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PET Beyond Pictures

Eric Wolsztynski and Janet F. Eary

 Conventional PET-Based 
Quantitation

 Standardized Uptake Values

PET imaging data essentially consist of count 
and spatial information on photons emitted by 
positron decay of the PET radiotracer molecules 
within the body. The scanner output data repre-
sents the number of photons detected by the 
detectors at an imaging time point. This raw 
information is processed (or “reconstructed”), 
usually by the imaging device based hardware, to 
generate a final four- dimensional digital image of 
intensities that relate to these initial photon 
counts in the volumetric field of view, captured 
over a number of imaging time frames. We refer 
to a unit of this 3D image frame as a voxel (vol-
ume element). A higher intensity at a given voxel 
therefore indicates higher concentration of the 
administered radiotracer at that location.

In routine practice, the volumetric PET body 
tissue uptake information is converted into stan-

dardized uptake values (SUV) by adjusting the 
raw tissue radioactivity concentration measured 
within an image region of interest at time t, C(t), 
for patient body weight W and injected dose D:

 SUV t C t D W( ) = ( ) ( )/ /  

Tissue SUV values are commonly expressed 
in g/mL, with concentration level C(t) in MBq/
mL, and injected radioactive imaging agent dose 
per unit weight D/W in MBq/g. SUV measures 
are considered unitless, on the basis that C(t) can 
be defined as concentration in soft tissue, itself 
with a mass density of about 1 g/mL.

The above uptake value standardization con-
vention remains the predominant choice for 
image analysis in the literature and in clinical 
practice, although alternative methods have been 
considered for generation of initial tracer concen-
tration than that provided by body weight W, 
which is very sensitive to patient physiology [1]. 
The most widespread of these alternatives is the 
lean SUV (SUL), using lean body mass W-BF, 
where BF is body fat, in place of W.

 Volume of Interest Segmentation

PET-based quantitation consists of deriving sta-
tistical summaries of the image data-based vol-
ume of interest (VOI), many of which rely on 
accurate tumor size assessment. Delineation, or 
segmentation, of the VOI is therefore critical but 
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can vary significantly with the method chosen. 
The use of hand-drawn VOI segmentation masks 
determined by trained staff is most commonly 
performed, but this process is tedious and prone 
to human error and interoperator variability. A 
wide range of semi- and fully automated alterna-
tives are also available. Some approaches consist 
of identifying VOI voxels that have values above 
a segmentation threshold defined as a fraction of 
the maximum SUV in the image or as a multi-
plier of the average background SUV level [2]. 
Such thresholding schemes tend to be sensitive to 
image contrast and noise characteristics [1, 3]. 
Other techniques consist of identifying contours 
of the VOI adaptively from the imaging data, by 
evaluating the likelihood that a given voxel 
belongs to the tumor according to its direct neigh-
borhood voxel characteristics [1, 2]. 
Multimodality image analysis techniques also 
exploit the additional information provided at 
higher transverse spatial resolution by a co- 
registered CT or MRI scan when available. For 
example, FMISO-PET VOI masks of glioma vol-
umes may be determined using image appear-
ance in FLAIR sequence MRI data [4, 5]. 
Reproducible segmentation seems more likely to 
be achieved using a combination of automatic 
edge-detection techniques and expert assessment 
of its output [2].

 Conventional Summaries and Their 
Use at Baseline and Follow-Up

Once a tissue VOI is obtained, PET tracer uptake 
distribution is traditionally analyzed in terms of 
SUV summaries, namely, its maximum value 
(SUVmax), average value (SUVmean), average value 
within the SUVmax tissue neighborhood (SUVpeak), 
metabolically active tumor volume (MATV), and 
total lesion glycolysis (TLG = SUVmean × MATV) 
[1]. Note that the term “glycolysis” here stems 
from the use of FDG as a tracer for tissue metab-
olism. Other PET imaging agents report on dif-
ferent tissue processes or status. For example, 
F-18 fluoromisonidazole is used to determine the 
level of tissue oxygenation. In analyzing FMISO- 
PET data, a value for total lesion hypoxia can be 

determined. Several variations exist for the calcu-
lation of SUVpeak using a number of PET imaging 
agents. One common approach uses the average 
SUV within a 1 cubic centimeter tissue sphere 
centered at the voxel with intensity SUVmax, but 
the neighborhood could be, e.g., the 9-voxel cube 
centered at SUVmax instead of a sphere. As for 
MATV, the tissue volume analyzed could be 
roughly approximated by the product of the num-
ber of voxels within the VOI and the unit volume 
of a single voxel. Some refinements exist to 
account for fractional voxels at VOI boundaries.

The above summaries are used essentially for 
characterization of primary lesions. Metastases 
assessments can also be performed. In most 
instances, similar tissue uptake determinations 
are performed. Typically, the number of lesions 
and parameters such as their size and SUVpeak 
values are reported. Methodologies vary with the 
image specialist and the type and nature of the 
disease.

For PET-based therapeutic response assess-
ment, it is common to compare the most active 
lesions before and after therapy. Several sets of 
guidelines have been created. The Positron 
Emission Tomography Response Criteria in Solid 
Tumors (PERCIST) was published in 2009 in an 
effort to adapt the former WHO and (more MR- 
and CT-appropriate) Response Evaluation 
Criteria In Solid Tumors (RECIST) guidelines to 
the specifics of FDG PET (tissue metabolism) 
imaging data [1]. PERCIST classification rules 
determine whether there is “complete metabolic 
response,” “partial metabolic response,” “stable 
metabolic disease,” or “progressive metabolic 
disease” following therapy, taking into account 
the number of lesions and the proportional 
changes in size and SUVpeak in all measurable 
lesions.

 Risk Characterization and Predictive 
Validation

The prognostic value of PET-derived biomarkers 
is traditionally assessed by means of survival 
analyses, which can be carried out in a number of 
ways and are interpreted with respect to the 
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 endpoint considered. Conventional endpoints 
used to describe patient risk, outcome, or thera-
peutic effectiveness are, most often, overall sur-
vival (OS) (duration of patient survival before 
they become lost to follow-up), progression-free 
survival (PFS), or disease-free survival (DFS). 
These endpoints are continuous in nature, in that 
all patients can be placed on a timeline that usu-
ally starts either on the day of diagnosis or base-
line scan (t  =  0), and allow for longitudinal 
survival analyses. Time to progression (TTP) is 
another commonly used reference, but OS and 
PFS are usually preferred. Other endpoints, such 
as fixed- term survival (e.g., 2-year survival: yes/
no) or disease presence (yes/no), are discrete 
(binary or multilevel factors) and are used for 
patient classification into risk groups. The nature 
of the endpoint determines the type of statistical 
analysis that can be carried out for risk 
characterization.

 Risk Characterization for Continuous 
Endpoints
For continuous endpoints, cohort information is 
longitudinal—it contains a record of duration 
along a timeline until the event of interest occurs 
or the patient becomes lost to follow-up (e.g., for 
OS or PFS). In this context, two complementary 
forms of statistical assessment are traditionally 
carried out, which evaluate (i) the predictive 
potential of risk variables of interest and (ii) the 
ability of predictive models based on these vari-
ables to segregate patients into risk groups. 
Hazard models (most often, Cox proportional 
hazard models [6]) are usually used for the for-
mer task; they provide a measure of the effect of 
an increase in a particular variable on patient risk 
(as defined by the endpoint considered). For the 
latter task, survival curve estimates (most often, 
Kaplan-Meier estimates [6]) are obtained and 
compared for subgroups of the cohort defined on 
the basis of a score determined from the risk 
variables.

