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Foreword

Watching the progressive rollout of the IOT, it would be easy to form the opinion that
we really understand what we are doing and how the network is going to perform,
but nothing could be farther from the truth! Reality is, the IOT is a new and evolu-
tionary network form that presents levels of complexity and behavior that we never
anticipated and have never seen before. Further, we do not have the tools or abilities
to model, characterize, measure, and fully understand the outcomes of our designs
and deployments. And along with almost all new systems, security is often omitted
completely, or it appears as a weak engineering afterthought. In reality, the IoT
is magnifying the attack surface of the planet to the benefit of cybercriminals and
rogue states who now see the IOT as a new opportunity and entry window for wider
incursions into the networks and facilities of organizations.

It is not possible to understate the rapidly growing cyber risks posed by The IoT or indeed
the urgency of the address required

It is, therefore, refreshing to find a book addressing this most important topic with
detailed consideration of many of the initial IoT challenges. Primarily, it asks what
happenswhen an IoT attack occurs or failure happens, and how dowe locate the point
of failure/entry to assess the potential consequences and affect repairs as quickly as
possible? In short, the term “forensics” is a perfect fit for what is needed and what
is detailed in this first book on the topic. To my mind, it represents a first and vital
step in the documentation and development of a new branch of network science and
engineering that is urgently required. As an academic, practitioner, and consultant
in the field of cyber security, I found the treatment in each chapter refreshing and
reassuring with the authors detailing their latest thoughts and research results. Best
of all, they opened my mind to new concepts and avenues in the field and left me
wanting for more. I, therefore, consider this to be “Volume 1” in the opening salvo of
our battle for IoT security supremacy, and the survival of one of our most important
components of Industry 4.0 and the realization of sustainable societies.

v



vi Foreword

And so, it is in this context, and with this background that I commend this book
to you as a provocative and foundation text in the field. Hopefully, you will find it
enlightening and useful, and it might also spur even more innovation.

June 2020 Prof. Peter Cochrane
OBE

University of Suffolk
Ipswich, UK
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Emulation Versus Instrumentation
for Android Malware Detection

Anukriti Sinha, Fabio Di Troia, Philip Heller, and Mark Stamp

Abstract In resource constrained devices, malware detection is typically based on
offline analysis using emulation. An alternative to such emulation is malware anal-
ysis based on code that is executed on an actual device. In this research, we collect
features from a corpus of Android malware using both emulation and on-phone
instrumentation. We train machine learning models using the emulator-based fea-
tures and we train models on features collected via instrumentation, and we compare
the results obtained in these two cases. We obtain strong detection and classification
results, and our results improve slightly on previous work. Consistent with previous
work, we find that emulation fails for a significant percentage of malware applica-
tions. However, we also find that emulation fails to extract useful features from an
even larger percentage of benign applications. We show that for applications that are
amenable to emulation, malware detection and classification rates based on emula-
tion are consistently within 1% of those obtained using more intrusive and costly
on-phone analysis. We also show that emulation failures are easily explainable and
appear to have little to dowithmalwarewriters employing anti-emulation techniques,
contrary to claims made in previous research. Among other contributions, this work
points to a lack of sophistication in Android malware.
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1 Introduction

In 2007, Google launched a mobile operating system (OS) known as Android, which
is based on the Linux kernel and other open source software. Android is used pri-
marily on touchscreen devices such as tablets and smartphones. Google distributes
Android as an open source platform, which has encouraged the use of smartphones
as a computing platform [29]. Android currently dominates the mobile OS market,
with more than a billion Android devices having been sold, and more than 65 billion
applications (apps) having been downloaded from the Google Play Store. Android
devices account for more than 80% of the overall mobile OS market [13].

The prominence of Android has not escaped the attention of malware writers.
According to McAfee, more than 3,000,000 Android malware apps were detected
in 2017, representing a 70% increase from 2016. Also, in 2017 alone, more than
700,000 malicious apps were removed from the Google PlayStore [20].

In resource constrained devices, such as Android smartphones, malware detection
is typically conducted offline, based on emulation. The objective of this research is
to explore the effectiveness of malware detection and classification using dynamic
features extracted via emulation, as compared to extracting such features via instru-
mentation (i.e., on-phone analysis).We classify Android apps using a wide variety of
machine learning techniques based on these emulator-extracted and “real” features.
We find that emulation fails for a significant percentage of apps and that, surpris-
ingly, the failure rate is higher for benign apps than malicious apps. In contrast to
claims that appear in the research literature [25], we find scant evidence that such fail-
ures are due to anti-emulation techniques being employed by sophisticated Android
malware. Instead, the evidence indicates that Android malware writers fail to take
advantage of relatively simple techniques that could serve to make the detection
problem considerably more challenging [6, 22, 34].

We note that our analysis technique closely follows that in [2]. However, we go
beyond the work in [2] in that we consider additional machine learning techniques,
we tune the parameters, and in addition to the detection problem, we also consider the
classification problem. Furthermore, we show that a simple ensemble technique can
provide essentially ideal separation for the malware detection problem. Finally, with
respect to the sophistication of Android malware, we draw diametrically opposed
conclusions, as compared to previous work such as [25].

The remainder of this paper is organized as follows. Section 2 provides an
overview of various feature analysis methods that have previously been used to
successfully detect Android malware, along with an overview of selected examples
of Android malware research. In Sect. 3, we discuss the methodology used in our
experiments. Section 4 gives our experimental results, along with some discussion
of the implications of these results. Finally, Sect. 5 concludes the paper and outlines
possible directions for future work.
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2 Background

In this section, we first discuss the relative advantages and disadvantages of static
and dynamic features for malware analysis. Then we briefly consider the potential
weaknesses of emulator-based detection for Android malware.

2.1 Static and Dynamic Features

Malware detection can be based on static or dynamic features. Features are said
to be static if they are collected without executing (or emulating) the code. On the
other hand, dynamic features require code execution or emulation. Examples of
popular static features include byte n-grams and mnemonic opcodes, while useful
dynamic features include opcodes and application programming interface (API) calls
that occur when an app executes. In general, static features can be collected more
efficiently than dynamic features. The relative advantage of dynamic features is that
detection techniques based on such features are often more robust with respect to
common obfuscation techniques [7]. In the Android malware literature, both static
and dynamic features have been extensively studied [16].

An Android app consists of a package bundled as an Android Package file, which
has the file extension apk. Among other things, an apk file contains a manifest
(AndroidManifest.xml), class files (classes.dex), and external libraries.
Figure 1 lists the components of an apk bundle, while Fig. 2 gives an example of a
typical manifest file.

Fig. 1 The parts of an apk
bundle

AndroidManifest.xml

package name, version, permissions, components, . . .

assets/

(asset files)

lib/

(libs)

res/

(resource files)

META-INF/

(signatures)

classes.dex

(bytecode)

resources.arsc

(compiled resources)

Android Package
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Fig. 2 Sample AndroidManifest.xml file

Many useful static features can be extracted directly from the manifest file. A
considerable amount ofmalware research has focused on staticAndroid features such
as permissions (functionality requested by the app). For example, it has been found
that number of permissions requested is a surprisingly strong diagnostic [17], with
malicious apps requestingmore permissions, on average, than benign apps. However,
notwithstanding the relative ease and computational efficiency of static analysis, this
approach has a significant drawback, as it is relatively easy for malware writers
to evade static detection by obfuscating their code. Obfuscation tools are readily
available; for example, ProGuard can change data pathnames, variable names, and
function names [23].

Dynamic analysis consists of extracting features while code is executing, either
on the device for which the code is intended or on an emulator [18]. Some popu-
lar dynamic Android features include kernel processes, API calls, and information
related to dynamic loading. Dynamic techniques often deal with analyzing internal
system calls made by an application at runtime [18]. Previous work has demonstrated
the advantage of dynamic features over static features for malware detection [7].
However, the increased efficiency of static feature extraction makes static analy-
sis preferable in cases where it can achieve results that are comparable to dynamic
analysis.

To analyze features—static, dynamic, or some combination thereof—researchers
can employ awide variety ofmachine learning techniques. Examples of suchmachine
learning techniques include k-nearest neighbors, hidden Markov models, principal
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component analysis, support vector machines, clustering, and deep neural networks,
among others [30].

From the malware writer’s perspective, it is desirable to make a malicious app
appear benign under any anticipated analysis. A variety of obfuscation techniques
(e.g.. dead code insertion and code substitution) are available to disguise malware
and are generally most effective during static analysis. A variety of anti-emulation
techniques are available for evading detection by dynamic feature extraction under
emulation. These are best understood in the context of the following discussion of
emulation.

2.2 Emulation

Android malware can access sensitive information such as call history, text and
contacts, and can tamper with phone settings. To do this, malicious apps often try to
read the background environment via API calls. Examining the result of selected API
calls can enable a malicious app to identify the environment on which the code is
executing and thereby determine how best to attack the device [2]. Emulators are not
entirely faithful to real phone APIs, and malicious apps can use these discrepancies
to detect when they are being executed in an emulated environment and therefore
should restrict suspicious behavior. An example of an API that can be used to detect
emulators is the Telephony Manager API, that is,

TelephonyManager.getDeviceId()

A call to this API typically returns 000000000000000 when an emulator is exe-
cuting the code. A real physical device, on the other hand, would not return 0 as the
device identifier. This is one of the emulator detection methods that is used by the
Pincer family of Android malware [34]. Emulator detection is a significant challenge
to security analysis, because most emulators use open source hypervisors such as
QEMU, which have detectable identifying functionality [15]. It has been claimed
that the Morpheus malware app employs more than 10,000 heuristics to classify its
runtime environment [3].

To deal with issues such as these, researchers have attempted to develop improved
emulators. Several dynamic analysis tools such asTaintDroid [9],DroidBox [9], Cop-
perDroid [32], Andrubis [19, 35], and AppsPlayground [26] have been developed. In
addition, online tools are available for Android application analysis, including Sand-
Droid [27], TraceDroid [33], and NVISO ApkScan [21]. However, these dynamic
approaches still rely on emulators or virtualized environments which malware can
detect by careful analysis [21].

Since it is possible for Android malware to detect an emulated environment, we
might assume that malware would check for emulation and behave benignly when an
emulator is detected. Indeed, it has been claimed that such is the case formostAndroid
malware [2]. However, our results indicate that the Android malware datasets used in
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our experiments are not, in general, using advanced emulation avoidance techniques
to any greater degree than benign apps. This observation is based, in part, on the fact
that we find that benign apps fail to run in our emulation environment at a higher
rate than malware. In addition, we find that these failures are easily explained by
the limitations of the emulation environment, rather than advanced anti-emulation
strategies.

2.3 Selected Android Malware Research

The authors of the paper [10] study packed Android malware. These authors show
that in the time period from2010 to 2015, about 13%of theAndroidmalware that they
consider was packed, and that sophisticated Androidmalware samples often use (and
abuse) custom packers. Similar to code encryption, packing is a well-known tech-
nique for defeating signature-based and some other static detection techniques [4].
However, in this paper, we only consider dynamic analysis, which should be unaf-
fected by code packing.

The work [5] considers the problem of detecting privacy leak caused by Android
malware. The authors employ a differential analysis technique, here they vary cer-
tain key parameters and look for changes in network activity that are evidence of
private data leaking. The authors show that their technique is practical and effective.
Additional research on the privacy leak problem can be found in [31], where the
authors develop and analyze an information flow analysis tool, TaintART, which
can be viewed as an improved version of TaintDroid [37]. Such privacy leakage
and information flow work is relevant to the problem consider in this paper, and it
serves to illustrate ways that, for example, features could be collected in an Android
environment.

The research presented in [12] considers the interesting and challenging problem
of detecting Android malware that contains a “logic bomb,” which the authors define
to be malicious code that only executes under some narrow circumstance. Such
code might be used, for example, in an attack that is carefully targeted at a specific
user or other entity, and seems to be relatively common in malware developed by
nation states. This paper is focused on a narrow and apparently rare class of Android
malware, whereas our research considers the general Android malware detection
problem.

The main insights in the paper [11] is that Android intents are a stronger feature
than permissions. An Android intent is a messaging object that can be used to request
an action fromanother app component [14].While permissions have been extensively
studied in the literature, intents have receivedmuch less attention. The authors of [11]
also consider a combination of the two feature types—intents and permissions—and
show that this yields improved results, as compared to using intents only.

The authors of [25] have developed a tool to extract runtime features, from obfus-
cated Android malware. For example, encrypted SMS numbers cannot be detected
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via static analysis and malware that can detect an emulation environment could also
hide such data at runtime.

Finally, we note that many research papers claim that it is common for Android
malware apps to employ emulation-detection techniques to hide features, whilemany
other research papers implicitly assume that such is the case. Indeed, this assumption
is the impetus for considerable research in the Android malware domain. For exam-
ple, in [25], it is stated that “many malicious applications” use emulation-detection
techniques, but no evidence is provided as to the percentage of such applications
that actually occur in their malware dataset. Furthermore, the papers cited in [25] as
evidence of the supposed widespread use of such detection-avoidance techniques,
namely [6, 22, 34], do not provide such numbers either, and instead simply show
that it is possible (and, in fact, relatively easy) to implement such feature-hiding
capabilities. We return to this issue in Sect. 5.

3 Methodology

This section describes the process we followed to dynamically extract features
from Android apps. We extract such features from both benign and malicious apps,
using both emulation and on-phone instrumentation. But first, we briefly discuss the
datasets used in our experiments before providing details on the feature extraction
process.

3.1 Datasets

AMGP dataset This dataset is part of the Android Malware Genome Project [38],
and it has been used in numerous research papers, including [2]. Of the 2444
apps in the dataset, half are malicious apps from 49 different families, with the
remainder being benign apps from McAfee Labs [2]. We use this dataset for
binary classification experiments, where we classify samples as either malware
or benign.

Drebin dataset We also experiment with 3206 samples from the seven malware
families in the Drebin dataset [8]. The list of families and the number of samples
from each are given in Table 1. This dataset was used in experiments where we
attempted to classify samples into their respective families, as opposed to binary
classification (i.e., malware and benign) experiments
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Table 1 Drebin data Family Apps

FakeInstaller 925

DroidKungfu 667

Plankton 625

Opfake 613

Iconosys 152

Fakedoc 132

Geinimi 92

Total 3206

3.2 Feature Extraction

Feature extraction is a critical aspect of this research, as our approach is based on
comparing results fromvariousmachine learning techniques, using features collected
via emulator versus features collected directly from a phone-based environment.
Therefore, feature extraction was performed for both environments, as described
below.

Phone environment The Android smartphone used for data collection was config-
ured as follows: Android 5.0 Lollipop, 1.3GHz CPU, 16 GB internal memory,
and 32 GB of external SD card storage. The phone contained a SIM card with
activated service to enable 3G data use and outgoing calls. This configuration is
consistent with that used in [2]. As discussed in [2], USB 2.0 or 3.0 was used
along with the Linux VM so as to avoid the timeout that would result from a
USB 1.0 connection with files larger than 1MB.

Emulation environment A Santoku Linux VirtualBox was used to emulate an
Android device. The environment was configured as follows: 8 GB of exter-
nal SD card memory, 2 MB of memory, 4.1.2 Jelly Bean (API level 16, Android
version). To more accurately simulate the workings of a real phone, the emulator
was enhanced with contact numbers, images, pdf files, and text files. The default
IMEI, IMSI, SIM serial number, and phone numbers were altered. After each
application was executed, the emulator was re-initialized to ensure the removal
of third party apps. This emulation process is consistent with that used in [2].

DynaLog is a dynamic framework that accepts a large number of apps as input,
launches them serially in the emulator environment, creates logs of dynamic features,
and extract these features for future processing [1]. At the core of DynaLog is the
MonkeyRunner API that is able to stimulate apps with random events that are typical
of user interactions (e.g.. pressing, swiping, and touching the screen). These simu-
lated actions are designed to stimulate a significant fraction of code functionality.

To extract dynamic features from the phone, we call DynaLog using a Python
based tool, as described in [1]. Each app was executed for 15min during which time
we logged and collect dynamic features from the phone, as well as from an emulator
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Fig. 3 DynaLog [2]

running the same apps with the same input events. Figure 3 illustrates the use of
DynaLog [2].

The data collected from the phone and emulator was saved in files in the arff
format suitable for feature vector input to machine learning platforms. The 178
features form these vectors were loaded into Weka [36]. The features were then
ranked based on information gain (InfoGain in Weka) and the top 100 features
from each analysis environment (phone and emulation) were then used to test and
train the machine learning algorithms considered in this paper.

3.3 Machine Learning Models

In this section, we briefly discuss each of the nine machine learning techniques used
in this research. These nine algorithms cover a broad range of techniques, ranging
from relatively simple statistical scores to advanced neural networks.

Support Vector Machine A support vector machine (SVM) represents data as
points in a high-dimensional space, and computes a hyperplane or manifold that
separates points of different classes. The multiclass version of an SVM is known
as a support vector classifier (SVC).

Naı̈ve Bayes This approach uses Bayes’ theorem to compute probabilities of data
points belonging to classes. To simplify computation, features are “naı̈vely”
assumed to be independent of each other even when they are actually dependent.

Simple Logistic Simple logistic is an ensemble learning algorithm that uses mul-
tiple simple regression functions to model the training data, computing weights
that maximize the log-likelihood of the logistic regression function.

Multilayer Perceptron Amultilayer perceptron (MLP) is a feedforward neural net-
work that includes an input layer, an output layer, and one or more hidden layers.
MLPs are trained by backpropagation with gradient descent to minimize errors.
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IBk This is the Weka implementation of the k-nearest neighbors algorithm, using
a Euclidean distance metric to define “nearest.” Given an integer k, the algorithm
classifies a point in feature space by considering its k nearest classified neighbors.

Partial Decision Trees A partial decision tree (PART) is a simple decision tree that
contains branches to undefined sub-trees. In order to develop a partial decision
tree, construction and pruning operations are used, with the goal of finding a
sub-tree that cannot be further simplified.

J48 Decision Tree An implementation of the C4.5 decision tree algorithm, J48
repeatedly splits on the remaining feature with highest information gain.

Random Forest The random forest (RF) technique relies on a “forest” of deci-
sion trees. That is, multiple decision trees are trained, and a majority vote of the
trees is used for classification. The RF algorithm uses bagging, whereby subsets
of features and samples are selected to construct the component trees. Bagging
enables a random forest to greatly reduce the overfitting problem that is inherent
in elementary decision trees.

AdaBoost Boosting is a general machine learning technique that can build a strong
classifier from a number of weak classifiers. AdaBoost uses a simple adaptive
strategy to build such a classifier. The implementation ofAdaBoost thatwe employ
is based on decision tree classifiers.

3.4 Evaluation Metrics

From the point of view of this analysis, a positive classification is an identification as
malware. We tabulated true/false positive/negative rates for all analyses. Sensitivity
and recall are terms that are equivalent to true positive rate. Precision is the ratio of
true positives to the number of samples that are classified as positives. Thus, in our
binary classification experiments, precision tells us the fraction of samples classified
as malware that are actually malware. The primary metric we use in this paper is the
F-measure, which is defined as

F-measure = 2× precision× recall

recall+ precision

By combining both precision and recall into a single statistic, the F-measure provides
a useful single value for comparing machine learning approaches.

4 Experiments and Results

This section presents the results of two broad classes of experiments. Our first cat-
egory of experiments deals with evaluating the effectiveness of Android malware
detection based on features extracted via emulation, as compared to features extracted
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Table 2 AMGP dataset feature extraction success

Type Emulator Phone

Number Percentage Number Percentage

Malware 956 78.23 1211 99.09

Benign 807 66.03 1119 91.57

Total 1763 72.13 2330 95.33

Table 3 Drebin dataset feature extraction success

Emulator Phone

Number 2598 3201

Percentage 81.03 99.84

directly from a phone. In these experiments, we use the same dataset and feature
extraction tools as in [2]. Moreover, we consider additional machine learning tech-
niques, we tune the parameters of the machine learning algorithms,1 we consider
a multi-sensor solution, and we ultimately draw somewhat different conclusions
based on our results. We refer to this first set of experiments as malware detection
experiments.

Our second set of experiments involves classifyingmalware samples into families.
Again, we consider a variety of machine learning algorithms and we compare the
results obtained when using emulator and phone-based features. We refer to this
second set of experiments as malware classification experiments.

Before presenting these experimental results, we first discuss the data collection
phase in some detail. This is an important issue, since we were not able to extract
features from all apps using the automated approach considered here.

4.1 Emulation Versus Instrumentation

Table 2 gives the percentage of apps from the AMGP dataset that we were able to
analyze using emulation, as well as the percentage of apps that we could evaluate
using on-phone analysis. Table 3 gives analogous results for the Drebin dataset.
Recall that the AMGP dataset is evenly split between malware and benign apps,
with 1222 in each category; the Drebin dataset contains 3206 malware apps, with
the breakdown by family given in Table 1.

Tables 2 and 3 show that nearly 20% fewer malicious Android apps allow for
feature extraction using emulation, as compared to the on-phone environment, and
this is consistent across both datasets. This has led some researchers to conclude

1Based on our experiments, it appears that the authors of [2] consistently used the Weka default
settings for their machine learning experiments.
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Table 4 Features extracted only from phone environment (AMGP dataset)

Feature Phone Emulator

System;loadLibrary 212 0

URLConnection;connect 15 0

Context;unbindService 4 0

Service;onCreate 3 0

BATTERY_LOW 1 0

SmsManager;sendTextMessage 3 0

that anti-emulation techniques must be widely used in Android malware. If such is
the case, it is not clear why benign apps would use anti-emulation techniques at an
even higher rate than malicious apps—compare the benign and malware results in
Table 2. This raises questions as to whether the results for malicious apps are really
due to anti-emulation techniques, or whether there might be another explanation.

A more plausible reason why we are able to automatically extract features from
more apps using on-phone instrumentation is simply because more APIs can be exe-
cuted on a phone environment. This is especially an issue for apps that make API
calls related to network activity or read incoming and outgoing call activity. Whether
such apps are benign or malicious, the phone is able to provide such capabilities and
thereby log the relevant API activity, while emulators are not sufficiently sophisti-
cated to simulate all necessary APIs. Manual analysis of a number of apps that fail
under emulation reveals that network and call-related issues are indeed responsible
for emulation failures for both malicious and benign apps.

Table 4 lists the features that were extracted exclusively from the phone but not
by the emulator. For example, the System.loadLibrary feature is the API call
associated with native code; it is probably not logged under emulation because the
emulator does not support native code [2]. The phone based analysis shows a much
higher effectiveness in extracting features for analysis; this is clearly an essential
benefit for machine learning classification.

4.2 Binary Classification Experiments

In this section, we give the results for binary classification experiments using the
AMGP dataset. We consider each of the nine machine learning techniques discussed
in Sect. 3.3, and compare the results for features extracted via emulation against
results for features extracted via on-phone instrumentation. All experiments were
performed using Weka with 10-fold cross validation. The models were fine-tuned
over various input parameters, with the following list giving some of the important
settings.
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Table 5 Results for emulator based features (AMGP dataset)

Model TPR FPR TNR FNR F-measure

Simple
logistic

0.902 0.097 0.903 0.098 0.901

Naı̈ve Bayes 0.599 0.098 0.902 0.401 0.734

SVM 0.914 0.094 0.906 0.086 0.908

PART 0.902 0.099 0.901 0.098 0.899

J48 0.892 0.116 0.884 0.108 0.886

RF 0.916 0.063 0.937 0.084 0.928

MLP 0.941 0.087 0.913 0.059 0.926

IBk 0.899 0.096 0.904 0.101 0.903

AdaBoost 0.901 0.101 0.899 0.099 0.900

Simple Logistic The ridge estimator for regularization is used to reduce the size
of coefficients. The model is trained until it converges.

Naı̈ve Bayes Default values are used for the kernel and for discretization.
Support Vector Machine The complexity parameter C is set to 1.0 and a polyno-

mial kernel is used.
Decision Trees We experimentedwith various depths for the trees (themaxDepth

parameter in Weka) and the best accuracy was obtained with a depth of 50. The
noPruning option was set to False.

Random Forest The model yielded the best accuracy with 100 trees and this is
what we use in all experiments reported here.

Multilayer Perceptron The number of hidden layers is chosen to be 3.
IBk We use the Euclidean distance with 10 neighbors.
AdaBoost The classifier we use is the decision stump algorithm.

Using features collected from the emulator, we obtain the results in Table 5. From
these results, we see that the best accuracy is achieved by a random forest with 100
trees, while an MLP yields a similar F-measure.

For our next set of experiments, we repeat the above analyses, but using features
extracted via on-phone instrumentation, with all algorithms parameterized exactly
as in the emulation case. Results for these experiments are summarized in Table 6.
As with the emulation-based results, the random forest and MLP again perform the
best.

We performed another set of experiments on the AMGP dataset using only those
apps that successfully executed in both the emulator and on-phone environments. For
these apps, the results of testing and training the various machine learning models
based on features extracted from the emulator are given in Table 7.

The results in Table 7 again show that random forest yielded the best results.
Furthermore, the random forest experiments inTable 7 yielded nearly identical results
to those in Table 5. However, for the other techniques, the results are generally
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Table 6 Results for phone based features (AMGP dataset)

Model TPR FPR TNR FNR F-measure

Simple
Logistic

0.923 0.081 0.919 0.077 0.921

Naı̈ve Bayes 0.634 0.119 0.881 0.366 0.748

SVM 0.918 0.090 0.910 0.082 0.914

PART 0.907 0.098 0.902 0.093 0.905

J48 0.929 0.101 0.899 0.071 0.916

RF 0.942 0.074 0.926 0.058 0.934

MLP 0.924 0.082 0.918 0.076 0.925

IBk 0.906 0.086 0.914 0.094 0.910

AdaBoost 0.908 0.087 0.913 0.092 0.906

Table 7 Apps executed in both environments (AMGP data and emulator features)

Model TPR FPR TNR FNR F-measure

Simple
Logistic

0.887 0.104 0.896 0.113 0.891

Naive Bayes 0.542 0.169 0.831 0.458 0.663

SVM 0.896 0.116 0.884 0.104 0.889

PART 0.896 0.116 0.884 0.104 0.892

J48 0.874 0.088 0.912 0.126 0.894

RF 0.919 0.066 0.934 0.081 0.927

MLP 0.898 0.096 0.904 0.102 0.902

IBk 0.904 0.090 0.910 0.096 0.907

AdaBoost 0.901 0.093 0.907 0.099 0.902

slightly lower than either the exclusively emulator-based or instrumentation-based
experiments considered above.

In order to assess the value of analysis with multiple machine learning models,
error rates were considered as a function of the number of models. In Table 8 (a),
we give results for false negatives (FN), for both the emulator and on-phone fea-
tures. The row labeled with n in the table gives the number of malware apps that
were misclassified as benign by n or more of the nine machine learning techniques
considered, based on emulator features (middle column) or on-phone features (last
column). Table 8 (b) gives the analogous results for false positives. These results are
summarized in the form of line graphs in Fig. 4.

Suppose that we base our classification on a majority vote of the nine machine
learning models considered above. Then the numbers in Table 8 (a) and (b) imply
that when using the emulator features, we would have only 7 false negatives and 3
false positives, while the corresponding numbers for the on-phone features is 3 false
negatives and 0 false positives. The corresponding accuracies and F-measures are
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Table 8 Classification errors and machine learning models (AMGP dataset)

Number of models Features

Emulator Phone

(a) False negatives

1 104 91

2 72 64

3 36 28

4 19 11

5 7 3

6 2 0

7 0 0

8 0 0

9 0 0

(b) False positives

1 73 62

2 46 30

3 21 16

4 9 4

5 3 0

6 0 0

7 0 0

8 0 0

9 0 0
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Fig. 4 Misclassifications as a function of the number of models
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Table 9 Majority vote of machine learning models (AMGP dataset)

Features Accuracy F-measure

Emulator 0.9960 0.9959

Phone 0.9988 0.9988

Fig. 5 Majority vote of
models
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given in Table 9 and in the form of bar graphs in Fig. 5. These results—which
are virtually ideal—are far stronger than any of the individual models, and indicate
the potential strength of a multi-sensor approach. More sophisticated techniques of
combining the output of multiple machine learning models could potentially yield
equally strong resultswith fewermodels. For example, in themalware domain, SVMs
have been used to combine multiple scores into a single machine learning model [28]
and boosting techniques can produce a strong combined classifier [24].

4.3 Multiclass Experiments

In this section we give multiclass results based on a support vector classifier (SVC),
which is themulitclass version of an support vector machine (SVM). For these exper-
iments, we employ the Drebin dataset and we use a linear kernel in all cases. As in the
binary classification experiments above, the goal is to compare the performance of
models trained on features that have been extracted using on-phone instrumentation
with models trained on features extracted via emulation. We expect the multi-family
classification problem to be inherentlymore challenging than the binary classification
(malware versus benign) problem due to the larger number of classes.

Table 10 shows the results for our multiclass experiments, with Fig. 6 giving these
same results in the form of line graphs. This table and figure include results for both
feature extraction environments (emulation and on-phone instrumentation). Note that



Emulation Versus Instrumentation for Android Malware Detection 17

Table 10 Family classification results (Drebin dataset)

Families Combinations Emulator Phone

2 21 0.9278 0.9364

3 35 0.9182 0.9276

4 35 0.9113 0.9202

5 21 0.9079 0.9184

6 7 0.8982 0.9064

7 1 0.8890 0.8997
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Fig. 6 Family classifications

there are seven families in the Drebin dataset (see Table 1), and we have conducted
experiments with each of the 127 nontrivial combinations of these families. The
accuracy reported in Table 10 and Fig. 6 for k families is the average of all

(7
k

)

possible combinations of k families. From these results we see that the on-phone
features yield consistently better results than the emulation features, but—as with
the binary classification experiments discussed above—the differences are slight. It
is interesting that the classification accuracies are so high, which seems to indicate
that the families in this dataset may differ substantially from one another.

5 Conclusion and Future Work

In this research, we have considered Android malware detection and classification.
Our primary focus was to compare the effectiveness of features extracted on-phone
with features extracted using emulation and to consider the implications of these
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results. In our binary classification experiments we considered nine machine learn-
ing techniques (support vector machines, random forest, naı̈ve Bayes, multilayer
perceptron, simple logistic, J48 decision tree, PART, IBk, and AdaBoost). We used
support vector machines in our classification experiments.

In all cases, we obtained strong results as measured by the F-measure statistic.
Although the on-phone features performed marginally better than the emulation
features, we conclude that the additional overhead of on-phone analysis is unlikely
to be worthwhile in most situations. That is, the incremental reduction in error rates
is unlikely to be cost-effective.

A simple majority vote of our nine classifiers yielded essentially perfect detection
and F-score results, as given in Table 9. These results exceed those found in previous
work, such as [2].

Our results also call into question the oft-stated claim that Android malware
frequently uses anti-emulation techniques. Instead, we believe that these experiments
offer evidence that Android malware is actually much less sophisticated than is
sometimes claimed. In fact, this is easily confirmed by a manual analysis of apps—
malware and benign—that fail in the emulation environment. We find that such apps
fail simply due to the inability of the emulator to handle call, networking, and similar
APIs.

Future work could include a similar analysis on larger and more recent Android
malware datasets. While it is not the case that anti-emulation was effectively used
by the malware in our datasets, it would not be difficult for a moderately skilled
malware writer to generate apps that would be much more challenging to detect.
Work involving a more recent dataset would be a way to determine whether Android
malware writers have started taking advantage of such techniques.
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Towards a Generic Approach
of Quantifying Evidence Volatility
in Resource Constrained Devices

Jens-Petter Sandvik, Katrin Franke, and André Årnes

Abstract Forensic investigations of the Internet of Things (IoT) is often assumed
to be a combination of existing cloud, network, and device forensics. Resource con-
straints in many of the peripheral things, however, are affecting the volatility of the
potential forensic evidence, and evidence dynamics. This represents a major chal-
lenge for forensic investigations. In this chapter, we study the dynamics of volatile
and non-volatile memory in IoT devices, with the Contiki operating system as an
example. We present a way forward to quantifying volatility during the evidence
identification phase of a forensic investigation. Volatility is expressed as the expected
time before potential evidence disappears. This chapter aims to raise awareness and
give a deeper understanding of the impact of IoT resource constraints on volatility
and the dynamics of forensic evidence. We exemplify in which way volatility can be
quantified for a popular operating system and provide a path forward to generalize
this approach. The quantification of the volatility of potential evidence helps inves-
tigators to prioritize acquisition and examination tasks to maximize the likelihood
of collecting relevant evidence from resource-constrained devices. Our work con-
tributes to establishing a scientific base for evidence volatility and evidence dynamics
in IoT devices. It strengthens methods for on-scene triage, event reconstruction, and
for assessing the reliability of evidence findings.
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1 Introduction

As the Internet of Things (IoT) gains traction, the number of criminal cases involving
IoT systems is increasing. The increase in IoT ubiquity in all aspects of daily life will
extend both the dependence on these systems and increase the number of devices used
for crimes. As more IoT systems will sense their environments, they will also act as
new sources of evidence for activities in their environment. From these IoT systems,
data and information are in a fast flux, and a crime investigator has to prioritize
his or her efforts to collect the relevant data as evidence as long as it exists for the
criminal case. A formal approach to volatility quantification requires a well-defined
terminology of evidence dynamics and volatility. In this chapter, we are defining key
concepts andmotivating the formal approach, whichwill be detailed in the remainder
of the chapter.

Challenges introduced by IoT systems for digital forensics are abundant [1]. A
subset of IoT forensic challenges that affect volatility are summarized as follows: (i)
The ubiquity of their presence, (ii) the resource-constraints, (iii) the lack of interfaces
for forensic data collection, and (iv) the data process flow. The data process flow
makes data generated by a device hard to locate and to collect, and it can change
the data during its lifetime in the system. The set of data that is collected from the
system and is used in the investigation is regarded as evidence. The changes to data
that will be used as evidence are part of the evidence dynamics. Evidence dynamics
is a term used for all changes a piece of evidence experiences from the creation of
the data to the case has been presented in court [2].

Volatility is a term that describes the time interval before evidence disappears, and
the term will be defined in this chapter. The disappearance of evidence is a change
that happens to it, and it can thus be seen as a subset of evidence dynamics.

It is not only the IoT devices that are resource-constrained but also forensic inves-
tigations are limited by resource constraints. This is a double burden. The resources
that are available for an investigation are finite, and this includes both manpower,
time, and equipment. An investigator with access to several possible sources of evi-
dence needs to prioritize between these to optimize the probability of finding themost
valuable evidence. This prioritization task is often referred to as triage. Roussev et
al. defined triage as “[...] a partial forensic examination conducted under (significant)
time and resource constraints” [3].

During triage, the investigator needs reliable and objective sources of information
to prioritize the data and evidence collection. Given the available resources for the
forensic investigation as well as the evidence dynamics, this prioritization is done
to maximize the probability of finding relevant data and evidence. Objective and
reliable sources of information about the IoT system can help reduce human errors
due to cognitive biases a human investigator is susceptible to.

To overcome the misconception that no evidence can be found in resource-
constrained peripheral devices, we are aiming to provide an objective measurement
to determine the time window where relevant data is most likely to exist, despite
its evidence dynamics. This will increase the confidence of the investigator that
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evidence exists and where it can be found. The knowledge about the likelihood of
some evidence is still present in the system after a given time can be of help when pri-
oritizing between collecting data from two different devices that both might contain
evidence, but where one has much lower volatility than the other.1

This chapter focuses on the volatility of the evidence, and how we can measure
it, which is the objective measure as motivated above. Our contributions are:

• Amodel of the volatility, to better understand the influencing elements of volatility,
with the operating system (OS) Contiki as an example.

• The use of statistical tools to measure the volatility, which borrows from the field
of dependability and reliability analysis.

The model of the volatility is a construct to split the analysis of the volatility into
smaller, well-defined elements that individually contribute to the volatility for the
whole IoT system. The statistical method is a quantification of the contributions of
both the individual and the combined elements in the volatility model of the IoT
system.

Section 2 describes related work in volatility and how this term has been used.
Section 3 introduces the concepts of data volatility and information volatility, together
with a model for both data volatility and information volatility. Section 4 introduces
the use of statistical methods for measuring the volatility. Section 5 uses the Contiki
OS as an example of how themodel can be used. Section 6 summarizes and concludes
this chapter together with discussions on further work.

2 Related Work

The research in volatility has been focused on the acquisition process, and how to
collect evidence in a forensically sound matter, such that the collection process does
not change or otherwise overwrite relevant evidence, maintaining evidence integrity.
In the case of such changes happening, the acquisition should minimize the number
of changes and document what has changed as a part of the chain of custody. This
leads to the concept of order of volatility (OOV).

The IETF Request For Comments (RFC) 3227, “Guidelines for Evidence Collec-
tion and Archiving”, is a best practice guide for collecting and preserving evidence
from computer systems [4]. In this guide, the order of volatility is listed as an impor-
tant aspect of evidence collection, as the evidence should preferably be collected from
the most volatile evidence, and proceed with the less volatile evidence. The order
of volatility thus forms the order for prioritizing evidence collection. Examples of
evidence in this RFC, ordered in decreasing volatility order, are registers and cache;

1This assessment can go both ways. Either prioritize the high volatility device to collect data before
it disappears, or prioritize the low volatility one because there is only time to collect data from one
of the devices.
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routing table, ARP cache, process table, kernel statistics and memory; temporary file
systems; disk; remote logging and monitoring; physical configuration and topology;
and archival media.

The order of volatility is an assessment tool, and during an investigation, the
investigator can decide to rather decrease the risk of overwriting less volatile data on
the cost of not collecting more volatile data. As an example, the investigator might
want to turn an alarm central off, so that the non-volatile memory won’t fill up with
warnings, overwriting relevant data from the investigated incident [5].

Ruan and Carthy discuss the order of volatility for cloud providers, and they
defined the order of volatility to be, in decreasing order: Service layer artifacts,
abstraction layer artifacts, and physical layer artifacts [6]. This is a more generic
model than the one defined in RFC 3227 but covers a variety of system architectures.

Dykstra and Sherman researched available tools and the trust challenges that arise
with cloud computing and the forensic collection of data from Infrastructure-as-a-
Service solutions [7]. The authors described amodel with layers of trust in the system
where evidence collected from higher layer abstractions such as applications running
in a virtual machine need to trust more of the system than, e.g., packet capture at the
hardware level. This idea behind the layers in the system as layers of trust is similar
to the discussion in this paper on the storage stack layers, but in this chapter, we
focus on the layers from a volatility perspective.

The trust issue and the “changeability” of data have also been the focus for Casey,
where he discusses the need for the forensic examiner to detect, quantify, and to
compensate for unforeseen changes to the system caused by errors or loss [2].

Some authors have described the challenges with volatile data in systems. Zulkipli
et al. point out that the volatility complexity is higher in IoT systems than in other
systems, and they see a need for new techniques for filtering and collecting data in
IoT environments [8].

Montasari and Hill also discuss the challenges with volatile data in IoT systems,
especially with short-lived data in resource-constrained devices together with cloud
aggregation andprocessing of data in the system [9]. The resource-constrictionmeans
less memory and, thereby, more volatile data. The cloud aggregation would lead to
challenges in the chain of custody, as it will be harder to track the pathway of the
data in the system and describe the changes that have happened to it.

In a paper by Sandvik and Årnes, the volatility of the registers keeping the current
clock state under low power conditions was discussed. Testing showed that for some
devices, the registers kept the state up to 10s while the processor was connected to
a lower voltage than the processor could operate normally under, and it did not have
enough power to run the operating system [10]. The results showed the evidence
dynamics, as the low power affected registers holding the clock value, which made
the clock of the operating system to show the wrong time when power was restored.
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3 Volatility in IoT Devices

Any stored data will disappear after an amount of time, whether it is stored in electri-
cally powered circuits or engraved on stone tablets. How fast the data disappears is
obviously different for these two technologies, and this can be denoted as the volatil-
ity of the data. An intuitive attribute of the volatility is that the faster information
disappears, the higher the volatility of the data, but to show how volatility should
be defined, we need to go into the details of both what we mean with “disappear”
and what we mean with “data”. Another intuitive attribute is that the volatility is in
some way quantifiable and that we, in general, don’t know exactly when the data
will disappear, so there are probabilities involved.

From the field of information theory, there is a distinction between the terms
information and data. The information source transmits messages that contain some
information, and these messages are encoded in data [11, 12]. This terminology
is adopted here, and in our case, we can view the information transmitted as the
messages about the events that affect the system, and the data is stored in bits in
various physical locations of the IoT system.

With this backdrop, data volatility is introduced here as the disappearance of data
in the system, and the information volatility is introduced as the disappearance of
the information about an event, or set of events in the system. Figure 1 shows the
difference between these two terms. Data volatility only concerns the specific data
and copies of that data found in the system. One example of this might be a file that
is stored in a device and then copied to other devices in the system automatically.
How fast the data content of this file disappears is data volatility. As the informa-
tion is stored in the system as data, information volatility is dependent on the data
volatility and can be viewed as a superset of data volatility. Information volatility
takes into account all data that can be used for reconstructing an event in the system.
Even though some data that are stored will disappear, there might still be enough
information in the system to reconstruct an event. If data is disappearing, there is at
one point in time not enough information to reconstruct an event, given the defined
certainty, and this is the point where the information about an event has disappeared.

3.1 Data Volatility

Data volatility is usually what most people refer to when mentioning volatility. The
order of volatility, which is commonly used as a reference, is a description of the
ordering of data lifetime between the various storage types and locations, while the
term volatile memory is a term used for a type of memory where data disappears as
the electric power is removed.

IoT systems can, in many cases, be considered distributed systems, where infor-
mation about events is stored inmany locations. This should also be considered when
assessing the volatility of the data. Figure 2 shows a generic IoT system, where data
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Fig. 1 The difference between data volatility and information volatility. Green signifies existing
data, while red signifies inaccessible data.While data volatility focuses on the existence of a specific
piece of data, here labeled “Data 1”, information volatility focus on all data that can be used for
reconstructing an event

can be cloned into several subsystems and several locations in each subsystem. It is
important to establish the data locations that are considered in the volatility model,
whether we consider data as it is stored in one location or all copies of the same data
as it is stored in the system.

The simplest model is where data is contained in one storage location. This can be
a timestamp in the metadata of a file or the contents of a file. The time it takes before
the particular data is unavailable for the investigator can be considered the volatility.
For this, we need to consider the time it takes before a file, or the data is deleted,
and the time it takes before the areas in memory (either volatile or non-volatile)
containing the data are overwritten. An example of this might be that deletion and
erasure of a file. The information about the file and its content is encoded in data
found in both RAMand Flash storage, andwhile the data disappears from the process
memory and file system abstraction layer, the contents are still found in a page in the
flash memory.
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Fig. 2 A generic IoT systemwith data stored in several locations. Each of the elements in the figure
have their own internal system for processing and storing the data in question

A more complex model is where copies of the data are found in several locations
in the system. A system in this regard can be a single device consisting of CPU,
RAM, and flash memory, or it can be a whole IoT system consisting of several IoT
devices, servers, routers, cloud storage, and/or computers. Copies of the data can be
found in several places in a system, and it is intuitive to think that the storage location
with the lowest volatility is the one contributing the most to the overall volatility. If
the contents of a file have been overwritten, there is still a probability for the original
pages of the file to be located in the flash memory, as the wear leveling algorithm
will write to other pages when the file is modified. Even if the pages are erased with
a TRIM command, a command for wiping non-allocated blocks in a flash memory
device, the data might still be in a page in a bad block, and therefore not erased. The
file can also have been copied to other devices or a cloud service.

If we define the data volatility as the time of disappearance of all copies of the
data, the probability for finding at least one of the copies of said data is dominated
by the storage location with the lowest volatility. The “disappearance” of data is
not a sharp boundary between the existence and non-existence of the data. On the
one hand, we can think of disappearance as the point where the data does not exist
anymore, or is lost to the mythical place together with single socks from the washing
machine. The data is erased, and there are no theoretical methods of reconstructing
the data from the storage medium. On the other hand, we can view the disappearance
of the data as the point where the data becomes inaccessible for the investigator.

The inaccessibility of the data requires another set to describe the volatility, namely
themethods and tools available for the investigator for acquisition and examination of
the data. There aremanyways data can be collected froma system, fromdocumenting
status indicators on a user interface to desoldering and reading the flash chip or using
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JTAG to dump the memory. Each of these methods has access to a subset of the data
that exists in the system. If the investigator does not have the tools for performing
a JTAG acquisition, the data is inaccessible for the investigation. The definitions
of order of volatility as described in Sect. 2, often mentions CPU registers and
CPU cache as the most volatile storage locations, but there are no practical ways of
accessing these for an investigator, as any use of the processor would overwrite the
registers and many of the cache lines.

For an investigator, data disappearance means that data becomes inaccessible for
the investigation, and we define the term data disappearance as data that becomes
inaccessible for a given acquisition method or technique. The data will, therefore,
have different volatility depending on where the data is collected from in the system,
which translates to the acquisition method.

3.2 A Model for Data Volatility

There are many processes and variables in a system that affect volatility. To split the
challenge into more manageable parts, we introduce a model to ease the analysis of
data volatility.

The generalized data volatility model, VD, is introduced here as a 6-tuple given
by:

VD = (L , E, A, M, D, S) (1)

where L is the various storage system abstraction layers. E is the set of events that
has happened in the system, both internally triggered events and external events. A
is the functions of the applications producing, modifying and deleting data, M is the
functions of the storage management software and firmware mapping the application
data to the physical storage devices, and D is the set of individual memory devices in
the system with their physical reliability functions. S is the environment of the data
storage devices in the system, including the IoT system with its hardware, software,
configuration, the physical environment, and the operational environment. Table 1
shows this model with a short description of the elements.

In short, L is the structure of the data pathway in the system; E is the set of events;
A, M, D are functions that operate on the data; and S is the environment in the
background of the system. The relationship between these elements of the volatility
model is shown in Fig. 3 and is described in more detail in the following subsections.
Each of the elements the storage stack consists of contributes to the volatility of
the data. The challenge is to find the amount and type of contributions from each
element, so the total volatility of the data can be calculated or approximated if we
choose to disregard elements with an insignificant contribution.
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Table 1 The elements of the volatility model

Model element Type Description

Storage abstraction
layer, L

Physical Physical, or close to physical storage layers

Logical Data structures and access methods for the logical
storage layer structure in the system

Application The layer that processes the data that are encoded
from the events. The application activity functions,
A, works on this layer

Events, E External External events affecting the system

Internal Internal events in the system, such as delayed
response to external events or timed events

Application activity
functions, A

Applications The applications that handles the data creation,
modification and deletion, together with their rates
and probability distribution

Storage management
functions, M

FTL Software and firmware mapping the application
storage to physical storage

VMM

Memory device
reliability, D

RAM All devices that contain memory in the system. Each
type of memory has its own reliability function and
dependencies for failure-free service

SSDs

Tape drives

HDDs

Environment, S Configuration The current configuration of the system

Physical
environment

The physical environment affecting the system

Operational
environment

The external operational environment, usage
patterns, attack intensity, etc.

3.2.1 Storage Abstraction Layers

The storage abstraction layers, L , is the set of storage abstraction layers for the
devices in the system. This is in the model for two reasons: It makes it possible to
analyze the data loss functions from each layer, it is also used for describing which
layer the acquisition method uses together with the volatility.

The OSI model of networking protocols describes the abstraction layers for how
data can be transmitted over networks, where each layer has a defined role in the
addressing and handling of the data packets. This model is not followed to the letter
in contemporary network protocols, but it is still a good tool for analyzing network
protocols and for learning the abstraction layers in any network protocol stack. A
similar structure for storage abstraction layers can be defined.

The storage abstraction model defined in this work specifies how each level in
the storage hierarchy handles the storage of information from the application storage
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layer through the file system abstractions and to the storage in the physical medium.
The stack will be different for different applications and physical storage locations,
as an application may operate on different levels of the storage stack.

The two layers that are always present are the application layer at the top of the
stack and the physical layer at the bottom. The application layer is the data that is an
interpretation and encoding as a response to events. The encoded data is then stored
in a data structure, together with other information, the operating system will keep
the process data in other structures, and the data will be stored in the physical layer,
first in physical RAM, before it can be stored in physical flash storage.

These layers define where data can be forensically collected. Physical acquisition
is a term used for forensically collecting data from the physical, or a layer close to the
physical layer. Sometimes to forensically collect data from a hardware-near layer,
such as the flash translation layer (FTL), is called a pseudo-physical acquisition [13].
The forensic collection of data from any of the other storage layers is often referred
to as a logical acquisition, regardless of the exact storage layer that is affected.

Various memory technologies have different names and number of abstraction
layers, but at least three layers are consistent among the technologies: The physical
layer, the addressable-to-physical translation layer, and the application layer. Table 2
shows examples of a DRAM and a Flash memory layer structure. In RAM, the
application stores data in the process memory, and the buffers holding the data can
be copied otherwise managed during its lifetime. Beneath the in-process memory
handling, the Virtual Memory Manager (VMM) handles memory pages and can
move the memory pages in and out of a swap file, or other memory modules in case
of a NUMA architecture.2 For the Flash memory layer, the data is first in RAM, and
as the file is written to disk, the file system driver will decide where the file is to be
written in the address space, and the flash translation layer will move the data from
the linear address space to store it in the physical flash pages and keep an index of
the corresponding logical address.

It is important to note that the number of layers is dependent on several factors:
Howmany processes or functions are handling these data and the number of abstrac-
tion layers within one architecture. The data producer stack can also be different
from the collection stack for the same physical data. This can, e.g., be when an IoT
device does write directly to flash, but the interface for collection is to connect a
computer to the device and logically acquire the data via en Media Transfer Protocol
(MTP), which adds a layer of abstraction that the writing did not go through.

3.2.2 Events

The events, E , is the set of events affecting the system, often initiated by some
external interface to the system, as an IoT system is typically an open system. Events
originating in the system can be events triggered by a timer or triggered by a state
change of the system. The events are often what an investigation tries to reconstruct

2Non-Uniform Memory Access.
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Table 2 Example storage abstraction layers and functions for DRAM and Flash memory

Layer DRAM Flash

Application Sensor reading Sensor reading

Translation layers In-process memory
management

File system driver

A2P translation Virtual Memory Manager Flash Translation layer

Physical SDRAM cell Floating gate transistor

from the stored data. External events are events that are triggered from outside the
system, while internal events are events originating from the system. The events get
encoded into data in the storage abstraction stack and end up in one or more physical
storage locations.

3.2.3 Application Activity Function

The application activity function, A, is the set of functions that processes the infor-
mation and translate events into the storage system. It handles creation, modifica-
tion, and deletion of data from the top layer of the storage abstraction layer stack:
A : E → L top. One event can trigger several of these functions. An example of an
application activity function is a program running on an IoT device, analyzing sensor
inputs, recording sudden changes, and deletes the data after one week.

As the application layer is the data encoding of the external inputs generated by
an event, this layer will always be present, and the application activity function will
alwaysmap events into the application layer. An example if this is log rotation, where
the oldest log file is deleted while a new one is created, and the other log files are
renamed. Another example is the reading sensor inputs and processing these values.
There might also be unexpected events, such as a sudden power failure that affects
RAM contents, and non-volatile content that is in the middle of a non-atomic write
operation.

3.2.4 Storage Management Functions

The storage management functions, M , are the functions mapping the data between
the intermediate layers in the storage abstraction stack: M : Lx → Ly . One example
of this is the flash translation layer, which reorganizes the logical storage address to
the flash memory pages. These functions can copy data between locations in a lower
layer transparent for the layer above. From the application’s view, there is only one
occurrence of the data, but it may exist at several physical locations. The deletion
of data from the application will also make the data inaccessible for the application
layer, but the data might still exist in the physical medium.
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The pathway for the data between the application layer and the physical layer
can be different depending on the application, the data, and the physical layer, so
the storage management functions will not necessarily be the same for all data in a
system.

3.2.5 Memory Device Reliability

The memory devices failure probability, M , is the failure function of the physical
storage locations of the data. Hardware failures of a memory device will render a
part or all of the data inaccessible and thus impact volatility. We can define at least
two different aspects of this. The first is the reliability under normal operation; the
other is the reliability after an event in the system affecting the memory device has
happened. An example of this is the clock registers when losing power. Sandvik and
Årnes reported a retention time for the value in the clock register of up to 10s after
an abrupt power loss [10].

Typically, each device will have a failure probability distribution or reliability
function. This operates on the lowest level of the storage abstraction layer stack and
gives the volatility for the stored data in the absence of other events affecting the
data.

3.2.6 Environment

The environment of the system, S is the parts of the system environment that can
affect the volatility of the data apart from the direct events. The physical environ-
ment can impact the lifetime of the components; the radio environment can affect
communications; the digital operating environment shows the attack base rate, or
how hostile the digital environment is. The environment can change from one state
to another or show cyclical changes over time.

3.3 Information Volatility

From an investigator’s point of view, the data loss in a system is not the most critical
part of the investigation in itself, but rather that the amount of information available
should be enough to reconstruct events with a given confidence. While some data
might disappear, there might be other data that can be used for reconstructing the
same events. Information about an event is often encoded by several application
functions, spread over many pieces of data, and stored in several locations, as shown
in Fig. 1.
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Information volatility is the probability for enough data to be present to recon-
struct events after a period. As data is needed for decoding the information, the data
volatility, as discussed, is an important part of, and can be considered a subset of
information volatility.

A model for information volatility can be defined as:

VI = (VD, T,C) (2)

where VD is the set of data that the event is decoded into, T is the threshold for the
certainty or confidence, that is needed to reconstruct the event, andC is the decoding
function that interprets the data into information about the event.

3.4 Forensic Resources

The volatility model, as described, focuses on the technical part of data and infor-
mation volatility. For this to be relevant for an investigator, we also have to comment
on the socio-technical perspective that is the human and organizational aspects of
the investigation. The resource-constraints to the investigation itself is a burden that
adds to the resource-constraints of the devices in an IoT system.

