graph, Underlying Graph). An (undirected)
temporal graph G = (V, E , τ) is an ordered triple consisting of a set V of vertices,
a set E ⊆

(
V
2

)
× [τ ] of (undirected) time-edges, and a lifetime τ ∈ N.

The underlying graph G↓ is the static graph obtained by removing all time-
labels from G and keeping only one edge from every multi-edge. We call a temporal
graph simple if each vertex pair is connected by at most one time-edge.

Let G = (V, E , τ) be a temporal graph. For i ∈ [τ ], let Ei(G) := {{v, w} |
({v, w}, i) ∈ E} be the set of edges with time-label i. We call the static graph
Gi(G) = (V,Ei(G)) layer i of G. For t ∈ [τ ], we denote the temporal subgraph
consisting of the first t layers of G by G[t](G) := (V, {(e, i) | i ∈ [t]∧e ∈ Ei(G)}, t).
We omit the function parameter G if it is clear from the context. For some
E ′ ⊆

(
V
2

)
× [τ ], we denote G − E ′ := (V, E \ E ′, τ).

Definition 2 (Temporal Path, Temporal Cycle). Given a temporal graph
G = (V, E , τ), a temporal path of length � in G is a sequence P = (e1, e2, . . . , e�)
of time-edges ei = ({vi, vi+1}, ti) ∈ E where vi �= vj for all i, j ∈ [�] and ti ≤ ti+1

for all i ∈ [� − 1].
A temporal cycle is a temporal path of length at least three, except that the

first and last vertex are identical.
A temporal path or cycle is called strict if ti < ti+1 for all i ∈ [� − 1].

The definitions of (Strict) Temporal Feedback Edge Set and
(Strict) Temporal Feedback Connection Set (see Sect. 1) are based on
the following two sets (problem and set names are identical).

Definition 3 ((Strict) Temporal Feedback Edge Set). Let G = (V, E , τ) be
a temporal graph. A time-edge set E ′ ⊆ E is called a (strict) temporal feedback
edge set of G if G′ = (V, E \ E ′, τ) does not contain a (strict) temporal cycle.

Definition 4 ((Strict) Temporal Feedback Connection Set). Let G =
(V, E , τ) be a temporal graph with underlying graph G↓ = (V,E↓). An edge set
C ′ ⊆ E↓ is a (strict) temporal feedback connection set of G if G′ = (V, E ′, τ)
with E ′ = {({v, u}, t) ∈ E | {v, u} /∈ C ′} does not contain a (strict) temporal
cycle.

The elements in a feedback connection set are known as underlying edges
(edges of G↓).
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Simple Observations. We can compute shortest temporal paths from any given
vertex to all other vertices in O(|E| log |E|) time [21], respectively O(|E|) time for
strict temporal paths [23, Proposition 3.7]. Thus, by searching for each time-edge
({v, w}, t) for a shortest temporal path from w to v which starts at time t and
avoids the edge {v, w}, we can record the following observation.

Observation 5. In O(|E|2 log |E|) time, we can find a shortest temporal cycle
or confirm that none exists. For the strict case O(|E|2) time suffices.

Given a shortest temporal cycle of length L, any temporal feedback edge
or connection set must contain an edge or connection used by that cycle. By
repeatedly searching for a shortest temporal cycle and then branching over all
of its edges or connections, we obtain the following (again the log-factor is only
required in the non-strict case).

Observation 6 (�). Let G = (V, E , τ) be a temporal graph where each temporal
cycle has length at most L ∈ N. Then, (S)TFES and (S)TFCS can be solved in
O(Lk · |E|2 log |E|) time. For the strict cases O(Lk · |E|2) time suffices.

Clearly, a strict temporal cycle cannot be longer than the lifetime τ . Thus,
Observation 6 immediately gives the following result.

Corollary 7. STFES and STFCS can be solved in O(τk · |E|2) time.

Alternatively, we can also upper-bound L in terms of the length of any cycle of
the underlying graph G↓, which in turn can be upper-bounded by 2O(td↓ ) [20,
Proposition 6.2], where td↓ is the treedepth of the underlying graph.

Corollary 8. Let G be a temporal graph and td↓ be the treedepth of G↓. Then,
(S)TFES and (S)TFCS can be solved in 2O(td↓ ·k) · |E|2 log |E| time. For the strict
cases 2O(td↓ ·k) · |E|2 time suffices.

In contrast to static graphs, |V | is to be considered as a useful parameter
for temporal graphs because the maximum number of time-edges |E| can be
arbitrarily much larger than |V |. However, the number of underlying edges is at
most 1

2 (|V |2 − |V |) which yields the following fixed-parameter tractability result
for (S)TFCS.

Observation 9 (�). TFCS can be solved in O(2
1
2 (|V |2−|V |) · |E|2 log |E|) time

and STFCS can be solved in O(2
1
2 (|V |2−|V |) · |E|2) time.

3 Computational Hardness Results

We now show that all four problem variants, (S)TFES and (S)TFCS, are NP-
hard on simple temporal graphs with constant lifetime. The proofs work by
polynomial-time many-one reduction from the classical 3-SAT problem.

Theorem 10 (�). STFES is NP-hard for simple temporal graphs with τ = 8.
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The temporal graph constructed in the proof for Theorem10 does not contain
any pair of vertices which is connected by more than one time-edge. Hence, each
underlying edge corresponds to a single time-edge and thus the reduction implies
the following corollary. A similar reduction can also be used for the following.

Corollary 11. STFCS is NP-hard even for simple temporal graphs with τ = 8.

Corollary 12 (�). TFES and TFCS are both NP-hard even for simple temporal
graphs with τ ≥ 3.

We can also observe that the strict problem variants are NP-hard even if all
edges are present at all times. This problem is essentially equivalent to selecting
a set of edges of the underlying graph that intersects all cycles of length at most
τ , which is known to be NP-hard [22, Theorem 1].

Observation 13 (�). STFES and STFCS are NP-hard even on temporal
graphs where all edges are present at all times, even with τ = 3, planar under-
lying graph G↓, and Δ(G↓) = 7.

We next show that our problems are W[1]-hard when parameterized by the
solution size k with a parameterized reduction from Multicut in DAGs [17].
The idea here is that we can simulate a DAG D by an undirected temporal graph
by first subdividing all edges of D and then assigning time-labels according to
a topological ordering. This ensures that each path in D corresponds to a path
in the resulting temporal graph and vice versa. By adding a reverse edge from
t to s for each terminal pair (s, t) of the Multicut instance, an s-t-path in D
produces a temporal cycle involving s, t and vice versa.

Theorem 14 (�). (S)TFES and (S)TFCS, parameterized by the solution
size k, are W[1]-hard.

4 Fixed-Parameter Tractability Results

After having shown computational hardness for the single parameters solution
size k and lifetime τ in Sect. 3, we now consider larger and combined parameters,
and present fixed-parameter tractability results.

4.1 Parameterization by Number of Vertices

As shown in Observation 9, (S)TFCS is trivially fixed-parameter tractable with
respect to the number of vertices |V |. For (S)TFES, however, the same result
is much more difficult to show as the size of the search space is only upper-
bounded by 2τ(|V |2−|V |). Here, the dependence on τ prevents us from using the
(brute-force) approach that worked for (S)TFCS.

Theorem 15. STFES can be solved in O(22|V |2 · |V |3 · τ) time and TFES can
be solved in O(23|V |2 · |V |2 · τ) time, both requiring O(2|V |2) space.
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We prove Theorem 15 using a dynamic program which computes the min-
imum number of time-edges which have to be removed to achieve a specified
connectivity at a specified point in time. The key idea is that we can efficiently
determine which edges need to be removed from layer t if we know for evey pair
of vertices v, w whether w should be unreachable from v until time t−1 and time
t, respectively. To exclude temporal cycles, it then suffices that every vertex is
unreachable from itself until time τ (except by a trivial path of course).

Before formally describing the dynamic program, we need to introduce some
notations and intermediate results. Let G = (V, E , τ) be a temporal graph with
V = {v1, v2, . . . , vn}. The first dimension of the dynamic programming table will
be the connectivity between the vertices of G. We will store this as a connectivity
matrix A ∈ {0, ?}n×n encoding the following connectivity relationships:

aij = 0 ⇒ there is no temporal path from vertex vi to vj

(resp. no temporal cycle if i = j) and
aij = ? ⇒ there might be a temporal path (resp. cycle) from vi to vj .

Next, we define two functions, srd(G,B,A) (strict required deletions) and
nrd(G,B,A) (non-strict required deletions), which return the solution to the
following subproblem. Given connectivity B (before) at time t − 1, what is the
minimum number of edge deletions required in Gt to ensure connectivity A
(after) at time t? Figure 1 illustrates this problem for two vertices vi and vj .
If aij = 0 and there is some vertex vk which might be reachable from vi (i.e.,
bik = ? represented by the dotted path), then we must remove the edge between
vk and vj . In order to guarantee correctness, we have to assume that every “?”
in B represents an existing path. Additionally, if A and B encode incompatible
connectivity, then the function value is defined as ∞.

Definition 16. Let G = (V,E) be a static graph with |V | = n and let A,B ∈
{0, ?}n×n be two connectivity matrices. Function srd(G,B,A) is as follows.

If ∃i, j ∈ [n] : bij = ? ∧ aij = 0, then srd(G,B,A) := ∞. Otherwise,
srd(G,B,A) := |{{vk, vj} ∈ E | ∃i ∈ [n] : aij = 0 ∧ (bik = ? ∨ i = k)}|.

Note the clause bik = ? ∨ i = k in the formulation of Definition 16. This is due
to the fact that a vertex vk is always reachable from itself by a trivial temporal
path, regardless of whether a temporal cycle at vk exists.

Next, we show that srd(G,B,A) can be computed in polynomial time.

Lemma 17 (�). Algorithm 1 computes function srd(G,B,A) in O(|V |3) time.

Since, in the non-strict case, a temporal path can successively use multiple edges
from Gt, it is not possible to consider each entry aij = 0 separately (a single edge
might be part of multiple unwanted temporal walks). Instead, we have to find
an optimal edge-cut disconnecting all “problematic” pairs (vk, vj) in Gt where
∃i ∈ [n] : aij = 0 ∧ (bik = ? ∨ i = k)}. This problem is known as the Multicut
problem. We will use Multicut to define the second function, nrd(G,B,A).
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t− 1 t
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vk
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vj
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vj“bik = ?”

e

Fig. 1. Illustration of the subproblem solved by nrd(G, B, A) resp. srd(G, B, A). If we
want to make sure that no temporal path from vi to vj exists at time t (that is, we
have aij = 0), then the time-edge e has to be removed from the graph because there
might be a temporal path from vi to vk (bik = ?, dotted line).

Multicut (Optimization variant)
Input: An undirected, static graph G = (V,E) and a set of r terminal pairs
T = {(si, ti) | i ∈ [r] and si, ti ∈ V }.
Output: A minimum-cardinality edge set E′ ⊆ E whose removal disconnects
all terminal pairs in T .

Definition 18. Let G = (V,E) be a static graph with |V | = n and let A,B ∈
{0, ?}n×n be two connectivity matrices. Function nrd(G,B,A) is as follows.

If ∃i, j ∈ [n] : bij = ? ∧ aij = 0, then nrd(G,B,A) := ∞.
Otherwise, let E′ be a solution to Multicut (G, T ) with T = {(vk, vj) | ∃i ∈

[n] : aij = 0 ∧ (bik = ? ∨ i = k)}. Then, nrd(G,B,A) := |E′|.
In order to compute nrd(G,B,A), we have to solve Multicut which was

shown to be APX-hard [9, Theorem 5 and Sect. 5]. While there exist FPT algo-
rithms [6,18] for the parameter solution size, our best upper bound for the solu-
tion size is |V |2 − |V | and thus using these algorithms would result in a worse
running time than the brute-force approach we will use to prove the next lemma.

Lemma 19 (�). Function nrd(G,B,A) can be computed in O(2|V |2 · |V |2) time.

We can now define the dynamic program which we will use to prove
Theorem 15. Let A ∈ {0, ?}n×n be a connectivity matrix. The table entry
T (A, t) ∈ N contains the minimum number of time-edges which have to be
removed from G[t] in order to achieve the connectivity specified by A. We define
T as follows.

T (A, 0) := 0 ∀A ∈ {0, ?}n×n (1)
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Algorithm 1. Algorithm computing srd(G,B,A) (for strict temporal paths)
Parameters

G: static graph
A, B: connectivity matrices

Output
srd(G, B, A)

1: function StrictRequiredDeletions(G, B, A)
2: E′ ← {}
3: for i, j ∈ [n] do
4: if bij = ? ∧ aij = 0 then
5: return ∞
6: else if bij = 0 ∧ aij = 0 then
7: for all e := {vk, vj} ∈ E(G) with bik = ? ∨ i = k do
8: E′ ← E′ ∪ {e}
9: end for

10: end if
11: end for
12: return |E′|
13: end function

strict paths: T (A, t) := min
B∈{0,?}n×n

T (B, t − 1) + srd(Gt, B,A) (2a)

non-strict paths: T (A, t) := min
B∈{0,?}n×n

T (B, t − 1) + nrd(Gt, B,A) (2b)

Lemma 20. Let G = (V, E , τ) be a temporal graph with |V | = n and let A ∈
{0, ?}n×n be a connectivity matrix. Then, T (A, t) is the minimum cardinality of
a set E ′ ⊆ E for which (G − E ′)[t] possesses the connectivity specified by A.

Proof. We prove the lemma for the strict case via induction over t. The non-
strict case works analogously. Recall that the connectivity matrix A can only
encode that certain temporal paths must not exist. Thus, the correctness of
the initialization T (A, 0) = 0 is easy to see since no temporal paths exist at
time t = 0. For the correctness of the update step (Equation (2a)), we note that,
by minimizing over all possible B ∈ {0, ?}n×n, we always find the optimal state
B for the time t − 1. With some B fixed, it remains to show that T (B, t − 1) +
srd(Gt, B,A) is minimal for achieving both connectivity B at time t − 1 and
connectivity A at time t. By induction hypothesis, we know that T (B, t − 1) is
minimal. To show correctness and minimality of srd(Gt, B,A), we analyze how
the time-edges of layer Gt influence the possible temporal paths up to time t and
which changes (i.e., time-edge deletions) are required to achieve connectivity A.
For any two vertices vi, vj ∈ V , we compare the connectivity for time t−1 given
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by bij to the target connectivity given by aij and identify the following four
cases.

(Case 1) bij = ? ∧ aij = ?: Here, we do not care if vj is reachable from vi

and, thus, we do not need to remove any edges.
(Case 2) bij = ? ∧ aij = 0: We cannot disconnect a temporal path that

already exists at time t − 1 by removing edges in layer t and, therefore, cannot
guarantee aij = 0. In this case, there is no solution for the input parameters. By
Definition 16, srd(Gt, B,A) returns ∞ in this case.

(Case 3) bij = 0 ∧ aij = ?: Identical to Case 1.
(Case 4) bij = 0∧aij = 0: We have to ensure that vj is not reachable from vi

in G[t]. The definition of srd(Gt, B,A) mirrors the following argument. If there
is a vertex vk which was reachable from vi in the past, then we cannot keep an
edge (strict case) or any path (non-strict case) connecting vk and vj in layer t.
Assuming that Case 2 is already excluded for all vertex pairs, it can be easily
verified that Definition 16 uses exactly the set of such edges {vk, vj}.

Finally, we must show that assuming “bij = ? ⇒ there is a temporal path
from vi to vj” at time t − 1 for the function srd(Gt, B,A) did not result in
unnecessary time-edge deletions. To this end, assume bij = ? and that there is
no temporal path from vi to vj at time t − 1. Let B′ be a connectivity matrix
identical to B except for b′

ij = 0. As the path from vi to vj does not exist, we have
T (B, t − 1) = T (B′, t − 1). If the entry bij = ? resulted in an unnecessary time-
edge deletion, i.e., srd(Gt, B,A) > srd(Gt, B

′, A), then the minimum function in
Equation (2a) will not choose the value computed using B. �

Since we are only interested in specifying that certain paths (cycles) must
not exist, we choose to use “?”-entries in the connectivity matrices to represent
entries we do not care about. The advantage is evident in Cases 1 and 3 of the
previous proof. We now have all required ingredients to prove Theorem 15.

Proof. (Theorem 15). Let (G, k) be an instance of (S)TFES. Further, let A∗ be
an n × n connectivity matrix with a∗

ij = 0 if i = j and a∗
ij = ? otherwise.

As “?”-entries cannot require more time-edge deletions than “0”-entries, A∗ is
the cheapest connectivity specification that does not allow any temporal cycle to
exist. Thus, it follows from Lemma 20 that (G, k) is a yes-instance if T (A∗, τ) ≤ k,
and a no-instance otherwise.

For the running time, we first note that a connectivity matrix has size |V |2

with two possible choices for each entry resulting in 2|V |2 possible connectivity
matrices. Thus, the table size of the dynamic program is 2|V |2 · τ . To compute
each table entry, we have to compute srd(Gt, B,A) (resp. nrd(Gt, B,A)) for each
of the 2|V |2 possible choices for B. Together with Lemmas 17 and 19, we obtain
the running times stated in the theorem. The computation requires O(2|V |2)
space as we only need the table entries for time t − 1 in order to compute the
entries for time t. Thus, it is not necessary to store more than two columns of
the table, each of size 2|V |2 . �
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We note that our dynamic program indeed solves the optimization variant of
(S)TFES. That is, given a temporal graph G, it finds the smallest k for which
(G, k) is a yes-instance of the decision variant stated defined in Sect. 1. As shown
in the previous proof, we can easily use the result to solve any instance (G, k′)
of the decision variant by comparing k′ to k.

For the ease of presentation, we did not store the actual solution, that is,
the feedback edge set of size T (A, t). However, the functions srd(Gt, B,A) and
nrd(Gt, B,A) can easily be changed to return the solution edge sets for each
layer t. Using linked lists, which can be concatenated in constant time, it is
possible to include the solutions sets in the dynamic programming table without
changing the asymptotic running time.

4.2 Parameterization by Treewidth and Lifetime

In this last part, we show that all our problem variants are fixed-parameter
tractable when parameterized by the combination of the treewidth of the under-
lying graph and the lifetime. To this end we employ an optimization variant of
Courcelle’s famous theorem on graph properties expressible in monadic second-
order (MSO) logic [3,8] and apply it in the temporal setting [10].

Theorem 21 (�). (S)TFES and (S)TFCS are fixed-parameter tractable when
parameterized by the combination of the treewidth of the underlying graph and
the lifetime.

5 Conclusion

We conclude with some challenges for future research. For the parameter life-
time τ , it remains open whether there exists a polynomial-time algorithm for
instances with 3 ≤ τ ≤ 7 in the strict case and τ = 2 in the non-strict case. We
believe that, for the strict case, our 3-SAT reduction can be modified to use only
seven time-labels. Similarly to the work of Zschoche et al. [23] in the context of
temporal separators, we could not resolve the question whether the non-strict
variants are fixed-parameter tractable for the combined parameter τ +k, whereas
for the strict case, this is almost trivial.

We further leave as a future research challenge to investigate whether our
fixed-parameter tractability result for the parameter “number of vertices” can
be improved: On the hand we would like to improve the running time of the
algorithm or show some conditional running time lower bound to show that
it likely cannot be improved significantly. On the other hand, we leave open
whether it is possible to obtain a polynomial-size problem kernel for the number
of vertices as a parameter.

Additionally, it seems natural to study (S)TFES and (S)TFCS variants
restricted to specific temporal graph classes (e.g., see Fluschnik et al. [11]). In
particular, we could not settle the parameterized complexity of our problem
variants when parameterized by (solely) the treewidth of the underlying graph.
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Abstract. In this paper we investigate the structure of flip graphs on
non-crossing perfect matchings in the plane. Consider all non-crossing
straight-line perfect matchings on a set of 2n points that are placed
equidistantly on the unit circle. The graph Hn has those matchings as
vertices, and an edge between any two matchings that differ in replacing
two matching edges that span an empty quadrilateral with the other
two edges of the quadrilateral, provided that the quadrilateral contains
the center of the unit circle. We show that the graph Hn is connected
for odd n, but has exponentially many small connected components for
even n, which we characterize and count via Catalan and generalized
Narayana numbers. For odd n, we also prove that the diameter of Hn

is linear in n. Furthermore, we determine the minimum and maximum
degree of Hn for all n, and characterize and count the corresponding
vertices. Our results imply the non-existence of certain rainbow cycles,
and they answer several open questions and conjectures raised in a recent
paper by Felsner, Kleist, Mütze, and Sering.

Keywords: Flip graph · Matching · Diameter · Cycle

1 Introduction

Flip graphs are a powerful tool to study different classes of basic combinatorial
objects, such as binary trees, strings, permutations, partitions, triangulations,
matchings, spanning trees etc. A flip graph has as vertex set all the combinatorial
objects of interest, and an edge between any two objects that differ only by a
small local change operation called a flip. It thus equips the underlying objects
with a structure that reveals interesting properties about the objects, and that
allows one to solve different fundamental algorithmic tasks for them.
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A classical example is the flip graph of binary trees under rotations, which
has as vertices all binary trees on n nodes, and an edge between any two trees
that differ in a tree rotation. A problem that has received a lot of attention is
to determine the diameter of this flip graph, i.e., how many rotations are always
sufficient to transform two binary trees into each other. This question was first
considered by Sleator, Tarjan, and Thurston [27] in the 1980s, and answered
conclusively only recently by Pournin [22]. This problem has also been studied
extensively from an algorithmic point of view, with the goal of computing a
short sequence of rotations between two given binary trees [6,7,16,26]. It is a
well-known open question whether computing a shortest flip sequence is NP-
hard.

Another important property of flip graphs is whether they have a Hamil-
ton path or cycle. The reason is that computing such a path corresponds to an
algorithm that exhaustively generates the underlying combinatorial objects [14].
It is known that the flip graph of binary trees mentioned before has a Hamil-
ton cycle [13], and that a Hamilton path in this graph can be computed effi-
ciently [17].

Flip graphs also have deep connections to lattices and polytopes [3,21,24,25].
For instance, the aforementioned flip graph of binary trees under rotations arises
as the cover graph of the well-known Tamari lattice, and can be realized as an
(n − 1)-dimensional polytope in several different ways [5,15]. Other properties
of interest that have been investigated for the flip graph of binary trees are its
automorphism group [15], the vertex-connectivity [13], the chromatic number [4,
8], its genus [20], and the eccentricities of vertices [23]. Similar results are known
for flip graphs of several geometric configurations, such as matchings, spanning
trees, partitions and dissections, etc.; see e.g. [1,2,11,12].

In this paper, we consider the flip graph of non-crossing perfect matchings
in the plane. For any integer n ≥ 2, we consider a set of 2n points placed
equidistantly on a unit circle. We let Mn denote the set of all non-crossing
straight-line perfect matchings with n edges on this point set. It is well-known
that the cardinality of Mn is the n-th Catalan number Cn = 1

n+1

(
2n
n

)
. For any

matching M ∈ Mn, consider two matching edges e, f ∈ M that span an empty
quadrilateral, i.e., the convex hull of these two edges does not contain any other
edges of M ; see Fig. 1. Replacing the two edges e and f by the other two edges of
the quadrilateral yields another matching M ′ ∈ Mn, and we say that M and M ′

differ in a flip. The flip graph Gn has Mn as its vertex set, and an undirected edge
between any two matchings that differ in a flip; see Fig. 2. Hernando, Hurtado,
and Noy [10] proved that the graph Gn has diameter n−1 and connectivity n−1,
is bipartite for all n, has a Hamilton cycle for all even n ≥ 4, and no Hamilton
cycle or path for any odd n ≥ 5.

We now distinguish two different kinds of flips. A flip is centered if and only if
the quadrilaterial that determines the flip contains the center of the unit circle.
For odd n, the circle center may lie on the boundary of the quadrilateral, which
still counts as a centered flip. In Fig. 1, the flip between M and M ′ is centered,
whereas the flip between M and M ′′ is not. In all our figures, the circle center is
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MM M

e f

Fig. 1. A centered flip (left) and a non-centered flip (right).

G3 G4

Fig. 2. Flip graphs G3 (left) and G4 (right). Solid edges correspond to centered flips
and are present in the subgraphs H3 ⊆ G3 and H4 ⊆ G4, whereas the dashed edges
correspond to non-centered flips and are not present in these subgraphs.

marked with a cross. We let Hn denote the spanning subgraph of Gn obtained by
taking all edges that correspond to centered flips, omitting edges that correspond
to non-centered flips; see Figs. 2 and 3. Clearly, both graphs Hn and Gn have the
same vertex set.

The main motivation for considering centered flips comes from the study
of rainbow cycles in flip graphs, a direction of research that was initiated in a
recent paper by Felsner, Kleist, Mütze, and Sering [9]. Roughly speaking, along
a rainbow cycle in Gn all possible lengths of quadrilateral edges that are involved
in flip operations must appear equally often, which leads to non-centered flips
becoming unusable, so we may restrict our attention to the subgraph Hn given
by centered flips only. In other words, edges of a rainbow cycle in Gn must be
edges of Hn also.

Let us address another potential concern right away: Our assumption that
the 2n points of the point set are placed equidistantly on a unit circle is not
necessary for expressing or proving any of our results. Our results and proofs are
indeed robust under moving the 2n points to any configuration in convex posi-
tion, by suitably replacing all geometric notions by purely combinatorial ones.
In particular, centered flips can be defined without reference to the center of the
unit circle (see Sect. 2). Nevertheless, in the rest of the paper we stick to the
equidistancedness assumption, to be able to use both geometric and combinato-
rial arguments, whatever is more convenient.
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1.1 Our Results

In this work we investigate the structure of the graph Hn ⊆ Gn. In particular,
we solve some of the open questions and conjectures from the aforementioned
paper [9] on rainbow cycles in flip graphs. For several graph parameter, we
observe an intriguing dichotomy between the cases where n is odd or even, i.e.,
the graph Hn has an entirely different structure in those two cases. Table 1
contains a summary of our results, with references to the theorems where they
are established.

Table 1. Summary of properties of the graph Hn.

graph property odd n ≥ 3 even n ≥ 2

max. degree

([19, Theorem 4])

n n/2

# of max. deg. vertices 2 ?

min. degree

([19, Theorem 5])

2 1

# of min. deg. vertices n · (C(n−3)/2)
2 n · (C(n−2)/2)

2

diameter between n − 1 and ∞
11n − 29 (Theorem 4)

# of components 1 (Theorem 2) ≥ Cn/2 + n − 3 (Theorem 5+Corollary 7);(
n

n/2

)
vertices form trees of size n/2 + 1 each;

comp. sizes bounded by Narayana numbers

(Theorem 8 and Corollary 9)

r-rainbow cycles (Theorem 10) none for any r ≥ 1 none for large r

Hamilton path/cycle none for n ≥ 4

colorability bipartite ([10])

Most importantly, the graph Hn is connected for odd n (Theorem 2), but
has exponentially many connected components for even n (Theorem 5 and
Corollary 7). For odd n, we show that the diameter of Hn is linear in n
(Theorem 4). For even n, we provide a fine-grained picture of the component
structure of the graph (Theorems 5 and 8, and Corollary 9). We also describe the
degrees of vertices in Hn for all n, and we characterize and count the vertices
of minimum and maximum degree (Theorems 3, 4 and 5 in [19]). Finally, we
easily see that Hn does not admit a Hamilton cycle or path for any n ≥ 4. This
follows from the non-Hamiltonicity of Gn for odd n ≥ 5 proved in [10], and for
even n ≥ 4 this is trivial as Hn has more than one component. Our results also
imply the non-existence of certain rainbow cycles in the graph Gn (Theorem 10).
Their exact definition will be provided later.

In all of these results, Catalan numbers and generalized Narayana numbers
make their appearance, and in our proofs we encounter several new bijections
between different combinatorial objects counted by these numbers.

1.2 Outline of This Paper

In Sect. 2 we discuss some preliminaries that will be used throughout the paper.
In Sect. 3 we present the structural results when the number n of matching edges
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is odd. In Sect. 4 we discuss the properties of Hn when n is even. Finally, in Sect. 5
we discuss the implications of our results with regards to rainbow cycles in Gn.
We conclude with some open questions in Sect. 6. Results and proofs that are
omitted due to space constraints in this extended abstract can be found in the
preprint [19].

2 Preliminaries

We first explain the combinatorial characterization of centered flips. Given a
matching M ∈ Mn, and any of its edges e ∈ M , we let �(e) denote the minimum
number of other matching edges from M on either of the two sides of the edge e.
We refer to �(e) as the length of the edge e. We let μ = μ(n) denote the maximum
possible length of an edge, so the possible edge lengths are 0, 1, . . . , μ. Clearly,
we have μ = (n − 1)/2 if n is odd and μ = (n − 2)/2 if n is even. The following
lemma can be verified easily.

Lemma 1. A flip is centered if and only if the sum of the lengths of the four
edges of the corresponding quadrilateral equals n− 2. On the other hand, the flip
is non-centered if and only if this sum is strictly less than n − 2.

We say that an edge e ∈ M is visible from the circle center, if the rays from
the center to both edge endpoints do not cross any other matching edges. If
n is odd, there may be an edge through the circle center, and then we decide
visibility of the other edges by ignoring this edge, and declare the edge itself to
not be visible. Moreover, we say that a matching edge f is hidden behind another
edge e, if the rays from the circle center to the endpoints of f cross e.

3 Connectedness and Diameter for Odd n

In this section, we assume that the number n of matching edges is odd. We show
that the graph Hn is connected in this case (Theorem 2), and that its diameter
is linear in n (Theorem 4).

Theorem 2. For odd n ≥ 3, the graph Hn is connected.

For proving Theorem 2, we consider two special matchings, namely those
that have only edges of length 0, and we denote them by M0 and M ′

0. Roughly,
the proof proceeds in two steps: We first argue that in the graph Hn, there is a
path from any matching M ∈ Mn to either M0 or M ′

0. We then show that there
is also a path between M0 and M ′

0, and this will establish the theorem. The first
step of the proof is based on the following key lemma.

Lemma 3. Consider a matching M ∈ Mn that has no edge through the circle
center and that is different from M0 and M ′

0, i.e., M has an edge of length
strictly more than 0. There is a sequence of at most 4 centered flips from M to
another matching that has no edge through the circle center and that has at least
one more visible edge than M .
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3×

2×

2×1×

weights ∈ {−2,+2}
weights ∈ {−1,+3}
weights ∈ {−3,+1}

weights ∈ {−2,+2}
weights ∈ {−2,+2}
weights ∈ {−2,+2}

weights ∈ {0,+4}
weights ∈ {−4, 0}

H6

Fig. 3. The graph H6 with the weights of all of its components. Among the components,
isomorphic copies are omitted, and the multiplicities are shown above the components.
The isomorpic copies differ only by rotation of the matchings. For instance, there are
two copies of the component shown at the bottom right.

Clearly, repeatedly applying this claim shows that there is a path from M
to either M0 or M ′

0, as these are the only two matchings with the maximum
number of visible edges. For a proof of this lemma, see [19].

Recall that the diameter of a graph is the maximum length of all shortest
paths between any two vertices of the graph. In the flip graph Hn, the diameter
measures how many centered flips are needed in the worst case to transform two
matchings into each other. With computer help, we determined the diameter
of Hn for n = 3, 5, 7, 9, 11 to be 2, 8, 14, 20, 26, which equals 3n − 7 for those
values of n. In all those cases, this distance was attained for the two matchings
with only length-0 edges (differing by a rotation of π/n). These are the extreme
vertices on the left and right in Fig. 4 (cf. also the left hand side of Fig. 2). We
conjecture that this is the correct value for all n. As a first step towards this
conjecture, we can prove the following linear bounds.

Theorem 4. For odd n ≥ 3, the diameter of Hn is at least n − 1 and at most
11n − 29.

Proof. Hernando, Hurtado, and Noy [10] showed that the diameter of Gn is
exactly n−1, and as Hn is a spanning subgraph of Gn, its diameter is at least n−1.

It remains to prove the upper bound in the theorem. As before, we let M0

and M ′
0 denote the two matchings that have only edges of length 0. We first

argue that the distance between any matching M ∈ Mn and either M0 or M ′
0

is at most 4n − 11. Indeed, if M has no edge through the circle center, then it
has at least 3 visible edges (2 visible edges are only possible when n is even).
As a consequence of Lemma 3, we can reach M0 or M ′

0, which have n visible
edges each, from M with at most 4(n−3) = 4n−12 centered flips. On the other
hand, if M has an edge through the circle center, then a single centered flip leads
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H5

Fig. 4. The graph H5, drawn in a simplified way, where for every matching, we only
show one representative of the equivalence class under rotation by 2π/5.

from M to one of its neighbors that does not have an edge through the center,
establishing the bound 4n − 11.

In the remainder of the proof we show that the distance between M0 and M ′
0

in Hn is at most 3n−7. With these two bounds, we can then bound the distance
in Hn between any two matchings M,M ′ ∈ Mn as follows: We know that from
both M and M ′ we can reach either M0 or M ′

0 with at most 4n−11 centered flips
each. If both of these flip sequences reach the same matching from {M0,M

′
0},

we have found a path in Hn of length at most 2(4n − 11) between M and M ′.
Otherwise we can connect M0 and M ′

0 with a path of length 3n − 7, yielding a
path of length at most 2(4n − 11) + (3n − 7) = 11n − 29 between M and M ′,
proving the upper bound in the theorem.

We prove this claim by induction on all odd values of n ≥ 3; see Fig. 5. For
n = 3 the distance between M0 and M ′

0 is 3n − 7 = 2, as can be verified from
the left hand side of Fig. 2. For the induction step, suppose that n ≥ 5 is odd
and that the claim holds for n − 2. Consider the flip sequence shown at the top
part of Fig. 5, consisting of 3 centered flips, leading from the matching M0 to a
matching M1 that contains n − 1 edges of length 0 and one edge of length 1.
Consider the two edges a and a′ in M1 that lie on opposite sides of the circle,
where the edge a is hidden behind the unique length-1 edge. We can ignore the
edges a and a′ from the configuration, and obtain a matching with n − 2 edges.
As the ignored edges are antipodal on the circle, every centered flip operating
on the remaining n − 2 edges in Hn−2 is also a centered flip in Hn. Also observe
that ignoring those two edges from M1 leaves us with a matching with only
length-0 edges in Hn−2. Consequently, by induction we have a flip sequence of
length 3(n − 2) − 7 from M1 to a matching M ′

1 that has n − 1 edges of length 0
and one edge of length 1, that still contains the edges a and a′, but now the
edge a′ is hidden behind the unique length-1 edge. By symmetry, we can reach
M ′

0 from M ′
1 with at most 3 centered flips. Overall, the length of the flip sequence

from M0 to M ′
0 obtained in this way is 3(n−2)−7+2·3 = 3n−7. This completes

the inductive proof and thus the proof of the theorem. ��
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M0

M1

M1

3 flips

3 flips

M0

n − 2 edges

n − 2 edges

a

a

a

a

3(n − 2) − 7 flips

Fig. 5. Illustration of the inductive proof that the distance between M0 and M ′
0 in Hn

is at most 3n − 7.

4 Component Structure for Even n

In this section, we assume that the number n of matching edges is even. It was
proved in [9] that in this case the graph Hn has at least n − 1 components. We
improve upon this considerably, by showing that Hn has exponentially many
components, and we also provide a fine-grained picture of the component struc-
ture of the graph Hn (Theorem 5 and Corollary 7). We also prove explicit for-
mulas for the number of matchings with certain weights, a parameter that is
closely related to the component sizes of the graph Hn, proving a conjecture
raised in [9] (Theorem 8 and Corollary 9).

4.1 Point-Symmetric Matchings

We now consider the set of all point-symmetric matchings, i.e., matchings that
are point-symmetric with respect to the circle center.

Theorem 5. For even n ≥ 2, there are
(

n
n/2

)
point-symmetric matchings, and

all those matchings form components in Hn that are trees. There are Cn/2 such
components, and each of them contains exactly n/2+1 matchings. All matchings
that are not point-symmetric form components that are not trees.

The properties of the graph Hn stated in Theorem 5 can be seen nicely in
Fig. 3 for the case n = 6. The proof of Theorem 5 can be found in [19].

4.2 Weights of Matchings

For our further investigations, we assign an integer weight to each matching.
For this we give the points on the unit circle a fixed labelling by 1, 2, . . . , 2n in
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clockwise direction. Consider a matching M ∈ Mn and one of its edges e ∈ M ,
and let i and j be the endpoints of e so that the circle center lies to the right of
the ray from i to j. We define the sign of the edge e as sgn(e) := 1 if i is odd, and
sgn(e) := −1 if i is even. We call an edge e positive if sgn(e) = +1, and we call
it negative if sgn(e) = −1. Moreover, we define the weight of the matching M as
w(M) :=

∑
e∈M sgn(e) · �(e); see Fig. 6. Note that rotating a matching by π/n,

in either direction, changes the weight by a factor of −1.

M M

w(M) = 3 = w(M ) + 6
w(M ) = −3 = w(M) − 6

+1

+3

−2

−0

1
2

3

4

5
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7
8 9
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13

14

15
16 1

2

3

4
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11

12

13

14

15
16

Fig. 6. The weight of two matchings with n = 8 edges. Odd points are drawn as white
bullets, even points as black bullets. Positive edges are drawn solid, negative edges are
drawn dashed. The centered flip changes the weight by ±(n − 2) = ±6.

Observe also that a quadrilateral corresponding to a centered flip has two
positive edges and two negative edges, and the edges with the same sign are
opposite to each other. From this and Lemma 1 we see that any centered flip
changes the weight of a matching by ±(n − 2). Moreover, it was shown in [9]
that all possible weights are in a particular integer range; see Fig. 6.

Lemma 6 (Lemmas 11+12 in [9]). Let n ≥ 2 be even. Applying a centered
flip to any matching from Mn changes its weight by −(n−2) if the two negative
edges appear in this flip, or by +(n − 2) if the two positive edges appear in this
flip, and flips of these two kinds must alternate along any sequence of centered
flips. Moreover, for any matching M ∈ Mn we have w(M) ∈ [−(n−2), n−2] :={ − (n − 2),−(n − 2) + 1, . . . , n − 3, n − 2

}
, and each of these weight values is

attained for some matching in Mn.

Our next result is an immediate consequence of this lemma.

Corollary 7. For even n ≥ 4, the graph Hn has at least Cn/2+n−3 components.

Proof. By Theorem 5, the graph Hn has exactly Cn/2 components that contain
all point-symmetric matchings. Moreover, for c = 1, . . . , n − 3, we can easily
construct a matching that is not point-symmetric and has weight c. Indeed, for
c = 1, . . . , μ, we take a matching that has a single edge of length c, and all
other edges of length 0. For c = μ + 1, . . . , 2μ − 1 = n − 3, we take a matching
with a single edge of length μ, another edge of length c, and all other edges
of length 0. By Lemma 6, these n − 3 matchings all lie in distinct components
of Hn, and they must be different from the Cn/2 components containing the
point-symmetric matchings. This implies the claimed lower bound. ��
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Motivated by Lemma 6, we partition the set of all matchings Mn according
to their weights. Specifically, for any non-zero integer c ∈ [−(n − 2)(n − 2)], we
let Wn,c be the set of all matchings from Mn with weight exactly c. For the
special case c = 0 we define Wn,0 := {M0} and W−

n,0 := {M−
0 }, where M0 is

the matching that has only length-0 edges and all of them positive, and M−
0 is

the matching that has only length-0 edges and all of them negative. Clearly, we
have w(M0) = w(M−

0 ) = 0. Moreover, for c = 0, 1, . . . , n − 2 we define

Mn,c :=

{
Wn,c ∪ Wn,c−(n−2) if c ≤ n − 3,

Wn,n−2 ∪ W−
n,0 if c = n − 2,

(1)

i.e., the set Mn,c contains all matchings that have either the same weight or
whose weights differ by n − 2.

We now establish explicit formulas for the cardinalities of the sets Wn,c

and Mn,c, answering a conjecture raised in [9] that expresses these quantities
via generalized Narayana numbers Nr(n, k), defined as

Nr(n, k) = r+1
n+1

(
n+1
k

)(
n−r−1
k−1

)
(2)

for any integers n ≥ 1, r ≥ 0, and 1 ≤ k ≤ n − r.

Theorem 8. For even n ≥ 2 and any c = 0, 1, . . . , n − 2, we have |Wn,c| =
N1(n, |c| + 1)/2.

The proof of Theorem 8 can be found in [19]. By Lemma 6, there are no
centered flips between any matchings from distinct sets Mn,c, c = 0, 1, . . . , n−2,
i.e., the cardinalities |Mn,c| are an upper bound for the size of the components of
the graph Hn. The following corollary makes these bounds explicitly. It follows
immediately from Theorem 8, using (1) and (2) (for details, see [19]).

Corollary 9. For even n ≥ 2, every component of Hn has at most N1(n, n/2)
vertices. Asymptotically, this is a 2/

√
πn(1 + o(1))-fraction of all vertices.

5 Rainbow Cycles

We now turn back our attention to the flip graph Gn discussed in the beginning,
which contains all possible flips, not just the centered ones. For any integer
r ≥ 1, an r-rainbow cycle in the graph Gn is a cycle with the property that every
possible matching edge appears exactly r times in flips along this cycle. The
notion of rainbow cycles was introduced in [9], and studied for several different
flip graphs, including the graph Gn. The authors showed that Gn has a 1-rainbow
cycle for n = 2, 4, and a 2-rainbow cycle for n = 6, 8. It was also proved that Gn

has no 1-rainbow cycle for any odd n ≥ 3 and for n = 6, 8, 10. The last result
was extended to the case n = 12 in [18]. We complement these results as follows:

Theorem 10. For odd n ≥ 3 and any r ≥ 1, there is no r-rainbow cycle in Gn.
For even n ≥ 2 and any r > 2/n2 ·N1(n, n/2), there is no r-rainbow cycle in Gn.
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Proof. For any n ≥ 2, the number possible matching edges is n2. As in every
flip, two edges appear in the matching and two edges disappear, an r-rainbow
cycle must have length rn2/2.

Let n ≥ 3 be odd. There are 2n distinct possible matching edges for each
length c = 0, . . . , μ−1, and only n distinct possible matching edges of length c =
μ. Therefore, the average length of all edges appearing or disappearing along an
r-rainbow cycle is

( ∑µ−1
c=0 c · 2n + μ · n

)
/n2 = (n − 2)/4 + 1/(4n) > (n − 2)/4,

where we used μ = (n − 1)/2. However, by Lemma 1, the average length of the
four edges appearing or disappearing in a centered flip is only (n−2)/4, and even
smaller for non-centered flips. Consequently, there can be no r-rainbow cycle.

Let n ≥ 2 be even. It was proved in [9, Lemma 10] (with a similar averaging
argument as given before for odd n) that every r-rainbow cycle in Gn may only
contain centered flips, i.e., we may restrict our attention to the subgraph Hn ⊆
Gn given by centered flips. By Corollary 9, all components of this graph contain
at most N1(n, n/2) vertices. Consequently, if the length of the cycle exceeds this
bound, then no such cycle can exist. This is the case if rn2/2 > N1(n, n/2), or
equivalently, if r > 2/n2 · N1(n, n/2). ��

6 Open Questions

• For odd n ≥ 3, a natural task is to narrow down the bounds for the diameter
of the graph Hn given by Theorem 4. We believe that the answer is 3n − 7,
which is the correct value for n = 3, 5, 7, 9, 11.

• For even n ≥ 4, it would be very interesting to prove that the number of
components of the graph Hn is exactly Cn/2 +n− 3, which we established as
a lower bound in Corollary 7, and which is tight for n = 4, 6, 8, 10, 12, 14.

• It is open whether r-rainbow cycles exist in the graph Gn for even n ≥ 14 and
any 1 ≤ r ≤ 2/n2 · N1(n, n/2). As mentioned in the proof of Theorem 10, we
may restrict our search to the subgraph Hn ⊆ Gn.

Acknowledgements. We thank the anonymous reviewers of the extended abstract
of this paper, who provided many insightful comments. In particular, one referee’s
observation about our proof of Lemma 3 improved our previous upper bound on the
diameter of Hn for odd n from O(n log n) to O(n) (recall Theorem 4).
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paper kindly provided us with the source code of their figure.

References

1. Aichholzer, O., Asinowski, A., Miltzow, T.: Disjoint compatibility graph
of non-crossing matchings of points in convex position. Electron. J. Com-
bin. 22(1), 53 (2015). https://www.combinatorics.org/ojs/index.php/eljc/article/
view/v22i1p65. Paper 1.65

2. Aichholzer, O., Aurenhammer, F., Huemer, C., Vogtenhuber, B.: Gray code enu-
meration of plane straight-line graphs. Graphs Combin. 23(5), 467–479 (2007).
https://doi.org/10.1007/s00373-007-0750-z

https://www.combinatorics.org/ojs/index.php/eljc/article/view/v22i1p65
https://www.combinatorics.org/ojs/index.php/eljc/article/view/v22i1p65
https://doi.org/10.1007/s00373-007-0750-z


224 M. Milich et al.

3. Aichholzer, O., et al.: Flip distances between graph orientations. In: Sau, I., Thi-
likos, D.M. (eds.) WG 2019. LNCS, vol. 11789, pp. 120–134. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-30786-8 10

4. Berry, L.A., Reed, B., Scott, A., Wood, D.R.: A logarithmic bound for the chro-
matic number of the associahedron. arXiv:1811.08972 (2018)

5. Ceballos, C., Santos, F., Ziegler, G.M.: Many non-equivalent realizations of the
associahedron. Combinatorica 35(5), 513–551 (2014). https://doi.org/10.1007/
s00493-014-2959-9

6. Cleary, S., St. John, K.: Rotation distance is fixed-parameter tractable. Inf. Pro-
cess. Lett. 109(16), 918–922 (2009). https://doi.org/10.1016/j.ipl.2009.04.023

7. Cleary, S., St. John, K.: A linear-time approximation for rotation distance. J.
Graph Algorithms Appl. 14(2), 385–390 (2010). http://dx.doi.org/10.7155/jgaa.
00212

8. Fabila-Monroy, R., et al.: On the chromatic number of some flip graphs. Discr.
Math. Theor. Comput. Sci. 11(2), 47–56 (2009). http://dmtcs.episciences.org/460

9. Felsner, S., Kleist, L., Mütze, T., Sering, L.: Rainbow cycles in flip graphs. SIAM
J. Discr. Math. 34(1), 1–39 (2020). https://doi.org/10.1137/18M1216456

10. Hernando, C., Hurtado, F., Noy, M.: Graphs of non-crossing perfect matchings.
Graphs Combin. 18(3), 517–532 (2002). https://doi.org/10.1007/s003730200038

11. Houle, M.E., Hurtado, F., Noy, M., Rivera-Campo, E.: Graphs of triangulations
and perfect matchings. Graphs Combin. 21(3), 325–331 (2005). https://doi.org/
10.1007/s00373-005-0615-2

12. Huemer, C., Hurtado, F., Noy, M., Omaña-Pulido, E.: Gray codes for non-crossing
partitions and dissections of a convex polygon. Discr. Appl. Math. 157(7), 1509–
1520 (2009). https://doi.org/10.1016/j.dam.2008.06.018

13. Hurtado, F., Noy, M.: Graph of triangulations of a convex polygon and tree of
triangulations. Comput. Geom. 13(3), 179–188 (1999). https://doi.org/10.1016/
S0925-7721(99)00016-4

14. Knuth, D.E.: The Art of Computer Programming. Vol. 4A. Combinatorial Algo-
rithms. Part 1. Addison-Wesley, Upper Saddle River, NJ (2011)

15. Lee, C.W.: The associahedron and triangulations of the n-gon. Eur. J. Combin.
10(6), 551–560 (1989). https://doi.org/10.1016/S0195-6698(89)80072-1

16. Li, M., Zhang, L.: Better approximation of diagonal-flip transformation and rota-
tion transformation. In: Hsu, W.-L., Kao, M.-Y. (eds.) COCOON 1998. LNCS,
vol. 1449, pp. 85–94. Springer, Heidelberg (1998). https://doi.org/10.1007/3-540-
68535-9 12

17. Lucas, J.M., van Baronaigien, D.R., Ruskey, F.: On rotations and the generation of
binary trees. J. Algorithms 15(3), 343–366 (1993). https://doi.org/10.1006/jagm.
1993.1045

18. Milich, M.: Kreise für planare Matchings. Bachelor’s thesis, TU Berlin, German
(2018)

19. Milich, M., Mütze, T., Pergel, M.: On flips in planar matchings. arXiv:2002.02290.
Preprint version of the present paper with full proofs (2020)

20. Parlier, H., Petri, B.: The genus of curve, pants and flip graphs. Discr. Comput.
Geom. 59(1), 1–30 (2018). https://doi.org/10.1007/s00454-017-9922-7

21. Pilaud, V., Santos, F.: Quotientopes. Bull. Lond. Math. Soc. 51(3), 406–420 (2019).
https://doi.org/10.1112/blms.12231

22. Pournin, L.: The diameter of associahedra. Adv. Math. 259, 13–42 (2014). https://
doi.org/10.1016/j.aim.2014.02.035

23. Pournin, L.: Eccentricities in the flip-graphs of convex polygons. J. Graph Theor.
92(2), 111–129 (2019). https://doi.org/10.1002/jgt.22443

https://doi.org/10.1007/978-3-030-30786-8_10
http://arxiv.org/abs/1811.08972
https://doi.org/10.1007/s00493-014-2959-9
https://doi.org/10.1007/s00493-014-2959-9
https://doi.org/10.1016/j.ipl.2009.04.023
http://dx.doi.org/10.7155/jgaa.00212
http://dx.doi.org/10.7155/jgaa.00212
http://dmtcs.episciences.org/460
https://doi.org/10.1137/18M1216456
https://doi.org/10.1007/s003730200038
https://doi.org/10.1007/s00373-005-0615-2
https://doi.org/10.1007/s00373-005-0615-2
https://doi.org/10.1016/j.dam.2008.06.018
https://doi.org/10.1016/S0925-7721(99)00016-4
https://doi.org/10.1016/S0925-7721(99)00016-4
https://doi.org/10.1016/S0195-6698(89)80072-1
https://doi.org/10.1007/3-540-68535-9_12
https://doi.org/10.1007/3-540-68535-9_12
https://doi.org/10.1006/jagm.1993.1045
https://doi.org/10.1006/jagm.1993.1045
http://arxiv.org/abs/2002.02290
https://doi.org/10.1007/s00454-017-9922-7
https://doi.org/10.1112/blms.12231
https://doi.org/10.1016/j.aim.2014.02.035
https://doi.org/10.1016/j.aim.2014.02.035
https://doi.org/10.1002/jgt.22443


On Flips in Planar Matchings 225

24. Reading, N.: From the Tamari lattice to Cambrian lattices and beyond. In: Müller-
Hoissen, F., Pallo, J., Stasheff, J. (eds.) Associahedra, Tamari Lattices and Related
Structures. Progress in Mathematics, vol. 299, pp. 293–322. Birkhäuser/Springer,
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Abstract. We present a rigorous and precise analysis of the degree dis-
tribution in a dynamic graph model introduced by Solé et al. in which
nodes are added according to a duplication-divergence mechanism, i.e.
by iteratively copying a node and then randomly inserting and deleting
some edges for a copied node. This graph model finds many applications
since it well captures the growth of some real-world processes e.g. bio-
logical or social networks. However, there are only a handful of rigorous
results concerning this model. In this paper we present rigorous results
concerning the degree distribution.

We focus on two related problems: the expected value and large devia-
tion for the degree of a fixed node through the evolution of the graph and
the expected value and large deviation of the average degree in the graph.
We present exact and asymptotic results showing that both quantities
may decrease or increase over time depending on the model parameters.
Our findings are a step towards a better understanding of the overall
graph behaviors, especially, degree distribution, symmetry, and compres-
sion, important open problems in this area.

Keywords: Dynamic graphs · Duplication-divergence graphs · Degree
distribution · Large deviation

1 Introduction

It is widely accepted that we live in the age of data deluge. On a daily basis we
observe the increasing availability of data collected and stored in various forms,
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as sequences, expressions, interactions or structures. A large part of this data is
given in a complex form which also conveys a “shape” of the structure, such as
network data. As examples we have various biological networks, social networks,
and Web graphs.

Given a representation of these networks as graphs, there arises a natural
question: what are the rules governing the growth and evolution of such net-
works? In fact, finding such rules should enable us to model real networks aris-
ing in many diverse applications. For example, there is experimental evidence
[16] that the evolution of some biological networks is driven by the duplication
mechanism, in which new nodes appear as copies of some already existing ones
in the network. This is supplemented by a certain amount of divergence due to
random mutations that leads to some differences between patterns of interaction
for the source and the duplicate elements.

Fundamental questions arise about the structural properties of these net-
works. For example, Faloutsos et al. [5] brought to the front the issue of “scale-
free” power law behavior. First, there is the question as to whether or not the
degree distributions of the real-world networks do indeed have a tail close to a
power law. Second and most important, one needs to verify whether the under-
lying random graph models may indeed generate graphs that exhibit the desired
behavior e.g. in expectation. This is directly related to the broader question of
the degree distributions in graphs that may be generated from these random
models. We would expect that a good model for real-world networks generates
graphs that typically are not much different in terms of the number of vertices
with given degrees to what is seen in practice. However, to answer this question
we first need a good theoretical understanding of the degree distribution of our
models and this is the subject of this paper.

Another important problem in this area is the question of symmetry. It may
be formulated as follows: given a probability distribution over graphs of size n,
what is the distribution of log |Aut(G)|, where G is a random graph drawn from
this distribution and Aut(G) is its automorphism group (i.e., permutation pre-
serving adjacency). Clearly, it is related to the degree distribution problem since
for example the number of small symmetrical structures like cherries and dia-
monds (vertices of degree 1 and 2, respectively, having the same neighborhood)
is a lower bound on the number of automorphisms for any graph. Interestingly
enough, many real-world networks such as protein-protein and social networks,
exhibit a lot of symmetry as shown in Table 1.

It turns out that the most popular random graph models do not exhibit
much symmetry. For example, it was proved in [2] that the Erdős-Renyi ran-
dom graph model generates asymmetric graphs (for not too small and too large
edge probability), that is, log |Aut(G)| = 0, with high probability. In a similar
vein, it was proved for the preferential attachment model, also known as the
Barabási-Albert model, that for m ≥ 3 (which is necessary if we want to obtain
sufficiently dense graphs that resemble real-world networks) is asymmetric with
high probability [9].
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Table 1. Symmetries of the real-world networks [13,15].

Network Nodes Edges log |Aut(G)|
Baker’s yeast protein-protein interactions 6,152 531,400 546

Fission yeast protein-protein interactions 4,177 58,084 675

Mouse protein-protein interactions 6,849 18,380 305

Human protein-protein interactions 17,295 296,637 3026

ArXiv high energy physics citations 7,464 116,268 13

Simple English Wikipedia hyperlinks 10,000 169,894 1019

CollegeMsg online messages 1,899 59,835 232

Therefore, in order to study and understand the behavior of real-world net-
works we need to look at dynamic graph models that naturally generate internal
graph symmetries. As was mentioned before, one promising route is to investi-
gate models that evolve according to the duplication and mutation rules. So let
us consider the most popular duplication-divergence model introduced by Solé
et al. [12], referred to below as DD(t, p, r). It is defined as follows: starting from
a given graph on t0 vertices (labeled from 1 to t0) we add subsequent vertices
labeled t0 + 1, t0 + 2, . . . , t as copies of some existing vertices in the graph and
then we introduce divergence by adding and removing some edges connected
to the new vertex independently at random. Finally, we remove the labels and
return the structure, i.e. the unlabeled graph.

It has been shown that for a certain set of parameters, graphs generated
according to the duplication-divergence mechanism fit very well empirically with
the structure of some real-world networks (e.g., protein-protein and citation net-
works) in terms of the degree distribution [3] and small subgraph (graphlets)
counts [11]. However, at the moment there do not exist any rigorous general
results regarding symmetries and hence degree distribution for such graphs.
Experimentally, when generating multiple graphs according to this model with
different parameters, we observe the pattern presented in Fig. 1: There is a set of
parameters (i.e., p and r) for which the generated graphs are highly symmetric
with a large automorphisms group. It was shown by Sreedharan et al. [13] that
possible values of the parameters for real-world networks lie in the blue-violet
area, indicating a lot of symmetry. All these remarks suggest that there is a
certain merit to study a possible link between the duplication-divergence model
and certain types of real-world networks. To accomplish this we need to study
the average and large deviation of their degree sequence, which is the main topic
of this conference paper.

There exist only a handful previous rigorous results on the DD(t, p, r) model.
In view of these, it is imperative that we understand the degree distribution
for the duplication-divergence networks. Turowski et al. showed in [14] that
for the special case of p = 1, r = 0 the expected logarithm of the number
of automorphisms for graphs on t vertices is asymptotically Θ(t log t), which
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Fig. 1. Symmetry of graphs (log |Aut(G)|) generated by the DD(t, p, r) model. (Color
figure online)

indicates a lot of symmetry. This allows to construct asymptotically optimal
compression algorithms for such graphs. However, the proposed approach used
certain properties for this particular set of parameters that does not generalize
to other sets of parameters.

For r = 0 and p < 1, it was recently proved by Hermann and Pfaffelhuber
in [6] that depending on the value of p either there exists a limiting distribution
of degree frequencies with almost all vertices isolated or there is no limiting
distribution as t → ∞. Moreover, it is shown in [8] that the number of vertices
of degree one is Ω(log t) but again the precise rate of growth of the number
of vertices with any fixed degree k > 0 is currently unknown. Recently, also
for r = 0, Jordan [7] showed that the non-trivial connected component has a
degree distribution which conforms to a power-law behavior in size, but only
for p < e−1. In this case the exponent is equal to γ which is the solution of
3 = γ + pγ−2.

In this paper we study the degree distribution from a different perspective.
In particular, we present results concerning the degree of a given vertex s at time
t (denoted by degt(s)) and the average degree in the graph (denoted by D(Gt)).
We show that the asymptotic values of the means E[degt(s)] and E[D(Gt)] as
t → ∞ exhibit phase transitions over the parameter space as a function of p and
r. We then present some results for the tails of the degree distribution for D(Gt)
and degt(s) for s = O(1). It turns out that the deviation by a polylogarithmic
factor under or over the respective means is sufficient to obtain a polynomial
tail, that is to find an O(t−A) tail probability. In this way we have proved that
the distribution of D(Gt) and degt(s) are in some sense concentrated around
their means.
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2 Main Results

In this section we first define formally the DD(t, p, r) model. Then, we present
our main results, first concerning the expected values of the degree distribution,
and then large deviations of their distributions. Here, due to the space limit we
provide only the main lines of reasoning, with the full proofs to be included in
the journal version.

We use standard graph notation, e.g. from [4]: V (G) denotes the set of vertices
of graph G, NG(u) – the set of neighbors of vertex u in G, degG(u) = |NG(u)| –
the degree of u in G. By Gt we denote a graph on t vertices. For brevity we use
the abbreviations, e.g. degt(u) instead of degGt

(u) and Nt(u) instead of NGt
(u).

All graphs are simple. Let us also introduce the average degree D(G) of G as

D(G) =
1

|V (G)|
∑

u∈V (G)

degG(u).

It is worth noting that it is also known in the literature as the first moment of
the degree distribution.

We formally define the model DD(t, p, r) as follows: let 0 ≤ p ≤ 1 and 0 ≤ r ≤
t0 be the parameters of the model. Let also Gt0 be a graph on t0 vertices, with
V (Gt0) = {1, . . . , t0}. Now, for every t = t0, t0 + 1, . . . we create Gt+1 from Gt

according to the following rules:

1. add a new vertex t + 1 to the graph,
2. pick vertex u from V (Gt) = {1, . . . , t} uniformly at random – and denote u

as parent(t + 1),
3. for every vertex i ∈ V (Gt):

(a) if i ∈ Nt(parent(t + 1)), then add an edge between i and t + 1 with
probability p,

(b) if i /∈ Nt(parent(t + 1)), then add an edge between i and t + 1 with
probability r

t .

