
Marco Dorigo · Thomas Stützle ·
Maria J. Blesa · Christian Blum ·
Heiko Hamann · Mary Katherine Heinrich ·
Volker Strobel (Eds.)

LN
CS

 1
24

21

12th International Conference, ANTS 2020
Barcelona, Spain, October 26–28, 2020
Proceedings

Swarm Intelligence

Lecture Notes in Computer Science 12421

Founding Editors

Gerhard Goos
Karlsruhe Institute of Technology, Karlsruhe, Germany

Juris Hartmanis
Cornell University, Ithaca, NY, USA

Editorial Board Members

Elisa Bertino
Purdue University, West Lafayette, IN, USA

Wen Gao
Peking University, Beijing, China

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Gerhard Woeginger
RWTH Aachen, Aachen, Germany

Moti Yung
Columbia University, New York, NY, USA

https://orcid.org/0000-0001-9619-1558
https://orcid.org/0000-0001-8816-2693

More information about this series at http://www.springer.com/series/7407

http://www.springer.com/series/7407

Marco Dorigo • Thomas Stützle •

Maria J. Blesa • Christian Blum •

Heiko Hamann • Mary Katherine Heinrich •

Volker Strobel (Eds.)

Swarm Intelligence
12th International Conference, ANTS 2020
Barcelona, Spain, October 26–28, 2020
Proceedings

123

Editors
Marco Dorigo
Université Libre de Bruxelles
Brussels, Belgium

Thomas Stützle
Université Libre de Bruxelles
Brussels, Belgium

Maria J. Blesa
Universitat Politècnica de Catalunya
Barcelona, Spain

Christian Blum
Artificial Intelligence Research Institute
Bellaterra, Spain

Heiko Hamann
University of Lübeck
Lübeck, Germany

Mary Katherine Heinrich
Université Libre de Bruxelles
Brussels, Belgium

Volker Strobel
Université Libre de Bruxelles
Brussels, Belgium

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-030-60375-5 ISBN 978-3-030-60376-2 (eBook)
https://doi.org/10.1007/978-3-030-60376-2

LNCS Sublibrary: SL1 – Theoretical Computer Science and General Issues

© Springer Nature Switzerland AG 2020
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://orcid.org/0000-0002-3971-0507
https://orcid.org/0000-0002-5820-0473
https://orcid.org/0000-0001-8246-9926
https://orcid.org/0000-0002-1736-3559
https://orcid.org/0000-0002-2458-8289
https://orcid.org/0000-0002-1595-8487
https://orcid.org/0000-0003-2974-9827
https://doi.org/10.1007/978-3-030-60376-2

Preface

These proceedings contain the papers presented at the 12th International Conference on
Swarm Intelligence (ANTS 2020), which took place during October 26–28, 2020. The
conference would have been held at the Spanish National Research Council (CSIC),
Barcelona, Spain, but instead was held as an online conference due to the COVID-19
pandemic. The ANTS series started in 1998 with the First International Workshop on
Ant Colony Optimization (ANTS 1998). Since then ANTS, which is held bi-annually,
has gradually become an international forum for researchers in the wider field of swarm
intelligence. In 2004, this development was acknowledged by the inclusion of the term
“Swarm Intelligence” (next to “Ant Colony Optimization”) in the conference title.
Starting in 2010, the ANTS conference has been officially devoted to the field of swarm
intelligence as a whole, without any bias towards specific research directions. This is
reflected in the current title of the conference: “International Conference on Swarm
Intelligence.”

This volume contains 28 papers selected from 50 initial submissions. Of these, 20
were accepted as full-length papers, and 8 were accepted as short papers. This corre-
sponds to an overall acceptance rate of 56%. Also included in this volume are five
extended abstracts.

All contributions were presented online. Extended versions of the best papers pre-
sented at the conference will be published in a special issue of the journal Swarm
Intelligence.

We take this opportunity to thank the large number of people that were involved in
making this conference a success. We express our gratitude to the authors who con-
tributed their work, to the members of the international Program Committee, and to the
additional referees for their qualified and detailed reviews.

We hope the reader will find this volume useful both as a reference disseminating
current research in swarm intelligence and as a starting point for future work.

August 2020 Marco Dorigo
Thomas Stützle
Maria J. Blesa
Christian Blum
Heiko Hamann

Mary Katherine Heinrich
Volker Strobel

Organization

Organizing Committee

General Chairs

Marco Dorigo Université Libre de Bruxelles, Belgium
Thomas Stützle Université Libre de Bruxelles, Belgium

Local Organization and Publicity Chairs

Maria J. Blesa Universitat Politècnica de Catalunya, Spain
Christian Blum Artificial Intelligence Research Institute (IIIA-CSIC),

Spain

Technical Program Chairs

Christian Blum Artificial Intelligence Research Institute (IIIA-CSIC),
Spain

Heiko Hamann University of Lübeck, Germany

Publication Chair

Mary Katherine Heinrich Université Libre de Bruxelles, Belgium

Paper Submission Chair

Volker Strobel Université Libre de Bruxelles, Belgium

Program Committee

Ashraf Abdelbar Brandon University, Canada
Michael Allwright Université Libre de Bruxelles, Belgium
Martyn Amos Northumbria University, UK
Jacob Beal BBN Technologies, USA
Giovanni Beltrame Polytechnique Montréal, Canada
Spring Berman Arizona State University, USA
Tim Blackwell Goldsmiths, University of London, UK
Wei-Neng Chen South China University of Technology, China
Maurice Clerc Independent Consultant on Optimization, France
Leandro dos Santos Coelho Pontifícia Universidade Católica do Paraná, Brazil
Carlos Coello Coello CINVESTAV-IPN, Mexico
Oscar Cordon University of Granada, Spain
Guido De Croon Delft University of Technology, The Netherlands
Gianni Di Caro Carnegie Mellon University in Qatar, Qatar
Swagatam Das Indian Statistical Institute, India

Luca Di Gaspero University of Udine, Italy
Eliseo Ferrante Vrije Universiteit Amsterdam, The Netherlands
Ryusuke Fujisawa Kyushu Institute of Technology, Japan
Luca Maria Gambardella Istituto Dalle Molle di Studi sull’Intelligenza

Artificiale, Switzerland
José García-Nieto University of Málaga, Switzerland
Simon Garnier New Jersey Institute of Technology, USA
Morten Goodwin University of Agder, Norway
Roderich Gross The University of Sheffield, UK
Julia Handl The University of Manchester, UK
Yara Khaluf Ghent University, Belgium
Xiaodong Li RMIT University, Australia
Simone Ludwig North Dakota State University, USA
Manuel López-Ibáñez The University of Manchester, UK
Vittorio Maniezzo University of Bologna, Italy
Massimo Mastrangeli Delft University of Technology, The Netherlands
Bernd Meyer Monash University, Australia
Martin Middendorf University of Leipzig, Germany
Marco Montes de Oca Northeastern University, USA
Melanie Moses University of New Mexico, USA
Radhika Nagpal Harvard University, USA
Kazuhiro Ohkura Hiroshima University, Japan
Konstantinos Parsopoulos University of Ioannina, Greece
Orit Peleg University of Colorado Boulder, USA
Paola Pellegrini IFSTTAR, France
Carlo Pinciroli Worcester Polytechnic Institute, USA
Günther Raidl Vienna University of Technology, Austria
Andreagiovanni Reina The University of Sheffield, UK
Pawel Romanczuk Humboldt University of Berlin, Germany
Mike Rubenstein Northwestern University, USA
Roberto Santana University of the Basque Country, Spain
Thomas Schmickl University of Graz, Austria
Kevin Seppi Brigham Young University, USA
Dirk Sudholt The University of Sheffield, UK
Munehiro Takimoto Tokyo University of Science, Japan
Danesh Tarapore University of Southampton, UK
Guy Theraulaz Université Paul Sabatier, France
Dhananjay Thiruvady Deakin University, Australia
Vito Trianni Italian National Research Council, Italy
Elio Tuci University of Namur, Belgium
Ali Emre Turgut Middle East Technical University, Turkey
Gabriele Valentini Arizona State University, USA
Justin Werfel Harvard University, USA
Masahito Yamamoto Hokkaido University, Japan

viii Organization

Cheng-Hong Yang National Kaohsiung University of Science
and Technology, Taiwan

Zhi-Hui Zhan South China University of Technology, China

Additional Reviewers

Sameera Abar Loughborough University, UK
David Askay California Polytechnic State University, USA
Filippo Bistaffa Artificial Intelligence Research Institute (IIIA-CSIC),

Spain
Denis Boyer Universidad Nacional Autónoma de México, Mexico
Christian Leonardo

Camacho Villalón
Université Libre de Bruxelles, Belgium

Anders L. Christensen University of Southern Denmark, Denmark
Wilfried Elmenreich Alpen-Adria-Universität Klagenfurt, Austria
Di Liang South China University of Technology, China
Run-Dong Liu South China University of Technology, China
Louis Rosenberg Unanimous AI, USA
Melanie Schranz Lakeside Labs GmbH, Austria
Shu-Zi Zhou South China University of Technology, China

Organization ix

Contents

Full Papers

A Blockchain-Controlled Physical Robot Swarm Communicating
via an Ad-Hoc Network. 3

Alexandre Pacheco, Volker Strobel, and Marco Dorigo

A New Approach for Making Use of Negative Learning
in Ant Colony Optimization . 16

Teddy Nurcahyadi and Christian Blum

Ant Colony Optimization for Object-Oriented Unit Test Generation 29
Dan Bruce, Héctor D. Menéndez, Earl T. Barr, and David Clark

Branched Structure Formation in a Decentralized Flock
of Wheeled Robots . 42

Antoine Gaget, Jean-Marc Montanier, and René Doursat

Collective Decision Making in Swarm Robotics with Distributed Bayesian
Hypothesis Testing . 55

Qihao Shan and Sanaz Mostaghim

Constrained Scheduling of Step-Controlled Buffering Energy Resources
with Ant Colony Optimization . 68

Jörg Bremer and Sebastian Lehnhoff

Construction Task Allocation Through the Collective Perception
of a Dynamic Environment . 82

Yara Khaluf, Michael Allwright, Ilja Rausch, Pieter Simoens,
and Marco Dorigo

Control Parameter Importance and Sensitivity Analysis of the Multi-Guide
Particle Swarm Optimization Algorithm . 96

Timothy G. Carolus and Andries P. Engelbrecht

Dynamic Response Thresholds: Heterogeneous Ranges Allow
Specialization While Mitigating Convergence to Sink States 107

Annie S. Wu and H. David Mathias

Grey Wolf, Firefly and Bat Algorithms: Three Widespread Algorithms
that Do Not Contain Any Novelty. 121

Christian Leonardo Camacho Villalón, Thomas Stützle,
and Marco Dorigo

Guerrilla Performance Analysis for Robot Swarms: Degrees
of Collaboration and Chains of Interference Events 134

Heiko Hamann, Till Aust, and Andreagiovanni Reina

Heterogeneous Response Intensity Ranges and Response Probability
Improve Goal Achievement in Multi-agent Systems. 148

H. David Mathias, Annie S. Wu, and Laik Ruetten

HuGoS: A Multi-user Virtual Environment for Studying Human–Human
Swarm Intelligence . 161

Nicolas Coucke, Mary Katherine Heinrich, Axel Cleeremans,
and Marco Dorigo

Memory Induced Aggregation in Collective Foraging 176
Johannes Nauta, Pieter Simoens, and Yara Khaluf

Modeling Pathfinding for Swarm Robotics . 190
Sebastian Mai and Sanaz Mostaghim

Motion Dynamics of Foragers in Honey Bee Colonies. 203
Fernando Wario, Benjamin Wild, David Dormagen, Tim Landgraf,
and Vito Trianni

Multi-robot Coverage Using Self-organized Networks
for Central Coordination . 216

Aryo Jamshidpey, Weixu Zhu, Mostafa Wahby, Michael Allwright,
Mary Katherine Heinrich, and Marco Dorigo

Robot Distancing: Planar Construction with Lanes 229
Andrew Vardy

The Pi-puck Ecosystem: Hardware and Software Support for the e-puck
and e-puck2 . 243

Jacob M. Allen, Russell Joyce, Alan G. Millard, and Ian Gray

Zealots Attack and the Revenge of the Commons: Quality vs Quantity
in the Best-of-n. 256

Giulia De Masi, Judhi Prasetyo, Elio Tuci, and Eliseo Ferrante

Short Papers

AutoMoDe-Arlequin: Neural Networks as Behavioral Modules
for the Automatic Design of Probabilistic Finite-State Machines 271

Antoine Ligot, Ken Hasselmann, and Mauro Birattari

Coalition Formation Problem: A Group Dynamics Inspired
Swarming Method. 282

Mickaël Bettinelli, Michel Occello, and Damien Genthial

xii Contents

Collective Gradient Perception in a Flocking Robot Swarm 290
Tugay Alperen Karagüzel, Ali Emre Turgut, and Eliseo Ferrante

Fitting Gaussian Mixture Models Using Cooperative Particle
Swarm Optimization . 298

Heinrich Cilliers and Andries P. Engelbrecht

Formation Control of UAVs and Mobile Robots Using Self-organized
Communication Topologies . 306

Weixu Zhu, Michael Allwright, Mary Katherine Heinrich, Sinan Oğuz,
Anders Lyhne Christensen, and Marco Dorigo

Group-Size Regulation in Self-organized Aggregation in Robot Swarms 315
Ziya Firat, Eliseo Ferrante, Raina Zakir, Judhi Prasetyo, and Elio Tuci

On the Effects of Minimally Invasive Collision Avoidance
on an Emergent Behavior. 324

Chris Taylor, Alex Siebold, and Cameron Nowzari

Set-Based Particle Swarm Optimization for Portfolio Optimization 333
Kyle Erwin and Andries P. Engelbrecht

Extended Abstracts

A Probabilistic Bipartite Graph Model for Hub Based Swarm Solution
of the Best-of-N Problem . 343

Michael A. Goodrich and Puneet Jain

Ant Colony Optimization for K-Independent Average Traveling
Salesman Problem. 345

Yu Iwasaki and Koji Hasebe

Construction Coordinated by Stigmergic Blocks . 347
Yating Zheng, Michael Allwright, Weixu Zhu, Majd Kassawat,
Zhangang Han, and Marco Dorigo

Human-Swarm Teaming with Proximal Interactions. 349
Mohammad Divband Soorati, Dimitar Georgiev, Javad Ghofrani,
Danesh Tarapore, and Sarvapali Ramchurn

PSO Trajectory Planner for Smooth Differential Robot Velocities 351
Aldo Aguilar, Miguel Zea, and Luis A. Rivera

Author Index . 353

Contents xiii

Full Papers

A Blockchain-Controlled Physical Robot
Swarm Communicating via an Ad-Hoc

Network

Alexandre Pacheco , Volker Strobel(B) , and Marco Dorigo

IRIDIA, Université Libre de Bruxelles, Brussels, Belgium
{alexandre.melo.pacheco,vstrobel,mdorigo}@ulb.ac.be

Abstract. We present a robot swarm composed of Pi-puck robots that
maintain a blockchain network. The blockchain serves as security layer to
neutralize Byzantine robots (faulty, malfunctioning, or malicious robots).
In the context of this work, we implemented a framework for high-
throughput communication using a decentralized mobile ad-hoc network.
This work serves as a building block for secure real-world deployments
of robot swarms. Our results show that the use of a blockchain is feasible
and warranted in embodied robot swarm deployments.

1 Introduction

In real-world deployments, robot swarms will face a multitude of security chal-
lenges that are rarely taken into consideration in the swarm robotics field [7].
In particular, the presence of Byzantine robots, that is, malfunctioning, faulty,
or malicious robots, might lead to a discrepancy between the intended and the
actual behavior of a swarm. In a recent article, Strobel et al. [16] deliver a com-
prehensive proof-of-concept for a blockchain-based approach that greatly limits,
in a fully decentralized manner, the impact of Byzantine robots on the robot
swarm behavior.

The field of Blockchain Technology was initiated through the digital currency
Bitcoin [12], in which the blockchain serves as a decentralized ledger for storing
financial transactions. Later blockchain frameworks, such as Ethereum [2] (used
in this work), extended the capability of blockchains to be decentralized comput-
ing platforms. Put simply, in the Ethereum blockchain the network participants
can run programming code on the blockchain and agree on the outcome of the
programs, without the need for supervision or mutual trust. It is precisely these
decentralized programs that have proven to be useful in robot swarms, where a
blockchain can serve as a secure decentralized coordinator and database [14–17].
To the best of our knowledge, all existing multi-robot systems that use blockchain
and smart contracts technology have been demonstrated on simulated robots:
the present paper is the first successful implementation of this technology in a
physical robot swarm.

The replication of simulation results with physically embodied robots is cru-
cial to convince the robotics community of the feasibility of blockchain and smart
c© Springer Nature Switzerland AG 2020
M. Dorigo et al. (Eds.): ANTS 2020, LNCS 12421, pp. 3–15, 2020.
https://doi.org/10.1007/978-3-030-60376-2_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-60376-2_1&domain=pdf
http://orcid.org/0000-0001-5933-3553
http://orcid.org/0000-0003-2974-9827
http://orcid.org/0000-0002-3971-0507
https://doi.org/10.1007/978-3-030-60376-2_1

4 A. Pacheco et al.

contracts technology as a tool for solving security issues in robot swarms. How-
ever, moving from simulated to real robots is not straightforward and involves,
among other things, the choice of adequate robot platforms, communication pro-
tocols, and blockchain frameworks. Unfortunately, in previous works addressing
the topic, many questions whose answer would be of paramount importance for
a successful real robot implementation were not addressed. Examples are:

– which lightweight robot platform can provide the requirements for running a
blockchain framework?

– which blockchain consensus protocols are appropriate for robot swarms?
– which communication infrastructure should be used?

In this work we give a first answer to the above questions by presenting an
experimental setup consisting of Pi-puck robots [10] which maintain a proof-
of-authority blockchain network and communicate through a mobile ad-hoc net-
work. The chosen robot platform—the Pi-puck—is a reasonable choice due to the
low cost and easy availability of the Pi-pucks, and to their support for Linux that
allows the easy installation of the blockchain software—Ethereum in our case.
The choice of the proof-of-authority protocol is motivated by its low computa-
tional cost that allows for running it efficiently on the Pi-puck processor. Finally,
we chose to implement a mobile ad-hoc network as communication infrastruc-
ture. This choice is consistent both with the standard swarm robotics require-
ments of decentralized and local/peer-to-peer communication (see e.g., [1,4,6]),
and with the throughput required for blockchain synchronization.

The field of blockchain-based swarm robotics was set out in 2016 by [3]; the
paper describes several use cases for blockchain-controlled robot swarms. Since
2018 there has been a number of simulation results for blockchain applications
in robots such as: the achievement of consensus in robot swarms in the presence
of Byzantine robots [15]; the improvement of communications and performance
in industrial robots [5]; the formation of coalitions in cyber-physical systems
[9]; the management of collaboration in heterogeneous multirobot systems [14];
the secure collection of data from robots [20]; and path planning in multi-robot
systems [11]. Hence, research addressing the application of blockchain technology
to robotics is an active research area and, as such, there is a high demand for
platforms to run blockchain experiments on physical robots.

The remainder of this paper is structured as follows. Section 2 describes the
robot hardware and control routines, the used blockchain software, and the setup
of the experiments. Section 3 presents the experimental results. Finally, Sect. 4
concludes the paper and indicates directions for future research.

2 Methods

2.1 Experimental Scenario

In this paper, we consider a scenario where a robot swarm is given the task
to determine the fraction of white tiles in a checkerboard environment (Fig. 1).

A Blockchain-Controlled Physical Robot Swarm 5

The difficulty of this task can be increased by increasing the number of Byzan-
tine robots that distribute false information, or by decreasing the size of the
swarm, which leads to lower coverage of the map and lower network connectiv-
ity. Our goal is to study how a blockchain—and its relevant components, such
as smart contracts, cryptotokens and protocols for consensus—can be used to
counteract the negative influence of Byzantine robots when a swarm is trying to
achieve swarm wide consensus. As this is the first implementation of a physical
robot swarm that uses blockchain and smart contracts technology, we provide
guidelines for the establishment of such a system, and insights into some details
of its operation.

Fig. 1. The Pi-puck robots move in an 1 × 1 m2 arena covered by 68 black and 32 white
tiles. The robots’ goal is to determine the fraction of white tiles by using their ground
sensors. A part of the swarm act as Byzantine robots that disseminate wrong estimates.
Using their LEDs, the robots communicate events—such as the receipt of a new block
or the receipt of the consensus signal—to the experimenter for visual analysis.

The Robot Platform. The experiments are conducted using a swarm of up to
N = 10 Pi-puck robots [10]. Pi-pucks are e-puck robots extended by a Rasp-
berry Pi Zero W single board computer. Compared to the e-puck robot, the
extension board improves the robots’ communication capabilities and computa-
tional power. The Raspberry Pi Zero W has a 1 GHz processor with 512 MB of
RAM. Hence, the use of the Raspberry Pi Zero W extension board allows for the
implementation of more complex algorithms compared to previous e-puck robot
versions.

The Arena. The arena has a dimension of 1 × 1 m2. Its plywood floor is covered
with 68 black and 32 white square tiles; therefore, the fraction of white tiles is
0.32. Each tile is 10 × 10 cm2. The arena is bounded on each side by a wooden
barrier which can be detected by the robots’ obstacle avoidance sensors.

6 A. Pacheco et al.

2.2 Control Routines

In the following, a high-level overview of the software that is executed on each
robot is given. A more in-depth description is given in a separate technical
report [13], in which we provide a detailed description of all the steps needed to
set up and replicate our experiments using the Pi-puck robot.

The control for each robot is composed of five high-level routines that are
executed in parallel at different frequencies:

– Random-walk with obstacle avoidance (frequency: 10 Hz): at each step the
robot can perform: a) straight movement, b) rotation on site, or c) obstacle
avoidance. If the robot’s infrared (IR) sensors detect an obstacle, phase c) is
selected in order to prevent collisions; otherwise, the robot alternates between
the random-walk phases a) and b); the duration of each phase is sampled from
an exponential distribution (we use the same parameters as [19]).

– Estimation (frequency: 1 Hz): the robots calculate a local estimate of the
fraction of white tiles in the environment by dividing the number of white
ground sensor readings by the total number of readings; to reduce noise, the
sensors sample the floor at a rate 20 Hz and the average of these samples is
used in this routine.

– Peering (frequency: 3 Hz): each robot uses its range-and-bearing IR actua-
tors/sensors to simultaneously transmit its ID, and listen for other IDs within
a fixed range (approx. 10 cm). After an ID is received, the robot executes a
TCP request to obtain the Enode—a unique identifier of a blockchain node,
used for the peering calls. After 2 s without receiving close range IR messages,
a peer is removed from the blockchain and all information regarding that peer
is deleted.

– Local estimate dissemination (frequency: 1
45 Hz): Every 45 s, a robot sends

its local estimate to the smart contract where local estimates are stored,
aggregated, and refined to generate a shared estimate.

– Block sealing (frequency: varying—see below): On each robot, an instance
of the Ethereum software geth is executed during the entire course of the
experiment. In order to create new blocks on the blockchain, each robot acts
as a sealer in this background process.

With the exception of the Ethereum client, which is implemented in the Go
language [2], we implemented each control routine in Python1; in order to run the
routines in parallel and guarantee the specified frequencies, the multi-threading
package is used.

2.3 Blockchain Technology

For fundamentals of blockchain technology, we refer the reader to [16, Section 2]
and to the original papers on Bitcoin [12] and Ethereum [2]. Here, we limit our-
selves to the description of those aspects of blockchain technology that are most
relevant for our setup—namely, the used proof-of-authority consensus protocol,
as well as the concepts of smart contract and cryptotoken.
1 Project repository: https://github.com/teksander/geth-pi-pucks.

https://github.com/teksander/geth-pi-pucks

A Blockchain-Controlled Physical Robot Swarm 7

Consensus Protocol. The decentralized nature of blockchains can result in
conflicting situations (e.g., a different order of transactions in different versions
of the blockchain). To resolve these conflicts and agree on a common order
of transactions, a consensus protocol is needed. In this work, we use proof-of-
authority (see [18] for the full specifications), an alternative to the original and
most commonly used blockchain consensus protocol known as proof-of-work [12].
In contrast to the computationally expensive proof-of-work, proof-of-authority
requires a majority of preselected nodes (i.e., in this work, a majority of robots)
to agree on the state of the blockchain database. In the proof-of-authority proto-
col there are two kinds of blockchain nodes: normal blockchain nodes and sealer
nodes, which are analogous to miners in proof-of-work and that are able to create
new blocks by signing them. For each block, there is a preferred sealer, chosen
in a round-robin fashion. If the preferred sealer signs the block, it is called an
in-turn signature, if another sealer signs it, it is called an out-of-turn signature.
The sealers can sign new blocks anytime they want, but in order for a new block
to be valid:

– the timestamp of the new block must be at least t = 15 s after the previous
block (also known as the block time);

– a sealer can only sign one block in �N
2 � + 1 blocks (to guarantee majority

voting);
– a sealer must create a correct signature using its private key and sign the

hash of the current block.

As soon as a sealer has signed a block, it disseminates the block in the network.
The other nodes verify the signature and the validity of the block. The nodes
agree on the strongest chain, that is the chain with the highest difficulty. The
difficulty for in-turn signature is 2, and the one for out-of-turn signature is 1.

The major advantage of proof-of-authority is that it does not depend on
solving computationally complex mathematical puzzles (as the standard proof-
of-work-based consensus protocol does). Even though in this work our swarms
contain a fixed number of robots (from 5 to 10), proof-of-authority also works
with swarms with varying number of robots by either keeping a core of trusted
sealers or adding and removing sealers based on majority vote.

Blockchain-Based Smart Contract. A blockchain-based smart contract is a
piece of programming code that is stored on the blockchain. The smart contract
encapsulates functions and variables, and participants of the blockchain network
are able to alter its state by sending transactions to its functions. Blockchains
additionally store the amount of “cryptotokens”—that is, immutable shares of
a digital currency—that each participant possesses (see below).

The smart contract used in our research has four functions with which the
robots can interact:

1. sendEstimate(localEstimate): this function enables the robots to store
their local estimates on the blockchain. In order to store an estimate, robots

8 A. Pacheco et al.

have to send 40 ether. Ether is a scarce cryptotoken, and the fact that sending
transactions requires ether effectively limits the number of transactions a
robot can send;

2. askForUBI(): by sending a transaction to this function, robots can make a
request for the universal basic income (see below for a description);

3. getEstimate(): this function returns the aggregated estimate of the fraction
of white tiles, as determined by the blockchain-based smart contract;

4. hasConverged(): this function checks if the smart contract has reached con-
vergence on an estimate (i.e., it determines if the absolute difference between
the previous and the current value of the shared estimate is smaller than
τ = 0.01), in which case it returns ‘true’;

5. registerRobot() this function is called by each robot at least once, and is
required before a robot is allowed to use any other function of the smart
contract. This function allows using the same smart contract independently
of the number of robots N .

The flow of information in the smart contract works as follows. After a robot
registers itself, it can begin sending transactions that contain local estimates.
Sent local estimates are stored in a list of proposals in the smart contract. As
soon as N proposals are received, the smart contract performs a simple out-
lier detection, where all proposals with an absolute difference to the current
blockchain estimate larger than δ = 0.2 are discarded (except for the very first
N proposals that are all accepted). The accepted proposals are used to update
the estimate in the blockchain, which is the arithmetic mean of all accepted pro-
posals. All robots that sent an accepted proposal get back their 40 ether plus a
bonus consisting of a share of the non-repaid ethers of the discarded proposals.

Cryptotokens. In order to store their local estimate in the blockchain, robots
send sendEstimate transactions accompanied by a fixed amount of cryptotokens.
Cryptotokens are an immutable and scarce asset which is stored on a blockchain
ledger. A digital asset with these properties is a key component to limiting the
number of transactions robots can send, and thus prevent Sybil attacks. Robots
can obtain tokens in two ways:

– by being reimbursed when sending accepted proposals (that is, by sending
useful information);

– by receiving the universal basic income (UBI).

The UBI is an economy mechanism we established within the smart contract to
allow the fair distribution of tokens between the robots. It functions as follows:
at block numbers which are a power of 2 (i.e., in the blocks 2, 4, 8, · · ·), the smart
contract grants 20 ether to each robot in the swarm. This exponential scheme
makes sure that in the beginning of an experiment every robot receives enough
ether to be able to send its local estimate; however, over time sending useful
information becomes the main means to receive additional ethers and to be able
to continue participating in the experiment. Using this scheme, we can take
advantage of the immutability and scarcity of blockchain cryptotokens to filter
Byzantine robots out and limit their influence on the smart contract estimate.

A Blockchain-Controlled Physical Robot Swarm 9

2.4 Ad-Hoc Network

In order to exploit the Wi-Fi communication abilities of the Raspberry Pi Zero W
without compromising the decentralization of the robot swarm, we establish a
Mobile Ad-hoc Mesh Network using the b.a.t.m.a.n. routing protocol [8]. The
advantage of such a network is that it does not rely on any central hubs (such as
routers or master servers) nor does it assume global connectivity. Instead, each
node participates in routing by forwarding data of other nodes.

In our experiments, the communication range of the ad-hoc network is addi-
tionally constrained by the range-and-bearing (RAB) board of the robots. We
do this to enforce the swarm robotics core assumption of local communication,
or, otherwise, the small arena size would lead to global communication. By tun-
ing the power allocated to the RAB board it is possible to physically limit the
communication range to approximately 5 cm. Robots broadcast the last 8 bits
of their IP address in this fashion, and once an exchange has taken place, the
connection to this IP address is established via the Ad-hoc network. Then, the
robots exchange their enodes (an enode is a unique identifier for each Ethereum
node) using TCP, in order to connect their Ethereum nodes and begin synchro-
nization of the blockchain. From the moment a robot stops receiving signals from
the RAB of a blockchain peer, a 2-s grace period is started after which the peer
is removed.

2.5 Experiment Setup and Evaluation

Initialization and Termination. At the start of each experimental run, the
robots are randomly distributed in the arena by the experimenter. Then, all
robots connect to the Ethereum process of a bootstrap node (a desktop PC)
and wait for a signal to start executing the parallel routines of Sect. 2.2. The
experimenter sends the start signal from the bootstrap node, which consists of
broadcasting a transaction containing the smart contract. An experimental run
is stopped after all robots have received ‘true’ when querying hasConverged(),
at which time they turn on their green LEDs.

Independent Variables. Each experiment may differ in (i) the total number
of robots in the swarm; or (ii) the number of Byzantine robots.

(i) Swarm Size: Changing the swarm size allows for analyzing our platform
in terms of two key features of robot swarms: scalability, i.e., the ability of
the system to maintain or improve performance as the swarm size increases;
and partition-tolerance, i.e., the ability of the system to reach consensus when
there is reduced network connectivity (in this case, induced by a more sparse
distribution of robots in the arena). As mentioned before, the dynamic addition
and removal of block sealers is a feature in proof-of-authority; however, it has not
been exploited in this work, and instead, all sealers are included on the genesis
block in each experiment.

10 A. Pacheco et al.

(ii) Byzantine Robots: To study the performance of our approach for increas-
ing numbers of Byzantine robots, we model a Byzantine robot as a robot that
disables its ground sensor, keeps a local estimate ρ̂ = 0.0, and sends this faulty
estimate to the smart contract. This failure mode is well-motivated by our tests
with physical robots and can occur in several situations: (1) a robot gets stuck
on a tile during the course of the experiments, for example, due to a broken
motor; (2) a robot’s ground sensor does not have the correct distance from the
floor, for example, due to a loose screw; (3) the communication to the ground
sensor is broken, for example, due to a crash of the I2C communication protocol;
or (4) the robot is controlled by a malicious entity that tries to work against the
goal of the swarm. Byzantine robots are selected randomly by the experimenter
at the start of the experiment.

Table 1. Overview of the experiments and their parameters

No. Experiment name Swarm size # Byzantine robots

1 Increasing Byzantines 10 0, 1, 2, 3, 4

2 Increasing swarm size (no Byzantine robots) 5, 6, 7, 8, 9, 10 0

3 Increasing swarm size (20% Byzantine robots) 5, 10 20%

Metrics. The performance of our approach is evaluated by comparing the error
between the actual fraction ρ of black tiles to the blockchain estimate of a ran-
domly selected robot at the end of each run; and the time required for all robots
to receive the consensus signal. In addition, we record the size of the blockchain in
MB and we use it to draw conclusions regarding the scalability of the approach.

3 Results

In order to evaluate the presented approach with physical robots, we conduct
three experiments (Table 1). For each setting of each experiment we conduct
10 repetitions.

3.1 Experiment 1: Increasing Byzantines

The first experiment studies the impact of Byzantine robots in a swarm of fixed
size N = 10. The number of Byzantines is increased from 0 to 5. Our hypothesis
is that the approach has the lowest absolute error when no Byzantines are part
of the swarm. We expect the Byzantines to have little effect up to a crucial point
where they have a strong adverse effect on the estimate.

A Blockchain-Controlled Physical Robot Swarm 11

Results and Short Discussion. Figure 2 shows the results obtained. The Byzan-
tine robots have a small impact when their number is between 0 and 3 (median
of absolute error <5%) because their estimates are rejected by the smart con-
tract and therefore they eventually run out of cryptotokens. As soon as four
Byzantines are part of the swarm, the median error becomes significantly larger
as Byzantines begin to collect rewards and therefore to have a stronger influence
on the estimate. We also observe a high variability that is due to the fact that
Byzantine robots may or may not become the dominant party—the estimate
may therefore sway in either direction: reality, or zero. The estimate variabil-
ity decreases with five Byzantines because in this case the Byzantines become
dominant as they always send the same 0% estimate, and are therefore able to
consistently collect rewards and steer the estimate towards the wrong value.

0
4
8

12
16
20
24
28
32

0 1 2 3 4 5
Number of Byzantine robots

Ab
so

lu
te

 e
rro

r (
in

 %
)

0

250

500

750

1000

0 1 2 3 4 5
Number of Byzantine robots

C
on

se
ns

us
 ti

m
e

(s
)

Fig. 2. Experiment 1 – Increasing Byzantines (10 robots in total, 0 to 5 Byzantines).
Left : The median of the absolute error stays below 5% for 0 to 3 Byzantine robots. With
4 and 5 Byzantine robots the estimate error becomes much larger as the Byzantine
robots are able to steer the estimate towards the wrong value. Right : There are no
statistically significant differences in the consensus time when the number of Byzantine
robots increases, even though the variability tends to increase.

3.2 Experiment 2: Increasing Swarm Size (No Byzantine Robots)

In Experiment 2 we investigate to what extent the size of the swarm has an
influence on the consensus time as well as on the blockchain size. To this end,
we increase the swarm size from 5 to 10 robots.

Results and Short Discussion. The median of the absolute error is below 5%
for all swarm sizes and independent of the swarm size (results not shown). As
expected, the consensus time decreases with an increasing swarm size (Fig. 3,
left). The consensus time is influenced by several variables, such as the number
of transactions and the average connectivity of the network, which is higher
when there are more robots distributed in the arena. The blockchain size grows
linearly in time. To obtain the growth rate for the different swarm sizes, a linear
regression was performed using time as a predictor of blockchain size (Fig. 3,
right). The larger the swarm size, the more transactions are created, thus the
faster the blockchain size grows.

12 A. Pacheco et al.

0

250

500

750

1000

5 6 7 8 9 10
Number of robots

C
on

se
ns

us
 ti

m
e

(s
)

0.0

0.1

0.2

0.3

0.4

0.5

0 300 600 900

10 robots

Time in seconds

B
lo

ck
ch

ai
n

si
ze

 in
 M

B 9 robots

8 robots
7 robots
6 robots
5 robots

Fig. 3. Experiment 2 – Increasing swarm size (5 to 10 robots, no Byzantine Robots).
The consensus time (left) decreases approximately linearly with the number of robots.
The blockchain size (right) increases linearly over time (values obtained by linear regres-
sion for each swarm size).

5 10
Number of robots

A
bs

ol
ut

e
er

ro
r

(in
 %

)

0
4
8

12
16
20
24
28
32

5 10
Number of robots

C
on

se
ns

us
 ti

m
e

(s
)

0

250

500

750

1000

Fig. 4. Experiment 3 – Increasing swarm size (5 or 10 robots, 20% Byzantine robots).
Left : The absolute error is not influenced by the number of robots. Right : With 5 robots
the consensus time with (large boxplots) or without (small boxplots) Byzantine robots
is not significantly different; with 10 robots the presence of Byzantines significantly
increase the consensus time.

3.3 Experiment 3: Increasing Swarm Size (20% Byzantines)

In the third and final experiment, we study how different swarm sizes deal with
a fixed fraction of 20% Byzantine robots. We perform Experiment 3 exclusively
with 5 and 10 robots, because only these two swarm sizes permit to have exactly
20% Byzantine robots.

Results and Short Discussion. Figure 4 (left) shows that, as without Byzantines,
the absolute error is independent of the swarm size. Figure 4 (right) shows that,
when comparing the results to Experiment 2, with 5 robots the consensus time
with or without Byzantines is not significantly different, while with 10 robots
the presence of Byzantines significantly increases the consensus time.

4 Conclusions

In our research we are interested in developing robot swarms that present
a high level of security against the possible presence of Byzantine robots.

A Blockchain-Controlled Physical Robot Swarm 13

The blockchain protocol uses a set of technologies to generate secure and tamper-
proof knowledge shared by a network of mutually untrusting agents (robots
in our case): public-key cryptography, digital signatures, consensus protocols,
decentralized databases, and smart contracts. By using these technologies within
the blockchain protocol it becomes possible to protect a robot swarm from Sybil
attacks [16] and to reduce the influence that Byzantine robots can have on the
overall swarm behavior. Additionally, it makes it possible to let the swarm reach
consensus about the overall status of the system as stored in a decentralized
ledger that can also be used as a tamper-proof register of events, accessible
during, or after, an experiment.

While we had already demonstrated the feasibility of using the blockchain
protocol in a robot swarm in previous work [15–17], this was done only in sim-
ulation. One important question when moving to real robots is whether the
computations and communications required by the blockchain protocol are still
feasible in a system composed of agents (the robots) that have limited computa-
tional power and only local communication (i.e., they can only communicate with
neighbour robots)—as opposed to standard implementations of the blockchain
protocol where the individual nodes are powerful computers that are fully con-
nected to each other.

In this paper we have demonstrated the first example of a physical robot
swarm that uses the blockchain protocol and smart contracts. In particular, we
have showed that it is possible to do so in a swarm of not-so-powerful robots
using a low-cost Raspberry Pi Zero W as onboard computer. To get these results,
we have used the proof-of-authority protocol and our results show that the
Ethereum client geth running on our robots uses, regardless of experimental
parameters, about 13.7% of the available Raspberry Pi’s CPU power.

Our results show that the blockchain approach is feasible also in terms of data
storage: the size of the blockchain data folder in our robots grows linearly over
time, and remains under 0.5 MB at the end of a 15-min run (Fig. 3). Therefore,
the same experiment could be executed for about one year using a 16 GB SD
card as data storage.

In conclusion, the reader should note that our goal for this article was to show
that our previous results obtained in simulation would carry over to a swarm
of real robots and consequently that the use of a blockchain is warranted for
real-world deployment of secure robot swarms. We did not, however, intend to
provide the most efficient possible implementation, nor fine tune parameters in
order to achieve the best possible results: these aspects are left for future work.

Acknowledgements. Alexandre Pacheco acknowledges support via a fellowship from
the Faculty of Applied Sciences of the Université Libre de Bruxelles. Volker Strobel
and Marco Dorigo acknowledge support from the Belgian F.R.S.-FNRS, of which they
are a Research Fellow and a Research Director respectively.

14 A. Pacheco et al.

References

1. Brambilla, M., Ferrante, E., Birattari, M., Dorigo, M.: Swarm robotics: a review
from the swarm engineering perspective. Swarm Intell. 7(1), 1–41 (2013). https://
doi.org/10.1007/s11721-012-0075-2

2. Buterin, V.: A next-generation smart contract and decentralized application plat-
form. Ethereum project white paper. Technical report, Ethereum Foundation
(2014). https://github.com/ethereum/wiki/wiki/White-Paper. Accessed 18 July
2019

3. Castelló Ferrer, E.: The blockchain: a new framework for robotic swarm systems.
e-print (2016). arXiv:1608.00695v3

4. Dorigo, M., Birattari, M., Brambilla, M.: Swarm robotics. Scholarpedia 9(1), 1463
(2014)

5. Fernandes, M., Alexandre, L.A.: Robotchain: using Tezos technology for robot
event management. Ledger 4(Suppl. 1) (2019). https://doi.org/10.5195/ledger.
2019.175

6. Garattoni, L., Birattari, M.: Swarm robotics. In: Webster, J.G. (ed.) Wiley Ency-
clopedia of Electrical and Electronics Engineering. Wiley, Hoboken (2016)

7. Higgins, F., Tomlinson, A., Martin, K.M.: Survey on security challenges for swarm
robotics. In: Proceedings of the Fifth International Conference on Autonomic and
Autonomous Systems, pp. 307–312. IEEE Press (2009). https://doi.org/10.1109/
ICAS.2009.62

8. Johnson, D., Ntlatlapa, N., Aichele, C.: A simple pragmatic approach to mesh
routing using BATMAN. In: Proceedings of the 2nd IFIP International Symposium
on Wireless Communications and Information Technology in Developing Countries
(WCTID 2008) (2008)

9. Kashevnik, A., Teslya, N.: Blockchain-oriented coalition formation by CPS
resources: ontological approach and case study. Electronics 7, 66 (2018). https://
doi.org/10.3390/electronics7050066

10. Millard, A.G., et al.: The Pi-puck extension board: a Raspberry Pi interface for the
e-puck robot platform. In: 2017 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), pp. 741–748. IEEE Press (2017)

11. Mokhtar, A., Murphy, N., Bruton, J.: Blockchain-based multi-robot path planning.
In: 2019 IEEE 5th World Forum on Internet of Things, pp. 584–589 (2019). https://
doi.org/10.1109/WF-IoT.2019.8767340

12. Nakamoto, S.: Bitcoin: A peer-to-peer electronic cash system. Technical report
(2008). https://bitcoin.org/bitcoin.pdf. Accessed 11 Aug 2018

13. Pacheco, A., Strobel, V., Dorigo, M.: A framework for swarm robotics experimen-
tation with Pi-puck robots and an Ethereum-based blockchain. Technical report
TR/IRIDIA/2020-001, IRIDIA, Université Libre de Bruxelles, Brussels, Belgium
(2020)

14. Queralta, J.P., Westerlund, T.: Blockchain-powered collaboration in heterogeneous
swarms of robots. e-print (2019). arXiv:1912.01711v2

15. Strobel, V., Castelló Ferrer, E., Dorigo, M.: Managing Byzantine robots via
blockchain technology in a swarm robotics collective decision making scenario.
In: Dastani, M., Sukthankar, G., André, E., Koenig, S. (eds.) Proceedings of the
17th International Conference on Autonomous Agents and MultiAgent Systems
(AAMAS 2018), Richland, SC, USA , pp. 541–549. International Foundation for
Autonomous Agents and Multiagent Systems (2018)

https://doi.org/10.1007/s11721-012-0075-2
https://doi.org/10.1007/s11721-012-0075-2
https://github.com/ethereum/wiki/wiki/White-Paper
http://arxiv.org/abs/1608.00695v3
https://doi.org/10.5195/ledger.2019.175
https://doi.org/10.5195/ledger.2019.175
https://doi.org/10.1109/ICAS.2009.62
https://doi.org/10.1109/ICAS.2009.62
https://doi.org/10.3390/electronics7050066
https://doi.org/10.3390/electronics7050066
https://doi.org/10.1109/WF-IoT.2019.8767340
https://doi.org/10.1109/WF-IoT.2019.8767340
https://bitcoin.org/bitcoin.pdf
http://arxiv.org/abs/1912.01711v2

A Blockchain-Controlled Physical Robot Swarm 15

16. Strobel, V., Castelló Ferrer, E., Dorigo, M.: Blockchain technology secures robot
swarms: a comparison of consensus protocols and their resilience to Byzantine
robots. Front. Robot. AI 7, 54 (2020). https://doi.org/10.3389/frobt.2020.00054

17. Strobel, V., Dorigo, M.: Blockchain technology for robot swarms: a shared knowl-
edge and reputation management system for collective estimation. In: Dorigo, M.,
Birattari, M., Blum, C., Christensen, A.L., Reina, A., Trianni, V. (eds.) Swarm
Intelligence – Proceedings of ANTS 2018 – Eleventh International Conference.
LNCS, vol. 11172, pp. 425–426. Springer, Cham (2018). https://doi.org/10.1007/
978-3-030-00533-7

18. Szilágyi, P.: EIP 225: Clique proof-of-authority consensus protocol (2017). https://
github.com/ethereum/EIPs/issues/225. Accessed 10 May 2020

19. Valentini, G., Brambilla, D., Hamann, H., Dorigo, M.: Collective perception of
environmental features in a robot swarm. In: Dorigo, M., Birattari, M., Li, X.,
López-Ibáñez, M., Ohkura, K., Pinciroli, C., Stützle, T. (eds.) ANTS 2016. LNCS,
vol. 9882, pp. 65–76. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
44427-7 6

20. White, R., Caiazza, G., Cortesi, A., Cho, Y., Christensen, H.: Black block recorder:
immutable black box logging for robots via blockchain. IEEE J. Robot. Autom. 4,
3812–3819 (2019). https://doi.org/10.1109/LRA.2019.2928780

https://doi.org/10.3389/frobt.2020.00054
https://doi.org/10.1007/978-3-030-00533-7
https://doi.org/10.1007/978-3-030-00533-7
https://github.com/ethereum/EIPs/issues/225
https://github.com/ethereum/EIPs/issues/225
https://doi.org/10.1007/978-3-319-44427-7_6
https://doi.org/10.1007/978-3-319-44427-7_6
https://doi.org/10.1109/LRA.2019.2928780

A New Approach for Making Use
of Negative Learning in Ant Colony

Optimization

Teddy Nurcahyadi(B) and Christian Blum

Artificial Intelligence Research Institute (IIIA-CSIC),
Campus of the UAB, Bellaterra, Spain

{teddy.nurcahyadi,christian.blum}@iiia.csic.es

Abstract. The overwhelming majority of ant colony optimization
approaches from the literature is exclusively based on learning from pos-
itive examples. Natural examples from biology, however, indicate the
potential usefulness of negative learning. Several research works have
explored this topic over the last two decades in the context of ant colony
optimization, with limited success. In this work we present an alterna-
tive proposal for the incorporation of negative learning in ant colony
optimization. The results obtained for the capacitated minimum domi-
nating set problem indicate that this approach can be quite useful. More
specifically, our extended ant colony algorithm clearly outperforms the
standard approach. Moreover, we were able to improve the current state-
of-the-art results in 10 out of 36 cases.

1 Introduction

Combinatorial optimization (CO) problems are of utmost importance in many
real-life scenarios. Large-scale instances of hard CO problems are often solved by
heuristic methods. The family of metaheuristics [2] includes techniques based on
local search (such as tabu search) and it includes a whole range of bio-inspired
techniques such as ant colony optimization and evolutionary algorithms. In this
paper we deal with the metaheuristic ant colony optimization (ACO) [5,6], whose
development was inspired by the shortest path finding behavior of natural ant
colonies. ACO, which is a metaheuristic based on learning, works as follows.
At each iteration, a number of artificial ants generate solutions to the tackled
optimization problem in a probabilistic way. This is done based on two types
of information: greedy information and pheromone information. Then, the best
ones of these solutions are used to update the pheromone values, with the aim
of moving the probability distribution used for generating solutions to areas of
the search space in which high-quality solutions can be found.

As in most metaheuristics based on learning, the type of learning generally
used in ACO is positive learning, that is, the algorithm tries to learn which
components are necessary for assembling high-quality solutions. Nevertheless,
learning from negative examples (negative learning) seems to play an important
c© Springer Nature Switzerland AG 2020
M. Dorigo et al. (Eds.): ANTS 2020, LNCS 12421, pp. 16–28, 2020.
https://doi.org/10.1007/978-3-030-60376-2_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-60376-2_2&domain=pdf
http://orcid.org/0000-0002-5818-1583
http://orcid.org/0000-0002-1736-3559
https://doi.org/10.1007/978-3-030-60376-2_2

Negative Learning in ACO 17

role in biological self-organizing systems. Pharaoh ants (Monomorium pharao-
nis), for example, make use of negative trail pheromone in order to deploy ‘no
entry’ signals to mark unrewarding foraging paths [15]. Another example is the
use of anti-pheromone hydrocarbons produced by male tsetse flies. These anti-
pheromones play an important role in tsetse communications [17]. As already
noted in [18], it might therefore be possible to boost the performance of ACO
with an additional mechanism that learns (or marks) undesirable components by
means of a negative feedback mechanisms.

The research community has made several attempts to take benefit from neg-
ative learning. Maniezzo [11] and Cordón et al. [4] were the first ones to introduce
an active decrease of pheromone values based on low-quality solutions. Mont-
gomery and Randall [12] proposed three different anti-pheromone strategies,
partially inspired by previous works [4,8]. In their first approach some amount
of pheromone is removed from the solution components of the worst solution in
each iteration. Their second approach makes explicit use of negative pheromone
in addition to the standard pheromone. Finally, their third approach allocates
a small number of ants at each iteration to explore the use of solution compo-
nents with lower pheromone values, without adding dedicated anti-pheromones.
Unfortunately, the experimental evaluation did not show a clear advantage of
any of the three strategies over standard ACO. Simons and Smith [19] explored
different extensions of [12]. They state, however, that nearly all their approaches
were proved counter-intuitive by the results. The only approach that showed
some usefulness was to make use of a high amount of anti-pheromone in the
very early stages of the search process. In [16], Rojas-Morales et al. propose
an extension of an ACO algorithm for the multidimensional knapsack problem
based on opposite learning. In a first phase, the algorithm builds anti-pheromone
values whose intention it is to repel the ACO algorithm during the second phase
from solution components that seem locally attractive (due to a rather high
heuristic value) but that lead to low-quality solutions. Unfortunately, the results
do not show a consistent improvement over standard ACO. Finally, note that
earlier strategies based on opposition-based learning were tested on four small
TSP instances in [10].

In this paper we introduce a conceptually new way of making use of negative
learning in ACO, in the context of the so-called capacitated minimum dominat-
ing set (CapMDS) problem [14]. Our results show that the performance of the
standard ACO algorithm (without negative learning) is significantly improved
for most of the considered problem instance types. Moreover, the current state-
of-the-art algorithm is improved in the context of 10 out of 36 cases.

2 The CapMDS Problem

Before introducing the CapMDS problem and the developed algorithms, let us
briefly recall some necessary definitions and notions from graph theory. Hence-
forth, G = (V,E) denotes an undirected graph with a set V = {v1, v2, · · · , vn}
of n vertices, and a set E of edges. We assume that the given graph neither

18 T. Nurcahyadi and C. Blum

contains self-loops nor multi-edges. Two vertices u, v ∈ V are called neighbors—
that is, they are adjacent—if and only if (u, v) = (v, u) ∈ E. Furthermore,
N(v) := {u ∈ V | (v, u) ∈ E} is called the (open) neighborhood of v and denotes
the set of neighbors of v ∈ V . In contrast, the closed neighborhood N [v] of a
vertex v ∈ V is N [v] := N(v)∪{v}. The degree deg(v) of v is defined as the car-
dinality of the set of neighbors of v, that is, deg(v) = |N(v)|. Any subset S ⊆ V
is called a dominating set of G if each vertex v ∈ V \ S is adjacent to at least
one vertex from S. A vertex from S is called a dominator. Given an undirected
graph G = (V,E), the classical minimum dominating set (MDS) problem asks
to find a smallest-size dominating set S ⊆ V .

A problem instance of the CAPMDS problem is given by a tuple (G,Cap)
that consists of an undirected (simple) graph G = (V,E) and a capacity function
Cap : V → N. This capacity function assigns a positive integer Cap(v) > 0 to
each vertex v ∈ V , indicating the maximum number of adjacent vertices this
vertex is allowed to dominate in a valid solution.

A solution S to an instance (G,Cap) is a tuple (DS , {CS(v) | v ∈ DS}),
where DS ⊆ V is the set of selected dominators, and {CS(v) | v ∈ DS} is a set
that contains for each dominator v ∈ DS the (sub-)set CS(v) ⊆ N(v) of those of
its neighbors that are (chosen to be) dominated by v. The following conditions
have to be fulfilled in order for S to be a valid solution:

1. DS ∪
(⋃

v∈DS CS(v)
)

= V , that is, all vertices from V are either chosen to
be a dominator, or are dominated by at least one dominator.

2. |CS(v)| ≤ Cap(v) for all v ∈ DS , that is, all chosen dominators dominate at
most Cap(v) of their neighbors.

Finally, the objective function value (to be minimized) is defined as f(S) := |DS |.

ILP Model for the CAPMDS Problem. The following integer linear program
(ILP) is reproduced from [13]. The model is presented because it plays an impor-
tant role for the negative learning mechanism that is presented later. It works
on the following sets of binary variables. First, a binary variable xv is associated
to each vertex v ∈ V indicating whether or not v is selected as a dominator.
Second, the model contains for each edge (v, v′) ∈ E two binary variables yv,v′

and yv′,v. Variable yv,v′ takes value one if vertex v is chosen to dominate vertex
v′; similarly for yv′,v. The CapMDS problem can then be stated as follows:

minimize
∑

v∈V

xv (1)

s.t.
∑

v′∈N(v)

yv′,v ≥ 1 − xv ∀v ∈ V (2)

∑

v′∈N(v)

yv,v′ ≤ Cap(v) ∀v ∈ V (3)

yv,v′ ≤ xv ∀v ∈ V, v′ ∈ N(v) (4)
xv, yv,v′ ∈ {0, 1} (5)

Negative Learning in ACO 19

Hereby, constraint (2) ensures that all non-chosen vertices must be dominated by
at least one dominator, whereas constraint (3) limits the total number of vertices
dominated by a particular vertex v to Cap(v). Consequently, a dominator v can
dominate at most Cap(v) vertices from its (open) neighborhood.

3 Proposed Approach

First of all, we present a standard ACO approach (without negative learning) for
the CapMDS problem. We chose a MAX -MIN Ant System (MMAS) imple-
mented in the Hypercube Framework [1] for this purpose. In the context of this
algorithm, the construction of a solution S is done in a step-by-step manner. At
each construction step, first, exactly one new dominator v ∈ V \ DS is chosen.
In the second part of the construction step, it is decided which ones of the so-far
non-dominated neighbors of v will be dominated by v. Therefore, the pheromone
model T used by our algorithm consists of the following values:

1. A value τv for each v ∈ V . These values are used to choose dominators.
2. Values τv,v′ and τv′,v for each edge (v, v′) ∈ E. These values are used in the

second part of each construction step for deciding which ones of its neighbors
a newly chosen dominator will dominate.

In general terms, a MMAS algorithm (when implemented in the Hypercube
Framework) works as follows (see also Algorithm 1). At each iteration, first, na

solutions are probabilistically generated both based on pheromone and on greedy
information. Second, the pheromone values are modified using (at most) three
solutions: (1) the iteration-best solution Sib, (2) the restart-best solution Srb,
and (3) the best-so-far solution Sbs. The pheromone update is done with the aim
to focus the search process of the MMAS algorithm on areas of the search space
with high-quality solutions. Note that the algorithm also performs restarts when
necessary—that is, a re-initializations of the pheromone values is performed once
convergence is detected. Restarts are controlled by a convergence measure called
the convergence factor (cf) and by a Boolean control variable called bs update.
The implementation of all these components for the CapMDS is detailed in the
following.

InitializePheromoneValues(): In this function all pheromone values τv for v ∈
V are initialized to 0.5. Moreover, all pheromone values τv,v′ and τv′,v for all
(v, v′) ∈ E are equally initialized to 0.5.

Construct Solution(): The construction of a solution starts with an empty solution
S = (DS = ∅, ∅). Moreover, the set of non-dominated neighbors of each vertex
v ∈ V , denoted by NDv, is initialized to N(v). At each construction step, first,
one vertex v∗ is chosen from a set O (options) that includes all those vertices v
that still have non-dominated neighbors and that do not already form part of
DS :

O := {v ∈ V | NDv
= ∅, v /∈ DS} (6)

20 T. Nurcahyadi and C. Blum

Algorithm 1. MMAS for the CapMDS problem
1: input: a problem instance (G, Cap)
2: Sbs := null, Srb := null, cf := 0, bs update := false
3: InitializePheromoneValues()
4: while termination conditions not met do
5: S iter := ∅
6: for k = 1, . . . , na do
7: Sk := Construct Solution()
8: S iter := S iter ∪ {Sk}
9: end for

10: Sib := argmin{f(S) | S ∈ S iter}
11: if f(Sib) < f(Srb) then Srb := Sib

12: if f(Sib) < f(Sbs) then Sbs := Sib

13: ApplyPheromoneUpdate(cf, bs update, Sib,Srb,Sbs)
14: cf := ComputeConvergenceFactor()
15: if cf > 0.9999 then
16: if bs update = true then
17: Srb := null, and bs update := false
18: InitializePheromoneValues()
19: else
20: bs update := true
21: end if
22: end if
23: end while
24: output: Sbs, the best solution found by the algorithm

Note that the solution construction process stops once O = ∅. The greedy func-
tion value η(v) of a vertex v ∈ O is defined as η(v) := min{Cap(v), |NDv|} + 1.
Based on this greedy function, the probability for a vertex v ∈ O to be selected
is determined as follows:

pstep1(v) :=
η(v) · τv∑

v′∈O η(v′) · τv′
(7)

Given the probabilities from Eq. (7), a vertex v∗ ∈ O is chosen in the following
way. First a value 0 ≤ r ≤ 1 is drawn uniformly at random. In case r ≤ drate, the
vertex with the highest probability is chosen deterministically. Otherwise, a ver-
tex is chosen randomly according to the probabilities (roulette-wheel-selection).
Hereby, the determinism rate drate ≤ 1 is a parameter of the algorithm. Note
that after choosing v∗, the sets of non-dominated neighbors of the neighbors of
v∗ are updated by removing v∗.

In the second part of each construction step, a set of min{Cap(v∗), |NDv∗ |}
non-dominated neighbors of v∗ is chosen and placed into CS(v∗) as follows.
In case |NDv∗ | ≤ Cap(v∗), we set CS(v∗) := NDv∗ . Otherwise, vertices are
sequentially selected from NDv∗ in the following way. First, the probability for

Negative Learning in ACO 21

Table 1. Setting of κib, κrb, and κbs depending on the convergence factor cf and the
Boolean control variable bs update

bs update = false bs update = true

cf < 0.4 cf ∈ [0.4, 0.6) cf ∈ [0.6, 0.8) cf ≥ 0.8

κib 1 2/3 1/3 0 0

κrb 0 1/3 2/3 1 0

κbs 0 0 0 0 1

each vertex v ∈ NDv∗ to be selected is determined as follows:

pstep2(v) :=
(|NDv| + 1) · τv∗,v∑

v′∈NDv∗ (|NDv′ | + 1) · τv∗,v′
(8)

Then, given the probabilities from Eq. (8), a vertex v̂ ∈ NDv∗ is chosen in the
same way as outlined above in the context of the first part of the construction
step. Vertex v̂ is then added to an initially empty set CS(v∗), the respective ND-
sets are updated, the probabilities from Eq. (8) are recalculated, and the next
vertex from NDv∗ is chosen. This process stops once min{Cap(v∗), |NDv∗ |} are
selected. Finally, CS(v∗) is added to solution S, and the solution construction
process proceeds with the next construction step.

ApplyPheromoneUpdate(cf, bs update, Sib, Srb, Sbs): This is a standard proce-
dure in any MMAS algorithm implemented in the Hypercube Framework. In
particular, solutions Sib, Srb, and Sbs are used for the pheromone update. The
influence of each of these solutions on the pheromone update is determined on
the basis of the convergence factor (cf) and the value of bs update (see Table 1).
Each pheromone value τv is updated as follows: τv := τv + ρ · (ξv − τv), where
ξv := κib · Δ(Sib, v) + κrb · Δ(Srb, v) + κbs · Δ(Sbs, v). Hereby, κib is the weight
of solution Sib, κrb the one of solution Srb, and κbs the one of solution Sbs.
Moreover, Δ(S, v) evaluates to 1 if and only if v ∈ DS (that is, v is chosen as
a dominator). Otherwise, the function evaluates to 0. Note also that the three
weights must be chosen such that κib + κrb + κbs = 1. Finally, note that in the
case of pheromone values τv,v′ , the pheromone update is the same, just that func-
tions Δ(S, v) are replaced by functions Δ(S, v, v′). Hereby, function Δ(S, v, v′)
evaluates to 1 if and only if v ∈ DS and v′ ∈ CS(v) (that is, dominator v is
chosen to dominate its neighbor v′ in solution S). After the pheromone update,
pheromone values that exceed τmax = 0.99 are set back to τmax, and pheromone
values that have fallen below τmin = 0.01 are set back to τmin. This prevents the
algorithm from reaching the state of complete convergence.

22 T. Nurcahyadi and C. Blum

ComputeConvergenceFactor(T): The value of the convergence factor cf is com-
puted, in a standard way, on the basis of the pheromone values:

cf := 2

⎛

⎝

⎛

⎝

∑

τ∈T
max{τmax − τ, τ − τmin}

|T | · (τmax − τmin)

⎞

⎠ − 0.5

⎞

⎠ (9)

Hereby, T stands for the set of all τv-values and all τv,v′-values. With this for-
mula, the value of cf results in zero, when all pheromone values are set to 0.5.
In contrast, when all pheromone values have either value τmin or τmax, the value
cf evaluates to one. In all other cases, cf has a value between 0 and 1. This
completes the description of all components of the proposed algorithm.

3.1 Adding Negative Learning

First of all, for all pheromone values τv (v ∈ V) we introduce a negative
pheromone value τneg

v . Moreover, for all pheromone values τv,v′ we also introduce
the negative version τneg

v,v′ . In contrast to the standard pheromone values, these
negative pheromone values are initialized to τmin at the start of the algorithm,
and whenever the algorithm is restarted (which still depends exclusively on the
standard pheromone values).

The negative pheromone values are used in the following way to change the
probabilities in both phases of each step for the construction of a solution S.
Remember that the first phase concerns the choice of the next dominator v∗,
and the second phase concerns the choice of a set CS(v∗) of so-far uncovered
neighbors of v∗ that v∗ will dominate. The updated formula for calculating the
probabilities in the first phase is as follows (compare to Eq. 7):

pstep1(v) :=
η(v) · τv · (1 − τneg

v)
∑

v′∈O η(v′) · τv′ · (1 − τneg
v′)

(10)

In the second phase of each construction step CS(v∗) is sequentially filled with
vertices taken from NDv∗ (the set of currently uncovered neighbors of v∗) in the
following way. First, the probability for each vertex v ∈ NDv∗ to be selected is
determined as follows (compare to Eq. 8):

pstep2(v) :=
(|NDv| + 1) · τv∗,v · (1 − τneg

v∗,v)
∑

v′∈NDv∗ (|NDv′ | + 1) · τv∗,v′ · (1 − τneg
v∗,v′)

(11)

Another change in comparison to the standard way of generating solutions
is that, during this second phase, only vertices whose probability pstep2(v) is
greater or equal to 0.001 can be selected. This makes it possible to generate
solutions in which a vertex selected as a dominator might not be chosen to
dominate as many of its uncovered neighbors as possible in that moment.

As mentioned before, we strongly believe that the information that is used to
determine the negative pheromone values should originate from an algorithmic
component different to the ACO algorithm itself. In the context of the CapMDS

Negative Learning in ACO 23

problem we therefore propose the following. At each iteration of our MMAS
algorithm, the set of solutions generated at the incumbent iteration (S iter) is used
for generating a subinstance of the tackled problem instance. Such a subinstance
Isub is a tuple (Dsub, {Csub(v) | v ∈ Dsub}) where

– Dsub :=
⋃

S∈Siter
DS

– Csub(v) :=
⋃

S ∈ Siter

s.t. v ∈ DS

CS(v)

After generating the na solutions per iteration, the ILP solver CPLEX is used
(with a time limit of tILP CPU seconds) to solve the corresponding subinstance
(if possible) to optimality. Otherwise, the best solution found within the allotted
computation time is returned. In any case, the returned solution is denoted by
SILP. In order to solve the subinstance, the ILP model from Sect. 2 is used with
the following additional restrictions. All variables xv such that v /∈ Dsub are set
to zero. Moreover, all variables xv,v′ such that either v /∈ D or v′ /∈ Csub(v) are
set to zero too.