To get access to the data or information stored, the investigator is dependent
on resources. This can be both personnel, time, acquisition tools, storage space,
or knowledge. The available resources affect both the amount and the quality of
the collected and examined data. The equipment and knowledge decide the type of
acquisition that can be performed, which again decides which memory devices that
can be acquired and the layer of the storage abstraction stack that the data can be
acquired from. As the volatility of data has to be assessed based on the storage layer
fromwhich it is collected, the available resources do affect the perceived accessibility
and, thus, the perceived volatility of the evidence. The resources are, however, not a
part of the model, but is considered a part of the limitations to the investigation.

4 A Statistical Approach to Data Volatility

The term volatility has so far been used to describe the time interval before some data
becomes inaccessible to the investigator. To quantify the volatility so it can be used
for predicting the probability of finding relevant evidence after a time, a statistical
model is needed. We will borrow some methods from reliability and dependability
analysis.

We identify that the reliability of a system, or the probability that the system fails
within a given period, is similar to the concept of volatility, where the volatility can
be viewed as the probability for the evidence to become inaccessible within a given
period. The volatility is thus the reliability of data, where the reliability analysis’



Towards a Generic Approach of Quantifying Evidence … 35

concept of non-repairable failure is the volatility’s data inaccessibility. As discussed
in Sect. 3, the volatility is dependent on the particular component in the storage
stack in which the evidence collection takes place. This means that the probability
distribution can vary, depending on the acquisition method, and a volatility function
is valid for a particular element in the storage stack.

The reliability function, R(t), is a function that describes the probability that the
system has not failed at time t . For a steady state system the reliability function
is given by: R(t) = P(TF > t), where TF is the time to failure. Instead of time to
failure, we can use the term time to inaccessibility for data and define a volatility
function as the probability of the data being inaccessible at time t :

V (t) = P(TI > t) (3)

where TI is the time to inaccessibility. The mean time to inaccessibility (MTTI) can
then be expressed similar to the mean time to failure (MTTF) as:

MTT I =
∞∫

0

V (t) dt (4)

The actual distribution of the volatility function is not generally known, as many
variables affect the exact distribution, such as the application’s memory and file
system operation distribution, encryption, the allocation strategy of the file system,
artifacts of the physical storage medium, reboots, or system failures. The model in
Sect. 3 does, however, give us some idea about the contributions to the volatility
from the various parts of the system. When the data is deleted from the application
is dependent on the application function, and the physical layer is dependent on the
reliability of the memory chip. The intermediate management layers can also hide
or copy data, as we saw in the model description.

To model the volatility, we have to find the corresponding probability distribution
function (PDF). Several distributions are used in reliability analysis, and these are
candidates for volatility analysis. The distribution can be estimated by empirical test-
ing of the system andmatching the PDF, and analytically by assessing all contributing
factors to the volatility. Two commonly used PDFs are the Exponential distribution
and theWeibull distribution, the former is popular because of its simplicity, the latter
because of its flexibility. The distributions and are described in more detail below,
together with the motivation of using them.

4.1 Exponential Distribution

The exponential probability distribution is a simple probability function that is popu-
lar because of its simplicity but is not always a good approximation of the reliability
function [14]. The exponential distribution works well for independent events, has a
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constant intensity, and a memoryless property, which can be true for external events
in the volatility model described in Sect. 3.2.2. The probability distribution func-
tion has one parameter, λ, which is the rate of the data deletion. The distribution is
given by:

f (t, λ) = λe−λt (5)

The cumulative distribution function is given by:

F(t) = 1 − eλt (6)

Figure 4 show examples of the PDF and the CDF for the exponential distribution
for various values of λ. A λ of 0.1 means a rate of 0.1 events per unit of time, and
0.01 means 0.01 events per unit of time. This can be, e.g., an internal event like a
garbage collection routine, happening every 100s on average, which gives a λ of
0.01 events/s. The mean of this distribution is λ−1 and the reliability function for this
distribution is given by R(t) = e−λt . This can be a good description for the events
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encoded by the application activity function, as external events might be modeled as
happening at a constant intensity, triggering modifications and erasure of data in the
file system.

4.2 Weibull Distribution

TheWeibull distribution is another common distribution used formodeling reliability
[15]. It has two parameters that can adjust the shape of the distribution,α and γ , which
are called the scale parameter and the shape parameter, respectively. The flexibility of
the function lets it approximate several other distributions. Depending on the shape
parameter, it can model falling (γ < 1), steady (γ = 1), or rising (γ > 1) failure
rates.

This distribution is often used to model physical components’ failure rate, as the
failure from wear of the components is not constant over time, but changes with the
age of the component. Flashmemory in SSD storage devices is an example of a failure
distribution closely resembling a Weibull distribution [16]. This can, therefore, fit
the physical reliability function in the volatility model, as described in Sect. 3.2.2.

The probability distribution can be parameterized in several ways, two of them
are given below:

f (t, γ, α) = γ

t

(
t

α

)γ

e−( t
α )

γ

(7)

f (t, k, λ) = kλ(λt)k−1e−(λt)k (8)

When γ = 1, this distribution is identical to the exponential distribution, with
λ = α−1.

The cumulative distribution function is given by:

F(t, γ, α) = 1 − e(
t
α )

γ

(9)

Figure 5 shows examples of the Weibull distribution and the cumulative distribu-
tion function for a fewvalues of γ andα. For γ = 1, the plot is equal to an exponential
distribution. As the shape and scale parameters can’t easily be decided analytically,
the parameters often are estimated by empirical observations and the probability dis-
tribution fitted to the data. See also Sect. 4.4. The mean of the distribution is given
by α�

(
1 + γ −1

)
, where �(x) is the Gamma function, which for natural numbers is

�(N ) = (N − 1)!, and a slightly more complex definition for non-natural numbers:
�(z) = ∫ ∞

0 xz−1e−x dx , where z ∈ C and �(z) > 0. The reliability function for this

distribution is given by R(t) = e−( t
α )

γ

.
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Fig. 5 Examples of the Weibull distribution and cumulative distribution functions for some values
of γ and α

4.3 Series and Parallel Systems

The storage system can be seen as a system consisting of elements connected both in
series and parallel. This is similar to the block model used for calculating reliability
in a compound system [15]. The system can be viewed as such a block model to ease
the analysis. Figure 6 shows such a block model of components attached in series
and parallel. The volatility function for these connections is given by:

Vseries(t) =
∏
i

Vi (t) (10)

Vparallel(t) = 1 −
∏
i

(1 − Vi (t)) (11)
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The storage management functions are, in most cases, connected in series. If data
is duplicated, there will be a parallel structure in the data pathway. The system’s
volatility can thus be calculated by combining Eqs. 10 and 11 following the block
structure of the system components.

4.4 Probability Distribution Fitting

Finding a probability distribution and the associated parameters that best fit the
observed data, andmeasuring the goodness of fit, is known as probability distribution
fitting. The fitting process should ensure that the model closely fits the observations
and that the model selection can be explained.

Distribution fitting can be seen as two different tasks. The first is to find the optimal
parameters for a given distribution that matches the observed data, and the other is
determining how good the distribution fits the observed data.

Several software packages can help to fit distributions and select optimal param-
eters. One such software package is the library fitdistrplus for the statistical compu-
tation and graphics software R.3 Both R and the fitdistrplus library is free4 software.
Sagemath, Matlab, and Mathematica also have distribution fitting functionality.

To measure the goodness of the fit, the observed data has to be compared to
the hypothesized distribution, and a test of this hypothesis, that the hypothesized
distribution explains the observed data is therefore needed. There are several tests
for this, each with their assumptions about the data being observed. Among the tests
often encountered, are χ2-test for discrete data and Kolmogorov-Smirnov test.

5 Example: Contiki-NG

As an example of the storage stack of a resource-constrained IoT device, we can use
the Contiki operating system. Contiki and its successor, Contiki-NG, is an operating
system for resource-constrained IoT devices [17]. Contiki is built around an event-
driven kernel, and utilize loadablemodules and services. Thewhole operating system
is about 100 kB, and need at least 10 kB of RAM to run.5 According to Eclipse
Foundation’s annual developer survey, about 5% of the IoT developers were using
the Contiki operating system for their projects [18].

For embedded devices, the acquisition of running RAM can be a challenge in
investigations, but non-volatile memory is easier to acquire, as the contents still are
present after the power has been removed. The non-volatile storage is managed by
the Coffee File System, a file system that is both minimalist and designed for flash

3https://www.r-project.org, visited 2020-07-01.
4Free as in beer and speech.
5https://github.com/contiki-ng/contiki-ng/wiki, visited 2020-07-08.

https://www.r-project.org
https://github.com/contiki-ng/contiki-ng/wiki


Towards a Generic Approach of Quantifying Evidence … 41

Fig. 7 Cooja running a simulation

memory devices. This section, therefore, focuses on the file-system specific part of
Contiki. From a volatility perspective, the theory is similar for RAM data, but the
specific memory allocation methods need to be taken into account.

Some advantages from a research perspective of using Contiki as a case study
is that the Cooja simulator that comes with the OS can simulate various types of
networks and configurations and also dynamic environments. It can both emulate
specificmicro-controllers and run native code on the host architecture. Contiki/Cooja
also implements 6LoWPANand other protocols that are used in IoT systems. Figure 7
shows a screenshot of a running simulation.

The Coffee file system has been designed to run on resource-constrained nodes
and to include wear-leveling techniques. Because of the resource constraints, the file
system has simplified many operations that we take for granted in a general-purpose
file system. It does not contain much metadata, the actual file size is not among the
metadata but has to be calculated, and there are no timestamps among the metadata.

Flash memory works differently than old-fashioned hard disks or RAM. Writing
to flash memory can only be done by writing a whole page [5]. The page size is
specific to a particular chip and is often 512, 1024, or 2048 bytes. A bit can only be
set or flipped from ‘1’ to ‘0’, and to flip the bit back to ‘1’, a whole erase block has
to be erased. Erase-blocks consist of several pages. This means that modifying data
in flash memory involves writing new versions of the data rather than overwriting
existing data. A file system operating on a flash memory need to either take this into
account or introduce a flash translation layer that mimics an addressable read-write
memory area for the operating system, while it hides the data shuffling happening
in the background. The coffee file system is designed for operating on a flash device
and does not use a flash translation layer.
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When a file is allocated, the default is to allocate 11 pages for the file, and when a
page in the file is modified, a log file is created, recording a number of changes in the
file until there are no more pages left in the log file. The next modification will then
trigger a new file with the same name to be created. The default number of updates
in the log file is four pages, and the default page size is 0x100 bytes, which equals
256 bytes.

Appending data to the end of an existing file does not create an entry in the log
file. As an append operation doesn’t modify existing data, the data can be written
directly to the already allocated pages. When an append operation has reached the
initial file allocation size, a new copy of the file will be made, and twice the number
of pages will be allocated.

The erasure of data happens when the write-pointer in the file system reaches the
end of the addressable flash memory. This triggers a garbage collection, where all
free erase blocks, or sectors as it is named in Coffee, are erased and are free to be
reused. The file system does not move existing data to free up more pages.

The simplicity of both the file system and Contiki as an operating system removes
many of the storage abstraction layers and simplifies the model considerably. From
the top, the device has an application running, where it receives inputs, and reacts to
this. The application function acts on the events; as an example, it can store a value
that is read from a device interface in a file. As the file containing these records is
sent to a central server by an application, the log file is deleted by the application.
This all happens at the top layer in the stack. Beneath this layer, the data is held in
data structures in RAM and temporarily stored in the physical RAM. The file write
will open a new stack toward the flash memory and write the files there.

The storage management functions are different between RAM and Flash, and
the function will trigger both copies of the data to be spread over the physical Flash
memory, and keep track of the unused memory such that new writes can be done at
the right location. In the physical flash, the data can be held for a long time, until the
flash memory chip breaks, or the flash cell stops working. This is the domain of the
memory device’s failure function.

Figure 8 demonstrates a simplified block model of an app running on a Contiki
device. To calculate the volatility of the system, we can use the equations from
Sect. 4.3 to calculate the volatility for the acquisition methods:

Vphysical(t) = V1(t) × V2(t) × V4(t) × (1 − (1 − V5,1(t))(1 − V5,2(t))) (12)

VRAM(t) = V1(t) × V2(t) × V3(t) (13)

Vlogical(t) = V1(t) × V2(t) × V4(t) × V5(t) × V6(t) × V7(t) (14)

Each of the individual volatility functions in Fig. 8 has to be assessed, to find Vi (t)
used in the above calculation. In our example, the data was duplicated when stored in
flash memory, therefore the parallel combination in V5. For the logical acquisition,
Vlogical(t), the duplicated data in the flash memory is not visible, and not used by the
file system when reading, so the whole pathway is in series.
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Fig. 8 A simplified model of an application running on a Contiki device and 3 different acquisition
methods

Another storage stack includes the transfer of the file to a central server. Here
the storage management functions translate the data to network packets that are sent
and stored in RAM of the gateway and other network equipment until it reaches the
central server. This is outside the bounds of the Coffee file system, though.

To acquire data, the investigator can perform a logical acquisition, some devices
allow the connection through USB, and might use a Media Transfer Protocol for
transferring a subset of the files in the operating system. This is shown in Fig. 3. The
storage stack is different between the application layer that process events and the
application layer for the MTP server that transfer the data to the forensic collection
computer. If the investigator instead uses a chip-off method, the data will be collected
from the physical flash storage layer, at level 1.

6 Summary and Conclusions

In this chapter, amodel of data and information volatility is introduced. This volatility
model is used to analyze the elements in IoT systems that affect the volatility of
data and of information in the IoT system. The emphasis in this chapter is on the
data volatility. The data volatility model consists of (i) an abstraction for a storage
layer stack; (ii) events and system states affecting data; (iii) and functions for how
data is transformed between the application and the physical storage. From this
data volatility model, all individual components contribute to the overall volatility.
Based on the volatility model, we also introduce a quantitative measure for volatility.
It allows for a more objective assessment of volatility. The volatility measure is
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dependent on the forensic method used, as each forensic method collects data from
different components in the storage layer stack. We show that the IoT system can
have several volatility measures, one for each element in the storage stack used to
collect forensic data.

We derive a statistical measurement method from dependability and reliability
analysis. This statistical measuring method is used to calculate the volatility con-
tribution in each storage layer component. Quantifying the volatility can thus be
established by combining the probability distributions by the data pathway connec-
tions in the storage stack. The data pathways can be a mix of series and parallel
connections. For the volatility function, two commonly used probability distribu-
tions are described, and the Mean Time To Inaccessibility is introduced. We have
modeled this after the Mean Time To Failure used in reliability analysis.

Themodel is exemplified usingContiki-NG, an open-source, minimalist, and real-
time operating system for resource-constrained IoT devices. By using Contiki-NG
as an example, we can focus on the core model without the added complexities of
more advanced operating systems and storage management functions. In addition,
Contiki contains a powerful simulator that we can use for our study and for volatility
analysis.

Our study described in this chapter is a step towards establishing a scientific
base for measuring the data and information volatility in an IoT system. As IoT
systems, in particular, and other computer networks in general, become more and
more complex, an objective and reliable assessment of the systems’ volatility is
becoming more crucial. It works toward a forensically sound acquisition of data
with a high evidential value.

With our study,we aim to establish a theoretical foundation toward a scientific base
for volatility analysis. Further empirical studies are needed to reveal each element’s
specific volatility contributions in the volatility model, and to translate this theoret-
ical model into working procedures for forensic practitioners. The similarities and
differences between IoT systems and individual devices regarding the components
and their volatilities are open for further studies. Information volatility is introduced
in this chapter but deserves to be focused in more detail elsewhere.

Our objective is that this research will leverage better tools for the forensic inves-
tigator and the forensic community at large, to objectively and reliably be able to
quickly prioritize the data collection during the triage process such that the quality of
the investigation can be upheld. In the courtroom, enough evidence with high qual-
ity is a necessity for a fair trial. By enabling the investigator to collect and analyze
more relevant data, the court has a better understanding of the facts to make a just
judgment, decreasing the chance of a miscarriage of justice.
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Application of Artificial Intelligence
and Machine Learning in Producing
Actionable Cyber Threat Intelligence
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Amin Hosseinian-Far, and Alireza Daneshkhah

Abstract Cyber Threat Intelligence (CTI) can be used by organisations to assist
their security teams in safeguarding their networks against cyber-attacks. This can
be achieved by including threat data feeds into their networks or systems. However,
despite being an effective Cyber Security (CS) tool, many organisations do not suffi-
ciently utilise CTI. This is due to a number of reasons such as not fully understanding
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how to manage a daily flood of data filled with extraneous information across their
security systems. This adds an additional layer of complexity to the tasks performed
by their security teams whomight not have the appropriate tools or sufficient skills to
determine what information to prioritise and what information to disregard. There-
fore, to help address the stated issue, this paper aims firstly to provide an in-depth
understanding of what CTI is and how it can benefit organisations, and secondly
to deliver a brief analysis of the application of Artificial Intelligence and Machine
Learning in generating actionable CTI. The key contribution of this paper is that it
assists organisations in better understanding their approach to CTI, which in turn
will enable them to make informed decisions in relation to CTI.

Keywords Cyber security · Threat intelligence · Artificial intelligence ·Machine
learning · Cyber physical systems · Digital forensics · Big Data

1 Introduction

Cyber threats are constantly growing in frequency and complexity [1–4]. Through
the use of intrusion kill chains, campaigns and customised tactics, techniques and
procedures, cyber criminals are able to bypass organisations’ security controls [5–7].
Cyber Security (CS) breaches and outages have been widely covered in the media,
and statistics concerning the number of cyber-attacks are available in a variety of
sources [8–11]. However, despite many CS breaches, there is little expert analysis of
the areas that organisations should prioritise in order to increase their effectiveness in
addressing known threats while also minimising the risk from evolving attacks [12].
One of theways to helpmitigate security breaches is by developing and implementing
robust CTI. CTI is focused on analysing trends and technical developments in three
areas of CS, Hacktivism and Cyber Espionage. CTI is used by nations states as an
efficient solution to devise preventive CS measures in advance and as a result to
uphold international security.

CTI is a branch of CS that concerns the contextual information surrounding cyber-
attacks, i.e. the understanding of the past, present, and future tactics, techniques and
procedures (TTPs) of a wide variety of threat actors. It is actionable and timely
and has business values in that it can inform the security teams in organisations of
adversarial entities so that they can prevent them. CTI is also a proactive security
measure that involves the gathering, collation and analysis of information concerning
potential attacks in real time so as to prevent data breaches and subsequent adverse
consequences. Its primary objective is to deliver detailed information on the security
threats that pose a higher risk to an organisation’s infrastructure and simultaneously
guide the security teams on preventative actions.

By providing continuously updated threat data feeds, CTI can enable security
teams to defend against cyber-attacks before they can enter their networks or detect
already malicious activities on enterprise networks. For instance, CTI can assist
the teams in gaining a detailed understanding of the adversary and their modus
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operandi. This, in turn, enables them to improve their protection against specific
attack methods known to be used by the adversary, and helps produce actionable
information that can enable decision makers to comprehend their operational risks
and better prioritise and allocate resources. Therefore, to be effective, CTI must
be able to provide context and to be understood by decision makers. While CTI’s
main focus is on traditional IT systems, industrial control system (ICS) and network
operators could also benefit from this capability given that many of the threats to
ICS are facilitated by traditional IT networks. A CTI network can be considered
as a combination of regular updating and learning feeds that develop the basis of
powerful layered network security. Such threat feeds enable individual devices and
networks to take advantage of the intelligence of numerous devices to safeguard their
endpoints and networks.

Considering the above, many organisations attempt to include threat data feeds
into their networks or systems without fully understanding how to deal with a daily
flood of data filled with extraneous information across their security systems. This
adds an additional layer of complexity to the tasks performed by security analysts
who might not have the appropriate tools to determine what information to prioritise
and what information to disregard. Therefore, to address the stated issues, this paper
aims firstly to provide an in-depth understanding ofwhat CTI is and how it can benefit
organisations, and secondly to analyse the application of Artificial Intelligence (AI)
and Machine Learning in generating actionable CTI. The key contribution of this
paper is that it assists organisations in better understanding their approach to CTI,
which in turn will enable them to make informed decisions in relation to CTI.

The remainder of this paper is structured as follow: Sect. 2 provides a brief
overview of CTI and its benefits. Section 3 discusses phases of our recommended
six-phase CTI Cycle (CTIC) and how each phase can be utilised to provide intel-
ligence, help to guide decisions, shorten the information aggregation and dissemi-
nation timelines, and assist organisations in protecting their networks from cyber-
attacks. Section 4 analyses the application of Artificial Intelligence (AI) andMachine
Learning (ML) in producing actionable CTI. In Sect. 5, a discussion is provided, and
finally the paper is concluded in Sect. 6.

2 Cyber Threat Intelligence

2.1 Overview of CTI

CTI is an ambiguous concept with numerous definitions attributed to it that are based
on different procedural viewpoints and competitive imperatives. One definition that
provides a comprehensive description is provided by McMillan [13], who defines
CTI as:
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evidence-based knowledge, including context, mechanisms, indicators, implications and
actionable advice, about an existing or emerging menace or hazard to assets that can be used
to inform decisions regarding the subject’s response to that menace or hazard.

Despite its ambiguity, CTI should have three main characteristics including,
(1) evidence based: cyber threat evidence may be acquired from malware anal-

ysis to ensure that the threat is valid, (2) utility: there must have some utility for
organisations to have a positive impact on security incidents, and (3) actionable: the
gathered CTI must drive not only data or information but also security control action
[14]. It must include the combination of information detailing possible threats with
a solid insight into network structure, operations, and activities. In order to produce
this evidence-based knowledge, information on the mechanisms and indicators, i.e.
threat feeds, will need to be put into context by contrasting it with the core knowledge
of network activity. The process of gathering and collation of threat feeds will result
in threat intelligence, “which then informs ‘security analytics’ to improve chances of
detection” [15]. Security analytics in a network defence environment often consists
of one of the following two forms, both of which are informed by CTI: ‘Big data’
platform processing large amounts of network data to determine trends, and ‘Security
information and event management (SIEM) infrastructure’ to automate the detection
of anomalous activities.

CTI is collected by continuously analysing large quantities of threat data with
the aim of organising and adding context to cyber threat activities, trends and
attacks. It can be derived from external threat feeds, internal networks, analysis
of historical attacks, and research. For instance, it can be generated through the
aggregation of fused, heterogeneous and highly reliable sources of data such as
security networks, web crawlers, botnet monitoring service, spam traps, research
teams, the open web, dark web, deep web, social media, and collected historical
data about malicious objects. All the aggregated data is then carefully examined and
processed in its entirety (often in real-time) through several pre-processing tech-
niques, including statistical criteria, expert systems (such as sandboxes, heuristics
engines, similarity tools, behaviour profiling etc.), security analysts’ validation and
whitelisting verification.

2.2 Types of Threat Intelligence

CTI can be classified into four main types as depicted in Fig. 1 in relation to
information assortment, knowledge analysis and intelligence consumption. These
consist of Tactical, Technical, Operational and Statistical threat intelligence [16].
The followings describe each type.

Tactical Cyber Threat Intelligence Tactical CTI (TaCTI) focuses on the techniques
and procedures of threat actors such as methodologies, tools, and tactics, relies on
sufficient resources and includes certain specific measures against malicious actors
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Fig. 1 Types of threat intelligence

attempting to infiltrate a network or system. TaCTI should be used to evaluate real-
time events, investigations, and activities, and to provide support for day-to-day oper-
ations and events such as the development of signatures and indicators of compromise
(IOCs). It must be aimed at the immediate future and identifies simple IOCs (such
as malicious IP addresses, URLs, file hashes and known malicious domain names).
If implemented properly, it can provide organisations with a deeper understanding
of how they have been previously attacked and how they can mitigate such attacks.
TaCTI is often automated and machine-readable enabling security products to ingest
it through feeds or API integration. It is considered to be the easiest type of intelli-
gence to be produced, and as a result, it can be found through open source and free
feeds. It must be noted that TaCTI has a short lifespan given that IOCs can become
outdated in a short period of time.

Technical Cyber Threat Intelligence Technical CTI (TeCTI) should focus on the
technical clues that are indicative of a CS threat such as the subject lines to phishing
emails, fraudulent URLs or specific malware. TeCTI enables security analysts to
determine what to look for, rendering it valuable for analysing social engineering
attacks.However, in thefinancial sector such as the banking sector, penetration testing
no longer appears to be sufficient to shield sensitive business sectors. Considering
this, the UK Financial Authorities have recommended several steps which can be
found in [17] to protect financial institutions from cyber threats.
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Operational Cyber Threat IntelligenceOperational CTI (OCTI) pertains to details
of specific events associated with the cyberattack in order to facilitate an under-
standing of the nature, severity, timing, and intent of specific attacks. OCTI involves
cybersecurity professionals learning about threat actors and is focused on addressing
the ‘attribution’ elements of CTI, such as ‘who’, ‘why’ and ‘how’ questions. In
this context, ‘who’ refers to threat actors, ‘why’ addresses the motivation or intent,
and ‘how’ consists of tactics, techniques and procedures (TTPs) that adversaries
use to carry out attacks. The attribution elements offer context, and context, in turn,
provides insight into how attackers plan, conduct, and sustain campaigns and oper-
ations. Such an insight is considered to be operational intelligence which cannot be
produced by machines alone. If implemented properly, OCTI will be able to provide
highly specialised and technically focused intelligence to guide and assist with the
response operations.

Thus, OCTI should be based on details of the specific incoming attack and eval-
uation of an organisation’s capability in determining future cyber-threats. It must
be able to assess specific attacks associated with events, investigations and mali-
cious behaviour, and provide an understanding that can guide and support response
to specific incidents. This type of CTI requires Cyber Security Analysts who can
convert data into a format that is readily usable by end-users. Despite the fact that
OCTI necessitates more resources than that required by TaCTI, it offers a longer
valuable lifespan. This is due to the fact that attackers will not be able to alter their
TTPs in the same way that they could easily change their tools. OCTI is often most
beneficial for those cybersecurity specialists operating in security operations centers
(SOCs) who are in charge of conducting routine operations. Professionals operating
in CS branches such as Vulnerability Management, Incident Response and Threat
Monitoring are the main customers of OCTI as it assists them with becoming more
capable and effective at their assigned tasks [16, 18].

Strategic Cyber Threat Intelligence Strategic CTI (SCTI) must be aimed at long-
term issues and be based on high-level information on CS modus operandi, threats,
details concerning impact of fund on different cyber activities, attack tendencies, and
the effect of high-level business assortments. Therefore, SCTI must be employed
(1) to evaluate disparate pieces of information to establish unified views, and (2)
to develop an overall picture of the intent and capabilities of cyber threats (such
as the actors, tools and TTPs) through the identification of trends, patterns, and
evolving threats with a view to inform decision makers. An effective SCTI should
also be able to enable time alerts of threats against organisations’ important assets
such as IT infrastructure, employees, customers, and applications. This information
should be in the format of reports, whitepapers, policy documents, or publications
in the industry and must then be presented to high-level executives, such as Chief
Information Security Officers (CISO) for the purposes of decision making.

Furthermore, SCTI can be used as a means to understand how global events,
foreign policies, and other long-term national and international movements can influ-
ence the CS of an organisation. This understanding can assist decision-makers in
understanding cyber threats against their organisations more effectively. In turn, this
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knowledge can enable them to make CS investments that safeguard their organisa-
tions and are aligned with its strategic priorities [18]. SCTI is the most challenging
type of intelligence to produce as it entails human collection and analysis that require
an in-depth knowledge of bothCS and global geopolitical situation. To this end, often,
senior leadership is required to perform critical evaluations of cyber threats against
their organisations.

2.3 Benefits of Cyber Threat Intelligence

If implemented effectively, CTI provides substantial benefits as threat informa-
tion can be shared in machine-readable formats that can be promptly obtained and
imported for immediate use by security incident and event management (SIEM) tools
and CTI platforms (CTIPs). CTI can enable the development of a focused defence
against specific threats as well as the insight to apply the appropriate CS tools and
solutions to protect organisations. Furthermore, CTI can provide organisations with
context such as intelligence about the attackers, their motivation and capabilities and
indicators of compromise (IoCs) in their system to investigate. This information will
enable organisations to make informed decisions about their security. Based on its
classification, described in the previous section, CTI offers four types of tactical,
technical, operational, and strategic benefits as shown in Table 1.

In addition to the above, CTI can contextualise threat information that is more
meaningful for the end-user. This, in turn, reduces ambiguity, enhances situational
awareness, and results in more informed risk management and security investment.
Furthermore, CTI can assist vulnerability management teams in prioritising the most
vital susceptibilities more accurately with access to the external understandings
enabled by CTI. Similarly, comprehending the existing threat landscape (comprising
key insights on threat actors and their modi operandi) that CTI provides can augment
other high-level security processes such as fraud prevention and risk analysis. As
well as assisting organisations to protect their networks, CTI can also enable them
to regulate costs of sustaining their network security and provide the security teams
with the knowledge they require to concentrate on what really matters.

3 Cyber Threat Intelligence Cycle

To produce intelligence (the final product of the CTI cycle), organisations would
firstly require to collect raw data. This raw data represents simple facts that are
available in large quantities such as IP addresses or logs. On its own, the raw data has
limited usefulness until it is converted to information through data processing for the
purposes of producing a valuable output. An example of information is a collated
series of logs that display an increase in suspicious activities. Intelligence can then be
produced by processing and analysing this information, whichmust be able to inform
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Table 1 Benefits of tactical, technical, operational and strategic CTI

Types of CTI Benefits

Tactical CTI • enables organisations to develop a proactive cybersecurity posture and to
strengthen overall risk management policies

• informs better decision-making during and after the detection of a
cyber-attack

• assists with a cybersecurity posture that is predictive
• facilitates enhanced detection of advanced threats

Technical CTI • connects details associated with attacks rapidly and accurately
• provides rapid response to new indicators
• enables security analysts to determine what to look for rendering it valuable
for analysing social engineering attacks

Operational CTI • provides context and relevance to a large amount of data that enable
organisations to gain better insight into how threat actors plan, carry out,
and sustain offensives and major operations

• enables organisations to detect and respond to cyber-attacks more swiftly
and assisting them in preventing future incidents•enables organisations to
detect and respond to cyber-attacks more swiftly and assisting them in
preventing future incidents

Strategic CTI • provides a more in-depth situational awareness
• assists decision-makers in understanding the risks posed by cyber threats to
their organisations

• enables decision-makers in making cybersecurity investments that
effectively defend their organisations and are aligned with its strategic
priorities

• produces an organisational situational awareness that will help existing and
future security strategies

decision making. As an example, the collated data is placed in context along with
prior incident reports in relation to similar activities that enable the development
of a strategy to reduce cyberattacks [19]. Figure 2 represents a useful model that
visualises the processing of raw data into a complete intelligence product.

The Cyber Threat Intelligence Cycle (CTIC), that produces intelligence, must
be a methodical, continuous process of analysing potential threats to detect a suspi-
cious set of activities that can threaten organisations’ systems, networks, information,
employees, or customers. It must visually represent and evaluate a number of specific
intrusion sensor inputs and open source information to determine specific threat
courses of action [20]. Therefore, the CTIC should be a process whereby raw data
and information are identified, collected and then built into a complete intelligence
for use by decision makers. The model must also be able to support organisations’
risk management strategies and the information security teams’ decision-making.
To exploit the benefits of CTI, it is essential to define both appropriate objectives
as well as relevant use cases. Since the CTIC is intended to produce intelligence,
the information security teams must be able to formulate new questions and identify
gaps in knowledge during this lifecycle. In turn, this should result in the require-
ments development. Furthermore, in order for a CTIC to be an effective intelligence



Application of Artificial Intelligence and Machine Learning … 55

Fig. 2 Processing of raw data into a complete intelligence product

scheme, it must be based on iterative phases that can becomemore sophisticated over
time.

Therefore, considering the discussion above, we recommend a six-phase cycle
consisting of the following stages: Planning and Direction, Data Collection, Data
Processing and Exploitation, Data Analysis and Production, Dissemination and Inte-
gration, and Feedback. All steps in the cycle must also incorporate an Evaluation
process and a Review process that must be performed simultaneously throughout
the entire six phases so as to ensure that the necessary materials are being processed
accurately and that the original questions are being addressed effectively. Figure 3
represents our recommended CTIC along with the description of each phase.

3.1 Planning and Direction

The CTI’s production life cycle starts with requirements or questions unique to the
end-user that should be answered. After the CTI requirements have been identified
and prioritised, a data collection plan comprising identification and evaluation of
information sources should be created. Planning and Direction is the first phase of
the CTI, that is intended to produce actionable threat intelligence based on a set of
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Fig. 3 Six-phase cyber threat intelligence cycle

accurate questions that should enable the development of actionable threat intelli-
gence. These questions must focus on a single fact, event, or activity as opposed to
broad, open-ended questions [21]. A key aspect of this phase should be understanding
who will consume and benefit from the complete product. Next, individuals involved
with planning and direction should be able to establish the precise requirements of the
consumer, called intelligence requirements (IRs), and prioritise intelligence require-
ments (PIRs). These IRs and PIRs must be based on certain factors such as how
closely they comply with organisations’ core values and must determine what data
and information are required and how it should be collected. This output is often
systematised in an intelligence collection plan (ICP) [19]. It is important that this
phase involves substantial interaction between the consumer and producer.
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3.2 Collection

The next step in the CTI is the Collection phase, that involves gathering raw data
[22–25]. This data must be meaningful to the organisation and able to address the
initial CTI requirements established in the first phase. Raw data can be gathered
from a wide variety of sources such as internal ones including network event logs
and records of past incident responses and external ones from the open web, the
dark web, and technical sources [21]. The data Collection phase must be timely and
accurate, as well as being applicable to deal with incidents that can occur or are
occurring. Understanding which sources are likely to generate the desired informa-
tion, be reliable, and provide information that can be used in a timely manner is a
complex process that necessitates thoughtful and robust planning and direction to
assist in isolating the signals from the noise.

Instances ofCTI data sources consist of traditional Security Information andEvent
Management (SIEM) tools (such as network monitors, firewalls, intrusion detection
systems), dedicated CTI data feeds, vulnerability and malware databases, and the
system users. It is through these data sources that indicators of compromise (IoCs)
can be identified, documented, and further analysed. IoCswhich represent threat data
concerns measurable events that can be classified as either network-based or host-
based events. Examples of network-based IOCs comprise email addresses, subject
line and attachments, connections to specific IP addresses or web sites, file hashes,
and fully qualified domain names utilised for botnet command and control server
connections. Instances of host-based IoCs consist of the presence of filenames on a
local drive, programs and processes that are running on a machine, and creation or
modification of dynamic link libraries (DLLs) and registry keys [26]. Furthermore,
IoCs can also include vulnerability information, such as the personally identifiable
information of customers, raw code from paste sites, and text from news sources or
social media.

3.3 Processing and Exploitation

Processing and Exploitation is the third phase in the CTCI, that involves converting
the raw data into intelligence. The raw data that have been collected from multiple
data sources must be integrated and sorted in order to produce more consistent,
accurate, and useful information than that provided by any individual data source.
To achieve this, one needs to sort and fuse it with other data sources by organising
it with metadata tags and filtering out redundant information or false positives and
negatives [21]. During this phase, both human andmachine capabilities are needed to
address the IRs for the engagement while complying with the tenets of intelligence.
Given that data is collected from millions of log events and indicators every day,
processing such data manually is extremely cumbersome. Thus, collecting data must
be automated in order to extract meaningful intelligence from it. One of the best ways
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to achieve this is to deploy solutions such as SIEM since it facilitates structuring and
correlating event data with rules that can be established for various use cases (even
though it can only deal with a limited number of data types). See Sect. 4 for details
on more powerful data processing solutions.

3.4 Analysis and Production

Analysis and Production is the next phase in the CTIC, where analysts will need to
make sense of the processed data. The objective of this phase is to look for possible
security threats and inform the relevant audience in a format that achieves the intel-
ligence requirements defined in the Planning and Direction phase [21]. The anal-
ysis must be determined based on three elements of actors, intent, and capability,
with consideration given to their tactics, techniques, and procedures (TTPs), moti-
vations, and access to the intended targets. By examining these three elements, it is
often possible to make informed, forward-leaning strategic, operational, and tactical
assessments. Furthermore, during this phase, analysts must be able to produce intelli-
gence products, i.e. the answers to the questions posed earlier during the requirements
gathering, and identify connection between the technical indicators, attackers, their
motivations and aims, and information related to the target [27]. This should then
result in informative and proactive decision-making. To do so, analysts will need to
employ a wide range of quantitative and qualitative analytical techniques to eval-
uate the significance and implications of processed information, merge contrasting
items of information to find patterns, and then interpret the meaning of any newly
developed knowledge.

Additionally, they will need to apply a variety of approaches to assess the reli-
ability of the sources and the material collected and to ensure accurate and unbi-
ased evaluations that need to be predictive and actionable. It is also vital for any
potential ambiguities to be handled properly, for instance, by determining how the
questions have been addressed. Analysis phase must be accurately documented and
efficiently implemented to assist organisations in utilising the collected data more
effectively. This should be followed by a timely dissemination of intelligence to
internal and external audiences in a format understandable to them such as threat
lists and peer-reviewed reports.

3.5 Dissemination and Integration

Dissemination phase should involve communicating and distributing the complete
product in a suitable form to its intended consumers. In order for CTI to be actionable,
it must be delivered to the right audience at the right time, i.e. the occurrence of
dissemination should correspond to the time period on which the content is based.
For instance, operational material requires to be regularly conveyed whilst strategic
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content will be more sporadic. The Dissemination phase must also be traceable in
order that there is continuation between one CTIC and the next and that the learning
is not lost. One of the ways in which this can be achieved is by utilising ticketing
systems that integrate with the consumers’ other security systems to trace each stage
of the CTIC. Everytime a new intelligence request is made, tickets can be submitted,
written up, reviewed, and fulfilled by different audience in one place. By obtaining
feedback and refining existing IRs or creating new ones, the CTI cycle can commence
again [21].

3.6 Feedback

The Feedback is the final stage in CTIC, in which a complete intelligence has been
developed linking it to the original Planning and Direction phase. During this phase,
individual/s whomade the original request reviews the complete intelligence product
to establish whether their questions have been addressed. This assists in informing
the objectives and procedures of the next CTI cycle, once again highlighting the
importance of documentation and continuation.

4 Application of Artificial Intelligence and Machine
Learning in Producing Actionable CTI

AI and ML are two promising fields of research that can significantly improve CS
measures. For instance,CSapplications usingAI andMLcanperformanomalydetec-
tion on a networkmore effectively than those performed by traditionalmethods.With
rapid pace of development and the desire for more effective countermeasures, AI and
MLcome as a natural solution to the problemof copingwith the ever-growing number
of cyber-attacks. This interdisciplinary endeavour has created a joint link between
computer specialists and network engineers in designing, simulating and developing
network penetration patterns and their characteristics. Some of these diversemethods
are directed towards: Multi-Agent Systems of Intelligent Agents, Neural Networks,
Artificial Immune Systems and Genetic Algorithms, Machine Learning Systems,
including:Associativemethods, InductiveLogicProgramming,BayesClassification,
Pattern Recognition Algorithms, Expert Systems, and Fuzzy Logic.

Examples of AI and ML applications that can be used in CS solutions include:
SpamFilter Applications, Network IntrusionDetection and Prevention, FraudDetec-
tion, Credit Scoring and Next-Best Offers, Botnet Detection, Secure User Authenti-
cation, Cyber Security Ratings, and Hacking Incident Forecasting, etc. For instance,
by determining certain distinctive features, AI and ML systems can be trained to
analyse and distinguish between a normal software and malware. These features
can comprise: accessed APIs, accessed fields on the disk, accessed environmental
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products, consumed processor power, consumed bandwidth, and amount of data
transmitted over the internet. By utilising these distinct features, the system is devel-
oped. Once a test software is fed to the system, it can then determine whether the
software is a malware or not by analysing these distinct features [28].

In the specific context of CTI, organisations can utilise AI and ML methods to
automate data acquisition and processing, combine with their existing security solu-
tions, absorb unstructured data from disjunctive sources, and then link information
from different places by adding context on compromise and modi operandi of mali-
cious actors. This is particularly important in the context of Big Data, due to the
scales of which its processing necessitates automation to be comprehensive. This
processing should comprise the fusion of data points from a wide range of sources
such as open web, deep web, dark web, and technical sources in order to draw up the
most robust strategy. This can help to convert these large quantities of data into action-
able CTI. Furthermore, by means of AI and ML techniques, data can be structured
into categories of entities based on their names, properties, relationships to each
other, and events by separating concepts and assembling them together. This will
facilitate robust searches on the categories, enabling the automation of data sorting
as opposed to sorting data manually [29]. In addition, AI and ML techniques can
be applied for the purposes of structuring text in many languages through Natural
Language Processing (NLP). For instance, NLP can be exploited to analyse text
from almost infinite unstructured documents across a wide range of languages and
categorise them by means of language-independent groups and events [21].

Moreover, ML techniques can be developed to categorise text into groups prose,
data logs, or code, and remove ambiguities between entities with the same name
through the use of contextual clues in the surrounding text.MLand statisticalmethod-
ology can be implemented to sort entities and events even further based on signif-
icance, for instance by evaluating risk scores to malicious entities. Risk scores can
be calculated by the ML trained on an already examined dataset. Classifiers such as
risk scores deliver both a judgment and context describing the score since different
sources verify that this IP address is malicious. Automating risk classification saves
substantial time by sorting through false positives and determining what to priori-
tise. In addition, ML can be used to predict events and entity properties by producing
predictive analysis models more accurately than those created by humans based on
deep pools of data that have been previously mined and categorised [21, 29]. It is
also likely that ML techniques could function as active sensors that feed data into a
common threat intelligence network that can be employed by the entire user base.
The above said, the process of applying ML and AI methods at the different levels of
CTI is at very different stages. For instance, studies in Operational Intelligence type
are still in the experiment and research stage and as a result necessitate substantial
resources.
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5 Discussion

Cyber threats are constantly growing in frequency and complexity, and the threat
landscape is continually evolving. Through the use of various customisedTTPs, cyber
criminals are able to bypass organisations’ security controls.As a result, organisations
are under constant pressure to manage security vulnerabilities. One of the ways to
help address security vulnerabilities is by developing and implementing robust CTI.
CTI is based on traditional intelligence gathering and processing activities used to
track, analyse and counter CS threats. The information collected through CTI can
enable the security teams to identify, prepare, and impede cyber-attacks that can
pose risk to the data integrity. CTI feeds can assist organisations in this process by
identifying common IoCs and suggesting required steps to stop cyber-attacks. The
most common IoCs consist of [30]:

– IP addresses, URLs and Domain names: An example is malware that targets an
internal host that is communicating with a known threat actor.

– Email addresses, email subject, links and attachments: An example is a phishing
attempt that depends on a user clicking on a link or attachment and starting a
malicious command.

– Registry keys, filenames and file hashes and DLLs: An example is an attack from
an external host which has already been flagged or that is already infected.

Robust CTI feeds could potentially have millions of computers functioning as
security sensors which feed CTI to the entire users subscribing to that feed. At the
same time, millions of security updates can automatically and seamlessly take place
on the daily basis to end users and networks.

It is important to note that in order for organisations to be able to access CTI
when needed, they will need to incorporate it into their broader security model as
an essential component that enhances every other function (as opposed to a sepa-
rate function). Incorporating CTI into security solutions that organisations already
employ reinforces their security postures. Such an integration can enable security
operations teams to respond to andprocess the alertsmore effectively byhelping auto-
matically to prioritise and sieve through security threats. It is also imperative that
there will be a clear distinction between threat data and threat intelligence. Without
intelligence, data will not be able to provide the predictive knowledge required to
detect threats before they can enter organisations’ networks.

6 Conclusion

CTI can add significant values to organisations’ security functions as well as to every
level of government entity such as Chief Information Security Officers (CISOs),
police chiefs, policy makers, information technology specialists, law enforcement
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officers, security officers, accountants, and terrorism and criminal analysts. If imple-
mented properly, CTI can facilitate better understanding into cyber threats, enabling
a faster, more targeted response and resource development and allocation [31]. It
can enable decision makers to define acceptable business risks, create controls and
budgets, make equipment and staffing decisions, provide insights that guide and
support incident response and post-incident activities (operational/technical intelli-
gence), and advance the use of indicators by validating, prioritising, specifying the
length of time an indicator is valid for (tactical intelligence). Likewise, when timely,
relevant, and actionable, CTI can enable organisations to operate more efficiently
and effectively by gaining the advantage they require to combat cyber-attacks prior
to loss being incurred. Furthermore, by utilising CTI, organisations will be able to
update their endpoint and network security proactively in real-time without the need
to update their network security environments manually. For instance, in cases where
one endpoint device faces a threat, that intelligence will be able to update the larger
CTI network automatically. This enables organisations to stay ahead of cyber threats
and attackers consistently and ensure that they are safeguarded against the latest
cyber-attacks.

As security vendors compete with each other to deal with the consumer demand
for assistance with the increasing number of threats, the market is now providing a
wide range of CTI tools. However, not all tools are developed equal. For a successful
implementation of security at this level to function effectively, the toolmust be able to
search through the vast andmiscellaneous stretch of online content for potential secu-
rity threats at every second. Therefore, a CTI security solution must be customizable
and capable of providing clear and complete investigation with advanced analytics
such as AI and ML that can be adapted to specific behavioural activities [30].

It is envisioned that over the next few years the inclusion of CTI into organi-
sations’ and governments’ operations will become increasingly vital, as all levels
and employees are forced to respond to the cyber threats. It is also envisaged that
in the near future, cloud-based network security and secure web gateways fed by
threat intelligence replace legacy firewalls, appliances, software and much of the
resources required to patch and update in traditional environments [32]. As a future
research direction, one area of CTI that has remained underexplored concerns the
application of Multi-Agent Systems (MASs) in Tactical Cyber Threat Intelligence
(TCTI). Therefore, experiments should be performed with the application of MASs
to determine whether it can be an appropriate method for the needs of the CTI.
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Drone Forensics: The Impact
and Challenges

S. Atkinson, G. Carr, C. Shaw, and S. Zargari

Abstract Unmanned aerial vehicles (UAV) have surged in popularity over the last
few years. With this, crime involving drones has also dramatically increased. There-
fore, there is a dire need of successful Drone programmes that significantly would
lower the amount of crime being committed involving Drone devices. Drone foren-
sics is a concept that is less well known or documented. Research has shown that
there have been Drone Forensic programmes to support the forensics investigations,
however, many have failed for a few reasons such as the lack of understanding
of the technology or other limited resources. It is also known within the Digital
Forensics community that Anti-Forensics techniques are constant threats and hinder
investigations, resulting in less convictions. This study aims to ascertain exactly
what data can be extracted from UAV devices (Drones), the usefulness of this data,
and whether consumers are able to obfuscate the data in efforts to evade detection
(i.e. Anti-forensics techniques). A number of primary and secondary datasets have
been utilised in this research. Primary data includes carrying out a flight using a
UAV device and consequently analysing the resulting data and an interview with
a qualified Digital Forensic Analyst. Secondary data was gained from VTO Labs,
recommended by NIST which was able to be interrogated in order to deliver inter-
esting results. This study found that Drones have the ability to hold a wealth of
evidence that could potentially be very useful to assist forensics investigations. This
included the flight path of the Drone, date and time of flight, altitude, home-point
and alerts to inform whether the Drone was near restricted airspace such as airports
(No Fly Zones). Moreover, it was found that it is possible for the manufacturers to
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build in Anti-Forensics software into their devices, but it would not be possible for
a consumer to utilise such techniques.

Keywords Digital forensics · Drones · UAV · Anti-forensics · Mobile forensics ·
Drone forensics

1 Introduction

An Unmanned Aerial Vehicle (UAV) or drone, is a pilotless aircraft that is controlled
via flight software and a remote pilot. The first UAV was a quadcopter built in 1907
[16]. By 1917 developments were being made to create the Ruston Proctor Aerial
Target, which is used by the army to fly bombs into enemy territories [16]. Such
developments resulted in military drones that are used today. The use of unmanned
aerial vehicles (drones) has soared in recent years across the UK. PWC recently
reported that by 2030 there could be up to 76,000 drones operating in the UK’s skies,
with 628,000 jobs created within the UK economy involving drones [37].

However, this increased availability has resulted in tremendous growth of drone
crime over recent years [32]. Even as far back as 2014, there were 283 drone crimes
reported in theUK[44]. Someof these criminal acts includedrug andweapondelivery
into prisons, as well as being used to stake out homes for burglaries [12]. Drone
technology is continuously evolving and is ‘part of a complex digital ecosystem’
[32]. This is due to the use of controllers and connected devices, meaning that it
can be challenging to keep up with their many uses. This correlated with the lack of
understanding within law enforcement agencies [47] about the technology.

Drones provide quick aerial views via remote pilot. The functionality and acces-
sibility of drones has increased drone usage in various sectors such as construc-
tion, filming, photography, and estate agents who are more frequently hiring drone
operators to help in commercial activities.

There has also been an increase in the recreational use of drones by hobbyist’s
[19]. Users fly drones remotely to capture aerial images, create films and record their
experiences. Recreational drones can be purchased for approximately £400 in the
UK and can be used immediately by the user after unpacking and charging the drone
[42].

Due to the accessibility and usability of drones, criminals have taken advantage
of their abilities to commit a vast range of crimes. In 2018, police forces across
the UK reported that they had received 2,435 reports of incidents involving drones
[34]. This was up 2% from previous year and a dramatic 42% higher than incidents
reported in 2016 [34]. Perhaps the most high-profile case involving drones occurred
in December 2018, whereby Gatwick airport closed in response to drone sightings
within the surrounding airspace [19]. Flights were cancelled and delayed during
the 36 h of the closure of the airport, EasyJet reported that in total the cost of
compensation reached £15 m and a total of 82,000 customers were affected [19].
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1.1 Unmanned Aerial Vehicles

Rouse [40] defines a drone as unmanned aerial vehicles (UAVs) or unmanned
aircraft systems (UAS) [9]. Rouse [40] also states that essentially, a drone is a
flying robot that can be remotely controlled or fly autonomously through software-
controlled flight plans in their embedded systems, working in conjunction with
onboard sensors and GPS.

Recently, UAVs were most often associated with the military, where they were
used initially for anti-aircraft target practice, intelligence gathering and then, more
controversially, as weapons platforms [40]. Drones are now also used in a wide range
of civilian roles ranging from search and rescue, surveillance, traffic monitoring,
weather monitoring and firefighting, to personal drones and business drone-based
photography, as well as videography, agriculture and even delivery services [40].

There are various brands and designs of drones which have different components
to fit the job they have been created for. Drones generally have the same or similar
components to be able to function, some of which are:

• Propellers (Can bemade of plastic or carbon fibre depending on the specific drone)
• Motor (The better the motor, the better that battery life of the drone)
• Receiver (Radio signals to the drone through the controller)
• Transmitter (Radio signals from the controller to the drone)
• GPS Module (Responsible for longitude, latitude, and elevation points)
• Battery (Allows the drone to fly)
• Camera (Can be inbuilt or detachable)
• Electronic Speed Controllers (Controls the speed of the drone) [1]

Similarly, any data gathered from the drones can be stored differently depending
on the drone. Some drones have internal storage which varies in size from 4 to 8 GB.
It is worth noting that the internal drone data will be overwritten when it has reached
capacity, so it is wise to regularly check the memory and extract any data you may
need. Drones also use SD or Micro SD cards, giving the user more storage capacity.
There are also options such as extracting drone data to an external hard drive or even
the cloud, depending on whether the data is something the pilot wants to keep.

1.2 Current Threats and Impact of UAVs

The misuse of drones poses threats to public safety, organisations, and national secu-
rity due to such incidents where drones have been flown in no-fly zones. Such threats
are reasons why drone forensic programs are essential in aiding the understanding of
drone technology and in reducing the crime rate, especially when successful in gath-
ering evidence for a case. However, even with the benefits a drone forensics program
will bring to law enforcement agencies, this is still an area that remains relatively
unexplored [5]. Drone crime can vary in threat levels, and there needs to be a more
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precise understanding by the public as well as law enforcement about these threats
posed by drones, as drone crime is ‘only limited by the imagination of the criminal’
[21].

UAVs are getting more popular and accessible with consumers which makes it
easier for criminals to take advantage of the technology for nefarious reasons. Drones
have been used for a range of crimes from smuggling, spying/stalking, criminal
damage, and even theft of card details from ATM’s [34]. With all technology there is
always the potential for misuse, leading to issues and negative impacts on individuals
but also the community as people start to fear what the technology is capable of.
With drones being adaptable and so varied, it makes the job of law enforcement even
harder as they must tackle newly emerging crimes and disruptions, possibly without
the necessary legislation in place for guidance.

1.3 Legal Implications

Depending on the context the drone is to be used for, there are legislations in place
to outline the correct use of the drone and rules to be adhered to such as ensuring the
correct licences are held for a drone. As drones were never designed for criminal use,
it is impossible to create legislation to cover all possible drone crimes, as there are
endless possibilities. What can be done, is to create legislation to cover the general
misuse of drones; anything that causes harm or distress to the person, property, or
community. This way there is a clearer line of what is unacceptable by law, therefore
likely to lead to consequences. The NPCC’s lead for drone crime said, ‘those who
choose to use drones for a criminal purpose should be in no doubt that they face
serious consequences and police will use all available powers to investigate and
prosecute them’ [34].

Current regulations of drone fall under the Civil Aviation Act 1982 and the Air
Navigation Order 2016 (amended in 2018), covering appropriate drone usage with
flight restriction zones [25]. In 2019, it was proposed that registration of all drones
be mandatory with possible competency tests. The idea being that law-abiding citi-
zens would register their drones making it easier for law enforcement to track down
criminal drone use [25]. Whilst this concept proves successful with newly registered
drone users, it is not possible to ensure all drones purchased prior to the new regu-
lations will be registered. Unfortunately, with all technology and the regulations put
in place, there will be a loophole found by criminals to continue with their criminal
activities.