2.1 Average Degree in the Graph

We start with the average degree in the graph D(Gt). First, we find the following
recurrence for the average degree of Gt+1:

E[D(Gt+1)
∣∣ Gt] =

1
t + 1

E

[
t+1∑

i=1

degt+1(i)
∣∣ Gt

]

=
1

t + 1
E

[
t∑

i=1

degt(i) + 2 degt+1(t + 1)
∣∣ Gt

]

=
1

t + 1

(
t∑

i=1

degt(i) + 2E
[
degt+1(t + 1)

∣∣ Gt

]
)

=
1

t + 1
(
tD(Gt) + 2E[degt+1(t + 1)

∣∣ Gt]
)
.
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Next, we find the following relationship between the expected average degree
E[D(Gt)] and the expected degree of the new vertex E[degt+1(t + 1)]:

Lemma 1. For any t ≥ t0 it holds that

E[degt+1(t + 1)] =
(
p − r

t

)
E[D(Gt)] + r.

It is quite intuitive that the expected degree of a new vertex behaves as if we
would choose a vertex with the average degree E[D(Gt)] as its parent, and then
copy a p fraction of its edges, also adding r more edges (in expectation) to the
other vertices in the graph.

From this lemma we find

E[D(Gt+1)
∣∣ Gt] = D(Gt)

(
1 +

2p − 1
t + 1

− 2r

t(t + 1)

)
+

2r

t + 1
. (1)

This recurrence falls under a general recurrence of the form

E[f(Gt+1)
∣∣ Gt] = f(Gt)g1(t) + g2(t) (2)

where g1 and g2 are given functions, dependent on p and r. We will solve it
exactly and asymptotically in the sequel. This allows us to find an asymptotic
expression for the average degree.

In the sequel we present a series of lemmas that will be used to obtain the
asymptotics of E[f(Gt)]. These lemmas are based on martingale theory and
they use various asymptotic properties of the Euler gamma function. For space
reasons, proofs of Lemmas 2 and 5 are omitted.

Lemma 2. Let (Gn)∞
n=n0

be a Markov process for which Ef(Gn0) > 0 and
Eq. (2) holds with g1(n) > 0, g2(n) ≥ 0 for all n = n0, n0 + 1, . . .. Then for
all n ≥ n0

Ef(Gn) = f(Gn0)
n−1∏

k=n0

g1(k) +
n−1∑

j=n0

g2(j)
n−1∏

k=j+1

g1(k).

The above lemma shows that the solutions of recurrences of type Eq. (2)
contain products and sum of products of g1 and g2. The next lemmas show how
to handle such products. First, since in our case g1(n) and g2(n) are of form W1(n)

W2(n)

for certain polynomials W1(n), W2(n), we turn the products of polynomials into
the products of Euler gamma functions.

Lemma 3. Let W1(k), W2(k) be polynomials of degree d with respective (not
necessarily distinct) roots ai, bi (i = 1, . . . , d), that is, W1(k) =

∏d
i=1(k − ai)

and W2(k) =
∏d

j=1(k − bj). Then

n−1∏

k=n0

W1(k)
W2(k)

=
d∏

i=1

Γ (n − ai)
Γ (n − bi)

Γ (n0 − bi)
Γ (n0 − ai)

.
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Proof. We have

n−1∏

k=n0

W1(k)
W2(k)

=
n−1∏

k=n0

d∏

i=1

k − ai

k − bi
=

d∏

i=1

n−1∏

k=n0

k − ai

k − bi
=

d∏

i=1

Γ (n − ai)
Γ (n − bi)

Γ (n0 − bi)
Γ (n0 − ai)

which completes the proof.

Next, for the sake of completeness we present a well-known asymptotic for-
mula for the Euler gamma function, which helps us to deal with

∏n−1
k=n0

g1(k):

Lemma 4 (Abramowitz and Stegun [1]). For any a, b ∈ R if n → ∞, then
Γ (n+a)
Γ (n+b) = Θ(na−b).

Finally, we deal with the sum of products
∑n−1

j=n0
g2(j)

∏n−1
k=j+1 g1(k). In terms

of Euler gamma functions, via Lemma3, we are interested in the asymptotics of
the following formulas

n∑

j=n0

∏k
i=1 Γ (j + ai)∏k
i=1 Γ (j + bi)

with a =
∑k

i=1 ai, b =
∑k

i=1 bi.

Lemma 5. Let ai, bi ∈ R (k ∈ N) with a =
∑k

i=1 ai, b =
∑k

i=1 bi. Then it holds
asymptotically for n → ∞ that

n∑

j=n0

∏k
i=1 Γ (j + ai)∏k
i=1 Γ (j + bi)

=

⎧
⎪⎨

⎪⎩

Θ
(
na−b+1

)
if a + 1 > b,

Θ (log n) if a + 1 = b,

Θ (1) if a + 1 < b.

With this background information, we are now in the position to solve recur-
rence (1) and present exact and asymptotic results for the average degree. From
Lemma 2 with g1(t) = 1 + p

t − r
t2 and g2(t) = r

t we get that

E[D(Gt)] = D(Gt0)
t−1∏

k=t0

(
1 +

2p − 1
k + 1

− 2r

k(k + 1)

)

+
t−1∑

j=t0

2r

j + 1

t−1∏

k=j+1

(
1 +

2p − 1
k + 1

− 2r

k(k + 1)

)
.

By applying Lemma 3 we replace the products above by the products of Euler
gamma functions and obtain

E[D(Gt)] = D(Gt0)
Γ (t0)Γ (t0 + 1)
Γ (t)Γ (t + 1)

Γ (t + c3)Γ (t + c4)
Γ (t0 + c3)Γ (t0 + c4)
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+
t−1∑

j=t0

2rΓ (j + 1)
Γ (j + 2)

Γ (j + c3)Γ (j + c4)
Γ (t0 + c3)Γ (t0 + c4)

Γ (t0)Γ (t0 + 1)
Γ (j)Γ (j + 1)

for c3, c4 – the (possibly complex) solutions of the equation k2 + 2pk − 2r = 0.
Next, we may use Lemmas 4 and 5 respectively for the first and second part

of the equation above. Note that when r = 0, the second part vanishes. Using
previous lemmas we can derive asymptotics for the average degree which we
present next.

Theorem 1. For Gt ∼ DD(t, p, r) asymptotically as t → ∞ we have

E[D(Gt)] =

⎧
⎪⎨

⎪⎩

Θ(1) if p < 1
2 and r > 0,

Θ(log t) if p = 1
2 and r > 0,

Θ(t2p−1) if p > 1
2 or r = 0.

The asymptotic behavior of E[D(Gt)] has a threefold characteristic: when
p < 1

2 and r > 0, the majority of the edges are not created by copying them
from parents, but actually by attaching them according to the value of r. For
p = 1

2 and r > 0 we note the curious situation of a phase transition (still with
non-copied edges dominating), and only if p > 1

2 or r = 0 do the edges copied
from the parents asymptotically contribute the major share of the edges.

The next question regarding the average degree D(Gt) is how much it devi-
ates from the expected value E[D(Gt)], in probability. It turns out that D(Gt)
is concentrated around E[D(Gt)] in such a way that with probability 1−O(t−A)
it falls within a polylogarithmic ratio from the mean. We observe that unlike
the large deviations for say preferential attachment graphs, in the duplication-
divergence model we need to consider three cases reflecting the different behavior
of E[D(Gt)] for p < 1/2, p = 1/2 and p > 1/2.

Theorem 2. Asymptotically for Gt ∼ DD(t, p, r) it holds that

Pr[D(Gt) ≥ AC log2(t)] = O(t−A) for p <
1
2
,

Pr[D(Gt) ≥ AC log3(t)] = O(t−A) for p =
1
2
,

Pr[D(Gt) ≥ AC t2p−1 log2(t)] = O(t−A) for p >
1
2
.

for some fixed constant C > 0 and any A > 0.

Here we outline the main steps of the proof. We begin by carefully bounding
from above the moment generating function E[exp (λtD(Gt)) |Gt]. This way, we
are able to show

E
[
exp (λt+1D(Gt+1))

∣∣ Gt

] ≤ exp
(

λt+1D(Gt)h1(t) +
λt+1

t + 1
h2(t)

)
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for certain explicit functions h1 and h2. By defining λt = λt+1h1(t) we finally
arrive at

E[exp (λtD(Gt))] ≤ exp (λt0D(Gt0))
(

t

t0

)2rεt+1+C1

for some εt = 1/ ln(t/t0) and constant C1. After choosing a suitable sequence1

(λi)t
i=t0

and applying Chernoff’s inequality we find the large deviation bound. In
all three cases we need an extra log2(t) factor over the mean, one logarithm com-
ing from the choice of εt (which decays like 1

ln t ), and one from our requirement
to get O(t−A) = O (exp(−A ln(t))) tail.

The left tail behavior is similar, however the proof is slightly more compli-
cated, as discussed briefly below.

Theorem 3. For Gt ∼ DD(t, p, r) with p > 1
2 asymptotically it holds that

Pr
[
D(Gt) ≤ C

A
t2p−1 log−3−ε(t)

]
= O(t−A).

for some fixed constant C > 0 and any ε,A > 0.

Note that since E[D(Gt)] = O(log t) for p ≤ 1
2 , bounds of the above form are

trivial in this range of p and therefore not interesting, since all smaller values
are within polylogarithmic distance to the mean.

The whole proof may be sketched as following: first, we find a bound

E[exp (λ(D(Gt+1) − D(Gt))) |Gt,¬Bt]

for a certain event Bt that allows us to bound the right tail for the variable
D(Gt+1)−D(Gt). Then, we use an auxiliary variable Yk = D(G(k+1)t)−D(Gkt)
for which we know both the value of E[Yk] and that the right tail of Yk is small
– in particular, it is O(t−A) when we are only log2(t) times over the mean.
Therefore it may be shown that also the left tail of Yk cannot be large. Finally,
we use the result for Yk to obtain a bound for D(Gt).

2.2 Degree of a Given Vertex s

We focus now on the expected value of degt(s), that is, the degree of vertex s
at time t. We start with a recurrence relation for E[degt(s)]. Observe that for
any t ≥ s we know that vertex s may be connected to vertex t + 1 in one of the
following two cases:

– either s ∈ Nt(parent(t + 1)) (which holds with probability degt(s)
t ) and we

add an edge between s and t + 1 (with probability p),
– or s /∈ Nt(parent(t + 1)) (with probability t−degt(s)

t ) and we an add edge
between s and t + 1 (with probability r

t ).

1 We choose λt = εt

(
t
t0

)−(2p−1)(1+O(εt)))

so that λt0 ≤ εt.
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From the model description we directly obtain the following recurrence for
E[degt(s)]:

E[degt+1(s)
∣∣ Gt] =

(
degt(s)

t
p +

t − degt(s)
t

r

t

)
(degt(s) + 1)

+
(

degt(s)
t

(1 − p) +
t − degt(s)

t

(
1 − r

t

))
degt(s)

= degt(s)
(
1 +

p

t
− r

t2

)
+

r

t
.

Again this recurrence falls under Eq. (2), so we may proceed in the same
fashion as with E[D(Gt)]. First, we apply Lemma 2 with g1(t) = 1 + p

t − r
t2 and

g2(t) = r
t to obtain the equation for the exact behavior of the degree of a given

node s at time t:

E[degt(s)] = E[degs(s)]
t−1∏

k=s

(
1 +

p

k
− r

k2

)
+

t−1∑

j=s

r

j

t−1∏

k=j+1

(
1 +

p

k
− r

k2

)
.

Again we substitute the simple products by the products of Euler gamma
functions using Lemma 3

E[degt(s)] = E[degs(s)]
Γ (s)2

Γ (t)2
Γ (t + c1)Γ (t + c2)
Γ (s + c1)Γ (s + c2)

+
t−1∑

j=s

rΓ (j)
Γ (j + 1)

Γ (j + c1)Γ (j + c2)
Γ (s + c1)Γ (s + c2)

Γ (s)2

Γ (j)2

for c1, c2 – the (possibly complex) solutions of the equation k2 + pk − r = 0.
We are finally in a position to state the asymptotic expressions for E[degt(s)],

using Lemmas 4 and 5.

Theorem 4. For Gt ∼ DD(t, p, r) and s = O(1) it holds asymptotically that

E[degt(s)] =

{
Θ(log t) if p = 0 and r > 0
Θ(tp) otherwise.

Here we observe only two regimes. In the first, for the case when p = 0, when
edges are added only due to the parameter r, we have logarithmic growth of
E[degt(s)]. In the second one, edges attached to s accumulate mostly by choosing
vertices adjacent to s as parents of the new vertices, and therefore the expected
degree of s grows proportional to tp.

If we assume that s → ∞, that is, we consider asymptotics with respect to
both s and t, we may combine Lemma 1 with Theorem 1 to obtain.

Theorem 5. For Gt ∼ DD(t, p, r) asymptotically as s, t → ∞ we have

E[degt(s)] =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Θ(log t
s ) if p = 0 and r > 0

Θ
(

tp

sp

)
if 0 < p < 1

2 and r > 0,

Θ
(

tp

sp log s
)

if p = 1
2 and r > 0,

Θ
(

tp

sp s2p−1
)

if p > 1
2 or r = 0.
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Let us note that when s = Θ(t), the asymptotics of E[degt(s)] are exactly like
those for E[degt(t)] and E[D(Gt)], only the leading coefficients are different for
each case. For different ranges of p and r, we have rates of growth equal to Θ(1),
Θ(log t) or Θ(t2p−1), respectively.

Finally, we present bounds for the deviation of degt(s) from its mean when
s = O(1).

Theorem 6. Asymptotically for Gt ∼ DD(t, p, r) and s = O(1) it holds that

Pr[degt(s) ≥ AC tp log2(t)] = O(t−A)

for some fixed constant C > 0 and any A > 0.

Theorem 7. For Gt ∼ DD(t, p, r) with p > 0 and s = O(1) it holds that

Pr
[
degt(s) ≤ C

A
tp log−3−ε(t)

]
= O(t−A)

for some fixed constant C > 0 and any A > 0.

The proofs are analogous to those for the tails of the distribution of D(Gt),
so we omit sketches.

3 Discussion

In this paper we have focused on rigorous and precise analyses of the average
degree D(Gt) and a fixed given node degree degt(s) in the divergence-duplication
graph. We have derived asymptotic expressions for the expected values of these
quantities and have also shown that with high probability they are only poly-
logarithmic factors away from the means of their expected values.

It is worth pointing that it is the parameter p that drives the rate of growth
of the expected value for these parameters. We note that exact analysis reveals
the fact that the value of parameter r and the structure of the starting graph
Gt0 impact only the leading constants and lower order terms.

We observe that there are several phase transitions of these quantities as
a function of p and r. This distinguishes it from the preferential graph model
[9]. However, as demonstrated in [13], it seems that all real-world networks fall
within a range 1

2 < p < 1, r > 0 – and this case should probably be the main
topic of further investigation.

Future work may go along the lines of investigating further properties of
the degree distribution as a function of both degree and time t. For example
we might investigate the number of nodes of (given) degree k or the maximum
degree in the graph. The latter is clearly bounded from below by degt(1), so
from Theorem 7 one concludes that it is a polylogarithmic factor below tp – but
the upper bound still remains an open question since it requires bounds on the
right tail of degt(t). The problem is that degt(t) is depends on the whole degree
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distribution in Gt−1, and therefore it is very unlikely that for s closer to t we
have similar tail bounds as for degt(s) when s = O(1).

In order to study graph symmetry we need more information about the
degree distribution. This will allow us to find the ranges of parameters (p, r)
for which we obtain an asymmetric graph with high probability or the ranges
where non-negligible symmetries occur. In other words, we could explain theo-
retically Fig. 1. This in turn will lead to finding efficient algorithms for graph
compression extending [2,9] to the duplication-divergence model. Moreover, the
degree distribution may be useful in the problem of inferring node arrival order
in networks [10].
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Abstract. In the Maximum Balanced Biclique Problem (MBB), we are
given an n-vertex graph G = (V, E), and the goal is to find a bal-
anced complete bipartite subgraph with q vertices on each side while
maximizing q. The MBB problem is among the first known NP-hard
problems, and has recently been shown to be NP-hard to approximate
within a factor n1−o(1), assuming the Small Set Expansion hypothesis
[Manurangsi, ICALP 2017]. An O(n/ log n) approximation follows from
a simple brute-force enumeration argument. In this paper, we provide the
first approximation guarantees beyond brute-force: (1) an O(n/ log2 n)
efficient approximation algorithm, and (2) a parameterized approxima-
tion that returns, for any r ∈ N, an r-approximation algorithm in

time exp
(
O( n

r log r
)
)
. To obtain these results, we translate the subgraph

removal arguments of [Feige, SIDMA 2004] from the context of finding
a clique into one of finding a balanced biclique. The key to our proof is
the use of matching edges to guide the search for a balanced biclique.

1 Introduction

The Maximum Balanced Biclique (MBB) problem is among the oldest and most
fundamental NP-hard graph problems. It was stated to be NP-hard (without
proof) in Garey and Johnson’s book [12]; a proof is provided, for instance, in [14].
In this problem, we are given an n-vertex graph G, and we are interested in
finding a balanced complete bipartite subgraph with q vertices on each side while
maximizing the value of q. Since the problem is NP-hard, the main theoretical
interest so far has been on approximation algorithms [11,18], parameterized
algorithms [16], and parameterized approximation [4]. All results so far have
been on the negative side, suggesting that MBB is very highly intractable. First,
in terms of approximation algorithms, Manurangsi [18] showed that the problem
is NP-hard to approximate within a factor of n1−o(1) assuming the Small Set
Expansion (SSE) hypothesis and that NP �⊆ BPP. The other hardness result,
somewhat incomparable to Manurangsi’s is shown by Khot [15], that MEB does
not admit nε approximation, for some ε > 0, unless NP ⊆ BPTIME(2nΩ(1)

).
On the parameterized algorithm side, a recent remarkable result of Lin [16]
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has shown that MBB is W[1]-hard, therefore not admiting an FPT algorithm
unless FPT = W[1]. Finally, MBB does not even admit any o(OPT ) FPT
approximation algorithm [4] assuming the Gap Exponential-Time Hypothesis
(Gap-ETH), where OPT is the number of vertices in the optimal biclique.

The focus of this paper is on approximation algorithms. The aforementioned
negative results suggest that MBB is among the “highly intractable problems”
(those that do not admit n1−o(1) approximation), likely to be in the same ball-
park as the clique, independent set, induced matching, and graph coloring prob-
lem. All these problems admit an O(n/ log n) approximation algorithm via brute-
force enumeration techniques [6,9]. For maximum clique or graph coloring prob-
lems, a lot of attention in the approximation algorithms community has been on
obtaining any algorithm that beats these brute-force algorithms. In the context
of maximum clique and independent set problems, many LP/SDP (as well as
combinatorial) approaches have been devised, that achieve guarantees beyond
trivial algorithms (see for instance [2,10,13] and references therein). However,
such results do not exist at all in the context of MBB.

1.1 Our Results and Techniques

In this paper, we provide the first set of approximation algorithms on MBB whose
approximation guarantees are asymptotically better than brute-force. Our first
result is an efficient algorithm that runs in polynomial time. Throughout the
paper, we use size of a balanced biclique to denote the number of vertices on
one side. In particular, the size of the complete bipartite graph with q vertices
on each side (Kq,q) is q.

Theorem 1. There is an O(n/ log2 n) polynomial time approximation algorithm
for MBB.

Our second result is a parameterized approximation that gives a tradeoff
between approximation ratio and running time.

Theorem 2. For any r ∈ N, there exists an r-approximation algorithm running
in time exp

(
O( n

r log r )
)
.

Now we give a high-level discussion that highlights our main technical ideas.
Let OPT denote the maximum value of q such that Kq,q exists in G. Notice that,
when OPT < n/ log2 n, we are immediately done since we can return a single
edge and it would be n/ log2 n approximation. Therefore, we may assume that
OPT ≥ n/ log2 n. Our main result shows that we can efficiently find a biclique
containing roughly Ω̃(log2 n) vertices on each side1, and this would also be an
O(n/ log2 n) approximation.

1 Here, we use the convention that Ω̃ hides asymptotically smaller terms.
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Enumeration by Vertices: By a standard brute-force enumeration argument, one
can easily find a biclique of size Ω(log n/ log log n). We explain this algorithm as
an intuitive starting point. Assume that the graph G = (A ∪ B,E) is bipartite2

with |A| = |B| = n. Fix an optimal biclique Q in G. We partition A into
A1 ∪A2 ∪ . . .∪A� arbitrarily where each set Aj contains |Aj | = �log3 n� vertices
each (that is, we have � = n/�log3 n� sets.) Recall that OPT ≥ n/ log2 n. By
averaging argument, there must be a “good” set Aj that contains log3 n

log2 n
= log n

vertices from the optimal biclique Q, that is, |Aj ∩ V (Q)| ≥ log n. We then
enumerate all subsets X ⊆ Aj : |X| = (a log n/ log log n); for each X, let CX =
{v ∈ B : NG(v) ⊇ X} be the neighbors that can be included to form a biclique
with X (that is, G[C∪CX ] is a biclique). We return any pair of sets (X,CX) such
that |CX | ≥ |X|. The running time of this procedure is n

�log3 n�
(

log3 n
(log n/ log log n)

) ≤
(log3 n)log n/ log log n = poly(n).

Feige’s Subgraph Removal. The above enumeration trick has been used sev-
eral times for many problems (including clique and biclique) in the litera-
ture. It provides immediately a search procedure for a clique/biclique of size
Θ( log n

log log n ) whenever OPT ≥ n/(logO(1) n). For clique (as well as indepen-
dent set), Feige [10] “augmented” a subgraph removal procedure on top of this
vertex enumeration procedure, so that his algorithm returns a clique of size
Ω((log n/ log log n)2) instead. Unfortunately, the above-mentioned natural idea
of vertex enumeration is not quite compatible with Feige’s subgraph removal
arguments.

New Idea: Enumeration by Matching Edges. This is where our new observation
comes in handy. We perform a “matching-edge” enumeration instead of a vertex
enumeration. We explain the intuition of our proof by describing another pro-
cedure that finds a biclique containing Ω(log n/ log log n) vertices on each side.
The main benefit of matching-edge enumeration over vertex enumeration is its
versatility, which allows us to use Feige’s subgraph removal trick [10] to derive
our desired result.

Again we fix an n-vertex m-edge bipartite graph G = (A ∪ B,E) and an
optimal biclique Q in G. Since we focus on the case OPT ≥ n/(log2 n), we have
that |E(Q)| = OPT 2 ≥ n2/(log4 n). We partition the edges in E into at most n
matchings, that is, E = E1 ∪ E2 ∪ . . . ∪ En, where each set Ej is a matching. By
dismissing all small sets, it is easy to see that there exists some larger set Ej such
that |Ej | ≥ 16(log5 n) and |Ej ∩ E(Q)| ≥ |Ej |/2(log4 n). We again divide such
set Ej into Ej,1 ∪Ej,2 ∪ . . .∪Ej,s such that �2 log5 n� ≤ |Ej,α| ≤ �4 log5 n� for all
α = 1, 2, . . . , s. By averaging (using the fact that |Ej ∩ E(Q)| ≥ |Ej |/(2 log4 n)),
there exists Ej,α such that |Ej,α ∩E(Q)| ≥ 2 log5 n

2 log4 n
≥ log n. We can enumerate all

size-(log n/ log log n) subsets M ⊆ Ej,α in time (log5 n)O(log n/ log log n) = poly(n).
Each such subset M is a matching, and we can check whether it induces a biclique
2 See Lemma 1 for a simple formal proof that it suffices to focus on the case of bipartite

graphs.
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in G. This concludes an algorithm that finds a biclique with Ω(log n/ log log n)
vertices on each side, based on matching-edge enumeration.

In Sect. 3, we show how to implement Feige’s subgraph removal procedure
on top of the matching-edge enumeration procedure. The presentation there is
self-contained and does not rely on the discussion in this section.

1.2 Further Related Results

Prior to Khot [15], Feige and Kogan showed that unless NP ⊆
DTIME(2n

3
4+o(1)

), the problem does not admit 2Ω((log n)Ω(1)) approximation.
Due to interest on application sides, there have been several heuristics [20,21]
proposed for MBB, but none of them give any theoretical guarantee on the
approximation factor.

The Maximum Edge Biclique (MEB) problem is very similar to the MBB
problem, except for the fact that MEB aims to maximize the number of edges
in a (possibly not balanced) biclique. Similarly to MBB, MEB is known to
be n1−o(1) hard to approximate under the same complexity-theoretic assump-
tions [18]. Assuming more standard complexity assumptions, the problem is
known to be nε hard to approximate [1].

The covering variants of biclique problems (called minimum biclique cover)
are better understood from approximation perspectives: There is a n1−o(1) hard-
ness result assuming P �= NP [5] and some non-trivial algorithms exist in the
contexts of both approximation and parameterized algorithms [7].

The trade-off between an approximation factor and the running time has
recently received attention. See e.g. [2,3,8,19] and the references therein.

2 Preliminaries

This paper follows standard notation in graph theory. Given a graph G = (V,E),
denote by NG(v) the neighboring vertices of v in G (excluding v). For q ∈ N,
denote by Kq,q the complete bipartite graph with q vertices on each side. For
any subset S ⊆ V , denote by G[S], the induced subgraph on S. We sometimes
abuse notation and use, for each edge set F ⊆ E, G[F ] to represent G[V (F )].

An s-edge coloring of graph G = (V,E) is a partition of E into E1∪E2∪ . . .∪
Es where each Ei is a matching in G. We will use the following edge coloring
theorem of König (see, for instance, [17]).

Theorem 3. Given a bipartite graph G = (A ∪ B,E) where each node has a
degree of at most Δ, there exists a Δ-edge coloring of G that can be computed
efficiently.

We show that we can focus only on designing approximation algorithms for
bipartite graphs.

Lemma 1. If there is an α-approximation algorithm for MBB in bipartite
graphs, then there is an O(α) approximation for MBB in general graphs.
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Proof. We turn a general graph G = (VG, EG) into a bipartite graph H =
(L ∪ R,EH) as follows: For each vertex v ∈ VG, add the vertex into either L or
R independently with probability 1/2. Next, we keep only the edges between L
and R, that is, EH = {(u, v) : u ∈ L, v ∈ R}.

Let A∪B be an optimal complete bipartite subgraph in G where |A| = |B| =
OPT . Let M be a perfect matching in G[A ∪ B], so |M | = OPT . We say that
an edge e = (u, v) ∈ M is good if u ∈ L and v ∈ R. Let M ′ ⊆ M be the set of
good edges. Notice that, E[|M ′|] = |M |/4 and that the vertices of M ′ induce a
biclique in H. Therefore, in expectation, the biclique A ∪ B appears in H as a
biclique of size at least OPT/4 on each side, so the presumed α-approximation
would be able to return a biclique of size OPT/4α in expectation.

To obtain a deterministic algorithm, notice that the above proof only relies
on pairwise independence of the choice of random bits. �

3 Our Algorithms

3.1 Subgraph Removal Implies Approximation Algorithms

We prove an analogue of Feige’s subgraph removal procedure in the context of
MBB. By simple calculation, it implies both of our algorithmic results.

Theorem 4. Given a graph G = (V,E) with a maximum balanced biclique
of size n/z, for each t = O( n

z5 ), there exists an algorithm that runs in time
zO(t)poly(n) and finds a balanced biclique of size q = Θ(t logz

n
t ).

Now we show that this theorem implies both Theorem 1 and Theorem 2.
These proofs are standard (see [2,10]) and are only presented here for complete-
ness of exposition.

Corollary 1. For any r ∈ N, there exists an r-approximation algorithm running
in time exp

(
O( n

r log r )
)
.

Proof. We are given a bipartite graph G = (A ∪ B,E). If OPT ≤ n/(log2 r), we
are done since we can enumerate all subsets S ⊆ A of size n/(r log2 r) (and this
would be an r-approximation) in time

(
n

n/(r log2 r)

)
≤ (er log2 r)n/(r log2 r) ≤ 2O(n/(r log r))

Otherwise, we have that OPT = n/z for z ≤ log2 r. Choose t = n
r log r log z so

that zO(t) = 2O( n
r log r ). It is easy to check that t ≤ O(n/z5) for sufficiently large

n. Theorem 4 gives us a biclique with at least Ω(t · logz(n/t)) = Ω( n log r
r log r log2 z

) =
Ω( n

r log2 z
) nodes on each side. The approximation factor obtained is:

n/z

Ω( n
r log2 z

)
= O(r)

�
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Corollary 2. There is a polynomial time O(n/ log2 n) approximation algorithm.

Proof. If OPT ≤ n/(log2 n), we are immediately done. Otherwise, assume that
z = O(log2 n). Let t = logz n, we use Theorem 4 to find a balanced biclique Kq,q

where q = Θ(log2z n) (so this algorithm runs in polynomial time). Therefore, the
approximation factor is OPT/q ≤ O(n log2 z

z log2 n
) ≤ O(n/ log2 n). �

3.2 Proof of Theorem 4

We now describe our algorithm. It has two steps. In the first step, we perform
a pre-processing by removing vertices whose degrees are too large compared to
the size of the optimal biclique. This step will allow us to apply König’s edge
coloring theorem, decomposing the graph into a union of disjoint matchings.

Step 1: Degree Reduction. We are given an n-vertex bipartite graph G′ =
(V ′, E′) that contains an optimal biclique Q of size p = n/z; define a parameter
k, such that p2 = m/k is the number of edges in the optimal biclique.

This step is summarized in the following lemma.

Lemma 2. There is an efficient algorithm that produces a graph G = (V,E)
such that:

– |V (G)| ≥ n/2.
– Each vertex in G has degree at most 2pk.
– There exists a biclique containing p/2 vertices on each side of G.

Proof. Whenever there is a vertex v whose degree is more than 2pk = 2
√

mk,
we remove v and all edges incident to v (but we keep vertices in NG(v).) Notice
that we would remove at most 1

2

√
m/k = p

2 vertices from the graph (since we
have at most m edges), and therefore at least p/2 vertices remain on each side
of Q after such removals. This completes the proof. �

Step 2: An Analogue of Feige’s Argument. Assume we are given a graph
G = (A ∪ B,E) that satisfies the conditions in Lemma 2. Let Q be the optimal
biclique in G containing at least p/2 vertices on each side (therefore containing
at least m/4k edges). This choice of optimal clique Q is fixed throughout the
execution of the algorithm.

Definition 1. We say that a subset of edges E′′ is poor if |E′′ ∩ E(Q)| <
|E′′|/8k.

Definition 2. Let Q′ be a balanced biclique. An edge e is said to be consistent
with Q′ if Q′ ∪ {e} induces a biclique and the endpoints of e is are disjoint from
V (Q), that is, if Q′ is Kr,r, we must have that Q′ ∪ {e} induces a Kr+1,r+1.
Denote by CE(Q′) the set of edges that are consistent with biclique Q′.
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Now we present our algorithm. The algorithm has multiple phases, and each
phase consists of many iterations that keep growing the set of matching edges
F whose vertices induce a biclique.

In the beginning, E′ ← E. In each phase, we start from edge set E′′ ← E′

and F ← ∅. In each iteration, if we have that |E′′| ≤ 106pk3t, then we say
that the phase terminates successfully and the algorithm terminates.
Otherwise, we partition E′′ into 2kp subsets E′′

1 ∪ E′′
2 ∪ . . . ∪ E′′

2kp where each
E′′

j is a matching. We say that E′′
j is large if |E′′

j | ≥ 16kt; otherwise, we say that
E′′

j is small. Consider each large set E′′
j and partition it further (arbitrarily) into

E′′
j,1 ∪ E′′

j,2 ∪ . . . ∪ E′′
j,�(j) where each set has size at least 16kt and at most 32kt.

A good matching is a subset M ⊆ E′′
j,α : |M | = t that satisfies two conditions:

(i) G[M ] is a biclique and (ii) the set of consistent edges EM = CE(G[M ]) ∩ E′′

is sufficiently large, that is, |EM | ≥ |E′′|/8k − (5pkt). If a good matching exists
in some subset E′′

j,α, we update F ← F ∪ M , E′′ ← EM , and then start the new
iteration. Otherwise, if no good matching is found, we claim that E′′ is a poor
subset (proof provided below), the phase terminates unsuccessfully, and we
start a new phase with E′ ← E′ \ E′′.

Analysis of Running Time

A phase either ends with a poor subset of edges removed from the graph (when
it is unsuccessful) or it ends with a collection of matching edges F (when it is
successful). Each poor subset is a subset of size at least one, so there can be at
most m unsuccessful phases.

Lemma 3. The running time of each phase is at most zO(t)nO(1).

Proof. In each iteration, each set E′′
j,α has size at most 32kt and we enumerate

all subsets of size t inside it. There are at most n iterations in each phase. So,
the total running time would be at most:

(
32kt

t

)
nO(1) ≤

(
32ekt

t

)t

nO(1) ≤ kO(t)nO(1).

Since k = z2m
n2 < z2, then kO(t) = zO(t).

The Size of Bicliques

Now we proceed to show that at some point, the algorithm would terminate
successfully and return a relatively large biclique.

Lemma 4. If no good matching is found in a phase, then E′′ is a poor subset.

Proof. Assume, by contrapositive, that E′′ is not poor. Then |E′′ ∩ E(Q)| ≥
|E′′|/8k. Notice that the number of edges in the small sets E′′

j is at most 16kt ·
(2kp) ≤ |E′′|/16k. Therefore, at least |E′′|/16k edges in Q appear in one of the
large sets. Since |E′′ ∩ E(Q)|/|E′′| ≥ 1/16k, by averaging argument, we have
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that there exists a large set E′′
j,α for which |E′′

j,α ∩ E(Q)|/|E′′
j,α| ≥ 1/16k which

implies that |E′′
j,α ∩E(Q)| ≥ |E′′

j,α|/16k ≥ t. Let M be an arbitrary size-t subset
of E′′

j,α ∩ E(Q). Notice that M is good: Firstly, G[M ] is a biclique. Moreover,
any edge e in E′′ ∩ E(Q) that is not sharing a vertex with any edge in M , is
consistent with G[M ]. There are at least |E′′|/8k −5pkt such edges, because the
number of edges that have two vertices in M is less than t2 and the number of
edges that have one vertex in M is at most Δ(G) · 2t ≤ 4kpt. Since t ≤ p, then
t2 + 4kpt < 5kpt. �

So, the above lemma implies that whenever a subset of edges is removed from
the graph, that subset must be poor. The following lemma says that, at some
point, a poor subset would not exist anymore.

Lemma 5. Let Ê1, Ê2, . . . , Ê� be a collection of poor subsets removed from the
phases. Then, |⋃i Êi ∩ E(Q)| < m/8k.

Proof. This follows from the fact that |Êi ∩ E(Q)| < |Êi|/8k. Summing over all
i gives us the desired bound. �
Corollary 3. At the beginning of each phase, we have that |E′ ∩E(Q)| ≥ m/8k.

Proof. Since after the degree reduction we have at least m/4k edges in E′∩E(Q),
then by Lemma 5, we have at least m/4k − m/8k = m/8k edges in E(Q) left in
each phase. �

With this, we know that the unsuccessful phase cannot remove too many
edges from the optimal solution. Now, we argue that the result returned by a
successful phase is a matching F that induces a biclique and it has the desired
size.

Observation 5. Let F1 be a matching such that G[F1] is a biclique. Let F2 ⊆
CE(G[F1]) be another matching such that G[F2] is also a biclique. Then G[F1 ∪
F2] is a biclique containing |F1| + |F2| vertices on each side.

This observation implies that the result returned by the algorithm induces
a biclique. Its size is equal to the product of t with the number of iterations in
that phase. The following lemma will finish the proof.

Lemma 6. A successful phase runs for at least Ω(logz

(
m
t

)
) iterations.

Proof. Notice that in the same phase, each iteration, that starts with E′′, pro-
ceeds to the next iteration (starting with EM ) on the condition that the number
of remaining edges is at least |EM | ≥ |E′′|/8k − 5pkt ≥ |E′′|/16k. At the begin-
ning of the phase, there are at least m/8k edges in E′, and the stopping condition
is when |E′′| ≤ 106pk3t. Therefore, we can proceed for at least log16k

(
m

107k4pt

)

iterations. Since m = Θ(p2k) and k = z2m
n2 ≤ z2, then the number of iterations

is Ω(logk

(
m
t

)
) ≥ Ω(logz

(
m
t

)
). �
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4 Discussions and Open Problems

In this paper, we present approximation algorithms for MBB whose guarantee
is better than that of brute-force. One obvious open question is to match the
O(n/ log3 n) approximation of clique, which would put biclique and clique in
the same ballpark. A truly interesting direction is to study the power of semi-
definite programs for bicliques. While there are many such algorithms for cliques
and coloring, we do not have them for any biclique problem (including maximum
edge biclique or biclique covering problems).

Finally, as discussed in [10], an interesting aspect of the subgraph removal
algorithm is its connection to algorithmic Ramsey theory. In particular, the
poor subgraph detection algorithm can be seen as a constructive Ramsey-type
argument (please refer to discussions in Feige’s paper for more detail.) While
standard Ramsey arguments (i.e. clique v.s. independent set) have found their
applications in theoretical computer science, ours is perhaps the first algorithmic
result of Ramsey-type theorem for balanced bicliques.
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Abstract. A matching is a set of edges without common endpoint. It
was recently shown that every 1-planar graph (i.e., a graph that can be
drawn in the plane with at most one crossing per edge) that has minimum
degree 3 has a matching of size at least n+12

7
, and this is tight for some

graphs. The proof did not come with an algorithm to find the matching
more efficiently than a general-purpose maximum-matching algorithm.
In this paper, we give such an algorithm. More generally, we show that
any matching that has no augmenting paths of length 9 or less has size
at least n+12

7
in a 1-planar graph with minimum degree 3.

1 Introduction

The matching problem (i.e., finding a large set of edges in a graph such that no
two chosen edges have a common endpoint) is one of the oldest problem in graph
theory and graph algorithms, see for example [3,19] for overviews.

To find a maximum matching in a graph G = (V,E), the fastest algorithm is
the one by Hopcroft and Karp if G is bipartite [16], and the one by Micali and
Vazirani otherwise ([20], see also [25] for further clarifications). As pointed out
in [25], for a graph with n vertices and m edges the run-time of the algorithm
by Micali and Vazirani is O(m

√
n) in the RAM model and O(m

√
nα(m,n))

in the pointer model, where α(·) is the inverse Ackerman function. For planar
graphs (graphs that can be drawn without crossing in the plane) there exists a
linear-time approximation scheme for maximum matching [1], and it can easily
be generalized to so-called H-minor-free graphs [10] and k-planar graphs [14].

For many graph classes, specialized results concerning matchings and match-
ing algorithms have been found. To name just a few, every bipartite d-regular
graph has a perfect matching (a matching of size n/2) [15] and it can be found
in O(m) time [9]. Every 3-regular biconnected graph has a perfect matching [22]
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and it can be found in linear time for planar graphs and in near-linear time for
arbitrary graphs [4]. Every graph with a Hamiltonian path has a near-perfect
matching (of size �(n− 1)/2�); this includes for example the 4-connected pla-
nar graphs [24] for which the Hamiltonian path (and with it the near-perfect
matching) can be found in linear time [8].

For graphs that do not have near-perfect matchings, one possible avenue of
exploration is to ask for guarantees on the size of matchings. One of the first
results in this direction is due to Nishizeki and Baybars [21], who showed that
every planar graph with minimum degree 31 has a matching of size at least n+4

3 .
(This bound is tight for some planar graphs with minimum degree 3.) The proof
relies on the Tutte-Berge theorem and does not give an algorithm to find such
a matching (or at least, none faster than any maximum-matching algorithm).
Over 30 years later, a linear-time algorithm to find a matching of this size in
planar graphs of minimum degree 3 was finally developed by Franke, Rutter,
and Wagner [13]. The latter paper was a major inspiration for our current work.

In recent years, there has been much interest in near-planar graphs, i.e.,
graphs that may be required to have crossings but that are “close” to planar
graphs in some sense. We are interested here in 1-planar graphs, which are those
that can be drawn with at most one crossing per edge. (Detailed definitions can
be found in Sect. 2.) See a recent annotated bibliography [18] for an overview of
many results known for 1-planar graphs. The first author and Wittnebel [6] gave
matching-bounds for 1-planar graphs of varying minimum degrees, and showed
that any 1-planar graph with minimum degree 3 has a matching of size at least
n+12

7 . (This bound is again tight.)
The proof in [6] is again via the Tutte-Berge theorem and does not give

rise to a fast algorithm to find a matching of this size. This is the topic of the
current paper. We give an algorithm that finds, for any 1-planar graph with
minimum degree 3, a matching of size at least n+12

7 in linear time in the RAM
model and time O(nα(n)) in the pointer-model. The algorithm consists simply
of running the algorithm by Micali and Vazirani for a limited number of rounds
(and in particular, does not require that a 1-planar drawing of the graph is
given). The bulk of the work consists of the analysis, which states that if there
are no augmenting paths of length 9 or less, then the matching has the desired
size for graphs with minimum degree 3. Along the way, we prove some bounds
obtained for graphs with higher minimum degree, though these are not tight.

The paper is structured as follows. After reviewing some background in
Sect. 2, we state the algorithm in Sect. 3. The analysis proceeds in multiple steps
in Sect. 4. We first delete short flowers from the graph (and account for free ver-
tices in them directly). The remaining graph is basically bipartite, and we can
use bounds known for independent sets in 1-planar graphs to obtain matching-
bounds that are very close to the desired goal. Closing this gap requires non-
trivial modifications; we give a sketch of the involved techniques in Sect. 5 and
refer to the full paper for the technical details.

1 In this paper, ‘minimum degree k’ stands for ‘minimum degree at least k’; of course
the bounds also hold if all degrees are higher.
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2 Background

We assume familiarity with graphs and graph algorithms, see for example [11,23].
Throughout the paper, G is a simple graph with n vertices and m edges. A
matching of G is a subset M of its edges without common endpoints; we say that
e = (x, y) ∈ M is matched and x and y are matching-partners. V (M) denotes
the endpoints of edges in M ; we call v ∈ V (M) matched and all other vertices
free. An alternating walk of M in G is a walk that alternates between unmatched
and matched edges. An augmenting path of M in G is an alternating walk that
repeats no vertices and begins and ends at a free vertex; we use k-augmenting
path for an augmenting path with at most k edges. If P is an augmenting path
of M (and viewed as an edge-set), then (M \ P ) ∪ (P \ M) is also a matching
and has one edge more than M .

A drawing Γ of a graph consists of assigning points in R
2 to vertices and

simple curves to each edge such that curves of edges end at the points of its
endpoints. We usually identify the graph-theoretic object (vertex, edge) with the
geometric object (point, curve) that it has been assigned to. We only consider
good drawings (see [23] for details) that avoid degeneracies such as an edge going
through the point of a non-incident vertex or two edges intersecting in more than
one point. The connected sets of R2 \ Γ are called the regions of the drawing.

A crossing c of Γ is a pair of two edges (v, w) and (x, y) that have a point in
their interior in common. A drawing Γ is called k-planar (or planar for k = 0) if
every edge has at most k crossings. A graph is called k-planar if it has a k-planar
drawing. While planarity can be tested in linear time [7,17], testing 1-planarity
is NP-complete [14].

Fix a 1-planar drawing Γ and consider a crossing c between edges (v0, v2)
and (v1, v3). Then we could draw edge (vi, vi+1) (for i = 0, . . . , 3 and addition
modulo 4) without crossing by walking “very close” to crossing c. We call the
pair (vi, vi+1) a potential kite-edge and note that if we inserted (vi, vi+1) in the
aforementioned manner, then it would be consecutive with the crossing edges in
the cyclic orders of edges around vi and vi+1 in Γ .

3 Finding the Matching

Our algorithm to find a large matching is a one-liner: repeatedly extend the
matching via 9-augmenting paths (i.e., of length at most 9) until there are no
more such paths. Note that the algorithm does not depend on the knowledge
that the graph is 1-planar and does not require having a 1-planar drawing at
hand. It could be executed on any graph; our contribution is to show (in the
next section) that if it is executed on a 1-planar graph G with minimum degree
3 then the resulting matching M has size at least n+12

7 .

Running Time. Finding a matching M in G such that there is no k-augmenting
path can be done in time O(k|E|) in the RAM model using the algorithm by
Micali and Vazirani [20]. (We state all run-time bounds here in the RAM model;
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for the pointer model add a factor of α(|E|, |V |).) This algorithm runs in phases,
each of which has a running time of O(|E|) and increases the length of the
minimum-length augmenting path by at least two. See for example the paper by
Bast et al. [2] for a more detailed explanation. Since for 1-planar graphs we have
|E| ∈ O(|V |) we get a linear time algorithm in the number of vertices of G to
find a matching without 9-augmenting paths.

4 Analysis

Assume that M is a matching without augmenting paths of length at most 9,
and let F be the free vertices; |F | = n − 2|M |. To analyze the size of M , we
proceed in three stages. First we remove some vertices and matching-edges that
belong to short flowers (defined below); these are “easy” to account for. Next
we split the remaining vertices by their distance (measured along alternating
paths) to free vertices. Since short flowers have been removed, no edges can
exist between vertices of even small distance; they hence form an independent
set. Using a crucial lemma from [6] on the size of independent sets in 1-planar
graphs, this shows that |M | ≥ 7

50 (n + 12), which is very close to the desired
bound of n+12

7 . The last stage (which does the improvement from 7
50 to 1

7 ) will
require non-trivial effort and is done mostly out of academic interest; a sketch
is in Sect. 5 and details are in the full paper [5].

Flowers. A flower2 is an alternating walk that begins and ends at the same free
vertex; we write k-flower for a flower with at most k edges. We only consider
7-flowers; Fig. 1 illustrates all possible such flowers. Note that such short flowers
split into a path (called stem) and an odd simple cycle (the blossom); we call a
flower a cycle-flower if the stem is empty.

Fig. 1. (a–d) All possible 7-flowers. Free vertices are white, matched edges are thick.
(e-f) Augmenting paths found in the proofs of (e) Claim 1 and (f) Claim 2.

Let VC (the “C” reminds of “cycle”) be all vertices that belong to some 7-
cycle-flower, let FC be all free vertices in VC , and let MC be all matching-edges
within VC , i.e., all edges with both endpoints in VC .
2 Our terminology follows the one in Edmonds’ famous blossom-algorithm [12].
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Claim 1. Let M be a matching in a 1-planar graph G with minimum degree 3
such that there is no 9-augmenting path and let FC and MC be defined as above.
Then |FC | ≤ |MC |.
Proof. For every f ∈ FC there exists some 7-cycle-flower f -v1-v2-. . . -vk-f with
k ∈ {2, 4, 6}. Assign f to edge (v1, v2). We claim that f is the only vertex in
FC assigned to (v1, v2), otherwise there would be an augmenting path of length
less than 9. Since (v1, v2) ∈ MC , this then proves the claim. So assume for
contradiction that another vertex f ′ ∈ FC was also assigned to (v1, v2). Then f ′

is adjacent to one of v1, v2. If it is v2, then f ′-v2-v1-f is a 3-augmenting path. If
it is v1, then f ′-v1-. . . -vk-f is a 7-augmenting path, see Fig. 1(e). 	


From now on we will only study the graph G\VC . Observe that M restricted
to this graph is again a matching without augmenting paths up to length 9. All
following definitions are only for vertices and edges in G \ VC . Let FB (the “B”
reminds of “blossom”) be all those free vertices f that are not in FC and that
belong to a 7-flower. By f �∈ FC this flower has a non-empty stem, which is
possible only if its length is exactly 7 and the stem has two edges f -s-t while
the blossom is a 3-cycle t-x0-x1-t. Furthermore (s, t) and (x0, x1) are matching-
edges. Let MB be the set of such matching-edges (x0, x1) i.e., matching-edges
that belong to the blossom of such a 7-flower. We do not include the matching-
edge (s, t) in MB (unless it belongs to a different 7-flower where it is in the
blossom). Let TB be the set of such vertices t, i.e., vertices that belong to a
7-flower and belong to both the stem and the blossom. Set VB = TB ∪ V (MB)
(see also Fig. 2).

Claim 2. Let M be a matching in a 1-planar graph G with minimum degree 3
such that there is no 9-augmenting path and let TB and MB be defined as above.
Then |TB | ≤ |MB |.
Proof. We argue similarly to the proof of Claim 1, i.e., assign each t ∈ TB to
an edge in MB and argue that no two vertices are assigned to the same edge
unless there is a 9-augmenting path. Choose for each t ∈ TB a matching-edge
(x0, x1) ∈ MB that is within the same blossom of some 7-flower of G \ VC .
Assume for contradiction that some other vertex t′ ∈ TB is also assigned to
(x0, x1). Let t-s-f and t′-s′-f ′ be the stems of the 7-flowers containing t and t′,
and note that s �= s′ since they are matching-partners of t �= t′. This gives an
alternating path f -s-t-x0-x1-t′-s′-f ′, see Fig. 1(f). Depending on whether f = f ′

this is a 7-augmenting path or 7-cycle-flower; the former contradicts the choice
of M and the latter that x0, x1 ∈ G \ VC . 	

The Auxiliary Graph H. For any vertex v ∈ G\VC \VB , let the distance to a free
vertex be the number of edges in a shortest alternating path from a free vertex
to v. Let Dk be the vertices of distance k to a free vertex. Since there are no
9-agumenting paths, one can easily see:

Observation 1. In graph G \ VC \ VB, there are no matching-edges within Dk

for k = 1 and k = 3, and no edges at all within Dk for k = 0 and k = 2.
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Proof. If there was such an edge (v, v′), then it, together with the alternating
paths of length k that lead from free vertices to v, v′, form a 7-augmenting path
or a 7-flower. 	


From now on, we will only study the subgraph H induced by D0 ∪ · · · ∪ D3,
noting again that this does not include the vertices in VC ∪ VB . For ease of
referring to them, we rename the vertices of H as follows (see also Fig. 2):

– FH = F \ FC = D0 are the free vertices in H.
– S = D1 are the vertices in H that are adjacent to FH .
– TH = D2 are the vertices in H that have matching-partners in S and are not

in S.
– U = D3 are the vertices in H that are adjacent to TH and not in F ∪S ∪TH .

Fig. 2. Illustration of the partitioning of edges and vertices and graph H.

The following shortcuts will be convenient. For any vertex sets A,B, an A-
vertex is a vertex in A, and an AB-edge is an edge between an A-vertex and
a B-vertex. For any vertex v an A-neighbour is a neighbour of v in A. Using
Observation 1 and the definition of VC (which includes the entire flower) and VB

(which includes both ends of the matching-edge) one easily verifies the following:

Observation 2. – There are no matching-edges within S or within U .
– There are no edges within FH or within TH .
– The matching-partner of an S-vertex is in TH ∪ TB.
– The matching-partner of a U -vertex is not in H.
– All neighbours of an FH-vertex belong to S or are not in H.
– All neighbours of a TH-vertex belong to S ∪ U or are not in H.
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Let MS be the set of matching-edges incident to S. Let MU be the matching-
edges incident to U . Since there are no matching-edges within S or U , we have
|S| = |MS | and |U | = |MU |.

We stated earlier that any neighbour of FH is either in S or not in H. The
latter is actually impossible (though this is non-trivial), and likewise for TH .

Fig. 3. Augmenting paths found in the proofs of (a) Lemma 1, t ∈ TH has a neighbour
in VC . (b) Lemma 1, t ∈ TH has a neighbour in VB .

Lemma 1. No vertex in FH ∪ TH has a neighbour in G that is outside H.

Proof. First observe that no edge can connect a vertex in FH ∪ TH = D0 ∪ D2

with a vertex z ∈ Dk for k ≥ 4 since z would have been added to D1 = S
or D3 = U instead. So we must only show that no vertex in FH ∪ TH has a
neighbour in VC ∪ VB . We show this only for t ∈ TH ; the proof is similar (and
even easier) for f ∈ FH by replacing the path t-s-f defined below with just f .

Consider Fig. 3(a). Fix some t ∈ TH , let s ∈ S be its matching-partner and let
f ∈ FH be an arbitrary free vertex incident to s. Assume for contradiction that
t has a neighbour vi in VC , so vi belongs to some 7-cycle-flower v0-v1-. . . -vk-v0
where k ∈ {2, 4, 6} and v0 ∈ F . Note that v0 �= f since v0 ∈ FC while f ∈ FH .
If i is odd then f -s-t-vi-. . . -vk-v0 is a 9-augmenting path, and if i is even then
f -s-t-vi-vi−1-. . . -v1-v0 is a 9-augmenting path; both are impossible.

Now consider some (x0, x1) ∈ MB that belongs to a 7-flower f ′-s′-t′-x0-x1-
t′-s′-f ′ where (s′, t′) is a matching-edge and t′ ∈ TB . Note that t′ �= t (hence
s′ �= s) since t′ ∈ TB while t ∈ TH . If t and t′ are adjacent, then f -s-t-t′-s′-f ′ is
a 5-augmenting path or a 5-cycle-flower. If t and xi are adjacent for i ∈ {0, 1},
then f -s-t-xi-x1−i-t′-s′-f ′ is a 7-augmenting path or 7-cycle-flower. See Fig. 3(b).
Both are impossible since t �∈ TC . 	


In particular, if a vertex in FH ∪TH had degree d in G, then it also has degree
d in H; this will be important below.

Minimum Degree 3. With this, we can prove our first matching-bound. We
need the following lemma by Biedl and Wittnebel, which is derived via (quite
complicated) graph-augmentation and edge-counting:
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Lemma 2 ([6]). Let G be a simple 1-planar graph. Let A be a non-empty
independent set of G where all vertices in A have degree 3 or more in G. Let Ad

be the vertices of degree d in A. Then 2|A3|+
∑

d>3(3d−6)|Ad| ≤ 12|V \A|−24.

Lemma 3. We have (i) |FH | ≤ 6|S|−12 and (ii) |FH |+ |TH | ≤ 6|S|+6|U |−12.

Proof. Consider first the subgraph of H induced by FH and S. By Observation 2
and Lemma 1 any vertex in FH has degree at least 3 in this subgraph, and they
form an independent set. Consider the inequality of Lemma 2. Any vertex in
FH contributes at least 2 units to the left-hand side while the right-hand side is
12|S| − 24. This proves Claim (i) after dividing.

Now consider the full graph H. By Observation 2 and Lemma 1 any vertex
in FH ∪TH has degree at least 3 in H, and they form an independent set. Claim
(ii) now follows from Lemma 2 as above. 	

Corollary 1. If the minimum degree is 3, then |M | ≥ 7

50 (n + 12).

Proof. Adding Lemma 3(ii) six times to Lemma 3(i) gives

7 |FH | + 6|TH | ≤ 42 |S| + 36|U | − 84 ≤ 42|MS | + 36|MU | − 84.

Adding Claim 1 seven times and Claim 2 six times gives

7 |FC | + 7 |FH | + 6|TB | + 6|TH | ≤ 42|MS | + 36|MU | + 7|MC | + 6|MB | − 84.

Since |S| = |MS | = |TH | + |TB |, this simplifies to

7 |F | = 7 |FH | + 7 |FC | ≤ 36|MS | + 36|MU | + 7|MC | + 6|MB | − 84 ≤ 36|M | − 84.

Therefore 2|M | = n − |F | ≥ n + 12 − 36
7 |M | which gives the bound after rear-

ranging. 	

It is worth pointing out that this result (as well as Theorem 2 below) does not

use 1-planarity of the graph except when using the bound in Lemma 2. Hence,
similar bounds could be proved for any graph class where the size of independent
sets can be upper-bounded relative to its minimum degree.

Doing the improvement from 7
50 to 1

7 will be done by improving Lemma 3(ii)
slightly. We will show the following in Sect. 5:

Lemma 4. |FH | + |TH | ≤ 6|S| + 5|U | − 12.

This then gives our main result:

Theorem 1. Let G be a 1-planar graph with minimum degree 3, and let M be a
matching in G that has no augmenting path of length 9 or less. Then |M | ≥ n+12

7 .

Proof. Using |S| = |MS | and |U | = |MU | we have

|FH | + |TH | ≤ 6|MS | + 5|MU | − 12 from Lemma 4
|FC | ≤ |MC | from Claim 1
|TB | ≤ |MB | from Claim 2.

Since |TH |+|TB | = |MS | this gives |F |+|MS | ≤ |MC |+|MB |+6|MS |+5|MU |−12,
therefore |F | ≤ 5|M | − 12. This implies 2|M | = n − |F | ≥ n − 5|M | + 12 or
7|M | ≥ n + 12. 	
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Higher Minimum Degree. Since the bound for independent sets in 1-planar
graphs gets smaller when the minimum degree is larger, we can prove better
matching-bounds for higher minimum degree. The following is proved exactly
like Lemma 3:

Lemma 5. If the minimum degree is δ > 3, then

(i) |FH | ≤ 4
δ−2 (|S| − 2) and (ii) |FH | + |TH | ≤ 4

δ−2 (|S| + |U | − 2).

Theorem 2. Let G be a 1-planar graph with minimum degree δ. Let M be any
matching in G without 9-augmenting path. Then

– |M | ≥ 3
10 (n + 12) for δ = 4,

– |M | ≥ 1
3 (n + 12) for δ ≥ 5.

Proof. Set c = 4
δ−2 , so |FH | ≤ c(|S| − 12) and |FH | + |TH | ≤ c(|S| + |U | − 12).

Taking the former inequality once and adding the latter one c times gives

(c+1)|FH |+c|TH | ≤ (c2+c)|S|+c2|U |−(c+1)12 = (c2+c)|MS |+c2|MU |−(c+1)12.

Adding Claim 1 c + 1 times and Claim 2 c times gives

(c+1)(|FC |+|FH |) + c(|TB |+|TH |)
≤ (c2+c)|MS | + c2|MU | + (c+1)|MC | + c|MB | − (c+1)12. (1)

For δ = 4 we have c = 2, and with |TB | + |TH | = |MS | Eq. 1 simplifies to

3 |F | ≤ 4|MS | + 4|MU | + 3|MC | + 2|MB | − 36 ≤ 4|M | − 36.

Therefore 2|M | = n − |F | ≥ n + 12 − 4
3 |M |. For δ ≥ 5 we have c2 < c + 1 and so

can only simplify Eq. 1 to (c + 1)(|FC | + |FH |) ≤ (c + 1)|M | − (c + 1)12, hence
2|M | = n − |F | ≥ n + 12 − |M |. The bounds follow after rearranging. 	


For δ = 4, 5 these are close to the bounds of 1
3 (n+4) (for δ = 4) and 1

5 (2n+3)
(for δ = 5) that we know to be the tight lower bounds on the maximum matching
size [6]. Unfortunately we do not know how to improve Theorem 2 for δ > 3; the
techniques of Sect. 5 do not work for higher minimum degree.

Stopping Earlier? Currently we remove all augmenting paths up to length 9.
Naturally one wonders whether one could stop earlier? We can show that it suf-
fices to remove only 7-augmenting paths by inspecting the analysis. The details
are not difficult but tedious and require even more notation; we omit them.

On the other hand, it is not enough to remove only 3-augmenting paths.
Figure 4 shows a matching in a 1-planar graph that has no 3-augmenting paths,
but only size n+12

8 . We can show that this is tight.

Theorem 3. Let G be a 1-planar graph with minimum degree 3 and let M be a
matching without 3-augmenting paths. Then |M | ≥ n+12

8 .
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Fig. 4. A graph with a matching marked in thick edges of size n+12
8

. No 3-augmenting
path exists for the chosen matching, but there are 5-augmenting paths. The gray area
marks an example of 16 vertices such that only 2 matching edges exist. Repeating this
configuration gives the example for arbitrary n.

