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Abstract. Scalability is a key feature of swarm robotics. Hence, mea-
suring performance depending on swarm size is important to check
the validity of the design. Performance diagrams have generic qualities
across many different application scenarios. We summarize these find-
ings and condense them in a practical performance analysis guide for
swarm robotics. We introduce three general classes of performance: lin-
ear increase, saturation, and increase/decrease. As the performance dia-
grams may contain rich information about underlying processes, such as
the degree of collaboration and chains of interference events in crowded
situations, we discuss options for quickly devising hypotheses about the
underlying robot behaviors. The validity of our performance analysis
guide is then made plausible in a number of simple examples based on
models and simulations.

1 Introduction

In a world of growing businesses and growing populations the question of how
to collaborate effectively and how to form efficient groups is important. Groups
that are too large can become inefficient as the cost needed by the group mem-
bers to coordinate their actions is greater than the benefits the collaboration
would bring. For example, rumor has it that Jeff Bezos limits group sizes by
the amount its members can eat (so-called ‘Two Pizza Rule’ [33]) and Brooks’s
law says “adding manpower to a late software project makes it later” [5]. A sci-
entific result is the Ringelmann effect describing the decreasing productivity of
individuals with increasing group size [38]. However, certain systems can exploit
collaboration at their advantage to obtain a superlinear increase in group perfor-
mance, that is, the work completed by the group is more than the sum of work
each individual could perform alone. Superlinear increase in group performance,
commonly found in swarm robotics [18,30], can also be found in collaborating
humans [41] and in distributed computing [9].

In engineered systems, collaboration between the units composing the system
can be constrained by limited shared resources, for example, memory access in
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Fig. 1. Schematic plot of qualitatively different swarm performance P (N) curves as a
function of the system size N . For large swarm sizes, the performance can (i) increase
linearly ( purple line, zone 1 ), (ii) saturate to a constant value ( blue line, zone 2 ),
or (iii) initially increase (zone 3 of green and orange lines) and subsequently decrease
(zone 4 of green and orange lines). In scalability analysis, constant increase cor-
responds to Gustafson’s law[10], saturation corresponds to Amdahl’s law [1], and
increase/decrease to Gunther’s universal scalability law (USL) [7]. We show two curves
of increase/decrease: The initial phase (zone 3 ) can show a slow (orange) or quick
(green) increase of performance. The final phase, zone 4 , can show high order (green)
or almost linear (orange) decrease. These visual cues can give insights about swarm
behavior and efficient design. (Colour figure online)

computing [17] or physical space in swarm robotics [12]. The system performance
varies when increasing system size or reducing resources. What is measured
by swarm performance P depends on the particular application and scenario.
Performance P is a quantification of a task-specific feature that is commonly
agreed as a valid measure of success. For example, in foraging that can be the
number of collected items [42], in emergent taxis the traveled distance of the
swarm’s barycenter [2], and in collective decision-making a combination of speed
and accuracy [44]. A scalable system is supposed to work efficiently for different
load and/or system size [29]. In swarm robotics, scalability of system size is
supposed to be a common feature of a properly engineered swarm system [13].
However, robots have a physical body and their movement can interfere with
others when the swarm density ρ = N/A (number of robots N per area A) is
high [11]. Increasing area A (shared resource) with swarm size N would keep the
density ρ constant. This experiment design would provide no information gain
about the system’s scalability. Instead, we are interested in measuring swarm
performance P over swarm density ρ. In most published experiments this, in
turn, means measuring swarm performance P over system size N because usually
the provided area A is constant.

A promising feature of robot swarms is that they can form an open system
(‘open swarms’ [35]) that have potential for scalability in real time. That is,
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robots can join and leave the swarm on demand depending on the needs of
the moment [27]. In this type of systems, the robots can collectively adapt to
varying swarm size (or densities) by updating their control parameters in real
time [34,45]. While in this work, we focus on swarms with constant size within an
experiment, to engineer open swarms, scalability analysis is crucial to quantify
the performance for varying system size. In fact, scalability analysis may reveal
that adding more units is counterproductive and can instruct the swarm engineer
on the most efficient way to react to real-time changes.