1.4 Motivation

With the influx in use by the public, there have been reports of Drone devices being
involved in criminal activity. Therefore, this studywill carry out research into various



Drone Forensics: The Impact and Challenges 69

crimes that have been recorded that involve such devices and how evidence gained
from them aided the investigation. Additionally, this project will examine Drone
devices in order to ascertain exactly what data/evidence can be extracted from these
devices and how useful they could be to an investigation.

Additionally, Anti-Forensics techniques are in existence and are at times used
on devices such as PCs. This study will also look into the various techniques that
are available and ascertain whether or not these techniques can be used on Drone
devices.

1.5 Research Aims and Objectives

There are various aims and objectives to this study due to the collaboration ofmultiple
projects. The research objectives are as follow:

1. Gain access to Drone data and extract using popular forensics extraction software
to ascertain the usefulness of evidence.

2. Gain in-depth drone knowledge to carry out successful drone data analysis.
3. Gain information regarding the current processes used by Police Forces and

other authorities to analyse the data and prevent drone crimes and how they are
investigated.

4. GainKnowledge of the variousAnti-Forensics techniques that are currently avail-
able and in use by users who want to obfuscate data and determine whether these
methods can be used on Drone devices.

2 Existing Research

This section focuses on multiple elements relating to drones to provide a broad
coverage of how technology, tools, crime, and devices affect drone technology. There
are more and more research topics relating to drones, therefore, this section provides
a small insight into what route the research can take into the technology. There will
also be an emphasis on challenges facing the technology, whether by legislation in
place, restrictions or nefarious means.

2.1 The Internet of Things (IOT)

The internet of things is described as a world where many otherwise ordinary devices
are uniquely identifiable, addressable, and contactable via the internet [20]. Hegarty
et al. [20] split IOT challenges into four stages: Identification, Preservation, Analysis
and Presentation. Whilst Hegarty et al. [20] identify the issues IOT forensics faces,
their paper does not provide insights how to deal with challenges. A further limitation
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of Hegarty et al. [20] paper is that it only covers the basic challenges of IOT forensics
in 2014 and thus the findings are likely to be outdated. However, their study does
suggest that more frameworks need to be introduced for forensic examinations of
the internet of things [20].

The findings presented more recently by Conti et al. [10] are congruent with
preceding work conducted by [20]. Conti et al. [10] claim the main challenges which
IOT forensics face are:Evidence Identification,Collection andPreservation,Analysis
and Correlation and Attribution. However, they fail to propose a framework to meet
the requirements of IOT which states the challenges that forensic examiners are
facing in 2018.

A review of the literature has indicated there are gaps in the knowledge
surrounding IOT frameworks and procedures and thus, more work needs to be done
to present a framework which considers a range of IOT devices.

2.2 UAV Devices

Whilst the definition of a drone remains constant, there are several different types of
drones, which vary in size, weight, capabilities, appearance, brand, and features.

Flynt [17] breaks drones down into size; ranging from very small drones, small
drones, medium drones and large drones. Additionally, Flynt [17] states drones vary
with the range at which they can be flown with from some drones only being able
to be flown from 5 km away whereas others can be flown from as far as 650 km.
Drones vary in size and shape depending on their function as a drone, for whom they
are targeted to be used for and the tasks they can complete.

• Quadcopters—The most popular model on the market uses four rotors positioned
in each corner of the square body. This type of drone will be considered in this
study as it resembles a popular choice for smuggling contraband into prisons and
is used for lots of other criminal activities.

• GPS Drones—Drones which are linked to satellites via GPS, the flight direction
of the drone will depend on the satellite.

• Photography Drones—These are drones which have a camera attached to the
main body, they are used to take HD pictures and videos and are popular among
hobbyists.

• Racing Drones—Small, fast and agile which are streamlined for speed and free
of excess weight that can reach speeds of up to 60 mph.
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2.3 UAV Offences

The UK Civil Aviation Authority (CAA) set the rules for drone use in the UK [46].

1. Always keep your drone in sight.
2. Stay below 400 ft (120 m) to comply with the drone code.
3. Every time you fly your drone you must follow the manufacturer’s instructions.
4. Keep the right distance from people and property—150 ft (50 m) from people

and properties and 500 ft (150 m) from crowds and built up areas.
5. You are responsible for each flight.
6. Stay well away from aircraft, airports and airfields when flying any drone—It is

illegal to fly inside the airport’s flight restriction zone without permission.

Drone crimes generally are carried out by repurposed larger drones [49] that have
longer flight times, transmission distance as well as have self-adaptive flight systems
that adjust flight parameters based on different payloads, such as the DJI Matrice
600 [14].

Smuggling contraband into prisons is not a new concept, however, as drones
provide an effective way to smuggle more dangerous and larger items into prison
grounds. Many prisons have taken an approach of non-technical solutions such as
barbed wire and perimeter nets, and there are the technical solutions of installing
jammers inside and on the perimeter of the prisons [41]. Agencies that have a drone
forensics program will be able to use their skills to see if they can determine if any
suspect drones found near prison property were carrying any contraband.

UAVs have provided criminals with new ways to carry out their crimes, such
as spying and scoping potential houses to burgle [6]. Not only are drones able to
store the camera footage onto a connected SD card, but there is also the option
for live streaming footage, which could lead to further distress to the victim(s). An
investigator needs to be able to know how to read the data they are presented with
in order to provide enough evidence to support claims of the crime taking place,
especially for sensitive cases.

2.4 Data Storage in Drones

Due to the various brands and designs of drones, there are different storage methods.
The two main areas are the drone’s internal memory, which varies in capacity
depending on the drone, and SD or Micro SD slots on the drone. Depending on
the drone, there is also the potential for data to be stored on the remote controller and
the connected mobile devices. The descriptions below are based on the DJI Spark
drone.

Drones InternalMemory—To extract the data from the drone itself, the drone needs
to be connected to the laptop/virtual machine via the USB connector or the UFED
Device Adapter depending on the software used for extraction. The software can
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either be DJI Assistant 2 or UFED 4PC. To carry out the analysis on the drone’s
internal memory, UFED Physical Analyser, Csv View and DatCon were used.

External SD Card—The SD that was inserted into the drone during the flight was
copied to the laptop via NUIX Evidence Mover and analysed through FTK imager,
where a physical image of the SD card was taken.

Remote Controller—Looking at the controller data that is held in the .DAT files, it
is clear to see that there are only slight changes to the data depending on whether the
drone was flown when connected to the RC or a connected mobile device. The data
provided when the drone was connected to the RC provides information regarding
the ‘Rudder’ and ‘Throttle’ as well as a ‘Connected’ identifier. The RC does not hold
data that would be useful in an investigation. The examiners would need to have
access to either the drone itself or the connected mobile device to collect adequate
evidence to aid their investigation.

Connected Mobile Devices—For the extracted data held on the connected mobile
device, the mobile device was connected to the laptop via a USB connector. This
allows for viewing the file structure within the DJI GO 4 App.

2.5 Process of Drone Forensics

Drone forensics consists of various elements that allow law enforcement/private
agencies to build a larger picture of how drones have been used, what evidence they
hold and even make new discoveries about drone data. There are three evidence
categories which need to be considered during the drone forensic process. The first
category being the physical evidence, such as the aircraft, mobile devices, battery,
radio controller and laptop/computer. This can relate to sensors, data links to ground
stations and the flight controller. The second category is the digital evidence that
relates to a drone, such as the SD/Micro SD cards, the drone itself, laptop/computer
and mobile device OS (e.g. Linux, Windows, Android). This category includes file
systems, media storage and firmware. The third category can be classed as miscella-
neous to cover all other evidence artifacts which relate to the forensic process. This
category includes social media, purchase records and even fingerprints [31].

2.5.1 Forensics Tools

Below are descriptions of various tools/software that can be used to extract and
analyse drone data. Some tools/software are recognised forensic tools whereas others
are free offline apps.

DJIAssistant 2—Upon opening theDJIAssistant 2 software, there is an information
box, which informs the examiner that the data will be uploaded to DJI’s server before
starting your data extraction. With DJI Assistant 2 the flight log data can be uploaded
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to a local drive, which is uploaded as .DAT files. These files are unintelligible and
need to be converted to a .CSV file via DatCon to read the data.

DJI Assistant 2 has a section that provides the examiner with data held in the
drone black box. When extracted, this data is encoded and can only be decoded by
the DJI Company. This is due to the security of the data. The type of data held in
the Black Box is used by DJI regarding user enquiries leading to investigating any
issues they had during their drone flights. The data being encoded means that it will
not be tampered with to affect an investigation taking place by DJI themselves.

DatCon—DatCon has the option to convert any .DAT files into a .CSV file or a
.LOG file. Once the .DAT flight logs from the drone internal memory are converted
into a .CSV file, it will open as an excel workbook with readable data. This data
output is the most detailed flight log format found during the extraction of all the
components. The data provided as part of the flight log include the ‘GPS’, ‘Motor’
and ‘AirCraftCondition’.

DJI GO 4 App—The DJI GO 4 App is required to be able to control the drone
from a smartphone. The app itself does provide some details about the flight taken,
however not as much as that found in the drone’s internal memory. The app provides
the pilot with a series of interchangeable screens. It was found that the DJI GO 4
App cache held the most data out of all the components analysed. Within the mobile
phone, the DJI cached files were contained in ‘My Files > Internal Storage > DJI
> dji.go.v4′. While the app cache holds useful data, there is a significant amount of
data that is encoded. Some files can be decoded by simply converting the file format,
while others are unable to be decoded. Further examination and research would be
needed to determine why this is the case.

CsvView—CsvView allows .DAT, .txt, .csv or .tsv files to be uploaded into the
software to identify the data held within these files. This is particularly helpful
when the original files are encoded. For example, when a ‘FlightRecord.txt’ file is
uploaded to the software the user is able to see the initial upload page, which provides
data regarding the ‘droneType’, ‘aircraftName’, ‘appType’ and more specifically the
‘aircrafSn’ (serial number). This information is useful for verifying what type of
drone the investigators are looking for, matching the drones given name to those
held in DJI’s databases and determining that an android phone is a connected device
related to the drone.

Cellebrite (UFED 4PC)—The UFED 4PC software comes with a kit containing the
cables and connector tips that may be needed to extract data from a range of sources.
To be able to carry out the extraction, the examiners will need a Cellebrite Device
Adapter as well as the Cable A with the back-tip T-100 for a DJI Spark drone.

Cellebrite (UFED Physical Analyser)—Once the extracted files are uploaded into
the software, it took approximately 2min for all the data to be processed and decoded.
The timings will vary depending on the amount of data extracted from the drone.
UFED Physical Analyser displays the data in a way that lets the examiner know
where the data was found. The most crucial evidence found during the analysis of
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a DJI Spark drone was the battery and the aircraft serial numbers. From this small
amount of evidence, the investigators would be able to get in contact with DJI to
request access to any data linked with the found serial numbers, providing they
have identified enough evidence to support the claim of a crime. Physical Analyser
also creates a timeline of the flight. This is the first time during the analysis that a
timeline has been identified; however, the timeline only displays the latest flight that
was conducted, meaning that potentially important data is not detected.

2.6 Challenges in Drone Forensics

This section discusses some of the current challenges in drone forensics.

2.6.1 Anti-Forensics

As the digital age is in constant development and is an essential part of modern life,
it is easy to assume that it is difficult to carry out a crime without the involvement of a
digital device somewhere along the timeline. Thus, the community of digital forensics
has become an integral part of criminal investigations in recent years. However,
individuals have come across and created a number of applications and methods of
erasing/hiding data over the years. Such methods are referred to as ‘Anti-Forensics
Techniques’. Kesler states in their paper [30] that the term ‘Anti- Forensics’ is defined
as ‘Viewed generically, anti-forensics (AF) is that set of tactics and measures taken
by someone who wants to thwart the digital investigation process’. As of the time
of writing this chapter there are a number of different methods of carrying out Anti-
Forensics; listed below are some examples:

• Artifact Wiping

– Using tools such as ‘Eraser’ and ‘BCWipe’ to clear the slack/unallocated space

• Data Hiding

– Relocation of data- transferring data to portable device
– Steganography
– Altering file extensions

Signature analysis catches this out

• Trial Obfuscation

– Modification of Metadata

Altering timestamps

• Attack on Computer Forensics Tools (CFT) and processes

– Forensic tools are well known and well documented
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An attacker could gain a copy of the tool and learn the ins and outs of the
software, also learn its flaws

– DoS attack

For a number of years there have been techniques used by criminals to try and
obfuscate or delete evidence from devices in order to avoid detection. Jaon and
Chhabra constructed a paper on the analysis of anti-forensic techniques [26] in
which they document a number of well-known and widely used techniques with
the intent of delaying or the destruction of investigations. The paper describes in
detail each technique and gives examples of how it could be used by criminals and
what types of data/evidence can be tampered with. Techniques such as Artefact
Wiping, Data Hiding, Trial Obfuscation and Attacks on Computer Forensics Tools
are all thoroughly described.

Although the study provides examples and clear descriptions of various anti-
forensics techniques, unfortunately there is no mention of UAV devices within the
paper; instead simply stating ‘Computers’ and ‘Digital Devices’. This is a weakness
of the paper as it does not go into depth of anti- forensics in different devices, instead
simply ‘computers’. The term ‘computers’ in technical terms refers to anything elec-
tronic that carries out a calculation, so the authors could be talking about any device.
However, due to the references they make (e.g. ‘different files in computer are iden-
tified by their file extensions’), it is assumed that they are referring to PCs. It is
unfortunate that the study does not include a section dedicated to UAV anti- forensics
techniques as it would have been very useful to be included within this study.

While this paper does have flaws, it does include a lot of interesting and very useful
information regarding the various anti- forensics techniques that can be utilised by
the general public.

A Digital Forensic Analyst was interviewed on their knowledge regarding Digital
Forensics and UAV forensics. In relation to Anti-Forensics in UAV devices, the
analyst felt that it was unlikely that users would be able to implement Anti-Forensics
techniques on such a device, unless the manufacturers installed one as default. A
feature such as encrypting all data on a UAV device, which would mean the data
could not be extracted and analysed by the investigations team. Nonetheless, a lot of
the data captured and analysed when investigating a UAV device is extracted from
the mobile app used to control the device. Flight paths for example are stored there.
It is possible to download a scheduler on Android devices that wipes the data from
apps at designated times. Thus, it could be possible for a user to install such an app
and set it to delete everything from the drone app if it has not been opened in ‘x’
amount of days. This would count as an Anti-Forensic technique and is something
that could be carried out by an end user. Nevertheless, it is unlikely that a standard
or computer illiterate user will know about advanced features such as this; it would
take an advanced ‘tech savvy’ user to carry out the technique. However, this can be
said for almost any Anti-Forensic technique. The user would have to be aware of the
presence of data in order to hide/delete it.
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2.7 UAV Legislation

Due to the popularity of UAV devices, it is important that their use is governed, and
guidelines are set to ensure that they are used safely and securelywithout endangering
others. The CAA [43] have issued such guidelines within The Air Navigation Order
2016 (amended March 2019) [45] in which all UAV device users must comply. The
CAA collaborated with NATS [7] to develop a website called ‘Drone Safe’ [8]. The
site includes an array of features including a copy of the ‘Drone Code’ (the guidelines
that must be adhered when flying such devices) [43], information regarding training
opportunities for beginner fliers and general resources regarding UAV devices such
as the names of approved retailers and safety checklists.

In addition to the CAAs efforts, UAVdevicemanufacturers such asDJI offer guid-
ance on global and regional legislation [13]. The ‘Fly Safe’ page of their site allows
users to select a region and country e.g. Europe, United Kingdom and information
regarding current legislation will be displayed.

2.7.1 No Fly Zones

As a result of the continued disruption being caused byUAVdevices around airfields,
authorities have made the decision to extend the no fly zones to a total of three miles,
as opposed to the previous 0.6 mile radius. Therefore, from 13th March 2019 it will
be a criminal offence to fly a UAV device within three miles of an airport [4]. Failure
to comply with the new law may result in the end user being charged and sent to
prison for up to five years [7]. The ‘Drone Code’ on the Drone Safe UK site has
been updated to include the updated law regarding the extension of the no fly zone
surrounding airports.

In addition to the ‘Drone Code’ document on the site, there are other available
features that can be utilised to help end users with locating restricted/no fly zones.

It has been reported that in the U.S, drone manufacturers such as DJI have hard
coded ‘No Fly Zones’ into their devices [48]. In the referenced example from 2017,
a TFR (Temporary Flight Restrictions) had been established around an area where
President Trump was to be residing. In addition, it is stated in the article that various
airport airspaces have also been hard coded into the devices meaning that they would
be unable to fly in that airspace; the device would either stop in its tracks and hover
or would descend automatically. Nevertheless, there are reports of the existence
of software constructed by Russian developers that modify a device’s GPS soft-
ware in order to gain access to ‘no fly zones’ [29]. CopterSafe is the name of the
company that is able to provide members of the public with such modifications,
currently a modification board for a DJI Phantom 4 stands at $200 [11]. In addition
to CopterSafe, another company has been found to provide similar services when
an internet search was carried out [36]. NLD appear to offer a software client that
will permit users access to a number of modifications that are compatible for an
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array of models. However, this company charges significantly less money than the
CopterSafe hardware counterpart, only requesting $34.99.

2.7.2 Airfield Restrictions Maps

Present on the Drone Safe site is a page which displays a Google map of the UKwith
pinpoints of the unauthorized flying zones (Fig. 1) [8]. In addition, there are smaller
maps present which display the ‘no fly zones’ surrounding the major airports of the

Fig. 1 UK flight restrictions map
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UK, such as Heathrow andManchester (Figs. 2 and 3). This is a very useful resource
for any UAV device flier, especially a beginner as they may not be aware of all the no
fly zones and may accidently get into trouble. Trouble which would be much greater
after March 2019 with the introduction of the new heavier sentences.

Nevertheless, it is not only the Drone Safe UK site that offers these maps, there
are a variety of other sites online that offer similar services. UAV manufacturer DJI
for example offer such a service [13] along with other sites such as ‘No Fly Drones’
[28], however these are not governed by a professional body such as the CCA like
the data from Drone safe UK; however according to the ‘Contact’ page of the ‘No
Fly Drones’ site [27], the sources of information regarding the rules and airspace
must be obtained from the CAA directly [19].

Fig. 2 DroneSafeUK no fly
zone—Heathrow Airport
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Fig. 3 DroneSafeUK no fly
zone—Manchester Airport

2.7.3 Useful Mobile Safety Apps

A further feature present on the DroneSafeUK site is the description of a mobile app
developed by NATS named ‘Drone Assist’ [46]. This app acts in a similar manner
to the maps feature present on the website but it has enhanced features such as ‘Area
Report’, to inform the user of an overview of the risks associated with flying in a
specific area. Also present in the app is a feature that provides the user with weather
information. This is very useful to ensure that the flight remains safe and lowers the
risk of an incident.

Furthermore, the application allows users to collaborate with each other in the
form of the ‘Fly Now’ feature. By utilising this function users are able to share
the current location of their UAV device with other users of the app. Naturally this
reduces incidents as users are aware of other UAV traffic in the vicinity [46].

As stated, the app allows its users to gain detailed information regarding no fly
zones. Figure 4 is an example of a ‘High Risk’ zone as it is surrounding Manchester
Airport which naturally contains a lot of air traffic. Usefully available is a description
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Fig. 4 Drone Assist app
‘High Risk’ area over
Manchester Airport

ofwhy the area is classified as ‘HighRisk’. In this figure the reason being the air space
is in the vicinity ofManchesterAirport. There are a number of different classifications
of ‘zones’ (Fig. 5) is a screenshot taken from the app which clearly describes each
zone.

As useful as this application is, it does have some issues that should be addressed
in the near future. It has been discussed earlier in this chapter that UAV legislation
has been scrutinised and new laws will come into place fromMarch 2019. However,
this app does not make any mention to this. Upon loading the app for the first time,
a message box appears stating a change in law, in July 2018 (Fig. 6). The new laws
being that it is an illegal act to fly a drone device above 400 feet without prior
permission from the CAA, and that it is now illegal to fly a drone device closer than
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Fig. 5 The different
classification of ‘Zones’ on
the Drone Assist app

1 km from the boundary of aerodromes. As the new laws surrounding the extended
‘no fly zones’ does not come into place until March 2019, the content of this message
box is factually correct. However, stating that fromMarch 2019 there will be a further
change in the law regarding ‘no fly zones’ would be a good addition; also, that higher
penalties will be enforced.
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Fig. 6 Information on
updated Drone laws

2.8 Summary

In summary, there exists vast amounts of legislation and laws that must be adhered to
when flying UAV devices. These laws ensure the safety of members of the public by
restricting the areas where UAV device flying is permitted. It is also demonstrated in
this chapter how easy the information relating to these laws and legislation are made
available to UAV pilots. By distributing the free to download ‘Drone Assist’ app and
the Drone SafeUK website, fliers simply have to quickly check online before flying
to ensure they are not about to break any legislation/no fly zones quickly and easily.
In essence, with the relatively easy access to this information there is not really any
excuse for fliers to accidentally break laws/legislation.
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In addition, it has also been stated within this chapter that UAV devices have
been commercially sold in the U.S with hard coded ‘No Fly Zones’ included as
default. Areas such as airports etc. The article in question was published in 2017.
If this technology had been applied to all devices in the U.K at the same time,
it is a possibility that the disruption to airports in 2018 would not have occurred.
It is unknown by this study why the devices have not been distributed with such
technology in the U.K.

Although it is clear that authorities and manufacturers are attempting to restrict
users in how and where they fly their devices, it is demonstrated in this chapter that
roguish beings will try their hardest to combat these efforts and break the law.

Due to the expanding nature of drones and the constant updating and release of
new models, this study will focus on the examination of the DJI Phantom 4 [15]
of which no current research papers could be located. A review of the literature
has indicated there are limited studies which focus on the examination of drone
forensics. Thus, this study will focus on the examination of the DJI Phantom 4 to
contribute to further understanding regarding drone forensics. As a result of this
study, a process of examination on a DJI Phantom 4 will be proposed, in an attempt
to streamline investigations. There is currently limited research relating to how drone
data to proving crimes despite the rise in crimes committed with drones.

Due to the increase of drone technology, it is vital for government agencies to be
able to deal with the increasing demands of the devices and have the knowledge of
how to use and gather evidence from UAVs, which would benefit in investigations as
well as becomeauseful tool to be used by the agencies. There have been severalDrone
Forensic Programs in the USA and UK, and while some have been successful, there
have been a vast majority that have been terminated, even though drone programs
would increase public safety [18]. There are two types of the programs; the first being
the use of UAVs as a tool by law enforcement to aid their work, the second being
where law enforcement agencies have departments dedicated to extracting evidence
from UAVs used in criminal activity.

The use of UAVs as a tool by law enforcement is outside the scope of this work as
it excludes essential evidence extraction and analysis skills that would be relevant to
a police investigation. Therefore, this study will focus on drone data used as evidence
for a police investigation. One of the reasons for these programs failures is due to
a lack of understanding of UAV technology. This study will highlight a first-hand
drone extraction and analysis on a DJI Spark to determine the complexity behind
these processes as well as data interpretation. The study will also highlight some
of the ways that drones are used for criminal activities to show how the data can
support or refute criminal claims. As there is a lack of understanding in this field,
there needs to be a real-life application to the analysis, to allow law enforcement
agencies to know how to correctly interpret the data gathered to be successful in
their investigation.
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3 Research Methodology

This section focuses on the research methods used as part of the projects, to show
the different ways drone data can be used to draw varying conclusions. There will
be focus on the questionnaire and experimental work.

3.1 Research Method

As there are a vast amount of UAV device models currently on the market, it is
not feasible to gain primary flight data from all of them. However, NIST (National
Institute of Science and Technology) allow access to a total of thirty-twoUAV images
created by VTO Labs [35]. This allows for the analysis of a much wider range of
devices in order to gain a clear understanding of any differences that may be present
in different models and manufacturers.

Nevertheless, in order to gain a clear and concise understanding of what forensic
investigators are challenged with; it is important that evidence from at least one UAV
device is manually examined and analysed. Therefore, a UAV device (DJI Spark)
will be taken on a number of test flights in an array of locations in order to generate
good quality data to analyse. Cellebrite UFED 4PC will then be used to extract data
from the device and Cellebrite Physical Analyser used to examine the data. As the
UFED 4PC software houses features that exclusively extract data fromUAV devices,
it seems the perfect software to use for the extraction and analysis.

In addition to the use of Cellebrite software, IEF will also be used to analyse
data by means of a comparison between the two tools. The comparison being an
experiment of the amount of data returned by each toolkit and whether one of the
tools appears to have missed some data during the extraction or decoding processes.

The extraction experiments are scheduled to take place after the interview with
the forensic investigator; the reasoning being that the outcome of the interview will
provide an understanding of how forensic investigation units deal with UAV devices
and which methods are utilised to extract evidence from them. Thus, the extraction
and handling of the test flight data as well as the data set evidence would mirror that
of a real life scenario. Due to the experiments using both the VTO Labs datasets and
the manual test flight data, a mixture of both primary and secondary data will be used
during analysis.

During the examination of the images, it will be deduced exactly what types of
evidence can be obtained from UAVs, how useful this evidence could be in given
scenarios as well as ascertain if one tool is superior to another regarding analysis.
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3.1.1 Freedom of Information Request

The literature has indicated that the crimes committed by drone usage has increased
due to the rise in drone accessibility and functionality. A freedom of information
request was made to West Yorkshire Police which asked for the number of incidents
made by unmanned drones. Quantitative data was attained which was categorised
by incident type since the data began being recorded and the calendar year the crime
was committed. As a result, the data provided an understanding as to whether there
had been an increase in the number of incidents year on year, what type of categories
these incidents were classified as and whether there was a need for further research
in this area (Appendix 1).

3.1.2 Ethical Consideration

Due to the nature of this project, the subject of ethics must be considered. Two main
forms of methodology are used to gain suitable research and test data: Interviews
and UAV Extractions.

In relation to the interview methodology, it is absolutely vital that the name(s)
of all participants are not revealed along with the name of the police force they are
associated with. As several of the questions that are to be asked are ‘open ended’ and
open to interpretation, it is important that this is adhered to avoid any repercussions.

Concerning to the examination of the UAV data, it is important that privacy and
confidentiality is maintained. As a feature of most UAV models is that of a high
resolution camera, it is more than likely that individuals may have been inadvertently
captured by the device. As it is more than possible for permission not to have been
granted by these individuals, it is vital that any content analysed is not to be made
public and be used in a purely academic manner. Nevertheless, the possibility of
capturing a criminal event using the on board camera has to also be considered.
Although it is highly unlikely for a criminal act to be inadvertently captured on
video, it is a serious issue. Although by providing officials with the footage would
be a breach of privacy, it could be a major advantage to a current investigation. If
a crime such an indecent assault on a minor was captured on the device, although
it would have to be reported to the Police, it could be seen as distributing child
pornography. However, if the footage were not reported to the Police, the owner
of the footage could be tried for the creation and possession of indecent images of
minors. Nevertheless, this theory is quashed by the content of the various related
legislations. Although the Protection of Children Act 1978 states that it is an offence
‘to distribute or show indecent images’ and ‘have in his possession indecent images’
[23], the Sexual Offences Act 2003 furthers the content of the 1978 act and creates a
defence to this ‘offence’ by stating in Section 46.1A that ‘the defendant is not guilty
of the offence if he proves that it was necessary for him to make the photograph
or pseudo- photograph for the purposes of prevention, detection or investigation of
crime, or for the purposes of criminal proceedings’ [24].
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Therefore if a member of the public were to take content from their UAV device
to a Police official stating the content and their wish for it to be investigated, it is
unlikely that they would be prosecuted as they would be seen as ‘distributing’ the
images they ‘made’ in the public interest and their intent to get the crime investigated.
In addition to this, it would be the CPS (The Crown Prosecution Service) who would
prosecute such offences and only do so if prosecution against an individual is in the
public interest. It is unlikely that prosecution of an individual such as the one in this
example would not be in the public interest.

3.2 Questionnaire

In order to gain a good and relevant understanding of how investigators examineUAV
devices and the current protocols associated with such examinations, conducting
an interview with a qualified forensic investigator from a police force is a worthy
way to gain an insight into the workings of a forensic investigation unit. A mixture
of qualitative and quantitative approaches will be used during the interview. By
answering the questions asked, the interviewee will be able to provide a clear and
concise impression of the depth of their knowledge on the subject and how useful
their input will be to this study.

Before the interview with the forensic investigator commences, the interviewee
must complete, sign and date the consent form to ensure that they are fully aware of
the nature of the project, the risks and benefits as well as the fact that their answers
and opinions would be completely anonymous.

3.2.1 Wording of Questions

In order to gain quality information from the interview, it is important that open-ended
questions are asked as well as closed questions. By utilising this approach, it will
allow the interviewee to provide clear, factual information such as statistics and infor-
mation regarding current protocols used within forensic investigation units as well as
being able to expand and express their own opinions regarding the current situation
regarding the use of UAV devices and the way that the digital forensic community is
adjusting to include such devices into the various protocols and investigationmethods
used.

3.3 Experimental Work

The initial flights that took place were to be used for the primary analysis. These
flights are used to identify the extraction and analysis techniques that need to be used
by the examiner, as well as to determine what different data can be identified with



Drone Forensics: The Impact and Challenges 87

varying methods of control. A flight was carried out via the connected mobile device,
and the following flight was conducted via the DJI controller. Forensic tools and the
free offline apps were installed on a LENOVO Laptop to carry out the analysis. The
extraction processes were conducted through a virtual machine. By using first-hand
data and not using secondary data ensures more control over the reliability of the
results, as well as accounting for any variables that may have affected the data.

The main experiments were focused around two main drone crimes: smuggling
and spying. The first experiment regarding smuggling was to determine how the
motor data and battery data may be affected by various payloads. And how the drone
movements and gimbal directions can be used in support of a ‘spying’ claim.

3.3.1 Experiment One

There have been many cases where drones have been used to smuggle phones,
weapons, and drugs into prisons. Therefore, the payload tests are to determine
whether it is possible to identify whether a drone has had a payload during a flight.
For this scenario, various payloads were added to the drone to see what effect the
added weight had on the drone’s motor and battery data. The payloads of 146, 18
and 10 g will be compared to that of a flight without a payload. The flights conducted
consisted of take-off and hovering at the default take-off height of 2 m for a desired
time of 3 min.

3.3.2 Experiment Two

In an investigation where a claim has beenmade by a victim that they have been spied
on by a drone, investigators want to be able to look at the data extracted from the
drone and find the evidence to support or refute the claims made. For this scenario,
the focus will be on the rotor movements and the camera. For the DJI Spark, the
camera is located at the front of the aircraft with the gimbal having an 85° tilt range.
When looking at the rotor movements, it can be determined which direction the
camera was facing. The only issue is that currently, it is not possible to determine
whether the camera was facing forward or tilted by the gimbal. This likely would
only be determined by actual camera footage if it was taken and kept by the suspect or
looking at the gimbal settings in DJI GO 4 app, which only provides limited details,
provided that the settings haven’t been changed since the flight in question.

Similarly, when there is evidence to show that the suspect’s drone was in fact
in the area of the crime but not necessarily the suspect themselves, there can be
claims that there was no footage taken, or that the camera wasn’t facing towards the
victim or property. The SD containing the .jpg and .mp4 files from the camera can
be examined to determine if this was the case. In the instance that the camera files
have been deleted, the investigators need to be able to determine whether the camera
was facing the victim or property.
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3.4 Data Analysis

This section looks at how the free offline apps were used to carry out the analysis
of the drone data. There will be a focus on two data components: the drone internal
memory and the connected mobile device.

Internal Drone Memory—Using DatCon, the .DAT flight logs from the drone’s
internal memory are converted into .CSV files, which opens as an excel workbook.
This data output is the most detailed flight log format found during the extraction of
all the components. Below is an example of the data from the workbook (Fig. 7).

Connected Mobile Device—The DJI GO 4 App is required to be able to control
the drone from a smartphone. The app itself does provide some details about the
flight taken, however not as much as that found in the drone’s internal memory.
The app provides the pilot with a series of interchangeable screens. In the case of a
drone forensics program, the app would not be as helpful to an investigation as to
have access to the data the mobile device needs to be connected to the drones WIFI.
To protect the integrity of the data, the drone needs to remain disconnected to any
external devices, until safe in the lab for analysis. If law enforcement were to attain
the mobile device and not the drone, they would be missing the data from the app.
However, the examiners would also be missing the data that is provided in the DJI
GO 4 App’s cache on the connected mobile device.

The DJI GO 4App cache held a large amount of useful data. The ‘DJI_RECORD’
folder holds any video recording taken during the flight (.mp4). The folder contains
‘.info’ files for each recording within the cache folder, which provides relevant
information that would be helpful in an investigation, such as the UUID for the
drone.

The UUID is the Unique User Identification code related to each drone pilot’s
DJI account, as well as the pilot’s identification and flight information. The ‘.info’
file also holds the GPS longitude and latitude locations of where the recording was
taken, again providing the evidence to prove the suspect’s location at the recorded
time and date at the top of the .info file (Fig. 8).

The ‘FlightRecord’ folder also holds the sub-folder of ‘SyncResults’ which holds
.txt files. As expected, this file contains the data for each synchronisation that took
place. However, this file also holds the email address linked with the drone’s pilot
account, providing investigators with evidence of proof of ownership, as they will
be able to see if the email matches that in the DJI database (Fig. 9).

The ‘FlightRecord’ folder also holds individual .txt files which are unintelligible.
These .txt files were uploaded to CsvView to convert to a .CSV file to read the data.
The initial upload page provides data regarding the ‘droneType’, ‘aircraftName’,
‘appType’ and more specifically the ‘aircrafSn’ (serial number). This information is
useful for verifying what type of drone the investigators are looking for, matching
the drones given name to those held in DJI’s databases as well as determining that
an android phone is a connected device related to the drone (Fig. 10).

The option ‘GeoPlayer’ opens a new window showing a map of the flight path
(Fig. 11).
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Fig. 8 DJI_RECORD .info file content

Fig. 9 DJI ‘FlightRecord’ > ‘SyncResults’ file content



Drone Forensics: The Impact and Challenges 91

F
ig
.1
0

C
sv
V
ie
w
.tx

tfl
ig
ht

lo
g
up
lo
ad



92 S. Atkinson et al.

Fig. 11 Csv Geo Player flight map

The map has highlighted options that link with different aspects on the map. ‘AC
Path’ refers to the path taken by the drone itself (RED). ‘Tablet/RC’ refers to the
path taken by the RC and we can assume the pilot (GREEN). ‘HomePoint’ is used
to identify the take-off point of the drone (H).

The ‘ACAttitude: Yaw’ refers to the direction the drone is facing; this is displayed
by the small green beam linked to the ‘A’.

The section for ‘SigPlayers’ (Fig. 12) displays a graph of the flight
‘General:navHealth’ and ‘General:numSats’. The ‘T’ and ‘A’ on the ‘GeoPlayer’
map will move with the corresponding actions on the ‘SigPlayers’ graph. By going
to the ‘Pick Signals’ option on the graph, it will open a new window of signals that
can be displayed on the graph when uploaded. There are two types of signals to
choose from; these are ‘StateSignals’ and ‘TimeSeriesSignals’.
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Fig. 12 Csv Sig Players default graph

4 Results and Discussion

This section focuses on the results from both the questionnaire and experimental
work and what can be interpreted from the results.

4.1 Questionnaire Result

In order to gain a good and relevant understanding of how investigators examineUAV
devices and the current protocols associated with such examinations, conducting
an interview with a qualified forensic investigator from a police force is a worthy
way to gain an insight into the workings of a forensic investigation unit. A mixture
of qualitative and quantitative approaches will be used during the interview. By
answering the questions, the interviewee will be able to provide a clear and concise
impression of the depth of their knowledge on the subject and how useful their input
will be to this research.

4.1.1 Interview with Digital Forensic Analyst

In order to gain a clear understanding of the current protocols, procedures and knowl-
edge surrounding UAV devices in a forensic investigation environment, an interview
was sought from a Digital Forensics Analyst working for a regional police force. By
coincidence, as well as being employed by a regional police force, the interviewee is
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an associate lecturer at an institution teaching a module called ‘Investigative Foren-
sics’. By attending their lectures, a good idea of their capabilities and knowledge of
the subject of digital forensics was gained. It was clear from these sessions that the
interviewee was extremely well informed and was more than capable of providing
quality responses to the questions provided. Although the digital forensics analyst
stated that they did not house a vast amount of knowledge on UAV devices, it was
clear that their input would be extremely valuable to this project. The interview took
place on 27th February 2019 and took approximately one hour to complete.

In the interview, a range of questions surrounding UAV/Drone devices were asked
to the analyst using both open and closed question methodology. The analyst has not
had a terribly long career in digital forensics, having only worked in the sector for a
total of approximately four years, but in that time has gained a lot of knowledge and
experience in the field. However, it is stated in the interview that they are not an expert
in the field of drone forensics. In fact, it is so rare that the department get such a device
in for analysis, it is an exciting occurrence for all members of the digital forensics
team. Thus, it is not an everyday occurrence. As stated, the analyst has worked in
a Digital Forensics environment for approximately four years and is currently only
aware of around three devices ever coming in for data extraction/analysis.On average,
maybe one per year.

When asked about the types of crime that UAV devices are involved in, it is stated
that every one of the cases they are aware of have been involved in drug related
crimes. An example of such a case would be the investigation of a drone device that
was found crashed in the vicinity of a prison. Officials wanted to ascertain where the
device was flying from, when it did so and whether or not a payload was attached.
In essence, whether or not the device was being used in a malicious manner i.e.
delivering contraband into prisons, or just simply happened to be flying within the
area of the prison. Both of which are illegal acts. The result being the latter. A second
case example is also drug related, but the analyst did not work closely on the case,
but simply knew about it; as stated previously it is a culture within the department
to be up to date regarding the process of extraction and analysis of drone devices.

In addition to these questions, queries regarding knowledge of current legislation
were also asked. As stated previously, there are vast amounts of laws and legislation
being implemented surrounding UAV devices and as of the time of writing, the lack
of appropriate laws surrounding drones is a very current issue. Therefore, it was a
surprise to learn that the analyst did not have a lot of knowledge on these devices and
even less on legislation. When asked about the area of legislation, the analyst was
not able to provide distinctive answers regarding the legislation currently in place or
due to be implemented. This was a surprise as it was thought when constructing the
questions to ask that it would be a requirement by Digital Forensics department for
all personnel to keep up to date with current legislation of digital devices to ensure
they are aware of them. Nevertheless, this was proved to be a false assumption. It
was deduced that investigation personnel are not required to keep up to date on laws
and legislation but ‘learn them as they go’. Although they are aware of legislation
such as RIPA (Regulation of Investigatory Powers Act) [22], it is not something that
is used every day.
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However, it is also stated that in a lot of cases that do, or in the future, will involve
drone devices, they will be dispatched straight away to the CAA for investigation
at their specialist forensic investigation department. In addition to this, the analyst
stated that by the time devices get to their department, whichever type of device it
may be, issues relating to legislation are generally already dealt at the beginning of
the evidence chain. Therefore, it is understandable why the force may not be willing
to spend public funds sending its personnel on training courses when it is not viable
with the amount of tasks they are asked to carry out which include legislation.

Although it seems forensic investigators/analysts are not required to know legisla-
tion relating to their devices, they are required to adhere to the four ACPO principles.
It is suggested by [38] that these principles are not up to scratch for examination of
modern devices and are not applicable in the slightest to UAV devices. Consequently,
this was put to the analyst during the interview to gain their personal views on the
theory and recommendation. The outcome of this question was a contradiction to the
paper. The analyst’s personal view is that the ACPO guidelines are still very relevant
to modern investigations. One argument that was agreed was that on modern mobile
devices, data is changed as soon as the device is powered on; therefore, breaking the
first rule in the set of guidelines. Nevertheless, it was reasoned that the second rule of
‘if original data must be changed, the investigator must be competent to do so’, and
that if the investigator is not competent, they should not be carrying out an exam-
ination in the first place. The third rule of ‘make notes’ is also still a very current
and necessary task to undertake. However, they stated that they would remove or
amend the final rule of ‘the officer in charge is in charge’ as it does not make much
sense. A very well-made argument in favour of the ACPO guidelines was made by
the analyst during the interview. However, if this rule were to be removed or altered
drastically, it could result in the investigating personnel becoming solely responsible
for the law and principles being followed. Although investigators should always be
anally retentive in ensuring this, the removal of the final ACPO principle may lead
to investigators becoming lacks in enforcing them.

In relation to the section of the said conference paperwhere it is recommended that
UAV devices gain their own set of principles/guidelines; the analyst disagreed with
the recommendation. Stating that it was a ‘slippery slope’ as almost every device is
different, in particular mobile devices, and could lead to having hundreds of different
sets of ACPO principles. This is a valid point as mobile devices can be seen to ‘break’
the guidelines just as much as UAVs. Therefore, it could lead to a set of guidelines
for mobile devices, of which many operate differently which could lead to a set of
principles for every model of device which would be unsustainable by DFUs.

Finally, the analyst was questioned about Anti-Forensics techniques. According
to the interviewee, Anti-Forensics techniques are encountered at regular intervals
when investigating devices, especially PCs. Popular techniques used by end users
are apparently tools such as ‘CCleaner’, ‘BitLocker’ and ‘VeraCrypt’. These tools
have the ability to forensically wipe everything or encrypt the data from storage to
make extracting data from them near to impossible for investigators. Although it
is possible for investigators to gain a RIPA 49 order (essentially forces the suspect
to reveal their password or face a two year custodial sentence), it is not an easy
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task as the order has to be signed off by a judge in court who has to be satisfied
that everything has been done by investigators to attempt to gain the data from the
device. The consequences of not complying with a RIPA 49 order, although could
act as a deterrent and ‘scare’ suspects to reveal their credentials, could also act as a
means of lowering the suspect’s sentence. The reasoning behind this being that if the
entire prosecution case relied upon the content of the ‘locked’ device, the suspect
could simply take the two years’ imprisonment instead of revealing the content of
their device and risk gaining a longer custodial sentence.

In relation to Anti-Forensics in UAV devices, the analyst felt that it was unlikely
that users would be able to implement Anti-Forensics techniques on such a device,
unless themanufacturers installed one as default. A feature such as encrypting all data
on a UAV device, which would mean the data could not be extracted and analysed
by the investigations team. Nonetheless, a lot of the data captured and analysed
when investigating a UAV device is extracted from the mobile app used to control
the device. Flight paths for example are stored there. It is possible to download a
scheduler onAndroid devices thatwipes the data fromapps at designated times. Thus,
it could be possible for a user to install such an app and set it to delete everything from
the drone app if it has not been opened in ‘x’ amount of days. This would count as an
Anti-Forensic technique and is something that could be carried out by an end user.
Nevertheless, it is unlikely that a standard or computer illiterate user will know about
advanced features such as this; it would take an advanced ‘tech savvy’ user to carry
out the technique. However, this can be said for almost any Anti-Forensic technique.
The user would have to be aware of the presence of data in order to hide/delete it.

4.2 Experimental Work

As well as analysing drone data, multiple experiments were conducted to create a
link with 2 main drone crimes. This is to show how the drone data can support or
refute claims of a crime. For these experiments, smuggling and spyingwere the drone
crimes chosen. Below explains the outcome of the experiments.

4.2.1 Smuggling Contraband

The flight logs provide data showing changes to the battery andmotor data. The most
significant changes to that data come from the 146 g payload flight. This outcome is
to be expected due to the fact the payload was just under half the weight of the DJI
Spark drone itself, therefore, to fly with the excess weight, the drone motors needed
to use more power. The expectation for this flight was that the payload would be too
much extra weight meaning the drone would not be able to take off.

However, thiswas not the case. Looking at the data for themotor speeds it’s clear to
see how the drone used the motors to balance out the added weight to gain altitude.
Some of the data didn’t show any considerable differences from the no payload
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flight and the 18 and 10 g payload flights, such as the ‘motor voltage_output’, which
remained in the range of 9.3–9.6. The 146 g payload ‘motors voltage_output’ ranged
from 31.3 to 87, showing significant difference to the amount of power needed to
adapt to the added weight of the payload.

4.2.2 Spying Claims

By examining the flight log in CsvView, it’s clear to see the flight path, as well as the
path taken by the RC/pilot. For the spark drone, the maximum transmission distance
from the drone to the controller is 1.2 miles. For this experiment, the pilot isn’t in the
vicinity of the drone when the flight ends, meaning there is a possibility the accused
would remain a suspect of the crime.

The DJI Spark drone has a 2-axis mechanical stabilisation system (pitch and
roll), as well as a controllable gimbal range of −85° to 0° (pitch). Pitch, yaw and
roll are based on the drone’s rotor movements and can be useful to determine the
location the drone’s camera was facing at this time of the crime. The yaw axis shows
the investigator the direction the drone was facing during the flight, which in turn
indicates the direction the camera was facing due to the camera on the Spark drone
being located at the front.

Using CsvView, the investigators can determine which direction the camera was
facing at the time of the reported crime. In this experiment the yaw axis is facing in
a different direction to where the drone is being flown.

4.3 Data Analysis

As mentioned previously, a mixture of both Primary and Secondary data was gained
in relation toUAVdevices. This includes flight data, logs, contents of on board storage
etc. This data has been processed and analysed in order to ascertainwhat types of data
is available on the devices and how useful this data could be to an investigation. Also,
as the data includes varying device models of UAV, it is interesting to see whether the
amount of data exported from these devices differs by manufacturer and/or model.

4.3.1 Drone DJI Go 4

Below are screenshots of location logs and maps that have been extracted from the
DJIGO4 app of themobile device used to fly the device. Cellebrite PhysicalAnalyser
is used to extract the data from the mobile device. This is the data relating to the
UAV device that was flown personally and was not gained from the NIST dataset.

The above screenshots (Figs. 13 and 14) show the ‘Extraction Summary’ of the
mobile device used to carry out the test flight of the obtained UAV device. The
extraction summary tab itself contains a lot of useful information regarding the related
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Fig. 14 Extraction Summary of mobile device used during test flight

devices. For example, it is easy to ascertain uniquely identifiable information such as
the mobile device’s Serial Number and IMEI number. Also visible is the name(s) of
the computer(s) used to sync data. However, most importantly, information relating
to the UAV device used is displayed. The Serial Number of the UAV device and the
batteries used are displayed. Very useful information for investigators. Also present
are the files that the data was found in, more useful information for investigators.

In addition to these useful artefacts, Physical Analyser also has the ability to
examine the device’s file system (Fig. 15). After utilising this feature, it is found
that the DJI GO 4 app’s folders within the file system house some extremely useful
items. For example, it seems that the app caches video files recorded by the device
and stores them in the ‘videoCache’ folder of the file system. Present also are an
array of video files (.mp4) which it is assumed were recorded on the UAV device
test flights, due to the file name being a date. Also present in the same folder are
files with the extensions ‘.mapv2′ and ‘.infoV2′. Although the description of these
extensions is unknown, it is assumed that the content would contain data regarding
the flight path of that particular flight. The various different information objects that
could be gained from the file system could assist investigators to match the mobile
device to a specific UAV device.

The screenshots below display the contents of the analysed data of the DJI Go 4
app. The user is able to view logs made by the app during use.

These logs are in .DAT format (Fig. 17) which allows the Physical Analyser
software to generate a map and flight path (Fig. 16). The user is then able to view
the flight path by clicking on the ‘Play/Stop’ toggle button, seen in Fig. 18. Once
initiated, this would simulate the flight path made by the device (Fig. 16).

In addition to Cellebrite’s Physical Analyser tool, Magnet’s AXIOM
Process/Examine softwarewas also utilised in order to analyse themobile device data
(Fig. 19). Alike Physical Analyser, this software also allowed the user to examine the
file system. Additionally, the software displays useful metadata about the current file,
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Fig. 15 Extract from the
mobile device’s file system

such as ‘File Name’, ‘Creation Time’, ‘Logical Size’ and ‘Last Accessed’. All these
examples, albeit present in the Cellebrite software, are very useful to investigators.

After analysing the evidence extractions in two different software, it seems that no
crucial evidence/data has been missed by either. The device used to carry out the test
flights is a DJI Spark device. The reasoning behind choosing this particular device is
purely due to the fact that it is themost assessable.DJI is the largestUAVmanufacturer
(Unmanned Aircraft Systems (UAS) [9]: Commercial Outlook for a New Industry,
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Fig. 16 Physical Analyser map of test flight

Fig. 17 Extract of the DJI
GO 4 app’s file system
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Fig. 18 Waypoints and
timestamps of the GPS
coordinates

2015) and the Spark model being relatively low priced at approximately £449 (DJI,
2019), it is assumed that this is the model most assessable to the general public and
would be more likely to be involved in criminal activities due to this.

4.3.2 DJI SPARK SD Card

Due to unforeseen issues regarding the Cellebrite UFED 4PC software see Appendix
2, FTK Imager had to be used to create an E01 evidence file of the internal SD card
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of the UAV device. The E01 file format is widely supported within forensic toolkits,
which make it an ideal candidate.

In order to analyse the contents of the E01 file, EnCase was used. Below is a
screenshot of the contents of the SD card (Fig. 20). A high volume of both video and
image files are present on the card which can be viewed by the user.

Also, the user is able to view an array of metadata regarding the artefact (Fig. 21).
Metadata such as the item path, creation date and last accessed. This is very useful
information that could be pertinent in a case. In addition to this, the physical location
of the file within the file system is also displayed. By using this data to locate the
physical location on the drive it may make the case more solid.

4.3.3 DJI Phantom 4

Whilst investigating the Internal SD card a total of 11 flight of logs were located,
alongside a text document titled ‘PARM.LOG’ and SYS.DJI (Fig. 22).

By using the CsvView application, data was able to be obtained from the flight
logs and data was able to be extracted that could otherwise not have been seen by
opening the .dat file manually. FLY008.DAT was inputted into CsvView and the
following information was presented as shown in Fig. 23.

Using the feature GeoPlayer within CsvView allows for the user to see both the
flight path which was taken by the drone and the home-point which was set at the
start of the flight by the user. This home point is represented by the ‘H’ on the maps,
whilst the flight path is shown as a red continuous line. Figure 24 shows the specific
flight path of the file ‘FLY008.DAT’.

Upon further examination of flight log ‘FLY008.DAT’, a number of graphs were
able to be created showing a range of signals which are recorded by the drone at the
point of flight. By extracting specific signals (Appendix 3).

4.3.4 External and Internal SD Card

Whilst examining the external SD card a number of files were located inside both a
folder titled ‘DCIM’ and a hidden folder titled ‘MISC’ (Appendix 3).

Within the DCIM folder there was another folder titled ‘100Media’ and within
this there was a number of .JPG files and .mov files. In total 17 images were stored
on the external SD card and a further 6 videos were also stored (Appendix 3).

Upon further investigation into the image files via the image properties key points
of interest were located. The date of creation, modified date and accessed date were
all available for the user to view (Fig. 25).

When viewing the details tab within the properties, further data was able to be
acquired. The date taken was located as 29/06/2017 12:39. Details regarding the size
of the image, resolution and dimension can also be viewed (Fig. 26).

Information regarding the camera which has taken this image can also be located
in the details tab. Furthermore, GPS co-ordinates of the image can also be viewed,
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Fig. 21 EnCase extraction showing the true path of file

Fig. 22 File’s located within internal SD card directory

providing an insight as to where the drone was located when the image was taken
(Figs. 27 and 28).

Through viewing the images that have been found on the external SD the user
can view what the drone has been taking pictures of. This can provide evidence
of specific crimes regarding spying and reconnaissance. A selection of the pictures
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Fig. 23 Flight details of FLY008.DAT from CsvView

Fig. 24 Flight path obtained
from FLY008.DAT

extracted from the external SD provide an insight as to what the drone operator was
taking photos of and whether they were legal or illegally taken (Figs. 29 and 30).

Videos located as .mov files within the 100Media folder contain less information
in the properties when compared to the still images acquired. The created, modified
and accessed dates and time appear, however the accessed time appears to be before
the created time (Fig. 31). Within the details tab, the media created date and time
is obtained, this time is shown as 29/06/2017 13:46 which is just before the file
creation time (Fig. 32). The video’s properties do not include information regarding
the location through GPS contrasting with the images that were obtained.
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Fig. 25 Properties of
DJI_0001 image

4.4 Further Discussion

In this section, any further considerationswill be discussed regarding each component
of this study. A lot of results have been gained from carrying out the experiments
stated in this chapter; the outcome of which have fuelled various recommendations
regarding the examination of UAV devices as well as thoughts on future work in this
area.

In regard to the experiments, the scenarios and data interpretation are formed from
the use of the DJI Spark. The outcomes are likely to vary depending on themodel and
brand of the drone used for criminal activity. In the case of the payloads, there would
need to be further experimentation with drones that have a more intelligent stability
system, to determine how the data output is affected by the additional weight.

With regards to the rotor movements and gimbal, it is important to note that at the
time of experimentation, there was no data to determine the degree of the gimbal.
This data would be an essential piece of evidence as the investigators would be able
to determine if the camera was facing a specific direction, such as into the victim’s
property, rather than just facing in the general direction. This type of evidence may
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Fig. 26 Image details in
properties of DJI_0001
image

Fig. 27 Camera details in
properties of DJI_0001
image

Fig. 28 GPS details in
properties of DJI_0001
image
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Fig. 29 Images and video’s found on external SD

also aid in creating a timeline, to determine when the suspect first started observing
the victim during their drone flight.

5 Conclusion and Future Work

5.1 Introduction

This chapter will provide the overall conclusion of the results which have been
obtained through the experiment and will incorporate parts of the previous chapter
discussing those results. Furthermore, this chapter will look at to what extent this
project has added to the existing literature, whether the objectives and aims of the
project were met and recommendations for future work within this area of research.
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Fig. 30 Further image’s and video found on external SD

5.2 Summary of Findings

Based on the findings, it is shown that with the right tools, not necessarily specialist
software, a drone forensics teamwould be able to find appropriate evidence to support
their investigations. However, it is important to note that there can be challenges
during the extraction and analysis, that depending on the specific case, would need
to be examined to retain the integrity of the data.

