
Chapter 2
Physics of Propagation-Based X-Ray
Tomography

On 8 November 1895 Wilhem Conrad Röntgen discovered X-rays and, few weeks
later, the famous radiograph of Mrs Röntgen’s hand was imaged, marking the begin-
ning of a new scientific discipline: radiography [1, 2]. After more than a century
of unprecedented scientific, technical and technological development, clinical radi-
ological exams, with only few exceptions, still rely on the same contrast formation
mechanism, which is X-ray attenuation. Despite the immense success of conven-
tional attenuation-based (also referred to as absorption-based) radiography and its
widespread use as diagnostic tool, the advent of synchrotron radiation (SR) facilities
producing intense and coherent X-ray beams allowed the researchers to focus their
attention on an alternative image contrast mechanism, the phase contrast.

Phase contrast relies on the phase shift experienced by X-rays when traversing
matter rather than their attenuation. In fact, the interpretation ofX-rays as electromag-
netic waves with a wavelength much shorter (∼10,000 times) than visible light was
already known at the beginning of XX century and, as stated in the far-sighted Nobel
Lecture given by A. H. Compton in 1927: “[…] there is hardly a phenomenon in the
realm of light whose parallel is not found in the realm of X-rays […]” [3]. This means
that X-ray imaging can also take advantage of those interactions affecting the phase
of the incoming wave (e.g.., refraction), which are well understood and described for
visible and nearly-visible light wavelengths. The experimental arrangements allow-
ing the detection of these effects are the so-called phase-sensitive techniques, while
an image exhibiting a contrast due to phase effects is referred to as phase-contrast
image.

The advent of digital detectors and powerful computers in 1970s promoted another
major breakthrough in the field of diagnostic radiology, whose magnitude is com-
parable with the discovery of X-rays itself: computed tomography (CT) allowed for
the first time to investigate bulk samples by reconstructing maps, i.e. ‘slices’, of
their properties along the X-rays propagation plane [4]. To obtain a tomographic
image, or tomogram, one needs to acquire a certain number of radiographic images,
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Fig. 2.1 Values of δ and β for polymethyl methacrylate (PMMA), often used as a tissue equivalent
material in phantoms, between 10 and 100 keV.The semi-logarithmic plot highlights their 2–3 orders
of magnitude difference spanning a broad energy range. Data from publicly available database [5]

or projections, at different angular positions of the sample. The projections are then
fed into a reconstruction algorithm which inverts the tomographic problem yielding
a virtually reconstructed map (or stack of maps) of the object’s properties. CT was
first developed in the context of conventional radiography to create X-ray attenuation
maps but, given the rather general formulation of the tomographic problem, it can
be in most cases straightforwardly extended to phase-contrast images, yielding, for
instance, phase or even scattering maps.

This chapter is entirely devoted to explaining the physics underlying phase-
contrast formation mechanism, detailing the advantages over conventional
attenuation-based radiography/tomography of one of the most widespread phase-
sensitive techniques, propagation-based imaging. Starting from rather general con-
cepts, a mathematical model describing X-ray refraction will be introduced in the
next section; this generalmodel,which constitutes a commonground formany phase-
sensitive techniques, will be further specialized to describe the propagation-based
image formation process, also considering non perfectly coherent sources, and its
inverse problem, namely the phase retrieval. Finally, the discussion will be extended
to the tomographic reconstruction in the specific context of propagation-based imag-
ing.

2.1 X-Rays Through Matter: Attenuation and Refraction

Let us consider a parallel and monochromatic beam travelling in vacuum along the
z axis. In the wave formalism this can be described as a plane wave, whose space-
dependent component can be written as
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ψ = ψ0 e
ikz (2.1)

where ψ0 is its real-valued amplitude, k = |k| = 2π/λ is the wave number and k
is the wave vector pointing in the propagation direction, while λ is the wavelength.
When the wave propagates through a medium, the wave number must be replaced
by kmedium = nk, n being the complex-valued refractive index. For X-rays n is usu-
ally written as n = 1 − δ + iβ, where δ and β are real, positive and very small
numbers, related, as it will be clear in the following, to the phase-shift and absorp-
tion/attenuation properties of the medium, respectively [6]. Of note, the real compo-
nent of the refractive index is smaller than one, meaning that the phase-velocity in a
medium is higher than the speed of light; of course this does not violate relativity as
the group velocity still does not exceed the speed of light in vacuum [7]. For X-rays
with energies sufficiently higher than the absorption edges of the medium, that for
light materials (e.g., soft tissues) are below few keV, δ can be calculated in classical
electrodynamics as