After obtaining solution SILP both the standard pheromone value update and
the update of the negative pheromone values is performed. The update of the
negative pheromone values is done with the same formula as in the case of the
standard pheromone update (see the description of function ApplyPheromone-
Update(cf, bs update, Sib, Srb, Sbs)). Only the learning rate ρ is replaced by a
negative learning rate ρneg, and the definition of the ξv (respectively ξv,v′) val-
ues changes. In particular, ξv is set to 1 for all v ∈ Dsub with v /∈ DSILP

. In all
other cases ξv is set to 0. Moreover, ξv,v′ is set to 1, for all v′ ∈ Csub(v) with
v′ /∈ CSILP

(v). In all other cases ξv,v′ is set to 0. In other words, those solution
components that form part of the subinstance (and, therefore, form part of at
least one of the solutions generated by MMAS) but that do not form part of the
(possibly optimal) solution SILP to the subinstance, are penalized.

Note that—in contrast to the standard MMAS algorithm, which is simply
denoted by ACO in the following section—the algorithm making use of nega-
tive learning is henceforth denoted by ACOneg. Finally, not taking profit from
solution SILP in an additional, more direct, way may result in wasting valuable
information. Therefore, we also test an extended version of ACOneg, henceforth
denoted by ACO+

neg, that updates solutions Srb and Sbs at each iteration with
solution SILP if appropriate.

4 Experimental Evaluation

All experiments concerning ACO, ACOneg and ACO+
neg were performed on a

cluster of machines with Intel® Xeon® CPU 5670 CPUs with 12 cores of
2.933 GHz and a minimum of 32 GB RAM. Moreover, for solving the subin-
stances in ACOneg and ACO+

neg we used CPLEX 12.8 in one-threaded mode.
The proposed algorithms were evaluated on the largest ones of the general

graphs benchmark set for the CapMDS problem from [14]. These graphs are

24 T. Nurcahyadi and C. Blum

Table 2. Outcome of parameter tuning.

Algorithm na drate ρ ρneg tILP

ACO 5 0.9 0.1 n.a n.a.

ACOneg 20 0.7 0.1 0.3 10.0

ACO+
neg 20 0.6 0.1 0.2 5.0

characterized by a number of vertices (n), a number of edges (m), a vertex
capacity type (uniform vs. variable), and a capacity. In the case of uniform
capacities, graphs with three different capacities (2, 5 and α) exist. Hereby, α
refers to the average degree of the corresponding graph. In the case of variable
capacities, the vertex capacities are—for each vertex—randomly chosen from the
following three intervals: (2, 5), (α/5, α/2) and [1, α]. For each combination of
these graph characteristics, the benchmark set consists of 10 randomly generated
graphs.

Algorithm Tuning. All three algorithm variants require parameter values to
be set to well-working options. In particular, all three algorithm versions need
parameter values for na (the number of solutions per iteration), drate (the deter-
minism rate for solution construction), and ρ (the learning rate). Additionally,
ACOneg and ACO+

neg require values for parameters ρneg (the negative learning
rate) and tILP (the time limit, in CPU seconds, for CPLEX at each iteration).
For the purpose of parameter tuning we made use of irace [9], which is a sci-
entific tool for parameter tuning. This tool was used for generating one single
parameter setting for each algorithm. As tuning instances we chose the first (out
of 10) instances for each combination of the four input graph characteristics.
Moreover, a budget of 2000 applications was given to irace. The parameter value
domains were fixed as follows: na ∈ {3, 5, 10, 20}, drate ∈ {0.1, 0.2, . . . , 0.8, 0.9},
ρ, ρneg ∈ {0.1, 0.2, 0.3}, and tILP ∈ {2.0, 3.0, 5.0, 10.0} (in seconds). The param-
eter value settings determined by irace are shown in Table 2.

Numerical Results. Each algorithm was applied exactly once (with a time limit
of 1000 CPU seconds) to each problem instance. The results, averaged over 10
instances per table row, are shown in Table 3 (uniform capacity graphs) and in
Table 4 (variable capacity graphs). While the two tables separate the instances
with respect to the vertex capacity type (uniform vs. variable), the first three
columns of each table provide information about the remaining three input graph
characteristics (n, m, and vertex capacity). The fourth table column provides
information about the best result known from the literature, while the fifth and
sixth table columns present the results of CMSA, which is the current state-of-
the-art algorithm from [13]. Both the results of CMSA and of the three ACO
versions are shown by means of the average solution quality and the average
computation time needed for producing these results.

Negative Learning in ACO 25

Table 3. Results for general graphs with uniform capacity.

n m Cap. Best known CMSA ACO ACOneg ACO+
neg

Avg. Time Avg. Time Avg. Time Avg. Time

800 1000 2 267.0 267.0 3.6 285.3 136.2 267.0 8.4 267.0 2.5

800 2000 2 267.0 267.0 3.9 269.4 80.3 269.3 129.3 267.0 67.8

800 5000 2 267.0 267.0 3.2 267.0 59.0 271.1 192.1 267.0 119.4

1000 1000 2 334.0 334.0 7.9 364.0 157.1 334.0 7.2 334.0 0.6

1000 5000 2 334.0 334.0 6.5 334.2 88.0 384.6 50.3 334.0 126.9

1000 10000 2 334.0 334.0 5.8 334.0 32.4 379.5 176.7 337.2 136.7

800 1000 5 242.5 243.1 205.6 262.8 113.7 245.5 89.2 244.4 76.1

800 2000 5 162.8 162.8 574.7 177.0 116.1 163.2 61.0 161.9∗ 79.1

800 5000 5 134.0 134.0 4.7 135.3 72.4 158.7 6.3 134.0 160.2

1000 1000 5 333.7 333.7 10.5 362.8 141.2 333.7 8.8 333.7 0.6

1000 5000 5 167.0 167.0 40.8 172.2 101.1 206.3 61.4 167.0 173.6

1000 10000 5 167.0 167.0 3.7 167.8 67.3 188.4 8.6 167.0 102.7

800 1000 α 267.0 267.0 4.6 284.0 153.8 267.0 10.1 267.0 2.8

800 2000 α 162.8 162.8 537.3 178.8 93.0 163.4 73.8 162.0∗ 69.7

800 5000 α 91.1 93.0 717.9 92.9 62.8 90.9 74.0 89.2∗ 104.3

1000 1000 α 334.0 334.0 13.7 365.1 175.2 334.0 6.9 334.0 0.6

1000 5000 α 132.5 135.0 782.9 137.3 82.0 131.6 65.4 127.3∗ 116.3

1000 10000 α 81.3 86.8 518.7 82.6 67.9 87.9 98.4 80.7∗ 133.1

In order to facilitate an interpretation of these results we provide the cor-
responding critical difference (CD) plots [3]. First, the Friedman test was used
to compare the three approaches simultaneously. As a consequence of the rejec-
tion of the hypothesis that the techniques perform equally, the corresponding
pairwise comparisons were performed using the Nemenyi post-hoc test [7]. The
obtained results are graphically shown by means of the above-mentioned CD
plots in Fig. 1. In these plots, each considered algorithm variant is placed on
the horizontal axis according to its average ranking for the considered subset of
problem instances. The performances of those algorithm variants that are below
the critical difference threshold (computed with a significance level of 0.05) are
considered as statistically equivalent; see the horizontal bars joining the markers
of the respective algorithm variants.

The graphic in Fig. 1(a) shows the CD plot for the uniform capacity instances,
and the one in Fig. 1(b) for the variable capacity instances. In both graphics
it can be seen that both algorithm variants with negative learning (ACOneg

and ACO+
neg) significantly improve over the standard ACO approach. Moreover,

ACO+
neg improves over ACOneg with statistical significance. This is also the

general picture given by the numerical results in Tables 3 and 4.
Interestingly, when separating the instances according to different graph den-

sities, it can be noticed that negative learning is especially useful in the context
of sparse graphs. In contrast, when moving towards dense graphs the efficacy of
negative learning is reduced. In the context of graphs with uniform capacities,

26 T. Nurcahyadi and C. Blum

Table 4. Results for general graphs with variable capacity.

n m Cap. Best known CMSA ACO ACOneg ACO+
neg

Avg. Time Avg. Time Avg. Time Avg. Time

800 1000 (2, 5) 248.1 248.2 79.2 269.2 131.7 251.8 47.4 249.9 68.6

800 2000 (2, 5) 181.2 181.5 341.7 195.0 98.7 180.8 73.1 179.8∗ 79.7

800 5000 (2, 5) 134.1 134.1 28.1 139.1 99.6 138.4 127.3 134.1 94.3

1000 1000 (2, 5) 333.8 333.8 3.9 365.6 146.9 333.8 8.8 333.8 1.9

1000 5000 (2, 5) 169.0 169.0 85.1 182.8 86.3 171.2 109.7 169.6 105.0

1000 10000 (2, 5) 167.0 167.0 27.5 168.4 92.3 198.3 7.7 167.0 170.1

800 1000 (α/5, α/2) 400.0 400.0 2.6 409.3 112.5 400.2 66.7 400.0 0.8

800 2000 (α/5, α/2) 273.4 273.4 6.5 283.2 87.5 274.6 101.6 273.4 7.6

800 5000 (α/5, α/2) 115.0 115.1 178.6 123.0 83.7 116.5 77.1 115.0 85.7

1000 1000 (α/5, α/2) 500.0 500.0 8.6 517.7 122.2 500.0 11.2 500.0 1.0

1000 5000 (α/5, α/2) 168.1 168.1 77.4 181.3 128.7 170.9 105.4 168.8 92.2

1000 10000 (α/5, α/2) 104.7 107.1 247.9 104.8 97.1 108.6 131.0 95.6∗ 121.3

800 1000 [1, α] 300.2 300.2 4.0 316.0 144.9 300.2 6.8 300.2 0.5

800 2000 [1, α] 186.2 186.2 442.6 204.9 105.3 187.3 61.5 185.8∗ 63.9

800 5000 [1, α] 98.1 98.1 683.7 101.7 63.3 96.8 84.4 95.6∗ 80.2

1000 1000 [1, α] 400.8 400.8 6.4 409.6 141.5 400.8 7.3 400.8 0.5

1000 5000 [1, α] 143.8 143.8 866.9 151.9 95.4 141.4 101.1 140.6∗ 98.9

1000 10000 [1, α] 90.1 90.1 541.8 88.2 66.8 87.8 132.1 85.6∗ 108.0

Fig. 1. Critical difference plots

Negative Learning in ACO 27

it is even the case that standard ACO outperforms ACOneg for dense graphs.
This is shown in the context of uniform capacity graphs in Figs. 1(c) and (d).

5 Conclusions and Outlook

In this paper we introduced a new approach for making use of negative learning
in ant colony optimization. This approach builds, at each iteration, a subinstance
of the original problem instance by merging the solution components found in the
solutions generated by the ant colony optimization algorithm in that iteration.
Then it uses a different optimization technique—CPLEX was used here—for
finding the best solution in this subinstance. The solution components from the
subinstance that do not form part of this solution are penalized by means of
increasing their negative pheromone values. The proposed approach is shown to
be very beneficial for the capacitated minimum dominating set problem.

Future work will center along two lines. First, we plan to study why this new
approach is more useful in sparse graphs. And second, we plan to apply this
approach to a whole range of different combinatorial optimization problems.

Acknowledgements. This work was supported by project CI-SUSTAIN funded by
the Spanish Ministry of Science and Innovation (PID2019-104156GB-I00).

References

1. Blum, C., Dorigo, M.: The hyper-cube framework for ant colony optimization.
IEEE Trans. Syst. Man Cybern. Part B 34(2), 1161–1172 (2004)

2. Blum, C., Roli, A.: Metaheuristics in combinatorial optimization: overview and
conceptual comparison. ACM Comput. Surv. 35(3), 268–308 (2003)

3. Calvo, B., Santafé, G.: scmamp: statistical comparison of multiple algorithms in
multiple problems. R J. 8(1) (2016)

4. Cordón, O., Fernández de Viana, I., Herrera, F., Moreno, L.: A new ACO model
integrating evolutionary computation concepts: the best-worst ant system. In: Pro-
ceedings of ANTS 2000 - Second International Workshop on Ant Algorithms, pp.
22–29 (2000)

5. Dorigo, M., Stützle, T.: Ant Colony Optimization. MIT Press, Cambridge (2004)
6. Dorigo, M., Stützle, T.: Ant colony optimization: overview and recent advances. In:

Gendreau, M., Potvin, J.Y. (eds.) Handbook of Metaheuristics. International Series
in Operations Research & Management ScienceInternational Series in Operations
Research & Management Science, vol. 272, pp. 311–351. Springer, Cham (2019).
https://doi.org/10.1007/978-3-319-91086-4 10

7. Garćıa, S., Herrera, F.: An extension on “statistical comparisons of classifiers over
multiple data sets” for all pairwise comparisons. J. Mach. Learn. Res. 9, 2677–2694
(2008)

8. Iredi, S., Merkle, D., Middendorf, M.: Bi-criterion optimization with multi colony
ant algorithms. In: Zitzler, E., Thiele, L., Deb, K., Coello Coello, C.A., Corne,
D. (eds.) EMO 2001. LNCS, vol. 1993, pp. 359–372. Springer, Heidelberg (2001).
https://doi.org/10.1007/3-540-44719-9 25

https://doi.org/10.1007/978-3-319-91086-4_10
https://doi.org/10.1007/3-540-44719-9_25

28 T. Nurcahyadi and C. Blum

9. López-Ibánez, M., Dubois-Lacoste, J., Cáceres, L.P., Birattari, M., Stützle, T.:
The irace package: iterated racing for automatic algorithm configuration. Oper.
Res. Perspect. 3, 43–58 (2016)

10. Malisia, A.R., Tizhoosh, H.R.: Applying opposition-based ideas to the ant colony
system. In: 2007 IEEE Swarm Intelligence Symposium, pp. 182–189. IEEE press
(2007)

11. Maniezzo, V.: Exact and approximate nondeterministic tree-search procedures for
the quadratic assignment problem. INFORMS J. Comput. 11(4), 358–369 (1999)

12. Montgomery, J., Randall, M.: Anti-pheromone as a tool for better exploration of
search space. In: Dorigo, M., Di Caro, G., Sampels, M. (eds.) ANTS 2002. LNCS,
vol. 2463, pp. 100–110. Springer, Heidelberg (2002). https://doi.org/10.1007/3-
540-45724-0 9

13. Pinacho-Davidson, P., Bouamama, S., Blum, C.: Application of CMSA to the min-
imum capacitated dominating set problem. In: Proceedings of GECCO 2019 - The
Genetic and Evolutionary Computation Conference, pp. 321–328. ACM, New York
(2019)

14. Potluri, A., Singh, A.: Metaheuristic algorithms for computing capacitated domi-
nating set with uniform and variable capacities. Swarm Evol. Comput. 13, 22–33
(2013)

15. Robinson, E.J.H., Jackson, D.E., Holcombe, M., Ratnieks, F.L.W.: ‘No entry’ sig-
nal in ant foraging. Nature 438(7067), 442 (2005)

16. Rojas-Morales, N., Riff, M.-C., Coello Coello, C.A., Montero, E.: A cooperative
opposite-inspired learning strategy for ant-based algorithms. In: Dorigo, M., Birat-
tari, M., Blum, C., Christensen, A.L., Reina, A., Trianni, V. (eds.) ANTS 2018.
LNCS, vol. 11172, pp. 317–324. Springer, Cham (2018). https://doi.org/10.1007/
978-3-030-00533-7 25

17. Schlein, Y., Galun, R., Ben-Eliahu, M.N.: Abstinons - male-produced deterrents of
mating in flies. J. Chem. Ecol. 7(2), 285–290 (1981)

18. Schoonderwoerd, R., Holland, O., Bruten, J., Rothkrantz, L.: Ant-based load bal-
ancing in telecommunications networks. Adapt. Behav. 5(2), 169–207 (1997)

19. Simons, C., Smith, J.: Exploiting antipheromone in ant colony optimisation
for interactive search-based software design and refactoring. In: Proceedings of
GECCO 2016 - Genetic and Evolutionary Computation Conference Companion,
pp. 143–144. ACM (2016)

https://doi.org/10.1007/3-540-45724-0_9
https://doi.org/10.1007/3-540-45724-0_9
https://doi.org/10.1007/978-3-030-00533-7_25
https://doi.org/10.1007/978-3-030-00533-7_25

Ant Colony Optimization for
Object-Oriented Unit Test Generation

Dan Bruce1(B), Héctor D. Menéndez2, Earl T. Barr1, and David Clark1

1 University College London, London, UK
{dan.bruce.17,e.barr,david.clark}@ucl.ac.uk

2 Middlesex University London, London, UK
h.menendez@mdx.ac.uk

Abstract. Generating useful unit tests for object-oriented programs
is difficult for traditional optimization methods. One not only needs
to identify values to be used as inputs, but also synthesize a program
which creates the required state in the program under test. Many exist-
ing Automated Test Generation (ATG) approaches combine search with
performance-enhancing heuristics. We present Tiered Ant Colony Opti-
mization (Taco) for generating unit tests for object-oriented programs.
The algorithm is formed of three Tiers of ACO, each of which tackles a
distinct task: goal prioritization, test program synthesis, and data gen-
eration for the synthesised program. Test program synthesis allows the
creation of complex objects, and exploration of program state, which is
the breakthrough that has allowed the successful application of ACO to
object-oriented test generation. Taco brings the mature search ecosys-
tem of ACO to bear on ATG for complex object-oriented programs, pro-
viding a viable alternative to current approaches. To demonstrate the
effectiveness of Taco, we have developed a proof-of-concept tool which
successfully generated tests for an average of 54% of the methods in 170
Java classes, a result competitive with industry standard Randoop.

1 Introduction

Generating unit tests for object-oriented programs is so difficult that the con-
ventional wisdom in the ACO community is that Automated Test Generation
(ATG) for complex object-oriented programs (OOP) is not currently possible
for ACO. Indeed, in 2015 Mao et al. [23] said “for complex types such as String
or Object, the current coding design in ACO cannot effectively handle them”,
and in 2018 Sharifipour et al. [27] identified generation of strings and objects
as future work. Solving ATG for OOP requires calling methods in the correct
order, with the correct inputs in order to explore the unit under test. This is a
problem with a gigantic search space. Solving it automatically would be highly
profitable, both in terms of time saved and potential increased coverage of a
program.

ATG techniques can be broadly classified as static or dynamic, i.e. those that
only observe the code or those that execute it. In recent years, many dynamic
c© Springer Nature Switzerland AG 2020
M. Dorigo et al. (Eds.): ANTS 2020, LNCS 12421, pp. 29–41, 2020.
https://doi.org/10.1007/978-3-030-60376-2_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-60376-2_3&domain=pdf
https://doi.org/10.1007/978-3-030-60376-2_3

30 D. Bruce et al.

approaches have used genetic algorithms (GA) [18]. GAs typically mutate and
crossover candidate solutions, which, in the case of creating test programs, can
lead to invalid states. Instead, following pheromone levels attributed to available
methods produces legitimate test programs, guided by the fitness of previous
tests. It is this observation that has motivated our exploration of ACO for object-
oriented ATG. ACO has been applied to generating test cases for programs in
the past. However, those applications were dominated by numerical programs,
where the problem was simply finding the required values of primitive inputs
[5,8,23,27]. Whilst these works show ACO’s effectiveness at test data generation,
they do not support its applicability to automated test generation for real world
object-oriented software.

We introduce Taco, a Tiered Ant Colony Optimization algorithm that can
generate complex test cases for complex object-oriented programs. Taco does
so by following three tiers: 1) it selects a test coverage goal within the program
under test, 2) it synthesizes test programs by creating sequences of methods,
and 3) it generates numeric and string data values required as inputs by the test
program. It is, to the best of our knowledge, the first complete ACO technique
capable of generating valid Java test cases. Taco has been evaluated on 170
Java classes taken from SF110 [14], a well known Java testing benchmark, and
successfully created tests for 54% of methods per class, covering an average of
nearly 50% of lines of code. Taco achieves higher branch and line coverage than
the industry standard tool, Randoop, not all of which overlaps, suggesting
that additional engineering to cover further constructs would yield significant
improvements. Taco demonstrates the potential of ACO for automated test
generation for object-oriented code; further research and engineering effort may
allow ACO to compete with the current state of the art in ATG.

Contributions

– Taco is the first complete ACO technique capable of creating real test cases
for complex object-oriented programs.

– Taco’s Tier II synthesizes test programs by building sequences of method
calls, thereby creating complex objects required as inputs (Sect. 3.3).

– Taco has been realized as a tool and used to generate JUnit tests for real
Java classes competitively with Randoop (Sect. 4).

2 Related Work

Relatively little research into automated test generation uses ant-based
approaches [18,23]. Those that have applied ACO to software testing have
focused on generating useful input values. The classical ACO-based test gen-
eration process typically follows 3 main steps: 1) partition the input space, 2)
project each partition into each dimension or variable and, 3) decrease the parti-
tion granularity for those parts which are more interesting for the test purpose.
In this way, each pair (partition, dimension) becomes a node for the graph that
an ant can traverse to find inputs for a program [23]. This approach is usually

ACO for OOP Unit Test Generation 31

applied to discreet domains, but there are several variations. Ayari et al. [5],
for example, use ACOR, which is an ACO variant that was developed to opti-
mize values from continuous domains [28]. They find numeric inputs required by
specific methods. Similarly, Mao et al. [23] and Sharifipour et al. [27] indepen-
dently compare ACO with other metaheuristics on small numerical programs.
Both of these approaches generate values only for a specific method within the
program under test, and they do not consider object-oriented programs. How-
ever, in both cases the ACO approach outperforms the other meta-heuristics. In
previous work, we used an extended version of ACOR for data generation, includ-
ing strings, and then used heuristics to create objects and call methods [9]. In
contrast, Taco uses ACO to synthesis a test program and build objects prior
to data generation. Vats et al. [31] gather different ACO applications on soft-
ware testing, where some of the work focus on OOP testing. The most relevant
either generate simple inputs for programs following the classical method of par-
titioning the domain [12,22], or focus on other aspects of testing like iteration
testing [11] and test suite minimization [29]. None of this work considers gen-
erating sequences of methods and input values as part of the same process, as
Taco does.

Current, pure ACO test generation methodologies cannot deal with object-
oriented programs, for which they need to create sequences of methods for each
test case. Srivastava et al. proposed a technique related to our Tier II and gen-
erated test sequences of events, although the events considered did not require
inputs [29]. Our technique has a stage after sequence synthesis which generates
instances of all required inputs. ACO-based program synthesis is known as Ant
Programming (AP) [26]. This field, inspired by genetic programming (GP), aims
to create programs using ACO methods. Some examples are the work of Rojas
and Bentley, which used ACO to synthesize programs which solve boolean func-
tions [25], and Toffola et al. that compared A* and ACO for guiding program
synthesis and found ACO to be effective at solving bottlenecks [30]. GP has been
directly applied to the task of defining OOP test programs [16,32]. These tech-
niques build trees of method calls and their required parameters. However, we
contend that pheromone-guided synthesis is more suitable for generating method
sequences than GP’s mutation and crossover operators [32]. Taco creates test
programs that are correct by construction, whereas mutation and crossover of
existing test programs, as is done in GP, can lead to invalid programs that need
to be fixed or discarded. Other approaches combine GP and ACO for program
synthesis, such as the work of Hara et al. [17]. This combination is called Carte-
sian Ant Programming and is normally applied to circuits [17,21]. Although
this work does solve some programming problems, to the best of our knowledge,
there currently exists no pure ACO-based work that synthesizes complex Java
programs.

3 TACO Algorithm

Solving ATG entails generating programs. Programs are discrete objects. Viewed
as a combinatorial optimization problem, ATG is infeasible, because the search

32 D. Bruce et al.

space is vast and under-constrained. Crucially, test programs require not only
syntactic correctness but also semantic correctness in order to build a valid
program state. Others have sought to constrain the problem via reformulation
as multi-objective search; this tack constrains the fitness of solutions, but not
the search space. Our key insight is that ATG naturally decomposes into a
three deep hierarchy of successive subproblems – and each subproblem further
constrains the overall problem. The three tiers are (1) goal selection, (2) test
program synthesis, and (3) primitive and string types data generation.

Tier I prioritizes and selects goals within the program under test. As its
performance metric is branch coverage, it targets a branch. In each iteration,
Taco focuses on covering one branch at a time. Taco gains great leverage from
its first tier: by selecting promising goals, Taco restricts the second two tiers to
only the relevant subset of the search space. Taco’s program synthesis (Tier II)
is its core novelty. ATG of OOP is unique in that it often requires building a valid
program state to reach a goal. This subtask requires calling a potentially large
number of methods in sequence. A simple example is a goal guarded by an if
that depends on a variable, which, in turn, can only be set by calling a method.
Tier II searches over possible test programs, building objects and generating
sequences of methods with data holes for primitives and strings. ACO shines at
this subtask, quickly finding sequences of available methods that reach the goal.
Finally, the last tier, data generation, is well-understood and well-solved by the
ACO community [28]: here, ACO efficiently finds primitive and string values to
fill the data holes in Tier II’s method sequences.

Taco’s three tiers operate independently. Therefore, one can easily replace or
modify the specific algorithm each tier uses if a new state of the art emerges for its
task—this could be another ACO variant or an entirely different algorithm. For
example, TIII’s algorithm could be modified to exploit research into numerical
data generation when testing numerical programs.

Branch distance measures how far a conditional statement’s control expres-
sion is from a different evaluation outcome in a particular program state. For
example, the branch distance of numerical equality, a == b, is often computed
as |a − b|. Given the conditional statement , x := 8 creates a program
state that is a distance of 2 from evaluating to true, while creates a
state that is 90. Branch distance has long been used in ATG. All three of Taco’s
tiers use it as their fitness function to evaluate ants. For numerical conditional
statements, Taco uses Korel’s measures [20]; for string comparisons, it uses
Levenshtein distance [2]. Often in ATG, approach level guides branch distance.
Approach level is the number of control dependent statements, required to reach
a target, that were not executed [6]. Tier I defines goals such that their approach
level is always 0 (Sect. 3.2), so Taco does not use it.

Taco has two phases, shown in Fig. 1. The first phase generates ants using
three-tiered ACO. The second phase converts the ants into test cases, which it
executes, observes and then uses to calculate fitness. Taco uses these fitnesses
to update its ant archives and pheromones lists for both goals and methods.
Although Taco generates an ant for a specific goal, that ant may be effective,

ACO for OOP Unit Test Generation 33

Fig. 1. An overview of the Taco approach. Phase 1 generates new ants. The distribu-
tion of work amongst the tiers is tunable; Taco chooses 1 goal per iteration, synthesizes
5 test programs per goal and generates 20 sets of data values per test program. Phase 2
converts each ant from phase 1 into a JUnit test case, then executes the instrumented
program under test on that test case. Finally, Taco updates its goals and archives
based on an ant’s coverage and fitness.

or even cover, other goals. Therefore, once an ant’s test case is executed, Taco
checks for incidental coverage and passes the ant to every goal whose source unit
it covered. Taco then checks the ant against a goal’s best so far archive, and
updates the pheromones and archives of each method in the ant’s test program.
If the ant is the new best for a goal, Taco resets the goal’s counter. If an ant
covers a new branch or block, Taco adds it to the test suite. Taco removes
covered goals and updates the list of goals to include those that now meet the
criteria (Sect. 3.2).

3.1 Problem Definition

A program, P , can be viewed as a Control Flow Graph (CFG) where the nodes
are basic blocks, and edges are branches. A basic block (subsequently called
block) is a sequence of statements which has one entry point, one exit point and,
if the first statement is executed, all statements must be executed once and in
order [1]. Every block has a unique label and the set of all blocks within P is

34 D. Bruce et al.

denoted by L. A branch is defined as a transition of execution from one block
to another li → lj written as bij with B as the set of all branches.

A test case, tk, is a program which calls P with some input and has a test
oracle that checks the correctness of some program state [7]. This may be a
specific output or merely the absence of failure during execution. From execution
of tk, one can observe which blocks and branches which have been covered. A
test suite is a collection of test cases, where commonly the goal is some form
of coverage, be that block, branch or some other criterion. Branch coverage of
a test suite with n test cases is C =

⋃n
k=1 branches(tk) and block coverage

U =
⋃n

k=1 blocks(tk).

3.2 Tier I: Goal Prioritization and Selection

We define goals to be G = {bi,j | li ∈ U ∧ bi,j /∈ C}, thereby restricting goals
to only those uncovered branches whose source block has been covered. This
prevents allocating resources to uncovered branches that are control dependent
upon another uncovered branch. At the start of each iteration, Taco selects one
goal for which it generates a number of test cases. Taco uses an Ant System to
select goals: a goal’s probability, p(g) in Eq. 1, is based upon its pheromone level
τg, which is the number of uncovered branches that can be reached from the
goal, and the heuristic value ηg = (1 − cg · δ). Each selection of a goal increases
a counter, cg, which is multiplied by the decay factor, δ (0.01 for Taco).

p(g) =
τg · ηg∑

k∈G τk · ηk
(1)

Pheromone does not decay, instead the heuristic is used as a decay mecha-
nism, using a counter to decay rather than reducing the pheromone at every time-
step. Taco enforces a minimum pheromone level of 0.1. This process favours
goals that lead to larger regions of uncovered code, and those for which Taco
is regularly discovering new, best test cases. The counter helps to avoid wasting
time on infeasible goals, as once Taco gets as close as is possible, the counter will
not be reset again and the probability of selecting the target will only decrease.
Previous ATG tools have used counters in this way [3].

3.3 Tier II: Test Program Synthesis

In Tier II of Taco, we take a non-traditional approach to program synthesis:
holes in our program are considered as data holes and are missing primitive
and string data values, not arbitrary code fragments [15]. Furthermore, to the
best of our knowledge, we are the first to apply ACO to object-oriented program
synthesis, which has been dominated by enumeration and constraint solving. For
each goal selected by Tier I, many test programs (ants) are synthesized to allow
optimization towards a covering test program (five in our implementation). Each
goal has an archive of the best performing ants and pheromone levels for each
method that has been called by ants considered the goal. Algorithm 1 and 2
show the pseudocode for Tier II.

ACO for OOP Unit Test Generation 35

Algorithm 1 . Tier II: The testSynth algorithm builds a test pro-
gram, represented as a sequence of method calls, 〈m, i, o〉. The select1,2 and
getAvailableMethods functions are described in the text. buildMethodSeq calls
Algorithm 2.
Input: P , the program under test.
Input: g, the goal selected in Tier I.
Input: Ag, a list of previously generated Ms ordered by performance at g.
Input: sg, a function that outputs the pheromone of a method at g.
Output: M , a sequence of method call tuples with holes for primitive or string data.
1: if random(0.0, 1.0) > select threshold then
2: return select1(Ag) {This helper function is described in text.}
3: M := 〈〉
4: repeat
5: Ma := getAvailableMethods(P, M) {methods in scope}
6: m := select2(Ma, sg) {This helper function is described in text.}
7: M := buildMethodSeq(M, method, sg) {See Algorithm 2}
8: until (resources exhausted ∨ m = NULL)
9: return M

When deciding which test program to execute next, Taco, can select an
existing test program from the archive, or synthesize a new one. At line 1 of
Algorithm 1, a global parameter dictates the probability of selecting versus gen-
erating a test program (in our implementation the probability of either is 50%).
A test program is selected from the archive, select1 on line 2, with probability
proportional to its position within the archive. As the archive is sorted by branch
distance, the test program with the lowest branch distance is the most likely.

At first, available methods are constructors or static methods of the pro-
gram under test. Then, moving forwards, any method of an object that has
been instantiated within M and in scope. The function sg returns the current
pheromone level of a method with respect to goal g. A method’s pheromone starts
at ρ0; ants that perform well, and are added to a goal’s archive, add pheromone
to each method they visit. Pheromone change is shown in Eq. 2, where n is the
number of ants added to the goal’s archive that call method mi, a is the number
of ants generated that call mi and γm, and δm are algorithm parameters that
dictate amount of pheromone laid and removed1. Therefore, pheromone decays
every time a method is added to a test program, rather than at each time-step.
At time N , ρNmi

gives the pheromone of method mi in Eq. 3.

Δρmi
= (n × γm) − (a × δm) (2) ρNmi

= ρN−1
mi

+ Δρmi
(3)

At each step, Taco selects a method, line 6 of Algorithm 1 (select2), proba-
bilistically according to pheromone levels of available methods. Taco can choose
to end the test program before reaching the max length at this point, by selecting

1 For our implementation of Taco the following values were used: ρ0 = 50, γm = 0.5,
δm = 0.05. With a minimum pheromone of 1 and maximum of 100.

36 D. Bruce et al.

Algorithm 2 . Tier II: This buildMethodSeq adds a method call, m, its
parameters, and a reference to its output, to the sequence of methods being
generated, M . It is recursive, because some of m’s parameters might be meth-
ods or be an abstract data type one of whose constructors we must call.
buildMethodSeq leaves data holes in the sequences for primitive or string
parameters. select2 and insert are described in the text.
Input: m, the method selected to be added to the test program.
Input: M , the method sequence (test program) which m should be added to.
Input: sg, a function that outputs the pheromone of a method at g.
Output: M , a sequence of method call tuples with holes for primitive or string data.
1: inputs := 〈〉, rid := NULL
2: if !isVoid(m) then
3: rid := getNonce()
4: for all p ∈ getParameters(m) do
5: if instanceof (p) ∈ primitives ∪ {String} then
6: inputs += HOLE : instanceof (p)
7: else
8: Ca := getAvailableConstructors(p)
9: c := select2 (Ca, sg)

10: M := buildMethodSeq(M, c, sg) {Recursive call, returns M with c inserted}
11: inputs += getRid(M, c)
12: M := insert(M, 〈m, inputs, rid〉) {This helper function is described in text.}
13: return M

NULL in place of a method. When adding the selected method to the sequence
in Algorithm 2, any primitive or string values required are left as holes within the
program (line 6). Tier III later searches over the input domain of these holes to
find a set of instances that minimize branch distance to the goal. Object param-
eters are referenced using their rid, an output identifier which is independent of
position within sequence. When the tuple defining a method call is added to a
test program, line 12 of Algorithm 2 (insert), it is injected at the last position
in the sequence where it still has an affect. For example, Fig. 2 shows the JUnit
representation of a sequence of method calls. When v1.methodUserObj() (line
6) was selected, it had to be inserted after v1 was defined (line 5), but before it
was used (line 7).

Tier II’s testSynth generates sequences, but a natural way to view them is
as programs with data holes. The JUnit test case in Fig. 2 is obtained from the
following sequence

M = 〈(new ExClass () , 〈〉 , v0) , (new UserObj , 〈HOLE: St r ing 〉 , v1) ,
(v1 . methodUserObj , 〈〉 , NULL) , (v0 . method1 () , 〈v1〉 , v2) ,
(v0 . setValue , 〈HOLE: i n t 〉 , NULL) , (v0 . t a r g e t () , 〈〉 , NULL)〉

To construct M , testSynth takes a goal, assumed to be within target(). Early
in the search-process, testSynth generates nearly random method sequences,
as pheromone levels initially provide no guidance. As Taco iterates, meth-
ods that create states that execute branches close to the goal will accumulate

ACO for OOP Unit Test Generation 37

Fig. 2. Output of Tier II: a method sequence realized as a JUnit test program with
data holes.

pheromones. Pheromone levels will rapidly suggest selecting target(). The selec-
tion of triggers addMethodSeq, which processes
’s parameter of type UserObj. addMethodSeq then probabilistically selects one
of UserObj’s constructors, relying on the pheromone levels laid by ants in previ-
ous iterations. This constructor builds the v1 rid , which addMethodSeq passes
to . While addMethodSeq does not directly change pheromone
levels, it does indirectly affect them: its addition of methods to a method sequence
means that ants will traverse and update those method’s pheromone levels in sub-
sequent iterations. addMethodSeq’s addition of UserObj’s constructor makes
v1.methodUserObj() available to subsequent iterations, as the v1 rid is within
the method sequence.

3.4 Tier III: Input Data Generation

Having progressed through the two previous tiers, the search space has been
reduced from all valid test programs for the program under test to the input
domain of the primitive and string holes. For Fig. 2, the input domain is one
String and one int. For each test program, there are still a huge number of
possibilities, which is why the optimization process samples many possible values
for each (20 in the case of Taco’s implementation).

A goal has an archive of primitive and string values for every method which
has been called in a test program considered at the goal. Each of these archives
operates in accordance with ACOR, allowing new values to be sampled based
on the contents of the archive [28]. When values are needed for a method, a
guide is selected from the method’s archive based on position. For string values
the method for sampling is as in Dorylus [9], mutating the guiding value by
inserting, removing and swapping characters. For primitives, the guide value is
used to define a Gaussian distribution, from which Taco samples a new value
for each variable. Eq. 4 and 5 are the taken from directly from ACOR.

38 D. Bruce et al.

Gd
e (x) =

1
σd
e

√
2π

e
−

(
x − vd

e

)2

2σd2
e (4) σd

e = ζ

k∑

l=1

abs
(
vd
l − vd

e

)

k − 1
(5)

vd
e is the value of variable d in the guide e. The standard deviation, σd

e , is
calculated as the mean difference between the guide and all other values in the
archive Eq. 5, its size controlled by ζ.

When an archive has spare capacity, Taco adds the input values of any ant
that calls the method to it. Once capacity is reached, the ant must have a smaller
branch distance than the current bottom of the archive.

This tier is where most related work on automated test generation operates,
with the holes in a test program forming the vector of inputs for the ant algo-
rithm. As such, the specific variant of ACO used could easily be swapped and
experimented with, which we plan to do in future work.

4 Evaluation

To evaluate Taco, we implemented it in Java. It instruments the class under test
and obtain control flow graphs for methods within classes. Taco handles arrays
and lists, treating length as an integer hole and the contents as parameters.
Taco does not currently handle other Java builtins, such as maps, sets, stacks
etc. Our implementation used parameter values as given in Sect. 3; please note:
these are not optimized values. Future work will study the effects of different
values and search for optimal default settings.

We evaluated Taco’s ability to automatically generate JUnit tests for 170
Java classes. These classes are part of the SF110 corpus [14]. SF110 contains
23,886 classes from 110 Java projects selected from SourceForge between 2012
and 2014. We selected these 170 classes uniformly at random. They came from 46
projects, and have an average of 21 branches, 66 lines of code and 16 methods
each. When testing, we allowed two minutes of test case generation per class
(each repeated ten times). The process of compiling, running and measuring
coverage of the test suites was performed after, and not timed. Coverage data
was obtained by running the output test suite on the original class with JUnit
and Jacoco2.

The state of the art in ACO applied to ATG does not handle object-oriented
programs. Our central result is that Taco is the first ACO approach to ATG for
object-oriented programs: Taco successfully generated test cases for an average
of 54% of methods across the 170 classes, covering nearly 50% of lines of code.
Java is a large language with huge industrial uptake. Generating test suites for
the remaining 46% of methods would rely on further engineering to implement
all of Java’s many constructs. These include filesystem and network interactions,
which Taco has no control over.

2 JaCoCo is a free code coverage library for Java: https://www.eclemma.org/jacoco/.

https://www.eclemma.org/jacoco/

ACO for OOP Unit Test Generation 39

Table 1. Average coverage of Randoop, Taco and EvoSuite on the 170 classes
selected from SF110, as reported by Jacoco; Taco’s performance respectably falls
between two state-of-the-art ATG tools that have enjoyed substantial, longterm, and
ongoing engineering effort.

Tool Coverage criterion

Branch Line Instruction Complexity Method

Randoop 19.0% 48.3% 44.3% 46.7% 56.0%

Taco 20.2% 48.7% 47.9% 47.5% 54.2%

EvoSuite 47.5% 70.3% 69.1% 70.2% 78.4%

We ran the same experiments with two highly developed, industry standard,
Java unit test generation tools; Randoop and EvoSuite. Randoop has been
under active development for over a decade, it uses feedback-directed random
test generation to build a test suite for the class or program under test [24]. It
has found previously unknown errors in widely used libraries and is currently
used in industry3. It has been used as a baseline in the Search-Based Software
Testing (SBST) tool competition, where it achieved the second highest score
out of five tools in 2019 [19]. EvoSuite is the state of the art in search-based
unit test generation [13]. Similarly to Randoop, it has been actively developed
for close to a decade. At its core it uses a genetic algorithm but has become
a collection of state of the art techniques for generating unit tests for Java
(including filesystem and network mocking [4]). The prowess of EvoSuite is
demonstrated by the fact it has won six of seven recent Search-Based Software
Testing (SBST) tool competitions [10].

Despite the huge engineering advantage of Randoop, Taco’s results are
promising, beating Randoop in all measures except method coverage (Table 1).
EvoSuite’s combination of advanced search techniques and enormous engineer-
ing effort allows it to generate tests for 78% of methods on average, covering close
to 50% of branches. Unsurprisingly, it beats both Taco and Randoop in all
measures. For future ACO ATG for OOP variants, EvoSuite both defines a
performance target to meet (or beat) and, given EvoSuite’s history of amalga-
mating best-of-class search techniques, a target to join and extend.

5 Conclusion

This paper has presented a novel Ant Colony Optimization algorithm, Taco,
which applys ACO to object-oriented unit test generation. Taco combines a
unique tiered structure with a new ACO technique for synthesising test programs
for object-oriented code. We have developed a prototype tool which implements
Taco and have run it on real Java programs, generating tests for more than
50% of methods, on average. ACO is a powerful meta-heuristic and we hope

3 https://randoop.github.io/randoop/.

https://randoop.github.io/randoop/

40 D. Bruce et al.

that this paper has served as a proof of concept that it can be used to generate
complex test cases for complex object-oriented programs. Future work will close
the engineering gap between Taco and the other tools to provide a framework
for comparing ACO variants in the domain of object-oriented ATG.

References

1. Allen, F.E.: Control flow analysis. ACM SIGPLAN Not. 5, 1–19 (1970)
2. Alshahwan, N., Harman, M.: Automated web application testing using search based

software engineering. In: International Conference on Automated Software Engi-
neering (ASE), pp. 3–12. IEEE/ACM (2011)

3. Arcuri, A.: Many independent objective (MIO) algorithm for test suite generation.
In: Menzies, T., Petke, J. (eds.) SSBSE 2017. LNCS, vol. 10452, pp. 3–17. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-66299-2 1

4. Arcuri, A., Fraser, G., Galeotti, J.P.: Generating TCP/UDP network data for
automated unit test generation. In: Joint Meeting on Foundations of Software
Engineering (ESEC/FSE), pp. 155–165. ACM (2015)

5. Ayari, K., Bouktif, S., Antoniol, G.: Automatic mutation test input data generation
via ant colony. In: Annual Conference on Genetic and Evolutionary Computation
(GECCO), pp. 1074–1081. ACM (2007)

6. Baars, A., et al.: Symbolic search-based testing. In: 2011 26th IEEE/ACM Inter-
national Conference on Automated Software Engineering (ASE 2011), pp. 53–62.
IEEE (2011)

7. Barr, E.T., Harman, M., McMinn, P., Shahbaz, M., Yoo, S.: The oracle problem
in software testing: a survey. Trans. Softw. Eng. 41(5), 507–525 (2014)

8. Bidgoli, A.M., Haghighi, H.: Augmenting ant colony optimization with adaptive
random testing to cover prime paths. J. Syst. Softw. 161, 110495 (2020)

9. Bruce, D., Menéndez, H.D., Clark, D.: Dorylus: an ant colony based tool for auto-
mated test case generation. In: Nejati, S., Gay, G. (eds.) SSBSE 2019. LNCS, vol.
11664, pp. 171–180. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
27455-9 13

10. Campos, J., Panichella, A., Fraser, G.: EvoSuite at the SBST 2019 tool competi-
tion. In: International Workshop on Search-Based Software Testing (SBST), pp.
29–32. IEEE/ACM (2019)

11. Chen, X., Gu, Q., Zhang, X., Chen, D.: Building prioritized pairwise interaction
test suites with ant colony optimization. In: International Conference on Quality
Software, pp. 347–352. IEEE (2009)

12. Farah, R., Harmanani, H.M.: An ant colony optimization approach for test pattern
generation. In: Canadian Conference on Electrical and Computer Engineering, pp.
001397–001402. IEEE (2008)

13. Fraser, G., Arcuri, A.: Evolutionary generation of whole test suites. In: Interna-
tional Conference On Quality Software (QSIC), pp. 31–40. IEEE (2011)

14. Fraser, G., Arcuri, A.: A large scale evaluation of automated unit test generation
using EvoSuite. Trans. Softw. Eng. Methodol. (TOSEM) 24(2), 8 (2014)

15. Gulwani, S., Polozov, O., Singh, R., et al.: Program synthesis. Found. Trends Pro-
gram. Lang. 4(1–2), 1–119 (2017)

16. Gupta, N.K., Rohil, M.K.: Using genetic algorithm for unit testing of object ori-
ented software. In: International Conference on Emerging Trends in Engineering
and Technology, pp. 308–313. IEEE (2008)

https://doi.org/10.1007/978-3-319-66299-2_1
https://doi.org/10.1007/978-3-030-27455-9_13
https://doi.org/10.1007/978-3-030-27455-9_13

ACO for OOP Unit Test Generation 41

17. Hara, A., Watanabe, M., Takahama, T.: Cartesian ant programming. In: Interna-
tional Conference on Systems, Man, and Cybernetics, pp. 3161–3166. IEEE (2011)

18. Harman, M., Mansouri, S.A., Zhang, Y.: Search-based software engineering: trends,
techniques and applications. Comput. Surv. (CSUR) 45(1), 11 (2012)

19. Kifetew, F., Devroey, X., Rueda, U.: Java unit testing tool competition-seventh
round. In: International Workshop on Search-Based Software Testing (SBST), pp.
15–20. IEEE/ACM (2019)

20. Korel, B.: Automated software test data generation. Trans. Softw. Eng. 16(8),
870–879 (1990)

21. Kushida, J.i., Hara, A., Takahama, T., Mimura, N.: Cartesian ant programming
introducing symbiotic relationship between ants and aphids. In: International
Workshop on Computational Intelligence and Applications (IWCIA), pp. 115–120.
IEEE (2017)

22. Li, K., Zhang, Z., Liu, W.: Automatic test data generation based on ant colony
optimization. In: International Conference on Natural Computation, vol. 6, pp.
216–220. IEEE (2009)

23. Mao, C., Xiao, L., Yu, X., Chen, J.: Adapting ant colony optimization to generate
test data for software structural testing. Swarm Evol. Comput. 20, 23–36 (2015)

24. Pacheco, C., Lahiri, S.K., Ernst, M.D., Ball, T.: Feedback-directed random test
generation. In: International Conference on Software Engineering (ICSE), pp. 75–
84. IEEE (2007)

25. Rojas, S.A., Bentley, P.J.: A grid-based ant colony system for automatic program
synthesis. In: Late Breaking Papers at the Genetic and Evolutionary Computation
Conference. Citeseer (2004)

26. Roux, O., Fonlupt, C.: Ant programming: or how to use ants for automatic pro-
gramming. In: Proceedings of ANTS, vol. 2000, pp. 121–129. Springer, Berlin
(2000)

27. Sharifipour, H., Shakeri, M., Haghighi, H.: Structural test data generation using
a memetic ant colony optimization based on evolution strategies. Swarm Evol.
Comput. 40, 76–91 (2018)

28. Socha, K., Dorigo, M.: Ant colony optimization for continuous domains. Eur. J.
Oper. Res. 185(3), 1155–1173 (2008)

29. Srivastava, P.R., Baby, K.: Automated software testing using metahurestic tech-
nique based on an ant colony optimization. In: International Symposium on Elec-
tronic System Design, pp. 235–240. IEEE (2010)

30. Toffola, L.D., Pradel, M., Gross, T.R.: Synthesizing programs that expose perfor-
mance bottlenecks. In: International Symposium on Code Generation and Opti-
mization (CGO), pp. 314–326. ACM (2018)

31. Vats, P., Mandot, M., Gosain, A.: A comparative analysis of ant colony opti-
mization for its applications into software testing. In: Innovative Applications of
Computational Intelligence on Power, Energy and Controls with Their Impact on
Humanity (CIPECH). pp. 476–481. IEEE (2014)

32. Wappler, S., Wegener, J.: Evolutionary unit testing of object-oriented software
using strongly-typed genetic programming. In: Annual Conference on Genetic and
Evolutionary Computation, pp. 1925–1932 (2006)

Branched Structure Formation in a
Decentralized Flock of Wheeled Robots

Antoine Gaget1, Jean-Marc Montanier2, and René Doursat3(B)

1 Manchester Metropolitan University, Manchester, UK
antoine.gaget@gmail.com
2 Tinyclues, Paris, France

3 Complex Systems Institute Paris Ile-de-France (ISC-PIF), Paris, France
rene.doursat@iscpif.fr

Abstract. Swarm robotics studies how a large number of relatively sim-
ple robots can accomplish various functions collectively and dynamically.
Modular robotics concentrates on the design of specialized connected
parts to perform precise tasks, while other swarms exhibit more fluid
flocking and group adaptation. Here we focus on the process of morpho-
genesis per se, i.e. the programmable and reliable bottom-up emergence
of shapes at a higher level of organization. We show that simple abstract
rules of behavior executed by each agent (their “genotype”), involving
message passing, virtual link creation, and force-based motion, are suffi-
cient to generate various reproducible and scalable multi-agent branched
structures (the “phenotypes”). On this basis, we propose a model of col-
lective robot dynamics based on “morphogenetic engineering” principles,
in particular an algorithm of programmable network growth, and how it
allows a flock of self-propelled wheeled robots on the ground to coordi-
nate and function together. The model is implemented in simulation and
demonstrated in physical experiments with the PsiSwarm platform.

1 Introduction

Swarm robotics studies how multiple relatively simple robots can accomplish
various functions collectively and dynamically [2]. Boosted by recent advances
in hardware technologies, the field is expected to bring many benefits as robot
swarms can cover vast areas, decentralization is robust against individual failures
(allowing replacements), and local communication with neighbors consumes less
energy. Its core challenge, however, is to design or rather “meta-design” [4] the
motion control and collective self-assembly of robots to make them operate as a
single entity, whether physically connected or loosely aggregated. Meta-designing
a complex system consists of finding the rules that each agent should individually
follow to interact with others, decide, act, or even evolve new rules.

Background. Some swarm systems contain a large number of simple and cheap
mobile robots, creating a dense “herd” such as the Kilobot platform [19]. On the

c© Springer Nature Switzerland AG 2020
M. Dorigo et al. (Eds.): ANTS 2020, LNCS 12421, pp. 42–54, 2020.
https://doi.org/10.1007/978-3-030-60376-2_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-60376-2_4&domain=pdf
https://doi.org/10.1007/978-3-030-60376-2_4

Branched Structure Formation in a Decentralized Flock of Wheeled Robots 43

ground, units cluster together to maintain local communication and possibly dis-
play patterns, typically guided by “chemotaxis” based on virtual pheromones.
Other works experiment with smaller flocks of unmanned aerial vehicles for
indoor exploration [20], also examining self-reconfiguration in case of faulty
rotors [9], or schools of (sub)marine robots performing synchronous encoun-
ters [23] and cooperative load transport [12]. At the other end of the spectrum,
great effort can be spent on the design of sophisticated parts and actuators capa-
ble of physical attachment to achieve “modular robotics” [1]. In these cases, a
limited number of units generally only permit sparse and precise formations,
such as chains and T-junctions, typically by recursive attachment.

Historically, the Modular Transformer (m-tran) [15] was one of the first
self-reconfigurable robotic kits. A group of m-trans can be placed in a certain
initial state and go through a series of moves to achieve some target shape.
Swarm-Bot [11] is a self-assembling system comprising smaller mobile robots
called s-bots, which use mounted grippers and sensors/actuators (LEDs, camera)
to cling to each other or static objects, following behavioral rules and local
perception. Using the s-bot model, SwarmMorph [3,17] is a morphogenetic model
based on a script language able to produce small 2D robot formations to achieve
certain tasks. As for the symbrion project [13], it created an intricate piece of
hardware in the form a cube that could dock precisely with its peers: the vision
was to collectively form “symbiotic” robotic organisms that could move in 3D.

In recent years, modular robot systems have become more commonplace
thanks to cheaper and faster hardware. For example, HyMod [18] is a set of
cubic modules with full rotational freedom, which can combine to create 3D
lattice structures such as snakes or wheeled vehicles. The Soldercube [16] is a
similar building-block rotational unit equipped with magnetic ties and internal
sensors to detect its orientation and occupied faces. Resting on top of a planar
lattice of anchors, Soldercubes are able to transform their spatial arrangement by
picking up and dropping off each other through attach/turn/detach combinations
of moves. The Evo-bot [8] is another modular concept intended to physically
implement the growth of artificial “creatures” as compounds of differentiated
robotic modules, each one with a specific function such as resource harvesting or
motion control. “Soft robotic” designs [22] also attempt to mimic cell aggregation
with pneumatic and magnetic cubic elements that can shrink and inflate, giving
rise to organisms capable of locomotion.

Motivation. The variety of systems briefly reviewed above is only a small sam-
ple of what is done in collective and modular robotics. Again, while some works
focus on the design of specialized modules to generate super-robots that can
perform specific tasks, others are rather inspired by artificial life swarms capa-
ble of fluid flocking and group adaptation. Few works, however, seem to pay
much attention to the process of morphogenesis per se, i.e. the programmable
and reliable bottom-up development of shapes at a higher level of organization.
This will be our own focus: we want to show here that simple abstract rules of
behavior executed by each agent (their “genotype”), involving message passing,

44 A. Gaget et al.

link creation, and force-based motion, are sufficient to generate various repro-
ducible and scalable multi-robot structures (the “phenotypes”) by aggregation.
Ideally, agent rules are independent of its physical embodiment—but of course
we also present a proof of concept using real robots.

In summary, between swarm and modular robotics, the goal of the present
work is to create flexible, yet at the same time highly specific spatial forma-
tions within a larger group of small wheeled robots, based on Morphogenetic
Engineering (ME) principles. The field of ME [5,6] investigates the subclass of
complex systems that self-assemble into nontrivial and reproducible structures,
such as multicellular organisms built by cells, or the nests built by colonies of
social insects. These natural examples can serve as a source of inspiration for
the meta-design of self-organizing artificial and techno-social systems. In par-
ticular, we will follow here Doursat’s abstract ME algorithm of “programmable
network growth” [7]—which was later modified and hypothetically applied to the
autonomous deployment of emergency response teams forming chains of agents
using IoT devices [21].

The rest of the paper is as follows: In Sect. 2, we describe the abstract model
of collective robot dynamics based on ME principles applied to network growth.
We present the underlying mechanisms allowing a small swarm, or “flock”, of
self-propelled robots on the ground to coordinate and function together. Then,
we show how the model unfolds in simulation (Sect. 3) and physical experiments
(Sect. 4) to generate different structures.

2 Model

The “meta-design” methodology of this project consists of hand-made rules pro-
grammed in all agents to foster the development of a multi-robot structure.
Given different rules, robots are able to form different target shapes by making
local decisions based on what they detect and exchange with their neighbors.

Ambient Space: Neighborhoods and Forces. We consider a distributed,
multi-agent system where each agent only relies on local perception of the envi-
ronment to control its behavior and communicates with the agents that it detects
in its vicinity. All the computational logic is embedded in the agents to obtain
a fully decentralized system. At an abstract level, each agent represents a single
robot potentially equipped with the following limited features and capabilities:
a set of proximity sensors (infrared and/or ultrasonic) placed around the robot
to detect nearby obstacles, evaluate distances and avoid collisions; a communi-
cation module to exchange messages with neighboring robots; a transportation
module including wheels and motors to move around autonomously; and a small
camera to identify the average position of the other agents (the center of mass
of the flock).

The definition and computation of each agent’s neighborhood is central to the
cohesiveness of a collective robotic organism, as it ensures the proper coordinated
propagation of information across the structure. To this aim, we use a hybrid

Branched Structure Formation in a Decentralized Flock of Wheeled Robots 45

“topological-metric” type of neighborhood implemented by a modified Delaunay
triangulation, chosen for its accurate representation of physical contacts and
robustness to change. The modification consists of pruning connections that are
longer than a given threshold, set just below the average minimum distance
of uniformly distributed agents in space in order to accommodate real-world
constraints (Fig. 1a). Since the Delaunay triangulation is not metric-based, far
away robots may also be connected and this is why a cutoff length was introduced
to prevent unrealistic long-range communication.

Fig. 1. Neighborhoods and forces. (a) Example of a Delaunay graph among a dozen
agents where connections are trimmed (dashed lines) above a given cutoff distance D.
(b) Two connected agents i and j at distance d exert virtual and opposite elastic forces
of magnitude F =k|d − L| onto each other (implemented by wheel-based movements,
see later sections), where L denotes a free length and k a rigidity coefficient. If d > L,
i and j move toward each other; otherwise, they pull apart.

Each neighborhood connection also carries a virtual spring creating elastic
forces (Fig. 1b), which translates into wheel-based movements by each agent to
stay at a certain optimal distance from its neighbors, neither too close to avoid
collisions, nor too far to remain within signal range.

Network Components: Ports, Links and Gradients. The morphogenetic
core of the model is derived from Doursat’s original algorithm of programmable
network growth [7]. It involves input/output ports on the nodes, links between
nodes (on top of their neighborhood connections), and gradients (integer values)
sent and received by the nodes over the links through the ports. All agents are
endowed with the same set of pairs of input/output ports, denoted by (Xin,
Xout), (Yin, Yout), etc. A port can be in one of three states: “open”, where it
accepts (in input) or creates (in output) links with neighbors; “busy”, where it
is already linked to a maximum number of agents (generally one) and cannot
accept or create new links; and “closed”, where it is disabled and devoid of links.
An open input port on agent i can accept link requests originating only from its
mirror output port located on a neighboring agent j, for example: Xi

in ← Xj
out

(but not Xi
in ← Y j

out or Xi
in ← Xj

in).
Each type of pair of ports is associated with a gradient field across the net-

work, composed of integer values representing important positional information

46 A. Gaget et al.

about the nodes relative to each other within the topology (essentially their hop
distance), and denoted by xi

g, yi
g, etc. When a link i ← j is created between two

agents, the gradient associated with the ports is propagated through this link
from j to i via an increment, i.e. xi

g = xj
g + 1 if it concerns the X ports. Then

both agents switch the corresponding ports to the busy state.

Fig. 2. Simple chain formation among static agents. Each agent executes
Algorithm 1 (non-bracketed parts) with xN = 4. Ports are symbolized by thick arrows
(inputs as tails, outputs as heads) and color-coded states: open in blue, busy in green,
closed in red. Nodes are also colored: recruiting in blue, accepting in gray, integrated
in green. Edges can be of two types: neighborhood connections in black, structural
links in green. (a) Initial state: gradient x1

g is set to 0 in a seed Agent 1 and undefined
everywhere else. (b) Agents 1 and 3 agree on creating a chain link and propagate the
gradient, i.e. x3

g =1. (c,d) The chain continues to grow, with Agent 3 recruiting 2, and 2
recruiting 4 in turn. This results in x2

g =3, which reaches the given threshold xN (the
maximum length) prescribed in the genome, therefore shuts the output port X2

out and
ends the chain. (Color figure online)

In the context of collective robotics, this abstract port-link-gradient frame-
work translates into the self-organization of branched structures made of chains
of robots (Figs. 2 and 3). These structures are a subset of the background com-
munication mesh described above. Therefore, at every time step each agent may
have two types of neighbors: ones that are simply within signal range, or “con-
nected” (thin black edges), and ones that are formally and durably “linked” to
it (thick green edges)—albeit not physically for lack of hooks or magnets.

Within a static connectivity graph, network growth proceeds by peer-to-peer
recruitment and aggregation of agents as follows: if agent j is already part of
the growing structure and has an open output port Xj

out, it will look if one of
its neighbors i has a corresponding open input port Xi

in (i.e. is not yet in the
structure) to request a link creation—which it does by sending requests to each
neighbor in turn.

The specifics of the growth process (which ports to open or update, how
many links to create in a chain, etc.) are prescribed by an identical set of rules,
or “genome”, executed by each agent. The genome dictates how an agent should
behave, i.e. the local decisions it should make at every time step, which will vary
depending on its current neighborhood configuration and the gradient values it
carries. In essence, a genomic ruleset is composed of a list of condition→action

Branched Structure Formation in a Decentralized Flock of Wheeled Robots 47

Algorithm 1: Genome of a simple chain/[[branched structure]] growth
xN = prescribed chain length
[[yN = branch length]]

if t=0 then
if is seed then {close Xin, open Xout; xg =0; [[close Yin, Yout; yg =−1]]}
else {open Xin, close Xout; xg =−1; [[open Yin, close Yout; yg =−1]]}
return

if xg =xN − 1 then close Xout

else if xg ≥ 0 and Xout is closed then open Xout

if [[xg is odd then {open Yout; yg =0}]]
if [[yg =yN − 1 then close Yout]]

clauses, where conditions are based on gradients and port states, and actions
update the ports. Examples of genomes and structures developed from them are
shown in the next subsection.

In the beginning, agents are scattered at random across the arena. One agent
is chosen to be the seed of the structure and is initialized differently from the
others. Typically its input port is closed, its output port open, and its gradient
value set to 0. Conversely, all other agents start with open inputs, closed outputs,
and undefined gradients at −1. Then, each agent repeatedly executes four main
steps in a loop: (a) port states are changed according to the genomic rules;
(b) links are created where possible; (c) gradient values are propagated and
updated; and (d) the robot moves by applying spring forces and/or a search
behavior. The latter step is explained below in the subsection about mobile
network growth.

Examples of Genomes and Structures. In this section, we give two examples
of abstract network growth among static agents on top of their background com-
munication graph, omitting spring forces and motion. The first system involves
four agents forming a simple chain based on one pair of X ports (Fig. 2). The
genome is described in Algorithm 1 (non-bracketed parts only), where xN is set
to 4. As explained above, at first (t = 0) the unique seed agent is initialized
differently from the other agents. Then, as soon as an agent is recruited into
the structure, its gradient xg becomes positive by propagation and triggers the
opening of the output port Xout, unless xg =xN − 1, which means that it found
itself at the end of the chain and should close Xout.

The second example shows a slightly more complicated branched structure, or
“creature” composed of a “body” chain of five agents and two short “leg” chains
of two agents each, sprouting from the even-positioned body agents (Fig. 3).
Ports X are used to form the body, while different ports Y support the legs. The
genomic rules are described in Algorithm 1, with xN =5 and yN =3. Compared
to the previous example, the added complication consists of managing ports Y
and their associated gradient yg depending on certain values of xg. Here, if xg =1
or 3 it means that the agent is second or fourth along the main chain, therefore

48 A. Gaget et al.

it should open its other output port Yout and set yg = 0 to start a branch by
recruiting free agents via Yin. For branch termination, the same condition is used
in Y , i.e. closing Yout when yg =yN − 1.

Fig. 3. Branched structure formation among static agents. Each agent possesses
two pairs of ports, X and Y (not represented), and executes Algorithm 1 with xN =
5, yN = 2. Color coding is the same as Fig. 2, with red lines symbolizing Y links (leg
branches). (a) Seed is Agent 1, which recruited Agent 9 via an X link, thus starting
the body chain. Then, Agent 9 applying both Xout and Yout opening rules recruited
Agent 3 on X (extending the body) and Agent 4 on Y (starting a leg branch). The
main chain then continued with Agent 5, which was also preparing to grow a second
le.g. (b) Finished structure, where all agents have satisfied the rules and no more
recruitment is attempted. (Color figure online)

Mobile Network Growth in Space. In reality, as robots move around, the
background mesh is not static but continually updated (as per Fig. 1a) so that
new connections may appear and existing ones disappear. In spite of this, already
created structural links will persist: if communication between linked robots
is accidentally interrupted, they keep tabs on each other and resume regular
gradient exchange whenever possible. This should rarely happen, however, as
elastic forces tend to keep them close to each other, as if physically attached.

To maximize matching opportunities, agents not yet recruited navigate
toward, and stay close to, the existing structure. If an agent finds itself iso-
lated far away without neighborhood connections, it uses the camera to search
for the bulk of the flock and head over there. When its front proximity sen-
sors detect a close obstacle, then two scenarios can happen: (α) in simulation
(Sect. 3), it initiates a clockwise exploration behavior by turning left and keeping
its right-side sensors active until it receives a link request; (β) in the physical
experiments (Sect. 4), it just sticks near the first encountered neighbor(s) by
applying default elastic forces. In this last case, an added condition is to receive
a “connected-component” flag propagated from the seed agent over the graph
connections: if it does not get it, then it moves again toward the flock’s center.