Through completion of the experiment a number of key items of interest were
discovered that can help forensic examiners with criminal investigations. Flight data
stored on the internal SD was analysed and provided a vast range of information
relating to the signals which are stored on the device itself. This analysis of results
was more in-depth than previous research papers detailed in the literature review,
this study provides a more detailed analysis and highlighted signals such as airport
limits, emergency brakes information and whether the controller was connected to
the device at all times during the flight.

Media stored within the external SD and mobile application data was also found
through the experiment. This data was congruent with previous research [3, 21, 33,
39] on different models of drones, by exploring the metadata the GPS co-ordinates
of where the image was taken were located as was the date and time of creation.
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Fig. 31 DJI_005.mov
properties

Ownership between the drone and the controller was explored, however due to
limitations with the data which had been acquired form VTO it was not possible
to provide concrete evidence that the two can be linked together. However, serial
numbers of the drone were located on the internal SD flight logs and also discovered
on the flight log which had been stored on the mobile application.

5.3 Limitation

It is important to note that all drones have different components and have different
capabilities, depending on the range or brand, therefore each individual drone will
hold unique limitations. As such, the experiments carried out with the DJI Spark
drone presented a limitation of the internal memory size only being 4 GB. The issue
with a smaller internal memory means that the existing data, and possible evidence,
is overwritten when the capacity is reached.

There is currently limited research in the field of drone forensics as found in the
literature review within the chapter. This means that researchers only have a limited
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Fig. 32 DJI_0005.mov
details

basis of understanding of this topic and there is a lack of unique research. Whilst this
work will quickly become outdated due to the fast-growing nature of drones and their
constant upgrading, this research provides a further understanding of drone forensics.
However, more research needs to be carried out on a range of drones to establish
common themes of data extraction and data locations. Only when many drones have
been researched can a general framework for drone extraction be developed, as has
been done with mobile forensics.

5.4 Recommendation and Future Work

Whilst carrying out this project, a number of obstacles have been encountered. There-
fore, there are a few recommendations that this study would like to make in order to
make the industry more ‘drone/UAV friendly’.

Firstly, when attempting to extract data from a mobile device using EnCase soft-
ware, the evidence was unable to be acquired. This is something that EnCase must
work on to ensure that almost all devices are supported by their software.

Secondly itwas discovered during the interviewwith theDigital ForensicsAnalyst
that there is not a great amount of knowledge of UAVdevices within DFUs. Although
the analyst only works with one Police Force, they are in contact with people from
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other forces and states that views on UAV devices are very similar across all forces
nationwide. The view being that it is very rare that a UAV device is brought into
a Unit, so it is not worth the resources sending personnel on training courses. In
addition to the lack of UAV Forensics training, DFU personnel are not required to
have knowledge on current laws and legislations of any devices. Although standards
such as ISO 27001 and ISO 17025 must be adhered, as well as the ACPO guidelines
[2], knowledge of other legislation is not required andgenerally analysts/investigators
‘learn as they go’ in relation to laws and legislation. This is something that this study
finds astounding as having up to date knowledge of the current legalities relating to
the device(s) would be very beneficial to an investigation. For example, if the use
of a device were an illegal act in a specific area e.g. the use of a UAV device in
the vicinity of a school and it was found that this occurred, it should be included
in the final report. Nonetheless it is likely that an investigator/analyst would look
up such laws and legislation on an ad-hoc basis, but this would waste time during
an investigation. Therefore, it is a recommendation of this study that DFUs at least
make all of their personnel aware of relevant laws and legislation and send them on
‘refresher’ courses on a regular basis e.g. annually. Refresher courses would be very
beneficial also for standards such as ISO 27001 and ISO 17025 to ensure that they
are being continuously obeyed.



Drone Forensics: The Impact and Challenges 115

Appendix 1
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Appendix 2

When using EnCase to acquire the data from the mobile device used to control the
UAV device, issues were encountered. The data had previously been extracted using
Cellebrite and a ‘.UFD’ dump file created. EnCase is able to read the dump file in
order to acquire the data. However, it was found that the software was unable to read
the data; the error message stating that the task was not possible whilst being run in
a Virtual Machine. As the EnCase software is not available outside of the designated
Virtual Machine, it is not known whether or not EnCase is able to read and acquire
the dump data from the iOS device used to control the UAV device.



Drone Forensics: The Impact and Challenges 117

The following screenshots note the process and error messages displayed when
attempting to carry out this task.
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Appendix 3

Signals used to present controller connection

Signals used to present altitude
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Root folder of external SD Card

100Media Folder stored in DCIM Folder

Images and videos stored within 100Media Folder
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Appendix 4

Question Response

• Could you please state your official job title? • Digital Forensic Analyst

• How long have you been working in forensics and
within your current role?

• Placement year in Wales and then worked there over
the summer in the last two years of university

• Then worked there for 1 year before moving to SYP
• Total of around 2 ½ years at SYP

• Do you have an area of forensics that you find more
interesting than the rest, or a specialism?

• Computers more than phones are his specialism,
centring around the operating system, Internet artefacts
etc.

• Phones are very interesting but change too often. Skills
gained may change two years after you’ve learned
them. Also there are skills/methods that are specific for
one particular phone model

• Not disinterested in any part of forensics, but the file
system and operating system is where the interest lies

• How often would you say that you get Drone devices in
your forensic department?
– What are the types of crimes associated with these
cases?

• Very rarely get a device in. Maybe one a year on
average

• The very few they have had have been drug related
cases flying drugs into prisons

• One example was a drone that had crashed in the
vicinity of a prison and it had to be examined to see
whether or not it had been used for the drug delivery
purpose or had the drone just happen to have been
flying around the prison. The outcome was the latter

• The second case was also drug related and the suspects
had been caught and the drone device seized. The
investigation wanted to know where it had been used.
Didn’t directly work on the case but was aware of the
process and outcome as the department personnel get
‘excited’ whenever a drone comes in. Drone was traced
back to Manchester where it was being used to drop
drugs to prisons

• You worked at a Welsh constabulary before SYP, were
Drone devices more popular there?

• The Welsh constabulary cases were drug related.
Wanting to know the flight path etc.

• Do you see the field of Drone forensics expanding? • Yes. Criminal cases involving drones are rare. Mainly
civil cases. See it staying that way for now, staying
fairly rare

• Foresees new laws surrounding drones coming in
regarding videos and images with the new laws coming
in regarding upskirting. Thinks in the future that flying
a drone over a beach for example and capturing images
of people sunbathing will be an illegal act

• Thought there would be a massive increase in the use
of drone devices when they were commercially
available. However, there wasn’t really any surge in the
use of them in criminal acts. Thinks that it comes down
to people still delivering/exchanging drugs by hand and
using technology such as burner phones to suddenly
buy and start flying drones to deliver goods

(continued)
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(continued)

Question Response

• What are the current protocols that must be followed
when extracting evidence from a Drone device? Are
they similar to Mobile protocols?

• Pretty similar to mobile devices. Essentially just
remove the SD Card and forensically image it,
following the same procedures as dealing with other
mobile devices and removable media. Write blocker,
make an E01 etc.

• If it a more serious case, a chip off could be called for.
But that takes a long time to carry out and all drones
are different. It will probably land to someone with
expertise in mobile phones to try and work out which
pins to utilise etc.

• Drones are at the minute a bit of an unknown
• Normal procedure is to analyse the SD card and if the
officer is satisfied with the evidence located, it
probably wouldn’t go any further. Especially if nothing
can be gained from the SD Card. The more data that
can be gained from the SD Card, the more likely it is
that the officer will request further analysis of the
device, i.e. chip off and apps on phones. As drones can
be expensive, you have to justify taking it apart and
risk damaging the device

• Tend to get more information off the phone app
• Some drone controllers store data also. colleagues in
Derbyshire informed me, they have a specialist drone
unit

• Not getting enough devices in at the minute to warrant
a specialised set of procedures

• Could outsource the extraction of data if required e.g.
chip offs. Never outsourced any though

• Do you think that the ACPO principles need to be
updated to be more inclusive of Drone devices as well
as mobile devices?
– Do you think there should be a separate set of
principles solely for Drone devices?

• Don’t think they are as outdated as they could be
considering how old they are. The first principle of
‘don’t change data’ can be an issue, especially with
phones as you change data as soon as it is powered on.
However, the second rule of ‘if you are competent to
change data, you can’ is a good cover as if you are
working in forensics you will generally be competent

• If I were to change ACPO principles, it wouldn’t be
any of the first three. It would be point four. Maybe
re-word it or something similar

• Generally points 1, 2 and 3 are still very valid in
current times. They have aged very well

• Even relevant for drone work
• Don’t think drones justify getting their own set of
principles, as then there would be a different set of
principles for a lot of other types of devices and would
end up with ACPO Principle 99, 125 etc.

• Do you know anything about the current legislation on
Drone devices?

• Do not know very much about current drone
legislation, only that it is an illegal act to fly them in the
vicinity of the airport

• It isn’t a requirement of the job role to be aware of
current legislation

• Generally if crimes involving breaking legislation rules
were committed, the CAA would take the investigation
not the police. It is thought that they will have their
own team of forensic experts/investigators to analyse
devices

(continued)
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(continued)

Question Response

• Does your forensics department send its staff on
regular training courses regarding new methods of
extracting data and changes/additions to legislation?

• Not required to attend any courses or read new
legislation on a regular basis

• Investigators get to know a lot of the legislation whilst
they are working on devices

• Legislation is mentioned within other courses on
forensics

• Normally the process of dealing with legislation is
dealt with before the artefact gets to us. We usually
only have to worry about working within RIPA

• Have you encountered any Anti-Forensics techniques
when examining devices?

• Do you think that Anti-Forensics techniques could be
used on a Drone device?

– If so, which ones?
– How difficult do you think it could be to do this, i.e.
could a novice user do it or would it have to be a
highly skilled technically minded user?

• Yes. It is a big issue that can cover a lot. Tools such as
BitLocker and CCleaner are classed as Anti-Forensics
tools. CCleaner forensically wipes (i.e. 0 s everything)
and encrypts and can do so on schedule. BitBleach,
Eraser are also classed as Anti-Forensic tools. Tend to
comment of their instillation within the final forensic
report. Encryption is also seen as Anti-Forensics.
BitLocker, VeraCrypt etc. Section 49 of RIPA allows
officers to force suspects to disclose their password
depending on the case. It is very difficult to get a RIPA
49 order. It has to go through a judge to be signed off
and has to be proved that you have tried to get into the
evidence

• It depends on whether the user or the manufacturer
implemented them. For example, fairly easy for the
manufacturer to make every bit of data encrypted on
the board. More difficult for a user of the drone to
implement. Maybe set up a schedule on an Android to
wipe the content of the app if it hasn’t been opened in x
amount of days. Standard users would find it difficult
to carry out anti-forensics techniques on drone devices

References

1. Admin (2017) Drone Components_Quick list of it’s parts. https://grinddrone.com/drone-fea
tures/drone-components

2. Association of Chief Police Officers (2012) ACPO good practice guide for digital evidence.
https://www.digital-detective.net/digital-forensics-documents/ACPO_Good_Practice_Guide_
for_Digital_Evidence_v5.pdf

3. Barton TEA, Hannan Bin Azhar MA (2017) Forensic analysis of popular UAV systems. IEEE.
https://doi.org/10.1109/EST.2017.8090405

4. BBC (2019). Drone no-fly zone to be widened after Gatwick chaos. www.bbc.co.uk: https://
www.bbc.co.uk/news/business-47299805, 20 Feb 2019

5. Bouafif H, Kamoun F, Iqbal F, Marrington A (2018) Drone forensics: challenges and new
insights. In: 2018 9th IFIP international conference on new technologies, mobility and security
(NTMS). IEEE, Paris, France

6. Brown R (2018) Fears burglars are using drones to case homes—as drone reports to police
rocket. The Cambridgeshire Live. https://www.cambridge-news.co.uk/news/cambridge-news/
burglars-drones-homes-reports-rocket-14785783

7. CAA,NATS (2019) The drone code. Drone SafeUK: https://dronesafe.uk/wp-content/uploads/
2019/02/Drone-Code_March19.pdf, 19 Feb 2019

https://grinddrone.com/drone-features/drone-components
https://www.digital-detective.net/digital-forensics-documents/ACPO_Good_Practice_Guide_for_Digital_Evidence_v5.pdf
https://doi.org/10.1109/EST.2017.8090405
https://www.bbc.co.uk/news/business-47299805
https://www.cambridge-news.co.uk/news/cambridge-news/burglars-drones-homes-reports-rocket-14785783
https://dronesafe.uk/wp-content/uploads/2019/02/Drone-Code_March19.pdf


Drone Forensics: The Impact and Challenges 123

8. CAA, NATS (n.d) Drone Safe UK: https://dronesafe.uk/
9. Canis B (2015) Unmanned aircraft systems (UAS): commercial outlook for a new industry.

Congressional Research Service. https://goodtimesweb.org/industrial-policy/2015/R44192.
pdf

10. ContiM,DehghantanhaA, FrankeK,Watson S (2018) Internet of things security and forensics:
Challenges and opportunities. Future Gener Comput Syst 78:544–546. https://doi.org/10.1016/
j.future.2017.07.060

11. CopterSafe (n.d) NFZ mod for Phantom 4 (not for PRO). CopterSafe: https://www.coptersafe.
com/product/nfz-mod-phantom-4/

12. Crawford J (2018). 10 crimes committed using a drone. https://listverse.com/2018/07/26/10-
crimes-committed-using-a-drone/

13. DJI (n.d.) FlySafe. DJI website: https://www.dji.com/uk/flysafe
14. DJI (2019) Matric 600. https://www.dji.com/uk/matrice600
15. DJI (2018) Phantom 4. https://www.dji.com/uk/phantom-4/info
16. Dormehl L (2018) The history of drones in 10 milestones. https://www.digitaltrends.com/cool-

tech/history-of-drones/
17. Flynt J (2017) 21 types of drones. https://3dinsider.com/types-of-drones/
18. Fussell S (2018)Whowill police drones? https://gizmodo.com/who-will-police-police-drones-

1826891119
19. Haylen A (2019) Civilian drones. (Briefing Paper No. CBP 7734). www.parliament.uk/com

mons-library
20. Hegarty R, Lamb DJ, Attwood A (2014) Digital evidence challenges in the internet of things.

Paper presented at the INC, pp 163–172
21. Horsman G (2016) Unmanned aerial vehicles: a preliminary analysis of forensic challenges.

Digit Investig 16:1–11. https://doi.org/10.1016/j.diin.2015.11.002
22. HMGovernment (2000) Regulation of investigatory. Legislation.gov: https://www.legislation.

gov.uk/ukpga/2000/23/pdfs/ukpga_20000023_en.pdf, 1 Aug 2000
23. HM Government (1978) Protection of Children Act 1978. Legislation.gov: https://www.legisl

ation.gov.uk/ukpga/1978/37/pdfs/ukpga_19780037_en.pdf
24. HM Government (2003) Sexual Offences Act 2003. Legislation.gov: https://www.legislation.

gov.uk/ukpga/2003/42/pdfs/ukpga_20030042_en.pdf
25. House of Commons—Science and Technology Committee (2019) Commercial and recre-

ational drone use in the UK. https://publications.parliament.uk/pa/cm201719/cmselect/cms
ctech/2021/2021.pdf

26. Jain A, Chhabra G (2014) Anti-forensics techniques: an analytical review. In: 2014 seventh
international conference on contemporary computing (IC3). IEEE, India, p 7

27. James H (n.d.) No Fly Drones: https://www.noflydrones.co.uk/
28. James H (n.d.) Contact. No Fly Drones: https://www.noflydrones.co.uk/contact
29. Liao S (2017) DJI drones can get past no-fly zones thanks to this Russian soft-

ware company. TheVerge: https://www.theverge.com/2017/6/21/15848344/drones-russian-sof
tware-hack-dji-jailbreak, June 2017

30. Kessler GC (2007) Anti-forensics and the digital investigator. In: Proceedings of the 5th
Australian digital forensics conference. Edith Cowan University, Perth Western Australia, p 8

31. Kovar D (2016) UVA (aka drone) forensics. [Slide Presentation] Cyber Security Summit.
https://www.sans.org/cyber-security-summit/archives/file/summit-archive-1492184184.pdf

32. Kovar D, Bollo J (2018) Drone forensics. Digit Forensics Mag 34:14–19
33. Maarse M, Sangers L, van Ginkel J, Pouw M (2016) Digital forensics on a DJI phantom 2

vision UAV. University of Amsterdam
34. Mercer D (2019) Revealed: drones used for stalking and filming cash machines

in the UK. https://news.sky.com/story/police-warn-drone-users-after-incidents-soar-by-40-in-
two-years-11637695

35. NIST (2018) Drone forensics gets a boost with new data on NIST website. NIST: https://www.
nist.gov/news-events/news/2018/06/drone-forensics-gets-boost-new-data-nist-website, 6 June
2018

https://dronesafe.uk/
https://goodtimesweb.org/industrial-policy/2015/R44192.pdf
https://doi.org/10.1016/j.future.2017.07.060
https://www.coptersafe.com/product/nfz-mod-phantom-4/
https://listverse.com/2018/07/26/10-crimes-committed-using-a-drone/
https://www.dji.com/uk/flysafe
https://www.dji.com/uk/matrice600
https://www.dji.com/uk/phantom-4/info
https://www.digitaltrends.com/cool-tech/history-of-drones/
https://3dinsider.com/types-of-drones/
https://gizmodo.com/who-will-police-police-drones-1826891119
http://www.parliament.uk/commons-library
https://doi.org/10.1016/j.diin.2015.11.002
https://www.legislation.gov.uk/ukpga/2000/23/pdfs/ukpga_20000023_en.pdf
https://www.legislation.gov.uk/ukpga/1978/37/pdfs/ukpga_19780037_en.pdf
https://www.legislation.gov.uk/ukpga/2003/42/pdfs/ukpga_20030042_en.pdf
https://publications.parliament.uk/pa/cm201719/cmselect/cmsctech/2021/2021.pdf
https://www.noflydrones.co.uk/
https://www.noflydrones.co.uk/contact
https://www.theverge.com/2017/6/21/15848344/drones-russian-software-hack-dji-jailbreak
https://www.sans.org/cyber-security-summit/archives/file/summit-archive-1492184184.pdf
https://news.sky.com/story/police-warn-drone-users-after-incidents-soar-by-40-in-two-years-11637695
https://www.nist.gov/news-events/news/2018/06/drone-forensics-gets-boost-new-data-nist-website


124 S. Atkinson et al.

36. NLD (n.d) NLD MOD client license key. No Limit Dronez: https://nolimitdronez.com/activa
tion-key-for-nld-mod-client

37. PWC (2018) Skies without limits. https://www.pwc.co.uk/intelligent-digital/drones/Drones-
impact-on-the-UK-economy-FINAL.pdf

38. Roder A, Choo K-K, Le-Khac N-A (n.d) Unmanned aerial vehicle forensic investigation, p 14
39. Roder A, ChooKR, Le-Khac N (2018) Unmanned aerial vehicle forensic investigation process:

Dji phantom 3 drone as A case study
40. Rouse M (2018) Drone (unmanned aerial vehicle, UAV). https://internetofthingsagenda.techta

rget.com/definition/drone
41. Rubens T (2018) Drug-smuggling drones: how prisons are responding to the airborne secu-

rity threat. https://www.ifsecglobal.com/drones/drug-smuggling-drones-prisons-airborne-sec
urity-threat/

42. SmashingDrones.com (2019) Best camera drones for sale UK 2019. https://smashingdrones.
com/

43. The Civil Aviation Authority (n.d) Safety apps. DroneSafeUK: https://dronesafe.uk/safety-
apps/

44. TheDailyMail (2017) Ten drone crimes a day: surge in popularity sees police report for 12-fold
jump in offences linked to the gadgets. https://www.dailymail.co.uk/news/article-4373806/Pol
ice-report-12-fold-jump-drone-offences.html

45. The Office of the General Counsel (2016) The air navigation order 2016 and regulations. The
Civil Aviation Authority. https://publicapps.caa.co.uk/docs/33/CAP393_Fifth_edition_Amen
dment_13_March_2019.pdf, Aug 2016

46. UK Civil Aviation Authority (2019) Drone code. https://dronesafe.uk/drone-code/
47. Uleski M (2017) The top 6 reasons police UAV programs fail [Blog]. https://www.dartdrones.

com/blog/top-police-uav-fails/
48. Waddell K (2017) The invisible fence that keeps drones away from the President. The

Atlantic: https://www.theatlantic.com/technology/archive/2017/03/drones-invisible-fence-pre
sident/518361/, 2 Mar 2017

49. Watson A (2019) 5 ways commercial drones are pushing the boundaries of crime
[Blog]. https://www.cellebrite.com/en/blog/5-ways-commercial-drones-are-pushing-the-bou
ndaries-of-crime/

https://nolimitdronez.com/activation-key-for-nld-mod-client
https://www.pwc.co.uk/intelligent-digital/drones/Drones-impact-on-the-UK-economy-FINAL.pdf
https://internetofthingsagenda.techtarget.com/definition/drone
https://www.ifsecglobal.com/drones/drug-smuggling-drones-prisons-airborne-security-threat/
https://smashingdrones.com/
https://dronesafe.uk/safety-apps/
https://www.dailymail.co.uk/news/article-4373806/Police-report-12-fold-jump-drone-offences.html
https://publicapps.caa.co.uk/docs/33/CAP393_Fifth_edition_Amendment_13_March_2019.pdf
https://dronesafe.uk/drone-code/
https://www.dartdrones.com/blog/top-police-uav-fails/
https://www.theatlantic.com/technology/archive/2017/03/drones-invisible-fence-president/518361/
https://www.cellebrite.com/en/blog/5-ways-commercial-drones-are-pushing-the-boundaries-of-crime/


Intrusion Detection and CAN Vehicle
Networks

Ashraf Saber, Fabio Di Troia, and Mark Stamp

Abstract In this chapter, we consider intrusion detection systems (IDS) in the
context of an automotive controller area network (CAN), which is also known as
the CAN bus. We provide a discussion of various IDS topics, including masquerade
detection, and we include a selective survey of previous research involving IDS in a
CAN network. We also discuss background topics and relevant practical issues, such
as data collection on the CAN bus. Finally, we present experimental results where
we have applied a variety of machine learning techniques to CAN data. We use both
real and simulated data, and we conduct experiments to determine the status of a
vehicle from its network packets, as well as to detect masquerading behavior on a
CAN network.

1 Introduction

Research in automotive security is of increasing importance due to cars being more
networked and interconnected than ever before. Providing security to consumers
and maintaining their safety requires a considerable focus on automotive security
as well as from users regarding security related issues [25]. In recent years, hackers
and security researchers have demonstrated the ability to remotely breach vehicle
security systems and gain unauthorized access. In one costly example, the successful
hacking of a Jeep Cherokee led to the recall of 1.4 million vehicles in 2015 [25].

Intrusion detection systems (IDS) have been widely studied in the information
security research literature. Such systems also have relevance to vehicle security,
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as effective IDS would enable us to identify malicious users or activities on a CAN
network. Yet, in comparison to IDS in amore general setting, relatively little research
has been conducted on IDS in CAN networks.

In this paper, we apply machine learning techniques to CAN traffic data for both
user activity analysis and masquerade behavior detection. In addition, we include an
extensive survey of relevant IDS and masquerade detection topics. The remainder of
this paper is organized as follows. In Sect. 2, we discuss relevant background topics,
including a brief introduction to CAN networks and a similarly brief discussion of
IDS in a general setting. We provide a selective survey of IDS in CAN networks and
we discuss some related topics in Sect. 3. Then in Sect. 4 we outline research in the
area of masquerade detection and discuss why this is likely a fertile area of research
for CAN networks. In Sect. 5 we consider collection issues related to CAN data and,
finally, Sect. 6 gives our conclusion and points to directions for future work.

2 Background

In this section, we introduce several relevant background topics. Specifically, we
discuss the CAN bus and basic notions of intrusion detection.

2.1 CAN Bus

Automotive vehicles manufactured in the US after 2008 have a standard internal
controller area network (CAN), which is commonly referred to as the CAN bus.
Each vehicle has several small electronic control units (ECUs) that are responsible
for controlling different car components. These ECUs communicate over the CAN
bus, sending and receiving packets during vehicle operation. The CAN bus serves
to replace a complex wiring harness that would otherwise be required in modern
vehicles.

CAN is a message broadcast system—a sending node broadcasts its packet, the
receiving node takes the packet, and other nodes should drop the packet. While CAN
is conceptually similar to Ethernet, CAN is slower but offers reliable service, in the
sense that the most important data will be transmitted with a higher priority. This
makes CAN suitable for the challenging and safety-critical environment found in an
automobile.

Another important component of vehicle networks is the on-board diagnostic
(OBD-II) port. In the majority of vehicles, this port is to the left and below the
steering wheel, and in some cars it is visible to the driver, while in others it is hidden.
The OBD-II port enables a user or mechanic to check various engine conditions. For
our purposes, the most significant use of the OBD-II port is to sniff traffic on the
CAN bus [41].



Intrusion Detection and CAN Vehicle Networks 127

Automotive security researchers have primarily focused on two aspects of the
CAN bus. First, the possibility of breaching the vehicle network has been widely
considered [30, 31], and second, attacks based on packet injection have been studied
[17].

Next, we provide a high level discussion of IDS. Then we turn our attention to a
more detailed discussion of IDS, with an emphasis on CAN networks.

2.2 Intrusion Detection Basics

Intrusion detection systems (IDS) are a fundamental tool in the field of information
security. The purpose of an IDS is to notify users when their systems are compro-
mised. IDS is typically considered to be distinct from an intrusion prevention system
(IPS). As the names indicate, IPS is designed to prevent attacks, whereas IDS is
designed to detect attacks once they have occurred—an IDS would be useful when,
for example, an IPS fails to prevent an attack.

IDS can operate at the host level or the network level, or some combination
thereof. Whether at the host or network level, there are many approaches to detecting
a breach. From a high level perspective, anomaly detection and signature detection
are the main techniques used by IDS [44]. IDS methods analogous to those used in
general networks can be applied to automotive vehicle systems to detect malicious
behavior.

2.3 Host Based IDS

A host-based IDS attempts to detect intrusions using information available at the
host, without taking network behavior into consideration. That is, host based IDS
monitors behavior on a specific host or set of hosts to detect malicious behavior [44].
Thismethod of intrusion detection relies on data stored in logs, audit trails, checksum
values, characteristics of user behavior, and so on. One potential advantage of host
based IDS is that it may be able to determine the individuals behind the malicious
behavior, since logs can reflect the actions of individual users [38].

Host based IDS has some disadvantages, depending on the specific implemen-
tation. For example, host based IDS might require large storage to maintain the
necessary data that the IDS relies on [37]. And typically, multiple hosts need to each
have their own host based IDS, which makes setup, configuration, and maintenance
challenging [38].
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2.4 Network Based IDS

Network based IDS attempts to detect intrusions at the network level. Such an IDS
monitors network traffic and typically inspects the header and possibly other aspects
of packets passing through the network [38]. An advantage of network based IDS
is that it can detect scans (e.g., Nmap scans), DoS attacks, and other network based
attacks [44]. This type of IDS is also easier to deploy and maintain, as compared to
a host based system. One drawback to a network based IDS is that it does not have
a clear view of host behavior.

In practice, host based and network based IDS are typically both used, at least to
some extent. This provides layered security and allows for defense in depth.

2.5 Anomaly and Signature Detection

Anomaly detection and signature detection can be considered as two broad categories
for classifying IDS systems—whether host based or signature based. In anomaly
detection, we attempt to model characteristics of the system and when the behavior
of the system diverges sufficiently from the model, we flag it as a possible attack.
Although challenging, anomaly detection can potentially enable us to detect zero-
day attacks [40]. In contrast, signature detection is a form of pattern matching. In
such an approach, we extract a pattern or signature from a known attack, then when
this pattern is detected, the corresponding attack may have occurred [60]. While
relatively accurate and precise, signature scanning can only detect known attacks for
which a signature has been previously extracted.

3 Selective Survey of IDS

In this section, our primary focus is to survey selected work on intrusion detection,
with an emphasis on research that is most relevant to CAN networks. We have
organized the material among several subtopics that are not mutually exclusive.

3.1 Anomaly Detection

As previously mentioned, a strength of anomaly detection is that it holds out the
possibility of detecting new attacks based on zero-day vulnerabilities [60]. Gener-
ically, in anomaly detection, we train a model on normal behavior and significant
deviation from the norm is considered a potential attack [11].
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A major issue with anomaly detection is the inherent challenge in trying to model
normal benign activities [40]. It is possible for benign activity to occur that was
not modeled during the training phase, and it is likely that normal behavior will
change over time. These and other similar issues can lead to an excessive number
false positives. However, even with the drawback of false alarms, anomaly detection
is popular in security research because of the potential to detect zero-day attacks.
Detection of zero-day attacks can be viewed as the holy grail of security research
[51].

The work of Ye et al. [60] relies on using anomaly detection methods for cyber-
attack identification. The authors of [60] discuss the differences between several
anomaly detection techniques. First, they consider a process that they refer to as
specification-based anomaly detection. In this approach, the benign network events
are well defined and properly described. The ordering of network events is also
important to establishing a benign condition.

A second technique discussed by Ye et al. [60], is statistical-based anomaly-
detection. In such an approach, the ordering of events is not important. The model
learns benign behavior from historical data and, hence reliable historical data is
essential. These authors argue that including the ordering of events guarantees a
reduction in false alarms. In their work, they use network data and audit-trail data
to train a Markov-chain model for the purpose of detecting intrusions. The model
is tested for robustness and accuracy by altering the test data and checking the
percentage of false alarms. This approach was shown to be reliable throughout the
conducted tests.

Similar to Ye et al. [60], the work of Feng et al. [11] as well as that of Shon and
Moon [40] relies on anomaly detection. However, these authors do not use Markov-
chain models. They instead rely on the well-known support vector machine (SVM)
algorithm. In both of these papers, the authors considered SVM as their starting
point and make several modifications to the algorithm in an effort to improve their
detection results.

Shon and Moon [40] use an enhanced SVM algorithm that is applicable to both
supervised and unsupervised learning.As for Feng et al. [11], their research combines
SVM and clustering, based on a self-organized ant colony network (SOACN) algo-
rithm [11].Bothmodelswere tested for accuracy andyielded low rates of false alarms.
These papers indicate that customizing standard machine learning algorithms for the
specific task at hand can sometimes yield better results than simply using the baseline
algorithm.

The work by Tsai et al. [51] compares different machine learning algorithms for
network intrusion detection. The authors of this paper consider 55 research papers
on machine learning and intrusion detection in the period between 2000 and 2007.
They categorize these papers according to the machine learning algorithm used, as
well as their effectiveness in detecting intrusions. On average, hybrid methods—
where baseline algorithms are modified—yielded the best results, both in terms of
effectiveness and popularity among researchers [51]. The work of Javaid et al. [14]
applies methods of deep learning to anomaly detection.
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These authors use self-taught learning (STL) on the NSL-KDD dataset, a dataset
that was provided by the Canadian Institute for Cybersecurity. These researchers
use both unlabeled and labeled data in their models. The first phase of their work
is referred to as unsupervised feature learning (UFL), and in this phase unlabeled
data is used to train a model based on a sparse auto-encoder. In the second phase,
the authors consider learning based on labeled data with a softmax function used for
classification.

It is worthmentioning that the applications of machine learning in intrusion detec-
tion go well beyond computer networks. That is, the samemachine learning and deep
learning techniques used to detect intrusions in a computer network can be applied
to other networks, such as CAN bus networks in vehicles. The type of data used for
training will differ, but the underlying mathematical model can remain the same. For
example,Naduri andSherry [29] propose an anomaly detectionmodel for aircraft that
relies on recurrent neural networks (RNNs). In their paper, data from X-Plane simu-
lation software is used, along with the X-Plane Software Development Kit (XSDK).
Later in this section, we will discuss other research that uses RNNs for anomaly
detection. A key point here is that machine learning algorithms have a wide variety
of applications and are easily adapted to different problem domains.

In the CAN bus IDS papers that we are aware of, researchers focus on a certain
feature to use in training their models. That is, researches extract a specific feature
based on what they believe will provide the best representation of “normal behavior.”
Different features tend to prove more effective against specific types of attacks.

There are several limitations that researchers face when studying CAN networks.
For one, high quality data is difficult to obtain—this is a topic that we discuss in
more detail in Sect. 5. Another factor is that it may be challenging to form a complete
understanding of the meaning of all CAN packets. This is due to the fact that car
manufacturers tend to keep such information confidential. Inmany cases, researchers
need to sniff traffic or simulate traffic and observe the behavior of the system. This
diagnostic work might include replaying a packet in question repeatedly to observe
its effect on the vehicle.

Anomalous behavior is usually detected by observing the data values in CAN
messages, the sequence of the messages, the IDs associated with each packet, the
timing of packets, and the frequency of the packets. Below, when we discuss various
CAN based IDS systems, the relevance of these various attributes should become
clear.

3.2 Sequence Anomalies

In this section, we discuss the specific topic of CAN network anomaly detection
research that relies on sequences of data and packet IDs. Wang et al. [54] propose
a live anomaly detection system for CAN networks that is based on hierarchical
temporal memory (HTM). The goal of this model is to alert the user of an attack,
based on sequential anomalies. Since each data packet is associated with a particular
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ID, themodel processes the data section of each ID. Then, themodel predicts the next
data packet and the actual packet is compared to the predicted packet to generate a
score. If the score is below a certain threshold, the systems identifies it as an anomaly.

To collect their dataset,Wang et al. [54] sniffed 20 h of data packets from a Subaru
Impreza vehicle. The data gathered was divided into sections, with the first 70% used
for training and 10% for validation. Finally, the remaining 20% of the data was split
into normal data and anomalies. The anomalies consisted of altered normal data,
based on the authors’ expectations of anomalous CAN traffic. The authors show that
anomalies can be discerned from the frequency of a specific packet. That is, a packet
that appears at a rate different than what is expected can provide a strong indication
of anomalous behavior. In addition, anomalies can be present in the data fields of the
packets, either in the form of extra data or truncated data. Wang et al. [54] compare
their HTMmodel to a hidden Markov model (HMM) and a recurrent neural network
(RNN). Their HTM model is shown to be superior to both of these other popular
models.

The work of Marchetti and Stabili [20] presents an anomaly detection algorithm
that is based on the analysis of ID sequences. In their work, these authors collected
more than 10 h of CAN bus data. Then they analyzed the possible ID transitions
throughout the collected CAN packets and created a transition matrix. The transition
matrix includes a Boolean value to indicate whether a transition is possible from
IDi to IDj, for each possible i and j. This transition matrix can be viewed as a
representation of the normal behavior of the CAN network. Thus, the authors are
able to detect possible anomalies based on anomalous ID transitions.

An advantage of the system proposed by Marchetti and Stabili in [20] is that the
intrusion detection algorithm can operate in either a centralized or distributed mode.
The authors emphasize that their algorithm could be implemented inside any of the
gateway ECUs that have full visibility of the CAN network, and they note that their
algorithm can operate in a distributed mode by implementing the algorithm in one
ECU in each subnetwork.

To evaluate their algorithm, Marchetti and Stabili [20] conduct two main sets
of experiments. In the first test, they inject realistic CAN traffic with IDs that
have different frequencies. Injected packets alter the expected frequencies. A single
message injection was detected with a high rate when the injected packet was from
the pool of IDs corresponding to low frequency packets. In contrast, when IDs corre-
sponding to high frequency packets are introduced, they usually go undetected. In
otherwords, high frequency IDshave a low rate of detection,which is intuitively clear.
These results improve when the number of packets used in the attack are increased.
A strength found in these experiments is that no false positives were generated.

As a second set of experiments, Marchetti and Stabili [20] conducted replay, “bad
injection,” and “mixed injection” attacks. In the replay attack, a set of previous CAN
messages is repeated, while for bad injection, a new set of CAN messages is intro-
duced, that is, the injected packets are new to the CAN network under consideration.
Finally, the mixed injection attack consists of injecting several random messages. In
all cases, these messages are crafted by the attacker without taking transitions into
consideration—only the function of the messages is considered. The detection of
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replay attacks was sporadic and did not follow a clear trend. However, for the bad
injections, the detection rate was 100%, and for the mixed injections, the detection
percentage increases with the number of messages. For a one message mixed injec-
tion, detection was 40%; when this number increased to two CAN messages, the
detection rate improved dramatically, reaching virtually 100%.

Malhotra et al. [19] propose an anomaly detection technique based on long short
term memory (LSTM) neural networks. The datasets used in this research consist
of long patterns of data of variable length. LSTM was chosen due to the long term
memory capabilities it provides, which enables such a model to take advantage of
long sequences of data. Four datasets were used in the experiments. The first was
electrocardiogram (ECG) data, which contained only one anomaly. The second was
space shuttle valve data, which contains three anomalous regions. The third was a
power demand dataset, containing actual power consumption data. The fourth and
final dataset wasmulti-sensor engine dataset. This latter dataset includes the behavior
of 12 engine sensors.

Malhotra et al. [19] used stacked LSTMs in their models. They showed that no
prior exposure or knowledge of pattern duration is required when such an LSTM
is used. In these experiments, LSTMs yielded results that were either better than or
equivalent to those obtained with standard RNNs.

Taylor et al. [48] also consider an LSTM based anomaly detection method. These
authors focused on detecting anomalies in CAN data sequences. Their work demon-
strated that LSTM does not necessarily need to understand the target protocol.
However, they highlight that LSTM networks have some drawbacks, including the
fact that LSTMs deal with each CAN message ID sequence independently. These
authors conjecture that if all IDs were considered at the same time—and hence the
relationships between ID sequences could be taken into account—then the model
would yield significantly higher accuracies. But, such an approach would likely be
computationally expensive.

3.3 Physical Anomalies

Integrating the physical environment into an IDS can yield better detection of security
breaches. For example, Wasicek et al. [57] proposes a proof of concept anomaly
based IDS that they call context aware intrusion detection (CAID). In this paper, the
authors build a model that can detect alterations to the physical systems. They rely
on sensors to detect changes in the physical medium. The data they measure includes
speed, rpm, fuel rate, pedal position, temperature, and fuel-to-air ratio. For anomaly
detection, the CAID system relies on an artificial neural network (ANN).

The CAID framework consists of three main modules. The first modules are
monitors that are used to collect raw data from the vehicle network. The second
modules are known as detectors, which are responsible for analysis. The third and
final modules are reporters, which, not surprisingly, communicate the detector result
to the user. The CAID framework was tested on a 2015 vehicle—to test the model,
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a modified chip (used for vehicle tuning) with enhanced parameters was introduced
to the vehicle. The CAID framework in [57] successfully detected the deviations in
behavior.

3.4 Time Windows

Malicious activity on CANnetworks would typically impact the timing of packets, as
well as the frequency with which certain packets appear. As a result, several papers
focus on detecting anomalies in packet timing. In this section, we discuss some
examples of this type of research.

Taylor et al. [47] proposed to detect CAN attacks based on packet timing. The
authors claim that packets usually arrive at a certain frequency and timing, and thus
they consider an anomaly detection system based on historical timing behavior. In
their algorithm, the authors measured inter-packet timings over a sliding window.
An anomalous behavior is detected whenever a sufficient deviation from historical
behavior occurs. Note that the time sequence of CAN messages is essential for this
analysis.

To collect their data, Taylor et al. [47] logged the CAN packets of a 2011 Ford
Explorer. They made five trips, each lasting five minutes. During those trips the
driver did not operate any user controls and they maintained a low speed and came
to a complete stop. The first three trips were used in training and the last two trips
were used for attack simulation. Attack simulation was conducted by inserting new
packets at different timings. The result showed that inter-packet timing yielded strong
detection results.

Tomlinson et al. [49] also investigated anomalies in timewindows and proposed an
IDS that detects intrusions based on deviations in these timings. They utilized three
statistical methods, namely, autoregressive integrated moving average (ARIMA),
the well known Z score, and a supervised threshold. In their work, they consider
non-overlapping windows. They preprocess the data in each window to reduce the
necessity of recalculating their various metrics. Each metric was used to classify all
broadcasts within the same window.

For data collection, Tomlinson et al. [49] logged 127 min of driving data from an
unspecified target vehicle. Then they analyzed the frequency of broadcast packets.
They found that packets with a higher priority and low IDs (priority and ID numbers
are inversely related) had the least variation in timing, and these were also broadcast
with the highest frequency. The analysis of the data showed that the majority of
ECUs would broadcast at a consistent rate of at least 100 times per second, while
other ECUs broadcast at least 10 times per second. After this analysis was complete,
the authors simulated several attacks on the CAN network. To do so, they altered the
sniffed CAN packet data to create two simulated malicious datasets. In the first set,
they dropped several packets from a normal broadcast, while for the second set, they
injected additional packets to existing broadcasts. For testing, the authors applied
their three detection methods on a sample consisting of the five highest priority IDs.
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They compared the broadcast interval against the mean of the normal window, which
acted as a supervised threshold against which the Z score and ARIMA results were
compared. Overall, the supervised threshold attained the best results, followed by
the Z score, then ARIMA.

3.5 Entropy Based Anomalies

According to Marchetti et al. [21], entropy based anomaly detection models can be
effective only against cyber attacks that cause a high rate of chaos or randomness.
In other words, when the rate of malicious activity increases, entropy based IDS
is more likely to be effective. These authors show that entropy based approaches
enable the identification of malicious behavior without the necessity of disclosing
manufacturer proprietary material related to the meaning of various CAN messages.
From the manufacturer’s point of view, this could be seen as a significant advantage.

The work of Müter and Asaj [28] also considers an entropy based IDS for CAN
networks. These authors measure entropy in the context of coincidence in a given
dataset—entropy and the proposed coincidence measure are directly proportional.
Müter and Asaj make the point that in CAN networks, there is a low rate of coinci-
dence between packets. Thus, when an attack occurs, their measure of coincidence
(i.e., entropy) should increase.

To simulate attacks, Müter and Adaj [28] follow three approaches. In the first
case, they slightly increase the frequency of a certain message, and in the second,
they flood the network with a specific message. Finally, in their third approach, they
consider the “plausibility of interrelated events,” where the goal is to understand the
correlation between certain events. The specific example they mention is that of a
driver in the city who would reach a speed of 60 km/h then stop completely due to a
stop sign. This higher level of understanding enables their model to detect sporadic
single message injection.

3.6 Signature Detection

Of course, signature or pattern matching can be used to detect attacks. Each attack
type, or related sequence of instructions, has a specific pattern and patterns collected
from several known attacks can used to train a model. After training, such a model
essentially acts as ameta-signature that is able to detect any of the patterns onwhich it
was trained, and possibly other similar attacks. A disadvantage of such an approach
is that it requires constant updating to the model as new attack patterns become
available. Another disadvantage is that such a model is unlikely to be effective in
defending against zero-day vulnerabilities [60].
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3.7 Language Theory Based Detection

Studina et al. [46] proposed an intrusion detection method that relies on formal
language theory. They derive attack signatures from different ECUs. Their method
then detects malicious message sequences based on attack signatures, which depend
on the fact that ECUs operate with consistent rules. Thus, the authors are able to
leverage predictable ECU behavior to generate a language that characterizes certain
types of attacks.

4 Masquerade Detection

The masquerade detection problem has been extensively studied in the literature.
Specifically, masquerade detection based on UNIX commands has received consid-
erable attention. The seminal work in this field is the Schonlau, et al., paper [13],
whichwas published in 2001. There continues to be considerable interest in the topic,
as evidenced by recent papers such as [7, 9, 12, 16, 18, 35, 53, 58, 59].

The authors are unaware of any masquerade detection research that has been
specifically applied to CAN networks. Hence, the brief survey of masquerade detec-
tion that we provide in this section does not cite research that is directly related to
vehicle networks. However, we believe that masquerade detection is highly relevant
to the field of CAN networks, and in our experiments section, we return to this topic.

The survey article [4] cites approximately 40 relevant papers published prior
to 2009, most of which use the Schonlau dataset. In [4], the authors identify the
following general approaches to masquerade detection: information-theoretic, text
mining, hiddenMarkov model (HMM), Naïve Bayes, sequences and bioinformatics,
support vector machine (SVM), and other approaches

In the remainder of this section, we summarize some of the relevant work in each
of the categories listed above, and we discuss a few examples of recent work.

4.1 Information-Theoretic

The original work by Schonlau et al. in [13] included analysis of a compression tech-
nique, based on the fact that commands issued by the sameuser tend to compressmore
than those involving an intruder. By the standards of subsequent work, the results
are not particularly strong. More recently, related techniques have been pursued in
[2, 3, 10], but the results have not improved dramatically.
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4.2 Text Mining

In [16], a data mining approach is used to extract repetitive sequences of commands
from training data. These sequences are then used for scoring. Other data mining
approaches have been studied, including principle component analysis (PCA); for
example, in [32], good results are obtained using PCA, although the computational
cost is relatively high during training. Another example of a data mining technique
being applied to this problem can be found in [6].

4.3 Hidden Markov Model

Hidden Markov model (HMM) techniques are considered in [33] and [34], for
example. To date, HMMs have achieved some of the best detection results, and
HMMs are often used as a baseline for measuring the effectiveness of proposed
techniques.

4.4 Naïve Bayes

ANaïve Bayes classifier can be viewed as a static form of an HMM, in the sense that
Naïve Bayes relies on frequencies, without using sequential information. Such an
approach is applied to the masquerade detection problem in [22] and [23]. Although
simple, Naïve Bayes often performs surprisingly well. Additional relevant work can
be found in [61, 62], for example.

4.5 Sequences and Bioinformatics

Sequence-based and bioinformatics-like approaches are, in some sense, at the oppo-
site extreme of Naïve Bayes. Recall that Naïve Bayes does not account for sequen-
tial information, while bioinformatics is focused on extracting sequence-related
information.

In the Schonlau, et al., paper [13], a sequence-based analysis is considered.
However, the only previous work on masquerade detection involving standard bioin-
formatics techniques appears to be [7], where the authors use the Smith-Waterman
algorithm [52] to create local alignments of sequences. This alignment technique is
analogous to a profile hidden Markov model (PHMM), as discussed, for example,
in [45]. However, in [7], the resulting alignments are used directly for classification,
whereas in a standard PHMM, we use these alignments to generate a model, which
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is then used for classification. Consequently, a PHMM based detection algorithm is
considerably more efficient, while the training is no more costly.

4.6 Support Vector Machine

Support vector machines (SVM) are a class of machine learning algorithms that
separate data points using a hyperplanes. The points in the original input space are
typically mapped to a higher dimensional feature space, where separation is likely to
be much easier. SVMs maximize the margin (i.e., the minimum separation between
the sets of points), while keeping the computational cost low [8].

For example, in [55], anSVM-basedmasquerade detection systemachieves results
comparable to Naïve Bayes. Additional masquerade detection work involving SVMs
can be found in [5, 15, 18], where the focus is primarily on improved efficiency, as
compared to [55].

4.7 Other Approaches

Several other approaches that do not easily fit into any of the categories above have
been considered. However, most of these other approaches have produced relatively
poor results. For example, in [39] low frequency (i.e., not commonly used) commands
form the basis for detection. In contrast, the paper [53] shows that relying on high
frequency commands can yield comparable results.

Among other non-standard techniques, a “hybrid Bayes one step Markov”
approach and a “hybrid multistep Markov” method (i.e., a Markov process of
order greater than one) are considered in the paper [13]. Neither of these achieve
particularly impressive results.

A non-negative matrix factorization (NMF) technique is developed and analyzed
in [56]. These NMF results are improved upon in [24], where this approach is shown
to achieve reasonable detection results.

4.8 Discussion

The masquerade detection research discussed in this section highlights some impor-
tant points that are relevant to IDS in CAN networks. First, the topic of masquerade
detection seems particularly relevant to CAN networks. That is, an attacker that is
aware that an IDS is in use, will likely try tomasquerade as a normal user. Thus, a high
degree of sensitivity will likely be needed to detect such attacks. Another important
point to glean from the discussion above is that a standard dataset in invaluable in such
research. The Schonlau dataset is far from perfect, but it has enabled researchers to
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directly compare their results, and hence the problem of masquerade detection based
on UNIX commands has been thoroughly analyzed. A widely available standard
dataset for masquerade detection on CAN networks would be an invaluable asset
and would help focus research in this area.

5 Data Collection

Regardless of the IDS technique under consideration, researchers need access to data.
In the case ofCANnetworks, according toRajbahadur et al. [36]most researchers use
simulated datasets, as opposed to data collected for real vehicles. Rajbahadur et al.
studied 65 papers dealing with intrusion in vehicle networks and discovered that only
19 of these papers used real datasets. Here, we briefly discuss data related issues.
In descending order from the most expensive to the least expensive, we consider
the following three methods of obtaining data: real vehicles, ECU testbeds, and
simulations.

5.1 Real Vehicles

The most expensive method for obtaining CAN data is using an actual vehicle. Note
that a specific make and model would likely be needed to ensure consistency and
so that the results could be easily reproduced. The advantage of such data is that it
provides access to all in vehicle systems, including infotainment, air conditioning,
GPS, door locks, etc. However, due to the cost, this option is not feasible for most
research.

5.2 ECU Testbeds

Another option for data collection is an ECU testbed that includes actual vehicle
components. Smith [42] explains how ECUs can be extracted from a vehicle and
connected together to enable this type of data collection, and for automotive research
in general. ECU benches could be relatively simple, including only a single ECU, or
they could be very complex, including most of the components found in an actual
vehicle. Such components would include the body control module, an engine control
module, an instrument cluster, and so on.

Miller and Valasek [27] explain how ECUs can be connected together to build a
test bench. They also show how data can be sniffed from an ECU and provide details
needed to wire test bench components together.
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Another option is the portable automotive security testbed with adaptability
(PASTA), as developed by Toyota [50]. PASTA is the size of a suitcase, and signifi-
cantly reduces the barrier to entry for researchers. This testbed contains several ECUs
and displays simulated vehicle behavior on a screen. Thus, the data is generated from
actual ECUs, and the result of the generated data is displayed to the user through
simulated vehicle behavior.

5.3 Simulation

The least expensive option is to simulate the data in its entirety. Several tools are
available to simulate CAN traffic. One of the best known simulation tools is ICSim
[63], which is a vehicle simulator that runs onUbuntu. ICSim allows users to generate
CAN traffic and operate a virtual vehicle. It also includes sniffing, replay, and data
injection capabilities.

6 Experimental Results

In this section, we discuss a variety of experiments that we have conducted that are
relevant to the problem of IDS on CAN networks. We consider two main sets of
experiments. The first set deals with classification, where our goal is to identify the
behavior of a vehicle based on CAN packets. In this set of experiments, we rely on
both real and simulated data. In our second set of experiments, our goal is to detect
masquerade behavior. These experiments use only simulated data. Throughout all of
the experiments, we employ a variety of machine learning techniques.

6.1 Datasets

For the classification experiments, we consider two sources of data. We use a dataset
collected from a 2010 Ford Escape [26], and we also consider a simulated dataset
that was generated using ICSim [63]. Asmentioned in Sect. 5.3, ICSim enables CAN
simulation, sniffing and injecting messages. The ICSim user interface is displayed
in Fig. 1. In the classification experiments, we refer to the Ford Escape data as our
real dataset, while the ICSim data is our simulated dataset.

Each CAN packet consists of eight bytes, where these byte can range over all
possible values, that is, from 0x00 to0xFF. The real dataset containsCANmessages
representing three different states, namely, idle, drive, and park. In contrast, the
simulated dataset only contains CAN packets representing the idle and drive states.

For our masquerade detection experiments, we generated two simulated datasets.
The first of these two simulated datasets represents the behavior of a specific user and
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Fig. 1 ICSim display

Table 1 Datasets Dataset Source Data Experiments

1 Real Idle/drive/park Classification

2 Simulated Idle/drive Classification

3 Simulated 11 users Masquerade
detection

4 Simulated 7 actions Masquerade
detection

that of another masquerading users. One trip is the authenticated user, and another
10 trips are various masquerading users. Each trip consists of several actions. The 10
masquerading trips include five with large deviations from the authenticated trip as
well as another fivewith small deviations. Our secondmasquerade dataset consists of
seven simulations. Each of these simulations exclusively contains the packets related
one specific action that the simulator allows. These seven actions are the following.

– Drive 20 mph
– Drive 40 mph
– Drive 60 mph
– Left turn
– Right turn
– Driver door open and close
– Right passenger door open and close.
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A summary of our four datasets is provided in Table 1. Again, the first two of
these datasets are used in our classification experiments, while the second two are
used in our masquerade detection experiments.

6.2 Feature Extraction

For our initial experiment, each CAN message is converted to its decimal equiva-
lent. We then use these decimal numbers as observations and train models based on
sequences of numbers.

We also apply a word embedding technique, Word2Vec, to CAN packets (as
numbers) and compare results obtained with and without the Word2Vec conversion.

Word2Vec is based on a shallow 2-layer neural network and is commonly used
to find the context of words in natural language processing (NLP) [1]. In effect,
Word2Vec groups common words together in a form that is suitable as input to
other machine learning techniques. For our Word2Vec embedding, we consider
CAN messages of length five, based on overlapping sliding windows. We train the
Word2Vec model on these “words,” with the output vectors serving as a feature set
in some of the experiments discussed below.

6.3 Classification Experiments

Asmentioned above, we apply various machine learning models to the CAN packets
and also experiment withWord2Vec features. Specifically, we consider the following
machine learning techniques: k-nearest neighbor (k-NN), hidden Markov models
(HMM), a long short-term memory (LSTM) model, a deep neural network (DNN),
support vector machines (SVM), and Naïve Bayes. In the classification experiments
reported here, we trained on datasets 1 and 2. The goal is to identify the status of a
vehicle from its network packets, without relying on any other information, such as
a visual frame of reference.

6.3.1 k-NN Experiments

We first consider k-NN, which we apply to both the numerical CAN packets and
the Word2Vec features. The real data and simulated data are treated as separate
experiments. In these experiments, we measure how well we can distinguish “idle”
CAN packets from “drive” packets.

Our k-NN results without Word2Vec are summarized in Fig. 2, while results for
k-NN experiments based on the Word2Vec features are given in Fig. 3. From these
results, we see that the Word2Vec features are far more informative, yielding much
higher accuracies.