Our main motivation is that swarm performance curves P (N) seem to possess
generic qualities that appear across a wide collection of different swarm scenar-
ios [11,12,14]. Our contribution is to summarize these findings here and to turn
them into a practical performance analysis guide for swarm robotics. In this
work, our access to understanding swarms is almost exclusively phenomonemo-
logical and macroscopic. Still, such findings can help to understand essential
qualitative features of the swarm and to develop approaches to resolve perfor-
mance issues. Although deriving microscopic properties (e.g., required behaviors
of individual robots) from macroscopic properties is difficult [15,36], we are able
to indicate some micro-macro links that may even be generic. For example, we
show how the macroscopic performance curve can indicate whether small or big
groups of robots interact in beneficial or detrimental ways.

The term ‘guerrilla’ in the title is a tribute to Gunther [7] who wrote the
renowned book ‘Guerrilla Capacity Planning’ [8] to provide industry managers
with a simple framework for scalabilty planning. Here we let the term represent
the rather practical and phenomenological top-down approach to performance in
swarm robotics. We provide a practical guide to quickly understand fundamen-
tal scalability features of a studied swarm based on elementary insights about
superficial characteristics of their P (N) plot. We present three classes of perfor-
mance: linear increase, saturation, and increase/decrease. Then we focus on the
increase/decrease class and discuss how the performance curve can explain the
relationship between collaboration and interference among the robots.

2 Three General Classes of Performance System Behavior

Analyzing the system performance P (N) reveals three qualitatively different
types of scalability classes: linear increase, saturation, and increase/decrease.

2.1 Linear Increase

If we observe a sustained trend of performance P (N) ∝ N up to large values
of N (see purple line 1 in Fig. 1), then we observe the scalability class of linear
increase. This situation is advantageous as the swarm performance improves
by increasing the number of robots. However, we should note that it cannot be
considered the ideal case as also superlinear performance scaling can be observed
in swarm robotics and computing systems [9,12,28], as represented by the rapid
initial increase of the green curve in Fig. 1.
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2.2 Saturation

We observe the saturation class when performance P (N) approaches a maxi-
mum P (N → ∞) = s∗ (see blue curve 2 in Fig. 1). Therefore, such a regime
has no performance peak and is equivalent to Amdahl’s law [1] that was origi-
nally formulated to (pessimistically) describe the scalability of parallel comput-
ers. While Amdahl’s law has demonstrated its applicability [8], we argue that
this saturation scenario is rare in swarm robotics or ignores costs (see Sect. 2.4).
Physical interference due to high robot densities usually has a significant impact
on swarm performance causing an increase/decrease situation.

2.3 Increase/Decrease

In swarm robotics, the representative scalability class is increase/decrease,
characterized by increasing performance for small N , a performance peak at
a critical swarm size Nc, and decreasing performance for N > Nc. Perfor-
mance P (N < Nc) increases because robots efficiently collaborate or work in
parallel to perform the task, and performance P (N > Nc) decreases because
robots interfere with each other.

Gunther [7,9] proposed the universal scalability law (USL) to describe this
increase/decrease class as observed in computing. The USL is based on perfor-
mance improvements S ( speedup) for size N compared to the minimal sys-
tem N = 1. The USL is

S(N) =
P (N)
P (1)

=
N

1 + σ(N − 1) + κN(N − 1)
, (1)

with parameter σ describing the influence of contention (e.g., queues for shared
resources) and parameter κ describing a coherency delay (e.g., distributing and
synchronizing information). The USL properly parameterized by σ and κ covers
all scalability classes (linear increase, saturation, increase/decrease). In Fig. 1,
the green line (labeled USL) gives an example for increase/decrease. Another
model developed especially for the scalability analysis of robot swarms [11,12] is

P (N) = aN b exp(cN) , (2)

for constants a > 0, b > 0, and c < 0. The function can be understood as a
dichotomous pair of a term for potential of collaboration N b and a term for
interference exp(cN). In Fig. 1 the orange curve is an example of Eq. 2 in the
increase/decrease regime (labeled ‘swarm model’).

2.4 Ambiguous Definition of Swarm Performance

In Sect. 1 we argued that the definition of swarm performance P (N) for a particu-
lar application scenario should be an agreed measure of success. This introduces
degrees of subjectivity in our scalability analysis and ultimately ambiguity in
the observed results. While it seems unlikely that this can be resolved in a fully
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generic way, we propose four simple guidelines of how to improve the scalability
analysis and avoid common mistakes: constant task, full range, added cost, and
marginal performance.