To be more precise, different types of springs are used or not depending on
the local state of neighboring nodes. Three cases can be distinguished: (i) if

Branched Structure Formation in a Decentralized Flock of Wheeled Robots 49

both nodes are integrated into the structure and linked to each other, then a
strong attractive elastic force is applied between them with a coefficient katt and
a length Latt significantly smaller than the cutoff communication distance D to
keep them close; (ii) if both nodes belong to the structure but are not directly
linked (yet spatially close, e.g. if the chain is folded), then a weak repulsive force
is used to pull them apart, with a coefficient krep and a length Lrep greater than
or about equal to D; (iii) if one or both nodes are outside of the structure, then
two variants happen: (iii. γ) in simulation, no spring force is applied and the
free agents rely on proximity sensing for their search behavior (the linked agents
ignore them when calculating their forces); (iii. δ) in the physical experiments,
the repulsion force Lrep, krep is used to keep them at an optimal distance.

Altogether, this combination of attractive and repulsive elastic forces leads
the robot flock to form a tight chain-like structure visible to the naked eye
(although without physical links) while at the same time making this structure
unfold in space.

Fig. 4. Branched structure formation in simulation. Bottom: screenshots of the
morse display at time steps t=0, 13, 94, 385. Top: custom 2D visualization tool based
on log files at same time steps with color code of Fig. 3. Each virtual robot executes
Algorithm 1 with xN =7, yN =3. The 13 robots self-organize into a 7-robot chain body
with three 2-robot legs at odd-numbered positions. This network structure also unfolds
in space under the influence of the spring forces with parameters D = 3.56d, Latt =
1.8d, katt = 1, Lrep = 5.4d, krep = 0.5, where d is a robot’s diameter and d= 0.5 morse
unit. The simulation stops at t= 427 when robots cannot form new links and elastic
forces have reached equilibrium. Videos available at https://tinyurl.com/gaget20.

3 Simulations

Before trying our model with real robots (see Sect. 4), we implemented it in a
realistic simulation. This allowed us to test and adjust the model more flexibly,

https://tinyurl.com/gaget20

50 A. Gaget et al.

in order to prepare the ground toward bridging the reality gap with the phys-
ical experiments. To this aim, we chose the morse simulator environment1, a
platform written in Python and powered by the Blender physics engine. morse
offers accurate representations, physics simulation and detailed graphic display
of robotic components and external objects. In our case, each agent is instan-
tiated by an autonomous low-height cylindrical robot endowed with its own
virtual control and sensorimotor abilities: two wheels and motors, eight infrared
proximity sensors on its periphery, and a communication module for short-range
broadcast. For simplicity, the turret camera is not simulated but replaced by
global information about the center of mass of the flock sent to the robots that
needed it. A Python script encoding the behavior of the simulated robots, includ-
ing their genomic rules of self-assembly, is running in parallel with the morse
engine.

The simulated experiment shown here is a flock of 13 robots forming a
branched structure based on the complete genome of Algorithm 1 (Fig. 4). In
addition to the networking rules, spatial motion relied on the exploration behav-
ior and the spring forces as explained above at the end of Sect. 2 in items (α)
and (i–iii. γ) with the parameter values specified in the caption.

4 Physical Experiments

The PsiSwarm platform, a disc-shaped robot on wheels, was designed by James
Hilder and Jon Timmis at the York Robotics Lab2. It runs on Mbed OS, an
open-source real-time operating system for the Internet of Things. Its control
code in C++ is uploaded to the board via a USB link. PsiSwarms are equipped
with the following components (Fig. 5a): an Mbed LPC1768 Rapid Prototyping
Board, the heart of the operation containing the code, plus a Micro-USB plug
and a Bluetooth emitter/receptor; an LCD screen; eight infrared sensors placed
at quasi-regular intervals around the robot; two wheels and motors; a small
joystick to input commands into the robot; and a single battery.

To centrally monitor the PsiSwarms in real time, whether to read out their
trajectories or intervene in the experiment, we relied on the ARDebug software
[14], an augmented-reality tool that can track the robots with ArUco square
markers pasted on top of them [10] (each one carrying a binary pixel matrix that
encodes a unique ID number; Fig. 5g–i), and can exchange information with them
via Bluetooth. The software uses a top-down bird’s-eye camera (mounted on the
ceiling) to evaluate the location of every PsiSwarm and link this information
with the right Bluetooth sockets to communicate with them individually. This
allowed us to send to/receive from each robot data, both in the beginning (e.g.,
whether it is the seed) and during the experiment. However, although it is in
principle possible to transfer the genomic code Algorithm1 in that manner, the
executable was instead input into each robot by hand using a USB cable.

1 http://www.openrobots.org/morse.
2 https://www.york.ac.uk/robot-lab/psiswarm/.

http://www.openrobots.org/morse
https://www.york.ac.uk/robot-lab/psiswarm/

Branched Structure Formation in a Decentralized Flock of Wheeled Robots 51

Fig. 5. Formation of linked structures in a flock of wheeled robots. (a) The
PsiSwarm platform: i. mother board, ii. lcd screen, iii. infrared sensors, iv. wheels
& motors, v. joystick, and vi. battery. (b–g) 20 PsiSwarm robots execute Algorithm 1
(in full) with xN = 5, yN = 3 inside a 170 × 180 cm arena. (b-f) Top views from
the ceiling camera at times t = 4, 13, 26, 45, 100 s. Structural links (thick green & red)
and graph connections (thin white) are automatically visualized by ARDebug in real
time. (b) Shortly after initialization, the seed robot psw 15 created a first link with
a neighbor. (c) Search behavior and spring forces bring robots closer, while two more
body links (green) and one leg link (red) appeared. (d–f) The branched structure
continued growing until it was complete and stabilized (robots stopped moving) under
the attractive/repulsive forces, with parameters D = 43.2 cm, Latt = 11 cm, katt = 0.6,
Lrep = 32.4 cm, krep = 0.42. (g) Same final state in perspective view. (h, i) Other
examples of “phenotypes” based on Algorithm 1: (h) a simple 9-robot chain and (i) a
3 + 6-robot T-shape. Videos of all three experiments available at https://tinyurl.com/
gaget20. (Color figure online)

Toward our goal of flock formation, we faced three technical issues: (1) the
IR sensors are not powerful enough to detect the positions of neighboring robots
beyond a few cm; (2) PsiSwarms are not equipped to communicate locally with
each other; (3) they also lack a turret camera to spot the flock from afar. To
compensate for these shortcomings, we had to infringe somewhat the principle

https://tinyurl.com/gaget20
https://tinyurl.com/gaget20

52 A. Gaget et al.

of decentralization by resorting to proxy-mediated detection & communication.
Thanks to the ceiling camera and ArUco markers, (1) the Delaunay neighbor-
hoods were computed centrally by ARDebug and fed back to the robots (in the
form of relative angle-distance pairs); (2) this information also served for ARDe-
bug to broker peer-to-peer requests via the Bluetooth links; and (3) stray robots
received from ARDebug the direction back toward the flock.

On the other hand, we also made sure to keep the intervention of ARDebug to
a minimum, i.e. only provide the robots with the raw, low-level information from
their surroundings that they could have otherwise gathered by themselves with
more hardware. In no instance was ARDebug actually controlling the robots
and telling them what messages to send and how to move; these calculations
and decisions were made by each of them. Based on the relative positions of its
neighbors (obtained from its fictive detectors via ARDebug), and its internal
table of structural links and graph connections, each robot could compute its
total vectorial force and next move, as per items (i–iii. δ) above—or head for
the flock and apply protocol (β) if it was stranded far away. Three resulting
formations are shown in Fig. 5b–i.

5 Conclusion

In conclusion, we proposed a morphogenetic engineering model and a demon-
stration of self-organized branched structure formation among small identical
wheeled robots, based on local neighborhood perception and communication
only. We showed that it was possible to implement an abstract model of pro-
grammable network growth both in simulation and physical experiments.

The technical problems encountered in the experiments were essentially due
to limitations in the PsiSwarm’s capabilities. Its lack of hardware for mid-range
peer-to-peer detection & communication, and flock recognition, had to be reme-
died by the central monitoring system ARDebug, which tracked robots and bro-
kered information and message-passing among them. ARDebug’s role, however,
remained minimal in the sense that it only emulated the neighborhood data
that would otherwise be handled by extra sensors and emitters, while the core
computation and decision-making modules remained on board.

Beyond these workarounds, the experiments presented so far are encouraging,
although at this point they only constitute a proof of concept. To complete
this study, an extended statistical analysis over many trials, whether exploring
different genotypes or variable random conditions on the same genotype, should
be conducted to adjust parameters and establish the resilience of the model in
real-world settings. In addition, simulations and experiments with more robots
must be conducted to insure the scalability of our model. For future work, more
complex branched chains or loops involving other port types and a larger swarm
could be attempted. Last but not least, the loose flocking structures thus created
should demonstrate their usefulness by moving across space and behaving as
single cohesive “creatures”. Even deprived of physical hooks, they should be able
e.g.. to encircle and push bulky objects—or interact in any other way with their

Branched Structure Formation in a Decentralized Flock of Wheeled Robots 53

environment via specialized differentiated robots and division of labor, similar
to multicellular organisms.

Acknowledgements. AG’s thesis, supervised by RD and JMM, is funded by the
Dept of Computing & Mathematics at MMU. AG thanks James Hilder at the YRL
for his support with the PsiSwarms that he built, and ARDebug. RD thanks MMU for
funding, and Jon Timmis (YRL Head) for managing, the purchase of 40 PsiSwarms.
RD’s former intern, Philip Boser, did the first experiments with 3 prototypes.

References

1. Ahmadzadeh, H., Masehian, E., Asadpour, M.: Modular robotic systems: charac-
teristics and applications. J. Intell. Robot. Syst. 81(3–4), 317–357 (2016)

2. Brambilla, M., Ferrante, E., Birattari, M., Dorigo, M.: Swarm robotics: a review
from the swarm engineering perspective. Swarm Intell. 7(1), 1–41 (2013)

3. Christensen, A.L., O’Grady, R., Dorigo, M.: SWARMORPH-script: a language for
arbitrary morphology generation in self-assembling robots. Swarm Intell. 2(2–4),
143–165 (2008)

4. Doursat, R.: Organically grown architectures: creating decentralized, autonomous
systems by embryomorphic engineering. In: Würtz, R.P. (ed.) Organic Computing.
Understanding Complex SystemsUnderstanding Complex Systems, pp. 167–199.
Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-540-77657-4 8

5. Doursat, R., Sánchez, C., Dordea, R., Fourquet, D., Kowaliw, T.: Embryomorphic
engineering: emergent innovation through evolutionary development. In: Doursat,
R., Sayama, H., Michel, O. (eds.) Morphogenetic Engineering. Understanding Com-
plex Systems, pp. 275–311. Springer, Heidelberg (2012). https://doi.org/10.1007/
978-3-642-33902-8 11

6. Doursat, R., Sayama, H., Michel, O.: A review of morphogenetic engineering. Nat.
Comput. 12(4), 517–535 (2013)

7. Doursat, R., Ulieru, M.: Emergent engineering for the management of complex sit-
uations. In: Proceedings of the 2nd International Conference on Autonomic Com-
puting and Communication Systems, pp. 1–10 (2008)

8. Escalera, J.A., Doyle, M.J., Mondada, F., Groß, R.: Evo-bots: a simple, stochas-
tic approach to self-assembling artificial organisms. In: Groß, R., et al. (eds.) Dis-
tributed Autonomous Robotic Systems. SPAR, vol. 6, pp. 373–385. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-73008-0 26

9. Gandhi, N., Saldaña, D., Kumar, V., Phan, L.T.X.: Self-reconfiguration in response
to faults in modular aerial systems. IEEE Robot. Autom. Lett. 5(2), 2522–2529
(2020)

10. Garrido-Jurado, S., Munoz-Salinas, R., Madrid-Cuevas, F.J., Marin-Jimenez, M.J.:
Automatic generation and detection of highly reliable fiducial markers under occlu-
sion. Pattern Recognit. 47(6), 2280–2292 (2014)

11. Groß, R., Bonani, M., Mondada, F., Dorigo, M.: Autonomous self-assembly in
swarm-bots. IEEE Trans. Robot. 22(6), 1115–1130 (2006)

12. Hajieghrary, H., Kularatne, D., Hsieh, M.A.: Differential geometric approach to
trajectory planning: cooperative transport by a team of autonomous marine vehi-
cles. In: Annual American Control Conference, pp. 858–863. IEEE (2018)

13. Kernbach, S., et al.: Symbiotic robot organisms: REPLICATOR and SYMBRION
projects. In: Proceedings of the 8th Workshop on Performance Metrics for Intelli-
gent Systems, pp. 62–69 (2008)

https://doi.org/10.1007/978-3-540-77657-4_8
https://doi.org/10.1007/978-3-642-33902-8_11
https://doi.org/10.1007/978-3-642-33902-8_11
https://doi.org/10.1007/978-3-319-73008-0_26

54 A. Gaget et al.

14. Millard, A.G., et al.: ARDebug: an augmented reality tool for analysing and debug-
ging swarm robotic systems. Front. Robot. AI 5, 87 (2018)

15. Murata, S., Yoshida, E., Kamimura, A., Kurokawa, H., Tomita, K., Kokaji, S.: M-
TRAN: self-reconfigurable modular robotic system. IEEE/ASME Trans. Mecha-
tron. 7(4), 431–441 (2002)

16. Neubert, J., Lipson, H.: Soldercubes: a self-soldering self-reconfiguring modular
robot system. Auton. Robot. 40(1), 139–158 (2016)

17. O’Grady, R., Christensen, A.L., Dorigo, M.: SWARMORPH: multirobot morpho-
genesis using directional self-assembly. IEEE Trans. Robot. 25(3), 738–743 (2009)

18. Parrott, C., Dodd, T.J., Groß, R.: HyMod: a 3-DOF hybrid mobile and self-
reconfigurable modular robot and its extensions. In: Groß, R., et al. (eds.)
Distributed Autonomous Robotic Systems. Springer Proceedings in Advanced
Robotics, vol. 6, pp. 401–414. Springer, Cham (2018). https://doi.org/10.1007/
978-3-319-73008-0 28

19. Rubenstein, M., Ahler, C., Nagpal, R.: Kilobot: a low cost scalable robot system
for collective behaviors. In: IEEE Conference on Robotics and Automation, pp.
3293–3298 (2012)

20. Stirling, T., Wischmann, S., Floreano, D.: Energy-efficient indoor search by swarms
of simulated flying robots without global information. Swarm Intell. 4(2), 117–143
(2010)

21. Toussaint, N., Norling, E., Doursat, R.: Toward the self-organisation of emergency
response teams based on morphogenetic network growth. In: Proceedings of the
Artificial Life Conference, pp. 284–291. MIT Press (2019)

22. Vergara, A., Lau, Y.s., Mendoza-Garcia, R.F., Zagal, J.C.: Soft modular robotic
cubes: toward replicating morphogenetic movements of the embryo. PLoS ONE
12(1), e0169179 (2017)

23. Yu, X., Hsieh, M.A., Wei, C., Tanner, H.G.: Synchronous rendezvous for networks
of marine robots in large scale ocean monitoring. Front. Robot. AI 6, 76 (2019)

https://doi.org/10.1007/978-3-319-73008-0_28
https://doi.org/10.1007/978-3-319-73008-0_28

Collective Decision Making in Swarm
Robotics with Distributed Bayesian

Hypothesis Testing

Qihao Shan(B) and Sanaz Mostaghim

Faculty of Computer Science,
Otto von Guericke University Magdeburg, Magdeburg, Germany

{qihao.shan,sanaz.mostaghim}@ovgu.de

Abstract. In this paper, we propose Distributed Bayesian Hypothe-
sis Testing (DBHT) as a novel collective decision-making strategy to
solve the collective perception problem. We experimented with different
sampling and dissemination intervals for DBHT and concluded that the
selection of both intervals presents a trade-off between speed and accu-
racy. After that, we compare the performance of DBHT in simulation
with that of 3 other commonly used collective decision-making strategies,
DVMD, DMMD and DC. We tested them on collective perception prob-
lems with different difficulties and feature patterns. We have concluded
that DBHT outperforms considered existing algorithms significantly in
collective perception tasks with high difficulty, namely close proportion
of features and clustered feature distribution.

1 Introduction

Collective decision making has been a longstanding topic of study within swarm
intelligence. The aim of this research area is to explain how groups of natu-
ral intelligent agents make decisions together, as well as to construct decision-
making strategies that enable groups of artificial intelligent agents to come to
a decision. The problems being investigated usually require the agents to form
a collective decision using only their individual information and local interac-
tion with their peers. There are two categories of problems that are primarily
investigated within collective decision making, consensus achievement and task
allocation. In the former category, agents need to form a singular opinion, while
in the latter category, agents need to be allocated to different tasks.

In this paper, we address the problem of collective perception, which is a
discrete consensus achievement problem. Morlino et al. [8] introduced this prob-
lem in 2010. Many collective decision-making strategies have been adopted to
address this problem. Valentini et al. proposed Direct Modulation of Voter-based
Decisions (DMVD) in [16]. Valentini et al. also proposed Direct Modulation
of Majority-based Decisions (DMMD) in [15], and further analyzed it in [14].
Direct Comparison (DC) of option quality was proposed by Parker et al. in [9].

c© Springer Nature Switzerland AG 2020
M. Dorigo et al. (Eds.): ANTS 2020, LNCS 12421, pp. 55–67, 2020.
https://doi.org/10.1007/978-3-030-60376-2_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-60376-2_5&domain=pdf
http://orcid.org/0000-0002-2968-3306
http://orcid.org/0000-0002-9917-5227
https://doi.org/10.1007/978-3-030-60376-2_5

56 Q. Shan and S. Mostaghim

These strategies usually draw inspirations from natural systems and focus on
consensus forming among robots of different opinions.

In this paper, we are proposing Distributed Bayesian Hypothesis Testing
(DBHT) as a novel method to perform collective perception. Our method
takes inspiration from sensor fusion techniques used in sensor networks, where
Bayesian reasoning has been widely used. Hoballah et al. [6] and Varshney et al.
[17] have designed various decentralized detection algorithms based on Bayesian
hypothesis testing in sensor networks. Alanyali et al. explored how to make mul-
tiple connected noisy sensors reach consensus using message passing based on
belief propagation [1]. Such algorithms usually require strong and fixed commu-
nication between sensor nodes and are thus rarely used for swarm robotics. We
have improved upon this characteristics by adopting a self-organizing communi-
cation topology. In our method, individual robots first form their estimation of
the likelihood of various hypotheses by observing their immediate surrounding
environment. Then a leader periodically collects opinions from other robots, and
forms the final estimate of the whole swarm. In this paper, we will evaluate the
performance of our proposed decision-making strategy and compare it to that
of DMVD, DMMD and DC.

This paper is structured as follows. Sect. 2 presents previous works related
to this paper and details about benchmark decision-making strategies. Sect. 3
provides the mathematical derivation and detailed description of our proposed
algorithm. In Sect. 4, we show our experiments and evaluations of the results.
Finally, Sect. 5 contains the conclusion and future work.

2 Problem Statement and Related Works

We follow Valentini et al. [13], Strobel et al. [11] and Bartashevich et al.’s [2] defini-
tion of the collective perception problem. There is an arena with a number of tiles
that can either be black or white. The goal is to determine whether black or white
tiles are in the majority using N mobile robots. The robots are assumed to have
rudimentary low level control and perform random walk to sample the environ-
ment. They can only observe the color of the tile directly beneath themselves. We
also assume that the robots have a maximum communication radius and can only
perceive and communicate with their peers within the radius. The collective per-
ception problem was first proposed by Morlino et al. [8]. The current form of the
problem was established by Valentini et al., who explored the performance of sev-
eral widely used collective decision-making algorithms, DMVD, DMMD and DC,
in solving the collective perception problem [13]. Strobel et al., in their exploration
of collective decision-making performance with Byzantine robots, tested the per-
formance of DMVD, DMMD and DC on environments with different proportion
of black tiles [11]. Ebert et al. extended collective decision making to environments
with more than 2 colors [4]. Bartashevich et al. proposed novel benchmarks for col-
lective decision-making task. They showed that apart from the proportion of black
and white tiles, the pattern of them also have a great impact on the performance
of collective decision-making strategies [2]. Ebert et al. then also proposed a novel

Collective Perception with Distributed Bayesian Hypothesis Testing 57

collective decision-making strategy based on Bayesian statistics [3]. In this paper,
we closely examine DMVD, DMMD and DC and test how their performances com-
pare to that of our proposed algorithm.

DMVD and DMMD implement decision making by individual robot as a
probabilistic finite state machine [15,16]. When applied to the collective percep-
tion problem, each robot can be in one of 4 states, exploration Ei, i ∈ {B,W}
and dissemination Di, i ∈ {B,W}. B and W indicates the color that the robot
thinks is in the majority. Both strategies start by randomly assigning half of the
robots to state EB and the other half EW . In the exploration states, a robot sam-
ples the environment at every control loop on its own and computes the quality
of its current opinion ρi ∈ (0, 1]. The durations of exploration states are random
and exponentially distributed with a mean of σ sec. In the dissemination states,
a robot broadcasts its opinion to its neighbors. The duration of dissemination
states is exponentially distributed with a mean of ρig, which is proportional to
the quality of the robot’s opinion. Here we follow [11,13] and set σ and g to 10
sec. Random walk routine as used in [13] is executed in all states. The process will
continue until all robots’ opinion become the same. DMVD and DMMD differ in
their behaviors during the dissemination states. When using DMMD strategy, a
robot takes the opinion favored by a majority of its neighbors plus itself. When
using DMVD strategy, a robot takes the opinion of a random neighbor.

DC uses similar probabilistic finite state machines on an individual level to
achieve collective decision making, except that the mean length of dissemination
states is no longer ρig but g [9]. Thus all states have a mean duration of 10 s in
our case. During dissemination, a robot will broadcast both its opinion and its
quality estimate of the opinion ρi. At the end of dissemination states, a robot
will compare its own quality estimate ρi with that of a random neighbor ρj . If
ρi < ρj , the robot will switch its decision to j.

3 Distributed Bayesian Hypothesis Testing

In this section, we introduce our proposed approach Distributed Bayesian
Hypothesis Testing (DBHT). In order to obtain an estimation of the propor-
tion of white tiles, we model the environment as a discrete random variable with
2 possible states V = White/Black. P (V = White) = PW is the probability
that a random place in the arena is white, thus the proportion of white tiles in
the arena. At a given point of time, N robots each have made S observations
of the tile colors beneath themselves. The observations can be either black or
white, and we label N × S observations as ob1, 1...obN,S.

Given a hypothesis of the proportion of white tiles, PW = h, we compute its
likelihood given the past observations made, i.e., P (PW = h|ob1,1...obN,S). We
first use Bayes rule:

P (PW = h|ob1,1...obN,S) =
P (ob1,1...obN,S |PW = h)P (PW = h)

P (ob1,1...obN,S)
(1)

58 Q. Shan and S. Mostaghim

Here P (PW = h) is the prior and P (ob1,1...obN,S) is the marginal likelihood,
both of which we assume to be the same for all hypotheses. In this case, we can
apply the chain rule to P (ob1,1...obN,S|PW = h)

= P (ob1,1|PW = h)P (ob1,2|PW = h, ob1,1)...P (obN,S|PW = h, ob1,1, ..., obN,S-1)
(2)

Assuming the observations are all independent from each other, we have:

= P (ob1,1|PW = h)P (ob1,2|PW = h)...P (obN,S|PW = h) (3)

Thus the likelihood of a hypothesis can be computed by multiplying the condi-
tional probability of each observation given the hypothesis. An individual robot’s
estimate based on its observations and hence its opinion can be computed as fol-
lows:

Op1 = P (PW = h|ob1,1...ob1,S) (4)

= P (ob1,1|PW = h)...P (ob1,S|PW = h)P (PW = h) (5)

Therefore, the estimate of the whole swarm can be computed by calculating the
product of the opinion of individual robots:

P (PW = h|ob1,1...obN,S) = Op1Op2...OpN (6)

Numerically, we set 10 hypotheses expressed in the following matrix. The
first column is the proportion of white tiles (PW) and the second column is the
proportion of black tiles (1 − PW).

H =

⎡
⎢⎢⎣

0.05 0.95
0.15 0.85
· · ·
0.95 0.05

⎤
⎥⎥⎦ (7)

An observation can be either ob =
[
1
0

]
for white or ob =

[
0
1

]
for black tiles.

Therefore, the opinion of individual n can be calculated:

Opn = Πs=1..SH · obs (8)

Collective Perception with Distributed Bayesian Hypothesis Testing 59

Fusion of the opinions of the individual is done through a self-organizing
communication network with a tree topology. To construct such topology, each
robot’s behavior is designed as a finite state machine with 4 states as shown in
Algorithm 1. One robot is designated as the leader, which is tasked with both
observing its immediate vicinity and collecting the opinion of other robots. The
leader can be chosen by the user or elected in a self-organizing way, e.g. as in [12],
before the decision making process. In our experiments, the robot with index 1
is designated as the leader. All other robots are also assigned an unique index.
More in details, all robots start in state 0, where they perform random walk
routine the same as in [13] and modify their own opinion by sampling the color
of the ground beneath themselves as shown below. Sampling is done periodically
with the interval TS . Individual robot’s opinion is computed iteratively, thus
only opinion after the last sampling need to be stored, making the memory and
computation complexity of our method O(NHMmax), where NH is the number

60 Q. Shan and S. Mostaghim

of hypotheses and Mmax is the maximum number of neighbors a robot can have.

Opn,s = Opn,s-1 ◦ (H · obn,s) (9)

Opn,0 =
[
0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1

]T (10)

0

1 0

0
0

0

2 0

1
1

2

2 2

2
2

3

2 3

2
2

3

2 3

3
3

3

3 3

3
3

3

0 3

0
0

0

0 0

0
0

Fig. 1. Illustration of states (numbers), communication links and message passing dur-
ing dissemination.

At every dissemination interval TD, the leader will start a dissemination
session. It switches to state 1, stops moving and sends out signals to look for
robots nearby. Only robots within communication distance that are in state 0 will
respond, to ensure that the final communication topology has a tree structure.
They will establish connection with the leader and switch to state 1 too. They
will also stop moving and send out signals to look for neighbors themselves, and
the process continues. After searching for neighbors, a robot will go into state
2 and prepare for the transmission of messages. It is likely that some robots
cannot be reached by the network due to maximum communication distance
and number of neighbors. Robots in state 2 will perform message passing. It is
done similarly to belief propagation algorithm. Message from robot n1 to n2 is
an array of 10 numbers and defined as the follows.

Messagen→m = Opn ◦ Πx∈Neigh(n)\{m}Messagex → n (n �= 1) (11)

In practice, messages are normalized before being sent to avoid underflow.
Once a robot sends its message, it switches to state 3 and rest. Message passing
starts from the leave nodes and gradually converges towards the leader. The
leader will compute the estimate of the whole swarm as follows.

Op∗ = Op1 ◦ Πm∈ Neigh(1)Messagem → 1 (12)

Once Op∗ is computed, the leader will switch back to state 0 and send out signals
to its neighbors. The neighbors will switch to state 0 and send out signals as well.
The process continues until all robots are in state 0. Communications thus stop
and will start again at the next dissemination session. There is therefore no need

Collective Perception with Distributed Bayesian Hypothesis Testing 61

for the robots to be in constant communication with each other. A new topology
of the communication network will be constructed at every new dissemination
session. The illustration of robot states during a dissemination session is shown
in Fig. 1. Op∗ will converge to one of the 10 hypotheses eventually. The algorithm
stops when one of the hypotheses has a normalized likelihood of at least 0.99.
The leader can then report the result to the user or direct the swarm to perform
other tasks dependent on the decision.

4 Experiments

In this section, we describe our experiments and analyze the results. The setting
of our experiments are largely the same as [2,11,13]. The arena is 2 m * 2 m with
400 tiles. We use 20 simulated e-puck robots [7] to perform the designated task.
As for the maximum communication radius, we follow the settings proposed in
[2,11] and set it 50 cm. E-pucks can only perceive up to 5 neighbors simultane-
ously [5] and can communicate with up to 7 neighbors [7], therefore we can set
Mmax to 5. In addition, they cannot receive multiple messages simultaneously
[10], therefore setting Mmax to 2 greatly reduces the probability of communica-
tion failure. We have tested both limits and the results are shown in Sect. 4.2
and 4.3. The low level random walk routine we used is the same as described
in [13]. We use the same Matlab simulation environment as [2] to simulate the
robots and arena.

Table 1. Average error using different sampling and dissemination intervals

/10% Sampling interval TS/s

Dissem interval TD /s 0.1 0.2 0.5 1 2 5

1 0.3 0.216 0.072 0.032 0.026 0.036

2 0.278 0.204 0.064 0.038 0.022 0.028

5 0.208 0.124 0.044 0.028 0.018 0.024

10 0.17 0.128 0.052 0.01 0.018 0.024

20 0.094 0.076 0.026 0.026 0.016 0.006

4.1 Finding the Optimal Sampling and Dissemination Interval

The first set of experiments aims at determining the optimal sampling and dis-
semination interval, TS and TD. It is expected that reducing the sampling inter-
val could provide more samples per unit time. However, these samples will be
collected closer to each other, thus highly correlated. It then means that the inde-
pendence assumption used in Sect. 3 will not closely reflect reality. Therefore the
algorithm will produce less accurate result. On the other hand, increasing the

62 Q. Shan and S. Mostaghim

Table 2. Average decision time using different sampling and dissemination intervals

/s Sampling interval TS /s

Dissem interval TD/s 0.1 0.2 0.5 1 2 5

1 3.09 4.75 9.53 15.80 29.66 65.82

2 3.84 6.13 11.08 18.17 32.72 69.62

5 7.36 9.22 14.98 23.11 39.08 80.05

10 12.43 14.59 21.06 30.06 45.12 87.06

20 22.23 23.87 30.07 39.95 57.40 103.64

dissemination interval means it takes longer on average for the leader to connect
to a large number of robots. However, the robots can travel for a longer distance
and collect more samples without violating the independence assumption during
the time. Therefore the result will be more accurate. To determine the optimal
values for TS and TD, we run 100 tests each for scenarios with white tile pro-
portions of 0.55, 0.65, 0.75, 0.85, 0.95, and random distribution of white tiles.
We compare the average error and consensus time across different TS and TD.
Error is defined as the difference between the true proportion of white tiles and
the computed proportion by the swarm.

Our results (Tables 1 and 2) show that as TS increase from 0.1 to 1 s, there
is a significant decrease in error. This is because the speed of our robots is
0.16 m/s, thus for 1 s, a robot would have traveled for 0.16 m. This is a bit
bigger than the width (0.1 m) and diagonal length (0.141 m) of an individual tile,
meaning that when collecting the next sample, the robot would have moved to
the neighboring tile. Since the distribution of tiles is random, there is a very weak
correlation between the colors of adjacent tiles, thus moving to the neighboring
tile is enough to reduce the correlation to near zero. This is why when TS is
beyond 1 s, increasing it no longer reduces the error much but still increases the
decision time. We thus choose 1 s as the optimal TS . This also agrees with the
findings of Ebert et al. [3], that collecting less correlated samples sparsely can
improve the accuracy of decision making. However, when TS is 5 s, there is an
increase in error compared to 2 s, since too high a TS means too few sample
would be collected, thus impeding accurate decision making. At the same time,
increasing TD provides moderate improvements on accuracy and in exchange
moderate increase in decision time. A trade-off need to be considered when
applying our method to a real problem. Here we choose a TD of 5 s to be used
in later experiments.

4.2 Comparison with Other Collective Perception Algorithms

To determine the effectiveness of our algorithm and how it compares to other
state-of-the-art algorithms, we follow the experimental framework of Bartashe-
vich et al. [2] and perform simulations of all considered algorithms for different
difficulty (ρ∗

b = numberblack tiles/numberwhite tiles) as well as different patterns

Collective Perception with Distributed Bayesian Hypothesis Testing 63

of black and white tiles. For difficulty, we use the same test cases as in [2,11],
ρ∗
b = [0.52, 0.56, 0.61, 0.67, 0.72, 0.79, 0.85, 0.92]. White color is always kept

in majority. The patterns are selected from the patterns used for matrix visu-
alization and classified according to entropy (Ec) and Moran index (MI). Ec

describes the densities of clusters in the pattern and MI describes the level of
connectivity between clusters. See [2] for detailed definition. For every ρ∗

b and
pattern, the simulation is run 100 times. The performance of the proposed algo-
rithms is measured by the exit probability. It is the probability that the swarm
will come to the correct decision that white color is in majority. For DBHT, a
result is considered correct when the computed hypothesis for white tile propor-
tion is among 0.55, 0.65 ... 0.95. The test results are shown in Fig. 2. The first row
shows an example of each pattern tested. The second row shows the exit prob-
ability for every algorithm considered. The shaded area indicates the standard
deviation of our measurement of exit probability. It is computed theoretically
by treating the exit probability as the mean of 100 Bernoulli trials. Thus the
standard deviation is

√
p(1 − p)/100, where p is the measured exit probability.

The third row shows the mean decision time for every algorithm considered. The
shaded area indicates the standard deviation of all the samples.

Fig. 2. Exit probability and decision time for all algorithms in 9 patterns over vari-
ous difficulties. Red+:DMVD, Green◦:DMMD, Blue∗:DC, Cyan�:DBHT Mmax = 5,
Magenta�:DBHT Mmax = 2 (Color figure online)

It can be observed that maximum neighbor limit only has a small impact on
the performance of DBHT algorithm. Exit probability when Mmax is 2 and 5
are usually very close. Decision time is slightly longer when the limit is 2.

Random (Ec ≈ 0.5,MI ≈ 0) pattern is the most studied pattern in previous
works. All considered algorithms have comparable performance when ρ∗

b is low,
with DC having the lowest decision time. As ρ∗

b increase, DMVD and DMMD
have a significant drop in accuracy and a rise in decision time. The accuracy of

64 Q. Shan and S. Mostaghim

DBHT and DC is more resilient to the difficulty increase, however, DC also has
a significant increase in decision time.

Star (Ec ≈ 0.8,MI ≈ 0.4) and Band (Ec ≈ 0.7,MI ≈ 0.3) pattern are
observed to be more challenging than random pattern for collective perception.
DMVD and DMMD have lower accuracy and higher decision time compared
to DC and DBHT. DC and DBHT are comparable in accuracy. They are also
comparable in decision time when the difficulty is low, but DC’s decision time
increases significantly when the difficulty is high.

Bandwidth (Ec ≈ 0.9,MI ≈ 0.6) and Bandwidth-R (Ec ≈ 1,MI ≈ 0.7)
see DBHT outperforming DMVD and DMMD in both accuracy and decision
time. However its accuracy is not as high as DC especially at the highest tested
difficulty of 0.92. In terms of decision time, DBHT and DC have similar perfor-
mance at low difficulty, but the decision time of DC quickly rises as difficulty
increases.

Block (Ec ≈ 0.9,MI ≈ 0.8), Off-diagonal (Ec ≈ 0.9,MI ≈ 0.8), Stripe
(Ec ≈ 1,MI ≈ 0.8) and Band-Stripe (Ec ≈ 0.9,MI ≈ 0.6) are observed to
be the most difficult collective perception scenarios, with highly clustered black
tiles. In these scenarios, existing algorithms often becomes very inaccurate with
long and volatile decision time. DBHT is able to outperform existing algorithms
in terms of accuracy while maintaining a relatively constant decision time.

Overall, DBHT is able to produce higher perception accuracy compared to
existing algorithms for the scenarios with high task difficulty. In terms of deci-
sion time, DBHT can be slower than existing algorithms, especially DC, when
the task is simple. However, it is much faster than existing algorithms when
the task is difficult both in terms of high ρ∗

b and clustered feature patterns, as
the decision time of DBHT is largely independent of the 2 measurements of
difficulty. This is because both DMVD and DMMD make use of modulation of
positive feedback to enable decision making. Clustering of features forms local
echo chambers among robots with similar opinions, making consensus forming
within the swarm difficult. For DC, clustering of features can create robots with
extreme quality estimation of its own opinion and thus rarely adopt its neighbors’
opinion, therefore disrupting decision making of the swarm. In contrast, DBHT’s
operation is mostly unaffected by clustering of features. Its opinion fusion is also
able to produce a middle ground between robots with highly contrasting esti-
mates. In addition, if collective perception is to be applied in the real world,
ρ∗
b and feature patterns are usually unknown. Thus the volatile decision time of

the three existing algorithms causes a halting problem. When the algorithm is
running for a long time with no clear decision, there is a dilemma whether to
keep the algorithm running for even longer time, or to recognize a failed run and
restart the process, wasting past progress.

4.3 Estimation Accuracy and Effects of Limiting Maximum
Neighbors

The performance of DBHT can also be measured by the difference between
the most likely hypothesis computed by the swarm and the correct hypothesis

Collective Perception with Distributed Bayesian Hypothesis Testing 65

that is closest to the true PW . Among our test cases, we classify ρ∗
b value of

[0.52, 0.56, 0.61] to hypothesis PW = 0.65 and the rest to PW = 0.55. The average
errors for all tested scenarios and different Mmax are shown in the top row in
Fig. 3.

Across all patterns, the error usually spikes at ρ∗
b value of 0.61 or 0.67. These

ρ∗
b are in the middle of 2 classes which can cause some error during classification.

In addition, the 2 plotted curves are very close to each other and thus a change
in Mmax in DBHT does not significantly impact the accuracy of collective per-
ception. This is because although a low Mmax does reduce the average number
of opinions that can be collected as shown in the bottom row in Fig. 3, to meet
the likelihood threshold on the final chosen hypothesis of 0.99, the robots have
to collect more samples over longer periods of time, as shown in Fig. 3 (middle
row). Therefore, the limit on maximum number of neighbors gives a trade-off
between decision time, design complexity and robustness of the system.

Fig. 3. Mean error, mean decision time, and mean number of opinions collected for
DBHT with different Mmax, Cyan �:DBHT Mmax = 5, Magenta �:DBHT Mmax = 2
(Color figure online)

5 Conclusion

In this paper, we have proposed DBHT as a novel collective perception strat-
egy. We have argued that a distributed perception but centralized opinion fusion
strategy for decision making is easier to use in the swarm robotics than a fully
decentralized decision-making strategy used in most state-of-the-art strategies.
After that, we tested the performance of DBHT with different sampling and
dissemination intervals. We have concluded that, up to a limit, collecting sparse
and uncorrelated samples could increase perception accuracy but also increase

66 Q. Shan and S. Mostaghim

the decision time. Changing the dissemination interval presents a similar trade-
off. We compared DBHT’s performance with that of 3 other state-of-the-art
collective decision-making strategies, DMVD, DMMD and DC, in how well they
determine which color is in the majority. We have shown that DBHT often has
superior performance due to its resilience in high ρ∗

b and feature patterns with
large clusters, as well as its stable decision time regardless of the difficulty of
the environment. Finally, we examined DBHT’s ability to accurately estimate
the proportion of colors as well as the effect of limiting the maximum number
of neighbors during dissemination. We have found out that the error not only
generally increase with ρ∗

b and pattern difficulty, but also tend to spike around
boundary cases between classes. Also, the limit on maximum number of neigh-
bors does not have a significant impact on estimation accuracy. The decrease in
number of opinions that can be collected is made up by a longer decision time,
which means more uncorrelated samples.

In future work, we plan to utilize Bayesian reasoning further to model the
correlation between observations. Here we circumvent this issue by having a
large sampling interval. Taking correlation between samples into consideration
can make decision making more robust when a decision is needed on a short
time frame.

References

1. Alanyali, M., Venkatesh, S., Savas, O., Aeron, S.: Distributed Bayesian hypothesis
testing in sensor networks. In: Proceedings of the 2004 American Control Confer-
ence, vol. 6, pp. 5369–5374. IEEE (2004)

2. Bartashevich, P., Mostaghim, S.: Benchmarking collective perception: new task
difficulty metrics for collective decision-making. In: Moura Oliveira, P., Novais, P.,
Reis, L.P. (eds.) EPIA 2019. LNCS (LNAI), vol. 11804, pp. 699–711. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-30241-2 58

3. Ebert, J.T., Gauci, M., Mallmann-Trenn, F., Nagpal, R.: Bayes bots: collective
Bayesian decision-making in decentralized robot swarms. In: International Confer-
ence on Robotics and Automation (ICRA 2020) (2020)

4. Ebert, J.T., Gauci, M., Nagpal, R.: Multi-feature collective decision making in
robot swarms. In: Proceedings of the 17th International Conference on Autonomous
Agents and MultiAgent Systems, pp. 1711–1719. International Foundation for
Autonomous Agents and Multiagent Systems (2018)

5. Francesca, G., Brambilla, M., Trianni, V., Dorigo, M., Birattari, M.: Analysing an
evolved robotic behaviour using a biological model of collegial decision making.
In: Ziemke, T., Balkenius, C., Hallam, J. (eds.) SAB 2012. LNCS, vol. 7426, pp.
381–390. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33093-
3 38

6. Hoballah, I.Y., Varshney, P.K.: Distributed Bayesian signal detection. IEEE Trans.
Inf. Theory 35(5), 995–1000 (1989)

7. Mondada, F., et al.: The e-puck, a robot designed for education in engineering. In:
Proceedings of the 9th Conference on Autonomous Robot Systems and Competi-
tions, vol. 1, pp. 59–65. IPCB: Instituto Politécnico de Castelo Branco (2009)

8. Morlino, G., Trianni, V., Tuci, E., et al.: Collective perception in a swarm of
autonomous robots. In: IJCCI (ICEC), pp. 51–59 (2010)

https://doi.org/10.1007/978-3-030-30241-2_58
https://doi.org/10.1007/978-3-642-33093-3_38
https://doi.org/10.1007/978-3-642-33093-3_38

Collective Perception with Distributed Bayesian Hypothesis Testing 67

9. Parker, C.A., Zhang, H.: Biologically inspired collective comparisons by robotic
swarms. Int. J. Robot. Res. 30(5), 524–535 (2011)

10. Salomons, N., Kapellmann-Zafra, G., Groß, R.: Human management of a robotic
swarm. In: Alboul, L., Damian, D., Aitken, J. (eds.) TAROS 2016. LNCS, vol.
9716, pp. 282–287. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
40379-3 29

11. Strobel, V., Castelló Ferrer, E., Dorigo, M.: Managing Byzantine robots via
blockchain technology in a swarm robotics collective decision making scenario. In:
Proceedings of the 17th International Conference on Autonomous Agents and Mul-
tiAgent Systems, pp. 541–549. International Foundation for Autonomous Agents
and Multiagent Systems (2018)

12. Trabattoni, M., Valentini, G., Dorigo, M.: Hybrid control of swarms for resource
selection. In: Dorigo, M., Birattari, M., Blum, C., Christensen, A., Reina, A., Tri-
anni, V. (eds.) ANTS 2018. LNCS, vol. 11172, pp. 57–70. Springer, Cham (2018).
https://doi.org/10.1007/978-3-030-00533-7 5

13. Valentini, G., Brambilla, D., Hamann, H., Dorigo, M.: Collective perception of
environmental features in a robot swarm. In: Dorigo, M., et al. (eds.) ANTS 2016.
LNCS, vol. 9882, pp. 65–76. Springer, Cham (2016). https://doi.org/10.1007/978-
3-319-44427-7 6

14. Valentini, G., Ferrante, E., Hamann, H., Dorigo, M.: Collective decision with 100
kilobots: speed versus accuracy in binary discrimination problems. Auton. Agents
Multi-Agent Syst. 30(3), 553–580 (2016)

15. Valentini, G., Hamann, H., Dorigo, M.: Efficient decision-making in a self-
organizing robot swarm: on the speed versus accuracy trade-off. In: Proceedings
of the 2015 International Conference on Autonomous Agents and Multiagent Sys-
tems, pp. 1305–1314 (2015)

16. Valentini, G., Hamann, H., Dorigo, M., et al.: Self-organized collective decision
making: the weighted voter model. In: AAMAS, pp. 45–52 (2014)

17. Varshney, P.K., Al-Hakeem, S.: Algorithms for sensor fusion, decentralized
Bayesian hypothesis testing with feedback, vol. 1. Technical report, Kaman Sci-
ences Corp, Colorado Springs, CO (1991)

https://doi.org/10.1007/978-3-319-40379-3_29
https://doi.org/10.1007/978-3-319-40379-3_29
https://doi.org/10.1007/978-3-030-00533-7_5
https://doi.org/10.1007/978-3-319-44427-7_6
https://doi.org/10.1007/978-3-319-44427-7_6

Constrained Scheduling of
Step-Controlled Buffering Energy

Resources with Ant Colony Optimization

Jörg Bremer1(B) and Sebastian Lehnhoff1,2

1 Division of Energy Informatics, Department of Computing Science,
University of Oldenburg,Oldenburg, Germany

joerg.bremer@uol.de
2 OFFIS Institute for Information Technology, Oldenburg, Germany

lehnhoff@offis.de

Abstract. The rapidly changing paradigm in energy supply with a
shift of operational responsibility towards distributed and highly fluc-
tuating renewables demands for proper integration and coordination of
a broad variety of small generation and consumption units. Many use
cased demand for optimized coordination of electricity production or
consumption schedules. In the discrete case, this is an NP-hard prob-
lem for step-controlled devices if some sort of intermediate energy buffer
is involved. Systematically constructing feasible solutions during opti-
mization degenerates to a difficult task. We present a model-integrated
approach based on ant colony optimization. By using a simulation model
for deciding on feasible branches (follow-up power operation levels), ants
construct the feasible search graph on demand, thus avoiding exponential
growth in this combinatorial problem. Applicability and competitiveness
are demonstrated in several simulation studies using a model for a co-
generation plant as typical small sized smart grid generation unit.

1 Introduction

A dwindling share of traditional, large, mostly fossil-fueled power plants necessi-
tates a transfer of responsibility for the safe operation of the power grid to small
and volatile renewable energy resources. Such tasks comprise predictive/day-
ahead scheduling (planning production based on forecasts zeg for the next day)
as well as ancillary services for power conditioning and supply security (e.g.
voltage or frequency control) [28,36].

Day-ahead scheduling tasks in applications for the future smart grid have
already been investigated for years and many solutions are meanwhile available.
Most of these solutions are suitable for continuously (in power control, not in
time domain) controllable appliances or are limited in number of time frames
that may be considered. A problem arises when devices with some (probably
thermal) storage are considered for time ahead scheduling that may only be
controlled by step control. Step-control allows altering power input (or output
c© Springer Nature Switzerland AG 2020
M. Dorigo et al. (Eds.): ANTS 2020, LNCS 12421, pp. 68–81, 2020.
https://doi.org/10.1007/978-3-030-60376-2_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-60376-2_6&domain=pdf
https://doi.org/10.1007/978-3-030-60376-2_6

Constrained Step-Control of Distributed Energy Resources 69

respectively) only in few discrete steps. Often devices may just be switched on or
off. An attached thermal buffer store with naturally limited capacity constrains
the choice of possible power levels in each time interval. The limitation in each
time interval results from power level decisions for (at least a recent subset of)
previous time intervals. Thus, the decision for a specific time interval cannot be
made independently from the other decisions. This discrete scheduling problem
has been proven to be NP-complete (number of planned time intervals) already
for a single device [8].

We apply ant colony optimization (ACO) [13–15] to solve the problem of
finding an optimal schedule for a given energy resource under model-predicted
technical operation constraints and given objectives defining optimality. Opti-
mality of an operation schedule can be given for example by the product of
generated electricity and some given energy prices or by the similarity to (corre-
lation with) some wanted generation profile. In this paper, we use time varying
energy tariffs and load balancing as examples.

The rest of the paper is organized as follows. The paper starts with a brief
overview on related work on the similar continuous problem. After formalizing
the discrete problem, the proposed solution based on ant colony optimization
with integrated simulation model is described. The paper concludes by demon-
strating the applicability of the proposed approach by several simulation studies.

2 Related Work

Within the future smart grid many use cases will require the adaption of opera-
tion of even small sized energy resources to some given electric schedule [2,34,35].
Schedule usually refers to a real-valued vector x ∈ R

n with each element xi

denoting mean active power (or equivalently amount of energy) generated or
consumed during the i-th time interval. Negative values denote consumption.
In the discrete step-control case a schedule x ∈ Z

n will denote the number of
the respective power level (operation mode) – with zero denoting off. Exam-
ple use cases are demand-side management [16], microgrid control [31], demand
response [33], or virtual power plants [36]. Such behavior will be required from
generation units like small co-generation plants, controllable consumers like cool
storages, as well as from prosumers like batteries to provide some flexibility for
grid operation. Applications comprise decentralized production planning, ancil-
lary services like frequency or voltage control, virtual power plants, or micro-
grid control. Coordination of decentralized energy resources might be achieved
by direct control or by indirect control via incentives like varying energy prices
[11,23,39]. We will consider both cases with the same algorithm.

The number of algorithms applied to (in-house) energy management prob-
lems is numerous, but solutions to devices with step-control are scarce [1]. Many
approaches consider only continuous power level variations; examples can be
found in [3,24]. In [9], an example for binary decision variables and a mixed
integer non-linear problem can be found, but without including appliances with
storage constraint characteristics. In contrast, for the continuous case, several

70 J. Bremer and S. Lehnhoff

solutions are available that have been designed to handle constraints entailed
by some integrated buffer store for example by decoders as constraint-handling
technique [7]. Examples are given in [4,6,26,40]. We will now consider the step-
control case that constitutes the discrete optimization problem. A good overview
can also be found in [1].

In [12] an ant colony based solution to the related combinatorial problem of
finding starting times of shiftable loads in demand-side management has been
presented. One possible solution to the step-control case with discrete power
levels is given by [21,22]. In this agent-based system, the flexibility of each
energy resource is (in the discrete case) represented by a fixed set of a-priori
model-predicted schedules. The problem is treated as a (distributed) constraint
optimization problem. This approach does not consider large portions of the
real flexibility of the energy resources as it uses just a small example subset.
Thus, we strive for an approach that integrates the prediction-model directly
into the algorithm and hence harnesses the full potential and flexibility of an
energy resource.

3 Problem Statement

We consider the following planning problem. For a given device, a schedule has
to be found for the operation of the device during some future time horizon such
that individual operation constraints are satisfied and some given goal is met.
A typical schedule comprises 96 dimensions for all 15 min intervals of a day. For
the real valued case several solutions exist. We extend the planning problem to
the case of step-control devices.

When starting the planning procedure, the following is known: starting time
t0, the initial operational state of the device at t0, and some cost c1, . . . , cn for
n discrete time intervals T = {T1, . . . , Tn} (not necessarily equidistant). For the
period of one time interval cost are considered constant. Examples for possible
cost are monetary cost for electricity given by varying prices, or set points given
by some external smart grid control strategy [37]. In the latter case, cost are
actually given by the deviation of the actual from the desired value.

A step-control may choose among a limited number of j discrete power levels
P = {P1, P2, . . . , Pj}, for the duration of each time interval. The relation between
power levels (denoting operated power) and the discrete number of operation
mode is given by a device specific mapping

Π : Z → R, Π(xi) �→ Pi. (1)

During each interval we assume a constant power output or feed-in. Equivalently,
the amount of energy consumed or produced during Ti may be used.

Controlling devices with some integrated (energy) storage like cooling
devices, batteries, co-generation plants or similar impose a dependency of pos-
sible choices at later planning intervals on previous choices, but allow on the
other hand for additional flexibility. Let R be the controlled variable, e.g. room
temperature controlled by heating through a co-generation plant. Even if the

Constrained Step-Control of Distributed Energy Resources 71

temperature has to be kept on a constant level, this might be achieved with
different operation schedules if heat can be intermediately stored in an attached
thermal buffer store. In this case, the temperature within the thermal store may
vary within a given range. In general, operation modes in every time interval have
to be chosen in a way that for every point in time: R ∈ R, with R = [Rmin, Rmax].

Which operation modes PTi
i ⊆ P specifically are possible depends on the

operational state of the device at the beginning of an interval Ti and thus depend
on the previous operations. PTi

i denotes the set PTi
i = {P ∈ P|(Ri−1 ⊕P) ∈ R},

where ⊕ denotes the operation that determines Ri in interval i from Ri−1 (if
not given by the initial state) and from the chosen operation mode.

When looking at a single device, the problem can be defined as follows.
Assuming constant power input (or feed-in) the amount of energy consumed or
generated during time interval Ti is given by Ei = δTi

Pi, with δTi
= ti − ti−1.

Thus, the cost for the whole planning horizon are given by:

C =
n∑

k=1

δTk
Pkck. (2)

In case all intervals have the same width, the objective function can be simplified
and expressed with operation mode schedules x:

arg min
x∈F

δT
n∑

k=1

Π(x) ◦ c = arg min
x∈F

n∑

k=1

Π(x) ◦ c, (3)

with ◦ denoting the Hadamard product. F denotes the feasible region specific
to the energy resource that is scheduled.

In the following, we consider only cases with equidistant time intervals. Con-
straints are given by the controlled variable R that has to stay within the given
range:

Pk ∈ PTk

k ∧ Rk ∈ R ∀ 1 ≤ k ≤ n, (4)

And a set of device specific operational constraints that further restrict the pos-
sible operations. Examples for such constraints are allowed power range, buffer
restriction, min./max. on/off times, or ramping [5,10,30].

For each time interval an assignment of electrical power has to be found such
that the controlled variable R (buffer store temperature in case of a co-generation
plant) stays within the allowed range and technical operation constraints are
fulfilled. Due to the interconnection (induced by the buffer) of possible power
levels in each time interval, they cannot be chosen independently. Each subset of
possible feasible power levels for time interval Ti depends (in the worst case) on
all choices for T1, . . . , Ti−1. For this reason, the difficult part of this optimization
is due to this constraint, not due to the (rather simple) objectives. This problem
has shown to be NP-complete with growing planning horizon already for a single
energy resource in case of step-control resources [8].

72 J. Bremer and S. Lehnhoff

4 Algorithm for Step-Control

When optimizing the schedule for an energy resource (or an ensemble of devices),
the recursive dependencies on prior decisions turns out to be problematic for the
definition of a neighborhood relation between different solutions. The domain
of xi depends on the assignments of (x1, . . . , xi−1), because the operation of
the sub-schedule (x1, . . . , xi−1) has an impact on the feasible operational phase-
space for xi of the device. It is an NP-complete problem in itself to construct
the whole feasible search graph in advance.

Thus, we used an ACO approach with each ant equipped with a simula-
tion model of the respective device as a means to ask for possible branches at
each node. In this way, the search graph can be generated locally on demand.
Figure 1(a) shows the general idea of the used search graph.

Fig. 1. Path construction for an operation schedule (top: single resource; bottom: mul-
tiple constraint-coupled resources, 2-dimensional example)

Nodes represent different power levels during each planning interval and are
organized in layers at the beginning of each time period. Each ant has to make its
way from the beginning of the planning horizon to the end. The layers represent
the set of all existing power levels (independent of the current operational state);
the power level for the next time interval within the schedule is chosen at the
beginning of the interval and fixed during the interval. Costs for a time interval
– cf. Eq. 3 – are represented by the chosen power level and some global cost
information; e.g. on energy prices during the interval. Edges are allowed only
in between neighboring layers and are existent just virtually.

Constrained Step-Control of Distributed Energy Resources 73

For path – and thus solution construction – each ant starts at time t0 with
the power level given be the initial operation state of the energy resource. At
each layer the path taken so far is passed to the simulation model to calculate
the feasible choices for the current decision for the next edge to a new power
level. Each ant walks from layer to layer and knows the so far covered path; the
simulation model calculates based on initial state and path a selection of feasible
power levels (subset of feasible edges) for the next time interval; the ant choses
from this selection and moves on the next layer. Edges materialize real only after
the simulation model acknowledges feasibility based on the ants previous path.
In this way, feasibility of constructed paths (representing an operation schedule
for the energy resource) is ensured.

The graph of feasible schedules is obviously not complete as often the case
in ACO algorithms. The graph of feasible schedules is a k-partite graph

V = V1, . . . , V|T | , with (5)

Vi = {((PTi

G1
)1 . . . (PTi

Gm
)1), . . . , ((PTi

G1
)k . . . (PTi

Gm
)�)}, (6)

whose edges all point towards immediate future time intervals:

∀i < |T | • {(v, v′) | v ∈ Vi+1 ∧ v′ ∈ Vi} = ∅. (7)

Each node set Vi consists of different compositions of power levels that are oper-
able during interval Ti, where Vi ⊆ M is a subset of the set of all theoretically
compositions M:

M = {(PG1
i1

. . . PGm
im

) | 0 < ij ≤ PGi , 0 < j ≤ |G|}. (8)

M corresponds to the set of virtual nodes. Which nodes Vi become existent
for ant A and are thus reachable must always be evaluated based on current
operational state and so far covered path (course of previously operated power
levels). Each time an ant has decided on a power level for a planning interval
Ti it moves along this edge and then involves the simulation model to discover
possible branches for time interval Ti+1; cf. Fig. 1(a). The simulation model
(already parametrized with the initial state at T0) is passed the previous path
of the ant (P1, . . . , Pi) and returns a set of feasible power modes (or respectively
a set of possible absolute power values). This set constitutes possible new edges
xij pointing from the i-th power level in time interval Ti to the j-th power level
in Ti+1. The weight of each of these new edges results from the electric power
and the given cost for this time interval. A decision for an edge from the set of
power levels is made by calculating a probability for each edge xij :

P (xij) =
τα
ij · νβ

ij∑
k∈IVi τα

ik · νβ
ik

(9)

By taking into account the amount of pheromone associated to xij and a priority
rule (e.g. use the highest power level as in a greedy approach this would promise

74 J. Bremer and S. Lehnhoff

the highest profit), a local search is induced. A weighting of both rules is given
by α and β. According to these probabilities the next edge is chosen by wheel
selection. With a given probability an alternative rule is used [13]. This rule
uses the maximum product of priority and pheromone (maxj∈IVi (τα

ij · νβ
ij)) as

criterion and allows for searching the immediate neighborhood.
It may occur that an ant finds itself in a dead-end and the simulation model

is not able to find any feasible power level. In this case, something in the previous
path has to be changed to go further. For this reason we integrated a classical
back tracking as rollback. In case of a dead end, the last edge is removed for
the ant’s path and from the previous set of feasible power levels. Then, another
decision is made with the removed set but with the same mechanisms. If the set
is empty this is again treated as a dead-end and triggers another step backward.

After each ant has constructed a path (representing an operation schedule
denoting electric power for each time interval), all paths are evaluated. The κ
best ants are selected to deposit pheromone on the trail:

τij = τij · (1 − ρ) + ρ ·
{

1
F (x) ∀(i, j) ∈ x

0 ∀(i, j) /∈ x
. (10)

Parameter ρ controls evaporation. As the search graph is not known in advance,
we cannot use a static data structure for deposition. Instead we used maps for
each time interval containing the edges as key-value-pairs, with a default value
of zero if an edge has so far not been present in the map. The key for edge
identification is composed of both power-levels ij.

In case the given problem instance comprises more than on energy resource
and each energy resource cannot be optimized individually due to a joint con-
straint, the approach can easily be extended to a higher-dimensional graph for
an ensemble of more than just one energy resource, as shown in Fig. 1(b).

5 Results

For testing the algorithm, we used the simulation model of a co-generation
plant that has already been evaluated and proved useful in several projects
[20,27,29]. This model comprises a micro CHP with 4.7 kW of rated electrical
power (12.6 kW thermal power) bundled with a thermal buffer store. Constraints
restrict power band, buffer charging, gradients, min. on and off times, and satis-
faction of thermal demand. Thermal demand is determined by simulating losses
of a detached house (including hot water drawing) according to given weather
profiles. Electric power feed-in is either zero (off) or between 1.3 and 4.7 kW.
This operational range is always divided into m equidistant discrete power lev-
els resulting in m + 1 operation modes in total.

The parameters of our algorithm (weighting of pheromone and priority rule
α, β; priority rule share γ, share of depositing ants κ, evaporation ρ, min. phe-
romone μ) have been tuned in advance by using a Halton sequence [17,25] for
random search. If not otherwise stated, 10 ants were used in each run.

Constrained Step-Control of Distributed Energy Resources 75

0 200 400 600 800
10−0.6

10−0.4

10−0.2

100

iteration

er
ro
r

Fig. 2. Convergence of different runs for a 96-dimensional load-balancing problem for
a 4-modes co-generation plant (known optimum: zero).

We use two scenarios: (1) load balancing and (2) variable energy pricing. In
scenario one the objective is to minimize the distance between the operation
schedule x ∈ Z

n and a wanted (probably market given) target schedule ζ ∈
Z

d. As Π(x) and ζ denote the generated and the wanted amount of energy
(or equivalently the mean electrical power) for n succeeding time intervals, any
distance measure would do. We used | · |2 during optimization. In scenario two,
a time varying tariff c ∈ R

n is given denoting the energy price for each of the n
time intervals. Thus, the objective is to minimize the overall cost

Π(x) ◦ c → min (11)

or for generators (in order to maximize profit)

n∑

i=1

(cmax − ci) · Π(xi) → min . (12)

For all simulations, models of the co-generation plant with random initial
state have been integrated into the algorithm. Figure 2 shows as a first example
the convergence of different runs for a 96-dimensional load balancing scenario.
The given budget was 1000 iterations resulting in max. 10.000 objective evalua-
tions. The residual error denotes the mean absolute error in power feed-in.

Co-generation plants with a controller that allows a more fine-grained power
control are easier to plan although the search space grows significantly with the
number of power levels per time interval. On the other hand, the relation of
feasible to infeasible space becomes advantageous with more power levels. Thus,
as the tricky part is ensuring feasibility of solutions, planning becomes easier
with fine-grained control. In fact, with a continuous controller, the problem is
no longer NP-hard. Table 1 shows the impact of the number of power levels on
the solution quality with a fixed budget of evaluations. Table 2 shows the impact
of the number of used ants (with a fixed number of iterations).

76 J. Bremer and S. Lehnhoff

Table 1. Impact of the number of power levels that the device controller may pilot
(for a 32-dimensional load balancing scenario and a budget of 1000 iterations).

of op. modes Error (d1 on schedule) Mean abs. error/ kW

2 4.5 × 10−1 ± 4.218 × 10−2 5.85 × 10−1 ± 5.484 × 10−2

3 9.438 × 10−2 ± 7.016 × 10−2 1.354 × 10−1 ± 9.757 × 10−2

4 2.423 × 10−2 ± 3.841 × 10−2 2.853 × 10−2 ± 4.521 × 10−2

5 1.02 × 10−2 ± 2.502 × 10−2 9.247 × 10−3 ± 2.282 × 10−2

6 4.557 × 10−3 ± 1.288 × 10−2 4.31 × 10−3 ± 1.109 × 10−2

7 3.989 × 10−3 ± 1.401 × 10−2 2.748 × 10−3 ± 9.461 × 10−3

Table 2. Impact of the number of ants (for a 96-dimensional load balancing scenario,
4 power levels fixed, and a budget of 1000 iterations).

of ants Error (d1 on schedule) Mean abs. error/kW

2 4.23 × 10−2 ± 3.63 × 10−2 4.715 × 10−2 ± 4.05 × 10−2

5 2.958 × 10−2 ± 2.85 × 10−2 3.349 × 10−2 ± 3.323 × 10−2

10 3.827 × 10−2 ± 3.374 × 10−2 4.394 × 10−2 ± 3.943 × 10−2

15 3.827 × 10−2 ± 2.59 × 10−2 4.476 × 10−2 ± 3.206 × 10−2

20 3.168 × 10−2 ± 2.675 × 10−2 3.572 × 10−2 ± 3.121 × 10−2

50 3.419 × 10−2 ± 2.266 × 10−2 3.928 × 10−2 ± 2.836 × 10−2

Next, we compared the ACO approach with the covariance matrix adap-
tion evolution strategy (CMA-ES) [18,32]. CMA-ES is a well-known evolution
strategy for solving multi modal black box problems and has demonstrated excel-
lent performance [19] especially for non-linear, non-convex black-box problems.
CMA-ES improves its operations by harnessing lessons learned from previously
successful evolution steps for future search directions. A new population of solu-
tion candidates is sampled from a multi variate normal distribution N (0,C)
with covariance matrix C which is adapted such that it that it maximizes the
occurrence of improving steps according to previously seen distributions for good
steps. Sampling offspring is weighted by a selection of solutions of the parent
generation. In a way, the method learns a second order model of the objective
function and exploits it for structure information and for reducing calls of objec-
tive evaluations. In order to use CMA-ES for this non-linear discrete problem,
we relaxed it to an equidimensional continuous search space and rounded the
results back to Z. The constraints for co-generation plant operation were inte-
grated using a classical penalty approach [38], by adding a penalty term to the
objective reflecting the inverse length of the feasible part of a solution sched-
ule. A second penalty reflecting infeasible power levels improved the result. The
weighting for the scalarization of the objectives has again been tuned using Hal-
ton sequences. For algorithm parametrization we relied on the recommendations
from [38] giving recommendations for a wide range of applications.