142 A. Saber et al.

k = 1 k = 3 k = 5
0.0

0.2

0.4

0.6

0.8

1.0

0.
77

0.
76

0.
76

0.
65 0.
70

0.
71

A
cc
ur
ac
y

Real data
Simulated data

k = 1 k = 3 k = 5
0.0

0.2

0.4

0.6

0.8

1.0

0.
75

0.
74

0.
73

0.
67 0.
70

0.
67

A
cc
ur
ac
y

Real data
Simulated data

gnittilpSataD)b(gnittilpSataDoN)a(

Fig. 2 k-NN results (CAN packets)

k = 1 k = 3 k = 5 k = 7 k = 10
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.
86

4

0.
86

9

0.
85

6

0.
85

5

0.
84

4

0.
99

4

0.
99

6

0.
99

5

0.
99

4

0.
99

3

A
cc
ur
ac
y

Real data
Simulated data

Fig. 3 k-NN with Word2Vec

6.3.2 HMM Experiments

A hidden Markov model (HMM) includes an underlying Markov process that is
“hidden” in the sense that it is not directly observable. But, we do have access to an
observation sequence that is probabilistically related to the hidden Markov process.
In the standard terminology, as found in [43], for example, the A matrix drives the
underlying (hidden) Markov process, while the B matrix relates the observations to
the hidden states, and the π matrix contains the initial state distribution. All three of
these matrices are row stochastic.

Note that for the experiments discussed in this section, we are operating in a data
exploration mode. That is, we are training HMMs and we will then examine the
models to see what they tell us about the data.

For our first HMM experiments, we train models treating the available CAN
messages as observations, where we considered each byte as one observation.
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Fig. 4 Converged B matrix
(pairs of characters as
observations)

Following the notation in [43], we have M = 256 distinct observations, and we
train for 500 iterations of the Baum-Welch re-estimation algorithm. In addition, we
have T = 16800 observations, and we consider a model with N = 3 hidden states.
The idea here is that these three hidden states should correspond to idle, drive, and
park.

A snippet of the final converged B matrix (which relates the hidden states to the
observations) is given in Fig. 4. It is not immediately clear which column of this B
matrix corresponds to which hidden state (idle, drive, park).

From Fig. 4, we see that observation 129 (hex representation of 0x81), has
probability 1.0 in the third state, while all other probabilities for the third state are,
of course, zero. This signifies that a message with hex value of 0x81 is in the third
state. However, we still do not know what this state actually represents.

To take this further, we trained another HMM with entire messages as observa-
tions. In this case,M = 2830, T = 16800, and we again choose N = 3 hidden states.
A snippet of B matrix for this model is displayed in Fig. 5.

Similar results were observed for the third state in this case, where we find that
an ID of 0 has a probability of 1. During the preprocessing of the data, each of the T
= 2830 messages was assigned a unique ID. The ID 0 was assigned to the specific
message 81 08 80 00 00 00 00 00.This packet was from the autopark file,
and hence the HMM results show that the model was able to correctly identify the
packet that indicates when the car is in the park state. This was also in line with the
results obtained from the first HMM model since we have 0x81 in the data section
of this packet, and 0x81 does not appear elsewhere in the data. Again, this packet
was only found in the autopark file and was absent from both the drive and idle files.
Again, the HMM has associated the third state with the “park” state. This illustrates
the strength of an HMM (and machine learning in general) for this data analysis
problem.
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Fig. 5 Converged B matrix (packets as observations)

TheAmatrix obtainedwhen theHMMwas trained on CANmessages is displayed
in Fig. 6. This matrix gives the transition probabilities between hidden states.

Based on the results discussed above, we observe that the third state is the park
state. Further analysis shows that the first state is the idle state while the second is the
drive state. Aswe can see from theAmatrix in Fig. 6, from the park state, there is only
one possible transition and that is to the idle state. This is entirely consistent with the
way that a car is actually driven—a car cannot move directly from the park state to
the drive state, as it must first pass through the idle state. Another key observation is

Fig. 6 Converged A and π matrices
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the fact that from the first two rows of the Amatrix, we can see that there are frequent
transitions from the idle to the drive state and vice versa. These results generated by
our HMM nicely illustrate the “learning” aspect of machine learning models, since
we never explicitly told the model anything about the states or about driving, yet
the model was able to discern this information, which is completely consistent with
real-life driving situations.

6.3.3 LSTM Experiments

Long short-termmemory (LSTM)model is a type of recurrent neural network (RNN)
that can be used to predict new information based the previous known information.
Unlike other types of RNNs, LSTMs not only take into account recent past infor-
mation, but also considers a much larger context to predict new information. The
intuition behind using LSTMs in the CAN network context is that they are known
to work well with time series and sequence data. We experimented with different
number of LSTM layers and found that the best results were obtainedwith five LSTM
layers, in which case we were able to obtain an accuracy of 100% for the problem
of distinguishing idle and drive CAN packets.

6.3.4 DNN and SVM Experiments

Deep neural networks (DNN) are a type of complex artificial neural network (ANN)
that includes multiple hidden layers between the input and output layer. We experi-
mented with a DNN with two hidden layers, where each layer contains 128 neurons.
We trained a DNN model on word embeddings based on various numbers of CAN
messages. We found that models based on five CAN messages gave us the best
results, yielding an accuracy of 99.46%. Again, these results are for the problem of
distinguishing between idle and drive CAN packets.

Support vector machines (SVM) were also applied to the data. For our SVM
experiments, we found that the linear kernel yielded the best results and hence we
use this kernel function for all results reported here. Using SVMs, we obtained
good results on both the real and simulated datasets. Our DNN and SVM results are
summarized in Fig. 7.

6.4 Masquerade Detection Experiments

In this section we discuss the results of various basic masquerade detection experi-
ments that we have performed. These experiments are based on datasets 3 and 4 and
deal with different simulated users. The goal is to distinguish a (simulated) masquer-
ader from a (simulated) authenticated user. Due to the superior results obtained above
using Word2Vec, we employ the Word2Vec conversion in all experiments reported
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Fig. 7 DNN and SVM with
Word2Vec
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in this section. We experiment with three learning techniques, namely, k-NN, DNN,
and Naïve Bayes.

6.5 k-NN and DNN for Speed Detection

For each simulated user, we generate two files, each at a different speed. For one
file, the speed ranges from 20 to 40 mph and for the other, the speed ranges from
40 to 60. Then, the data from each file is converted with Word2Vec and labeled.
Next, we apply the two machine learning methods under consideration, attaining
high accuracy in both cases. These k-NN and DNN results are summarized in Fig. 8.

The use case here is to detect changed behavior of a user. For example, if a vehicle
owner maintains a typical speed and that speed suddenly increases, this could be an
indication of a theft.

6.5.1 k-NN for User and State Detection

In this section, we give the results of k-NN experiments based on the 11 simulated
trips and the 7 actions found in datasets 3 and 4, respectively. First, we test a k-NN
model on the simulated CAN traffic for the 11 trips, which we view as representing
an authenticated user and 10 other trips.We split this data, with 70% used for training
and 30% for testing. The results for this experiment are summarized in Fig. 9. As
expected, these results are not as strong as the speed detection results in Fig. 8, but
the results are still very good.

We also apply k-NN to differentiate between the 7 actions in dataset 4. The purpose
of this experiment is to determine how well we can differentiate between specific
actions, without assuming any specific knowledge of the details of the CAN data. In
this case, the data was again split into 70% for training and 30% for testing. These
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Fig. 8 k-NN and DNN for speed detection
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Fig. 9 k-NN user detection results

experimental results are given in Fig. 10. Note that we are able to distinguish between
these actions with nearly 99% accuracy.

6.5.2 Naïve Bayes Experiments

In this section, we consider two sets of experiments based on Naïve Bayes. For our
first set of experiments, we use Naïve Bayes to model the simulated CAN traffic for
the 7 actions in dataset 4 and, independently, the 11 trips in dataset 3. In both of these
cases, the data is split with 70% used for training and 30% reserved for testing. For
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Fig. 10 k-NN state detection results

the 11 trips in dataset 3, we again view this data as an authenticated user plus 10 other
trips. The results for these Naïve Bayes experiments are summarized in Fig. 11. In
this graph, the “User” label represents the accuracies attained when we trained for
the 11 trips in dataset 3, while the “States” label represents the accuracies for the 7
actions in dataset 4.

Our second set of Naïve Bayes experiments are more complex. We first use Naïve
Bayes to model the simulated data for the 7 actions in dataset 4. Then we use the
resulting model to predict what each packet represents for each of the 11 user trips
in dataset 3. In this case, we obtain the accuracies in Fig. 12, where the bar for “User
i” is the accuracy obtained for all actions corresponding to the ith user (or trip) in
dataset 3. We see that Naïve Bayes fails to accurately predict the possible actions at
the packet level.

Fig. 11 Naïve Bayes to
distinguish users and states
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Fig. 12 Naïve Bayes trained on seven actions

6.6 Summary

The graph in Fig. 13 summarizes the accuracy of the variousmachine learningmodels
considered for the problem of distinguishing the idle state from the drive state. From
these results, we see that LSTM is the winner, giving perfect separation on both the
simulated and real datasets. Our DNN model also performed well on both datasets.
While k-NN does very well on the simulated dataset, it does poorly on the real data.
Overall, it is clear that neural network based techniques have an advantage for this
problem.
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Fig. 13 Summary of CAN traffic analysis results
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Fig. 14 Naïve Bayes versus
k-NN for masquerade
detection
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In Fig. 14, we summarize the accuracies of both theNaïveBayes and k-NNmodels
for the masquerade detection problem considered here. Note that we have included
the accuracies of the “user” detection experiments for Naïve Bayes, since the “state”
detection results are nearly identical. We see that k-NN provides far better results
than Naïve Bayes in this case.

7 Conclusion and Future Work

In this paper, we considered the problem of intrusion detection in CAN networks.
We provided a selective survey of research in the field, organized around several
major approaches. We also discussed masquerade detection research and suggested
that this will likely be a useful path to follow for future research in CAN network
security.

We also provided results for various sets of machine learning based experiments.
We showed that we can accurately identify the status of a vehicle from its network
packets without assuming any previous knowledge of the nature of the CAN traffic.
Specifically, we applied k-NN, LSTM, HMM, DNN, and SVM to two datasets—on
simulated, and one real.We showed that trainedHMMmodels can be used to identify
important characteristic of CAN packets. From the other models, we were able to
accurately classify the vehicle status based only on CAN packets. Most of themodels
produced strong results on at least one of the datasets, with neural network based
models (LSTM and DNN) giving us perfect accuracy (or nearly so) on both datasets.

Ourmasquerade detection experiments using k-NNproduced strong results, while
Naïve Bayes did not perform nearly as well. These particular experiments were
limited in scope and designed to introduce the concepts and to illustrate some of the
potential for future work in this domain.

For future work, it would be reasonable to incorporate additional data in the
masquerade detection models. For example, the use of GPS location data together
with CAN traffic data would seem to offer the potential for much stronger models.
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A holistic masquerade detection systemwould rely on several steps. For example,
we might initially authenticate a user based on a biometric feature—or a mix of
several such features. Then by monitoring CAN traffic and other data, such as GPS
location, we could detect significant deviations from the typical behavior of the
authenticated user. When such deviations are detected, we suspect a masquerader,
and in such cases we could require the user to re-authenticate.
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Abstract Despite its many technological and economic benefits, Cloud Computing
poses complex security threats resulting from the use of virtualisation technology.
Compromising the security of any component in the cloud virtual infrastructure will
negatively affect the security of other elements and so impact the overall system
security. By characterising the diversity of cyber-attacks carried out in the Cloud,
this paper aims to provide an analysis of both common and underexplored security
threats associated with the cloud from a technical viewpoint. Accordingly, the paper
will suggest emerging solutions that can help to address such threats. The paper
also offers future research directions for cloud security that we hope can inspire the
research community to develop more effective security solutions for cloud systems.
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1 Introduction

Cloud Computing (CC), still an evolving paradigm, has become one of the most
transformative computing technologies and a key business avenue, following in the
footsteps of main-frames, minicomputers, personal computers, the WorldWideWeb
and smartphones [35, 34, 41, 43]. CC is a shared collection of configurable networked
resources (e.g., networks, servers, storage, applications and services) that can be
reconfigured quicklywithminimal effort [37, 30]. Its vital features have considerably
reduced IT costs, contributing to its swift adoption by businesses and governments
worldwide.

As a result, CC has drastically transformed the way in which Information Tech-
nology (IT) services are created, delivered, accessed and managed. Such a transfor-
mation, that offers many technological and economic benefits, has produced substan-
tial interest in both academia and industry. However, despite all its benefits, CC poses
numerous security threats with devastating consequences. As a result, many organi-
sations do not move their business IT infrastructure completely to the cloud mainly
due to the fears of cloud-related security threats. Some of these fears among others
are due to the issues such as processing of sensitive data outside organisations, shared
data and ineffectiveness of encryption, etc. [34, 21].

Considering its security requirements (confidentiality, integrity, availability,
accountability, and privacy-preservability), this paper presents an analysis of secu-
rity threats associated with CC. To this end, we identify both common and underex-
plored cyber-security attacks carried out in Cloud Computing environments (CCEs).
Accordingly, we will also propose emerging solutions and lines of defence against
each attack vector with a view to mitigating such threats. Our study will also provide
insights into the future security perspectives related to the CC. This study only
focuses on analysing the technical aspects of cyber-security threats in cloud. To this
end, this analysis emphasises the complexity, intensity, duration and distribution of
the attacks, outlining themajor challenges in safeguarding against each attack. Inves-
tigating other security aspects such as organisational, compliance, physical security
of data centers, and the way in which an enterprise can meet regulatory requirements
is outside the scope of this paper. Similarly, providing an exhaustive list of attack
vectors is outside the scope of this study. The remainder of the paper is structured as
follow.

The remainder of the paper is structured as follow. Section 2 analyses attack
vectors while Sect. 3 discusses countermeasures. The paper is concluded in Sect. 4.
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2 Attack Vectors

There are certain vulnerabilities associated with computing hardware that attackers
can exploit to launch destructive attacks which often go undetected by the existing
software countermeasures against embedded device systems within cloud environ-
ments. One of the usual characteristics of a computer hardware component can be
malfunction or some kinds of abnormal behaviour which can result in providing a
backdoor access to a potential adversary. The following sub-sections analyse the
cyber-attacks that can be carried out due to physical hardware flaws.

2.1 Side-Channel Attacks

Side Chanel Attacks (SCAs) are a type of hardware-targeted attacks that is almost
impossible to detect. SCAs are based on Side-Channel information that leak through
a medium that is not intended for communications. This medium is called a Side-
Channel. Side-Channel information can be acquired froman encrypted digital device.
SCAs could also stem from a leakage produced by electronic circuits as by-products
that render it possible for an adversary without access to circuit, itself, to determine
how the circuit operates and what type of data it is processing (heat and electromag-
netic leakage are both feasible sources of information for an adversary). SCAs can
be very detrimental if proper defence mechanisms are not implemented on a target
device. The three major types of side-channel attacks can be categorised based on
the leaked information, including: time, trace [25] and access-driven [53]. All the
three types acquire sensitive information by observing the execution time or power
consumption variations produced through cache hits and misses. However, they tend
to vary on the details of the captured information. The time-driven attack observes
the aggregate profile and the total number of cache hits and misses. It can be of two
types: passive if adversaries have no direct access to the victims machine or active
if there is a physical access to the machine [33, 36, 32, 39]. The following sub-sub
sections provide an analysis of the variants of SCAs.

Prime+ Probe Attacks Through a Prime+ Probe Attack, a variation of CB-SCAs,
the adversary could potentially attain co-residency and perform load measurement.
The theft of sensitive information can be accomplished by exploiting three prob-
able channels: pre-emptive scheduling, hyper-threading, and multi-core. In the first
channel, the adversary exploits the context switch between his VM and the victims
VM to observe the cache status as the victim had left it. In the second channel, the
malicious operation is performed by breaching the CPU core sharing. In this case,
the attacker exploits the multi-tenancy, realised with multiple threads running on a
single processor. The third stage involves reading the L3 cache that is the only one
shared when VMs are allocated to multiple cores instead of multiple threads [25].
Furthermore, by performing a Prime + Probe Attack, the attackers could extract an
RSA secret key from a co-located instance in CCEs [22]. A Prime + Probe attack
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can also be launched against different processor caches such as the L1 data cache,
L1 instruction cache and the branch prediction cache. Similarly, adversaries could
also exploit Prime + Probe for LLC attacks by leveraging hardware elements that
are beyond the control of the CSPs but activated in the VMM for operation reasons
[29].

Time-Driven Attacks In a Time-Driven Attack, the attackers extract cipher keys
by exploiting side-channel information vulnerabilities triggered by the execution of
cryptographic algorithms and data-dependent behaviour of cache memory. A Time-
DrivenAttack determines the run times of victim processes by exploiting the connec-
tion between the secret key and the number of cache misses which in turn establishes
the runtime to infer the key. Regardless of the differences between these approaches,
the Cache-Based Timing Attacks rely upon the impacts that the number of cache
misses have on the execution time of an encryption process. Furthermore, Time-
Driven Attacks can be performed against AES in a virtualisation setting [20, 11, 3,
10, 40, 25]. An example of such an attack is the PikeOS Microkernel Virtualiza-
tion Framework [12], which was can be mounted against AES on an actual CPS.
Similarly, Address Space Layout Randomization (ASLR), a security technique used
to prevent exploitation of memory corruption vulnerabilities, can be bypassed by
applying the branch-target buffer.

It is also possible to locate the place in the kernelwhere codeswere runbasedon the
mapping from virtual addresses to the branch-target buffer cache [14]. In addition,
a malicious operating system could potentially reverse-engineer the control flow
of SGX enclaves via branch-prediction analysis or branch shadowing [28]. Like-
wise, adversaries might be able to mount Timing Attacks against secret-dependent
data access patterns on the sliding-window modular exponentiation implementa-
tion [9, 29, 1]. The Scatter–Gather technique, a commonly-implemented method
to stop Time-Based Attacks, can also be exploited through a variation of Timing
Attack called CacheBleed [52], which takes advantage of cache-bank collisions [15]
(Intel, 2016) to generate quantifiable timing differences [16]. In general, Time-Driven
Attacks are simple to execute since they require less leaked information [7, 3].

Access-Driven Attacks In cases when multi tenancy is employed through Hyper-
Threading method, information on cypher algorithms as RSA and AES could poten-
tially be observed by the attackers. One of the most recent attacks is the Access-
Driven Attack, via which the attacker can control the cache sets that the cipher
process changes. For instance, the attacker is likely to be able to determine which
aspects of the lookup tables have been accessed by the cipher. Another type of attack
is Boot Integrity Attack, in which adversaries with either logical or physical access
are likely to be able to damage boot integrity with bootkits or particular form of
malware that exists outside the OS (e.g. within SystemManagement Mode (SMM)).

Considering its location, this kind of malware is predominantly threatening as it
can reinfect new OS installations. Susceptibilities have been discovered in the BIOS,
UEFI, Master Boot Record (MBR), CPU Management Engines and PCI device
option ROMs [50]. Access-driven attacks exploit the connection between the secret
key and the cache use of a crypto process. Because the cache is divided between
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various processes, an adversary might be able to gain the cache usage of the victim
process by monitoring a carefully created process, which executes together with the
victim process [27].

2.2 Cache-Based Attacks

Confidential data can be safeguarded against unauthorized access by storing it in
an encrypted form and transmitting it over encrypted channels. However, at some
point, data need to be decrypted so as to perform the computation. Adversaries could
potentially exploit the multi-tenant environment to gain access to physical resources
such as memory bus, disk bus, and data and instruction caches in which they can
locate decrypted data and the cryptographic keys of well-known algorithms (AES,
DES, RSA) and of other VMs instances. An instance of this concerns the shared
memory hierarchy of an Intel Pentium 4 with hyper-threading features. Both the L1
and L2 caches with the hyper-threading feature turned on can leak information from
one process to the other [33, 36, 45]. This is called a Cache-Based Side-Channel
Attack (CBSCA) and is part of a family known as Cross-VM Side-Channel Attacks.
This attack evades the logical isolation provided by the hypervisor layer and can be
launched by two types of malicious actors including: insider attackers (often cloud
employees abusing their privileged position) and malicious customers (that in a first
phase must land in the victim server and then initiate the attack).

2.3 Flush + Reload Attacks

By exploiting resource sharing features in virtual environments, adversaries will be
able to carry out cross-VMFlush+ReloadAttacks against VMs in a hypervisor such
as VMware [23]. As a result, they could potentially extract an AES keys in OpenSSL
1.0.1 running inside a victims VM. Likewise, shared memory controllers are suscep-
tible to Flush + Reload Attacks that could exploit memory interferences as timing
channels [48]. Similarly, covert channels shared between processor resources could
be exploited to facilitate secret communication between malign processes. Trojans
and spies could be utilised to compromise Processor Branch Prediction Units [13].
By exploiting Branch Predictor conflicts, adversaries could establish covert chan-
nels enabling them to launch Flush + Reload attacks against Computing hardware
devices.



160 R. Montasari et al.

2.4 Rowhammer Attacks

If a particular row of a Double Data Rate (DDR) memory bank is constantly acti-
vated (opened) and pre-charged (closed) within aDynamic Random-AccessMemory
(DRAM) refresh interval, one or more-bit flips take place in physically adjacent
DRAM rows to an incorrect value. Such disturbance is known as Rowhammer [26].
An advanced attacker can exploit the Rowhammer to compromise the DRAM of a
computing device. This occurs by evading the defence mechanisms often deployed
through traditional security software and features such as memory isolation to
conduct the memory disturbance attack. Similarly, a Rowhammer Fault Injection,
a recently discovered real-timeMicroarchitectural Attack, can be launched remotely
to gain full access to the DRAM of a CC device. A Rowhammer Attack can pollute
system memory, access and alter sensitive data and gain full control of the system.

2.5 Hardware Threading Attacks

Attackers can also exploit hardware threading to examine a competing threads L1
cache usage in real time [16, 40]. Simultaneous multithreading (the sharing of the
operation resources of a superscalar processor betweenmultiple execution threads) is
a feature implemented into Intel Pentium 4 processors. Under this implementation,
the sharing of processor resources between threads spreads beyond the operation
units. This denotes that the threads also share access to the memory caches. Such
shared access to memory caches can facilitate side channels and enable a malign
thread with restricted privilege to scan the operation of another thread. In turn, this
results in allowing the attackers to steal cryptographic keys [17, 29, 40]. Additionally,
by exploiting side-channel information based onCPUdelay, adversaries could poten-
tially mount TBSCAs against the Data Encryption Standard (DES) implemented in
some applications. Such cryptanalysis technique applies side-channel information
on encryption processing to gather plaintexts for cryptanalysis and infers the infor-
mation on the extended key from the acquired plaintexts [46]. Through this attack,
the adversary will be able to break the cipher with plaintexts [33, 36, 32].

2.6 Data Loss and Data Breach

Data stored in the cloud could be lost because of the hard drive failure, its accidental
deletion by CSPs or malicious modification by adversaries, etc. Data loss can have
disastrous impacts on enterprises such as bankruptcy. A data breach occurs when a
VM accesses data from another VM on the same physical host (when the tenants
of the two VMs are different customers). For example, a data breach can be carried
out through a Side-Channel Attack, in which adversaries could potentially access



Cloud Computing Security: Hardware-Based Attacks … 161

data from one VM through another by utilising their shared components such as
processors cache.

3 Countermeasures

Shared Technology: Cloud Security Alliance (CSA) (Hubbard and Sutton 2010)
recommends a defence in depth strategy that should include compute, storage, and
network security enforcement and monitoring. According to recommendation, CSPs
could deploy robust compartmentalization to ensure that individual customers do not
affect the operations of other tenants running on the same CSP. This denotes that
customers must not be able to have access to any other tenants actual or residual
data, network traffic, etc. Data Loss and Data Breach: Thus, one of the most effective
ways to safeguard against data loss is to have in place a proper data backup, which
resolves data loss issues.

3.1 Side-Channel Countermeasures

The purpose of a SCA countermeasure must be to hide the leakage or reduce it so that
it holds minor or no valuable information against which an adversary is motivated to
launch an attack. One of the most widely used defence mechanisms against a SCA
relies on rendering the security operation time delay constant or random irrespective
of the microarchitecture components utilised [16]. However, implementing constant-
time execution code is difficult because optimisations presented by the compilermust
be circumvented. Therefore, dedicated constant-time libraries have been introduced
to enable security developers to safeguard their applications against SCAs. Hard-
ware partitioning can also be used as a countermeasure to safeguard against SCAs.
This hardware partitioning must be based on inactivating hardware threading, page
sharing, presenting Hardware Cache Partitions, quasi-partitioning, and migrating
VMs within cloud services. Considering that SCAs exploit physical elements of a
system, its countermeasures must take the approach of enhancing the security of
the system design and development such as that of cache architectures. These cache
mechanisms should be offered without vast performance costs.

Furthermore, efficient implementation of Advanced Encryption Standard (AES)
algorithm in hardware could be utilised as a defence mechanism against SCAs.
There are currently few manufacturers implementing better hardware support in
the design of their processor technologies to offer better constant-time cryptography
operations. For instance, Intel has introducedAESNew Instructions (AESNI), which
is a new encryption instruction set that enhances on the AES algorithm and speeds
up the encryption of data in the two categories of Intel Xeon processor and the
Intel Core processor. AES-NI provides an advantage in relation to speed over other
implementations.Moreover, sinceAES-NI,which consists of seven new instructions,
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was specifically developed to be constant-time, it provides a better protection against
SCAs over some other software implementations.

3.2 Cache-Based Countermeasures

Configurable Cache Architecture could be used as a countermeasure to provide hard-
ware assisted defence against CBSCA [49]. The cache is dynamically divided into
safeguarded regions and can be configured for an application. In partitioned caches,
there is a section of the cache that is assigned exclusively to the safe-guarded process
so as to avert information leakage. Therefore, partitioned cache mechanism can be
deployed as a line of defence against CBSCAs. A partitioned cache must be included
in devices that are susceptible to SCAs to separate the cache behaviour of one process
to another. Thiswill prevent process interference by providing adequate space to store
the entire S-box in cache (It will be locked when it is pre-loaded). Segregation does
not permit forcible flushing of the cache; furthermore, partitioned cache employs
longer cache lines that render attacks more problematic. Similarly, a method called
Partition-LockedCache (PLcache) [49] can be used to deal with cache sharing issues.
This method will rely on a fine-grained locking control to isolate only the cache lines
that contain important data. By making private partitions only those cache lines that
are of interest are locked.

McBits [4] and Bitslice implementation of the AES [5] is another constant time
countermeasure. By not using any lookup tables, this implementation could essen-
tially prevent information from leaking out via a side channel. Another countermea-
sure is to carry out Cache Warming or Pre-Fetching. Time-Driven and Trace-Driven
SCAs distinguish cache-miss and cache-hits. Eliminating this distinction can be a
robust countermeasure [38]. So as to prevent information from the leakage, one
needs to warm up the cache into which the Lookup Tables must be loaded prior to
the runtime being initiated. In this situation, no cache misses will occur on condition
that data is loaded to cache prior to the runtime. As a result, there will be no leakage
of data.

3.3 Rowhammer Countermeasures

To perform a successful Rowhammer attack, adversaries must undertake four steps
consisting of identifying the target device and its specific memory architecture char-
acteristics, activating rows in each bank in a swift manner to trigger the Rowhammer
vulnerability, accessing the aggressor physical address from userland [44] and
exploiting bit flips [26]. In order to counteract a Rowhammer Attack, Rowhammer-
induced bit flips must be blocked by altering DRAM, memory controllers or the
combination of both. It is important that specific rows not be repeatedly triggered
during a specific refresh point if the adjacent rows are not simultaneously refreshed.
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Targeted Row Refresh (TRR) mode and Maximum Activate Count (MAC) metadata
field could also be used by a memory controller as countermeasures to safeguard
against Rowhammer Attacks [24]. In the TRR, a memory controller would need
the DRAM device to refresh a rows neighbours. In contrast, MAC metadata field
specifies the number of activations that a given row can safely cope with before its
neighbours require refreshing.

Another countermeasure against Rowhammer Attacks is to use the physical
probing of the memory bus via a high-bandwidth oscilloscope. This can be achieved
by determining the voltage on the pins at the DIMM slots [42]. Furthermore, time
analysis based on the rowbuffer conflict can be used to determine address pair that
is part of the same bank and then apply this address set to rebuild the precise map
function automatically [42, 51]. Furthermore, a simple solution requires that DRAM
vendors build Rowhammer mitigations internally within a DRAM device, which
does not need special memory controller support.

There exist various other methods that can be used to mitigate Rowhammer
Attacks. For instance, by constantly refreshing the entire rows, disturbance errors
could be eliminated for sufficiently short refresh intervals (RI RIth) [26]. This is
despite the fact that regular refreshing might diminish performance and energy-
efficiency. Furthermore, a mechanism called Probabilistic Adjacent Row Activation
(PARA) [26], which is implemented in the Memory Controller can also be utilised
to prevent DRAM disturbance errors Manufacturers could also retire DRAM cells,
identified as victim cells, and remap them to spare cells. The end-users, themselves,
could also retire DRAM sells by assessing and utilising system-level techniques for
deactivating faulty addresses or remapping defective addresses to reserved addresses
[36, 26] (Montasari, hardware [26]).

Authors in [18] have also suggested aRun-TimeMemoryHotDetector (ARMOR)
to mitigate Rowhammer attacks. ARMOR is analogous to DRAM in that it is imple-
mented at the memory level. According to the authors in [18], ARMOR is capable
of detecting all the conceivable Row Hammer errors, screening the activation flow at
the memory level and also identify hot rows (specific rows) that might be hammered
at run-time.

One method of detecting a Rowhammer attack is to implement the last-level
cache counter facility to generate an interrupt after N misses. This method involves
monitoring the last-level cache misses on a refresh interval and row access with high
temporal locality on certain processors such as Intel/AMD. In the event of missing
cache surpassing a threshold, a selective refresh could be performed on the vulnerable
row. Identifying the hot row (i.e. specific row or aggressor row) and refreshing its
neighbouring rows is another technique to counteract a Rowhammer attack [2].

The CFLUSH command available on user space (userland) for x86 devices can
also be used as a countermeasure to evict cache lines associated with the aggressor
row addresses among its memory accesses [44, 26]. However, these countermeasures
do not appear to be appropriate to deal with Rowhammer Attacks in CCEs. In the
context of cloud, Rowhammer Attacks are executed on different attack interfaces
(e.g. scripting language based attacks) by deploying web browsers that are activated
remotely, a view supported by the authors in [19, 6].
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Therefore, it is essential to develop new eviction methods to replace the existing
flush instructions so that Rowhammer attacks within cloud environments can be
addressed more effectively. These new methods must be able to identify an eviction
set that would comprise of addresses which will be part of the same cache set of the
aggressor rows. For instance, this can be accomplished by employing a Time Attack
to identify the eviction set. Yet, another eviction method could be based on the
reverse engineering analysis of the system that has come under attack [8]. However,
this could be a complex task considering themodern Intel processors. DirectMemory
Access methods could be utilised to bypass CPUs and their caches to address the
Rowhammer attacks [47].

4 Conclusion

In this study, we identified and analysed both common and underexplored hardware-
based attacks associated with CCEs. We then made several recommendations with
a view to mitigating such attacks. This analysis was based on our own experience
as well as various sources in the literature such as official documentations, white
papers and existing research articles. As a future work, in order to realise the fullness
of our recommended countermeasures, one could perform distinct studies related to
the suggested methods. Practical assessments must be performed for each recom-
mendation with a view to determining how effective the countermeasure against a
given attack vector is and establish whether or not that mitigation mechanism can be
bypassed. It is only by conducting these practical studies that we can truly provide
adequate insight on the fullness of these countermeasures.
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Aspects of Biometric Security in Internet
of Things Devices

Bobby L. Tait

Abstract This chapter provides detailed insight into the general mechanisms uti-
lized for biometric application in Internet of things devices. The mechanisms and
internal working of these biometric technologies presented in this chapter are focused
specifically on the applicability in IOT devices. IOT devices incorporates various
scanners and sensors to allow the IOT device to biometrically interact with a human
being. These scanners and sensors were primary designed to facilitate and ease user
interactionwith the IOT device in an effort tomake the day to day usability of the IOT
device faster and easier if you may. It must be noted that every biometric technology
has certain strengths, but indeed, also certain noteworthy shortcomings. It is often
these shortcomings that get exploited in a security subversion attempt. This chapter
introduces and discusses the various biometric technologies used in IOT devices.
Attention is given to the software and the hardware aspects of each biometric sys-
tem. The generic working of these biometric technologies is presented. Attention is
given to legacy biometric technology implemented on IOT devices, currently used
biometric technology implemented on IOT devices, and finally, possible future bio-
metric applications of biometric technology destined for IOT devices. In conclusion
practical examples of biometric subversion on IOT devices such as fingerprint, facial
and voice biometric subversion and hacking, will be investigated, discussed and
evaluated.
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1 Introduction

This chapter introduces and elaborates on various aspects relating to Biometrics with
specific consideration of biometrics utilized in Internet of Things (IOT). The aim of
this chapter is to introduce the reader to the fundamentals of biometric technology,
and the status-quo of biometrics in use online and in IOT devices today. Strengths
and weaknesses of this technology is discussed, possible solutions to mitigate some
of the weaknesses are presented. This chapter aims to provide the reader with a deep
understanding and appreciation of this technology. The chapter starts out with some
background and historic information of biometric technology, followed by funda-
mental terminology and principals of biometrics. This is followed by a discussion on
Internet of things (IOT) and the biometric technology found incorporated into IOT
devices, as well as examples of how these biometric mechanism gets subverted. IOT
devices and biometrics considerations are discussed in Sect. 6. Just before the chapter
is concluded in Sects. 8 and 7 discusses a secure cloudbased biometric technology.

2 Background and History of Biometrics

The term “biometrics” is derived from the Greek words “bio” (life) and “metrics”
(to measure). The use of Biometrics is by no means novel, Identification and authen-
tication of a human by means of their physical traits can be traced back thousands
of hears, One of the oldest and most basic examples of a biometric characteristic
that is used for identification and authentication, is the human face. Since the very
early times of civilization, humans have used faces to identify known and unknown
individuals. This basic biometric recognition worked well in small communities and
small villages, but as populations grew, and travel to distant places became common,
recognition and authenticity of a individual became increasingly difficult. One must
keep in mind that people were not just only recognized by their face, but also by
means of their voice, they way they walked, and even smell. All of these factors
contributed the the unique biometric characteristics that made up the uniqueness of
a human being. in history many examples can be found of humans using biometric
to authenticate an artifact or the be personally authenticated.

Caves are decorated with paintings, estimated to be 31,000 years old. These paint-
ings found on the walls of the caves of ancient believed to be created by prehistoric
men who lived there. Surrounding these paintings are numerous handprints that are
felt to “have acted as an unforgettable signature of its originator [1].

As early as 500B.C. “Babylonian business transactions are recorded in clay tablets
that include fingerprints.” [2].

Joao de Barros, a Spanish explorer and writer, wrote that early Chinese mer-
chants used fingerprints to settle business transactions. Chinese parents also used
fingerprints and footprints to differentiate children from one another [3].



Aspects of Biometric Security in Internet of Things Devices 171

In 1684 Dr. Nehemiah Grew published friction ridge skin observations in “Philo-
sophical Transactions of the Royal Society of London” paper [4].

In 1788, German anatomist and doctor J. C. A.Mayer wrote “Anatomical Copper-
plates with Appropriate Explanations” containing drawings of friction ridge skin
patterns, noting that “Although the arrangement of skin ridges is never duplicated in
two persons, nevertheless the similarities are closer among some individuals. Mayer
was the first to declare that friction ridge skin is unique” [5].

Around the later part of the 1800s, police departments formally started using
fingerprints for identification of individuals. This process emerged in SouthAmerica,
Asia, and Europe. A method was developed to index fingerprints that provided the
ability to retrieve records thatwas based on individualizedmetric- fingerprint patterns
and ridges. The first robust system for indexing fingerprints was developed in India
by Azizul Haque for Edward Henry, Inspector General of Police, Bengal, India. This
system, called the Henry System, and variations on it are still in use for classifying
fingerprints [6].

Automation of biometric recognition has only become available the past few
decades.

True biometric systems began to emerge in the latter half of the twentieth century,
coinciding with the emergence of computer systems. The nascent field experienced
an explosion of activity in the 1990s and began to surface in everyday applications
in the early 2000s.

The accuracy of automated biometric recognition is very reliant on various abil-
ities provided to the automation process. The uniqueness in the biometric mea-
surement if compared to the population, depends on the sensitivity (or measuring
resolution) of the biometric process.

Each human consists of billions of atoms. The specific arrangement of these
atoms are so unique, that the organization of these atoms for a given human, has
never existed since the dawn of time, and will (considering the magnitude of atoms
in a human), never exist again. If we could create a biometric sensor to measure the
arrangement of each atom in a human being, the authentication of a human based
such a technology would be irrefutable.

3 Biometrics Terminology and Principals

3.1 Terminology

A scholar of biometric technology will concur that there is quite a lot of confusing
and contradicting terms used for the various aspects found in relation to biometric
terms. Many research papers refer to biometric terminology in such a way that it is
not entirely clear to what aspect of a biometric characteristic is being discussed. In
various research papers [7–10], the authors use “biometric data” to describe biomet-
ric technology which has been digitized and translated into a binary representation
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of the biometric characteristic. In most cases, “biometric token” is used to describe
the biometric characteristic to be digitized. However, this commonly used terminol-
ogy, does not clearly define all aspects which form part if the complex biometric
environment.

This section discusses the various aspects associated with biometrics, and pro-
poses a terminology framework for the biometric environment. the proposed frame-
work of the biometric environment is presented in an effort to expel the confusion
that currently exists in the biometric technology community [11].

It must be noted that though the examples posed in the framework relates to
fingerprint biometric characteristics, the basic principal of the framework is appli-
cable for all biometrics that could be collected as a human interacts with his or her
environment.

3.1.1 Biometric Characteristic.

As mentioned earlier, the word “biometric token” is often used to describe the physi-
cal biometric characteristic. However, the word token is associated with a man made
article such as a RF-id Card, magnetic card or special key. Concatenation of the word
biometric with token is ambiguous. In Fig. 1 the part of the individual presently to be
offered to the biometric scanner, should be referred to as a biometric characteristic.

3.1.2 Fake Biometric Characteristic

Fake biometric characteristic is a biometric characteristic fraudulently manufactured
[7] in order to be presented to the biometric scanner to masquerade as the real
individual and is part of the undesired biometric path illustrated in Fig. 1.

3.1.3 Latent Biometric Image

Latent biometric image is an image left behind by an individual as he/she interacts
with the environment, i.e. the imprints left on a glass, handled by an individual. This
image can be used to manufacture (create) a fake biometric characteristic. In “Impact
of artificial gummy fingers on fingerprint systems” [7] the author causes confusion
by referring to these imprints as “biometric tokens”—clearly ambiguous. A latent
biometric image is the starting point of the undesired biometric path, and can be used
to create a fake biometric characteristic.

3.1.4 Biometric Data

Biometric data is customarily the term used to describe the digitized representation
of a biometric characteristic. The term however does not distinguish between a legit-
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Fig. 1 Biometric terminology framework
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imate and illegitimate (illicit) biometric data, both of which would be accepted as
valid for authentication by the validation process. For example, if biometric data is
intercepted for a replay attack [10], using the word “biometric data” is not accurate
in the sense that, even though it is still this biometric data (digitized biometric char-
acteristic), the current terminology does not allow for the fact that this biometric data
is now in possession of a hacker, and is to be used for illicit purposes.

3.1.5 Genuine Biometric Data

This term defines the legitimate biometric data as indeed being generated by the
authentic user (as illustrated in Fig. 1, as part of the desired path) “Genuine biometric
data” is the result of generating a legit electronic representation of the biometric
characteristic. Genuine biometric data is found if the biometric is digitized from the
authentic user.

3.1.6 Illicit Biometric Data

Illicit biometric data refers to biometric data obtained by means of an illegitimate
process and subsequently offered illicitly as biometric data of the authentic user. This
term extends the understanding of the particular state of the biometric data. Illicit
biometric data is all instances of biometric data that has not been acquired by legal
means. The generation of illicit biometric data is illustrated in Fig. 1 in the undesired
biometric path.

3.1.7 Reference Biometric Data

During the initial controlled enrollment process, the biometric system creates a spe-
cial biometric template [12] which will be used by the matching algorithm to test any
offered biometric data for a successful match. The term “reference biometric data” is
proposed to refer to biometric data stored by the biometric system for testing offered
biometric data.

3.1.8 Desired Pathway

The desired pathway is how the biometric authentication system is designed to func-
tion. An individual offers a biometric characteristic this action is intentional, and
the individual wishes to be authenticated; the biometric characteristic is digitized
and produces genuine biometric data. The genuine biometric data is compared to
the reference biometric. This process followed the desired path, and in the instance
that the genuine biometric data and reference biometric data match, the biometric
characteristic, and thus also the individual, is authenticated.
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3.1.9 The Undesired Pathway

A latent biometric image is the result of an individual interacting with the environ-
ment. It may be a fingerprint or even DNA in the saliva left on the rim of a glass that
the individual drank from. The hacker filches [7] and use the latent biometric image
to manufacture a fake biometric characteristic. If a fake biometric characteristic is
created, it can be used to spoof the biometric digitizer. The illicit biometric data cre-
ated from the fake biometric characteristic, will match the reference biometric data,
and allow the hacker to be authenticated. In a similar fashion, the genuine biometric
data, digitized along the desired pathway, can be intercepted, and illicitly offered for
authentication. Considering that this intercepted biometric data is from the authentic
individual, the system will match the biometric data to the reference biometric data,
and authenticate the hacker along the undesired pathway, thus compromising the
system when it is used for false authentication purposes.

3.2 Biometric Auth Process

Regardless of the biometric characteristic used for biometric authentication, a generic
biometric process is described for all aspects involved in biometric matching. This
generic process is illustrated Fig. 2.

Regardless of biometric characteristic used (Fingerprint, Iris, Retina, Gait, Palm
print, gait, voice etc.) , or technologyused (Personal computer or IOT), In all instances
of automation of biometric authentication The biometric mechanism consist of four
broad aspects [13]: (1) Data acquisition, (2) The Reference Data Store, (3) Signal
Processing and finally (4) The decision policy.

During the data acquisition phase the biometric characteristic is digitized to a
digital representation of the characteristic collected from the person, known as bio-
metric data. This biometric data is then sent to the signal processing phase for feature
extraction and segmentation, and the subsequently compared to the reference bio-
metric data from the data store. This data store may be locally stored, stored in
a cloud storage area, or even inside a Block-chain infrastructure [14]. A match &
Quality score is calculated by the matching algorithm by comparing the reference

Fig. 2 Biometric mechanisms
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biometric data with the newly acquired biometric data. The decision policy will,
based on various parameters and constraint provide a match result (Yes or No).

4 Internet of Things

Generally speaking, IoT refers to the networked interconnection of everyday objects,
which are often equipped with ubiquitous intelligence. IoT will increase the ubiq-
uity of the Internet by integrating every object for interaction via embedded sys-
tems, which leads to a highly distributed network of devices communicating with
human beings as well as other devices [15]. Thanks to rapid advances in underlying
technologies, IoT is opening tremendous opportunities for a large number of novel
applications that promise to improve the quality of our lives. In recent years, IoT has
gained much attention from researchers and practitioners from around the world.

Current IOT devices incorporate biometric technology in varying degrees. Some
IOT devices, such as the Apple watch series 5 as pictured in Fig. 3 has the ability to
monitor a person’s heartbeat through out the day [16]. However some IOT devices
incorporates a number of biometric technologies. The modern cellular phone such as
theSamsungNote series includes an Iris scanner [17], Fingerprint Scanner [18], facial
recognition scanner [19] and hand writing recognition [20]. The Apple iPhone XS,
includes a facial recognition mechanism as part of its authentication mechanisms
[21]. The inclusion of biometric technology into IOT devices are clearly gaining
momentum in the past number of years [22].

Considering that these biometric mechanisms give a user access to payment sys-
tems on the IOT device, it stands to good reason that a number of academic research
and industry efforts demonstrated that these biometric mechanisms can be subverted.
The current subversion efforts are discussed in more detail in Sect. 5. Subverting the
biometric mechanism on a IOT device, makes identity theft and fraudulent transac-

Fig. 3 Apple watch series 5
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tions a reality. The Biometric mechanisms as found on IOT devices are clearly not
safe from the methods used to spoof biometric devices as already demonstrated in
earlier years on dedicated biometric systems [7, 23–25].

In conclusion, it is clear that IOT incorporates a number of biometricmechanisms,
and it has been demonstrated that these devices are still vulnerable to biometric spoof
attacks. In Sect. 7, a possible solution is presented in an effort to safeguard IOT
devices. In the following section (Sect. 5), current spoof attempts on IOT devices is
discussed.

5 Biometric Subversion of IOT

Manufacturers of IOT devices includes biometric technology in these IOT devices,
and from a marketing point of view, sell their products based on the features of
the device and the perceived security improvements of such a device. End users
are seldom informed enough to weigh the advantages and disadvantages of such
technology. it is stated at [26] that “Biometric scanners such as fingerprint and facial
recognition systems have become increasingly popular on smart-phones because
they are seen as less vulnerable and harder to discover or copy than passwords or
number-based unlock codes”, yet looking at the examples presented in Sect. 5.2, it
is clear that the biometric technology built into these devices, are not safe at all. In
Sect. 6, a number of these aspects is presented, and fundamental to IOT devices that
incorporates biometric technology. This section illustrates two technical successful
hacking attempts on current IOT barometric technology.

5.1 IPhone Facial Recognition Spoof

On the 7th of August 2019 at the Black Hat USA 2019 conference, researchers
demonstrated an attack that allowed them to bypass a victim’s iPhone FaceID and
log into their phone simply by putting a pair of modified glasses on their face. During
the demonstration the researchers merely placed tape carefully over the lenses of a
pair of glasses and placing them on the victim’s face. In doing so the researchers
demonstrated that they could bypass Apple’s FaceID in a specific scenario [27]. To
launch the attack, researchers with Tencent tapped into a feature behind biometrics
called “liveness” detection, which is part of the biometric authentication process
that sifts through “real” versus “fake” features on people. One such biometrics tool
that utilizes liveness detection is FaceID, which is designed and utilized by Apple
for the iPhone and iPad Pro [27]. Liveness testing is an very important aspect of
today’s biometric authentication approach as this allows authentication algorithms to
distinguish between real and fake biometric data. With the leakage of biometric data
and the enhancement of AI fraud ability, liveness detection has become the Achilles’
heel of biometric authentication. In previous spoof attempts, such as the research by
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Fig. 4 Glasses made by researchers to bypass FaceID biometrics detection

[7] illustrated the focus was on creating fake biometric characteristics. in the attempt
presented here, rather than attempting to generate a 3D model of a person’s face, the
researchers turned to the liveness aspect of the biometric authentication [28]. The
researchers discovered that if a user iswearing glasses, theway that liveness detection
scans the eyes changes. “After our research we found weak points in FaceID it allows
users to unlock while wearing glasses if you are wearing glasses, it won’t extract 3D
information from the eye area when it recognizes the glasses.” [27].

The researchers created modified glasses as illustrated in Fig. 4 with black tape
on the lenses, and white tape inside the black tape. Using this trick they were then
able to unlock a victim’s iPhone phone and then transfer his money through mobile
payment App to bypass the attention detection mechanism of both FaceID and other
similar technologies [27]. Clearly, though the attack comes inherently with some
shortcomings, it still managed to demonstrate that, given enough motivation, a spoof
attempt is indeed possible, regardless of the promised made by the manufacturer of
how secure the technology is.

5.2 Samsung Fingerprint Recognition Spoof

Mid April 2019, a researcher successfully illustrated that a Samung device van be
unlocked, using a fake biometric characteristic printed on a 3D printer [29]. In illus-
trating the spoof attempt, the researcher took a picture of his fingerprint on a wine-
glass, processed it in Photoshop, and made a model using 3ds Max that allowed
him to extrude the lines in the picture into a 3D version. Printing the fake biometric
characteristic, took roughly 13-min, and three printing attempts with some tweaks to
each repint, the researcher was able to print out a version of the fingerprint that fooled
the Samsung S10’s sensor. In Fig. 5, the 3D printed fake biometric characteristic is
shown on the biometric scanner of the phone.
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Fig. 5 3D printed fingerprint

In another example, at the end of October 2019 a serious problemwith Samsung’s
in-screen fingerprint authentication mechanismwas discovered. Researchers learned
that if certain screen protectors are installed on the phone’s screen, the fingerprint
scanner, built into the screen stopped functioning correctly, resulting in the phone to
unlock regardless of the fingerprint being presented [26, 30]. From this vulnerability
is clear that anyone can unlock a this IOT device and gain access to all data and
payment systems on the device by using biometric authentication mechanism on the
device. It stands to good reason that if such a device is stolen, the thief can also easily
gain access to the device.

These examples, are simply presented to illustrate that current, high-end IOT
devices are indeed very vulnerable to Biometric spoof attacks. The general public has
a false sense of security due to the marketing tactics of the companies manufacturing
these devices, as also mentioned by [29]. The following section presents further
Biometric considerations when used in IOT.

6 Biometrics and IOT Considerations

6.1 Touch Versus Non-touch Biometric Technology

Touch biometric devices are often used by a population for access control. If a hand
palm biometric scanner is used for secure access to a specific area in a building,
such as a biometric reader must touched in order to have the biometric characteristic
digitized [31]. Users are often reluctant to touch biometric devices, which have
been touched by other people [32]. Various hygienic implications arise whenever
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touch biometrics, such as fingerprint, palm print, hand shake biometrics et cetera
are used. With the current Corona virus outbreak, it is advised by the World health
organization that a person must sterilize as surfaces often touched by other persons
[33]. Due to these concerns, often non-touch biometric technologies are suggested as
a solution for the problems associated with touch type biometrics, it must be warned
that this decision must not be taken without due consideration [11]. Aspects that
must be considered, are presented in Sects. 6.2, 6.3 and 6.4. IOT devices incorporates
touch biometric technology such as a fingerprint scanner and non-touch biometric
technology, such as facial recognition or iris scanning. for this reason, the aspects
listed below, are of extreme relevance to IOT devices.

6.2 User Intent

If a person needs to touch a biometric scanner to conclude a transaction, the user
must willingly offer the biometric characteristic. This action of willingly offering the
biometric to the biometric scanner can be considered as intent from the user’s side
to conclude the transaction. In comparison, if non-touch technology is used, such
as facial recognition, a transaction might be concluded without the user even being
aware that the facial recognition system authenticated him for the transaction. With
non-touch biometric technology, it is a greater challenge for a person to withhold
one’s biometric identifiers. When non-touch biometric technology is used in IOT
devices, A IOT device can simply be held in front of a user’s face and then the
system will unlock the device. This issue is also true for a person being forced to
place his fingerprint on the fingerprint scanner. The authentication and unlock of
the device can be forced on a person. If a different authentication mechanism is
used, such as a pass phrase, the authenticator is not so easy to obtain from the user.
Specifically in IOT devices a user is quite vulnerable when any form of biometric is
used.

6.3 Privacy Considerations

The biometric identifier such as facial authentication is always visible and available
to be scanned. This can happen without a person being aware that he was scanned.
Privacy with non-touch technology is a major concern [34]. The ability of biometric
facial recognition systems to track a person based on facial biometric technology
poses many privacy concerns.
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6.4 Replication Considerations

Lastly replication of biometric characteristics in order to create a fake biometric
characteristic has been demonstrated in many research papers [7, 10] and even by
industry researchers [23, 27, 29]. To replicate touch biometric such as a fingerprint,
an object which the user has touched must be procured in order to replicate the
biometric characteristic. For non-touch biometric technology, it is possible to obtain
for example an individual’s iris characteristic without the user being aware that the
replication even occurred.

6.5 Strong Versus Weak Biometric Characteristics

A strong biometric characteristic requires the individual to be authenticated to be
alive [35]. The particular biometric characteristic cease to exist the moment the
individual dies. Examples of strong biometric characteristics are brainwave patterns,
and electric currents generated by the heart, Hand writing recognition, Gait and
voice recognition. On the contrary a weak biometric characteristic does not require
the individual to be alive to be taken. These characteristics include finger-, hand-,
and palm prints. It also includes biometric technology such as iris, retina, and facial
scans [27]. In order to confirm that a user is indeed alive when the biometric is
taken, vitality should then be established as an additional step during the scanning
process [28].

If a biometric solution is considered for implementation in a IOT device, atten-
tion must be given to weak versus strong biometrics. Although a strong biometric
system may be preferred, one should keep in mind that authentication can only be
determined if the individual is alive. If, for example, a strong biometric such as facial
thermography is used for authentication of a testament and will of an individual,
once the person dies, the facial thermograph will not be detectable, which makes the
authentication after the death impossible. If facial thermography is used for nation-
wide authentication, strong biometrics will preclude the authentication of any person
after death.

In conclusion, if a biometric authentication system is proposed for the entire
population, the most suitable authentication system should be contemplated. If post
mortem authentication is needed, strong biometric systems will not be suitable.

6.6 Biometric as a Widely Accepted Authentication Standard

Biometrics is often considered as method for authentication. Heathrow airport to
allows UK citizens access to the UK by means of iris biometrics instead of using a
British passport [36]. Banking groups such as Capitec, have considered using finger-
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print biometrics for authentication at their automated teller machines, replacing the
need for pins [37]. If biometric technology is considered as a standard for authen-
tication by homeland security or banking groups, subsequently to be used in IOT
devices, the possibility must be kept in mind that the population for which biometric
authentication is proposed, might not all possess the required biometric. If a bank
group proposes that iris technology will be used to access their application on a
IOT device, instead of using a pin, the possibility exists that not all people have an
iris biometric characteristic. Fingerprint characteristics can only be scanned if the
individual has fingers. It is often also difficult to obtain fingerprints from individuals
who do a lot of manual labour (i.e. brick layers or mine worker) [38]. A Diamond
mine in South Africa proposed to use fingerprint biometrics for all the mine workers,
but soon found that many of the mine workers, due to the physical nature of their
work, do not have fingerprints at all. These examples demonstrate that biometric
characteristic required for a specific population group should be carefully selected.