Constant Task. In any performance analysis, but specifically for large system
size, when the performance curve keeps growing as P (N) ∝ N (see 1 in Fig. 1)
the swarm performance analysis practitioner should question if the performance
has been measured on the same task T for any swarm size N . By adapting the
task to large system sizes, the performance may not provide useful indications on
the system’s scalability as two parameters (size N and task T ) have been changed
at the same time. We recommend to consider as part of the task a constant
working area A ∈ T . Increasing size N of a swarm on constant area has the effect
of increasing swarm density ρ = N/A that can increase physical interference
among robots. Physical interference is expected to have a negative impact on the
swarm performance P (N). While we acknowledge that certain tasks—e.g., area
coverage or movement-free tasks based on communication only—could exploit
increased density to improve the performance [6], we argue that linear increase
is a pathological case that should be carefully interpreted. As the performance
should measure the completion of a fixed task, it could be expected that it would,
at least, saturate for large sizes N .

Full Range. Another typical shortcoming of performance analysis that could
explain the observation of a linear increase of performance for large sizes N , is a
short range of N . Considering only relatively small sizes of N would only show a
partial picture of the system behavior. An incomplete scalability analysis could
be harmful as the system behavior would not be fully understood. For example,
in cleaning or object collection tasks, it is reasonable that performance saturates
once dirty areas get scarce or most objects have been collected respectively.

Added Cost. A performance curve that does not decrease for large system
sizes (e.g., see 1 and 2 in Fig. 1 for linear increase and saturation respectively)
suggests minimal interference among robots. For example, in an area coverage
task, the more robots are added to the swarm, the better the area gets covered
until performance saturation is observed [31]. Scalability analysis should support
the system designer in making decisions about the optimal swarm size in terms
of its internal function and real-world factors, such as deployment cost. Hence,
system performance P (N) should be complemented with the cost of added units
to select the ‘best’ swarm size N . In the above coverage task, the saturation of
the performance puts the scalability analyst in a situation where performances
of large swarms cannot be distinguished anymore (e.g., P (N) ≈ P (103N)). We
would ignore effects of diminishing returns. In addition, one may be tempted to
add more robots to increase redundancy and robustness (redundancy-induced
robustness). The lack of any cost suggests that ‘bigger is better’ as there is no
immediate negative impact of interference and performance P increases mono-
tonically with N or interference may even be a feature [6].
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Fig. 2. Saturating performance P based on data from simulations of a coverage task
by Özdemir et al. [31] and the efficiency measure Pe = P (N) − C(N) for C(N) = N .

We recommend to always complement the study of swarm performance P (N)
with the study of cost C(N), to analyze the efficiency Pe(N) = P (N) − C(N),
that can be more informative than P (N) alone. Cost C(N) should account
for relevant aspects, such as economical (purchase of additional robots [40]) or
logistic costs (covering the environment with robots would reduce the space for
other type of activities). For example, this would allow to usefully balance the
cost and benefits of redundancy-induced robustness. In Fig. 2b, we show the
effect of adding a constant cost per unit C(N) = cN to the performance data of
an area coverage study by Özdemir et al. [31]. Pe shows a peak and can hence
indicate an optimal swarm size N . A designer seeking robustness can quantify
the decrease in efficiency and choose an appropriate swarm size N .

Marginal Performance. Another measure that can improve scalability analy-
sis is marginal performance Pm(N) = P (N) − P (N − 1) = dP (N)/dN . Consid-
ering added swarm performance per unit can help deciding the swarm size. The
measure Pm(N) can be particularly useful when compared with the marginal
cost Cm(N) = C(N) − C(N − 1) = dC(N)/dN . For Pm(N) < Cm(N), adding
robots to the system would decrease swarm performance. Similarly, one could
consider the mean individual performance I(N) = P (N)/N . In a more holistic
way, here the entire swarm shares the benefits of an added robot. Also in this
case, the measure I(N), that indicates the performance contribution of each
robot, can be compared with the individual cost Ic(N) = C(N)/N in order to
appropriately scale the system.