Proof. The proof is very similar to the one of Theorem 2 in [13] except that we
use Lemma 2 rather than the edge-bound for planar bipartite graphs. We repeat
it here for completeness, mimicking their notation. Let Mc be all those matching-
edges (x, y) for which some free vertex f ∈ F is adjacent to both x and y, and
let Fc be all such free vertices. Vertex f is necessarily the only F -neighbour of
x and y, else there would be a 3-augmenting path. Hence |Fc| ≤ |Mc|.

Let Mo and Fo be the remaining matching-edges and free vertices. For each
edge (x, y) in Mo, at most one of the ends can have F -neighbours, else (x, y)
would be in Mc or there would be a 3-augmenting path. Let S be the ends of
edges in Mo that have F -neighbours, and let G′ be the auxiliary graph induced
by Fo and S. Then |Fo| ≤ 6|S| − 12 ≤ 6|Mo| − 12 by Lemma 2.

Putting both together, 2|M | = n−|F | ≥ n+12−|Mc|−6|Mo| ≥ n+12−6|M |
and the bound follows after rearranging. 	


5 Proof of Lemma 4

(Sketch; details are in the full paper [5].) Fix an arbitrary 1-planar drawing of H.
We obtain a 1-planar drawing H+ from H by inserting any potential kite-edge
(t, x) with t ∈ TH and x ∈ S ∪ U that does not exist yet. If (t, x) exists, but has
a crossing, then re-route it to become uncrossed (i.e., without crossing).

We split TH -vertices and assign them as follows. If t ∈ TH has an uncrossed
edge to a U -neighbour u, then assign t to u. Else, if t has three or more S-
neighbours, then add t to a vertex set Tσ. Else assign t to an arbitrary U -
neighbour u. In the first and third case we call (t, u) the assignment-edge. Let
U (d) be the set of all those vertices u ∈ U that have d incident assignment-edges.
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Let T (d) be all those vertices in TH \ Tσ that have been assigned to a vertex in
U (d). Since |T (d)| = d|U (d)|, we have:

Observation 3. |T0| = 0 and
∑5

d=1 |T (d)| ≤ 5
∑5

d=0 |U (d)|.
Transform drawing H+ as follows:

– Delete all vertices in U (0) ∪ · · · ∪ U (5) and T (1) ∪ · · · ∪ T (5) and all SU -edges.
– For any remaining t ∈ TH , delete all edges to U -neighbours except the

assignment-edge (if any).
– While there exists a vertex t ∈ TH \ Tσ for which either the assignment-edge

(t, u) or the matching-edge (s, t) is uncrossed: Delete t and insert edge (s, u).
Normally (s, u) is routed along the path s-t-u, which has at most one crossing.
But if this leads to a crossing of (s, u) with an edge that ends at s or u, then
instead draw (s, u) as a kite-edge of that crossing so that the drawing remains
good.

For this proof sketch, let us assume that all vertices in TH \ Tσ get deleted.
(This is not always the case, and those “remaining” vertices of TH are a major
difficulty to overcome; see [5].)

Assuming this to be the case, we have in the resulting drawing J the indepen-
dent set FH ∪Tσ ∪⋃

d≥6 U (d) and the vertices of SH . All vertices in FH ∪Tσ have
degree at least 3. Vertex u ∈ U (d) (for d ≥ 6) has degree at least d in J , because
it was assigned to d TH -vertices and therefore inherits edges to their d distinct
matching-partners. Lemma 4 now holds by applying Lemma 2 to drawing J and
combining it with Observation 3 as follows:

12|SH |−24 ≥ 2|FH |+2|Tσ|+
∑

d≥6

(3d−6)|U (d)| ≥ 2|FH |+2|Tσ|+
∑

d≥6

(2d−10)|U (d)|

≥ 2|FH |+2|Tσ|+2
∑

d≥6

|T (d)|−10
∑

d≥6

|U (d)|+2
∑

d≤5

|T (d)|−10
∑

d≤5

|U (d)|

≥ 2|FH |+2|TH | − 10|U |
and hence |FH |+|TH | ≤ 6|SH |+5|U | − 12.

6 Summary and Outlook

In this paper, we considered how to find a large matching in a 1-planar graph
with minimum degree 3. We argued that any matching without augmenting
paths of length up to 9 has size at least n+12

7 , which is also the largest matching
one can guarantee to exist in any 1-planar graph with minimum degree 3. Such
a matching can easily be found in linear time, even if no 1-planar drawings
is known, by stopping the matching algorithm by Micali and Vazirani after a
constant number of rounds.

It remains open how to find large matchings in 1-planar graphs with minimum
degree δ > 3 that match the upper bounds. It would also be interesting to study
other near-planar graph classes such as k-planar graphs (for k > 1); here we
do not even know what tight matching-bounds exist and much less how to find
matchings of that size in linear time.
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Abstract. A strong clique in a graph is a clique intersecting all
inclusion-maximal stable sets. Strong cliques play an important role
in the study of perfect graphs. We study strong cliques in the class
of diamond-free graphs, from both structural and algorithmic points of
view. We show that the following five NP-hard or co-NP-hard problems
remain intractable when restricted to the class of diamond-free graphs:
Is a given clique strong? Does the graph have a strong clique? Is every
vertex contained in a strong clique? Given a partition of the vertex set
into cliques, is every clique in the partition strong? Can the vertex set
be partitioned into strong cliques?

On the positive side, we show that the following two problems whose
computational complexity is open in general can be solved in linear time
in the class of diamond-free graphs: Is every maximal clique strong? Is
every edge contained in a strong clique? These results are derived from
a characterization of diamond-free graphs in which every maximal clique
is strong, which also implies an improved Erdős-Hajnal property for such
graphs.

Keywords: Maximal clique · Maximal stable set · Diamond-free
graph · Strong clique · Simplicial clique · CIS graph · NP-hard
problem · Linear-time algorithm · Erdős-Hajnal property

1 Introduction

Background and Motivation. Given a graph G, a clique in G is a set of pairwise
adjacent vertices, and a stable set (or independent set) is a set of pairwise non-
adjacent vertices. A clique (resp., stable set) is maximal if it is not contained in
any larger clique (resp., stable set). A clique is strong if intersects all maximal
stable sets and a strong stable set is defined analogously. The concepts of strong
cliques and strong stable sets in graphs play an important role in the study
of perfect graphs (see, e.g., [7]) and were studied in a number of papers (see,
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I. Adler and H. Müller (Eds.): WG 2020, LNCS 12301, pp. 261–273, 2020.
https://doi.org/10.1007/978-3-030-60440-0_21

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-60440-0_21&domain=pdf
https://doi.org/10.1007/978-3-030-60440-0_21


262 N. Chiarelli et al.

e.g., [1,2,4,5,9,10,18,19,21,23–25,28,30,31,37]). Several algorithmic problems
related to strong cliques and stable sets in graphs are NP-hard or co-NP-hard,
in particular:

– Strong Clique: Given a clique C in a graph G, is C strong?
– Strong Clique Existence: Given a graph G, does G have a strong clique?
– Strong Clique Vertex Cover: Given a graph G, is every vertex contained

in a strong clique?
– Strong Clique Partition: Given a graph G and a partition of its vertex

set into cliques, is every clique in the partition strong?
– Strong Clique Partition Existence: Given a graph G, can its vertex

set be partitioned into strong cliques?

The first problem in the above list is co-NP-complete (see [37]), the second one
is NP-hard (see [23]), and the remaining three are co-NP-hard (see [25] for the
third and the fourth problem1 and [16,24,33] for the fifth one).

Another interesting property related to strong cliques is the one defining
CIS graphs. A graph is said to be CIS if every maximal clique is strong, or
equivalently, if every maximal stable set is strong, or equivalently, if every
maximal clique intersects every maximal stable set. Although the name CIS
(Cliques Intersect Stable sets) was suggested by Andrade et al. in a recent
book chapter [5], this concept has been studied under different names since
the 1990s [4,9,18,19,21,37,38] (see [37] for a historical overview). Several other
graph classes studied in the literature can be defined in terms of properties
involving strong cliques (see, e.g., [10,24,25,30,31]).

There are several intriguing open questions related to strong cliques and
strong stable sets, for instance: (i) What is the complexity of determining
whether every edge of a given graph is contained in a strong clique? (See, e.g.,
[1].) (ii) What is the complexity of recognizing CIS graphs? (See, e.g., [5].) (iii)
Is there some ε > 0 such that every n-vertex CIS graph has either a clique or a
stable set of size at least nε? (See [2].)

The main purpose of this paper is to study strong cliques in the class of
diamond-free graphs. The diamond is the graph obtained by removing an edge
from the complete graph on four vertices, and a graph G is said to be diamond-
free if no induced subgraph of G is isomorphic to the diamond. Our motivation
for focusing on the class of diamond-free graphs comes from several sources.
First, no two maximal cliques in a diamond-free graph share an edge, which
makes interesting the question to what extent this structural restriction is helpful
for understanding strong cliques. Second, structural and algorithmic questions
related to strong cliques in particular graph classes were extensively studied in
the literature (see, e.g., [1,2,9,19,24,25,28]), so this work represents a natural
continuation of this line of research. Finally, this work furthers the knowledge
about diamond-free graphs. In 1984, Tucker proved the Strong Perfect Graph
Conjecture, now Strong Perfect Graph Theorem, for diamond-free graphs [36],

1 In [25], the authors state that the two problems are NP-hard, but their proof actually
shows co-NP-hardness.
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and more recently there has been an increased interest regarding the coloring
problem and the chromatic number of diamond-free graphs and their subclasses
(see, e.g., [11,17,27,29]). Diamond-free graphs also played an important role in
a recent work of Chudnovsky et al. [15] who proved that there are exactly 24
4-critical P6-free graphs.

Our Contributions. Our study of strong cliques in diamond-free graphs is done
from several interrelated points of view. First, we give an efficiently testable
characterization of diamond-free CIS graphs. A vertex v in a graph G is simplicial
if its closed neighborhood is a clique in G. Any such clique will be referred to as
a simplicial clique. We say that a graph G is clique simplicial if every maximal
clique in G is simplicial. The characterization is as follows.

Theorem 1. Let G be a connected diamond-free graph. Then G is CIS if and
only if G is either clique simplicial, G ∼= Km,n for some m,n ≥ 2, or G ∼=
L(Kn,n) for some n ≥ 3.

Second, we derive several consequences of Theorem 1. A graph class G is said
to satisfy the Erdős-Hajnal property if there exists some ε > 0 such that every
graph G ∈ G has either a clique or a stable set of size at least |V (G)|ε. The well-
known Erdős-Hajnal Conjecture [20] asks whether for every graph F , the class
of F -free graphs has the Erdős-Hajnal property. The conjecture is still open, but
it has been confirmed for graphs F with at most 4 vertices (see, e.g., [14]). In the
case when F is the diamond, a simple argument shows that the inequality holds
with ε = 1/3 (see [22]), but it is not known whether this value is best possible.
Theorem 1 implies the following improvement for the diamond-free CIS graphs.

Theorem 2. Let G be a diamond-free CIS graph. Then α(G) · ω(G) ≥ |V (G)|.
Consequently, G has either a clique or a stable set of size at least |V (G)|1/2.

Next, we develop a linear-time algorithm to test if every edge of a given
diamond-free graph is in a simplicial clique. This leads to the following algorith-
mic consequence of Theorem 1.

Theorem 3. There is a linear-time algorithm that determines whether a given
diamond-free graph G is CIS.

Theorem 3 implies a linear-time algorithm for testing if every edge of a given
diamond-free graph is contained in a strong clique. Furthermore, as a conse-
quence of Theorem 3 and other results in the literature, we report on the follow-
ing partial progress on the open question about the complexity of recognizing
CIS graphs.

Theorem 4. For every graph F with at most 4 vertices, it can be determined
in polynomial time whether a given F -free graph is CIS.

Finally, we complement the above efficient characterizations with hard-
ness results about several problems related to strong cliques when restricted
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to the class of diamond-free graphs. More specifically, using reductions from
the 3-Colorability problem in the class of triangle-free graphs we show the
following.

Theorem 5. When restricted to the class of diamond-free graphs, the Strong
Clique, Strong Clique Existence, Strong Clique Vertex Cover, and
Strong Clique Partition problems are co-NP-complete, and the Strong
Clique Partition Existence problem is co-NP-hard.

Due to space restrictions, most proofs are omitted and will appear in the full
version of this work.

2 Preliminaries

We consider only graphs that are finite and undirected. We refer to simple graphs
as graphs and to graphs with multiple edges allowed as multigraphs. Let G =
(V,E) be a graph with vertex set V (G) = V and edge set E(G) = E. For a subset
of vertices X ⊆ V (G), we will denote by G[X] the subgraph of G induced by X,
that is, the graph with vertex set X and edge set {{u, v} | {u, v} ∈ E(G); u, v ∈
X}. We denote the complete graph, the path, and the cycle graph of order n by
Kn, Pn, and Cn, respectively. The graph K3 will be also referred as a triangle.
By Km,n we denote the complete bipartite graph with parts of size m and n.
The fact that a graph G is isomorphic to a graph H will be denoted by G ∼= H.
We say that G is H-free if no induced subgraph of G is isomorphic to H.

The neighborhood of a vertex v in a graph G, denoted by NG(v) (or just N(v)
if the graph is clear from the context), is the set of vertices adjacent to v in G.
The cardinality of NG(v) is the degree of v in G, denoted by dG(v) (or simply
d(v)). The closed neighborhood, N(v) ∪ {v}, is denoted by N [v]. Given a graph
G and a set X ⊆ V (G), we denote by NG(X) the set of vertices in V (G) \ X
having a neighbor in X. The line graph of a graph G, denoted with L(G), is the
graph with vertex set E(G) and such that two vertices in L(G) are adjacent if
and only if their corresponding edges in G have a vertex in common. A matching
in a graph G is a set of pairwise disjoint edges. A matching is perfect if every
vertex of the graph is an endpoint of an edge in the matching. Given a graph
G, we denote by α(G) the maximum size of a stable set in G and by ω(G) the
maximum size of a clique in G.

We first recall a basic property of CIS graphs (see, e.g., [5]). An induced P4,
(a, b, c, d), in a graph G is said to be settled (in G) if G contains a vertex v
adjacent to both b and c and non-adjacent to both a and d.

Proposition 6. In every CIS graph each induced P4 is settled.

Given a clique C in G and a set S ⊆ V (G) \ C, we say that clique C is
dominated by S if every vertex of C has a neighbor in S. Using this notion,
simplicial cliques can be characterized as follows.
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Lemma 7. A clique C in a graph G is not simplicial if and only C is dominated
by V (G) \ C.

Proof. Note that C is simplicial if and only if there exists a vertex v ∈ C such
that C = N [v]. However, since C is a clique, we have C ⊆ N [v] for all vertices
v ∈ C. It follows that C is simplicial if and only if there exists a vertex v ∈ C
such that N(v) ⊆ C. Equivalently, C is not simplicial if and only every vertex
in C has a neighbor outside C, that is, C is dominated by V (G) \ C. ��

A similar characterization is known for strong cliques (see, e.g., the remarks
following [24, Theorem 2.3]).

Lemma 8. A clique C in a graph G is not strong if and only if it is dominated
by a stable set S ⊆ V (G) \ C.

3 A Characterization of Diamond-Free CIS Graphs

We first derive a property of diamond-free graphs in which every induced P4 is
settled.

Lemma 9. Let G be a connected diamond-free graph in which every induced P4

is settled. Then, either G is complete bipartite, or each edge e ∈ E(G) that is a
maximal clique in G is also a simplicial clique.

Proof. Suppose that G is not complete bipartite. Suppose that there is an edge
uv ∈ E(G) such that {u, v} is a non-simplicial maximal clique in G. Then, by
Lemma 7, N(v)\{u} 	= ∅ and N(u)\{v} 	= ∅. If x ∈ N(u)\{v} and y ∈ N(v)\{u},
then xy ∈ E(G) otherwise the path (x, u, v, y) is a non-settled induced P4 in G,
which is a contradiction. Moreover, since G is diamond-free, for any two different
vertices x, x′ ∈ N(u) \ {v} and two different vertices y, y′ ∈ N(v) \ {u} we have
xx′, yy′ /∈ E(G). This, together with the fact that N(u) ∩ N(v) = ∅ implies
that N(u) and N(v) are stable sets. Then, neither u nor v are contained in a
triangle. Hence, G[N [u] ∪ N [v]] is complete bipartite. Since G is connected and
not complete bipartite, we can assume without loss of generality that there is a
vertex w ∈ V (G) \ (N [u] ∪ N [v]) such that wx ∈ E(G) for some x ∈ N(u) \ {v}.
Then, (v, u, x, w) is a non-settled induced P4 in G, a contradiction. ��

Next, we analyze the global properties of an induced subgraph H in a con-
nected diamond-free CIS graph G such that H ∼= L(Kn,n) for some n ≥ 3.

Lemma 10. Let G be a connected diamond-free CIS graph. Suppose that G
contains an induced subgraph H such that H ∼= L(Kn,n) for some n ≥ 3. Then,
either all the 2n copies of Kn in H are maximal cliques in G or none of them
is a maximal clique in G. Furthermore, if all the 2n copies of Kn are maximal
cliques in G, then G = H.

We will also need the following technical lemma about diamond-free graphs.
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Lemma 11. Let G be a diamond-free graph. Let C ′ = {v1, v2, . . . , v�} be a clique
in G and let C1, . . . , C� be maximal cliques in G such that for every i ∈ {1, . . . , �}
we have Ci ∩ C ′ = {vi}, 2 ≤ � = |C ′| ≤ |Ci| and Ci ∩ Cj = ∅ for any j 	= i.
Then, there exists a stable set S ⊆ ⋃�

i=1 Ci in G − C ′ of size � − 1 such that
|NG(S) ∩ C ′| = |S|. Furthermore, if max�

i=1 |Ci| > �, then there exists a stable
set S ⊆ ⋃�

i=1 Ci in G − C ′ such that |S| = � and S dominates C ′.

We can now characterize the connected diamond-free CIS graphs. The result
shows that, apart from the clique simplicial diamond-free graphs, there are only
two highly structured infinite families of connected diamond-free CIS graphs.

Theorem 1. Let G be a connected diamond-free graph. Then G is CIS if and
only if G is either clique simplicial, G ∼= Km,n for some m,n ≥ 2 , or
G ∼= L(Kn,n) for some n ≥ 3.

Proof (sketch). It is not difficult to see that each of the three conditions is
sufficient for G to be CIS. To show necessity, consider a connected diamond-free
CIS graph G and suppose for a contradiction that it does not satisfy any of
the three conditions. Let C = {v1, . . . , vk} be a smallest maximal clique in G
that is not simplicial, and for each i ∈ {1, . . . , k}, let Ci 	= C be a maximal
clique containing vi. First observe that if k = 2, then by Proposition 6 and
Lemma 9 we have that G is complete bipartite, a contradiction, thus k ≥ 3.
Next, we show using Lemmas 8 and 11 that all cliques Ci have size k. Finally we
show that either Lemma 10 implies G ∼= L(Kk,k) or by using Lemma 11 we can
construct a stable set in V (G)\C dominating C, which leads to a contradiction by
Lemma 8. ��

4 Consequences

We now discuss several consequences of Theorem 1.

4.1 Large Cliques or Stable Sets in Diamond-Free CIS Graphs

Recall that every diamond-free graph G has either a clique or a stable set of
size at least |V (G)|1/3. For diamond-free CIS graphs, Theorem1 leads to an
improvement of the exponent to 1/2.

Lemma 12. Let G be a clique simplicial graph. Then α(G) · ω(G) ≥ |V (G)|.
Proof. Let C1, . . . , Ck be all the maximal cliques of G. Since G is clique simpli-
cial, each Ci is a simplicial clique. Selecting one simplicial vertex from each Ci

gives a stable set S of size k, and since every vertex is in some simplicial clique,
we infer that |V (G)| ≤ ∑k

i=1 |Ci| ≤ |S| · ω(G) ≤ α(G) · ω(G). ��

Theorem 2. Let G be a diamond-free CIS graph. Then α(G) · ω(G) ≥ |V (G)|.
Consequently, G has either a clique or a stable set of size at least |V (G)|1/2.



Strong Cliques in Diamond-Free Graphs 267

Proof. First we show that it suffices to prove the statement for connected graphs.
Let G be a disconnected diamond-free CIS graph, let C be a component of G
and let G′ = G − V (C). Then C and G′ are diamond-free CIS graphs, and by
induction on the number of components we may assume that α(C) · ω(C) ≥
|V (C)| and α(G′) · ω(G′) ≥ |V (G′)|. Since α(G) = α(C) + α(G′) and ω(G) =
max{ω(C), ω(G′)}, we obtain |V (G)| = |V (C)|+ |V (G′)| ≤ α(C) ·ω(G)+α(G′) ·
ω(G) = α(G) · ω(G).

Now let G be a connected diamond-free CIS graph. By Theorem 1, G is either
clique simplicial, G ∼= Km,n for some m,n ≥ 2, or G ∼= L(Kn,n) for some n ≥ 3.
If G is clique simplicial, then Lemma 12 yields |V (G)| ≤ α(G)·ω(G). If G ∼= Km,n

for some m,n ≥ 2, then |V (G)| = m+n ≤ 2 ·max{m,n} = ω(G) ·α(G). Finally,
if G ∼= L(Kn,n), then α(G) equals the maximum size of a matching in Kn,n, that
is, α(G) = n, and ω(G) equals the maximum degree of a vertex in Kn,n, that is,
ω(G) = n. Thus, in this case equality holds, |V (G)| = n2 = α(G) · ω(G). ��

4.2 Testing the CIS Property in the Class of Diamond-Free Graphs

Our next consequence is a linear-time algorithm for testing the CIS property
in the class of diamond-free graphs. The bottleneck to achieve linearity is the
recognition of the clique simplicial property. Instead of checking this property
directly, we check whether the graph is edge simplicial, that is, every edge is
contained in a simplicial clique. Clearly, every clique simplicial graph is edge
simplicial. While the converse implication fails in general, the two properties are
equivalent in the case of diamond-free graphs, where every edge is in a unique
maximal clique.

Recognizing if a general graph G = (V,E) is edge simplicial can be done in
time O(|V | · |E|) (see [13,34]). The algorithm is based on the observation that
within a simplicial clique, every vertex of minimum degree is a simplicial vertex
(see [12]). We show that in the case of diamond-free graphs, the running time
can be improved to O(|V | + |E|).

Given a graph G and a linear ordering σ = (v1, . . . , vn) of its vertices, the
σ-greedy stable set is the stable set S in G computed by repeatedly adding to
the initially empty set S the smallest σ-indexed vertex as long as the resulting
set is still stable. A degree-greedy stable set is any σ-greedy stable set where
σ = (v1, . . . , vn) satisfies d(vi) ≤ d(vj) for i < j. Note that a degree-greedy
stable set does not need to coincide with a stable set computed by the greedy
algorithm that iteratively selects a minimum degree vertex and deletes the vertex
and all its neighbors: to compute a degree-greedy stable set, the vertex degrees
are only considered in the original graph G, and not in the subgraphs obtained
by deleting the already selected vertices and their neighbors.

Our first lemma analyzes the structure of a degree-greedy stable set in a graph
in which the simplicial cliques cover all the vertices. In particular, it applies to
edge simplicial graphs.

Lemma 13. Let G be a graph in which every vertex belongs to a simplicial
clique and let S be a degree-greedy stable set in G. Then, S consists of simplicial
vertices only, one from each simplicial clique.
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Proof. Let σ = (v1, . . . , vn) be a linear ordering of V (G) with d(vi) ≤ d(vj) if
i < j and such that S is the σ-greedy stable set. Let C be a simplicial clique
in G and let vi be the simplicial vertex in C with the smallest index. Then, all
neighbors of vi have indices larger than i and therefore vi is selected to be in
S. This shows that S contains a vertex from C. Clearly, S cannot contain two
vertices from C since S is stable and C is a clique. Thus, S contains exactly one
vertex from every simplicial clique in G. Finally, suppose that S contains some
non-simplicial vertex v. By assumption on G, vertex v belongs to some simplicial
clique C. Let w be the vertex from C contained in S. Then w is simplicial and
thus w 	= v. This means that S contains two adjacent vertices v and w, which is
in contradiction with the fact that S is a stable set. Thus, every vertex in S is
simplicial. ��

Using Lemma 13 we now show the importance of degree-greedy stable sets
for testing if a given diamond-free graph is edge simplicial. The characterization
is based on the following auxiliary construction. Given a graph G = (V,E) and
a stable set S in G, we define the multigraph GS where V (GS) = V \ S and the
multiset of edges is given by

E(GS) =
⋃

v∈S

{xy | x 	= y and x, y ∈ NG(v)} .

Note that since S is a stable set in G, every edge in E(GS) indeed has both
endpoints in V \ S = V (GS).

Lemma 14. Let S be a degree-greedy stable set in a diamond-free graph G. Then
G is edge simplicial if and only if GS = G − S.

The condition given by Lemma 14 can be tested in linear time, see Algo-
rithm1. Together with Theorem 1, this leads to the following.

Theorem 3. There is a linear-time algorithm that determines whether a given
diamond-free graph G is CIS.

A graph G = (V,E) is general partition if there exists a set U and an assign-
ment of vertices x ∈ V to sets Ux ⊆ U such that xy ∈ E if and only if Ux∩Uy 	= ∅
and for each maximal stable set S in G, the sets Ux, x ∈ S form a partition of U .
It is known that G is a general partition graph if and only if every edge of G is
contained in a strong clique (see [30]). Clearly, every CIS graph is a general par-
tition graph, and the two properties are equivalent in the class of diamond-free
graphs. Therefore, Theorem 3 implies the following.

Corollary 15. There is a linear-time algorithm that determines whether every
edge of a given diamond-free graph G is in a strong clique.

4.3 Testing the CIS Property in Classes of F -free graphs

No good characterization or recognition algorithm for CIS graphs is known.
Recognizing CIS graphs is believed to be co-NP-complete [37], conjectured to
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Algorithm 1. Diamond-Free Edge Simplicial Recognition
Input: A diamond-free graph G given by adjacency lists (Lv : v ∈ V (G)).
Output: “Yes” if G is edge simplicial, “No” otherwise.

1: compute a linear order σ = (v1, . . . , vn) of the vertices of G such that
d(v1) ≤ . . . ≤ d(vn);

2: sort the adjacency list of each vertex in increasing order with respect to σ;
3: set S = ∅, all the vertices are unmarked;
4: for i = 1, . . . , n do
5: if vi is not marked then
6: mark all vertices in N(vi), S = S ∪ {vi};

7: compute the adjacency lists L−
w of G−S based on the order of V \S induced by σ;

8: if
∑

v∈S

(
d(v)+1

2

)
> |E(G)| then

9: return “No”;

10: for w ∈ V \ S do
11: L′

w = empty list;

12: for v ∈ S do
13: for w ∈ NG(v) do
14: append each element of NG(v) \ {w} at the end of L′

w;

15: for w ∈ V \ S do
16: if length(L′

w) �= length(L−
w) then

17: return “No”;

18: sort the adjacency lists L′
w based on the linear order of V \ S induced by σ;

19: for w ∈ V \ S do
20: if L′

w �= L−
w then

21: return “No”;

22: return “Yes”;

be co-NP-complete [38], and conjectured to be polynomial [5]. Using Theorem 3
together with some known results from the literature (on strong cliques, resp. CIS
graphs [2,5,24] along with [3,6,32,35]) implies that the CIS property can be
recognized in polynomial time in any class of F -free graphs where F has at most
4 vertices.

Theorem 4. For every graph F with at most 4 vertices, it can be determined
in polynomial time whether a given F -free graph is CIS.

5 Hardness Results

We consider five more decision problems related to strong cliques: Strong
Clique, Strong Clique Existence, Strong Clique Vertex Cover,
Strong Clique Partition, and Strong Clique Partition Existence (see
Sect. 1 for definitions). These problems were studied by Hujdurović et al. in [25],
who determined the computational complexity of these problems in the classes
of chordal graphs, weakly chordal graphs, line graphs and their complements,
and graphs of maximum degree at most three.
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In contrast with the problems of verifying whether every maximal clique is
strong, or whether every edge is in a strong clique, we prove that all the above
five problems are co-NP-hard in the class of diamond-free graphs. The hardness
proofs are obtained using a reduction from the 3-Colorability problem in
the class of triangle-free graphs: Given a triangle-free graph G, can V (G) be
partitioned into three stable sets? As shown by Kamiński and Lozin in [26], this
problem is NP-complete. Furthermore, it is clear that the problem remains NP-
complete if we additionally assume that the input graph has at least five vertices
and minimum degree at least three. Let G denote the class of all triangle-free
graphs with at least five vertices and minimum degree at least 3.

Theorem 16. The 3-Colorability problem is NP-complete in the class G.
The reductions are based on the following construction. Given a graph G ∈ G,

we associate to it two diamond-free graphs G′ and G′′, defined as follows. The
vertex set of G′ is V (G) × {0, 1, 2, 3}. For every v ∈ V (G), the set of vertices of
G′ with value v in the first coordinate forms a clique (of size 4); we will refer to
this clique as Cv. The set of vertices of G′ with value 0 in the second coordinate
forms a clique C (of size |V (G)|). For every i ∈ {1, 2, 3} and every two distinct
vertices u, v ∈ V (G), vertices (u, i) and (v, i) are adjacent in G′ if and only if
u and v are adjacent in G. There are no other edges in G′. The graph G′′ is
obtained from the graph G′ by adding, for each vertex w ∈ V (G′) \ C, a new
vertex w′ adjacent only to w. See Fig. 1 for an example.

G

G′

(v6, 3)

C

v6
(v6, 0) (v6, 2)(v6, 1)

v1 (v1, 3)

G′′

(v6, 3)

C

(v6, 0) (v6, 1)

(v1, 3)

(v1, 3)′

(v6, 3)′

Fig. 1. Transforming G into G′ and G′′.

Proposition 17. Let G ∈ G and let G′ and G′′ be the graphs constructed from
G as described above. Then, G′ and G′′ are diamond-free and the following state-
ments are equivalent.

1. G is not 3-colorable.
2. C is a strong clique in G′.
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3. G′ has a strong clique.
4. C is a strong clique in G′′.
5. Every vertex of G′′ is contained in a strong clique.
6. Every clique from the following collection of cliques in G′′ is strong:

{C} ∪ {{w,w′} | w ∈ V (G′) \ C} .

7. The vertex set of G′′ can be partitioned into strong cliques.

Using Proposition 17 we derive the following hardness results.

Theorem 5. When restricted to the class of diamond-free graphs, the Strong
Clique, Strong Clique Existence, Strong Clique Vertex Cover, and
Strong Clique Partition problems are co-NP-complete, and the Strong
Clique Partition Existence problem is co-NP-hard.

6 Conclusion

We established the complexity of seven problems related to strong cliques in the
class of diamond-free graphs. Five of these problems remain intractable and the
remaining two become solvable in linear time. Our work refines the boundaries of
known areas of tractability and intractability of algorithmic problems related to
strong cliques in graphs. Besides the open problems of the complexity of testing
whether every maximal clique is strong, or whether every edge is contained in
a strong clique, many other interesting questions remain. For example, it is still
open whether there exists a polynomial-time algorithm to recognize the class of
strongly perfect graphs, introduced in 1984 by Berge and Duchet [8] and defined
as graphs in which every induced subgraph has a strong stable set. To the best
of our knowledge, the recognition complexity of strongly perfect graphs is also
open when restricted to the class of diamond-free graphs.
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Abstract. We consider the complexity of recognizing k-clique-extendible
graphs (k-C-E graphs) introduced by Spinrad (Efficient Graph Represen-
tations, AMS 2003), which are generalizations of comparability graphs.
A graph is k-clique-extendible if there is an ordering of the vertices such
that whenever two k-sized overlapping cliques A and B have k − 1 com-
mon vertices, and these common vertices appear between the two vertices
a, b ∈ (A \ B) ∪ (B \ A) in the ordering, there is an edge between a and
b, implying that A ∪ B is a (k + 1)-sized clique. Such an ordering is said
to be a k-C-E ordering. These graphs arise in applications related to mod-
elling preference relations. Recently, it has been shown that a maximum
sized clique in such a graph can be found in nO(k) time [Hamburger et
al. 2017] when the ordering is given. When k is 2, such graphs are pre-
cisely the well-known class of comparability graphs and when k is 3 they
are called triangle-extendible graphs. It has been shown that triangle-
extendible graphs appear as induced subgraphs of visibility graphs of sim-
ple polygons, and the complexity of recognizing them has been mentioned
as an open problem in the literature.

While comparability graphs (i.e. 2-C-E graphs) can be recognized in
polynomial time, we show that recognizing k-C-E graphs is NP-hard for
any fixed k ≥ 3 and co-NP-hard when k is part of the input. While our
NP-hardness reduction for k ≥ 4 is from the betweenness problem, for
k = 3, our reduction is an intricate one from the 3-colouring problem.
We also show that the problems of determining whether a given order-
ing of the vertices of a graph is a k-C-E ordering, and that of finding an
�-sized (or maximum sized) clique in a k-C-E graph, given a k-C-E order-
ing, are complete for the parameterized complexity classes co-W[1] and
W[1] respectively, when parameterized by k. However we show that the
former is fixed-parameter tractable when parameterized by the treewidth
of the graph.

1 Introduction and Motivation

An undirected graph is a comparability (or transitively orientable) graph if the
edges can be oriented in a way that for any three vertices u, v, w whenever there
is a (directed) edge from u to v and an edge from v to w, there is an edge from u
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https://doi.org/10.1007/978-3-030-60440-0_22

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-60440-0_22&domain=pdf
https://doi.org/10.1007/978-3-030-60440-0_22


Recognizing k-Clique Extendible Orderings 275

to w. They are a well-studied class of graphs [3,6] and they can be recognized in
polynomial time [5]. Spinrad [8] generalized this class of graphs and introduced
the notion of k-clique-extendible orderings (abbr. k-C-E ordering) on the vertices
of a graph defined as follows.

Definition 1 (k-C-E ordering, Spinrad [8]). An ordering φ of the vertices of
a graph G = (V,E) is a k-clique-extendible ordering (or k-C-E ordering) of G if,
whenever X and Y are two overlapping cliques of size k such that |X∩Y | = k − 1,
X \ Y = {a}, Y \ X = {b}, and all the vertices in X ∩ Y occur between a and b
in φ, we have (a, b) ∈ E(G) and hence X ∪ Y is a (k + 1)-clique.

A graph G is said to be k-clique-extendible (k-C-E for short) if there exists a
k-clique-extendible ordering φ of G. It can be observed that comparability graphs
are exactly the 2-clique-extendible graphs. Spinrad [8] observed that 3-clique-
extendible graphs, also called triangle-extendible graphs, arise in the visibility
graphs of simple polygons and that a maximum clique can be found in polynomial
time in such graphs if a 3-clique-extendible ordering is given. This result has
been generalized to obtain an nO(k) algorithm for finding a maximum clique
in k-C-E graphs (given with a k-C-E ordering) on n vertices [4]. The question
of whether there is a polynomial time algorithm to recognise 3-C-E graphs has
been mentioned as an open problem [8].

We believe that k-C-E graphs are natural generalizations of comparability
graphs and our main contribution in this paper is a serious study of this class of
graphs. Our results show that recognizing k-C-E graphs is NP-hard for any fixed
k ≥ 3 and also co-NP-hard when k is part of the input. This solves the open
problem regarding the complexity of recognizing 3-C-E graphs and we hope that
our results will trigger further study of k-C-E graphs in general.

If an ordering of the vertices is given, then it is easy to get an nO(k) algorithm
to determine whether it is a k-C-E ordering of the graph (see Sect. 4). We show
that this problem is co-NP-complete and also complete for the parameterized
complexity class co-W[1]. The reduction also implies that unless the Exponen-
tial Time Hypothesis fails, this problem does not have an f(k)no(k) algorithm
for any function f of k. However, we show that the problem is fixed-parameter
tractable when parameterized by the treewidth of the graph, that is, there is an
f(tw)nO(1) algorithm for the problem, where tw is the treewidth of the graph.

Organization of the Paper. In the next section, we give the necessary nota-
tion and definitions. In Sect. 3, we prove some results about k-C-E graphs which
are used in our reductions in later sections. In Sect. 4, we show that the problem
of checking whether a given ordering is a k-C-E ordering is co-NP-complete
and co-W[1]-complete. In this section, we also show that the problem is fixed-
parameter tractable when parameterized by the treewidth of the graph. In
Sect. 5 we show that the nO(k) algorithm for finding maximum clique in a k-
C-E graph [4] is likely optimal. Sect. 6 gives our main NP-hardness reductions
for the problem of recognizing k-C-E graphs. We give two reductions, one for
k = 3 and another for k ≥ 4. We list some open problems in Sect. 7.
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2 Preliminaries

All graphs considered in this paper are undirected and simple. Given a graph G,
by V (G) we denote the set of vertices in the graph and by E(G) we denote the
set of edges in the graph. Let G be a graph. For a subset of vertices S ⊆ V (G),
we define G[S] as the induced subgraph of G having vertex set S.

Given a linear order φ of a set A, we write a <φ b to mean that a and b are two
elements of A such that a occurs before b in φ. Also, we write φ = (a1, a2, . . . , an)
to mean that A = {a1, a2, . . . , an} and a1 <φ a2 <φ · · · <φ an. We say that a
vertex b comes between vertices a and c in φ if a <φ b <φ c or c <φ b <φ a. By
φ−1 we denote the reverse of φ, that is, a <φ−1 b if and only if b <φ a.

Given an ordering φ of a set V and a set S ⊆ V , we define φ|S to be the
ordering of the elements of S in the order in which they occur in φ. Further,
we say that a, b ∈ S are the endpoints of S if a is the first element of φ|S
and b is the last element of φ|S . Given two disjoint sets A and B, and orderings
φ1 = (a1, a2, . . . , an) of the set A and φ2 = (b1, b2, . . . , bm) of the set B, we define
φ1 + φ2 = (a1, a2, . . . , an, b1, b2, . . . , bm) that is an ordering on the set A ∪ B,
that is, + is the concatenation operator on orderings. We will abuse notation to
allow sets to be used with the concatenation operator: if γ is an expression that
is a concatenation of orderings and sets, we say that an ordering φ is of the form
γ, if there exists an ordering for each set appearing in γ such that replacing each
set with its corresponding ordering in γ yields the ordering φ.

A clique in a graph is a set of vertices that are pairwise adjacent in the
graph. An independent set is a set of vertices that are pairwise non-adjacent.
Given subsets S,A,B ⊆ V (G), we say that S separates A and B if there is
no path from A to B in G[V (G) \ S]. For a pair u, v of nonadjacent vertices
of a graph, by identifying u with v, we mean adding the edges (u,w) for all
w ∈ N(v) \ N(u) and then deleting v.

We denote by K−
n the graph obtained by removing an edge from the complete

graph Kn on n vertices. Given an ordering φ of the vertices of a graph G,
we say that an induced subgraph H of G is an ordered K−

t in φ if φ|V (H) =
(h1, h2, . . . , ht) and E(H) = {(hi, hj) | 1 ≤ i < j ≤ t} \ {(h1, ht)}. It follows
that an ordering of the vertices of a graph is a k-C-E ordering if and only if it
contains no ordered K−

k+1. We refer the reader to the full version of this paper [2]
for a definition of fixed-parameter tractability and the notion of parameterized
reductions, treewidth and the Exponential Time Hypothesis.

3 Basic Results

We start with the following observations which are used throughout the paper.

Observation 1. An ordering φ = {v1, v2, . . . , vn} is a k-C-E ordering, if and
only if its reverse ordering, φ−1 = {vn, vn−1, . . . , v1} is also a k-C-E ordering.

Observation 2. Given a graph G and an induced subgraph H of G, if an order-
ing φ is a k-C-E ordering of G, then φ|V (H) is a k-C-E ordering of H. Thus
every induced subgraph of a k-clique-extendible graph is also k-clique-extendible.
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v1 v2 v3 v4 v5

u2,5 u1,5 u1,2

K

I

Fig. 1. Diagram depicting F3. Edges in the clique are not shown, and only 3 of the ui,j

vertices are shown to avoid visual clutter.

Observation 3. If G is a k-colourable graph with colour classes V1, . . . , Vk, then
any ordering φ of V (G) of the form V1 + V2 + · · · + Vk is a k-C-E ordering of
G. Thus, every k-colourable graph is k-clique-extendible.

It is not difficult to see that any k-clique-extendible ordering of a graph is also
a (k + 1)-clique-extendible ordering of it. Thus, every k-clique-extendible graph
is also a (k + 1)-clique-extendible graph. Note that every graph on n vertices is
trivially n-clique-extendible. So the notion of k-clique-extendibility gives rise to
a hierarchy of graph classes starting with comparability graphs and ending with
the entire set of graphs. This motivates the use of k as a graph parameter.

We prove a lemma that will help us construct a k-C-E ordering of a graph
from k-C-E orderings of its subgraphs.

Lemma 1 (�).1 For a graph G, let V1, V2 ⊆ V (G) and let σ1, σ2 be k-C-E
orderings of G[V1] and G[V2] respectively for any k ≥ 2, such that (1.) V1 ∪V2 =
V (G), (2.) V1 ∩ V2 separates V1 and V2, (3.) σ1|V1∩V2 = σ2|V1∩V2 and (4.) if C
is a (k − 1)-clique in V1 ∩ V2 and u, v are the endpoints of C in σ1, then every
vertex a ∈ V1 \ V2 that is adjacent to all of C satisfies u <σ1 a <σ1 v. Then G
has a k-C-E ordering φ such that φ|V1 = σ1 and φ|V2 = σ2.

Forbidden Subgraph. We construct a forbidden subgraph for the class of
k-clique-extendible graphs which is used to build gadgets in our NP-hard
reductions.

For a positive integer k, let K = {v1, v2, . . . , v2k−1} be a (2k − 1) sized
clique. For every pair of vertices vi and vj in K, add a vertex ui,j such that
ui,j is adjacent to every vertex in K except vi and vj . Let I = {ui,j | i, j ∈
[2k − 1], i < j} be the set of all such ui,j for every pair of vertices in K. Let Fk

be the graph thus obtained having vertex set K ∪ I. See Fig. 1 for an example
that demonstrates the adjacencies between I and K when k = 3.

Lemma 2 (�). Fk is not k-clique-extendible.

4 Verifying a k-C-E Ordering

In this section, we prove that even verifying whether an ordering is a k-clique-
extendible ordering is hard (assuming k is considered as part of the input, rather
than a constant).
1 Refer to the full version of this paper [2] for the proofs of results marked with a �.
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Verify k-C-E Ordering
Input: Graph G, integer k and an ordering φ of V (G)
Question: Is φ a k-C-E ordering of G?

Verify k-C-E Ordering has a simple nO(k) algorithm as one can enumer-
ate all

(
n

k+1

)
subgraphs isomorphic to K−

k+1, and check if any of them are ordered
with respect to the ordering. We prove that the problem is co-W[1]-complete
and co-NP-complete by a reduction from and to the Clique problem, and that
the problem also cannot have an f(k)no(k) algorithm assuming ETH. The reduc-
tion maps the YES instances of Verify k-C-E Ordering to the NO instances
of Clique and vice-versa. Hence showing that Verify k-C-E Ordering is
co-NP-complete.

Theorem 1 (�). Verify k-C-E Ordering is co-W[1]-complete, co-NP-
complete and there is no f(k)no(k) algorithm for it unless ETH fails.

If all the k-cliques in a graph can be enumerated in time O(f(k)poly(n))
for some function f , then we can verify if an ordering is a k-C-E ordering in
O(f(k)poly(n)) time by checking every pair of such cliques to see if they form
an ordered K−

k+1. We show that a similar situation happens if G has bounded
treewidth and so the verification problem becomes easy.

Theorem 2 (�). Given an ordering of the vertices of a graph G on n vertices,
we can verify whether it is a k-C-E ordering of G in time O(twO(tw)poly(n)),
where tw is the treewidth of G.

5 Hardness of Finding Clique

There exists an nO(k) algorithm for finding a maximum clique in a k-C-E
graph [4] when a k-C-E ordering is given. In this section, we will prove that
this is most likely optimal, that is, we prove that unless ETH fails, there is no
f(k)no(k) algorithm for finding a maximum clique in a k-C-E graph even if the
ordering is given. We will reduce from the following problem.

Multicoloured Clique
Input: Graph G, a partition V1, . . . , Vk of V (G)
Question: Does there exist a k-clique C in G such that |C ∩Vi| = 1 for each
i ∈ [k]?

Multicoloured Clique is W[1]-hard and cannot be solved in time
f(k)no(k) unless ETH fails [1]. Given an instance G,V1, . . . , Vk of Multi-
coloured Clique, we will first remove all edges that lie within each parti-
tion Vi. Hence the graph is now k-colourable with colour classes V1, . . . , Vk. Any
k-colourable graph is also a k-C-E graph by Observation 3, and we can use an
ordering φ of the form V1 + V2 + · · · + Vk to find the maximum clique size of G
using an algorithm to find maximum clique in a k-C-E graph. If the clique size is
equal to k, we output yes, otherwise output no. The following theorem follows.
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Theorem 3. Finding a maximum clique in a k-C-E graph, even if given a k-
C-E ordering of the graph, is NP-hard, W[1]-hard and cannot be solved in time
f(k)no(k) unless ETH fails.

6 Finding a k-C-E Ordering

In this section, we consider the following problem and prove the main result of
the paper.

Find k-C-E Ordering
Input: Graph G, integer k
Question: Is G a k-C-E graph?

Note that this is possibly a harder problem than Verify k-C-E Ordering,
but still Theorem 1 doesn’t immediately imply even co-W[1]-hardness for this
problem, as one may be able to determine whether G has a k-C-E ordering
without even verifying an ordering. Our main result in this section is to show
that Find k-C-E Ordering is NP-hard for each k ≥ 3. First we will show that
Find k-C-E Ordering is co-W[1]-hard and co-NP-hard. This result rules out
algorithms running in time f(k)no(k) assuming ETH (where as the NP-hardness
rules out even nf(k) algorithms assuming P�=NP).

Theorem 4 (�). Find k-C-E Ordering is co-W[1]-hard and co-NP-hard.

6.1 NP-Hardness for k ≥ 4

We now prove the NP-hardness of Find k-C-E Ordering by a reduction from
Betweenness defined below. The reduction strategy works for all k ≥ 4 but
not for k = 3 and so we give a different reduction for k = 3 in the next section.

Betweenness
Input: Universe U of size n, and a set of triples T = {t1, . . . , tm} where
each ti = (ai, bi, ci) is an ordered triple of elements in U
Question: Does there exist an ordering φ of U such that either ai <φ bi <φ

ci or ci <φ bi <φ ai for each triple (ai, bi, ci) ∈ T ?

Betweenness is NP-hard [7]. To prove our reduction, we will require a
gadget that takes as input a graph G and 3 vertices x, y, z ∈ V (G) and converts
them to a modified graph G′ in such a way that either x <φ y <φ z or z <φ y <φ

x for any k-C-E ordering φ of G′. Moreover, if φ is a k-C-E ordering of G such
that x <φ y <φ z or z <φ y <φ x then φ is also a k-C-E of G′. Thus the gadget
‘prunes’ out the orderings of the graph where y does not lie between x and z
in the ordering. The k-C-E orderings of G′ are exactly the k-C-E orderings φ of
G where either x <φ y <φ z or z <φ y <φ x. Thus to construct the reduction,
we will start with a graph where all n! orderings are valid k-C-E orderings, and
apply the gadget for each (ai, bi, ci) ∈ T . After applying the gadgets, we will
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Fig. 2. The construction of the gadget. Dotted lines indicate vertices identified to each
other.

have pruned out all the ‘bad’ orderings and we will remain with exactly the set
of orderings in which bi lies between ai and ci for each i ∈ [m]. To describe the
construction of the gadget, first we need to define an auxiliary graph Γk.

Definition of the Auxiliary Graph. Recall the graph Fk, defined in Sect. 2
on the vertex set K ∪ I where K = {v1, v2, . . . , v2k−1} induces a clique on 2k −1
vertices, and every vertex in I is indexed by a pair of vertices of K to which
the vertex is not adjacent. Pick arbitrary vertices v1 and v2 of K and let u1,2 be
the vertex of I that is adjacent to every vertex of K except v1 and v2. Define
Γk = Fk \ {u1,2}. Note that Γk has O(k2) many vertices.

Lemma 3 (�). In any k-C-E ordering φ of Γk, v1 and v2 are the endpoints of
K. Furthermore, there exists a k-C-E ordering φ of Γk such that v1 is the first
element in φ and v2 is the last.

The Gadget. We will use Γk as a gadget to constrict the set of orderings a
graph can have. Pick an arbitrary vertex v3 ∈ K such that v3 �= v1, v2. Given
a graph G, applying the gadget on a triplet of vertices x, y, z ∈ V (G) involves
taking the disjoint union of G and Γk and identifying the vertices x with v1,
y with v3 and z with v2 (see Fig. 2). For technical reasons, we will only be
applying the gadget on vertices x, y, z that induce a clique in G. Since Γk has
O(k2) many vertices, the gadget will add O(k2) vertices to G, keeping it well
within a polynomial factor. We use notation G′ = Ck(G, x, y, z) to denote “G′

is obtained by applying the gadget on G on vertices x, y, z”. The valid k-C-E
orderings of G′ should exactly be the k-C-E orderings of G where y does not
come between x and z. The following lemmas give us exactly that.

Lemma 4 (�). Let G be a graph and let x, y, z ∈ V (G) be vertices of G. In any
k-C-E ordering φ of G′ = Ck(G, x, y, z), y comes between x and z.

Lemma 5 (�). Let k ≥ 4 and let G be a graph that has a k-C-E ordering ψ
such that y comes between x and z for some three vertices x, y, z ∈ V (G) that
form a 3-clique in G, then G′ = Ck(G, x, y, z) has a k-C-E ordering φ such that
φ|V (G) = ψ.
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The Reduction. We are now ready to prove that the problem of checking
whether a graph has a k-C-E ordering is NP-hard for each k ≥ 4.

Theorem 5. Find k-C-E Ordering is NP-hard for each k ≥ 4.

Proof. We will reduce from Betweenness. Let I = (U, T ) be the input
Betweenness instance. We want to construct a graph G′ such that G′ has
a k-C-E ordering if and only if the Betweenness instance is satisfiable. We will
construct a graph with vertex set equal to the universe U and apply the gadget for
every triple (ai, bi, ci) in T . We do this iteratively, that is, we first define G0 to be
the complete graph on vertex set U and then construct Gi = Ck(Gi−1, ai, bi, ci)
for each i ∈ [m] (where m is the number of triples in T ). The final graph G′ is
equal to Gm. There are m many calls to the gadget and each gadget adds O(k2)
vertices to G′. So the final size of G′ is O(n + mk2) (where n is the size of U),
which is polynomial in n and m.

Claim (�). G′ has a k-C-E ordering if and only if I is a Yes-instance.

The theorem follows from the above claim. 	

The above reduction shows that Find k-C-E Ordering is NP-hard. From

Theorem 4, Find k-C-E Ordering is also co-NP-hard. Thus it is unlikely that
the problem is in NP or in co-NP. Moreover, it is easy to verify that the problem
lies in Σ2, as one can simply guess the ordering φ and use a co-NP machine
(Theorem 1) to check whether φ is a k-C-E ordering. Thus it is an open question
whether Find k-C-E Ordering is Σ2-complete.

Remark (1). It is important to note that the problem is not co-NP-hard when
k is a fixed constant as opposed to it being given as a input. When k is fixed, the
k-C-E ordering itself is an NP certificate for the problem, as given an ordering
it is easy to check whether it is a k-C-E ordering for constant k. Thus, when k
is constant, the problem is NP-complete. Indeed, the proof of co-NP-hardness
in Theorem 1 assumes that k is given as an input.

Remark (2). The reduction in Theorem 5 does not work for k = 3 due to
technicalities that arise in order to satisfy the fourth condition of Lemma1, due
to which we require that |V (G) ∩ V (Γk)| ≤ k − 1 (see proof of Lemma 5). Since
|V (G) ∩ V (Γk)| = |{x, y, z}| = 3 in the gadgets we construct, this forces k to be
at least 4. We give a separate proof for NP-hardness of k = 3 in the following
section that uses some different ideas.

6.2 NP-Hardness for k = 3

In this section, we prove that the problem of finding a 3-C-E ordering is NP-
hard. We will reduce from the 3-Colouring problem. Given a graph G and an
ordering φ of V (G), we say that three edges (u, v), (w, x), (y, z) ∈ E(G) form a
disjoint triple in φ if u <φ v ≤φ w <φ x ≤φ y <φ z. Here x ≤φ y means that
either x = y or x <φ y.
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Observation 4 (�). Let G be a 3-colourable graph and let C1, C2, C3 be a par-
tition of V (G) into three independent sets. Then any ordering φ of V (G) of the
form C1 + C2 + C3 contains no disjoint triple.

Observation 5 (�). Let G be any graph. If there is an ordering φ of V (G) that
contains no disjoint triple, then G is 3-colourable.

It follows from Observations 4 and 5 that a graph G is 3-colourable if and
only if there is an ordering of its vertex set containing no disjoint triple.

Another observation is that in any 3-C-E ordering φ of G, for any pair of
non-adjacent vertices u, v ∈ V (G), the vertices that are adjacent to both u and
v and lie between u and v in φ must be an independent set in G. Indeed, if there
is an edge (a, b) such that u <φ a <φ b <φ v and a, b are adjacent to both u
and v, then G[{u, a, b, v}] is an ordered K−

4 in φ. This suggests a reduction from
3-Colouring. The idea is that, associated to every edge e = (u, v) ∈ E(G), we
will add a vertex te1, and a pair of adjacent vertices te2 and te3. We will add edges
so that the t2 vertices and t3 vertices together form a clique and the t1 vertices
form an independent set. We also add edges between all t2, t3 vertices and t1
vertices. We will add a gadget to ensure that te1, t

e
2, t

e
3 all lie between u and v in

any 3-C-E ordering of G′.
If G is not 3-colourable, then for any ordering φ of V (G′), there will

be a disjoint triple in φ|V (G). If the disjoint triple is formed by the edges
(u, v), (w, x), (y, z) of G, where u <φ v ≤φ w <φ x ≤φ y <φ z, then the vertices
t
(u,v)
1 , t

(w,x)
2 , t

(w,x)
3 , t

(y,z)
1 form an ordered K−

4 in φ, and hence there can be no
3-C-E ordering of G′. On the other hand, our construction makes sure that if
G is a 3-colourable graph, then there exists a 3-C-E ordering for G′. We now
describe the reduction in detail.

The Construction. Given a graph G, we construct a supergraph G′ as
explained below (also see Fig. 3). For subsets A,B ⊆ V (G), by “join A and
B”, we mean that we add all possible edges between vertices in A and vertices
in B. To construct the vertex set of G′, we take the vertex set of G and add the
following.

1. Add 4 sets of vertices A = {a, a1, a2, a3}, B = {b, b1, b2, b3}, C = {c, c1, c2, c3}
and D = {d, d1, d2, d3}

2. Add the sets of vertices F = {fe
i | e ∈ E(G), i ∈ {1, 2, . . . , 6}} and T = {tei |

e ∈ E(G), i ∈ {1, 2, 3}}

To construct the edge set of G′, we take the edge set of G and add the
following.

1. Add edges to make A,B,C and D into cliques of size 4 each.
2. Add edges to make tei , f

e
2i−1, f

e
2i into a clique, for each edge e ∈ E(G) and

i ∈ [3]
3. Join {a1, a2, a3} and {b1, b2, b3}
4. Join {b1, b2, b3} and {c1, c2, c3}
5. Join {c1, c2, c3} and {d1, d2, d3}
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Fig. 3. The construction of G′ from G. The vertices inside each shaded block form
a clique. An edge between a vertex u and a block means that u is adjacent to every
vertex in the block, and an edge between two blocks means that every vertex in one
block is adjacent to every vertex in the other block. Note that an edge between vertices
a and b is denoted as ab instead of (a, b) to reduce clutter.

6. Join {d1, d2, d3} and {a1, a2, a3}
7. Join {a1, a2, a3, b1, b2, b3} and V (G)
8. Join {c1, c2, c3, d1, d2, d3} and V (G) ∪ F

9. Add edges (f (u,v)
i , u) and (f (u,v)

i , v), for each (u, v) ∈ E(G) and i ∈ {1, . . . , 6}
10. Add edges to make

⋃
e∈E(G){te2, t

e
3} into a clique

11. Join
⋃

e∈E(G) te1 and
⋃

e∈E(G){te2, t
e
3}

Lemma 6. If G′ has a 3-C-E ordering then G is 3-colourable.

Proof. Suppose that φ is a 3-C-E ordering of G′. By Observation 5, we only need
to show that there is no disjoint triple in the ordering φ|V (G). We can assume
without loss of generality that there exist distinct i, j ∈ {1, 2, 3} such that in the
ordering φ, we have ai <φ aj <φ a (reversing the ordering φ if necessary; recall
Observation 1). If there is a vertex w ∈ V (G) ∪ {b1, b2, b3, d1, d2, d3} such that
w <φ ai, then w, ai, aj , a form an ordered K−

4 in φ, which contradicts the fact
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that φ is a 3-C-E ordering. Therefore, we can assume without loss of generality
that the vertex a1 occurs before every vertex of V (G) ∪ {b1, b2, b3, d1, d2, d3} in
the ordering φ. This also means that if there exist distinct i, j ∈ {1, 2, 3} such that
bi <φ bj <φ b, then a1, bi, bj , b would form an ordered K−

4 in φ. Thus, we conclude
that there exist distinct i, j ∈ {1, 2, 3} such that b <φ bi <φ bj , and arguing
as before, we assume without loss of generality that the vertex b1 occurs after
every vertex of V (G) ∪ {a1, a2, a3, c1, c2, c3} in the ordering φ. Now if there exist
distinct i, j ∈ {1, 2, 3} such that c <φ ci <φ cj , then c, ci, cj , b1 form an ordered
K−

4 in φ. Thus, there exist distinct i, j ∈ {1, 2, 3} such that ci <φ cj <φ c,
and reasoning as before, we can assume without loss of generality that c1 occurs
before every vertex in V (G)∪{b1, b2, b3, d1, d2, d3}. Using similar arguments, we
conclude that d1 occurs after every vertex in V (G) ∪ {a1, a2, a3, c1, c2, c3} in φ.

Claim. For every edge (u, v) ∈ E(G), all the vertices in {f
(u,v)
i : 1 ≤ i ≤ 6} occur

between u and v in φ.

Proof. Suppose that there exists i ∈ {1, 2, . . . , 6} such that f
(u,v)
i <φ u <φ v.

Then the vertices f
(u,v)
i , u, v, b1 form an ordered K−

4 in φ, which contradicts
the fact that φ is a 3-C-E ordering. Similarly, if u <φ v <φ f

(u,v)
i for some

i ∈ {1, 2, . . . , 6}, then a1, u, v, f
(u,v)
i form an ordered K−

4 in φ; again a contra-
diction. 	


Claim. For every edge e ∈ E(G) and i ∈ {1, 2, 3}, the vertex tei occurs between
fe
2i−1 and fe

2i in φ.

Proof. Since in the ordering φ, c1 occurs before every vertex in V (G) and d1
occurs after every vertex in V (G), it follows from the above claim that c1 occurs
before every vertex in F and d1 occurs after every vertex in F . Now suppose that
for some e ∈ E(G) and i ∈ {1, 2, 3}, we have fe

2i−1, f
e
2i <φ tei . Then the vertices

c1, f
e
2i−1, f

e
2i, t

e
i form an ordered K−

4 in φ, which is a contradiction. Similarly,
if tei <φ fe

2i−1, f
e
2i, then the vertices tei , f

e
2i−1, f

e
2i, d1 form an ordered K−

4 in φ,
again a contradiction. 	