δ � r0ρeλ
2/2π (2.2)

r0 = 2.82 × 10−15 m being the classical electron radius and ρe the electron volume
density; conversely, β is found to be proportional to λ3 [8]. Despite being both small
numbers, for biological samples and energies of interest in soft-tissue biomedical
imaging (i.e. tens of keV), δ is approximately 3 orders of magnitude larger than β,
their typical values being 10−6 − 10−7 and 10−9 − 10−10, respectively, as shown in
Fig 2.1 [9, 10]. This huge difference is the reason why phase-sensitive techniques
can be advantageous over attenuation-based imaging.

To understand how the presence of a sample can affect both amplitude and phase of
the incoming X-ray wave, let us consider an object described by a three-dimensional
distribution of refractive index n(x, y, z) = 1 − δ(x, y, z) + iβ(x, y, z), traversed
by the wave defined in Eq. (2.1), as schematically depicted in Fig 2.2. After the
interaction with the object, the X-ray wave ψout(x, y) at a given position in the
object plane (x ,y) will be the incident wave modulated by a complex transmission
factor T (x, y) [11]:

ψout(x, y) = ψT (x, y) = ψ0e
ikzT (x, y) (2.3)

where T (x, y) is function of the object refractive index distribution and it is written
as

T (x, y) = eik
∫

(n(x,y,z)−1) dz = e−k

∫
β(x,y,z) dz e−ik

∫
δ(x,y,z) dz (2.4)

with the line integral extending over the object thickness along z direction. The trans-
mission function can be computed directly from Maxwell’s equations assuming the
object to be non-magnetic, with null charge and current densities [12]. Moreover, the
above description implicitly assumes the so-called projection approximation to hold,
meaning that the changes in the local direction of the wave vector within the sample
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Fig. 2.2 Sketch of wave-object interaction. ψ is a monochromatic plane wave with wave vector
k impinging on the sample described by its refractive index distribution n(x, y, z). The wavefront
emerging from the sample ψout (x, y) is modulated both in amplitude and phase by the object
and has a local wave vector kout(x, y). z0 and z1 are, respectively, the source-to-sample and the
sample-to-detector distances while s is the source size

are considered to be negligible. In a more pictorial description, the refraction effects
are considered to be ‘accumulated’ through the object and to manifest themselves at
its exit surface. In this way the net effect of the refractive object on the wave field
can be expressed as an integral along the propagation direction of the impinging
wave [13]. The previous equation implies that the object modulates the X-ray wave
by reducing its amplitude by a factor dependent on β, and it introduces a shift in its
phase dependent on δ, that can be written as �(x, y) = −k

∫
δ(x, y, z) dz.

Considering conventional radiographic techniques which are only sensitive to the
transmitted X-ray intensity, i.e. the square modulus of the wave, Eq. (2.3) reduces to

|ψout(x, y)|2 = |ψ0e
ikzT (x, y)|2 = ψ2

0 e
−2k

∫
β(x,y,z) dz (2.5)

The latter equation can be immediately identified with the well-knownBeer-Lambert
law [14], describing the X-ray attenuation through an object:

I (x, y) = I0e
−
∫

μ(x,y,z) dz (2.6)

where I0 is the beam intensity impinging on the object andμ = 2kβ is its attenuation
coefficient. At this point it is clear that in conventional imaging the phase-shift term
introduced in Eq. (2.4) does not play any role at all. Conversely, the goal of any
phase-sensitive technique is to detect the change in phase which, since δ � β, is
much bigger than attenuation.
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Going back to the wave model, the phase-shift term� is interpreted as a local dis-
tortion of the wavefront that, at a given point of the object plane, will have a slightly
different propagation direction with respect to the impinging planar wave. To deter-
mine the outgoing propagation direction at each point we assume the deviations from
the initial direction z to be small (i.e. paraxial approximation) or, more formally, that
the absolute values of the spatial derivatives |(∂/∂x) �(x, y)| and |(∂/∂y) �(x, y)|
are much smaller than the wave number k. In this way the outgoing wave vector
reads

kout(x, y) =
(

∂

∂x
�(x, y)