3 From Eye-Catchers to a Practical Performance Analysis

The performance class that is most frequently observed in swarm robotics
is increase/decrease. For this class we provide a guide how to quickly inter-
pret P (N) diagrams in terms of two features: shape of the curve for small system
sizes (see 3 in Fig. 1) and shape of the curve for large systems (see 4 in Fig. 1).
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3.1 Increase: Low- and High-Order Robot-Robot Collaboration

By looking at the initial phase of the performance curve ( 3 in Fig. 1, for N <
15), we can obtain indications of how much robot-robot collaboration is done to
complete the task (cf. other, more sophisticated efforts to derive group sizes from
macroscopic measurements [15]). A fast increase of P (N) for smallest values N ∈
{1, 2, 3}, shows that a small swarm is already sufficient to complete at least
parts of the task (e.g., green curve of Fig. 1). Instead, if the curve has a slow
start and P (N) shows a noticeable increase only for larger sizes N , it could
indicate the necessity of robot-robot collaboration in larger groups. In most
published swarm performance measurements, the initial increase of performance
is approximately linear (fast increase). However, there are rare cases of published
datasets showing a nonlinear (curved) and slow increase [26]. Note that we do
not focus on distinguishing between super- and sub-linear performance increases,
instead we try to understand when to expect linear and when nonlinear increases.

Both scalability functions described in Sect. 2.3 can represent both linear
(fast) and nonlinear (slow) increase despite their simplicity. Interestingly, sim-
ilar nonlinear system behaviors can be observed in models from not directly
related fields, such as PT2 lag elements in control theory, or residence times in
cascades of stirred-tank reactors (tanks in series) [23]. In both of these examples,
sequences of events or higher order time-delays introduce the observed nonlin-
earity. Comparable effects emerge in robot swarms when several robots need to
collaborate in order to perform the given task.

To support our above claims, we show two minimal examples in which observ-
ing the system performance curve for small system sizes ( 3 , N < 10, in Fig. 1)
allows us to estimate the necessary amount of robot-robot interactions to com-
plete the task. If robots can perform the task without any/much help from other
robots, then the initial increase is steep and close to linear. We say that robots
require low-order interactions. If robots require considerable help from other
robots to perform the task, then the initial performance remains low for small
sizes N and shows a curved (nonlinear) increase. We say that robots require
high-order interactions. We give evidence for this conjecture through two simple
analyses: a simple combinatorial argumentation and empirical observations in
simulations of an abstract system inspired by the stick pulling experiment [18].

Our combinatorial consideration is based on the precondition for robot-robot
collaboration: robots need to be in close proximity to each other. In swarm
robotics, robot movement is often based on random motion [3]. We consider
the probability that collaboration among k robots takes place as a stochastic
event proportional to k and swarm density ρ. Assuming a simple grid environ-
ment where collaboration takes place between neighboring robots, we can derive
the probability of having at least k robots in Moore neighborhoods, 3 × 3, of
m = 9 cells. Swarm density ρ indicates the (independent) probability of find-
ing a robot in a given cell. The probability Γk of finding at least k robots in a
Moore neighborhood of m = 9 cells corresponds to Γk =

∑m
i=k

(
m
i

)
ρi(1−ρ)(m−i).

In Fig. 3a we show Γk as a function of ρ for k ∈ {1, 2, 3, 4}. As expected, the
probability that at least k robots meet (our assumed precondition for collabo-
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Fig. 3. Combinatorial explanation of chances for collaboration, collaboration proba-
bility Γk for k ∈ {1, 2, 3, 4} and neighborhood size m = 9 (Moore neighborhood), and
swarm density ρ; two scenarios: (a) without and (b) with interference.

ration) decreases by increasing k. Looking at the initial part of the curves, for
low density values, larger groups have a slow (nonlinear) increase. Instead, small
groups (e.g., k = 1 or k = 2) have fast and almost linear increases. In Fig. 3a, we
assume no interference between robots, thus values larger than k still allow for
collaboration without overhead. In Fig. 3b, we assume that values larger than k
would prohibit collaboration. The shown probability is Γ ′

k =
(
m
k

)
ρk(1−ρ)(m−k).