Univariate hazard models focus on the indi-
vidual effect of a variable on risk. For a given 
outcome type, they produce a hazard ratio (HR) 
that quantifies the change in risk for a unit 
increase of this variable, compared to a hypothet-

ical baseline population within which the vari-
able has a value of zero. A HR equal to 1 indicates 
no effect; HRs less than or greater than 1, respec-
tively, indicate reduction and increase in risk fol-
lowing a change in the variable. Table 6.1 below 
illustrates an example where the risk variable x is 
tumor grade, taking values for “low,” “intermedi-
ate,” and “high” tumor grade. Here x = “low” is 
used as the baseline reference profile (a low- 
grade patient tumor). The HR measures the rela-
tive difference in risk between this reference and 
an intermediate-grade or high-grade patient 
tumor (with x  =  “intermediate” and “high,” 
respectively). The case x = “high” yields a HR of 
6.22, indicating a (very) large increase in risk for 
poor outcome compared to the reference case. 
The variable may also be continuous; for exam-
ple, if x is (normalized) SUVmax, then 0 could be 
used as the reference value, and the hazard ratio 
measures the relative change in risk associated 
with a unit increase in SUVmax from a value of 0. 
In multivariate hazard models, a number of vari-
ables are considered together to describe the end-
point of interest. In this context the hazard ratio 
of a variable quantifies the change in risk for a 
unit increase of this variable when all other vari-
ables are held constant in the model.

The statistical significance of the hazard ratio 
associated with a risk variable (i.e., of the effect 
of the risk variable) is often the primary imaging 
biomarker performance indicator. A statistical 
test (usually either the Wald or Likelihood Ratio 
test) is carried out to determine whether the effect 
of the variable (in other words, the proportional 
change in risk incurred by a change in this vari-
able) is significantly different from zero. A statis-
tically significant effect indicates that the variable 
aptly describes some of the risks defined by the 
endpoint. Statistical significance of a variable is 
usually determined by its p-value. When the 
p-value falls below a set significant threshold 
(usually set at either 1% or 5%), then the variable 
is deemed a statistically significant risk factor. 
Although this result is derived from the clinical 
cohort under study, interpretation applies to the 
whole population of patients that this cohort rep-
resents. In the example of Table 6.1, the p-value 
for variable x = ‘high’ is p = 0.0004, i.e., p < 0.01, 
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and thus x is deemed a significant risk factor for 
overall survival of sarcoma patients at the 1% 
significance level (or “with 99% confidence”), 
that may be used to classify sarcoma patients into 
different risk subgroups. From this result we can 
also infer that any high-grade sarcoma patient has 
a significantly higher risk of death than a low- 
grade tumor, whether these patients belong to this 
cohort or any other.

Statistical reports aiming to validate pseudo- 
markers or other predictive variables should pro-
vide both the p-value and associated variable 
effect or HR provided by the model, in order to 
provide both evidence of the statistical signifi-
cance and an evaluation of the magnitude of the 
effect of the variable. Confidence intervals for the 
variable effect or HR are also strongly desired to 
indicate variability of the statistical assessment.

Multivariate predictive models can also be used 
for risk stratification for outcome type, based on a 
single-score summary obtained from them. Risk 
groups are determined by comparing this score to 
threshold values, which are set by the analyst 
according to the context of the cohort, either arbi-
trarily or based on clinical experience. Survival 
curve estimates are used to evaluate this stratifica-
tion, most often by means of a Kaplan- Meier anal-
ysis (here, “survival” is used loosely and describes 
duration-to-event, whatever this endpoint event 
may be) [6], such as that depicted in Fig.  6.1. 

For  each risk group, a curve is obtained that 
starts at 1 and monotonically decreases toward 0 
as events occur within that group. One essential 
advantage of these analyses is that they allow sub-
ject censoring, i.e., loss-to- follow-up, to be taken 
into account. A statistical test (usually the log-rank 
test) is then used to evaluate the statistical signifi-
cance of the separation observed between different 
survival curves. A very small test p-value (at the 
1% significance level, any p < 0.01) indicates that 
the survival curves are statistically significantly 
well separated, i.e., that there are significantly dif-
ferent survival outcomes on average for at least 
some of the corresponding sub-cohorts.

 Risk Characterization for Discrete 
Endpoints
For discrete endpoints, the problem of interest 
becomes a classification problem. Duration data 
for a patient cohort may be available but the goal 
is to assign patients to different groups, accord-
ing to risk level, disease stage, disease subtype, 
etc., on the basis of their information. In this con-
text, statistical models such as logistic regression, 
decision trees, or more elaborate forms (random 
forests, support vector machines, neural net-
works) are used to determine a classification rule 
based on the available data. The model allows 
summarizing a patient’s multivariate profile into 
one single-valued score, which is compared 

Table 6.1 Left: Cox proportional hazards analysis of tumor grade (low, intermediate, high) effect  on overall patient 
survival duration. The hazard ratios (HR) indicate that the risk of death increases, respectively, by a factor of 2.76 (i.e. 
a 176% increase) and 6.22 (i.e. a 522% increase) respectively for intermediate- and high-grade tumors, compared to a 
reference low-grade profile. The p-value smaller than 1% (0.01) for the “high-grade” level confirms that the change in 
risk in a sarcoma population is statistically significant for high-grade patients, compared to low-grade patients. Right: 
logistic regression analysis of the effect on the same variable on 2-year survival status (i.e., whether death occurs within 
2  years of diagnosis) provides similar assessment. The intercept parameter corresponds to the reference low-grade 
group, with overall lower risk of death than the other two groups, as indicated by the increase in variable effect across 
groups. Corresponding p-values indicate that high-grade tumors are associated with a significantly higher risk of death 
at the 2-year horizon for patients with sarcoma. The corresponding effect (or odds ratio) indicates this increase in risk 
of death is estimated at 9.39 times the risk for a low-grade patient. Dataset acquired at the University of Washington 
School of Medicine (August 1993 to January 2003, Dr. Janet F. Eary), after biopsy (202 patients, 91 events; 88 females, 
114 males; 52 bone, 17 cartilage, 132 soft-tissue; 32 low-, 69 intermediate-, 101 high-grade)

Cox proportional hazard model (overall survival, 
continuous endpoint)

Logistic regression model (2-year survival,  
discrete endpoint)

Grade level HR p-value Grade level Effect p-value
– – – Intercept 0.07 0.0003
Intermediate 2.76 0.0593 Intermediate 3.49 0.1154
High 6.22 0.0004 High 9.39 0.0031
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against a set threshold value in order to classify 
the case [6, 7]. Just like in a Cox model (which 
itself relies on a form of linear regression), a clas-
sification model yields an assessment of statisti-
cal significance for each of its variables. This 
significance is again evaluated in terms of a 
p-value compared to a predefined significant 
threshold, as demonstrated in Table 6.1.