Constrained Step-Control of Distributed Energy Resources 77

16 48 96

0

0.2

0.4

0.6

0.8

of intervals

er
ro
r

(a)

48 96 192

0

0.2

0.4

0.6

0.8

of intervals

er
ro
r

(b)

Fig. 3. Comparison of ACO (light gray) and CMA-ES (dark gray) for problems with
different dimensionality. Figure 3(a) shows examples with a budgt of 20000 objective
evaluations, Fig. 3(b) shows examples with a budget of 106 evaluations.

Table 3. Resulting share of feasible results (and intervals) from the experiments in
Fig. 3.

Budget # of intervals Feasible schedules Feasible intervals

20000 16 84% 95%

48 12% 61.2%

96 0% 30.5%

106 48 24% 68.42%

96 0% 33.04%

192 0% 13.54%

Figure 3 shows two results with budgets of 20000 Fig. 3(a) and 106 Fig.
3(b) objective evaluations. Both algorithms have been tested on load balancing
problems with different dimensions. As can be seen, the ACO performs bet-
ter probably because the ACO may construct feasible solutions in a systematic
manner whereas CMA-ES is just guided by the degree of feasibility calculated
afterwards. This is also reflected in the results from Table 3 showing the respec-
tive feasibility of the found results. The ACO approach yields a share of 100%
feasible results regardless of the dimension of the problem. CMA-ES achieves an
acceptable share of feasible results only for low-dimensional problems. Signifi-
cantly increasing the budget of objective evaluations improves the result but still
fails for higher dimensional problems. For the quite usual problem of planning
one day with 15-min. resolution (96 dimensions), CMA-ES fails completely. We
have tested other standard heuristics with even worst results.

Figure 4 shows some example runs for a multi-plant scenario. Here, 10 co-
generation plants are controlled by ants at the same time. Finally, two example
results on time varying energy prices are shown in Fig. 5; 5(a) shows an example
with two peak prices in the morning and the evening, Fig. 5(b) shows the example

78 J. Bremer and S. Lehnhoff

2 4 6 8

·105

100

101

102

iteration

er
ro
r

Fig. 4. Example runs for scenarios with 10 concurrently controlled co-generation plants.

0 20 40 60 80 100
0

2

4

6

8

10

Ti

po
w

er
le

ve
l

schedule

5

10

15

20

25

30

35

en
er

gy
pr

ic
e/

C
en

t

schedule
tariff

(a)

0 20 40 60 80 100
0

2

4

6

8

10

Ti

po
w

er
le

ve
l

schedule

5

10

15

20

25

30

35

en
er

gy
pr

ic
e/

C
en

t

schedule
tariff

(b)

Fig. 5. Time varying energy prices and resulting altered energy feed-in.

of a photovoltaics dominated regime with the aim of shifting other feed-in to the
dark hours. In both cases feed-in is successfully altered to the more profitable
hours except the early hours of the day where the empty buffer store had to be
charged to gain enough flexibility for the rest of the day.

6 Conclusions

The control paradigm shift towards smartly connected small and distributed
energy resources within the electricity grid entails new challenges to algorith-
mic control. Optimizing and orchestrating step-controlled devices in day-ahead
scheduling is NP-hard already for single devices with growing number of time
intervals within the planning horizon. Providing ancillary services for power con-
ditioning (like voltage or frequency control) require even shorter periods and thus
induce higher-dimensional optimization problems in the future. New types of
generation units and controllable consumers entail new difficulties in constraint-
handling especially if some buffer technology for intermediate energy storage
does not allow for an independent consideration of different time intervals.

Constrained Step-Control of Distributed Energy Resources 79

We proposed and ant colony based approach with model integration for
constraint-handling. By integrating a model of the planned energy resource,
ants may decide while already constructing their path in the search graph on
feasible further directions. The feasible graph – whose construction would also
be NP-hard – does not have to be known in advance. Simulation result rendered
this approach valid, competitive and sufficiently fast.

References

1. Beaudin, M., Zareipour, H.: Home energy management systems: a review of mod-
elling and complexity. Renew. Sustain. Energy Rev. 45, 318–335 (2015). https://
doi.org/10.1016/j.rser.2015.01.046

2. Behrangrad, M.: A review of demand side management business models in the
electricity market. Renew. Sustain. Energy Rev. 47, 270–283 (2015). https://doi.
org/10.1016/j.rser.2015.03.033

3. Boynuegri, A.R., Yagcitekin, B., Baysal, M., Karakas, A., Uzunoglu, M.: Energy
management algorithm for smart home with renewable energy sources. In: 4th
International Conference on Power Engineering, Energy and Electrical Drives, pp.
1753–1758 (2013)

4. Bremer, J., Lehnhoff, S.: A decentralized PSO with decoder for scheduling dis-
tributed electricity generation. In: Squillero, G., Burelli, P. (eds.) EvoApplications
2016. LNCS, vol. 9597, pp. 427–442. Springer, Cham (2016). https://doi.org/10.
1007/978-3-319-31204-0 28

5. Bremer, J., Lehnhoff, S.: Hybridizing S-metric selection and support vector decoder
for constrained multi-objective energy management. In: Madureira, A.M., Abra-
ham, A., Gandhi, N., Varela, M.L. (eds.) HIS 2018. AISC, vol. 923, pp. 249–259.
Springer, Cham (2020). https://doi.org/10.1007/978-3-030-14347-3 24

6. Bremer, J., Rapp, B., Jellinghaus, F., Sonnenschein, M.: Tools for teaching
demand-side management. In: EnviroInfo (1), pp. 475–483. Shaker Verlag, Aachen
(2009)

7. Bremer, J., Sonnenschein, M.: Constraint-handling for optimization with support
vector surrogate models-a novel decoder approach. In: International Conference on
Agents and Artificial Intelligence, vol. 2, pp. 91–100. SciTePress (2013)

8. Bremer, J.: Agenten-basierte simulation des planungsverhaltens adaptiver ver-
braucher in stromversorgungssystemen mit real-time-pricing. Diploma thesis,
C.v.O. Universität Oldenburg, Department für Informatik (Abteilung Umweltin-
formatik), March 2006

9. Capone, A., Barbato, A., Martignon, F., Chen, L., Paris, S.: A power scheduling
game for reducing the peak demand of residential users, October 2013. https://
doi.org/10.1109/OnlineGreenCom.2013.6731042

10. De Angelis, F., Boaro, M., Fuselli, D., Squartini, S., Piazza, F., Wei, Q.: Optimal
home energy management under dynamic electrical and thermal constraints. IEEE
Trans. Ind. Inf. 9(3), 1518–1527 (2013)

11. Deng, R., Yang, Z., Chow, M.Y., Chen, J.: A survey on demand response in smart
grids: mathematical models and approaches. IEEE Trans. Ind. Inf. 11(3), 570–582
(2015)

12. Dethlefs, T., Preisler, T., Renz, W.: Ant-colony based self-optimization for
demand-side-management. In: Weber, C., Derksen, C. (eds.) Proceedings SmartER
Europe Conference. Essen (2015)

https://doi.org/10.1016/j.rser.2015.01.046
https://doi.org/10.1016/j.rser.2015.01.046
https://doi.org/10.1016/j.rser.2015.03.033
https://doi.org/10.1016/j.rser.2015.03.033
https://doi.org/10.1007/978-3-319-31204-0_28
https://doi.org/10.1007/978-3-319-31204-0_28
https://doi.org/10.1007/978-3-030-14347-3_24
https://doi.org/10.1109/OnlineGreenCom.2013.6731042
https://doi.org/10.1109/OnlineGreenCom.2013.6731042

80 J. Bremer and S. Lehnhoff

13. Dorigo, M., Caro, G.D., Gambardella, L.M.: Ant algorithms for discreteoptimiza-
tion. Artif. Life 5(2), 137–172 (1999). https://doi.org/10.1162/106454699568728

14. Dorigo, M., Di Caro, G.: Ant colony optimization: a new meta-heuristic. In:
Proceedings of the 1999 congress on evolutionary computation-CEC99 (Cat. No.
99TH8406), vol. 2, pp. 1470–1477. IEEE (1999)

15. Dorigo, M., Stützle, T.: The ant colony optimization metaheuristic: algorithms,
applications, and advances. In: Glover, F., Kochenberger, G.A. (eds.) Handbook
of Metaheuristics. International Series in Operations Research & Management Sci-
ence, vol. 57, pp. 250–285. Springer, Boston (2003). https://doi.org/10.1007/0-
306-48056-5 9

16. Gellings, C.W., Parmenter, K.E.: Demand-side management. In: Energy Manage-
ment and Conservation Handbook, pp. 399–420. CRC Press (2016)

17. Halton, J., Smith, G.: Radical inverse quasi-random point sequence, algorithm 247.
Commun. ACM 7, 701 (1964)

18. Hansen, N.: The CMA evolution strategy: a comparing review. In: Lozano, J.,
Larranaga, P., Inza, I., Bengoetxea, E. (eds.) Towards a New Evolutionary Com-
putation. Advances on Estimation of Distribution Algorithms, vol. 192, pp. 75–102.
Springer, Heidelberg (2006). https://doi.org/10.1007/3-540-32494-1 4

19. Hansen, N.: The CMA evolution strategy: a tutorial. Technical report (2011)
20. Hinrichs, C., Bremer, J., Sonnenschein, M.: Distributed hybrid constraint handling

in large scale virtual power plants. In: IEEE PES Conference on Innovative Smart
Grid Technologies Europe (ISGT Europe 2013). IEEE Power & Energy Society
(2013). https://doi.org/10.1109/ISGTEurope.2013.6695312

21. Hinrichs, C., Lehnhoff, S., Sonnenschein, M.: A decentralized heuristic for multiple-
choice combinatorial optimization problems. In: Stefan, H., et al. (eds.) Operations
Research Proceedings 2012. ORP, pp. 297–302. Springer, Cham (2014). https://
doi.org/10.1007/978-3-319-00795-3 43

22. Hinrichs, C., Sonnenschein, M.: A distributed combinatorial optimisation heuristic
for the scheduling of energy resources represented by self-interested agents. Int. J.
Bio-Inspired Comput. 10, 69 (2017). https://doi.org/10.1504/IJBIC.2017.085895

23. Khan, A.R., Mahmood, A., Safdar, A., Khan, Z.A., Khan, N.A.: Load forecasting,
dynamic pricing and DSM in smart grid: a review. Renew. Sustain. Energy Rev.
54, 1311–1322 (2016)

24. Koch, S., Zima, M., Andersson, G.: Potentials and applications of coordinated
groups of thermal household appliances for power system control purposes. In:
2009 IEEE PES/IAS Conference on Sustainable Alternative Energy (SAE), pp.
1–8 (2009)

25. Kuipers, L., Niederreiter, H.: Uniform Distribution of Sequences. Dover Books on
Mathematics, Dover Publications (2006)

26. Li, Y., Rezgui, Y., Zhu, H.: District heating and cooling optimization and enhance-
ment - towards integration of renewables, storage and smart grid. Renew. Sustain.
Energy Rev. 72, 281–294 (2017). https://doi.org/10.1016/j.rser.2017.01.061

27. Neugebauer, J., Kramer, O., Sonnenschein, M.: Classification cascades of overlap-
ping feature ensembles for energy time series data. In: Woon, W.L., Aung, Z.,
Madnick, S. (eds.) DARE 2015. LNCS (LNAI), vol. 9518, pp. 76–93. Springer,
Cham (2015). https://doi.org/10.1007/978-3-319-27430-0 6

28. Nieße, A., et al.: Market-based self-organized provision of active power and ancil-
lary services: an agent-based approach for smart distribution grids. In: Proceedings
on Complexity in Engineering (COMPENG), pp. 1–5. IEEE (2012)

https://doi.org/10.1162/106454699568728
https://doi.org/10.1007/0-306-48056-5_9
https://doi.org/10.1007/0-306-48056-5_9
https://doi.org/10.1007/3-540-32494-1_4
https://doi.org/10.1109/ISGTEurope.2013.6695312
https://doi.org/10.1007/978-3-319-00795-3_43
https://doi.org/10.1007/978-3-319-00795-3_43
https://doi.org/10.1504/IJBIC.2017.085895
https://doi.org/10.1016/j.rser.2017.01.061
https://doi.org/10.1007/978-3-319-27430-0_6

Constrained Step-Control of Distributed Energy Resources 81

29. Nieße, A., Sonnenschein, M.: A fully distributed continuous planning approach for
decentralized energy units. In: Cunningham, D.W., Hofstedt, P., Meer, K., Schmitt,
I. (eds.) Informatik 2015. GI-Edition - Lecture Notes in Informatics (LNI), vol. 246,
pp. 151–165. Bonner Köllen Verlag (2015)

30. Nieße, A., Sonnenschein, M., Hinrichs, C., Bremer, J.: Local soft constraints in
distributed energy scheduling. In: Ganzha, M., Maciaszek, L., Paprzycki, M. (eds.)
Proceedings of the 2016 Federated Conference on Computer Science and Informa-
tion Systems. Annals of Computer Science and Information Systems, vol. 8, pp.
1517–1525. IEEE (2016). https://doi.org/10.15439/2016F76

31. Nosratabadi, S.M., Hooshmand, R.A., Gholipour, E.: A comprehensive review
on microgrid and virtual power plant concepts employed for distributed energy
resources scheduling in power systems. Renew. Sustain. Energy Rev. 67, 341–363
(2017)

32. Ostermeier, A., Gawelczyk, A., Hansen, N.: A derandomized approach to self-
adaptation of evolution strategies. Evol. Comput. 2(4), 369–380 (1994)

33. Palensky, P., Dietrich, D.: Demand side management: demand response, intelligent
energy systems, and smart loads. IEEE Trans. Industr. Inf. 7(3), 381–388 (2011)

34. Ramchurn, S.D., Vytelingum, P., Rogers, A., Jennings, N.R.: Putting the ‘smarts’
into the smart grid: a grand challenge for artificial intelligence. Commun. ACM
55(4), 8697 (2012). https://doi.org/10.1145/2133806.2133825

35. Ruiz-Romero, S., Colmenar-Santos, A., Mur-Pérez, F.: Putting the ‘smarts’ into
the smart grid: a grand challenge for artificial intelligence. Renew. Sustain. Energy
Rev. 38, 223–234 (2014). https://doi.org/10.1016/j.rser.2014.05.082

36. Saboori, H., Mohammadi, M., Taghe, R.: Virtual power plant (VPP), definition,
concept, components and types. In: Asia-Pacific Power and Energy Engineering
Conference, pp. 1–4. IEEE (2011)

37. Sarstedt, M., et al.: Standardized evaluation of multi-level grid control
strategies for future converter-dominated electric energy systems. In: at-
Automatisierungstechnik, vol. 67 (2019)

38. Smith, A., Coit, D.: Handbook of Evolutionary Computation, chap. Penalty Func-
tions, p. Section C5.2. Department of Industrial Engineering, University of Pitts-
burgh, USA. Oxford University Press and IOP Publishing (1997)

39. Sonnenschein, M., Stadler, M., Rapp, B., Bremer, J., Brunhorn, S.: A modelling
and simulation environment for real-time pricing scenarios in energy markets. In:
Managing Environmental Knowledge (2006)

40. Yu, T., Kim, D.S., Son, S.Y.: Home appliance scheduling optimization with time-
varying electricity price and peak load limitation. In: The 2nd International Con-
ference on Information Science and Technology, IST, pp. 196–199 (2013)

https://doi.org/10.15439/2016F76
https://doi.org/10.1145/2133806.2133825
https://doi.org/10.1016/j.rser.2014.05.082

Construction Task Allocation Through
the Collective Perception of a Dynamic

Environment

Yara Khaluf1(B) , Michael Allwright2 , Ilja Rausch1 , Pieter Simoens1 ,
and Marco Dorigo2

1 Department of Information Technology, Ghent University - imec, Gent, Belgium
{yara.khaluf,ilja.rausch,pieter.simoens}@ugent.be

2 IRIDIA, Université Libre de Bruxelles, Brussels, Belgium
{michael.allwright,mdorigo}@ulb.ac.be

Abstract. Building structures is a remarkable collective process but its
automation remains an open challenge. Robot swarms provide a promis-
ing solution to this challenge. However, collective construction involves
a number of difficulties regarding efficient robots allocation to the differ-
ent activities, particularly if the goal is to reach an optimal construction
rate. In this paper, we study an abstract construction scenario, where a
swarm of robots is engaged in a collective perception process to estimate
the density of building blocks around a construction site. The goal of this
perception process is to maintain a minimum density of blocks available
to the robots for construction. To maintain this density, the allocation
of robots to the foraging task needs to be adjusted such that enough
blocks are retrieved. Our results show a robust collective perception that
enables the swarm to maintain a minimum block density under different
rates of construction and foraging. Our approach leads the system to
stabilize around a state in which the robots allocation allows the swarm
to maintain a tile density that is close to or above the target minimum.

1 Introduction

Building structures are among the most remarkable production processes we
humans undertake. However, it is both costly and time-consuming. Consequently,
integrating robots into construction processes can be of great benefit. Social
insects provide important examples of collective behaviors such as creating large
complex structures. These stem from simple behaviors of agents without cen-
tralized control or pre-planning. One prominent example is termites: millions of
small insects successfully self-organize to build massive, complex mounds that
sometimes exceed 12 m in height.

Inspired by natural swarms, researchers have started looking into swarm
robotics systems that are able to construct increasingly complex structures [1,
2,38]. Similar to social insects, construction by a robot swarm involves agents
arranging building materials in an environment to form structures. To do so, usu-
ally robots coordinate through stigmergy. In contrast to direct communication,
c© Springer Nature Switzerland AG 2020
M. Dorigo et al. (Eds.): ANTS 2020, LNCS 12421, pp. 82–95, 2020.
https://doi.org/10.1007/978-3-030-60376-2_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-60376-2_7&domain=pdf
http://orcid.org/0000-0002-5590-9321
http://orcid.org/0000-0002-0932-3215
http://orcid.org/0000-0002-9170-3021
http://orcid.org/0000-0002-9569-9373
http://orcid.org/0000-0002-3971-0507
https://doi.org/10.1007/978-3-030-60376-2_7

Collective Perception in a Dynamic Construction Environment 83

stigmergy enables the coordination of the agents’ activities through changing
their shared environment [5,8,32]. Upon sensing such environmental changes,
the agents conclude their next activity. For example, the availability of building
material provides a cue for robots, triggering their decision-making process. Nev-
ertheless, in some situations, stigmergy may not be a sufficient or appropriate
means of communication; in these cases, direct communication becomes neces-
sary to exchange particular pieces of information for successful task completion.

We base our study on the Swarm Robotics Construction System (SRoCS) [3],
a simulation of which is shown in Fig. 1(a). In this system, robots use computer
vision to monitor other robots’ actions, and based on these observations, they
perform predefined construction actions that advance to complete a partially
built structure. In this paper, we consider a scenario where a swarm is divided
into two groups of robots. The first group is responsible for exploring the envi-
ronment, finding building material in form of building blocks, and transporting
it to the construction site. This behavior is referred to as the foraging task. The
second group is responsible for assembling the foraged blocks into a structure.
This behavior is referred to as the construction task. We consider two groups of
robots since some robots must remain in the cache area over extended periods
of time to estimate the tile density. This estimation is paramount to effectively
allocating the robots between the foraging and construction tasks.

Fig. 1. A structure being built using the swarm robotics construction system: (a) in
the ARGoS simulator, and (b) an abstraction of the environment with the cache area
(pink), and building blocks (black). (Color figure online)

In this study, we focus on the region surrounding the construction site where
blocks can be temporarily placed for construction. We call this the cache area
(pink in Fig. 1). In order for construction robots to perform their task efficiently,
there must be enough blocks in the cache area. Such blocks are discovered and

84 Y. Khaluf et al.

transported to the cache by the foraging robots. The goal in this study is to main-
tain an amount of blocks that maximizes the rate of construction. To achieve
this, the swarm must find a suitable allocation between the robots adding blocks
to the cache area (i.e., robots in the foraging task) and the robots removing
blocks from the cache area (i.e., robots in the construction task) such that a
certain amount of blocks is always preserved in the cache. To achieve this proper
allocation, the construction robots need to collectively perceive the number of
blocks in the cache area. This estimate helps the individual robots switch to
foraging when the estimate drops below a given threshold, or to continue esti-
mating otherwise. This collective perception process is highly challenging as it is
performed in a dynamic environment, where the number of blocks in the cache
area changes continuously. To address this challenge, we consider an abstraction
of the construction scenario, where we can focus on the collective perception
and decision-making dynamics involved in finding a suitable robots allocation
between the two tasks. We use a homogeneous swarm, in which all robots are
capable of performing either the construction task or the foraging task. The
robots performing the construction task can communicate with each other if they
are within range. Differently, robots performing the foraging task are unable to
interact with the robots in the cache and vice versa. Once a robot switches to
the foraging task, it always returns to the construction task with a new block
after a period of time spent on foraging. Finally, the building material is assumed
to be homogeneous and the maximum rate at which the building blocks can be
attached to a structure is constant throughout the experiment.

The results of our collective perception process show that a swarm can col-
lectively estimate and track the state of a dynamic environment, and use this
information to find a suitable allocation between tasks. Furthermore, we show
how parameters of the task and of the environment influence the accuracy of the
collective perception process. Consequently, we discuss how our controller could
be modified so that it is more resilient to these parameters. The remainder of this
paper is organized as follows. In the next section, we provide a brief overview of
the literature on collective perception and decision-making. In Sect. 3, we detail
the robots’ behavior and the abstract environment in which we evaluate it. In
Sect. 4, we summarize and discuss the key results. We conclude this paper in
Sect. 5. The data generated by this research is available online as a project on
the Open Science Framework.1 This project includes all software components
and documentation required to reproduce and to extend this research [15].

2 Related Work

In robot swarms, collective decision-making has been extensively researched [10,
12,21,22,25,27–29,33,34,37], due to its essential role in a wide range of tasks
including foraging, flocking, and construction. In general, two types of system
outputs are associated with a collective decision-making process: (i) a consensus
in which the swarm agrees on a single option [35], and (ii) a division of the swarm
1 Project on the Open Science Framework: https://osf.io/n7kr3/.

https://osf.io/n7kr3/

Collective Perception in a Dynamic Construction Environment 85

among different tasks—i.e., task allocation—[6,16,19,24]. The goal of the swarm
in the consensus-achievement is to converge as quickly as possible on one option,
referred to as a symmetry-breaking decision [11,18], or to converge on the best
option as quickly as possible, referred to as a value-sensitive decision [9,23]. In
the case of task allocation, the goal of the swarm is to maximize the system
performance by minimizing the idle time of individual robots.

In this study, we tackle a specific process of collective decision-making that is
referred to as collective perception. Collective perception is a process, in which
the robots are engaged in perceiving an environmental stimulus collaboratively
[14,30,31,36]. In general, robots need to perceive particular signals in their envi-
ronments to make decisions based on the perceived values. We assume that the
environments where robot swarms are deployed are large so that the perception
of a single robot is far from sufficient to sense a system-wide stimulus—i.e., a
stimulus that spreads across a large space of the environment. This motivates
the need for collective perception, where robots combine their perceptions in a
distributed manner, and self-organize to act as a single unit.

Collective perception is observed in social insects such as honeybees, where
individuals tend to evaluate, for instance, queuing delays to optimize their task
allocation [26]. Also bee foragers transfer their nectar load to multiple receivers
suggesting the use of this behavior to estimate the environmental nectar flow [13].
These studies inspired collective perception in artificial systems such as robot
swarms. For example, authors in [30] developed a bio-inspired algorithm enabling
a robot swarm to aggregate at two locations, where the size of each group cor-
responds to the size of the selected location. In [36], the authors use a robot
swarm to collectively decide which of two colors is the most represented in a
pattern drawn on arena ground. The algorithm developed in [36] was tested
for benchmarking and generalization in [4] across a larger number of patterns
(nine). Contrary to [36], the authors in [4] find that the difficulty of the collective
perception process doesn’t depend mainly on the ratio of one color to the other,
but on the distribution of each color in the environment. The authors in [7] pro-
posed a distributed Bayesian algorithm to solve the collective perception task of
a similar two-color environment. They define the speed vs. accuracy trade-off of
the collective perception as a multi-objective optimization problem. Addition-
ally, the authors have shown that it is possible to guarantee the accuracy of the
collective perception, at the cost of decision time.

None of the aforementioned algorithms, however, support collective percep-
tion in a dynamic environment, where the perceived features change over time.
Dynamic environments impose a serious challenge to collective perception algo-
rithms, i.e. the rate at which the swarm reaches a consensus vs. the rate at which
the environment changes. Also, contrary to other algorithms, our collective per-
ception algorithm attempts to estimate absolute values of the perceived feature
(e.g., the percentage of a particular color), instead of merely providing a decision
on its relative properties (e.g., color x is represented more than color y).

86 Y. Khaluf et al.

3 The Model

We approach the collective construction problem using an abstract model, as
depicted in Fig. 1(b). In the abstract model, we focus on the cache area, in
which building blocks are modeled as 2D tiles. These tiles are moved from the
foraging area to the cache area by robots performing the foraging task. Robots
that are allocated to the construction task, explore the cache area and pick up
tiles (when encountered) and use these to build a structure. We omit the details
of the foraging process, and instead we replace it by a stochastic process that
characterizes the retrieval of tiles. We define a lower-bound density of tiles in the
cache area that we call the target density Γ . This density enables us to minimize
the idle time of constructing robots—i.e., to maximize the construction rate. We
assume the density Γ to be known and provided to the swarm. The goal of the
swarm is to allocate the robots to the foraging and construction tasks so that Γ
is satisfied and maintained in the cache area.

3.1 The Retrieval Process of Tiles

We model the output of the foraging process—i.e., the retrieval of tiles—using
a renewal process. This is a sequence of random variables, which are referred to
as the arrival times, at which a repeating event occurs—i.e., retrieving a tile.
The inter-arrival time is the period between two consecutive events, these in our
study are two consecutive retrieval of tiles. We model these inter-arrival times
by sampling from an exponential distribution with the density function:

fT =
1
λf

e
− 1

λf
T
, (1)

where the parameter λf is the average time a robot spent foraging before return-
ing to the cache area with a new tile. Modeling the inter-arrival times to be
exponentially distributed results in the renewal process to be a Poisson process,
a common way to model arrival events [17,20,39]; therefore, the average number
of tiles retrieved by foraging robots within the time period δt is given by:

〈Mi(δt)〉 = � δt

λf
�Nf−→c(δt), (2)

where Nf−→c(δt) is the number of robots switching from foraging to construction
in the time interval δt. The value of this variable changes over time as a function
of the number of robots in the cache and the estimated and target tile density.

3.2 The Simulated Environment

To evaluate our collective perception process, we use the ARGoS simulator to
create a 4 × 4 m2 arena that is divided into 2500 tiles. We run experiments with
80 robots that can drive around the arena, avoid obstacles such as walls and each
other, sense whether or not they are driving over a shaded tile, and communicate

Collective Perception in a Dynamic Construction Environment 87

with each other over wifi. We restrict the communication distance of the robot
to be a maximum of one meter to prevent global communication in the swarm.

We simulate a robot switching to the foraging task by removing it from the
simulation and setting up a countdown timer that is initialized following Eq. (1).
The mean of this distribution λf in Eq. (1) is one of the key parameters which
we vary in our experiments. Once the timer reaches zero, we simulate the robot
switching back to the construction task by adding it back into the simulation.
Using this strategy, the foraging robots are unable to communicate with the
robots performing the construction task, which is consistent with our scenario.

When a robot returns from the foraging task, a cell in the arena is shaded
to represent the tile this robot retrieved. We follow a probabilistic approach to
place the retrieved tile in the cache. Our approach has the effect of creating
clusters of tiles in the cache area (see Fig. 2). This is achieved by increasing the
probability to select a candidate location x by a factor of κ = 5 for each tile that
is adjacent (max. 8 tiles) to the location x. Hence candidate locations with more
tiles in the neighborhood have a higher probability to be selected. Performing
construction—i.e. removing a block from the cache and attaching it to a hypo-
thetical structure—is simulated by a tile being unshaded. This transition occurs
whenever a robot moves off a tile and onto another tile. The maximum number
of tiles that can be unshaded per second is the construction limit ξc, which is
another key parameter that we vary in our experiments. A full simulation run
with default parameters is hosted on Open Science Framework.2

Fig. 2. Screenshot of a simulation in the cache that shows the tiles clustering effect.
The magenta lines represent the communication links between the robots.

3.3 The Robot Behavior

A robot moves through the cache in a straight line unless it encounters an
obstacle. In case of an obstacle, the robot turns on the spot until its heading is
2 Complete run of a simulation (video): https://osf.io/6mgys/.

https://osf.io/6mgys/

88 Y. Khaluf et al.

clear. When the robot is not avoiding obstacles, it samples the ground beneath
it to determine whether it is on top of a tile. The robot keeps track of the total
number of samples it has taken and the number of times a sample was taken
on a tile. In addition to these counts, the robot’s memory also contains a table
that records these counts received from the robot’s neighbors. An entry in this
table contains three fields: (i) the neighbor’s total number of samples, (ii) the
neighbor’s number of samples taken over a tile, and (iii) a time-to-live value that
is used to drop the neighbor’s entry from the table when its value reaches zero.

At each time step, a robot adjusts the table in its memory by decrementing
the time-to-live field for each entry. It then sends this table with an additional
entry, representing its sample counts, to all of the robot’s direct neighbors. The
time-to-live value in this additional entry is initialized to its maximum value.
When a direct neighbor receives this information, it updates its table by replacing
the contents of each neighbor’s entry with the one with the highest time-to-live
value found among the existing entries in its table and the entries from the
received messages. In this way, each robot always has the most up-to-date entry
for each robot that it has recently communicated with. This time-to-live value
is also used to avoid loops and to prevent duplicate entries in a robot’s table.

After a robot has updated its table, it uses both its local sample counts and
the sample counts from its neighbors to estimate the tile density. To compute
this estimate 〈γi(t)〉 the robot i constructs a weighted average, in which the con-
tribution of each entry (neighbor j’s information) is weighted by (i) the number
of samples that neighbor has taken and (ii) the hop distance of that neighbor
(calculated from the time-to-live field). This average includes i’s own sample
counts weighted by the number of samples i took and a hop distance of one.

〈γi(t)〉 =
ωi(t)γi(t) +

∑
j∈Ni

ωj(t)γj(t)
ωi(t) +

∑
j∈Ni

ωj(t)
, (3)

where Ni is the set of robot i’s direct neighbors, and γi(t) is the tile density
measured locally by robot i and defined as:

γi(t) =
ci(t)
si(t)

(4)

where ci(t) is the number of samples taken by robot i while driving over tiles,
and si(t) is the total number of samples taken by robot i. The weight ωi assigned
to the locally-measured density by robot i in Eq. (3) is defined as:

ωi(t) = si(t)hij(t) (5)

where hij(t) is the hop distance between robot i and robot j. The weighted
average increases the influence of robots that have sampled larger areas of the
arena and that are further away. The latter weighting makes the swarm more
resilient against over-estimating the tile density which would otherwise occur
due to the clustering of tiles.

After estimating the density of tiles, each robot i decides probabilistically to
switch from the construction to the foraging task, as long as 〈γi(t)〉 is lower than

Collective Perception in a Dynamic Construction Environment 89

the target density Γ . The switching probability Prc−→f
i (t) of robot i at time step

t is proportional to the difference between robot i’s estimate and Γ :

Prc−→f
i (t) =

{
η|Γ − 〈γi(t)〉| if〈γi(t)〉 < Γ

0 otherwise,
(6)

where η is a design parameter used to keep Prc−→f
i (t) in the interval [0, 1].

4 Results and Discussion

We have investigated the performance of the collective perception process as well
as the robots’ task allocation for different experiment configurations. Specifically,
our results were obtained over the following set of parameters: (i) the mean for-
aging time λf (tested values λf ∈ {5, 10, 20}), (ii) the lower-bound of the target
density Γ (tested values Γ ∈ {0.1, 0.3, 0.4}), (iii) the construction limit ξc (tested
values ξ ∈ {5, 10, 20}), and (iv) the constant η in the switching probability as
defined in Eq. (6) (tested values η ∈ {0.1, 0.15, 0.2}). We have published the data
from these experiments online [15]. The evaluation of our approach spans over
four metrics. The first is the time trajectory of the density of tiles ρgt(t), which
is the ground truth; the second is the time trajectory of the swarm estimate
ρs(t); the third is the time evolution of the individual deviation from the swarm
estimate of the tile density: Δi(t) = |〈γi(t)〉 − ρs(t)|; and the fourth illustrates
how the robots allocation to construction and foraging evolves over time. We
run all experiments for 2 500 s (12 500 time steps) with a swarm size of 80 robots
and average the results of each experiment across 30 runs. In the following we
discuss our findings over a subset of the parameters’ tested values.

Let us start with the first metric, tile density. Figure 3 shows that the swarm
was able to increase the tile density in the cache area and keep it above the target
density Γ for Γ ∈ {0.3, 0.4}. The swarm estimate is initially in full agreement
with the ground truth as both start at 0 tiles. Over time, the swarm estimate
ρs(t) stabilizes around the target density Γ , with a minority of robots (see the
standard deviation) estimating the tile density to be higher than Γ . This minor-
ity acts to reduce the number of robots sent to retrieve tiles, while the majority
acts to increase this number, leading the ground truth to a value higher than
the target density. The interplay of these two groups in the swarm causes both
the swarm estimate and ground truth to stabilize with the ground truth higher
than the swarm estimate. We also notice that increasing the mean foraging time
(λf ∈ {10, 20}) leads to a slower increase in ρgt(t). This is because higher values
of λf imply longer periods between the retrieval of tiles, on average. Further-
more, we see that for a specific target density Γ , ρs(t) seems to be maintained
across different values of λf and ξc. This suggests that the collective perception
process is relatively robust to both parameters. This robustness implies that
our algorithm is suitable for real-world construction tasks, where complicated
foraging that takes longer to find building materials, or prolonged assembly of
building material does not affect the collective perception performance.

90 Y. Khaluf et al.

(a) (b)

Fig. 3. Tile density for η = 0.2 and target density (a) Γ = 0.3 and (b) Γ = 0.4: swarm
estimate ρs(t), ground truth ρgt(t) (averaged across 30 runs).

(a) (b)

Fig. 4. Average individual deviation 〈Δi(t)〉 from swarm estimate ρs(t) for η = 0.2
and target density (a) Γ = 0.3 and (b) Γ = 0.4 (averaged across 30 runs).

Figure 4 illustrates the mean individual deviation 〈Δi(t)〉 from the swarm
estimate for different target densities Γ ∈ {0.3, 0.4}, mean foraging times
λf ∈ {10, 20}, and construction limits ξc ∈ {10, 20}. Our results show robust-
ness of the individual deviation with regard to changes in these parameters,
with a maximum average deviation of 0.15 (〈Δi(t)〉 ≤ 0.15). Such a small vari-
ance 〈Δi(t)〉 indicates a strong agreement between the individual and the group
estimate.

Collective Perception in a Dynamic Construction Environment 91

(a) (b)

Fig. 5. Fraction of foraging robots for η = 0.2 and target density (a) Γ = 0.3 and
(b) Γ = 0.4 (averaged across 30 runs).

Finally, Fig. 5 shows the fraction of robots allocated to foraging over time.
At the beginning, all 80 robots are in the cache area for all experiment config-
urations. Thus, initially, there is a jump in the number of robots leaving from
the construction task to the foraging task. This jump is due to the low swarm
estimate ρs(t) of the tile density during the first 100 s of the experiments (see
Fig. 3). During this initial period, the estimate ρs(t) of the swarm remains con-
sistently below the target density. Hence the condition 〈γi(t)〉 < Γ is true for
a large majority of the robots, that then switch to the foraging task following
Eq. (6) with a relatively high probability. The magnitude of the spike increases
with the mean foraging time λf . This is due to the longer time it takes for the
robots to arrive back from the foraging area, and thus for the tile density and the
swarm estimate to rise. Nevertheless, as soon as the swarm estimate stabilizes
and the ground truth of tiles in the cache reaches or exceeds its target ρgt(t) ≥ Γ ,
the fraction of the foraging robots starts to drop until it stabilizes, leading the
system into an equilibrium state with respect to the robots allocation. The drop
takes longer time for larger λf . Furthermore, the fraction of robots that continue
foraging is higher for higher Γ values. This is because tiles need to be retrieved
at a faster rate. Additionally, the fraction of foraging robots is higher for larger
λf given the same Γ . This is due to the slower rate of tile retrieval when λf is
larger. Thus, this slower rate pushes more robots to foraging while the robots
that remain in the cache are performing construction and estimating the tile
density 〈γi(t)〉 for a longer time.

5 Conclusions

We studied an abstract scenario of a collective construction process by a robot
swarm in a dynamic environment. In this scenario, we focused on the cache

92 Y. Khaluf et al.

area—i.e., an area that surrounds the construction area—, where blocks are
modeled as tiles that appear through foraging and disappear through construc-
tion. Robots can switch between two tasks: foraging and construction. Foraging
robots explore the foraging area and retrieve the building material, while con-
struction robots conduct a collective perception process to maintain a minimum
tile density in the cache. The details of the foraging task are abstracted away
and it is modeled using a Poisson process which delivers tiles with a specific rate
(1/λf) to the cache. This enabled us to focus on research questions concerning
the design of a task allocation mechanism that exploits collective perception
in a dynamic environment. In future work, we plan to simulate a detailed for-
aging process. The collective perception process aims to assign robots to the
foraging task to increase the tiles retrieval rate whenever the density in the
cache drops below the target density Γ—i.e., the required lower-bound on the
tile density. Robots in the cache rely on both their samples and the samples
of their neighbors to compute an estimate of the tile density. This estimate is
computed as a weighted average that assigns higher importance to (i) robots
that are further away, making the swarm more resilient to over-estimation or
under-estimation due to the clustering of tiles; (ii) robots with larger samples,
as these contributions are more representative. Robots use their estimate from
Eq. (3) to probabilistically decide whether to switch to the foraging task or to
continue estimating/performing the construction task.

Our results show that the proposed collective perception process leads to a
proper robots allocation, which in turn guarantees a minimum tile density in
the cache. This allocation changes as a function of the average time it takes a
robot to find and retrieve a tile λf , and the target density Γ . Furthermore, our
results show a strong agreement between the individual estimate 〈γi(t)〉 and the
swarm estimate ρs(t), with a maximum variance of 0.15. This study is a first
step towards designing collective perception processes in dynamic environments,
in which the perceived feature (e.g., tile density) changes over time and the goal
is to estimate its absolute value. In future work, we plan to study the influence of
the size and update rate of the robots’ memorized samples on the performance
of the perception process. We also intend to extend the proposed algorithm to
enable the swarm to maintain a tile density close to its target.

Acknowledgements. This work is partially supported by the European Union’s Hori-
zon 2020 research and innovation programme under the Marie Sk�lodowska-Curie grant
agreement No. 846009. Marco Dorigo acknowledges support from the Belgian F.R.S.-
FNRS, of which he is a Research Director.

References

1. Allwright, M., Bhalla, N., Dorigo, M.: Structure and markings as stimuli for
autonomous construction. In: Eighteenth International Conference on Advanced
Robotics - ICAR 2017, pp. 296–302. IEEE Press, Piscataway (2017)

Collective Perception in a Dynamic Construction Environment 93

2. Allwright, M., Bhalla, N., Pinciroli, C., Dorigo, M.: Simulating multi-robot con-
struction in ARGoS. In: Dorigo, M., Birattari, M., Blum, C., Christensen, A.L.,
Reina, A., Trianni, V. (eds.) ANTS 2018. LNCS, vol. 11172, pp. 188–200. Springer,
Cham (2018). https://doi.org/10.1007/978-3-030-00533-7 15

3. Allwright, M., Zhu, W., Dorigo, M.: An open-source multi-robot construction sys-
tem. HardwareX 5, e00049 (2019)

4. Bartashevich, P., Mostaghim, S.: Benchmarking collective perception: new task
difficulty metrics for collective decision-making. In: Moura Oliveira, P., Novais, P.,
Reis, L.P. (eds.) EPIA 2019. LNCS (LNAI), vol. 11804, pp. 699–711. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-30241-2 58

5. Bonabeau, E., Dorigo, M., Theraulaz, G.: Swarm Intelligence: From Natural to
Artificial Systems. Oxford University Press, New York (1999)

6. Brutschy, A., Pini, G., Pinciroli, C., Birattari, M., Dorigo, M.: Self-organized
task allocation to sequentially interdependent tasks in swarm robotics. Auton.
Agent. Multi-Agent Syst. 28(1), 101–125 (2012). https://doi.org/10.1007/s10458-
012-9212-y

7. Ebert, J., Gauci, M., Mallmann-Trenn, F., Nagpal, R.: Bayes bots: collective
Bayesian decision-making in decentralized robot swarms. In: International Con-
ference on Robotics and Automation (ICRA) (2020)

8. Garnier, S., Gautrais, J., Theraulaz, G.: The biological principles of swarm
intelligence. Swarm Intell. 1(1), 3–31 (2007). https://doi.org/10.1007/s11721-007-
0004-y

9. Gray, R., Franci, A., Srivastava, V., Leonard, N.E.: Multiagent decision-making
dynamics inspired by honeybees. IEEE Trans. Control Netw. Syst. 5(2), 793–806
(2018)

10. Gutiérrez, A., Campo, A., Monasterio-Huelin, F., Magdalena, L., Dorigo, M.: Col-
lective decision-making based on social odometry. Neural Comput. Appl. 19(6),
807–823 (2010). https://doi.org/10.1007/s00521-010-0380-x

11. Hamann, H., Schmickl, T., Wörn, H., Crailsheim, K.: Analysis of emergent symme-
try breaking in collective decision making. Neural Comput. Appl. 21(2), 207–218
(2012). https://doi.org/10.1007/s00521-010-0368-6

12. Hamann, H., Valentini, G., Khaluf, Y., Dorigo, M.: Derivation of a micro-macro
link for collective decision-making systems. In: Bartz-Beielstein, T., Branke, J.,
Filipič, B., Smith, J. (eds.) PPSN 2014. LNCS, vol. 8672, pp. 181–190. Springer,
Cham (2014). https://doi.org/10.1007/978-3-319-10762-2 18

13. Huang, M., Seeley, T.: Multiple unloadings by nectar foragers in honey bees: a
matter of information improvement or crop fullness? Insectes Sociaux 50(4), 330–
339 (2003). https://doi.org/10.1007/s00040-003-0682-4

14. Khaluf, Y.: Edge detection in static and dynamic environments using robot swarms.
In: IEEE 11th International Conference on Self-Adaptive and Self-Organizing Sys-
tems (SASO), pp. 81–90. IEEE (2017)

15. Khaluf, Y., Allwright, M., Rausch, I., Simoens, P., Dorigo, M.: Construction task
allocation through the collective perception of a dynamic environment (2020).
https://osf.io/n7kr3/

16. Khaluf, Y., Birattari, M., Hamann, H.: A swarm robotics approach to task alloca-
tion under soft deadlines and negligible switching costs. In: del Pobil, A.P., Chinel-
lato, E., Martinez-Martin, E., Hallam, J., Cervera, E., Morales, A. (eds.) SAB 2014.
LNCS (LNAI), vol. 8575, pp. 270–279. Springer, Cham (2014). https://doi.org/10.
1007/978-3-319-08864-8 26

17. Khaluf, Y., Dorigo, M.: Modeling robot swarms using integrals of birth-death pro-
cesses. ACM Trans. Auton. Adapt. Syst. (TAAS) 11(2), 1–16 (2016)

https://doi.org/10.1007/978-3-030-00533-7_15
https://doi.org/10.1007/978-3-030-30241-2_58
https://doi.org/10.1007/s10458-012-9212-y
https://doi.org/10.1007/s10458-012-9212-y
https://doi.org/10.1007/s11721-007-0004-y
https://doi.org/10.1007/s11721-007-0004-y
https://doi.org/10.1007/s00521-010-0380-x
https://doi.org/10.1007/s00521-010-0368-6
https://doi.org/10.1007/978-3-319-10762-2_18
https://doi.org/10.1007/s00040-003-0682-4
https://osf.io/n7kr3/
https://doi.org/10.1007/978-3-319-08864-8_26
https://doi.org/10.1007/978-3-319-08864-8_26

94 Y. Khaluf et al.

18. Khaluf, Y., Pinciroli, C., Valentini, G., Hamann, H.: The impact of agent density
on scalability in collective systems: noise-induced versus majority-based bistability.
Swarm Intell. 11(2), 155–179 (2017). https://doi.org/10.1007/s11721-017-0137-6

19. Khaluf, Y., Rammig, F.: Task allocation strategy for time-constrained tasks in
robots swarms. In: Artificial Life Conference Proceedings, vol. 13, pp. 737–744.
MIT Press (2013)

20. Kim, S.H., Whitt, W.: Choosing arrival process models for service systems: tests of
a nonhomogeneous poisson process. Naval Res. Logist. (NRL) 61(1), 66–90 (2014)

21. Meyer, B.: Optimal information transfer and stochastic resonance in collective
decision making. Swarm Intell. 11(2), 131–154 (2017). https://doi.org/10.1007/
s11721-017-0136-7

22. Montes de Oca, M.A., Ferrante, E., Scheidler, A., Pinciroli, C., Birattari, M.,
Dorigo, M.: Majority-rule opinion dynamics with differential latency: a mecha-
nism for self-organized collective decision-making. Swarm Intell. 5(3–4), 305–327
(2011)

23. Pais, D., Hogan, P.M., Schlegel, T., Franks, N.R., Leonard, N.E., Marshall, J.A.:
A mechanism for value-sensitive decision-making. PloS One 8(9), e73216 (2013)

24. Pini, G., Brutschy, A., Frison, M., Roli, A., Dorigo, M., Birattari, M.: Task par-
titioning in swarms of robots: an adaptive method for strategy selection. Swarm
Intell. 5(3–4), 283–304 (2011). https://doi.org/10.1007/s11721-011-0060-1

25. Prasetyo, J., De Masi, G., Ferrante, E.: Collective decision making in dynamic envi-
ronments. Swarm Intell. 13(3–4), 217–243 (2019). https://doi.org/10.1007/s11721-
019-00169-8

26. Ratnieks, F.L., Anderson, C.: Task partitioning in insect societies. ii. use of queue-
ing delay information in recruitment. Am. Nat. 154(5), 536–548 (1999)

27. Rausch, I., Khaluf, Y., Simoens, P.: Collective decision-making on triadic graphs.
In: Barbosa, H., Gomez-Gardenes, J., Gonçalves, B., Mangioni, G., Menezes, R.,
Oliveira, M. (eds.) Complex Networks XI. SPC, pp. 119–130. Springer, Cham
(2020). https://doi.org/10.1007/978-3-030-40943-2 11

28. Reina, A., Miletitch, R., Dorigo, M., Trianni, V.: A quantitative micro-macro
link for collective decisions: the shortest path discovery/selection example. Swarm
Intell. 9(2–3), 75–102 (2015). https://doi.org/10.1007/s11721-015-0105-y

29. Reina, A., Valentini, G., Fernández-Oto, C., Dorigo, M., Trianni, V.: A design
pattern for decentralised decision making. PloS One 10(10), e0140950 (2015)

30. Schmickl, T., Möslinger, C., Crailsheim, K.: Collective perception in a robot swarm.
In: Şahin, E., Spears, W.M., Winfield, A.F.T. (eds.) SR 2006. LNCS, vol. 4433, pp.
144–157. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-71541-
2 10

31. Strobel, V., Castelló Ferrer, E., Dorigo, M.: Managing byzantine robots via
blockchain technology in a swarm robotics collective decision making scenario.
In: Dastani, M., Sukthankar, G., André, E., Koenig, S. (eds.) Proceedings of the
17th International Conference on Autonomous Agents and Multiagent Systems,
International Foundation for Autonomous Agents and Multiagent Systems, pp.
541–549 (2018)

32. Theraulaz, G., Bonabeau, E.: A brief history of stigmergy. Artif. Life 5(2), 97–116
(1999)

33. Trianni, V., De Simone, D., Reina, A., Baronchelli, A.: Emergence of consensus in
a multi-robot network: from abstract models to empirical validation. IEEE Robot.
Autom. Lett. 1(1), 348–353 (2016)

https://doi.org/10.1007/s11721-017-0137-6
https://doi.org/10.1007/s11721-017-0136-7
https://doi.org/10.1007/s11721-017-0136-7
https://doi.org/10.1007/s11721-011-0060-1
https://doi.org/10.1007/s11721-019-00169-8
https://doi.org/10.1007/s11721-019-00169-8
https://doi.org/10.1007/978-3-030-40943-2_11
https://doi.org/10.1007/s11721-015-0105-y
https://doi.org/10.1007/978-3-540-71541-2_10
https://doi.org/10.1007/978-3-540-71541-2_10

Collective Perception in a Dynamic Construction Environment 95

34. Valentini, G., Hamann, H.: Time-variant feedback processes in collective decision-
making systems: influence and effect of dynamic neighborhood sizes. Swarm Intell.
9(2–3), 153–176 (2015). https://doi.org/10.1007/s11721-015-0108-8

35. Valentini, G.: Achieving Consensus in Robot Swarms. SCI, vol. 706. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-53609-5

36. Valentini, G., Brambilla, D., Hamann, H., Dorigo, M.: Collective perception of
environmental features in a robot swarm. In: Dorigo, M., et al. (eds.) ANTS 2016.
LNCS, vol. 9882, pp. 65–76. Springer, Cham (2016). https://doi.org/10.1007/978-
3-319-44427-7 6

37. Valentini, G., Ferrante, E., Hamann, H., Dorigo, M.: Collective decision with 100
kilobots: speed versus accuracy in binary discrimination problems. Auton. Agent.
Multi-Agent Syst. 30(3), 553–580 (2016)

38. Werfel, J., Petersen, K., Nagpal, R.: Designing collective behavior in a termite-
inspired robot construction team. Science 343(6172), 754–758 (2014)

39. Wolff, R.W.: Poisson arrivals see time averages. Oper. Res. 30(2), 223–231 (1982)

https://doi.org/10.1007/s11721-015-0108-8
https://doi.org/10.1007/978-3-319-53609-5
https://doi.org/10.1007/978-3-319-44427-7_6
https://doi.org/10.1007/978-3-319-44427-7_6

Control Parameter Importance and
Sensitivity Analysis of the Multi-Guide
Particle Swarm Optimization Algorithm

Timothy G. Carolus1(B) and Andries P. Engelbrecht1,2

1 Department of Industrial Engineering, Stellenbosch University,
Stellenbosch, South Africa
t.g.carolus@gmail.com

2 Computer Science Division, Stellenbosch University, Stellenbosch, South Africa
engel@sun.ac.za

Abstract. The multi-guide particle swarm optimization (MGPSO)
algorithm is a multi-objective optimization algorithm that uses multi-
ple swarms, each swarm focusing on an individual objective. This paper
conducts an importance and sensitivity analysis on the MGPSO con-
trol parameters using functional analysis of variance (fANOVA). The
fANOVA process quantifies the control parameter importance through
analysing variance in the objective function values associated with a
change in control parameter values. The results indicate that the inertia
component value has the greatest sensitivity and is the most important
control parameter to tune when optimizing the MGPSO.

1 Introduction

Particle swarm optimization (PSO) [11] performance can be greatly affected by
the apt selection of control parameters [1–4]. Regardless of establishing stan-
dardized values for the control parameters of the PSO, control parameter values
need problem specific tuning to achieve optimal performance for each problem
[2,10]. The tuning process requires a large number of possible control param-
eter configurations to be analyzed, which is a computationally expensive task.
When tuning the control parameters of multi-objective optimization algorithms
(MOAs), the cost of tuning increases.

The multi-guide PSO (MGPSO) is a highly competitive MOA [13]. The
MGPSO assigns a swarm per objective, with each swarm optimizing only that
objective. Additionally, the MGPSO uses an archive shared across the swarms,
which stores previously found non-dominated solutions. An archive guide is
added to the velocity update equation to facilitate knowledge exchange about
previously found non-dominated solutions. The MGPSO has five control param-
eters to tune. Scheepers et al. have shown that performance of the MGPSO is
sensitive to control parameter values, and that the optimal values are problem
dependent [14]. Scheepers et al. derived, via stability analysis, a guideline for

c© Springer Nature Switzerland AG 2020
M. Dorigo et al. (Eds.): ANTS 2020, LNCS 12421, pp. 96–106, 2020.
https://doi.org/10.1007/978-3-030-60376-2_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-60376-2_8&domain=pdf
http://orcid.org/0000-0002-8508-1617
http://orcid.org/0000-0002-0242-3539
https://doi.org/10.1007/978-3-030-60376-2_8

Control Parameter Importance and Sensitivity Analysis of the MGPSO 97

setting control parameter values such that an equilibrium is guaranteed. This
guideline helps to reduce computational expensive tuning.

An alternative to tuning control parameters is to identify which control
parameter(s) is (are) most influential to the performance of the MGPSO. Knowl-
edge of control parameter importance allows for the relocation of parameter tun-
ing resources to control parameters that best influence the overall performance
of the algorithm. The main objective of this paper is to study the relative impor-
tance of each of the MGPSO control parameters. Functional analysis of variance
(fANOVA) [8,16], which is the analysis of the variance of a response relative to
each of the inputs (control parameter configurations), is used to determine the
importance of each of the MGPSO control parameters.

The remainder of the paper is structured as follows: Sect. 2 provides back-
ground concepts of multi-objective optimization. Section 3 outlines the experi-
mental procedure, followed by a discussion of the results in Sect. 4. Section 5
provides concluding remarks.

2 Background

2.1 Multi-Objective Optimization

A multi-objective optimization problem (MOOP) has two or three sub-objectives
[18]. MOAs aim to find solutions as close to the true Pareto-optimal front (POF)
as possible and with as many non-dominated solutions as possible, whilst obtain-
ing an even spread of these solutions. The POF are objective vectors of non-
dominated particle positions. A decision vector x1 dominates another decision
vector x2 if and only fi(x1) ≤ fi(x2) ∀i ∈ {1, · · · ,m} and ∃i ∈ {1, · · · ,m} such
that fi(x1) < fi(x2), assuming minimization of the sub-objectives.

Assuming minimization, a boundary constrained MOOP is defined as

min
x

(f1(x), f2(x), · · · , fm(x)) s.t. xj ∈ [xj,min, xj,max] ,∀j = 1, · · · , n (1)

where m is the number of objectives and x is a particular solution within the
boundaries of the solution space of dimension n.

2.2 Multi-Guide Particle Swarm Optimization

PSO is a population-based search algorithm based on the dynamics of a flock of
birds [11]. Each particle within the swarm retain knowledge of its personal best
and neighbourhood best positions throughout the duration of the search period.
This information is used to update each particle’s position in the search space
through the addition of a velocity vector to its current position vector:

xi(t + 1) = xi(t) + vi(t + 1) (2)

where the velocity is defined for the basic inertia PSO [15] as

vi(t + 1) = wvi(t) + c1r1(t)(yi(t) − xi(t)) + c2r2(t)(ŷi(t) − xi(t)) (3)

98 T. G. Carolus and A. P. Engelbrecht

where xi(t) and vi(t) are the position and velocity vectors of particle i at time
t, respectively. The PSO control parameters are the inertia weight, w, and the
cognitive and social acceleration coefficients given by c1 and c2 respectively. The
personal and neighbourhood best position vectors at time t are given by yi(t)
and ŷi(t), respectively.

The MGPSO algorithm is a PSO algorithm that uses multiple swarms, as
well as a bounded archive to share non-dominated solutions between swarms.
The velocity update equation of the MGPSO is defined as

vi(t + 1) = wvi(t) + c1r1(t)(yi(t) − xi(t)) + λic2r2(t)(ŷi(t) − xi(t))
+ (1 − λi)c3r3(t)(âi(t) − xi(t)) (4)

where r1, r2 and r3 are vectors of random values sampled from a uniform dis-
tribution between 0 and 1; c1, c2 and c3 are the cognitive, social and archive
acceleration coefficients respectively and λi is the archive balance coefficient for
particle i ; λi is selected randomly from a uniform distribution between 0 and 1.

The MGPSO archive stores new non-dominated solutions, given that they
are not dominated by any other solutions in the archive and that the archive is
not full. When the archive has reached its capacity, crowding distance is used to
remove the most crowded non-dominated solution from the archive. The crowd-
ing distance of a particular solution is defined as an estimate of the density of
solutions surrounding that solution [12]. The archive guide, âi(t), is selected from
the archive using tournament selection, usually with a tournament size of 2 or 3
[14]. The solution with the largest crowding distance is selected.

2.3 Stability Analysis

Extensive theoretical analysis of the stability of the standard, single-objective
PSO has been done [6]. An order-1 and order-2 stability analysis of the MGPSO
was done by Scheepers et al. [14], considering the limits

lim
t→∞ E[st] = sE and lim

t→∞ V [st] = sV (5)

where E[st] is the expectation value and V [st] is the variance of a sequence, st.
The stability region of the MGPSO was derived as

0 < c1 + λc2 + (1 − λ)c3 <
4(w + 1)

1 − w + (c21+λ2c22+(1−λ)2c23)(1+w)
3(c1+λc2+(1−λ)c3)2

, |w| < 1. (6)

2.4 Functional Analysis of Variance

fANOVA [16] is a statistical approach used to decompose the variance of response
(objective function) values into additive components associated with each subset
of control parameter values [8].

Control Parameter Importance and Sensitivity Analysis of the MGPSO 99

For a given algorithm A with n control parameters, each with domain Θc, c =
1, · · · , n, the control parameter configuration space of algorithm A is defined as
Θ = Θ1 × · · · × Θn. A complete instantiation of the control parameters for
algorithm A is a vector, θ = (θ1, · · · , θn). Control parameter tuning aims to find
a θi ∈ Θ that optimizes the performance metric m(θi, πj) for a given problem πj .
The performance metric can be any performance aspect relevant to the context
of the algorithm in question. This optimization procedure is applied over all
possible problems (π1, · · · , πk) such that the control parameter configuration,
θi, optimizes the overall performance given by

f(θi) :=
k∑

j=1

m(θi, πj). (7)

The goal of fANOVA is to quantify the variance of the performance measure
that can be attributed to each subset of control parameters. The specific perfor-
mance measure calculated is the marginal predicted performance of algorithm
A for all partial instantiation θφ ∈ Θ of a given model ŷ : Θ → R, i.e.

m̂(θφ) =
1

||ΘT ||
∫

ŷ(θT)dθT (8)

where the size of the complete instantiation is given by ||ΘT || =
∏k

i=1 ||θi|| and
with the calculation performed over each partial instantiation, θT .

fANOVA induces a random forest [5] to predict the value of the performance
measure for a given parameter configuration [8], i.e. m̂(θφ). Each regression tree
defines a partitioning of the configuration space, such that the marginal predic-
tion of the entire forest is the average prediction over each tree.

The importance of each control parameter is interpreted from the fraction of
variance of the model associated with that particular subset of control param-
eters [8]. Control parameters with higher variances are of greater importance,
and should have higher priority in the control parameter tuning process.

3 Experimental Procedure

The MGPSO was executed with 30 particles per swarm. The effects of the control
parameters was evaluated for the following control parameter values in all com-
binations: w ∈ {−1.0,−0.933, · · · , 0.933, 1.0}, c1 ∈ {0.0, 0.0667, · · · , 1.933, 2.0},
φ1 = λc2 and φ2 = (1 − λ)c3 such that λ ∈ {0.0, 0.0667, · · · , 0.933, 1.0} and
c2 = c3 = 2. This produced 31744 control parameter configurations. Each con-
trol parameter configuration was evaluated against Eq. (6) to ensure that the
control parameter configuration is within the theoretical region of order-2 sta-
bility. After performing this check, 19168 control parameter configurations were
found to be within this region and evaluated by the MGPSO. The performance
of the MGPSO was evaluated on the two-objective Walking Fish Group (WFG)
[9] benchmark suite, in a 10 dimensional search space.

100 T. G. Carolus and A. P. Engelbrecht

Each control parameter configuration was evaluated for 30 independent runs
per benchmark problem; each run executed 1000 iterations. The performance
measures (or response values), i.e. the inverted generational distance (IGD) [17]
and the hypervolume (HV) [7], were calculated using the final archive of each
run.

The response values used in the fANOVA procedure were the average objec-
tive function value after 1000 iterations. The control parameter importance was
determined by analysing the variance in the predicted marginal performance, Eq.
(8), with respect to a single objective function at a time. A qualitative analysis of
the control parameter was done using response surfaces. These response surfaces
were generated by plotting the average objective function value of a particular
control parameter and of variations of control parameter configurations, along
with the standard deviation over all the variations.

4 Results

4.1 Variance in Predicted Objective Function Values

Each column in Table 1 represents the results of each control parameter inde-
pendently, respectively with respect to IGD and HV. The results show that the
inertia weight, w, had the greatest variance for all of the problems, for both
performance measures. On average, the inertia weight contributed to 0.085839
of the variance in the IGD and 0.086773 in the HV. The cognitive acceleration
coefficient, c1, is the second most influential control parameter to tune, account-
ing for the second highest variance for most of the benchmark functions with
respect to both IGD and HV.

Both the social and the archive guide components of Eq. (4) are not solely
dependent on a single control parameter, but the product of λc2 and (1 − λ)c3
respectively. Thus these components are analyzed by the products, φ1 and φ2,
respectively. An independent analysis of c2, c3 and λ is not relevant. The results
show that φ2 is on average more important than φ1 with reference to both IGD
and HV. This implies that the contribution from the social component is the least
important to tune. The archive coefficient accounts for 0.008027 and 0.008381 of
the variance with respect to the IGD and HV, respectively. However, for WFG5
and WFG6, the social component is shown to have greater importance than the
archive component. Both these problems have a concave POF.

4.2 Response Surface Analysis

Figures 1, 2, 3, 4, 5, 6, 7 and 8 represent the average performance measure asso-
ciated with particular control parameter configurations, and are referred to as
response surfaces. The solid blue line in each plot is the average performance
measure and the red area indicates one standard deviation above and below.
These figures provide a visual comparison of the control parameter influence
the algorithm performance. A larger variability in average performance (blue

Control Parameter Importance and Sensitivity Analysis of the MGPSO 101

Table 1. The proportion of Variance in IGD and HV

IGD HV

c1 φ1 φ2 w c1 φ1 φ2 w

wfg1 0.010338 0.005814 0.008457 0.049322 0.009925 0.005174 0.006862 0.030629

wfg2 0.014449 0.009283 0.005665 0.041766 0.010825 0.009987 0.007648 0.023400

wfg3 0.012384 0.008313 0.010789 0.031181 0.009756 0.007365 0.009742 0.023252

wfg4 0.013607 0.010366 0.007656 0.029092 0.010888 0.003467 0.007822 0.032223

wfg5 0.009872 0.00993 0.010337 0.335960 0.006032 0.014992 0.011420 0.379226

wfg6 0.008541 0.009025 0.009025 0.042318 0.012243 0.011366 0.007387 0.024050

mean 0.012223 0.008991 0.008027 0.085839 0.009376 0.007849 0.008381 0.086773

std 0.001800 0.001729 0.002303 0.122819 0.001806 0.0044128 0.001831 0.143330

WFG 1 WFG 2 WFG 3

WFG 4 WFG 5 WFG 6

Fig. 1. Average IGD with respect to w. (Color figure online)

line) indicates a greater influence of the particular control parameter on algo-
rithm performance. Similarly, a small standard deviation indicates a low impact
in performance when changing the other control parameters. A large standard
deviation implies the converse.

Figures 1 and 2 present the response surfaces with respect to w. The inertia
weight has the highest variability across all performance measures, which affirms
the results determined by fANOVA. The inertia weight also presents with the
lowest standard deviation, suggesting that the values of c1, φ1 and φ2 has less
impact on the performance than w. The average IGD and HV associated with c1,
represented in Figs. 3 and 4, varies significantly over the domain with a compara-
tively low standard deviation. This large variation in performance implies that c1
has a significant level of importance in MGPSO performance. The low standard
deviation suggests that c1’s importance is not affected by changes in the other

102 T. G. Carolus and A. P. Engelbrecht

WFG 1 WFG 2 WFG 3

WFG 4 WFG 5 WFG 6

Fig. 2. Average HV with respect to w. (Color figure online)

WFG 1 WFG 2 WFG 3

WFG 4 WFG 5 WFG 6

Fig. 3. Average IGD with respect to c1. (Color figure online)

control parameters. An increasing standard deviation for a performance measure
as illustrated in Fig. 3 for c1 or a large standard deviation as seen for φ1 and φ2

is indicative of the nature of the specific type of problem. The average perfor-
mance associated with φ1 and φ1 are constant or slow varying, suggesting that
the social and archive coefficient is of low importance to MGPSO performance.
The multi-modal, concave WFG 4 and WFG 5 show deteriorating performance
with an increase in the value of c1.