From the above two claims, it follows that for any edge (a, b) ∈ E(G) and
i ∈ {1, 2, 3}, the vertex t

(a,b)
i occurs between a and b in φ. Now suppose for the

sake of contradiction that (u, v), (w, x), (y, z) ∈ E(G) form a disjoint triple in
φ|V (G), where u <φ v ≤φ w <φ x ≤φ y <φ z. Then we have u <φ t

(u,v)
1 <φ

v ≤φ w <φ t
(w,x)
2 , t

(w,x)
3 <φ x ≤φ y <φ t

(y,z)
1 <φ z. But then the vertices

t
(u,v)
1 , t

(w,x)
2 , t

(w,x)
3 , t

(y,z)
1 form an ordered K−

4 in φ, a contradiction. 	


Lemma 7 (�). If G is 3-colourable then G′ has a 3-C-E ordering.

Lemma 6 and Lemma 7 prove the correctness of the reduction and thus we
have the following theorem.

Theorem 6. Find k-C-E Ordering is NP-hard for k = 3.
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7 Conclusion

We have shown that the problem of determining whether a given graph is a k-C-
E is NP-hard for each k ≥ 3 and co-NP-hard for general k. Finding a maximum
clique in a k-C-E graph on n vertices is known to have an nO(k) algorithm when a
k-clique-extendible ordering is given, which we prove to be optimal. It is also an
open problem mentioned before [8] whether we can find a maximum clique in a
k-C-E graph in polynomial time for a fixed k, if given only the adjacency matrix
of the graph. Finally, it would be interesting to know polynomial time solvable
problems in k-C-E graphs, even for k = 3. As triangle free graphs and diamond-
free graphs are 3-C-E graphs, we know that the independent set problem and
the colouring problem are NP-hard in these classes of graphs.

It would also be interesting to study whether these graphs can be recognised
approximately. There are two suitable notions for approximation. One is the
following: An algorithm is said to be an α-factor approximation (for α ≥ 1) if,
given a graph G and integer k, it either outputs a (αk)-C-E ordering or concludes
that no k-C-E ordering exists for G. The second notion is the following: An
algorithm is said to be a α-factor approximation (for α ≤ 1) if, given a graph G
and integer k, outputs an ordering φ such that at most α fraction of the induced
K−

k+1 in the graph are ordered in φ. Note that solving this problem for α = 0 is
equivalent to solving Find k-C-E Ordering.

For the second notion of approximation, there is an easy ( 2
k(k+1) )-factor

approximation. Simply output a random ordering of the vertices of G. The prob-
ability that any given induced K−

k+1 is ordered is 2
k(k+1) . Thus by linearity of

expectation, a 2
k(k+1) fraction of all the induced K−

k+1 in G will be ordered.
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Abstract. A graph G = (V,E) is a double-threshold graph if there exist
a vertex-weight function w : V → R and two real numbers lb, ub ∈ R

such that uv ∈ E if and only if lb ≤ w(u) + w(v) ≤ ub. In the litera-
ture, those graphs are studied as the pairwise compatibility graphs that
have stars as their underlying trees. We give a new characterization of
double-threshold graphs, which gives connections to bipartite permuta-
tion graphs. Using the new characterization, we present a linear-time
algorithm for recognizing double-threshold graphs. Prior to our work,
the fastest known algorithm by Xiao and Nagamochi [COCOON 2018]
ran in O(n6) time, where n is the number of vertices.
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1 Introduction

A graph is a threshold graph if there exist a vertex-weight function and a real
number called a weight lower bound such that two vertices are adjacent in the
graph if and only if the associated vertex weight sum is at least the weight lower
bound. Threshold graphs and their generalizations are well studied because of
their beautiful structures and applications in many areas [5,12]. In particular,
the edge-intersections of two threshold graphs, and their complements (i.e., the
union of two threshold graphs) have attracted several researchers in the past, and
recognition algorithms with running time O(n5) by Ma [11], O(n4) by Raschle
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and Simon [15], and O(n3) by Sterbini and Raschle [17] have been developed,
where n is the number of vertices.

In this paper, we study the class of double-threshold graphs, which is a proper
generalization of threshold graphs and a proper specialization of the graphs that
are edge-intersections of two threshold graphs. A graph is a double-threshold
graph if there exist a vertex-weight function and two real numbers called lower
and upper bounds of weight such that two vertices are adjacent if and only if
their weight sum is at least the lower bound and at most the upper bound. To
the best of our knowledge, this natural generalization of threshold graphs was
not studied until quite recently. In 2018, Xiao and Nagamochi [18] studied this
graph class under the different name of “star pairwise compatibility graphs” and
presented an O(n6)-time recognition algorithm.

Our main result is to give a new characterization of double-threshold graphs
that gives a simple linear-time recognition algorithm. We first show that every
double-threshold graph is a permutation graph (but not vice versa) and that a
bipartite graph is a double-threshold graph if and only if it is a permutation
graph. These facts imply that many NP-hard graph problems are polynomial-
time solvable on (bipartite or non-bipartite) double-threshold graphs. We then
show that a graph is a double-threshold graph if and only if an auxiliary graph
constructed from the original graph is a bipartite permutation graph. This
characterization gives a linear-time algorithm for recognizing double-threshold
graphs.

Recently, we have realized that Jamison and Sprague [9] have independently
showed that all double-threshold graphs are permutation graphs and that all
bipartite permutation graphs are double-threshold graphs. Their proofs are
based on a vertex-ordering characterization of permutation graphs and a BFS
structure of bipartite permutation graphs, while ours are direct transformations
between vertex weights and permutation diagrams. Note that in their paper
Jamison and Sprague [9] used the term bi-threshold graphs instead of double-
threshold graphs. However, the name of “bi-threshold graphs” is already used1

by Hammer and Mahadev [7] for a different generalization of threshold graphs
(see below). Thus, even though “bi-threshold” would sound better and probably
more appropriate, we would like to keep our term “double-threshold” in this
paper.

Other Generalizations of Threshold Graphs. There are many other generaliza-
tions of threshold graphs such as threshold signed graphs [3], threshold tolerance
graphs [14], quasi-threshold graphs (also known as trivially perfect graphs) [19],
weakly threshold graphs [1], paired threshold graphs [16], and mock threshold
graphs [2]. We omit the definitions of these graph classes and only note that some
small graphs show that these classes are incomparable to the class of double-
threshold graphs (e.g., 3K2 and bull for threshold signed graphs, 2K2 and bull for
threshold tolerance graphs, C4 and 2K3 for quasi-threshold graphs, 2K2 and bull

1 Strictly speaking, the names are not exactly the same. One is written with a hyphen,
but the other is written without a hyphen.
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for weakly threshold graphs, C4 and bull for paired threshold graphs, K3 ∪ C4

and bull for mock threshold graphs2). For the class of bithreshold graphs intro-
duced by Hammer and Mahadev [7] (not the one introduced by Jamison and
Sprague [9]), we can use 3K2 and bull to show that this class is incomparable to
the class of double-threshold graphs.

Note that the concept of double-threshold digraphs introduced by Hamburger
et al. [6] is concerned with directed acyclic graphs defined from a generalization
of semiorders involving two thresholds and not related to threshold graphs or
double-threshold graphs.

Pairwise Compatibility Graphs. Motivated by uniform sampling from phyloge-
netic trees in bioinformatics, Kearney, Munro, and Phillips [10] defined pairwise
compatibility graphs. A graph G = (V,E) is a pairwise compatibility graph if
there exists a quadruple (T , w, lb, ub), where T is a tree, w : E(T ) → R, and
lb, ub ∈ R, such that the set of leaves in T coincides with V and uv ∈ E
if and only if the (weighted) distance dT (u, v) between u and v in T satisfies
lb ≤ dT (u, v) ≤ ub.

Since its introduction, several authors have studied properties of pairwise
compatibility graphs, but the existence of a polynomial-time recognition algo-
rithm for that graph class has been open. The survey article by Calamoneri
and Sinaimeri [4] proposed to look at the class of pairwise compatibility graphs
defined on stars (i.e., star pairwise compatibility graphs), and asked for a char-
acterization of star pairwise compatibility graphs. Recently, Xiao and Nag-
amochi [18] solved the open problem and gave an O(n6)-time algorithm to rec-
ognize a star pairwise compatibility graph.

As we will see after the formal definition of double-threshold graphs, the
star pairwise compatibility graphs are precisely the double-threshold graphs.
Although the pairwise compatibility graphs are rather well studied, we study
the double-threshold graphs in the context of threshold graphs and their gen-
eralizations. This is because, in our opinion, the double-threshold graphs and
techniques used for them are more relevant in that context.

2 Preliminaries

All graphs in this paper are undirected, simple, and finite. A graph G is given
by the pair of its vertex set V and its edge set E as G = (V,E). The vertex
set and the edge set of G are often denoted by V (G) and E(G), respectively.
The order of a graph refers to the number of its vertices. For a vertex v in a
graph G = (V,E), its neighborhood is the set of vertices that are adjacent to
v, and denoted by NG(v) = {u | uv ∈ E}. When the graph G is clear from
the context, we often omit the subscript. A linear ordering ≺ on a set S with
2 Kn and Cn denote the complete graph and the cycle of n vertices, respectively. The

disjoint union of two graphs G and H is denoted by G ∪ H. For a graph G and
an positive integer k, kG is the disjoint union of k copies of G. The graph bull is a
five-vertex path with an additional edge connecting the 2nd and 4th vertices.
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|S| = n can be represented by a sequence 〈s1, s2, . . . , sn〉 of the elements in S, in
which si ≺ sj if and only if i < j. By abusing the notation, we sometimes write
≺ = 〈s1, s2, . . . , sn〉.

2.1 Double-Threshold Graphs

A graph G = (V,E) is a threshold graph if there exist a vertex-weight function
w : V → R and a real number lb ∈ R such that uv ∈ E if and only if lb ≤
w(u) + w(v). A graph G = (V,E) is a double-threshold graph if there exist a
vertex-weight function w : V → R and two real numbers lb, ub ∈ R with the
following property: uv ∈ E ⇐⇒ lb ≤ w(u) + w(v) ≤ ub. Then, we say that the
double-threshold graph G is defined by w, lb and ub.

The definition of a double-threshold graph can be understood visually in
the plane, by its so called slab representation. See Fig. 1 for an example. In the
xy-plane, we consider the slab defined by {(x, y) | lb ≤ x + y ≤ ub} that is
illustrated in gray. Then, two vertices u, v ∈ V are joined by an edge if and only
if the point (w(u), w(v)) lies in the slab.

Fig. 1. (Left) A double-threshold graph. The weight of each vertex is given as w(a) = 1,
w(b) = 3, w(c) = 5, and w(d) = 7; the lower bound is lb = 4 and the upper bound
is ub = 8. (Right) The slab representation of the graph. A white dot represents the
point (w(u), w(v)) for distinct vertices u, v, and a cross represents the point (w(v), w(v))
for a vertex v. Two distinct vertices u and v are joined by an edge if and only if the
corresponding white dot lies in the gray slab.

Every threshold graph is a double-threshold graph as one can set a dummy
upper bound ub > 2 · max{w(v) | v ∈ V }. We can easily see that the double-
threshold graphs coincide with the star pairwise compatibility graphs (�3).

The threshold dimension of a graph G = (V,E) is the minimum integer k such
that there are k threshold graphs Gi = (V,Ei), 1 ≤ i ≤ k, with E =

⋃
1≤i≤k Ei.

A graph G = (V,E) has co-threshold dimension k if its complement G has

3 A star � means that the proof is omitted. The ommited proofs can be found in the
arXiv version https://arxiv.org/abs/1909.09371.

https://arxiv.org/abs/1909.09371
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threshold dimension k. Since the class of threshold graphs is closed under taking
complements [12], the co-threshold dimension of G = (V,E) is the minimum
integer k such that there are k threshold graphs Gi = (V,Ei), 1 ≤ i ≤ k, with
E =

⋂
1≤i≤k Ei. Every double-threshold graph has co-threshold dimension at

most 2 (�).
The next lemma allows us to use any values as lb and ub for defining a double-

threshold graph. It also says that we do not have to consider degenerated cases,
where some vertices have the same weight or some weight sum equals to the
lower or upper bound.

Lemma 2.1 (�). Let G = (V,E) be a double-threshold graph defined by
w : V → R and lb, ub ∈ R. For every pair (lb∗, ub∗) ∈ R2 with lb∗ < ub∗,
there exists w∗ : V → R defining G with lb∗ and ub∗ such that

1. {v | lb/2 ≤ w(v) ≤ ub/2} = {v | lb∗/2 ≤ w∗(v) ≤ ub∗/2},
2. w∗(u) + w∗(v) /∈ {lb∗, ub∗} for all (u, v) ∈ V 2, and
3. w∗(u) �= w∗(v) if u �= v.

The following fact shown by Xiao and Nagamochi [18] allows us to consider
bipartite components separately.

Lemma 2.2 ([18]). A graph is a double-threshold graph if and only if it contains
at most one non-bipartite component and all components are double-threshold
graphs.

2.2 Permutation Graphs

A graph G = (V,E) is a permutation graph if there exist linear orderings ≺1 and
≺2 on V with the following property:

uv ∈ E ⇐⇒ (u ≺1 v and v ≺2 u) or (u ≺2 v and v ≺1 u).

We say that ≺1 and ≺2 define the permutation graph G. We call ≺1 a permu-
tation ordering of G if there exists a linear ordering ≺2 satisfying the condition
above. Since ≺1 and ≺2 play a symmetric role in the definition, ≺2 is also a
permutation ordering of G. Note that for a graph G and a permutation ordering
≺1 of G, the other ordering ≺2 that defines G together with ≺1 is uniquely
determined. Also note that if ≺1 and ≺2 define G, then ≺R

1 and ≺R
2 also define

G, where ≺R denotes the reversed ordering of ≺.
We often represent a permutation graph with a permutation diagram, which

is drawn as follows. Imagine two horizontal parallel lines �1 and �2 on the plane.
Then, we place the vertices in V on �1 from left to right according to the permu-
tation ordering ≺1 as distinct points, and similarly place the vertices in V on �2
from left to right according to ≺2 as distinct points. The positions of v ∈ V can
be represented by x-coordinates on �1 and �2, which are denoted by x1(v) and
x2(v), respectively. We connect the two points representing the same vertex with
a line segment. The process results in a diagram (called a permutation diagram)
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with |V | line segments. By definition, uv ∈ E if and only if the line segments
representing u and v cross in the permutation diagram, which is equivalent to
the inequality (x1(u) − x1(v))(x2(u) − x2(v)) < 0.

Conversely, from a permutation diagram of G, we can extract linear orderings
≺1 and ≺2 as x1(u) < x1(v) ⇐⇒ u ≺1 v and x2(u) < x2(v) ⇐⇒ u ≺2 v. When
those conditions are satisfied, we say that the orderings of the x-coordinates on
�1 and �2 are consistent with the linear orderings ≺1 and ≺2, respectively.

A graph is a bipartite permutation graph if it is a bipartite graph and a
permutation graph. Although a permutation graph may have an exponential
number of permutation orderings, it is essentially unique for a connected bipar-
tite permutation graph in the sense of Lemma 2.3 below. For a graph G = (V,E),
linear orderings 〈v1, . . . , vn〉 and 〈v′

1, . . . , v
′
n〉 on V are neighborhood-equivalent if

N(vi) = N(v′
i) for all i.

Lemma 2.3 ([8]). Let G be a connected bipartite permutation graph defined by
≺1 and ≺2. Then, every permutation ordering of G is neighborhood-equivalent
to ≺1, ≺2, ≺R

1 , or ≺R
2 .

The following lemma and corollary show that a bipartite permutation graph
can be represented by a permutation diagram with a special property.

Lemma 2.4 (�). Let G = (X,Y ;E) be a bipartite permutation graph. Then,
G can be represented by a permutation diagram in which x2(x) = x1(x) + 1 for
x ∈ X and x2(y) = x1(y) − 1 for y ∈ Y .

Corollary 2.5 (�). Let G = (X,Y ;E) be a connected bipartite permutation
graph defined by ≺1 and ≺2. If the first vertex in ≺1 belongs to X, then G
can be represented by a permutation diagram such that the orderings of the x-
coordinates on �1 and �2 are consistent with ≺1 and ≺2, respectively, and that
x2(x) = x1(x) + 1 for x ∈ X and x2(y) = x1(y) − 1 for y ∈ Y .

2.3 Double-Threshold Graphs as Permutation Graphs

We show that double-threshold graphs are strongly related to permutation
graphs.

Lemma 2.6 (�). Every double-threshold graph is a permutation graph.

Lemma 2.7 (�). Every bipartite permutation graph is a double-threshold graph.

Corollary 2.8 (�). The bipartite double-threshold graphs are exactly the bipar-
tite permutation graphs.

3 New Characterization

Let G = (V,E) be a graph. From G and a vertex subset M ⊆ V , we construct
an auxiliary bipartite graph G′

M = (V ′, E′) defined as V ′ = {v, v | v ∈ V } and
E′ = {uv | uv ∈ E} ∪ {vv | v ∈ M}.
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Lemma 3.1. For a connected non-bipartite graph G = (V,E) and a vertex sub-
set M ⊆ V , G′

M is connected.

Proof. For any u, v ∈ V , since G is connected and non-bipartite, G contains
both an odd walk and an even walk from u to v. This shows that G′

M contains
walks from u to v, from u to v̄, from ū to v, and from ū to v̄. Hence, G′

M is
connected. �

For the auxiliary graph G′
M = (V ′, E′) of G = (V,E), a linear ordering on

V ′ represented by 〈w1, w2, . . . , w2n〉 is symmetric if wi = v implies w2n−i+1 = v̄
for any v ∈ V and any i ∈ {1, 2, . . . , 2n}.

The next is the key lemma for our characterization.

Lemma 3.2. Let G = (V,E) be a non-bipartite graph and M ⊆ V . The follow-
ing are equivalent.

1. G is a double-threshold graph defined by w : V → R and lb, ub ∈ R such that
M = {v ∈ V | lb/2 ≤ w(v) ≤ ub/2}.

2. The auxiliary graph G′
M = (V ′, E′) can be represented by a permutation dia-

gram in which both orderings ≺1 and ≺2 are symmetric.

Proof (1 =⇒ 2). An illustration is given in Fig. 2. Let G be a double-threshold
graph defined by w : V → R and lb, ub ∈ R such that M = {v ∈ V | lb/2 ≤
w(v) ≤ ub/2}. By Lemma 2.1, we can assume that lb = 0 and ub = 2, that
w(u) + w(v) /∈ {0, 2} for every (u, v) ∈ V 2, and that w(u) �= w(v) if u �= v.
We construct a permutation diagram of G′

M as follows. Let �1 and �2 be two
horizontal parallel lines. For each vertex w ∈ V ′, we set the x-coordinates x1(w)
and x2(w) on �1 and �2 as follows: for any v ∈ V ,

x1(v) = w(v) − 1, x1(v̄) = 1 − w(v),
x2(v) = w(v), x2(v̄) = −w(v).

Since w(u) + w(v) /∈ {0, 2} for every (u, v) ∈ V 2 and w(u) �= w(v) if u �= v,
the x-coordinates are distinct on �1 and on �2. By connecting x1(w) and x2(w)
with a line segment for each w ∈ V ′, we get a permutation diagram. The line
segments corresponding to the vertices in V have negative slopes, and the ones
corresponding to the vertices in V ′ \ V have positive slopes. Thus, for any two
vertices u, v ∈ V , the line segments corresponding to u and v̄ cross if and only
if both x1(u) ≤ x1(v̄) and x2(u) ≥ x2(v̄) hold, which is equivalent to 0 ≤ w(u) +
w(v) ≤ 2, and thus to uv̄ ∈ E′. Similarly, the line segments corresponding to
v and v̄ cross if and only if 0 ≤ 2w(v) ≤ 2, i.e., v ∈ M . This shows that the
obtained permutation diagram represents G′

M . Let ≺1 be the ordering on V ′

defined by x1. Since x1(v) = −x1(v̄) for each v ∈ V , if v is the ith vertex in ≺1,
then v̄ is the ith vertex in ≺R

1 . This implies that v̄ is the (2n − i + 1)st vertex in
≺1, and thus ≺1 is symmetric. In the same way, we can show that the ordering
≺2 defined by x2 is symmetric.

(2 =⇒ 1) Suppose we are given a permutation diagram of G′
M in which both

≺1 and ≺2 are symmetric. We may assume by symmetry that the first vertex
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Fig. 2. An illustration of (1 =⇒ 2) in Lemma 3.2. (Top left) A double-threshold graph
G with M = {d, e}. The auxiliary bipartite graph G′

M is also depicted. (Top right) A
slab representation of G. (Bottom) A permutation diagram of G′

M .

in ≺1 belongs to V . Since G′
M is connected by Lemma 3.1, Corollary 2.5 shows

that we can represent G′
M by a permutation diagram in which the x-coordinates

x1 and x2 on �1 and �2 satisfy that

x2(v) = x1(v) + 1 and x2(v̄) = x1(v̄) − 1 (v ∈ V ) (1)

and that the orderings of the x-coordinates on �1 and �2 are consistent with ≺1

and ≺2, respectively. Since ≺1 is symmetric, if u, v ∈ V are the ith and the jth
vertices in ≺1, then ū, v̄ are the (2n − i + 1)st and the (2n − j + 1)st vertices in
≺1. Since i < 2n − j + 1 is equivalent to j < 2n − i + 1, we have that u ≺1 v̄
if and only if v ≺1 ū. As x1 is consistent with ≺1, it holds for u, v ∈ V that
x1(u) ≤ x1(v̄) if and only if x1(v) ≤ x1(ū), and hence

x1(u) ≤ x1(v̄) ⇐⇒ x1(u) + x1(v) ≤ x1(v̄) + x1(ū).

Similarly, we can show that for u, v ∈ V ,

x2(u) ≥ x2(v̄) ⇐⇒ x2(u) + x2(v) ≥ x2(v̄) + x2(ū).

Thus, for any two distinct vertices u, v ∈ V , it holds that

uv ∈ E ⇐⇒ uv̄ ∈ E′ ⇐⇒ x1(u) ≤ x1(v̄) and x2(u) ≥ x2(v̄)
⇐⇒ x1(u) + x1(v) ≤ x1(v̄) + x1(ū) and x2(u) + x2(v) ≥ x2(v̄) + x2(ū). (2)
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For each v ∈ V , define w(v) = (x2(v) − x2(v̄))/2. By (1), we can see that (2) is
equivalent to 0 ≤ w(u)+w(v) ≤ 2, which shows that w, lb = 0, and ub = 2 define
G. Furthermore, for any v ∈ V ,

v ∈ M ⇐⇒ vv̄ ∈ E′ ⇐⇒ x1(v) ≤ x1(v̄) and x2(v) ≥ x2(v̄) ⇐⇒ 0 ≤ w(v) ≤ 1,

which shows that M = {v ∈ V | 0 ≤ w(v) ≤ 1}. �
To utilize Lemma 3.2, we need to find the set M of mid-weight vertices; that

is, the vertices with weights in the range [lb/2, ub/2]. The first observation is
that M has to be a clique as the weight sum of any two vertices in M is in the
range [lb, ub]. In the following, we show that a special kind of maximum cliques
can be chosen as M . To this end, we first prove that we only need to consider
(inclusion-wise) maximal cliques.

Lemma 3.3 (�). For a non-bipartite double-threshold graph G = (V,E), there
exist w : V → R and lb, ub ∈ R defining G such that {v ∈ V | lb/2 ≤ w(v) ≤
ub/2} is a maximal clique of G.

An efficient maximum clique K of a graph G is a maximum clique (i.e., a
clique of the maximum size) that minimizes the degree sum

∑
v∈K degG(v). We

show that every efficient maximum clique can be the set of mid-weight vertices.

Lemma 3.4. Let G be a non-bipartite double-threshold graph. For every efficient
maximum clique K of G, there exist w : V → R and lb, ub ∈ R defining G such
that K = {v ∈ V | lb/2 ≤ w(v) ≤ ub/2}.
Proof. Let K be an efficient maximum clique of G. By Lemma 2.6, G is a per-
mutation graph, and thus cannot contain an induced odd cycle of length 5 or
more [5]. As G is non-bipartite, G contains K3. This implies that |K| ≥ 3.

By Lemma 3.3, there exist w : V → R and lb, ub ∈ R defining G such that
M := {v ∈ V | lb/2 ≤ w(v) ≤ ub/2} is a maximal clique of G. Assume that w,
lb, and ub are chosen so that the size of the symmetric difference |M � K| =
|M \ K| + |K \ M | is minimized. Assume that K �= M since otherwise we are
done. This implies that K �⊆ M and K �⊇ M as both K and M are maximal
cliques. Observe that G−M is bipartite. This implies that |K \M | ∈ {1, 2} and
that K ∩ M �= ∅ as |K| ≥ 3. Since K is a maximum clique, |M \ K| ≤ |K \ M |
holds.

Let u ∈ K \ M . By symmetry, we may assume that w(u) < lb/2. Note that
no other vertex in K has weight less than lb/2 as K is a clique. Let v ∈ M be
a nonneighbor of u that has the minimum weight among such vertices. Such a
vertex exists since M is a maximal clique. Note that v ∈ M \ K.

We now observe that v has the minimum weight in M . If w ∈ M is a non-
neighbor of u, then w(v) ≤ w(w) follows from the definition of v. If w ∈ M is a
neighbor of u, then w(v) < w(w) holds, since otherwise w(u) < lb/2 ≤ w(w) ≤
w(v) and uw,wv ∈ E imply that uv ∈ E as lb ≤ w(u) + w(w) ≤ w(u) + w(v) <
w(w) + w(v) ≤ ub.
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Claim 3.5 (�). N(u) ∩ {x | w(x) < lb/2} = N(v) ∩ {x | w(x) < lb/2}.

Claim 3.6 (�). N(u) ∩ M = N(v) ∩ M .

Claim 3.7 (�). N(u) ∩ {x | w(x) > ub/2} ⊇ N(v) ∩ {x | w(x) > ub/2}.

Claims 3.5, 3.6, and 3.7 imply that N(v) ⊆ N(u). We now show that N(v) =
N(u) holds. Suppose to the contrary that N(v) � N(u). Let K ′ = K \ {u} ∪
{v}. We first argue that K ′ is a (maximum) clique. If K \ M = {u}, then
K ′ = M is a clique. Assume that K \ M = {u, u′} for some u′ �= u. Since
w(u) < lb/2 and u′ ∈ K \ M , we have w(u′) > ub/2. Let w ∈ K ∩ M . Then,
vw,wu′ ∈ E. Since w(v) ≤ w(w) ≤ ub/2 < w(u′), we have vu′ ∈ E. Thus, K ′ is a
clique. The assumption N(v) � N(u) implies that degG(v) < degG(u), and thus,∑

w∈K′ degG(w) =
(∑

w∈K degG(w)
) − degG(u) + degG(v) <

∑
w∈K degG(w).

This contradicts that K is efficient. Therefore, we conclude that N(v) = N(u).
Now, we define a weight function w′ : V → R by setting w′(u) = w(v), w′(v) =

w(u), and w′(x) = w(x) for all x ∈ V \ {u, v}. Then, w′, lb, and ub define G and
M ′ := {w ∈ V | lb/2 ≤ w′(w) ≤ ub/2} = M ∪ {u} \ {v} as N(u) = N(v). This
contradicts the choice of w as |M ′ � K| < |M � K|. �

Next, we show that the symmetry required in Lemma 3.2 follows for free
when M is a clique.

Lemma 3.8 (�). Let G = (V,E) be a connected non-bipartite graph and M
be a clique of G. Then, G′

M is a permutation graph if and only if G′
M can be

represented by a permutation diagram in which both orderings ≺1 and ≺2 are
symmetric.

By putting the above facts together, we obtain the following characterization
of non-bipartite double-threshold graphs.

Theorem 3.9. For a non-bipartite graph G, the following are equivalent.

1. G is a double-threshold graph.
2. For every efficient maximum clique M of G, G′

M is a permutation graph.
3. For some efficient maximum clique M of G, G′

M is a permutation graph.

Proof. 2 =⇒ 3 is trivial. To show 1 =⇒ 2, assume G is a non-bipartite double-
threshold graph. Let M be an efficient maximum clique of G. By Lemma 3.4,
there exist w : V → R and lb, ub ∈ R defining G such that M = {v ∈ V | lb/2 ≤
w(v) ≤ ub/2}. Now by Lemma 3.2, G′

M is a permutation graph. To show 3 =⇒ 1,
assume that for an efficient maximum clique M of a non-bipartite graph G, the
graph G′

M is a permutation graph.
Let H be a non-bipartite component of G. Then, H contains an induced odd

cycle of length k ≥ 3. This means that, if H does not include M , then G′
M

contains an induced cycle of length 2k ≥ 6. However, this is a contradiction as a
permutation graph cannot contain an induced cycle of length at least 5. Thus, H
includes M . Also, there is no other non-bipartite component in G as it does not
intersect M . Since H includes M , H ′

M is a component of G′
M . By Lemma 3.8,
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H ′
M can be represented by a permutation diagram in which both ≺1 and ≺2 are

symmetric, and thus H is a double-threshold graph by Lemma 3.2.
Let B be a bipartite component of G (if one exists). Since B does not intersect

M , G′
M contains two isomorphic copies of H as components. Since G′

M is a
permutation graph, B is a permutation graph too. By Corollary 2.8, B is a
double-threshold graph.

The discussion so far implies that all components of G are double-threshold
graphs and exactly one of them is non-bipartite. By Lemma2.2, G is a double-
threshold graph. �

4 Linear-Time Recognition Algorithm

Theorem 4.1. There exists a linear-time algorithm that takes a graph as its
input and outputs yes if and only if the graph is a double-threshold graph.

Proof. The algorithm for Theorem4.1 is given in Algorithm 1. By Corollary 2.8
and Theorem 3.9, the algorithm is correct since it returns yes if and only if G is
a bipartite permutation graph, or G is a non-bipartite permutation graph and
G′

M is a permutation graph, where M is an efficient maximum clique of G.
At Steps 1 and 4, deciding whether a graph is a permutation graph and, if

so, computing a permutation ordering can be done in linear time [13]. At Step 2,
bipartiteness can be checked in linear time by, e.g., depth-first search. Observe
that |V (G′

M )| = 2|V | and |E(G′
M )| = 2|E| + |M |. Thus, it suffices to show that

an efficient maximum clique of a permutation graph can be computed in linear
time at Step 3.

To find an efficient maximum clique of G, we set to each vertex v ∈ V the
weight f(v) = n2 − degG(v), where n = |V |, and then find a maximum-weight
clique M of G with respect to these weights. Using the permutation ordering of
G computed before, we can find M in linear time [5, pp. 133–134]. We show that
M is an efficient maximum clique of G. Let K be an efficient maximum clique
of G. Since

∑
v∈K f(v) ≤ ∑

v∈M f(v), we have

|K| · n2 −
∑

v∈K

degG(v) ≤ |M | · n2 −
∑

v∈M

degG(v). (3)

Since 0 ≤ ∑
v∈S degG(v) < n2 for any S ⊆ V , it holds that |K| · n2 − n2 <

|M | · n2. Since |M | ≤ |K|, this implies that |K| = |M |. It follows from (3) that∑
v∈K degG(v) ≥ ∑

v∈M degG(v). Thus, M is an efficient maximum clique. �

Algorithm 1. Decide if G is a double-threshold graph.
1: if G has a permutation ordering ≺ then
2: if G is bipartite then return yes

3: Find an efficient maximum clique M of G using ≺.
4: if G′

M is a permutation graph then return yes

5: return no
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Abstract. In a paired threshold graph, each vertex has a weight, and
two vertices are adjacent if and only if their weight sum is large enough
and their weight difference is small enough. It generalizes threshold
graphs and unit interval graphs, both very well studied. We present a
vertex ordering characterization of this graph class, which enables us
to prove that it is a subclass of interval graphs. Further study of clique
paths of paired threshold graphs leads to a simple linear-time recognition
algorithm for the graph class.

Keywords: (Paired) threshold graph · (Unit) interval graph · Interval
model · Umbrella ordering · Interval ordering · Broom ordering ·
Clique path

1 Introduction

A graph is a threshold graph if one can assign positive weights to its vertices
in a way that two vertices are adjacent if and only if the sum of their weights
is not less than a certain threshold. Originally formulated from combinatorial
optimization [1], threshold graphs found applications in many diversified areas.
As one of the simplest nontrivial classes, the mathematical properties of thresh-
old graphs have been thoroughly studied. They admit several nice characteri-
zations, including inductive construction, degree sequences, forbidden induced
subgraphs (Fig. 1), to name a few [12]. Relaxing these characterizations in one
way or another, we end with several graph classes, e.g., cographs, split graphs,
trivially perfect graphs, and double-threshold graphs [4,9,13,17]. Yet another
closely related graph class are difference graphs, defined solely by weight differ-
ences [6].

Motivated by applications in social and economic interaction modeling,
Ravanmehr et al. [15] introduced paired threshold graphs, another generalization
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Fig. 1. Minimal forbidden induced subgraphs for threshold graphs.

of threshold graphs. A graph is a paired threshold graph if there exist a positive
vertex weight assignment w and two positive thresholds, T+ and T−, such that
two vertices are adjacent if and only if the sum of their weights are not less than
T+ and the difference of their weights are not greater than T−.

An easy observation on a threshold graph is, vertices of small weights, less
than half of the threshold to be specific, form an independent set, while the other
vertices form a clique. (Hence, each threshold graph is a split graph.) Clearly,
the first part remains true for paired threshold graphs, but not the second. Since
the adjacency between a pair of high-weight vertices (≥ T+

2 ) is only decided by
their weight difference, they induce an indifference graph [16], which is more
widely known as a unit interval graph. The crucial point is thus to understand
the interaction between these two sets of vertices. For this purpose we may focus
on paired threshold graphs that are neither threshold graphs nor unit interval
graphs. Ravanmehr et al. [15] presented a distance decomposition for such a
paired threshold graph G: If G is connected, then they are able to decompose
V (G) into a set X, which induces a threshold graph, and a sequence of cliques,
where the vertices in a same clique have the same distance to X.

It is straightforward to show that paired threshold graphs are chordal: The
vertex with the smallest weight is necessarily simplicial. Since interval graphs
also contain all threshold graphs and all unit interval graphs, a natural question
is on the relationship between interval graphs and paired threshold graphs.

Theorem 1. All paired threshold graphs are interval graphs.

Threshold graphs enjoy a very simple ordering characterization by the vertex
degrees [1], while the ordering of the intervals gives a vertex ordering character-
ization for unit interval graphs, called an umbrella ordering [11]. On the other
hand, interval graphs have a vertex ordering characterization with the so-called
3-vertex conditions [14]. We show that a paired threshold graph admits an inter-
val ordering with the additional conditions: (1) it can be partitioned such that
the first part induces an independent set and the second is an umbrella ordering;
and (2) the neighborhood of every vertex from the first part is consecutive in
this ordering. We call such a vertex ordering a broom ordering.

Theorem 2. A graph is a paired threshold graph if and only if it admits a broom
ordering.

Unit interval graphs are interval graphs that can be represented using inter-
vals of the same length. It is known that any threshold graph can be represented
by intervals of at most two different lengths [10]. (But not all interval graphs
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with two-length representation are threshold graphs.) This is nevertheless not
true for paired threshold graphs. For any k > 0, we are able to construct paired
threshold graphs that cannot be represented by intervals of k different lengths.
In other words, the class of paired threshold graphs is not a subclass of k-length
interval graphs, defined by Klav́ık et al. [8]. Recall that unit interval graphs are
also proper interval graphs, interval graphs that can be represented using inter-
vals none of which properly contains the other. This has also been generalized by
Klav́ık et al. [8], who defined the classes of k-nested interval graphs, for k > 0,
to be the interval graphs that can be represented using intervals of which no k
nested. Indeed, for any positive integer k, we can construct a paired threshold
graph such that there must be k nested intervals in any interval model of this
graph. On the other hand, it is easy to see that K1,3 + K1,3, the disjoint union
of two claws (the four-vertex tree with three leaves), is a 2-length interval graph
but not a paired threshold graph. Therefore, the class of paired threshold graphs
and the class of k-nested interval graphs are not comparable to each other.

Yet another graph class sandwiched between interval graphs and threshold
graphs is the class of trivially perfect graphs [17]. It is not comparable to the
class of paired threshold graphs or the class of k-nested interval graphs either.
First, note that P4 is a unit interval graph but not a trivially perfect graph.
Second, the disjoin union of two claws is also a trivially perfect graph. Finally,
for any positive integer k, we can recursively construct a trivially perfect graph
that is not a k-nested interval graph as follows. Suppose that G is a trivially
perfect graph but not a (k − 1)-nested interval graph. We take three disjoint
copies of G, and add a universal vertex. See Fig. 2 for an overview of related
graph classes.

Similar as threshold graphs and split graphs, the class of paired threshold
graphs is not closed under taking disjoint union of subgraphs. If a paired thresh-
old graph is not a unit interval graph, then in any assignment, there must be
some vertex receiving weight < T+/2 and some vertex receiving weight ≥ T+/2.
(Note that an edgeless graph is trivially a unit interval graph.) From the defini-
tion it is easy to verify that at most one component can be a non–unit interval
graphs, which is of course a connected paired threshold graph. This turns out to
be also sufficient. (Since both the class of 2-length interval graphs and the class
of trivially perfect graphs are closed under taking disjoint union of subgraphs,
this also explains that they are not subclasses of paired threshold graphs. In
particular, the claw is a trivially perfect graph and a 2-length interval graphs,
but not a unit interval graph.)

For the recognition of paired threshold graphs, we may focus on connected
non–unit interval graphs. For such a graph, we show that it is a paired thresh-
old graph if and only if there is an induced subgraph with certain property.
From this subgraph, we can produce two partitions of its vertex set, and it is
a paired threshold graph if and only if one of them defines a broom ordering
of this subgraph. Putting them together, we develop a linear-time algorithm for
recognizing paired threshold graphs, improving the O(|V (G)|6)-time algorithm
of Ravanmehr et al. [15].
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Fig. 2. A summary of related graph classes. Note that the three immediate subclasses
of interval graphs are not comparable to each other.

Theorem 3. Given a graph G, we can decide in O(|V (G)| + |E(G)|) time
whether G is a paired threshold graph.

2 Preliminaries

All graphs discussed in this paper are undirected and simple. The vertex set and
edge set of a graph G are denoted by, respectively, V (G) and E(G). For a subset
X ⊆ V (G), denote by G[X] the subgraph of G induced by X, and by G−X the
subgraph G[V (G) \ X]; when X consists of a single vertex v, we use G − v as a
shorthand for G − {v}. The neighborhood N(v) of a vertex v ∈ V (G) comprises
vertices adjacent to v, i.e., N(v) = {u | uv ∈ E(G)}, and its closed neighborhood
is N [v] = N(v) ∪ {v}. The closed neighborhood and the neighborhood of a set
X ⊆ V (G) of vertices are defined as N [X] =

⋃
v∈X N [v] and N(X) = N [X]\X,

respectively. We say that a vertex v is simplicial if N [v] is a clique.
A graph G is a threshold graph if there exist a weight assignment w :

V (G) → R
+ and a fixed threshold T ∈ R

+ such that uv ∈ E(G) if and only if
w(u) + w(v) ≥ T . Alternatively, a graph G is a threshold graph if and only if
its vertices can be partitioned into a clique and an independent set I such that
the neighborhoods of vertices in I form a total order under the containment
relation. A graph G is a paired threshold graph if there exist a weight assignment
w : V (G) → R

+ and two fixed thresholds T+, T− ∈ R
+ such that uv ∈ E(G) if

and only if
w(u) + w(v) ≥ T+ and |w(u) − w(v)| ≤ T−.
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Given an assignment w and thresholds T+, T− for a paired threshold graph, we
may adjust all the vertex weights by the same value ε and T+ by 2ε, while keeping
T− unchanged. It is easy to verify that it represents the same graph. Thus, we
can always make the two thresholds equal.

Proposition 1. A graph G is a paired threshold graph if and only if there exist
a weight assignment w : V (G) → R

+ and a threshold T± ∈ R
+ such that uv ∈

E(G) if and only if w(u) + w(v) ≥ T± and |w(u) − w(v)| ≤ T±.

In the rest of the paper we use the same value for both thresholds. We use
G(w, T±) to denote a paired threshold graph with weight assignment w and
threshold T±.

In a threshold graph G with weight assignment w and threshold T , the weight
T/2 defines a natural partition of the vertices: {v | w(v) < T/2} forms an
independent set, while {v | w(v) ≥ T/2} a clique. We can use T±/2 to get
a similar partition of the vertex set of a paired threshold graph G(w, T±). In
particular, {v | w(v) < T±/2} remains an independent set. However, {v | w(v) ≥
T±/2} is no longer a clique in general. Since the weight sum of any two such
vertices in this set is at least T±, it induces an indifference graph, or more widely
known, a unit interval graph [16]. A graph is a unit interval graph if its vertices
can be assigned to unit-length intervals on the real line such that two vertices
are adjacent if and only if their corresponding intervals intersect.

Proposition 2. In a paired threshold graph G(w, T±), the subgraph induced by
{v | w(v) ≥ T±/2} is a unit interval graph.

As a matter of fact, all unit interval graphs are paired threshold graphs.
This has been observed in [15], and we include a proof because the construction
used in it will be exemplary in this paper. An interval model can be specified
by the 2n endpoints for the n intervals: The interval for vertex v is denoted by
[lp(v), rp(v)], where lp(v) and rp(v) are the, respectively, left point and the
right point of the interval.

Proposition 3. A unit interval graph G is a paired threshold graph. Moreover,
there is an assignment w such that w(v) ≥ T± for all vertices v ∈ V (G).

The discussion above can be summarized as that a paired threshold graph
can be partitioned into an independent set and a unit interval graph. Now that
we have thus fully understood both parts, it is time to put their connection
under scrutiny.

Proposition 4. Let G(w, T±) be a paired threshold graph, and let I = {v |
w(v) < T±/2}. Then N [I] induces a threshold graph.

Although Proposition 4 is straightforward, we want to point out that the
assignment w for vertices in N [I] is not necessarily a threshold assignment for
them with respect to threshold T±; see Fig. 3 for an example. Moreover, Proposi-
tions 2 and 4 are not sufficient for a graph to be a paired threshold graph. Neither
the net nor the tent is a paired threshold graph [15]. However, setting I to be a
single simplicial vertex in the net nor the tent, we get a partition satisfying both
propositions. There is a more technical condition on the connection in between.
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Fig. 3. A threshold graph. The weight assignment w shown in the graph and the
threshold T± = 7 witness that it is a paired threshold graph. However, this is not a
threshold assignment because there is no edge between the two vertices with weights
1 and 9.

3 Characterization

An ordering σ of the vertex set of a graph G is a bijection from V (G) →
{1, . . . , n}. We use u <σ v to denote that σ(u) < σ(v). An ordering σ of the
vertex set of a graph G is an umbrella ordering if for every triple of vertices
x, y, z,

x <σ y <σ z and xz ∈ E(G) imply xy, yz ∈ E(G).

Looges and Olariu [11] showed that a graph is a unit interval graph if and
only if it admits an umbrella ordering. Indeed, given a unit interval model of a
unit interval graph G, ordering the vertices by their left endpoints produces an
umbrella ordering of G. Likewise interval graphs can be characterized by the so
called interval orderings σ [14]: for every triple of vertices x, y, z,

x <σ y <σ z and xz ∈ E(G) imply xy ∈ E(G).

We now formally define the broom ordering.

Definition 1. An ordering σ of the vertex set of a graph G is a broom ordering
if its reversal is an interval ordering of G and there exists p with 0 ≤ p ≤ n such
that

(i) for each of the first p vertices of σ, its neighborhood is after p and appears
consecutively in σ; and

(ii) the sub-ordering of the last n − p vertices is an umbrella ordering.

Two remarks on this definition are in order. For each of the last n−p vertices,
its closed neighborhood appears consecutively in σ. A graph having a broom
ordering has also an interval ordering, hence an interval graph. Therefore, the
following lemma implies Theorem 1.

Lemma 1. Let G(T±, w) be a paired threshold graph. The ordering of V (G)
decided by w, with ties broken arbitrarily, is a broom ordering.

Although the class of paired threshold graphs is not closed under taking dis-
joint union of subgraphs, the following proposition focuses us upxson connected
graphs.



304 Y. Cao et al.

Lemma 2. A graph G is a paired threshold graph if and only if one component
is a connected paired threshold graph and all the others are unit interval graphs.

Another way to characterize paired threshold graphs is through partition,
with the focus on the connection between two parts.

Definition 2. A partition I �U of a graph G is a paired threshold partition of
G if

(i) I is an independent set, G[U ] is a unit interval graph, and N [I] induces a
threshold graph;

(ii) G[U ] has an umbrella ordering σ in which N(v) appears consecutively for
each v ∈ I; and

(iii) N(I) ⊆ N [u], where u is the first vertex of σ.

The following theorem implies Theorem 2.

Theorem 4. The following are equivalent on a graph G.

(1) G is a paired threshold graph.
(2) G admits a broom ordering.
(3) G has a paired threshold partition.

The paired threshold partition I �U of a paired threshold graph is not neces-
sarily unique: For example, if the first vertex in U is nonadjacent to any vertex in
I, then we may move it from U to I to make a new partition. We say that a paired
threshold partition I � U is a canonical partition if I is maximal in all paired
threshold partitions,—i.e., (I ∪ {v}) � (U \ {v}) is not a valid paired threshold
partition for any v ∈ U . The following characterizes canonical partitions.

Proposition 5. Let I � U be a canonical partition of a paired threshold graph
G. If a vertex v ∈ U \ N(I) is simplicial in G, then

(1) N(I) � N(v); and
(2) the subgraph induced by N [I ∪ {v}] is not a threshold graph.

If we drop the unit-length from the definition of unit interval graphs, then
we end with interval graphs,—i.e., it allows intervals of arbitrary lengths. A
graph G is an interval graph if and only if its maximal cliques can be arranged
in a sequence such that for every vertex v ∈ V (G), the set of maximal cliques
containing v occur consecutively in the sequence [5]. This sequence is called a
clique path of G. It is known that a connected unit interval graph has a unique
clique path, up to full reversal [2,3].

By Theorem 1, we know that all paired threshold graphs are interval graphs.
This leads us to consider paired threshold graphs on the perspective of clique
path. A paired threshold graph admits a clique path with some important prop-
erties to be used in our recognition algorithm.

Theorem 5. Let G be a connected paired threshold graph, and let I � U be a
canonical partition of G.
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(1) There exists a clique path C1, . . . , C� of G such that for 1 ≤ i ≤ |I|, the only
vertex in I ∩ Ci is a simplicial vertex of G, and Ci \ I ⊆ C|I|;

(2) In any clique path of G, the maximal cliques disjoint from I appear consec-
utively, and they appear in the same order, up to full reversal;

(3) If G remains connected after all universal vertices removed, then for any
clique path of G, vertices in I appear in the first |I| or the last |I| cliques.

A set of k intervals [lp(v1), rp(v1)], . . . , [lp(vk), rp(vk)] is nested if

[lp(v1), rp(v1)] ⊂ · · · ⊂ [lp(vk), rp(vk)].

Lemma 3. For any positive integer k, there exists a paired threshold graph G
such that there are k nested intervals in any interval model of G.

4 Recognition

It is well known that interval graphs, unit interval graphs, and threshold graphs
can be recognized in linear time [1,2,7]. For (unit) interval graphs, the recog-
nition algorithms return an interval model, from which we can retrieve a clique
path or an umbrella ordering in the same time. We say that two vertices u, v are
true twins if N [u] = N [v]. A set of vertices is a true-twin class if it is a maximal
set of vertices that are pairwise true twins. A graph has a unique partition into
true-twin classes. The following proposition is from Deng et al. [3], and it is the
core idea of Corneil [2].

Proposition 6. Let G be a unit interval graph and let σ be an umbrella ordering
of G.

(1) For each set of true-twin class T of G, vertices in T appear consecutively in
σ, and this subsequence can be replaced by an arbitrary ordering of T .

(2) If G does not contain true twins, then it has a unique umbrella ordering,
up to full reversal.

We may assume that the input graph G is a connected interval graph. If
it is not an interval graph, then we may return “no” by Theorem1. If it is not
connected, then we may remove all the components that are unit interval graphs,
and return “no” if more than one component is left by Lemma2.

The way we handle a connected interval graph G is to use a clique path P of
G. We try to find a canonical partition from P. According to Theorem 5(2), if
G is a paired threshold graph, then we can find the partition I � U with I from
the two ends of the clique path. However, a problem is that we do not know
how many simplicial vertices we can take from each end. This can be simplified
by Theorem 5(3): If G remains connected after all universal vertices removed,
then it suffices to search only one end of P. We hence proceed dependent upon
whether G contains a universal vertex.

Proposition 7 ([1]). A nonempty threshold graph contains either an isolated
vertex or a universal vertex.
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In other words, a threshold graph can always be made empty by exhaustively
removing isolated vertices and universal vertices. It is easy to see that paired
threshold graphs are closed under adding isolated vertices, but not necessarily
universal vertices. The following result is an extension of Proposition 7 to paired
threshold graphs. Recall that minimal forbidden induced subgraphs of threshold
graphs are 2K2, P4, and C4 (Fig. 1).

Lemma 4. Let G be a connected graph, and let G′ be obtained from G by exhaus-
tively removing universal vertices and isolated vertices. If G′ �= G, then G is a
paired threshold graph if and only if one of the following conditions holds:

(1) G′ is an empty graph;
(2) G′ has two components, one being a complete graph, and the other a threshold

graph;
(3) G′ is connected, and it remains a paired threshold graph after adding a uni-

versal vertex.

We then remove exhaustively universal vertices and isolated vertices from
G and study the resulting graph G′. By Lemma 4, we return “yes” if G′ is
empty, and return “no” if G′ contains more than two components. If G′ has
precisely two components, then we return whether they satisfy Lemma 4(2), i.e.,
one component being a complete graph and the other a threshold graph. In the
rest G′ is connected; By Lemma 4(3), if G′ �= G, then we add a universal vertex to
G′. Note that it is an induced subgraph of G. We build a clique path K1, . . . ,Kp

for this subgraph. Let IL be greedily obtained as follows. From i = 1, . . . , p, if
there is no simplicial vertex in Ki, then return IL; otherwise, we pick a simplicial
vertex of Ki and add it to IL, as long as N [IL] still induces a threshold graph.
Let IR constructed in a similar way, but from Kp to K1. By Proposition 5 and
Theorem 5(3), G is a paired threshold graph if and only if one of IL and IR defines
a paired threshold partition of this subgraph. It remains to verify whether one of
the partitions, (i.e., IL � (V (G′) \ IL) or IR � (V (G′) \ IR),) is a paired threshold
partition. As usual, n and m denote the number of vertices and the number
of edges, respectively. Given a partition I � U of V (G), we can check whether
it satisfies Definition 2(1) in O(m + n) time: to recognize an independent set
is easy, and there exist O(m + n) time algorithms for recognizing unit interval
graphs and threshold graphs [3,12]. The remaining is to check whether it satisfies
Definition 2(2–3) as well.

Lemma 5. Let G be a connected interval graph. Given a partition I�U of V (G)
that satisfies Definition 2(1), we can check in O(m + n) time whether it satisfies
Definition 2(2–3) as well.

Proof. We may number vertices in I in a way that I = {u1, . . . , u|I|} and
N(u1) ⊆ . . . ⊆ N(u|I|); this is possible because I is an independent set and
N [I] induces a threshold graph. Note that d(u1) ≤ . . . ≤ d(u|I|). We call the
procedure given in Fig. 4.

In the first two steps, it starts with finding an umbrella ordering σ of G − I,
and then lists the true-twin classes of G − I in their order of occurrences in σ.
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Fig. 4. Verifying whether a partition satisfies the conditions in Definition 2.

By Proposition 6, the first vertex of any umbrella ordering of G − I has to
be from T1 or Tt. If N(I) � N [T1] and N(I) � N [Tt], then Definition 2(3)
cannot be satisfied by any umbrella ordering of G− I. This justifies step 3. Note
that it is possible N(I) ⊆ N [Tt] and N(I) ⊆ N [T1], and in this case N(I) are
universal vertices of G− I. This is the trivial case. Otherwise we make sure that
N(I) ⊆ N(v) for some vertex in the first set of T in step 4.

It now enters step 5. The sets T� and Tr exist because G is connected and I
is an independent set. The focus is on step 5.3. Suppose that T �⊆ N(ui). Note
that T was not split from the same twin class as T� or Tr: Otherwise, T ⊆ N(uj)
for some j < i, but then T ⊆ N(ui) as N(uj) ⊆ N(ui). By Proposition 6,
vertices in T have to be between vertices of T� and Tr in any umbrella ordering
of G− I. Therefore, Definition 2(2) cannot be satisfied by any umbrella ordering
of G − I. This justifies Step 5.3. We prove the correctness of step 6 by arguing
that if the procedure passes step 5, then it satisfies Definition 2(2–3). We use
the umbrella ordering of G − I from T by replacing each set by an arbitrary
ordering. Condition (2) is satisfied for vertex ui after the ith iteration, and the
sets containing N(ui) would never be touched after that. On the other hand,
step 5 never switches the order of two sets, and hence N(I) ⊆ N [v] for any
vertex in the first set, which is a subset of T1. Hence, condition (3) is satisfied
as well.

It remains to show that the algorithm can be implemented in O(n+m) time.
It is straightforward for steps 1–4, and hence we focus on step 5. For each set in
T , we maintain a doubly linked list; further, we connect these lists into another
doubly linked list. This allows us, among others, to split in time proportional to
the number of elements to be split from a set. We also maintain an array of size
n, of which the ith element points to the position of the ith vertex in the doubly
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Fig. 5. The algorithm for recognizing paired threshold graphs.

linked lists. With these data structures it is straightforward to implement step 5
in O(n + m) time. In the first iteration, we go through all the n vertices to find
T� and Tr; after that we scan from the T� and Tr of the previous iteration to the
left and to the right respectively. Hence, in the ith iteration with 1 < i ≤ |I|, we
scan only O(d(ui)) vertices. This completes the proof. �

We summarize our algorithm in Fig. 5.

Proof (Proof of Theorem 3). We use the algorithm described in Fig. 5. We first
prove its correctness. Steps 1–3 follow from Proposition 3 and Lemma 2. Steps 4–
7 follow from Lemma 4. Steps 8–10 follow from Proposition 5 and Theorem 5. We
leave the time analysis to the full version of the paper. �
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Abstract. We study the problem of embedding graphs in the plane as
good geometric spanners. That is, for a graph G, the goal is to construct
a straight-line drawing Γ of G in the plane such that, for any two vertices
u and v of G, the ratio between the minimum length of any path from u
to v and the Euclidean distance between u and v is small. The maximum
such ratio, over all pairs of vertices of G, is the spanning ratio of Γ .

First, we show that deciding whether a graph admits a straight-line
drawing with spanning ratio 1, a proper straight-line drawing with span-
ning ratio 1, and a planar straight-line drawing with spanning ratio 1 are
NP-complete, ∃R-complete, and linear-time solvable problems, respec-
tively. Second, we prove that, for every ε > 0, every (planar) graph
admits a proper (resp. planar) straight-line drawing with spanning ratio
smaller than 1 + ε. Third, we note that our drawings with spanning
ratio smaller than 1 + ε have large edge-length ratio, that is, the ratio
between the lengths of the longest and of the shortest edge is exponen-
tial. We show that this is sometimes unavoidable. More generally, we
identify having bounded toughness as the criterion that distinguishes
graphs that admit straight-line drawings with constant spanning ratio
and polynomial edge-length ratio from graphs that do not.

1 Introduction

Let P be a set of points in the plane and let G be a geometric graph whose vertex
set is P . We say that G is a t-spanner if, for every pair of points p and q in P ,
there exists a path from p to q in G whose total edge length is at most t times
the Euclidean distance ‖pq‖ between p and q. The spanning ratio of G is the
smallest real number t such that G is a t-spanner. The problem of constructing,
for a given set P of points in the plane, a sparse (and possibly planar) geometric
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graph whose vertex set is P and whose spanning ratio is small has received
considerable attention; see, e.g., [12–15,18,21,23,39,50,51].

In this paper we look at the construction of geometric graphs with small
spanning ratio from a different perspective. Namely, the problem we consider is
whether it is possible to embed a given abstract graph in the plane as a geometric
graph with small spanning ratio. That is, for a given graph, we want to construct
a straight-line drawing with small spanning ratio, where the spanning ratio of
a straight-line drawing is the maximum ratio, over all pairs of vertices u and v,
between the total edge length of a shortest path from u to v and ‖uv‖.

Graph embeddings in which every pair of vertices is connected by a path satis-
fying certain geometric properties have been the subject of intensive research. As
a notorious example, a greedy drawing of a graph [6,8,19,24,31,36,40,42,43,48]
is such that, for every pair of vertices u and v, there is a path from u to v that
monotonically decreases the distance to v at every vertex. Further examples are
self-approaching and increasing-chord drawings [4,20,41], angle-monotone draw-
ings [10,20,37], monotone drawings [5,7,29,30,32,35] and strongly-monotone
drawings [5,25,35]. While greedy, monotone, and strongly-monotone drawings
might have unbounded spanning ratio, self-approaching, increasing-chord, and
angle-monotone drawings are known to have spanning ratio at most 5.34 [33], at
most 2.1 [44], and at most 1.42 [10], respectively. However, not all graphs, and
not even all trees [36,40], admit such drawings.

Our results are the following.
First, we look at straight-line drawings with spanning ratio equal to 1, which

is clearly the smallest attainable value by any graph. We prove that deciding
whether a graph admits a straight-line drawing, a proper straight-line drawing
(in which no vertex-vertex or vertex-edge overlaps are allowed), and a planar
straight-line drawing with spanning ratio 1 are NP-complete, ∃R-complete, and
linear-time solvable problems, respectively.

Second, we show that allowing each shortest path to have a total edge length
slightly larger than the Euclidean distance between its end-vertices makes it
possible to draw all graphs. Namely, for every ε > 0, every graph has a proper
straight-line drawing with spanning ratio smaller than 1 + ε and every planar
graph has a planar straight-line drawing with spanning ratio smaller than 1 + ε.

Third, we address the issue that our drawings with spanning ratio smaller
than 1+ ε have poor resolution. That is, the edge-length ratio of these drawings,
i.e., the ratio between the lengths of the longest and of the shortest edge, might
be super-polynomial in the number of vertices of the graph. We show that this
is sometimes unavoidable, as stars have exponential edge-length ratio in any
straight-line drawing with constant spanning ratio. More in general, we present
graph families for which any straight-line drawing with constant spanning ratio
has edge-length ratio which is exponential in the inverse of the toughness. On the
other hand, we prove that graph families with constant toughness admit proper
straight-line drawings with polynomial edge-length ratio and constant spanning
ratio. Finally, we prove that bounded-degree trees admit planar straight-line
drawings with polynomial edge-length ratio and constant spanning ratio.

Full versions of sketched or omitted proofs can be found in [3].
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2 Preliminaries

For a graph G and a set S of vertices of G, we denote by G − S the graph
obtained from G by removing the vertices in S and their incident edges. The
subgraph of G induced by S is the graph whose vertex set is S and whose edge
set consists of every edge of G that has both its end-vertices in S. The toughness
of a graph G is the largest real number t > 0 such that, for any set S such that
G − S consists of k ≥ 2 connected components, we have |S| ≥ t · k.

A drawing of a graph maps each vertex to a distinct point in the plane and
each edge to a Jordan arc between its end-vertices. A straight-line drawing maps
each edge to a straight-line segment. Let Γ be a straight-line drawing of a graph
G. The length of a path in Γ is the sum of the lengths of its edges. We denote by
‖uv‖Γ (by πΓ (u, v)) the Euclidean distance (resp. the length of a shortest path)
between two vertices u and v in Γ ; we sometimes drop the subscript Γ when the
drawing we refer to is clear from the context. The spanning ratio of Γ is the real
value max

u,v

πΓ (u,v)
‖uv‖Γ

, where the maximum is over all pairs of vertices u and v of G.