)

x̂ +
(

∂

∂y
�(x, y)

)

ŷ + kẑ (2.7)

where x̂, ŷ and ẑ are unit vectors pointing along x , y and z directions, respectively.
The deviation with respect to the original direction ẑ imparted to the beam by the
refractive object is expressed as a position-dependent refraction angle α(x, y)which
is written as

α(x, y) � 1

k

√(
∂

∂x
�(x, y)

)2

+
(

∂

∂x
�(x, y)

)2

= 1

k
|∇xy�(x, y)| (2.8)

where ∇xy is the gradient operator in the object plane.
Equation (2.8) is a central result of this section and provides the link between a

detectable physical quantity, the refraction angle, and the object-induced phase shift.
In this context, the goal of many phase-sensitive techniques will be somehow to con-
vert this refraction angle into intensity modulations on the detector. Before describ-
ing how this can be achieved experimentally, it is worth noting that for biomedical
applications (i.e. δ ∼ 10−6 and λ ∼ 10−10 m) the typical refraction angles given
by Eq. (2.8) range from few to few tens of microradians, hence, a posteriori, both
projection and paraxial approximations hold.

2.2 The Simplest Phase-Sensitive Technique:
Propagation-Based Imaging

The description of the interaction between an X-ray wave and a refractive object
given so far is rather general and can serve as input to explain how many of the
available phase-sensitive techniques work. As mentioned, to image the phase means
to convert phase shift into intensity modulation. Broadly speaking, the plethora of
techniques enabling phase imaging can be divided in into two groups, namely inter-
ferometric [15–18] and non-interferometric [19–22]. A complete description of the
contrast formation mechanisms in all the phase-sensitive techniques goes beyond the
scope of this work and the reader is referred to comprehensive reviews [23, 24] or
books [8, 13].
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In this section we focus on propagation-based (PB) imaging (note that in the
literature other synonyms as in-line holography or free-space-propagation imaging
can be found), which is arguably the simplest non-interferometric phase-sensitive
technique to implement. Stripped down to its essence, PB imaging consists in dis-
tancing the detector from the refractive object, leaving the perturbed wavefront to
propagate freely in space, as sketched in Fig. 2.2 [21]. To explain how the contrast
is formed on the detector we revert our wave model to a simpler ray-tracing (or
geometrical optics) approach, where X-rays are considered to be bullet-like entities
whose path in each point is defined to be parallel to the local wave vector [25–27].
Moreover, it is assumed that the refractive object located in the xy plane is small
compared with its distance z1 from the image plane x1y1. Let be I (x, y) the X-ray
beam intensity emerging from the object; in the previous section we saw that this
quantity is proportional to the wave squaremodulus, thus containing only attenuation
information. Nevertheless, phase-effects manifest themselves at some propagation
distance, downstream of the object. In fact, as a function of its position (x, y) on the
object plane, each ‘ray’ is be deviated by a small angle α specified by Eq. (2.8), thus
impinging on the detector at the position (x1, y1) given by

{
x1 � x + z1αx (x, y)

y1 � y + z1αy(x, y)
(2.9)

where αx and αy are the projections of α in the planes xz and yz, respectively

αx = 1

k

∂

∂x
�(x, y) and αy = 1

k

∂

∂y
�(x, y) (2.10)

Equation (2.9) expresses simply the coordinate transformation that maps each ray
from theobject to the detector plane [28]. Therefore, by calculating the transformation
Jacobian, one can write the intensity detected in the image plane as

I (x1, y1) = I (x, y)

∣
∣
∣
∣
∂(x1, y1)

∂(x, y)

∣
∣
∣
∣

−1

= I (x, y)

∣
∣
∣
∣
∣

1 + z1
∂αx
∂x z1

∂αx
∂y

z1
∂αy

∂x 1 + z1
∂αy

∂y

∣
∣
∣
∣
∣

−1

� I (x, y)
(
1 + z1

k
∇2�(x, y)