Control Parameter Importance and Sensitivity Analysis of the MGPSO 103

WFG 1 WFG 2 WFG 3

WFG 4 WFG 5 WFG 6

Fig. 4. Average HV with respect to c1. (Color figure online)

WFG 1 WFG 2 WFG 3

WFG 4 WFG 5 WFG 6

Fig. 5. Average IGD with respect to φ1. (Color figure online)

104 T. G. Carolus and A. P. Engelbrecht

WFG 1 WFG 2 WFG 3

WFG 4 WFG 5 WFG 6

Fig. 6. Average HV with respect to φ1. (Color figure online)

WFG 1 WFG 2 WFG 3

WFG 4 WFG 5 WFG 6

Fig. 7. Average IGD with respect to φ2. (Color figure online)

Control Parameter Importance and Sensitivity Analysis of the MGPSO 105

WFG 1 WFG 2 WFG 3

WFG 4 WFG 5 WFG 6

Fig. 8. Average HV with respect to φ2. (Color figure online)

5 Conclusions

This study investigated the relative importance of the multi-guide particle swarm
optimization (MGPSO) algorithm control parameters. The MGPSO was initial-
ized under 31744 different control parameter configurations, but evaluated on
the Walking Fish Group (WFG) [9] benchmark functions only for configurations
within the region of stability as proposed by Scheepers et al. [14]. Each con-
trol parameter’s importance was determined using function analysis of variance
(fANOVA).

The inverted generational distance (IGD) and the hypervolume (HV) were
used as performance measures. Results for both measures indicate that the inertia
weight accounts for the greatest influence in variance of the performance measures.
The social component was the least important control parameter. As such, control
parameter tuning efforts for the MGPSO should be focused on adjustment of the
inertia weight, followed by the cognitive acceleration coefficient.

Future research will investigate the importance of the MGPSO parameters for
higher-dimensional objective functions to determine if the importance ranking
will change as the dimensionality of the search landscape increases.

References

1. Beielstein, T., Parsopoulos, K.E., Vrahatis, M.N.: Tuning PSO parameters through
sensitivity analysis. Universitätsbibliothek Dortmund (2002)

2. Van den Bergh, F., Engelbrecht, A.P.: A study of particle swarm optimization
particle trajectories. Inf. Sci. 176(8), 937–971 (2006)

3. Bonyadi, M.R., Michalewicz, Z.: Impacts of coefficients on movement patterns in
the particle swarm optimization algorithm. IEEE Trans. Evol. Computat. 21(3),
378–390 (2016)

106 T. G. Carolus and A. P. Engelbrecht

4. Bratton, D., Kennedy, J.: Defining a standard for particle swarm optimization. In:
2007 IEEE Swarm Intelligence Symposium, pp. 120–127. IEEE (2007)

5. Breiman, L.: Random forests. Machine Learn. 45(1), 5–32 (2001)
6. Cleghorn, C.W., Engelbrecht, A.P.: Particle swarm stability: a theoretical extension

using the non-stagnate distribution assumption. Swarm Intell. 12(1), 1–22 (2017).
https://doi.org/10.1007/s11721-017-0141-x

7. Fonseca, C.M., Paquete, L., López-Ibánez, M.: An improved dimension-sweep algo-
rithm for the hypervolume indicator. In: 2006 IEEE International Conference on
Evolutionary Computation, pp. 1157–1163. IEEE (2006)

8. Hoos, H., Leyton-Brown, K., Hutter, F.: An efficient approach for assessing hyper-
parameter importance. In: International Conference on Machine Learning, pp. 754–
762 (2014)

9. Huband, S., Hingston, P., Barone, L., While, L.: A review of multiobjective test
problems and a scalable test problem toolkit. IEEE Trans. Evol. Computat. 10(5),
477–506 (2006)

10. Jiang, M., Luo, Y., Yang, S.: Stochastic convergence analysis and parameter selec-
tion of the standard particle swarm optimization algorithm. Inf. Process. Lett.
102(1), 8–16 (2007)

11. Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proceedings of ICNN
1995-International Conference on Neural Networks, vol. 4, pp. 1942–1948. IEEE
(1995)

12. Raquel, C.R., Naval Jr, P.C.: An effective use of crowding distance in multiobjective
particle swarm optimization. In: Proceedings of the 7th Annual Conference on
Genetic and Evolutionary Computation, pp. 257–264 (2005)

13. Scheepers, C.: Multi-guided particle swarm optimization: A multi-objective particle
swarm optimizer, unpublished thesis (2017)

14. Scheepers, C., Engelbrecht, A.P., Cleghorn, C.W.: Multi-guide particle swarm opti-
mization for multi-objective optimization: empirical and stability analysis. Swarm
Intell. 13(3), 245–276 (2019). https://doi.org/10.1007/s11721-019-00171-0

15. Shi, Y., Eberhart, R.: The 1998 IEEE International Conference On Evolutionary
Computation Proceedings (1998)

16. Sobol, I.M.: Sensitivity estimates for nonlinear mathematical models. Math. Model.
Comput. Exp. 1(4), 407–414 (1993)

17. Sun, Y., Yen, G.G., Yi, Z.: IGD indicator-based evolutionary algorithm for many-
objective optimization problems. IEEE Trans. Evol. Comput. 23(2), 173–187
(2018)

18. Tapia, M., Coello, C.: Applications of multi-objective evolutionary algorithms in
economics and finance: a survey. In: IEEE Congress on Evolutionary Computation,
pp. 532–539 (2007)

https://doi.org/10.1007/s11721-017-0141-x
https://doi.org/10.1007/s11721-019-00171-0

Dynamic Response Thresholds:
Heterogeneous Ranges Allow

Specialization While Mitigating
Convergence to Sink States

Annie S. Wu1(B) and H. David Mathias2

1 University of Central Florida, Orlando, FL, USA
aswu@cs.ucf.edu

2 University of Wisconsin – La Crosse, La Crosse, WI, USA
dmathias@uwlax.edu

Abstract. We argue that heterogeneous threshold ranges allow agents
in a decentralized swarm to effectively adapt thresholds in response to
dynamic task demands while avoiding the pitfalls of positive feedback
sinks. Dynamic response thresholds allow agents to dynamically evolve
specializations which can improve the responsiveness and stability of a
swarm. Dynamic thresholds that adapt in response to previous experi-
ence, however, are vulnerable to getting stuck in sink states due to the
positive feedback nature of such systems. We show that heterogeneous
threshold ranges result in comparable task allocation and improved sta-
bility as compared to homogeneous threshold ranges, and that simple
static random thresholds should be considered in situations where agent
resources are plentiful.

1 Introduction

In this paper, we show that heterogeneous threshold ranges allow agents in a
decentralized swarm to effectively adapt thresholds in response to dynamic task
demands while avoiding the pitfalls of positive feedback sinks. Response thresh-
old based systems are a biologically inspired approach for generating division of
labor in decentralized swarms [1,2,30]. While static thresholds are able to achieve
effective task allocation [16,19,34], allowing agents to dynamically adapt their
task thresholds over time allows for dynamic specialization which is thought to
improve the responsiveness and stability of a swarm. Dynamic thresholds that
adapt in response to previous experience, however, are vulnerable to getting
stuck in sink states due to the positive feedback nature of such systems [17,30].
We show that varying the threshold ranges of each agent can effectively mitigate
the negative effects of sinks while retaining the benefits of dynamic thresholds.

The response threshold approach is an effective method for generating task
allocation in decentralized robotic swarms. Each agent possesses a threshold for
each task that the agent can potentially take on. An agent’s decision as to which

c© Springer Nature Switzerland AG 2020
M. Dorigo et al. (Eds.): ANTS 2020, LNCS 12421, pp. 107–120, 2020.
https://doi.org/10.1007/978-3-030-60376-2_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-60376-2_9&domain=pdf
https://doi.org/10.1007/978-3-030-60376-2_9

108 A. S. Wu and H. D. Mathias

task, if any, to take on is a function of the agent’s threshold for each task and
the observed task stimuli. This approach is effective in decentralized systems and
is not dependent on inter-agent communication which makes it scalable and use-
ful for problems where stealth is necessary or where agents carry limited power.
Response threshold approaches include both static [11,16,19,27,28,33,34] and
dynamic thresholds [5–10,12,13,17,18,28,30]. Dynamic thresholds are particu-
larly interesting because they allow a swarm to adjust the distribution of its agent
propensities over time. For problems where the distribution of work is not known
in advance or may change over time, this adaptability can potentially make the
swarm more effective. In addition, dynamic thresholds allow agents to specialize
on tasks which improves efficiency by reducing task switching [3,4].

In systems that use dynamic thresholds, agents may adjust their thresholds
in response to external1 [6,14,22–24] or internal factors [20,25,26]. The former
tends to be problem dependent and out of the scope of this paper. We study
the latter approach, specifically, systems modelled on the concept that previous
experience on a task makes an agent more likely to act on that task in the future
[12,21,29,30]. This concept is commonly implemented in the form of a learning
factor that, in each timestep, lowers the threshold of a task on which an agent
is working and a forgetting factor that increases that agent’s threshold for all
other tasks [5,8,28,30]. While agents in such systems can effectively converge
their thresholds into a distribution that meets a given set of task demands, once
converged, these systems often have difficulty undoing an expired distribution
and re-adjusting to new demands if task demands change [17,18]. The positive
feedback structure of this concept results in a tendency for thresholds to evolve
to extreme values which are sink states that are difficult to subsequently evolve
out of.

We hypothesize that heterogeneous threshold ranges can improve the per-
formance of dynamic response threshold systems by reducing the effects of sink
states while still allowing agents to adapt their thresholds and specialize on tasks.
Current dynamic response threshold systems assign the same threshold range to
all agents. This homogeneity means that once convergence occurs, all agents
that have converged will be equally unwilling to revise their thresholds when
task demands change. Heterogeneous threshold ranges would result in conver-
gence to different values, allowing some agents to be more willing to revise their
thresholds than others. In addition, should agents still get stuck in sink states,
the variability in sink states may allow the swarm greater ability to respond to
new task demands than if all agents are stuck in the same sink state.

2 Collective Tracking Problem

We test our hypothesis on a collective tracking problem [33,34] which attempts
to model a collective task allocation problem similar to that of honeybee ther-
moregulation [15,31,32]. Where thermoregulation works in a single dimension
1 External factors include but are not limited to task stimuli and observed actions of

other agents.

Dynamic Response Thresholds: Heterogeneous Ranges Mitigate Convergence 109

with agents selecting from among two tasks, the tracking problem works in two
dimensions with agents selecting from among four tasks.

The collective tracking problem consists of a target that moves in a two
dimensional space and a tracker that is collectively controlled by the swarm.
The goal of the swarm is to push the tracker such that its movement tracks the
target as closely as possible. In each timestep, the individual agents in the swarm
select from one of four tasks – PUSH NORTH, PUSH EAST, PUSH SOUTH,
PUSH WEST – or remain idle. A positive difference between the target and
tracker locations in any direction signifies a task demand in that direction. Each
agent can select to push in, at most, one direction in each timestep. The tracker
movement in each timestep is calculated by aggregating the decisions of all active
agents in that timestep.

The path on which a target moves determines the task demands and how they
change over time. For example, constant movement in the northeast direction
results in constant equal task demands to the north and east in each timestep.
A zigzag path represents task demands that remain stable for a period of time,
but occasionally change significantly and abruptly. Serpentine or circular paths,
on the other hand, represent constant gradual changes in task demands.

The authors acknowledge that there are more effective and efficient methods
to accomplish tracking. We use this collective tracking problem as a testbed
because it is a useful example of a decentralized task allocation problem. As the
target moves through space, positive difference between the target and tracker
in any direction represents a task demand in that direction. The relative number
of agents that select to push in each direction determines the aggregate tracker
movement; hence, accurate self-allocation of agents to tasks is required to meet
task demands. The specification of a target path allows us a systematic way
to define dynamic task demands with specific characteristics. The problem is
designed such that we are able to quantitatively measure the satisfaction of each
task demand individually as well as visually assess the overall performance of
the system by comparing the actual target and tracker paths.

3 System Details

We compare the performance of a dynamic response threshold swarm using
heterogeneous threshold ranges, termed Dynamic-Heterogeneous, against the
performance of two baseline systems. The first baseline system, Dynamic-
Homogeneous, is a dynamic response threshold swarm using homogeneous
threshold ranges. Dynamic-Homogeneous is representative of how most current
dynamic threshold systems work. The second baseline system, Static, is a swarm
with static thresholds.

All three systems consist of a population of n decentralized agents, ai, i =
0, ..., n. Each agent has a separate threshold for each task or direction, {θi,N , θi,E ,
θi,S , θi,W }. These thresholds represent the tolerance of that agent for the corre-
sponding differences, {ΔN ,ΔE ,ΔS ,ΔW }, between target and tracker position.
In a given timestep, if the difference in a direction exceeds the agent’s threshold

110 A. S. Wu and H. D. Mathias

for that direction (if Δj > θi,j), the agent will consider pushing in that direction
for that timestep. If more than one task is triggered for an agent, the agent
randomly selects one of the triggered tasks on which to act. Note that for this
problem, because ΔN = −ΔS and ΔE = −ΔW are always true, not more than
two tasks will ever be triggered at the same time.

Agent thresholds work as follows in the three systems tested. All thresholds
are floating point values. In the two dynamic systems, each threshold, θi,j , has
a range within which it can vary. This range is defined by a minimum, θi,jmin,
and maximum, θi,jmax, value. In the Static system, thresholds are static and
are initialized uniformly randomly to a value between 0 and R, where R is a
user specified parameter indicating the maximum allowed threshold value. In
the Dynamic-Homogeneous system, thresholds are dynamic and all thresholds
can vary within the range specified by θi,jmin = 0 and θi,jmax = R. The initial
value of each threshold is a random value drawn from a uniform distribution
between 0 and R. In the proposed Dynamic-Heterogeneous system, thresholds
are dynamic and all thresholds vary within a unique range. The lower bound of
the range, θi,jmin, is a random value drawn from a uniform distribution between
0 and R

2 . The upper bound of the range, θi,jmax, is a random value drawn from
a uniform distribution between R

2 and R. The initial value of each threshold is a
random value drawn from a uniform distribution between θi,jmin and θi,jmax.

For the two dynamic threshold systems, threshold variation occurs the same
way as seen in previous work [30]. In each timestep, if an agent is working on a
task j, its threshold for that task is decreased by a learning factor ε such that
θi,j = θi,j − ε, and its thresholds for all other tasks are increased by a forgetting
factor ψ such that θi,j = θi,j + ψ, where ε and ψ are user specified parameters.

The tracker movement in each timestep is determined by the number of
agents pushing in each direction in that timestep. Let nj , j ∈ {N,E, S,W} be
the number of agents pushing in direction j in a given timestep. The distance,
dj , that the tracker moves in direction j is given by dj = nj

n × ρ, where ρ is the
step ratio. The step ratio specifies the maximum distance that the tracker can
move relative to the target in one timestep. Thus, if ρ = 2.0, the tracker can
move twice as far as the target in one timestep. If ρ = 0.75, the tracker can move
75% of the distance that the target can move in one time step.

4 Experimental Details

We compare the performance of the three swarm configurations on four problem
scenarios. Each problem scenario is represented as a target path.

– zigzag: Target alternates between moving approximately northeast and mov-
ing approximately southeast.

– scurve: Target moves from west to east in a serpentine pattern.
– sharp: Target direction is randomly initialized. In each timestep, target has

a 5–10% chance of changing to a random new direction; otherwise, target
continues in current direction.

Dynamic Response Thresholds: Heterogeneous Ranges Mitigate Convergence 111

– random: Target direction is randomly initialized. In each timestep, target
direction is changed by an angle drawn from a Gaussian distribution.

Table 1. Fixed parameter settings.

Parameter Value

Population size, n 50

Number of timesteps 500

Maximum threshold range, R 10

Threshold decrease, ε (learning factor) 0.1

Threshold increase, ψ (forgetting factor) 0.033

The zigzag and sharp paths produce significant periods of constant task
demands punctuated by occasional abrupt changes. The scurve and random
paths produce gradually changing task demands. Because of the randomness in
the test problems and system behavior, each experiment is composed of 100 runs.
Unless otherwise specified, the results for each experiment are averaged over all
100 runs.

Table 1 gives the parameter settings that remain fixed throughout all exper-
iments reported here. The threshold decrease, ε, and increase, ψ, values are set
such that total adjusted threshold is conserved; given four tasks, when an agent’s
threshold decreases for one task, it increases by one third of that amount for the
three other tasks. We examine multiple values of step ratio, from ρ = 0.75 to
ρ = 3.0 in increments of 0.25, to examine the impact of agent availability on
system performance.

We evaluate system performance based on three evaluation metrics.

1. Tracker path length: The tracker path length provides a measure of how well
the tracker followed the target path. The target path length in all experiments
reported here is 500. The optimum value for this measure is 500.

2. Average difference: The average difference is the average of the difference
between the target and tracker positions in each timestep of a run. This
measures the average deviation of the target and tracker paths over a run.
The optimum value for this measure is zero.

3. Number of task switches: The number of task switches is the average number
of times that agents change tasks during a run, averaged over all agents in
the swarm. A task switch is defined as switching from one task to another
as well as switching between idle and acting on a task. One of the expected
advantages of dynamic thresholds is that they allow agents to dynamically
specialize to one or fewer tasks. Thus, specialization should result in agents
focusing on a single or fewer tasks, and reduction in the frequency of task
switching. The optimum value for this measure is zero.

112 A. S. Wu and H. D. Mathias

4.1 Results

Figure 1 compares the performance of the three swarm systems with respect to
tracker path length. The top row of plots give the results for the two regular
paths, zigzag and scurve. The bottom row of plots give the results for the two
random or irregular paths, sharp and random. The x-axis of each plot indicates
the step ratio, ρ. The y-axis of each plot indicates tracker path length. The
optimum path length is 500, as indicated by the dashed line.

 100

 150

 200

 250

 300

 350

 400

 450

 500

 550

0.75 1.0 1.25 1.5 1.75 2.0 2.25 2.5 2.75 3.0

Tracker path length: zigzag

P
at

h
le

ng
th

Static
Dynamic-Homogeneous

Dynamic-Heterogeneous

 100

 150

 200

 250

 300

 350

 400

 450

 500

 550

0.75 1.0 1.25 1.5 1.75 2.0 2.25 2.5 2.75 3.0

Tracker path length: scurve

P
at

h
le

ng
th

Static
Dynamic-Homogeneous

Dynamic-Heterogeneous

 100

 150

 200

 250

 300

 350

 400

 450

 500

 550

0.75 1.0 1.25 1.5 1.75 2.0 2.25 2.5 2.75 3.0

Tracker path len: sharp

P
at

h
le

ng
th

Step ratio

Static
Dynamic-Homogeneous

Dynamic-Heterogeneous
 100

 150

 200

 250

 300

 350

 400

 450

 500

 550

0.75 1.0 1.25 1.5 1.75 2.0 2.25 2.5 2.75 3.0

Tracker path len: random

P
at

h
le

ng
th

Step ratio

Static
Dynamic-Homogeneous

Dynamic-Heterogeneous

Fig. 1. Average and 95% confidence interval of the tracker path length, averaged over
100 runs. The optimal path length is 500, as indicated by the dashed line. The confidence
intervals are extremely tight but they are plotted. (Color figure online)

Comparing the two dynamic systems, the red line and the aqua line, we see
that the Dynamic-Homogeneous tracker tends to travel longer paths than the
Dynamic-Heterogeneous tracker. As the step ratio increases (as we have more
extra agents) this difference increases. On the two regular paths, zigzag and
scurve, Dynamic-Homogeneous overshoots more and more as the step ratio
increases. This indicates that more agents than necessary are specializing on
tasks and the swarm is likely repeatedly over-shooting and over-correcting the
tracker path. Once there are sufficient agents to meet task demands, Dynamic-
Heterogeneous and Static both converge gradually toward the optimum path
length without over-shooting as extra agent resources increase. On the irreg-
ular paths, sharp and random, Dynamic-Homogeneous generates path lengths
closer to the optimum path length than Dynamic-Heterogeneous. Examination
of actual paths, however, reveals that both systems generate similar quality

Dynamic Response Thresholds: Heterogeneous Ranges Mitigate Convergence 113

solutions. Figure 2 shows example sharp runs for step ratio 3.0, the value at
which Dynamic-Homogeneous shows the greatest improvement over Dynamic-
Heterogeneous. Both systems track the target similarly well and the extra length
of the Dynamic-Homogeneous path is actually due to over-correction choppiness.

-80

-60

-40

-20

 0

 20

 40

 0 20 40 60 80 100 120

Target
Tracker

-80

-60

-40

-20

 0

 20

 40

-100 -80 -60 -40 -20 0 20

Target
Tracker

Fig. 2. Target and tracker paths. The left plot is an example Dynamic-Homogeneous
run. The right plot is an example Dynamic-Heterogeneous run. Both runs are on the
sharp path and have a step ratio of 3.0.

Figure 3 compares the performance of the three swarm systems with respect
to the average distance between the target and tracker throughout a run. The
x-axis of each plot indicates the step ratio, ρ. The y-axis of each plot indicates
distance. Comparing the two dynamic systems, we see that when the step ratio is
low (there are little or no extra agents), Dynamic-Heterogeneous performs better
than Dynamic-Homogeneous, keeping the tracker closer to the target during the
run. As step ratio increases (the number of extra agents increase), Dynamic-
Homogeneous becomes the better performer. Static continues to perform well
relative to the dynamic systems, achieving the best or close to best performance
of the three. All three systems performed similarly overall; on a path of length
500 units, all three systems maintained average distances within two units or
less of each other for each step ratio value.

Figure 4 compares the performance of the three swarm systems with respect
to the average number of task switches per agent per run. The x-axis of each plot
indicates the step ratio, ρ. The y-axis of each plot indicates number of switches.
In all paths except for zigzag, Dynamic-Homogeneous performs significantly
worse than either Dynamic-Heterogeneous or Static. In the zigzag path, the
performance of the two dynamic systems is similar when the step ratio is low,
and Dynamic-Heterogeneous becomes significantly better as step ratio increases.
Static performs significantly better than either dynamic system on the regular
paths. Static’s advantage is less consistent on the irregular paths where Dynamic-
Heterogeneous outperforms it (undergoes significantly fewer task switches) on
the random path.

114 A. S. Wu and H. D. Mathias

 0

 10

 20

 30

 40

 50

 60

 70

0.75 1.0 1.25 1.5 1.75 2.0 2.25 2.5 2.75 3.0

Average distance apart: zigzag

D
is

ta
nc

e

Static
Dynamic-Homogeneous

Dynamic-Heterogeneous

 0

 10

 20

 30

 40

 50

 60

 70

0.75 1.0 1.25 1.5 1.75 2.0 2.25 2.5 2.75 3.0

Average distance apart: scurve

D
is

ta
nc

e

Static
Dynamic-Homogeneous

Dynamic-Heterogeneous

 0

 10

 20

 30

 40

 50

 60

 70

0.75 1.0 1.25 1.5 1.75 2.0 2.25 2.5 2.75 3.0

Average distance apart: sharp

D
is

ta
nc

e

Step ratio

Static
Dynamic-Homogeneous

Dynamic-Heterogeneous

 0

 10

 20

 30

 40

 50

 60

 70

0.75 1.0 1.25 1.5 1.75 2.0 2.25 2.5 2.75 3.0

Average distance apart: random

D
is

ta
nc

e

Step ratio

Static
Dynamic-Homogeneous

Dynamic-Heterogeneous

Fig. 3. Average and 95% confidence interval of the average distance between target and
tracker during a run, averaged over 100 runs. The confidence intervals are extremely
tight but they are plotted.

 0

 50

 100

 150

 200

 250

0.75 1.0 1.25 1.5 1.75 2.0 2.25 2.5 2.75 3.0

Avg number of task switches: zigzag

S
w

itc
h

co
un

t

Static
Dynamic-Homogeneous

Dynamic-Heterogeneous

 0

 50

 100

 150

 200

 250

0.75 1.0 1.25 1.5 1.75 2.0 2.25 2.5 2.75 3.0

Avg number of task switches: scurve

S
w

itc
h

co
un

t

Static
Dynamic-Homogeneous

Dynamic-Heterogeneous

 0

 50

 100

 150

 200

 250

0.75 1.0 1.25 1.5 1.75 2.0 2.25 2.5 2.75 3.0

Average number of task switches: sharp

S
w

itc
h

co
un

t

Step ratio

Static
Dynamic-Homogeneous

Dynamic-Heterogeneous

 0

 50

 100

 150

 200

 250

0.75 1.0 1.25 1.5 1.75 2.0 2.25 2.5 2.75 3.0

Average number of task switches: random

S
w

itc
h

co
un

t

Step ratio

Static
Dynamic-Homogeneous

Dynamic-Heterogeneous

Fig. 4. Average and 95% confidence interval of the average number of task switches
per agent during a run, averaged over 100 runs. The confidence intervals are extremely
tight but they are plotted.

Dynamic Response Thresholds: Heterogeneous Ranges Mitigate Convergence 115

4.2 Agent Thresholds and Actions

The previous results suggest that Dynamic-Homogeneous and Dynamic-
Heterogeneous are able to track the target with similar skill, with Dynamic-
Heterogeneous forming more stable specializations. To verify this conclusion, we
need to examine how agents act and adapt their thresholds over the course of a
run.

 0

 100

 200

 300

 400

 500
 0 10 20 30 40 50

T
im

es
te

p

Agent

Agent thresholds: North

 0

 2

 4

 6

 8

 10 0

 100

 200

 300

 400

 500
 0 10 20 30 40 50

T
im

es
te

p

Agent

Agent thresholds: North

 0

 2

 4

 6

 8

 10

Fig. 5. Threshold values for θi,N for all agents over the course of a run. The left plot
is an example Dynamic-Homogeneous run. The right plot is an example Dynamic-
Heterogeneous run. Both runs are on the zigzag path and have a step ratio of 1.5.
(Color figure online)

Figure 5 shows how the θi,N threshold of all agents in the swarm change over
time in two example runs. The left plot is an example Dynamic-Homogeneous
run. The right plot is an example Dynamic-Heterogeneous run. Both runs are on
the zigzag path and have a step ratio of 1.5. The x-axis of both plots indicates
agent number, i. The y-axis of both plots indicates timestep. Each column shows
the values for one agent’s θi,N (threshold for pushing north) and how they change
over time. Green indicates low threshold (quick to act) and red indicates high
threshold (unlikely to act).

Recall that initial thresholds are randomly generated in both systems.
Accordingly, there is a mix of colors in the top rows of both plots. As the

116 A. S. Wu and H. D. Mathias

runs proceed, the Dynamic-Homogeneous agents shown in the left plot clearly
converge to extreme threshold values as indicated by the bright red and green
values in the second half of the plot. Although early on (top half of the plot),
color changes within a column indicates that there are agents that are adapting
their thresholds, instances of color changes diminish as the run proceeds and the
bottom half of the plot shows much less evidence of threshold adaptation. Once
converged to red or green, most agents stay on that color, indicating that their
thresholds have become stuck in a sink state.

The Dynamic-Heterogeneous agents shown in the right plot maintain a much
more diverse distribution of values throughout the run. Evidence of agents
adapting their threshold (color changes within a column) exist throughout the
run. When agents converge, the values (colors) to which they converge are less
extreme, which allows for a greater possibility of future change. Evidence of the
agents reacting to the regular zigzag path remains throughout the run in the
periodic color shifts.

-40

-20

 0

 20

 40

 0 50 100 150 200 250 300

Target
Tracker

-40

-20

 0

 20

 40

 0 50 100 150 200 250 300

Target
Tracker

Fig. 6. Target and tracker paths corresponding to the runs from Fig. 5. The left plot
is an example Dynamic-Homogeneous run. The right plot is an example Dynamic-
Heterogeneous run. Both runs are on the zigzag path and have a step ratio of 1.5.

Figure 6 shows the corresponding paths traveled by the target and tracker in
the runs from Fig. 5. The left plot is the Dynamic-Homogeneous run. The right
plot is the Dynamic-Heterogeneous run. Both runs are on the zigzag path and
have a step ratio of 1.5. While both systems track the target well, we can see
in the left plot that, as Dynamic-Homogeneous agent thresholds converge, the
system’s tracking ability declines. Notably, Dynamic-Homogeneous continues to
track well when travelling northeast, the direction for which its thresholds first
begin to adapt. Its ability to track in the southeast direction declines over time,
likely due to agent threshold having converged to a distribution optimized for
the first set of tasks it encountered. Dynamic-Heterogeneous agents, on the other
hand, track the target well throughout the run in both directions while also
generating fewer task switches (as indicated in Fig. 4).

5 Conclusions

In this paper, we test the hypothesis that using heterogeneous threshold ranges
instead of homogeneous threshold ranges will allow dynamic response threshold
swarms to adapt agent thresholds in response to changing task demands while

Dynamic Response Thresholds: Heterogeneous Ranges Mitigate Convergence 117

mitigating the problem of convergence to and inability to leave sink states that
occurs with homogeneous threshold ranges. We compare the performance of
the proposed Dynamic-Heterogeneous approach with two baseline approaches:
the existing Dynamic-Homogeneous approach where all agents have the same
threshold ranges and the basic Static approach where all agents are assigned
uniformly random static thresholds that do not change.

We test these three systems on a collective tracking problem that is mod-
elled after a honeybee thermoregulation task allocation problem. We test four
instances of this problem. Two instances generate regular repeated task demands
over time. Two instances generate irregular, somewhat random, task demands
over time. In each pair of instances, one illustrates periods of stable task demand
punctuated by occasional abrupt change, the other illustrates constant gradual
change in task demands.

Our results indicate that, in most situations, Dynamic-Heterogeneous per-
forms as well or better than Dynamic-Homogeneous in terms of allocating
appropriate numbers of agents to each task demand over time. The Dynamic-
Heterogeneous approach results in a significantly more stable swarm in that
it significantly reduces the number of times agents switch tasks. This stability
is due in part to the fact that the Dynamic-Heterogeneous approach reduces
the likelihood of agent thresholds converging and becoming stuck in extreme
values or sink states. Avoidance of those sink states allows agents greater abil-
ity to re-adapt their thresholds if task demands change. Examination of how
agent thresholds adapt over the course of an example run finds that Dynamic-
Heterogeneous maintains a more diverse and more adaptable distribution of
thresholds than Dynamic-Homogeneous. As seen in previous work, Dynamic-
Homogeneous thresholds tend to converge in response to the first set of task
demands encountered and have difficulty re-adapting to new task demands.
Dynamic-Heterogeneous threshold remain responsive to changes in task demand
while converging enough to lower task switching and increase stability.

An interesting and unexpected result that we have not yet discussed is the
fact that swarms in which agents are assigned static uniformly distributed thresh-
olds matches or outperforms both dynamic threshold approaches in a large num-
ber of the scenarios that we tested. It is this result that prompted us to examine
a range of step ratio values. In trying to understand when dynamic thresholds
are necessary, we hypothesize that dynamic thresholds are more crucial in sys-
tems without extra agent resources. In such systems, an appropriate distribution
of thresholds is necessary in order for the swarm to address all task demands
in a timely manner. In systems that do have excess agents, inappropriate dis-
tributions of thresholds (and agents that stubbornly refuse to leave tasks that
do not need attending) have less of an effect because there are plenty of extra
agents to take on unaddressed task demands. This hypothesis is borne out in
the data from Figs. 1, 3, and 4 that show that Static’s performance advantage
over Dynamic-Heterogeneous and Dynamic-Homogeneous is always significantly
reduced at lower step ratio values where the systems have few to no extra agents.

118 A. S. Wu and H. D. Mathias

In summary, our results suggest two general conclusions with respect to
swarms that use dynamic response thresholds. First, heterogeneous threshold
ranges effectively mitigate the problem of convergence to sink states that occurs
with homogeneous threshold ranges, while still retaining the benefits of threshold
adaptation. Second, if a swarm is expected to have excess agents, static uniformly
distributed thresholds are a simple and effective approach that deserve serious
consideration.

Acknowledgements. This work was supported by the National Science Foundation
under Grant No. IIS1816777.

References

1. Bonabeau, E., Theraulaz, G., Deneubourg, J.L.: Quantitative study of the fixed
threshold model for the regulation of division of labor in insect societies. Proc.
Royal Soc. London Biol. Sci. 263(1376), 1565–1569 (1996)

2. Bonabeau, E., Theraulaz, G., Deneubourg, J.L.: Fixed response thresholds and
the regulation of division of labor in insect societies. Bull. Math. Biol. 60, 753–807
(1998). https://doi.org/10.1006/bulm.1998.0041

3. Brutschy, A., Pini, G., Pinciroli, C., Birattari, M., Dorigo, M.: Self-organized task
allocation to sequentially interdependent tasks in swarm robots. Auton. Agent.
Multi-Agent Syst. 25, 101–125 (2014)

4. Brutschy, A., et al.: Costs and benefits of behavioral specialization. Robot. Auton.
Syst. 60, 1408–1420 (2012)

5. Campos, M., Bonabeau, E., Theraulaz, G., Deneubourg, J.: Dynamic scheduling
and division of labor in social insects. Adapt. Behav. 8, 83–96 (2000)

6. Castello, E., et al.: Adaptive foraging for simulated and real robotic swarms: the
dynamical response threshold approach. Swarm Intell. 10, 1–31 (2018). https://
doi.org/10.1007/s11721-015-0117-7

7. Castello, E., Yamamoto, T., Nakamura, Y., Ishiguro, H.: Task allocation for a
robotic swarm based on an adaptive response threshold model. In: Proceedings of
the 13th IEEE International Conference on Control, Automation, and Systems,
pp. 259–266 (2013)

8. Cicirello, V.A., Smith, S.F.: Distributed coordination of resources via wasp-like
agents. In: Truszkowski, W., Hinchey, M., Rouff, C. (eds.) WRAC 2002. LNCS
(LNAI), vol. 2564, pp. 71–80. Springer, Heidelberg (2003). https://doi.org/10.
1007/978-3-540-45173-0 5

9. de Lope, J., Maravall, D., Quinonez, Y.: Response threshold models and stochastic
learning automata for self-coordination of heterogeneous multi-task distribution in
multi-robot systems. Robot. Auton. Syst. 61, 714–720 (2013)

10. de Lope, J., Maravall, D., Quinonez, Y.: Self-organizing techniques to improve
the decentralized multi-task distribution in multi-robot systems. Neurocomputing
163, 47–55 (2015)

11. dos Santos, F., Bazzan, A.L.C.: An ant based algorithm for task allocation in
large-scale and dynamic multiagent scenarios. In: Proceedings of the Genetic and
Evolutionary Computation Conference, pp. 73–80 (2009)

12. Gautrais, J., Theraulaz, G., Deneubourg, J., Anderson, C.: Emergent polyethism
as a consequence of increase colony size in insect societies. J. Theoret. Biol. 215,
363–373 (2002)

https://doi.org/10.1006/bulm.1998.0041
https://doi.org/10.1007/s11721-015-0117-7
https://doi.org/10.1007/s11721-015-0117-7
https://doi.org/10.1007/978-3-540-45173-0_5
https://doi.org/10.1007/978-3-540-45173-0_5

Dynamic Response Thresholds: Heterogeneous Ranges Mitigate Convergence 119

13. Goldingay, H., van Mourik, J.: The effect of load on agent-based algorithms for
distributed task allocation. Inf. Sci. 222, 66–80 (2013)

14. Jones, C., Mataric, M.J.: Adaptive division of labor in large-scale minimalist multi-
robot systems. In: Proceedings of the IEEE/RSJ International Conference on Intel-
ligent Robots and Systems, pp. 1969–1974 (2003)

15. Jones, J.C., Myerscough, M.R., Graham, S., Oldroyd, B.P.: Honey bee nest ther-
moregulation: diversity promotes stability. Science 305(5682), 402–404 (2004)

16. Kanakia, A., Touri, B., Correll, N.: Modeling multi-robot task allocation with
limited information as global game. Swarm Intell. 10(2), 147–160 (2016). https://
doi.org/10.1007/s11721-016-0123-4

17. Kazakova, V.A., Wu, A.S.: Specialization vs. re-specialization: effects of Hebbian
learning in a dynamic environment. In: Proceedings of the 31st International
Florida Artificial Intelligence Research Society Conference, pp. 354–359 (2018)

18. Kazakova, V.A., Wu, A.S., Sukthankar, G.R.: Respecializing swarms by forget-
ting reinforced thresholds. Swarm Intell. 14(3), 171–204 (2020). https://doi.org/
10.1007/s11721-020-00181-3

19. Krieger, M.J.B., Billeter, J.B.: The call of duty: self-organised task allocation in a
population of up to twelve mobile robots. Robot. Auton. Syst. 30, 65–84 (2000)

20. Labella, T.H., Dorigo, M., Deneubourg, J.: Division of labor in a group of robots
inspired by ants’ foraging behavior. ACM Trans. Auton. Adapt. Syst. 1(1), 4–25
(2006)

21. Langridge, E.A., Franks, N.R., Sendova-Franks, A.B.: Improvement in collective
performance with experience in ants. Behav. Ecol. Sociobiol. 56, 523–529 (2004).
https://doi.org/10.1007/s00265-004-0824-3

22. Lee, W., Kim, D.E.: Local interaction of agents for division of labor in multi-agent
systems. In: Tuci, E., Giagkos, A., Wilson, M., Hallam, J. (eds.) SAB 2016. LNCS
(LNAI), vol. 9825, pp. 46–54. Springer, Cham (2016). https://doi.org/10.1007/
978-3-319-43488-9 5

23. Lee, W., Kim, D.: History-based response threshold model for division of labor in
multi-agent systems. Sensors 17, 1232 (2017)

24. Lerman, K., Jones, C., Galstyan, A., Mataric, M.J.: Analysis of dynamic task
allocation in multi-robot systems. Int. J. Robot. Res. 25, 225–241 (2006)

25. Liu, W., Winfield, A., Sa, J., Chen, J., Dou, L.: Strategies for energy optimisation
in a swarm of foraging robots. In: Şahin, E., Spears, W.M., Winfield, A.F.T. (eds.)
SR 2006. LNCS, vol. 4433, pp. 14–26. Springer, Heidelberg (2007). https://doi.
org/10.1007/978-3-540-71541-2 2

26. Liu, W., Winfield, A., Sa, J., Chen, J., Dou, L.: Towards energy optimisation:
Emergent task allocation in a swarm of foraging robots. Adapt. Behav. 15, 289–
305 (2007)

27. Meyer, B., Weidenmuller, A., Chen, R., Garcia, J.: Collective homeostasis and
time-resolved models of self-organised task allocation. In: Proceedings of the 9th
EIA International Conference on Bio-inspired Information and Communication
Technologies, pp. 469–478 (2015)

28. Price, R., Tiňo, P.: Evaluation of adaptive nature inspired task allocation against
alternate decentralised multiagent strategies. In: Yao, X., et al. (eds.) PPSN 2004.
LNCS, vol. 3242, pp. 982–990. Springer, Heidelberg (2004). https://doi.org/10.
1007/978-3-540-30217-9 99

29. Ravary, F., Lecoutey, E., Kaminski, G., Chaline, N., Jaisson, P.: Individual experi-
ence alone can generate lasting division of labor in ants. Curr. Biol. 17, 1308–1312
(2007)

https://doi.org/10.1007/s11721-016-0123-4
https://doi.org/10.1007/s11721-016-0123-4
https://doi.org/10.1007/s11721-020-00181-3
https://doi.org/10.1007/s11721-020-00181-3
https://doi.org/10.1007/s00265-004-0824-3
https://doi.org/10.1007/978-3-319-43488-9_5
https://doi.org/10.1007/978-3-319-43488-9_5
https://doi.org/10.1007/978-3-540-71541-2_2
https://doi.org/10.1007/978-3-540-71541-2_2
https://doi.org/10.1007/978-3-540-30217-9_99
https://doi.org/10.1007/978-3-540-30217-9_99

120 A. S. Wu and H. D. Mathias

30. Theraulaz, G., Bonabeau, E., Deneubourg, J.: Response threshold reinforcement
and division of labour in insect societies. Proc. Royal Soc. B 265, 327–332 (1998)

31. Weidenmüller, A.: The control of nest climate in bumblebee (Bombus terrestris)
colonies: interindividual variability and self reinforcement in fanning response.
Behav. Ecol. 15, 120–128 (2004)

32. Weidenmüller, A., Chen, R., Meyer, B.: Reconsidering response threshold models—
short-term response patterns in thermoregulating bumblebees. Behav. Ecol. Socio-
biol. 73(8), 1–13 (2019). https://doi.org/10.1007/s00265-019-2709-5

33. Wu, A.S., Mathias, H.D., Giordano, J.P., Hevia, A.: Effects of response threshold
distribution on dynamic division of labor in decentralized swarms. In: Proceedings
of the 33rd International Florida Artificial Intelligence Research Society Conference
(2020)

34. Wu, A.S., Riggs, C.: Inter-agent variation improves dynamic decentralized
task allocation. In: Proceedings 31st International Florida Artificial Intelligence
Research Society Conference, pp. 366–369 (2018)

https://doi.org/10.1007/s00265-019-2709-5

Grey Wolf, Firefly and Bat Algorithms:
Three Widespread Algorithms that

Do Not Contain Any Novelty

Christian Leonardo Camacho Villalón(B) , Thomas Stützle ,
and Marco Dorigo

IRIDIA, Université Libre de Bruxelles, Brussels, Belgium
{ccamacho,stuetzle,mdorigo}@ulb.ac.be

Abstract. In this paper, we carry out a review of the grey wolf, the
firefly and the bat algorithms. We identify the concepts involved in these
three metaphor-based algorithms and compare them to those proposed in
the context of particle swarm optimization. We provide compelling evi-
dence that the grey wolf, the firefly, and the bat algorithms are not novel,
but a reiteration of ideas introduced first for particle swarm optimization
and reintroduced years later using new natural metaphors. These three
algorithms can therefore be added to the growing list of metaphor-based
algorithms—to which already belong algorithms such as harmony search
and intelligent water drops—that are nothing else than repetitions of old
ideas hidden by the usage of new terminology.

1 Introduction

Algorithms inspired by natural or artificial metaphors have become a common
place in the stochastic optimization literature [4]. Despite being invariably pre-
sented as novel methods, many of these algorithms do not seem to be proposing
novel ideas; rather, they reintroduce well-known concepts already proposed in
previously published algorithms [23]. That is, the same ideas developed in the
context of local search (LS) heuristics, evolutionary algorithms (EAs), and ant
colony optimization (ACO), to mention a few, appear in these “novel” algo-
rithms, although presented using new terminology. In addition to this, it is often
the case that rather than clearly expressing new ideas in plain algorithmic terms
and highlighting differences with what has already been proposed in the litera-
ture, authors of these algorithms focus on aspects such as the novelty and beauty
of the new inspiring source.

Several are the undesirable consequences of this practice. Perhaps the most
detrimental one is that it has generated a lot of confusion in the literature, since
using different terminologies for referring to concepts already defined makes
it difficult to compare algorithms—both conceptually and experimentally—
hindering our understanding. Additionally, presenting ideas using unconven-
tional terminology instead of the normal one used in optimization, adds an
unnecessary extra effort to distinguish between what is novel and what is not.
c© Springer Nature Switzerland AG 2020
M. Dorigo et al. (Eds.): ANTS 2020, LNCS 12421, pp. 121–133, 2020.
https://doi.org/10.1007/978-3-030-60376-2_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-60376-2_10&domain=pdf
http://orcid.org/0000-0002-0182-3469
http://orcid.org/0000-0002-5820-0473
http://orcid.org/0000-0002-3971-0507
https://doi.org/10.1007/978-3-030-60376-2_10

122 C. L. Camacho Villalón et al.

A number of studies [2,3,12,17,24,26,27] have shown that the use of
metaphors has served the sole purpose of hiding the similarities among different
methods, thus allowing copies of well-known approaches to be misrepresented
as new. One of the first examples of this was provided in 2010 by Weyland
[26,27] in a rigorous analysis of the harmony search (HS) algorithm. In this
analysis, Weyland found that this seemingly new method was the same as a
particular evolutionary algorithm, called “evolution strategy (μ+1)” [20], which
was proposed about 30 years before the HS algorithm. Similarly, other studies
in the same direction have shown that the black holes optimization algorithm is
a simplification of particle swarm optimization (PSO) [17], and, more recently,
that the intelligent water drops algorithm is a special case of ACO [2,3]. Even
though it has been shown that a number of these algorithms are a reiteration of
well-known ideas and it has been suggested that the whole trend is unhealthy
and damaging for the entire research field [23,24], new algorithms and new vari-
ants of metaphor-based algorithms continue to be published with alarming high
frequency.

In this paper, we review the concepts utilized in three highly-cited algorithms
proposed for continuous optimization problems: the grey wolf, the firefly and the
bat algorithms. We provide evidence that (i) using new metaphors, (ii) changing
the terminology, and (iii) presenting the algorithm in a confusing way allowed to
overlook the fact that they were all PSO variants.

The rest of the paper is organized as follows. In Sect. 2, we briefly review
the basic concepts of PSO and some of its most popular variants. In Sect. 3, we
describe the three metaphor-based algorithms that we analyze using standard
PSO terminology. In this way, it becomes immediately apparent the fact that
these algorithms are indeed PSO variants. In Sect. 4, we conclude the paper
by highlighting some aspects that make the analysis of these ‘novel’ metaphor-
inspired algorithms a challenging endeavor.

2 Particle Swarm Optimization

Particle swarm optimization is arguably the most popular swarm intelligence
algorithm to tackle continuous optimization problems. It was introduced by
Kennedy and Eberhart [7,9] in 1995, and is inspired by the observation of social
dynamics in bird flocks. The optimization capabilities of PSO come from the
repeated application of a set of rules that allow particles, which represent prob-
lem solutions, in the swarm to identify and move in promising directions in the
search space that they estimate from locations that they previously visited and
that correspond to good solutions [11]. Particles employ simple memory struc-
tures to keep track of important information collected during the search process,
such as their own position and velocity and the position of the best among
neighboring particles.

In the standard PSO (SPSO) [21,22] algorithm, each particle i knows at every
iteration t its current position x i

t , its velocity v i
t , its personal best position p i

t ,
and the position l i

t of its local best particle, where the local best particle is

Three Not Novel Metaphor-Based Algorithms 123

the particle j in the neighborhood of particle i that has the best personal best
position p j

t . Many different types of neighborhood are possible among which
star, ring, and lattices are typical options; when the neighborhood consists of all
the particles in the swarm, then the local best particle is called global best and
its position, which is the same for all particles i, is indicated by gt.

The rules to update a particle’s position and velocity in SPSO are:

x i
t+1 = x i

t + v i
t+1 (1)

v i
t+1 = ωv i

t + ϕ1a
i
t � (p i

t − x i
t) + ϕ2b

i
t � (l i

t − x i
t) (2)

where ω is the inertia weight that controls the effect of the velocity at time t,
ϕ1 and ϕ2 are the acceleration coefficients that weigh the relative influence of
the personal best and local best position, ai

t and bi
t are two random vectors

used to provide diversity to particle’s movement, and � indicates the Hadamard
(pointwise) product between two vectors.

Over the years, many variants of PSO have been proposed to improve the
optimization capabilities of the algorithm. One of them is SPSO-2011 [5,30],
that was developed with the goal of preventing the issue of rotation variance
that affects SPSO. In this variant, the velocity update rule—Eq. 2 above—was
modified as follows:

v i
t+1 = ωv i

t + x′ i
t − x i

t (3)

where x′ i
t is a randomly generated point in the hypersphere Hi(c i

t , |c i
t − x i

t |)
with center c i

t and radius |c i
t − x i

t |, and | · | is the Euclidean norm (L2).
The center c i

t is computed as

c i
t = (L i

t + P i
t + x i

t)/3 (4)

where

P i
t = x i

t + ϕ1a
i
t � (p i

t − x i
t)

L i
t = x i

t + ϕ2b
i
t � (l i

t − x i
t)

(5)

The two key concepts proposed in SPSO-2011 consist of (i) the definition of
the new point c i

t in the search space defined as a function of the position of three
particles in the swarm: x i

t , p i
t and l i

t (Eq. 4), and (ii) the use of c i
t to generate

a point x′ i
t that is then used to update the particles’ velocities; the point x′ i

t is
randomly selected from a hyper-spherical distribution with center c i

t and radius
|c i

t − x i
t |, which is invariant to rotation (Eq. 3).

Another interesting variant is the fully informed PSO (FiPSO) [13], in which
the authors propose to use the whole swarm to influence particles’ new velocities:

v i
t+1 = χ

(
v i

t +
∑

k∈T i
t

ϕai
kt � (

p k
t − x i

t

))
(6)

where χ = 0.7298 is a constant value called constriction coefficient and defined
in [6], T i

t is the set of particles in the neighborhood of i, and ϕ is a parameter.

124 C. L. Camacho Villalón et al.

The main innovation in this variant is a generalization of some of the algorithmic
ideas used in PSO. In particular, while in most previous PSO variants only one
particle (the local best) contributed to update the particles’ velocities, here the
number of particles that influence the velocity update becomes a design choice
typically referred as model of influence.

One last example of a PSO variant relevant for our analysis in the next section
is the “bare-bones” PSO [8]. This variant belongs to a class of PSO algorithms
typically referred to as velocity-free variants in which the rule to update the
position of particles does not include a velocity vector:

x i
t+1 = N

(
p i

t + l i
t

2
, |p i

t − l i
t |

)
(7)

Although in this variant the particles’ new position is obtained by sampling
values from a normal distribution whose center (p i

t +l i
t)/2 and dispersion |p i

t −l i
t |

are computed as a function of p i
t and l i

t , many other ways have been proposed
to compute x i

t+1 in velocity-free PSOs. For example, in [15,16], it was proposed
a way of instantiating various velocity-free variants from a generalized position
update rule given by

x i
t+1 = x i

t + ε(y − x i
t) (8)

where ε is an acceleration coefficient and y is a vector which is obtained com-
bining information from other particles, for example:

y =
u1p

1
t + u2p

2
t

u1 + u2

(9)

where u1 and u2 are random values drawn from U [0, 1], and p1
t and p2

t are the
personal best positions of two neighbor particles of i chosen according to some
criterion. Velocity-free PSO variants are relatively less common in the literature
of PSO, and they vary in all kind of aspects, including the way in which the
current position of a particle is taken into account in the computation of x i

t+1.

3 The Grey Wolf, Firefly, and Bat Algorithms—Explained

The three algorithms that we analyze in this paper—grey wolf, firefly, and bat
algorithms—are taken from the evolutionary computation bestiary [4]. We chose
them not only because they were amenable to the analysis that we present in
this paper, but also because they were highly cited1, which gives a reasonable
indication of the impact these algorithms have had on the research community.

In the reminder of this section, we present a detailed description of the grey
wolf, firefly and bat algorithms using terminology and concepts belonging to
PSO. The idea is to recreate together with the reader these three algorithms
from concepts that he/she is already familiar with, and to give the details of the

1 Grey Wolf Optimizer [14]: 3656 citations; Firefly Algorithm [28]: 3018 citations; and
Bat Algorithm [29]: 3549 citations. Source: Google Scholar. Retrieved: July 10, 2020.

Three Not Novel Metaphor-Based Algorithms 125

metaphor employed by the authors only after the algorithm has been described
in plain algorithmic terms. By doing so, it will be easier to understand if the
metaphor was necessary (or useful) to understand the proposed algorithm and if
the introduced concepts were indeed new or just hidden by the unconventional
terminology used.

3.1 Grey Wolf Optimizer (GWO)

GWO as a PSO Algorithm. The grey wolf optimizer (GWO) [14] is an
algorithm in which, in PSO terms, the three best particles in the swarm are used
to bias the movement of the remaining swarm particles. This idea is implemented
in GWO by defining three vectors sk

t as follows:

s1
t = g1

t − (2ϕt − 1)r1
t

∣∣2 q1
t � g1

t − x i
t

∣∣
s2

t = g2
t − (2ϕt − 1)r2

t

∣∣2 q2
t � g2

t − x i
t

∣∣
s3

t = g3
t − (2ϕt − 1)r3

t

∣∣2 q3
t � g3

t − x i
t

∣∣
(10)

where g1
t , g2

t and g3
t indicate the position of the three best particles in the

swarm at iteration t, rk
t , qk

t (k = 1, 2, 3) are random vectors with values drawn
from U [0, 1] that will induce perturbation to the components of sk

t , and ϕt is a
decreasing acceleration coefficient that goes from 2 to 0.

The position update rule combining the information of the three best particles
sk

t is defined as follows:

x i
t+1 = (s1

t + s2
t + s3

t)/3 (11)

How Does GWO Compare to PSO? The values sk
t in Eq. 10 are defined in

a very similar way to P i
t and Li

t of Eq. 5. The main difference is that instead of
defining the vectors in terms of x i

t (as in SPSO-2011), in GWO they are defined
in terms of the three values gk

t (see Eq. 10). The kind of perturbation induced
by qk

t in Eq. 10 is equivalent to the one induced by vectors ai
t or bi

t in PSO (see
Eq. 2); however, the one induced by rk

t is different because the entries of rk
t are

multiplied by (2ϕt −1) producing both positive and negative values. Computing
the Euclidean norm of (2 qk

t � gk
t − x i

t) to generate new random points in a
radius |2 qk

t � gk
t − x i

t | is the same idea as proposed in SPSO-2011 to generate
a random point around the hypersphere center ci

t (see Eq. 3). To compute a ϕt

that linearly decreases from 2 to 0, GWO uses the same mechanism proposed in
the “self-organizing hierarchical PSO with time-varying acceleration coefficients”
[19] for computing ϕ1, with the only difference that the lower bound in GWO is
set to 0 instead of 0.5 as done in [19].

The position update rule introduced in Eq. 11 is an extension of the recom-
bination rule in velocity-free PSOs (Eqs. 8 and 9) which uses the three best
particles in the swarm. Similarly to how it was done in bare-bones PSO (Eq. 7),
where the authors employed the recombination operator shown in Eq. 9 assum-
ing u1 = u2 for computing the center of the normal distribution, the authors of

126 C. L. Camacho Villalón et al.

GWO employed the same recombination operator (also assuming u1 = u2 = u3)
for computing the particles’ position.

The Metaphor of Grey Wolves Hunting. The authors of GWO say in
their original paper published in 2014 [14] that they were inspired by the way
in which grey wolves organize their hunting following a strict social hierarchy in
which they divide—from top to bottom—their pack: α, β, δ and ω wolves. The
authors of GWO mention that there are three phases during hunting, each one
composed of a number of steps: (i) tracking, chasing, and approaching the prey;
(ii) pursuing, encircling, and harassing the prey until it stops moving; and (iii)
attacking towards the prey. However, GWO does not consider 5 of the 7 steps
mentioned, and seems to take inspiration only from two steps respectively in
phase (i) and (iii): encircling and attacking.

In GWO, a solution to the problem being tackled is called a “wolf”, the
optimum of the problem is referred to as the “prey” that the wolves are hunting,
and the three best solutions and the remaining particles are named as αt, βt, δt

and ωt respectively, in analogy to the levels in the wolves social hierarchy. The
GWO algorithm then consists in the “wolves encircling and attacking the prey”.

To model encircling the authors used Eq. 11 while attacking the prey was
modeled by linearly decreasing the value of ϕ from 2 to 0 in Eq. 10. In fact, in
the imaginary of the metaphor, when ϕt is lower than 1, wolves can concentrate
around the prey (therefore attacking it); and when it is greater than 1, they
search for other preys.2 The authors mentioned that the use of qk

t , as done
in Eq. 10, emphasizes the search behavior of wolves in a similar way in which
ϕt > 1 does it, although, in their view, qk

t represents “the effect of obstacles
when wolves approach a prey in nature.”

Unfortunately, as it should be clear to the reader by now, the wolf hunting
metaphor is neither necessary nor useful to the definition and understanding
of the way GWO works. In fact, it is not at all clear what is the optimization
process in the wolf hunting that is translated in effective choices in the design
of the optimization algorithm. While there is not a PSO variant that exactly
matches GWO, as we have shown above, all the concepts introduced in GWO
are related to existing concepts already proposed in the PSO literature and
the only contribution given by the use of novel terms such as “wolf”, “prey”,
“attacking”, and so on is to create confusion and to hinder understanding.

3.2 Firefly Algorithm (FA)

FA as a PSO Algorithm. The firefly algorithm (FA) [28] is, in PSO termi-
nology, an algorithm in which the swarm of particles is fully-connected and the
particles movement is influenced only by those other particles in the swarm that
have a higher quality. This means that the movement of the best particle is
2 Although search is not an activity in the hunting phases of wolves, the authors

explain it as “the divergence among wolves during hunting in order to find a fitter
prey” [14, p. 50].

Three Not Novel Metaphor-Based Algorithms 127

not influenced by any other particle. In FA, at each iteration particles are sorted
according to their quality; the particle position update is then applied iteratively
starting with worst quality particle and ending with the best quality particle.
When particle i updates its position, it has to determine the set W i

t ⊆ T i
t (where

T i
t is the set of particles in the neighborhood of i) that contains the |W i

t | parti-
cles with quality higher than its own. Updating a particle’s position for the next
iteration t + 1 requires |W i

t | movements of the particle (one for each particle in
W i

t), where the position of the particle obtained in movement s − 1 (indicated
by m i

t,s−1) is the starting position for the next one (m i
t,s). The initial position

of the particle is set to m i
t,s=0 = x i

t , ∀ i ∀ t.
The position update rule of FA is given by the following two equations:

x i
t+1 = m i

t,s=|W i
t | (12)

m i
t,s = m i

t,s−1 + ϕ
w i

t,s,m i
t,s−1

t

(
wi

t,s − m i
t,s−1

)
+ ξri

t,s (13)

where wi
t,s is an element of the ordered set W i

t , ϕ
w i

t,s,m i
t,s−1

t is an acceleration
coefficient3 whose value depends on the Euclidean distance between the two
intermediate points wi

t,s and m i
t,s−1, and ri

t,s is a vector whose components are
random numbers drawn from the uniform distribution U [0, 1] multiplied by a
real scalar ξ.

The acceleration coefficient ϕw ,m is computed as follows:

ϕw ,m = α · e−γ|w−m |2 (14)

where |w − m| is the Euclidean distance between the position of two particles
w and m, γ is a parameter that allows to control the weight given to |w − m|2,
and α a parameter that controls the weight of the exponential function. Because
of the way ϕw ,m is computed, solutions have larger displacements when they
are located close to each other and smaller ones when they are far away.

How Does FA Compare to PSO? To better understand how FA is a combi-
nation of known PSO concepts, we consider the case in which |W i

t | = 1. In this
case, particle i updates its position performing only one movement. This allows
us to rewrite Eqs. 12 and 13 as follows:

x i
t+1 = x i

t + ϕ
i,w i

t
t

(
wi

t − x i
t

)
+ ξri

t (15)

Equation 15 can be obtained from Eq. 8 by setting ε = 1, y = wi
t and by

adding ξri
t at the end of the equation. While setting the value of ε and adding

ξri
t are typical design choices for velocity-free PSO variants, using the current

position wi
t of a neighbor instead of the neighbor’s personal best position is not

a common design choice for an implementation using Eqs. 8 and 9. In practice,
3 Note that in the following we will use the shorter notation ϕw ,m

t when the meaning
is clear from the context.

128 C. L. Camacho Villalón et al.

using the neighbor’s current position may increase the diversity of the solutions
in the algorithm since a particle’s position changes more often than its personal
best position, which is updated only when a new better quality position is found.
The last term ξri

t in Eq. 15—a random perturbation—is used to increase the
exploration of the algorithm and also allows the global best solution to move
from its initial position in the search space.

The Metaphor of Fireflies Flashing. The author of the FA algorithm, first
published in 2009 [28], says he was inspired by the flashing behavior of fireflies.
Because of the metaphor used, he introduced the following terms: “fireflies”
to indicate solutions of the considered problem, and “brightness” to indicate
a function that computes the value of the acceleration coefficient ϕw ,m . The
acceleration coefficient ϕw ,m weighs the distance between two solutions accord-
ing to their positions in the search space—in the context of the fireflies flashing
metaphor, this is meant to model the fact that fireflies are attracted to other
“brighter” fireflies.

Most of the metaphor of fireflies flashing is explained in terms of the different
behaviors that can be obtained varying the value of parameter γ, for which the
author considered two limit cases: γ → 0 and γ → ∞. When γ → 0, the value
of ϕw ,m → 1 and the attraction among fireflies becomes constant regardless of
their distance in the search space. In the metaphor of fireflies flashing, this is the
case when “the light intensity does not decay in an idealized sky” and “fireflies
can be seen anywhere in the domain” [28, p. 174].

For the other limiting case, when γ → ∞, the value of ϕw ,m → 0 (making the
attractiveness among fireflies negligible) and new solutions can only be created
by means of the random vector ξri

t,s (see Eq. 13). According to the metaphor,
this is the case when fireflies are either “short-sighted because they are randomly
moving in a very foggy region”, or (for reasons not explained in the paper) “they
feel almost zero attraction to other fireflies.”

As can be seen from the explanations given for the use of the metaphor,
its usefulness in describing and understanding the proposed algorithm is very
doubtful. The only contribution of the metaphor of fireflies flashing seems to
be the idea of using an exponential function based on the distance between
two particle to compute the value of ϕ. However, this ideas was also explored
before in the context of PSO in a variant called extrapolation PSO (ePSO) [1],
published around 2 years before FA, in late 2007.

In ePSO, a particle i experiences a stronger attraction toward gt when
f(gt) � f(x i

t), where f(·) is the objective function of a minimization prob-
lem, and a weak attraction when f(gt) � f(x i

t). Note that, although it is the
same idea, it is applied with opposite goals in the two algorithms, that is, in
ePSO particles are more attracted towards particles that are far away while in
FA they are attracted more to particles that are closer. Also, the distance is
defined differently, since ePSO uses the distance with regard to the function
evaluation and FA uses the Euclidean distance.

Three Not Novel Metaphor-Based Algorithms 129

3.3 Bat Algorithm (BA)

BA as a Hybrid PSO and Simulated Annealing Algorithm. The bat
algorithm (BA) [29] is an algorithm in which (i) particles in the swarm move
by identifying good search directions exploiting the location of the global best
particle, and (ii) there is the occasional introduction of new random solutions
around the global best solution that are accepted using a simulated annealing
like criterion. Using PSO terminology, the BA algorithm can be explained as
follows.

Each particle employs two parameters: the probability ρi
t—increasing over

time—of randomly generating a solution around gt, and the probability ζi
t—

decreasing over time—to accept the new solution generated. At each iteration
t and with probability ρi

t, a particle generates a random point around gt and
keeps it in a variable zi

t, which will be accepted as the new position of the
particle if two conditions are verified: (i) the quality of zi

t must be higher than
that of gt, that is, f(zi

t) < f(gt), where f(·) is the objective function;4 (ii) zi
t

is accepted with probability ζi
t . Therefore, for zi

t to be accepted the following
variable Accept must be true: Accept = ((f(zi

t) < f(gt)) ∧ (U [0, 1] < ζi
t)).

If the random particle around gt is not generated (this happens with proba-
bility (1 − ρi

t)) or when Accept is false5 (i.e., zi
t was rejected), particles update

their position by adding a velocity vector to their current position.
The process described above is mathematically modeled as follows:

xi
t+1 =

{
gt + ζ̂t ri

t, if Generate ∧ Accept

xi
t + vi

t+1 if (Generate ∧ (¬Accept)) ∨ (¬Generate) (16)

where ζ̂t is the average of the parameters ζi
t of all the particles in the swarm,

ri
t is a vector with values randomly distributed in U [−1, 1], and Generate is a

logical variable which is true when the algorithm decides, with probability ρi
t, to

create a random solution around gt.
The equations to update the probabilities ρi

t and ζi
t are:

ρi
t+1 = ρt=0(1 − e−β1t′

)

ζi
t+1 =

{
β2 ζi

t if Generate ∧ Accept

ζi
t otherwise

(17)

where β1 > 0 and 0 < β2 < 1 are parameters, t′ is an iteration counter that is
updated every time Generate ∧ Accept = TRUE in Eq. 16, and ρt=0 is the initial
value of parameter ρ. As it is clear from Eq. 17, the value of ρi

t tends to ρt=0

and the value of ζi
t tends to 0. Also, note that since the value ζi

t decreases with

4 In this paper, we consider minimization problems; the obvious adaptation should be
made in case of maximization problems.