Despite the different shapes for high densities (see Sect. 3.2), the initial part
shows the same type of shapes for varying k.
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Our second argumentation is based on a minimal simulation of a simplistic
abstract model inspired by the stick pulling scenario [18] that was published
before [12]. We have a swarm of N robots and M = 20 stick sites containing
one stick each. In the original experiment, collaboration of k = 2 robots is
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required to successfully pull a stick. We test four cases with k ∈ {1, 2, 3, 4},
where k = 1 means no collaboration required and k = 4 means four robots are
required to pull one stick. Robots commute randomly between stick sites and
their arrival times are modeled in time steps by commute times τ(N) = N + ξ
(i.e., linearly proportional to swarm size N) for a noise term ξ ∈ {0, 1, 2}. Robots
wait at stick sites for up to seven time steps until they give up and leave to a
randomly chosen stick site. All robots are initialized to the commute state with
uniformly distributed arrival times τ ∈ {0, 1, . . . , N −1}. We simulate for swarm
sizes N ∈ {1, 2, . . . , 120}, for 1,000 time steps each, with constant stick site
number M = 20, and 104 independent runs for each N . The results are shown
in Fig. 4. Figure 4a shows the normalized swarm performance P for required
collaboration k ∈ {1, 2, 3, 4}. Swarm performance P saturates because commute
times τ scale linearly with swarm size N . The nonlinear effect of higher-order
collaboration (k = 3 and k = 4) is obvious. Figure 4b shows the normalized
individual performance I = P/N . Again showing the nonlinear effect of higher-
order collaboration. In addition, we also see qualitative differences in the curves
for high swarm sizes N > 30: curved for k = 1 and almost linear for k = 4.

3.2 Decrease: Low- and High-Order Robot-Robot Interaction

Now we study the decrease in swarm performance for sizes N bigger than
the swarm size Nc for peak performance (see 4 in Fig. 1). In published
works reporting swarm performance diagrams, the plot of P (N) is sometimes
almost linear [16,25], sometimes slightly curved [22,43,47], and sometimes
curved [18,39,42] for sizes N > Nc. For example, Llenas et al. [25] report perfor-
mance plots with graceful linear degradation for a foraging scenario. The under-
lying simulation of Kilobots was simplified, temporarily small clusters formed
that dissolved quickly, and traffic lanes were formed. Hence, most collision avoid-
ance actions were of first order, that is, robots made a transition to collision
avoidance but didn’t trigger collision avoidance in others. This is similar to
traffic models were a linear decrease is assumed classically, for example in the
Lighthill–Whitham–Richards (LWR) model [24]. The traffic is assumed to be
fully synchronized with strong serial dependencies due to lanes (1-d space) for
system size Nc. If system size is further increased, traffic is disturbed, and for
too crowded systems traffic jams emerge. In swarm robotics the situation is more
complex as space is 2-d and it is unknown which robots in collision avoidance
state may trigger collision avoidance in others. Another analogy are transport
systems [19]. There viscosity or mechanical impedance increases nonlinearly with
concentration (cf. interference in Eq. 2). For robots that translates to number of
collision avoidance events.

Performance for big sizes (for N > 20 as seen at 4 in Fig. 1) is our focus
now. If robots interfering with each other manage to resolve the interference
(e.g., by avoidance movements) and return to productive mode quickly, then
the performance decrease is low and close to linear. We say they show low-
order interference. If robots by trying to resolve interference, trigger cascades of
collision avoidance, then the performance decrease is steep and curved. We say
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they show high-order interference. To support our claims, we present empirical
evidence based on a simulation. The main idea of this experiment is to control
the number of collision-avoidance events that a robot triggers. We define as
first order interference the collision avoidance that is triggered by two robots
moving close to each other. During collision avoidance (CA), the robots perform
a set of maneuvers to avoid physical collision. If during the execution of this
set of avoidance maneuvers, the robot triggers collision avoidance in another
robot, we define it as second order interference. Therefore, when these robots
performing collision avoidance (in state CA) trigger another jth robot, such event
corresponds to the jth order interference, for j robots involved. This is related
to the basic reproduction number R0 in the SIR epidemic model [20], where R0

defines the average number of infections that each infected individuals causes.
Considering R0 the average number of collision avoidance events that each robot
in state CA triggers, we have that with R0 = 1 each robot in state CA ‘infects’
one other robot with the ‘collision-avoidance disease.’ With R0 > 1 each robot
in state CA triggers more than one collision avoidance, its growth is exponential,
and the resulting decrease of performance P (N) is nonlinear.