Predictive performance of the classification 
rule is then evaluated in terms of standard detec-
tion theory tools. For binary classification (by far 
the most common scenario), sensitivity and speci-
ficity of the classifier are measured, with values 
within the [0,1] interval, i.e., between 0% and 
100%. Any classification model achieves a trade- 
off between these two performance metrics and 
tends to be stronger in one of these two aspects. 
One controls this trade-off by tuning the above-
mentioned classification threshold. Performance 
of the classifier is commonly assessed by means 
of an ROC analysis (receiver operating character-
istics), which provides a plot of sensitivity (or true 

positive rate) against 1-specificity (or false- 
positive rate) for varying classification thresholds, 
as illustrated in Fig. 6.1. The area under the ROC 
curve (AUC) yields a single-number summary of 
the classifier’s predictive capacity, but many other 
related metrics are available for refined perfor-
mance evaluation. A common rule of thumb is 
that AUCs between 60–69%, 70–79%, 80–89%, 
and 90–100%, respectively, indicate poor, fair, 
good, and excellent model fits, but this is not pre-
scriptive. An AUC of 0.5 (i.e., 50%) corresponds 
to a decision based on flipping a fair coin [6–8].

 Influential Factors in PET-Based 
Quantitation

 Nature of PET Data and Impact 
of Imaging Protocol
A number of operational parameters such as 
scanning time, injected dose, patient position, 
scanner calibration, and other elements of 
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Fig. 6.1 Overall survival risk analysis based on variable 
grade used in Table 6.1 for the same sarcoma cohort. Left: 
Kaplan-Meier survival curve estimates as a function of 
survival duration (a continuous endpoint) obtained for 
each grade group clearly indicate higher risk (lower 
chance of survival) as grade increases. The log-rank test 
p-value p  =  0.000004 indicates significant difference 
between the survival curves for each tumor-grade group. 
Right: ROC analysis of patient survival status (0: dead, 1: 

alive; a discrete endpoint) predicted by a univariate logis-
tic regression model using the same grade variable. The 
faint diagonal line indicates the prediction performance 
obtained by flipping a fair coin. The thick curve indicates 
the relative gain in prediction accuracy (both in sensitivity 
and specificity) obtained using the univariate model to 
predict patient outcome. The associated AUC of 69.1% 
indicates mediocre overall performance from this model
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 imaging protocols can vary considerably between 
clinical sites. Some of these aspects directly 
impact the data quality of the output image. 
Injected dose is a major contributor to image con-
trast with some imaging agents resulting in dif-
ferences in the signal-to-noise ratio in the image. 
Often with a lower imaging agent dose, there is 
greater image signal noise. Use and choice of 
attenuation correction techniques also affect the 
statistical nature of the final PET imaging data, 
with significant differences between PET-MR 
and PET-CT [2, 6, 9]. PET scanners yield differ-
ent spatial and timing resolutions, depending on 
manufacturers and especially across generations 
of tomographs. This can particularly affect the 
visibility, detection, and characterization of small 
uptake foci. Slice thickness also has an impact on 
apparent image noise [10].

PET imaging data consists of reconstructions 
of photon pairs registered in the scanner detec-
tors. As a result, scanner architectures also have 
an impact on the image output. PET imaging sys-
tems yield lower transverse spatial resolution 
than MRI and CT systems, due to the nature of 
the detection mode and information density of 
each modality. Software treatment of the raw 
data, either in-built or applied post-acquisition 
for all these systems, also has an impact. The raw 
acquired system input are positive integer values, 
but due to the tomography process, their spatial 
distribution must be reconstructed in a 3D spatial 
coordinate domain to produce a final image. 
During that step, the imaging input events 
become continuous values as opposed to inte-
gers, due to the application of image reconstruc-
tion algorithms. Choice and calibration of these 
algorithms has an impact on the statistical char-
acteristics of the reconstructed image output data. 
As an example, previous reconstruction methods 
based on filtered back projection (FBP) produce 
images where (mostly background) voxels may 
have negative intensity values, but lower overall 
bias, whereas more current methods relying on 
ordered-subset expectation maximization 
(OSEM) ensure positive uptake values in all 
areas of the image, but result in larger reconstruc-

tion bias [11]. Image reconstruction may be car-
ried out iteratively over acquired 2D slices or 
overall across the imaged 3D volume.

 Segmentation and Post-Processing
We mentioned earlier that the choice of segmen-
tation algorithm can drastically impact image 
quantitation. For example, in a case where peak 
tissue VOI uptake is found at the tumor boundary, 
improper volume delineation may remove some 
of the voxels contributing to the 1  cc sphere 
placed around the VOI designated for determina-
tion of tumor SUVmax. This would result in an 
error in SUVpeak determination. Tumor of other 
tissue uptake focus volume assessment and other 
parameters are also very sensitive to image seg-
mentation approaches.

Image interpolation procedures are also 
known to have a potentially great influence on 
analysis output variables [3]. Image interpolation 
is carried out when the resolution of the image 
needs to be adapted in order to apply image- 
based data analysis types such as radiomics, 
described further in Sect. 3. In some of these 
schemes, approximate voxel intensities are calcu-
lated in tissue locations with a finer or coarser 
image array size. In a simple example consisting 
of a function for halving slice thickness, voxel 
intensities in each slice k in the interpolated 
image would be predicted on the basis of its 
neighboring slices k − 1 and k + 1, e.g., by aver-
aging adjacent voxels.

PET spatial resolution induces another limita-
tion on quantitative image analysis, due to the par-
tial volume effect (PVE) for some tissue uptake 
foci in various body locations. Large voxel sizes 
imply that the information contained within a 
voxel partially captures the activity of its sur-
rounding voxels [12–15]. PVE correction tech-
niques are oftentimes used in order to correct this 
spillover effect and ensure that the voxel intensity 
reflects the activity in the tissue at that location 
only. This correction takes scanner specifications 
(its point-spread function, PSF) and voxel resolu-
tion into account. VOI interpolation should gener-
ally also be followed by PVE correction.
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 Quantitation with Short-Half-Life 
Tracers Radiotracers

Important considerations in PET imaging are 
radiotracer physical and biological half-lives. 
Using radiotracers with short uptake and clear-
ance times often reduces the overall duration of 
the imaging procedure, resulting in less radio-
isotope decay which increases the number of 
photon- induced count input from each imaging 
plane. This factor, in turn, can give a positive 
impact on image quality. Some imaging agents 
can also result in enhanced image contrast by 
yielding low tracer uptake in background tissue 
[16]. Several studies with short half-life tracers 
have been reported. In melanoma, amino acid 
imaging agents for tissue protein synthesis 
radiolabeled with carbon 11C (20.4-minute half-
life) have been evaluated for imaging prediction 
of therapeutic response. 11C-alpha-
methyltryptophan (11C-AMT) was evaluated in 
NIH clinical trials in metastatic melanoma, and 
11C-methionine (11C- MET) was studied in 
patients with mucosal malignant melanoma 
[17]. Gallium (68Ga) has a 67.7-minute half-life, 
and imaging agents that use this radiolabel have 
been considered for study in several cancers 
including sarcoma [16]. Guidance on image 
quantitative analysis for these imaging agents is 
not yet clear, since the statistical characteristics 
of the PET imaging data output will strongly 
depend upon imaging agent characteristics, 
including administered dose.