A drawing is planar if no two edges intersect, except at common end-vertices.
A planar drawing partitions the plane into connected regions, called faces; the
bounded faces are internal, while the unbounded face is the outer face. A graph
is planar if it admits a planar drawing. A planar graph is maximal if adding
any edge to it violates its planarity. In any planar drawing of a maximal planar
graph every face is delimited by a 3-cycle. The bounding box B(Γ ) of a drawing
Γ is the smallest axis-parallel rectangle containing Γ in the closure of its interior.
The width and height of Γ are the width and height of B(Γ ).

3 Drawings with Spanning Ratio 1

In this section we study drawings with spanning ratio equal to 1.

Theorem 1. Recognizing whether a graph admits a straight-line drawing with
spanning ratio equal to 1 is an NP-complete problem.

Proof Sketch: The core of the proof consists of showing that a graph has a
straight-line drawing with spanning ratio 1 if and only if it contains a Hamil-
tonian path (then the theorem follows from the NP-completeness of the prob-
lem of deciding whether a graph contains a Hamiltonian path [27,28]). In par-
ticular, let Γ be a straight-line drawing with spanning ratio 1 of a graph G
and assume w.l.o.g. that no two vertices have the same x-coordinate in Γ . Let
v1, v2, . . . , vn be the vertices of G, ordered by increasing x-coordinates. Then,
for i = 1, 2, . . . , n − 1, we have that G contains the edge vivi+1, as any other
path between vi and vi+1 would be longer than ‖vivi+1‖. Hence, G contains the
Hamiltonian path (v1, v2, . . . , vn). ��

The existential theory of the reals problem asks whether real values exist for n
variables such that a quantifier-free formula, consisting of polynomial equalities
and inequalities on such variables, is satisfied. The class of problems that are
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complete for the existential theory of the reals is denoted by ∃R [45]. It is known
that NP ⊆ ∃R ⊆ PSPACE [16], however it is not known whether ∃R ⊆ NP.
Many geometric problems are ∃R-complete, see, e.g., [1,38].

Theorem 2. Recognizing whether a graph admits a proper straight-line drawing
with spanning ratio equal to 1 is an ∃R-complete problem.

Fig. 1. The five graph classes defined in [22].

Proof Sketch: Let Γ be a proper straight-line drawing with spanning ratio 1
of a graph G. Let S be the set of points at which the vertices of G are drawn.
It is easy to prove that the point visibility graph GS of S is isomorphic to G,
where the point visibility graph GP of a point set P ⊂ R

2 has a vertex for each
point p ∈ P and has an edge between two vertices if and only if the straight-line
segment between the corresponding points does not contain any point of P in
its interior. The theorem follows from the fact that recognizing point visibility
graphs is a problem that is ∃R-complete [17]. ��
Theorem 3. Recognizing whether a graph admits a planar straight-line drawing
with spanning ratio equal to 1 is a linear-time solvable problem.

Proof: Dujmović et al. [22] characterized the graphs that admit a planar
straight-line drawing with a straight-line segment between every two vertices
as the graphs in the five graph classes in Fig. 1. Since a straight-line drawing has
spanning ratio 1 if and only if every two vertices are connected by a straight-line
segment, the theorem follows from the fact that recognizing whether a graph
belongs to such five graph classes can be easily done in linear time. ��

4 Drawings with Spanning Ratio 1 + ε

In this section we study straight-line drawings with spanning ratio arbitrarily
close to 1. Most of the section is devoted to a proof of the following result.

Theorem 4. For every ε > 0, every connected planar graph admits a planar
straight-line drawing with spanning ratio smaller than 1 + ε.

Let G be an n-vertex maximal planar graph with n ≥ 3, let G be a planar
drawing of G, and let (u, v, z) be the cycle delimiting the outer face of G in G.
A canonical ordering [9,26,34] for G is a total ordering [v1, . . . , vn] of its vertex
set such that the following hold for k = 3, . . . , n: (i) v1 = u, v2 = v, and vn = z;
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(ii) the subgraph Gk of G induced by v1, . . . , vk is 2-connected and the cycle Ck

delimiting its outer face in G consists of the edge v1v2 and of a path Pk between
v1 and v2; and (iii) vk is incident to the outer face of Gk in G. The following
lemma generalizes the concept of canonical orderings to non-maximal connected
planar graphs.

Lemma 1. Let H be an n-vertex connected planar graph. There exist an
n-vertex maximal planar graph G and a canonical ordering [v1, . . . , vn] for G
such that, for each k ∈ {1, . . . , n}, the subgraph Hk of H induced by {v1, . . . , vk}
is connected.

Fig. 2. Construction for the case in which a(v) = b(v).

Proof Sketch: For each k = 2, . . . , n, we let Gk be the subgraph of G induced
by v1, . . . , vk and Lk be the graph composed of Gk and of the vertices and edges
of H that are not in Gk. Further, we define v1, . . . , vk and Gk so that Hk is
connected, Gk is 2-connected, and Lk admits a planar drawing Lk such that:

1. the outer face of the planar drawing Gk of Gk in Lk is delimited by a cycle
Ck composed of the edge v1v2 and of a path Pk between v1 and v2;

2. vk is incident to the outer face of Gk;
3. every internal face of Gk is delimited by a 3-cycle; and
4. the vertices and edges of H that are not in Gk lie in the outer face of Gk.

If k = 2, then construct any planar drawing L2 of H and define v1 and v2 as
the end-vertices of any edge v1v2 incident to the outer face of L2. Properties 1–4
are then trivially satisfied (in this case the path P2 is the single edge v1v2).

If 2 < k < n, assume that v1, . . . , vk−1 and Gk−1 have been defined so that
Hk−1 is connected, Gk−1 is 2-connected, and Lk−1 admits a planar drawing Lk−1

satisfying Properties 1–4. Let Pk−1 = (u = w1, w2, . . . , wx = v), where x ≥ 2.
Consider any vertex v in Lk−1 \ Gk−1. By Properties 1 and 4 of Lk−1, all

the neighbors of v in Gk−1 lie in Pk−1. We say that v is a candidate (to be
designated as vk) vertex if, for some 1 ≤ i ≤ x, there exists an edge wiv such
that wiv immediately follows the edge wiwi−1 in clockwise order around wi or
immediately follows the edge wiwi+1 in counter-clockwise order around wi.

For each candidate vertex v, let wa(v) and wb(v) be the neighbors of v in
Pk−1 such that a(v) is minimum and b(v) is maximum (possibly a(v) = b(v)). If
a(v) < b(v), let the reference cycle C(v) of v be composed of the edges wa(v)v
and wb(v)v and of the subpath of Pk−1 between wa(v) and wb(v). Define the depth
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of v as 0 if a(v) = b(v) or as the number of candidate vertices that lie inside C(v)
in Lk−1 otherwise. We select as vk := v any candidate vertex v with depth 0.

If a(v) = b(v), as in Fig. 2, assume that wa(v)v immediately follows the
edge wa(v)wa(v)+1 in counter-clockwise order around wa(v); the other case is
symmetric. Define Gk as Gk−1 plus the vertex v and the edges wa(v)v and
wa(v)+1v. Further, construct Lk by drawing the edge wa(v)+1v so that the cycle
(wa(v), wa(v)+1, v) does not contain any vertex or edge in its interior.

If a(v) < b(v), as in Fig. 3, redraw each biconnected component of Lk−1

whose vertices different from v lie inside C(v) planarly so that it now lies outside
C(v); after this modification, no vertex of Lk−1 lies inside C(v). Then define Gk

as Gk−1 plus the vertex v and the edges wa(v)v, wa(v)+1v, . . . , wb(v)v. Further,
construct Lk by drawing the edges among wa(v)v, wa(v)+1v, . . . , wb(v)v not in H
so that they all lie inside C(v) and so that the edges wa(v)v, wa(v)+1v, . . . , wb(v)v
appear consecutively and in this counter-clockwise order around v.

Fig. 3. Construction for the case in which a(v) < b(v).

In both cases, it is easy to see that Hk is connected, Gk is 2-connected, and
Lk satisfies Properties 1–4. See [3] for details.

If k = n, the construction is similar to the one described for the case 2 < k <
n, however further edges are added to Gn so to ensure that the outer face of Gn

is delimited by the 3-cycle (v1, v2, vn). Setting G := Gn concludes the proof. ��
Lemma 2. For every k = 3, . . . , n and for every ε > 0, there exists a planar
straight-line drawing Γk of Gk such that: (1) the outer face of Γk is delimited
by the cycle Ck; further, the path Pk is x-monotone and lies above the edge uv,
except at u and v; and (2) the restriction Ξk of Γk to the vertices and edges of
Hk is a drawing with spanning ratio smaller than 1 + ε.

Proof Sketch: The proof is by induction on k. The base case k = 3 is trivial.
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Fig. 4. Construction of
Γk from Γk−1.

Assume that, for some k = 4, . . . , n, a planar
straight-line drawing Γk−1 of Gk−1 has been con-
structed satisfying Properties 1 and 2; see Fig. 4. Let
δ be the diameter of a disk D enclosing Γk−1. We
construct Γk from Γk−1 as follows. Let Pk−1 = (u =
w1, w2, . . . , wx = v). As proved in [26], the neighbors
of vk in Gk−1 are the vertices in a sub-path (wp, . . . , wq)
of Pk−1, where p < q. By Property 1 of Γk−1, we
have x(wp) < x(wq). We then place vk at any point
in the plane satisfying the following conditions: (i)
x(wp) < x(vk) < x(wq); (ii) for every i = p, . . . , q − 1,
the y-coordinate of vk is larger than those of the inter-
section points between the line through wiwi+1 and the
vertical lines through wp and wq; and (iii) the distance
between vk and the point of D closest to vk is a real
value d > kδ

ε .
Since Pk is obtained from Pk−1 by substituting the path (wp, wp+1, . . . , wq)

with the path (wp, vk, wq), Condition (i) and the x-monotonicity of Pk−1 imply
that Pk is x-monotone. Condition (ii), the x-monotonicity of Pk−1, and the
planarity of Γk−1 imply that Γk is planar. We now prove that the spanning ratio
of Ξk is smaller than 1 + ε. Consider any two vertices vi and vj . If i < k and

j < k, then πΞk
(vi,vj)

‖vivj‖Ξk
≤ πΞk−1 (vi,vj)

‖vivj‖Ξk−1
< 1 + ε. If i = k, then ‖vkvj‖Ξk

≥ d,

by Condition (iii). Consider the path P (vk, vj) composed of any edge vkv� in
Hk incident to vk (which exists since Hk is connected) and of any path in Hk−1

between v� and vj (which exists since Hk−1 is connected). The length of P (vk, vj)
is at most d + δ (by Condition (iii) and by the triangular inequality, this is an
upper bound on ‖vkv�‖Ξk

) plus (k − 2) · δ (this is an upper bound on the length
of any path in Hk−1). Hence, πΞk

(vk,vj)

‖vkvj‖Ξk
< d+kδ

d < 1 + ε. This completes the
induction and the proof of the lemma. ��

Lemmata 1 and 2 imply Theorem 4. Namely, for a connected planar graph
H, by Lemma 1 we can construct a maximal planar graph G that, by Lemma 2
(with k = n) and for every ε > 0, admits a planar straight-line drawing whose
restriction to H is a drawing with spanning ratio smaller than 1 + ε.

The following can be obtained by means of techniques similar to (and simpler
than) the ones in the proof of Theorem4; the proof can be found in [3].

Theorem 5. For every ε > 0, every connected graph admits a proper straight-
line drawing with spanning ratio smaller than 1 + ε.

5 Drawings with Small Spanning and Edge-Length Ratios

In this section we study straight-line drawings with small spanning ratio and
edge-length ratio. Our main result is the following.



Drawing Graphs as Spanners 317

Theorem 6. For every ε > 0 and every τ > 0, every n-vertex graph with tough-
ness τ admits a proper straight-line drawing whose spanning ratio is at most 1+ε

and whose edge-length ratio is in O
(

n
log2(2+�2/ε�)

log2(2+�1/τ�)−log2(1+�1/τ�) · 1/ε

)
. Further, for

every 0 < τ < 1, there is a graph G with toughness τ whose every straight-line
drawing with spanning ratio at most s has edge-length ratio in 2Ω(1/(τ ·s2)).

In order to prove Theorem 6, we study straight-line drawings of bounded-
degree trees. This is because there is a strong connection between the toughness
of a graph and the existence of a spanning tree with bounded degree. Indeed, if
a graph G has toughness τ , then it has a spanning tree with maximum degree
�1/τ�+2 [49]. Further, a tree has toughness equal to the inverse of its maximum
degree. We start by proving the following lower bound.

Theorem 7. For any s ≥ 1, any straight-line drawing with spanning ratio at
most s of a tree with a vertex of degree d has edge-length ratio in 2Ω(d/s2).

Proof: For any s ≥ 1, let Γ be any straight-line drawing of T with spanning
ratio at most s; refer to Fig. 5(a). Let uT be a vertex of degree d. Assume w.l.o.g.
up to a scaling (which does not alter the edge-length ratio and the spanning ratio
of Γ ) that the length of the shortest edge incident to uT in Γ is 1. For any integer
i ≥ 0, let Ci be the circle centered at uT whose radius is ri = 2i. Further, for
any integer i > 0, let Ai be the closed annulus delimited by Ci−1 and Ci. By
assumption, no neighbor of uT lies inside the open disk delimited by C0. We
claim that, for any integer i > 0 and for some constant c, there are at most c · s2

neighbors of uT inside Ai. This implies that at most k · c · s2 neighbors of uT lie
inside the closed disk delimited by Ck. Hence, if d > k · c · s2, e.g., if k = d−1

c·s2 �,
then there is a neighbor vT of uT outside Ck. Then ‖uT vT ‖ > 2k ∈ 2Ω(d/s2).
Hence, the theorem follows from the claim.

Fig. 5. Illustration for the proof of Theorem 7.

It remains to prove the claim. For each neighbor u of uT inside Ai, let Δu

be a closed disk such that: (i) u lies inside Δu; (ii) Δu lies inside Ai; and (iii)
the diameter of Δu is δi = 2i−2/s. The existence of Δu can be proved as follows.
Consider the circle Cu whose antipodal points are the intersection points of
Ci−1 and Ci with the ray from uT through u. Note that Cu lies inside Ai and
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has diameter 2i−1 > δi = 2i−2/s. Then Δu is any disk with diameter δi that
contains u and that lies inside the closed disk delimited by Cu.

Suppose, for a contradiction, that there exist two neighbors u and v of uT

inside Ai such that the disks Δu and Δv intersect. Then πΓ (u, v) ≥ 2i, since
both the edges uuT and vuT are longer than ri−1 = 2i−1. By the triangular
inequality, ||uv||Γ ≤ 2 · δi = 2i−1/s. Hence πΓ (u,v)

||uv||Γ ≥ 2s, while the spanning
ratio of Γ is at most s. This contradiction proves that, for any two neighbors u
and v of uT inside Ai, the disks Δu and Δv do not intersect. The area of Ai is
π · (r2

i − r2
i−1) = π · (22i − 22i−2) = 3π · (22i−2). Since each disk Δu lying inside

Ai has area π · (22i−6/s2) and does not intersect any different disk Δv, it follows
that Ai contains at most 3π·(22i−2)·s2

π·22i−6 = 48 · s2 distinct disks Δu and hence at
most 48 · s2 neighbors of uT . This proves the claim and hence the theorem. ��
Corollary 1. Let S be an n-vertex star. For any s ≥ 1, any straight-line drawing
of S with spanning ratio at most s has edge-length ratio in 2Ω(n/s2).

The lower bound of Theorem6 follows from Theorem 7 and from the fact
that a tree with maximum degree d has toughness 1/d. On the other hand, the
upper bound of Theorem6 is obtained by means of the following.

Theorem 8. For every ε > 0, every n-vertex tree T with maximum degree d
admits a proper straight-line drawing such that no three vertices are collinear, the
spanning ratio is at most 1+ε, the distance between any two vertices is at least 1,

and the width, the height, and the edge-length ratio are in O
(

n
log2(2+�2/ε�)
log2(d/(d−1)) · 1/ε

)
.

Theorem 8 proves the upper bound in Theorem6 and hence concludes its
proof. Namely, let G be an n-vertex graph with toughness τ and let ε > 0;
then G has a spanning tree T with maximum degree d = �1/τ� + 2 [49]. Apply
Theorem 8 to construct a straight-line drawing ΓT of T . Construct a straight-line
drawing ΓG of G from ΓT by drawing the edges of G not in T as straight-line
segments. Then ΓG is proper, as no three vertices are collinear in ΓT . Further,
the spanning ratio of ΓG is at most the one of ΓT , hence it is at most 1 + ε.

Finally, the edge-length ratio of ΓG is in O
(

n
log2(2+�2/ε�)
log2(d/(d−1)) · 1/ε

)
, given that the

distance between any two vertices in ΓT (and hence in ΓG) is at least 1 and given

that the width and height of ΓT (and hence of ΓG) are in O
(

n
log2(2+�2/ε�)
log2(d/(d−1)) · 1/ε

)
.

We defer the proof of Theorem 8 to the full version of the paper [3] and
present a proof of Theorem9, in which it is shown that trees with bounded max-
imum degree even admit planar straight-line drawings with constant spanning
ratio and polynomial edge-length ratio. The cost of planarity is found in the
dependence on the maximum degree, which is worse than in Theorem8.

Theorem 9. For every ε > 0, every n-vertex tree T with maximum degree d
admits a planar straight-line drawing whose spanning ratio is at most 1 + ε and
whose edge-length ratio is in O

(
(2n)2+(d−2)·log2(1+� 2

ε �) · log2 n
)
.
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Proof Sketch: Let γ = � 2
ε �. If d ≤ 2, then T is a path and the desired drawing

is trivially constructed. We can hence assume that d ≥ 3. Root T at any leaf
r; this ensures that every vertex of T has at most d − 1 children. In order to
avoid some technicalities in the upcoming algorithm, we also assume that every
non-leaf vertex of T has at least two children. This is obtained by inserting a
new child for each vertex of T with just one child; note that the size of the tree,
i.e., its number of vertices, is less than doubled by this modification. We again
call T the tree after this modification and by n its size.

Our construction is a “well-spaced” version of an algorithm by Shiloach [47].
We construct a planar straight-line drawing Γ of T in which (i) r is at the top-
left corner of B(Γ ), and (ii) for every vertex u of T , the path from u to r in T
is (non-strictly) xy-monotone.

If n = 1, then Γ is obtained by placing r at any point in the plane. If
n > 1, then let r1, . . . , rk be the children of r, where k ≤ d − 1, let T1, . . . , Tk be
the subtrees of T rooted at r1, . . . , rk, whose sizes are n1, . . . , nk, respectively.
Assume, w.l.o.g. up to a relabeling, that n1 ≤ · · · ≤ nk; hence, ni ≤ n/2 for
i = 1, 2, . . . , k − 1. Refer to Figure 6. Place r at any point in the plane. Induc-
tively construct planar straight-line drawings Γ1, . . . , Γk of T1, . . . , Tk, respec-
tively. Position Γ1 so that r1 is on the same vertical line as r, one unit below it;
let d1 be the width of Γ1. Then, for i = 2, . . . , k, position Γi so that ri is one
unit below r and γ · (di−1 +log2 n) units to the right of the right side of B(Γi−1);
denote by di the width of the bounding box of the drawings Γ1, . . . , Γi. Finally,
move Γk one unit above, so that rk is on the same horizontal line as r.

We now analyze the properties of Γ . By construction Γ is a straight-line
drawing. The planarity of Γ is easily proved by exploiting the fact that ri is at
the top-left corner of B(Γi) and that r1, r2, . . . , rk−1 all lie one unit below r.

Height. Let h(n) be the maximum height of a drawing of an n-vertex tree
constructed by the algorithm. The same analysis as in [47] shows that h(n) ≤
log2 n, given that h(1) = 0 and h(n) ≤ max{h(n

2 ) + 1, h(n − 1)} for n ≥ 2.

Spanning Ratio. We prove that, for any two vertices u and v that do not
belong to the same subtree Ti, it holds true that πΓ (u,v)

‖uv‖Γ
≤ γ+2

γ . This suffices
to prove that the spanning ratio of Γ is at most γ+2

γ . Suppose w.l.o.g. that u
belongs to a subtree Ti and v belongs to a subtree Tj , with i < j.

First, we have ‖uv‖ ≥ xv + γ · (dj−1 + log2 n), where xv denotes the distance
between v and the left side of B(Γj), while the second term is the distance
between the left side of B(Γj) and the right side of B(Γj−1).

Fig. 6. Inductive construction of Γ . In this example k = 3.
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Clearly, we have πΓ (u, v) = πΓ (u, r) + πΓ (r, v). The path between u and
r (between v and r) is xy-monotone, hence πΓ (u, r) (resp. πΓ (v, r)) is upper
bounded by the horizontal distance plus the vertical distance between u and r
(resp. between v and r). The vertical distance between u and r (between v and
r) is at most log2(n), since the height of Γ is at most log2(n). The horizontal
distance between u and r is at most di ≤ dj−1, while the one between v and r
is xv + γ · (dj−1 + log2 n) + dj−1. Hence, πΓ (u, v) ≤ (dj−1 + log2 n) + (xv + γ ·
(dj−1 + log2 n) + dj−1 + log2 n) = xv + (γ + 2) · (dj−1 + log2 n). Thus:

πΓ (u, v)
‖uv‖Γ

≤
(γ + 2) · (xv

γ + dj−1 + log2 n)

γ · (xv

γ + dj−1 + log2 n)
≤ γ + 2

γ
≤ 1 + ε.

Width. Let w1, . . . , wk be the widths of Γ1, . . . , Γk. By construction, d1 = w1

and, for each j = 2, . . . , k, we have dj = dj−1 + γ · (dj−1 + log2 n) + wj =
(γ + 1) · dj−1 + γ · log2 n + wj . Hence, by induction on j, we have dj = (γ +
1)j−1 · w1 + (γ + 1)j−2 · w2 + . . . + (γ + 1) · wj−1 + wj + ((γ + 1)j−1 − 1) · log2 n.
In particular, the width of Γ is equal to dk and hence to:

k∑
i=1

((γ + 1)k−i · wi) + ((γ + 1)k−1 − 1) · log2 n. (1)

Let w(n) be the maximum width of a drawing of an n-vertex tree constructed
by the algorithm. By construction w(1) = 0. For n ≥ 2, by Equality 1, we get:

w(n) ≤ (γ + 1)d−2 ·
k−1∑
i=1

w(n1) + w(nk) + (γ + 1)d−2 · log2 n. (2)

Recall that n1, . . . , nk−1 ≤ n/2. On the other hand, nk might be larger than
n/2; if that is so, Inequality 2 is used to replace the term w(nk) into Inequal-
ity 2 itself. The repetition of this substitution eventually results in the following
(see [3] for details):

w(n) ≤ (γ + 1)d−2 ·
∑
i,j

w(ni,j) + (γ + 1)d−2 · (n − 1) · log2 n, (3)

where the terms ni,j denote the sizes of distinct subtrees of T (hence
∑

ni,j ≤
n − 1), each of which has at most n/2 nodes (hence ni,j ≤ n/2).

We prove, by induction on n, that w(n) ≤ f(n) :=
(
(γ + 1)d−2

)log2 n ·
n2 · log2 n. This is trivial when n = 1, given that w(1) = 0. Assume now
that n > 1. By Inequality 3 and by induction, we get w(n) ≤ (γ + 1)d−2 ·∑
i,j

((
(γ + 1)d−2

)log2 ni,j · n2
i,j · log2 ni,j

)
+(γ+1)d−2 ·(n−1) · log2 n. Since ni,j ≤

n/2 < n, we get w(n) ≤ (γ + 1)d−2 · ((γ + 1)d−2
)log2(n/2) · ∑

i,j

n2
i,j · log2 n + (γ +

1)d−2 ·(n−1)·log2 n =
(
(γ + 1)d−2

)log2 n ·∑
i,j

n2
i,j ·log2 n+(γ+1)d−2 ·(n−1)·log2 n.
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Since
∑

ni,j ≤ n−1, we have
∑
i,j

n2
i,j ≤ (n−1)2. Thus, w(n) ≤ (

(γ + 1)d−2
)log2 n ·

((n − 1)2 + (n − 1)) · log2 n ≤ (
(γ + 1)d−2

)log2 n · n2 · log2 n. This completes the
induction and the analysis of the width of Γ .

Edge-Length Ratio. By construction, the length of each edge connecting r to
a child is larger than or equal to 1, hence the same is true for every edge of T .
Thus, the edge-length ratio of Γ is upper bounded by the maximum length of
an edge of T . In turn, this is at most the sum of the height plus the width of
Γ , which is in O

((
(γ + 1)d−2

)log2 n · n2 · log2 n
)
, as proved above. The factor(

(γ + 1)d−2
)log2 n can be rewritten as n(d−2)·log2(γ+1). The bound claimed in the

statement is then obtained by substituting γ = � 2
ε � and by observing that the

value of n used in the calculations is at most twice the size of the initial tree. ��

6 Open Problems

Our research raises a number of open problems which might be worth studying.
First, it would be interesting to tighten the bounds in Theorem6 relating the

toughness to the edge-length ratio of a drawing with constant spanning ratio.
Second, there is still much to be understood about the edge-length ratio

of planar straight-line drawings with constant spanning ratio. Theorem9 shows
that planar straight-line drawings with constant spanning ratio and polynomial
edge-length ratio exist for bounded-degree trees. We also observe that every n-
vertex 2-connected outerplanar graph G admits a planar straight-line drawing
with spanning ratio at most

√
2 and edge-length ratio in O(n1.5); this can be

achieved by placing the vertices of G, in the order given by the Hamiltonian
cycle of G, at the vertices of a lattice xy-monotone polygonal curve; see, e.g., [2].
Further, Schnyder drawings are known to be 2-spanners [13]. Hence, n-vertex
3-connected planar graphs admit planar straight-line drawings with spanning
ratio at most 2 and edge-length ratio in O(n) [11,46]; do they admit planar
straight-line drawings with spanning ratio smaller than 2 (and possibly arbitrar-
ily close to 1) and polynomial edge-length ratio? Can Theorem6 be extended
to prove that a planar straight-line drawing with constant spanning ratio and
polynomial edge-length ratio exists for planar graphs with bounded toughness?
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22. Dujmović, V., Eppstein, D., Suderman, M., Wood, D.R.: Drawings of planar graphs
with few slopes and segments. Comput. Geom. Theory Appl. 38(3), 194–212 (2007)

23. Dumitrescu, A., Ghosh, A.: Lower bounds on the dilation of plane spanners. Int.
J. Comput. Geom. Appl. 26(2), 89–110 (2016)

24. Eppstein, D., Goodrich, M.T.: Succinct greedy geometric routing using hyperbolic
geometry. IEEE Trans. Comput. 60(11), 1571–1580 (2011)

https://doi.org/10.1007/978-3-642-36763-2_23
https://doi.org/10.1007/978-3-642-36763-2_23
https://doi.org/10.1007/978-3-319-50106-2_40


Drawing Graphs as Spanners 323

25. Felsner, S., Igamberdiev, A., Kindermann, P., Klemz, B., Mchedlidze, T.,
Scheucher, M.: Strongly monotone drawings of planar graphs. In: 32nd Interna-
tional Symposium on Computational Geometry (SoCG 2016). LIPIcs, vol. 51, pp.
37:1–37:15. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2016)

26. de Fraysseix, H., Pach, J., Pollack, R.: How to draw a planar graph on a grid.
Combinatorica 10(1), 41–51 (1990)

27. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory
of NP-Completeness. W. H. Freeman, New York (1979)

28. Garey, M.R., Johnson, D.S., Tarjan, R.E.: The planar Hamiltonian circuit problem
is NP-complete. SIAM J. Comput. 5(4), 704–714 (1976)

29. He, D., He, X.: Optimal monotone drawings of trees. SIAM J. Discrete Math.
31(3), 1867–1877 (2017)

30. He, X., He, D.: Monotone drawings of 3-connected plane graphs. In: Bansal, N.,
Finocchi, I. (eds.) ESA 2015. LNCS, vol. 9294, pp. 729–741. Springer, Heidelberg
(2015). https://doi.org/10.1007/978-3-662-48350-3 61

31. He, X., Zhang, H.: On succinct greedy drawings of plane triangulations and 3-
connected plane graphs. Algorithmica 68(2), 531–544 (2014)

32. Hossain, M.I., Rahman, M.S.: Good spanning trees in graph drawing. Theoret.
Comput. Sci. 607, 149–165 (2015)

33. Icking, C., Klein, R., Langetepe, E.: Self-approaching curves. Math. Proc. Cam-
bridge Philos. Soc. 125(3), 441–453 (1999)

34. Kant, G.: Drawing planar graphs using the canonical ordering. Algorithmica 16(1),
4–32 (1996)

35. Kindermann, P., Schulz, A., Spoerhase, J., Wolff, A.: On monotone drawings of
trees. In: Duncan, C., Symvonis, A. (eds.) GD 2014. LNCS, vol. 8871, pp. 488–500.
Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-45803-7 41

36. Leighton, T., Moitra, A.: Some results on greedy embeddings in metric spaces.
Discrete Comput. Geom. 44(3), 686–705 (2010)

37. Lubiw, A., Mondal, D.: Construction and local routing for angle-monotone graphs.
J. Graph Algorithms Appl. 23(2), 345–369 (2019)

38. Mnev, N.E.: The universality theorems on the classification problem of configura-
tion varieties and convex polytopes varieties. In: Viro, O.Y., Vershik, A.M. (eds.)
Topology and Geometry — Rohlin Seminar. LNM, vol. 1346, pp. 527–543. Springer,
Heidelberg (1988). https://doi.org/10.1007/BFb0082792

39. Mulzer, W.: Minimum dilation triangulations for the regular n-gon. Master’s thesis,
Freie Universität Berlin (2004)
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Abstract. A simple drawing D(G) of a graph G is one where each pair
of edges share at most one point: either a common endpoint or a proper
crossing. An edge e in the complement of G can be inserted into D(G)
if there exists a simple drawing of G + e extending D(G). As a result
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1 Introduction

A simple drawing of a graph G (also known as good drawing or as simple topo-
logical graph in the literature) is a drawing D(G) of G in the plane such that
every pair of edges shares at most one point that is either a proper crossing or a
common endpoint. In particular, no tangencies between edges are allowed, edges
must not contain any vertices in their relative interior, and no three edges inter-
sect in the same point. Simple drawings have received a great deal of attention in
various areas of graph drawing, for example in connection with two long-standing
open problems: the crossing number of the complete graph [30] and Conway’s
thrackle conjecture [26].

In this work, we study the problem of inserting an edge into a simple drawing
of a graph. Given a simple drawing D(G) of a graph G = (V,E) and an edge e of
the complement G of G we say that e can be inserted into D(G) if there exists
a simple drawing of G′ = (V,E ∪ {e}) that contains D(G) as a subdrawing.

A pseudoline arrangement is an arrangement of simple biinfinite arcs, called
pseudolines, such that every pair of pseudolines intersects in a single point that is
a proper crossing. Similarly, an arrangement of pseudocircles is an arrangement
of simple closed curves, called pseudocircles, such that every pair of pseudocircles
intersects in either zero or two points, where in the latter case, both intersection
points are proper crossings. A simple drawing D(G) is called pseudolinear if the
drawing of every edge can be extended to a pseudoline such that the extended
drawing forms a pseudoline arrangement. Likewise, D(G) is called pseudocircular
if the drawing of every edge can be extended to a pseudocircle such that the
extended drawing forms an arrangement of pseudocircles.

Pseudoline arrangements were introduced by Levi [24] in 1926 and have since
been extensively studied; see for example [13]. One of the most fundamental
results on pseudoline arrangements, nowadays well known as Levi’s Enlargement
Lemma, stems from Levi’s original paper1. It states that, for any given pseudoline
arrangement L and any two points p and q not on the same pseudoline of L, it
is always possible to insert a pseudoline through p and q into L such that the
resulting arrangement is again a valid pseudoline arrangement.

From Levi’s Enlargement Lemma, it immediately follows that given any pseu-
dolinear drawing D(G) and any set E∗ of edges from G, it is always possible
to insert all edges from E∗ into D(G) such that the resulting drawing is again
pseudolinear. To the contrary, as shown by Kynčl [23], this is in general not the
case for simple drawings, not even if G is a matching plus two isolated vertices
which are the endpoints of the edge to be inserted [22]. The latter implies that an
analogous statement to Levi’s Enlargement Lemma is not true for arrangements
of pseudosegments (simple arcs that pairwise intersect at most once). Moreover,
Arroyo, Derka, and Parada [2] recently showed that given a simple drawing D(G)
and a set E∗ of edges from G, it is NP-complete to decide whether E∗ can be
inserted into D(G) (such that the resulting drawing is again simple). However,

1 Also known as Levi’s Extension Lemma. Several different proofs of Levi’s Enlarge-
ment Lemma have been published since then [3,14,31–33].
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the cardinality of E∗ required for their hardness proof is linear in the size of
the constructed graph. The main open problem posed in [2] is the complexity of
deciding whether one single given edge e of G can be inserted into D(G).

In this work, we show that this decision problem is NP-complete, even if G is
a matching plus two isolated vertices which are the endpoints of e. This implies
that, given an arrangement S of pseudosegments and two points p and q not on
the same pseudosegment, it is NP-complete to decide whether it is possible to
insert a pseudosegment from p to q into S such that the resulting arrangement
is again a valid arrangement of pseudosegments (Sect. 2). On the positive side,
we observe that the decision problem is fixed-parameter tractable (FPT) in the
number of crossings of the drawing (Sect. 4).

Snoeyink and Hershberger [32] showed the following analogon to Levi’s
Enlargement Lemma for arrangements of pseudocircles: For any arrangement
A of pseudocircles and any three points p, q, and r, not all of them on one pseu-
docircle of A, there exists a pseudocircle Φ through p, q, and r such that A∪{Φ}
is again an arrangement of pseudocircles. Refining our hardness proof, we show
that the edge-insertion decision problem remains NP-complete when D(G) is a
pseudocircular drawing, regardless of whether the resulting drawing is required
to be again pseudocircular or allowed to be any simple drawing. This holds even
if we are in addition given an arrangement of pseudocircles extending D(G). On
the positive side, we show that, given an arrangement A of pseudocircles and
a pseudosegment σ, it can be decided in polynomial time whether there exists
an extension Φσ of σ to a simple closed curve such that A ∪ {Φσ} is again an
arrangement of pseudocircles (Sect. 3).

One of the implications of the results presented in this paper concerns so-
called saturated drawings [22]. A simple drawing D(G) of a graph G is called
saturated if no edge e from G can be inserted into D(G). It is known that there
are saturated simple drawings with a linear number of edges [16]. A natural
question is to determine the complexity of deciding whether a simple drawing is
saturated. Our hardness result implies that the straight-forward idea of testing
whether D(G) is saturated by checking for every edge in G whether it can be
inserted into D(G) is not feasible unless P = NP.

The problem of inserting an edge (or multiple edges or a star) into a planar
graph has been extensively studied in the contexts of determining the crossing
number of the resulting graph [6,29] and of finding a drawing of the resulting
graph in which the original planar graph is drawn crossing-free and the drawing
of the resulting graph has as few crossings as possible [10,11,15,28]. In relation
to our work, a main difference is that we consider inserting edges into some
given non-plane drawing of a graph. Furthermore, the question considered in
this paper is strongly related to work on extending partial representations of
graphs. Here, we are usually given a representation of a part of the graph G
and are asked to extend it into a full representation of G such that the partial
representation is a sub-representation of the full one. Recent years have seen a
plethora of results in this topic [1,4,5,7–9,12,17–21,25,27].

Proofs of statements marked with � are deferred to the full version of this
work.
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2 Inserting One Edge into a Simple Drawing Is Hard

Theorem 1. Given a simple drawing D(G) of a graph G = (V,E) and an edge
uv of G, it is NP-complete to decide whether uv can be inserted into D(G), even
if V \ {u, v} induces a matching in G and u and v are isolated vertices.

It is straightforward to verify that the problem is in NP (see Arroyo et al. [2]
for a combinatorial description of our problem using the dual of the planariza-
tion of the drawing). We show NP-hardness via a reduction from 3SAT. Let
φ(x1, . . . xn) be a 3SAT-formula with variables x1, . . . , xn and set of clauses
C = {C1, . . . , Cm}. An occurrence of a variable xi in a clause Cj ∈ C is called a
literal. For convenience, we assume that in φ(x1, . . . , xn), each clause has three
(not necessarily different) literals. In a preprocessing step, we eliminate clauses
with only positive or only negative literals via the transformation from Lemma 1.

Lemma 1 (�). The following transformation of a clause with only positive or
only negative literals, respectively, preserves the satisfiability of the clause (y is
a new variable and false is the constant value false):

xi∨xj ∨xk ⇒
{

xk∨y ∨ false (i)
xi∨xj ∨¬y (ii)

¬xi∨¬xj ∨¬xk ⇒
{

¬xi∨¬xj ∨y (iii)
¬xk∨¬y∨false (iv)

After the preprocessing, we have a transformed 3SAT-formula where each
clause is of one of the following four types: Type (i) two positive literals and one
constant false; Type (ii) one negative and two positive literals; Type (iii) one
positive and two negative literals, and finally, Type (iv) two negative literals and
one constant false.

Given a transformed 3SAT-formula φ = φ(x1, . . . , xn) with set of clauses
C = {C1, . . . , Cm}, satisfiability of φ will correspond to being able to insert
a given edge uv into a simple drawing D of a matching constructed from the
formula φ. The main idea of the reduction is that the variable and clause gadgets
in D act as “barriers” inside a simple closed region R of D, in which we need to
insert a simple arc γ from one side to the other to connect u and v. Crossing a
barrier in some way imposes constraints on how or whether we can cross other
barriers afterwards.

To simplify the description, we first focus our attention to the inside of the
simple closed region R. We assume that γ cannot cross the boundary of R. In
the following we use two lines, named λ and μ, to bound the regions in which
a variable and clause gadget will be placed. Particularly, these lines will be
identified with opposite segments on R’s boundary.

Variable Gadget. A variable gadget W is bounded from above by a horizontal
line λ and from below by a horizontal line μ. Additionally, it contains a vertical
segment κ between λ and μ, a set P of pairwise non-crossing arcs (parts of later-
defined edges), each with one endpoint on κ and the other endpoint on μ, and a
set N of pairwise non-crossing arcs, each with one endpoint on κ and the other
endpoint on λ. On κ, all the endpoints of arcs in P lie above all the endpoints
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of arcs in N , implying that every arc in P crosses every arc in N . Finally, we
choose two points u and v such that u is to the left of all arcs in W and v is to
the right of them; see Fig. 1 for an illustration. The arcs in P and N correspond
to positive and negative appearances of the variable, respectively.

Lemma 2 (�). Let W be a variable gadget. Any arc between the horizontal lines
λ and μ that connects u and v crosses either all arcs in P or all arcs in N .

Fig. 1. Variable gadget. The orange
arcs belong to N , the green ones to P .
(Color figure online)

Fig. 2. Clause gadget.

Clause Gadget. Similar to a variable gadget, a clause gadget K is bounded from
above and below by two horizontal lines λ and μ, respectively. Additionally, it
contains three horizontal arcs (parts of later-defined edges) γa, γb, and γc, where
the former two have one endpoint on λ and the latter has one endpoint on μ.
On λ, the endpoint of γa lies to the right of the one of γb. The other endpoints of
γa, γb, and γc are called a, b, and c, respectively. None of these three arcs cross.
Moreover, K contains two points d and g and an edge dg that crosses γa, γc,
and γb in that order when traversed from d to g. Notice that we do not require
any specific rotation of the crossings of dg with γa and γb (where the rotation is
the clockwise order of the endpoints of the crossing arcs). However, to simplify
the description, we assume that the rotations of the crossings are as in Fig. 2.
The rotation of the crossing of dg with γc is forced by the order of the crossings
along dg. Finally, we again choose two points u and v such that u is to the left
of all arcs in K and v is to the right of them; see Fig. 2 for an illustration.

Lemma 3 (�). Let K be a clause gadget. Any arc uv between the horizontal
lines λ and μ that connects u and v crosses either dg twice or at least one of the
arcs γa, γb, and γc.



330 A. Arroyo et al.

Fig. 3. The simple drawing ©� presented
in [22].

The Reduction. Let φ(x1, . . . , xn) be a
transformed 3SAT-formula with clause
set C = {C1, . . . , Cm} (each clause
being of one of the four types iden-
tified above). To build our reduction
we need one more gadget. First, we
introduce the following simple draw-
ing introduced by Kynčl et al. [22,
Figure 11] and depicted in Fig. 3. Here,
we denote this drawing by ©� . Follow-
ing the notation by Kynčl et al., we
denote its six arcs by a1, a2, a3, b1, b2,
and b3; and its eight cells by X, A1, A2, A3, B1, B2, B3, and Y ; see Fig. 3 for
an illustration. The core property P of ©� is that it is not possible to insert an
edge between a point in cell X and another point in cell Y such that the result
is a simple drawing [22, Lemma 15].

For our reduction, we first choose two arbitrary points u and v in the cells X
and B2 and insert them as vertices into ©� . Let ©� ′ be the obtained drawing.
Further, let b∗

2 be the part of the arc b2 between the crossing point of b2 and a2

and the crossing point of b2 and b3, see again Fig. 3.

Lemma 4 (�). The edge uv cannot be inserted into ©� ′ without crossing b∗
2.

The final piece we need for our reduction is a set F of mI + mIV + 4 arcs
that we insert into ©� ′, where mI is the number of clauses of Type (i) and mIV

the number of clauses of Type (iv). For an arc f ∈ F we will place one of its
endpoints on a horizontal line κF inside A2 and the other one inside B2. The
only crossings of f with ©� ′ are with the arcs a2, a1, b3, and b2, in that order,
when traversing f from its endpoint on κF to its endpoint in B2. Furthermore,
when f is traversed in that direction, it crosses from A2 to A1, from A1 to B3,
from B3 to Y , and from Y to B2.

Consider the mI + mIV + 4 endpoints on κF sorted from left to right. We
denote by fj the arc in F incident with the j-th such endpoint. When traversing
b2 from its endpoint in A2 to its endpoint in B1, the crossings of arcs in F with b2
appear in the same order as their endpoints on κF . More precisely, the crossings
of b2, when b2 is traversed in that direction, are with a2, a1, b3, f1, f2, . . . , f|F |,
and b1, in that order.

The arcs fmI+1, fmI+2, fmI+3, and fmI+4 will behave differently than the
other arcs in F . In the following, we denote these four arcs by r2, r1, 	1, and 	2,
respectively. There are only two crossings between arcs in F , namely, between r1
and r2, and between 	1 and 	2, and both these crossings are inside B2. These four
crossing arcs divide B2 into three regions. Let R denote the region with b∗

2 on its
boundary; let Rr denote the (other) region incident with the crossing between r1
and r2; and let R� denote the (other) region incident with the crossing between
	1 and 	2. Arcs r1, r2, 	1, and 	2 must be drawn such that the vertex v lies in R;
see the red arcs in Fig. 4 for an illustration. The precise endpoints of the edges
in F \ {r1, r2, 	1, 	2} will be fixed when we insert the clause gadgets.
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Type (i)Type (ii)Type (iii)Type (iv)

Fig. 4. Illustration of the reduction. (Color figure online)

Lemma 5 (�). The edge uv cannot be inserted into ©� ′ without crossing every
arc in F in the closure of A1 or of B3.

It remains to insert inside R the clause and variable gadgets and precisely
define the endpoints of arcs in F \{	1, 	2, r1, r2}. For simplicity, we first insert the
variable gadgets and then the clause gadgets. The idea is that each clause and
variable gadget is inserted in R separating b∗

2 from v. This is done by identifying
the endpoints that were lying on λ or μ with points on 	1, 	2, r1, r2, or b2. As
a result, Lemmas 2 and 3 can be applied to the arc that we insert connecting u
and v in the final drawing, since it has to cross b∗

2 by Lemma 4.
We now insert the variable gadgets into R. Let W (i) be the variable gadget

corresponding to variable xi. For a gadget W (i), the arcs in N are drawn such
that the endpoints on λ lie on the part of 	1 that bounds R. The arcs in P
are drawn similarly, but with the endpoints on μ lying on the part of r1 that
bounds R. Moreover, we identify vertex v in the gadget with vertex v in ©� ′.
Gadgets corresponding to different variables are inserted without crossing each
other. We now specify how they are inserted relative to each other. As we traverse
	1 from its endpoint on κF to its endpoint in R, we encounter the endpoints of
arcs in W (i) before the endpoints of arcs in W (i+1). Analogously, as we traverse
r1 from its endpoint on κF to its endpoint in R, we encounter the endpoints of
arcs in W (i) before the endpoints of arcs in W (i+1). See Fig. 4 for an illustration.

In a similar way we insert the clause gadgets. Let K(j) be the clause gadget
corresponding to clause Cj . If Cj is of Type (i), K(j) is inserted such that the
endpoints on λ lie on the part of 	2 that bounds R. If Cj is the j′-th clause
of Type (i), we identify c with the endpoint of the arc fj′ . Similarly, if Cj is of
Type (iv), K(j) is inserted such that the endpoints on λ lie on the part of r2 that
bounds R. If Cj is the j′-th clause of Type (iv), we identify c with the endpoint
of the arc fmI+4+j′ . If Cj is of Type (ii), K(j) is inserted such that the endpoints
on λ lie on the part of 	2 that bounds R and the endpoint on μ lies on the part
of r2 that bounds R. Similarly, if Cj is of Type (iii), K(j) is inserted such that
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the endpoint on μ lies on the part of 	2 that bounds R and the endpoints on λ
lie on the part of r2 that bounds R. The crossings in R of arcs from different
clause gadgets are of arcs with an endpoint in r2 with arcs in {fj : 1 ≤ j ≤ mI}.

We now specify how different clause gadgets are inserted relative to each
other. As we traverse 	2 from its endpoint on κF to its endpoint in R, we first
encounter the endpoints of arcs corresponding to Type (iii) clauses, followed by
the ones corresponding to Type (ii) clauses, and finally the ones corresponding
to Type (i) clauses. Analogously, as we traverse r2 from its endpoint on κF to its
endpoint in R, we first encounter the endpoints of arcs corresponding to Type (iv)
clauses, followed by the ones corresponding to Type (iii) clauses, and finally the
ones corresponding to Type (ii) clauses. Moreover, as we traverse 	2 and r2 in
the specified directions, the endpoints of arcs corresponding to the j′-th clause
of a certain type are encountered before the endpoints of arcs corresponding to
the (j′ − 1)-st clause of this type. An illustration can be found in Fig. 4.

Finally, we connect arcs from variable and clause gadgets inside the regions R�

and Rr. This is done such that if a literal in a clause is xk then the corresponding
arc in the clause gadget, that has an endpoint on 	2, is connected with an arc
in N of the gadget W (k), that has an endpoint on 	1. Thus, these connections
can lie in R�. Analogously, if a literal in a clause is ¬xk then the corresponding
arc in the clause gadget, that has an endpoint on r2, is connected with an arc
in P of the gadget W (k), that has an endpoint on r1. Thus, these connections
can lie in Rr. Since, without loss of generality, we can assume that R� and Rr are
convex regions and the endpoints we want to connect are pairwise distinct points
on the boundaries of those regions, the connections can be drawn as straight-
line segments. (For clarity, in Fig. 4, these connections have one bend per arc.)
Therefore, there is at most one crossing between each pair of connecting arcs.

Each connecting arc is concatenated with the arcs in a variable and in a
clause gadget that it joins. These concatenated arcs are edges in our drawing
that have one endpoint in a variable gadget and the other one in a clause gadget.
By construction, each such edge corresponds to a literal in the formula φ and
each pair of them crosses at most once. Similarly, the arcs in F \ {	1, 	2, r1, r2}
have one endpoint in a clause gadget and also define edges in our final drawing
that we denote by the same names as the corresponding arcs.

We now have all the pieces that constitute our final drawing. It consists of (i)
the simple drawing ©� ′; (ii) the edges fi ∈ F drawn as the described arcs (with
their endpoints as vertices); (iii) the edges corresponding to literals (with their
endpoints as vertices); and (iv) the edges dg in each clause gadget (with d and g
as vertices). Observe that the constructed drawing is a simple drawing, as it is
the drawing of a matching (plus the vertices u and v) and, by construction, any
two edges cross at most once.

It remains to show that the presented construction is a valid reduction.

Lemma 6 (�). The above construction is a poly-time reduction from 3SAT to
the problem of deciding whether an edge can be inserted into a simple drawing.
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Remarks and Extensions. As our reduction from 3SAT constructs a simple draw-
ing D(G) of a matching, the general problem is NP-hard even if G is as sparse as
possible. We remark that if we do not require G to be a matching, our variable
gadget can be simplified by identifying all the vertices on κ and removing the
crossings between edges in N and P . Moreover, from the constructed drawing
D(G), one can produce an equivalent instance that is connected: This is done
by inserting an apex vertex into an arbitrary cell of the drawing, and then sub-
dividing its incident edges so that the resulting drawing D∗ is simple. If uv can
be inserted into D(G) then it can be inserted also into D∗. Finally, it is possible
to show that the simple drawings produced by our reduction are pseudocircular
implying the following result.

Corollary 1 (�). Given a pseudocircular drawing D(G) of a graph G = (V,E)
and an edge uv of G, it is NP-complete to decide whether uv can be inserted
into D(G), even if an arrangement of pseudocircles extending the drawing of the
edges in D(G) is provided.

3 Extending an Arrangement of Pseudocircles Is Easy

In the previous section we proved that deciding whether an edge can be inserted
into a pseudocircular drawing such that the result is a simple (or a pseudo-
circular) drawing is hard. In this section we focus on extending arrangements
instead of drawings of graphs. Snoeyink and Hershberger [32] showed that given
an arrangement A of pseudocircles and three points, not all three on the same
pseudocircle, one can find a pseudocircle Φ through the three points such that
A∪{Φ} is again an arrangement of pseudocircles. Now, given any arrangement A
and a pseudosegment σ intersecting each pseudocircle in A at most twice, it is
not always possible to extend σ to a pseudocircle Φσ ⊃ σ such that A ∪ {Φσ} is
again an arrangement of pseudocircles. Two examples are shown in Figs. 5 and 6.
In either, any pseudocircle Φσ extending σ crosses one red or blue pseudocircle
at least four times. However, we show in the following that the extension decision
question can be answered in polynomial time:

Theorem 2. Given an arrangement A of n pseudocircles and a pseudoseg-
ment σ intersecting each pseudocircle in A at most twice, it can be decided in
time polynomial in n whether there exists an extension of σ to a pseudocircle Φσ

such that A ∪ {Φσ} is an arrangement of pseudocircles.

Proof. Throughout this proof we write R := R
2 \ R for the complement of a

set R ⊆ R
2. An arrangement (of pseudocircles) partitions the plane into ver-

tices (0-dimensional cells), edges (1-dimensional cells), and faces (2-dimensional
cells). Since tangencies are not allowed, all vertices are proper crossings. Two
arrangements are combinatorially equivalent (or, isomorphic) if the correspond-
ing cell complexes are isomorphic, that is, if there is an incidence- and dimension-
preserving bijection between their cells. By possibly transforming A into an
isomorphic arrangement while preserving the incidences of σ, we can assume
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without loss of generality that σ is a horizontal segment. Let u and v be the
left and right endpoints of σ, respectively. Further, we can assume that u is
incident with the unbounded cell and that the intersection points of σ with the
pseudocircles in A are all proper crossings. Our algorithm aims to compute a
pseudocircle Φσ = σ ∪σ′ such that A∪{Φσ} is an arrangement of pseudocircles,
or determine that no such σ′ exists. We call σ′ an extension of σ.

σ

Fig. 5. Obstruction where all pseudo-
circles intersect σ twice.

σ

Fig. 6. Obstruction where one pseudo-
circle intersects σ only once.

We partition the set of pseudocircles of A into three sets C0, C1, and C2,
where for each i ∈ {0, 1, 2}, Ci is the set of pseudocircles in A crossing σ exactly i
times. Note that u lies outside all pseudocircles φ ∈ A while v lies outside of all
φ ∈ C0 ∪C2 and inside all φ ∈ C1, that is, each φ ∈ C1 separates u and v. Further,
an extension σ′ must not cross any φ ∈ C2, it needs to cross every φ ∈ C1 exactly
once, and it can cross each φ ∈ C0 either twice or not at all.

The idea is to construct a finite sequence R0 ⊂ R1 ⊂ . . . of closed subsets
of R

2, each consisting of cells of A ∪ σ that cannot be reached by σ′. Each
set Ri will be a simply connected closed region of R2 with both u and v on its
boundary. Further, for each Ri and each φ ∈ C0, we will maintain the invariant
that int(φ) ∩ Ri is either a connected region or empty, where int(φ) denotes the
interior of the bounded area enclosed by φ. (Note that int(φ) ∩ Ri is connected
if and only if Ri \ int(φ) is connected.) The construction will either end by
determining that σ cannot be extended, or with a set Rm such that routing σ′

closely along the boundary of Rm gives a valid extension of σ.
Let R′

0 be the union of σ and all the closed disks bounded by the pseudo-
circles in C2 and consider the faces induced by R′

0. Since u is incident with the
unbounded cell of R′

0, and since σ′ must not intersect the interior of R′
0, σ′ can-

not reach any bounded face of R′
0. Let R0 be the closure of the union of these

bounded faces and σ. We may assume that v ∈ ∂R0, as otherwise no extension σ′

exists and we are done.
To see that the invariant holds for R0, assume that there exists a pseudocircle

φ ∈ C0 such that R0 \ int(φ) is not connected. As φ does not intersect σ, there
exists a component D of R0 \ int(φ) that is disjoint from σ. Further, as int(φ) is
simply connected, D∩∂R0 �= ∅. Moreover, any point x on ∂D∩∂R0 lies on some
circle φx ∈ C2. On the other hand, any path from a point of σ to x must enter
and leave int(φ) and hence intersect φ at least twice. As φx intersects σ twice
and lies in R0, we get that φx intersects φ in at least four points, a contradiction.

For the iterative step, consider the arrangement Aφ
i formed by ∂Ri and a

pseudocircle φ ∈ C0 ∪ C1, and the cells of it that lie in Ri. If φ ∈ C1 and an
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extension σ′ exists, then the only two such cells that can be intersected by σ′ are
the ones incident to u and v, respectively. Similarly, if φ ∈ C0, then σ′ can only
intersect the cell(s) incident to u and v, plus the (by the invariant) unique cell
int(φ)∩Ri. In both cases, all other cells of this arrangement should be added to
the forbidden area. We denote all cells Aφ

i ∩ Ri that can possibly be intersected
by σ′ as reachable (by σ′) and all other cells as unreachable (by σ′).

Assume that there exists some pseudocircle φ ∈ C0∪C1 such that the arrange-
ment Aφ

i of φ and ∂Ri contains unreachable cells. Then we obtain R′
i+1 by adding

all those cells to Ri. If v lies in a bounded face of R′
i+1, then no extension σ′

exists and we are done. Otherwise, Ri+1 = R′
i+1 is a simply connected region

that has both u and v on its boundary. It remains to show that the invariant is
still maintained for Ri+1.

Lemma 7 (�). If Ri fulfills the invariant and u and v both lie in the unbounded
region of R′

i+1 then Ri+1 also fulfills the invariant.

Now assume that both u and v lie on the boundary of all sets Ri constructed
in this way. Then the iterative process stops with a set Rm where for each
φ ∈ C0 ∪ C1, all cells in the arrangement Aφ

m of φ and ∂Rm that are contained
in Rm are reachable by σ′. Note that m = O(n4) as A has Θ(n4) cells, as in
every iteration i, at least one cell of A has been added to Ri, and as each cell
of A is added at most once. Consider a path P from u to v in Rm that is routed
closely along the boundary ∂Rm (note that there are two different such paths).
Then for any φ ∈ C1, P intersects exactly two cells of Aφ

m, namely, the ones
incident to u and v, respectively. Hence P crosses φ exactly once. Similarly, for
any φ ∈ C0, the path P intersects at most three cells of Aφ

m, namely, the one(s)
incident to u and v plus possibly the cell int(φ) ∩ Rm, which is one cell by the
invariant. Hence P crosses φ at most twice. Thus σ′ = P is a valid extension
for σ, which completes the correctness proof.

Note that computing R0 and σ′ (in case that the algorithm didn’t terminate
with a negative answer before) can be done in poly-time. Also, for each Ri and
each φ ∈ C0 ∪ C1, the set of unreachable cells of Aφ

i can be determined in poly-
time. As we have O(n4) iteration steps, we can hence compute Rm from R0 (or
determine that σ is not extendible) in poly-time, which concludes the proof.

As an immediate consequence of Theorem 2 we have the following result:

Corollary 2. Given an arrangement A of n pseudocircles and a pseudoseg-
ment σ, it can be decided in polynomial time whether σ can be extended to a
pseudocircle Φσ ⊃ σ such that A ∪ {Φσ} is an arrangement of pseudocircles.

4 FPT-Algorithm for Bounded Number of Crossings

In this section we show that for drawings with a bounded number of crossings
it can be decided in FPT-time whether an edge can be inserted. Given a simple
drawing D(G) with k crossings, one can construct a kernel of size O(k) by
exhaustively removing isolated vertices and uncrossed edges from D(G). For a
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simple drawing D(G) of a graph G = (V,E) and e ∈ E, let D(G − e) be the
subdrawing of D(G) without the drawing of e. Similarly, for an isolated vertex
u ∈ V let D(G − u) be the subdrawing of D(G) without the drawing of u.

Observation 1. Given a simple drawing D(G) of a graph G = (V,E) and an
isolated vertex w ∈ V , an edge uv of G can be inserted into D(G) if and only if
uv can be inserted into D(G − w).

Lemma 8. (�). Given a simple drawing D(G) of a graph G = (V,E) and an
edge e ∈ E that is uncrossed in D(G), an edge uv of G can be inserted into D(G)
if and only if uv can be inserted into D(G − e).

Theorem 3. (�). Given a simple drawing D(G) of a graph G = (V,E) and an
edge uv of G, there is an FPT-algorithm in the number k of crossings in D(G)
for deciding whether uv can be inserted into D(G).
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23. Kynčl, J.: Improved enumeration of simple topological graphs. Discrete Comput.
Geom. 50(3), 727–770 (2013). https://doi.org/10.1007/s00454-013-9535-8

24. Levi, F.: Die Teilung der projektiven Ebene durch Gerade oder Pseudogerade.
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Abstract. Bitonic st-orderings for st-planar graphs were recently intro-
duced as a method to cope with several graph drawing problems. Notably,
they have been used to obtain the best-known upper bound on the num-
ber of bends for upward planar polyline drawings with at most one
bend per edge. For an st-planar graph that does not admit a bitonic
st-ordering, one may split certain edges such that for the resulting graph
such an ordering exists. Since each split is interpreted as a bend, one is
usually interested in splitting as few edges as possible. While this opti-
mization problem admits a linear-time algorithm in the fixed embedding
setting, it remains open in the variable embedding setting. We close this
gap in the literature by providing a linear-time algorithm that optimizes
over all embeddings of the input st-planar graph.

The best-known lower bound on the number of required splits of an st-
planar graph with n vertices is n−3. However, it is possible to compute a
bitonic st-ordering without any split for the st-planar graph obtained by
reversing the orientation of all edges. In terms of upward planar polyline
drawings, the former translates into n−3 bends, while the latter into no
bends. We show that this idea cannot always be exploited by describing
an st-planar graph that needs at least n − 5 splits in both orientations.