)−1

(2.11)

where ∇2 is the Laplacian in the object plane and the approximation is obtained by
neglecting the terms o(z21λ

2). This assumption seems rather reasonable since, in a
typical PB setup, z1 is of the order of meters while λ ∼ 10−10 m. In those cases in
which z1k∇2�(x, y) � 1, i.e. when the phase contrast is ‘weak’ [29], a first-order
Taylor expansion can be applied to Eq. (2.11), yielding
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I (x1, y1) � I (x, y)
(
1 − z1

k
∇2�(x, y)

)

= I0e
−2k

∫
β(x,y,z) dz

(
1 − z1

k
∇2�(x, y)

) (2.12)

where I0 is the X-ray intensity impinging on the object. This equation is the main
result of this chapter since it explains the contrast formation principle of PB imaging.
In the limit of null propagation distance z1 = 0, the previous equation reduces to the
Beer-Lambert law, hence only the attenuation properties of the material contribute to
image formation. Conversely, by increasing z1 another source of contrast, the phase
contrast, which is proportional to the Laplacian of the phase shift, comes into play. In
the case of a planar impinging wavefront, phase contrast increases linearly with the
propagation distance and it is more evident at the boundaries or at sharp interfaces of
the refractive object, where the phase shift changes abruptly, producing the so-called
edge enhancement effect [30], as shown in Fig. 2.3. It is worth noting that, even if the
ray-optical approach may be seen as a naive approximation, the same expression for
intensity found in Eq. (2.12) can be demonstrated following a rigorous wave model,
taking as a starting point either the (near-field) Fresnel diffraction integral or the
transport-of-intensity equation [12, 13].

Fig. 2.3 Simulation of a 200µmthickPMMAwire imaged at 10 keVwith null propagation distance
(top-left) and with 1m of propagation distance (top-right). On the bottom the two corresponding
intensity profiles matching the theoretical predictions
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2.3 Effects of Finite Source Size, Detector Resolution and
Near-Field Limit

So far, the whole derivation has been carried on under the hypothesis of a perfectly
coherent plane wave (i.e. monochromatic and produced by a point-like source at
infinite distance) and an ideal detector with a arbitrarily high spatial resolution. As
it always happens, real life is sub-ideal and any deviation from both the previous
assumptions can deeply affect the detected image. To study these effects let us con-
sider a source located at a finite distance z0 from the object plane and with a finite
dimension characterized by a spatial intensity distribution PSFsrc. At the same time let
the detector be pixelated, having a finite spatial resolution and point spread function
PSFdet which is usually of the order of one or few pixels. Let also introduce a geo-
metrical magnification factor M = (z0 + z1)/z0 accounting for the relative positions
of source, object and detector. In this case, the detected intensity I ′ reads

I ′(x1, y1; M) = I (x1, y1; M) ∗
(

PSFsrc

(
x1

M − 1
,

y1
M − 1

)

∗ PSFdet(x1, y1)

)

= I (x1, y1; M) ∗ PSFsys(x1, y1; M)

(2.13)

where ∗ denotes the convolution operator, PSFsys is the convolution of the detector
response function with the source referred to the detector plane, and I (x1, y1; M) is
the equivalent to the intensity of Eq. (2.12)when themagnification factor is accounted
for [27]:

I (x1, y1; M) = I (x, y)

M2

[
1 − z1

kM
∇2�(x, y)

]
(2.14)

Equation (2.13) implies that the image detected in a real experiment is a blurred
version of the image that would be obtained under ideal conditions and the amount
of blurring depends on source distribution, detector response and geometry of the
system. Given that phase-contrast manifests itself across sharp interfaces, thus con-
tributing to the high frequency component of the image, the blurring introduced by
PSFsys affects primarily the phase content of the image, potentially smearing out
completely the edge-enhancement effect as reported in Fig. 2.4. Taking a closer look
to PSFsys it can be demonstrated, by using rules of geometrical optics, that its width
w goes as [31, 32]:

w ∼
√
s2(M − 1)2 + d2 (2.15)