 Quantifying Tumor Heterogeneity

 Motivation for PET-Based 
Heterogeneity Assessment

The level of biologic heterogeneity in subpopula-
tions of cancer cells within a tumor has been 
identified as a key driver of cancer patient out-
come, in many forms of cancer including sar-
coma and melanoma [6, 14, 18–20]. Intratumoral 
biologic heterogeneity is most commonly 
assessed by tissue biopsy, in a process that 
requires that the optimal sampling area be identi-

fied, and sampled for histopathologic assessment. 
This is a challenging task, and there is a signifi-
cant risk that the histopathologic assessment may 
not represent the underlying phenotypic or genetic 
landscape of the disease fully or adequately [21].

The promising potential of imaging biological 
assessment for personalized cancer care moti-
vates the use of noninvasive imaging, and in par-
ticular PET, to replace biopsy-based 
histopathology assessments with a more conve-
nient, faster, reliable, and accurate evaluation 
process. This approach relies on the assumption 
that tumor biological heterogeneity drives imag-
ing agent uptake heterogeneity. Results from cur-
rent work can be interpreted to suggest that 
macroscopic uptake heterogeneity observable on 
PET images is likely to reflect the microscopic 
heterogeneity of cancerous tissue. The prognos-
tic potential of PET tumor uptake heterogeneity 
has been established for several cancer types, 
predominantly using FDG-PET imaging [13, 19, 
22, 23]. Interpretation of PET-derived heteroge-
neity quantitation must be made in the context of 
the PET tracer used [6, 14]. Interpretation of the 
uptake variations at macroscopic level in the PET 
tracer uptake pattern must be made in terms of 
the specific agent used for imaging different 
tumor biologic parameters such as glycolysis, 
hypoxia, or cell proliferation. Specific PET 
agents for imaging these parameters are fluorode-
oxyglucose (FDG), fluoromisonidazole 
(FMISO), and fluorothymidine (FLT).

 Heterogeneity Characterization 
in Sarcoma

The main methodological approaches to image- 
based evaluation of intratumoral heterogeneity in 
radiotracer uptake distribution in the literature 
can be organized into two generic groups [6]. 
One strategy that has received consideration 
relies on the analysis of image texture, using 
well-established tools from the (non- radiological) 
image processing community. Texture analysis 
produces a large number of image-derived vari-
ables, or features, that capture different aspects of 
the image content, summarizing variations in 
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image intensity and relief, among other things. 
Following a trend that started about 15 years ago, 
a growing number of studies characterize intratu-
moral radiotracer uptake distribution heterogene-
ity in terms of combinations of a number of these 
texture features. Novel multivariate predictive 
models, or nomograms, for staging and prognosis 
can be built by incorporating such combinations 
with existing clinical variables used routinely, 
such as patient age and tumor SUVmax (in FDG-
PET imaging) [14]. However, selecting an ade-
quate number and subset of texture variables is a 
considerable task. This prompts advanced model 
selection procedures relying on modern statisti-
cal learning techniques, and for this reason the 
underlying concept and use of texture analysis 
for image heterogeneity assessment is further 
described in Sect. 3.

The second methodology consists in compar-
ing the observed tracer uptake distribution to ref-
erence shapes or patterns. Motivated by clinical 
experience with sarcoma, intratumoral radiotracer 
uptake spatial heterogeneity has been measured 
conceptually as a degree of conformity of the spa-
tial PET tracer uptake distribution with an ideal-
ized ellipsoidal pattern. Less conformity of the 
tumor spatial uptake pattern with the idealized 
ellipsoidal object implies more heterogeneity in 
tumor radiotracer spatial uptake [6, 19]. The 3D 
spatial map of tracer uptake in the tumor VOI can 
be described using a mathematical model that rep-
resents each voxel in terms of its radial position 
within the idealized ellipsoidal pattern:

 SUV voxel radial positionideal ≈ ( )g  

where g is a function of voxel location that repre-
sents the uptake profile signature going from the 
VOI core out toward its boundary. Figure  6.2 
illustrates two examples of sarcoma studies 
acquired at the University of Washington with a 
GE Advance PET, presenting different levels of 
tumor FDG spatial uptake heterogeneity, and 
shows the corresponding uptake profile g 
obtained following this approach, where the 
uptake is shown on the y-axis as a function of the 
radial voxel position on the x-axis. Clinical expe-
rience indicates that a tumor mass with an FDG- 
avid (viable tissue) central region is usually 

observed in a histologically low-grade tumor, 
whereas a tumor that has a photopenic central 
region that likely represents a necrotic zone is a 
histologically high-grade tumor. This image 
analysis spatial model was designed with the pur-
pose of capturing these tumor features and used 
to derive a measure of conformity to the “ideal-
ized” pattern of a homogeneous uptake mass, 
thus defining FDG uptake spatial heterogeneity 
in terms of the scaled distance between idealized 
and observed SUV data:

 Het SUV SUV Variance SUVobs ideal obs≈ −( ) ( )2
/  

Based on the above definition, a low value of 
Het is assigned to studies for which the differ-
ence SUVobs − SUVideal is small. In the examples 
of Fig.  6.2, this difference corresponds to the 
average distance of the dots (the observed uptake 
data, SUVobs) to the model line (the idealized 
SUV, SUVideal).

Baseline prognostic potential of this FDG spa-
tial uptake heterogeneity assessment was vali-
dated for sarcoma patient overall survival [6, 19]. 
This method can be applied to PET/CT and PET/
MR data. Variations using a tubular reference 
structure were also considered, to provide a more 
flexible structure for characterization [24].

 Further Characterization of Spatial 
Tumor Uptake Patterns

Statistical modeling of intratumoral uptake cre-
ates opportunities for a detailed quantitative char-
acterization of tumor imaging agent uptake 
parameters beyond standard heterogeneity evalu-
ation. In particular, local spatial variations in 
uptake may also be assessed from modeling of 
the spatial uptake distribution, to evaluate differ-
ences in uptake at any location within the 
VOI.  Mathematically, this difference can be 
defined as the derivative (or gradient) of the 
uptake profile function g defined above, and a 
gradient value can be derived for any voxel:

 Gradient voxel radial position≈ − ( )′g  

This measure quantifies the steepness of the 
profile uptake curve of Fig. 6.2, along that radial 
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position within the VOI.  Following the mathe-
matical definition of Wolsztynski et  al. [6], a 
negative gradient value indicates a locally 
decreasing uptake profile when applied to an 
FDG-PET image data set (relative to peak activ-
ity and when exploring the VOI from the tumor 
center toward the tumor boundary). A positive 
gradient value corresponds to an area of increas-
ing uptake signature. Following this representa-
tion, higher-grade sarcoma will typically exhibit 
increased avidity further away from its center, 
and tumor central uptake would be seen to 
decrease, resulting in local negative gradients in 
that area. Whether the gradient is positive or neg-
ative, its absolute value indicates the magnitude 
of the trend of uptake change occurring along a 
given tumor radius and for all radii between the 
tumor center and its boundary.

Since this spatial uptake gradient quantitation 
evaluates average radial differences in uptake 
throughout the VOI, one can map areas of uptake 
differences within the tumor, including informa-
tion on the direction of change. This may be use-
ful, for example, to locate and visualize areas 
with more significant local variations in uptake. 
The sample of gradients derived from the image 
can also be summarized into a single value (e.g., 
its median value, 95th percentile, or maximum 
value), to be used in multivariate prognostic 

models alongside other variables. The prognostic 
utility of spatial uptake pattern gradient summa-
ries in sarcoma has been demonstrated by 
Wolsztynski et al. [6].