Keywords: Upward planar graphs · Bitonic st-orderings · Planar
polyline drawings · Bend minimization

1 Introduction

Incremental drawing algorithms have a long history in the field of Graph Draw-
ing. The central result of de Fraysseix, Pach and Pollack [8], who showed that
every planar graph admits a planar straight-line drawing within quadratic area,
marks the beginning of this line of research. They introduced the concept of

c© Springer Nature Switzerland AG 2020
I. Adler and H. Müller (Eds.): WG 2020, LNCS 12301, pp. 339–351, 2020.
https://doi.org/10.1007/978-3-030-60440-0_27

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-60440-0_27&domain=pdf
http://orcid.org/0000-0002-7602-1524
http://orcid.org/0000-0002-3414-7444
http://orcid.org/0000-0002-1441-4189
http://orcid.org/0000-0003-2565-090X
https://doi.org/10.1007/978-3-030-60440-0_27


340 P. Angelini et al.

canonical ordering, an ordering of the vertices that is used to drive their incre-
mental drawing algorithm. In each step, one vertex at a time is placed, while it
is ensured that certain invariants are satisfied. Another important result with
respect to canonical orderings is by Kant [13]. While the original ordering is only
defined for maximal planar graphs, he generalizes this concept to triconnected
planar graphs. However, Kant’s ordering is no longer a vertex ordering, instead
it is an ordered partition of vertices. Later on, Harel and Sardas [12] show how
one may further extend canonical orderings to the biconnected case.

Another type of vertex ordering that has its origins not in Graph Draw-
ing, but finds its applications there [3,16], is the so-called st-ordering [7]. How-
ever, st-orderings are not restricted to planar graphs, hence, the ordering is not
related directly to the embedding of the underlying planar graph. This rela-
tion between a planar embedding and the ordering itself is established by the
bitonic st-orderings, which have been used to solve various graph drawing prob-
lems, e.g., T-contact representations [9], L-drawings [4], finding universal slope
sets [1]. Besides being a proper st-ordering, the definition takes the embedding
into account and ensures that the vertex ordering has similar properties to a
canonical ordering. Initially introduced for undirected graphs in [9], where it
is shown that for every biconnected planar graph a bitonic st-ordering can be
found in linear time, the concept has been extended to directed graphs [10].

The idea that led initially to the extension to directed graphs, namely the
st-planar graphs, is rather simple. By slightly modifying the original algorithm
of de Fraysseix, Pach and Pollack, one may use a bitonic st-ordering to obtain
a planar straight-line drawing. Combined with the observation that a vertex is
always drawn above its predecessors in the ordering, the resulting drawing is
upward planar straight-line. However, not every st-planar graph admits such a
bitonic st-ordering, but a full characterization is given in [10] that is based on the
existence of so-called forbidden configurations. These configurations, however,
can be eliminated by splitting certain edges in the graph, such that for the
resulting graph one can then obtain the desired ordering. This technique is used
to prove that every upward planar graph with n vertices, admits an upward
planar polyline drawing with at most one bend per edge within quadratic area.
Moreover, the number of bends is at most n−3, which is the best-known bound so
far. Hereby, each bend corresponds to a dummy vertex that has been introduced
by splitting an edge. Note that in [10] an example is given that requires exactly
n − 3 splits, which shows that this bound is tight.

In practice, one is interested in splitting as few edges as possible. In [10], a
simple linear-time algorithm is described that finds the optimal set of edges to
split. This algorithm assumes the embedding of the underlying st-planar graph
to be part of the input, hence, it is only optimal in the fixed embedding scenario.
Changing the embedding, however, may have a big impact on the required num-
ber of splits. Chaplick et al. [4] take a first step towards the variable embedding
scenario by describing an SPQR-tree based recognition algorithm. Namely, if an
st-planar graph admits a bitonic st-ordering in any of its embeddings, then their
algorithm computes such an embedding and a corresponding bitonic st-ordering.



Bitonic st-Orderings for Upward Planar Graphs 341

If no such ordering exists, one has to fall back to the fixed embedding splitting
algorithm. In this work, we close this gap by describing a linear-time algorithm
to compute an optimal set of edges to split over all possible embeddings.

Theorem 1. Let G = (V,E) be an st-planar graph with n vertices. It is possible
to compute in O(n) time a set of edges E′ ⊆ E of minimum cardinality such
that the graph G′ obtained from G by splitting each edge in E′ once is bitonic.

Having settled the problem of finding the smallest set of edges to split, we
turn our attention to another idea which might enable us to improve the result for
upward planar polyline drawings: Instead of only considering the original input
graph, we can reverse all edges of this graph, obtain an upward planar drawing for
this reversed graph, and then mirror this drawing vertically to obtain an upward
planar drawing for the original graph. This idea stems from the observation that
the example given in [10], which requires n−3 splits, does not require any split at
all when all edges have been reversed. Hence, we may just choose the orientation
with the minimum number of splits. Recently, Rettner [15] investigated this
approach in his Bachelor’s thesis, where he constructed an instance that requires
at least 3/4n−3 splits in each of the two orientations. The question that arises is
whether one of the two orientations always requires significantly less than n − 3
splits. We answer this question negatively with the following theorem.

Theorem 2. For every integer k ≥ 1, there is an st-planar graph Gk = (Vk, Ek)
with n = 2k + 3 vertices such that for every set E′ ⊂ Ek with less than n − 5
edges neither the graph G′

k obtained from Gk by splitting each edge in E′ once
nor the graph G̃′

k obtained by reversing the direction of all edges in G′
k is bitonic.

We give preliminaries in Sect. 2, then we devote Sects. 3 and 4 to proving Theo-
rems 1 and 2, respectively. We conclude with open problems in Sect. 5.

2 Preliminaries

Graph Drawings and Upward Planarity. A drawing Γ of a graph G maps
the vertices of G to distinct points in the plane and the edges of G to sim-
ple Jordan arcs between their endpoints. Drawing Γ is planar if no two edges
share an interior point. Planar drawings partition the plane into regions, called
faces, whose boundaries consist of edges. The unbounded face is the outer face.
An embedding is a class of drawings defining the sets of faces with the same
boundaries.

A drawing Γ of a directed acyclic graph G is upward planar if for every edge
(u, v), vertex u lies below v in Γ and (u, v) is drawn as a y-monotone curve in
Γ ; accordingly graph G is upward planar if it admits an upward planar drawing.
A vertex v of a directed graph is a source (sink, resp.), if it only has outgoing
(incoming, resp.) edges. A directed graph G is st-planar if it has a unique source
s and a unique sink t such that there is an upward planar drawing of G, where
s and t are incident to the outer face of it. In our definition, we assume that the
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edge (s, t) exists and is incident to the outer face. An embedding of an st-planar
graph induces a left-to-right ordering of the incoming and outgoing edges of each
vertex. We call the left-to-right ordered sequence of the neighbors of a vertex v
connected with outgoing edges of v the successor list of v. Note that the faces
of an st-planar graph have a unique source and a unique sink [17] connected by
two paths. If one of these paths is a single edge, we call it transitive.

st-Orderings. An st-ordering of an st-planar graph is a linear ordering of its
vertices with a prescribed vertex s being the first and a prescribed vertex t being
the last vertex such that for every directed edge (u, v), it holds that u precedes
v [14]. Given an st-ordering of an embedded st-planar graph, the successor list of
a vertex u is monotonically increasing (decreasing, resp.) if the outgoing neigh-
bors of u appear in this successor list in the same (opposite, resp.) order as
they appear in the st-ordering. Further, the successor list of u is bitonic if there
exists an outgoing neighbor h of u, called apex of u, such that the successor list
of u is monotonically increasing from the beginning up to h and monotonically
decreasing from h up to the end. Note that a monotonically increasing (decreas-
ing, resp.) successor list is bitonic with the rightmost (leftmost, resp.) outgoing
neighbor being its apex. We call an embedding E of an st-planar graph G mono-
tonic (bitonic, resp.) if there exists an st-ordering of G such that the successor
lists of all vertices defined by E are monotonically increasing/decreasing (bitonic,
resp.); we call the corresponding st-ordering monotonic (bitonic, resp.). Further,
we say that an st-planar graph G is monotonic (bitonic, resp.) if G admits a
monotonic (bitonic, resp.) embedding.

Forbidden Configurations for Bitonic st-Orderings. Consider an embed-
ding and an st-ordering of an st-planar graph G. Let u be a vertex and h the out-
going neighbor of u with largest rank in the st-ordering. Note that h is the only
possible apex for the successor list of u. Then, the successor list of u is not bitonic
if and only if there exist two vertices v, w such that v precedes w in the st-ordering
and v appears between w and h in the successor list. We call this configuration
a conflict. It has been shown [10] that for a given embedding of an st-planar
graph there exists an st-ordering without conflicts if and only if the embedding
does not contain any forbidden configuration, where a forbidden configuration is
formed by two faces f1 = 〈u, vi+1, . . . , vi〉 and f2 = 〈u, vj , . . . , vj+1〉 such that
the successor list of u contains vi, vi+1, vj , vj+1 in this order and (vi+1, . . . , vi)
and (vj , . . . , vj+1) are directed paths in G; see Fig. 1. In order to obtain bitonic
embeddings even in the presence of forbidden configurations, Gronemann [10]
proposed to split at least one of the transitive edges (u, vi) and (u, vj+1). More
specifically, if we split edge (u, vi), we obtain two new edges (u, v′

i) and (v′
i, vi)

with dummy vertex v′
i. Note that v′

i then replaces vi in the successor list of u
in the obtained graph. Since there exists no directed path from vi+1 to v′

i, the
forbidden configuration has been resolved.

Connectivity and SPQR-Trees. A graph is connected if for any pair of ver-
tices there is a path connecting them. A graph is k-connected if the removal of
any set of k − 1 vertices leaves it connected. A 2- or 3-connected graph is also
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u

vj+1
vjvi+1

vi

f1 f2

Fig. 1. Forbidden configuration that prevents a bitonic successor list for u.

referred to as biconnected or triconnected, respectively. Note that a triconnected
planar graph has a unique embedding up to the choice of the outer face. Also
note that st-planar graphs are always biconnected.

The SPQR-tree T of an st-planar graph G is a labeled tree representing the
decomposition of G into its triconnected components [5,6]. Every triconnected
component of G is associated with a node μ in T . The two vertices separating
the component associated with μ from the rest of the graph are called the poles
sμ and tμ of μ. The skeleton of μ, denoted by skel(μ), is an st-planar graph
where s = sμ and t = tμ whose edges are called virtual edges. In particular,
there exists a virtual edge for every child ν of μ in T plus a parent virtual edge
(sμ, tμ) that has a counterpart in the skeleton of its parent. A node μ ∈ T can
be of one of four different types: (i) S-node, if skel(μ) is composed of the parent
virtual edge and a directed path of length at least 2 from sμ to tμ; (ii) P-node, if
skel(μ) is a bundle of at least three parallel edges from sμ to tμ; (iii) Q-node, if
skel(μ) consists of two parallel edges, one being the parent virtual edge and the
other one being the corresponding edge in G; (iv) R-node, if skel(μ) is a simple
triconnected st-planar graph with s = sμ and t = tμ.

The set of leaves of T coincides with the set of Q-nodes, except for the Q-
node ρ corresponding to edge (s, t), which is selected as the root of T . Also,
neither two S-nodes, nor two P -nodes are adjacent in T . The subtree Tμ of T
rooted at μ induces a subgraph pert(μ) of G, called pertinent, which is described
by Tμ in the decomposition. In particular, pert(μ) is obtained from skel(μ) by
recursively identifying each virtual edge with the corresponding parent virtual
edge in the corresponding child node. We assume that the parent virtual edge
of μ is not part of pert(μ). All embeddings of pert(μ) can be described by a
permutation of the parallel virtual edges in each P-node in Tμ and a flip of the
skeleton of each R-node in Tμ. SPQR-tree T is unique, and can be computed in
linear time [11].

3 Number of Splits in the Variable Embedding Setting

In this section, we present an algorithm to compute a set of edges E′ as in Theo-
rem 1 when graph G′ is required to be bitonic. The algorithm for the monotonic
case is analogous (and simpler), and will be discussed at the end of the section.
Our goal is to construct an embedding E of G such that the embedding E ′ of G′

obtained from E by splitting the edges in E′ admits a bitonic ordering π′.
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To compute E , we adopt an SPQR-tree approach similar to the one by Chap-
lick et al. [4] to test whether an st-planar graph is bitonic. In contrast, however,
we do not augment the graph explicitly. Instead, we specify the embedding E
and a labeling of the edges describing whether they will eventually be split.

Let T be the SPQR-tree of G, rooted at the edge (s, t). We associate each
node μ of T , with poles sμ and tμ, with two costs cb(μ) and cm(μ), and with
two embeddings Eb(μ) and Em(μ) of pert(μ), whose edges are labeled as split
or non-split, such that the following invariants hold:

I.1 cm(μ) is the minimum number of splits to make pert(μ) bitonic, with the
additional requirement that the successor list of sμ is monotonically decreas-
ing, and Em(μ) is an embedding of pert(μ) achieving this cost;

I.2 cb(μ) is the minimum number of splits to make pert(μ) bitonic with no addi-
tional requirement, and Eb(μ) is an embedding of pert(μ) achieving this cost;

I.3 a. an edge e in Em(μ) is labeled as split if and only if e contributes to cm(μ),
b. an edge e in Eb(μ) is labeled as split if and only if e contributes to cb(μ);

I.4 if the edge (sμ, tμ) exists in pert(μ), then tμ is the apex of sμ in Em(μ) and
the edge (sμ, tμ) is labeled as non-split.

Observe that, by definition, it holds that cb(μ) ≤ cm(μ).
We perform a bottom-up traversal of T and compute for each node μ the

costs cb(μ) and cm(μ), the two embeddings Eb(μ) and Em(μ) of pert(μ), and the
labeling of their edges, so that I.2–I.4 hold, assuming that these invariants hold
for all the children of μ. We distinguish cases based on the type of node μ.

Node μ is a Q-node that is a Leaf of T . We set both Eb(μ) and Em(μ) to
the unique embedding of pert(μ), which consists only of edge (sμ, tμ). Since this
embedding is monotonic, we set both costs cm(μ) and cb(μ) to 0, and we label
(sμ, tμ) as non-split in both embeddings. Hence, I.2–I.4 are satisfied.

Node μ is a P-node: Let ν1, . . . , νk denote the children of μ. W.l.o.g., assume
that if μ has a Q-node child then this child is ν1. We construct both Em(μ) and
Eb(μ) by ordering the children of μ in clockwise order around sμ from ν1 to νk.
Then, we choose embeddings and flips for the pertinent graphs of the children
of μ in order to obtain Em(μ) and Eb(μ), as follows.

In order to construct Em(μ), we choose the monotonic embedding Em(νi) for
each child νi and perform no flip. We set the monotonic cost cm(μ) for μ to
∑k

i=1 cm(νi), satisfying I.1. The labeling of the edges in Em(μ) is inherited from
the corresponding ones of Em(ν1), . . . , Em(νk), which ensures I.3a and I.4.

To specify Eb(μ), we select one of the children of μ to contain the apex of sμ,
so that the resulting bitonic cost cb(μ) for μ is minimized. For this, we select the
child νh, with 1 ≤ h ≤ k, such that the difference cm(νh) − cb(νh) is maximum.
If this difference is 0 for all children of μ, we set νh to be ν1. Then, we select
the bitonic embedding Eb(νh) for νh and the monotonic embedding Em(νi) for
each child νi 	= νh. Finally, we flip the embeddings Em(ν1), . . . , Em(νh−1) of the
pertinent graphs of ν1, . . . , νh−1. Note that the flip of these embeddings results
in a monotonically increasing successor list at sμ for each of them, and hence
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sμ

νh

νr

tμ

ν�

Fig. 2. Bitonic embedding Eb(μ) for a P-node μ. One child νh uses its bitonic embedding
Eb(νh). Embedding Em(ν�) of child ν� appearing left of νh is flipped.

guarantees that Eb(μ) is bitonic, except when ν1 is a Q-node and νh 	= ν1; see
Fig. 2. To guarantee that Eb(μ) is bitonic also in the latter case, edge (sμ, tμ) must
be split; note that, by I.4, edge (sμ, tμ) = (sν1 , tν1) is labeled non-split in the
embedding Em(ν1) of ν1. So, to guarantee I.2, we set cb(μ) = cm(μ) − cm(νh) +
cb(νh) in the former case and cb(μ) = cm(μ) − cm(νh) + cb(νh) + 1 otherwise.

To guarantee I.3b, we inherit the labeling of the edges in Eb(μ) from the
embeddings Em(ν1), . . . , Em(νh−1), Eb(νh), Em(νh+1), . . . , Em(νk). Further, in the
special case in which ν1 is a Q-node and νh 	= ν1, we label edge (sμ, tμ) as split.

Node μ is an S-node: Let ν1, . . . , νk denote the children of μ, where sμ = sν1

and tμ = tνk
. To compute Em(μ) and Eb(μ), we use Em(ν1) and Eb(ν1) for child ν1,

respectively, and the bitonic embeddings Eb(ν2), . . . , Eb(νk) for children ν2, . . . , νk

in both cases, without performing any flip. To guarantee I.1 and I.2, we set cm(μ)
and cb(μ) to cm(ν1)+

∑k
i=2 cb(νi) and

∑k
i=1 cb(νi), respectively. To guarantee I.3a

and I.3b, the labeling of the edges in Eb(μ) and Em(μ) is inherited from the
corresponding ones in the chosen embeddings of the children. Finally, I.4 is
satisfied since edge (sμ, tμ) does not exist in pert(μ).

Node μ is an R-node: Since skel(μ) is triconnected, it has a unique embedding;
we will construct both Em(μ) and Eb(μ) based on such an embedding and select
for each child ν of μ a suitable embedding of pert(ν) and a flip. Since each edge
is outgoing for only one of its end-vertices, we consider every vertex in skel(μ)
independently, together with its outgoing virtual edges, similar to [10].

Let u be a vertex of skel(μ), and let (u, v1), . . . , (u, vk) be the outgoing virtual
edges of u, as they appear consecutively clockwise around u, and let ν1, . . . , νk be
the corresponding children of μ. If u 	= sμ, we can construct a bitonic successor
list for u in both Em(μ) and Eb(μ). Otherwise, we may need to perform different
choices when constructing Em(μ) and Eb(μ), to guarantee I.1 and I.2, respectively.

Suppose first that u 	= sμ. Similar to the P-node case, we determine a child νh

of μ, with 1 ≤ h ≤ k, to contain the apex of u that minimizes the number of splits
of the outgoing edges of u to make the successor list of u bitonic; we denote this
number by cb(u). To determine νh, we consider each child νj , for j = 1, . . . , k, to
be candidate for νh, and compute the required number of splits for this choice,
denoted by cb(u, j). We then obtain cb(u) = min{cb(u, j) | j = 1, . . . , k}.
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Fig. 3. (a) An unavoidable conflict if vj is selected as apex of u. (b)–(d) Different cases,
that arise, when computing cb(u, j).

In contrast to the P-node case, we cannot conclude that cb(u, j) = cb(νj) +∑
i�=j cm(νi), since the choice of νj and the structure of skel(μ) may result in

new conflicts. Namely, consider a child νi of μ with i < j and assume that
the edge (u, vi) exists in pert(μ) and that there is a directed path in skel(μ)
from vi+1 to vi; see e.g. Fig. 3a. This implies that there is a directed path from
a successor w of u in pert(νi+1) to vi. Since i < j, vertex w should however not
be a predecessor of vi and hence edge (u, vi) must be split. Note that, by I.4
edge (u, vi) is labeled as non-split in Em(νi). Analogously, if i > j, a conflict
may arise when there exists a directed path in skel(μ) from vi−1 to vi. Denote
by cs(u, j) the total number of these additional splits when νj contains the apex
of u. Thus,

cb(u, j) =
j−1∑

i=1

cm(νi) + cb(νj) +
k∑

i=j+1

cm(νi) + cs(u, j).

The computation of cb(u, j) for all j = 1, . . . , k can be done in quadratic
time with respect to the number of outgoing virtual edges of u. Next, we
make use of ideas of the fixed-embedding algorithm [10] to achieve linear time.
Namely, we first compute cb(u, 1). Then, for each j = 2, . . . , k, we can com-
pute cb(u, j) from cb(u, j − 1). For cb(u, j), we assume the apex of u to be
contained in child νj , while assuming that we already computed cb(u, j − 1). In
this transition, pert(νj−1) changes its embedding from Eb(νj−1) to Em(νj−1),
while pert(νj) changes its embedding from Em(νj) to Eb(νj); the pertinent
graphs of the remaining children maintain their monotonic embedding. We take
this change into account by considering the corresponding difference δj(u) =
cb(νj)−cm(νj)+cm(νj−1)−cb(νj−1). In addition, we must also take into account
the difference between cs(u, j − 1) and cs(u, j), whose computation can be done
again by only considering the children νj−1 and νj . More precisely, if (u, vj−1)
is an edge in pert(μ), then it did not need to be split when the apex of u was
in νj−1, but it has to be split when moving the apex to νj , if there is a directed
path from vj to vj−1; see Fig. 3b. On the other hand, if (u, vj) is an edge of
pert(μ) and it had to be split when the apex of u was in νj−1, i.e. there is a
directed path from vj−1 to vj , then edge (u, vj) does not need to be split any
longer when the apex is in νj ; see Fig. 3c. Note that, if there is no directed path
between vj−1 and vj , then neither of the two cases occurs, and edges (u, vj−1)
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and (u, vj) (if they exist) do not need to be split; see Fig. 3d. In either case,
we conclude that the difference between cs(u, j − 1) and cs(u, j) is at most 1.
Depending on which of the three cases arises, we compute cb(u, j) as follows:

cb(u, j) = cb(u, j − 1) + δj(u) +

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

1 if ∃ directed path from vj to vj−1, and
(u, vj−1) is an edge in pert(μ)

−1 if ∃ directed path from vj−1 to vj , and
(u, vj) is an edge in pert(μ)

0 otherwise

Once cb(u, j) has been computed for all j = 1, . . . , k, we choose νh, with 1 ≤ h ≤
k, so that cb(u, h) is minimum among all cb(u, j) and define cb(u) = cb(u, h).
Hence, in order to construct Em(μ) and Eb(μ), we select the bitonic embed-
ding Eb(νh) for pert(νh) and the monotonic embedding Em(νi) for the pertinent
graph pert(νi) for i ∈ {1, . . . , h − 1, h + 1, . . . , k}. We further flip the embed-
dings Em(ν1), . . . , Em(νh−1), as in the P-node case. We inherit the labeling of the
edges from the embeddings Em(ν1), . . . , Em(νh−1), Eb(νh), Em(νh+1), . . . , Em(νk),
except for the edges that contribute to cs(u, h), which we label as split. We
repeat the above operations for every vertex u of skel(μ) with u 	= sμ.

Consider now the case u = sμ. We distinguish two cases, based on which
embedding of pert(μ) we are going to compute. Namely, for Eb(μ) we perform
the same operations as for any other vertex of skel(μ), since in this embedding we
can have a bitonic successor list for sμ. This guarantees I.2 and I.3b. In order to
also guarantee I.1 and I.3b, we have to slightly adjust our approach. In particular,
we have to obtain a monotonic successor list for sμ in Em(μ). To achieve this,
we first choose the monotonic embeddings for pert(ν1), . . . , pert(νk). Then, we
have to choose whether ν1 or νk contains the apex of sμ. In order to perform
this choice, we have to consider the conflicts that are created due to the presence
of directed paths in skel(μ), as in the bitonic case. Thus, we compute cs(sμ, 1)
and cs(sμ, k) and choose the minimum of the two. We choose the corresponding
child to contain the apex of sμ and label edges as split such that all conflicts
are resolved and inherit the labeling of the remaining edges from embeddings
Em(ν1), . . . , Em(νk). Note that if νk contains the apex of sμ, we also have to flip
all the embeddings Em(ν1), . . . , Em(νk) and the resulting embedding of the entire
R-node μ so to obtain a monotonically decreasing successor list for sμ. Thus,

cm(μ) =
∑

u∈Vµ
u �=sµ

cb(u) +
k∑

i=1

cm(νi) + min{cs(sμ, 1), cs(sμ, k)}
︸ ︷︷ ︸

u = sµ

and cb(μ) =
∑

u∈Vµ

cb(u)

where Vμ denotes the vertex set of skel(μ). Note that I.4 is trivially satisfied
since edge (sμ, tμ) does not exist in pert(μ).

Node μ is a Q-node that is the Root of T : Note that this case arises at
the end of the traversal of T . Since we seek to compute a bitonic embedding
for G, we only have to compute Eb(μ) and satisfy I.2 and I.3b (i.e., I.1, I.3a
and I.4 can be safely neglected). Consider the unique child ν of μ. Assume first
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that cb(ν) < cm(ν). We claim that the apex of sμ = sν in Eb(ν) is not incident
to any face that contains both sμ and tμ. Indeed, if this is not the case either
sν has already a monotonic successor list in Eb(ν) or ν is a P-node and it is
possible to obtain a monotonic successor list of sν by only reordering and flipping
the embeddings of the pertinent graphs of its children. In both cases, however,
cb(ν) = cm(ν) holds, which is a contradiction. By our claim, it follows that
any possible embedding obtained from Eb(ν) by adding the edge (sμ, tμ) would
violate the bitonicity of the successor list of sμ. Thus, we have to label (sμ, tμ) as
split, and inherit the labeling of the remaining edges from Eb(ν). Consider now
the case cb(ν) = cm(ν). Here, we use the monotonic embedding Em(ν) and label
the edges according to the labeling of Em(ν) while labeling (sμ, tμ) as non-split.
In both cases, edge (sμ, tμ) is embedded on the outer face of the embedding of
pert(ν) such that tμ is the leftmost successor of sμ, which guarantees I.2. I.3b is
satisfied by the way we treat edge (sμ, tμ) and by inheriting the labeling of the
remaining edges of pert(μ) from the chosen embedding of pert(ν).

Proof (of Theorem 1). The correctness of our algorithm follows from the fact that
at the end of the traversal of T , I.2 is satisfied by the bitonic embedding Eb(ρ)
of the root ρ of T . Further, since the labeling of the edges of Eb(ρ) satisfies I.3b,
we can set E′ to be the set of edges that are labeled as split in Eb(ρ), which
guarantees that E′ is of minimum cardinality and that the graph G′ obtained
from G by splitting once each edge in E′ is bitonic. Note that we can obtain an
actual bitonic st-numbering for G′ using the fixed-embedding algorithm [10] on
the embedding of G′ obtained from Eb(ρ) by splitting each edge of E′.

As for the time complexity, the construction of the SPQR-tree can be done
in O(n) time [11]. Then, at each step of the algorithm, we consider a node μ of
T and we perform a set of operations in time linear to the size of skel(μ). This
is clear for the Q-, S-, and P-node cases. In the R-node case, this follows from
our analysis and the fact that the fixed-embedding algorithm [10] is linear in the
size of the input embedding. Since the sum of the sizes of the skeletons over all
the nodes of T is O(n) [2], the time complexity of the algorithm follows. ��

Remark 1. Our algorithm can be adjusted so that the resulting graph G′ is
monotonic. To achieve that, in the S- and R-node cases, we apply to all vertices
of skel(μ) the same procedure as we applied to sμ when computing Em(μ). In this
way, we guarantee that the successor lists of all vertices are in fact monotonic.

Remark 2. Every series-parallel graph, oriented consistently with the series-
parallel structure, is monotonic. This is because, in the absence of R-nodes,
there is no need to split when computing a monotonic embedding.

4 Lower Bound on the Number of Splits

In this section we prove Theorem 2. Graph Gk = (Vk, Ek) is as follows. For
k = 1, we set V1 = {s0, s1, t0, t1, t2}, and E1 = {(s0, t0), (s0, t1), (s0, t2), (s1, t0),
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(s1, t1), (s1, t2), (s1, s0), (t0, t1), (t1, t2)}; see Fig. 4a. Since G1 is triconnected, it
admits a unique embedding up to the choice of the outer face, which allows to
embed (s1, t2) as leftmost or rightmost edge of s1. Since G1 contains a Hamilto-
nian path (s1, s0, t0, t1, t2), it has a unique st-ordering with s = s1 and t = t2.

Fig. 4. (a)–(b) Construction of graph Gk. (c)–(d) Illustration of forbidden configura-
tions and edges that must be split in both orientations. (Color figure online)

For k > 1, graph Gk is constructed based on the triconnected Hamiltonian
planar st-graph Gk−1 with s = sk−1 and t = tk as follows. Its vertex set is Vk =
Vk−1∪{sk, tk+1}, while its edge set is Ek = Ek−1∪{(sk, tk−1), (sk, tk), (sk, tk+1),
(sk−1, tk+1), (sk, sk−1), (tk, tk+1)}; see Fig. 4b. Since graph Gk is a triconnected
Hamiltonian planar st-graph with s = sk and t = tk+1, it has a unique st-
ordering and a unique embedding up to the choice of the outer face, which
simply allows us to embed edge (sk, tk+1) as the leftmost or rightmost edge of
vertex sk. As a side note, we also mention that Gk has pathwidth 3.

We describe forbidden configurations that inevitably appear in Gk, and then
estimate the number of edge splits that are required to eliminate them. In par-
ticular, for vertex si with 1 ≤ i ≤ k − 1, each of the two faces 〈si, si−1, ti−1〉 and
〈si, ti−1, ti〉 form a forbidden configuration with each of the faces 〈si, si−1, ti+1〉
and 〈si, ti+1, ti+2〉; see the blue and red colored faces in Fig. 4c, respectively. In
order to eliminate these forbidden configurations, at least one of the two pairs of
edges (si, ti−1), (si, ti) and (si, ti+1), (si, ti+2) must be split; see the blue and red
edges in Fig. 4c, respectively. Forbidden configurations involving sk are avoidable
by embedding (sk, tk+1) as the leftmost edge of sk.

Similar arguments apply when considering G̃k. In particular, for vertex ti
with 2 ≤ i ≤ k −1, each of the two faces 〈ti, ti−1, si〉 and 〈ti, si, si+1〉 form a for-
bidden configuration with each of the two faces 〈ti, ti−1, si−2〉 and 〈ti, si−2, si−1〉;
see the blue and red colored faces in Fig. 4d, respectively. Hence, at least one
of the two pairs of edges (ti, si), (ti, si+1) and (ti, si−2), (ti, si−1) must be split;
see the blue and red edges in Fig. 4d, respectively. Note that forbidden config-
urations that involve vertex tk+1 can be avoided by embedding edge (tk+1, sk)
as the leftmost edge of tk+1. Moreover, for vertex t1 (tk, resp.), face 〈t1, t0, s0〉
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(〈tk, tk−1, sk〉, resp.) forms forbidden configurations with both faces 〈t1, t0, s1〉
and 〈t1, s1, s2〉 (〈tk, tk−1, sk−1〉 and 〈tk, sk−2, sk−1〉, resp.). Hence, for each of t1
and tk at least one more incident edge must be split.

We conclude that for both Gk and G̃k, a set of edges E′ of cardinality at
least 2(k−1) = n−5 has to be split to eliminate all the forbidden configurations
discussed above. Note that in G̃1 there is already one unavoidable forbidden
configuration (at vertex t1), while this is not the case for G1.

5 Conclusions and Open Problems

We conclude with some open problems raised by our work. (i) In view of
Remark 2, it is worth investigating other meaningful subclasses of upward planar
graphs that admit improved upper bounds on the required number of splits; note
that our lower bound example already imposes strong restrictions (e.g., Hamil-
tonicity, low pathwidth).(ii) We know that an upper bound on the number of
splits provides an upper bound on the number of bends needed to compute a
1-bend upward planar drawing in quadratic area. Understanding the implica-
tion of a lower bound on the number of splits on the corresponding number of
bends is an interesting research direction. (iii) An experimental evaluation of our
algorithm would allow to estimate the required number of splits in practice.

Acknowledgments. The authors would like to thank Michael Kaufmann and Anto-
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Abstract. If a biconnected graph stays connected after the removal of
an arbitrary vertex and an arbitrary edge, then it is called 2.5-connected.
We prove that every biconnected graph has a canonical decomposition
into 2.5-connected components. These components are arranged in a tree-
structure. We also discuss the connection between 2.5-connected compo-
nents and triconnected components and use this to present a linear time
algorithm which computes the 2.5-connected components of a graph.
We show that every critical 2.5-connected graph other than K4 can be
obtained from critical 2.5-connected graphs of smaller order using sim-
ple graph operations. Furthermore, we demonstrate applications of 2.5-
connected components in the context of cycle decompositions and cycle
packings.

Keywords: Mixed connectivity · Triconnected components · Critical
graphs

1 Introduction

Over the years, connectivity has become an indispensable notion of graph theory.
A tremendous amount of proofs start with a reduction which says “The main
result holds for all graphs if it holds for all sufficiently connected graphs”. Here,
sufficiently connected stands for some measure of connectedness as, for exam-
ple, biconnected, 4-edge-connected, vertex-edge-connected, or just connected.
Usually, first a reduction from the desired statement for general graphs to suf-
ficiently connected graphs is proven. Then the subsequent section starts with
a sentence of the following manner: “From now on, all considered graphs are
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sufficiently connected.” For example, it is shown in [14] that the Tutte polyno-
mial is multiplicative over the biconnected components of a considered graph.
Another reduction to components of higher connectivity is that finding a planar
embedding can be reduced to embedding the triconnected components of the
graph, cf. [12].

By far the largest part of the existing literature treats either k-connectivity
(where, loosely speaking, graphs which stay connected even if k − 1 vertices
are removed are considered) or k-edge connectivity (where graphs which stay
connected even if k − 1 edges are removed are considered). We speak of mixed
connectivity, when graphs are regarded which stay connected after k vertices and
l edges are removed. This measure of connectivity has only rarely been studied.
We refer the reader to [2] for a brief survey of mixed connectivity. In [10] it is
shown that the behaviour of cycle decompositions is preserved under splits at
vertex-edge separators (that is, a vertex and an edge whose removal disconnects
the graph).

Our Contribution. We introduce a canonical decomposition of a graph into its
2.5-connected components, where a graph is 2.5-connected if it is biconnected
and the removal of a vertex and an edge does not disconnect the graph. We
prove the following decomposition theorem.

Theorem 1 (Decomposition into 2.5-connected components). Let G be
a biconnected graph. The 2.5-connected components of G are unique and can be
computed in linear time.

Furthermore, we demonstrate that the behaviour of critical 2.5-connected
graphs is preserved in their triconnected components. We obtain a result similar
to Tutte’s decomposition theorem for 3-connected 3-regular graphs: all critical
2.5-connected graphs other than K4 can be obtained from critical 2.5-connected
graphs of smaller order by simple graph operations.

Finally, we show that the minimum (maximum) cardinality of a cycle decom-
position of an Eulerian graph can be obtained from the minimum (maximum)
cardinalities of the cycle decompositions of its 2.5-connected component. This
gives new insights into a long standing conjecture of Hajós.

Most of the proofs have been omitted due to space restrictions. We refer to [9]
for the full version of this paper.

Techniques. We demonstrate that 2.5-connected components can be defined in
the same manner as triconnected components. The novel underlying idea of the
present article is a red-green-colouring of the virtual edges of the triconnected
components (a virtual edge of a component is not part of the original graph
but stores the information where the components need to be glued together in
order to obtain the host graph). The colouring is assigned to the virtual edges
during the process of carrying out splits that give the triconnected components.
It preserves the information whether a virtual edge could arise in a sequence
of 2.5-splits (those corresponding to a vertex-edge separator). If so, the edge
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is coloured green, otherwise red. We prove that this colouring can be assigned
to the virtual edges of the triconnected components (without knowledge of the
splits that led there) in linear time. It can be exploited to obtain 2.5-connected
components: glue the red edges. We show that the uniqueness of the red-green-
colouring implies the uniqueness of the 2.5-connected components.

Further Related Work. We refer to [15] as a standard book on graph connec-
tivity. The same topic is considered from an algorithmic point of view in [13].
A short overview on mixed connectivity with strong emphasis on partly rais-
ing Menger’s theorem to mixed separators can be found in Chapter 1.4 of [2].
Grohe [7] introduces a new decomposition of a graph into quasi-4-connected
components and discusses the relation of the quasi-4-connected components to
triconnected components.

The importance of triconnected components for planarity testing was already
observed in [12]. Hopcroft and Tarjan [11] proved that these components are
tree-structured and exploited this algorithmically. On this basis, Battista and
Tamassia [1] developed the notion of SPQR-trees. Gutwenger and Mutzel [8]
used this result and the results of [11] for a linear-time algorithm that computes
the triconnected components of a given graph and their tree-structure (SPQR-
tree).

Outline. Preliminary results and definitions are introduced in the next section. In
particular, Hopcroft and Tarjan’s notions of triconnected components and virtual
edges (cf. [11]) are explained. In Sect. 3 we adapt the definition of triconnected
components in order to give a natural definition of 2.5-connected components.
We prove that these are unique and show how they can be obtained from the
triconnected components. We exploit this knowledge in Sect. 4 in order to give a
linear time algorithm which computes the 2.5-connected components of a given
graph. We characterize the critical 2.5-connected graphs in Sect. 5. Finally, some
applications of 2.5-connected graphs are discussed in Sect. 6.

2 Preliminaries

If not stated otherwise, we use standard graph theoretic notation as can be found
in [3]. Graphs are finite and may contain multiple edges but no loops. A graph
of order 2 and size k ≥ 2 is a multiedge (or k-edge). In this article a graph G
is equipped with an injective labelling �G := EV → N where EV is a (possibly
empty) subset of E(G). We call EV (G) := EV the virtual edges of G. If G is
described without a labelling, then we implicitly assume EV (G) = ∅.

Most of the notation and all of the results in this paragraph are borrowed
from [11]. A connected graph is biconnected if for each triple of distinct vertices
(u, v, w) ∈ V (G)3 there exists a u-v-path P in G with w /∈ V (P ).1

1 This differs from the definition of 2-connected graphs as can be found in [3]. Con-
nected graphs of order 2 are biconnected but not 2-connected.
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Let u and v be two vertices of a biconnected graph G. We divide E(G) into
equivalence classes E1, E2, . . . , Ek such that two edges lie in the same class if and
only if they are edges of a (possibly closed) subpath of G which neither contains
u nor v internally. The classes Ei are the separation classes of G with respect
to {u, v}. The set {u, v} is a separation pair if there exists a set I � {1, . . . , k}
such that E′ :=

⋃
i∈I Ei satisfies min{|E′|, |E(G) \ E′|} ≥ 2. In this case, let

G1 := G[E′] + e1 and G2 := G[E(G) \ E′] + e2, where both, e1 and e2, are new
edges with endvertices u and v. Fix some x ∈ N \ lG(EV (G)). For i ∈ {1, 2}
let �Gi

: (EV (G) ∩ E(Gi)) ∪ {ei} → N be the labelling with �Gi
(e) = �G(e) for

e ∈ EV (G) ∩ E(Gi) and �Gi
(ei) = x. Replacing G by G1 and G2 is a split. The

virtual edges e1 and e2 correspond to each other. Vice versa, if G1 and G2 can be
obtained by a split from G, then G is the merge graph of G1 and G2. Replacing
G1 and G2 by G is a merge. A biconnected graph without a separation pair is
triconnected.

Suppose a multigraph G is split, the split graphs are split, and so on, until
no more splits are possible. (Each graph remaining is triconnected). The graphs
constructed this way are called split components of G.

We say that two graphs H and H ′ are equivalent, if H ′ can be obtained
from H by renaming and relabelling the virtual edges in EV (H). Two sets of
graphs {G1, . . . , Gk} and {G′

1, . . . , G
′
k} are equivalent if the elements can be

ordered in such a way that Gi is equivalent to G′
i for all i ∈ {1, . . . , k} and

the correspondence of the virtual edges is preserved by the according renaming
and relabelling maps. Two sets of split components of the same graph are not
equivalent in general. Consider for example a cycle of length 4. The two possible
separation pairs yield different partitions of the edge set of the cycle.

Split components of G are of one of the following types:

triangles, 3-edges, and other triconnected graphs.

Denote the latter set by T . Merge the triangles of the split components as much
as possible to obtain a set of cycles C. Further, merge the 3-edges as much as
possible to obtain a set of multiedges M. The set C ∪ M ∪ T is the set of
triconnected components of G. Indeed, it is accurate to speak of the triconnected
components as the following statement of Hopcroft and Tarjan [11] shows:

Theorem 2 (Uniqueness of triconnected components [11]). If I and I’
are two sets of triconnected components of the same biconnected graph, then I
and I ′ are equivalent.

The following statement is crucial for the proof of Theorem 2, cf. [11]. We
will discuss in the next section how a variation of Lemma 1 serves us in proving
the uniqueness of 2.5-connected components.

Lemma 1 ([11]). Let I be a set of graphs obtained from a biconnected graph
G by a sequence of splits and merges.

(a) The graph S(I) with

V (S(I)) = I, E(S(I)) = {st : s and t contain corresponding virtual edges}
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is a tree.
(b) The set I can be produced by a sequence of splits.

3 2.5-Connectivity

In the following, we transfer the above notation of [11] to mixed connectivity,
where separators may contain both, vertices and edges. Given a biconnected
graph which is not a triangle, a tuple (c, uv) ∈ V (G) × E(G) is a vertex-edge-
separator if G − uv − c is disconnected.

Lemma 2 ([10]). Let G be a biconnected graph. If (c, uv) is a vertex-edge-
separator of G, then G − uv − c has exactly two components, each containing a
vertex of {u, v}. Let a ∈ {u, v}. Denote the component containing a by Ca and
set Ga := G[V (Ca) ∪ {c}]. Then Ga + ca is biconnected.

With the same notation as in Lemma 2, it holds maxa∈{u,v}{|E(Ga)|} ≥ 2.
Let a ∈ {u, v}. If |E(Ga)| ≥ 2, then {c, a} is a separation pair of G. Let b denote
the vertex in {u, v}\{a}. Now Ga+ac, Gb+ba+ac are split graphs of {c, a} with
virtual edges ac. We say that {a, c} supports the vertex-edge-separator (c, uv) or
that {a, c} is supporting. Replacing G by the two graphs Ga+ac and Gb +ba+ac
is called 2.5-split of G at (c, uv) with support {a, c}. The graphs Ga + ac and
Gb + ba + ac are the 2.5-split graphs of G at (c, uv) with support {a, c}. A non-
supporting split is a split which is not of this form for any vertex-edge separator.
Observe that a vertex-edge-separator has at least one and at most two separation
pairs in its support.

Fig. 1. A graph with its triconnected (left) and 2.5-connected (right) components. Non-
virtual edges are black. Virtual edges are green if they can be obtained by a sequence
of 2.5-splits and red otherwise. (Color figure online)

If G is biconnected and no tuple (v, e) ∈ V (G) × E(G) is a vertex-edge-
separator, then G is 2.5-connected. In analogy to the notion of triconnected
components of Hopcroft and Tarjan [11], we define 2.5-connected components
of G, see also Fig. 1.
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Suppose a 2.5-split is carried out on G, the 2.5-split graphs are split by 2.5-
splits, and so on, until no more 2.5-splits are possible. (Each graph remaining is
2.5-connected). The graphs constructed this way are called 2.5-split components
of G.

Observe that 2.5-split components of a biconnected graph are not unique (a
cycle with more than 3-edges serves again as an example).

The 2.5-split components of a given graph are of the following types:

triangles, multiedges of size at least 3, and other 2.5-connected graphs.

Let G be a graph. Consider a decomposition of G into 2.5-split components,
where T denotes the subset of triangles, M the set of multiedges and H denotes
the set of other 2.5-connected graphs in the decomposition. Now merge the
triangles in T as much as possible and leave the multiedges and 2.5-connected
graphs unchanged. Replace T in the split components by the set C of cycles
obtained this way. The components C ∪ M ∪ H obtained this way are the 2.5-
connected components of G.

Lemma 3. Let I be a set of graphs obtained from a biconnected graph G by a
sequence of 2.5-splits and merges.

(a) The graph S(I) is a tree.2

(b) The set I can be produced by a sequence of splits.
(c) If I is a set of 2.5-connected components of G, then I can be produced by a

sequence of 2.5-splits.

Lemma 4 (cf. [10]). Let G1 and G2 be split graphs of a biconnected graph G
with respect to some separation pair. If (c, e) is a vertex-edge-separator of G1

and e ∈ E(G), then (c, e) is a vertex-edge-separator of G.

Lemma 5. Let I be a set of 2.5-connected components of a biconnected graph
G. The triconnected components of G can be obtained from I by a sequence of
splits.

Let H be a graph and e ∈ E(H). Recall that the ear of e in H is the maximal
(possibly closed) path in H that contains e such that all its internal vertices are
of degree two in H. A subgraph P of H is called an ear if it is an ear of some
edge of H. If both endvertices of e are of degree at least 3 in H, then the ear of
e in H is trivial, that is, the ear is the length-1 path containing e. Otherwise it
is called non-trivial.

Lemma 6. Let s = s1 . . . sk be a sequence of splits of a biconnected graph G
such that the resulting graphs are the triconnected components of G.

(a) None of the separation pairs that correspond to the splits in s contains a
vertex which is of degree 2 when the split is carried out.

2 Recall the definition of S(I) from Lemma 1.
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(b) Let i ∈ {1, . . . , k}. Consider the graphs G1, . . . , Gi+1 obtained from carrying
out s1, . . . , si on G. Let e, e′ ∈

⋃i+1
j=1 E(Gj) be corresponding virtual edges.

If e1 lies on a non-trivial ear, then e2 lies on a trivial ear.
(c) Let H1 and H2 be triconnected components of G containing corresponding

virtual edges e1 ∈ E(H1) and e2 ∈ E(H2). If the ear of e1 in H1 is non-
trivial, then H1 is a cycle and the ear of e2 in H2 is trivial.

Theorem 3 (Unique colouring of virtual edges). Let s = s1s2 . . . sk be a
sequence of splits that is carried out on a graph G such that the obtained graphs
are the triconnected components of G. We define a 2-colouring of the virtual
edges of the triconnected components starting from the uncoloured graph G. For
i ∈ {1, . . . , k}:

• If si is a non-supporting split, then the respective virtual edges are coloured
red.

• If si is a 2.5-split for some vertex-edge-separator (c, e) where e is a green
virtual edge or a non-virtual edge, then let e� and e�� be the virtual edges
arising from si. Colour all virtual edges with labels that appear in the ear of
e� and e�� green.

• If si is a 2.5-split only for vertex-edge-separators (c, e) with e red, then the
virtual edges corresponding to si are coloured red.

The colouring of the virtual edges of the triconnected components obtained this
way is independent of the choice of s.

See Fig. 1 for an example of the above colouring.

Proof. We prove the following more general statement:

Claim 1: Let i ∈ {0, 1, . . . , l} and let G1, G2, . . . , Gi+1 be the graphs that are
obtained from carrying out the splits s1, s2, . . . , si. It holds for each virtual edge
e� ∈

⋃i+1
j=1 E(Gj) that e� is coloured green if and only if e� or its corresponding

edge is contained in an ear with at least one non-virtual edge. Otherwise it is
red.
Internal vertices of ears are of degree 2. Thus by Lemma 6, internal vertices
are never contained in a separation pair that corresponds to one of the splits
s1, . . . , sk, that is,

ears are never split by the sequence s1s2 . . . sk. (1)

We prove Claim 1 by induction on i. If i = 0, then no split is carried out
and, hence, there are no virtual edges to consider and Claim 1 satisfied.

Now let i ≥ 1. By induction, Claim 1 holds for the graphs G′
1, G

′
2, . . . , G

′
i

obtained from carrying out s1, . . . , si−1. Without loss of generality, si splits G′
i

into Gi and Gi+1. Let e�
i ∈ E(Gi) and e�

i+1 ∈ E(Gi+1) be the new virtual edges.
First assume that si is a non-supporting split. The edges e�

i and e�
i+1 are

red and have trivial ears since si is non-supporting. Thus, e�
i and e�

i+1 satisfy
Claim 1. Other virtual edges and their ears remain unchanged by si.
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Now assume that si supports a vertex-edge-separator (c, e) of G′
i. We may

assume that e ∈ E(Gi). In particular,

e and e�
i lie on the same ear P of Gi. (2)

By Lemma 6(b) and (2) it holds that

all virtual edges that correspond to an edge of P lie on a trivial ear. (3)

If an ear in G′
i is lengthened by si, then the ear is a subpath of P according

to (2) and Lemma 6(b). In particular, it suffices to prove Claim 1 for the virtual
edges of P .

If e is non-virtual, then all virtual edges of P and their corresponding edges
are coloured green and Claim 1 is satisfied. If e is green, then by induction e or
its corresponding edge lie in a non-trivial ear of G′

i which contains a non-virtual
edge. This ear is a subpath of P by Lemma 6(b) and, hence, Claim 1 is satisfied.
If e is red, then the ear P ′ of e in G′

i solely consists of red edges by induction. If
si supports a vertex-edge-separator with a green or non-virtual edge, then one
of the above cases applies. Otherwise, P is the union of the trivial ears G′

i[e
�
i ],

P ′, and possibly one additional ear that contains a red edge of a vertex-edge-
separator supported by si. All of the ears consist solely of virtual red edges. This
settles the claim.

Corollary 1. Let G be a biconnected graph and let e and e′ be corresponding
virtual edges of the triconnected components of G. Apply the edge-colouring of
Theorem 3. The following statements are equivalent:

• e is red.
• e′ is red.
• The ears of e and e′ in the triconnected components are both trivial, or, one

of the two ears is a cycle solely consisting of virtual edges and the other ear
is trivial.

In Chapter 4 we will exploit Corollary 1 to develop a linear time algorithm that
computes the 2.5-connected components of a given graph.

Theorem 4 (Uniqueness of 2.5-connected components) If I and I’ are
two sets of 2.5-connected components of the same biconnected graph, then I
and I ′ are equivalent. With respect to the colouring described in Theorem3,
the 2.5-connected components of G are obtained from the unique triconnected
components by merging all red edges of the triconnected components of G.

Corollary 2. Let G be a graph. If I denotes the 2.5-connected components of
G and I ′ denotes the triconnected components of G, then S(I) is a minor of
S(I ′).3

Corollary 3. A biconnected graph is 2.5-connected if and only if no cycle of its
triconnected components contains a non-virtual edge.
3 Recall the definition of S(I) from Lemma 1.
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4 A Linear Time Algorithm for 2.5-Connected
Components

Based on the work of Hopcroft and Tarjan [11] Gutwenger and Mutzel [8] showed
that the triconnected components of a given graph can be computed in linear
time. In this section, we provide a linear-time algorithm which computes the 2.5-
connected components of a graph given its triconnected components. It follows
that the 2.5-connected components of a given graph can be computed in linear
time. The main idea is again, to exploit the red-green colouring of the virtual
edges in order to obtain the 2.5-connected components from the triconnected
components.

Theorem 5. The 2.5-connected components of a biconnected graph can be com-
puted in linear time.

5 Critical 2.5-Connected Graphs

In this chapter, we provide novel decomposition techniques for critical 2.5-
connected graphs. In analogy to Tutte’s well-known decomposition theorem
(Theorem 9) we show that critical 2.5-connected graphs which are not isomor-
phic to the K4 can be reduced to critical 2.5-connected graphs of smaller order
using simple graph operations.

Let G be a biconnected graph. A vertex-2-edge-separator of G is a triple
(c, e1, e2) ∈ V (G) × E(G)2 such that G − e1 − e2 − c is disconnected. A graph G
is critical 2.5-connected if G is 2.5-connected and for every edge e ∈ E(G) it
holds that G − e is not 2.5-connected, that is, e is contained in a vertex-2-edge-
separator of G. If u ∈ V (G) is a degree-3 vertex with incident edges e0, e1, e2,
then the vertex-2-edge-separator (c, e1, e2) is degenerate, where c denotes the
vertex that is joined to u by e0. A critical 2.5-connected graph is degenerate if
every vertex-2-edge-separator is degenerate. Consider prisms of order at least 8
or complete bipartite graphs isomorphic to K3,n with n ≥ 3 as examples for
infinite families of degenerate graphs.

Theorem 6. A 2.5-connected graph G with triconnected components I is criti-
cal if and only if the following conditions are satisfied:

(a) every k-edge M ∈ I containing a non-virtual edge is a 3-edge that contains
exactly one virtual edge and the unique neighbour of M in S(I) is a cycle,

(b) every other component H ∈ I satisfies that each non-virtual edge of H lies
on a vertex-2-edge-separator of H with both edges non-virtual.

Theorem 7. Let G be a 3-connected graph that contains a non-degenerate ver-
tex-2-edge-separator (c, e1, e2).

(a) If c is incident to an edge e0 ∈ E(G) such that G−e0−e1−e2 is disconnected
with components C1 and C2, then let G1 (G2) be the graph constructed by
adding a new vertex x1 (x2) and the edges uix1 (vix2) for i ∈ {0, 1, 2},
where ui (vi) denotes the endvertex of ei in C1 (C2).
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(b) Otherwise, there are exactly two components C1 and C2 of G − e1 − e2 − c.
Let G1 (G2) be the graph constructed from G[V (C1)∪{c}] (G[V (C2)∪{c}])
by adding a new vertex x1 (x2) and the edges u1x1, u2x1, and cx1 (v1x2,
v2x2, and cx2), where ui (vi) is the endvertex of ei in C1 (C2).

If G is critical 2.5-connected, then G1 and G2 are critical 2.5-connected 3-
connected graphs of smaller order than G.

The only 3-connected critical graphs which cannot be decomposed into crit-
ical graphs of smaller order using operations above are degenerate graphs.

Theorem 8. Let G be a degenerate 3-connected graph which is not 3-regular and
let u ∈ V (G) with degG(u) = 3. Denote the neighbours of u by v1, v2, and v3.

(a) If degG(vi) ≥ 4 for i ∈ {1, 2, 3}, then set G′ := G − u.
(b) If degG(v1) = 3 and degG(v3) ≥ 4, then set G′ := G − u + v1v2.

The graph G′ is critical 2.5-connected with |V (G′)| < |V (G)|.

We have shown in this chapter that critical 2.5-connected graphs can be
reduced using simple operations until the obtained graphs are 3-regular and
3-connected. Then we may apply the following theorem of Tutte.

Theorem 9 ([16], cf. [15]). Each simple 3-connected 3-regular graph other than
a complete graph on four vertices can be obtained from a 3-connected 3-regular
graph H by subdividing two distinct edges of H and connecting the subdivision
vertices with a new edge. Conversely, each graph obtainable in this way is 3-
connected.

The graph H in Theorem 9 is 3-regular and 3-connected and, hence, H is critical
2.5-connected. We close this chapter with an example. Consider Figure 2.

Fig. 2. Reduction of a degenerate graph.

The left graph is degenerate and not 3-regular. We apply Theorem 8(b) to obtain
the graph in the middle. This graph is critical 2.5-connected and contains a non-
degenerate separator (c, e1, e2). We obtain the isomorphic copies of the K3,3 and
the K4 on the right by carrying out the construction of Theorem 7 (b). Observe
that both of the graphs on the right are 3-regular and 3-connected. We may
now apply Theorem 9 to reduce the bipartite graph further while the critical
2.5-connectivity is preserved.
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6 Application to Extremal Cycle Decomposition

In this section, we prove that the problem of finding an extremal cycle decompo-
sition of an Eulerian graph can be reduced to finding an extremal cycle decom-
position for its 2.5-connected components. Furthermore, we show how Hajós’
conjecture can be reduced to considering 2.5-connected components. A decom-
position of a graph G is a set of subgraphs C of G such that each edge of G is
contained in exactly one of the subgraphs. We say that G can be decomposed
into the elements of C. If all of the subgraphs in C are cycles, then C is a cycle
decomposition. For an Eulerian graph G we set

c(G) := min{k : G can be decomposed into k cycles} and
ν(G) := max{k : G can be decomposed into k cycles}.

A cycle decomposition of G with c(G) (ν(G)) cycles is minimal (maximal).
Let G1 and G2 be obtained from carrying out a 2.5-split on G. It is proven
in [10] that c(G) = c(G1) + c(G2) − 1 and ν(G) = ν(G1) + ν(G2) − 1. The
theorem below follows.

Theorem 10. Let G be a biconnected Eulerian graph and G1, G2, . . . , Gk its
2.5-connected components.

(a) c(G) =
∑k

i=1 c(Gi) − k + 1,
(b) ν(G) =

∑k
i=1 ν(Gi) − k + 1.

Hajós’ conjecture asserts that an Eulerian graph can be decomposed into at
most 1/2(|V (G)|+m(G)−1) cycles, where m(G) denotes the minimal number of
edges that need to be removed from G in order to obtain a simple graph.4 The
only progress made towards a verification of Hajós’ conjecture concerns graphs
that contain vertices of degree at most 4 (cf. [4]), very sparse graphs (cf. [5])
and, very dense graphs (cf. [6]).

Theorem 11. Let G be a biconnected graph. If all 2.5-connected components
of G satisfy Hajós’ conjecture, then G satisfies Hajós’ conjecture.

In particular, the conjecture of Hajós’ is satisfied if and only if all 2.5-con-
nected graphs satisfy Hajós’ conjecture.

7 Conclusion

We provide a canonical decomposition of a biconnected graph into its unique
2.5-connected components. Furthermore, we show how these components can be
constructed from the triconnected components of the graph. This overall gives a
linear-time algorithm for the 2.5-connected components. We show that all critical
2.5-connected except complete graphs on four vertices can be reduced to smaller
critical 2.5-connected graphs. Finally, we prove that it suffices to verify Hajós’
conjecture for all 2.5-connected graphs in order to verify the conjecture for all
graphs.
4 Originally, Hajós conjectured that at most 1/2|V (G)| cycles are needed. This equiv-

alent reformulation is due to Fan and Xu, cf. [4].
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Abstract. Let G be a graph, and let w be a non-negative real-valued
weight function on V (G). For every subset X of V (G), let w(X) =∑

v∈X w(v). A non-empty subset S ⊂ V (G) is a weighted safe set of
(G,w) if for every component C of the subgraph induced by S and every
component D of G−S, we have w(C) ≥ w(D) whenever there is an edge
between C andD. If the subgraph ofG induced by a weighted safe set S is
connected, then the set S is called a connected weighted safe set of (G,w).
The weighted safe number s(G,w) and connected weighted safe number
cs(G,w) of (G,w) are the minimum weights w(S) among all weighted
safe sets and all connected weighted safe sets of (G,w), respectively. It is
easy to see that for every pair (G,w), s(G,w) ≤ cs(G,w) by their defini-
tions. In [Journal of Combinatorial Optimization, 37:685–701, 2019], the
authors asked which pair (G,w) satisfies the equality s(G,w) = cs(G,w)
and it was shown that every weighted cycle satisfies the equality. In the
companion paper [European Journal of Combinatorics, in press] of this
paper, we give a complete list of connected bipartite graphs G such that
s(G,w) = cs(G,w) for every weight function w on V (G). In this paper,
as is announced in the companion paper, we show that, for any graph
G in this list and for any weight function w on V (G), there exists an
FPTAS for calculating a minimum connected safe set of (G,w). In order
to prove this result, we also prove that for any tree T and for any weight
function w′ on V (T ), there exists an FPTAS for calculating a minimum
connected safe set of (T,w′). This gives a complete answer to a ques-
tion posed by Bapat et al. [Networks, 71:82–92, 2018] and disproves
a conjecture by Ehard and Rautenbach [Discrete Applied Mathematics,
281:216–223, 2020]. We also show that determining whether a graph is
in the above list or not can be done in linear time.
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Keywords: Safe set · Connected safe set · Vertex-weight function ·
Safe-finite · Network majority · Network vulnerability · Subgraph
component polynomial

1 Introduction

We use [7] for terminology and notation not defined here. Only finite, simple
(undirected) graphs are considered. For a graph G, the subgraph of G induced
by a subset S ⊆ V (G) is denoted by G[S]. We often abuse/identify terminology
and notation for subsets of the vertex set and subgraphs induced by them. In
particular, a component is sometimes treated as a subset of the vertex set. For
a subset X of V (G), we denote G[V (G) \ S] by G − S. For a graph G, when A
and B are disjoint subsets of V (G), the set of edges joining some vertex of A
and some vertex of B is denoted by EG(A,B). If EG(A,B) �= ∅, then A and B
are said to be adjacent. A (vertex) weight function w on V (G) means a mapping
associating each vertex in V (G) with a non-negative real number. We call (G,w)
a weighted graph. For every subset X of V (G), let w(X) =

∑
v∈V (G) w(v), and

note that we also allow to use the notation w(G[X]) for w(X).
Let G be a connected graph. A non-empty subset S ⊆ V (G) is a safe set if, for

every component C of G[S] and every component D of G−S, we have |C| ≥ |D|
whenever EG(C,D) �= ∅. If G[S] is connected, then S is called a connected
safe set. In [4], those notions are extended on (vertex) weighted graphs. Let w
be a weight function on V (G). A non-empty subset S ⊂ V (G) is a weighted
safe set of (G,w) if, for every component C of G[S] and every component D
of G − S, we have w(C) ≥ w(D) whenever EG(C,D) �= ∅. The weighted safe
number of (G,w) is the minimum weight w(S) among all weighted safe sets
of (G,w), that is, s(G,w) := min{w(S) | S is a weighted safe set of (G,w)}.
If S is a weighted safe set of (G,w) and w(S) = s(G,w), then S is called a
minimum weighted safe set . Similar to connected safe sets, if S is a weighted
safe set of (G,w) and G[S] is connected, then S is called a connected weighted
safe set of (G,w). The connected weighted safe number of (G,w) is defined
by cs(G,w) := min{w(S) | S is a connected weighted safe set of (G,w)}, and
a minimum connected weighted safe set is a connected weighted safe set S of
(G,w) such that w(S) = (G,w). It is easy to see that for every pair (G,w),
s(G,w) ≤ cs(G,w) by their definitions.