To summarize, biometric characteristics required to authenticate a particular pop-
ulation group, may not be present in all the individuals of that group- they may lack
limbs (making fingerprint, palm print, hand geometry, gait and evenwritten signature
not available for authentication for the group). It is also possible the users might not
have eyes (making iris and retina unavailable for authentication). However, it can
not be argued that facial thermography, facial recognition, DNA, body odour, skin
luminescence and brainwaves are all examples of biometric characteristics which are
found in all individuals in any population group.

In conclusion, whenever a biometric is chosen for a widely accepted standard for
authentication, it is important to consider if all individuals in the population have
this chosen biometric.

In Sect. 7, a framework is proposed as a possible solution to mitigate the inherent
problems associatedwith biometric technology in general, but sacrificially developed
for the use in IOT devices.

7 Secure Cloud-Based IOT Biometric Authentication

This section proposes an approach to allow a person to use a IOT device such as the
latest iPhone, or latest Samsung smart phone for secure biometric authentication in
a networked environment. It is argued in this section that a IOT device can be con-
sidered as a “IOT token”, to address the security concerns associated with biometric
technology discussed up to this point in this chapter.

During the research of biometric technology, it became clear that biometric data
is asymmetrical in nature due to the fact that the biometric sensor does not collect
all biometric markers in exactly the same way every time a biometric characteristic
is scanned [10]. This aspect of biometric data can be used to uniquely identify every
biometric characteristic ever presented for authentication by a given user of this
system.
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7.1 Biometric Asymmetry

The asymmetric nature of biometric data affords a unique benefit: All biometric data
received from a user’s biometric characteristic will almost always be unique. It is
highly unlikely that, considering all the variables associated with the capturing and
digitizing of a biometric characteristic, a 100% match will be found with any previ-
ously offered biometric data [39]. The fact that biometric data is uniquely identifiable
is the first step towards a cloud-based biometric authentication system to prevent the
possibility of replay of biometric data. Each instance of accepted biometric data can
be linked to a given transaction performed by the user. In order to ensure that bio-
metric data is not being replayed, and to link offered biometric data from the user
to a specific transaction, a special biometric transaction log file must be used in the
cloud environment. This log file is referred to as a cloud bio archive (CBA). The
cloud-based biometric authentication system can detect any replay attempt, and log
transactions by using a CBA. A second problem found with biometric technology,
and mentioned in [29] relates to the possibility of sourcing a latent biometric image
of a person’s biometric characteristic.

7.2 Cloud-Based Biometric Authentication System

If biometric technology is to be used for secure authentication, a protocol should
be used to ensure that problems as outlined earlier in this chapter can be concisely
managed. Though attacks on the biometric system cannot be eliminated, the proposed
system ensures that attacks on the system can be mitigated. To ensure that a hacker
cannot use a fake biometric characteristic, a user side biometric archive (UBA) is
introduced on a IOT device, and referred to as a IOT-token. The archive stored on
the IOT-token, and contains finite (for example, 500) previously offered biometric
data samples. The UBA is populated by the cloud-based authentication server, and
gets updated under trusted situations. The system is outlined in Fig. 6.

In step 1, the user needs to conduct a transaction requiring authentication, and
supplies a fresh biometric characteristic to the smart device’s biometric scanner.
In step 2, the smart device digitizes the biometric characteristic resulting in fresh
biometric data. During previous communication with the cloud server, the authenti-
cation system sent a challenge to the IOT device. This process is outlined in detail
in the journal paper [?]. For this discussion, it is stated that the authentication server
requested specific biometric data stored in position 58 of the user bio archive (UBA).
In step 3, the IOT device fetc.hes the biometric data stored in position 58 in the UBA.
In step 4, the IOT device generates a biometric parcel (bio-parcel); The fresh biomet-
ric data is XOR’ed with the historic biometric data requested by the server from the
UBA, resulting in a ‘XOR bio-parcel’. In step 5, the XOR bio-parcel generated in
step 4, is submitted to the cloud server for authentication. In step 6, the cloud-based
server fetc.hes the historic data in the CBA corresponding with the biometric data



184 B. L. Tait

Fig. 6 Cloud-based biometric authentication system

challenged from the user’s UBA. During step 7, the XOR bio parcel is unlocked in
the cloud by applying the XOR calculation of the historic bio-data with the XOR bio
parcel received from the user, yielding the fresh biometric data of the user recently
scanned and digitized. In step 8, the fresh biometric data received from the user,
is matched with the reference biometric template of this user on file by the cloud
service. If the match falls withing the defined parameters of the matching algorithm,
the user is considered authentic. The fresh biometric data is added to the CBA for
this user’s profile.

At this stage the user is successfully authenticated. The result of the authentication
can at this stage be conveyed using various existing protocols to the user, or to
institution requesting authentication.

For the protocol to function, a user must be able to supply fresh biometric data,
and be in possession of a Registered IOT-token, which can supply historic biometric
data from the UBA. Should the IOT-token, be stolen, an instruction can be sent to
the IOT-token, to clear all UBA content. The IOT-token ensures that the UBA can
only be used by the authentic user.

If a person at any stage feels that his or her identity is compromised in one or
other way, this person can remove all existing biometric data by cleaning all UBA
andCBAdata, and removing the reference biometric template. A user can start with a
clean slate, re-creating the UBA and CBA, with a fresh reference biometric template.
The old “identity” is archived.
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8 Conclusion

As long as a person uses the Cloud-based biometric authentication system, the per-
son’s biometric characteristics are safe, and such a person does not need to concern
himself with the possibility that latent biometric data might be fraudulently used.
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Evaluating Multi-layer Security
Resistance to Adversarial Hacking
Attacks on Industrial Internet of Things
Devices

Hussain Al-Aqrabi and Richard Hill

Abstract Aprimary concern of Industrial Internet of Things (IIoT) users is the threat
of loss of valuable Intellectual Property (IP) through insecure operational device
security. Whilst robust levels of security are technically possible, the approaches
taken to ensure resistance to adversarial attacks can lack practicality in terms of
implementation. IIoT devices use constrained hardware which can limit the extent
to which data can be stored, processed or communicated and this can potentially
increase the vulnerability of a system as additional IIoT devices are introduced.
We explore the use of a multi-layer approach to security that produces an exhaust-
trail of digital evidence at different levels, depending on the characteristics of the
system attack. This approach is then evaluated with respect to common categories of
system breach, and a set of characteristics and considerations for system designers
is presented.

Keywords Multi-layer · Security · Digital forensics · Industrial Internet of
Things · Cloud computing

1 Introduction

The adoption of new business models to take advantage of Industrial Internet of
Things (IIoT) technology is subject to legitimate security and privacy concerns [1].
In particular, industrial users understand that a large proportion of the business value
generated by such technology is directly related to the ongoing creation and owner-
ship of Intellectual Property (IP) from industrial operations data. An infringement of
security that could impair the exclusivity of IP poses a serious risk to an enterprise’s
underlying business model [2].
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As IoT [3, 4] is emerging rapidly [5], IoT applications may greatly improve indus-
trial efficiency and human behaviour [6]. The development process can be handled
more precisely and dynamically by embedding and incorporating IoT devices into
industrial systems. IoT is away to connect physical objects and devices to the Internet
to form omnipresent networks which allow the sensing of changing environments in
response to dynamic impulses [7].

Although the IoT is developing rapidly, IoT security is becoming extremely preva-
lent, primarily for IIoT applications [8]. The perception layer is the root of all of IoT
data [9] and the basis of all of the IoT architecture. The physical protection of sensor
layer devices would be more at risk than the IoT application [10, 11] and trans-
portation layers. As the sensors are common in industrial and agricultural settings,
confidential information can be collected directly by an adversary if nobody moni-
tors the sensors for long periods of time [12]. Thus, many circulating IoT devices
are vulnerable to cyber attacks.

Analysis of incidents and forms of evidence in criminal investigations and digital
forensics are essential procedures. The purpose of reviewing IoT incidents is because
of the large number of cyber attacks that have been identified [13]. Other than that,
due to the vast IoT world introduced by various multi-level third-party vendors,
products, protocols, operating systems and IoT facilities, the issue of the necessary
procedures for forensic investigations is challenging [14].

Although IoT and cloud computing are an instance of how innovations and busi-
ness models may incorporate new business capabilities [15], enterprises are still
threatened by new risks which are directly due to the use of flexible, frequently
multi-tenant IoT cloud services.

However, the research literature discloses multiple IoT threat models focused
on IoT properties, none of which implemented a robust IoT attack model and
undermined security objectives for a highly complex model [16].

For this reason, IoT security is a major concern for individuals, users, organisa-
tions, industrial sector and government entities who want to prevent their objects
from being compromised or hacked [17].

1.1 Cloud Computing in IIoT

Cloud computing virtualises storage and enables the sharing of server computing
resources with other devices such as personal computers and smartphones, with data
centres [2]. The use of the same technology in the IoT environment enables sensor
nodes to send and receive data from or to other networks in a central location that
many different sensors can access [18].

Both Cloud computing and IoT work to improve the efficiency and interdepen-
dence of daily activities. In various industries, IoT is used as an approach in business
settings [19]. In this respect, Internet infrastructure is constantly under strain due to
the volume of big data generated by IoT. Cloud technology is laying the ground work
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for transporting andmanaging this data [15]. In thatway, businesses andorganisations
pursue an alternative to ease the burden.

Improved collaboration allows cloud computing to improve innovation signifi-
cantly. IoT businesses can now collect immense amounts of data by storing it in the
cloud. It also allows businesses to use computer resources as utilities, such as a virtual
machines (VM), rather than installing (on premises) a computing infrastructure [20].

1.2 Advantages of IoT in an Industry Context

The IoT brings the advantages of IoT at a greater level as well as in industries in
which massive threats can result from human error. The degree of precision obtained
by IIoT is a huge benefit and one of the most promising developments of IoT in
this field. In order to be safer and more efficient, IIoT provides a new way for
industries to enhance their processes. IIoT systems enhance smart communication
between devices or machines, increasing performance and profitability in several
sectors, frommanufacturing to healthcare. However, as with everything linked to the
Internet, IIoT devices are vulnerable to cyber attacks.

In particular, recent attacks on industrial system control, for instance, supervisory
control and data acquisition (SCADA) systems, aswell as distributed control systems,
and programmable logic controllers, have been used as gateways to orchestrate cyber
attacks.

Several researchers have contributed to strengthening security, privacy [21], scal-
ability and data processing by integrating algorithms from various technologies [22,
23]. The remainder of this article is organised as follows. In Sect. 2, we highlight
the IIoT communication protocols and the most common attacks in an IIoT environ-
ment. Section 3 describes a multi-layer security framework. In Sect. 4, we discuss
and evaluate IIoT Security threats. Finally, we conclude in Sect. 5.

2 Cybersecurity and IIoT

The industry-standard guidelines for adopting IIoT technologies in industrial envi-
ronments are proposed to smooth integration of various services, which form the
pillars of the fourth industrial revolution [24].

As a result of various government-supported initiatives, the IIoT is expected togain
attention as it serves as a new manufacturing paradigm that guarantees adaptability
and flexibility. Governments of different countries are committed to implementing
IIoT technologies to optimize their economic development.

Such advancements in technology considerably boost IIoT’s ability to sense and
recognise things or the environment.
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2.1 IIoT Communication Protocols

IIoT communication protocols are communication mechanisms which protect data
exchanged between connected IoT devices and achieve maximum protection. The
requirements for communication differ enormously between various kinds of IIoT
networks and are extremely different in terms of their functional- ity and resource
limitations. Such networks have a variety of features including management and
security.

IIoT systems can support wireless or wired communication protocols. There are
some protocols and standards for IIoT communication. Several wireless protocol
technologies, such as Bluetooth Low Energy (BLE), can easily communicate with
modern mobile platforms, using short-range radio protocols.

ZigBee involves the sharing of limited amounts of data in a confined region. It
is often used for communication between the sensor nodes and controllers when
the sensors are remotely positioned outside of the controller. The Mobile Radio
Frequency Identification (RFID) systems is used extensively inmobile identification.

In longer-range radio protocols such as LoRaWAN protocol, which are designed
to have low power consumption and broad network availability, this commu-
nication protocol is used in energy management and smart cities. The SigFox
protocol provides a reliable transfer of remarkably small amounts of data over long
distances. The Sigfox communication protocol is standard in intelligent metering
and environment sensors.

Wired communication protocols, for instance, Ethernet, USB, etc., as well give
access to devices.

Various protocols are classified by a layer of communication. The session layer
set protocols that permit messaging between the IoT communication subsystem
components. For instance, the Constrained Application Protocol (CoAP), and the
MQ Telemetry Transport (MQTT) protocol [25].

The network layer comprises of two tiers. The first layer manages the exchange
of packets through a routing layer and the encapsulation layer focuses on creating
packets.

The data link layer manages the communication protocol between different
IoT devices via a physical connection, e.g. between IoT sensors and the gateway,
connecting a collection of IoT sensors to the Internet, either wireless or wired.

2.2 Cyber Threats to IIoT

Increased reliance on intelligent, interconnected devices can put billions of intelli-
gent communicating “things” that could significantly endanger personal privacy and
threaten the security of the public in every aspect of our lives.
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The numerous interconnections and the heterogeneity of a large number of
devices, and technologies and systems in IIoT [26], create potential cyber phys-
ical security (CPS) [27] weaknesses, which can be exploited later by an adversary
[28]. Here are the most common IoT attacks:

– Denial-of-service (DoS) attack—DoS cyber attacks occur when the attackers try
to block legitimate users from accessing the IIoT service. The adversary begins
the attack by first leveraging device vulnerabilities and then installing malware
in their hardware and/or software. Multiple compromised IIoT devices are called
botnets. The goal is to attack through huge amounts of requests from numerous
IIoT devices in various locations.

– Jamming attack—This type of attack is carried out by jamming communication
between wireless IIoT devices to jeopardise it. An intruder unexpectedly trans-
mits a radio signal, as sensor nodes send communication signals. This causes the
network is jammed such that no message can be sent or received.

– Man-in-the-middle (MitM) attack—MitM is an attack where an intruder inter-
cepts a communication between two users (the sender and the receiver) to eaves-
drop or alter traffic between them. For instance, these attacks induced by an
attacker attempting to force the sensor node to transmit misleading data.

– Side channel attack—This attack is carried out when the attacker might to jeop-
ardise the IIoT cloud and position a malicious virtual machine near the IIoT cloud
server and then initiate a side channel attack. Also, the intruder gathers infor-
mation on the encryption keys by monitoring the signal leakage, such as ‘side
channels’. Therefore, it is important to design a secure framework.

– Social engineering attack—This attack is an attack vector that involves human
interaction.Attackers use variousways to collect basic knowledge about the target.
Phishing is the most common type of attack by the social engineering. Phishing
attacks target human errors to seize credentials or distribute malware. usually if a
user is clicking on the malicious attachment or link that then installs malware or
additional dangerous software.

– Malware attack—The malware specifically designed to attack IIoT devices is
called IIoT malware. The first significant attack attempt is to inject potentially
malicious services or virtual machine into the IIoT cloud network. This adversary
attack establishes a virtual machine instance or malicious service and attaches it
to the IIoT network. For instance, Ransomware is a form of malware that uses
encryption to prevent users from accessing their device and locking personal user
files.

– Sybil attack is an attack to create a deep illusion of traffic congestion; for instance,
the attacker uses several fake identities to communicate between the network and
adjacent nodes.

– A replay attack takes place when a hacker exploits and intercepts a secure
network communication, and then slows or maliciously redirects the receiver
to do as the hacker intends.

– Exploit kitswhere the hacker uses amalicious script for leveraging badly patched
IIoT system vulnerabilities.
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– Forged malicious device occurs when attackers disable legitimate IIoT devices
when they have physical access to the network.

Al of the above attack vectors are common to network enabled systems and
numerous strategies and frameworks have been developed to detect and limit the
detrimental effects of such attacks [29]. However, the emerging societal environ-
ment is becoming increasingly reliant on “connected-ness” and from an industrial
perspective this creates additional challenges for the secure operation of its operations
[30].

Many industrial processes involve the conversion of materials from one state to
another, or the transport of physical goods.

While developments in technology have improved commercial efficiencies
through the use of industrial automation, it is only recently that such automation
has been connected via high speed networks. These new developments are referred
to as Cyber Physical Systems (CPS), where the automation of physical actuation is
controlled either autonomously, or at least remotely via a communication network
[11]. CPS is central to the Industry 4.0 movement, otherwise referred to as Digital
Manufacturing or Industrial Digital Technologies (IDT) [24] (Table 1).

These systems are of considerable interest to adversarial attacks for the purposes
of industrial espionage, and therefore the attack vectors characterised in this section
are potential weak points (particularly in relation to the scheduling of utility resources
[31]) for the safe operation of industrial processes.

3 Multi-layer Security Framework

The flexibility of cloud computing model driven us to recognise each layer as a
separable cloud containing countless hardware resources, including servers arrays,
IoT devices, storage arrays and so on [32].

The primary approach to managing connectivity in a highly equipped setting, for
instance, a smart industry, is to identify and manipulate different security vulnerabil-
ities. As a result, the attack surface continues to change. So the only feasible solution
is multi-layer security.

While multi-layered security reflects the concept that vast array security measures
will prevent threats from occurring on your system. In order to genuinely achieve
the multi-layer security approach, a framework is needed to break down and align
business IT security problems.

The authors have developed a security framework that can be deployed in a smart
factory. The framework divides a range of control positions into multiple layers,
inspired by a fundamental principle of cloud computing resource abstraction.

Figure 1 illustrates a multi-layered security cloud framework, with one of the
privacy/security services offered by each layer, to support the development of IIoT
cloud applications.
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Table 1 Characterising IIoT security threats

Security attack Impact Probability Threat
level

Countermeasures Affected

Denial-of-service
attack

High Very likely High Yes Application and
services platform
and backend IoT
devices

Jamming attack High Very likely
Very likely

High Yes Communication
information IoT
devices

Man-in-the-middle
attack

High Very likely High Yes Communication
information IoT
devices

Side channel attack Medium Likely Medium Yes Communication
information IoT
devices

Social engineering
attack

Medium Likely Medium Yes Communication
information IoT
devices

Malware attack Medium Likely Medium Yes Platform and
backend IoT
devices

Sybil attack Medium Likely Medium Yes Communication
information IoT
devices

A replay attack Medium Likely Medium Yes Information
decision making
IoT devices

Exploits kits attack Medium Likely Medium Yes Infrastructure IoT
devices

Forged malicious
devices

Medium Likely Medium Yes Platform and
backend IoT
devices

The IIoT Cloud consists of 7 layers. The layered service is provided by servers
that are deployed in it to guarantee that performance bottlenecks are not present.
Each layer can be seen by itself as a cloud.

The sessions are reviewed by each layer and require further communications with
the next level above them. The sessions eventually enter the IIoT cloud layer running
IIoT applications and more connectivity to other devices after a range of further
examinations.

The tenant sessions access the IIoT Cloud via firewalls which proceed through a
sequential series of firewalls serving as gateways.

The firewalls operate as firewalls in the network, transportation and applications.
It can also enable itself through access control lists (ACLs) for exemplary services
and applications, for instance, based on protocols, TCP/UDP ports, IP addresses etc.
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Fig. 1 Multi-layer security framework in IIoT cloud [9]

3.1 Adversarial Attacks

In this section, we shall describe an adversary attack on the model and illustrate how
the systemoffers protection from such a scenario fromhappening. The scenario is that
an attacker wishes to gain access to an OLAP system, which is a common business
scenario. Many schemes have been developed to protect such systems, including
methods to preserve privacy in OLAP system design [33, 34].

Now if we take into account an adversary attack on the model, referring to Fig. 2
which demonstrates the scenario where an adversary attacker tries to penetrate the
system and gain entry to the virtual machine (VM) of the approved tenant.

Although the IIoT cloud provider needs authentication to be able to register and
control remote services, what seems to be a valid user (tenant) may in fact be an
attacker pretending as a legitimate user with the intention of accessing the cloud and
then targeting another user VMs from inside the cloud itself.

Exploitation tools likeMetasploit (https://www.metasploit.com), the attackermay
use to automate the distribution of exploits easily. This could make it possible for
a false tenant to establish a subversive mechanism of trying to expose confidential
data, unidentified to any other group or party.

If the adversarial agent is a valid tenant, they would then target a VM that is
approved and stored in the IoT cloud. Thiswill not require traditional cloud protection
mechanisms to identify such an operation.

https://www.metasploit.com
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Fig. 2 Attack scenario for a multi-layer IIoT security architecture [9]

In addition, the number of VMs in a cloud environment obscures the operation.
This poses a major challenge for cloud service providers, especially as Microservice
Architectures orientation becomes increasingly prevalent [35].Aswe apply this to the
IoT environment, we want to bundle features in applications that can be deployed on
distributed hardware. Consequently, a core aspect of this research is the opportunity
to tackle this issue.

When an adversarial attacks the cloud with a subscription to (second) VM2, an
adversarial attacker has the ability to use cross-channel attacks against different
virtual machines like (first) VM1 and (third) VM3, thus leveraging the existence of
simulated links between specific VMs. Cloud security checks are usually applied to
deter external threats instead of internal threats.

A hierarchical framework described in Fig. 2, as a solution to the attack scenario.
This framework reduces the ability to perform further hacks, as virtual links prohibit
the attacker from going to the next control. The only alternative is to use a real
network link to connect with the (fourth) VM4, (fifth) VM5 and sixth VM6, through
demanding a session in Control A (for instance, Tenant Metadata inspection
(TMI). Although Control A is still in operation, the intruder should effectively fulfil
the TMI to begin the attack.

A coordinated and persistent attack would, of course, cause one to believe that an
adversary would have credible credentials, whether by pretending or else as a legal
occupant.

In Control B, it would be necessary for the adversarial attacker to conquer the
whole cloud layer prior to the IoT analytics interface could be reached.
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Fig. 3 Hierarchy of controls [9]

When the intruder has fulfilled the cloud authentication and the (TMI) layers,
surely the best step ahead now is to hack the plant with the expectation that they
will be completely unnoticed. Nevertheless, both the tenant anti-malware (TAM)
layer and the tenant Intrusion Protection (TIP) layer provide adequate security and
protection in defence from the inside for malicious and covert attacks.

Even when adversarial attacks are launched by what appears to be legitimate
subscribers of service, our proposed model prevents data violations. A sequence
with various security controls can be found in Fig. 3.

In order to achieve the objectives sought by the infrastructure provider, The system
or host system security policies decision must notify the order in which controls are
carried out. How a tenant is channelled via the various VMs to access the related IoT
analytic services is also apparent. The result is that the model prevents data breaches,
even when adversarial attacks are launched from what appears to be genuine service
subscribers.

We can see in Fig. 3 a sequence in which various security controls might be
instantiated. The security policies of the host system (or systems) will inform the
order inwhich controls are implemented, to suit the goals desired by the infrastructure
provider.

It is also evident how a tenant’s session is routed through the various VMs in order
to access the relevant analytics services.



Evaluating Multi-layer Security Resistance to Adversarial Hacking Attacks … 197

Fig. 4 Mapping of the proposed framework with the NIST seven-layer [32]

3.2 Session Flow

The stated S session workflow is illustrated in Fig. 4, the validations are concurrent
and are clarified in relation to the positioning of controls also illustrated in Fig. 3.

The suggested framework lies on layer four as the infrastructure Service Model
(IaaS) and five as the Platformof Service (PaaS) for theNIST seven-layer framework.
Each VM in a set of scales obtains an instance ID that identifies it uniquely.

According to the feature of inspecting VM instance IDs, all firewalls are classified
as IaaS and often refer these inspections to the authorization data provided by a tenant
to prevent IoT cloud access. Whereas VM IDs in layers two and three are allocated,
access controls on layer four are allocated.

For a given session S, concurrent controls are delegated outside the VM layer and
are highly concerned with the inspection of the session packets.

Data is requested explicitly from the tenant to fulfil the checkpoint controls of
tenant’s metadata database (DBMETA) and tenant’s vault database (DBVAULT) and
is augmented by intrusion prevention database (DBIPS), and anti-malware database
(DBANTIMAL) controls, which is known as Platform as a Service PaaS controls, that
serve the session packet inspection against malware signatures and other attacks.

Controls on the application layer are also likely to take place. For example, a
Software as a Service (SaaS) instance would therefore necessitate tenant authentica-
tion just as a specific business application would require. The tenants may also have
an extra level of authentication system set up to obtain information based on their
organisational position.
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4 Discussion

Both systems administrators and users have genuine concerns about IIoT security
mechanisms and their potential adverse affect upon normal system operation. In
particular, additional security controls inevitably creates an additional performance
overhead, and this is becoming more pertinent with the widespread roll-out of 5G
infrastructure.

5G is attractive for the retro-fitting of IIoT technologies to industrial settings as
it eliminates the need for wired networking access.

Faced with such developments, we must consider the attack vectors characterised
in Sect. 3.1, especially in light of the physical actuation that industrial processes
involve and the potential harm to human life.

Multi-layer security for IIoT offers considerable advantages for the identification
and management of emerging attacks as adversaries become more sophisticated.

First, each of the layers of the framework serves not only to stop individual attacks
at various levels, but it also protects against compound attacks that combine a variety
of different techniques to exploit system vulnerabilities.

Second, the process of identifying different stages of attacks also serves to char-
acterise the separate elements of an attempt to broach a system. If the exploit is
successful, the multi-layer architecture thus provides an improved and enriched
evidence base by identifying the constituent parts of an attack, which facilitates
the forensic re-construction of an event in order to further harden the system in the
future.

As it stands, the multilayer architecture benefits from the elastic scalability of
utility computing in that as new threats are identified, they can either be added to
existing threat detection layers, or additional layers can be rapidly provisioned on
demand. This elasticity is embraced by emerging software development approaches
such as the use of Microservices to compartmentalise functionality into robust,
reusable units [35], together with Software Defined Virtualization Functionality to
facilitate rapid scalability [36–38].

Related work [39] describes a situation where authentication protocols are
enhanced to enable secure access to a system that is marshalled by multiple parties.
In particular, simulation studies have identified that while a performance overhead is
added to initial checks of the participating agents, the actual effect of such overheads
is acceptable in terms of system performance.

Similarly, the provisioning of new layers to protect against new threats also
increases the communication overhead between layers and this is one aspect that
requires further study to assess how scalable it is. The cloud-inspired architecture
does mean that layers can be instantiated on a case-by-case basis, and the automation
of this functionality is another potential avenue to explore.

Another aspect that is particular to IIoT, is that most of the ‘smart’ hardware is
severely constrained in terms of hits storage and computation capabilities [40]. This
limitation has driven adversaries to adopt distributed attacks that either compromise
a large number of edge nodes (a DOS attack), or a large number of nodes are recruited
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to donate many small contributions of resource to support more sophisticated and
comprehensive attacks across the network.

We see the multi-layer approach as providing a scalable approach to threat
management, with different layers not only residing upon multiple clouds, but also
across multiple IIoT nodes. Some nodes have limited functionality, such as reporting
temperature, humidity or vibration for instance, for other processes to utilise as part
of their operations. In such cases not all layers of the multilayer architecture are
required and therefore a sub-set can be deployed without detriment to the system.
This will also reduce the additional of redundant functionality that will adversely
affect system performance.

A crucial part of the effective deployment of multi-party architecture is having a
rigorous approach to the modelling and specification of the systems to be connected.
Traditionally, large-scale systems have been designed at least as sub-systems, with
controls and measures put in place to apply testing methods for the eventual
development of program code [1, 41, 42].

However, IIoT systems are inherently flexible and elastic in nature, leading to
the use of cloud technologies for potential solutions. This does impact upon the
modelling of such situations, that are inherently multi-agent based, with complex
communication requirements, the specification of which may only emerge after
deployment.

Wehave thus considered the use of social network communicationmodels and also
related work in the secure communication of sensitive healthcare data in distributed
care provision environments, where numerous agents are required to collaborate,
cooperate and exchanged data on a need-to-know basis [43–46]. This has strong
parallels with the IIoT environment, where commercially-sensitive process data
is captured and shared with designated, authenticated stakeholders to improve the
efficiencies of manufacturing value-chains.

5 Conclusions and Future Directions

A key concern for IIoT users is the risk of loss of precious IP by insecure security
of operational devices. IIoT devices use restricted hardware to limit the extent to
which information is stored, analyzed or exchanged, potentially raising a network
vulnerability as IIoT devices are implemented.

Although robust security standards are theoretically feasible, there is a lack of
practicality in terms of implementation in order to guarantee resistance to adverse
attacks. The proposed work demonstrates the ability for attack prevention from both
external and internal attacks, which are mainly of relevance in the context of IIoT.

A broad variety of surreptitious operations can be separated towithstand a number
of attack vectors by taking protection at any layer of cloud abstraction into account.

This can further be enhanced by monitoring the client IIoT side channel param-
eters for added security. This convergence of software and hardware technologies
guarantees that Cloud infrastructure is secure and stable during the IIoT revolution.
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Establishing Trustworthy Relationships
in Multiparty Industrial Internet
of Things Applications

Oghenefejiro Bello , Hussain Al-Aqrabi , and Richard Hill

Abstract The uptake of smart devices in the manufacturing industry is acceler-
ating as technological advancements enable hardware to become cheaper and more
accessible. A primary concern for manufacturing companies, as well as those in the
associated logistics supply chains, is how to establish trust between smart devices,
such that the delegation of transactional responsibility and accountability, which
is required for Industry 4.0, can be facilitated in a secure and sustainable manner.
Trustworthy systems enable enhanced manufacturing operations to occur securely,
while also providing a robust audit trail of digital evidence to support any future
investigations into allegations of system breaches. This chapter examines a specific
type of trust relationship that regularly occurs in supply chains—multiparty authen-
tication—and proposes a framework that encompasses both the human and technical
factors that must be considered to engender trustworthy relationships between IIoT
devices and organisational operations technology.

Keywords Industry 4.0 · Trust · Digital forensics · Security · Industrial internet of
things (IIoT)

1 Introduction

The Industry 4.0 movement [1] is a major driving force for the uptake of Internet of
Things (IoT) technologies [2–5], commonly cited as the Industrial Internet of Things
(IIoT), or Industrial Digital Technologies (IDT).
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Ensuring the repeatability of industrial processes is a keypart ofQualityAssurance
mechanisms, in which the manufacturing industry is well versed. As manufacturers
continue to discover new value in their products and services, there is a constant
demand to improve the efficiency of operations and eliminate all forms of wasteful
activity.

The realisation of Industry 4.0 goals is only possible through a significant and
concerted effort to automate activities that are either manual at present, partly auto-
mated, or they are fully automated but not yet coordinated at a much larger scale. For
instance, a computer controlled machine tool may already demonstrate an optimal
set of efficiencies for a particular manufacturing plant, based on the constraints of
knowledge and resources that are available to it [6, 7].

The use of IDT can raise efficiencies to new levels if data is shared between
different, geographically-dispersed sites. This might mean the exchange of process
set-up data, or information about the optimum tool selection for a particular type of
raw material.

IDT facilitates this new era of information exchange by providing connectivity
via computer communication networks, together with standards for file exchange,
as well as the ability to collect, condition, aggregate and filter data at the point of
origin. Alongside the continued reduction in cost of equipment, developments in the
exploitation of IDT hardware are gaining momentum [8].

1.1 Manufacturing Value

The manufacturing industry needs to create value in order for the business to
remain sustainable. As operations have become leaner, the concept of value-chains
has become prevalent, as manufacturers and associated suppliers work together to
coordinate and find new opportunities to create value for their respective enterprises.

Internet communication services have fundamentally accelerated the rate at which
operations can be coordinated, and many businesses have taken advantage of this. As
a business enabler, Cloud Computing has taken coordination and collaboration much
further, by making computation, data storage and networking available as utilities
that can be consumed as and when required [9]. The elasticity of cloud computing
means that such services scale with the needs of a particular enterprise, make the
services more cost-effective to consume as part of a leaner set of operations.

As such, it is the combination of communication and coordination that are at the
core of facilitating business interactions, and the increased availability of IDT is
supporting and extending this to new business models.
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1.2 The Internet of Things (IoT)

For the purposes of this research, we consider IoT (and IIoT/IDT) as comprising
discrete physical objects that contain sufficient computation, storage and networking
to enable them to sense and react to the environment in which they are situated
[10, 11].

As these objects proliferate, either through new products with enhanced, IDT
capability, or via retro-fitted IDT technology to existing manufacturing plant, there
are new challenges that emerge, including the extent to which devices must respond
and reconfigure for new situations [12], as well as the sheer increase in volume of
data that is generated and transported [3, 4].

Cyber Physical Systems (CPS) are pertinent examples of systems that possess
‘smart’ capabilities to enable them to be flexible for both forecasted and emerging
requirements. A CPS may include one or more IDT devices that work together to
provide the capabilities necessary for a given set of tasks.

Business processes are often collections of different steps required to complete
a number of tasks that results in a goal being achieved. Such processes potentially
require a multitude of IDT devices to help realise an automated version of that
business transaction [13].

1.3 Security and Trust Concerns

It is normal for concerns around security to be expressed when considering commu-
nication networks. The security of communications is especially important formanu-
facturers who wish to protect the methods by which they create value, to maintain a
sustainable enterprise [9].

A considerable quantity of Intellectual Property (IP) is concentrated within the
design and operation of manufacturing processes, and traditionally this has been held
mostly as tacit knowledge by human plant operators.

Industrial organisations are understandably nervous of any attempt to encode and
transport that knowledge so that it can be stored remotely in a repository. Whilst
the knowledge is captured and is stored for re-use, the repository is a source of
vulnerability that does not exist with a disconnected set of services and processes.

The concept of trust is mature within computing networks and there has been
much work using authentication mechanisms to enable new parties to establish a
state of trust before they directly interact with a new system.

Traditionally, this has predominantly catered for situations where human users
have been required access to a computer system, and a variety of procedures have been
developed to facilitate this, typically employing the services of a certified authority
to verify the credentials of a candidate.
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However, the explosion in the use of devices such as smart phones to interact with
computer systems has created considerable strain for certificate authority based vali-
dation, and when one considers the potential volume of IDT objects, authentication
using certificates is not sufficiently scalable [14, 15].

1.4 Sharing Business Data

One example business scenario is that of the emerging need of enterprises to utilise
predictive modelling, based upon their own operational data, to facilitate scenario
planning and optimal resource allocation. Commonly referred to as ‘data analytics’
[16], this capability requires flexible processes that can harvest data from a range of
sources to feed into a model so that a prediction for the future can be created.

If the enterprise wishes to consume data from a supplier, in order to collaborate
and produce greater efficiencies, there is a need to share data that is relevant to a
particular query. the source data is thus held and governed by at least two parties that
maintain their own information systems and repositories.

Each enterprise maintains security policies and authentication mechanisms that
are designed to suit the purposes of securing each enterprises’ own repositories. Such
systems are not normally designed around the need to collaboratively share data on
a need-to-know basis, for the purposes of increased collaboration [17]. Therefore, to
integrate such systems requires the assimilation of different security realms, across
heterogeneous systems [18].

We consider a security realm to be the set of agents or objects that are considered
to be trusted by the system, that is they are registered users of the system. The agent
who oversees this trust is referred to as the trusted principal.

As shown by this explanation, authentication is vital for each security realm and
before a principal can have a right to use the resources controlled by a security realm,
verification of its identity must be confirmed by the authentication procedure of the
security realm in order to ascertain the principal who it purports to be.

The analysis of a user’s behaviour relating to trust is relevant for a successful
network system [16]. Every contribution made by all users within the network needs
to be reliable to achieve the set goal of the network. According to [19] “Trust in a
person is a commitment to an action based on a belief that the future actions of that
person will lead to a good outcome”.

The two key words in this definition are: commitment and belief. Belief alone
does not necessarily mean there will be trust. However, trust is created when the
belief is the starting place for making a commitment to an action. This means a user
or users can achieve trust over time as the relationships progresses.

Trust has also been defined as “a subjective degree of belief about agents or objec-
tives on user’s previous experiences and knowledge” [20]. This kind of trust is the
belief in the users previous experiences in building trustworthy future relationships
within the network.
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2 Multiparty Authentication in Dynamic Settings

Due to the exponential growth of emerging technology and computing paradigms
like cloud computing and the Internet of Things, significant security and privacy
problems lie ahead [21, 22].

As the Internet of Things applications rise and develop, the transition fromconven-
tional communication services to the Internet becomes extremely important for group
communication.

There are several new internet services and applications, including the Internet
of things and cloud computing, which enables users to broaden their software,
applications and hardware platforms [23]. In contrast the multi-tenancy setting of
cloud computing is providing dynamic services that involves dynamic authentication
interactions between many different agents.

These cloud architectures maximise resource sharing by separating approaches
into different stages. Additionally, there are also many security and privacy risks
associated with the increasing proliferation of services provided by IoT technologies
[13].

The authentication systems can therefore not be static. That being said, Cloud
Computing expertise allows us to appreciate how IoT applications can be exposed to
several security risks, such as a variety of malicious attacks and other documented
cloud obstacles.

The IoT user becomes dynamic within the domain of IoT cloud, and the system
might have to update the product in order to stay up-to-date. Nonetheless, the IoT
network is linked to greater security and privacy concerns because unauthorised users
may be able to access confidential business information [24].

The authentication enables different IoT devices to be integrated into different
situations. Given that services and enterprises can take a highly complicated and
versatile collaborative mechanism, direct relationships between separate realms are
not merely a way of linking the two collaborative realms. However, the biggest
obstacle for any multiparty application is to authenticate users to ensure managed
access to cloud-based data and information services.

A complicated and challenging application requires that one or more parties
securely delegate access control systems, which in the effect can regulate the mecha-
nisms thatmany other parties can authenticate over the services they intend to provide
[6, 15].

Such challenges are becoming more complicated considering the possible prolif-
eration of IoT apps. These systems may typically be mapped one by one among
system in order to access IoT devices and sensors and cloud services.
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2.1 A Multiparty Authentication Model

As described in [6, 14, 15], previous research presents a framework that solves the
problems of achieving the requisite permission flexibility in a dynamic multiparty
setting.

When participants from different security domains want to access distributed
information via a trustworthy authority, a multi-party authentication model for
dynamic authentication interactions is necessary. The authors [15] addressed issues
about efficient data transmission processes in a secure manner needed for the mutual
data processing networks of enterprises.

Moreover, themulti-partymodelwould be used successfully to support distributed
networks, e.g.where cloud participants require to authenticate their sessionmembers,
thereby requiring more straightforward authentication procedures in multi-party
sessions in the cloud domain.

This situation can be transferred directly to the scenarios in which significant
numbers of sensor nodes generate the overwhelming volume of high-speed, which
demands real-time analysis for signal conditioning, data acquisition, data cleaning,
integration, local analysis processing, and so on [6]. To allow a service oriented co-
operation of the sensor nodes that also includes computational services, requires a
system in which trustworthy access to data can be made both in transit and when
stored in a repository [25]. This scenario is directly transferrable to the IIoT situation
where large numbers of sensor nodes are producing streamed data, that require real-
time processing for the purposes of signal conditioning, data cleansing, localised
analytics processing, etc. For the sensor and computational nodes to work together
in a service oriented (such as microservices architectures [26]) way, there needs to be
a mechanism where trusted access to data that is both in-transit and stored in a repos-
itory is feasible. We have therefore built this work to facilitate the advancement of,
for example, unique use cases, for example, specific use cases where the establishing
trustworthy relationships in multiparty Industrial Internet of Things applications can
allow new business opportunities through enhanced performance. In this context,
Figure below demonstrates the architecture for a Session Authority Cloud (SAC)
implemented in this scenario as a certificate authority, while this may also be a
centralised cloud.

As a component part of the proposed framework, the function of SAC is is to
authorise the individual sessions demanded by any multiple parties (IoT clouds).
Also, it does not rely on clouds and regulates any group that wants to enter the IoT
cloud network. The SAC provides authentication details for all tenants, including
cloud root keys.
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2.2 Proposed Protocol

Throughout this section, Fig. 1 describes the proposed session approval protocol that
addresses the potential IoT applications and data analytics obtained via IoT clouds
whereby IoT individuals or users from multiple security realms may join distributed
analytics services via such a trustworthy principle. The principle A (UA) sends a
request to enter the IoT Cloud A and Cloud B resources for a new session. The
request for user keys is submitted at the request of the Multiparty Handler (F). The
principle A (UA) shares his certificate with (F) which contains a user’s root key and
subdomain key and is encodedwith a private key forUA. The (F) creates a new session
ID, including theUser’s request and forwards it to the SessionAuthority Cloud (SAC)
(The trustworthy principle). SAC then checks identity and approves a new session,
UA’s public key uses SACDB if the user’s identity is valid. SAC therefore creates a
session key and sends to an IoT cloud. SAC sends a session approval response to
(F), with a session key and available resource list, after receiving a response from
resources. Then, F forwards a session permission reply to UA in order to enter either
Cloud A or B.

Fig. 1 Multiparty security framework [18]
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3 Credibility

3.1 Introduction to Trust

Trust is a factor related to every topic or issue arising within the premise of relation-
ships. User interactions come across trust daily as an aspect of dependable commu-
nication, which contributes to successful interactive phases within their communi-
ties. Amongst trust characteristics we identify these; Direct Trust, Transitivity Trust,
Reciprocal Trust, and Recommender trust. To understand these trust characteristics,
we will use a company warehouse scenario.

The warehouse operates using a multiparty network system for its suppliers. All
suppliers are given access to the warehouse network partition that allows communi-
cation between the administrative staff in the warehouse and its suppliers. Network
access is granted by the warehouse manager after due diligence is carried out on
each prospective suppliers (A, B or C) for easy communication between both parties
(Fig. 2).

Fig. 2 Example of
multiparty connection in
warehouse scenario
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– Direct Trust—This trust is system in a network that occurs between two users.
Using our scenario, trust is given to a supplier based on direct association system
between the manager and the supplier. No third party required because there is
already an active relationship.

– Transitivity Trust—This characteristic of trust requires a third party. Simply put
in order for access to be given to a user (supplier), the current trust in an existing
user who has relations with the new user can be taken into account. Although this
is not a common method within networks, trust could be passed from user to user
in some circumstances and we can argue that a multiparty network system is no
different [19].

– Reciprocal trust—In this relationship, trust is generated between two parties
in exceptional cases. A user is deemed trustworthy based on the need for the
product it offers the company, the user also deems the company trustworthy and
a relationship is developed over time [16].

– Recommender trust—This trust incorporates all the aforementioned trust char-
acteristics. Recommendationwithin a networkworks solely on a user’s reputation,
it signifies the objective opinions of the user’s expertise from its relationships with
other users [20].

Reputation mechanisms are used to decide the credibility status of users in many
network systems. It functions in two ways, according to [27], one is automatically
identify reputation based on user experience in the market and the second: as a
filtering tool to guide an administration’s evaluation of the user’s affiliations in other
networks.

In e-commerce for example, online trading usually relies on trust [28] and
according to [29], repeated transactions between sellers and buyers is encouraged
by reputations harnessing truthful behaviour reviews and customer ratings, as is the
case in many online marketplaces e.g. eBay.

3.2 Credibility in Networks

Credibility is defined as believability (perceived trust) and those who are credible are
believable people [30], which means when an entity or network is trusted they have
characteristics of credibility that makes them believable. Credibility in computing
was first discussed early in 1999 by [30]. Here they asked questions relating to the
use of computers:

What is credibility? What makes computers credible? And what can we, as computer
professionals, do to enhance the credibility of the products we design, build and promote?

Today we can ask the same questions as it relates to networks and the use of
cloud technology; how do we not only enhance the credibility of the products we
design, build and promote but how can we make them credibility enough to protect
the systems from third party misappropriation.
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3.3 Types of Credibility

We now consider how trust can be categorised. Based on the hierarchy of Fig. 3 there
are four distinct layers as follows:

– Presumed Credibility—This portrays how people take in information created by
an individual, out of assumption such as, for example, when an article is published
on a BBC web page, it comes with the assumption that the editor is a renowned
journalist in a reputable organisation and, as such, is trusted to report only credible
information [30].

– Reputed Credibility—This is trust based on reputable third-party endorsement.
Branded products receive these kinds of trust.

– Surface Credibility—This is assumption-based trust. The professional look of
a user or Web-page assumes it credible status. Relying on what shows on the
surface rather than what the content could hold.

– Experienced Credibility—This kind of credibility believes in something based
on first-hand past experience, so trust based on user experience. Experience gained
from years of existence comes into effect in this kind of credibility.

When a new or strange agent is encountered, the initial categorisation of the
relationship is based on no transaction history. At this point the agent is presumed
to have some credibility. In the future, the evidence created by transactions will then
provide an indication as to whether the relationship can advance to one of greater
trust.

Fig. 3 Hierarchy (pyramid)
showing the positions of
credibility based on
characteristics
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Clearly, the objective for any incoming agent to a system is to establish trust as
quickly as possible, to a level that facilitates the business goals that are mutually
desired by both parties.

This categorisation of trust enables automation to take place by invoking system
rules that can assess and be invoked as a transaction history is established. The
automation of this assessment is a necessary prerequisite for IIoT enabled operations
as the volume of transactions is likely to be massive and in the future, inconceivable.

One example of the challenging process of establishing trust in a sensitive process-
oriented environment, is that of community healthcare delivery. Beer et al. [17, 31–
33] describe the complexities of modelling and building secure multiagent commu-
nication networks that are required to exchange confidential patient data for the
purposes of delivering personal healthcare services into the home environment.

Such relationships are initially established using personal identification mecha-
nisms, and then advance as individual agents develop relationships through famil-
iarity. This work mimicked the increased trust that could be built as a by-product of
operating with a fully coordinated system, albeit at a very finegrained level due to
the nature and sensitivity of the data.

Such sensitivity is unlikely to be present with the use of industrial data under the
guise of current business models. However, as technology advances it is feasible that
more control of the data utilised may be required in the pursuit of expedited trust
transactions. In fact, the ownership of the data use to form the relationship may be
distributed among a community of agents.

3.4 Rewiring

Rewiring is a tool for connecting with new network agents (users). In social networks
rewiring is used to create relationships with new agents or disconnect with dormant
agents in the network. It is a social instrument collaborative networks depend on to
fulfil their tasks, it “facilitates the emergence of norms from repeated interactions
between members of a society” [34].

A collaborative network is a kind of network that is formed specifically by
members or an organisation to collectively achieve a task and could be termed
‘private’. Unlike in public networks, a private network requires agent authentica-
tion to maintain the security if the Network and make sure data is not compromised
in any way.

Since agents sometimes rely on the reputation knowledge of other agents for
authentication, many malicious agents can pretend, for the sole purpose of gaining
trust, to be given access.

Once trust is achieved these users begin their activities penetrating into the network
gaining some level of credibility and, in order for information to be shared and
utilized, interaction must take place, thus allowing for mutual access of resources
[35].

Rewiring can be achieved by one of these procedures:
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Fig. 4 Network adaptation with random rewiring: (i) shows the initial network with the targeted
node outlined, (ii) shows the adapted network following the node removal with rewired links shown
as dashed blue lines, (iii) shows the next targeted node and (iv) shows the subsequent adaptation
[36]

– Random Rewiring—Selecting network agents randomly from a vast population
of agents in a public network.

– Neighbour Advice—This is based on reputation and referral.
– Global Advice—Choosing an agent according to certain criteria or strategies that

have been used in the past (Fig. 4).

The concept of rewiring is important in network management at all times because
it forms the basis for continuity in network interactions and growth. However,
in the process of connecting with new users, administrators can be tricked into
authenticating pretentious users into their network.

Therefore, when choosing to authenticate in a multiparty system, care must be
taken this is because data can either be altered maliciously by such pretentious users
or shared outside the network without permission.

There are a vast number of cases of companies that have fallen into the hands of
such agents in the real world resembling a case of corporate espionage.

In situations where the network fails to notice the presence of such activities, it is
likely that it will continue undetected.

3.5 Forensic Investigation

The Credibility Hierarchy categorises agents based on their trust history in the
network, keeping records of transactions authorised for users who have attained
each level ofCredibility. Where a suspicious operation has been attempted or carried
out, the incident is recorded with an alert pointing investigators in the right direction.

Malicious agents (users) who have been deemed reputed or have achieved surface
credibility are those in the network likely to have malicious intent. This is because,
at this level in the hierarchy, their trust category gives them access to a wide range
of sections in the network without requiring authorisation.

In the event of an investigation, forensics experts will scan the networks for suspi-
cious activities. Activities such as illegal or unauthorised transactions that include
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but are not limited to; frequent attempts to access sections of the system only admin-
istrators are allowed to access, file uploads masked withmalware aimed at harvesting
sensitive credentials.

The use of Phishing or spear-phishing emails should also be considered as transac-
tions that would have taken place. Collaborative operations are inspected because the
possibility of multiple transactions completed by agents combining their resources
is also highly likely.

Since the list of suspicious activities are unlimited, it is therefore essential that the
system is screened for unauthorised activities as often as possible to identify security
breaches and reduce the risk of a hijacked network.

The trust hierarchy facilitates timely categorisation of illegal activity, which is a
necessary precursor for IIoT devices.

4 Conclusions and Future Directions

The assessment of trust is a complex scenario to manage. As technologies such
as IIoT become an intrinsic part of industrial environments, the need to scale trust
authentication will become unmanageable unless it can be automated.

As RFID and ‘smart’ devices proliferate, businesses shall be looking for ways to
integrate supply-chain relationships to remove wasteful processes and transactions.
Automated trust formation allows such supply-chains to be rationalised in order to
create the most business value.

To some extent, traditionalmethods of security have relied upon certificate author-
ities which works up to a point. When the authentication is limited to human agents,
there is still a finite number of agents to be verified and this has been managed with
cloud-based scalable utilities that allocate the necessary computational resource on
demand.

However, such is the potential scale of IIoT, that there shall be far more devices
than there is in the global human population, and therefore the current models lack
scalability. Automating this is a considerable problem, yet automation is logically
the only way forward.

This work brings together the emergence of technical solutions towards the mech-
anisms for managingmulti-party relationships, which are an inherent part of the need
for agile, lean business processes forDigitalManufacturing, togetherwith established
work in the social networks domain, to offer a route forward for the classification of
stages along the route to trusted relationships.

Representing nodes in an IIoT network as agents permits behaviours to be
modelled and thus the interactions between each entities can be scrutinised. This
is important if the nature of each interaction is to be managed so that it can be
verified in the context of trustworthiness.

Additionally, the real-world scenario of IIoT nodes entering and leaving networks
(due to their mobility) presents a significant challenge in terms of the opportunities
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for nefarious activities to take place, as a result of the increased traffic and resultant
strain on authentication mechanisms.

There is a necessity to remove the requirement for centralised authentication for
every transaction, in order that trust can be delegated in a controlled way to trusted
parties. We see the trust hierarchy as a means of facilitating such delegation within
industrial multi-party authentication scenarios, particularly as the computational
capabilities of small IIoT devices increases.

We see this work developing in a number of ways, and the most important next
steps are as follows:

– Quality of Service evaluation—simulation studies so far have established that
low-latency, high speed networks such as 5G can facilitate much higher data rates
and the multi-party architecture can scale much further with IIoT device volume.
However, such authentications have been relatively simple and the next stage is
to test for deadlocks in much more dynamic networks.

– Trust scale granularity—The current hierarchy offers a straightforward scale
for use within the existing multi-party scheme. We see the level of granularity
increasing to cater for a wider range of trust relationships. For example, the work
so far has assumed that each party maps to at least one human agent. This now
needs extending to a many to one scenario where a human (or enterprise) agent is
responsible for a multitude of IIoT nodes, who all interact with another network in
different ways. A finer grained control of trust will help prevent nefarious parties
from masquerading as a trusted party, and this is a monitoring function that can
only be considered feasible if it is automated. Thus, a more detailed set of trust
characteristics must be established.

– Trust/capabilitymapping—This is related to the previous point, in that an assess-
ment of devices’ capabilities is an important consideration during the authentica-
tion process, along with the credibility and reputation of the parties involved in
the transaction. Such capabilities—and therefore trust levels—may be transient,
which again requires a dynamic solution that maintains an overall QoS that is
acceptable.

– Learning mechanisms for trust assessment—such is the potential scale of IIoT
devices, there is a clear need to automate and accelerate the assessment of reputa-
tion based on a node’s behaviour. It is impractical to assume that trust formation
has to commence with no data, and in the social context, human agents use data
acquired from other sources when forming trust assessments. Machine learning
approaches are an obvious first step, while being conscious of the ability to poison
ML models to mislead third parties. This is one area where distributed ledger
technologies such as IOTA may have a role to play, to support the safe formation
and consumption of reputation data. This would also directly support forensic
techniques and approaches.

To a certain extent, the work exploring trust and delegated trust in devices such
as the IIoT, since equipment is being rapidly deployed without an appreciation for
valid vulnerabilities that exist. Businesses are motivated to adopt technology that
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will create new business value, but at present the awareness about adequate security
is lacking.