 Tumor Uptake Spatial Heterogeneity 
Characterization in Melanoma

Early-stage melanoma is associated with favor-
able outcome following complete resection, but 
challenges are much greater for effective treat-
ment of advanced disease, including elevated risk 
of tumor in stage IV. Stage IV melanoma tends to 
present with a high level of both intratumoral and 
intertumoral heterogeneity in imaging agent 
uptake [25, 26], which can increase the mathe-
matical uncertainty associated with baseline 
tumor and risk characterization. Assessment of 
these two forms of biologic heterogeneity would 
be helpful in effective treatment personalization.

Currently, biological and mutation-driven 
cancer therapies are treatments of choice for a 
number of malignancies, which explains a pre-
dominance of studies focused on tumor genomic 
and immune heterogeneity assessment, and 
assessment of metastases. To date, it is however 
unclear how markers of genetic heterogeneity are 
captured by PET imaging, and radiological 
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Fig. 6.2 Example of sarcoma studies from the cohort of 
Table 6.1, with uptake profile curve g and corresponding 
heterogeneity quantitation indicated in inset (figure 
adapted from [6]). Input VOIs are segmented as an ellip-
soidal volume such as those outlined in red on the trans-
verse views (top). Case A (left): 49-year-old male with 

upper thigh soft tissue sarcoma with an active, homoge-
neous core represented by a gradually decreasing uptake 
profile pattern. Case B (right): 48-year-old male with pel-
vis soft tissue sarcoma, with a heterogeneous core with 
low activity captured by a modal uptake profile pattern
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 intratumoral heterogeneity assessment in mela-
noma is not as developed as in sarcoma. Most 
image quantitation is currently based on FDG 
PET SUV-type summaries, most often in terms of 
change in SUVmax or SUVpeak, SUVpeak interquar-
tile range, or sum of SUV summary values mea-
sured at the predominant lesion sites [27, 28]. 
PET image spatial uptake heterogeneity is usu-
ally defined as a measure of variability in imag-
ing agent uptake profiles, but with limited spatial 
relevance.

 Artificial Intelligence  
and Radiomics in PET

 The Role of Artificial Intelligence 
in Radiology

 Motivation and Current Uses 
of Artificial Intelligence in Radiology
In order to improve patient care processes and 
develop patient-adaptive therapeutic pathways, 
modern healthcare has turned to artificial intelli-
gence (AI). The term designates a “universal 
field” aiming to “build intelligent entities” [7]. It 
consists of integrated processes that have the 
ability to learn from data and take actions or for-
mulate decisions adequately with respect to the 
input provided. AI solutions tend to be computa-
tionally more effective than conventional human- 
or computer-based techniques, allowing for 
efficient processing of large volumes of data at 
high speeds. They are built to learn continuously 
and aim to outperform human experts for specific 
tasks. Well-known universal examples include 
voice-powered personal assistants available in 
today’s smartphones, driverless robotic vehicles, 
and the IBM DeepBlue chess-playing computer 
[7]. In medical environments, AI is considered 
for a wide range of purposes, such as the analysis 
of ECG data [29], computer-aided diagnosis 
(CAD) [30], or management of electronic health 
records and medical notes available in unstruc-
tured formats [31]. One of the most powerful 
examples of AI in healthcare is the IBM Watson 
system for diagnosis and adaptive treatment 
decision- making. However most developments in 

this field are currently still at the experimentation 
stage and face limitations in terms of regulations, 
logistics, and validation [31].

In radiology, current research underway is 
predominantly focused on AI for tumor screen-
ing, characterization, and diagnosis purposes. 
Applications of AI to radiological data remain 
experimental or exploratory, although support 
decision systems were reported in the 1970s [32]. 
Recent developments include CAD for breast 
cancer screening [8, 33], aiming to reduce the 
high false-positive rates of existing exam 
approaches. Screening processes perform classi-
fication of the VOI (for instance, into binary deci-
sions such as disease presence/absence) on the 
basis of a number of input variables, some from 
routine clinical investigation, and others extracted 
from the radiological image. Results to date sug-
gest that current AI practice provides improve-
ment when used as a support tool (i.e., as a second 
opinion) rather than a standalone solution in this 
domain and needs further validation.

Image-based tumor segmentation can also 
benefit from AI technologies, for both tumor 
delineation and intratumoral parameters profil-
ing. Current advances for these tasks rely on 
automatic learning techniques (which AI systems 
heavily rely upon) rather than implement full AI 
processes. Namely, “machine learning” and 
“deep learning” frameworks allow building of 
predictive models based on training data. 
Advanced automated processes are considered in 
addressing interuser variability in image segmen-
tation and to speed up this time-consuming task. 
A broad range of strategies for automatic tumor 
delineation in images have been explored, some 
relying heavily on classical image processing 
tools such as wavelet decomposition. Others 
involve an elaborate panel of tumor features cal-
culated from the VOI. Researchers report using 
deep learning techniques for VOI segmentation 
especially for MRI and CT data [34–36]. Volume 
delineation based on neural networks could also 
be applied effectively to PET data [37]. VOI seg-
mentation remains conservative due to its critical 
impact on subsequent analysis. Implementation 
of complete AI solutions within commercialized 
or serialized products (either imaging devices or 
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software) will require considerably more devel-
opment. Recent efforts have evaluated tumor 
image segmentation for tumor prognosis poten-
tial. This is reflected in recent major community 
challenges such as the Brain Tumor Segmentation 
Challenge (BRaTS) for glioma segmentation and 
prognostic assessment using AI-based techniques 
on multicentric preoperative MRI data [38].

Tumor characterization and prognosis is the 
area in which the field of radiology has enjoyed 
the most progress with the emergence and gener-
alization of AI.  In routine practice, translating 
and interpreting the wealth of information cap-
tured by 3D imaging data into precise and reli-
able clinical assessment and prognosis is 
challenging. Based on visual or semiquantitative 
assessment, a radiologist evaluates disease pres-
ence/absence, size, and stage and forms an expert 
opinion on the level of tissue heterogeneity 
within a tumor, areas of specific interest such as 
target regions for biopsy, or therapeutic response 
[1, 39, 40]. For PET imaging data in particular, 
quantitative assessment as described in Sect. 2 
above is often restricted to simple SUV summa-
ries (SUVmax, TLG, etc.) that do not usually 
include heterogeneity valuation. The imaging 
data, which comprises of thousands of voxels in 
many cases, provides an opportunity for a much 
finer characterization of the disease but remains 
underexploited in clinical settings [1]. This calls 

for more elaborate image analysis approaches, 
which can in turn enhance prognostic modeling 
thanks to a more informed description of the dis-
ease process [6]. The accumulation of significant 
experimental results in this area of investigation 
has led to the rapidly emerging field of 
“radiomics,” whose principle, described in the 
next section, is not unlike that of genomics [2, 14, 
22, 41].