Throughout this paper, we often drop ‘weighted’ to call a weighted safe set
or a connected weighted safe set when it is clear from the context.

Fujita, MacGillivray and Sakuma [11] introduced the notion of a safe set with
motivation to use the concept for facility location problems of safe evacuation
plans. Kang, Kim and Park [13] explored the safe number of the Cartesian
product of two complete graphs. This notion was extended to weighted graphs
(G,w) due to Bapat et al. [4]. For a real application, we can regard (G,w) as a
kind of network. In such a network, it is important to gain control of a “majority”
so that we can control the network consensus. As pointed out by Bapat et al. [4],
a significant feature of the safe set is that the minimum size of this parameter can



366 S. Fujita et al.

be used as both of majority and (which coincides with) vulnerability measures of
the network. The authors in [4] noticed that the minimum weight of a subnetwork
which attains the above majority role for a given network (G,w) coincides with
the safe number of (G,w).

Since the concept of a safe set can be thought as a suitable measure
of network vulnerability, and hence it has some deep relation to other rele-
vant graph invariants. One of the intensively studied measures of vulnerabil-
ity of a graph network (G,w) may be the graph integrity, which is defined as
I(G,w) := minS⊆V (G)

{
w(S)+max{w(H) : H is a component of G−S}}

(e.g.,
see [2,3,6,15]). For every graph network (G,w), it is not difficult to see that the
inequality I(G,w) ≤ 2s(G,w) holds. Furthermore, if a set S(⊆ V (G)) attains
the number I(G,w) and the induced subgraph G[S] is connected, then we also
have the inequality cs(G,w) ≤ I(G,w) ≤ 2cs(G,w). For the case of unweighted
graphs, Fujita and Furuya [9] gave a tight lower bound on I(G,w) in terms of
the (connected) safe number of a graph.

We also remark that a common property in terms of the weighted safe number
sometimes yields a characterization of graphs. Indeed, Fujita, Jensen, Park and
Sakuma [10] showed that a graph G is a cycle or a complete graph if and only if
s(G,w) ≥ w(G)/2 for any weight function w on V (G).

Motivated by those applications, weighted safe set problems in graphs attract
much attention, especially in the algorithmic aspect. Fujita, MacGillivray and
Sakuma [11] showed that computing the connected safe number in the case (G,w)
with a constant weight function w is NP-hard in general. On the other hand,
when G is a tree and w is a constant weight function, they constructed a greedy
algorithm for computing the connected safe number of G in linear time. Águeda
et al. [1] constructed an efficient algorithm for computing the safe number of
an unweighted graph with bounded treewidth. Somewhat surprisingly, Bapat
et al. [4] showed that computing the connected weighted safe number in a tree
is NP-hard even if the underlying tree is restricted to be a star. They also con-
structed an efficient algorithm computing the safe number for a weighted path.
Furthermore, the authors in [10] constructed a linear time algorithm computing
the safe number for a weighted cycle. Bapat et al. [4] also gave a polynomial
time 2-approximation algorithm for finding a minimum weighted connected safe
set of a weighted tree, and asked whether there exist more accurate approxima-
tion algorithms or not. Ehard and Rautenbach [8] answered this question and
gave a polynomial-time approximation scheme (PTAS) for finding a minimum
weighted connected safe set of a weighted tree. Unfortunately, their algorithm
is not a fully polynomial-time approximation scheme (FPTAS), and they con-
jectured that there exists no such algorithm. Contrary to their expectation, in
this paper, we give an FPTAS for computing a minimum connected safe set of a
weighted tree. Hence this result will be a complete answer to the above question
of Bapat et al. [4]. We also note that, the parameterized complexity of some safe
set enumeration problems was investigated by Belmonte et al. [5].

In contrast with the above algorithmic approach, in the companion paper[12]
of this paper, we focus on a theoretical aspect on weighted safe set problems.
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Since the safe number of a graph is no more and sometimes less than the con-
nected safe number of it in general, it would be an important and natural ques-
tion to ask which class of graphs satisfies the property that these two values are
the same. On the other hand, even if we consider a safe set S of a graph G whose
vertex weight function is uniform, after we contract each component of G[S] and
G[V − S], the resultant weighted bipartite graph possibly has a non-constant
weight function. Furthermore, some applications may require the robustness of
the equality s(G,w) = cs(G,w) against variations of weight functions w on V (G).
Taking account of these, one of the most essential problem is to characterize the
class of unweighted bipartite graphs G such that, for every vertex weight func-
tion w, the weighted safe number s(G,w) is equal to the weighted connected safe
number cs(G,w). In the paper [12] we resolve the above problem (Theorem 1),
which settles the principal sub-case of an open problem in the paper [10].

In this paper, as is announced in the companion paper [12], we give an FPTAS
to find a minimum (connected) safe set for any weighted graph (G,w) of such a
bipartite graph G and its non-negative vertex-weight function w (Theorem 4).
Note that a star is one of such bipartite graphs (see Theorem 1), and recall that
it is NP-hard to find a minimum connected safe set of a given weighted star.
In order to prove the above FPTAS result, first we prove that, for any tree T
and for any weight function w on V (T ), there exists an FPTAS for calculating
a minimum connected safe set of (T,w) (Theorem 3). It might be useful if we
can easily determine whether a given bipartite graph G satisfies the equation
s(G,w) = cs(G,w) for every vertex weight function w or not. Here we also
provide an algorithm recognizing such graphs in linear time (Theorem 2).

2 Our Results

The following open problem was proposed by [10].

Problem 1 ([10]). Determine the family Gcs of all graphs G such that s(G,w)
= cs(G,w) for every weight function w on V (G).

In the companion paper [12], we completely characterize all chordal graphs
and all bipartite graphs in Gcs. The following, one of the main results of that
paper [12], gives the complete list of the connected bipartite graphs in Gcs. A
double star is a tree with diameter at most three. A dominating clique is a
domination set which is a clique, that is, it induces a complete graph and every
vertex v not in the clique has a neighbor in this clique.

Definition 1. Let m, n, p, q be non-negative integers. Let D(m,n; p, q) (resp.
D∗(m,n; p, q)) be a connected bipartite graph with bipartition (X1 ∪ X2 ∪ P, Y1 ∪
Y2 ∪ Q), where the unions are disjoint, satisfying (1) ∼ (4):

(1) |X1| = m, |Y1| = m + 1, |X2| = n + 1, |Y2| = n, |P | = p, and |Q| = q;
(2) Both G[X1 ∪ Y1] and G[X2 ∪ Y2] are complete bipartite graphs;
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(3) The vertices in P are pendant vertices which are adjacent to a vertex y ∈ Y1

and the vertices in Q are pendant vertices which are adjacent to a vertex
x ∈ X2;

(4) EG(X1, Y2) = ∅ and G[X2 ∪Y1] is a complete bipartite graph (resp. a double
star with a dominating edge xy).

Note that each of D(m,n; p, q) and D∗(m,n; p, q) has a dominating edge xy
(x ∈ X2 and y ∈ Y1), where a dominating edge is a dominating clique of size
two. See Fig. 1 for examples.

Fig. 1. Graphs D(m,n; p, q) or D∗(m,n; p, q)

The m-book graph, denoted by Bm, is the Cartesian product of a star K1,m

and a path P2. See Fig. 2.
The following theorem gives a full list of graphs in Gcs for the bipartite case.

Fig. 2. Book graphs

Theorem 1 ([12]). A connected bipartite graph G belongs to Gcs if and only if
G is one of the following:

(I) an even cycle C2n with n ≥ 2;
(II) a double star;
(III) a book graph Bn with n ≥ 1;
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(IV) a graph obtained from K3,3 by deleting an edge;
(V) D(m,n; p, q) or D∗(m,n; p, q), with m ≥ 2, n �= 1 and p, q ≥ 0.

Note that, from the above theorem, we see that if a bipartite graph G belongs
to Gcs, then G is an even cycle or G has a dominating edge. By using this fact,
we can recognize the graphs in Theorem 1 in linear time.

Theorem 2. There exists a linear time algorithm to decide whether a given
graph is in the list of Theorem1 or not.

Now, let us move onto our main results. First we will consider the following
problem:

Problem 2 (Finding a rooted subtree of a given weight).

Instance: An n-vertex tree T with its vertex-weight function w : V (T ) → Z≥0,
a vertex (root) r of the tree T , and a non-negative integral value W .

Task: Find a sub-tree T ′ of T containing the vertex r such that the
weight w(T ′) is closest to the value W subject to the condition that
w(T ′) ≥ W .

It is a folklore that the above problem has a simple DP based pseudo-
polynomial algorithm whose running time is in O(C2n), where the parameter
C denotes the total weight w(T ). Quite recently, Kumabe, Maehara and Sin’ya
[14] gave a more efficient pseudo-polynomial algorithm whose running time is
in O(Cn). From their result, we can easily obtain the following FPTAS for
Problem 2:

Lemma 1. For Problem 2, a sub-tree T ′ of T containing the vertex r such that
w(T ′) ≤ (1 + ε) · OPT(T,w) holds can be detected in O(n2

ε )-time.

By using Lemma 1, we also obtain an FPTAS for the following problem:

Problem 3 (Minimum Connected Safe Set Problem on Weighted Trees).

Instance: An n-vertex tree T with its vertex-weight function w : V (T ) → Z≥0.
Task: Find a minimum connected safe set of (T,w).

Theorem 3. For Problem 3, a connected safe set S of a weighted tree (T,w)
such that w(S) ≤ (1 + ε) · cs(T,w) holds can be detected in O(n4

ε )-time.

Proof. We find a connected safe set S such that w(S) ≤ (1 + ε) · cs(T,w) holds
using the following steps:
(Step 1). Guess a vertex r of T which is in the connected safe set S of (T,w).
Note that the number of such candidates is at most n.
(Step 2). Guess an edge eM of T such that the component X(eM , r) of T − eM

not containing the vertex r is one of the heaviest component of T −S. Note that
the number of such candidates is n − 1 for each fixed vertex r.
(Step 3). Starting from the vertex r, check all the edges e of T in order of a
breadth-first search and, if the weight of the component X(e, r) of G − e not
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containing r is strictly more than w(X(eM , r)) then paint the edge e red. For
each fixed vertex r, by using the same method in the algorithm connected
safe set of the paper [11], we can calculate and list the weights w(X(e, r)) for
all edges e of T in O(n)-time.
(Step 4). Contract the subtree R(eM , r) which consists of all the red edges to a
single vertex v(R(eM , r)) and set its weight to be w(R(eM , r)). Remove X(eM , r)
from the resulting tree and denote it by H(eM , r).
(Step 5). By using Lemma 1, calculate a subtree Y (eM , r) of H(eM , r) containing
the vertex v(R(eM , r)) such that the weight w(Y (eM , r)) is closest to the value
w(X(eM , r)) subject to the condition that w(Y (eM , r)) ≥ w(X(eM , r)).
(Step 6). Return a tree with minimum weight in the set of candidate trees
{Y (eM , r) : (eM , r) ∈ E(T ) × V (T )}.

It is clear that the most time-consuming part is Step 5, and its running
time is in O(n2

ε ) for each fixed graph H(eM , r). Since the number of the graphs
H(eM , r) is n(n − 1), the total running time of this algorithm is in O(n4

ε ). �
Corollary 1. If the input tree T of Problem 3 is restricted to a double-star, then
a connected safe set S such that w(S) ≤ (1 + ε) · cs(T,w) holds can be detected
in O(n3

ε )-time.

Now we are ready to prove the existence of an FPTAS for the following
problem:

Problem 4 (Minimum Safe Set Problem on Bipartite Graphs in Gcs)

Instance: An n-vertex bipartite graph G in the list of Theorem 1 and its vertex-
weight function w : V (G) → Z≥0.

Task: Find a minimum safe set of (G,w).

For a connected graph G and S ⊂ V (G), let us denote by β(G,S) the graph
whose vertices are the components of G[S] and of G − S, and two vertices A
and B are adjacent in β(G,S) if and only if EG(A,B) �= ∅. Note that β(G,S) is
always a bipartite graph.

Theorem 4. For Problem 4, a connected safe set S of a weighted graph (G,w)
such that w(S) ≤ (1 + ε) · cs(G,w) holds can be detected in O(n7

ε2 )-time.

Proof. If the input graph G is either in the cases (I) or (IV) of Theorem 1, then
the statement of Theorem 4 is trivially true. And also if, the graph G is in the
case (II) of Theorem 1, then our statement is true because of Corollary 1.

Now suppose that G is a book graph (i.e., the case (III)) and let xy be its
unique dominating edge. If a minimum safe set Smin of (G,w) contains x while
Smin does not contain y, then G−Smin is also connected. Hence, in order to detect
Smin, we should find a star subgraph T of G−y containing x such that it has the
closest to the value w(G)/2 subject to the condition that w(T ) ≥ w(G)/2. Hence
we can apply Lemma 1 to calculate the candidate of S corresponding to this
subcase. On the contrary, if a minimum connected safe set Smin of (G,w) contains
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both x and y, then let us contract the edge xy to a single vertex v(xy) and let
us denote the resultant graph by H. Set the weight of the new vertex v(xy) of
H to be w(x) + w(y). Then w can be extended to a weight function on V (H),
and β(G,Smin) can be thought as β(H,S′

min) for some minimum connected safe
set S′

min of (H,w). Now let us replace each triangle of H, say v(xy) − ui −
vi − v(xy), such that w(ui) ≤ w(vi) holds, with the arm v(xy) − pi − qi − ui

where w(pi) := w(ui) and w(qi) := w(vi) − w(ui). Then we obtain the resultant
substitutional weighted tree (T,w) for (H,w). That is, under the assumption
that any minimum safe set contains x (i.e., except for a very special case such
that w(qi) ≥ w(V (G) − ui) holds for some i), there exists a natural one to
one correspondence between the minimum connected safe sets of (T,w) and
the minimum connected safe sets of (G,w). Hence we can apply Theorem 3
to calculate the candidate of S corresponding to this subcase. In any case, by
comparing these two candidates corresponding the two subcases, we can detect
a desired safe set S in O(n4

ε )-time.
From now on, suppose that our input n-vertex graph G is in the case (V) of

Theorem 1. Let us use the notations X1,X2, Y1, Y2, P,Q, x, y as in Definition 1.
Especially, let xy be the dominating edge of G. Let S denote a desired connected
safe set of (G,w).

We divide the rest of the proof into several cases and subcases. For each
subcase, we provide an FPTAS for calculating a candidate of our desired safe
set S in such subcase. By using these FPTAS’s, we develop a list of potential
candidates and return the lightest set among all the candidates.

First we show the following lemma.

Lemma 2. Let H be an n-vertex graph satisfying the following conditions:

1. H has a vertex u in the desired safe set S.
2. U denotes the set of pendant vertices adjacent to u.
3. H has two distinct vertices v1, v2 in G \ S.
4. N [v1] ∩ N [v2] = {u} and N [v1] ∪ N [v2] = N [u] \ U .

Then, for any non-negative integral-valued function w on V (H), a connected
safe set S of a weighted tree (H,w) such that w(S) ≤ (1 + ε) · cs(H,w) can be
detected in O(n3

ε2 )-time.

Corollary 2. Let H be an n-vertex graph satisfying the following conditions:

1. H has a vertex u in the desired safe set S.
2. U denotes the set of pendant vertices adjacent to u.
3. H has a vertex v in G \ S.
4. N [v] = N [u] \ U .

Then, for any non-negative integral-valued function w on V (H), a connected
safe set S of a weighted tree (H,w) such that w(S) ≤ (1 + ε) · cs(H,w) can be
detected in O(n3

ε )-time. If the set U is empty, then the above time-complexity is
compressed to O(n2

ε )-time.
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In the following, we transform our graph (G,w) repeatedly, and we sometimes
abuse our notation (G,w) to denote the transformed graph. In each step of the
transformation, we contract some vertex set A ⊆ V (G) into a single vertex v(A).
The weight of the new vertex v(A) in the contracted graph is always defined to
be w(A), unless otherwise specified.

Let us start with the case of D(a, 0, p, q)(= D∗(a, 0; p, q)):

Lemma 3. Let X,Y, P,Q, {x}, {y} be disjoint sets. and let n := |X|+|Y |+|P |+
|Q|+2. Let G be a bipartite graph defined as follows: V (G) := X∪Y ∪P∪Q∪{x}∪
{y}, E(G) := {{u, v}|u ∈ X∪{x}, v ∈ Y ∪{y}}∪{{p, y}|p ∈ P}∪{{x, q}|q ∈ Q}.
Then, for any weight function w on V (G), a connected safe set S of the weighted
graph (G,w) such that w(S) ≤ (1 + ε) · cs(G,w) holds can be detected in O(n5

ε )-
time.

Proof of Lemma 3. First, suppose that there exist 4 distinct vertices x1, x2, y1
and y2 such that both x1y1 and x2y2 are edges of G and that {x1, y1} ⊆ S,
{x2, y2} ⊆ G − S, x ∈ {x1, x2} ⊆ X ∪ {x} and y ∈ {y1, y2} ⊆ Y ∪ {y} hold.
In this case, let us contract the edges x1y1 and x2y2 into single vertices v(x1y1)
and v(y2x2) and denote the resulting weighted graph by (G,w) again.

If x = x1 and y = y1 then the above G satisfies the condition of Corollary 2
so that H := G, u := v(x1y1), v := v(x2y2), and U := P ∪ Q. Hence we obtain
the desired safe set S in O(n3

ε )-time.
If x = x2 and y = y2 then we can assume P ∪ Q ⊂ G − S, and hence we can

contract the set P ∪ Q ∪ {v(x2y2)} to a single vertex v(PQx2y2). Let us denote
the resulting weighted graph by (G,w) again. Then G satisfies the condition of
Corollary 2 so that H := G, u := v(x1y1), v := v(PQx2y2), and U := ∅. Hence
we obtain the desired safe set S in O(n2

ε )-time.
If x = x1 and y = y2 then we can assume P ⊂ G − S, and hence we

can contract the set P ∪ {v(x2y2)} to a single vertex v(Px2y2). Let us denote
the resulting weighted graph by (G,w) again. Then G satisfies the condition of
Corollary 2 so that H := G, u := v(x1y1), v := v(Px2y2), and U := Q. Hence
we obtain the desired safe set S in O(n3

ε )-time. By symmetry, the same is true
for the case that x = x2 and y = y1 hold.

The number of candidates of {x1, x2, y1, y2} \ {x, y} is in O(n2) and hence
the time-complexity so far is O(n5

ε ).
In the other cases, at least one of the four conditions X ∪{x} ⊆ S, X ∪{x} ⊆

G − S, Y ⊆ S and Y ⊆ G − S holds.
Suppose that X ∪ {x} ⊆ S holds. Since we can assume that G[S] is a con-

nected, there exists at least one vertex v1 ∈ Y ∩ S. Guess the vertex v. Then let
us contract the set X ∪{x}∪ {v1} to a single vertex v(v1xX). Let us denote the
resulting weighted graph by (G,w) again. Then G is a double star, and we can
apply Corollary 1 here. Since the number of candidates of v1 is at most n, we
obtain the desired safe set S in O(n4

ε )-time. By symmetry, the same is true for
the case of Y ⊆ S.

Next suppose that X ∪ {x} ⊆ G − S holds. Note that every connected com-
ponent of G[Y ∪P ∪Q] is a singleton except for G[P ∪{y}]. Since we can assume
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that G[S] is connected, we have |Y ∩ S| ≤ 1 and hence there exists a vertex
v2 ∈ Y ∩ (G − S). Then let us contract the set X ∪ {x} ∪ {v2} to a single vertex
v(v2xX). Let us denote the resulting weighted graph by (G,w) again. Then G is
a double star again, and we can also apply Corollary 1 here. Since the number
of candidates of v2 is at most n, we obtain the desired safe set S in O(n4

ε )-time.
By symmetry, the same is true for the case that Y1 ⊆ G − S holds.

Thus we have that the total time-complexity is in O(n5

ε ).

From now on, let us assume that our input n-vertex graph G is D(a, b; p, q)
or D∗(a, b; p, q) with no collateral conditions of the parameters a, b, p, q. Let us
use the notations X1,X2, Y1, Y2, P,Q, x, y as in Definition 1.
(Case 1): {x, y} ⊆ G − S.
(Subcase 1–1): G is D∗(a, b; p, q).

In this case, the set {x, y} separates X1 ∪ (Y1 \ {y}) from (X2 \ {x}) ∪ Y2,
and hence at least one of the sets {x}∪X1 ∪Y1 and X2 ∪Y2 ∪{y} is in the same
component of G − S.

If {x} ∪ X1 ∪ Y1 is in the same component of G − S, then let us contract the
set Y1 to a single vertex v(Y1). Let us denote the resulting weighted graph by
(G,w) again. Since this graph G satisfies the conditions in Lemma 3, we obtain
the desired safe set S in O(n5

ε )-time. By symmetry, the same is true for the case
that X2 ∪ Y2 ∪ {y} is in the same component of G − S.
(Subcase 1–2): G is D(a, b; p, q).

First suppose that Y1 ⊆ G−S holds. Since Y1 separates X1 from X2 ∪Y2, at
least one of the two sets {x}∪X1∪Y1 and X2∪Y1∪Y2 is in the same component
of G−S. If {x}∪X1∪Y1 is in the same component of G−S, then let us contract
the set Y1 to a single vertex v(Y1). Let us denote the resulting weighted graph by
(G,w) again. Since the graph G satisfies the conditions in Lemma 3, we obtain
the desired safe set S in O(n5

ε )-time. By symmetry, the same is true for the case
that X2 ∪ Y1 ∪ Y2 is in the same component of G − S.

Also note that, if we assume X2 ⊆ G − S instead of Y1 ⊆ G − S, again, by
symmetry, we obtain the desired safe set S in O(n5

ε )-time.
In the other cases, there exist a vertex y1 ∈ Y1 and a vertex x2 ∈ X2 such

that {x2, y1} ⊆ S holds. And the set P ∪ Q ∪ {x, y} is in a component of G − S.
Then let us contract the sets {x2, y1} and P ∪ Q ∪ {x, y} to single vertices
v(x2y1) and v(xyPQ). Let us denote the resulting weighted graph by (G,w)
again. This G satisfies the condition of Corollary 2 so that H := G, u := v(x2y1),
v := v(xyPQ), and U := ∅. Since the number of candidates of the pair (x2, y1)
is in O(n2), we obtain the desired safe set S in O(n4

ε )-time.
(Case 2): {x, y} ⊆ S.

If at least one of the four set X1,X2, Y1, Y2 is a subset of S, then, as seen many
times before, our input graph is reduced to the graphs satisfying the conditions
in Lemma 3. Hence we obtain the desired safe set S in O(n5

ε )-time.
In the other cases, there exist a vertex x1 ∈ X1 and a vertex x2 ∈ X2 \ {x}

and a vertex y1 ∈ Y1\{y} and a vertex y2 ∈ Y2 such that {x1, x2, y1, y2} ⊆ G−S
holds. Note that x1y1 and x2y2 are edges of G. And the set P ∪ Q ∪ {x, y} is
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in a component of G − S. Then let us contract the sets {x1, y1}, {x2, y2} and
P ∪ Q ∪ {x, y} to single vertices v(x1y1), v(x2y2) and v(xyPQ), respectively.
Then let us denote the resulting weighted graph by (G,w) again.

If v(x1y1) is not adjacent to v(x2y2), then G satisfies the conditions of H in
Lemma 2. Hence we obtain the desired safe set S in O(n3

ε2 )-time.
If v(x1y1) is adjacent to v(x2y2), then let us contract the set {x1, x2, y1, y2} to

a single vertex v(x1x2y1y2). Let us denote the resulting weighted graph by (G,w)
again. then G satisfies the conditions of the second graph in Corollary 2. Hence
we obtain the desired safe set S in O(n2

ε )-time. Since the number of candidates
of the pair of edges (x1y1, x2y2) is in O(n4), the total time-complexity is in
O(n7

ε2 )-time, so far.
(Case 3): |{x, y} ∩ S| = 1.

By symmetry, we can assume without loss of generality that x ∈ S and
y ∈ G − S hold.

In this case, the set {y}∪Q is in a component of G−S. Thus let us contract
the set {y}∪Q to the single vertex y and set w(y) := w(y)+w(Q). Let us denote
the resulting weighted graph by (G,w) again.

If Y1 ⊆ G−S then, since Y1 separate X1 from x, X1∪Y1 is in a component of
G−S. In this case, we can contract the set X1 ∪Y1 to the single vertex y and set
w(y) := w(X1) + w(Y1). Let us denote the resulting weighted graph by (G,w)
again. This graph G satisfies the conditions of the first graph in Corollary 2.
Hence we obtain the desired safe set S in O(n3

ε )-time.
If X2 ⊂ S, then, since X2 is an independent set, there exists a vertex y1 ∈

(Y1∪Y2)∩S such that X2 ⊆ N(y1) holds. Then we can contract X2 to the vertex
x and set w(x) := w(X2). Let us denote the resulting weighted graph by (G,w)
again. This graph G satisfies the conditions of H in Lemma 3. Since the number
of candidates of y1 is at most n, we obtain the desired safe set S in O(n6

ε )-time.
In the same way, for the case of X1 ⊂ S, we can reach the same conclusion.

In the other cases, there exists a vertex x2 ∈ X2\S. Hence if Y2 ⊂ G−S then
the set {x2}∪Y2 is in a component of G−S. Then we can contract the set Y2 to
the vertex y and set w(y) := w(y)+w(Y2). Let us denote the resulting weighted
graph by (G,w) again. This graph G satisfies the conditions of H in Lemma 3.
Since the number of candidates of x2 is at most n, we obtain the desired safe
set S in O(n6

ε )-time. In the same way, for the case of X1 ⊂ S, we can reach the
same conclusion.

The only remaining case is that there exist x1 ∈ X1 \ S and x2 ∈ X2 \ S and
y1 ∈ Y2 ∩ S and y2 ∈ Y2 ∩ S. In this case, we can contract the sets {x, y1, y2}
and {x1, x2, y} to the vertices x and y respectively and set w(x) := w(x) +
w(y1) + w(y2) and w(y) := w(y) + w(x1) + w(x2). Let us denote the resulting
weighted graph by (G,w) again. Then this graph G satisfies the conditions of
the first graph in Corollary 2. Since the number of candidates of the four-tuple
(x1, x2, y1, y2) is in O(n4), we obtain the desired safe set S in O(n7

ε )-time. �



Stable Structure on Safe Set Problems in Vertex-Weighted Graphs II 375

References
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Abstract. A k-linear coloring of a graph G is an edge coloring of G
with k colors so that each color class forms a linear forest—a forest
whose each connected component is a path. The linear arboricity χ′

l(G)
of G is the minimum integer k such that there exists a k-linear coloring
of G. Akiyama, Exoo and Harary conjectured in 1980 that for every

graph G, χ′
l(G) ≤

⌈
Δ(G)+1

2

⌉
where Δ(G) is the maximum degree of G.

We prove the conjecture for 3-degenerate graphs. This establishes the
conjecture for graphs of treewidth at most 3 and provides an alternative
proof for the conjecture for triangle-free planar graphs. Our proof also
yields an O(n)-time algorithm that partitions the edge set of any 3-

degenerate graph G on n vertices into at most
⌈

Δ(G)+1
2

⌉
linear forests.

Since χ′
l(G) ≥

⌈
Δ(G)

2

⌉
for any graph G, the partition produced by the

algorithm differs in size from the optimum by at most an additive factor
of 1.

1 Introduction

All graphs considered in this paper are finite, simple and undirected. For a graph
G, we let V (G) and E(G) denote its vertex set and edge set, respectively. The
neighborhood of a vertex u in G, denoted by NG(u), is the set {v : uv ∈ E(G)}.
We abbreviate it to just N(u) when the graph G is clear from the context.
Given a graph G, the degree of a vertex u ∈ V (G) is |N(u)| and is denoted
by dG(u). The maximum degree of a graph G, denoted by Δ(G), is defined to
be max{dG(u) : u ∈ V (G)}. When the graph G under consideration is clear, we
sometimes abbreviate Δ(G) to just Δ. For any terms not defined here, please
refer [8].

Given a graph G on n vertices and an integer t, an ordering v1, v2, . . . , vn of
the vertices of G such that for each 1 ≤ i ≤ n, |{vj : vj ∈ N(vi) and j > i}| ≤ t
is called a t-degeneracy ordering of G. A graph G is said to be t-degenerate if
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it has a t-degeneracy ordering. Equivalently, a graph G is t-degenerate if every
subgraph of G has minimum degree at most t. The class of 3-degenerate graphs
is well studied in the literature and contains many well known graph classes like
triangle-free planar graphs and graphs of treewidth at most 3 (also called partial
3-trees, this class contains outerplanar graphs and series-parallel graphs). Note
that even though a 3-degenerate graph can contain only as many edges as a
planar graph on n vertices—at most 3n − 6 edges—they contain a large number
of non-planar graphs as well.

An edge coloring of a graph G using the colors {1, 2, . . . , k} is a mapping
c : E(G) → {1, 2, . . . , k}. Given an edge coloring using colors {1, 2, . . . , k},
the color class i, for some i ∈ {1, 2, . . . , k}, is the set of edges c−1(i) = {e ∈
E(G) : c(e) = i}.

Graphs without cycles are known as forests. The arboricity of a graph is the
minimum integer k such that its edge set can be partitioned into k forests. A
linear forest is a forest whose each connected component is a path. The linear
arboricity of a graph is the minimum number of linear forests into which its edge
set can be partitioned.

A k-linear coloring of a graph G is an edge coloring of G such that each color
class is a linear forest. Or in other words, it is an edge coloring in which every
vertex has at most two edges of the same color incident with it and there is no
cycle in the graph whose edges all receive the same color. The linear arboricity
of a graph G is clearly the smallest integer k such that it has a k-linear coloring
and is denoted by χ′

l(G). The parameter χ′
l(G) was introduced by Harary [14].

The linear arboricity conjecture, first stated by Akiyama, Exoo and Harary [1],
is as follows.

Conjecture 1 (Linear Arboricity Conjecture). For every graph G,

χ′
l(G) ≤

⌈
Δ(G) + 1

2

⌉
.

1.1 Brief History

Note that for any graph G, χ′
l(G) ≥

⌈
Δ(G)

2

⌉
, since in any linear coloring of

G, there can be at most 2 edges of the same color incident with any vertex.
In fact, as noted by Harary [14], if G is a Δ(G)-regular graph, then χ′

l(G) ≥⌈
Δ(G)+1

2

⌉
. The linear arboricity conjecture suggests that this lower bound for

regular graphs is tight. The conjecture has been proven for all graphs G such that
Δ(G) ∈ {3, 4, 5, 6, 8, 10} [1,2,9,12] and was shown to be true for planar graphs
by Wu and Wu [18,19]. Cygan et al. [7] proved that the linear arboricity of planar
graphs which have Δ ≥ 10 is

⌈
Δ
2

⌉
. Works of Alon [3], Alon and Spencer [4], and

Ferber et al. [10] show that the conjecture holds asymptotically—in particular,
for any ε > 0 there exists a Δ0 such that χ′

l(G) ≤ ( 12 + ε)Δ(G) whenever
Δ(G) ≥ Δ0. From Vizing’s Theorem [17], which says that any graph can be
properly edge colored with Δ + 1 colors, we get that χ′

l(G) ≤ Δ(G) + 1 for any
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graph G. The best known general bound for linear arboricity is
⌈
3Δ
5

⌉
when Δ is

even and
⌈
3Δ+2

5

⌉
for Δ odd, obtained by Guldan [12,13].

Although arboricity can be computed in polynomial time [11], computing
linear arboricity is NP-hard [16]. As χ′

l(G) ≥ ⌈
Δ
2

⌉
for any graph G, a 2-factor

approximation algorithm for computing linear arboricity can be obtained using
Vizing’s Theorem. Cygan et al. [7] showed an O(n log n) algorithm that produces
a linear coloring of every planar graph on n vertices with the optimum number
of colors when Δ(G) ≥ 9. Linear arboricity has applications in File Retrieval
Systems [15].

1.2 Our Result

It is known that the conjecture is true for 2-degenerate graphs from the fact that
the acyclic chromatic index of 2-degenerate graphs is at most Δ + 1 [6]. (The
acyclic chromatic index χ′

a(G) of a graph G is the minimum number of colors
required to properly color the edges of G—i.e. no two incident edges get the same
color—such that the union of any two color classes is a forest. Since the union
of any two color classes in such a coloring will always be a linear forest, we get
that χ′

l(G) ≤
⌈

χ′
a(G)
2

⌉
).

We prove the following theorem which shows that the linear arboricity con-
jecture is true for 3-degenerate graphs.

Theorem 1. Let G be a 3-degenerate graph having Δ(G) ≤ 2k − 1, where k is
a positive integer. Then χ′

l(G) ≤ k.

Our proof also serves as an alternative (we believe, simpler) proof for the
the result of Akiyama, Exoo and Harary [1] that every cubic graph has a 2-
linear coloring. Graphs having treewidth at most 3, also called partial 3-trees,
are 3-degenerate graphs, and hence our result establishes the linear arboricity
conjecture for this class of graphs. Our result provides an alternative proof for
the conjecture for some other classes of 3-degenerate graphs like triangle-free
planar graphs and Halin graphs.

We convert the proof to a linear time algorithm that computes a
⌈

Δ(G)+1
2

⌉
-

linear coloring for any input 3-degenerate graph G. For triangle-free planar
graphs or partial 2-trees, our algorithm has better asymptotic runtime complex-
ity than the algorithm for planar graphs given in [7], with the caveat that our
algorithm may produce a linear coloring using one more color than the optimum
number of required colors.

2 Notation and Preliminaries

Given a graph G and a set S ⊆ V (G), we denote by G − S the graph obtained
by removing the vertices in S from G, i.e. V (G−S) = V (G)\S and E(G−S) =
E(G) \ {uv : u ∈ S}. When S ⊆ E(G), we abuse notation to let G − S denote
the graph obtained by removing the edges in S from G; i.e. V (G − S) = V (G)
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and E(G−S) = E(G)\S. In both cases, if S = {s}, we sometimes denote G−S
by just G − s.

Let G be a t-degenerate graph. A pivot in G is a vertex that has at most t
neighbors of degree more than t. A pivot edge in G is an edge between a pivot
and a vertex with degree at most t.

Observation 1. Every t-degenerate graph G has at least one pivot edge.

Proof. If Δ(G) ≤ t, then every vertex of G is a pivot, and every edge of G is
a pivot edge. If Δ(G) > t, then the graph G′ = G − {u : dG(u) ≤ t} contains
at least one vertex. Since G′ is also t-degenerate (as every subgraph of a t-
degenerate graph is also t-degenerate), there exists a vertex v ∈ V (G′) such
that dG′(v) ≤ t. It can be seen that {u ∈ NG(v) : dG(u) > t} = NG′(v). As
|NG′(v)| = dG′(v) ≤ t, we have that v is a pivot in G. Also, as dG(v) > t, there
exists u ∈ NG(v) having dG(u) ≤ t. Then uv is a pivot edge in G. ��

Alternatively, given a t-degeneracy ordering of a graph G, consider the first
vertex v such that it has a neighbor u before it in the ordering. It is not difficult
to see that uv is a pivot edge of G.

The following observation about linear forests is easy to see.

Observation 2. Let H be a linear forest and let P1 and P2 be two paths in H
having end vertices u1, v1 and u2, v2 respectively such that u1 	= v1, u2 	= v2,
{u1, v1} 	= {u2, v2} and V (P1) ∩ V (P2) 	= ∅. Then at least one of u1, v1, u2, v2
has degree 2 in H.

Identification of Vertices: Given a graph G and vertices u, v ∈ V (G) such
that uv /∈ E(G) and N(u)∩N(v) = ∅, we let G/(u, v) denote the graph obtained
by “identifying” the vertex v with u. That is, V (G/(u, v)) = V (G) \ {v} and
E(G/(u, v)) = E(G−v)∪{ux : x ∈ N(v)}. Note that given a k-linear coloring of
G/(u, v), the vertex u can be “split back” into the vertices u and v so as to obtain
the graph G together with a k-linear coloring of it. The following observation
states this fact.

Observation 3. Let G be a graph and u, v ∈ V (G) such that uv /∈ E(G) and
N(u) ∩ N(v) = ∅. If c is a k-linear coloring of G/(u, v), then

c′(e) =
{

c(e) if e is not incident with v
c(ux) if e = vx

is a k-linear coloring of G.

Definition 1. Let c be a k-linear coloring of a graph G. For a vertex x ∈ V (G),
we define Colors(x) to be the set of colors in {1, 2, . . . , k} that appear on the edges
incident with x. Further, we define Missing(x) to be the colors in {1, 2, . . . , k}
that do not appear on any edge incident with x, Twice(x) to be the set of colors
that appear on two edges incident with x, and Once(x) to be the set of colors
that appear on exactly one edge incident with x.

Note that for any vertex x ∈ V (G), |Missing(x)|+ |Once(x)|+ |Twice(x)| = k
and also that the degree of x in G is |Once(x)| + 2|Twice(x)|.
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3 Proof of Theorem1

We prove the theorem by induction on |E(G)|. We assume that all 3-degenerate
graphs having maximum degree at most 2k − 1 and less than |E(G)| edges can
be linearly colored using k colors. We shall show that G can be linearly colored
using k colors.

Let uv be a pivot edge of G such that dG(u) ≤ 3 and v is a pivot.

Lemma 1. If dG(v) < 2k − 1, then G has a k-linear coloring.

Proof. Let H = G−uv. By the induction hypothesis, there is a k-linear coloring
c of H.

Claim. If either

1. |Once(v)| ≥ 3, or
2. |Missing(v)| ≥ 1 and |Missing(v) ∪ Once(v)| ≥ 2,

then G has a k-linear coloring.

First, suppose that |Once(v)| ≥ 3. Since dH(u) ≤ 2, we have |Colors(u)| ≤ 2,
and therefore there exists a color i ∈ Once(v) \ Colors(u). Then, by coloring uv
with i, we can get a k-linear coloring of G, and we are done. Next, suppose that
|Missing(v)| ≥ 1 and |Missing(v)∪Once(v)| ≥ 2. Then there exist i ∈ Missing(v)
and j ∈ (Missing(v)∪Once(v))\{i}. If j /∈ Colors(u), then we can color uv with
j to obtain a k-linear coloring of G. Otherwise, since |Colors(u)| ≤ 2, we have
i /∈ Twice(u), implying that we can color uv with i to obtain a k-linear coloring
of G. This proves the claim.

Observe that dH(v) = 2|Twice(v)| + |Once(v)|. From the above claim, if
|Missing(v)| + |Once(v)| ≥ 3, then we are done. Therefore, we shall assume
that |Missing(v)| + |Once(v)| ≤ 2. As |Twice(v)| + |Once(v)| + |Missing(v)| = k,
this means that |Twice(v)| ≥ k − 2. Since d(v) ≤ 2k − 2, we have dH(v) ≤
2k − 3, implying that |Twice(v)| ≤ k − 2. Thus, we have |Twice(v)| = k −
2. Since 2k − 3 ≥ dH(v) = 2|Twice(v)| + |Once(v)|, we get |Once(v)| ≤ 1.
Since |Twice(v)| + |Once(v)| + |Missing(v)| = k, we have |Missing(v)| ≥ 1 and
|Missing(v)| + |Once(v)| = 2. We are now done by the above claim. ��

By the above lemma, we shall assume from here onwards that dG(v) = 2k − 1.
Also, we can assume that k ≥ 2, as the statement of the theorem can be easily
seen to be true for the case k = 1. Since v has at most 3 neighbors having degree
more than 3, it has at least 2k − 4 neighbors with degree at most 3. If k = 2,
then Δ(G) ≤ 3, implying that every vertex in N(v) has degree at most 3. If
k ≥ 3, then v has at least 2k − 4 ≥ 2 neighbors having degree at most 3. Thus,
in any case, there exists w ∈ N(v) \ {u} such that dG(w) ≤ 3.

Lemma 2. If uw ∈ E(G), then G has a k-linear coloring.
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Proof. Let H = G − {u,w}. Let x be a neighbor of u other than v, w. Note that
x may not exist (i.e. if dG(u) = 2). Similarly, let y be a neighbor of w other than
u, v, if such a neighbor exists. We shall assume from here onwards that both x
and y exist, since if one of them, say x, does not exist, then we can just add a
new vertex x that is adjacent to only u and continue the proof. By the inductive
hypothesis, there exists a k-linear coloring c of H. Since dH(x) ≤ 2k − 2, there
exists a color i ∈ Missing(x) ∪ Once(x). Color ux with i. Since dH(v) = 2k − 3,
we know that either:

(a) |Once(v)| = 3, or
(b) |Missing(v)| = 1 and |Once(v)| = 1.

First let us consider case (a). Color uv, uw with two different colors in Once(v)\
{i}, and then color vw with the remaining color j in Once(v). Since dH(y) ≤
2k − 2, we have either |Missing(y)| ≥ 1 or |Once(y)| ≥ 2. In the former case, we
color wy with a color in Missing(y) and in the latter case, we color wy with a
color in Once(y) \ {j}. We now have a k-linear coloring of G.

Now let us consider case (b). We color uv, vw with the color in Missing(v) and
color uw with the color in Once(v). As dH(y) ≤ 2k − 2, either |Missing(y)| ≥ 1
or |Once(y)| ≥ 2. If |Missing(y)| ≥ 1, then color wy with a color in Missing(y).
On the other hand, if |Once(y)| ≥ 2, then color wy with a color in Once(y)\{i}.
This gives a k-linear coloring of G. ��
Lemma 3. If u and w have a common neighbor other than v, then G has a
k-linear coloring.

Proof. Let z be a common neighbor of u and w other than v. Note that by
Lemma 2, we can assume that uw /∈ E(G). As in the proof of Lemma 2, we
assume that u has a neighbor x other than v, z and w has a neighbor y other
than v, z. Define H = G − {u,w}. Clearly, dH(v) = 2k − 3 and dH(z) ≤ 2k −
3. Thus we have either |Once(v)| = 3 or we have both |Missing(v)| = 1 and
|Once(v)| = 1. We will use the weaker statement that either |Once(v)| ≥ 3 or
both Missing(v) 	= ∅ and |Missing(v) ∪ Once(v)| ≥ 2. Since we also have that
either |Once(z)| ≥ 3 or both Missing(z) 	= ∅ and |Missing(z) ∪ Once(z)| ≥ 2, we
treat v and z symmetrically, so there are only three cases to consider. Note also
that since dH(x), dH(y) ≤ 2k − 2, we have Missing(x) 	= ∅ or |Once(x)| ≥ 2, and
we have Missing(y) 	= ∅ or |Once(y)| ≥ 2.

First, let us consider the case when Missing(v) 	= ∅, |Missing(v)∪Once(v)| ≥
2, Missing(z) 	= ∅, and |Missing(z) ∪ Once(z)| ≥ 2. Choose i ∈ Missing(v), j ∈
(Missing(v)∪Once(v))\{i}, p ∈ Missing(z), and q ∈ (Missing(z)∪Once(z))\{p}.
If i 	= p, then color uv, vw with i, and wz, uz with p. If i = p, then color uv,wz
with i, vw with j, uz with q. Let r denote the color so given to vw and � the
color so given to uz. Now color wy with a color in Missing(y) ∪ (Once(y) \ {r})
and ux with a color in Missing(x) ∪ (Once(x) \ {�}). We now have a k-linear
coloring of G.

Next, suppose that Missing(v) 	= ∅, |Missing(v)∪Once(v)| ≥ 2, and |Once(z)|
≥ 3. Choose i ∈ Missing(v) and j ∈ (Missing(v) ∪ Once(v)) \ {i}. Color uv with
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i, vw with j, wy with a color t in Missing(y) ∪ (Once(y) \ {j}), ux with a color
s ∈ Missing(x) ∪ Once(x), wz with a color in � ∈ Once(z) \ {t, j}, and uz with
a color in Once(z) \ {s, �}. We now have a k-linear coloring of G.

Finally, let us suppose that |Once(v)|, |Once(z)| ≥ 3. Choose distinct i, j, � ∈
Once(v). Color vw with j, wy with a color t in Missing(y) ∪ (Once(y) \ {j}), uv
with a color h in {i, �}\{t}, and ux with a color s in Missing(x)∪(Once(x)\{h}).
Then, if h ∈ Once(z), let f = h, otherwise let f be a color in Once(z) \ {t, j}.
Now color wz with f and uz with a color in Once(z)\{f, s}. This gives a k-linear
coloring of G. ��

Now we are ready to complete the proof of Theorem 1. By Lemma 3, we can
assume that u and w have no common neighbors other than v. assume that w has
two neighbors x and y other than v (if not, new vertices of degree one adjacent
to w can be added so as to ensure that x and y always exist). By Lemma 2,
we can assume that uw /∈ E(G), which further implies that x and y are distinct
from u.

Let H = G − {uv, vw,wx}. Let H ′ be the graph obtained by identifying the
vertex w with u in H; i.e. H ′ = H/(u,w). Figure 1 shows the construction of the
graph H ′ from G. Notice that dH′(u) ≤ 3 and that the graph H ′ − u is nothing
but G−{u,w}, which is a 3-degenerate graph as dG(u), dG(w) ≤ 3. Thus, H ′ is a
3-degenerate graph having |E(H)| < |E(G)|. Then by the inductive hypothesis,
there exists a k-linear coloring c′ of H ′. Let c be the coloring of H obtained by
“splitting” the vertex u in H ′ to get back H. Formally, we define for all e ∈ E(H)

c(e) =
{

c′(e) if e 	= wy
c′(uy) if e = wy.

It can be seen that c is a k-linear coloring of H, which is a subgraph of G. Note
that since dH(x) ≤ 2k − 2, either |Missing(x)| ≥ 1 or |Once(x)| ≥ 2. We first
extend c to a coloring of G − {uv, vw} by coloring the edge wx by a color in
Missing(x)∪ (Once(x)\{c(wy)}. We now describe how the edges uv and vw can
be colored so that a k-linear coloring of G can be obtained.

Fig. 1. (a) Deleting edges uv, vw, wx to obtain the graph H, and (b) identifying w
with u to get H ′.

Since dH(v) = 2k − 3, we have that either both |Missing(v)| = 1 and
|Once(v)| = 1, or |Once(v)| = 3. Suppose first that |Missing(v)| = 1 and
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|Once(v)| = 1. Let Missing(v) = {i} and Once(v) = {j}. First, suppose that
i belongs to either Twice(u) or Twice(w). We shall assume by the symmetry
between u and w that i ∈ Twice(u). Color uv with j and vw with i (note that
i /∈ Twice(w) as if that were the case, u would have three edges of color i inci-
dent with it in c′) to obtain a k-linear coloring of G. So let us assume that
i /∈ Twice(u) ∪ Twice(w). If j ∈ Twice(u) ∪ Twice(w), then we can color uv and
vw with i to obtain a k-linear coloring of G. Thus, we can now assume that
i, j /∈ Twice(u) ∪ Twice(v). If there is a path of color j having endvertices u and
v, then color uv with i and vw with j (we know by Observation 2 that there is
no path of color j having endvertices v and w). Otherwise, color uv with j and
vw with i. We now have a k-linear coloring of G.

Next, suppose that |Once(v)| = 3. Let L be the set of all the colors for which
there is a path of that color having endvertices u and v in c (such colors will
all be in Once(u) ∩ Once(v)). The fact that dH(u) ≤ 2 implies that 0 ≤ |L| ≤ 2
and also that if Twice(u) 	= ∅, then L = ∅. If |L| = 2, then color vw with
a color in L \ Twice(w) (again, by Observation 2, there is no path having a
color in L and having endvertices v and w) and uv with a color in Once(v) \ L.
Otherwise color vw with a color r ∈ Once(v) \ Colors(w) and uv with a color in
Once(v) \ ({r} ∪ Twice(u) ∪ L). We now have a k-linear coloring of G.

This completes the proof of Theorem 1.

4 A Linear Time Algorithm

We now describe how to compute a k-linear coloring of a 3-degenerate graph G
having Δ(G) ≤ 2k−1. Our algorithm will be a linear-time algorithm; i.e. having
a running time of O(n+m), where n and m are the number of vertices and edges
in G respectively. Since G is 3-degenerate, we have m ≤ 3n − 6, and therefore
our algorithm will also be an O(n)-time algorithm. We assume that the input
graph G is available in the form of an adjacency list representation.

Our general strategy will be to convert the inductive proof of Theorem 1
into a recursive algorithm, but there are some important differences, the main
one being that the algorithm computes a more general kind of edge coloring
using k colors. The algorithm follows the proof of Theorem 1 and removes some
edges and if needed identifies two vertices to obtain a smaller graph G′ for which
an edge coloring of the desired kind is found by recursing on it. The graph
G′ is changed back into G by splitting back any identified vertices and adding
the removed edges. The newly added edges are then colored to obtain an edge
coloring of the desired kind for G. During this process, we never change the color
of an edge that is already colored. We shall first discuss why our algorithm needs
to compute a generalized version of k-linear coloring.

If the algorithm were to construct a k-linear coloring of G from a k-linear
coloring of G′ according to the proof of Theorem 1, and still have overall linear
runtime, we would like to be able to decide the right color to be given to an
uncolored edge uv of G in O(1) time. This means that we need data structures
that allow us to determine in O(1) time a color i for uv such that:
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(i) i /∈ Twice(u) ∪ Twice(v), and
(ii) if i ∈ Once(u) ∩ Once(v), there is no path colored i having endvertices u, v.

The requirement (i) can be met by storing the sets Once(u) and Missing(u)
for every vertex u as described in Sect. 4.3 of the full version of this paper [5].

For (ii), we could store a collection of “path objects” representing the
monochromatic paths in the current coloring in such a way that by examining
these objects, we can determine in O(1) time whether there is a monochromatic
path of color i having endvertices u and v. In particular, for a monochromatic
path P having endvertices u and v, we could have a path object that stores the
pointers to u and v. Further, we store the pointer to this object on the first and
last edges of P . In this way, given a vertex u and an edge e colored i incident with
u, where i ∈ Once(u), we can examine the path object whose pointer is stored
on e to determine in O(1) time the other endvertex of the path colored i starting
at u. Note that as an edge uv gets colored with color i, a path of color i can get
extended (if i ∈ Once(u) ∩ Missing(v) or i ∈ Missing(u) ∩ Once(v)) or two paths
of color i can get fused into one path of color i (if i ∈ Once(u)∩Once(v)). When
two monochromatic paths get fused, we have to replace the two path objects
corresponding to these paths with a single path object representing the new
monochromatic path. If we store the pointer to a path object on each edge of
the path it represents, then it becomes difficult to fuse a path with another path
in O(1) time as we cannot afford to update the pointer stored on every edge of
the path so as to point to the new path object. We can get around this difficulty
by storing the pointer to a path object only on the first and last edges of the
path represented by it. Since we do not need to know what the internal vertices
or edges of a path are in order to fuse it with another path, this method could
allow us to fuse two paths in O(1) time. As no edge that already has a color
is ever recolored, a monochromatic path never gets split into two paths or gets
shortened when an edge is colored. But a monochromatic path might need to
get split into two monochromatic paths when a vertex is split into two vertices.
Since we only split vertices of degree at most 3, at most one monochromatic
path gets split during this operation. Suppose that a vertex v that needs to be
split into two vertices is an internal vertex of a monochromatic path P . Since the
internal vertices or edges of a path do not store the pointer to the corresponding
path object, we cannot obtain the pointer to the path object representing P ,
given just the vertex v. We thus cannot update the collection of path objects so
as to replace the monochromatic path P with two new monochromatic paths.
We solve this problem by making sure that two paths that meet at a point that
will be split later are never fused together into one path. This is explained in
more detail below.

We say that a path having an endvertex u and containing the edge uv is
“ending at u through uv”. Suppose that a vertex w is identified with a vertex
u when G′ is constructed from G. It is clear from the proof of Theorem 1 that
in G′, the vertex u has degree at most 3, and there is possibly an edge uy that
corresponds to an original edge wy in G. Before recursing to find the coloring
for G′, we mark the vertex-edge pair (u, uy) as “special” (we call this a “special
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vertex-edge incidence”; more details given in Sect. 4.1). This mark, which can be
stored inside the adjacency list of u, indicates that while computing the coloring
for G′, a monochromatic path ending at u through uy should not be fused with
another monochromatic path ending at u, even if they have the same color. Thus,
while splitting the vertex u back into u and w, no path needs to be split. Note
that this means that while the coloring for G′ is being computed, we might have
a path object for a path P colored i ending at u through uy and another path
object for a path P ′ also colored i and ending at u, but through a different edge
(as these paths will not be fused). Once this happens, if we denote the other
endvertices of P and P ′ by x and x′ respectively, then we can no longer detect
that in the coloring constructed so far, there is a monochromatic path colored
i starting at x and ending at x′, as there is no path object representing the
monochromatic path colored i having endvertices x and x′. This means that the
edge xx′, if it exists, could get colored i, and thus there may be a monochromatic
cycle colored i in the coloring of G′. We will allow this to happen, since this
monochromatic cycle will anyway get destroyed when the vertex u is split into
u and w while recovering G back from G′. Thus, at any stage of the recursion,
we compute a coloring for a graph in which certain vertex-edge pairs have been
marked as special, and this coloring is not a k-linear coloring any more as it could
contain monochromatic cycles. We call this kind of coloring a “pseudo-k-linear
coloring”. Since the path objects that we store do not correspond to maximal
monochromatic paths anymore, we call them “segments” instead of paths. We
now define these notions more rigorously.

4.1 Pseudo-k-Linear Colorings and Segments

We define a vertex-edge incidence of a graph G to be a pair consisting of a vertex
and an edge incident with it; i.e. it is a pair of the form (u, uv) where u, v ∈ V (G)
and uv ∈ E(G). We say that a cycle contains a vertex-edge incidence (u, uv) if
uv is an edge of the cycle.

Given a graph G and a set S of vertex-edge incidences in it, a mapping
c : E(G) → {1, 2, . . . , k} is said to be a pseudo-k-linear coloring of (G,S) if each
color class is a disjoint union of paths and cycles, in which every cycle contains
at least one vertex-edge incidence in S. Given a pair (G,S), we call the set S
the special vertex-edge incidences of G.

Note that a pseudo-k-linear coloring of (G, ∅) is a k-linear coloring of G and
also that a k-linear coloring of G is a pseudo-k-linear coloring of (G,S) for any
set S of vertex-edge incidences of G. Our algorithm computes a pseudo-k-linear
coloring for an input (G,S), where G is a graph with Δ(G) ≤ 2k − 1 and S is a
set of vertex-edge incidences of G that are marked as special.

Definition 2. Given a graph G and a set S of vertex-edge incidences in it, a
segment of (G,S) is a sequence σ = (u1, u2, . . . , us) of vertices of G, where s ≥ 2,
such that:
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(i) for each i ∈ {1, 2, . . . , s − 1}, uiui+1 ∈ E(G),
(ii) the edges u1u2, u2u3, . . . , us−1us are pairwise distinct and their union gives

a path or cycle in G, and
(iii) for each i ∈ {2, 3, . . . , s − 1}, (ui, ui−1ui), (ui, uiui+1) /∈ S.

Let σ = (u1, u2, . . . , us) be a segment of (G,S), We say that the edges u1u2, u2u3,
. . . , us−1us are the “edges in the segment σ”. If H is the subgraph of G formed
by the union of the edges in σ, we say that σ “forms” the subgraph H. Clearly,
every segment forms a path or cycle in G. We say that u1 and us are the terminal
vertices of this segment. Note that the two terminal vertices of a segment can
in fact be the same vertex (this happens when the edges in the segment form a
cycle in G). Further, we call (u1, u1u2) and (us, us−1us) the terminal vertex-edge
incidences of this segment. We also sometimes say that this segment is “ending
at u1 through the edge u1u2” and “ending at us through the edge us−1us”. Note
that every segment has exactly two terminal vertex-edge incidences and they
can be in S.

Let c be a pseudo-k-linear coloring of (G,S). A segment of (G,S) is said
to be a monochromatic segment of color i if every edge in it is colored i. Note
that if a monochromatic segment forms a cycle in G, then at least one of its
terminal vertex-edge incidences must be in S—otherwise, the cycle formed by
the segment will be a monochromatic cycle that does not contain a vertex-edge
incidence in S, which contradicts the fact that c is a k-linear coloring. A segment
σ = (u1, u2, . . . , us) is said to be contained in a segment σ′ = (u′

1, u
′
2, . . . , u

′
s′) if

u1, u2, . . . , us occur consecutively in that order in σ′. A monochromatic segment
σ that is not contained in any other monochromatic segment is called a maximal
monochromatic segment of (G,S) (the coloring c is assumed to be clear from the
context).

Observation 4. Every edge of G is in exactly one maximal monochromatic
segment of (G,S).

From the above observation (please refer to [5] for a proof), it is clear that the
edge set of the graph decomposes into a collection of pairwise edge-disjoint max-
imal monochromatic segments in a unique way. Observe that a monochromatic
path P in the graph decomposes into a collection of 1 + |{u ∈ V (P ) : dP (u) ≥ 2
and ∃e ∈ E(P ) such that (u, e) ∈ S}| maximal monochromatic segments and a
monochromatic cycle C decomposes into a collection of |{u ∈ V (C) : ∃e ∈ E(C)
such that (u, e) ∈ S}| maximal monochromatic segments.

At a given point of time, we maintain a set of segment objects, one cor-
responding to each maximal monochromatic segment of (G,S) under the cur-
rent pseudo-k-linear coloring. The segment object corresponding to a maximal
monochromatic segment stores just the terminal vertex-edge incidences of the
segment. Given vertices u, v and an edge colored i incident on one of them, these
segment objects allow us to determine in O(1) time whether there is a maximal
monochromatic segment of color i having terminal vertices u and v. To color an
uncolored edge uv, the algorithm determines in O(1) time a color i such that
i /∈ Twice(u) ∪ Twice(v) and there is no maximal monochromatic segment of
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color i having terminal vertices u and v. This ensures that the algorithm always
produces a pseudo-k-linear coloring of (G,S).

For a complete description of the algorithm with details of implementation,
please refer to the full version of this paper [5].
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Abstract. The two weighted graph problems Node Multiway Cut
(NMC) and Subset Feedback Vertex Set (SFVS) both ask for a ver-
tex set of minimum total weight, that for NMC disconnects a given set
of terminals, and for SFVS intersects all cycles containing a vertex of
a given set. We design a meta-algorithm that will allow to solve both

problems in time 2O(rw3) · n4, 2O(q2 log(q)) · n4, and nO(k2) where rw is
the rank-width, q the Q-rank-width, and k the mim-width of a given
decomposition. This answers in the affirmative an open question raised
by Jaffke et al. (Algorithmica, 2019) concerning an XP algorithm for
SFVS parameterized by mim-width.