5 Due to the constraint that both conditions have to be met, it may be the case that
zi
t is rejected even when its quality is higher than that of gt.

130 C. L. Camacho Villalón et al.

the number of iterations, so does ζ̂t; this means that for increasing t values the
solutions generated in the first case of Eq. 16 will be closer and closer to gt.

As mentioned above and indicated in Eq. 16, when (Generate ∧ (¬Accept)) ∨
(¬Generate) the particles update their positions by adding a velocity vector to
their current position, which is defined as follows:

vi
t+1 = vi

t + di
t � (gt − xi

t) (18)

where, except for di
t, the components of Eq. 18 are the same as those of SPSO

(see Eq. 2). The vector di
t is computed as follows:

di
t = ϕ1 + ai

t(ϕ2 − ϕ1) (19)

where ϕ1 and ϕ2 are parameters and ai
t is the same random vector as in Eq. 2.

How Does BA Compare to PSO and Simulated Annealing?6 The veloc-
ity update rule of BA—Eq. 18—is a special case of SPSO—Eq. 2. It can be easily
seen that, if we set ω = 1 and ϕ1 = 0 in the velocity update rule of SPSO, it
simplifies to the BA velocity update rule in Eq. 18. The only difference is that, in
BA, the magnitude of the random vector ai

t depends on the value of parameters
ϕ1 and ϕ2.

The parameter ζi
t is very similar to the temperature acceptance criterion T

first introduced in simulated annealing (SA) [10]. Two minor differences are that
(i) in BA, the value of ζi

t is updated only when a solution is accepted, while in
SA the value of T is typically updated at the end of each iteration; and (ii)
that BA only accepts solutions with better quality than that of the global best
solution, while SA can accept both improving and worsening solutions.

The Metaphor of Bats Echolocation. BA introduces a rather technical
terminology, in which “bats” are the solutions to the considered problem, the
range of “frequencies” in which bats emit their sound are ϕ1 and ϕ2 (defined in
Eq. 19), the “loudness” of bats’ sound is the acceptance criterion (ζi

t), and the
“pulse emission rate” of their sound is the probability ρi

t of starting the process
in which new solutions are generated around gt.

The author of BA says he was inspired by the echolocation that some bat
species use to find their way in the dark by producing sound waves that echo
when they are reflected off an object. In order to develop the bat algorithm, the
author strongly simplified several aspects of this process. In the words of the
author, it was assumed that: (i) “bats are able to differentiate in some magical
way between food/prey and background barriers”; (ii) “bats can automatically
adjust the frequency and rate in which they are emitting sound”; and (iii) “the
loudness of their sound can only decrease from a large value to almost 0.”

6 Note that, although in this paper we compared BA with PSO and SA, BA could
also be interpreted as a variant of differential evolution (DE) [25]. This is because
the probability ρi

t and the Accept criterion in BA are used in the same way as the
mutation probability and the acceptance between donor and trial vectors in DE [18].

Three Not Novel Metaphor-Based Algorithms 131

The author imagined that bats have two different flying modes, which cor-
respond to the two cases in Eq. 16. In the first flying mode, bats fly randomly
adjusting their “pulse emission rate” ρi

t and “loudness” ζi
t . According to the

metaphor, bats decrease the pulse emission rate and produce louder sounds when
they are randomly searching for a prey; and vice-versa when they have found
one. Bats adjusting their pulse emission rate and loudness was modeled using
Eq. 17. In the second flying mode, modeled by Eqs. 18 and 19, bats control their
step size and range of movement by adjusting their sound frequency (vector di

t

in Eq. 19) and by moving towards the best bat in the swarm.
As it should be clear to the reader at this point, the metaphor of bats echolo-

cation seems to be an odd and confusing way of explaining the algorithm. This
is because there are so many simplifications and unrealistic assumptions in the
way in which the metaphor was translated into algorithmic terms that metaphor
and algorithm seem to be two completely different things. In fact, except for gen-
eralities, the metaphor described by the author in his article does not provide a
convincing basis for the choices made in the design of the resulting algorithm.

4 Conclusions

In this article, we have rewritten three highly-cited, metaphor-based algorithms
in terms of PSO. We have shown that, perhaps contrary to the goal of the
authors, the metaphors of grey wolves hunting, fireflies flashing, and bats echolo-
cation do not facilitate understanding the corresponding GWO, FA and BA
algorithms; rather, they create confusion because they hide their strong similar-
ities with existing PSO algorithms. Even though with the help of imagination
it is possible to vaguely understand how some of the ideas coming from the
metaphor were used to match the corresponding algorithms, it is hard to see
how such metaphors are useful at all.

After reviewing the GWO, FA and BA algorithms, we found that none of
them propose truly novel ideas. In fact, they can all be seen as variants of existing
PSO algorithms. Therefore, we conclude that these three algorithms are unnec-
essary since they do not add anything new to the tools that can be used to
tackle optimization problems. In future work, we intend to experimentally com-
pare GWO, FA and BA with other PSO variants and to analyze the impact that
the specific design choices used in these algorithms have on their performance.

The problem of well-known concepts being reintroduced using new termi-
nology has been spreading in the literature for over 15 years and is currently
one of the main criticisms of metaphor-based algorithms. Rigorous analyses
[3,12,17,24,26] have shown that a number of these algorithms are equivalent,
or differ minimally, from well-known methods. Yet, instead of being proposed
as variants of existing algorithms, they are often introduced as completely novel
approaches—just as it was the case for the three algorithms studied in this paper.

Acknowledgments. Christian Leonardo Camacho Villalón, Thomas Stützle and
Marco Dorigo acknowledge support from the Belgian F.R.S.-FNRS, of which they are,
respectively, research fellow and research directors.

132 C. L. Camacho Villalón et al.

References

1. Arumugam, M.S., Murthy, G.R., Rao, M., Loo, C.X.: A novel effective particle
swarm optimization like algorithm via extrapolation technique. In: International
Conference on Intelligent and Advanced Systems, pp. 516–521. IEEE (2007)

2. Camacho-Villalón, C.L., Dorigo, M., Stützle, T.: Why the Intelligent Water Drops
Cannot Be Considered as a Novel Algorithm. In: Dorigo, M., Birattari, M., Blum, C.,
Christensen, A.L., Reina, A., Trianni, V. (eds.) ANTS 2018. LNCS, vol. 11172, pp.
302–314. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00533-7 24

3. Camacho-Villalón, C.L., Dorigo, M., Stützle, T.: The intelligent water drops algo-
rithm: why it cannot be considered a novel algorithm. Swarm Intell. 13, 173–192
(2019). https://doi.org/10.1007/s11721-019-00165-y

4. Campelo, F.: Evolutionary computation bestiary. https://github.com/fcampelo/
EC-Bestiary (2017). Accessed 22 Jan 2018

5. Clerc, M.: Standard particle swarm optimisation from 2006 to 2011. Open archive
HAL hal-00764996, HAL (2011)

6. Clerc, M., Kennedy, J.: The particle swarm-explosion, stability, and convergence in
a multidimensional complex space. IEEE Trans. Evol. Comput. 6(1), 58–73 (2002)

7. Eberhart, R., Kennedy, J.: A new optimizer using particle swarm theory. In: Pro-
ceedings of the Sixth International Symposium on Micro Machine and Human
Science, pp. 39–43 (1995)

8. Kennedy, J.: Bare bones particle swarms. In: Proceedings of the 2003 IEEE Swarm
Intelligence Symposium, SIS 2003 (Cat. No. 03EX706), pp. 80–87. IEEE (2003)

9. Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proceedings of ICNN
1995 International Conference on Neural Networks, vol. 4, pp. 1942–1948. IEEE
(1995)

10. Kirkpatrick, S.: Optimization by simulated annealing: quantitative studies. J. Stat.
Phys. 34(5–6), 975–986 (1984). https://doi.org/10.1007/BF01009452

11. Lones, M.A.: Metaheuristics in nature-inspired algorithms. In: Igel, C., Arnold,
D.V. (eds.) Proceedings of the Genetic and Evolutionary Computation Conference,
GECCO 2014. pp. 1419–1422. ACM Press, New York (2014)

12. Melvin, G., Dodd, T.J., Groß, R.: Why ‘GSA: a gravitational search algorithm’ is
not genuinely based on the law of gravity. Natural Comput. 11(4), 719–720 (2012).
https://doi.org/10.1007/s11047-012-9322-0

13. Mendes, R., Kennedy, J., Neves, J.: The fully informed particle swarm: simpler,
maybe better. IEEE Trans. Evol. Comput. 8(3), 204–210 (2004)

14. Mirjalili, S., Mirjalili, S.M., Lewis, A.: Grey wolf optimizer. Adv. Eng. Softw. 69,
46–61 (2014)

15. Peña, J.: Simple dynamic particle swarms without velocity. In: Dorigo, M., Birat-
tari, M., Blum, C., Clerc, M., Stützle, T., Winfield, A.F.T. (eds.) ANTS 2008.
LNCS, vol. 5217, pp. 144–154. Springer, Heidelberg (2008). https://doi.org/10.
1007/978-3-540-87527-7 13

16. Peña, J.: Theoretical and empirical study of particle swarms with additive stochas-
ticity and different recombination operators. In: Ryan, C. (ed.) Proceedings of the
Genetic and Evolutionary Computation Conference, GECCO 2008, pp. 95–102.
ACM Press, New York (2008)

17. Piotrowski, A.P., Napiorkowski, J.J., Rowinski, P.M.: How novel is the ”novel”
black hole optimization approach? Inf. Sci. 267, 191–200 (2014)

18. Price, K.V., Storn, R.M., Lampinen, J.A.: Differential Evolution. NCS. Springer,
Heidelberg (2005). https://doi.org/10.1007/3-540-31306-0

https://doi.org/10.1007/978-3-030-00533-7_24
https://doi.org/10.1007/s11721-019-00165-y
https://github.com/fcampelo/EC-Bestiary
https://github.com/fcampelo/EC-Bestiary
https://doi.org/10.1007/BF01009452
https://doi.org/10.1007/s11047-012-9322-0
https://doi.org/10.1007/978-3-540-87527-7_13
https://doi.org/10.1007/978-3-540-87527-7_13
https://doi.org/10.1007/3-540-31306-0

Three Not Novel Metaphor-Based Algorithms 133

19. Ratnaweera, A., Halgamuge, S.K., Watson, H.C.: Self-organizing hierarchical parti-
cle swarm optimizer with time-varying acceleration coefficients. IEEE Trans. Evol.
Comput. 8(3), 240–255 (2004)

20. Rechenberg, I.: Evolutionsstrategie: Optimierung technischer Systeme nach
Prinzipien der biologischen Evolution. Frommann-Holzboog, Stuttgart, Germany
(1973)

21. Shi, Y., Eberhart, R.: A modified particle swarm optimizer. In: Simpson, P.K.,
Haines, K., Zurada, J., Fogel, D. (eds.) Proceedings of the 1998 IEEE International
Conference on Evolutionary Computation, ICEC 1998, pp. 69–73. IEEE Press,
Piscataway (1998)

22. Shi, Y., Eberhart, R.: Empirical study of particle swarm optimization. In: Pro-
ceedings of the 2009 Congress on Evolutionary Computation (CEC 2009), pp.
1945–1950. IEEE Press, Piscataway (2009)

23. Sörensen, K.: Metaheuristics–the metaphor exposed. Int. Trans. Oper. Res. 22(1),
3–18 (2015). https://doi.org/10.1111/itor.12001

24. Sörensen, K., Arnold, F., Palhazi Cuervo, D.: A critical analysis of the “improved
Clarke and wright savings algorithm”. Int. Trans. Oper. Res. 26(1), 54–63 (2019)

25. Storn, R., Price, K.: Differential evolution - a simple and efficient heuristic for global
optimization over continuous spaces. J. Global Optim. 11(4), 341–359 (1997).
https://doi.org/10.1023/A:1008202821328

26. Weyland, D.: A rigorous analysis of the harmony search algorithm: how the research
community can be misled by a “novel” methodology. Int. J. Appl. Metaheuristic
Comput. 12(2), 50–60 (2010)

27. Weyland, D.: A critical analysis of the harmony search algorithm: how not to solve
Sudoku. Oper. Res. Pers. 2, 97–105 (2015)

28. Yang, X.-S.: Firefly algorithms for multimodal optimization. In: Watanabe, O.,
Zeugmann, T. (eds.) SAGA 2009. LNCS, vol. 5792, pp. 169–178. Springer, Heidel-
berg (2009). https://doi.org/10.1007/978-3-642-04944-6 14

29. Yang, X.S.: A new metaheuristic bat-inspired algorithm. Nature inspired cooper-
ative strategies for optimization (NICSO 2010). In: González, J.R., Pelta, D.A.,
Cruz, C., Terrazas, G., Krasnogor, N. (eds.) Nature Inspired Cooperative Strate-
gies for Optimization (NICSO 2010). Studies in Computational Intelligence, vol.
284, pp. 65–74. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-
12538-6 6

30. Zambrano-Bigiarin, M., Clerc, M., Rojas, R.: Standard particle swarm optimisation
2011 at cec-2013: a baseline for future pso improvements. In: Proceedings of the
2013 Congress on Evolutionary Computation (CEC 2013), pp. 2337–2344. IEEE
Press, Piscataway (2013)

https://doi.org/10.1111/itor.12001
https://doi.org/10.1023/A:1008202821328
https://doi.org/10.1007/978-3-642-04944-6_14
https://doi.org/10.1007/978-3-642-12538-6_6
https://doi.org/10.1007/978-3-642-12538-6_6

Guerrilla Performance Analysis for Robot
Swarms: Degrees of Collaboration and

Chains of Interference Events

Heiko Hamann1(B) , Till Aust1, and Andreagiovanni Reina2

1 Institute of Computer Engineering, University of Lübeck, Lübeck, Germany
hamann@iti.uni-luebeck.de

2 Department of Computer Science, University of Sheffield, Sheffield, UK
a.reina@sheffield.ac.uk

Abstract. Scalability is a key feature of swarm robotics. Hence, mea-
suring performance depending on swarm size is important to check
the validity of the design. Performance diagrams have generic qualities
across many different application scenarios. We summarize these find-
ings and condense them in a practical performance analysis guide for
swarm robotics. We introduce three general classes of performance: lin-
ear increase, saturation, and increase/decrease. As the performance dia-
grams may contain rich information about underlying processes, such as
the degree of collaboration and chains of interference events in crowded
situations, we discuss options for quickly devising hypotheses about the
underlying robot behaviors. The validity of our performance analysis
guide is then made plausible in a number of simple examples based on
models and simulations.

1 Introduction

In a world of growing businesses and growing populations the question of how
to collaborate effectively and how to form efficient groups is important. Groups
that are too large can become inefficient as the cost needed by the group mem-
bers to coordinate their actions is greater than the benefits the collaboration
would bring. For example, rumor has it that Jeff Bezos limits group sizes by
the amount its members can eat (so-called ‘Two Pizza Rule’ [33]) and Brooks’s
law says “adding manpower to a late software project makes it later” [5]. A sci-
entific result is the Ringelmann effect describing the decreasing productivity of
individuals with increasing group size [38]. However, certain systems can exploit
collaboration at their advantage to obtain a superlinear increase in group perfor-
mance, that is, the work completed by the group is more than the sum of work
each individual could perform alone. Superlinear increase in group performance,
commonly found in swarm robotics [18,30], can also be found in collaborating
humans [41] and in distributed computing [9].

In engineered systems, collaboration between the units composing the system
can be constrained by limited shared resources, for example, memory access in
c© Springer Nature Switzerland AG 2020
M. Dorigo et al. (Eds.): ANTS 2020, LNCS 12421, pp. 134–147, 2020.
https://doi.org/10.1007/978-3-030-60376-2_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-60376-2_11&domain=pdf
http://orcid.org/0000-0002-2458-8289
http://orcid.org/0000-0003-4745-992X
https://doi.org/10.1007/978-3-030-60376-2_11

Guerrilla Performance Analysis for Robot Swarms 135

0

5

10

15

20

25

30

35

0 10 20 30 40 50

pe
rfo

rm
an

ce
 P

system size N

linear
USL

Amdahl
swarm model1

2

3

4

Fig. 1. Schematic plot of qualitatively different swarm performance P (N) curves as a
function of the system size N . For large swarm sizes, the performance can (i) increase
linearly (purple line, zone 1), (ii) saturate to a constant value (blue line, zone 2),
or (iii) initially increase (zone 3 of green and orange lines) and subsequently decrease
(zone 4 of green and orange lines). In scalability analysis, constant increase cor-
responds to Gustafson’s law[10], saturation corresponds to Amdahl’s law [1], and
increase/decrease to Gunther’s universal scalability law (USL) [7]. We show two curves
of increase/decrease: The initial phase (zone 3) can show a slow (orange) or quick
(green) increase of performance. The final phase, zone 4 , can show high order (green)
or almost linear (orange) decrease. These visual cues can give insights about swarm
behavior and efficient design. (Colour figure online)

computing [17] or physical space in swarm robotics [12]. The system performance
varies when increasing system size or reducing resources. What is measured
by swarm performance P depends on the particular application and scenario.
Performance P is a quantification of a task-specific feature that is commonly
agreed as a valid measure of success. For example, in foraging that can be the
number of collected items [42], in emergent taxis the traveled distance of the
swarm’s barycenter [2], and in collective decision-making a combination of speed
and accuracy [44]. A scalable system is supposed to work efficiently for different
load and/or system size [29]. In swarm robotics, scalability of system size is
supposed to be a common feature of a properly engineered swarm system [13].
However, robots have a physical body and their movement can interfere with
others when the swarm density ρ = N/A (number of robots N per area A) is
high [11]. Increasing area A (shared resource) with swarm size N would keep the
density ρ constant. This experiment design would provide no information gain
about the system’s scalability. Instead, we are interested in measuring swarm
performance P over swarm density ρ. In most published experiments this, in
turn, means measuring swarm performance P over system size N because usually
the provided area A is constant.

A promising feature of robot swarms is that they can form an open system
(‘open swarms’ [35]) that have potential for scalability in real time. That is,

136 H. Hamann et al.

robots can join and leave the swarm on demand depending on the needs of
the moment [27]. In this type of systems, the robots can collectively adapt to
varying swarm size (or densities) by updating their control parameters in real
time [34,45]. While in this work, we focus on swarms with constant size within an
experiment, to engineer open swarms, scalability analysis is crucial to quantify
the performance for varying system size. In fact, scalability analysis may reveal
that adding more units is counterproductive and can instruct the swarm engineer
on the most efficient way to react to real-time changes.

Our main motivation is that swarm performance curves P (N) seem to possess
generic qualities that appear across a wide collection of different swarm scenar-
ios [11,12,14]. Our contribution is to summarize these findings here and to turn
them into a practical performance analysis guide for swarm robotics. In this
work, our access to understanding swarms is almost exclusively phenomonemo-
logical and macroscopic. Still, such findings can help to understand essential
qualitative features of the swarm and to develop approaches to resolve perfor-
mance issues. Although deriving microscopic properties (e.g., required behaviors
of individual robots) from macroscopic properties is difficult [15,36], we are able
to indicate some micro-macro links that may even be generic. For example, we
show how the macroscopic performance curve can indicate whether small or big
groups of robots interact in beneficial or detrimental ways.

The term ‘guerrilla’ in the title is a tribute to Gunther [7] who wrote the
renowned book ‘Guerrilla Capacity Planning’ [8] to provide industry managers
with a simple framework for scalabilty planning. Here we let the term represent
the rather practical and phenomenological top-down approach to performance in
swarm robotics. We provide a practical guide to quickly understand fundamen-
tal scalability features of a studied swarm based on elementary insights about
superficial characteristics of their P (N) plot. We present three classes of perfor-
mance: linear increase, saturation, and increase/decrease. Then we focus on the
increase/decrease class and discuss how the performance curve can explain the
relationship between collaboration and interference among the robots.

2 Three General Classes of Performance System Behavior

Analyzing the system performance P (N) reveals three qualitatively different
types of scalability classes: linear increase, saturation, and increase/decrease.

2.1 Linear Increase

If we observe a sustained trend of performance P (N) ∝ N up to large values
of N (see purple line 1 in Fig. 1), then we observe the scalability class of linear
increase. This situation is advantageous as the swarm performance improves
by increasing the number of robots. However, we should note that it cannot be
considered the ideal case as also superlinear performance scaling can be observed
in swarm robotics and computing systems [9,12,28], as represented by the rapid
initial increase of the green curve in Fig. 1.

Guerrilla Performance Analysis for Robot Swarms 137

2.2 Saturation

We observe the saturation class when performance P (N) approaches a maxi-
mum P (N → ∞) = s∗ (see blue curve 2 in Fig. 1). Therefore, such a regime
has no performance peak and is equivalent to Amdahl’s law [1] that was origi-
nally formulated to (pessimistically) describe the scalability of parallel comput-
ers. While Amdahl’s law has demonstrated its applicability [8], we argue that
this saturation scenario is rare in swarm robotics or ignores costs (see Sect. 2.4).
Physical interference due to high robot densities usually has a significant impact
on swarm performance causing an increase/decrease situation.

2.3 Increase/Decrease

In swarm robotics, the representative scalability class is increase/decrease,
characterized by increasing performance for small N , a performance peak at
a critical swarm size Nc, and decreasing performance for N > Nc. Perfor-
mance P (N < Nc) increases because robots efficiently collaborate or work in
parallel to perform the task, and performance P (N > Nc) decreases because
robots interfere with each other.

Gunther [7,9] proposed the universal scalability law (USL) to describe this
increase/decrease class as observed in computing. The USL is based on perfor-
mance improvements S (speedup) for size N compared to the minimal sys-
tem N = 1. The USL is

S(N) =
P (N)
P (1)

=
N

1 + σ(N − 1) + κN(N − 1)
, (1)

with parameter σ describing the influence of contention (e.g., queues for shared
resources) and parameter κ describing a coherency delay (e.g., distributing and
synchronizing information). The USL properly parameterized by σ and κ covers
all scalability classes (linear increase, saturation, increase/decrease). In Fig. 1,
the green line (labeled USL) gives an example for increase/decrease. Another
model developed especially for the scalability analysis of robot swarms [11,12] is

P (N) = aN b exp(cN) , (2)

for constants a > 0, b > 0, and c < 0. The function can be understood as a
dichotomous pair of a term for potential of collaboration N b and a term for
interference exp(cN). In Fig. 1 the orange curve is an example of Eq. 2 in the
increase/decrease regime (labeled ‘swarm model’).

2.4 Ambiguous Definition of Swarm Performance

In Sect. 1 we argued that the definition of swarm performance P (N) for a particu-
lar application scenario should be an agreed measure of success. This introduces
degrees of subjectivity in our scalability analysis and ultimately ambiguity in
the observed results. While it seems unlikely that this can be resolved in a fully

138 H. Hamann et al.

generic way, we propose four simple guidelines of how to improve the scalability
analysis and avoid common mistakes: constant task, full range, added cost, and
marginal performance.

Constant Task. In any performance analysis, but specifically for large system
size, when the performance curve keeps growing as P (N) ∝ N (see 1 in Fig. 1)
the swarm performance analysis practitioner should question if the performance
has been measured on the same task T for any swarm size N . By adapting the
task to large system sizes, the performance may not provide useful indications on
the system’s scalability as two parameters (size N and task T) have been changed
at the same time. We recommend to consider as part of the task a constant
working area A ∈ T . Increasing size N of a swarm on constant area has the effect
of increasing swarm density ρ = N/A that can increase physical interference
among robots. Physical interference is expected to have a negative impact on the
swarm performance P (N). While we acknowledge that certain tasks—e.g., area
coverage or movement-free tasks based on communication only—could exploit
increased density to improve the performance [6], we argue that linear increase
is a pathological case that should be carefully interpreted. As the performance
should measure the completion of a fixed task, it could be expected that it would,
at least, saturate for large sizes N .

Full Range. Another typical shortcoming of performance analysis that could
explain the observation of a linear increase of performance for large sizes N , is a
short range of N . Considering only relatively small sizes of N would only show a
partial picture of the system behavior. An incomplete scalability analysis could
be harmful as the system behavior would not be fully understood. For example,
in cleaning or object collection tasks, it is reasonable that performance saturates
once dirty areas get scarce or most objects have been collected respectively.

Added Cost. A performance curve that does not decrease for large system
sizes (e.g., see 1 and 2 in Fig. 1 for linear increase and saturation respectively)
suggests minimal interference among robots. For example, in an area coverage
task, the more robots are added to the swarm, the better the area gets covered
until performance saturation is observed [31]. Scalability analysis should support
the system designer in making decisions about the optimal swarm size in terms
of its internal function and real-world factors, such as deployment cost. Hence,
system performance P (N) should be complemented with the cost of added units
to select the ‘best’ swarm size N . In the above coverage task, the saturation of
the performance puts the scalability analyst in a situation where performances
of large swarms cannot be distinguished anymore (e.g., P (N) ≈ P (103N)). We
would ignore effects of diminishing returns. In addition, one may be tempted to
add more robots to increase redundancy and robustness (redundancy-induced
robustness). The lack of any cost suggests that ‘bigger is better’ as there is no
immediate negative impact of interference and performance P increases mono-
tonically with N or interference may even be a feature [6].

Guerrilla Performance Analysis for Robot Swarms 139

-25

0

25

50

75

100

26 52 78

pe
rf
or
m
an

ce
P

system size N

performance P
eff ciency Pe

Fig. 2. Saturating performance P based on data from simulations of a coverage task
by Özdemir et al. [31] and the efficiency measure Pe = P (N) − C(N) for C(N) = N .

We recommend to always complement the study of swarm performance P (N)
with the study of cost C(N), to analyze the efficiency Pe(N) = P (N) − C(N),
that can be more informative than P (N) alone. Cost C(N) should account
for relevant aspects, such as economical (purchase of additional robots [40]) or
logistic costs (covering the environment with robots would reduce the space for
other type of activities). For example, this would allow to usefully balance the
cost and benefits of redundancy-induced robustness. In Fig. 2b, we show the
effect of adding a constant cost per unit C(N) = cN to the performance data of
an area coverage study by Özdemir et al. [31]. Pe shows a peak and can hence
indicate an optimal swarm size N . A designer seeking robustness can quantify
the decrease in efficiency and choose an appropriate swarm size N .

Marginal Performance. Another measure that can improve scalability analy-
sis is marginal performance Pm(N) = P (N) − P (N − 1) = dP (N)/dN . Consid-
ering added swarm performance per unit can help deciding the swarm size. The
measure Pm(N) can be particularly useful when compared with the marginal
cost Cm(N) = C(N) − C(N − 1) = dC(N)/dN . For Pm(N) < Cm(N), adding
robots to the system would decrease swarm performance. Similarly, one could
consider the mean individual performance I(N) = P (N)/N . In a more holistic
way, here the entire swarm shares the benefits of an added robot. Also in this
case, the measure I(N), that indicates the performance contribution of each
robot, can be compared with the individual cost Ic(N) = C(N)/N in order to
appropriately scale the system.

3 From Eye-Catchers to a Practical Performance Analysis

The performance class that is most frequently observed in swarm robotics
is increase/decrease. For this class we provide a guide how to quickly inter-
pret P (N) diagrams in terms of two features: shape of the curve for small system
sizes (see 3 in Fig. 1) and shape of the curve for large systems (see 4 in Fig. 1).

140 H. Hamann et al.

3.1 Increase: Low- and High-Order Robot-Robot Collaboration

By looking at the initial phase of the performance curve (3 in Fig. 1, for N <
15), we can obtain indications of how much robot-robot collaboration is done to
complete the task (cf. other, more sophisticated efforts to derive group sizes from
macroscopic measurements [15]). A fast increase of P (N) for smallest values N ∈
{1, 2, 3}, shows that a small swarm is already sufficient to complete at least
parts of the task (e.g., green curve of Fig. 1). Instead, if the curve has a slow
start and P (N) shows a noticeable increase only for larger sizes N , it could
indicate the necessity of robot-robot collaboration in larger groups. In most
published swarm performance measurements, the initial increase of performance
is approximately linear (fast increase). However, there are rare cases of published
datasets showing a nonlinear (curved) and slow increase [26]. Note that we do
not focus on distinguishing between super- and sub-linear performance increases,
instead we try to understand when to expect linear and when nonlinear increases.

Both scalability functions described in Sect. 2.3 can represent both linear
(fast) and nonlinear (slow) increase despite their simplicity. Interestingly, sim-
ilar nonlinear system behaviors can be observed in models from not directly
related fields, such as PT2 lag elements in control theory, or residence times in
cascades of stirred-tank reactors (tanks in series) [23]. In both of these examples,
sequences of events or higher order time-delays introduce the observed nonlin-
earity. Comparable effects emerge in robot swarms when several robots need to
collaborate in order to perform the given task.

To support our above claims, we show two minimal examples in which observ-
ing the system performance curve for small system sizes (3 , N < 10, in Fig. 1)
allows us to estimate the necessary amount of robot-robot interactions to com-
plete the task. If robots can perform the task without any/much help from other
robots, then the initial increase is steep and close to linear. We say that robots
require low-order interactions. If robots require considerable help from other
robots to perform the task, then the initial performance remains low for small
sizes N and shows a curved (nonlinear) increase. We say that robots require
high-order interactions. We give evidence for this conjecture through two simple
analyses: a simple combinatorial argumentation and empirical observations in
simulations of an abstract system inspired by the stick pulling experiment [18].

Our combinatorial consideration is based on the precondition for robot-robot
collaboration: robots need to be in close proximity to each other. In swarm
robotics, robot movement is often based on random motion [3]. We consider
the probability that collaboration among k robots takes place as a stochastic
event proportional to k and swarm density ρ. Assuming a simple grid environ-
ment where collaboration takes place between neighboring robots, we can derive
the probability of having at least k robots in Moore neighborhoods, 3 × 3, of
m = 9 cells. Swarm density ρ indicates the (independent) probability of find-
ing a robot in a given cell. The probability Γk of finding at least k robots in a
Moore neighborhood of m = 9 cells corresponds to Γk =

∑m
i=k

(
m
i

)
ρi(1−ρ)(m−i).

In Fig. 3a we show Γk as a function of ρ for k ∈ {1, 2, 3, 4}. As expected, the
probability that at least k robots meet (our assumed precondition for collabo-

Guerrilla Performance Analysis for Robot Swarms 141

0

0.5

1

0 0.5 1

pr
ob

ab
ili
ty

Γ

swarm density ρ

collab. of k=4
collab. of k=3
collab. of k=2

no collab. (k=1)
0

0.5

0 0.5 1

pr
ob

ab
ili
ty

Γ

swarm density ρ

collab. of k=4
collab. of k=3
collab. of k=2

no collab. (k=1)

Fig. 3. Combinatorial explanation of chances for collaboration, collaboration proba-
bility Γk for k ∈ {1, 2, 3, 4} and neighborhood size m = 9 (Moore neighborhood), and
swarm density ρ; two scenarios: (a) without and (b) with interference.

ration) decreases by increasing k. Looking at the initial part of the curves, for
low density values, larger groups have a slow (nonlinear) increase. Instead, small
groups (e.g., k = 1 or k = 2) have fast and almost linear increases. In Fig. 3a, we
assume no interference between robots, thus values larger than k still allow for
collaboration without overhead. In Fig. 3b, we assume that values larger than k
would prohibit collaboration. The shown probability is Γ ′

k =
(
m
k

)
ρk(1−ρ)(m−k).

Despite the different shapes for high densities (see Sect. 3.2), the initial part
shows the same type of shapes for varying k.

0

5

10

15

20

25

30

0 20 40 60 80 100 120

sw
ar
m

pe
rf
or
m
an

ce
P

system size N

collaboration of 4
collaboration of 3
collaboration of 2
no collaboration

(a) performance P

0

0.5

1

0 20 40 60 80 100 120

in
di
vi
du

al
pe

rf
or
m
an

ce
I

system size N

(b) individual performance I = P/N

Fig. 4. Stick pulling scenario: (a) Swarm performance P and (b) individual perfor-
mance I measured in an abstract stochastic model of the robot swarm stick pulling sce-
nario where one (no collaboration), two, three, or four robots are required to pull a stick.
Performance normalized to equalize for P (N = 120). Inset shows N ∈ {1, 2, . . . , 15}
for all performance maxima normalized to one.

Our second argumentation is based on a minimal simulation of a simplistic
abstract model inspired by the stick pulling scenario [18] that was published
before [12]. We have a swarm of N robots and M = 20 stick sites containing
one stick each. In the original experiment, collaboration of k = 2 robots is

142 H. Hamann et al.

required to successfully pull a stick. We test four cases with k ∈ {1, 2, 3, 4},
where k = 1 means no collaboration required and k = 4 means four robots are
required to pull one stick. Robots commute randomly between stick sites and
their arrival times are modeled in time steps by commute times τ(N) = N + ξ
(i.e., linearly proportional to swarm size N) for a noise term ξ ∈ {0, 1, 2}. Robots
wait at stick sites for up to seven time steps until they give up and leave to a
randomly chosen stick site. All robots are initialized to the commute state with
uniformly distributed arrival times τ ∈ {0, 1, . . . , N −1}. We simulate for swarm
sizes N ∈ {1, 2, . . . , 120}, for 1,000 time steps each, with constant stick site
number M = 20, and 104 independent runs for each N . The results are shown
in Fig. 4. Figure 4a shows the normalized swarm performance P for required
collaboration k ∈ {1, 2, 3, 4}. Swarm performance P saturates because commute
times τ scale linearly with swarm size N . The nonlinear effect of higher-order
collaboration (k = 3 and k = 4) is obvious. Figure 4b shows the normalized
individual performance I = P/N . Again showing the nonlinear effect of higher-
order collaboration. In addition, we also see qualitative differences in the curves
for high swarm sizes N > 30: curved for k = 1 and almost linear for k = 4.

3.2 Decrease: Low- and High-Order Robot-Robot Interaction

Now we study the decrease in swarm performance for sizes N bigger than
the swarm size Nc for peak performance (see 4 in Fig. 1). In published
works reporting swarm performance diagrams, the plot of P (N) is sometimes
almost linear [16,25], sometimes slightly curved [22,43,47], and sometimes
curved [18,39,42] for sizes N > Nc. For example, Llenas et al. [25] report perfor-
mance plots with graceful linear degradation for a foraging scenario. The under-
lying simulation of Kilobots was simplified, temporarily small clusters formed
that dissolved quickly, and traffic lanes were formed. Hence, most collision avoid-
ance actions were of first order, that is, robots made a transition to collision
avoidance but didn’t trigger collision avoidance in others. This is similar to
traffic models were a linear decrease is assumed classically, for example in the
Lighthill–Whitham–Richards (LWR) model [24]. The traffic is assumed to be
fully synchronized with strong serial dependencies due to lanes (1-d space) for
system size Nc. If system size is further increased, traffic is disturbed, and for
too crowded systems traffic jams emerge. In swarm robotics the situation is more
complex as space is 2-d and it is unknown which robots in collision avoidance
state may trigger collision avoidance in others. Another analogy are transport
systems [19]. There viscosity or mechanical impedance increases nonlinearly with
concentration (cf. interference in Eq. 2). For robots that translates to number of
collision avoidance events.

Performance for big sizes (for N > 20 as seen at 4 in Fig. 1) is our focus
now. If robots interfering with each other manage to resolve the interference
(e.g., by avoidance movements) and return to productive mode quickly, then
the performance decrease is low and close to linear. We say they show low-
order interference. If robots by trying to resolve interference, trigger cascades of
collision avoidance, then the performance decrease is steep and curved. We say

Guerrilla Performance Analysis for Robot Swarms 143

they show high-order interference. To support our claims, we present empirical
evidence based on a simulation. The main idea of this experiment is to control
the number of collision-avoidance events that a robot triggers. We define as
first order interference the collision avoidance that is triggered by two robots
moving close to each other. During collision avoidance (CA), the robots perform
a set of maneuvers to avoid physical collision. If during the execution of this
set of avoidance maneuvers, the robot triggers collision avoidance in another
robot, we define it as second order interference. Therefore, when these robots
performing collision avoidance (in state CA) trigger another jth robot, such event
corresponds to the jth order interference, for j robots involved. This is related
to the basic reproduction number R0 in the SIR epidemic model [20], where R0

defines the average number of infections that each infected individuals causes.
Considering R0 the average number of collision avoidance events that each robot
in state CA triggers, we have that with R0 = 1 each robot in state CA ‘infects’
one other robot with the ‘collision-avoidance disease.’ With R0 > 1 each robot
in state CA triggers more than one collision avoidance, its growth is exponential,
and the resulting decrease of performance P (N) is nonlinear.

We use the Webots simulation environment [46] for our experiments on inter-
ference. The simulated robot is the Thymio II [37] operating as a swarm of size N
in a 2m × 2m arena. We simulate a simple multi-robot navigation task. The
arena has four bases (north, south, east, west). The robots’ goal is to reach
the respective opposite base (e.g., from north to south and vice versa). At the
beginning of each run, we randomly distribute N = 1 to N = 55 robots (at
least 10 cm away from any wall) depending on the density we want to test. Then
the robots do a random walk until they touch a base. They use it then as their
reference base (from where they started) to set the vis-a-vis base as their next
target (north and south, east and west). When a robot detects an obstacle (wall
or robot) or its target base, it turns in a random direction for a random time,
and moves straight again. When they touch the target, the performance counter
is increased by one (and the new target is the opposite base). One run takes
6 simulated minutes. We do two types of simulation runs. In full avoidance runs,
all robots follow the standard procedure and remain in the arena at all times. In
first order avoidance runs, we limit the effect of interference by limiting collision
avoidance triggering cascades. A robot in state CA that triggers a transition to
CA in another robot is allowed to trigger only this one CA event but is then
temporarily removed with probability Premove for the time it stays in state CA.
Once its CA behavior has been completed, it is put back into the arena if the
spot is empty; otherwise it is put back later once the spot is empty. We vary
probability Premove ∈ {0.4, 0.7, 1} where Premove = 1 means the robot is always
removed once it has triggered CA in another robot.

144 H. Hamann et al.

0

25

50

75

100

125

150

175

0 20 40 60

pe
rf
or
m
an

ce
P

system size N

Premove=1.0
Premove=0.7
Premove=0.4
physical sim.

Fig. 5. Interference in swarms of N robots: simple navigation task, with probability
Premove ∈ {0.4, 0.7, 1} we remove robots that triggered collision avoidance of others
(n = 100 independent simulation runs per data point).

The results are shown in Fig. 5.1 The data is noisy despite the invested
computational effort of more than 200 CPU days. However, an overall trend can
be noticed. With Premove the swarm density is regulated by removing robots that
cannot be put back into the arena immediately because their spot is taken. Due to
a nontrivial and not further discussed interplay of effects, the setup Premove = 1
is better for N ≥ 47 but outperformed by setup Premove = 0.7 for 20 < N < 47.
Either robots are taken out too quickly slowing down their travels (Premove = 1,
N < 47) or robots are left in the system increasing collision avoidance events
(Premove = 0.7, N ≥ 47). Hence, independent of the task a robot swarm can
artificially be pushed from increase/decrease to the saturation scenario. This
is similar to other approaches where simulated physics (embodied systems not
allowing to pass through other bodies) was turned on/off [39,42]. Also behaviors
in ants mitigate overcrowded situations to avoid the increase/decrease situation
in favor of a saturation scenario [4,21,32]. With our experiment we investigated
the impact of interference on performance by modulating probability Premove.

4 Conclusion

We have given a practical guide to analyze swarm performance and scalability.
Swarm performance plots contain rich information about underlying processes.
The left part of the swarm performance plot can give hints on the level of collab-
oration necessary to solve the task. The right part of the plot is a reflection of
the ratio between marginal cost and performance. Performance scales in qualita-
tively different ways depending on the task. Tasks that are not limited by physical
interference (e.g., area coverage) show no collapse of performance for increased
swarm sizes. However, usually physical interference has a negative effect in a
variety of tasks. These qualitative differences vanish once we a apply a benefit-
cost analysis (BCA) that reveals the relation between the marginal performance

1 See http://doi.org/10.5281/zenodo.3947822 for videos, screenshot, and data.

http://doi.org/10.5281/zenodo.3947822

Guerrilla Performance Analysis for Robot Swarms 145

(added swarm performance of an added robot) and the relative marginal cost.
An important design choice is about the redundancy-induced robustness. Swarm
robotics is commonly assumed to be robust to failures because of its high degree
of redundancy. In a homogeneous swarm, robots are exchangeable and serve as
mutual replacements. Through BCA and marginal cost/performance analysis the
designer can make a more informed choice to balance the efficiency-robustness
tradeoff. Following our practical (‘guerrilla’) performance analysis guide allows
swarm scalability analysts to quickly formulate hypotheses about the underlying
system behaviors and consequently to speedup the design and studies in swarm
robotics.

References

1. Amdahl, G.M.: Validity of the single processor approach to achieving large scale
computing capabilities. In: AFIPS Conference Proceedings, pp. 483–485. ACM
(1967)

2. Bjerknes, J.D., Winfield, A., Melhuish, C.: An analysis of emergent taxis in a
wireless connected swarm of mobile robots. In: Shi, Y., Dorigo, M. (eds.) IEEE
Swarm Intelligence Symposium, pp. 45–52. IEEE Press, Los Alamitos (2007)

3. Dimidov, C., Oriolo, G., Trianni, V.: Random walks in swarm robotics: an experi-
ment with kilobots. In: Dorigo, M., et al. (eds.) ANTS 2016. LNCS, vol. 9882, pp.
185–196. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-44427-7 16

4. Dussutour, A., Fourcassié, V., Helbing, D., Deneubourg, J.L.: Optimal traffic orga-
nization in ants under crowded conditions. Nature 428, 70–73 (2004)

5. Frederick, P., Brooks, J.: The Mythical Man-Month. Addison-Wesley, Boston
(1995)

6. Goldberg, D., Matarić, M.J.: Interference as a tool for designing and evaluating
multi-robot controllers. In: Kuipers, B.J., Webber, B. (eds.) Proceedings of the
Fourteenth National Conference on Artificial Intelligence (AAAI 1997), pp. 637–
642. MIT Press, Cambridge (1997)

7. Gunther, N.J.: A simple capacity model of massively parallel transaction systems.
In: CMG National Conference, pp. 1035–1044 (1993)

8. Gunther, N.J.: Guerrilla Capacity Planning. Springer, Heidelberg (2007). https://
doi.org/10.1007/978-3-540-31010-5

9. Gunther, N.J., Puglia, P., Tomasette, K.: Hadoop super-linear scalability: the per-
petual motion of parallel performance. ACM Queue 13(5), 46–55 (2015)

10. Gustafson, J.L.: Reevaluating Amdahl’s law. Commun. ACM 31(5), 532–533
(1988). https://doi.org/10.1145/42411.42415

11. Hamann, H.: Towards swarm calculus: urn models of collective decisions and uni-
versal properties of swarm performance. Swarm Intell. 7(2–3), 145–172 (2013).
https://doi.org/10.1007/s11721-013-0080-0

12. Hamann, H.: Superlinear scalability in parallel computing and multi-robot systems:
shared resources, collaboration, and network topology. In: Berekovic, M., Buchty,
R., Hamann, H., Koch, D., Pionteck, T. (eds.) ARCS 2018. LNCS, vol. 10793, pp.
31–42. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-77610-1 3

13. Swarm Robotics: A Formal Approach. Lecture Notes in Computer Science.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-74528-2 7

14. Hamann, H., Reina, A.: Scalability in computing and robotics. arXiv, June 2020.
https://arxiv.org/abs/2006.04969

https://doi.org/10.1007/978-3-319-44427-7_16
https://doi.org/10.1007/978-3-540-31010-5
https://doi.org/10.1007/978-3-540-31010-5
https://doi.org/10.1145/42411.42415
https://doi.org/10.1007/s11721-013-0080-0
https://doi.org/10.1007/978-3-319-77610-1_3
https://doi.org/10.1007/978-3-319-74528-2_7
https://arxiv.org/abs/2006.04969

146 H. Hamann et al.

15. Hamann, H., Valentini, G., Khaluf, Y., Dorigo, M.: Derivation of a micro-macro
link for collective decision-making systems. In: Bartz-Beielstein, T., Branke, J.,
Filipič, B., Smith, J. (eds.) PPSN 2014. LNCS, vol. 8672, pp. 181–190. Springer,
Cham (2014). https://doi.org/10.1007/978-3-319-10762-2 18

16. Hayes, A.T.: How many robots? Group size and efficiency in collective search tasks.
In: Asama, H., Arai, T., Fukuda, T., Hasegawa T. (eds.) Distributed Autonomous
Robotic Systems, vol. 5, pp. 289–298. Springer, Tokyo (2002). https://doi.org/10.
1007/978-4-431-65941-9 29

17. Hill, M.D.: What is scalability? ACM SIGARCH Comput. Archit. News 18(4),
18–21 (1990)

18. Ijspeert, A.J., Martinoli, A., Billard, A., Gambardella, L.M.: Collaboration through
the exploitation of local interactions in autonomous collective robotics: the stick
pulling experiment. Auton. Robots 11, 149–171 (2001). https://doi.org/10.1023/
A:1011227210047

19. Jensen, K.H., Kim, W., Holbrook, N.M., Bush, J.W.M.: Optimal concentrations
in transport systems. J. Roy. Soc. Interface 10(83), 20130138 (2013)

20. Keeling, M.J., Rohani, P.: Modeling Infectious Diseases in Humans and Animals.
Princeton University Press, Princeton (2011)

21. Laure-Anne, P., Sebastien, M., Jacques, G., Buhl, J., Audrey, D.: Experimental
investigation of ant traffic under crowded conditions. eLife 8, e48945 (2019)

22. Lerman, K., Galstyan, A.: Mathematical model of foraging in a group of robots:
effect of interference. Auton. Robots 13, 127–141 (2002)

23. Levenspiel, O.: Chemical reaction engineering. Ind. Eng. Chem. Res. 38(11), 4140–
4143 (1999)

24. Lighthill, M.J., Whitham, G.B.: On kinematic waves. II. A theory of traffic flow
on long crowded roads. Proc. Roy. Soc. London A229(1178), 317–345 (1955)

25. Font Llenas, A., Talamali, M.S., Xu, X., Marshall, J.A.R., Reina, A.: Quality-
sensitive Foraging by a robot swarm through virtual pheromone trails. In: Dorigo,
M., Birattari, M., Blum, C., Christensen, A.L., Reina, A., Trianni, V. (eds.) ANTS
2018. LNCS, vol. 11172, pp. 135–149. Springer, Cham (2018). https://doi.org/10.
1007/978-3-030-00533-7 11

26. Mateo, D., Kuan, Y.K., Bouffanais, R.: Effect of correlations in swarms on collective
response. Sci. Rep. 7, 10388 (2017). https://doi.org/10.1038/s41598-017-09830-w

27. Mayya, S., Pierpaoli, P., Egerstedt, M.: Voluntary retreat for decentralized inter-
ference reduction in robot swarms. In: International Conference on Robotics and
Automation (ICRA), pp. 9667–9673, May 2019. https://doi.org/10.1109/ICRA.
2019.8794124

28. Mondada, F., Gambardella, L.M., Floreano, D., Nolfi, S., Deneubourg, J.L., Dorigo,
M.: The cooperation of swarm-bots: physical interactions in collective robotics.
IEEE Robot. Autom. Mag. 12(2), 21–28 (2005)

29. Neuman, B.C.: Scale in distributed systems. In: Readings in Distributed Comput-
ing Systems. IEEE Computer Society Press (1994)

30. O’Grady, R., Gross, R., Christensen, A.L., Mondada, F., Bonani, M., Dorigo, M.:
Performance benefits of self-assembly in a swarm-bot. In: IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS). pp. 2381–2387, October
2007. https://doi.org/10.1109/IROS.2007.4399424

31. Özdemir, A., Gauci, M., Kolling, A., Hall, M.D., Groß, R.: Spatial coverage without
computation. In: International Conference on Robotics and Automation (ICRA),
pp. 9674–9680. IEEE (2019)

https://doi.org/10.1007/978-3-319-10762-2_18
https://doi.org/10.1007/978-4-431-65941-9_29
https://doi.org/10.1007/978-4-431-65941-9_29
https://doi.org/10.1023/A:1011227210047
https://doi.org/10.1023/A:1011227210047
https://doi.org/10.1007/978-3-030-00533-7_11
https://doi.org/10.1007/978-3-030-00533-7_11
https://doi.org/10.1038/s41598-017-09830-w
https://doi.org/10.1109/ICRA.2019.8794124
https://doi.org/10.1109/ICRA.2019.8794124
https://doi.org/10.1109/IROS.2007.4399424

Guerrilla Performance Analysis for Robot Swarms 147

32. Poissonnier, L.A., Motsch, S., Gautrais, J., Buhl, J., Dussutour, A.: Experimen-
tal investigation of ant traffic under crowded conditions. eLife 8, e48945 (2019).
https://doi.org/10.7554/eLife.48945

33. Pratt, E.L.: Virtual teams in very small classes. Virtual Teamwork 91 (2010)
34. Rausch, I., Reina, A., Simoens, P., Khaluf, Y.: Coherent collective behaviour emerg-

ing from decentralised balancing of social feedback and noise. Swarm Intell. 321–345
(2019). https://doi.org/10.1007/s11721-019-00173-y

35. Reina, A.: Robot teams stay safe with blockchains. Nat. Mach. Intell. 2, 240–241
(2020). https://doi.org/10.1038/s42256-020-0178-1

36. Reina, A., Miletitch, R., Dorigo, M., Trianni, V.: A quantitative micro-macro
link for collective decisions: the shortest path discovery/selection example. Swarm
Intell. 9(2–3), 75–102 (2015)

37. Riedo, F., Chevalier, M., Magnenat, S., Mondada, F.: Thymio II, a robot that
grows wiser with children. In: IEEE Workshop on Advanced Robotics and its Social
Impacts (ARSO 2013), pp. 187–193. IEEE (2013)

38. Ringelmann, M.: Recherches sur les moteurs animés: Travail de l’homme. Annales
de l’Institut National Agronomique, 2nd series 12, 1–40 (1913)

39. Rosenfeld, A., Kaminka, G.A., Kraus, S.: A study of scalability properties in robotic
teams. In: Scerri, P., Vincent, R., Mailler, R. (eds.) Coordination of Large-Scale
Multiagent Systems, pp. 27–51. Springer, Boston (2006). https://doi.org/10.1007/
0-387-27972-5 2

40. Salman, M., Ligot, A., Birattari, M.: Concurrent design of control software and
configuration of hardware for robot swarms under economic constraints. PeerJ
Comput. Sci. 5, e221 (2019). https://doi.org/10.7717/peerj-cs.221

41. Sornette, D., Maillart, T., Ghezzi, G.: How much is the whole really more than the
sum of its parts? 1 � 1 = 2.5: superlinear productivity in collective group actions.
PLOS ONE 9(8), 1–15 (2014). https://doi.org/10.1371/journal.pone.0103023

42. Talamali, M.S., Bose, T., Haire, M., Xu, X., Marshall, J.A.R., Reina, A.: Sophis-
ticated collective foraging with minimalist agents: a swarm robotics test. Swarm
Intell. 14(1), 25–56 (2019). https://doi.org/10.1007/s11721-019-00176-9

43. Trianni, V., Groß, R., Labella, T.H., Şahin, E., Dorigo, M.: Evolving aggregation
behaviors in a swarm of robots. In: Banzhaf, W., Ziegler, J., Christaller, T., Dit-
trich, P., Kim, J.T. (eds.) ECAL 2003. LNCS (LNAI), vol. 2801, pp. 865–874.
Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-39432-7 93

44. Valentini, G.: Achieving Consensus in Robot Swarms. SCI, vol. 706. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-53609-5

45. Wahby, M., Petzold, J., Eschke, C., Schmickl, T., Hamann, H.: Collective change
detection: adaptivity to dynamic swarm densities and light conditions in robot
swarms. Artif. Life Conf. Proc. 31, 642–649 (2019). https://doi.org/10.1162/
isal a 00233

46. Webots: version r2020a by Cyberbotics Ltd. (2020). https://cyberbotics.com
47. Zahadat, P., Hofstadler, D.N.: Toward a theory of collective resource distribution:

a study of a dynamic morphogenesis controller. Swarm Intell. (1), 347–380 (2019).
https://doi.org/10.1007/s11721-019-00174-x

https://doi.org/10.7554/eLife.48945
https://doi.org/10.1007/s11721-019-00173-y
https://doi.org/10.1038/s42256-020-0178-1
https://doi.org/10.1007/0-387-27972-5_2
https://doi.org/10.1007/0-387-27972-5_2
https://doi.org/10.7717/peerj-cs.221
https://doi.org/10.1371/journal.pone.0103023
https://doi.org/10.1007/s11721-019-00176-9
https://doi.org/10.1007/978-3-540-39432-7_93
https://doi.org/10.1007/978-3-319-53609-5
https://doi.org/10.1162/isal_a_00233
https://doi.org/10.1162/isal_a_00233
https://cyberbotics.com
https://doi.org/10.1007/s11721-019-00174-x

Heterogeneous Response Intensity Ranges
and Response Probability Improve Goal
Achievement in Multi-agent Systems

H. David Mathias1(B), Annie S. Wu2, and Laik Ruetten1

1 University of Wisconsin - La Crosse, La Crosse, WI, USA
dmathias@uwlax.edu

2 University of Central Florida, Orlando, FL, USA
aswu@cs.ucf.edu

Abstract. Inter-agent variation is well-known in both the biology and
computer science communities as a mechanism for improving task selec-
tion and swarm performance for multi-agent systems. Response thresh-
old variation, the most commonly used form of inter-agent variation,
desynchronizes agent actions allowing for more targeted agent activation.
Recent research using a less common form of variation, termed dynamic
response intensity, demonstrates that modeling levels of agent experi-
ence or varying physical attributes and using these to allow some agents
to perform tasks more efficiently or vigorously, significantly improves
swarm goal achievement when used in conjunction with response thresh-
olds. Dynamic intensity values vary within a fixed range as agents acti-
vate for tasks. We extend previous work by demonstrating that adding
another layer of variation to response intensity, in the form of hetero-
geneous ranges for response intensity values, provides significant per-
formance improvements when response is probabilistic. Heterogeneous
intensity ranges break the coupling that occurs between response thresh-
olds and response intensities when the intensity range is homogeneous.
The decoupling allows for increased diversity in agent behavior.

1 Introduction

Swarms of artificial agents, which model, among other things, natural colonies of
insects, are comprised of some number of software or hardware agents working
in concert to achieve a goal. The agents accomplish the goal by completing,
usually repeatedly, one or more tasks. The swarms in this work are decentralized.
Thus, there is no leader or central control of the swarm and the agents do
not communicate. Each agent chooses which tasks to perform and when. Work
modeling natural swarms with artificial swarms dates back two decades [14].

Agents determine which tasks to undertake by considering environmental
stimuli. When agents respond to these stimuli in the same way, their actions
are synchronized. This synchrony often results in poor goal achievement. Swarm
performance can be improved via inter-agent variation: differences in how and

c© Springer Nature Switzerland AG 2020
M. Dorigo et al. (Eds.): ANTS 2020, LNCS 12421, pp. 148–160, 2020.
https://doi.org/10.1007/978-3-030-60376-2_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-60376-2_12&domain=pdf
https://doi.org/10.1007/978-3-030-60376-2_12

Heterogeneous Response Intensity Ranges in Multi-agent Systems 149

when agents select and perform tasks. Common forms of inter-agent variation
include response thresholds [6,15] and response probabilities [15].

Response thresholds desynchronize agents’ actions by varying the stimulus
required for an agent to act. This models the non-determinism inherent in natural
swarms. Systems typically utilize response thresholds in one of two ways: proba-
bilistically or deterministically. Probabilistic response, introduced by Bonabeau,
et al. [1,2], uses a formula based on a task stimulus τ and an agent’s response
threshold θ to determine whether the agent activates for the task. The probabil-
ity of activation increases with τ , approaching 1.0 when τ � θ. When τ = θ, the
probability is 0.5. Deterministic response [7,13,20] activates an agent if τ ≥ θ.
Agent actions are desynchronized only if threshold values are heterogeneous.
In the biology literature, Weidenmüller [15] suggests that use of heterogeneous
response thresholds together with probabilistic response can further improve
diversity in agent behaviors. Wu, et al. studied this effect in artificial swarms,
confirming the benefit of non-determinism with heterogeneity [19].

Isolation of probabilistic response into a separate form of inter-agent varia-
tion, one that can be set and tuned independent of response thresholds, leads
to a form of inter-agent variation known as response probability [13,17–19]. A
first-order effect of decreased response probability is a decrease in the number
of agents that activate for a task. Perhaps more importantly, a second-order
effect is that inaction by frequent actors, agents with low response thresholds,
may allow other agents to gain experience with a task [15,19]. This results from
increased need due to the reduction in agents performing the task. Increased
need exceeds the response threshold for additional agents, allowing them to par-
ticipate. The experience gained by these agents may be important to the swarm
if, for example, an extinction eliminates frequent actors.

The need for redundancy in artificial swarms has been acknowledged for many
years as a way to mitigate the effects of agent failure or loss [4]. Similar effects
are common in natural swarms in which agents are lost due to age, predators,
or competitors. If these agents are frequent actors for a task, their loss may
create significant short-term difficulty for the swarm as less experienced agents
must fill the void. If, however, frequent actors sometimes remain idle due to
decreased response probability, agents with higher response thresholds would
gain experience with the task, making the swarm more tolerant of agent loss.

Response intensity is a less known form of inter-agent variation, particularly
for artificial swarms. Response intensity models differences in quantities such as
a natural agent’s physical size, strength or stamina, attributes that may allow the
agent to work more vigorously or more efficiently. Biologists have documented
variation in response intensity [3,11]. For example, in the natural world some
insects are known to change their response intensity as necessary to meet the
needs of their colony [5]. Response intensity may also model an agent’s experience
on a task. We are not aware of previous work, prior to this year, that attempts
to model this natural phenomenon in artificial swarms [10].

Experience is known to impact not only individual task efficiency but also
individual task selection as well as collective colony performance [9,12]. In

150 H. D. Mathias et al.

Cerapachys biroi ants, individuals that find early success in foraging activities
choose to forage again, whereas those individuals that were unsuccessful are
more likely to choose to care for young in the nest [12]. In Leptothorax albipen-
nis ants, task repetition improved colony performance for emigration, the task
of moving the colony to a new nesting location [9]. Because the entire colony is
exposed during emigration, and therefore in danger, efficient emigration is highly
desirable.

In artificial agents, response intensity may model a decrease in output due
to wear and tear or the increase in the output of a new and improved device.
Importantly, heterogenous response intensities, when paired with heterogeneous
response thresholds, play a role in determining which agents undertake a task
and, therefore, gain experience and proficiency in that task.

Mathias et al. [10] demonstrated that dynamic, heterogeneous response inten-
sities significantly improve swarm task achievement when combined with het-
erogeneous response thresholds and result in increased agent specialization.
Dynamic response intensities vary within a specified range over the course of
a run, increasing when an agent activates for a task and decreasing when it
does not, modeling an agent’s experience with the task. The range within which
response intensities vary is homogeneous.

One consequence of combining heterogeneous response thresholds with
dynamic, heterogeneous response intensities is that the values couple. This occurs
because agents with low thresholds for a task activate more frequently for that
task. Each activation increases the response intensity for the task, within the
specified range. Thus, over time, an agent’s response threshold for a task corre-
lates with its response intensity for that task. Further, if the work performed by
frequent actors is sufficient to meet task demand, agents with higher thresholds
are denied the opportunity to gain experience for that task. This is potentially
harmful to the swarm.

In this work, we demonstrate that using dynamic, heterogeneous response
intensities that vary within heterogeneous ranges, rather than homogeneous
ranges, improves swarm performance as response probability decreases. This
occurs because heterogeneous intensity ranges and decreased response probabil-
ity serve to decouple response thresholds and response intensities. We show that
this makes the swarm more resistant to the effects of extinctions of experienced
agents.

2 Model and Testbed Problem

We extend previous work on response intensities in two significant ways. First,
we augment the dynamic, heterogeneous response intensities with heterogeneous
intensity ranges. Thus, rather than all agents sharing a common range within
which their intensities vary with experience, each agent has a unique intensity
range. Second, we incorporate response probability. Response probability allows
an agent to fail to undertake a task when the agent’s response threshold for that
task is met. The response probability values used here are homogeneous.

Heterogeneous Response Intensity Ranges in Multi-agent Systems 151

-20

 0

 20

 40

 60

 80

 100

 120

 140

 160

-10 0 10 20 30 40 50 60 70 80 90

Target and Tracker paths

Target
Tracker

Fig. 1. An example random target path (purple) and corresponding tracker movement
(blue) over 500 time steps. (Colour figure online)

Our testbed is a 2D tracking problem. This problem consists of a target object
that moves in the plane and a tracker object. A swarm controls the tracker,
pushing it to stay as close as possible to the target, which moves at random
or according to one of several predefined paths. The paths are unknown to the
agents. Each agent is capable of performing all tasks required of the swarm. The
tasks are: push N, push E, push S, or push W. Agents may also remain idle if
none of their response thresholds are met or due to the response probability. An
example random target path is illustrated in Fig. 1.

A simulation consists of a predefined number of time steps. The target moves
a fixed distance in each time step. The target’s direction of travel can change
as often as each time step, allowing frequently changing task demands. Agents
are aware of the distance from the tracker to the target, defined by: Δx =
target.x− tracker.x and Δy = target.y − tracker.y. In each time step, each agent
chooses a task to perform from among those tasks for which the agent’s response
thresholds are met.

Swarm goal achievement is measured according to two criteria:

Goal 1. Minimize the average positional difference, per time step, between the
target location and the tracker location.

Goal 2. Minimize the difference between total distance traveled by target and
the total distance traveled by the tracker.

We note that neither criterion alone is sufficient to gauge the swarm’s success.
Consider using only Goal 1. The tracker could remain close to the target while

152 H. D. Mathias et al.

alternately racing ahead or falling behind. This would result in a good average
difference but a path length that is significantly greater than that traveled by
the target. Alternately, the tracker could travel a path that is the same length
as that of the tracker while straying quite far, taking a very different path.

Swarm efficiency is measured by the number of times agents switch from one
task to another and the number of agents that activate for a task in a time step.
Both task switches and activations may have costs in real-world applications,
thus, a swarm is more efficient when these quantities are reduced. For example,
undertaking a new task might require an agent to move to a new location,
incurring costs in time and fuel.

Here we define the forms of inter-agent variation used in this work. Let ai, i ∈
{1, . . . , n} be an agent.

– Response threshold: A value θi,D (D ∈ {N,E, S,W}) for each task that
represents the maximum acceptable ΔD between the target and tracker for
that task. If ΔD exceeds θi,D, agent ai may activate for that push D. These
values are heterogeneous. Response thresholds are assigned uniformly at ran-
dom in [0.0..1.0], a choice supported in the literature [7,8,16].

– Response intensity: A multiplier γi,D for each task. It represents the factor
by which the experience of ai for task push D differs from the default value
of 1.0. This manifests as increased/decreased pushing power, equal to γi,D.
These values are dynamic and heterogeneous. They are initialized uniformly
at random within the agent’s response intensity range for that task.

– Response intensity range: Intensity multipliers increase or decrease with
an agent’s experience for a task. The values for task push D for agent ai are
bounded within a range [γi,Dmin, γi,Dmax]. Ranges may be homogeneous or
heterogeneous. See Sect. 3 for a more detailed discussion.

– Response probability: A value p that represents the probability that an
agent activates for a task. This value is homogeneous across all agents and
tasks. It is a parameter to our system and is varied between runs.

3 Experimental Design

As response intensity and response probability are the focus of this work, we
run experiments with two different types of intensity ranges – homogeneous and
heterogeneous – and 7 response probability values, [0.4..1.0] in increments of 0.1.

To model the loss of agents and our system’s ability to recover from such
events, we implement three different forms of agent extinction. kill-0, in which
no agents are killed; kill-20-100-0, in which 20 agents are killed at time step
100; and kill-20-100-100, in which 20 agents are killed every 100 time steps
beginning at time step 100. In each case, the agents chosen for extinction are
those that were idle in the fewest time steps. This means that we kill those agents
with the most experience and examine how well the swarm is able to recover.