 Radiomics: Machine Learning 
for Tumor Characterization 
and Prognosis
A growing number of image-derived variables 
have been considered in recent research to either 
replace or complement routine quantitative tumor 
assessment. Particular emphasis has been placed 
on capturing various aspects of intratumoral spa-
tial uptake heterogeneity noninvasively, using a 
subset of dozens, sometimes hundreds, of 
descriptors of voxel intensity distribution, image 
texture, and related image processing aspects. 
Such a collection of metrics are often referred to 
as “textural parameters” or “radiomic features” 
and may be divided into groups of image descrip-
tors; Table  6.2 below illustrates some of these 
groups with examples of well-known features for 
each [3]. This description is non-exhaustive. A 
wide range of other metrics is available, e.g., tex-
tural descriptors derived from wavelet transforms 

Table 6.2 Some of the more common families of radiomic features and examples of features in each family. Figure 6.3 
further below illustrates the nature of the representations of VOI uptake distributions used to define feature families 
(A)–(D)

(A) Morphological 
features (B) Intensity features (C) Spatial textural features (D) Regional features
Shape and structure 
descriptors of the 
volume of interest

First-order aspects of the 
distribution of voxel 
intensity levels (histogram- 
based, not spatially 
relevant)

Second-order aspects of the 
spatial distribution of voxel 
intensity levels (associations 
of neighboring voxels)

Higher-order aspects of 
spatial distribution of 
connex groups of voxels 
(number and size of groups, 
etc.)

Examples of features (variables)
Volume
Surface area
Sphericity
Major axis length
Elongation
Flatness
...

Mean intensity
Intensity variance
Maximum intensity
Intensity range
Intensity uniformity
Histogram entropy
...

Joint average
Joint variance
Joint entropy
Correlation
Homogeneity
Contrast
...

Long-run emphasis
Run length variance
Small/large zone emphasis
Gray-level non-uniformity
...
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of the image. The variables of Sect. 2 measuring 
heterogeneity and radial variation in uptake are 
other candidates.

Figure 6.3 illustrates different summaries of the 
distribution of gray levels in the VOI in an FDG-
PET sarcoma image, aligned with the columns of 
Table 6.2. The group of first-order metrics (second 
column in Table 6.2) is not spatially relevant, i.e., 
these metrics would remain unchanged if the 
image were scrambled. They are very close in 
nature to quantitative summaries used routinely 

such as SUVmax or SUVmean. Second-order features 
summarize how any two voxel intensity levels i 
and j may be distributed within the image—for 
example, if it is likely to find a very bright voxel 
next to a very dark one (image contrast). Higher-
order features describe other aspects of the struc-
ture of intensity levels within the image after its 
requantization into a lower number of gray levels 
(usually 32 or 64), such as the size and number of 
groups of voxels of comparable intensities, or their 
homogeneity within the volume.

Adjacency patterns Regional patterns

min

min

max

max
i

j

VOI Voxel intensities

d

b

c

a

0 2 4 6 8 10

Fig. 6.3 Various distribution summaries of the voxel 
intensity levels found in a soft-tissue sarcoma volume of 
interest, of which a transverse slice is shown in (a) first- 
order probabilities of intensity levels (b); second-order 
probabilities of co-occurrences of gray level intensity 
pairs (i,j) (dark and bright points on this matrix, respec-
tively, indicate low and high probabilities of finding vox-

els of intensities i and j next to each other within the 
volume of interest) (c); regional patterns in gray level 
intensities (d), obtained following image requantization 
into a set number of gray level bins (typically into 32 or 64 
gray levels). Note this requantization is also used before 
computing second-order texture features (c), and for some 
of the first-order intensity features (b)
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A very informative tumor profile can be 
derived from clinical assessment and patient 
imaging that includes clinical biomarkers, radio-
logical markers, and other potential risk factors. 
Radiomics analyses rely on algorithms that have 
the ability to discover patterns and relationships 
among this wealth of clinical variables. These 
pattern-finding techniques belong to a sub-branch 
of AI called “machine learning” (ML), which 
greatly overlaps with the statistical learning the-
ory framework—in fact, many data scientists and 
other analysts who are not involved or interested 
in AI use ML techniques on a routine basis. These 
are used to automatically build mathematical 
(e.g., prognostic or diagnostic) models from sam-
ple data, can be used to process very large 
amounts of information, and require only very 
mild assumptions and prior knowledge of the 
data. Various ML techniques can be considered, 
the most popular of which are named random for-
ests, support vector machines, and artificial neu-
ral networks (ANN). The latter attempt to mimic 
a human brain, and allow for nonlinear interac-
tions between variables, provides an opportunity 
for deeper exploration of existing patterns in the 
data. As a result ANN have yielded their own 
paradigm, termed “deep learning,” within the ML 
framework.

The overall objective of a typical radiomics 
analytical pipeline is to create, from a dataset of 
measurable clinical information, a model that 
will allow predicting a target variable for future 
patients (patient outcome, disease type, etc., 
depending on the objective). For tumor character-
ization this target variable or label could be, e.g., 
tumor subtype, stage, grade, or biopsy-assessed 
biologic heterogeneity. For a prognostic model, 
the goal is usually a clinical endpoint, patient 
outcome at last follow-up, or duration of patient 
survival until last follow-up [2, 14, 22, 41].

The following key methodological aspects 
involved in radiomics analyses are driven by sta-
tistical considerations:

 (i) Preliminary feature elimination is usually 
performed in order to “sieve through” the 
hundreds of input variables, or features, to 
eliminate redundant information and reduce 

the size of the dataset to be analyzed. This 
step is taken to increase pertinence and per-
formance potential of the predictive model 
being built. It may be performed using a 
number of statistical techniques such as cor-
relation analysis, multivariate factor analy-
sis, or using an iterative elimination process 
[42–44].

 (ii) Then the predictive model is “trained” on, or 
fit to the data, so that it learns to use the fea-
tures together to characterize the target vari-
able. This phase is usually a form of 
supervised learning, which means that the 
set of clinical and radiological features is 
explored retrospectively against the 
observed value of the target variable for pre-
vious clinical patients. It is critical that some 
form of statistical methodology such as 
cross-validation is used at this stage in order 
to avoid model overfitting, a case where the 
model would describe the known data too 
well but perform more poorly on indepen-
dent data [42, 43].

 (iii) Ideally, predictive performance of the 
trained model should be evaluated on inde-
pendent data, to avoid any statistical bias in 
this assessment [44]. If this were not the 
case, predictive assessment of the trained 
model would likely be overinflated, since 
the latter would be used to predict values 
that it has already somehow “seen” during 
the training process. Because of the require-
ment to use a sound statistical validation 
framework, it may be unfeasible to use an 
independent validation sample when the 
clinical dataset available for analysis is rela-
tively small (e.g., less than, say, 100 
patients). In that case, significant predictive 
performance may still be indicative of clini-
cal potential but should be validated with 
follow-on studies on larger sample sizes.

 (iv) Final choice of an appropriate predictive 
model (e.g., a random forest, neural net-
work, etc.) may be made via benchmarking 
but could also take practical aspects such as 
clinical interpretation into account. 
Conventional statistical models used exten-
sively in medical and clinical studies, such 
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as logistic or Cox proportional hazards 
models, could also be considered for such 
applications against more elaborate machine 
learning techniques, if they were obtained 
via sound statistical training as described 
above. Alternatives such as random forests 
or neural networks are however more appro-
priate when the data comprises of more vari-
ables than patients.

Figure 6.4 illustrates the arrangement of the 
first three aspects in a typical analytical pipeline. 
Phases (i)–(iii) of this process can be replicated 
for different models, and the best model may be 
selected on the basis of performance indicators 
that are adequate to the desired application.