where s describes the source size and d the width of the detector PSF. This simple
formula leads to some important considerations on the experimental implementation
of PB imaging. In the majority of synchrotron-based PB experiments, the source can
be considered to be ideal, meaning that its size is small and/or its distance from the
object is much larger than the propagation distance (M is small): in these cases the
first term in the addition of Eq. (2.15) can be neglected and the phase-contrast signal is
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Fig. 2.4 Theoretical intensity profiles of a 200µm thick PMMAwire convolved, from left to right,
with Gaussian PSFsys of full width half maximum w of 1, 20 and 130 µm respectively. To wider
PSFsys corresponds a loss of phase contrast due to the smearing of edge-enhancement effect

maximizedby improving the detector spatial resolution and enlarging the propagation
distance. On the contrary, for many conventional X-ray sources (e.g., rotating anode
tubes), the source size is rather big and/or the magnification is high. In this case, any
improvement in the detector resolution will not affect the visibility of phase effects
since the magnitude of blurring w is dominated by the source contribution. For this
reason, most of the conventional sources in use for medical applications are of no
use in the field of PB phase-contrast imaging. Other practical considerations, along
with the description of a dedicated PB imaging laboratory setup using a rotating
anode source, can be found in Chap. 7, while more on the effects of pixel size and
propagation distance is reported in Chap. 5.

Before concluding this section, some remarks on the applicability range of
Eq. (2.12) should be pointed out. As stated previously, an analogous equation can
be derived using the Fresnel diffraction integral in the near-field regime. This means
that the given description of PB imaging technique holds for large Fresnel numbers,
i.e. NF = a2/(λz1) � 1, where a is the smallest object’s feature size of interest,
which is usually related to the detector pixel size [8, 23]. This validity condition
imposes an upper limit to the propagation distance (z1) and a lower limit to the pixel
size (∼ a), and implies that phase-contrast signal cannot be made arbitrarily large
neither by increasing the propagation distance nor by decreasing the pixel size. For
this reason, when setting up a PB imaging experiment, the NF should be checked
before using the aforementioned theoretical background for describing or analyzing
experimental data. As an example, in the case of the experimental setup described
throughout this work, a can be identified with the detector pixel size (60 μm), the
propagation distance is in the order of few meters while the wavelength is a fraction
of angstrom, resulting in Fresnel numbers larger than 10, so the near-field description
holds. It should be noted that, conceptually, any PB imaging experimental setup can
be used also in the opposite regime, i.e. far-field or Fraunhofer diffraction, provided
that NF � 1. A complete description of all the different working regimes of PB
imaging can be obtained by means of the Fresnel-Kirchhoff diffraction integrals [11,
33] as illustrated in several works [16, 34, 35].
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2.4 Inverting the Propagation: Phase-Retrieval

So far the image formation process in PB configuration has been described and,
as a pivotal result, Eq. (2.12) was derived, expressing how the detected intensity
depends on attenuation and phase properties of the illuminated object. However,
many practical applications require to obtain separately both attenuation and phase-
shift information rather than a phase-contrast image where their contributions are
mixed [13]. The combination of this requirement with the experimentally desirable
property of performing single-shot imaging results in an ill-posed problem: trying
to retrieve simultaneously both phase (shift) and attenuation from Eq. (2.12) means
to find solutions for two unknowns given only one equation. In the last two decades
manyworkarounds to solve this problem, commonly known as phase-retrieval (PhR),
have been derived, all of which have required multiple approximations to be made.
Generally speaking, these approximations aim at reducing the number of unknowns
in Eq. (2.12), thus making the expression invertible. As a first line discrimination,
PhR algorithms can be split in two categories: some of them assume the sample
to be non-absorbing or a ‘pure phase’ object, which is a suitable approximation
for thin or low density samples; others require the sample to be composed of a
single monomorphous material (often described as homogeneous). These and other
approximations have been studied in detail in [36], listing similarities and differences
between seven commonly used algorithms. In the following, a PhR algorithm falling
in the second category is described and used throughout this work.