Homogeneous intensity ranges are fixed at [0.5, 2.0]. Heterogeneous intensity
range for agent ai and task push D is assigned by first choosing a size d uniformly

Heterogeneous Response Intensity Ranges in Multi-agent Systems 153

Fig. 2. A tracker performance comparison for four representative runs on path s-curve.
The rows differ in response probability with 1.0 above 0.6. The columns are different
response intensity ranges with homogeneous followed by heterogeneous. With response
probability 0.6, the tracker performs substantially better with heterogeneous ranges.
(Color figure online)

at random in [0.6, 1.6]. Offset γi,Dmin is then chosen uniformly at random in
[0.3, (2.4 − d)]. γi,Dmax = γi,Dmin + d yielding range [γi,Dmin, γi,Dmax] ⊂
[0.3, 2.4]. These values are also determined empirically under the same condi-
tions listed above. We note that the upper and lower endpoint values for both
homogeneous and heterogeneous ranges are empirically determined to optimize
behavior for the respective intensity range type for runs in which the response
probability is 1.0 and no agent extinctions occur.

We test our system on three target paths: random, s-curve, and sharp. Ran-
dom paths are generated by calculating an angle change, in radians, at every
time step. The change is Gaussian N (0.0, 1.0). S-curve is a periodic curve seen
in Fig. 2. Sharp is a randomized path in which a new heading and probability
q of changing direction are chosen in every time step. The heading is chosen
uniformly in [0, 2π] and q is uniform in [0.2, 0.6]. Thus, turns are sharper than in
the random path. All three paths create changing task demands though, random
and sharp change more dramatically.

The variations discussed in this section produce 126 experiments for testing,
42 for each of the target paths. For each experiment we perform 100 runs. Each
run lasts 500 time steps. In each time step, the target moves 3 distance units for
a total path length of 1500. The swarm consists of 200 agents each of which is
capable of performing all four tasks.

At each time step, we record the tracker’s distance from the target. In addi-
tion, we record the total distance traveled by the target, total distance traveled

154 H. D. Mathias et al.

by the tracker, the number of time steps in which each agent pushes in each
direction, the number of times an agent does not perform a task (remains idle),
and the number of times an agent switches from one task to another.

Fig. 3. Average positional difference and tracker path length for homogeneous and
heterogeneous intensity ranges for target path random for 100 runs. Error bars are
shown in red. Both quantities are improved for heterogeneous ranges. (Color figure
online)

4 Experimental Results

In this section, we report the results of the experiments described in the previ-
ous section. These results support our central argument: Heterogeneous response
intensity ranges improve swarm performance, when agents respond probabilis-
tically, due to increased inter-agent variability and the decoupling of response
threshold values and response intensity values. In addition, our results support
those of previous work in demonstrating that response probabilities p < 1.0 allow
swarms to recover more quickly from agent extinctions.

The data support the following performance improvements for heterogeneous
intensity ranges, relative to homogeneous intensity ranges, for lower response
probabilities and paths with frequently changing task demands:

– reduced average positional difference between the target and the tracker
– reduced variability, within a run, in average positional difference between the

target and the tracker
– reduced difference between the target and tracker path lengths
– more accurate target path tracking
– reduced task switching

Figure 2 illustrates the effect of heterogeneous intensity ranges on target
tracking when response probability is reduced. The top row shows that when
response probability p = 1.0, homogeneous and heterogeneous intensity ranges

Heterogeneous Response Intensity Ranges in Multi-agent Systems 155

Fig. 4. Average positional difference and tracker path length for homogeneous and
heterogeneous intensity ranges for target path s-curve for 100 runs. Error bars are
shown in red. Both quantities are improved for heterogeneous ranges. (Color figure
online)

Fig. 5. Average positional difference and tracker path length for homogeneous and
heterogeneous intensity ranges for target path sharp. Error bars are shown in red.
Both quantities are improved for heterogeneous ranges. (Colour figure online)

produce similar results, with the tracker (red) staying close to the target (blue)
throughout the run. Note that there is minimal degradation of performance
as agents are killed at 100 time step intervals. In the bottom row, the response
probability p = 0.6. Thus, there is probability 0.4 that an agent fails to act when
its response threshold is met. As a consequence, system performance suffers –
recall that parameter values are optimized for p = 1.0. We note that tracking
is significantly better for heterogeneous intensity ranges than for homogeneous
ranges when p = 0.6.

Figures 3, 4, and 5 provide data for the tracking effects observed in Fig. 2 for
paths random, s-curve, and sharp, respectively. In each figure, the left plot shows

156 H. D. Mathias et al.

Fig. 6. Average task switches, per agent, for homogeneous and heterogeneous intensity
ranges, for target paths random and sharp. These paths have frequently changing task
demands. In both cases, heterogeneous ranges reduce the number of switches.

average positional difference between target and tracker for response probabil-
ities p ∈ [0.4, 1.0] for both homogeneous and heterogeneous response intensity
ranges. The right plot shows average tracker path length for the same response
probabilities and response intensity ranges. Recall that target path length is
1500. Each data point represents 100 runs. 95% confidence intervals, though
quite small in most cases, are shown in red. The data show that at lower response
probabilities, the average difference is lower and tracker path length is closer to
target path length for runs with heterogeneous response intensity ranges than
for runs with homogeneous response intensity ranges.

Figure 6 illustrates the effect of heterogeneous intensity ranges on the average
number of switches per agent for paths random (left) and sharp (right). Hetero-
geneous intensity ranges allow the swarm to perform fewer task switches, par-
ticularly when agents respond probabilistically. At response probability p = 0.6,
the difference is approximately 15 fewer task switches per agent or 3000 fewer
switches during a run for a population of 200 agents. Because task switches can
incur a cost in real-world applications, this is a significant improvement.

The observed trends are explained as follows. With homogeneous intensity
ranges, all frequent actors for a task have similar response intensity values due to
the common maximum value. As frequent activation results from low response
thresholds, this results in a coupling of the two values: small θ → large γ. In
contrast, heterogeneous intensity ranges have different sizes and different min-
imum and maximum values. The smallest range size d = 0.6 and the smallest
possible γi,Dmin = 0.3 resulting in a minimum intensity range of [0.3, 0.9]. The
largest possible γi,Dmax = 2.4. As with homogeneous intensity ranges, frequent
actors may reach the maximum intensity value in their range, however, these
maximum values vary considerably making the swarm in general, and the group

Heterogeneous Response Intensity Ranges in Multi-agent Systems 157

of frequent actors in particular, more diverse. In this way, γi,D is far less depen-
dent on θi,D. Thus, heterogeneous intensity ranges decouple response intensity
values from response threshold values.

This decoupling has multiple effects. First, it allows the swarm to better
adapt to frequently changing task demands. This occurs because when task
demands change frequently, agents are unlikely to maximize their intensity values
through activation. This may result in insufficient intensities, for those agents
that activate due to low thresholds, to maintain a small positional difference with
the target. The greater diversity of intensity ranges can mitigate this. Second,
it helps regulate swarm behavior, in the short-term, after an agent extinction
because survivors – agents with higher response thresholds – may have higher
response intensities than is possible with homogeneous intensity ranges. Thus,
the swarm is better able to meet task demand. Of course, the random nature of
intensity range creation could result in a swarm with too few agents with high
intensity ranges but due to the population size used, this is unlikely.

Fig. 7. Average positional difference heterogeneous intensity ranges with each agent
extinction implementation for target path random. This demonstrates that extinction
type does not significantly affect the swarm’s ability to track the target.

The results presented above are for runs using extinction kill-20-100-100
in which 20 agents are killed every 100 time steps. Extinction types kill-0 and
kill-20-100-0 are also used in our experiments. Figure 7 illustrates why we
focus the discussion on a single extinction type. The figure shows that average
positional difference does not vary significantly with changes in extinction. The
same trend is observed for average path length. Therefore, we choose to concen-
trate the analysis on kill-20-100-100 to simplify the presentation. The y-axis
range in Fig. 7 is the same as in Figs. 3, 4, and 5 to facilitate comparison.

158 H. D. Mathias et al.

 60

 80

 100

 120

 140

 160

 0 100 200 300 400 500

A
ve

ra
ge

 a
ge

nt
 c

ou
nt

Timestep

Activation Count
Path: Sharp Task: Idle Kill: 20-100-100

Hom, Pr: 0.6
Hom, Pr: 1.0
Het, Pr: 0.6
Het, Pr: 1.0

Fig. 8. Idle agent counts for target path sharp. Homeogeneous and heterogeneous
response intensity ranges are compared for response probabilities 0.6 and 1.0. For
response probability 0.6, heterogeneous intensity ranges result in an increase in idle
agents, reducing costs for the swarm. (Color figure online)

Figure 8 shows an additional effect of heterogeneous intensity ranges. With
reduced response probability, the number of idle agents (blue line) is greater
than when intensity ranges are homogeneous (purple line). Recall that agent
activation has costs that can include fuel and wear on the agents. Thus, a higher
number of idle agents is desirable. Note that the number of idle agents decreased
through the runs represented in the figure due to the reduction in the number
of agents through extinctions.

5 Conclusions and Future Work

In this work we explore the effects of a little-studied and promising form of inter-
agent variation: response intensity. Expanding on previous work that shows the
benefit of heterogeneous response intensity values that vary within a homoge-
neous range, we implement response intensity values that vary within hetero-
geneous response intensity ranges. Our system also uses homogeneous response
probability and heterogeneous response thresholds.

We find that heterogeneous response intensity ranges provide significant
improvement over homogeneous response intensity ranges for decreased response
probabilities and problems with frequently changing task demands for a 2-D
tracking problem. The improvement is seen in all measures of swarm perfor-
mance: average positional difference, average tracker path length, and average
number of task switches. The observed improvements are due to the decoupling
effect that heterogeneous intensity ranges have on response intensity values and
response probability values. This results in far more diversity among frequent
actors and the backup agents that replace them when agent extinctions occur.

Heterogeneous Response Intensity Ranges in Multi-agent Systems 159

In future work, we will test our model on a more complex task allocation prob-
lem and explore additional forms of inter-agent variation. In addition, we plan
to investigate heuristic methods for initializing the values of response thresholds
and response intensities.

Acknowledgement. This work is supported by the National Science Foundation
under grant IIS1816777.

References

1. Bonabeau, E., Theraulaz, G., Deneubourg, J.L.: Quantitative study of the fixed
threshold model for the regulation of division of labor in insect societies. In: Pro-
ceedings: Biological Sciences, pp. 1565–1569 (1996)

2. Bonabeau, E., Theraulaz, G., Deneubourg, J.L.: Fixed response thresholds and
the regulation of division of labor in insect societies. Bull. Math. Biol. 60, 753–807
(1998). https://doi.org/10.1006/bulm.1998.0041

3. Dornhaus, A., Holley, J., G.Pook, V., Worswick, G., Franks, N.R.: Why do not all
workers work? Colony size and workload during emigrations in the ant temnotho-
rax albipennis. Behav. Ecol. Sociobiol. 63, 43–51 (2008). https://doi.org/10.1007/
s00265-008-0634-0

4. Hackwood, S., Beni, G.: Self-organization of sensors for swarm intelligence. In:
Proceedings of the IEEE International Conference on Robotics and Automation,
pp. 819–829 (1992)

5. Jeanne, R.L.: Regulation of nest construction behavior in Polybia occidentalis.
Animal Behav. 52, 473–488 (1996)

6. Jones, J.C., Myerscough, M.R., Graham, S., Oldroyd, B.P.: Honey bee nest ther-
moregulation: diversity promotes stability. Science 305(5682), 402–404 (2004)

7. Krieger, M.J.B., Billeter, J.B.: The call of duty: self-organised task allocation in a
population of up to twelve mobile robots. Robot. Auton. Syst. 30, 65–84 (2000)

8. Krieger, M.J.B., Billeter, J.B., Keller, L.: Ant-like task allocation and recruitment
in cooperative robots. Nature 406, 992–995 (2000)

9. Langridge, E.A., Franks, N.R., Sendova-Franks, A.B.: Improvement in collective
performance with experience in ants. Behav. Ecol. Sociobiol. 56, 523–529 (2004).
https://doi.org/10.1007/s00265-004-0824-3

10. Mathias, H.D., Wu, A.S., Ruetten, L., Coursin, E.: Improving multi-agent sys-
tem coordination via intensity variation. In: Proceedings of the 33rd International
Florida Artificial Intelligence Research Society Conference (2020)

11. Oster, G.F., Wilson, E.O.: Caste and Ecology in the Social Insects. Princeton
University Press, Princeton (1978)

12. Ravary, F., Lecoutey, E., Kaminski, G., Chaline, N., Jaisson, P.: Individual experi-
ence alone can generate lasting division of labor in ants. Curr. Biol. 17, 1308–1312
(2007)

13. Riggs, C., Wu, A.S.: Variation as an element in multi-agent control for target
tracking. In: Proceedings of the IEEE/RSJ International Conference on Intelligent
Robots and Systems, pp. 834–841 (2012)

14. Theraulaz, G., Goss, S., Gervet, J., Deneubourg, J.L.: Task differentiation in
Polistes wasp colonies: a model for self-organizing groups of robots. In: Proceed-
ings of the 1st International Conference on Simulation of Adaptive Behavior: From
Animals to Animats, pp. 346–355 (1991)

https://doi.org/10.1006/bulm.1998.0041
https://doi.org/10.1007/s00265-008-0634-0
https://doi.org/10.1007/s00265-008-0634-0
https://doi.org/10.1007/s00265-004-0824-3

160 H. D. Mathias et al.

15. Weidenmüller, A.: The control of nest climate in bumblebee (Bombus terrestris)
colonies: Interindividual variability and self reinforcement in fanning response.
Behav. Ecol. 15, 120–128 (2004)

16. Wu, A.S., Mathias, H.D., Giordano, J., Hevia, A.: Effects of response threshold
distribution on dynamic division of labor in decentralized swarms. In: Proceedings
of the 33rd International Florida Artificial Intelligence Research Society Conference
(2020)

17. Wu, A.S., Wiegand, R.P., Pradhan, R.: Using response probability to build sys-
tem redundancy in multi-agent systems. In: Proceedings of the 12th International
Conference on Autonomous Agents and Multiagent Systems, pp. 1343–1344 (2013)

18. Wu, A.S., Wiegand, R.P., Pradhan, R.: Building redundancy in multi-agent sys-
tems using probabilistic action. In: Proceedings of the 29th International Florida
Artificial Intelligence Research Society Conference. pp. 404–409 (2016)

19. Wu, A.S., Wiegand, R.P., Pradhan, R.: Response probability enhances robustness
in decentralized threshold-based robotic swarms. Swarm Intell. (2020). https://doi.
org/10.1007/s11721-020-00182-2

20. Wu, A.S., Wiegand, R.P., Pradhan, R., Anil, G.: The effects of inter-agent vari-
ation on developing stable and robust teams. In: Proceedings of the AAAI 2012
Spring Symposium: AI, The Fundamental Social Aggregation Challenge, and the
Autonomy of Hybrid Agent Groups (2012)

https://doi.org/10.1007/s11721-020-00182-2
https://doi.org/10.1007/s11721-020-00182-2

HuGoS: A Multi-user Virtual
Environment for Studying

Human–Human Swarm Intelligence

Nicolas Coucke1,2(B) , Mary Katherine Heinrich1 , Axel Cleeremans2 ,
and Marco Dorigo1

1 IRIDIA, Université Libre de Bruxelles, Brussels, Belgium
{nicolas.coucke,mary.katherine.heinrich,axcleer,mdorigo}@ulb.ac.be

2 CO3, Center for Research in Cognition and Neurosciences,
Université Libre de Bruxelles, Brussels, Belgium

Abstract. The research topic of human–human swam intelligence
includes many mechanisms that need to be studied in controlled experi-
ment conditions with multiple human subjects. Virtual environments are
a useful tool to isolate specific human interactions for study, but current
platforms support only a small scope of possible research areas. In this
paper, we present HuGoS—‘Humans Go Swarming’—a multi-user vir-
tual environment in Unity, as a comprehensive tool for experimentation
in human–human swarm intelligence. We identify possible experiment
classes for studying human collective behavior, and equip our virtual
environment with sufficient features to support each of these experiment
classes. We then demonstrate the functionality of the virtual environment
in simple examples for three of the experiment classes: human collective
decision making, human social learning strategies, and agent-level human
interaction with artificial swarms, including robot swarms.

1 Introduction

Human–human swarm intelligence is a broad field of study [20], including topics
such as crowd dynamics [31], online social networks [22], and collective prob-
lem solving [39]. While some studies of human group behavior use data collec-
tion from real-world systems, such as social networks [33], many study types
require controlled experiment conditions. As self-organization in human groups
normally occurs within the context of other mechanisms and influences, a com-
prehensive tool for studying human–human swarm intelligence must enable the
experimenter to artificially limit human capabilities of perception and commu-
nication, according to the given experiment. Virtual environments have been
proposed as tools to isolate and study specific aspects of human interaction [1].

In this paper, we develop a virtual environment for experiments with mul-
tiple human subjects. To be comprehensive, the environment needs to support
studies in three main topics of human–human swarm intelligence. First, humans
often use simple mechanisms and strict self-organization to coordinate (e.g., in
c© Springer Nature Switzerland AG 2020
M. Dorigo et al. (Eds.): ANTS 2020, LNCS 12421, pp. 161–175, 2020.
https://doi.org/10.1007/978-3-030-60376-2_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-60376-2_13&domain=pdf
http://orcid.org/0000-0003-4173-7693
http://orcid.org/0000-0002-1595-8487
http://orcid.org/0000-0002-9757-5235
http://orcid.org/0000-0002-3971-0507
https://doi.org/10.1007/978-3-030-60376-2_13

162 N. Coucke et al.

human crowds [31]), displaying behaviors similar to those observed in artifi-
cial swarms and animal groups. Second, humans also use more complex mech-
anisms (e.g., advanced negotiation, or hierarchical social structures) that are
often formed via self-organization. For instance, hierarchy can be self-organized
according to response speeds of individuals [21], or strengths of preexisting inter-
personal ties [7]. Third, comparative studies between human groups and artificial
swarms are relevant even for complex mechanisms, as self-organized leadership
and hierarchy have recently been studied not only in humans, but also in groups
of non-human animals [13] and groups of robots [24]. In this paper, we propose
HuGoS—‘Humans Go Swarming’—a multi-user virtual environment that sup-
ports research and experimentation in each of these three topics. In HuGoS,
human participants interact via avatars in a controlled experiment setup, capa-
ble of supporting both simple and complex interactions. HuGoS also supports
avatars controlled by artificial agents, enabling comparative studies between
human and artificial behaviors.

1.1 Related Work

A number of multi-user virtual environments have been developed for studies
with human groups, in two main categories. The first category of environments
use collective human gameplay or other interactions as tools for solving com-
putationally intensive problems [2,6,9,18,23,44], rather than studying underly-
ing cognitive or behavioral mechanisms. The second category of virtual envi-
ronments are those developed primarily to study the mechanisms of collective
human behavior. For collective decision making, the UNUM platform [40,41],
also referred to as Swarm AI R©, supports a group of participants that collabora-
tively explore a decision space [26]. For physical coordination, a Unity imple-
mentation supports human-like avatars with first-person view for the study
of crowd behaviors [32,45,53]. Finally, a third category supports the study of
leadership—specifically, the impact of better informed individuals on implicit
leadership (e.g., the HoneyComb game for human crowd movement [4]). These
existing environments are mostly developed for a specific task. For instance, in
the UNUM platform, each player controls a ‘magnet’ that exerts influence on a
‘puck.’ This platform could not be easily re-purposed to investigate, for instance,
a task involving environment exploration. To our knowledge, there are no exist-
ing platforms that are versatile enough to be used for a wide variety of topics
in human–human swarm intelligence. In this paper, we target the contribution
of a platform that can comprehensively cover this field of study. For instance,
in addition to the implicit leadership studied in [4], a comprehensive platform
should also be able to study explicit leadership, such as ‘follower’ functionalities
developed in online trading networks [19]. Furthermore, the existing platforms
log experiment data, such as positions of avatars in the virtual environment, but
conduct analysis externally. We target a platform in which recorded data can
also be analyzed internally, allowing real-time feedback to be incorporated in the
experiment. This capability enables the study of, for instance, the relationship
between group behavior and different types of performance feedback.

HuGoS: A Multi-user Virtual Environment for Human–Human SI 163

Existing tools used for robot simulation support 3D environments in which
artificial agents can interact both with each other and with the environment.
ARGoS [37] is a tool built specifically for robot swarms, while other tools such
as ROS [38] or Webots [27] are built for robots generally. These versatile tools
can be adapted to a wide variety of experiment scenarios, and many types of data
collection and analysis. However, they have limited applicability to the study of
human behavior. A few studies have looked at human–swarm interaction using
general tools for robots (e.g., using ROS [49] or Webots [48]). In these setups,
humans are able to give high-level directions to individual robots. However, the
humans cannot act independently of the robots, as they cannot control their
own avatars with first-person view. Also, the approaches do not demonstrate
multiple human users in one environment.

2 Design of HuGoS: ‘Humans Go Swarming’

We target the design of a multi-user virtual environment—HuGoS: ‘Humans
Go Swarming’—that can be used as a tool to study human collective behavior
generally, including collective decision-making, collaborative task performance,
and the emergence of leadership. HuGoS should also support the study of dif-
ferences and similarities between human swarm intelligence and artificial swarm
intelligence, and the interactions between human and artificial agents.

2.1 Experimentation Scope for Human–Human Swarm Intelligence

There are several classes of experiments that HuGoS must support, to facilitate
comprehensive study of human–human swarm intelligence. We base this exper-
imentation scope on existing studies of robot and artificial swarms, such that
these behaviors could also be studied in humans. The first class of experiments
is physical coordination between individuals, as in flocking and self-assembly
(e.g., [42]). In HuGoS, this would require a minimal environment in which par-
ticipants control avatars, whose positions are continuously recorded for analysis.
The second class involves observation of environmental features. In cooperative
navigation, for example, agents might extract and share information to find the
shortest path in an environment (e.g., [8]). In best-of-n decision-making, a swarm
might choose the best of several options based on observations of the environ-
ment (e.g., [46]). In HuGoS, this requires that the environment be populated
with game objects that act as obstacles, or represent environment features with
observable discrete or continuous properties. In order to study decision making
based on external information, of the type studied in human groups in plat-
forms such as UNUM [40], landmarks in the environment could be labelled with
each option, and participants could use their avatar positions in relation to the
landmarks to indicate their opinions. The third class involves the agents making
changes to the environment, such as in stigmergic communication (e.g., [12]) or in
the performance of a task such as collective construction (e.g., [51]). In HuGoS,
this requires game objects that can be manipulated or modified by avatars—for

164 N. Coucke et al.

instance, immovable environment features with modifiable properties such as
color, or movable objects such as construction blocks. All classes require HuGoS
to enable various types of direct and indirect communication between players,
in ways that can be expressly limited. For example, avatars’ view capabilities
may be limited such that players can see only their immediate neighbors, not
all avatars. Or, in a task such as collective construction, players may be able
to see only the construction blocks, not the other avatars. In all classes, studies
might include a comparison between human and artificial behaviors, or collabo-
ration between human and artificial agents. This requires, in addition to human-
controlled avatars, that HuGoS supports artificial agents whose avatars may be
indistinguishable for human players. As it might be fruitful to replicate these
experiments in real setups, we also need to integrate robot models into HuGoS
(such as those developed for the ARGoS multi-robot simulator [37]).

2.2 Features of the HuGoS Virtual Environment

Unity 3D Game Engine. HuGoS is built in Unity, a 3D game development
platform that can support intelligent agents in a physically realistic game envi-
ronment [14]. In Unity, basic building blocks of virtual environments are termed
game objects. Each game object represents a physical 3D object within the game
environment that is subject to physics engines and is linked to specific C#
back-end scripts. Through these scripts, each game object in HuGoS can be:
i) passive, ii) controlled by simple rule-based behaviors but immobile, iii) mobile
and equipped with a controller to act as an artificial agent, or iv) mobile and
controlled by a human player. We refer to game objects in HuGoS as avatars if
they act as artificial agents or are controlled by human players. We refer to game
objects as landmarks if they are immobile, whether passive or controlled by sim-
ple rule-based behaviors (e.g., change display color to match that of neighboring
landmark). Using Unity’s networking capabilities, we organize the multi-user
architecture of HuGoS as follows.

HuGoS initiates on a server, and each new player joins as client on that server.
Throughout the experiments, the server logs all data recorded from HuGoS.
The activities taking place on the server are divided into three modules: the
player module, the environment module, and the task module (Fig. 1(a)). The
environment module tracks landmarks, including changes made to them by either
players or controllers, and passes those updates to the clients. The player module
tracks player actions, and mediates any communication between clients. The task
module tracks and analyzes the progress of the specific experiment, which can
optionally be shared with player clients.

Avatar Capabilities. Each player controls an avatar that is situated in the
virtual environment. The capabilities of the avatars in a given experiment setup
are defined in the player module. In HuGoS, players have a third-person view of
their avatar through a virtual camera that follows the avatar position and rota-
tion. Players move their avatar by pressing four user-customizable keys (e.g.,

HuGoS: A Multi-user Virtual Environment for Human–Human SI 165

Server

PlayerData
Storage

Player

Player

Environment
Module

Task
Module

Player
Module

Layer 2

Layer 1

Fig. 1. (a) Program architecture. The server contains the task, player, and environment
modules. Communication with player clients is managed by modules (dark arrows rep-
resent communication between modules and player; lighter arrows illustrate that same
communication to multiple players; dashed lines represent communication between
players, as mediated by the player module). (b) Example of layered player networks.
Layer 1 is fully connected (visibility of other avatars), while layer 2 is partly connected
(visibility of the other avatars’ color opinions).

WSAD), and rotate via the left/right arrow keys or cursor movement. Depend-
ing on the experiment scenario, specific additional actions can be activated for
the avatars. For example, the player can be permitted to manipulate the envi-
ronment by clicking on landmarks to grab them, then moving and releasing the
cursor to move them. Indirect communication between players can occur via
changes to the environment, for instance by moving landmarks, or by changes
to display features of the player’s avatar, such as color. Direct communication
can also be permitted—and limited as desired—by sending symbols, or written
or spoken messages. In the player module of HuGoS, the players’ environment
perception is controlled firstly by changing the field of view (FOV) of the player.
A player that has a limited top-down avatar FOV (Fig. 3(c)) can only perceive
the environment in a small perimeter, while a player that has an oblique avatar
FOV (Fig. 3(a)) can see a much greater proportion of the environment, in the
viewed direction. Unlimited top-down FOV is also possible, giving a player global
view (Fig. 3(b)). Additionally, avatars and landmarks can be programmed to be
invisible to players, or to be visible only for a subset of players.

Player interactions can be modulated by changing the structure of the player
networks in the player module, which are directed graphs. If a player network is
fully connected, for instance, then every player can interact with all other players
in the way associated to that network. Player networks manages different types
of interaction, and have independently defined structures. For example, a fully
connected network might be defined for viewing avatar positions, while a sparsely
connected network might be defined for viewing avatar colors (Fig. 1(b)). Player
networks also govern explicit message passing between players. As connections
are directed (e.g., player 1 might be able to see player 2, while player 2 cannot
see player 1), the information privileges of players can be made hierarchical.
Certain players can have higher node indegrees or outdegrees. The structure of
player networks can be changed during experiment runtime, and can option-
ally be triggered by the players. For instance, players might be permitted to
‘follow’ another player by clicking on its avatar, causing their own decisions to

166 N. Coucke et al.

Position
Opinion & Confidence

Messages & Signals
Field of view

Follow actions
Intrinsic differences

Player ID
Avatar ID

Robot actions
Landmark position & state

Primary variables Secondary variables
Inter-player distance
Implicit connections
Explicit connections

Popularity
Informedness

Observed signals
Task performance

Individual performance
Neuro-imaging data
Hybrid interactions

Further analyses
Network structure
Self-assessment
Performance factors
Physiological markers
Social learning strategies
Hybrid swarm dynamics

Case 1
Case 2
Case 3

Additional

Fig. 2. Primary variables from the environment can be used for analysis specific to the
experimental conditions, to calculate secondary variables and conduct further analysis.

automatically copy those of the followed player, until that player is unfollowed
(see Sect. 3.2). The ability to control communication links between players also
allows for comparison between limited communication networks and fully con-
nected communication networks. This can facilitate the study of information
cascades, bias in the group, or dysfunctional dynamics that may lead to low
performance.

Data Types (Primary Variables). Data about the players, environment,
and task are logged for analysis. Each player has a unique anonymized player
ID, and each avatar has an avatar ID. These two IDs are important in cases where
players switch avatar identities between trials, so that the behaviors of specific
players can be analyzed separately from the features accumulated by a shared
avatar. Additionally, the player IDs are important in experiment setups that
involve players’ physical environments (e.g., players occupy the same physical
environment and can communicate, or players’ physiological data is monitored,
such as EEG). Avatar capabilities, positions, FOVs, and actions are all logged,
according to avatar ID. These logs enable calculation of other simple data about
avatars, such as which other avatars are in one avatar’s FOV. Messages passed
by avatars are also logged, including the content, time, sender avatar ID, and
receiver avatar ID. All other player interactions are also tracked and logged as
events—for instance, a player choosing to follow another player—again including
content, time, and sender and receiver IDs. Changes in the environment are also
logged, including positions and states of landmarks. When artificial agents such
as robots are included in a setup, any data specific to that agent and experiment
is logged. For instance, in a setup with models of e-puck robots [29], proximity
sensing and motor control might be logged.

Analysis Types (Secondary Variables). The data logged as primary vari-
ables (i.e., recorded directly) allow many secondary variables to be calculated
and analyzed during runtime or during post-processing (Fig. 2). Here, we use
task performance as an illustrative example. Task performance can be contin-
uously calculated by the task module, according to the specific scenario. In a
flocking scenario, the task performance would depend on player positions; in

HuGoS: A Multi-user Virtual Environment for Human–Human SI 167

decision-making, on player opinions. Once task performance is calculated, addi-
tional analysis might assess, for instance, how this performance relates to the
in-game behavior of players. Player behavior in this case might be represented
by distances between avatars, the network of implicit connections between indi-
viduals that occur when avatars enter each other’s FOVs, or the network of
direct messages between players with connection weights representing message
frequency. The primary variables also allow analysis of individual behavior, that
can be used to give feedback to players during the experiment. For instance, in a
collective decision-making scenario, comparing individual opinion to overall task
performance yields the relative player performance. If this is provided as feedback
to players, players can use it to determine and display their opinion confidence. If
the calculated player performance is not provided to the player when the player
determines opinion confidence, then a comparison of these two variables will
yield the player’s self-assessment (i.e., the ability to evaluate their own perfor-
mance). Using player IDs, out-of-game data can also be used in post-analysis.
For example, each player might be asked to fill in a questionnaire about person-
ality traits or subjective experience during the game. In an extended out-of-game
setup, gameplay could even be linked to real-time physiological recordings, such
as eye-tracking, ECG or EDA tracking of stress, or neural recordings via EEG
or fMRI. Such extensions could be used to analyze the connection between indi-
vidual cognitive mechanisms and collective performance during gameplay.

3 Demonstration of HuGoS Features

We demonstrate the suitability of HuGoS for the defined experimentation scope
in three case studies. First, we demonstrate human players in a basic scenario
previously studied in robot swarms [47]. Second, we demonstrate an aspect of
human behavior that is outside typical swarm intelligence studies—specifically,
the establishment of leader–follower relationships, similar to behavior mimicking
in human trading networks [19]. Third, we demonstrate artificial agent avatars in
a basic swarm intelligence scenario, and demonstrate interaction between human-
controlled avatars and artificial agent avatars (specifically, robot avatars).

3.1 Case 1: Collective Decision Making

Collective decision making is widely studied in artificial swarms (e.g., [41,47]).
We implement a setup based on that of [47] in HuGoS, but with consensus to be
reached by human players rather than kilobots (Fig. 3). The task is to reach a
consensus about the predominant color in the environment, which is populated
with cylindrical landmarks that are randomly distributed and colored red or
blue (Fig. 3(b)). The difficulty of the task can be adjusted by changing the color
ratio and the density of landmarks. In this example there are 1 000 landmarks,
in a color ratio of 55%-45%. At initiation of the run, the task module randomly
determines whether red or blue will be the most prevalent. Each player controls
an avatar that initiates at a random position. Half of the avatars initiate with

168 N. Coucke et al.

(a)

-40 40x position
-40

20

y
po

si
tio

n

Player 1
Player 2
Player 3
Player 4

P1

P2

P3

P4

0 60time (s)
0

100

pe
rc

en
t

Player 1
Player 2
Player 3
Player 4

0 60
25

35

time (s)

di
st

an
ce

0 60
0

4

pl
ay

er
s

time (s)

(d) (e) (f)

(g) (h)

(b)

(c)

Fig. 3. (a) Player view on display monitor. The player controls an avatar (blue cube in
the center of the screen) and can see the avatar of another player (red cube), in addition
to cylindrical landmarks. (b) Top view of the environment with random distribution of
blue and red cylinders. (c) Player view with limited information—views avatar from the
top and can see only local information. (d–h) Trial of collective decision making with
four human-controlled avatars. (d) Trajectories traveled by the avatars. (e) Percentage
of the environment seen by each player. (f) Average Euclidean distance between avatars.
(g) Network of player–player view (time 0–60 s); connection weights indicate total view
time. (h) Number of avatars displaying the correct color opinion. (Color figure online)

the opinion red, and the other half blue, assigned randomly. The players can
switch their color opinions by pressing a key, and can move and rotate without
restriction. The player has a third-person avatar view through a virtual camera
that follows the avatar (Fig. 3(a)). By moving and rotating the avatar, and thus
the FOV, a player can explore the environment from different perspectives and
make a subjective estimate of the majority color in the playing field. A player
can see the movements and color changes of all avatars in the FOV. On the
server, the player module passes avatar colors to the task module, where task
performance is calculated, according to the homogeneity of avatar opinions, and
whether the majority opinion matches the dominant color in the environment.
Gameplay ends when all players have the same color, or when a time limit
is reached. Variables are logged and calculated during runtime, including the
task performance (Fig. 3(h)), avatar FOV, and avatar positions (Fig. 3(d)). The
average euclidean distance between every two avatars is calculated (Fig. 3(f)),
as is the percentage of cylinders cumulatively observed in the FOV (Fig. 3(e)),
and the directed graph of all avatars’ appearances in others’ FOVs (Fig. 3(g)).

3.2 Case 2: Social Learning Strategies

In swarm intelligence in artificial agents, interactions are typically not chosen by
individuals, but rather happen indiscriminately through random encounters. In
humans and certain other animals, selective interaction can have a substantial
impact on collective behavior, and has been widely studied in the context of social
learning (cf. [17,52]). Humans in social learning scenarios use this selectivity to
choose when, from whom, and what to learn [17]. In a collective decision making
scenario, the dynamics of this selectivity would have a significant impact on the

HuGoS: A Multi-user Virtual Environment for Human–Human SI 169

-20 30x position

-20

60

y
po

si
tio

n

Player
E-puck 1
E-puck 2
E-puck 3

(a) (b) (c) (d)

0 60time (s)t = 0 s t = 60 s
0

100

nu
m

be
r o

f a
va

ta
rs

(e)

Fig. 4. (a–b) In Case 2: Explicit leader–follower relationships, in the view of player
2. (a) Player 2 acting individually. (b) Player 2 following player 3. (c–d) In Case 3:
Human–artificial interaction. (c) Human player-controlled avatar (blue cube) followed
by artificial agent avatars (e-puck robots). (d) Trajectories of a human player (in blue)
being followed by three e-puck robots. (e) In Case 3: 100 artificial agent avatars per-
forming random walk and using majority rule for color opinions.

outcome of collective behavior. Player strategies for selective interaction could be
studied implicitly after calculating the information seen in the avatar FOV, as
in Figs. 3(e,g). Strategies for selective interaction could be studied more explic-
itly, via a function for the self-organization of explicit leader–follower relationships
between players. Individuals might choose, for example, to follow the most presti-
gious individual (i.e., who already has most followers) [5,17], or the most successful
individual (i.e., highest individual performance, for the task) [11,17]. We therefore
add events for leader–follower relationships to HuGoS. During gameplay, players
choose either to act for themselves (Fig. 4(a)), or to ‘follow’ another avatar and
copy its actions (Fig. 4(b)). A player can choose to follow another by clicking on
that player’s avatar. Once the relationship is established, the following status is
displayed to the follower player in a dialogue box, and a tiara appears above the
leader avatar in the follower’s display (Fig. 4(b)). While the relationship exists,
the follower player no longer is in control of the avatar, which automatically copies
the behavior of the leader avatar. In a scenario similar to Case 1, this would mean
that the follower’s motion copies that of the leader, and the follower automatically
adopts the color of the leader. A follower can at any time decide to follow a differ-
ent leader by clicking on the corresponding avatar, or decide to act independently
again by clicking on the ground plane.

3.3 Case 3: Interaction with Artificial Agents

HuGoS also includes mobile avatars that are artificial agents, rather than being
controlled by human players, as well as immobile landmarks equipped with
rule-based behaviors for their display features. This enables straightforward

170 N. Coucke et al.

comparison of artificial swarms and human collective behavior in the same vir-
tual environment. Analogous to case study 1, we implement a simple collective
decision making scenario with artificial agent avatars, where each avatar initiates
as either blue or red. At each simulation step, the avatars move via a random
walk, and update their color opinion using a simple majority rule [30]. That is,
an avatar updates its color to the color opinion held by the majority of avatars
in a 5 m radius (with the total environment size being 80× 80 m2). We show
the results of this behavior in a swarm of 100 artificial agent avatars—Fig. 4(e)
gives the top view at initiation, top view after consensus, and the percentage
of color opinions in the avatar swarm over time. Artificial agents also allow the
study of hybrid human–robot avatar swarms, as human players can interact with
simulated robots. To demonstrate this, we transfer to Unity a Pi-puck [28] robot
model, based on a model developed for the multi-physics multi-robot simula-
tor ARGoS [37]. As Unity includes built-in physics engines, existing ARGoS
kinematics and dynamics robot models could also be transferred into HuGoS,
including those that have already been calibrated to real hardware (e.g., [36]).
To demonstrate interaction between players and robots, we programmed the
simulated robots to detect a nearby human player avatar, and to move in the
direction of that avatar when the distance becomes too large (Fig. 4(c)). The
robot avatars also sense their distance to other robots and move away from each
other if they get too close. We show the trajectories of all avatars in a setup with
one human player avatar and three robot avatars (Fig. 4(d)).

4 Discussion

We have introduced a novel multi-player virtual environment that is suited
for studying human behavior in swarm intelligence scenarios. HuGoS logs pri-
mary variables related to actions of individual players and multiple players, and
variables that depend on the environment. These primary variables, recorded
directly, are then used to calculate secondary variables (e.g., the collective per-
formance of avatars for a given task).

Many research topics proposed here are typically studied with in-person
experimental setups in which participants interact directly. Such setups allow
for many types of interaction that are not possible in HuGoS, such as eye con-
tact, speech characteristics, and body language. We do not propose that HuGoS
is a replacement for in-person studies. Rather, our objective is to use the simpli-
fications of a virtual environment for complementary studies that provide new
insights by isolating certain aspects of previously studied dynamics. Isolating
specific aspects can be useful in studying human behavior [1], for instance by
helping to disentangle different forms of interaction that would be too closely
related in an in-person setup.

As HuGoS targets human players, some open questions remain. As pointed
out in [3], it is possible that human players will pay less attention to other
individuals when there are less communication channels available or when too
many other individuals are present. Individual behavior is also highly depen-
dent on whether or not players are convinced that other avatars are actually

HuGoS: A Multi-user Virtual Environment for Human–Human SI 171

human-controlled [3]. Another challenge with human players is to keep play-
ers engaged, and motivated to perform well in the task. Performance trackers
such as leaderboards might motivate players [50]. However, in many cases, these
external rewards do not increase players’ intrinsic motivation [25], and in some
cases have been shown to not improve performance [35]. For players to be opti-
mally engaged—that is, making the game intrinsically motivating—there should
be a clear goal, players should feel in control of the outcome and receive regular
feedback on their actions, and the task should be neither too easy nor too dif-
ficult [15,34]. Another problem might be reproducibility. Humans have a wide
range of individual behaviours, and, the more varieties of behavior possible in a
task, the less likely it might be that players would follow similar behavior over
several trials. Players might also start with widely different prior skills on a task;
some players might be more familiar with video games than others. Also, per-
sonality differences might play a role in the game. For example, players that are
more socially dominant might be less inclined to follow other players. These vari-
ations can be assessed with questionnaires prior to the experiment [16]. Human
participants that are recruited in one experiment setting are also likely to have
a mostly homogeneous cultural background, which has been shown to have a
substantial impact on behavior [10]. Interesting changes in behaviors might be
explored when players from multiple backgrounds collaborate in a game. Finally,
recruiting participants might be a challenge. If experiments are conducted in
one shared computer client room, there is the advantage of control and overview
of participant behavior (cf. [53]). If we alternatively run HuGoS as an online
browser game, it might make it easier to recruit large numbers of participants,
but can make participant behavior less controllable [6,43].

5 Conclusions

We have designed and presented HuGoS, a multi-user virtual environment that
supports the study of human–human interactions and group behaviors relevant
to the topic of swarm intelligence. HuGoS supports collection of the primary
data types required to analyze relevant aspects of human behavior. The envi-
ronment’s flexibility allows for implementation of a wide variety of swarm intel-
ligence scenarios. We have demonstrated three simple cases of such scenarios,
demonstrating support for: 1) studying human behavior in tasks typically stud-
ied in artificial swarms, such as best-of-n collective decision making; 2) studying
new behaviors that may be especially relevant to human collective behavior, such
as the self-organization of hierarchical social structures; and 3) studying direct
comparisons between human swarms and artificial swarms, as well as interaction
between human swarm agents and artificial swarm agents, such as robots.

Acknowledgements. This work was partially supported by the program of Con-
certed Research Actions (ARC) of the Université libre de Bruxelles. M.K. Heinrich,
A. Cleeremans and M. Dorigo acknowledge support from the F.R.S.-FNRS, of which
they are, respectively, postdoctoral researcher and research directors.

172 N. Coucke et al.

References

1. Bailenson, J.N., Beall, A.C., Loomis, J., Blascovich, J., Turk, M.: Transformed
social interaction: decoupling representation from behavior and form in collabora-
tive virtual environments. Presence Teleoperators Virtual Environ. 13(4), 428–441
(2004). https://doi.org/10.1162/1054746041944803

2. Barrington, L., et al.: Crowdsourcing earthquake damage assessment using remote
sensing imagery. Ann. Geophys. 54(6) (2011). https://doi.org/10.4401/ag-5324

3. Blascovich, J., Loomis, J., Beall, A., Swinth, K., Hoyt, C., Bailenson, J.: Immersive
virtual environment technology as a methodological tool for social psychology.
Psychol. Inq. 13, 103–124 (2002)

4. Boos, M., Pritz, J., Lange, S., Belz, M.: Leadership in moving human groups.
PLoS Comput. Biol. 10(4), e1003541 (2014). https://doi.org/10.1371/journal.pcbi.
1003541

5. Cheng, J.T., Tracy, J.L., Foulsham, T., Kingstone, A., Henrich, J.: Two ways to
the top: evidence that dominance and prestige are distinct yet viable avenues to
social rank and influence. J. Pers. Soc. Psychol. 104(1), 103–125 (2013). https://
doi.org/10.1037/a0030398

6. Cooper, S., et al.: Predicting protein structures with a multiplayer online game.
Nature 466(7307), 756–760 (2010). https://doi.org/10.1038/nature09304

7. De Montjoye, Y.A., Stopczynski, A., Shmueli, E., Pentland, A., Lehmann, S.: The
strength of the strongest ties in collaborative problem solving. Sci. Rep. 4, 5277
(2014)

8. Ducatelle, F., et al.: Cooperative navigation in robotic swarms. Swarm Intell. 8(1),
1–33 (2013). https://doi.org/10.1007/s11721-013-0089-4

9. Eberhart, R., Palmer, D., Kirschenbaum, M.: Beyond computational intelligence:
blended intelligence. In: 2015 Swarm/Human Blended Intelligence Workshop
(SHBI). IEEE (2015). https://doi.org/10.1109/shbi.2015.7321679

10. Henrich, J., Heine, S.J., Norenzayan, A.: The weirdest people in the world? Behav.
Brain Sci. 33(2–3), 61–83 (2010). https://doi.org/10.1017/s0140525x0999152x

11. Heyes, C.: Who knows? Metacognitive social learning strategies. Trends Cogn. Sci.
20(3), 204–213 (2016). https://doi.org/10.1016/j.tics.2015.12.007

12. Hunt, E.R., Jones, S., Hauert, S.: Testing the limits of pheromone stigmergy in
high-density robot swarms. Roy. Soc. Open Sci. 6(11), 190225 (2019). https://doi.
org/10.1098/rsos.190225

13. Ioannou, C.C.: Swarm intelligence in fish? The difficulty in demonstrating dis-
tributed and self-organised collective intelligence in (some) animal groups. Behav.
Process. 141(2), 141–151 (2017)

14. Juliani, A., et al.: Unity: a general platform for intelligent agents. arXiv preprint
arXiv:1809.02627 (2018). https://arxiv.org/pdf/1809.02627.pdf

15. Jung, J.H., Schneider, C., Valacich, J.: Enhancing the motivational affordance of
information systems: the effects of real-time performance feedback and goal setting
in group collaboration environments. Manage. Sci. 56(4), 724–742 (2010). https://
doi.org/10.1287/mnsc.1090.1129

16. Kalma, A.P., Visser, L., Peeters, A.: Sociable and aggressive dominance: person-
ality differences in leadership style? Leadersh. Quart. 4(1), 45–64 (1993). https://
doi.org/10.1016/1048-9843(93)90003-c

17. Kendal, R.L., Boogert, N.J., Rendell, L., Laland, K.N., Webster, M., Jones, P.L.:
Social learning strategies: bridge-building between fields. Trends Cogn. Sci. 22(7),
651–665 (2018). https://doi.org/10.1016/j.tics.2018.04.003

https://doi.org/10.1162/1054746041944803
https://doi.org/10.4401/ag-5324
https://doi.org/10.1371/journal.pcbi.1003541
https://doi.org/10.1371/journal.pcbi.1003541
https://doi.org/10.1037/a0030398
https://doi.org/10.1037/a0030398
https://doi.org/10.1038/nature09304
https://doi.org/10.1007/s11721-013-0089-4
https://doi.org/10.1109/shbi.2015.7321679
https://doi.org/10.1017/s0140525x0999152x
https://doi.org/10.1016/j.tics.2015.12.007
https://doi.org/10.1098/rsos.190225
https://doi.org/10.1098/rsos.190225
http://arxiv.org/abs/1809.02627
https://arxiv.org/pdf/1809.02627.pdf
https://doi.org/10.1287/mnsc.1090.1129
https://doi.org/10.1287/mnsc.1090.1129
https://doi.org/10.1016/1048-9843(93)90003-c
https://doi.org/10.1016/1048-9843(93)90003-c
https://doi.org/10.1016/j.tics.2018.04.003

HuGoS: A Multi-user Virtual Environment for Human–Human SI 173

18. Kirschenbaum, M., Palmer, D.W.: Perceptualization of particle swarm optimiza-
tion. In: 2015 Swarm/Human Blended Intelligence Workshop (SHBI). IEEE (2015).
https://doi.org/10.1109/shbi.2015.7321681

19. Krafft, P.M., et al.: Human collective intelligence as distributed Bayesian inference.
arXiv preprint arXiv:1608.01987 (2016). https://arxiv.org/pdf/1608.01987.pdf

20. Krause, J., Ruxton, G.D., Krause, S.: Swarm intelligence in animals and
humans. Trends in Ecol. Evol. 25(1), 28–34 (2010). https://doi.org/10.1016/j.tree.
2009.06.016

21. Kurvers, R.H.J.M., Wolf, M., Naguib, M., Krause, J.: Self-organized flexible lead-
ership promotes collective intelligence in human groups. Roy. Soc. Open Sci. 2(12),
150222 (2015). https://doi.org/10.1098/rsos.150222

22. Lepri, B., Staiano, J., Shmueli, E., Pianesi, F., Pentland, A.: The role of person-
ality in shaping social networks and mediating behavioral change. User Model.
User-Adap. Interact. 26(2–3), 143–175 (2016). https://doi.org/10.1007/s11257-
016-9173-y

23. Lin, A.Y.M., Huynh, A., Lanckriet, G., Barrington, L.: Crowdsourcing the
unknown: the satellite search for Genghis Khan. PLoS ONE 9(12), e114046 (2014).
https://doi.org/10.1371/journal.pone.0114046

24. Mathews, N., Christensen, A.L., O’Grady, R., Mondada, F., Dorigo, M.: Mergeable
nervous systems for robots. Nat. Commun. 8(439) (2017). https://doi.org/10.1038/
s41467-017-00109-2

25. Mekler, E.D., Brühlmann, F., Tuch, A.N., Opwis, K.: Towards understanding
the effects of individual gamification elements on intrinsic motivation and perfor-
mance. Comput. Hum. Behav. 71, 525–534 (2017). https://doi.org/10.1016/j.chb.
2015.08.048

26. Metcalf, L., Askay, D.A., Rosenberg, L.B.: Keeping humans in the loop: pooling
knowledge through artificial swarm intelligence to improve business decision mak-
ing. Calif. Manage. Rev. 61(4), 84–109 (2019)

27. Michel, O.: Cyberbotics Ltd., WebotsTM: professional mobile robot simulation. Int.
J. Adv. Robot. Syst. 1(1), 40–43 (2004)

28. Millard, A.G., et al.: The Pi-puck extension board: a Raspberry Pi interface for the
e-puck robot platform. In: 2017 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), pp. 741–748. IEEE (2017)

29. Mondada, F., et al.: The e-puck, a robot designed for education in engineering. In:
Proceedings of the 9th Conference on Autonomous Robot Systems and Competi-
tions, vol. 1, pp. 59–65. IPCB: Instituto Politécnico de Castelo Branco (2009)

30. Montes de Oca, M.A., Ferrante, E., Scheidler, A., Pinciroli, C., Birattari, M.,
Dorigo, M.: Majority-rule opinion dynamics with differential latency: a mecha-
nism for self-organized collective decision-making. Swarm Intell. 5(3–4), 305–327
(2011). https://doi.org/10.1007/s11721-011-0062-z

31. Moussäıd, M., Helbing, D., Garnier, S., Johansson, A., Combe, M., Theraulaz, G.:
Experimental study of the behavioural mechanisms underlying self-organization in
human crowds. Proc. Roy. Soc. B Biol. Sci. 276(1668), 2755–2762 (2009)

32. Moussäıd, M., et al.: Crowd behaviour during high-stress evacuations in an immer-
sive virtual environment. J. Roy. Soc. Interface 13(122), 20160414 (2016). https://
doi.org/10.1098/rsif.2016.0414

33. Mulders, D., De Bodt, C., Bjelland, J., Pentland, A., Verleysen, M., de Montjoye,
Y.A.: Inference of node attributes from social network assortativity. Neural Com-
put. Appl. 1–21 (2019). https://doi.org/10.1007/s00521-018-03967-z

https://doi.org/10.1109/shbi.2015.7321681
http://arxiv.org/abs/1608.01987
https://arxiv.org/pdf/1608.01987.pdf
https://doi.org/10.1016/j.tree.2009.06.016
https://doi.org/10.1016/j.tree.2009.06.016
https://doi.org/10.1098/rsos.150222
https://doi.org/10.1007/s11257-016-9173-y
https://doi.org/10.1007/s11257-016-9173-y
https://doi.org/10.1371/journal.pone.0114046
https://doi.org/10.1038/s41467-017-00109-2
https://doi.org/10.1038/s41467-017-00109-2
https://doi.org/10.1016/j.chb.2015.08.048
https://doi.org/10.1016/j.chb.2015.08.048
https://doi.org/10.1007/s11721-011-0062-z
https://doi.org/10.1098/rsif.2016.0414
https://doi.org/10.1098/rsif.2016.0414
https://doi.org/10.1007/s00521-018-03967-z

174 N. Coucke et al.

34. Nakamura, J., Csikszentmihalyi, M.: The concept of flow. Flow and the Founda-
tions of Positive Psychology, pp. 239–263. Springer, Dordrecht (2014). https://doi.
org/10.1007/978-94-017-9088-8 16

35. Pedersen, M.K., Rasmussen, N.R., Sherson, J.F., Basaiawmoit, R.V.: Leaderboard
effects on player performance in a citizen science game. In: Proceedings of the 11th
European Conference on Game Based Learning, vol. 531 (2017)

36. Pinciroli, C., Talamali, M.S., Reina, A., Marshall, J.A.R., Trianni, V.: Simulat-
ing Kilobots within ARGoS: models and experimental validation. In: Dorigo, M.,
Birattari, M., Blum, C., Christensen, A.L., Reina, A., Trianni, V. (eds.) ANTS
2018. LNCS, vol. 11172, pp. 176–187. Springer, Cham (2018). https://doi.org/10.
1007/978-3-030-00533-7 14

37. Pinciroli, C., et al.: ARGoS: a modular, parallel, multi-engine simulator for
multi-robot systems. Swarm Intell. 6(4), 271–295 (2012). https://doi.org/10.1007/
s11721-012-0072-5

38. Quigley, M., et al.: ROS: an open-source robot operating system. In: ICRA Work-
shop on Open Source Software, vol. 3, p. 5, Kobe, Japan (2009)

39. Quinn, A.J., Bederson, B.B.: Human computation: a survey and taxonomy of a
growing field. In: Proceedings of the International Conference on Human Factors
in Computing Systems (2011)

40. Rosenberg, L., Baltaxe, D., Pescetelli, N.: Crowds vs swarms, a comparison of
intelligence. In: 2016 Swarm/Human Blended Intelligence Workshop (SHBI). IEEE
(2016). https://doi.org/10.1109/shbi.2016.7780278

41. Rosenberg, L.B.: Human swarms, a real-time method for collective intelligence.
In: 20/07/2015–24/07/2015. The MIT Press (2015). https://doi.org/10.7551/978-
0-262-33027-5-ch117

42. Rubenstein, M., Cornejo, A., Nagpal, R.: Programmable self-assembly in a
thousand-robot swarm. Science 345(6198), 795–799 (2014). https://doi.org/10.
1126/science.1254295

43. Sørensen, J.J.W.H., et al.: Exploring the quantum speed limit with computer
games. Nature 532(7598), 210–213 (2016). https://doi.org/10.1038/nature17620

44. Sørensen, J.J.W., et al.: Exploring the quantum speed limit with computer games.
Nature 532(7598), 210–213 (2016)

45. Thrash, T., et al.: Evaluation of control interfaces for desktop virtual environments.
Presence Teleoperators Virtual Environ. 24(4), 322–334 (2015). https://doi.org/
10.1162/pres a 00237

46. Valentini, G., Ferrante, E., Dorigo, M.: The best-of-n problem in robot swarms:
formalization, state of the art, and novel perspectives. Front. Robot. AI 4 (2017).
https://doi.org/10.3389/frobt.2017.00009

47. Valentini, G., Hamann, H., Dorigo, M.: Self-organized collective decision-making
in a 100-robot swarm. In: Proceedings of the Twenty-Ninth AAAI Conference on
Artificial Intelligence (AAAI 2015), pp. 4216–4217. AAAI Press (2015)

48. Vasile, C., Pavel, A., Buiu, C.: Integrating human swarm interaction in a dis-
tributed robotic control system. In: 2011 IEEE International Conference on
Automation Science and Engineering, pp. 743–748. IEEE (2011)

49. Walker, P., Amraii, S.A., Chakraborty, N., Lewis, M., Sycara, K.: Human control of
robot swarms with dynamic leaders. In: 2014 IEEE/RSJ International Conference
on Intelligent Robots and Systems, pp. 1108–1113. IEEE (2014)

50. Wang, H., Sun, C.T.: Game reward systems: gaming experiences and social mean-
ings. In: Proceedings of DiGRA 2011 Conference: Think Design Play (2012)

https://doi.org/10.1007/978-94-017-9088-8_16
https://doi.org/10.1007/978-94-017-9088-8_16
https://doi.org/10.1007/978-3-030-00533-7_14
https://doi.org/10.1007/978-3-030-00533-7_14
https://doi.org/10.1007/s11721-012-0072-5
https://doi.org/10.1007/s11721-012-0072-5
https://doi.org/10.1109/shbi.2016.7780278
https://doi.org/10.7551/978-0-262-33027-5-ch117
https://doi.org/10.7551/978-0-262-33027-5-ch117
https://doi.org/10.1126/science.1254295
https://doi.org/10.1126/science.1254295
https://doi.org/10.1038/nature17620
https://doi.org/10.1162/pres_a_00237
https://doi.org/10.1162/pres_a_00237
https://doi.org/10.3389/frobt.2017.00009

HuGoS: A Multi-user Virtual Environment for Human–Human SI 175

51. Werfel, J., Petersen, K., Nagpal, R.: Designing collective behavior in a termite-
inspired robot construction team. Science 343(6172), 754–758 (2014). https://doi.
org/10.1126/science.1245842

52. Whiten, A., Hinde, R.A., Laland, K.N., Stringer, C.B.: Culture evolves. Philos.
Trans. Roy. Soc. B Biol. Sci. 366(1567), 938–948 (2011). https://doi.org/10.1098/
rstb.2010.0372

53. Zhao, H., et al.: A networked desktop virtual reality setup for decision science
and navigation experiments with multiple participants. J. Vis. Exp. 138(e58155)
(2018). https://doi.org/10.3791/58155

https://doi.org/10.1126/science.1245842
https://doi.org/10.1126/science.1245842
https://doi.org/10.1098/rstb.2010.0372
https://doi.org/10.1098/rstb.2010.0372
https://doi.org/10.3791/58155

Memory Induced Aggregation
in Collective Foraging

Johannes Nauta(B) , Pieter Simoens , and Yara Khaluf

Department of Information Technology–IDLab, Ghent University–imec,
Ghent, Belgium

johannes.nauta@ugent.be

Abstract. Foraging for resources is critical to the survival of many ani-
mal species. When resources are scarce, individuals can benefit from
interactions, effectively parallelizing the search process. Moreover, com-
munication between conspecifics can result in aggregation around salient
patches, rich in resources. However, individual foragers often have short
communication ranges relative to the scale of the environment. Hence,
formation of a global, collective memory is difficult since information
transfer between foragers is suppressed. Despite this limitation, individ-
ual motion can enhance information transfer, and thus enable formation
of a collective memory. In this work, we study the effect of individual
motion on the aggregation characteristics of a collective system of for-
agers during collective foraging. Using an agent-based model, we show
that aggregation around salient patches can occur through formation of
collective memory realized through local interactions and global displace-
ment using Lévy walks. We show that the Lévy parameter that defines
individual dynamics, and a decision parameter that defines the balance
between exploration and exploitation, greatly influences the macroscopic
aggregation characteristics. When individuals prefer exploration, global
aggregation around a single patch occurs when explorative bouts are
relatively short. In contrast, when individuals tend to exploit the col-
lective memory, explorative bouts should be longer for global aggrega-
tion to occur. Local aggregation emerges when exploration is suppressed,
regardless of the value of the decision parameter.

1 Introduction

Foraging is a key aspect in the survival of many animals, in both individual
as well as collective systems. Besides its importance in ecology, foraging has
been an inspiration source for engineers and researchers to design systems that
can solve similar tasks in parallel. Therefore, designing foraging behaviors and
understanding the underlying dynamics of natural foraging has always been of
high interest. Here, we focus on analyzing the impact of individual behavior on
aggregation within a collective system during a foraging task.

In foraging, the distribution over the available resources within the envi-
ronment is unknown. Hence, foragers must resort to random searches. Whereas
c© Springer Nature Switzerland AG 2020
M. Dorigo et al. (Eds.): ANTS 2020, LNCS 12421, pp. 176–189, 2020.
https://doi.org/10.1007/978-3-030-60376-2_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-60376-2_14&domain=pdf
http://orcid.org/0000-0002-5859-2729
http://orcid.org/0000-0002-9569-9373
http://orcid.org/0000-0002-5590-9321
https://doi.org/10.1007/978-3-030-60376-2_14

Memory Induced Aggregation in Collective Foraging 177

individual random searches can be optimized over a wide variety of constraints
and resource distributions [3,14,15,38,47,48,50,51,53], a collective system might
benefit from interactions between individuals to enhance the efficiency of the
search process [5,13,23,34]. In many environments, resources are both sparse
and patchy [19,20,24,49], making locating the patches rich in resources the pri-
mary goal in the random search process. Hence, a collective system can benefit
from the parallel search process to quickly locate patches. Moreover, attraction
towards successful foragers can lead to aggregation within the patches [17,28],
thereby increasing foraging success within a collective system.

When individuals are capable of learning the spatial distribution over
resources, the importance of the random search diminishes in favour of informed
movement [7,12,15,29,30]. Thus, a trade-off between exploration and exploita-
tion arises [1,13,18]. Especially in cases where resources are ephemeral, this
trade-off is not trivially solved and requires constant adaptation of the collec-
tive system. Also, when resources are scarce, aggregation strategies can emerge
[4,45], indicating that specific circumstances increase the importance of inter-
actions between foragers and can bring about collective behavior in otherwise
individually acting foragers. Interestingly, more interactions do not necessarily
equate to more efficient foraging. It has been shown that both an excess and
a lack of information, stemming from large respectively small communication
radii, result in less optimal searches when compared to intermediate communi-
cation ranges [27,28]. In collective systems, the spread of information is a crucial
aspect that influences the systems’ ability to build global knowledge, and hence
can enable the collective system to act as a single unit. Both interactions between
foragers and individual motion influence this information spread substantially
[22].

While many animals have evolved intricate means of communication over
relatively long distances (e.g. [36]), a typical feature of swarms is their limited
communication range [8,16,21,40]. Previous studies on collective foraging have
considered extremely large communication ranges [5,13], hampering potential
of application towards swarm robotics or animals with limited communication
ranges. Other approaches have considered nests as aggregation sites wherein
information is passed on to conspecifics, indicative of social insects such as ants
[32,43] and bees [46]. However, many animal groups do not act as a single unit,
since behavior is often influenced by individual preferences, thus not necessi-
tating cooperative behavior [10]. Additionally, from an engineering perspective,
selective pressure can additionally decrease the benefit of nests since travels
towards the nest for communication can incur loss of time or energy. Our app-
roach introduces localized group formation, which avoids the need for a nesting
site when communication ranges are limited.

In such localized groups, information can be easily shared even if commu-
nication ranges are limited. However, since formation of a global knowledge
requires a system to be well-mixed, i.e. each individual has an equal probabil-
ity to encounter any other individual in the system, motility patterns greatly
influence the macroscopic behavior of the collective system. While there exists

178 J. Nauta et al.

a vast body of work on motility patterns for individuals (e.g. [2,6,31,47]), pre-
vious studies regarding collective systems have either restricted motion to walks
on a lattice [5,13] or have considered simplified dynamics [39,44], hence omitting
the importance of more intricate motility patterns on the spread of information.
Nevertheless, both target detection and the mixing properties of the collective
system are highly dependent on the individual dynamics of the foragers, and
thus should be included when studying collective foraging.

This work aims to highlight the importance of motility for transferring infor-
mation, specifically in a foraging setting. We focus on the impact of individual
motion on the macroscopic behavior of the collective system during collective
foraging, where individuals have limited communication and perception ranges.
More specifically, we study foraging within a patchy environment, and show that
aggregation around salient resource rich patches occurs due to local interaction
between foragers. To this end, we develop an agent-based dynamical model that
enables formation of a collective memory based on the number of collective visits
to a patch. In turn, the number of visits is directly influenced by the perceived
quality of the patch, resulting in aggregation around the most salient patches.
Moreover, we show that differences in individual motion result in vastly different
macro behavior of the collective system. Depending on a decision parameter that
controls how much a forager exploits or explores, we show that the type of motion
heavily influences the aggregation properties. Global aggregation in exploitative
foragers occurs when the explorative bouts are relatively long, while the oppo-
site is true for explorative foragers. Hence, the impact of the individual motion
depends on the decision parameter of the collective system, but can nonetheless
result in global aggregation even when the communication ranges are limited.

2 Methods

2.1 Environment

Let us consider a two-dimensional L × L environment with periodic boundaries.
The periodic boundaries reflect an environment much larger than the forager.
It allows us to study the collective behavior in isolation of other, more invasive
boundary effects. Within the environment, a total of M patches are distributed
randomly, where each patch carries a weight wi ∈ [0, wmax], with wmax < 1.
Similar to [13], the weight corresponds to the quality of the patch, and acts as
the probability of staying on that patch whenever a decision is made by the
forager. Hence, high quality patches (w ≈ 1) encourage the forager to stay on
that patch, in contrast to low quality patches (w ≈ 0).