 Radiomics in Melanoma Imaging

The literature describes uses of radiomics for 
melanoma mainly for screening and to a smaller 
extent for classification or prognostic models. 
The majority of reports explore the use of AI in 
melanoma characterization from either dermo-
scopic images or digital photographs [45–49]. 
Study results were reported over 20 years ago 
[50]. A consensus is forming that AI methodolo-
gies applied to dermoscopic imaging can improve 
skin screening performance for melanoma.

Although PET/CT has become routine prac-
tice for staging and management of malignant 
melanoma, radiomics analyses of PET imaging 
data in melanoma have yet to be reported. Some 
studies have only recently considered radiomics 
for immunotherapy response assessment in mela-
noma, using CT data [51]. Currently, radiomic 
characterization in melanoma primarily targets 
the prognostic drivers in advanced forms of mela-
noma. As a result, recent works focused on the 

analyses of metastases as opposed to the primary 
tumor, often using CT or MR imaging data, 
focusing in particular on regional lymph nodes 
and brain metastases [52, 53].

 Radiomics in Sarcoma Imaging

Only a few studies on radiomics in human sar-
coma have been reported to date. Vallières et al. 
[54] used radiomics to improve prediction of 
lung metastasis in soft-tissue sarcoma (STS) of 
the extremities based on joint FDG-PET and MR 
imaging data. MRI data were also used by Corino 
et  al. [55] for grading of STS tumors. Survival 
prediction based on a radiomics analysis of base-
line CT imaging of high-grade osteosarcoma was 
also considered by Wu et al. [56]. The only report 
to date of a radiomics analysis for sarcoma using 
exclusively FDG-PET data was contributed by 
Wolsztynski et al. [6], where various ML models 
were considered for overall survival prediction. 
The authors demonstrated that prognostic models 
could be found that yielded effective risk predic-
tion by combining routine clinical information, 
tumor spatial uptake heterogeneity characteriza-
tion, and radiomic features.

These scarce explorative works on relatively 
small clinical cohorts need to be replicated and 
validated at larger scales. They however have the 
merit to illustrate the potential of radiomics and 
machine learning-based methodologies for vari-
ous aspects of human sarcoma risk characteriza-
tion, improving upon traditional clinical risk 
assessment practices. They also highlight how 
clinical interpretation of radiomic models is more 
challenging than that of tumor characterization 
methodologies based on clinical experience. 
Some recent works [6] indicate that structural 
modeling of the PET tracer uptake distribution 
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Fig. 6.4 Overall analysis pipeline for the construction of a predictive model from retrospective clinical data
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within sarcoma tumors allows capturing some 
aspects of the PET imaging data that are not 
exploited by traditional radiomic analyses. 
Extending the spectrum of features to include 
these clinically relevant metrics should improve 
both our clinical understanding of radiomic vari-
ables and our interpretation of multivariate pre-
dictive models formed on their basis.

 Limitations and Future Opportunities

Fully operative AI solutions in radiology are cur-
rently not ready for routine implementation. 
Current research and development efforts mainly 
make use of elaborate analytical methods such as 
ML to explore novel risk variables and pseudo- 
biomarkers and advance academic and clinical 
understanding of the vastly unexploited potential 
information contained in radiological imaging 
data. These efforts however aim at the long-term 
objective of integrating AI within routine 
practice.

 Limitations of Machine Learning 
Methodologies in Radiology
Among the main limitations and current chal-
lenges faced by AI developers, we can list the fol-
lowing aspects:

• Need for upskilling: AI has matured over 
decades to yield a broad range of concepts and 
methodologies. This may put the onus on radi-
ologists to grasp a new paradigm. Data scien-
tists should provide support and expertise, but 
ideally modern radiologists should acquire a 
working knowledge of this particular field and 
what the application to radiology requires.

• Reliance: The assistance provided by AI may 
result in reduced vigilance and undue trust or 
reliance on this convenience [29].

• Interpretability: Radiomic tumor analyses 
usually offer limited clinical interpretability, 
mainly because of the involvement of textural 
features that do not have a direct biological or 
structural meaning. In the same spirit, AI- 
derived decision-making processes are usu-
ally not easily translatable into clinically 

relevant reasoning. This is without doubt one 
of the major challenges facing clinical imple-
mentation of comprehensive AI decision- 
making solutions.

• Unbalanced performance: By construction, 
classification methods operate a trade-off 
between sensitivity (yielding very few false 
negatives) and specificity (yielding very few 
false-positive results). Current AI-based tech-
nologies for computer-aided detection (CAD) 
or automatic tumor segmentation tend to per-
form well in one of these aspects, to the detri-
ment of the other [46]. Clinical performance is 
also biased toward particular medical condi-
tions, since by construction a machine learn-
ing algorithm is usually only trained effectively 
to detect or classify one specific 
characteristic.

• Additional burden: Despite the aim to use AI 
screening and diagnostic solutions as a second 
expert opinion to the radiologist’s reading of 
the imaging data, output from current tech-
nologies must be cross-examined by the 
expert, which generates additional workload. 
Similarly, radiomics analyses for tumor char-
acterization require expert interpretation and 
clinical confirmation.

• Liability and regulation: Future clinical envi-
ronments will need to clarify the distribution 
of legal responsibilities among radiologists, 
manufacturers, and other AI-related skills pro-
viders when AI technologies are involved in 
medical errors [7]. These technologies will 
also require approval and regulation by rele-
vant bodies, such as the Food and Drug 
Administration for the USA, for example.

 Opportunities Offered by AI
Despite its inherent challenges, AI provides nota-
ble opportunities in all areas of cancer care, 
including through the following pivotal 
radiology- based aspects:

• More effective early detection: research has 
already demonstrated that AI can benefit 
early detection of cancer from radiological 
data, which would in turn improve survival 
rates [57].
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• More effective baseline prognostic models, 
incorporating more insightful tumor descrip-
tors, can enhance characterization and prog-
nostic accuracy [2, 6].

• Patient-adaptive therapy can be facilitated by 
enabling individualized assessment of thera-
peutic effectiveness [2].

• Cumbersome workloads and fatigue pertain-
ing to repetitive routine tasks for radiologists 
can be alleviated by reducing reading times 
with computer-guided imaging data evalua-
tion [7].

Efforts in the foreseeable future will improve 
our understanding of the precise nature and mag-
nitude of these opportunities. We already know 
that different imaging modalities offer different 
capabilities, and these vary with the disease. For 
instance, MRI is more sensitive than CT imaging 
in the diagnosis of non-small cell lung cancer 
[58]. This is not different for AI methodologies, 
since they depend on and build upon the nature of 
the imaging data, and their potential mainly con-
sists in enhancing this information.

The need for a multidisciplinary approach to 
treating most types of cancers is now universally 
recognized. Methodological changes in this 
direction naturally entail the need to exploit and 
recombine larger volumes of data. This will soon 
bring traditional statistical models to face their 
intrinsic limitations, and machine learning will 
become the only feasible methodological 
approach for clinical model building in many 
contexts. Embedding ML techniques is a compu-
tationally demanding and conceptually involved 
task, requiring adequate technological support 
and extended data manipulation. Meeting these 
performance requirements with reliable and scal-
able processes will allow more effective clinical 
trials support and design of more real-time utili-
zation of radiological information in routine clin-
ical settings. Such technical improvements may 
be achieved by combining many AI processes 
into a single treatment unit (“artificial swarm 
intelligence”).