The algorithm was first proposed by Paganin and collaborators in 2002 and it is
allegedly the most widely used in the PB imaging community [37]. Since this PhR
technique stems from a particular version of the transport-of-intensity equation (TIE)
describing a homogeneous object (TIE-Hom), it is worth starting by introducing the
TIE itself [38]:

∇xy
[
I (x, y; z = 0)∇xy�(x, y; z = 0)

] = −k
∂ I (x, y; z = 0)

∂z
(2.16)

where, for each function of space, the z coordinate is specified to unambiguously dis-
criminate between the object plane (z = 0) and the image plane (z = z1). This equa-
tion provides a relation between the (measurable) intensity and the object-induced
phase shift under paraxial and projection approximations. Given this definition it is
not surprising that TIE is equivalent to Eq. (2.12), as demonstrated in Appendix A.
The following step is to introduce the monomorphicity condition, stating that the
object is composed by a single material and both δ and β (or at least their ratio) are
known. In this case, phase and intensity on the object plane can be written as

I (x, y; z = 0) = I0e
−2kβt (x,y) and �(x, y; z = 0) = −kδt (x, y) (2.17)
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where t (x, y) is the integrated object thickness along z direction and I0 is the X-ray
intensity impinging in the object plane. The homogeneity condition allows to express
both the intensity and phase terms as a function of the same variable t (x, y), thus
reducing the number of unknowns from two to one. Substituting the definitions of
Eq. (2.17) into Eq. (2.16), and making use of the following identity

− kδ∇xy
[
e−2kβt (x,y)∇xyt (x, y)

] = δ

2β
∇2

xye
−2kβt (x,y) (2.18)

TIE reduces to its homogeneous version

δ

2β
∇2

xy

[
I0e

−2kβt (x,y)
] = −k

∂ I (x, y; z = 0)

∂z
(2.19)

The last step of the derivation consists in finding the (approximate) expression of
the derivative appearing in the right-hand side of the latter equation. Usually, it is
approximated by the intensity difference between contact and image planes [12]

∂ I (x, y; z = 0)

∂z
� I (x, y; z = z1) − I (x, y; z = 0)

z1
(2.20)

By inserting this approximation in Eq. (2.19) and re-arranging the terms we get

I (x, y; z = z1) =
(

1 − z1δ

2kβ
∇2

xy

)

I0e
−2kβt (x,y) (2.21)

At this point the only unknown term is t (x, y), hence TIE-Hom equation and can be
solved. The solution provided by Paganin [37] makes use of the Fourier derivative
theorem, yielding the projected thickness as

t (x, y) = − 1

2kβ
ln

(

F−1

{
F [I (x, y; z = z1)/I0]

1 + z1δ
2kβ |v|2

})

(2.22)

whereF andF−1 denote the bi-dimensional Fourier transform and anti-transform,
respectively, and v = (v1, v2) represents the Cartesian coordinates in the Fourier
space.Once the projected thickness has been calculated it can be inserted inEq. (2.17)
to obtain both attenuation I (x, y; z = 0) and phase �(x, y; z = 0) images.

The last two equations, i.e. (2.21) and (2.22), are the central result of this section;
the former describes how the X-ray intensity propagate from the object to the image
plane (forward propagation), the latter allows to revert this process by backpropa-
gating (i.e. retrieving) the captured image to the object plane, as sketched in Fig. 2.5.
To fully understand the effects of forward and backward propagation, it is conve-
nient to adopt a signal processing approach where both processes are described as
operators acting, respectively, on the object plane and the image plane intensity
distributions [29]. From Eq. (2.21) the forward propagation operator is defined as
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Fig. 2.5 Schematic representation of the (optical) propagation and following (numerical) phase-
retrieval in a PB setup. The source plane is positioned in coordinate −z0 along the z axis, the object
plane defines the origin of the reference system while the image plane is positioned at z1. H and
H̃ denote the forward and backpropagation operators, respectively

H =
(

1 − z1δ

2kβ
∇2

xy

)

(2.23)

which is an optical (i.e. pre-detection) deconvolution.Due the presence of theLaplace
operator, H affects the imagebyboosting its high spatial frequency component, hence
the image spatial resolution. It is worth noting that this effect, associated with PB
imaging, has already been described in the previous section under the name of edge-
enhancement. Conversely, the core of PhR algorithm is a bell-shaped filter in Fourier
domain that, from Eq. (2.22), can be written as