By a unified algorithm, this solves both problems in polynomial-
time on the following graph classes: Interval, Permutation, and Bi-
Interval graphs, Circular Arc and Circular Permutation graphs,
Convex graphs, k-Polygon, Dilworth-k and Co-k-Degenerate
graphs for fixed k; and also on Leaf Power graphs if a leaf root is
given as input, on H-Graphs for fixed H if an H-representation is given
as input, and on arbitrary powers of graphs in all of the above classes.
Prior to our results, only SFVS was known to be tractable restricted
only on Interval and Permutation graphs, whereas all other results
are new.

Keywords: Mim-width · Rank-width · d-neighbor equivalence ·
Subset Feedback Vertex Set · Node multiway cut

1 Introduction

Given a vertex-weighted graph G and a set S of its vertices, the Subset Feed-
back Vertex Set (SFVS) problem asks for a vertex set of minimum weight
that intersects all cycles containing a vertex of S. SFVS was introduced by Even
et al. [16] who proposed an 8-approximation algorithm. Cygan et al. [14] and
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Kawarabayashi and Kobayashi [25] independently showed that SFVS is fixed-
parameter tractable (FPT) parameterized by the solution size, while Hols and
Kratsch [22] provide a randomized polynomial kernel for the problem. As a gener-
alization of the classical NP-complete Feedback Vertex Set (FVS) problem,
for which S = V (G), there has been a considerable amount of work to obtain
faster algorithms for SFVS, both for general graphs, where the current best is an
O∗(1.864n) algorithm due to Fomin et al. [18], and restricted to special graph
classes [10,17,20,31,32]. Naturally, FVS and SFVS differ in complexity, as exem-
plified by split graphs where FVS is polynomial-time solvable [11] whereas SFVS
remains NP-hard [18]. Moreover note that the vertex-weighted variation of SFVS
behaves differently that the unweighted one, as exposed on graphs with bounded
independent set sizes: weighted SFVS is NP-complete on graphs with indepen-
dent set size at most four, whereas unweighted SFVS is in XP parameterized by
the independent set size [31].

Closely related to SFVS is the NP-hard Node Multiway Cut (NMC) prob-
lem in which we are given a vertex-weighted graph G and a set T of (terminal)
vertices, and asked to find a vertex set of minimum weight that disconnects all
the terminals [8,19]. NMC was introduced by Garg et al. in 1994 [19] as a vari-
ant in which the terminals were not allowed to be deleted, and both variations
are well-studied problems in terms of approximation, as well as parameterized
algorithms [8–10,14,15,18]. It is not difficult to see that SFVS for S = {v} coin-
cides with NMC in which T = N(v). In fact, NMC reduces to SFVS by adding
a single vertex v with a large weight that is adjacent to all terminals, adding a
large weight to all non-deletable terminals and setting S = {v} [18]. Thus, in
order to solve NMC on a given graph one may apply a known algorithm for SFVS
on a vertex-extended graph. Observe, however, that through such an approach
one needs to clarify that the vertex-extended graph still obeys the necessary
properties of the known algorithm for SFVS. Therefore, despite the few positive
results for SFVS on graph families [31,32], the complexity of NMC restricted to
special graph classes remained unresolved.

In this paper, we investigate the complexity of SFVS and NMC when param-
eterized by structural graph width parameters. Well-known graph width param-
eters include tree-width [6], clique-width [13], rank-width [27], and maximum
induced matching width (a.k.a. mim-width) [33]. These are of varying strength,
with tree-width of modeling power strictly weaker than clique-width, as it is
bounded on a strict subset of the graph classes having bounded clique-width,
with rank-width and clique-width of the same modeling power, and with mim-
width much stronger than clique-width. Belmonte and Vatshelle [1] showed that
several graph classes, like interval graphs and permutation graphs, have bounded
mim-width and a decomposition witnessing this can be found in polynomial time,
whereas it is known that the clique-width of such graphs can be proportional
to the square root of the number of vertices [21]. In this way, an XP algorithm
parameterized by mim-width has the feature of unifying several algorithms on
well-known graph classes.
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We give a meta-algorithm that for an input graph G will give parameterized
algorithms for several width measures at once, by assuming that we are given
a branch decomposition over the vertex set of G. This is a natural hierarchical
clustering of G, represented as a subcubic tree T with the vertices of G at its
leaves. Any edge of the tree defines a cut of G given by the leaves of the two
subtrees that result from removing the edge from T . Judiciously choosing a
cut-function to measure the complexity of such cuts, or rather of the bipartite
subgraphs of G given by the edges crossing the cuts, this framework then defines
a graph width parameter by a minmax relation, minimum over all trees and
maximum over all its cuts. Several graph width parameters have been defined
this way, like carving-width, maximum matching-width, boolean-width etc. We
will in this paper focus on: (i) rank-width [27] whose cut function is the GF[2]-
rank of the adjacency matrix, (ii) Q-rank-width [29] a variant of rank-width with
interesting algorithmic properties which instead uses the rank over the rational
field, and (iii) mim-width [33] whose cut function is the size of a maximum
induced matching of the graph crossing the cut. Note that in contrast to e.g.
clique-width, for rank-width and Q-rank-width there is a 23k ·n4 algorithm that,
given a graph and k ∈ N, either outputs a decomposition of width at most 3k+1
or confirms that the width of the input graph is more than k [29,30].

Let us mention what is known regarding the complexity of NMC and SFVS
parameterized by these width measures. Standard algorithmic techniques give
a kO(k) · n time algorithm parameterized by the tree-width of the input graph,
so for this reason we do not focus on tree-width. The runtime of our meta-
algorithm as a function of a given clique-width expression will be 2O(k2) · nO(1)

but we think a faster runtime is achievable through known techniques [4], so we
do not focus on clique-width. Since these problems can be expressed in MSO1-
logic it follows that they are FPT parameterized by clique-width, rank-width or
Q-rank-width [12,28], however the runtime will contain a tower of 2’s with more
than 4 levels. Moreover, FVS and also SFVS are W[1]-hard when parameterized
by the mim-width of a given decomposition [24].

We resolve in the affirmative the question raised by Jaffke et al. [24], also
mentioned in [32] and [31], asking whether there is an XP-time algorithm for
SFVS parameterized by the mim-width of a given decomposition. For rank-
width and Q-rank-width we provide the first explicit FPT-algorithms with low
exponential dependency that avoid the MSO1 formulation. Our main results are
summarized in the following theorem.

Theorem 1. We can solve Subset Feedback Vertex Set and Node Mul-
tiway Cut in time 2O(rw3) · n4 and 2O(q2 log(q)) · n4, where rw and q are the
rank-width and the Q-rank-width of G, respectively. Moreover, if a branch decom-
position of mim-width k for G is given as input, we can solve Subset Feedback
Vertex Set and Node Multiway Cut in time nO(k2).
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2 Preliminaries

The size of a set V is denoted by |V | and its power set is denoted by 2V . We
write A \ B for the set difference of A from B. We let min(∅) = +∞ and
max(∅) = −∞. The vertex set of a graph G is denoted by V (G) and its edge set
by E(G). An edge between two vertices x and y is denoted by xy (or yx). Given
S ⊆ 2V (G), we denote by V (S) the set

⋃
S∈S S. For a vertex set U ⊆ V (G),

we denote by U the set V (G) \ U . The set of vertices that are adjacent to x is
denoted by NG(x), and for U ⊆ V (G), we let NG(U) = (∪v∈UNG(v)) \ U .

The subgraph of G induced by a subset X of its vertex set is denoted by G[X].
For two disjoint subsets X and Y of V (G), we denote by G[X,Y ] the bipartite
graph with vertex set X ∪ Y and edge set {xy ∈ E(G) | x ∈ Xand y ∈ Y }. We
denote by MX,Y the adjacency matrix between X and Y , i.e., the (X,Y )-matrix
such that MX,Y [x, y] = 1 if y ∈ N(x) and 0 otherwise. A vertex cover of a graph
G is a set of vertices VC ⊆ V (G) such that, for every edge uv ∈ E(G), we have
u ∈ VC or v ∈ VC. A matching is a set of edges having no common endpoint and
an induced matching is a matching M of edges such that G[V (M)] has no other
edges besides M . The size of an induced matching M refers to the number of
edges in M .

For a graph G, we denote by ccG(X) the partition {C ⊆ V (G) | G[C] is a con-
nected component of G[X]}. We will omit the subscript G of the neighborhood
and components notations whenever there is no ambiguity.

Given a graph G and S ⊆ V (G), we say that a cycle of G is an S-cycle if it
contains a vertex in S. Moreover, we say that a subgraph F of G is an S-forest if
F does not contain an S-cycle. Typically, the Subset Feedback Vertex Set
problem asks for a vertex set of minimum (weight) size such that its removal
results in an S-forest. Here we focus on the equivalent formulation of computing
a maximum weighted S-forest, formally defined as follows:

Subset Feedback Vertex Set (SFVS)

Input: A graph G, S ⊆ V (G) and a weight function w : V (G) → Q.
Output: The maximum among the weights of the S-forests of G.

Rooted Layout. A rooted binary tree is a binary tree with a distinguished
vertex called the root. Since we manipulate at the same time graphs and trees
representing them, the vertices of trees will be called nodes. A rooted layout
(also called a rooted branch decomposition) of G is a pair L = (T, δ) of a rooted
binary tree T and a bijective function δ between V (G) and the leaves of T . For
each node x of T , let Lx be the set of all the leaves l of T such that the path
from the root of T to l contains x. We denote by Vx the set of vertices that are
in bijection with Lx, i.e., Vx := {v ∈ V (G) | δ(v) ∈ Lx}.

All the width measures dealt with in this paper are special cases of the
following one, the difference being in each case the used set function. Given a
set function f : 2V (G) → N and a rooted layout L = (T, δ), the f-width of a
node x of T is f(Vx) and the f-width of (T, δ), denoted by f(T, δ) (or f(L)), is
max{f(Vx) | x ∈ V (T )}. Finally, the f-width of G is the minimum f-width over
all rooted layouts of G.
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For a graph G, we let mim, rw, rwQ be functions from 2V (G) to N such that
for every A ⊆ V (G), mim(A) is the size of a maximum induced matching of
the graph G[A,A] and rw(A) (resp. rwQ(A)) is the rank over GF (2) (resp. Q)
of the matrix MA,A. The mim-width, rank-width and Q-rank-width of G, are
respectively, its mim-width, rw-width and rwQ-width [33]. The following lemma
provides upper bounds between mim-width and the other two parameters.

Lemma 1 ([33]). Let G be a graph. For every A ⊆ V (G), we have mim(A) �
rw(A) and mim(A) � rwQ(A).

d-neighbor Equivalence. Let G be a graph and let A ⊆ V (G) and d ∈ N+. Two
subsets X and Y of A are d-neighbor equivalent w.r.t. A, denoted by X ≡d

A Y , if
min(d, |X ∩N(u)|) = min(d, |Y ∩N(u)|) for all u ∈ A. It is not hard to check that
≡d

A is an equivalence relation From the definition of the 2-neighbor equivalence
relation we have the following.

Fact 2. For every A ⊆ V (G) and W,Z ⊆ A, if W ≡2
A Z, then, for all v ∈ A,

we have |N(v) ∩ W | � 1 if and only if |N(v) ∩ Z| � 1.

For all d ∈ N+, we let necd : 2V (G) → N where for all A ⊆ V (G), necd(A) is
the number of equivalence classes of ≡d

A. Notice that while nec1 is a symmetric
function [26, Theorem 1.2.3], necd is not necessarily symmetric for d ≥ 2. The
following lemma shows how necd(A) is upper bounded by the other parameters.

Lemma 2 ([1,29,33]). For every A ⊆ V (G) and d ∈ N+, we have the following
upper bounds on necd(A): (a) 2d·rw(A)2 , (b) (d·rwQ(A)+1)rwQ(A), (c) |A|d·mim(A).

In order to manipulate the equivalence classes of ≡d
A, one needs to compute

a representative for each equivalence class in polynomial time. This is achieved
with the following notion of a representative. Let G be a graph with an arbitrary
ordering of V (G) and let A ⊆ V (G). For each X ⊆ A, let us denote by repd

A(X)
the lexicographically smallest set R ⊆ A such that |R| is minimized and R ≡d

A X.
Moreover, we denote by Rd

A the set {repd
A(X) | X ⊆ A}. It is worth noticing

that the empty set always belongs to Rd
A, for all A ⊆ V (G) and d ∈ N+.

Moreover, we have Rd
V (G) = Rd

∅ = {∅} for all d ∈ N+. In order to compute
these representatives, we use the following lemma.

Lemma 3 ([7]). For every A ⊆ V (G) and d ∈ N+, one can compute in time
O(necd(A) ·n2 · log(necd(A))), the sets Rd

A and a data structure that, given a set
X ⊆ A, computes repd

A(X) in time O(|A| · n · log(necd(A))).

Vertex Contractions. In order to deal with SFVS, we will use the ideas of
the algorithms for Feedback Vertex Set from [5,23]. To this end, we will
contract subsets of S in order to transform S-forests into forests.

To compare two partial solutions associated with A ⊆ V (G), we define an
auxiliary graph in which we replace contracted vertices by their representative
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sets in R2
A. Since the sets in R2

A are not necessarily pairwise disjoint, we will use
the following notions of graph “induced” by collections of subsets of vertices.

Given A ⊆ 2V (G), we define G[A] as the graph with vertex set A where
A,B ∈ A are adjacent if and only if N(A) ∩ B 
= ∅. Observe that if the sets
in A are pairwise disjoint, then G[A] is obtained from an induced subgraph of
G by vertex contractions (i.e., by replacing two vertices u and v with a new
vertex with neighborhood N({u, v})) and, for this reason, we refer to G[A] as
a contracted graph. Notice that we will never use the neighborhood notation
and connected component notations on contracted graph. Given A,B ⊆ 2V (G),
we denote by G[A,B] the bipartite graph with vertex set A ∪ B and where
A,B ∈ A ∪ B are adjacent if and only if A ∈ A, B ∈ B, and N(A) ∩ B 
= ∅.
Moreover, we denote by G[A | B] the graph with vertex set A ∪ B and with
edge set E(G[A]) ∪ E(G[A,B]). Observe that both graphs G[A,B] and G[A | B]
are subgraphs of the contracted graph G[A ∪ B]. To avoid confusion with the
original graph, we refer to the vertices of the contracted graphs as blocks. It is
worth noticing that in the contracted graphs used in this paper, whenever two
blocks are adjacent, they are disjoint.

The following observation states that we can contract from a partition with-
out increasing the size of a maximum induced matching of a graph. It follows
directly from the definition of contractions.

Observation 3. Let H be a graph. For any partition P of a subset of V (H), the
size of a maximum induced matching of H[P] is at most the size of a maximum
induced matching of H.

Let (G,S) be an instance of SFVS. The vertex contractions that we use on
a partial solution X are defined from a given partition of X \ S. A partition of
the vertices of X \ S is called an S-contraction of X. We will use the following
notations to handle these contractions.

Given X ⊆ V (G), we denote by
(
X
1

)
the partition of X which contains only

singletons, i.e.,
(
X
1

)
= {{v} | v ∈ X}. Moreover, for an S-contraction P of X, we

denote by X↓P the partition of X where X↓P = P ∪ (
X∩S
1

)
. Given a subgraph

G′ of G such that V (G′) = X, we denote by G′
↓P the graph G′[X↓P ]. It is worth

noticing that in our contracted graphs, all the blocks of S-vertices are singletons
and we denote them by {v}.

Given a set X ⊆ V (G), we will intensively use the graph G[X]↓cc(X\S) which
corresponds to the graph obtained from G[X] by contracting the connected com-
ponents of G[X \ S]. Observe that, for every subset X ⊆ V (G), if G[X] is an
S-forest, then G[X]↓cc(X\S) is a forest. The converse is not true as we may delete
S-cycles with contractions: take a triangle with one vertex v in S and contract
the neighbors of v. However, we can prove the following equivalence.

Fact 4. Let G be a graph and S ⊆ V (G). For every X ⊆ V (G) such that
|N(v) ∩ C| � 1 for each v ∈ X ∩ S and each C ∈ cc(X \ S), we have G[X] is an
S-forest if and only if G[X]↓cc(X\S) is a forest.
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3 A Meta-Algorithm for Subset Feedback Vertex Set

In the following, we present a meta-algorithm that, given a rooted layout (T, δ) of
G, solves SFVS. We will show that such a meta-algorithm will imply that SFVS
can be solved in time rwQ(G)O(rwQ(G)2)) ·n4, 2O(rw(G)3) ·n4 and nO(mim(T,δ)2). The
main idea of this algorithm is to use S-contractions in order to employ similar
properties of the meta-algorithm for Maximum Induced Tree of [5] and the
nO(mim(T,δ)) time algorithm for Feedback Vertex Set of [23]. In particular,
we use the following lemma which is proved implicitly in [3, Lemma 5.5].

Lemma 4. Let X and Y be two disjoint subsets of V (G). If G[X∪Y ] is a forest,
then the number of vertices of X that have at least two neighbors in Y is bounded
by 2w where w is the size of a maximum induced matching in G[X,Y ].

The following lemma generalizes Fact 4 and presents the equivalence between
S-forests and forests that we will use in our algorithm.

Lemma 5. Let A ⊆ V (G), X ⊆ A, and Y ⊆ A. If the graph G[X ∪ Y ] is an
S-forest, then there exists an S-contraction PY of Y that satisfies the following
conditions:

(1) G[X ∪ Y ]↓cc(X\S)∪PY
is a forest,

(2) for all P ∈ cc(X \ S) ∪ PY and v ∈ (X ∪ Y ) ∩ S, we have |N(v) ∩ P | � 1,
(3) the graph G[X,Y ]↓cc(X\S)∪PY

admits a vertex cover VC of size at most
4mim(A) such that the neighborhoods of the vertices in VC are pairwise dis-
tinct in G[X,Y ]↓cc(X\S)∪PY

.

In the following, we will use Lemma 5 to design some sort of equivalence
relation between partial solutions. To this purpose, we use the following notion.

Definition 1 (Ix). For every x ∈ V (T ), we define the set Ix of indices as the
set of tuples (XS

vc,X
S
vc,Xvc, Y

S
vc , Y

S
vc ) ∈ 2R2

Vx × 2R1
Vx × R1

Vx
× 2R2

Vx × 2R1
Vx such

that |XS
vc| + |XS

vc| + |Y S
vc | + |Y S

vc | � 4mim(Vx).

In the following, we will define partial solutions associated with an index
i ∈ Ix (a partial solution may be associated with many indices). In order to prove
the correctness of our algorithm (the algorithm will not use this concept), we will
also define complement solutions (the sets Y ⊆ Vx and their S-contractions PY )
associated with an index i. We will prove that, for every partial solution X and
complement solution (Y,PY ) associated with i, if the graph G[X∪Y ]↓cc(X\S)∪PY

is a forest, then G[X ∪ Y ] is an S-forest.
Let us give some intuition on these indices by explaining how one index is

associated with a solution1. Let x ∈ V (T ), X ⊆ Vx and Y ⊆ Vx such that
G[X ∪ Y ] is an S-forest. Let PY be the S-contraction of Y and VC be a vertex
cover of G[X,Y ]↓cc(X\S)∪PY

given by Lemma 5. Then, X and Y are associated
with i = (XS

vc,X
S
vc,Xvc, Y

S
vc , Y

S
vc ) ∈ Ix such that:

1 An animation explaining this association can be found here [2].
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– XS
vc (resp. Y S

vc ) contains the representatives of the blocks {v} in VC such that
v ∈ X∩S (resp. v ∈ Y ∩S) w.r.t. the 1-neighbor equivalence over Vx (resp. Vx).
We will only use the indices where XS

vc contains representatives of singletons,
in other words, XS

vc is included in {rep1Vx
({v}) | v ∈ Vx} which can be much

smaller than R1
Vx

. The same observation holds for Y S
vc . In Definition 1, we

state that XS
vc and Y S

vc are, respectively, subsets of 2R1
Vx and 2R1

Vx , for the
sake of simplicity.

– XS
vc (resp. Y S

vc ) contains the representatives of the blocks in cc(X \ S) ∩ VC
(resp. PY ∩VC) w.r.t. the 2-neighbor equivalence relation over Vx (resp. Vx).

– Xvc is the representative of X \V (VC) (the set of vertices which do not belong
to the vertex cover) w.r.t. the 1-neighbor equivalence over Vx.

Because the neighborhoods of the blocks in VC are pairwise distinct in the graph
G[X,Y ]↓cc(X\S)∪PY

(Property (3) of Lemma 5), there is a one to one correspon-
dence between the representatives in XS

vc ∪ XS
vc ∪ Y S

vc ∪ Y S
vc and the blocks in

VC.
While XS

vc,X
S
vc, Y

S
vc , Y

S
vc describe VC, the representative set Xvc describes the

neighborhood of the vertices of X which are not in VC. The purpose of Xvc is to
make sure that, for every partial solution X and complement solution (Y,PY )
associated with i, the set VC described by XS

vc,X
S
vc, Y

S
vc , Y

S
vc is a vertex cover of

G[X,Y ]↓cc(X\S)∪PY
. For doing so, it is sufficient to require that Y \ V (VC) has

no neighbor in Xvc for every complement solution (Y,PY ) associated with i.
Observe that the sets XS

vc and Y S
vc contain representatives for the 2-neighbor

equivalence. We need the 2-neighbor equivalence to control the S-cycles which
might disappear after vertex contractions. To prevent this situation, we require,
for example, that every vertex in X ∩ S has at most one neighbor in R for each
R ∈ Y S

vc . Thanks to the 2-neighbor equivalence, a vertex v in X ∩ S has at most
one neighbor in R ∈ Y S

vc if and only if v has at most one neighbor in the block
of PY associated with R.

In order to define partial solutions associated with i, we need the follow-
ing notion of auxiliary graph. Given x ∈ V (T ), X ⊆ Vx, and i = (XS

vc,X
S
vc,

Xvc, Y
S
vc , Y

S
vc ) ∈ Ix, we write aux(X, i) to denote the graph G[X↓cc(X\S) |

Y S
vc ∪ Y S

vc ] . Observe that aux(X, i) is obtained from the graph induced by
X↓cc(X\S) ∪Y S

vc ∪Y S
vc by removing the edges between the vertices from Y S

vc ∪Y S
vc .

We will ensure that, given a complement solution (Y,PY ) associated with i,
the graph aux(X, i) is isomorphic to G[X↓cc(X\S) | Y↓PY

∩VC]. We are now ready
to define the notion of partial solution associated with an index i.

Definition 2 (Partial Solutions). Let x ∈ V (T ) and i = (XS
vc,X

S
vc,Xvc, Y

S
vc ,

Y S
vc ) ∈ Ix. We say that X ⊆ Vx is a partial solution associated with i if the

following conditions are satisfied:
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(a) for every R ∈ XS
vc, there exists a unique v ∈ X ∩ S such that R ≡1

Vx
{v},

(b) for every R ∈ XS
vc, there exists a unique C ∈ cc(X \ S) such that R ≡2

Vx
C,

(c) aux(X, i) is a forest,
(d) for every C ∈ cc(X \ S) and {v} ∈ Y S

vc , we have |N(v) ∩ C| � 1,
(e) for every v ∈ X ∩ S and U ∈ Y S

vc ∪ cc(X \ S), we have |N(v) ∩ U | � 1,
(f) Xvc ≡1

Vx
X \ V (VCX), where VCX contains the blocks {v} ∈ (

X∩S
1

)
s.t.

rep1Vx
({v}) ∈ XS

vc and the blocks C ∈ cc(X \ S) s.t. rep2Vx
(C) ∈ XS

vc.

Similarly to Definition 2, we define the notion of complement solutions asso-
ciated with an index i ∈ Ix. We use this concept only to prove the correctness
of our algorithm.

Definition 3 (Complement Solutions). Let x ∈ V (T ) and i = (XS
vc,X

S
vc,

Xvc, Y S
vc , Y

S
vc ) ∈ Ix. We call complement solutions associated with i all the pairs

(Y,PY ) such that Y ⊆ Vx, PY is an S-contraction of Y and the following con-
ditions are satisfied:

(a) for every U ∈ Y S
vc , there exists a unique v ∈ Y ∩ S such that U ≡2

Vx
{v},

(b) for every U ∈ Y S
vc , there exists a unique P ∈ PY such that U ≡2

Vx
P ,

(c) G[Y ]↓PY
is a forest,

(d) for every P ∈ PY and {v} ∈ XS
vc, we have |N(v) ∩ P | � 1,

(e) for every R ∈ XS
vc ∪ PY and y ∈ Y ∩ S, we have |N(y) ∩ R| � 1,

(f) N(Xvc) ∩ V (Yvc) = ∅, where Yvc contains the blocks {v} ∈ (
Y ∩S
1

)
such that

rep1
Vx

({v}) /∈ Y S
vc and the blocks P ∈ PY such that rep2

Vx
(P ) /∈ Y S

vc .

Let us give some explanations on the conditions of Definitions 2 and 3. Let
x ∈ V (T ), X be a partial solution associated with i and (Y,PY ) be a complement
solution associated with i. Conditions (a) and (b) of both definitions guarantee
that the set VC described by XS

vc,X
S
vc, Y

S
vc and Y S

vc is included in X ∪ Y and
that there is an one to one correspondence between the blocks of VC and the
representatives in XS

vc ∪ XS
vc ∪ Y S

vc ∪ Y S
vc .

Condition (c) of Definition 2 guarantees that the connections between the
sets X↓cc(X\S) and VC are acyclic. As explained earlier, Conditions (d) and (e)
of both definitions control the S-cycles which might disappear with the vertex
contractions.

Finally, as explained earlier, the last conditions of both definitions ensure
that VC the set described by XS

vc,X
S
vc, Y

S
vc and Y S

vc is a vertex cover of the graph
G[X,Y ]↓cc(X\S)∪PY

. Notice that V (Yvc) corresponds to the set of vertices of Y
which do not belong to a block of VC. Such observations are used to prove the
following two results.

Lemma 6. For every X ⊆ Vx and Y ⊆ Vx such that G[X ∪ Y ] is an S-
forest, there exist i ∈ Ix and an S-contraction PY of Y such that (1) G[X ∪
Y ]↓cc(X\S)∪PY

is a forest, (2) X is a partial solution associated with i and
(3) (Y,PY ) is a complement solution associated with i.
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Lemma 7. Let i = (XS
vc,X

S
vc,Xvc, Y

S
vc , Y

S
vc ) ∈ Ix, X be a partial solution associ-

ated with i and (Y,PY ) be a complement solutions associated with i. If the graph
G[X ∪ Y ]↓cc(X\S)∪PY

is a forest, then G[X ∪ Y ] is an S-forest.

For each index i ∈ Ix, we will design an equivalence relation ∼i between the
partial solutions associated with i. We will prove that, for any partial solutions X
and W associated with i, if X ∼i W , then, for any complement solution (Y,PY )
associated with i, the graph G[X ∪ Y ] is an S-forest if and only if G[W ∪ Y ]
is an S-forest. Then, given a set of partial solutions A whose size needs to be
reduced, it is sufficient to keep, for each i ∈ Ix and each equivalence class C
of ∼i, one partial solution in C of maximal weight. The resulting set of partial
solutions has size bounded by |Ix| · (4mim(Vx))4mim(Vx) because ∼i generates at
most (4mim(Vx))4mim(Vx) equivalence classes.

Intuitively, given two partial solutions X and W associated with an index
i = (XS

vc,X
S
vc,Xvc, Y

S
vc , Y

S
vc ), we have X ∼i W if the blocks of VC (i.e., the vertex

cover described by i) are equivalently connected in G[X↓cc(X\S) | Y S
vc ∪ Y S

vc ] and
G[W↓cc(W\S) | Y S

vc ∪ Y S
vc ]. In order to compare these connections, we use the

following notion.

Definition 4 (cc(X, i)). For each connected component C of aux(X, i), we
denote by Cvc the following set:

– for every U ∈ C such that U ∈ Y S
vc ∪ Y S

vc , we have U ∈ Cvc,
– for every {v} ∈ (

X∩S
1

) ∩ C such that {v} ≡1
Vx

R for some R ∈ XS
vc, we have

R ∈ Cvc,
– for every U ∈ cc(X \ S) such that U ≡2

Vx
R for some R ∈ XS

vc, we have
R ∈ Cvc.

We denote by cc(X, i) the set {Cvc | C is a connected component of aux(X, i)}.
For a connected component C of aux(X, i), the set Cvc contains C∩(Y S

vc ∪Y S
vc )

and the representatives of the blocks in C ∩ X↓cc(X\S) ∩ VC with VC the vertex
cover described by i. Consequently, for every X ⊆ Vx and i ∈ Ix, the collection
cc(X, i) is partition of XS

vc ∪XS
vc ∪Y S

vc ∪Y S
vc , observe that cc(X, i) is the partition

with the blocks {R1, U1, U2}, {R2, U3}, and {U4}.
Now we give the notion of equivalence between partial solutions. We say

that two partial solutions X,W associated with i are i-equivalent, denoted by
X ∼i W , if cc(X, i) = cc(W, i). Our next result is the most crucial step. As
already explained, our task is to show equivalence between partial solutions
under any complement solution with respect to S-forests.

Lemma 8. Let i ∈ Ix. For every partial solutions X,W associated with i
such that X ∼i W and for every complement solution (Y,PY ) associated
with i, the graph G[X ∪ Y ]↓cc(X\S)∪PY

is a forest if and only if the graph
G[W ∪ Y ]↓cc(W\S)∪PY

is a forest.
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The following theorem proves that, for every set of partial solutions A ⊆ 2Vx ,
we can compute a small subset B ⊆ A such that B represents A, i.e., for every
Y ⊆ Vx, the best solutions we obtain from the union of Y with a set in A
are as good as the ones we obtain from B. Firstly, we formalize this notion of
representativity.

Definition 5 (Representativity). Let x ∈ V (T ). For every A ⊆ 2Vx and
Y ⊆ Vx, we define best(A, Y ) = max{w(X) | X ∈ AandG[X∪Y ] is anS-forest}.
Given A,B ⊆ 2Vx , we say that B represents A if, for every Y ⊆ Vx, we have
best(A, Y ) = best(B, Y ).

Theorem 5. Let x ∈ V (T ). Then, there exists an algorithm reduce that, given
a set A ⊆ 2Vx , outputs in time O(|A| · |Ix| · (4mim(Vx))4mim(Vx) · s-nec2(Vx) · n3)
a subset B ⊆ A such that B represents A and |B| � |Ix| · (4mim(Vx))4mim(Vx).

We are now ready to prove the main theorem of this paper.

Theorem 6. There exists an algorithm that, given an n-vertex graph G and
a rooted layout (T, δ) of G, solves Subset Feedback Vertex Set in time
O

( ∑
x∈V (T ) |Ix|3 · (4mim(Vx))12mim(Vx) · s-nec2(Vx) · n3

)
.

Algorithmic Consequences. In order to obtain the algorithmic consequences
of our meta-algorithm given in Theorem 6, we need the following lemma which
bounds the size of each table index with respect to the considered parameters.

Lemma 9. For every x ∈ V (T ), the size of Ix is upper bounded by: 2O(rw(Vx)
3),

rwQ(Vx)O(rwQ(Vx)
2), nO(mim(Vx)

2).

Now we are ready to state our algorithms with respect to rank-width, Q-
rank-width and mim-width. In particular, with our next result we show that
Subset Feedback Vertex Set is in FPT parameterized by rwQ(G) or rw(G).

Theorem 7. There exist algorithms that solve Subset Feedback Vertex
Set in time 2O(rw(G)3) · n4 and rwQ(G)O(rwQ(G)2)) · n4. Moreover, if a rooted
layout L of G is given as input, we can solve Subset Feedback Vertex Set
in time nO(mim(L)2).

Regarding mim-width, our algorithm given below shows that Subset Feed-
back Vertex Set is in XP parameterized by the mim-width of a given rooted
layout. Note that we cannot solve SFVS in FPT time parameterized by the mim-
width of a given rooted layout unless FPT = W[1], since Subset Feedback
Vertex Set is known to be W[1]-hard for this parameter even for the special
case of S = V (G) [24]. Moreover, contrary to the algorithms given in Theorem 7,
here we need to assume that the input graph is given with a rooted layout. How-
ever, our next result actually provides a unified polynomial-time algorithm for
Subset Feedback Vertex Set on well-known graph classes having bounded
mim-width and for which a layout of bounded mim-width can be computed in
polynomial time2 [1].
2 For example: Interval graphs, Permutation graphs, Circular Arc graphs, Con-
vex graphs, k-Polygon, Dilworth-k and Co-k-Degenerate graphs for fixed k.
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Let us relate our results for Subset Feedback Vertex Set to the Node
Multiway Cut. It is known that Node Multiway Cut reduces to Subset
Feedback Vertex Set [18]. In fact, we can solve Node Multiway Cut by
adding a single S-vertex with a large weight that is adjacent to all terminals and,
then, run our algorithms for Subset Feedback Vertex Set on the resulting
graph. Now observe that any extension of a rooted layout L of the original graph
to the resulting graph has mim-width mim(L)+1. Therefore, all of our algorithms
given in Theorem 7 have the same running times for the Node Multiway Cut
problem.
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Abstract. A spanner of a graph G is a subgraph H that approximately
preserves shortest path distances in G. Spanners are commonly applied
to compress computation on metric spaces corresponding to weighted
input graphs. Classic spanner constructions can seamlessly handle edge
weights, so long as error is measured multiplicatively. In this work, we
investigate whether one can similarly extend constructions of spanners
with purely additive error to weighted graphs. These extensions are not
immediate, due to a key lemma about the size of shortest path neighbor-
hoods that fails for weighted graphs. Despite this, we recover a suitable
amortized version, which lets us prove direct extensions of classic +2
and +4 unweighted spanners (both all-pairs and pairwise) to +2W and
+4W weighted spanners, where W is the maximum edge weight. Specif-
ically, we show that a weighted graph G contains all-pairs (pairwise)
+2W and +4W weighted spanners of size O(n3/2) and O(n7/5) (O(np1/3)
and O(np2/7)) respectively. For a technical reason, the +6 unweighted
spanner becomes a +8W weighted spanner; closing this error gap is an
interesting remaining open problem. That is, we show that G contains
all-pairs (pairwise) +8W weighted spanners of size O(n4/3) (O(np1/4)).

Keywords: Additive spanner · Pairwise spanner · Shortest-path
neighborhood

1 Introduction

An f(·)-spanner of an undirected graph G = (V,E) with |V | = n nodes and
|E| = m edges is a subgraph H which preserves pairwise distances in G up to
some error prescribed by f ; that is, distH(s, t) ≤ f(distG(s, t)) for all nodes s, t ∈
V. Spanners were introduced by Peleg and Schäffer [25] in the setting with mul-
tiplicative error of type f(d) = cd for some positive constant c. This setting was
quickly resolved, with matching upper and lower bounds [4] on the sparsity of
a spanner that can be achieved in general. At the other extreme are (purely)
c-additive spanners (or +c spanners), with error of type f(d) = d + c. More
generally, if f(d) = αd+β, we say that H is an (α, β)-spanner. Intuitively, addi-
tive error is much stronger than multiplicative error; most applications involve
c© Springer Nature Switzerland AG 2020
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shrinking enormous input graphs that are too large to analyze directly, and so
it is appealing to avoid error that scales with distance.

Additive spanners were thus initially considered perhaps too good to be true,
and they were discovered only for particular classes of input graphs [22]. However,
in a surprise to the area, a seminal paper of Aingworth, Chekuri, Indyk, and Mot-
wani [3] proved that nontrivial additive spanners actually exist in general : every
n-node undirected unweighted graph has a 2-additive spanner on O(n3/2) edges.
Subsequently, more interesting constructions of additive spanners were found:
there are 4-additive spanners on O(n7/5) edges [7,11] and 6-additive spanners
on O(n4/3) edges [5,21]. There are also natural generalizations of these results
to the pairwise setting, where one is given G = (V,E) and a set of demand
pairs P ⊆ V × V , where only distances between node pairs (s, t) ∈ P need to be
approximately preserved in the spanner [6,8,10,12,19,20].

Despite the inherent advantages of additive error, multiplicative spanners
have remained the more well-known and well-applied concept elsewhere in com-
puter science. There seem to be two reasons for this:

1. Abboud and Bodwin [1] (see also [18]) give examples of graphs that have
no c-additive spanner on O(n4/3−ε) edges, for any constants c, ε > 0. Some
applications call for a spanner on a near-linear number of edges, say O(n1+ε),
and hence these must abandon additive error if they need theoretical guar-
antees for every possible input graph. However, there is some evidence that
many graphs of interest bypass this barrier; e.g.. graphs with good expansion
or girth properties [5].

2. Spanners are often used to compress metric spaces that correspond to weighted
input graphs. This includes popular applications in robotics [9,14,23,28],
asynchronous protocol design [26], etc., and it incorporates the extremely
well-studied case of Euclidean spaces which have their own suite of applica-
tions (see book [24]). Current constructions of multiplicative spanners can
handle edge weights without issue, but purely additive spanners are known
for unweighted input graphs only.

Addressing both of these points, Elkin et al. [16] (following [15]) recently
provided constructions of near-additive spanners for weighted graphs. That is, for
any fixed ε, t > 0, every n-node graph G = (V,E,w) has a (1+ε,O(W ))-spanner
on O(n1+1/t) edges, where W is the maximum edge weight.1 This extends a
classic unweighted spanner construction of Elkin and Peleg [17] to the weighted
setting. Additionally, while not explicitly stated in their paper, their method can
be adapted to a +2W purely additive spanner on O(n3/2) edges (extending [3]).

The goal of this paper is to investigate whether or not all the other con-
structions of spanners with purely additive error extend similarly to weighted
input graphs. As we will discuss shortly, there is a significant barrier to a direct
extension of the method from [16]. However, we prove that this barrier can be
overcome with some additional technical effort, thus leading to the following

1 Their result is actually a little stronger: W can be the maximum edge weight on the
shortest path between the nodes being considered.
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constructions. In these theorem statements, all edges have (not necessarily inte-
ger) edge weights in (0,W ]. Let p = |P | denote the number of demand pairs and
n = |V | the number of nodes in G.

Table 1. Table of additive spanner constructions for unweighted and weighted graphs,
where W denotes the maximum edge weight.

Unweighted Weighted

Stretch Size Stretch Size

+2 O(n3/2) [3] +2W O(n3/2) [this paper], [16]

+4 O(n7/5) [7,11] +4W O(n7/5) [this paper]

+6 O(n4/3) [5,21,30] +6W ?

+c Ω(n4/3−ε) [1,18] +8W O(n4/3) [this paper]

Theorem 1. For any G = (V,E,w) and demand pairs P , there is a +2W
pairwise spanner with O(np1/3) edges. In the all-pairs setting P = V × V , the
bound improves to O(n3/2).

Theorem 2. For any G = (V,E,w) and demand pairs P , there is a +4W
pairwise spanner with O(np2/7) edges. In the all-pairs setting P = V × V , the
bound improves to O(n7/5).

These two results exactly match previous ones for unweighted graphs [3,11,
19,20], with +2W (+4W ) in place of +2 (+4). Theorem 1 is partially tight in
the following sense: it implies that O(n3/2) edges are needed for a +2W spanner
when p = O(n3/2), and neither of these values can be unilaterally improved.
Relatedly, Theorem 2 implies that O(n7/5) edges are needed for a +4W spanner
when p = O(n7/5); it may be possible to improve this, but it would likely imply
an improved +4W all-pairs spanner over [11] which will likely be hard to achieve
(see discussion in [7]).

Our next two results are actually a bit weaker than the corresponding
unweighted ones [13,19,27]: for a technical reason, we take on slightly more
error in the weighted setting (the corresponding unweighted results have +6 and
+2 error respectively).

Theorem 3. For any G = (V,E,w) and demand pairs P , there is a +8W
pairwise spanner with O(np1/4) edges. In the all-pairs setting P = V × V , the
bound improves to O(n4/3).

Theorem 4. For any G = (V,E,w) and demand pairs P = S × S, there is a
+4W pairwise spanner with O(n|S|1/2) edges.

We summarize our main results in Table 1, contrasted with known results
for unweighted graphs.
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1.1 Technical Overview: What’s Harder with Weights?

There is a key point of failure in the known constructions of unweighted addi-
tive spanners when one attempts the natural extension to weighted graphs. To
explain, let us give some technical background. Nearly all spanner constructions
start with a clustering or initialization step: taking the latter exposition [21], a
d-initialization of a graph G is a subgraph H obtained by choosing d arbitrary
edges incident to each node, or all incident edges to a node of degree less than d.
After this, many additive spanner constructions leverage the following key fact
(the one notable exception is the +2 all-pairs spanner, which is why one can
recover the corresponding weighted version from prior work):

Lemma 1 ([11,13,19,20], etc.). Let G be an undirected unweighted graph, let
π be a shortest path, and let H be a d-initialization of G. If π is missing � edges
in H, then there are Ω(d�) different nodes adjacent to π in H.

Proof. For each missing edge (u, v) ∈ π, by construction both u and v have
degree at least d in H (otherwise, degH(u) < d, in which edge (u, v) is added in
the d-initialization H). By the triangle inequality, any given node is adjacent to
at most three nodes in π. Hence, adding together the ≥ d neighbors of each of
the � missing edges, we count each node at most three times so the number of
nodes adjacent to π is still Ω(d�). ��

The difficulty of the weighted setting is largely captured by the fact that
Lemma 1 fails when G is edge-weighted. As a counterexample, let π be a shortest
path consisting of � + 1 nodes and � edges of weight ε. Additionally, consider d
nodes, each connected to every node along π with an edge of weight W > ε�. A
candidate d-initialization H consists of selecting every edge of weight W . In this
case, all � edges in π are missing in H, but there are still only d �= Ω(d�) nodes
adjacent to π in H (Fig. 1).

Fig. 1. A counterexample to Lemma 1 for weighted graphs.

The fix, as it turns out, is simple in construction but involved in proof. We
simply replace initialization with light initialization, where one must specifically
add the lightest d edges incident to each node. With this, the proof of Lemma 1
is still not trivial: it remains possible that an external node can be adjacent to
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arbitrarily many nodes along π, so a direct counting argument fails. However,
we show that such occurrences can essentially be amortized against the rising
and falling pattern of missing edge weights along π. This leads to a proof that on
average an external node is adjacent to O(1) nodes in π, which is good enough
to push the proof through. We consider this weighted extension of Lemma 1 to
be the main technical contribution of this work, and we are hopeful that it may
be of independent interest as a structural fact about shortest paths in weighted
graphs.

2 Neighborhoods of Weighted Shortest Paths

Here we introduce the extension of Lemma 1. Following the technique in [21],
define a d-light initialization of a weighted graph G = (V,E,w) to be a subgraph
H obtained by including the d lightest edges incident to each node (or all edges
incident to a node of degree less than d). Ties between edges of equal weight
are broken arbitrarily; for clarity we assume this occurs in the background so
that we can unambiguously refer to “the lightest d edges” incident to a node.
We prove the weighted analogue of Lemma 1.

Theorem 5. If H is a d-light initialization of an undirected weighted graph G,
and there is a shortest path π in G that is missing � edges in H, then there are
Ω(d�) nodes adjacent to π in H.

We give some definitions and notation which will be useful in the proof of The-
orem 5. Let s and t be the endpoints of a shortest path π, and let M := π\E(H)
be the set of edges in π currently missing in H so that |M | = �. For convenience
we consider these edges to be oriented from s to t, so we write (u, v) ∈ M to mean
that distG(s, u) < distG(s, v) and distG(u, t) > distG(v, t). Suppose the edges in
M are labeled in order e1, e2, . . . , e� where ei = (ui, vi), and let wi denote the
weight of edge ei. Given u ∈ V , let N∗(u) denote the d-neighborhood of u as
follows: N∗(u) := {v ∈ V | (u, v) is one of the lightest d edges incident to u} .
We will show that the size of the union of the d-neighborhoods of the nodes u1,
. . . , u� is Ω(d�), that is

∣
∣
∣
∣
∣
∣

⋃

(u,v)∈M

N∗(u)

∣
∣
∣
∣
∣
∣

= Ω(d�)

noting that the above set is a subset of all nodes adjacent to π. In particular,
the above set may not contain nodes v′ connected to u ∈ π by an edge that is
1) among the d lightest incident to v′, 2) not among the d lightest incident to u.
However, the above set necessarily contains all nodes v′ which are connected to
some ui or vi by an edge among the d lightest incident to ui or vi. We remark
that if the d-neighborhoods N∗(u1), N∗(u2), . . . , N∗(u�) are pairwise disjoint,
then |⋃(u,v)∈M N∗(u)| = d�, which immediately implies there are at least d�
nodes adjacent to π in H. Hence for the remainder of the proof, we assume there
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exist i and k with 1 ≤ i < k ≤ � such that N∗(ui) ∩ N∗(uk) is nonempty. We
use the convention that if a and b are integers with b < a, then

∑b
i=a f(i) = 0.

The following lemma holds (see Fig. 2):

Fig. 2. Illustration of Lemma 2. The bold dashed curves represent subpaths in H.

Lemma 2. Let π be a shortest path, let x ∈ V be a node such that x ∈ N∗(ui)∩
N∗(uk) for some 1 ≤ i < k ≤ �, and consider the edges ei, . . . , ek ∈ M with

weights wi, . . . , wk. Then wk ≥
k−1∑

i′=i+1

wi′ .

Proof. Consider the subpath of π from ui to uk, denoted π[ui � uk]. We have

k−1∑

i′=i

wi′ ≤ length (π[ui � uk])

≤ w(ui, x) + w(x, uk) (π[ui � uk] is a shortest path)
≤ wi + wk

where the last inequality follows from the fact that edges (ui, x), (x, uk) are
among the d lightest edges incident to ui and uk respectively (since x ∈ N∗(ui)∩
N∗(uk)), but ei and ek are not, since they are omitted from H. Lemma 2 follows
by subtracting wi from both sides of the above inequality. ��

For the next part, for edge e ∈ M , say that e is pre-heavy if its weight is
strictly greater than the preceding edge in M , and/or post-heavy if its weight is
strictly greater than the following edge in M . For notational convenience, if an
edge is not pre-heavy, we say the edge is pre-light. Similarly, if an edge is not
post-heavy, we say the edge is post-light. By convention, the first edge e1 ∈ M
is pre-light and the last edge e� ∈ M is post-light. We state the following simple
lemma; recall that |M | = �.

Lemma 3. Either more than
�

2
edges in M are pre-light, or more than

�

2
edges

in M are post-light.

Proof. Let S1 be the set of edges in M which are pre-light, and let S2 be the set
of edges in M which are post-light. Note that e1 ∈ S1 and e� ∈ S2. For each of
the � − 1 pairs of consecutive edges (ei, ei+1) in M where i = 1, . . . , � − 1, it is
immediate by definition that either ei ∈ S2 or ei+1 ∈ S1 (or both if wi = wi+1).
These statements imply |S1| + |S2| ≥ � + 1, so at least one of S1 or S2 has
cardinality at least �+1

2 > �
2 . ��
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In the sequel, we assume without loss of generality that more than �
2 edges

in M are pre-light; the other case is symmetric by exchanging the endpoints s
and t of π. We can now say the point of the previous two lemmas: together, they
imply that most edges (u, v) ∈ M have mostly non-overlapping d-neighborhoods
N∗(u). That is:

Lemma 4. Let π be a shortest path. For any node x ∈ V , there exist at most
three nodes u along π such that x ∈ N∗(u) and edge (u, v) ∈ M is pre-light.

Proof. Suppose for sake of contradiction there exist four nodes ui, ua, ub, uk

with 1 ≤ i < a < b < k ≤ � such that x belongs to the d-neighborhoods of ui,
ua, ub, and uk, and the edges (ui, vi), (ua, va), (ub, vb), and (uk, vk) are pre-light.
In particular, we have k ≥ i+ 3 and x ∈ N∗(ui)∩N∗(uk). By Lemma 2 and the
above observation, we have wk ≥ ∑k−1

i′=i+1 w′
i = wi+1+. . .+wk−1 ≥ wi+1+wk−1.

By assumption, ek = (uk, vk) is pre-light, so wk−1 ≥ wk, and the above inequality
implies wk ≥ wi+1 + wk−1 ≥ wi+1 + wk, or wi+1 = 0. Since edge weights are
strictly positive, we have contradiction, proving Lemma 4. ��

Finally, define set X∗ as follows: X∗ :=
⋃

(u,v)∈M
is pre-light

N∗(u). By Lemma 3 and

the above pre-heavy assumption, there are more than �
2 pre-light edges (u, v),

so the multiset containing all d-neighborhoods N∗(u) contains more than d�
2

nodes. By Lemma 4, any given node is contained in at most three of these d-

neighborhoods, implying |X∗| >
d�

6
. Since X∗ is a subset of |⋃(u,v)∈M N∗(u)|,

we conclude that there are Ω(d�) nodes adjacent to π in H. proving Theorem 5.

3 Spanner Constructions

We show how Theorem 5 can be used to construct additive spanners on edge-
weighted graphs. These constructions are not significant departures from prior
work; the main difference is applying Theorem 5 in the right place.

3.1 Subset and Pairwise Spanners

Definition 1 (Pairwise/Subset Additive Spanners). Given a graph G =
(V,E,w) and a set of demand pairs P ⊆ V ×V , a subgraph H = (V,EH ⊆ E,w)
is a+c pairwise spanner of G,P if distH(s, t) ≤ distG(s, t) + c for all (s, t) ∈ P.
When P = S ×S for some S ⊆ V , we say that H is a+c subset spanner of G,S.

In the following results, all graphs G are undirected and connected with (not
necessarily integer) edge weights in the interval (0,W ], where W is the maximum
edge weight. Let |V | = n, let p = |P | denote the number of demand pairs (for
pairwise spanners), and let σ = |S| denote the number of sources (for subset
spanners).
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Theorem 6. Any n-node graph G = (V,E,w) with source nodes S ⊆ V has a
+4W subset spanner with O(nσ1/2) edges.

Proof. The construction of the +4W subset spanner H is as follows, essentially
following [21]. Let d be a parameter of the construction, and let H be a d-light
initialization of G. Then, while there are nodes s, t ∈ S such that distH(s, t) >
distG(s, t) + 4W , choose any s � t shortest path π(s, t) in G and add all its
edges to H. It is immediate that this algorithm terminates with H a +4W
subset spanner of G, so we now analyze the number of edges |EH | in the final
subgraph H.

At any point in the algorithm, say that an ordered pair of nodes (s, v) ∈ S×V
is near-connected if there exists v′ adjacent to v in H such that distH(s, v′) =
distG(s, v′). We then have the following observation

distH(s, v) ≤ distH(s, v′) + W = distG(s, v′) + W. (1)

When nodes s, t ∈ S with shortest path π(s, t) are considered in the construction,
there are two cases:

1. If there are two nodes v′, v′′ adjacent in H to a node v ∈ π(s, t), and the
pairs (s, v) and (t, v) are near-connected, then we have by triangle inequality
and (1):

distH(s, t) ≤ distH(s, v) + distH(t, v)
≤ (distG(s, v′) + W ) + (distG(t, v′′) + W )
= distG(s, v′) + distG(t, v′′) + 2W

≤ distG(s, v) + distG(t, v) + 4W

= distG(s, t) + 4W.

where the last equality follows from the optimal substructure property of
shortest paths. In this case, the path π(s, t) is not added to H.

2. Otherwise, suppose there is no node v′ adjacent in H to a node v ∈ π(s, t)
where (s, v) and (t, v) are near-connected. After adding the path π(s, t) to
H, every such node v′ becomes near-connected to both s and t. If there are
� edges in π(s, t) currently missing in H, then by Theorem 5 we have Ω(�d)
nodes adjacent to π(s, t), so Ω(�d) node pairs in S × V go from not near-
connected to near-connected. Since there are σn node pairs in S ×V , we add
a total of O(σn/d) edges to H in this case.

Putting these together, the final size of H is |EH | = O
(

nd + σn
d

)

. Setting
d :=

√
σ proves Theorem 6. ��

We now give our constructions for pairwise spanners. The following lemma
will be useful:

Lemma 5 [7]. Let a, b > 0 be absolute constants, and suppose there is an algo-
rithm that, on input G,P , produces a subgraph H on O(na|P |b) edges satisfying
distH(s, t) ≤ distG(s, t) + c for at least a constant fraction of the demand pairs
(s, t) ∈ P . Then there is a +c pairwise spanner H ′ of G,P on O(na|P |b) edges.
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Using the slack to satisfy only a constant fraction of the demand pairs, we
have the following proofs.

Theorem 7. Any graph G with demand pairs P has a +2W pairwise spanner
with O(np1/3) edges.

Proof. Let d and � be parameters of the construction, and let H be a d-light
initialization of G. For each demand pair (s, t) ∈ P whose shortest path π(s, t)
is missing at most � edges in H, add all edges in π(s, t) to H. By Theorem 5,
any remaining demand pair (s, t) ∈ P has Ω(d�) nodes adjacent to π(s, t). Let
R be a random sample of nodes obtained by including each one independently
with probability 1/(�d); thus, with constant probability or higher, there exists
r ∈ R and v ∈ π(s, t) such that nodes r and v are adjacent in H. Add to H a
shortest path tree rooted at each r ∈ R. We then compute:

distH(s, t) ≤ distH(s, r) + distH(r, t)
= distG(s, r) + distG(r, t)
≤ distG(s, v) + distG(v, t) + 2W

= distG(s, t) + 2W.

The distance for each pair (s, t) ∈ P is approximately preserved in H with at
least a constant probability, which is sufficient for Lemma 5. The number of edges
in the final subgraph H is |E(H)| = O(nd + �p + n2/(�d)); setting � = n/p2/3

and d = p1/3 proves Theorem 7. ��
Theorem 8. Any graph G with demand pairs P has a +4W pairwise spanner
with O(np2/7) edges.

Proof. Let d and � be parameters of the construction, and let H be a d-light
initialization of G. For each demand pair (s, t) ∈ P whose shortest path π(s, t)
is missing at most � edges in H, add all edges in π(s, t) to H. To handle each
(s, t) ∈ P whose shortest path π(s, t) is missing at least n/d2 edges in H, we let
R1 be a random sample of nodes obtained by including each node independently
with probability d2/n, then add a shortest path tree rooted at each r ∈ R1 to
H. By an identical analysis to Theorem 7, for each such pair, with constant
probability or higher we have distH(s, t) ≤ distG(s, t)+2W. Finally, we consider
the “intermediate” pairs (s, t) ∈ P whose shortest path π(s, t) is missing more
than � but fewer than n/d2 edges in H. We add the first and last � missing edges
in π(s, t) to the spanner; we will refer to the prefix (resp. suffix ) of π(s, t) to
mean the shortest prefix (suffix) containing these � missing edges. By Theorem
5, there are Ω(�d) nodes adjacent to the prefix and Ω(�d) nodes adjacent to the
suffix. Let R2 be a random sample of nodes obtained by including each node
with probability 1/(�d), and for each pair r, r′ ∈ R2, add to H all edges in the
shortest r � r′ path in G among the paths that are missing at most n/d2 edges
(ignore any pair r, r′ if no such path exists). With constant probability or higher,
we sample r, r′ adjacent to nodes v, v′ in the prefix, suffix respectively. Hence,
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distH(s, t) ≤ distH(s, v) + distH(v, v′) + distH(v′, t)
= distG(s, v) + distH(v, v′) + distG(v′, t)
≤ distG(s, v) + distH(r, r′) + 2W + distG(v′, t).

Notice that distH(r, r′) ≤ 2W + distG(v, v′), due to the existence of the path
r ◦π(s, t)[v, v′]◦r′ which is indeed missing ≤ n/d2 edges. Thus we may continue:

≤ distG(s, v) + distG(v, v′) + 4W + distG(v′, t)
= distG(s, t) + 4W.

The distance for each pair (s, t) ∈ P is approximately preserved in H with
at least constant probability, which again suffices by Lemma 5, and the number
of edges in H is |E(H)| = O

(

nd + p� + n3/(�2d4)
)

. Setting � = n/p5/7 and
d = p2/7 completes the proof of Theorem 8. ��
Theorem 9. Any graph G with demand pairs P has a +8W pairwise spanner
containing O(np1/4) edges.

Proof. Let �, d be parameters of the construction and let H be a d-light initial-
ization of G. For each (s, t) ∈ P whose shortest path π(s, t) is missing ≤ � edges
in H, add all edges in π(s, t) to H. Otherwise, like before, we add the first and
last � missing edges of π(s, t) to H (prefix and suffix). Then, randomly sample a
set R by including each node with probability 1/(�d), and use Theorem 6 to add
a +4W subset spanner on the nodes in R. By Theorem 5, the prefix and suffix
each have Ω(�d) adjacent nodes. Thus, with constant probability or higher, we
sample r, r′ ∈ R adjacent to v, v′ in the added prefix and suffix respectively. We
then compute:

distH(s, t) ≤ distH(s, v) + distH(v, v′) + distH(v′, t)
≤ distG(s, v) + distH(v, v′) + distG(v′, t)
≤ distG(s, v) + distH(r, r′) + 2W + distG(v′, t)
≤ distG(s, v) + distG(r, r′) + 6W + distG(v′, t)
≤ distG(s, v) + distG(v, v′) + 8W + distG(v′, t)
= distG(s, t) + 8W.

Again, the distance for each pair (s, t) ∈ P is approximately preserved in H with
at least constant probability, which suffices by Lemma 5. The number of edges
in H is |E(H)| = O

(

nd + p� + n3/2/
√

�d
)

. Setting � = n/p3/4 and d = p1/4

completes the proof of Theorem 9. ��

4 All-Pairs Additive Spanners

We now turn to the all-pairs setting, i.e., demand pairs P = V × V . We use the
following lemma from [7]:
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Lemma 6 [7]. Let G be a graph, and suppose one can choose a function π that
associates each node pair to a path between them with the following properties:

– for all (s, t) the length of the path π(s, t) (i.e., the sum of its edge weights) is
≤ distG(s, t) + k,

– π depends only on the input graph G and the number of demand pairs |P |
(but not otherwise on the contents of P ), and

– for some parameter p∗ and any |P | ≥ p∗ demand pairs, we have
∣
∣
∣
∣
∣
∣

⋃

(s,t)∈P

π(s, t)

∣
∣
∣
∣
∣
∣

< |P |.

Then there is an all-pairs k-additive spanner of G containing ≤ p∗ edges.

Notice that all the above pairwise spanner constructions are demand-oblivious
– that is, the approximate shortest paths analyzed in order to preserve each
demand pair in the spanner depend on the random bits of the construction, which
in turn depend on the number of demand pairs |P |, but they do not otherwise
depend on the contents of P . See [7] for more discussion of this property. Thus
we may apply Lemma 6 as follows. For the +2W pairwise bound of O(np1/3)
provided in Theorem 7, we note that the bound is < p for p = Ω(n3/2) demand
pairs (and a sufficiently large constant in the Ω). Hence, taking p∗ = Θ(n3/2),
Lemma 6 says:

Theorem 10. Every graph has a +2W spanner on O(n3/2) edges.

Identical logic applied to Theorems 8 and 9 gives:

Theorem 11. Every n-node graph has a +4W spanner on O(n7/5) edges.

Theorem 12. Every n-node graph has a +8W additive spanner on O(n4/3)
edges.

5 Conclusions and Open Problems

We have shown that most important unweighted additive spanner constructions
have natural weighted analogues. At present, the exceptions are the +4W subset
spanner on O(n|S|1/2) edges (which should probably have only +2W error) and
the +8W all-pairs/pairwise spanners (which should probably have only +6W
error). Closing these error gaps is an interesting open problem. It would also be
interesting to obtain weighted analogues of related concepts, most notably, the
Thorup-Zwick emulators [29], which are optimal [2] in essentially the same way
that the 6-additive spanner on O(n4/3) edges is optimal.

Finally, as mentioned earlier, it would be interesting to find constructions
of purely additive spanners parametrized by some other statistic besides the
maximum edge weight W ; a natural parameter is W (u, v), the maximum edge
weight along a shortest u-v path.
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