This challenge is compounded by the fact that there is a trend towards distributed,
socially inspired communications between equipment, which accelerates the scaling
of systems, but again this development introduces weaknesses into systems that may
already be secure.
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IoT Forensics: An Overview
of the Current Issues and Challenges

T. Janarthanan, M. Bagheri, and S. Zargari

Abstract The pursuit of cybercrime in an IoT environment often requires complex
investigations where the traditional digital forensics methodology may struggle to
support the forensics investigators. This is due to the nature of the technologies such as
RFID, sensors and cloud computing, used in IoT environments togetherwith the huge
volume and heterogeneous information and borderless cyber infrastructure, rising
new challenges in modern digital forensics. In the last few years, many researches
have been conducted discussing the challenges facing digital forensic investigators
and the impact of these challenges bring upon the field. Some of these challenges
include the ambiguity of data location, data acquisition, diversity of devices, various
data types, volatility of data and the lack of adequate forensics tools.Moreover, while
there are many technical challenges in IoT forensics, there are also non-technical
challenges such as determiningwhat are IoT devices, how to forensically acquire data
and secure the chain of custody among other unexplored areas, including resources
required for training or the type of applied forensics tools. A profound understanding
of the challenges found in the literature will help the researchers in identifying future
research directions and provide some guidelines to support forensics investigators.
This study presents a succinct overview of IoT forensics challenges focusing on a
typical smart home investigation and a comparison of the existing frameworks to
conduct forensics investigations in the IoT environment.
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1 Introduction

The Internet of Things (IoT) refers to connecting any device to the internet and it is
one of the most explored topics by researchers at present. This is due to the incredible
capabilities this technology has provided. The Internet of Things (IoT) is defined as
the interconnection of uniquely identifiable embedded computing devices within the
existing Internet infrastructure [1]. In simple, it involves things or objects such as
sensors, actuators, RFID tags and readers to interact and coordinate with each other
thereby reducing human intervention in basic everyday tasks [2]. Conversely, the
number of human interactions with these IoT systems creates a new paradigm for
evidence-based data. With the current advancement in networks and communication
systems, IoT enables billions of growth and connectivity. Tech analyst company IDC
predicts that in total there will be 41.6 billion connected IoT devices or “things” by
2025. In addition, Gartner predicts that the enterprise and automotive sectors will
account for 5.8 billion devices this year, up almost a quarter in 2019 [3].

While IoT has increased productivity for businesses, it has also introduced new
risks and threats such as security and privacy issues. IoT devices contain sensitive and
valuable data and it has become one of the main sources of attacks and cybercrimes.
The complexity of IoT in terms of the integration of different communication tech-
nologies, devices, protocols and standardsmakes it difficult to ensure public or private
security. Moreover, protecting data of IoT devices has been challenging because of
the heterogeneous and dynamic features of the IoT. Even if precautions are carefully
taken to secure data, the level intelligence exhibited by cyber-attackers is undoubt-
edly great. Attacks can be crafted not just from public networks but from private
sources, such as cars, smartphones, and even smart homes [4]. As a result, cyber-
attacks can have a significant socio-economic impact on both global businesses and
individuals.

Besides that, digital forensics investigation is one of the important areas that
require additional work. Despite the numerous benefits provided by IoT in various
applications, the modern infrastructures are becoming complex and virtualized
whereby digital forensics investigators are required to acquire and analyse evidence
coming in many forms and different scenarios. Unlike computer-based investigation
where there exists the ACPO (Association of Chief Police Officers) [5] guidelines
in order to make sure the correct procedure has been employed, for the IoT environ-
ment such as smart homes there is not a formal integrated guide to obtain legally and
analyse the evidence.

Recently, there has been research conducted discussing the challenges facing
digital forensics investigators and the impact of these challenges bring upon the field.
Some of these challenges include the ambiguity of data location, data acquisition,
diversity of devices, various data types, volatility of data and the lack of adequate
forensics tools [6–8]. In the IoT environment, data is mostly stored and processed on
the cloud environment. The acquisition of access to data for investigation purposes
becomes difficult for IoT forensic investigators due to the constraints of service level
agreements and volatility of this data. While there are many technical challenges
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in IoT forensics, there are also non-technical challenges such as determining what
are IoT devices, how to forensically acquire data and secure the chain of custody
among other unexplored areas, including resources required for training or the type
of applied forensics tools [9].

1.1 Aims and Objectives

This research aims to overview the current IoT forensic issues from the literature. It
also discusses and compares the existing developed frameworks to conduct foren-
sics investigations in the IoT environment. It will help the researchers in identifying
future research directions and provide some guidelines to support forensics inves-
tigators. The rest of this chapter is organised as follows: Sect. 2 provides a back-
ground to Internet of Things and the challenges that brings to forensics investigators.
It also reviews the current research and studies on the traditional and IoT foren-
sics investigation, current forensic tools and legal considerations carried out by the
other researchers. Section 3 describes the current proposed forensics investigation
frameworks and identifies the research gaps. In order to explore a feasible solution
for conducting forensics investigations in the IoT environment complying with the
legal requirements, the proposed frameworks will be compared and analysed criti-
cally. Finally, this study draws some conclusions and recommendations for future
research.

2 Literature Review

2.1 Internet of Things

The Internet of Things (IoT) has been leveraged in many industries. For instance,
“A smart city uses digital technology to connect, protect, and enhance the lives of
citizens. IoT sensors, video cameras, social media, and other inputs act as a nervous
system, providing the city operator and citizens with constant feedback so they can
make informed decisions” [10]. Cities use sensors to control many of their infrastruc-
ture systems such as water distributions, traffic management, energy management,
parking and street Lighting [11].

According to the report carried out by Philips Lighting and Smart Cites World
[12], Barcelona, Singapore and London are three remarkable examples of the smart
cities which use sensors to control many of their infrastructure systems such as water
distributions, traffic management, energy management, parking and street Lighting
[13]. It also shows how IoT has brought a variety of benefits to the cities. For example,
Barcelona’s smart city project has created 47,000 jobs, saves $58 m on water, and
generates an extra $50 m a year through smart parking.
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Leveraging IoT into the cities has a huge impact on the economy. For example,
finding a parking space is a critical issue for some major cities. Smart parking
generates $41 billion revenue and provides drivers with real-time information on
the availability of the parking space across the city [14]. Smart building reduces
the energy consumption by automating and controlling lighting, heating, ventilation,
conditioning and security in the buildings and generates $100 billion revenue.

The Internet of Things has also redefined the health care systems and had a
profound impact on the patient experience and treatment. It has reduced in-person
visits and allowed patients tomanage their care fromhome. For instance, IoT-enabled
devices such aswearables can collect and analyse critical data from patients and diag-
nose various health issues such as blood pressure, heart rate, brain waves, temper-
ature, physical condition, number of steps and breathing pattern. Specialists can
remotely monitor the patient’s data and provide the possible treatments.

Since the number of objects equipped with network connectivity and intelligence,
are growing fast and it has been predicted that, this number will be 50 billion by the
end of 2020 which will result in $19 trillion in profits and cost savings [14], more
and more industries such as Transport, smart home, automotive, manufactures are
deploying IoT to redefine their operations (Fig. 1).

Tech company IDC suggests industrial and automotive equipment represent the
largest opportunity of connected “things,”, but it also sees strong adoption of smart
home and wearable devices in the near term. In contrast, Garner suggests utilities
will be the highest user of IoT due to continuing rollout of smart meters. Security
devices, in the form of intruder detection and web cameras will be the second biggest
use of IoT devices. Building automation such as connected lighting will be the fastest
growing sector, followed by automotive (connected cars) and healthcare (monitoring
of chronic conditions) [3].

Over the years IoT has changed the way businesses interact with people and
brought a variety of benefits to both people and industries. It allows industries to

Fig. 1 IoT application in Industries
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understand consumer needs in real time, to become more responsive, to improve
machine and system quality, to streamline operations and to discover innovative
ways to operate as part of the digital transformation efforts [11].

Fortune Business Insights report says the global $ 190 billion IoT market is
expected to reach $ 1.11 trillion ($ 1111.3 billion) in annual growth in 2018 by 2026
of 24.7%. The banking and financial services sector is expected to be the largest
market share segment [15].

2.2 Smart Home

One of the most widely used applications of IoT is smart homes. In a smart home,
all devices—lights, locks, refrigerators, coffee makers, heating/cooling systems and
cameras are connected and controlled by a central device through Wi-Fi, Bluetooth,
X10, UPB, INSTEON, Z-Wave and Zigbee [16]. It enables people to control and
monitor objects remotely from their smartphone and to accomplish personal tasks
more easily and faster. It also offersmany benefits to the homeowner including energy
saving, money saving and increasing security.

For example, Smart lighting system is an integral part of a smart home and is a
great way of controlling the ambiance of the home. They can be easily controlled
through simple voice command or mobile apps. They can be programmed to turn on
and off when users enter or leave the room so users do not need to be worried about
wasting energy.

Nest thermostat is aWi-Fi-based thermostat that allows users to control the heating
and air conditioning system with an app or voice command. It learns automatically
from the user’s behaviour and adjusts itself accordingly.Nest Thermostat saves home-
owners about 10–12% on heating and 15% on cooling. This translates to a savings
of about $140 per year [17].

Maximizing home security is another amazing benefit of smart home device. By
installing smart cameras, users canmonitor their home anywhere anytime and receive
security alerts on their mobile phone. Smart door locks also reduce the risk of being
locked out from home. The users can secure and lock the door from anywhere with
the internet access.

Smart Home devices are divided into the smart appliances, security, control and
connectivity, home entertainment, energy management, and comfort and lighting
[18]. Many companies and vendors are invested in smart home devices and the smart
home market is expected to reach $ 141 billion by 2023 [19].

Smart devices usually connect to either each other or a central control hub via
home’s Wi-Fi network (Fig. 2). Many companies develop smart hubs and smart-
phone apps to control their own devices. Different hubs support different connectivity
protocols such as Wi-Fi, Bluetooth, X10, UPB, INSTEON, Z-Wave and Zigbee.

X10 is an automation protocolwhichwas developed in 1975 for home automation.
It uses home’s existing electrical wiring to send the signals. Although X10 devices
are outdated but X10 protocol provided the foundation for wired technology such
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Fig. 2 A typical Smart Home layout

as Universal Powerline Bus (UPB). INSTEON uses both wired power lines and
wireless technologies to communicate with other devices. When a problem occurs,
it switches from one communication channel to another one thus enhancing both
speed and reliability over older technology. INSTEON devices wirelessly connect
to every other device, creating a mesh network. In a mesh network, each device
communicates with other devices directly without using a central hub so the device
can independently transmit the data.

Z-Wave and Zigbee are newer wireless technologies that create a mesh network
between each connected device. Zigbee can be built in smart devices such as door
locks, lights, thermostats, and more.

After connecting smart devices to the network, a controller can be used to control
the devices. The simplest type of controller is a smartphone app such as Apple’s
Home app. Apple Home Kit lets control smart home devices all in one place. It
allows people to adjust smart thermostat, turn lights on and off, control locks and
more in multiple rooms. Devices can also be controlled remotely through this app.

Although smart home has brought many benefits to people’s lives, they lack tech-
nical standards and heterogeneous platforms. A few companies accepted industry
standards which lead to having multiple incompatible platforms and technologies.
Most smart home devices by the manufacturers and vendors are generally not built
with strong security controls in mind. Smart devices and sensors collect a lot of
information about people to learn and predict their behaviour. To automate a task,
they need to know what, where and when people do a task. Smart devices know
in which room and when to turn the lights on or off. Therefore, connecting these
devices to wireless networks and to the Internet makes users vulnerable to malicious
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attacks further resulting in security and privacy threats such as identity theft and data
leakage [20].

2.3 IoT Security Challenges

The evaluation of IoT from limited access networks to a distributed public network
increased the needs for security alarms to protect interconnected IoT devices from
intrusions such as data modifications, malicious code injection, sniffing, and Denial
of Service (DoS) and many other threats [21]. SonicWall reported that IoT malware
attacks increased 215.7% to 32.7 million in 2018 compared to 10.3 million in 2017.
The first two quarters of 2019 exceeded 55% in the first two quarters of 2018. If this
rate continues, it will be another record year for IoT malware attacks [15]. Tabane E.
et al. highlighted that though there are existing technologies and protocols dealing
with issues of threats to security, the limitations on the IoT devices and network
prevents a straightforward adaptation and implementation of IoT solutions in the
new arising sets of security scenarios [22].

At present, the adopted security protocol and cryptographic setting requires a lot of
resources and IoT devices such as smartphones, tablets, PCs, routers, active sensors
or passive RFID tags, have very limited resources and capabilities to support the
implementation and adaptation of traditional security protocols solutions. Hence, the
implementation and adaptation of traditional security protocols solutions still remain
as a challengemaking it difficult to provide confidentiality of data transmission. Since
unattended IoT devices are not supervised because they operate in a self-support
manner with limited maintenance (e.g. monitoring) this further leads to concern in
terms of data integrity (trust). As a result, the data obtained from IoT devices is likely
to be of low quality or corrupted (e.g. data tempering) [23, 24].

There are various security challenges and limitations related to IoT, which are
affecting large scale adoption. In this section, these challenges and limitations have
been discussed in detail:

A. Privacy
User privacy and data protection is an important issue in IoT security taking
into consideration the ubiquitous characteristics of the IoT environment. The
ability of the IoT sensors and devices to sense, collect and transmit data over
the internet pose a threat to individuals’ privacy. IoT nodes are known to collect
people’s private datawithout themevennoticing [25].Koien et al. [26]mentioned
although an abundance of research has already been proposed with respect to
privacy, many topics still need further investigation.
According to a report by Aaron in 2015, Nest thermostat which is one of the
most secure IoT devices, can be hacked and controlled while the device boots up.
Hackers can load their custom software onto it which would stop thermostat data
from being sent back to Nest’s servers [27]. The compromised Nest Thermostat
will then act as a jumping off point to take control of other devices in a home
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which allows hackers to access sensitive information about people such as their
presence in the house or their sleeping schedule.
Smart device apps can also be as vulnerable as the device itself. A study by
the security research team at Checkmarx showed how attackers bypass user
permissions and take control of Google and Samsung camera apps. Attackers
are able to remotely take photos, record video, spy on conversations, identify
people’s location, and more [28].

B. Authentication
The identification and authentication of objects could be challenging because of
the nature of the IoT environment. It is essential to consider managing identity
authentication in the IoT, as multiple users and devices need to authenticate each
other through trustable services [26]. In addition, efficient key deployment and
key management is a challenge in IoT devices as it could cause overhead on IoT
nodes [29].Moreover, in the absence of a guaranteed Certificate Authority (CA),
other mechanisms are required for validating cryptographic keys and ensuring
integrity of key transfer [4].

C. Heterogeneity
IoT devices connected to different types of entities with varying capabilities
complexity and vendors. These devices come with different configurations,
dates, release versions and the use of technical interfaces which are designed
for altogether different functions. Thus, the requirement to develop protocol
to work with all the different devices is required [30–32]. Mahmoud et al. [33]
mentioned that onemore challenge thatmust be considered in IoT is the dynamic
environment, at one time a device might be connected to a completely different
set of devices than in another time; thus to ensure security optimal cryptography
system is needed with adequate key management and protocols.

D. Policies
Current policies that are implemented in computer and network security may
not be applicable for IoT due to its heterogeneous and dynamic nature. Hence,
there must be policies and standards developed to ensure that the data will be
managed, protected and transmitted in an efficient way. This includes a mecha-
nism to enforce such policies is needed to ensure that every entity is applying the
standards. Similarly, for every IoT service involved a Service Level Agreement
(SLAs) must be clearly identified to introduce trust by human users in the IoT
environment which will further results in its growth and scalability [33].

Most of the technical security concerns are related to manufacturing standards,
updatemanagement, physical hardening, user’s knowledge and awareness [34].Weak
and guessable default passwords, hardware issues, unpatched embedded operating
systems and software, insecure data transfer and storage and Lack of encrypted
firmware updates by companies could allow the device to be compromised. Many
IoT devices have operational limitations such as low processing power and small
memory which is just enough to perform the allocated tasks and they can’t handle
proper software updates.
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Due to lack of awareness and user’s ignorance, factory default passwords are
usually forgotten to be changed. Some devices are set with a poor password which is
easy to be breached for malicious purposes. Many well-known companies recently
provide two-factor authentication (2FA) to eliminate the risk of security challenges
but still millions of IoT devices do not support this feature.

Changing factory default passwords, installing necessary updates, disable remote
access to IoT devices when not needed, disable features that are not being used
can also reduce the risk of being compromised. Wi-Fi networks are also one of the
first points of security attacks which make the entire network vulnerable. Setting
strong passwords and encryption methods for Wi-Fi networks, can mitigate the risk
of security attacks.

2.4 Digital Forensics Investigation

Digital forensics is the process of identifying digital evidence in its most original
form, collecting, examining, analysing and presenting the evidence to a court of law.
In recent yearswith the rapid increase in the use of IoT technology, the forensics inves-
tigators are facing new challenges where the traditional digital forensics is inappli-
cable for conducting forensics investigations and more research has to be carried out
in order to develop frameworks and guidelines for practitioners in such a volatile envi-
ronment. The traditional digital forensics mainly deals with evidence sources such
as computers, mobile devices, servers and gateways whereas the evidence sources
for IoT forensics include home appliances, actuators, sensor nodes, medical devices
and a multitude of other smart devices. From a legal perspective, jurisdictional and
ownership issues are essentially similar but then from a technical perspective, there
are many areas that require further research and development. The obvious example
is the lack of forensics tools capable of supporting various IoT devices in the market
due to a wide range of proprietary designs, unclarity of the network boundaries or
uncertainty of the location of stored data [35].

2.4.1 Traditional Forensics Investigation

Traditional forensics investigation is a relativelymature field having formal standard-
isation of key processes to carry out investigation. The data acquisition in traditional
forensics deals with sources such as hard drives, RAM, system logs or any peripheral
storage [36] and for deeper investigation, the examiner can use techniques such as
file carving in unallocated space. The traditional forensics also includes the detection
of malicious network activities where the network traffics are collected and exam-
ined. In addition, currently, most crimes include mobile phone investigation which
has its own challenges such as preserving the evidence in a volatile environment or
bypassing the passcode and encryption. After the data acquisition, the collected arte-
facts are analysed from a technical and legal perspective, and presented as evidence
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supporting a crime during the court proceedings [36]. In simple words, it can be said
that the traditional forensics is a subarea of forensics investigation in IoT because the
latter consists of examining more variety of digital devices which are intercommu-
nicating and data syncing among each other as well as the cloud servers. One of the
major complexities in this situation is maintaining the chain and custody and legal
requirements.

2.4.2 Forensics Investigation in IOT/Smart Home

The proliferation of IoT devices and the increase in the number of cybersecurity
crimes have given rise to enhance forensics investigation techniques in IoT. Smart
homes can be counted as a simple form of IoT environment which can be a good
research starting point to explore the challenges of conducting forensics investiga-
tions in an IoT environment. Someof themain challenges that the forensics examiners
have to overcome in any forensics investigation exist in the data acquisition stage
and the data analysis stage where the proper and suitable forensics tools play an
important role in supporting the forensics examiners in the investigations. In terms
of identifying the sources of evidence in smart homes, the IoT devices, the home
and hub gateways, the mobile devices on which the IoT applications are installed
and the cloud servers are to be the main sources of evidence in any typical smart
home investigations. However, it is important to consider situations where some
of these IoT devices may not be present in the crime scene at the time of seizure,
such as wearables or mobile phones. The data from these sources can be extracted
from the local storage of IoT device(s), the user applications’ data stored on the
mobile device(s), the incoming and outgoing network traffic via the home and hub
gateways, and the cloud servers that are holding the users’ data on their personal
accounts. This might look an easy task but actually one of the main challenges in
conducting such investigations is maintaining the chain of custody because at the
time of seizure, these devices are actively intercommunicating among themselves
including the cloud servers.

In the acquisition phase, the data extraction of IoT devices depends on a few
factors such as the manufacturers’ hardware design of IoT devices, the capabilities
of the forensics tools and the familiarity and expertise of the forensics investigator
with such devices.

The acquisition of network traffic in smart homes canbe donevia the homeandhub
gateways. In general, the IoT devices in a smart home are often connected to a smart
hub gateway whose sole purpose is to act as a base station for their particular radio
standard and then, the hub gateway is to be connected directly to the home router.
However, more advanced home routers are now integrating these radio standards
to be more appropriate with standards such as ZigBee, Thread or Bluetooth which
is an easy solution to reduce the use of smart hubs. This will be more environment
friendly and less confusing for the customers because the current smart hub gateways
are proprietary vendor designed. This integration also could reduce the possibility of
different IoT hubs using the same radio frequencies and networking protocol, which
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would create the potential for unreliable connectivity due to overlapping networks
[37].

Therefore, the acquisition of network traffic would be less complicated if these
advanced home routers are used in smart homes which shows that the level of
complexity of the forensics investigation process depends heavily on the design
of the IoT devices and architecture. This demonstrates that a collaboration among
government, academia and industry is vital in order to regulate and standardise the
IoT industry from a security perspective (i.e. secure by design) bywhich the forensics
investigations would subsequently be leveraged (i.e. forensics readiness) [38].

The forensics investigation in the IoT environment can be divided into three
forensics zones; traditional forensics, network forensics and cloud forensics. The
traditional forensics investigation zone includes the forensics analysis of the local
storage of the IoT devices and any other digital devices connected to the smart
home network such as computers and mobile phones whereas the network forensics
investigation zone covers the forensics analysis of the network traffic of the IoT
devices, the smart hub gateway and the home router. These first two zones may not
require much cooperation from any third parties such as the Cloud Service Providers
but the forensics investigation of the cloud servers will definitely necessitate the
collaboration with the Cloud Service Providers while overcoming the jurisdiction
challenges from legal perspective [35].

Some of the challenges in the acquisition stage are related to the fact that there
are many types of IoT devices in the market, using specific vendor designs and
proprietary interfaces which might lead to difficulty accessing stored values, causing
the investigator to perform a non-negligible reverse-engineering attempt [39]. In
addition, there is no forensics readiness when it comes to monitoring the network
traffic in a smart home which can be developed and integrated in the home routers.
This preparation would assist the forensics investigator in preserving and collecting
data for further examination in the event of an incident as a part of forensics readiness
[40].

On the other hand, the installed applications on the user’s mobile phone/computer
that are used to operate the IoT devices in a smart home generate user-specific data
where some of the data are stored on the local storage of the mobile phone device
(assuming the suspect mobile phone device was present at the crime scene to be
seized) and the rest of the data could be stored on the cloud servers. The data stored
on the cloud will not be accessible to law enforcement agencies unless the Cloud
Service Providers would be under some legal obligations to do so, such as issued
court warrants for specific users account holders which can be a lengthy process,
presuming bypassing the encryption challenge [21]. It is understandable that the
Cloud Service Providerswould be reluctant to dedicate their resources for conducting
forensics investigations unless some incentives are provided. Therefore, this study
proposes IoT Forensics as a service to be offered by the Cloud Service Providers
in order to support law enforcement agencies in their forensics investigations when
needed. However, there are some technical and legal challenges for offering such
services which require more research and investment. For example, some of the legal
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challenges related to privacy and data protection might be resolved by exploring the
options and updating the customers’ service legal agreements (SLA).

(a) Current Digital Forensics Tools

Digital Forensics relies on scientifically derived and proven digital evidence collec-
tion methods and validated tools used by professional forensic experts [41]. Digital
forensics tools are used to identify, preserve, examine and present the digital evidence
in investigations.

One of the problems facing IoT forensics is the shortage of digital forensics tools
available to perform investigations due to its limitations and inability to cope with
the current development in the IoT environment [35]. When compared to traditional
digital forensics techniques, IoT forensics faces several challenges due to the versa-
tility and complexity of the IoT devices. The following are some of the challenges
that may be faced in an investigation [42]:

• Variance of the IoT devices
• Proprietary Hardware and Software
• Data present across multiple devices and platforms
• Data can be updated, modified, or lost
• Proprietary jurisdictions for data are stored on the cloud.

Therefore, IoT forensics is multidisciplinary in approach and often a combination
of tools is required to collect and analyse data from various sources such as the smart
IoT devices, network traffic and the cloud servers.

The sensors and actuators in smart devices tend to generate data autonomously
and in response to human behaviour such as motion detection. This makes them
an excellent source of digital evidence. Although some commercial tools such as
Encase and FTK may be used to collect evidence effectively, it is evident that there
is no one tool capable of doing everything or is capable of doing it very well [43,
44]. In addition, customised or specialised tools are required to acquire data from
the proprietary hardware or software applications of the smart IoT devices [42].

For example [45], developed a plugin in two parts for Autopsy as well as stan-
dalone python script to parse information related to the iSmartAlarm device [46]. In
their research used an open source tool, Nmap to discover ports that were open on
the Amazon Echo device. Putty was used as a serial terminal to read the boot logs of
the Echo. The authors had proposed the use of reverse engineering techniques such
as eMMC Root, JTAG and debug ports to gain access to the filesystem of the Echo.
Further, it is important to note that with every new generation of devices, the structure
and hardware design are changed as well [44]. Therefore, new tools and techniques
are required to be developed to facilitate investigation within these devices.

In the IoT network layer, network forensics tools and methods can be applied to
analyse traffics between the IoT devices and the servers. For instance, [46] usedWire-
shark to analyse traffic between the Echo device and the Amazon server. Conversely,
[47] proposed an automated forensic management system (FEMS) that was devel-
oped to collect data from perception, network, and application architecture layers of
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IoT. Nonetheless, in dynamic IoT networks, it is difficult for FEMS to examine all
IoT devices.

In addition, most of the data on IoT devices is stored in the cloud, forensic inves-
tigators face challenges in physically accessing sources of evidence [35]. A survey
conducted by Wu et al. [9] determined research should specifically focus on devel-
oping tools in IoT forensics to identify and acquire data from the cloud. At present,
the developed forensics tools include cloud data collection forensic tools that are
able to extract some of the data requiring the user’s login details. However, these
tools and techniques have only been developed and tested on specific IoT devices
such as the Amazon Alexa and Google OnHub. Chung et al. [48] proposed using
unofficial APIs technique to acquire cloud artefacts from the server. However, a chal-
lenge experienced by the authors within the past is that unofficial APIs are subject to
change without warning which could require revising of code if the functionality is
still available. This makes the extraction methods unlikely to be forensically sound.

Based on previous literature and current challenges faced by digital forensic inves-
tigators, it is crucial that future research needs to concentrate on the development
of IoT forensic tools that would work effectively across a wide range of devices
[49]. Many businesses in industry that rely on sensitive data for real-time decision
making are prone to cyber-attacks therefore in the next few years, the demand for
IoT security and forensics experts and resources will rise sharply [50].

Further the development of the anti-forensic techniques such as encryption and
activities to overwrite data andmetadata or hiding information as defensivemeasures
are increasingly successful. These include encryption, obfuscation, and camouflage
techniques, and hiding information [39]. Yildirim et al. [51], had conducted an anal-
ysis on Amazon Alexa Echo and Google Home Mini by creating anti-forensics fake
activities (e.g.modifying device name, creating routine and developing custom skills)
to deceive the forensic investigators. The authors determined that illogical requests
with custom skills or acts allow users to perform various operations and generate
fake activity history records. Other techniques include using the “TimeStomp” tool
to overwrite the timestamps in NTFS system [52].

(b) Legal Considerations/Jurisdiction

The use of IoT devices poses a wide range of issues and concerns from a regulatory
and legal point of view. The rise in IoT devices brings about new legal and regulatory
issues and privacy concerns in addition to the existing issues that are already present
in the traditional devices. As it is known, the use of IoT devices has potential benefits
to law enforcement and the data produced by these devices can be used as evidence
to investigate crimes. However, the digital forensic investigator will have to take
into consideration the legal and privacy implications when conducting IoT forensics
investigation.

The digital forensics methodology provides a framework consisting of procedures
and processes that should be in line with standards and guidelines such as ACPO
guidelines [5] to ensure maintaining the chain of custody. The forensic investigator
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guarantees that the legal requirements have been met at every stage of the investi-
gation including identification, seizure, data collection, analysis, interpretation and
presentation of the evidence. However, in IoT forensics the complexity involved
and lack of unified standards hinder the digital investigation process and the law
enforcement from acquiring evidence in a forensic manner [21]. Besides that, the
issues pertaining to cross border data flows prove to be a challenge when acquiring
data which is an existing issue in cloud forensics. When IoT devices gather data of
individuals within one jurisdiction and then the data are stored in another jurisdic-
tion (by the cloud storage service providers) with different data protection laws for
processing, it will be a challenge for digital forensic investigators to get access to
such data (chain of custody).

Even access to such data is obtained, the capability of IoT devices to autonomously
make decisions makes it a challenge to determine accountability, responsibility and
liability for actions taken. As the devices exchange data between themselves and
storing data could be in multiple locations, there are many stakeholders and partners
involved whereby several data processors may have access to the data. Basically,
the service provider being the data controller would essentially determine the scope,
extent, manner and purpose of the use of personal data. The service provider may
also have different third-party data processors processing the data on behalf of the
control of the data controller. Therefore, clarity in the ownership of data needs to be
established and looked at very carefully. Legal frameworksmust be updated alongside
the development of digital forensics techniques to ensure that the data gathered by
the IoT is not misused [53, 54].

Another major challenge from a legal perspective is developing and enforcing a
privacy standard that relates to the current laws as it is different in each country.More-
over, in some circumstances the lawmay differ in various states and provinces within
those countries. There is currently no universal privacy standard model, although
many attempts have been made [55].

On a security perspective, there are proven incidents whereby the IoT devices
developed have security flaws. A follow-up research on the security of IoT devices
revealed that vulnerabilities in IoT devices have doubled since 2013 [56]. In 2018,
hackers had abused Alexa and Google Home smart assistance to eavesdrop on users
without their knowledge. This includes tricking users into revealing personal infor-
mation [57]. Though bothmanufactures respectively havemade great effort to deploy
updates every time, it seems that newer ways to hack apps have started to emerge
[58]. Nevertheless, attempts are being made to introduce legislation to combat weak
security on IoT devices. For example, the state of California has passed a law (Senate
Bill 327 [SB-327]) that came into effect on 1st January 2020 to ban pre-installed and
hard-coded default passwords such as “admin” and “passwords” [59]. However, the
law drew criticism from the security community which appreciated the first move
but said that the law did not go far enough to control IoT security.

Similarly, the UK Government introduced “Secure by Design Code of Practice”
for consumer IoT Security for manufacturers in 2018 which provides guidance for
consumers on smart devices at home. A document entitled “Code of Practice for
Consumer IoT Protection” was published by the Department of Digital, Culture,
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Media and Sport (DCMS) in collaboration with the National Cyber Security Center
(NCSC). The Code was first released as part of the Safe by Design study in the
draft in March 2018 [60, 61]. However, this guidance does not include penalties for
those manufacturers who do not comply as the UK government prefers to take the
approach of collaborating with industry on a voluntary basis. The UK government
aims to enforce “IoT Security -by-Design” law and is holding ongoing discussions
with all parties involved to continue improving the legislation, no deadline has been
set [62].

Overall, it is evident that efforts have been made to develop and improvise legisla-
tions on IoT Security. However, there is no effort to update cyber security legislations
directly related to IoT forensics. In a survey conducted by Wu T. et al. [9], majority
of the cyber forensics’ respondents believe strongly that the current cyber security
legislations regarding IoT forensics are not up to date which is one the significant
challenges in digital forensics.

3 Digital Forensics Frameworks

In the last decade, researchers have developed new process models and solutions to
improve digital forensics investigation. This has helped significantly progress not
only in the field of technology but also in methodology improvement. Digital foren-
sics has become prevalent as the modern infrastructures are becoming complex and
virtualisedwhereby digital forensics investigators are required to acquire and analyse
evidence coming in many formats on various platforms not just computer systems.
While computer forensics is defined to focus on specific methods of extracting
evidence from a particular platform, digital forensics must be designed in a manner
such that it can encompass all types of digital devices as well as future technology.
Different investigators use different methods of conducting investigation depending
on the area of investigation and type of cases, thus there is no standard framework
for an investigation process. This is said to be problematic because evidence must
be obtained using methods that are proven to reliably extract and analyse evidence
without bias or modification [63].

Recently, there have been various frameworks proposed in the field of digital
forensics which attempt to refine a particular methodology for a specific case (see
Table 1). Some of the digital forensics’ methodologies only focus on specific stages
of the digital forensics’ framework such as identification, collection, preservation and
examination stages [64–66] and the triage framework [67, 68] that attempts to address
time sensitive applications, accelerating digital forensics investigation process.

According to Alkhanafseh et al. [69], if the employed framework contains a few
stages, then this framework will not provide much guidance for the investigation
process. A framework that contains many stages in which each stage has substages,
with its usage scenario being more limited, may prove more useful. Therefore, it is
essential to analyse various known forensics frameworks and compare their advances
properly. Various frameworks have been proposed for each forensics area such as
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computer forensics, mobile forensics, network forensics, cloud forensics and IoT
forensics. These frameworks can be distinguished from one another in terms of
number of stages, methods used to collect evidence and digital forensics approach
such as being active or passive.

Palmer [66], defined Digital Forensics Framework as a structure to support a
successful forensics investigation. This implies that the conclusion reached by one
digital forensics expert should be the same as that of any other person who conducted
the same investigation.

A standardised digital forensics framework consists of 9 stages which are outline
as below [70]:

1. Identification: This stage includes recognising an incident from indicators and
determining its type.

2. Preparation: This stage includes preparing tools, techniques, search warrants
and monitoring authorisation and management support.

3. Approach strategy: This stage includes dynamically formulating an approach
based on potential impact on bystanders and the specific technology in question.

4. Preservation: This stage includes isolating, securing and preserving the state of
physical and digital evidence.

5. Collection: This stage includes recording the physical scene and duplicate digital
evidence using standardise and accepted procedure.

6. Examination: This stage includes in-depth systematic search of evidence relating
to the suspected crime.

7. Analysis: This stage includes determining significance, reconstructing fragments
of data and drawing conclusions based on evidence found.

8. Presentation: This stage includes summarising and providing explanations of
conclusions.

9. Returning evidence: This stage includes ensuring physical and digital property
is returned to the proper owner as well as determining how and what criminal
evidence must be removed.

The section below provides an overview of IoT Forensics Framework and outlines
the limitation of some of these frameworks to identify the research gap.

3.1 Overview of IoT Forensics Framework

Advances in the digital system, together with the rapid growth in the IoT era, have
caused a crucial period in digital forensics. Mauro al. [4] identified that there is
no documented method or reliable forensic tool to collect forensics sound artefacts
from a device. The diversity of the IoT environment has made it difficult for forensics
investigators to acquire and analyse data using traditional methods. The IoT devices
are known to have customised operating systems or file structures and number of
wireless protocols. The lack of appropriate tools and methods makes it difficult to
identify and acquire data from the IoT devices.
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In the recent years, there have been attempts by various researchers to develop IoT
frameworks to facilitate digital forensics investigation in the IoT environment as well
as ensure that the evidence is acquired in a forensic manner. An overview of some of
the known IoT frameworks that were proposed in the last few years are demonstrated
in Table 1. This table outlines themain stages of each of these frameworks, the names
of the original frameworks on which the proposed frameworks are based.

A new integration between digital forensics and new technology such asmining of
algorithms, security algorithms and data integrity that have been used by researchers
to propose new frameworks to address some of the challenges in IoT forensics. This
includes integration of fog computing proposed in [71] and blockchain technology
proposed in [72–75 to preserve privacy, authenticity and collection of evidence.
Oriwoh et al. [76] proposed a systematic approach to identify sources of evidence
within the IoT environment using three zones. Zone 1 emphasises on the internal
network such as hardware, software and network connections. Zone 2 focuses on the
peripheral devices such as IDS/IPS, Firewalls orGateway.Zone 3 focuses on the hard-
ware and software outside the network such as cloud and internet service providers.
Further, they also presented aForensicsEdgeManagement system (FEMS) to provide
an autonomous forensics service within a smart home. A layering approach has been
proposed to collect data from the sensor via a network layer, which is then managed
by the perception layer, and the application used to interface with the end users [47].
However, this proposed process coverage within the framework is limited to partial
artefacts identification.

In 2015, Perumal et al. [1], proposed an integrated model, designed based on the
triage model and 1-2-3 zone model for volatile based data preservation [76]. The
proposed IoT digital forensic model includes the following processes authorization,
planning, chain of custody, analysis and storage. However, it did not address the
digital forensic readiness process and the research work was presented in a shallow
manner. Conversely, Zawoad et al. [6] proposed a centralized trusted evidence repos-
itory in the Forensics Aware IoT (FAIoT) conceptual model which is aimed at
giving support in executing digital forensics investigation in the IoT environment
by providing an analysis of the existing challenges. Their proposed approach is to
constantly monitor registered IoT devices and provide access to evidence through the
use of API services to law enforcement authorities. This paper served as an introduc-
tion to the IoT forensic domain and a high-level investigation model was presented
with partial artefacts acquisition.

Kebande and Ray [21] proposed a framework that complies with the ISO/IEC
27043: 2015 which is an international standard for information technology, security
techniques, incident investigation principles, and processes. However, the proposed
framework is generic and the effectiveness of the framework was not tested. In 2018,
the authors proposed an IDFIF-IoT Framework [77]. This framework was an exten-
sion of an initially proposed generic Digital Forensic Investigation Framework for
the IoT environment which was to address the lack of IoT digital forensics investiga-
tion standardisation. This enables the analysis of Potential Digital Evidence (PDE)
generated by the IoT ecosystem. However, the framework lacks ground details that
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would facilitate similar adaptation to different scenarios without changing any main
components or processes [78].

Conversely, Meffert et al. [79] proposed the FSAIoT framework which comprises
a centralised Forensics State Acquisition Controller (FSAC) employed in three
collection modes known as IoT device controller, cloud controller and controller
to controller. Nevertheless, the authors did not explore the forensics soundness of
the implemented IoT acquisition controller and did not take into consideration the
accessing of historical data and deleted data when developing the framework. Nieto
et al. [8] proposed a privacy-based model called PRoFIT to address issues related
to extracting evidence data without violating users’ right of privacy. This frame-
work was based on the international standard ISO/IEC 29100:2011 requirement. It
is important to mention that this model limits cases with the information voluntarily
provided by the users.

In Table 2 the contribution and limitation of the above proposed frameworks
are outlined. As it can be seen in this table, these proposed frameworks are only
focusing on one or more stages of a digital forensics investigation not addressing the
process challenges as a whole. For example, Oriwoh et al. in his work is considering
only the artefact identification whereas Zawoad et al. is only considering the artefact
acquisition. Some of these proposed frameworks are based on theories and they were
not tested in the real environment so the effectiveness of these proposed frameworks
is in question. One of the proposed frameworks requires users to give explicit consent
to the collection and processing of their data in order to prevent the privacy issue of
the participants. It might not be practical in a real digital forensics’ investigation [8].

In summary, most of the current proposed IoT forensics frameworks implemented
in pilot IoT environments have both strengths and limitations. Although these frame-
worksmay be viable theoretically but theymay not be practical solutions in a realistic
IoT environment where an industrial collaboration is required to overcome the poten-
tial challenges. In addition, the focus in developing the IoT forensics frameworks
should be on the entire forensics’ stages rather than a part of the digital forensics’
investigation.

4 Conclusion and Recommendation

The variance of IoT devices, proprietary hardware and software along with different
storage devices and platforms alongside intercommunication among IoT devices
have presented new challenges in the IoT forensics investigation. Some of these
challenges are exacerbated by the lack of appropriate frameworks and IoT forensics
tools as well as the legal and privacy issues.

In this research, the current IoT forensic solutions and frameworks proposed in
the previous studies were reviewed. The strengths and limitations related to these
frameworks were critically analysed in order to provide a clear direction for future
studies.
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Table 2 The contribution of each framework and their limitations

Authors Framework/Model
names

Contribution and
comments

Limitations

Oriwoh et al.
(2013) [76]

1-2-3 Zones of
Digital Forensics

Provides a structured
approach to
systematically reduce
complexity of
investigations in IoT
environments

The proposed process
coverage is limited to
partial artefact
identification

Oriwoh et al.
(2013) [76]

Next Best Thing
(NBT) Triage

Assists with the
identification of
additional potential
evidence sources when
primary source is
unavailable

The proposed process
coverage is limited to
partial artefact
identification

Perumal et al.
(2015) [1]

Top-down approach
methodology

Provides guidance in
investigation of IoT
devices and addresses
issues relating to
volatile data
preservation

The process did not
address the digital
forensic readiness
process and the research
work was presented in a
shallow manner

Zawoad et al.
(2015) [6]

FAIoT Addresses lack of
standardization in the
IoT ecosystem using a
centralized and secure
evidence logging
preservation and
provenance service

The proposed process
coverages are limited to
partial (artefacts
acquisition)

Kebande and Ray
(2016) [21]

DFIF-IoT Proposed a generic and
holistic framework for a
specific domain: Digital
Forensics Investigation
in IoT settings

The proposed
framework lacks ground
details that would
facilitate similar
adaptation to different
scenarios without
changing any main
components or
processes

Meffert et al.
(2017) [79]

Forensic State
Acquisition from
Internet of Things
(FSAIoT)

Proposed a general
framework that focuses
on IoT devices
acquisition

The proposed model did
not consider accessing
historical data and
deleted data and
did not explore the
forensic soundness of
the implemented IoT
acquisition controller

(continued)
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Table 2 (continued)

Authors Framework/Model
names

Contribution and
comments

Limitations

Nieto et al. (2018)
[8]

PRoFiT Proposed privacy-based
model to address issues
related to extracting
evidence data without
violating users´ right of
privacy

This model limits the
case with the
information voluntarily
provided by the users

Kebande et al.
(2018) [77]

IDFIF-IoT The IDFIF-IoT
framework is an
extension of an initially
proposed generic Digital
Forensic Investigation
Framework for IoT
environment
(DFIF-IoT) and as
proposed to address the
shortcomings of lack of
IoT digital forensics
investigation
standardisation

The proposed
framework lacks ground
details that would
facilitate similar
adaptation to different
scenarios without
changing any main
components or
processes

Al-Masr t al.
(2018) [71]

FoBI Proposed a Fog based
IoT framework that is
suitable for IoT systems
that are data intensive
and have a large number
of deployed IoT devices

Requires further
research

Hossain et al.
(2018) [74]

FIF-IoT Proposed a public
digital ledger
(block-chain) based
framework that
addresses issues on
collecting evidence and
a tamper-evident
scheme to store
evidence in a
trustworthy manner

Requires further
research

Goudbeek et al.
(2018) [80]

Home Automated
System (HAS)
Framework

Proposed a seven phase
forensics investigation
framework to guide
investigation of Home
Automated System
(HAS)

Requires further
research

(continued)
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Table 2 (continued)

Authors Framework/Model
names

Contribution and
comments

Limitations

Sathwara et al.
(2018) [81]

Digital investigation
framework for IoT
systems

Proposed an IoT
Framework that focuses
on helping investigators
on information
gathering

The proposed
framework lacked
ground details that
would facilitate similar
adaptation to different
scenarios without
changing any main
components or
processes and the
research work was
presented in a shallow
manner

Hossain et al.
(2018) [82]

Probe-IoT Proposed Probe-IoT to
addresses faced in
evidence acquisition and
integrity of the evidence
during investigation

Requires further
research

Cebe et al. (2018)
[73]

BlockForensic: An
Integrated
Lightweight
Blockchain
Framework for
Forensics
Applications of
Connected Vehicles

Proposed a framework
to facilitate accident
investigations and
preserve the privacy of
users

Requires further
research

Le et al. (2018) [72] BIFF: A
Blockchain-based
IoT Forensics
Framework with
Identity Privacy

Proposed a framework
to enhance the integrity,
authenticity and
non-repudiation
properties for the
collected evidence

Requires further
research

Ryu et al. (2019)
[75]

Blockchain based
framework

Proposed a blockchain
based investigation
framework focusing on
data integrity
preservation method

Requires further
research

Some of these frameworks concentrated on time sensitive applications and accel-
erating digital forensics investigation processes whereas the others only focused
on specific stages of digital forensics frameworks such as identification, collection,
preservation and examination stages. The presence of limitations in some of these
frameworks makes it unsuitable to be implemented in a real IoT environment.

A comparison among the proposed frameworks revealed that the 1-2-3 Zones
of Digital Forensics [76], the Next Best Thing (NBT) Triage [76], the DFIF-IoT
[21] and the IDFIF-IoT [77] frameworks are considered to be the most completed
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frameworks as they cover most of the stages of a digital forensics investigation. The
1-2-3 Zones of DF and the NBT Triage frameworks are limited to partial artefacts
identification whereas the DIFI-IoT and the IDFIF-IoT frameworks lack ground
details that would facilitate similar adaptation to different scenarioswithout changing
any main components or processes. Most of these frameworks are based on theories
so it is not certain they can be implemented in a real IoT environment. Therefore, this
study focused on the simplest form of the IoT environment, smart home, to create
a better picture of the challenges in IoT forensics. The challenges were discussed
in Sect. 2.4 and it was recommended that there is a need for a collaboration among
the government, industry and academia in order to develop a robust IoT forensics
framework.

Moreover, it was discussed that the Cloud Service Providers can play an important
role in assisting the forensics practitioners in IoT investigations however, due to the
limitation of resources, the Cloud Service Providers might be reluctant to cooperate
fully in the investigations. Therefore, in order to provide some incentives, this study
suggests the IoT Forensics as a service to be offered by the Cloud Service Providers,
empowering the ability for forensics readiness.
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Making the Internet of Things
Sustainable: An Evidence Based
Practical Approach in Finding Solutions
for yet to Be Discussed Challenges
in the Internet of Things

Benjamin Newman and Ameer Al-Nemrat

Abstract The Internet of Things (IoT) is well on its way to forming a fully digi-
talised society. Whilst IoT provides opportunities which other technology cannot,
the enormous amount of responsibility also means it can be the key to access critical
infrastructure. IoT is insecure by nature, is a gateway to the network, can be deployed
in safety-critical areas and can generate substantial amounts of detailed data. Tradi-
tional approaches to protecting IoT is inefficient as the very limitations means best
practices and standards are ineffective when being applied to the IoT environment.
This study argues that work needs to be shifted from security and privacy to consumer
safety and software sustainability. The impact of IoT is largely uncertain and the tech-
nology is redefining new areas of research which have yet to be addressed. Standards
and regulations are an essential part to the integrity of sustainability and safety, but
it is clear that they are currently too fragmented and are not able to keep up with
the emerging technology. This study aims to highlight the underlying issues which
other studies have missed, and to provide solutions which can be applied in future
work. In order to let IoT be beneficial we must force organisations and crowd-funded
projects to employ secure-by-default into the design phase of their product and only
then will IoT be able to thrive into what it should be.

1 Introduction

The Internet of Things (IoT) is a paradigm that is progressing society into becoming
a fully digitalised environment, where everything is connected. At a conceptual level
IoT refers to the interconnectivity among devices, along with the ability to abstract
large amounts of data, also known as, BigData. Gartner [40] predicts the total number
of IoT devices will increase from 5 billion in 2015 to 25 billion in 2020, for this
reason IoT is quickly becoming an important future technology that is being adopted
by a wide range of industries. The recognised value of IoT is clear when connected
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devices can communicate and be integrated with, smart cities, smart energy grids,
smart homes, business intelligence and analytical applications [51]. Furthermore,
as IoT technologies evolve, concerns and efforts to resolve security issues in IoT
environments are increasing. That is, more active IoT-related researches and devel-
opment are in various industries, the more crucial security in the IoT environment is
needed.

As more safety-critical devices such as, pacemakers, insulin pumps, autonomous
cars, and smart metres become connected to the internet, “security will be more
about safety” [3]. However, most of the stories on IoT have been about privacy. The
US government, more specifically James Clapper, US intelligence chief, has already
acknowledged the use of IoT devices for use in spying on themasses [1]. Other events
have seen children’s toys and smart cameras banned in Germany, as they can also
be used to spy on households [79]. IoT devices are typically seen as the “weakest
link,” as they are embedded into systems and are often relied upon, therefore they
are attractive targets [90]. This is less of a hypothetical thought and instead a much
more real concern. September 2016 saw the rise of the Mirai and Repear botnets,
that had been conducted through poorly configured IoT devices [4]. A much recent
event happened in 2018whenGitHub survived a 1.3TBDistributedDenial of Service
(DDoS) attack. The size of these attacks is only going to grow each year, whilst more
organisations release unsupported, poorly configured internet connected devices. It
is only a matter of time until an attacker can target more critical infrastructures such
as energy grids.

Standards and best practices are a large aspect of security and safety. The auto-
motive industry is a fantastic representation into the benefits of proper procedural
regulation handling, and how standards are directly correlated to safety. The US
Department of Transportation (DOT) was born in 1966 which revolutionised the
safety of driving. TheHighway SafetyAct established byNHTSAwas solely respon-
sible for dramatically reducing deaths and injuries resulting from motor vehicle
crashes [74]. The implementation of standards caused car companies to apply for
type approval, mandate recalls and coordinate the safety of the car with the design
of the road. This had a dramatic change on the present-day ecosystem, where car
manufacturers are now forced to spendmillions on defects which are developed by no
fault of the owner [70]. However, the introduction of low-power-wide-area-networks
(LPWAN) has seen a dramatic increase in the ability to provide over-the-air (OTA)
updates, this system will provide a dramatic reduction in costs as many original-
equipment-manufactures will not have to recall their equipment and instead apply
updates that fix the problems remotely. But OTA updates are difficult, they pose
many risks and the complexity of the vehicles is only going to add to the problem.
As the complexity grows the complications of successfully developing and deploying
OTA updates also increases. Tesla have already shown that cars are capable of being
autonomously driven, the problem is there are a range of critical systems, such as,
ABS control, airbag deployment, collision detection system, which are also being
autonomously controlled. Each system may depend on a different supplier that uses
different methods and software to design their system, the coordination of OEM and
supplier is only going to get harder and the more complex a system becomes the
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bigger the impact on safety. The goals of a cybersecurity regulator will be to mix
security, safety, and privacy. Different intuitions will focus on different factors, the
automotive industry focuses on security and safety whereas privacy will be more
important for personal fitness wearables. However, there is a problem, NIST [77]
provide a comprehensive list of all the current bodies which have developed some
standards for IoT, the issue is, there are multiple bodies with similar objectives, the
same applies for IoT platforms, there are over 400 platforms that provide a different
solution to the same problem, eventually an entity will have to determine what needs
to be regulated. Moreover, organisations do not want to be held accountable for
liability for their device, a clear set of standards which provide structured processes
of regulations would reduce the asymmetry in the plethora of bodies, but a large
problem still stands where liability is still a tricky subject, as it’s based on old IT
practices and still has yet to be revisited [58]. It is clear there are dramatic differences
between industries as to which approach should be taken but the concepts learned
from other industries still apply. Despite the benefits of regulations, organisations
can also be reluctant to adopt new processes, especially if they are more likely to be
held liable or if the costs of production are increased.

Currently, technology relies on a system which supplies monthly distributed
updates such as,Microsoft, with their “Patch Tuesday’s.” At present with this system,
vendors tend to stop support for a product that is three years or older, for example,
TomTom recently announced their promise of “lifetime” sat-nav updates will be
stopped, even for models that had only recently, last year, stopped being sold, the
reason as stated by TomTom came down to limitations in the hardware [82]. The
problem becomes much more drastic in areas such as the automotive industry; where
the average age of a car in America is 11.4 years and growing [50]. Tesla have already
announced some of their older model S 75D vehicles are not capable of receiving
a performance upgrade due to hardware differences [56]. In some situations, this
system is beneficial, if a vulnerability is found in the software then a patch can be
issued within 24 h [12], but the OTA process, which companies such as, Tesla, BMW,
and Ford are utilising is difficult and largely unregulated.

To fix vulnerable systems, an ideal solution would be to employ the ability for
rapid patching, however, OTA updates are difficult to implement as devices tend
to outlive software updates [97]. Refrigerators, TV’s and cars are all expected to
last for decades but maintaining technical support for a product is costly and time
consuming. IoT solutions which are designed for specific products that are applied
as a means of continuing technical support are also difficult to maintain [67]. Some
organisations will implement a range of products into their business infrastructure,
and this adds complexity to the solution asmoremodelswill be introduced tomaintain
the running costs of the platform. Start-ups are exceptionally vulnerable, after selling
devices they either drop their product or are bought by another company, which end
up cancelling the original product [39]. Start-ups are also affecting the balance of
security, there is a difference between a prototype implementation which can handle
tens of devices, and one that has been designed to handle millions of devices [85]. It
used to be very difficult to obtain PCB controllers but in the 21st century you can use
services, such as, PCB shopper. Organisations are not helping the problem either,



258 B. Newman and A. Al-Nemrat

for example the EVM 430-F6779 model, from Texas Instruments is suggested to be
used for the development of a smart metre but give no information on how to secure
the device. The controller has a debugging feature, it is not farfetched to suggest
that this feature could be left on during distribution, and thus has the potential to
leak sensitive information. However, it is unreasonable to expect start-ups or even
established companies to create software that is entirely bug-free [16], but it’s also not
unreasonable to suggest that organisations should take a proactive approach instead
of a reactive approach.

Another challenge is getting the consumer to apply an update. Some IoT devices
require users to manually install updates but getting the user to notice is a challenge.
For example, thousands of baby monitors manufactured by Foscam, contained a
remote vulnerability that allowed attackers to gain access, because Foscam had no
central disclosure platform many of the devices were left vulnerable, as users were
un-aware of the patch [45]. The answer would be to implement automatic updates,
however as seen by the history of Microsoft, Patch Tuesday’s have been causing
more problems than they have been fixing them [57]. Software updates are usually
deployed to either add new features or fix a bug, and as such these updates add
modifications to the existing software [109]. The ability to apply updates is a factor
of security and is currently the only method of which can be used once the software
or device is deployed [36]. The importance of updates being distributed in a timely
manner is extremely important for ensuring the protection of the device or software,
when a vulnerability occurs, and it is publicly disclosed, the exploit rates increase
by magnitudes [14]. Many organisations, unfortunately, take a reactive approach to
vulnerability disclosures and only after a vulnerability is found does an organisation
then apply a patch. Interestingly, systems that are regularly maintained are less likely
to be compromised [54].

There is a negative view on software updates, Google Statistics [42] shows the
problemwith interoperability between versions. Oreo, Androids latest version distri-
bution, as of this writing, has only 4.6% of the market share, with Nougat leading
with 30.8% a version which released in 2016. The problem is, many Android users
feel that updates cause more harm than good and therefore users tend to stay away
from updating their device. Apple have also had a history of bad software updates,
especially in 2017. First a vulnerability had been found in macOS High Sierra [112],
in the same year another software update caused the file sharing feature to stop
working [5]. This new update undid the original macOS High Sierra critical vulner-
ability [43]. The changes and problems that software updates bring are not only an
annoyance for its user base, but it also shows even established organisations still fail
to provide reliable software updates. With the IT ecosystem not being limited by
battery life, memory size and duty-cycle it is sufficient in applying patches as many
times throughout the devices or software’s life. However, trying to apply this strategy
to IoT is a task that is met with huge difficulty.