H̃ =
(

1 + z1δ

2kβ
|v|2

)−1

(2.24)

The effect of this filter, similar in a sense to that of a (numerical) convolution with any
low-pass filter, is to reduce the image noise at cost of a worse spatial resolution [39,
40]. Anyway, the remarkable property of H̃ is that the resolution loss exactly com-
pensate the spatial resolution boost due to H , i.e. to the forward propagation. Despite
its apparent circularity, the combination of the forward (optical) propagation and the
subsequent backward (numerical) inversion results in an image which is equivalent,
up to a logarithmic transformation, to the image that would have been obtained in
the object plane (i.e. the attenuation image), but with a dramatic noise reduction [41–
43]. As explained by Gureyev and colleagues [29], the origin of such ‘unreasonable’
image quality enhancement lies in the fact that the propagation operator is an optical
deconvolution (as opposed to a numerical one) which is applied prior to the image
detection, thus before the generation of detection noisewhich is not propagated by the
deconvolution itself. In terms of image quality this noteworthy effect is of paramount
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importance since, in general, detail visibility in any radiographic technique strongly
depends on the image noise content. An experimental proof of this effect, applied to
tomographic images of breast specimens, will be provided in Chap. 5.

2.5 Single- and Two-Materials Approaches to Phase
Retrieval

In the derivation of the PhR filter allowing to invert TIE-Hom equation it is assumed
that the investigated object is homogeneous with a known δ/β, meaning that the
phase-shift and attenuation properties of the sample are proportional throughout the
sample. In order to take into account the presence of two (homogeneous) materials of
interestwithin the sample (e.g., glandular details embedded in an adipose background
in breast imaging), the PhR filter reported in Eq. (2.24), referred to as single-material,
can be slightly modified to

H̃2mat =
(

1 + z1
2k

δ1 − δ2

β1 − β2
|v|2

)−1

(2.25)

where the δ/β term has been replaced by (δ1 − δ2)/(β1 − β2), and the subscripts
refer to the two materials of interest [36]. In qualitative terms, the application of PhR
allows in general to compensate for the edge-enhancement effect arising at the object
interfaces upon the propagation process. Specifically, the single-material PhR allows
to exactly compensate for the edge enhancement at vacuum/sample or, in practice,
air/sample interfaces. Conversely, the two-materials PhR exactly compensates the
edge enhancement across interfaces of two given materials embedded within the
sample. In this perspective, the phase retrieval can be seen as a virtual lens which, by
tuning the parameter δ/β, enables to focus upon a particular interface of interest [44].
In the case of interest of breast imaging at energies around 30 keV, δ/β is of the order
of 2 × 103 for breast tissue in the single-material PhR,while (δ1 − δ2)/(β1 − β2) is of
the order of 1 × 103 for glandular/adipose interfaces in the two-materials PhR. This
means that, from a signal processing perspective, the application of single-material
PhR would result in a smoother image (i.e. lower noise and higher blur) with respect
to the two-materials PhR [45]. Since both approaches will be used throughout this
work, the type of PhR filter used will be specified for each reconstructed dataset.

2.6 Tomographic Reconstruction

While for thin bi-dimensional samples a planar image can provide sufficient informa-
tion on the scanned object, for three-dimensional bulk samples (e.g., human breast),
planar techniques may fail in providing an accurate description due to superposition
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effects. In this context, X-ray tomography is capable of overcoming such limitation,
providing a fully three-dimensional map of a given object property.

A tomographic acquisition requires several planar ‘views’ of the sample, or pro-
jections, obtained by exposing the object to the X-ray beam at different angles. Each
projection, collected at an angle θ , will be the line integral through the sample of a
given object spatial distribution function o(x, y, z):

pθ (x, y) =
∫

o(x cos θ − z sin θ, y, x sin θ + z cos θ) dz (2.26)

where the integral extends along the object thickness, y identifies the rotation axis and
xz defines the tomographic plane through the object (see Fig. 2.2). Equation (2.26)
identifies the Radon transform of the function o(x, y, z) [46]. To reconstruct a tomo-
graphic image means to recover the spatial distribution o(x, y, z) given a sufficient
number of projection images pθ (x, y) or, equivalently, to invert the Radon transform.
Considering a parallel X-ray geometry, this can be accomplished by acquiring the
projection images over 180 degrees and by applying the well-known filtered-back-
projection (FBP) algorithm [47]:

o(x, y, z) =
∫

π

0

[∫ +∞

−∞
Pθ (q; y)|q|G(q)e2π iqx dq

]

dθ (2.27)

where Pθ (q; y) is the 1D Fourier transform of the projection pθ along the direction
x , |q| is the ramp filter in the frequency domain, and G(q) is the apodization filter
used to limit the high spatial frequency contribution in the reconstruction. Of note,
in parallel geometry, FBP does not involve the variable y, hence each reconstructed
‘slice’, identified by a given position y, is independent from the others.

Considering that conventional attenuation-based imaging can be seen as a special
case of PB imaging at null propagation distance, rearranging Eq. (2.12) we can write

pabs0 (x, y) = − ln
I (x, y)

I0
= 2k

∫
β(x, y, z) dz =

∫
μ(x, y, z) dz (2.28)

where, for the sake of notation simplicity, the considered projection angle is θ = 0.
GivenEq. (2.28), the linear attenuation coefficientmapμ(x, y, z) can be immediately
identified with the object distribution o(x, y, z) to be reconstructed by means of the
FBP algorithm. The same formalism can be extended to the more general case of a
finite propagation distance z1, provided that Eq. (2.12) is conveniently re-written as

I (x1, y1) = I0e
−
∫

μ(x,y,z) dz
(
1 − z1

k
∇2

xy�(x, y)
)

� I0e
−

[∫
μ(x,y,z) dz+ z1

k ∇2
xy�(x,y)

]

(2.29)
where, in the weak phase-contrast assumption, the term in parenthesis is identified
with the Taylor expansion of an exponential term [48]. Starting from the previous
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expression, and recalling that �(x, y) = −k
∫

δ(x, y, z) dz, the projection image
acquired in PB configuration reads

pPB0 (x, y) = − ln
I (x1, y1)

I0
=

∫
μ(x, y, z) dz − z1∇2

xy

∫
δ(x, y, z) dz (2.30)

In this case, the tomographic reconstruction of the first term provides the attenua-
tion coefficient map whereas the second term corresponds to the three-dimensional
Laplacian of the decrement from unity of the refractive index δ(x, y, z). In summary,
for PB imaging, the reconstructed distribution is approximated by

oPB(x, y, z) = μ(x, y, z) − z1∇2
xyzδ(x, y, z) (2.31)

Equation (2.31) is of great importance since it proves that, similarly to the planar
case, a tomographic map reconstructed from PB projections will be similar to the
(conventional) attenuation map except for object interfaces or sharp edges, where
the (three-dimensional) Laplacian of δ is expected to be significantly different from
zero.

Finally, the tomographic reconstruction of phase-retrieved projections should be
considered. Following the Paganin’s approach, in the derivation of the PhR formula
the imaged object is assumed to be homogeneous, so its attenuation and phase-shift
properties (or at least their ratio) are constant throughout the volume. The application
of the phase retrieval yields, for each projection, the object projected thickness,
which, given the homogeneity assumption, is proportional to the line integrals of
both μ(x, y, z) and δ(x, y, z).

pPhR0 (x, y) = t (x, y) = 1

μin

∫
μ(x, y, z) dz = 1

δin

∫
δ(x, y, z) dz (2.32)

where the proportionality constants 1/μin and 1/δin are input parameters of the PhR
filter as reported in Eq. (2.22). Given this definition of the projection image, the
tomographic reconstructed quantity will be

oPhR(x, y, z) = 1

μin
μ(x, y, z) = 1

δin
δ(x, y, z) (2.33)

Of note, starting from phase-retrieved projections, the reconstructed image is found
to be proportional to the (conventional) attenuation image μ(x, y, z), meaning that
the image contrast is equal to the attenuation contrast. In case ofmedical applications,
this is of great importance since tomographic images reconstructed after applying
the PhR procedure can be calibrated in terms of linear attenuation coefficients, which
is the standard procedure in conventional X-ray tomography [49]. More details on
the phase-retrieval effects on the reconstructed image will be discussed in Chap. 5.
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