We use the Webots simulation environment [46] for our experiments on inter-
ference. The simulated robot is the Thymio II [37] operating as a swarm of size N
in a 2m × 2m arena. We simulate a simple multi-robot navigation task. The
arena has four bases (north, south, east, west). The robots’ goal is to reach
the respective opposite base (e.g., from north to south and vice versa). At the
beginning of each run, we randomly distribute N = 1 to N = 55 robots (at
least 10 cm away from any wall) depending on the density we want to test. Then
the robots do a random walk until they touch a base. They use it then as their
reference base (from where they started) to set the vis-a-vis base as their next
target (north and south, east and west). When a robot detects an obstacle (wall
or robot) or its target base, it turns in a random direction for a random time,
and moves straight again. When they touch the target, the performance counter
is increased by one (and the new target is the opposite base). One run takes
6 simulated minutes. We do two types of simulation runs. In full avoidance runs,
all robots follow the standard procedure and remain in the arena at all times. In
first order avoidance runs, we limit the effect of interference by limiting collision
avoidance triggering cascades. A robot in state CA that triggers a transition to
CA in another robot is allowed to trigger only this one CA event but is then
temporarily removed with probability Premove for the time it stays in state CA.
Once its CA behavior has been completed, it is put back into the arena if the
spot is empty; otherwise it is put back later once the spot is empty. We vary
probability Premove ∈ {0.4, 0.7, 1} where Premove = 1 means the robot is always
removed once it has triggered CA in another robot.
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(n = 100 independent simulation runs per data point).

The results are shown in Fig. 5.1 The data is noisy despite the invested
computational effort of more than 200 CPU days. However, an overall trend can
be noticed. With Premove the swarm density is regulated by removing robots that
cannot be put back into the arena immediately because their spot is taken. Due to
a nontrivial and not further discussed interplay of effects, the setup Premove = 1
is better for N ≥ 47 but outperformed by setup Premove = 0.7 for 20 < N < 47.
Either robots are taken out too quickly slowing down their travels (Premove = 1,
N < 47) or robots are left in the system increasing collision avoidance events
(Premove = 0.7, N ≥ 47). Hence, independent of the task a robot swarm can
artificially be pushed from increase/decrease to the saturation scenario. This
is similar to other approaches where simulated physics (embodied systems not
allowing to pass through other bodies) was turned on/off [39,42]. Also behaviors
in ants mitigate overcrowded situations to avoid the increase/decrease situation
in favor of a saturation scenario [4,21,32]. With our experiment we investigated
the impact of interference on performance by modulating probability Premove.

4 Conclusion

We have given a practical guide to analyze swarm performance and scalability.
Swarm performance plots contain rich information about underlying processes.
The left part of the swarm performance plot can give hints on the level of collab-
oration necessary to solve the task. The right part of the plot is a reflection of
the ratio between marginal cost and performance. Performance scales in qualita-
tively different ways depending on the task. Tasks that are not limited by physical
interference (e.g., area coverage) show no collapse of performance for increased
swarm sizes. However, usually physical interference has a negative effect in a
variety of tasks. These qualitative differences vanish once we a apply a benefit-
cost analysis (BCA) that reveals the relation between the marginal performance

1 See http://doi.org/10.5281/zenodo.3947822 for videos, screenshot, and data.

http://doi.org/10.5281/zenodo.3947822
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(added swarm performance of an added robot) and the relative marginal cost.
An important design choice is about the redundancy-induced robustness. Swarm
robotics is commonly assumed to be robust to failures because of its high degree
of redundancy. In a homogeneous swarm, robots are exchangeable and serve as
mutual replacements. Through BCA and marginal cost/performance analysis the
designer can make a more informed choice to balance the efficiency-robustness
tradeoff. Following our practical (‘guerrilla’) performance analysis guide allows
swarm scalability analysts to quickly formulate hypotheses about the underlying
system behaviors and consequently to speedup the design and studies in swarm
robotics.
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4. Dussutour, A., Fourcassié, V., Helbing, D., Deneubourg, J.L.: Optimal traffic orga-
nization in ants under crowded conditions. Nature 428, 70–73 (2004)

5. Frederick, P., Brooks, J.: The Mythical Man-Month. Addison-Wesley, Boston
(1995)
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