Attitudes towards adopting a sustainable businessmodel is fraught with problems.
As Atlas [9] has shown, the average cost of IoT sensors is failing, therefore applying
any type of technical support for long periods of time is not within the scope of
an organisation. It is therefore essential that organisations are forced into situations
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where they must apply support until the devices end-of-life. The problem worsens
when you understand the severity of found vulnerabilities per year. Microsoft have
shown in their annual security report, there are 5,000 to6,000vulnerabilities surfacing
each year, working out to be about 15 per day [11]. Services such as Shodan, a search
engine for vulnerable internet connected devices, can be used to take advantage of
these vulnerabilities. Furthermore, the vulnerabilities raise another concern, poor
security is allowing botnets like Mirai to scan the full IPv4 range in less than 6 min,
showing that any new exploit can be rapidly deployed. The more alarming concern is
the 3.7 s rate at which login requests occurred, added to the fact of poor security and
poorly configured devices it would be practically impossible at these rates to deploy
a patch in time to millions of devices [72], therefore we must tackle the problem at
its heart, that is by designing frameworks which prevent these factors before they
can cause harm. But we first must understand, in detail, why organisations fail to
take a proactive approach and end up relying on a reactive approach. The state of
the Internet of Things is still undecided but as can be seen from previous history
it is largely insecure. A literature review has been carried out to find which factors
have a direct impact on software and device sustainability and consumer safety. This
information will then be used as a basis for choosing proper case studies where,
hopefully, the underlying factors are found.

2 Definition of Safety-Critical

Before we begin the next sections of this work, it is critical that we define the term
“safety-critical,” as it is an important part of this study. The term is defined by TRAC
[103], as “components that are critical to the safety of equipment.” More importantly
they perform actions which protect against harmful hazards that can occur when a
function becomes faulty. TRAC specifically say the components “do not have to be
mains connected to be safety critical,” in the context of IoT this would apply.

3 Literature Review

The following literature survey will comprise of a detailed evaluation of essential
literature, which is suited to perform as a source of knowledge which can be used to
support key arguments and to underline the assumptions set out by this dissertation.
The following survey structure will review three key topics, which, when combined
form the basis of consumer safety in IoT.

i. Regulations and standards
ii. Liability and Transparency
iii. Software and Firmware updates
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The Internet of Things (IoT) which can also be called the Internet of Everything
or Industrial Internet, is an emerging paradigm which foresees global coverage of
internet connected devices. Gartner [40] expects to see 20 billion IoT devices by
2020 and it can therefore be viewed as one of the most important areas of future
technology and research. The design of advanced light-weight concepts that are
infused with information technology and sensor systems, allows the widespread
distribution of internet-connected devices. These devices have the capability for
applications such as, e-medicine, implants, early warning and detections systems,
smart metres, and population monitoring [37]. The innovation in sensor technology
and the incorporation of Low-power-wide-area-networks (LPWAN) have a dramatic
impact on the effect of consumer and business alike. For instance, the business sector
can benefit most from IoT, where the collection and analysis of Big Data allows for
better services, higher efficiency of production and a superior product [92].

There are many published surveys on IoT that focus on security and privacy.
Sicari et al. [95] conducted a comprehensive survey on the most researched topics of
IoT. They found seven categories: authentication and confidentiality, access control,
privacy, trust, enforcement, secure middleware and mobile security, where each of
these areas of study contain numerous ongoing projects which continue to focus on
security and privacy as being themain issue. The problem is that most of these studies
focus on the challenges and limitations that are a consequence of the restrictions of
IoT, for example: battery life and computing power. Whilst these topics are the
prevailing reason for security issues, the studies do not incorporate more modern
developing concerns. Zhou et al. [120] published a paper that highlighted new threats,
existing solutions, and future challenges of IoT. They analysed security issues from a
newperspective expressing thatmany previous research papers lack the incorporation
of diversity, interoperability, fragmentation and scalability into their solutions. They
conclude their work by exaggerating the point that IoT is not limited to the factors
they have provided and that new challenges will arise as technology advances.

A major issue of IoT is the dependency on a network connection. Each device
is essentially a gateway into an infrastructure, whether that be a smart home or a
business [44]. The heterogeneous network that IoT is, and the data it handles, provides
severe risks to security and privacy of its users. For instance, CloudPets (2017) a
smart teddy bear had been found to expose 750,000 children’s voice messages, the
teddy bear used the cloud to store intermit recordings between parent and child, and
the information had been leaked by a publicly facing network. The integration of
services in what was, originally, a mere toy has caused added complexity and shown
new areas in which security must be addressed. Moreover, the embedded nature of
IoT means many of the devices will be deep inside networks and therefore become
appealing targets for hackers. Kovacs [55] gives a real example of this phenomenon,
the researcher reported the use of handheld scanners that were used to gain entry to
a logistic shipping firm, highlighting the potentially lack of security. According to
Yuchen et al. [118] security and privacy is the largest issue for IoT devices. They
express concerns that it is not just personal information that is being stored but many
times the information collected, can be analysed tomonitor user activities. A paper by
Apthorpe et al. [6] discovered valuable information in the metadata that is generated
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from smart devices inside a smart home. They discovered that individuals could
use passive network monitoring techniques to analyse “traffic flows” and the more
devices inside a home the simpler the task. Their solution is to use traffic shaping as
a method of protecting smart home privacy, however, this raises an interesting point,
many investors of IoT devices rely on the one-time setup, and thus lack the knowledge
on applying solutions such as: network VPN tunnels, whitelisting IP addresses or
separating IoT devices from your main network. Interestingly Williams et al. [113]
conducted a survey and addressed the issue that many IoT devices are less useable
or familiar, and that we expect these devices to work without interaction, 42% of
the people surveyed expressed functionality as a leading factor and only 9% raised
concerns about a lack of privacy and security settings. It would therefore seem that
it is up to the developer to apply security and privacy by default in their design,
but security in constrained devices is one of the biggest challenges IoT is currently
facing.

Current security in IoT is lack at best and holds a plethora of security issues that
need to be addressed. Rose and Ramsey [86] presented their findings in Bluetooth
low energy locks, 12 out of 16 smart locks were found to be hackable from a quarter
of a mile away. They concluded “shoddy code” as the reason for the lack of security.
Lv et al. [60], part of the Keen Security Lab was able to take remote control of a Tesla
Model S from 12miles away, it was possible by tricking the car to join a hostileWi-Fi
connection. The researchers were able to take control of the entire system, from the
movement of the mirrors to the ABS system. Interestingly Tesla were able to provide
an over-the-air update (OTA) 24 h later. Another example presented by Thomson
[101]who reported on a story about a baby heartmonitor byOwlet. The babymonitor,
which contained a sensor that monitors a baby’s heartbeat, had been found to send
unencrypted datawirelessly to a nearby hub. The examiners also found that the device
had no capability of receiving a software patch as it had not been implemented at the
design stage. Researchers, Chen et al. [23], created a ghost traffic jam by attacking
the traffic control system in theUS, interestingly theDepartment of Transpiration had
been using the system for trials since 2016. Called I-SIG (Intelligent Traffic Signal
System), the systemworks by real-time tracking of vehicle trajectorywhich is fed into
an algorithm that controls the traffic light system. The key issue is that many future
Driver-less cars are expected to maintain a similar system, if after 2 years it is still
vulnerable after numerous tests then what are the potential implications to consumer
safety? Is there anything being done to mitigate these problems? It would seem once
again a proactive approach is being taken, instead by tackling the underlying issues,
identified as being the poor implementation of security, this situation is less likely
to occur. National Audit Office [71] investigated the WannaCry cyber-attack on the
NHS, it had been found thatmany of the systemswere running unsupported operating
systems (OS) and thus were incapable of receiving patches. The Owlet and Tesla
cases raise an interesting point, there is a clear problem of liability and transparency
between a large, reputable organisation like Tesla, and a small organisation such as
Owlet. Tesla were able to deploy a patch within 24 h of disclosure. Whereas Owlet
had been notified numerous times by the examiner without Owlet responding or
disclosing the vulnerability to its customers. This raises an interesting question, how
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do smaller, lesser known organisations take a proactive approach and notify their
customers of a critical vulnerability. Furthermore, without a central platform and
no dedicated security team, Owlet baby monitors could still be in use today, where
many owners could be unaware of the vulnerabilities their device has.

Some papers such as Zhou et al. [120] present modern topics and discuss the asso-
ciated threats and challenges, the paper however, lacks depth by not understanding
the underlying issues. For instance, there is no discussion of the TTN Fair Access
policy that limits the duty-cycle of devices, there ismention of IoTdevices being inca-
pable of receiving updates, but there is little analysis as to why and how the leading
industry platforms, SigFox and LoRaWAN are, in their current state, ineffective at
being able to apply safety before availability. There is mention of interoperability,
ubiquitous and diversity in the IoT environment but as stated above, the paper, once
again, does not focus on the underlying issues. For example, Cisco have announced
their intention to deploy infrastructure to get control over the Internet of Things [24,
25], but a detailed review of their history regarding security reveals a plethora of
vulnerabilities, the CVE website, a central hub for IT cybersecurity vulnerabilities,
lists over 40 vulnerabilities for the years 2017–2018 alone, with some scores being
the max 10.00 [30]. There is a further lack of discussion on the effect of error filled
software patches, something with which established companies such as, Microsoft,
have yet to develop a reliable patching system.

Abandoned IoT devices is a particularly growing concern. This is not to be
mistaken with abandonware, which will be reviewed at a later point in the liter-
ature review. Research has shown there are currently over 170 million exposed
internet connected devices [46]. Many of these devices can and will be used for unin-
tended purposes. Antonakakis et al. [4] investigated the Mirai botnet, where more
than 600,000 IoT and embedded devices were used to conduct one of the largest
Distributed Denial of Service attacks (DDoS). A particularly interesting discovery
highlighted Mirai’s “device composition was strongly influenced by… design deci-
sions of a handful of consumer electronics manufacturers,” many infected devices
were taken over by simple dictionary attacks which the dictionary contained various
simple passwords such as “Admin.” This raises an interesting question of liability.
These devices were essentially a perpetrator to the DDoS attack, and therefore who
becomes liable for the devices actions and for the protection of the consumer? If the
DDoS attack caused outages in hospitals or safety-critical infrastructure, then the
impact could have been fatal. It is quite apparent that there is a serious amount of
negligence to applying security into the design of an IoT device.

Many of the legal and contractual laws for product liability are not sufficient in
the IoT environment [111]. For instance, the current EU Product Liability Directive
85/374/EEC fails to see the failure of a service or software as a means of being liable
in the event where harm is caused to an individual. Leverett et al. [58] identified that
firmware on a physical device is covered while, “the server software on which an IoT
device resides could well count as a service.” With that said by incorporating safety-
critical services with the cloud, an OEM could potentially avoid liability altogether.
Many times, organisations, particularly in the EU, are fined for security failings under
the Data Protection Act 1998. For instance, TalkTalk (2016) had been given a record
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fine of £400,000 by not encrypting customers information.Despitemultiplewarnings
TalkTalk failed to apply security best practices. Interestingly this case shows a further
problem in product liability directives, TalkTalk were only criticised for their lack
of best practices and instead the actual leakage of information is where they broke
the law. The case law in UAW v Chao [105], found that courts do not see failure to
follow best practices as a violation and thus this would mean there is no incentive
for vendors to pursue secure-by-default. Internet-connected households also pose a
potential problem, currently consumers can be confident that if they purchase an oven
and it starts a fire a week later then they can bring forward a liability suit towards the
company. This process however, does not pertain its stature when being applied to
internet-connected homes [21]. Many IoT devices contain strict license agreements
which protect the company from litigation if the device were to malfunction and
cause fatalities [101]. If negligence, by not following security best practices, is not
a criminal offence, then organisations do not have an incentive to apply security by
design, if menial and simple license agreements allow organisations to defer them
from any liability then it would suggest that the lack of liability directive could have
an impact on maintaining the longevity of an IoT device.

To understand the problem of liability it is first beneficial to review literature
about transparency. Schneier [89] mentions to keep IoT in check we must evaluate
transparency and accountability, forwhen the security of the device ismost important.
Many of the organisations which develop IoT devices lack a background in security
and have not beenmoulded by cybersecurity best practices unlike other organisations
such as Microsoft, Linux or Apple. They therefore do not maintain platforms such as
“Patch Tuesdays” and it can be argued that they are not designed by those who have
the appropriate knowledge. For example, Miele Professional PG 8528 dishwasher
was found to have a web server directory traversal vulnerability. Because Miele is
an appliance vendor they do not have a structured process of reporting or disclosing
security vulnerabilities. Despite numerous tries at contacting the OEM, Jens Regel
of German Company Schneider-Wulf publicly disclosed the vulnerability in 2017.
Another, more alarming example is famously dubbed as Devil’s Ivy. Researchers
from Senrio [91] discovered a vulnerability in the M3004-V network camera, which
allowed attackers to hijack the feed. The flaw was deemed to not be Axis problem
but a flaw in the widely distributed open-source library software gSOAP. The library
managed by Genivia, with millions of downloads, has been patched, but this event
raises serious concerns. Developers must now first patch their vulnerable code and
issue new firmware updates to their devices, as seen previously in this literature,
some devices are not capable of receiving updates, or developers have discontinued
technical support, thus leaving millions of devices potentially vulnerable if this were
to happen to devices which were not capable of receiving updates.

The CVE standard, although designed to be global is mainly used in the United
States. It is a central hub where vulnerabilities are disclosed along with a CVSS
v2 score; the higher the score the more critical the vulnerability and provides a set
of mitigation techniques. IoT on the other hand, as of this writing, does not have
a central hub for vulnerability disclosures, instead the vulnerability disclosure for
devices such as the AuYou Wi-Fi Switch, are left as reviews on Amazon [20]. The



264 B. Newman and A. Al-Nemrat

clear lack of transparency is one of the prime reasons as to why there are so many
vulnerable devices. An example is shown by Toll [102], a researcher from North-
eastern University Global Resilience Institute, who used the Shodan search engine
to discover vulnerable devices. The researcher was able to find a PLC unit that had
been discontinued since 2014. Shodan revealed this product to be running an outdated
firmware version, interestingly sixth months prior to its discontinue date the OEM
issued six vulnerabilities, one allowed a remote attacker to put the device into “defect
mode” which can cause the device to shut down, this will have affected anything
that had been connected to the PLC unit. Not only was the device incapable of being
updated as it was never developedwith over-the-air updates, but themitigation set out
by the OEMwas to purchase the new version. One of the key points is that this device
had been deployed in an industrial factory, meaning it could be controlling critical
working equipment, it is not uncommon for internet connected devices to be the cause
of serious damage. In 2014, a German factory suffered massive physical damage, the
reason, determined byGerman researcherswas a badly configured internet connected
device which had not been secured properly [18].

A potential solution to the problem of mass vulnerable devices is to tackle one of
the root causes, outdated software. An interesting study by Wash et al. [110] investi-
gated automatic updates by conducting: interviews, surveys, and logging computer
data from numerousWindows users. It is mentioned early on that to improve security
many designers remove users from the software update equation and tend to only
give them information on what the update entails, specifically mentioning Microsoft
as an example. But the researchers domention the side effect is intrusiveness and that
in some situations humans should still be involved in some way or another. Cranor
[29] identifies the reasoning for keeping humans in the loop as: some updates will
inevitably fail and therefore some updates cannot be installed without user interac-
tion, updates can add or remove features and causing some users to avoid the update,
some updates depend on a reboot to proper configure the update, although now less
prevalent in the 21st Century it is still common in firmware updates. Wash et al.
[110] also expressed that users are the “weak link” in security, adding a point made
by Zurko [121] that “security only becomes apparent to end users when something
has already gone wrong.” The points made by the above researchers are interesting
as they give a strong argument for automatic updates, however the point made by
Cranor [29] “some updates will inevitably fail,” is interesting, a review of academic
literature regarding the effects of faulty software or firmware updates is missing. It
is simple to see that even reputable and established organisations such as Windows,
Apple and Tesla have yet to figure out a reliable way to deliver patches. For instance,
in early 2017 Microsoft automatically issued 16 patches, within weeks they released
statements exaggerating “known issues” [68, 69], some of these patches have caused
organisations the inability to use applications such asOutlook. June 2017 saw another
bad update for Internet Explorer which broke the use of printers [68, 69]. Although
some of these seem menial, they do directly affect organisations and question as to
whether smaller companies with less resources could provide software update func-
tionality in an industry which has yet to be fully understood. The problem is software
updates can also “brick” devices, causing a stop in functionality. Malwarebytes, AV
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protection software for desktop users, issued an update in January 2018. The update
turned user machines into unusable machines [63], interestingly, although they have
issued upwards of 20,000 web updates, they still caused huge destruction to many
of its users [24, 25], showing that there will inevitably be a problem. Being able
to update without limitations is a luxury which the IoT environment does not have
and therefore measures need to be in place before they can happen, especially when
numerous IoT devices are deployed in safety-critical areas.

Safety by providing consistent support to an IoT device is often a skipped research
topic. There is a growing concern that IoT abandonware could cause numerous
amounts of problems when organisations discontinue a product. As seen in 2014
when Nest, a subsidiary of Google, bought the company Revolv; a smart home start-
up which concentrated on hub gateways; connecting all devices to one single device.
In less than 2 years after acquisition, before the devices end-of-life, Nest disabled
the ability for consumers to use the hardware, leaving customers with a useless
product as of May 2016 [39]. Another case, the Rdio service, which used another
discontinued device, Aether Cone, had been purchased in 2015 by Pandora, within
the same year it was announced that the Rdio service will be stopped [81]. This raises
an interesting question, when an organisation stops supporting the hardware does it
mean the manufacture can disable the device without consequence, if organisations
are not going to be held liable for the maintenance of a smart device then there is
no incentive for an organisation to carry on maintaining the service or device until
it’s end-of-life. A problem therefore arises when an OEM discontinues support of
a safety-critical device such as, a pacemaker or the ABS system in a car, not only
is the safety of the consumer jeopardised but the vehicle in which the ABS system
resides is now no longer supported and could potentially have an underlying harmful
vulnerability that will never be fixed.

There is a lack of suggested solutions which address the issue of abandonware
and there is still much to be discussed. One solution is to force the OEM to put
aside a sum of money which can then be used to maintain the device until it’s end
of life, this ensures both security and safety is reassured, however, there are a few
issues to this approach and still requires a detailed analysis as to whether it is viable.
The most reliable path, suggested by Daley [31], is to force the OEM to make their
proprietary software open source, after it has been announced the discontinuation of
their service. The researcher cites Hadoop and Kafka as being prime examples of
success. However, there is a looming problem, the preliminary issue stems from the
fact that the software is, proprietary, enforcing an OEM to disclose their source code
would be incredibly difficult. Moreover, you must hope that someone picks up the
project, with over 400 IoT platforms, offering a variety of solutions, fragmentation
will be a restrictive hurdle when trying to apply regulation [115]. The process of
making software open source still does not solve the issue of applying updates,
especially when embedded IoT devices rely on firmware-over-the-air (FOTA) to
supply updates. Additionally, even though the source code is now open to everyone,
it still does not mean the OEM kept the repository or the server that provided the
network for FOTA updates. If the software is DRM dependable such as a connection
to the Cloud, then the shutdownwill not only cause a disease in technical support, but
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also any device thatwas connected is nowno longer useable, it is therefore impossible
for that type of service to exist with an open source model, unless those who took
over the project had the funds to continue the servers. Potentially a more threatening
situation is when the organisation still gives a service but stops technical support.
Pogoplug, a cloud service, stopped support in 2016, the service is still accessible,
but they no longer provide any support for bugs or vulnerabilities, however, within
months the service has become uncooperative [78].

There is rapid development to combine the technologies; Cloud computing and
IoT together. The cloud provides advantages such as: resource availability, cost effi-
ciency, scalability and industrial technology, which allow the infrastructure of IoT
to thrive [13]. The integration of the cloud can be seen to fill in the inefficiencies
of IoT. The merge of both technologies develops new characteristics which are seen
to be “storage over internet, service over internet, applications over internet, energy
efficiency and computationally capable” [99]. As seen in the paper by Stergiou et al.
[99], there is a plethora of papers which give a solution to the secure integration of
the cloud and IoT, but many times the concern of reliability is often overlooked. A
rising problem is the dominance in one cloud provider, according to Coles [28], an
industry analyst for Gartner, Amazon Web services hold 47.1% of the cloud market,
some safety-critical organisations such as Centrica (British Energy Supplier and the
UK’s Financial Conduct Authority depend on AWS for the continuing effective-
ness of their services [19]. The question therefore arises as to whether safety-critical
systems should be dependent on the cloud. A brief look at historywould show that the
cloud is far from secure or reliable. Tsidulko [104] reported on cloud outages which
reputable names had suffered: IBM, GitLab, Facebook, AWS, Microsoft Azure,
Microsoft Office 365 and even Apple iCloud. Interestingly many of these organi-
sations also provide some type of cloud service for IoT, Amazon provide AWS for
IoT and Microsoft have Azure for IoT. Other organisations in other industries are
also developing platforms for the automotive industry. The Volkswagen Group intro-
duced a plan to create a private cloud service that other car manufactures can use.
Although this approach is possible the automotive industry still maintains gaps in
automotive security and privacy [65]. The issue stems from allowing safety-critical
systems access to a network, this is unfortunately a very real threat to this day.
Researchers Palanca et al. [80] were able to disable services inside the car such as
the airbag, parking sensors or any safety system. The interesting point to this case is
that the attack is “indefensible,” it is incredibly difficult to resolve and not even an
OTA update will resolve the issue. Furthermore, these types of events show a lack
of standards and regulations, specifically for the automotive industry [62].

Other solutions such as Edge and Fog computing still rely on a single gateway,
just by reviewing the history we can infer that gateways are also prone to an absence
of security [97]. It can therefore be suggested; some organisations will not follow
security best practices and end up with another event like Mirai but on a larger
scale. It would seem there is a trend to these issues, the current IT ecosystem
contains respected and well-rehearsed security best practices, why are these not
being implemented into the IoT environment?
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The IT ecosystem is dependent on best practices which are provided and main-
tained by governing bodies such as ISO,HIPAA,NIST, SANSand even theEU.Many
of their security suggestions rely on the use of static perimeter network defences,
end-host defences and software patches. Whilst these are workable solutions for
IT security, they are however, “fundamentally ill-equipped to handle IoT deploy-
ments [119].” The very means of IoT, specifically scalability, heterogeneity, geolo-
cation, device and vendor constraints mean conventional approaches are not imple-
mentable [119]. For example, CYREN provides an Embedded Antivirus solution
which requires 35MB storage and <2MB available space for updates, whereas most
IoT devices use micro-controllers such as the 8051, MSP430 AMTEL series with
<2 MB RAM and 20 KB of FLASH storage. For this reason, many IoT devices
rely on other means as protection. A comprehensive study carried out by NIST
[77] reviewed the status of Cybersecurity Standardisation for IoT applications, in
their findings they found many of the core areas of cybersecurity; connected vehi-
cles, consumer IoT, health IoT, smart buildings and smart manufacturing, all lack
IT system security. Furthermore, commercial off the shelf software is becoming a
larger concern, specifically for e-medicine devices, the rise of error prone software
patching is starting to become apparent, for instance early 2018 saw a vulnerability
in Cisco’s Talos Natus XItek EEG medical products, namely the XItek EEG range
that included the EEG32U Electroencephalography brain recorder. Although NIST
state medical devices should require “timely security software patches” regulatory
bodies make it very difficult to determine whether a patch would invalidate a medical
device, also the multi-step process required to re-validate a device could affect the
time that an IoT device is left vulnerable [114]. If for instance a pacemaker required
an update to fix a software bug, but the update changed how features work on the
device, does thismean newvalidation is required? If true, thiswill also be a factor into
why many organisations are reluctant to maintain IoT devices. NIST [77] conclude
by stating more work needs to be done for Cyber Incident Management, where there
is a minimal amount of information for mitigation when software can no longer be
patched.

Being able to update software or firmware in an IoT device is an essential security
practice to fix security bugs [38]. Research conducted byChen et al. [22], investigated
firmware security across 42 device vendors. By analysing 23,035 firmware images
against 74 known exploits they were able to determine at least 89 products were
vulnerable to multiple exploits, interestingly 14 previously unknown vulnerabilities
were discovered, emphasising the need for software and firmware updates on IoT
devices. However, there are two major issues of firmware updates. The first is the
issue of reliability, there has been a plethora of research papers which focus on
applying trusted and authenticated solutions: Witkovski et al. [116], Huth et al. [47],
Schmidt et al. [88], Choi et al. [26], but there has been little work on maintaining the
longevity of IoT devices, it is not that there is a lack of security implementations but
“instead the wrong firmware might be uploaded, the transmission of the new image
failed, or the new firmware simply does not work as intended [87].” For instance, Fiat
Chrysler Automobiles issued an update which caused their Uconnect infotainment
system to go into an “endless loop of reboots,” [32] causing the system to become
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unusable. Audi in 2018 had to recall 1.2 million cars after a software update had
failed to fix a fuel pump issue [98]. It would seem there is a lack of testing which is
directly effecting the reliability of these updates, an IBM [48] study found 80% of
organisations do not test their IoTdevices for vulnerabilities and this fact ismade even
worse when McConnell [66] highlighted in his book “Code Complete,” the industry
average of errors is “about 15–50 per 1000 lines of delivered code,” with industries
such as, e-medicine and the automotive industry adopting IoT as a solution, it will
be only a matter of time before more fatalities occur due to an improperly configured
software update. In 2016 a Tesla driver was killed whilst using autopilot, the car’s
sensor system failed to distinguish a large 18-wheeled truck with the bright sky [59].
As we have seen from the multiple papers referenced above, many of the current
solutions to providing secure firmware updates rely on “software” level solutions
and do not “consider the different usage patterns that IoT devices have [117].” This
concern has been previously raised in the literature review where many of the events
suggest IT best practices are being used but are clearly not sufficient when applied to
IoT environments. The second, more alarming issue, is the inability for IoT devices
to receive updates [97].

Raza et al. [83] provides a comprehensive overview of Low-power-wide-area-
networks (LPWAN). The researchers express that over-the-air updates are a crucial
feature for LPWAN networks and that there is a lack of support for OTA updates.
They express the prominent LPWA technologies as being, SigFox and LoRaWAN.
As of 2017 SigFox covers 45 countries and the number of connected devices stands
at 2.5 million [96]. LoRaWAN on the other hand is expected to be 14% of the
27 billion installed bases by 2024, whilst cellular will account for 8% [61]. Raza
et al. [83] studied both technologies and discovered alarming properties. SigFox
does not provide the ability to update over-the-air, whilst LoRaWAN does. However,
LoRaWAN is limited by factors such as, payload length, data rate and the band it uses
for transmissions. Raza et al. [83] also expresses that there are few studies that have
been conducted to see whether LoRaWAN can carry out OTA updates. One issue of
LoRaWAN is the use of the unlicensed ISM band, which means devices must obey
duty cycle implementations. The European EU 863–870 MHz band is controlled by
the TTN Fair Access Policy, which applies a duty cycle of 1%. Adelantado et al.
[2] defines duty-cycle “as the maximum percentage of time during which an end-
device can occupy a channel,” these limitations, enacted by the TTN Fair Access
Policy are designed to remove the congestion of many devices being used on the
same ISM band. Jongboom and Stokking [53] are one of the few researchers to give
a working solution for providing firmware updates over LoRaWAN. They expressed
that a packet over LoRaWAN could take up to 9 h, using the fastest data rate. One
limiting factor to updating firmware is the problem of downtime whilst the device
is being updated, some users depend on devices such as pacemakers which require
100% uptime always, at the current data rate stated by the researchers LoRaWAN
would not be able to provide a reliable update and thus jeopardising the safety of
its consumers. Jongboom and Stokking [53] further state that LoRaWAN transmis-
sions are uplink orientated, meaning, their strength is transmitting packets and lack
resources in receiving. Furthermore, uplink orientated means the device must make
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an uplink transmission to receive a downlink transmission. And therefore, suggesting
that this is not a reliable or efficient method for OTA updates. To counter this issue,
they incorporatemulticasting,where a temporary session ismade inwhich the devices
share the same session keys. Commands are then sent down to the device that indi-
cate when they should start listening, in turn, this will allow all devices to receive
an update at the same time. Although they show a working practical solution there
are, however, issues. For instance, many devices will have different configurations
as to when they transmit data and thus the time chosen for the session to occur may
interfere with the devices intended uplink time, and for this reason, it would be nearly
impossible to achieve this feat in the real world. Also, studies by Bor and Roedig [17]
and Georgiou and Raza [41] have expressed that the current architectural structure of
LoRa networks are not sufficient in being able to scale with the current projections
of IoT. An Interesting point both studies discuss is the lack of academic attention
on LPWANs and their effectiveness on applying a scalable approach. One further
limiting factor that can be inferred from their work is that congestion will have a
direct effect on the reliability of data transmissions therefore an interesting point can
be supposed, do regulatory bodies need to also account for the freedom of industries
which have many limiting factors but are left to carry on installing the infrastructure,
what are the potential effects on safety if this is feature is not considered.

The literature review above has shown there is a real problem of enforcement
in IoT. Many organisations are seeing to take the approach of availability before
software sustainability and safety. The idea of best practices is a step in the right
direction, but it clearly is not forcing a much-needed cultural change, instead it
is merely offering a different path, one that incorporates more time and costs into
the production of an IoT platform or device; which, combined with the already low
costs of IoT devices, is not a sustainablemodel. Interestingly the criteria above can be
condensed into the term software sustainability.ManchesterUniversity [64] proposed
a framework similar to the concept of “dependability: a measure of a system’s avail-
ability, integrity, maintainability, reliability, and safety [10].” Instead Manchester
University [64] included: “Extensibility, interoperability, maintainability, portability,
reusability, scalability, usability and efficiency.” Although this model was designed
for the development of scientific and engineering software, it begs the question as
to whether this can be applied to the IoT environment, more specifically regulations
and standards.

4 Criteria for Case Studies

Prerequisites for the case studies which were based on the attributes set out by
Manchester University [64]:

1. The case had been reported on, which is defined as having a disclosure from the
OEM or a reputable news source

2. The case must have happened within several years prior to this study
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3. The case included, two or more of the following factors that were decided from
the literature review:

i. Known vulnerabilities, past or present
ii. Failed update
iii. Known leakage of user’s personal data [17]
iv. Includes a form of legal contractions
v. It is dependent on a service

4. The cases were unique to a specific industry

The researcher required that the cases had been within several years prior to this
study because it reflects current implications, rather than incorporating old standards
and regulations. We needed cases that have had an impact on consumer safety, or
software sustainability. For these types of cases,which are published quickly, it is best
to gather all outcomes otherwise key aspects are left out and the investigation can
have insufficiencies. The researcher required the case to be substantially reported
on, because all outcomes must be known, and as many cases have shown, more
information becomes apparent after its public disclosure.

5 Criteria for Statistical Analysis

Part of the discussion section will have statistical data, formed from analysing 29
IoT devices. The number of devices was affected by the criteria set out below:

i. Must have a clear start and end date
ii. Must have clear indication through the OEM or a reputable news source that the

product has been discontinued
iii. Start dates, if difficult to find, can be acquired from the initial sell date on the

Amazon store
iv. IoT devices must rely on a service
v. IoT device must have an application

Statistical analysis is the collection of data which can then be analysed where
inferences can then be made. Statistical analysis is often used to support hypothesis
or discussions on the topic [100]. The above criteria will be used to analyse potential
IoT devices which can be used in one of the sections of this study. It is important to
follow this criterion as it will support part of the discussion in the later sections of
this work. Overall 29 devices were deemed to match the criteria and the usage of a
graph will be used to determine the average time of support for an IoT device. To
find the relevant IoT devices I used Google which provided websites that listed IoT
devices.
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6 Case Studies

6.1 Case Study 1—Nest

Nest is a smart thermostat, designed to control the standard heating, ventilation and
HVAC system based on heuristics and learned behaviour from the activities of a
person. The thermostat includes a Wi-Fi module, supporting 802.11 b/g/n, which
can connect to the consumer’s household or business and interface with the Nest
Cloud. Interestingly the device is fitted with a ZigBee module that can be used to
communicate with other Nest devices within the household. The Nest thermostat
uses a Texas Instruments (TI) Sitara AM3703 microprocessor, 64MiB of SDRAM,
2Gibit of ECC NAND flash [7, 49]. The device will collect statistics, environmental
data which it then uses to “learn,” when the device connects to the cloud all data,
such as settings, logs and location data is uploaded. In 2016 The learning Thermostat
suffered a software bug that drained its battery and sent thousands of people’s homes
into the cold and caused users without the means to warm their houses up. The bug
had been found in late December but did not become apparent till early January
when users were woken up to a cold household [15]. Although all Nest owners are
now patched, originally, for some users, the fix required a daunting nine step manual
update. Some of the procedural steps needed the user to detach the pre-installed
device from the wall, charge the device for 15 min, reattach to the wall, pressing a
series of buttons and then charging the device for another hour.

6.2 Case Study 2—Lockstate Smart Locks

Hardware business Lockstate, had a disconcerting problem with their $469 LS6i
smart lock. An original error caused the device to become inoperable. Lockstate
were able to issue a FOTA update but the new update caused the lock to fail when
connecting to their web service making the lock unable to accept FOTA updates.
They offered two solutions to the problem. Option 1 resorted in the user dismantling
the lock and sending a portion of it back to LockState, so it could do their own update;
this was estimated to take 5–7 days. Option 2 LockState offered to replace the interior
of the lock but the user had to replace it themselves; this had the potential to take
14–18 days. Interestingly organisations such as, Airbnb, were mostly affected as it
caused some users the inability to enter their rooms. A statement by El Reg identified
their mistake as being a problem with version control, where they had mistakenly
sent the firmware for the 7i model to the 6i model.
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6.3 Case Study 3—Samsung Smart TV

Owners of the Samsung smart TV 2017 MU Series faced a disastrous firmware
update which caused their smart TV’s so much damage that they have to be repaired.
The update caused the televisions to get stuck on a single channel, volume cannot
be adjusted, and they were left inoperable. Interestingly many customers were left
without support for some time, to then only be told that theymust arrange a datewhere
an engineer of Samsung could come out and fix the issue. The question is therefore
do you install firmware updates and potentially leave your smart TV vulnerable or
allow updates and potentially end up with a inoperable device [75].

6.4 Case Study 4—Abbot Pacemakers

The FDA addressed a genuine issue with Abbot pacemakers in 2017. Abotts
pacemakers included the ability to include cardiac resynchronisation therapy and
providing pacing for slowor irregular heart rhythms. The devices are implanted under
the skin close to the heart area and contains electrical wiring that is inserted into the
heart,many times, these devices are used to treat heart failure. TheFDAprovided a list
of affected devices: Accent, Anthem, Accent MRI, Accent ST, Assurity, and Allure
and stated clearly the effected audience are patients, caregivers and those treating
the patients. Updating medical devices is a grey area as the update can change add
unintentional features which mean the function of the device is now different as to
when it was originally certified. The FDA approved a firmware update for 460,000
pacemakers, the devices contained vulnerable exploits and the connectivity of the
devices meant action must be taken. Although no update failed the FDA raised the
following concerns. The update would take 3 min to complete, during that time the
device will not function properly. Other concerns such as the ability to reload the
firmware if the update could not be completed, loss of programmed settings, loss of
diagnostic data or the complete loss of functionality, were highlighted and this case
is interesting as it emphasises not only the appropriate steps that had to be taken by
FDA but also the impacts of firmware updates on safety-critical devices [49].

6.5 Case Study 5—Environmental Systems Data Controller

An environmental Systems Corporation Data Controller had been found as having
a serious vulnerability, specifically in its ESC 8832 Version 3.02 and earlier. The
vulnerabilities cause an authentication bypass which allows unauthorised persons to
change the configuration settings, and unauthorised users are capable of bypassing
privilege management by brute forcing other users accounts; the ICS-CERT noted
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that these exploits can be conducted remotely and with relatively low skill. Interest-
ingly the ESC organisation notified ICS-CERT by saying, the Data Controller had
no available space to make added security patches; therefore, a firmware update is
no longer possible. The ESC replied by releasing an advisory which lists proper
compensating controls. While the mitigation controls can help, it is notified that they
are merely mitigation controls and will not completely stop peoples from exploiting
the vulnerabilities found [49].

7 Identifiable Problems

There is clear requirement for industries to find a solution for providing reliable
updates. This is emphasised with IoT devices because of their very nature. They are
potential gateways to a persons or business infrastructure, and thus they are given
an enormous amount of responsibility, which, as shown by the case studies, is not
being taken seriously. All five case studies provide a different perspective, but they
all equally prove the most simplistic actions, such as, poor version control, can cause
the device to become inoperable; sometimes this can be for weeks if not months. The
next section will find new challenges, that can be conveyed from the case studies
above and will discuss and give potential solutions to already existing problems.

7.1 Extensive Remediation Steps

The procedural steps which were required to manually fix the issue with the NEST
devices is extensive and difficult for those that may not have the knowledge to carry
out such a task. The problem is these steps are currently the only remediation solution
there is. This raises a further problem, some users may not have the technical knowl-
edge to carry out such a task, and in that case many devices may be left vulnerable
[46]. NIST [77] have interestingly highlighted the fact the need for more remediation
effort when devices are abandoned, unfortunately as seen, this is not a clear-cut task.
Some devices will inevitably be in geographical locations which are difficult to get
too, and with many devices, who will pay a technician to attend all the locations. The
underlying issue, it would seem, is the reliance on the user and the lack of motiva-
tion to properly discontinue products, therefore instead it must be implemented, and
forced upon theOEM to drop their devices properly. However, to “properly” abandon
a product is to brick the device which is no longer going to be supported, the concern
here is the fact many users will be dependent on its service, especially when it’s duty
effects the health and safety of the user. Therefore, a sudden abandonment of the
device is not feasible, as seen by the case with Revolv.
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Solution. The idea of open-source has been used as a remediation for when devices
are discontinued [7], but once again the idea has to be modelled to the IoT environ-
ment. Open-source works for when people want to actively take on the project, but
the very nature of IoT, where it is dependent on a connection to a service, ensures
this solution may not work, also it still does not help with updating the device and
keeping them secure. Once again, this solution relies on the user to apply technical
knowledge to maintain the device, with the update service being decommissioned
the next step is to apply manual software updates. It would seem for IoT, open source
would not be a sustainable system. Other solutions brick the device, for example,
onceAether Cone had been discontinued, they decided to essentially brick the device,
their daunting 10 step process still required technical knowledge from the user but
at least this stopped some devices from being targetable. If an OEM however, is in
control of a safety-critical system then bricking the device may cause harm to the
user. For example, the NHS, in the UK, relies onWindows XP on much of its safety-
critical equipment [73], it is therefore impossible to brick the service. TheWannaCry
ransomware effected the NHS but luckilyWindows had the capital and the resources
to distribute an update, even though they no longer support Windows XP. An addi-
tional question, as to who takes over, must also be addressed. IoT is unsecure by
nature, is a gateway to the network, it can be deployed in safety-critical areas, and it
generates large amounts of detailed data, therefore the question as to who takes over
the open-source project is vital. Many consumers do not have technical knowledge,
if a malicious attacker were to take on an open source project from a discontinued
IoT device many consumers would not be able to detect malicious software, let alone
where to look for it. Furthermore, it is not unknown that open source projects have
had disastrous impacts on society, Heartbleed, Shellshock and the Debian OpenSSL
fiasco are just a few examples, with IoT devices having less regulations than the
IT ecosystem then it could potentially be very easy for these situations to happen
again but for IoT, especially given the areas in which IoT devices are deployed and
how insecure they are. Therefore, we must define the underlying issue and target it
directly, with that in mind we can take insight from Ubuntu’s history.

In 2005 the Ubuntu Foundation was created, which aimed to ensure the continued
support for Ubuntu distributions. The foundation committed a first sum of 10 million
dollars and ever since, this has been used as means for a sustainable operating system
(OS) [106]. The problem stated by the literature review, the IoT environment is very
different to the IT ecosystem and therefore revisions must be made. The revision is
the money that can be set aside. Ubuntu is an established open source project, they
make their money through support services, contracting services, Canonical Store
and donations [8]. IoT devices on the other hand originate from Kickstarter projects
(refer to Fig. 1), the majority do not have enough backing to set aside a lump sum of
money for the continued support of their device. Furthermore, they tend to support
far less staff and thus their running costs and the amount that must be set aside will be
substantially less. With that in mind one solution could be to provide a government
scheme which aims to dedicate some costs to the continuation of the device. Some
factors which must be accounted for, the critical device must have already been
established for n = x amount of years, must be part of a critical infrastructure that
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Fig. 1 Showing the average time organisations give technical support for their IoT products

has a direct effect on the health and safety of its users, and finally the organisation
must prove they do not have the funds to set aside the full amount.

7.2 Liability and Transparency

We have previously spoken about Cisco, and its rich history of vulnerabilities and
insecure devices, interestingly this raises another concern for the future of IoT.
Currently large organisations such as Amazon and Windows are dominant in the
IoT environment, as they have the freedom, resources and establishment to push
their platforms to the masses. The problem is it seems many organisations are trying
to push their agenda to the market too quickly without understanding the conse-
quences. An example is the ACRN project, by the Linux Foundation, dedicated to
applying a hypervisor in the automotive industry. A hypervisor is the method of
separating a computer’s OS and applications from the hardware it is on, acting as
a middle-man by creating virtual machines [94]. ACRN have suggested that hyper-
visor can be used in scenarios which need to prioritise workloads which are related
to safety [93]. If the entertainment system and the safety-critical system, such as,
ECU or ABS, are using the same hypervisor then it would only take compromising
the infotainment system to compromise the entire system, as can also be seen by Lv
et al. [60]. Furthermore, the required safety between an infotainment system and a
safety-critical system is magnitudes different, for infotainment, security is put last,
and availability is preferred, while safety-critical systems, security and reliability is
put first. The question arises as to whether we can currently rely on software to do its
job, can we allow car manufactures to use only one OEM, such as, Intel, with their
poor history record, Meltdown and Spectre are prime examples of what can happen,
and this is only exaggerated when those same OEMs design the security for the
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safety-critical systems in the automotive industry or even medical equipment. Even-
tually devices and services stop receiving updates, Apple has already announced its
latest IOS 11 operating system cannot be supported on the IPhone 5 model, which
came out in late 2012. Apple have developed in car entertainment systems, such as,
CarPlay, if they halt security updates within 5 years for their mobile phones, which
are more popular than their car entertainment system, then we can safely assume they
will not support updates for their car entertainment system either. If these systems
become the weak security link in a car system, then they can be used as a target to
gain full control of other more critical systems.

The shortage of regulations for organisations is also reflective in the descriptions
of IoT legal contracts. Nest have a detailed legal items list. One section raises some
concerns, the Dispute and Arbitration prohibits customers from suing the company
or joining a class-action law suit, it would seem they are settled through arbitration
instead. According to Bilton [15] who had contacted Sonia K. Gill, a lawyer for
Civil Justice and Consumer Protection for public citizens noted that the terms of
services for IoT devices “are inherently unfair to consumers.” This is also empha-
sised by Diega and Walden [33] who deeply analysed the contractual terms of the
Nest product. Interestingly, the researchers express in some circumstances, because
the idea of “software” is not appropriately defined in the EU Liability Directive,
some outlines set by Nest are inherently “unenforceable,” and once third parties are
included, the complexity of the legal contracts become ever greater, highlighting the
potential future problems when multiple systems and services are incorporated in
automotive vehicles.

Solution. As shown by NIST [77] Connected Vehicle solutions are focusing on
applying cryptographic techniques and still need solutions for core areas, such as,
hardware assurance, network security, software assurance and system security engi-
neering. The problem is standards for cars have been designed based on physical
access to motor vehicles, but as cars becomemore connected through wireless proto-
cols, standards have not yet caught up. We end up with hackers capable of leveraging
the out of date standards, where for instance, car attackers are able to break into a
BMW without keys, by using a relay attack as the level of security and reliability
is not yet sufficient [34]. The level of required reliability should be the same as
that you would find in an aircraft, according to Jiang [52], a Boeing whitepaper, the
average age of an airframe and its software is supported for at minimum 20 years,
and at maximum 25 years. With that in mind we must learn from regulators such as
the Civil Aviation Authority (CVA) and the Federal Aviation Administration, which
have created one of the safest modes of transport seen today. One method is to adopt
the “revisionary mode” as seen in planes. This is a mode in which all critical systems
keep control throughmechanical linkages. Organisations are creating softwarewhich
will allow cars to communicate on a national scale, enhancing efficiencies in every
factor that effects transport, cars are eventually going to be completely driver-less,
we have seen the cloud unreliable, we have seen software unreliable, we must also
make the assumption that software will fail and in that case we can use insight from
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other industries which have had years of experience in the development of reliable
and redundant systems.

7.3 Support and Quality Assurance

Another common attribute between all case studies is the lack of support, or quality
assurance from the organisations. NEST was able to apply a software update which
drained their battery life, as seen many times in this study, IoT devices are continu-
ously put into safety-critical areas, if an established organisation, such as, Google,
can produce a disastrous software update which stops thermometers from working
then it would suggest a serious lack of quality assurance, or motivation to apply
reliable support for its user base. Furthermore, other case studies have shown the
potential side effects of updating firmware, restating the fact that firmware updates
can fail or can cause the device to malfunction. The incapability of receiving updates
is a much more alarming factor, the literature review has already shown the promi-
nent LPWAN protocols are not capable of applying updates to devices, and if this
situation were to happen with a widely distributed IoT device, then not only does
this add to the problem of abandonware, but it also allows the devices to be used
un unintended ways. Additionally removing the ability of OTA updates from a poor
software update could also spell just as much disaster as you are not able to update at
all, at least the former had been designed without the intention, but as we have seen
in other topics throughout this study it is difficult to determine whether Lockstate
included remediation steps that allowed them to physically update the device. These
are the types of topics which have yet to be discussed and a concrete solution is yet
to be determined. We can empathise the abundance of standards and regulations,
for instance, IEEE, Internet Engineering Task Force (IETF), 3GPP, LoRa Alliance,
SigFox and many more but the question arises as to why they are not being followed.

The data above was collected from 29 chosen IoT devices, using specific criteria,
that can be found in the methodology section. Using these statistics, we can develop
some understanding as towhy there is a lack of transparency, consistency, support and
insecurity in IoT devices. The data showed the support life-time for an IoT device,
on average, is 2 years. Furthermore, just under half of these devices originated from
crowd-funding projects, such as,Kickstarter or Indiegogo. The common link between
all crowd-funded projects is how they raise the money and the amount they raise.
Larger corporate organisations tend to maintain a steady income through various
means, however, crowd-funded projects are one off lump sums of money, and then
the income stops after the device has been distributed, they are therefore left with
two options; (1) produce a new version of the device and stop support for the old
one, (2) discontinue support altogether. Both options add to the current problem
of abandonware, but more importantly the data provides us with the understanding
that many, potentially, run out of resources to support the devices, a problem arises
concerning the consequences of ditching these devices, not just for the user but
for the organisation. Interestingly just under half of the devices reviewed were still
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purchasable across major platforms, such as, Amazon. This leads on to the point of
transparency. The biggest difficulty was determining the start and end date for the
IoT devices, only 2 out of the 29 devices had statements issued by the original vendor
stating their discontinuation of support for the device. Many of the websites were
still functional and the applications that connected the device to the user were also
still on the OS stores. It would seem the lack of motivation, support and security of
IoT devices could be narrowed down to the lack of consequences, and therefore the
lack of motivation to apply the industries best practices.

Solution. UL [108] issues a type quality mark, known as the Recognised Component
Mark among organisations. It is placed on components which have been tried and
tested using the criteria issued by UL. It is important however, to be aware of the
difference in regulations among the countries, US and the EU hold different values
and therefore providing a flexible dynamic framework for the certification of IoT
devices will have to be different for each country. However, the concept of certifi-
cation is to confirm a product is operationally safe and secure, features which are
globally similar.

Although a full review of UL certification and implementation methods are out
of scope for this work, it is important to understand which concepts can be taken
from UL certification, so it can be used for future related work. The biggest issue
is the cost of applying certification, some UL certifications cost upwards of $1500
[107] and therefore we must adapt this to IoT. As Fig. 1 has shown, cost is a direct
factor to a sustainable device, by committing adjustments which align with the lower
costs of IoT we will see improvements to quality assurance [35]. UL provide two
factors to a standard, they are either “Required” or “Optional,” with this in mind it
would be beneficial if this idea was transferred for use in the IoT environment. Some
IoT devices are not safety-critical and thus do not require as substantial certification,
for instance, a device which controls the amount of water a plant pertains does not
require the same security implementations or life-cycle information as a pacemaker
would.But howwould you distinguish between optional and required for IoTdevices.
Fortunately, risk management is an entire industry with years of experience, risk
registers have been incorporated into organisations as a means for cost reduction
and more notably, areas that are most vulnerable. Fortunately, NIST have recently
developed an IT cybersecurity framework which finds the potential risk level of a
product, software or service. By incorporating the reputation of UL certification and
NISTS experience in cybersecurity a number could be given to a device depending
on a strict set of factors, that number can then be used to define the severity or the
impact it could have on the health and safety of its user base. However, enforcement
is still an issue. It is noted by Leverett et al. [58] and Cohen and Rubin [27] that
governments lack the ability to retain experts in specific fields, and standards should
be left for those who are actively advancing the technology. With that in mind it is
crucial that standards are not designed by the government but instead they should be
enforcing laws when standards and best practices are not followed.
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8 Conclusion

To summarise, the Internet of Things has the potential to do remarkable things, the
digitalisation of society brings everything connected, business and people alike. It
is easy to understand why IoT is becoming an important future technology as stated
by Gartner [40]. The ability to connect anything and everything allows new areas
of analysis and research, that, once incorporated into businesses and households,
provides an enormous benefit to a wide range of industries. But as IoT grows and
society becomes more digitalised and connected, we must start to incorporate safety
with security. IoT has an immense amount of responsibility when it comes to the
safety of its users, the incorporation of IoT in e-medicine, automotive, smart cities
and smart homes will see a new development of security issues which have yet to
be addressed. Much of the studies have been on the security aspect of IoT and have
failed to discuss the importance of safety, reliability, and sustainability. Many IoT
devices are insecure by nature and hold a plethora of vulnerabilities, for example
Rios [84] discovered over 8000 vulnerabilities in third party libraries which had
been used in four models of pacemakers. Other events have seen the banning of
children’s toys, as they were capable of spying on children [79]. IoT devices are
typically seen as the weakest-link as they are embedded into infrastructure, and
their poor security makes them an attractive target. This is a very real concern, as
can be seen in 2018 when GitHub suffered a 1.3TB DDoS attack, the largest ever
recorded, and whilst organisations release devices which have failed to be applied
with industry standard best practices the DDoS attacks will only grow in size, it is
therefore only a matter of time until critical infrastructures, such as energy grids, are
targeted. Currently technology relies on a system which deploys monthly updates,
such as “Patch Tuesdays” by Microsoft, at present this system is insufficient for the
IoT environment. The limitations in IoT devices, such as the lack of battery life,
memory size and bandwidth, cause security to have a complex meaning when it
comes to developing security for IoT devices. Furthermore, the lack of regulations
means organisations do not suffer consequences when they suddenly discontinue
a product [39], or cause fatalities [59], and are therefore not motivated to apply
secure-by-default into the design of their IoT device. The problem stems from crowd-
funded projects, they receive a lump sum of money and can then no longer support
their product until its end-of-life. Whereas large established organisations such as
Ubuntu, have a wide range of enterprises which generate their income and apply it to
the sustainability of their product [8]. However, that does not necessarily mean the
established organisations are coherent in their ability to give security and safety.Cisco
have a webpage dedicated to their vulnerabilities, Intel, Arm, Microsoft, Amazon,
and Google have all been affected by Meltdown and Spectre, the biggest impact on
security and safety today. But the inability to reliably fix these issues is a matter that
has largely been unaddressed. Areas, such as, the automotive industry, are adopting
IoT into safety-critical areas, and the inability to provide support to digital devices
for long periods of time is only adding to the unprepared future of IoT. Organisations,
such as, Apple have already decided to discontinue support for the iPhone 5 model,
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only 5 years after its introduction, these same organisations are helping develop
systems inside vehicles. The average age of a vehicle in the US is 11.4 years, if
organisations can only support a system for 5 years before they are incapable then
the very notion of security and safety is forgotten. There is a plethora of bodies which
produce detailed standards and best practices for IoT, but they are not enforced and
lack in areas which effect the safety of the user. This study looked at highlight
the underlying issues of IoT, instead of creating another solution which focuses on
security. This study looks to develop and apply frameworks and strategies which
allow enforcement, such as certification, to protect the user and create a sustainable
future.

9 Future Work

Whilst this study provides solutions to existing and new challenges, the design of
a proof of concept is lacking. This study has highlighted the underlying reason for
the insecurity of IoT is the absence of enforcement, and currently the best method,
highlighted by this study, is to create certification standards such as, UL, in which
governments can then design lawswhich enforce the certification standards. The idea
of combining NIST cybersecurity framework and UL certification is suggested but it
will be a challenging task to complete. This study has shown the insufficiencies in the
current standards in being used with IoT, therefore future work would take the core
functions fromNIST [76] cybersecurity framework; identify, protect, detect, respond,
recover, and instead define them for IoT. For a first suggestion the core functions of
IoT are: Reliability, Maintainability and Portability, moreover, each function has a
set of sub-categories which must be defined: availability, fault tolerance, reusability,
testability, adaptability, install ability and replaceability. By defining these terms,
we can then use them as a basis for which we can apply “optional” or “required”
standards, so governments can easily understand which standards and best practices
to enforce and make laws on, but also so organisations have an idea on how much a
project will cost to support.
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