In any case, neither short- nor long-term 
AI-based innovations in radiology are likely to 
exclude the expert radiologist. Despite the hype 
surrounding the recent emergence of high 

throughput analytical methodologies for various 
aspects of cancer care (diagnosis, characteriza-
tion, prognosis, and therapeutic follow-up), intel-
ligent software that can automatically choose or 
adapt a sarcoma patient’s treatment pathway 
based on their available medical record without 
any expert (radiologist, oncologist) input is not to 
be expected in the near future. The most imminent 
impact of AI in radiology will likely happen with 
its integration within modern radiological data 
management systems (such as PACS—picture 
archiving and communications systems) [29].

In melanoma and sarcoma more specifically, 
we may expect different directions of develop-
ment of technological solutions. Based on the 
current state of the art, AI may more naturally 
emerge for melanoma with the opportunity to 
exploit non-radiological imaging data. As for sar-
coma, therapeutic processes relying on AI solu-
tions should not be different in nature to those 
developed for the characterization of more preva-
lent solid tumors, such as breast or non-small cell 
lung cancers. As such, methodological progress 
achieved for these diseases should be directly 
transferable to sarcoma care. Sarcomas however 
have image characteristics that may be relevant to 
the context of modern high throughput analytics. 
They often present as advanced tumors at time of 
diagnosis, and there is a larger proportion of 
tumors with relatively large sizes as a result of 
this fact, relative to other cancers. Other sarcoma 
specifics include the fact that the nature of surgi-
cal intervention (resection vs amputation) differs 
drastically with respect to location of the disease 
and the broad range of subtypes of this disease in 
contrast to its low prevalence in adults. These 
tumor specifics will affect and guide future 
design of intelligent processes for therapeutic 
decision-making in sarcoma.

 Conclusion and Current 
Perspectives

 Current Clinical Practice

Routine clinical protocols—for sarcoma, mela-
noma, and many other cancers—use simple sta-
tistical summaries of the PET imaging data, such 
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as tumor uptake volume and the average or maxi-
mum PET uptake value within the tumor 
VOI.  These measures allow for direct image 
interpretation, and their prognostic potential has 
been well established. Such summaries however 
underexploit the wealth of information contained 
within a PET image dataset, and recent method-
ological developments indicate that complex 
tumor biological aspects can be captured nonin-
vasively using more elaborate quantitation tech-
niques. One key target indicator is intratumoral 
imaging agent spatial uptake heterogeneity 
(intertumoral heterogeneity is another key marker 
in stage IV melanoma). Many techniques are cur-
rently evaluated by the research community to 
capture this information, with growing evidence 
of their effectiveness. Quantitation methodolo-
gies relying on modern statistical frameworks 
can complement routine clinical assessment and 
provide opportunities for personalized therapy. 
These advances have prompted the use of 
machine learning algorithms toward more effec-
tive diagnostic and risk predictive models, result-
ing in the emergence of a whole new area of 
image analysis in radiology that includes 
radiomics. On the methodological horizon, these 
developments pave the way for the integration of 
complete artificial intelligence solutions within 
clinical practice.

 Limitations and Need 
for Standardization

These advances globally remain to be validated 
for larger clinical cohorts and in multicenter stud-
ies. Efforts are also required for improved clini-
cal understanding of complex prognostic models 
derived from radiomics, before these methodolo-
gies can be implemented in routine settings. A 
single reference subset of baseline radiomic vari-
ables for cancer prognosis does not yet exist for 
any cancer; different multivariate prognostic 
models are proposed with each new study. In fact, 
technical variations of various image processing 
parameters can greatly impact some of these 
complementary predictive variables. Recent 
efforts in the community, such as the Image 

Biomarker Standardisation Initiative [3], clearly 
indicate the need for homogenization and stan-
dardization of quantitative practice, a significant 
challenge yet to be overcome, as the results of 
many studies indicate (see, for instance, multi-
center studies of the American College of 
Radiology Imaging Network [4, 5]). Reaching 
colloquial agreement on future predictive models 
will also be guided by progress in our under-
standing of how PET-based tumor quantitation 
maps to phenotypic or genomic signatures.

 Multimodality Data

The prevalence of multimodality (PET/MR and 
PET/CT) scanners has led to a surge in studies 
combining co-registered (i.e., re-aligned) image 
signals. For tumor delineation, a VOI mask 
defined from MR or CT information is often used 
to guide segmentation of the PET VOI. But tumor 
characterization can further benefit from com-
bined imaging modality output, in order to align 
functional information on tumor biological fea-
tures with the anatomical and physiological 
nature (bone, soft tissue, etc.) of corresponding 
areas within the VOI [59–61]. MT or CT infor-
mation can complement assessment of PET spa-
tial uptake heterogeneity and perhaps guide 
further understanding or interpretation of bio-
logic descriptors derived from the PET image. A 
few analyses have been reported that explore 
various aspects of tumor assessment for sarcoma 
by analysis of recombined features [54, 62] and 
none for melanoma.

For multimodal imaging, two options are avail-
able. One is to associate scans acquired via several 
modalities, either by image co- registration or mul-
timodality (e.g., PET/CT–MRI) scanners; these 
allow for true CT-based attenuation  correction and 
reliably calibrated imaging data but may require 
higher radiation doses and longer acquisition times 
[59, 60]. The other option is to carry out separate 
scans and recombine extracted features post-
acquisition, during the analytical phase, albeit 
using image features that may not originate from 
identical VOIs [54]. How to best combine these 
technologies and translate them to clinical practice 
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remains an open and challenging question, at both 
the operational and analytical levels. Multimodality 
imaging also allows integrating emerging PET 
technologies, such as activatable targeted nanopar-
ticle probes, to create novel forms of imaging data, 
and requires the definition of adapted modeling 
strategies [59–61].

One practical motivation for analyses using 
two or more tomographs arises from patient 
assessment involving PET/MR and PET/CT 
devices (e.g., to optimize resources when both 
PET/MR and PET/CT scans are available on-site, 
or if several care centers are involved). In these 
contexts, direct comparison of the PET images is 
not guaranteed, as different calibration settings 
(dose, contrast, resolution, etc.) are likely and 
would require dedicated pre-processing to cor-
rect for statistical discrepancies in image charac-
teristics. Homogeneous scanner characteristics 
would however allow for both PET images to be 
used for comparative analyses.

 Kinetic Analysis

The methodologies described above only use 
static image information. They are limited in cap-
turing other aspects of the tumor biology. For 
example, they do not provide insight on imaging 
agent vascular delivery and tissue retention, 
which may be important for disease assessment 
and treatment. Dynamic (or kinetic) analysis of 
the information contained in each time frame 
after injection of the PET radiotracer, and 
throughout the entire acquisition duration, allows 
for evaluation of key imaging parameters such as 
blood flow and tissue retention characteristics. 
Recent advances in kinetic analysis also suggest 
that tumor imaging agent spatial uptake hetero-
geneity may also be evaluated in dynamic PET 
information [63, 64]. Dynamic imaging data 
analysis also provides more informed tissue char-
acterization and tumor delineation with reduced 
bias (compared to static summed PET or anatom-
ical imaging data), which can benefit quantitation 
[64]. Kinetic analysis for PET dynamic image 
acquisition protocols remains mainly conducted 

in research settings, in part due to its more chal-
lenging practical requirements.
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