The patch sparsity greatly influences the macroscopic behavior of the col-
lective system. In particular, when patch density is high, attraction to other
successful foragers carries less significance, since more foragers are success-
ful just by having a higher probability of patch detection. In contrast, sparse
patch distributions have been shown to increase the benefits of communication
between individuals [5]. Moreover, collective systems in such environments have
been shown to display spatial aggregation [45], even evolving attraction towards

Memory Induced Aggregation in Collective Foraging 179

conspecifics when famine was introduced to originally solitary foragers [4]. In
this work, we aim to study aggregation during foraging, and thus focus on envi-
ronments wherein patches are sparse.

2.2 Foragers

We consider a collective system consisting of N foragers with random initial
positions. Our main focus is on the large-scale features of the collective foraging
task, and hence we do not account for finite-size effects such as collision avoid-
ance. This can be justified by reinstating that the scale of the environment is
much larger than the individual scale, and that we can assume the patches to
be large enough to contain all N foragers within a single patch. Foragers can
detect patches within a detection radius R, and communicate with others within
a communication radius r > R. Every forager has access to memory consisting
of two components: (i) the location of patches detected by the forager, and (ii)
the total number of visits (both individual and from others) to those particu-
lar patches. Both memory components are built through patch detection and
communication with others. The resulting collective memory weights patches
according to the total number of visits to that patch by the collective [13].

We discretize time, and let each forager move during a time step t → t + 1
according to the following rules:

(i) Feeding. If the forager is on a patch, it stays on that patch with a probability
equal to the patch quality, i.e. the weight wi. Note that wi = 0 if the forager
is not on a patch.

(ii) Memory mode. With probability (1−wi)q, the forager receives information
from others in its communication radius r (if any), accumulates the mem-
ories and combines it with its own memory, and samples a goal patch. The
probability of sampling a particular goal patch is proportional to the num-
ber of times that patch was visited by all foragers (including itself) within
range r at time step t. A travel angle θ is computed through the relative
position between the forager and the sampled goal state. Then, the forager
travels along the computed angle with steps of fixed length �0, until patch
detection, completing the step.

(iii) Random walk mode. With probability (1−wi)(1−q), the forager executes a
random walk. Here, we consider each forager executing a Lévy walk, where
walk distances are sampled from a truncated inverse power-law

p(�) =

{
Z�−α for �0 < � ≤ L

0 otherwise
, (1)

with Z the normalization constant and α the Lévy parameter (see below).
The orientation angle θ is sampled uniformly between 0 and 2π. The forager
travels along the sampled angle with steps of fixed length �0, completing the
walk after traversing the sampled distance. The walk is interrupted when
the forager detects a patch. The random search thus ends either when the
sampled distance is traversed, or when a patch has been detected.

180 J. Nauta et al.

The above rules are similar to the decision rules from [13], but includes both
a shared memory component and a more intricate motility pattern, allowing us
to study the effects of motility on information sharing, leading to aggregation
in patchy environments. The decision parameter q defines the probability to
exploit (collective) memory, where low values of q correspond to highly explo-
rative foragers, and high values of q indicate foragers that are much more likely to
exploit their (and their neighbors’) memory. The memory mode results in aggre-
gation around the most visited patches. Since the visits are directly influenced
by the patch quality wi, this means aggregation is most likely to occur on salient
patches. Essentially, the information that foragers have stored in their memory
is broadcasted continuously. However, only when a forager enters memory mode,
this information is actually used to accumulate the collective memory. Hence, the
transfer of memory between foragers is directional, meaning that the receiving
forager does not influence the memory of neighboring conspecifics. Addition-
ally note that memory accumulation makes the forager permanently adopt the
memory of its neighbors. In principle, when the communication radius encapsu-
lates all foragers, i.e. r = rmax = L/

√
2, each individual adopts the collective

memory as its own. Furthermore, the computation of the travel angle only con-
siders relative positions, and hence does not assume global knowledge. Lack of
global knowledge is indeed an important characteristic of swarms with limited
perception ranges [8,16].

The random walk that the individuals execute is a Lévy walk, truncated to
reflect the periodic boundary conditions of the environment. The lower trun-
cation at �0 and the upper truncation at the environment size L ensure that
walks occur within the relevant scales [35]. This type of walk results in statis-
tically long flights to occur, where a flight corresponds to walking in the same
direction for a specific distance. The Lévy walk captures different motility pat-
terns, ranging from ballistic (straight line) motion at α → 1, and approximating
Brownian motion for α ≥ 3. Intermediate values of α alternate long flights with
local (Brownian-like) motion, displaying scale-free behavior typical of power-laws
[9,52]. These long bouts of straight line motion are responsible for the optimiza-
tion of random searches for sparse resources, with a known optimum around
α ≈ 2 (see e.g. [3,48,50] and references therein). For a more detailed descrip-
tion, we refer the interested reader to previous works on Lévy walks in a foraging
setting [47,52].

2.3 Measuring Aggregation

While there exist many ways in which one can define cohesion within a collective
system of individuals, there is no single established metric that describes aggre-
gation over a wide range of settings. We introduce several metrics that measure
aggregation, where combining the results allows us to draw conclusions about
the macro behavior of the collective system.

First, we measure the average distance of each individual to the center of
mass of the collective

Memory Induced Aggregation in Collective Foraging 181

Δcom =
C

N

N∑
i=1

||xi − c||, (2)

where ||xi − c|| the Euclidean distance between the position vector of forager
i and the position vector c of the center of mass of the system, i.e. the mean
position of the collective1. Hence, we measure how well aggregated the collective
is around their collective center. The constant C = E(Δcom) is the (numerically
computed) expected value2 that acts as a normalization constants that ensures
that 0 ≤ Δcom ≤ 1. Without any aggregation, Δcom = 1, i.e. the collective
system at any point in time just reflects a uniformly distributed set of foragers
(i.e. Δcom = E(Δcom)). Global aggregation on a single patch has Δcom = 0,
indicating that every forager occupies the same position. However, note that
this measure does not capture situations where subsets of the collective system
aggregate on multiple patches, i.e. local aggregation.

Next, we measure the average fraction of number of neighbors each individual
has as

〈n〉 =
1

N − 1

N∑
i=1

ni(r), (3)

where N − 1 denotes the maximum number of neighbors possible, and ni(r) the
number of neighbors of forager i within a communication radius r. Hence, when
r encapsulates the entire environment, resulting in a static, fully connected net-
work, 〈n〉 = 1 by definition. Thus, 〈n〉 captures the size of the proximity network
of each forager. However, while foragers can be outside of each others commu-
nication radius, they can still be part of the same connected component if they
share a common neighbor. A connected component is defined as a collection of
foragers for which each member has at least one neighbor, within its commu-
nication radius r, that is also a member. Hence, we additionally measure the
size of the giant component G, being the connected component with the largest
numbers of members. Thus,

G = max
k

gk(r), (4)

where gk is the size, i.e. the number of members, of connected component k.
When the system aggregates globally, the size of the connected component should
grow towards the size of the collective system, i.e. G = N . In contrast, when
each individual has no direct neighbors, i.e. gk(r) → 1 when r → 0, all connected
components consist of a single forager and thus G = 1.

Finally, we measure the number of connected components K. When no indi-
vidual has a neighbor, the total number of connected components is equal the
size of the collective system K = N , whereas aggregation on a single patch
results in a single connected component, thus K = 1.
1 The masses of each forager are equal and hence can be omitted.
2 Computation of this expected value assumes a uniform distribution with the center

of mass located at the center of the environment c = (L/2, L/2).

182 J. Nauta et al.

0 L
0

L
a

0 L
0

L
b α = 1.1

0 L
0

L
c α = 2.0

0 L
0

L
d α = 3.0

Fig. 1. Illustration of the dynamics for N = 200 foragers, with q = 0.5 and communi-
cation radius r = 0.01L. Other parameters are L = 1000, M = 50, and wmax = 0.9.
(a) Initial positions of a single realization (seed). (b)–(d) Final positions after 106 steps
for α = 1.1, 2.0, 3.0. Black hollow circles indicate foragers, while small red circles are
patch positions.

3 Results

We employ a Monte-Carlo (MC) scheme wherein the described dynamics are
run after random initialization of the foragers and patches (see Fig. 1a). Initially,
both N = 200 foragers, and M = 50 patches with wmax = 0.9, are uniformly
distributed over the environment with size L = 1000R. Here, patches can be
detected within a detection radius R = 1. We set the communication radius
r = 0.01L, encouraging aggregation by ensuring that resources are sparse relative
to the size of the collective system. The dynamics are run for T = 106 steps until
equilibrium, in which the aforementioned measures are collected.

First, we discuss the MC scheme on the time dynamics of the aggregation. The
initial positions (Fig. 1a), and the positions after the MC simulation (Fig. 1b–d)
serve as an illustrative example. It highlights the influence of the Lévy parameter
α on macroscopic behavior of the collective. Time dynamics of the measures are
shown in Fig. 2. Low values α → 1, shown in Fig. 1b, do not result in any aggrega-
tion due to each individual executing long explorative bouts, both lowering patch
detection probabilities as well as decreasing the frequency of memory mode usage.
In this case, foragers are over-exploring and rarely exploit the collective component
due to the suppression of communication between foragers.

Memory Induced Aggregation in Collective Foraging 183

0.25 0.50 0.75 1.00
0.0

0.5

1.0

Δ
co
m

×106

a

0.25 0.50 0.75 1.00
0.0

0.5

1.0

〈n
〉

×106

b

α = 1.1
α = 2.0
α = 3.0

0.25 0.50 0.75 1.00
t

0.0

0.5

1.0

G
/N

×106

c

0.25 0.50 0.75 1.00
t

0.0

0.5

1.0

K
/N

×106

d

Fig. 2. Aggregation dynamics over time of measures of the collective with q = 0.5,
and α = 2.0. (a) Normalized mean distance towards center of mass. (b) The average
fraction of neighbors (Eq. (3)). (c) Normalized number of the population within the
giant component. (d) Normalized number of connected components within the collec-
tive. Shaded areas represent one standard deviation averaged over 100 realizations.

When α = 2.0, we notice from Fig. 1c that global convergence around a
salient patch occurs, since the size of the giant component grows to include over
60% of the total number of individuals while being restricted to a relative small
area around the center of mass (see Fig. 2a,c). This is due to the alternation of
long flights and local displacements when exploring. The long flights result in an
increased coverage of the environment and result in patches being located more
efficiently due to the optimization of the individual searches for patches [47,48].
The short, localized explorative bouts enables the individual foragers to enter the
decision process more often, increasing the likelihood of exploiting memory. This
stimulates communication between foragers, leading to formation of a collective
memory which is depicted by global aggregation around a salient patch. The
formation of a collective memory is additionally reflected in an increase in the
number of neighbors 〈n〉 (see Fig. 2b), which indicates a well-mixed collective
system wherein information is spread relatively well.

In contrast, when the individual motion approximates Brownian motion for
α = 3.0, they aggregate locally around detected salient patches. The disper-
sive qualities of the motion pattern lacks global displacements since heavy tails
are suppressed. Hence, information about the current favored patch by each
individual is unable to spread, hindering formation of a collective memory and
resulting in the local aggregation depicted in Fig. 1d. Furthermore, the number

184 J. Nauta et al.

1.1 1.5 2.0 2.5 3.0
0.0

0.5

1.0
Δ

co
m

a

1.1 1.5 2.0 2.5 3.0
0.0

0.5

1.0

〈n
〉

b

q=0.9
q=0.5
q=0.1

1.1 1.5 2.0 2.5 3.0

α

0.0

0.5

1.0

G
/N

c

1.1 1.5 2.0 2.5 3.0

α

0.0

0.5

1.0

K
/N

d

Fig. 3. Influence of Lévy parameter α and memory probability q on several metrics
for foragers with limited communication radius r = 0.01L. Error bars indicate one
standard deviation, averaged over 100 different realizations. (a) Normalized average
distance towards the center of mass. (b) Average fraction of number of neighbors within
communication radius r (see Eq. (3)). (c) Normalized size of the giant component (see
Eq. (4)). (d) Normalized number of connected components.

of connected components decreases over time as individuals are more likely to
adhere to a specific component over a long time due to the aforementioned lack
of dispersive behavior (see also Fig. 2d). Surprisingly, the number of connected
components is approximately equal to when α = 2.0. This is because when α
decreases, the length of explorative bouts of the foragers increase, and hence
their tendency to leave a crowded patch increases (see the lone stragglers illus-
trated in Fig. 1c). Nonetheless, the fact that the average distance towards the
center of mass, the number of neighbors and the size of the giant component
do not drastically change over time, displays the lack of global consensus of the
collective when their dispersivity is suppressed.

Next we extrapolate this example to capture the influence of both the Lévy
parameter α and the exploitation probability q, on the aggregation dynamics of
a collective system. Note that the detection radius R = 1
 L is unchanged,
and hence patch detection is difficult, incentivizing aggregation [13].

First, we notice that the value of α for which global aggregation is most
prominent differs for each researched exploitation probability (see Fig. 3). When
individuals are highly likely to exploit their own and their neighbors’ memory,
for q = 0.9, aggregation is most prominent for α ≈ 1.5. This is reflected in
the minimization of Δcom and the number of connected components K, and
maximization of both 〈n〉 and the size of the giant component G. Note that the
total number of connected components almost converges towards a fixed value

Memory Induced Aggregation in Collective Foraging 185

when the heavy tail of the length of explorative bouts is suppressed for larger
values of α. However, the accompanying increase in Δcom illustrates that global
aggregation does not occur at these values of α. Additionally, 〈n〉 and G decrease
as α continues to increase, indicating that the number of connected components
is minimized through the occurrence of local aggregation around salient patches.
This result originates from the exploitative nature of the foragers, since they are
much more likely to stay around a previously visited patch than to explore. This
additionally limits the number of other foragers to communicate with, resulting
in local aggregation.

When the collective is much more likely to explore instead of exploit their
memory models, i.e. q = 0.1, we see that aggregation is less prominent, although
it does still occur due to the likelihood of staying in a patch when the patch qual-
ity is high (w ≈ wmax). Nonetheless, resulting from the memory accumulation
of their local neighborhood, the increase in the number of neighbors is relatively
small compared to when individuals tend more towards using their memory. This
is moreover supported by the fact that foragers are simply less likely to decide
to exploit their memory, and hence most foragers are continuously exploring.
Therefore, when the length of the explorative bouts increases for low values of
α, the memory component is suppressed and aggregation does not occur. Aggre-
gation is strongest when the individual motion starts to resemble Brownian-like
motion, for α ≈ 2.6. In this case, the smallest value of Δcom coincides with
the largest connected component. Similarly, 〈n〉 being largest coincides with the
smallest number of connected components K, indicative of local aggregation
around salient patches.

When individuals are equally likely to explore as to exploit, i.e. q = 0.5,
we note that extreme values are obtained for α ≈ 2.1. The maximum number
of neighbors is lower than when foragers exploit more for q = 0.9, due to the
more explorative nature of individuals resulting in increased dispersive behavior.
The minimum of Δcom occurs at a higher value of α as q decreases. Together
with the coinciding maxima of the size of the giant component, this indicates
that individuals do not stray far from the center of mass during explorative
bouts when q = 0.5. Effectively, as also illustrated in Fig. 1c, the majority of
foragers stay close to the most salient patch. Distant patches are rarely visited
by the collective system, since the collective memory effectively steers foragers
back towards the center of mass located on the most salient patch. Similar to
when q = 0.9, higher values of α for foragers with q = 0.5 do not display
global aggregation, since Δcom is maximized (Fig. 3a), and both 〈n〉 and G are
minimized (Fig. 3b,c). Instead, local aggregation occurs, as depicted by the small
number of connected components (see Fig. 3d) when α increases.

4 Conclusion

In this work, we have studied the aggregation dynamics of a collective system
during a foraging task. By limiting the communication range between individu-
als, we isolated individual motion as the prime candidate for information trans-
fer. Collective memory was formed as patches were visited using a Lévy walk

186 J. Nauta et al.

for exploration. The memory strength towards a specific patch was related to
the number of visits to the patch. During exploitation, the collective memory of
nearby conspecifics was accumulated by the forager, and was used for informed
motion towards a salient patch. We have shown that the proposed memory model
can result in global aggregation around the most salient patches, even when
communication ranges of individuals are limited. Furthermore, local aggregation
occurs when the Lévy walk used for exploration tends more towards Brownian
motion, 2 < α < 3. The value of α that results in the strongest aggregation
depends on the value of the decision parameter q, which defines the probabil-
ity of choosing to exploit the current available information when a decision is
made. More exploitative foragers, q = 0.9, displayed the largest giant compo-
nents around α ≈ 1.5, while simultaneously minimizing the distance towards
the center of mass and the number of connected components, indicating global
aggregation around a single salient patch. For explorative foragers, q = 0.1,
global aggregation occurs at higher values of α ≈ 2.6, but is less pronounced.
Balanced foragers with q = 0.5 display global aggregation around α ≈ 2.1, effec-
tively displaying a middle ground between the two other extremes. Hence, we
have shown that global aggregation can occur even when communication ranges
are limited.

Whereas we have assumed that the probability to remain on a patch is pro-
portional to the patch quality, this assumption implicitly states that patch qual-
ity is an objective measure. Realistically, this is simply not true, as the quality
can be subjective or change over time depending on the needs of the system
[11,25,41]. Hence, there is a dire need to research individual and collective assess-
ment of patch quality. This should enable adaptation towards a priori unknown
patches and allows a collective system to forage for the necessary resources.

Furthermore, in this study we have assumed that communication between
individuals can only occur between neighboring foragers. However, studies have
shown that animal groups can have different topologies within their social envi-
ronment [33], such as scale free networks [26,37]. Indeed, when including long-
range interactions, individual motion is perhaps less influential on the flow of
information within the collective system. However, short communication ranges
are a fundamental component in swarm robotics and cannot simply be omit-
ted. Studying the importance of individual motion on different communication
networks within collective systems is a topic for future study.

While we have studied the effects of individual motion and collective memory
formation within the context of foraging, we believe that these results can be
applied to more general concepts regarding spread of information within collec-
tive systems with limited communication ranges, such as robotic swarms [8] and
active particles [42].

Acknowledgments. The authors would like to thank Ilja Rausch for useful discus-
sions and providing invaluable resources specific to the domain.

Memory Induced Aggregation in Collective Foraging 187

References

1. Audibert, J.Y., Munos, R., Szepesvári, C.: Exploration-exploitation tradeoff using
variance estimates in multi-armed bandits. Theoret. Comput. Sci. 410(19), 1876–
1902 (2009)

2. Bartumeus, F., Campos, D., Ryu, W.S., Lloret-Cabot, R., Méndez, V., Catalan, J.:
Foraging success under uncertainty: search tradeoffs and optimal space use. Ecol.
Lett. 19(11), 1299–1313 (2016)

3. Bartumeus, F., da Luz, M.G.E., Viswanathan, G.M., Catalan, J.: Animal search
strategies: a quantitative random-walk analysis. Ecology 86(11), 3078–3087 (2005)

4. Bennati, S.: On the role of collective sensing and evolution in group formation.
Swarm Intell. 12(4), 267–282 (2018). https://doi.org/10.1007/s11721-018-0156-y

5. Bhattacharya, K., Vicsek, T.: Collective foraging in heterogeneous landscapes. J.
Roy. Soc. Interface 11(100), 20140674 (2014)

6. Boyer, D., Falcón-Cortés, A., Giuggioli, L., Majumdar, S.N.: Anderson-like local-
ization transition of random walks with resetting. J. Stat. Mech. Theory Exp.
2019(5), 053204 (2019)

7. Bracis, C., Gurarie, E., Van Moorter, B., Goodwin, R.A.: Memory effects on move-
ment behavior in animal foraging. PloS One 10(8), e0136057 (2015)

8. Brambilla, M., Ferrante, E., Birattari, M., Dorigo, M.: Swarm robotics: a review
from the swarm engineering perspective. Swarm Intell. 7(1), 1–41 (2013). https://
doi.org/10.1007/s11721-012-0075-2

9. Clauset, A., Shalizi, C.R., Newman, M.E.J.: Power-law distributions in empirical
data. SIAM Rev. 51(4), 661–703 (2009)

10. Danchin, E., Giraldeau, L.A., Valone, T.J., Wagner, R.H.: Public information: from
nosy neighbors to cultural evolution. Science 305(5683), 487–491 (2004)

11. De Fine Licht, H.H., Boomsma, J.J.: Forage collection, substrate preparation, and
diet composition in fungus-growing ants. Ecol. Entomol. 35(3), 259–269 (2010)

12. Fagan, W.F., et al.: Spatial memory and animal movement. Ecol. Lett. 16(10),
1316–1329 (2013)

13. Falcón-Cortés, A., Boyer, D., Ramos-Fernández, G.: Collective learning from indi-
vidual experiences and information transfer during group foraging. J. Roy. Soc.
Interface 16(151), 20180803 (2019)

14. Faustino, C., Lyra, M., Raposo, E., Viswanathan, G., da Luz, M.: The universality
class of random searches in critically scarce environments. EPL (Europhys. Lett.)
97(5), 50005 (2012)

15. Ferreira, A., Raposo, E., Viswanathan, G., Da Luz, M.: The influence of the envi-
ronment on Lévy random search efficiency: fractality and memory effects. Physica
A 391(11), 3234–3246 (2012)

16. Hamann, H.: Swarm Robotics: A Formal Approach. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-74528-2

17. Haney, J.C., Fristrup, K.M., Lee, D.S.: Geometry of visual recruitment by seabirds
to ephemeral foraging flocks. Ornis Scand. 23, 49–62 (1992)

18. Katz, K., Naug, D.: Energetic state regulates the exploration-exploitation trade-off
in honeybees. Behav. Ecol. 26(4), 1045–1050 (2015)

19. Kéfi, S., et al.: Spatial vegetation patterns and imminent desertification in mediter-
ranean arid ecosystems. Nature 449(7159), 213 (2007)

20. Khaluf, Y., Ferrante, E., Simoens, P., Huepe, C.: Scale invariance in natural and
artificial collective systems: a review. J. Roy. Soc. Interface 14(136), 20170662
(2017)

https://doi.org/10.1007/s11721-018-0156-y
https://doi.org/10.1007/s11721-012-0075-2
https://doi.org/10.1007/s11721-012-0075-2
https://doi.org/10.1007/978-3-319-74528-2

188 J. Nauta et al.

21. Jimenez-Delgado, G., Balmaceda-Castro, N., Hernández-Palma, H., de la Hoz-
Franco, E., Garćıa-Guiliany, J., Martinez-Ventura, J.: An integrated approach of
multiple correspondences analysis (MCA) and fuzzy AHP method for occupational
health and safety performance evaluation in the land cargo transportation. In:
Duffy, V.G. (ed.) HCII 2019. LNCS, vol. 11581, pp. 433–457. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-22216-1 32

22. Khaluf, Y., Simoens, P., Hamann, H.: The neglected pieces of designing collective
decision-making processes. Front. Robot. AI 6, 16 (2019)

23. Khaluf, Y., Van Havermaet, S., Simoens, P.: Collective Lévy walk for efficient
exploration in unknown environments. In: Agre, G., van Genabith, J., Declerck,
T. (eds.) AIMSA 2018. LNCS (LNAI), vol. 11089, pp. 260–264. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-99344-7 24

24. Levin, S.A.: Multiple scales and the maintenance of biodiversity. Ecosystems 3(6),
498–506 (2000). https://doi.org/10.1007/s100210000044

25. Lihoreau, M., et al.: Collective foraging in spatially complex nutritional environ-
ments. Philos. Trans. Roy. Soc. B 372(1727), 20160238 (2017)

26. Lusseau, D., Newman, M.E.: Identifying the role that animals play in their social
networks. Proc. R. Soc. Lond. B Biol. Sci. 271(suppl 6), S477–S481 (2004)

27. Mart́ınez-Garćıa, R., Calabrese, J.M., López, C.: Optimal search in interacting
populations: Gaussian jumps versus Lévy flights. Phys. Rev. E 89(3), 032718 (2014)

28. Mart́ınez-Garćıa, R., Calabrese, J.M., Mueller, T., Olson, K.A., López, C.: Opti-
mizing the search for resources by sharing information: Mongolian gazelles as a
case study. Phys. Rev. Lett. 110(24), 248106 (2013)

29. Menzel, R., et al.: Honey bees navigate according to a map-like spatial memory.
Proc. Nat. Acad. Sci. 102(8), 3040–3045 (2005)

30. Nauta, J., Khaluf, Y., Simoens, P.: Hybrid foraging in patchy environments using
spatial memory. J. Roy. Soc. Interface 17(166), 20200026 (2020)

31. Pemantle, R., et al.: A survey of random processes with reinforcement. Probab.
Surv. 4, 1–79 (2007)

32. Pinter-Wollman, N., et al.: Harvester ants use interactions to regulate forager acti-
vation and availability. Animal Behav. 86(1), 197–207 (2013)

33. Pinter-Wollman, N., et al.: The dynamics of animal social networks: analytical,
conceptual, and theoretical advances. Behav. Ecol. 25(2), 242–255 (2014)

34. Pitcher, T., Magurran, A., Winfield, I.: Fish in larger shoals find food faster. Behav.
Ecol. Sociobiol. 10(2), 149–151 (1982). https://doi.org/10.1007/BF00300175

35. Pyke, G.H.: Understanding movements of organisms: it’s time to abandon the Lévy
foraging hypothesis. Methods Ecol. Evol. 6(1), 1–16 (2015)

36. Ramos-Fernández, G.: Vocal communication in a fission-fusion society: do spider
monkeys stay in touch with close associates? Int. J. Primatol. 26(5), 1077–1092
(2005). https://doi.org/10.1007/s10764-005-6459-z

37. Ramos-Fernández, G., Boyer, D., Aureli, F., Vick, L.G.: Association networks in
spider monkeys (Ateles geoffroyi). Behav. Ecol. Sociobiol. 63(7), 999–1013 (2009).
https://doi.org/10.1007/s00265-009-0719-4

38. Raposo, E.P., Buldyrev, S.V., da Luz, M.G.E., Santos, M.C., Stanley, H.E.,
Viswanathan, G.M.: Dynamical robustness of Lévy search strategies. Phys. Rev.
Lett. 91, 240601 (2003)

39. Rausch, I., Khaluf, Y., Simoens, P.: Scale-free features in collective robot foraging.
Appl. Sci. 9(13), 2667 (2019)

40. Rausch, I., Reina, A., Simoens, P., Khaluf, Y.: Coherent collective behaviour emerg-
ing from decentralised balancing of social feedback and noise. Swarm Intell. 13(3–
4), 321–345 (2019). https://doi.org/10.1007/s11721-019-00173-y

https://doi.org/10.1007/978-3-030-22216-1_32
https://doi.org/10.1007/978-3-319-99344-7_24
https://doi.org/10.1007/s100210000044
https://doi.org/10.1007/BF00300175
https://doi.org/10.1007/s10764-005-6459-z
https://doi.org/10.1007/s00265-009-0719-4
https://doi.org/10.1007/s11721-019-00173-y

Memory Induced Aggregation in Collective Foraging 189

41. Rodrigues, M.A., et al.: Drosophila melanogaster larvae make nutritional choices
that minimize developmental time. J. Insect Physiol. 81, 69–80 (2015)

42. Romanczuk, P., Bär, M., Ebeling, W., Lindner, B., Schimansky-Geier, L.: Active
Brownian particles. Eur. Phys. J. Spec. Top. 202(1), 1–162 (2012). https://doi.
org/10.1140/epjst/e2012-01529-y

43. Schafer, R.J., Holmes, S., Gordon, D.M.: Forager activation and food availability
in harvester ants. Animal Behav. 71(4), 815–822 (2006)

44. Talamali, M.S., Bose, T., Haire, M., Xu, X., Marshall, J.A., Reina, A.: Sophis-
ticated collective foraging with minimalist agents: a swarm robotics test. Swarm
Intell. 14(1), 25–56 (2020). https://doi.org/10.1007/s11721-019-00176-9

45. Torney, C.J., Berdahl, A., Couzin, I.D.: Signalling and the evolution of cooperative
foraging in dynamic environments. PLoS Comput. Biol. 7(9), e1002194 (2011)

46. Visscher, P.K.: Group decision making in nest-site selection among social insects.
Annu. Rev. Entomol. 52(1), 255–275 (2007)

47. Viswanathan, G.M., Da Luz, M.G., Raposo, E.P., Stanley, H.E.: The Physics of
Foraging: An Introduction to Random Searches and Biological Encounters. Cam-
bridge University Press, Cambridge (2011)

48. Viswanathan, G.M., Buldyrev, S.V., Havlin, S., Da Luz, M., Raposo, E., Stanley,
H.E.: Optimizing the success of random searches. Nature 401(6756), 911 (1999)

49. Weimerskirch, H.: Are seabirds foraging for unpredictable resources? Deep Sea Res.
Part II 54(3), 211–223 (2007)

50. Wosniack, M.E., Santos, M.C., Raposo, E.P., Viswanathan, G.M., da Luz, M.G.E.:
Robustness of optimal random searches in fragmented environments. Phys. Rev.
E 91, 052119 (2015)

51. Wosniack, M.E., Santos, M.C., Raposo, E.P., Viswanathan, G.M., da Luz, M.G.:
The evolutionary origins of Lévy walk foraging. PLoS Comput. Biol. 13(10),
e1005774 (2017)

52. Zaburdaev, V., Denisov, S., Klafter, J.: Lévy walks. Rev. Mod. Phys. 87(2), 483
(2015)

53. Zhao, K., et al.: Optimal Lévy-flight foraging in a finite landscape. J. Roy. Soc.
Interface 12(104), 20141158 (2015)

https://doi.org/10.1140/epjst/e2012-01529-y
https://doi.org/10.1140/epjst/e2012-01529-y
https://doi.org/10.1007/s11721-019-00176-9

Modeling Pathfinding for Swarm Robotics

Sebastian Mai(B) and Sanaz Mostaghim

Faculty of Computer Science,
Otto von Guericke University Magdeburg, Magdeburg, Germany

{sebastian.mai,sanaz.mostaghim}@ovgu.de

Abstract. This paper presents a theoretical model for path planning
in multi-robot navigation in swarm robotics. The plans for the paths
are optimized using two objective functions, namely to maximize the
safety distance between the agents and to minimize the mean time to
complete a plan. The plans are designed for various vehicle models. The
presented path planning model allows us to evaluate both decentralized
and centralized planners. In this paper, we focus on decentralized plan-
ners and aim to find a set of Pareto-optimal plans, which enables us to
investigate the fitness landscape of the problem. For solving the multi-
objective problem, we design a modified version of NSGA-II algorithm
with adapted operators to find sets of Pareto-optimal paths for several
agents using various vehicle models and environments. Our experiments
show that small problem instances can be solved well, while solving larger
problems is not always possible due to the large complexity.

1 Introduction

Robot swarms and multi-robot systems in general become very popular and are
used in various applications [2,14]. In most of such applications, navigation to
certain positions and path planning for several robots within an environment
pose a challenge for algorithm design. Currently robots rely on purely reactive
behavior resulting in sub-optimal paths. The long term goal of our research is to
extend the capabilities of the agents to plan future actions, taking into account
the intend of their neighbors, to obtain more efficient behaviors. In order to
optimally navigate within a moving robotic swarm, we need a framework for
planning, evaluating and executing trajectories in a very dynamic environment.

In this paper we propose a model to represent trajectories for multiple robots
within a swarm, respecting the kinematic constraints of the robots given by a spe-
cific vehicle model. We evaluate the plans by to objectives: Path length and safety
radius. While the length of the paths indicate the time needed, the safety radius
assesses how much (spatial) errors in plan-execution can be tolerated. In order
to create a meaningful classification and comparison between future navigation
behaviors we use multi-objective optimization to obtain a set of Pareto-optimal
solutions that represent different trade-offs between both objectives. We can com-
pare the obtained solutions either to the solution of another planning algorithm or

c© Springer Nature Switzerland AG 2020
M. Dorigo et al. (Eds.): ANTS 2020, LNCS 12421, pp. 190–202, 2020.
https://doi.org/10.1007/978-3-030-60376-2_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-60376-2_15&domain=pdf
http://orcid.org/0000-0002-2255-3277
http://orcid.org/0000-0002-9917-5227
https://doi.org/10.1007/978-3-030-60376-2_15

Modeling Pathfinding for Swarm Robotics 191

trajectories generated by a navigation policy in a simulation environment. Com-
paring to a set of Pareto-optimal solutions instead of a single solution allows us to
see which trade-off a given method makes and whether its results are optimal with
respect to a given trade-off. Thus, we gain more insights into the fitness landscape
of the problem than by using single-objective optimization.

The remainder of this paper is structured as follows. In Sect. 2 we describe
the state of the art planning algorithms for multi robot path planning. Our own
model for describing plans and our approach to plan optimization is described
in Sect. 3. The experiments we performed are described and evaluated in Sect. 4.
The last section concludes the paper and outlines future research.

2 Related Works

In the following, we give an overview about different navigation and pathfinding
algorithms for single and multi-robot scenarios. There is a long list of literature
about such algorithms for one single robot e.g. [10,21]. New challenges appear
once the single robot planning problem is extended to a multi-robot problem,
where paths for multiple robots traveling through the same space are planned
simultaneously. Collisions may occur when two robots’ paths cross, but only if
those robots travel through the crossing at the same time. This means a multi-
robot planner must be aware of time, which is not necessarily the case for a
single robot path planning. In addition, plans of multiple robots usually involve
dependencies between the paths leading to the fact that solving a multi-robot
planning problem is more complicated than solving multiple single robot prob-
lems. Furthermore, in single robot pathfinding we often assume that a solution
must not contain a position/state twice. This assumption can help to bound the
search space in single robot pathfinding, however, the assumption does not hold
for the multi-robot case resulting in an infinitely large search space1.

The Multi-Agent Pathfinding problem (MAPF) is a more general version of
the problem modeled in this paper. The MAPF problem is described very well in
a review by Stern et al. [16]. Many studies have been conducted around MAPF.
The most common method to solve the problem is to use search-based solvers [8].
Surynek et al. [18] account for methods that convert the MAPF problem to a sat-
isfiability (SAT) problem that can be solved by existing SAT solvers. In contrast
to our method, this approach is more suited to problem instances like mazes,
where it is difficult to find a valid solution. A new study by Wang and Ruben-
stein [19] aims to solve a special version of the MAPF problem by means of local
interactions. Their approach is especially interesting because it could be consid-
ered to be a swarm approach to the MAPF problem. Our notion of safety/risk
that is based on distance. In literature, multiple authors also consider the robust-
ness of a plan. Here, robustness does not refer to robust optimization, but the
property of a plan to tolerate errors in plan-execution. Atzmon et al. [1] recently
published a work on robustness in MAPF. In contrast to our spacial model of
1 A different technique to bound the search space is to plan only for a fixed time-frame,

however, this means a new, problem-specific parameter needs to be introduced.

192 S. Mai and S. Mostaghim

safety, the authors model robustness using temporal delays (k-robustness) and
provide strategies to cope with those delays during plan execution. Olivierabreak
et al. [12] show that robustness is a very important feature in a MAPF solution
to a robotic context, as the inherent uncertainty in plan execution is likely to
“break” plans with tight tolerances [12,17]. Street et al. [17] model this type of
uncertainty as congestion and propose a congestion-aware planning algorithm.
Concerning multiple objectives in path planning, we can refer to our previous
work [20] where we establish multi-objective multi-agent pathfinding as a realis-
tic, scalable benchmark for large-scale multi-objective optimization algorithms.

Usually, the MAPF problem is solved within a graph representation of the
environment. In contrast to that, our model of the problem assumes a continuous
space, where each robot has a position. Continuous space representations are also
used by Krontiris et al. [9] and Čáp et al. [3]. Čáp et al. also use the notion of a
minimal distance between robots [3].

In swarm robotics, navigation strategies usually are examined without taking
a global perspective into account, in contrast to multi-robot systems. Silva and
Nadia [15] present an approach using wave algorithms to gather sub-swarms that
move in formations. In a recent article, Metoui et al. [11] use artificial potential
fields and a decentralized architecture to solve a multi-robot navigation task.
They use a kinematic model that is based on a continuous space representation
of the environment. Several algorithms and various policies for collective behavior
in multi-robot systems are listed by Rossi et al. [13].

3 Modeling Robot Navigation

In the following, we present our navigation model which encodes a set of tra-
jectories M for k robots by a waypoint representation S. To decode a solution
we use a vehicle model: a function M = V(S) that computes the paths from
the waypoints. The vehicle model is an abstract representation of the kinematic
constraints of the robots and is specific to the type of locomotion used by the
robot. Figure 1 depicts a path p(t) of a single robot that is represented by a
sequence of n = 4 waypoints W = (w1,w2, · · ·wn). A path p(t) : T −→ P for
one robot is a function that maps the time step t ∈ T to the pose (x, y, θ) ∈ P
the robot occupies at time t, where the pose (x, y, θ) denotes the position and
orientation of the robot. To compute M = V(S) we apply the vehicle model to
each robot’s sequence of waypoints independently: pi(t) = V(Wi).

The quality of M is evaluated by two objective functions: Risk fR∗ and
Length fL. The proposed vehicle models and the objective functions are
explained in the following sections.

3.1 Vehicle Models

Vehicle models provide a method to efficiently encode solution candidates that
represent a robot’s kinematic constraints by default. The vehicle model is used
to compute a path-segment that connects two consecutive waypoints (wi, wi+1).

Modeling Pathfinding for Swarm Robotics 193

w1 w2
w3

w4

Fig. 1. Four waypoints (circles) with orientation (as indicated by dotted, blue arrows).
The path (black line) was created by using the Bezier vehicle model. Start and end of
the arrows indicate the control points of the Bezier curve for each segment of the path.
(Color figure online)

The path from start w0 to goal wn is a concatenation of multiple segments. To
show that our model is generic to different robot types we consider five vehicle
models in this paper:

1. Straight: This vehicle model is the most simple one which connects the
waypoints by linear movements and the angular components of the poses are
ignored. During the movement θ points towards the direction of movement.
The rotation to and from the start and goal poses happen without time delay.
This is a theoretical model and does not represent any specific robotic system.

2. Rotate Translate Rotate (RTR): The RTR model represents the motion
of a robot able to turn in place, e.g. with a differential drive. It adds the
rotational movement that is missing in the Straight model. The movement
from the start position wi consists of a rotation from θi to the orientation
for straight movement θT (Rotate), straight movement to the next posi-
tion (Translate) and rotation from θT to the goal orientation θi+1 (Rotate).

3. Dubins vehicle model: This is a well known vehicle model for wheeled robots
without the capability to turn in place or change directions. In Dubins vehicle
model the robots always move forward. Dubins model is proven to compute
the optimal path between two waypoints composed of straight lines and circle
segments with fixed radius [7,10].

4. Reeds-Shepp: Similar to Dubins vehicle model, this model works by con-
necting straight lines and circle segments, but the robot is allowed to change
directions (like a car when parking) [10].

5. Bezier: The last vehicle model uses Bezier curves to generate a path. This
vehicle model does not correspond to a real-world kinematic model, and is
used for comparison purposes. The vehicle model creates a Bezier curve with
two control points associated to each path segment. The first control point is
placed at a distance of Bd and angle θ from the waypoint wi at the start of
the segment, the second control point is placed at the same distance Bd and
an angle −θ with respect to the waypoint at the end of the segment wi+1.
Figure 1 shows an example for a path with four waypoints that are used to
generate three path segments.

194 S. Mai and S. Mostaghim

3.2 Evaluating Plan Quality

In this section, we explain how we can evaluate a path in terms of two objectives:
risk and length. Risk f∗

R is the objective that accounts for collisions between
two agents and between agents and obstacles. To compute the risk objective we
assume a circular robot that has to keep a safe distance towards obstacles and
other robots at all times. Therefore, we consider a plan to be safer when the
maximum distance to the closest agent or obstacle is bigger throughout each
time step. In order to calculate the value for safety (fR) for a plan for all agents,
we consider the closest encounter of all agents with the environment dE and the
closest encounter of two agents towards each other dA. dE is calculated by finding
the minimum distance do between all the paths p(t) ∈ M and the obstacles in
the environment. In an encounter between two agents the safety radius of both
agents is affected, therefore the distance between two agents is counted with
twice the weight, as the distance to the closest obstacle.

Safety Radius: fR =

{
min(12dE , dA) iff: dE > 0
dP iff: dE = 0

(1)

Environment Distance: dE = min
∀p(t)∈M

do(p(t)) (2)

Inter-Agent Distance: dA = min
∀i,j:i<j≤k,∀t

d(pi(t), pj(t)) (3)

Penalty Term: dP = −
∑k

i=1 ‖{t|∀t : do (pi (t)) = 0}‖∑k
i=1 Li

(4)

Li is the length of a path pi in terms of travel-time. Furthermore, we make some
adjustments to the obtained objective value. In case the paths of the agents cross
an obstacle, we assume that the value of the safety radius is not zero, but we
use a negative penalty term dP . This penalty helps the optimization algorithm
to find obstacle-collision free paths more quickly. Our definition of safety radius
fR is a maximization objective. To convert fR to a minimization function, we
compute f∗

R = 100 − fR, which represents the risk of a collision during plan
execution. Additionally, we make the assumption that agents vanish as soon as
they reach their goals. The value of fR indicates the radius in which the circular
robots can move and execute the plan without collisions, i.e. the small values
result in critical plans. The safety radius helps the decision maker to select a
solution from the Pareto front. Using the size of the robots, we can introduce a
lower bound to the safety radius (fR) of feasible solutions that can be included
as a preference in multi-objective optimization.

The length fL is the second objective. In MAPF, there are two possible
ways to measure fL: Makespan and Flow-time. Flow-time is the mean time of
completion, while makespan is the time for the agent arriving latest. We use the
flow-time objective (5), where Li is the number of time steps in path i.

fL =
∑k

i=1 Li

n
(5)

Modeling Pathfinding for Swarm Robotics 195

3.3 Multi-objective Multi-path Planning

In this section, we explain how to perform the optimization algorithm to deal
with the multi-objective problem of minimizing fR and fL. For this purpose, we
modify the NSGA-II algorithm [6] to be able to solve our proposed problem.

As already mentioned, the encoded solution to the problem for k robots is
stored in the set S and therefore, each individual in the NSGA-II algorithm
represents a set of paths Si which contains all k paths for k agents. For each
waypoint in one path p(t), we have (x, y, θ) at time t. In order to evaluate the
quality of the solutions based on the above defined objective functions, we decode
the solution S using a vehicle model V(S). We consider x and y to be defined in
the space where the navigation is supposed to be defined and θ is set to a value
in the range [0, 2π]. In case a waypoint is outside of the navigation area (e.g.
after mutation), the path is penalized in the same way as if the robot moves
through an obstacle and the angle is mapped to the correct domain.

In the following, we modify the genetic operators of the original NSGA-
II algorithm to adapt to our own use-case. We consider two different types of
mutation: A mutation for path smoothing and a Gaussian mutation on the
encoded individuals. The mutation operator for path smoothing works as follows:
One waypoint wi in the waypoint vector is selected randomly and the path
between the adjacent waypoints is computed as defined by the vehicle model
pi(t) = V ((wi−1, wi+1)). The selected waypoint is then placed randomly on the
path wi := pi(t ∈ (0, Lpi

)) between the two adjacent waypoints. The Gaussian
mutation adds N (0, σm)(dmax − dmin) to each variable, where dmin, dmax are
the minimum and maximum value the variable can assume within the domain.

As for the crossover operation, we use a two-point crossover on the paths of
one randomly selected agent in two different solutions Si, Sj . For this purpose,
we first select a random agent A with the waypoints WiA in solution Si and WjA

in solution Sj . WiA and WjA are both n-tuples of poses that encode the path of
the agent A in both solutions. We select two random cut-off points u and w with
0 < u < w < n and swap all poses with an index2 between u and w between the
two solutions. Thus, only the path of one agent is changed during crossover and
a (sub-)sequence of the waypoints is swapped between solutions.

The solution of this multi-objective optimization algorithm is an approxima-
tion set of Pareto-optimal solutions, from which we need to select one possible
solution. In order to reduce the number of alternatives and enforce a fast conver-
gence, we introduce a constraint on the fR objective as a preference for feasible
solutions. We set a parameter fmin

R , because the safety radius must cover the
footprint of the robot. When the safety radius is too small a collision will happen
even with perfect plan execution. By introducing this constraint, only solutions
are valid in which two robots never get closer than fmin

R . This constraint affects
the environmental selection of the algorithm. In case there are several solutions
with fR > fmin

R , we only select feasible solutions. In case there are not enough
feasible solutions, we use the solutions with the best values of fR.

2 Start- and goal configuration are fixed and never affected by the crossover operation.

196 S. Mai and S. Mostaghim

4 Experiments

To validate our proposed approach, we perform several experiments on three
maps of the environment (Cross, Bar and Empty) as shown in Fig. 3. We use the
Python DEAP [4] framework to implement the problem and the modified NSGA-
II algorithm [6] as described in Sect. 3. In all the experiments, the agents start
from pre-defined fixed positions and are supposed to reach pre-defined goals. We
set the following parameters for the mutation operators σm = 0.01, pg = 0.66,
ps = 0.33, a mutation rate pmut = 0.8 and a crossover rate pcross = 0.4. The
crossover rate is low compared to the usual settings for NSGA-II [6]. However,
this delivers the best value for our specific use-case according to our preliminary
experiments. fmin

R is part of the problem setting, we used a value of fmin
R = 5.

All the experiments are performed for 31 independent runs3 over 400 generations
for each setting of the algorithm. In order to measure the quality of the obtained
solutions of the modified NSGA-II, we record the hypervolume values [5] with
respect to the reference point href = (f∗

R = 100, fL = 400).

4.1 Evaluation

The first part of the evaluation is dedicated to the general properties of the
optimization problem. The goal is to understand the movements and trajectories
of robots with various vehicle models. Since the two vehicle models Straight and
Bezier are theoretical models which do not represent any robotic system, we
use them as baseline for comparisons. We study robots with differential drive
represented by the RTR model and more restricted robots with non zero steering
radius (e.g. cars) represented by the Reeds-Shepp model. Dubins vehicle model
is a special case of the Reeds-Shepp model, where the robots are not allowed to
change directions.

Figure 2 shows the obtained approximated solutions (combined non-
dominated sets over 31 runs) for the five vehicle models. We fix the number
of robots to 3. In all environments, we observe that, as expected, the theoretical
Straight model obtains the best solutions. For each category of vehicle mod-
els, we observe that only Reeds-Shepp can reach very close to the theoretical
models. An important detail is that the RTR model is always outperformed
by the Straight model, because the cost of orientation changes is neglected by
the Straight model. Considering additional restriction of the movement direc-
tion leads to deterioration in terms of both objectives. This can be observed
by comparing the solutions of Reeds-Shepp and Dubins vehicle models, where
Reeds-Shepp outperforms the Dubins vehicle.

Since Dubins vehicle represents most of the existing robotic systems and due
to the space limit in this paper, we select Dubins vehicle models for further
experiments4. Figure 3 shows two selected solutions generated by the algorithm

3 We did exactly 31 runs, so the median fitness (and commonly used quantiles) corre-
spond to a specific run.

4 More vehicle models and source code: http://www.ci.ovgu.de/Research/Codes.html.

http://www.ci.ovgu.de/Research/Codes.html

Modeling Pathfinding for Swarm Robotics 197

Fig. 2. Obtained solutions using various vehicle models in terms of fL and f∗
R for three

environments Cross (top left), Bar (top right) and Empty (bottom).

for Dubins vehicle model with k = 3 and 7 agents. These solutions represent the
extreme points on the Pareto-front, i.e. each is the best in terms of one of the
objectives. Our hypothesis is that solutions that perform well in the fL objective,
perform poorly in the f∗

R objective and vice versa. Hence, solutions with short,
direct paths have a lower safety radius and solutions with a larger safety radius
always have long paths. In Fig. 3 we can observe this trade-off. The solutions
in the top row (best f∗

R) achieve low risk by keeping a larger distance to both
the obstacles and other agents, while the solutions in the bottom row go very
close to obstacles and agents. This holds for both k = 3 and k = 7. These agents
shorten the path to their goal. Looking at the results with k = 3, we observe
that the blue agent in the top left image takes a really long detour, it passes the
gap between the obstacles only after the other agents moved through. However,
the paths in the top middle- and right image are still rather direct and do not
contain obvious detours.

In the following experiments, we analyse the impact of the number of agents
and waypoints on the quality of the obtained paths. Table 1 shows the results in
terms of HV for the three environments. We mark the best median hypervolume
of the runs for each setting in bold font. We observe that the best result is reached
by using one to three waypoints, indicating that adding more waypoints increases

198 S. Mai and S. Mostaghim

Fig. 3. Paths for k = 3 and 7 agents using Dubins vehicle model with n = 3 waypoints
(denoted by ×) in environments: Cross, Bar, Empty (left to right).

the problem difficulty. Additionally, the solution with one waypoint is rarely the
best solution, especially in the environments without obstacle – one waypoint is
often not sufficient to express a good path. Overall, we conclude that the number
of waypoints n directly scales the size of the search-space, without changing the
underlying problem. In theory, when adding waypoints, the performance should

Modeling Pathfinding for Swarm Robotics 199

Table 1. Median HV and IQR for all runs at generation 400 with Dubins model.

k 2 3 4 5 7 9 11
env. n

bar 1 7508(28) 7332(31) 5953(2211) 3417(1221) 1526(545) 749(923) 121(302)

2 7910(11) 7702(40) 5635(1940) 4048(868) 2551(715) 1590(536) 871(1107)

3 7889(28) 7692(1299) 5399(1919) 4124(1783) 2573(435) 1558(618) 671(917)

4 7863(347) 6387(2029) 5051(1143) 3607(666) 2144(617) 844(1452) 0(619)

5 7794(314) 5994(1916) 4253(912) 3188(1046) 1445(1722) 253(1016) 0(420)

cross 1 7674(644) 4685(79) 3979(1370) 2641(1728) 931(722) 312(722) 0(130)

2 9148(27) 5055(479) 4492(425) 3678(562) 2050(457) 1289(1747) 0(961)

3 9138(10) 5730(1014) 4472(492) 3541(642) 2115(720) 1183(1114) 394(866)

4 9107(26) 5357(742) 4393(918) 3376(815) 1880(756) 494(1046) 0(0)

5 9002(2888) 4971(954) 3662(1067) 2678(1316) 624(1527) 0(0) 0(0)

empty 1 9301(24) 9261(5) 7538(23) 8275(907) 4708(914) 3404(620) 2148(460)

2 9313(24) 9260(13) 7525(104) 8488(633) 5082(552) 3671(649) 2421(435)

3 9297(27) 9242(23) 7466(189) 8171(805) 4912(784) 3293(554) 2315(359)

4 9283(31) 9226(45) 7207(210) 7613(880) 4572(827) 2997(451) 1859(301)

5 9266(36) 9050(201) 7079(258) 6776(1083) 3934(571) 2298(549) 1358(475)

always stay the same or improve the result of the optimization, because the
new waypoint can be on the path (resulting in the same path). However, the
new waypoint can also help to express a solution that can not be represented
by fewer waypoints. In the following, we study the influence of the number of
waypoints in more detail. Figure 4 shows the Pareto-front for a different number
of waypoints and 7 agents. The front computed with n = 1 does not achieve the
full diversity, n = 3 clearly outperforms the front for n = 1 in convergence and
diversity. The front for n = 5 has few very good solutions, but often is not able
to converge far enough.

One remaining parameter to study concerns the number of agents k which is
most important for the difficulty of the problem as can be observed in Figure 3.
Referring to the results in Table 1, we can clearly see that the HV decreases as
more agents are added to the problem. There are two reasons for this: (1) The
HV of the true Pareto-front decreases when adding more agents. The reason
concerns the safety radius objective fR. As more agents are added to the same
working-area in the environment fR is impaired as there is less space per agent.
(2) The algorithm is not able to find the correct solution due to increased task
difficulty. Additionally, we observe that for the Empty environment, there are
not large changes in HV when comparing the results for k = 2 and 3 agents
(the same holds for 4 and 5 agents). We believe that this is an artifact of the
distances in our start-configuration. In the Cross environment which has the most
number of obstacles, we observe that the algorithm does often fail to converge
for k = 11 agents. This illustrates that our algorithm is able to solve the problem
for instances with few agents, but certainly not for tens our even hundreds of

200 S. Mai and S. Mostaghim

Fig. 4. Combined Pareto-fronts for Dubins vehicle using 7 agents.

agents. In addition, we believe that this could be due to the specified environment
(size as well as start and goal positions for the agents). It is important to note
that with eleven agents and three waypoints there are already 11 · 3 · 3 = 99
variables to optimize, resulting in a high dimensional search-space. Overall, the
results show that the algorithm is capable of finding solutions for small problem
instances (i.e. k ≤ 10).

5 Conclusion

In this paper, we proposed a mathematical model to represent and evaluate
movement plans for a swarm of robots. In addition, we implemented an opti-
mization algorithm based on NSGA-II [6] that is capable of computing a Pareto-
optimal set of plans for a given navigation scenario.

Our experiments show that the algorithm is able to find valid plans, unless
the environment gets too complex or the number of variables is raised. Our
proposed model and the algorithm generalize well to different robot-types and
vehicle models and can yield insight into the objective space of multi-robot path
planning problems. Different navigation-policies that use our model can now be
compared on how they are situated in the objective space. In the future, we also
plan to expand and apply the model proposed in this paper. We will examine
various start and goal positions and more complex problems with different sizes.
In addition, we aim to implement the plan execution in a swarm of real robots
(similar to [12]), to see how our method can deal with the uncertainty that is
present in real robots.

References

1. Atzmon, D., Stern, R., Felner, A., Wagner, G., Barták, R., Zhou, N.F.: Robust
multi-agent path finding and executing. J. Artif. Intell. Res. 67, 549–579 (2020).
https://doi.org/10.1613/jair.1.11734

https://doi.org/10.1613/jair.1.11734

Modeling Pathfinding for Swarm Robotics 201

2. Bayindir, L.: A review of swarm robotics tasks. Neurocomputing 172, 292–321
(2016). https://doi.org/10.1016/j.neucom.2015.05.116

3. Čáp, M., Novák, P., Vokř́ınek, J., Pěchouček, M.: Multi-agent RRT*: sampling-
based cooperative pathfinding. In: 12th International Conference on Autonomous
Agents and Multiagent Systems 2013, AAMAS 2013 2, pp. 1263–1264 (2013)

4. De Rainville, F.M., Fortin, F.A., Gardner, M.A., Parizeau, M., Gagné, C.: DEAP: a
python framework for evolutionary algorithms. In: Proceedings of the 14th Annual
Conference Companion on Genetic and Evolutionary Computation, GECCO 2012,
New York, pp. 85–92. ACM (2012). https://doi.org/10.1145/2330784.2330799

5. Deb, K.: Multi-Objective Optimization using Evolutionary Algorithms. Wiley,
Hoboken (2001)

6. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective
genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002).
https://doi.org/10.1109/4235.996017

7. Dubins, L.E.: On curves of minimal length with a constraint on average curvature,
and with prescribed initial and terminal positions and tangents. Am. J. Math.
79(3), 497–516 (1957)

8. Felner, A., et al.: Search-based optimal solvers for the multi-agent pathfinding
problem: summary and challenges. In: Tenth Annual Symposium on Combinato-
rial Search (SoCS), pp. 29–37 (2017). https://www.aaai.org/ocs/index.php/SOCS/
SOCS17/paper/view/15781

9. Krontiris, A., Sajid, Q., Bekris, K.E.: Towards using discrete multiagent pathfind-
ing to address continuous problems. In: AAAI Workshop - Technical Report WS-
12-10, pp. 26–31 (2012)

10. LaValle, S.M.: Planning algorithms (2006). https://doi.org/10.1017/
CBO9780511546877

11. Metoui, F., Boussaid, B., Abdelkrim, M.N.: Path planning for a multi-robot system
with decentralized control architecture. Stud. Syst. Decis. Control 270, 229–259
(2020). https://doi.org/10.1007/978-981-15-1819-5 12

12. Oliveira, G.M.B., et al.: A cellular automata-based path-planning for a cooperative
and decentralized team of robots. In: IEEE congress on Evolutionary Computation
(CEC), pp. 739–746. IEEE (2019). https://doi.org/10.1109/cec.2019.8790205

13. Rossi, F., Bandyopadhyay, S., Wolf, M., Pavone, M.: Review of multi-agent algo-
rithms for collective behavior: a structural taxonomy. IFAC-PapersOnLine 51(12),
112–117 (2018). https://doi.org/10.1016/j.ifacol.2018.07.097

14. Schranz, M., Umlauft, M., Sende, M., Elmenreich, W.: Swarm robotic behaviors
and current applications. Front. Robot. AI 7 (2020). https://doi.org/10.3389/frobt.
2020.00036

15. Silva, L., Nedjah, N.: Efficient strategy for collective navigation control in swarm
robotics. Procedia Comput. Sci. 80, 814–823 (2016). https://doi.org/10.1016/j.
procs.2016.05.371

16. Stern, R., et al.: Multi-agent pathfinding: definitions, variants, and benchmarks.
ArXiv Preprint, June 2019. https://arxiv.org/abs/1906.08291

17. Street, C., Lacerda, B., Mühlig, M., Hawes, N.: Multi-robot planning under uncer-
tainty with congestion-aware models. In: Proceedings of the 19th International
Conference on Autonomous Agents and Multiagent Systems, p. 9 (2020)

18. Surynek, P., Felner, A., Stern, R., Boyarski, E.: An empirical comparison of the
hardness of multi-agent path finding under the makespan and the sum of costs
objectives. In: Proceedings of the 9th Annual Symposium on Combinatorial Search,
SoCS 2016 (SoCS), pp. 145–146, January 2016

https://doi.org/10.1016/j.neucom.2015.05.116
https://doi.org/10.1145/2330784.2330799
https://doi.org/10.1109/4235.996017
https://www.aaai.org/ocs/index.php/SOCS/SOCS17/paper/view/15781
https://www.aaai.org/ocs/index.php/SOCS/SOCS17/paper/view/15781
https://doi.org/10.1017/CBO9780511546877
https://doi.org/10.1017/CBO9780511546877
https://doi.org/10.1007/978-981-15-1819-5_12
https://doi.org/10.1109/cec.2019.8790205
https://doi.org/10.1016/j.ifacol.2018.07.097
https://doi.org/10.3389/frobt.2020.00036
https://doi.org/10.3389/frobt.2020.00036
https://doi.org/10.1016/j.procs.2016.05.371
https://doi.org/10.1016/j.procs.2016.05.371
https://arxiv.org/abs/1906.08291

202 S. Mai and S. Mostaghim

19. Wang, H., Rubenstein, M.: Walk, stop, count, and swap: decentralized multi-agent
path finding with theoretical guarantees. IEEE Robot. Autom. Lett. 5(2), 1119–
1126 (2020). https://doi.org/10.1109/LRA.2020.2967317

20. Weise, J., Mai, S., Zille, H., Mostaghim, S.: On the scalable multi-objective multi-
agent pathfinding problem. In: Accepted at Congress on Evolutionary Computing
CEC 2020 (2020)

21. Zafar, M.N., Mohanta, J.C.: Methodology for path planning and optimization of
mobile robots: a review. Procedia Comput. Sci. 133, 141–152 (2018). https://doi.
org/10.1016/j.procs.2018.07.018

https://doi.org/10.1109/LRA.2020.2967317
https://doi.org/10.1016/j.procs.2018.07.018
https://doi.org/10.1016/j.procs.2018.07.018

Motion Dynamics of Foragers in Honey
Bee Colonies

Fernando Wario1(B), Benjamin Wild2, David Dormagen2, Tim Landgraf2,
and Vito Trianni1

1 ISTC, National Research Council, Rome, Italy
{fernando.wario,vito.trianni}@istc.cnr.it

2 Department of Mathematics and Computer Science, Freie Universität Berlin,
Berlin, Germany

{b.w,david.dormagen,tim.landgraf}@fu-berlin.de

Abstract. Information transfer among foragers is key for efficient allo-
cation of work and adaptive responses within a honey bee colony. For
information to spread quickly, foragers trying to recruit nestmates via
the waggle dance (dancers) must reach as many other non-dancing for-
agers (followers) as possible. Forager bees may have different drives that
influence their motion patterns. For instance, dancer bees need to widely
cover the dance floor to recruit nestmates, the more broadly, the higher
the food source profitability. Followers may instead move more errati-
cally in the hope of meeting a dance. Overall, a good mixing of individ-
uals is necessary to have flexibility at the level of the colony behavior
and optimally respond to changing environmental conditions. We aim
to determine the motion pattern that precedes communication events,
exploiting a data-driven computational model. To this end, real observa-
tion data are used to define nest features such as the dance floor location,
shape and size, as well as the foragers’ population size and density dis-
tribution. All these characteristics highly correlate with the bees walking
pattern and determine the efficiency of information transfer among bees.
A simulation environment is deployed to test different mobility patterns
and evaluate the adherence with available real-world data. Additionally,
we determine under what conditions information transfer is most effi-
cient and effective. Owing to the simulation results, we identify the most
plausible mobility pattern to represent the available observations.

1 Introduction

Honey bee colonies, along with ant and termite colonies, are the best-known
examples of superorganisms, social groups made up of members of the same
species which display signs of self-organization and collective intelligence [16,22].
The honey bee foraging behavior has been intensely studied by the scien-
tific community. Nevertheless, despite the general mechanisms underlying self-
organization during foraging activities being well understood [11,17], there is still
much to learn about the effects of individual differences among bees and how

c© Springer Nature Switzerland AG 2020
M. Dorigo et al. (Eds.): ANTS 2020, LNCS 12421, pp. 203–215, 2020.
https://doi.org/10.1007/978-3-030-60376-2_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-60376-2_16&domain=pdf
https://doi.org/10.1007/978-3-030-60376-2_16

204 F. Wario et al.

such differences impact the overall behaviors. In particular, information transfer
among foragers is a key aspect, as it determines how the colony flexibly modu-
lates the workload and adapts to external contingencies and internal demands.
For information transfer, a good mixing of individuals is necessary, and this is
supported by the ability of workers to move and meet other workers carrying
valuable information.

The goal of this study is to understand how the motion patterns of foragers
influence information exchanges. More specifically, we focus on waggle dances,
whereby foragers recruit nestmates to valuable food patches. We aim at iden-
tifying the features of the motion pattern followed by bees before dancing and
following behaviors. To this end, real observational data are used to define fun-
damental environmental properties (comb surface characteristics) such as dance
floor location, shape and size, as well as colony features such as forager popula-
tion size and density distribution, all characteristics that highly correlate with
the bees motion pattern [14]. Then, a simulation environment is deployed to test
different mobility patterns for forager bees within the hive. To determine the
mobility pattern of simulated bees, we assume that foragers may or may not
take into account the detailed characteristics of the dance floor. A correlated
random walk model [1,6] follows the assumption that only an approximate loca-
tion for the dance floor is known to the bees, which is modelled as a location bias
toward which bees turn with a fixed probability. Conversely, a random waypoint
model [2]) follows the assumption that the location and dimensions of the dance
floor are known, as the model postulates that displacements are determined by
randomly sampling target locations within the relevant areas. From simulations,
we also obtain the interaction rate among foragers, which shows under what
conditions information transfer is most effective and efficient. On such a basis,
can we shed light on the most plausible assumptions by matching real-world
observations with the simulations resulting from different mobility patterns?
Answering this question will provide interesting hypotheses for further study-
ing the information transfer abilities among forager bees, and will also suggest
design principles for the efficient implementation of swarm robotic systems.

In the following, we describe the methodology used to model the environ-
mental properties of the hive and to test the selected mobility patterns in our
simulation environment (see Sect. 2). Then, we present and evaluate the results
obtained from simulations in Sect. 3. Finally, in Sect. 4 we discuss the plausibility
of the different mobility patterns being presented, and propose as a follow up to
this work a detailed comparison between our simulation results and real-world
data at the single trajectory level.

2 Methodology

As mentioned above, this study is grounded on real-world data, which were
obtained using the BeesBook System [18], an experimental system that allows
tracking marked bees within an observation hive during weeks. The system is
highly reliable, localizing markers with a 98% recall at 99% precision and decod-
ing more than 98% of the markers correctly [3,21]. A BeesBook dataset consists

Motion Dynamics of Foragers 205

of a list of registers detailing the position and identity of each marked bee—once
detected—for each video frame during the full extension of the experimental
season. Additionally, through the Waggle Dance Detector module [19], the Bees-
Book system provides a record of dance activity that enumerates all detected
dances, including duration and location on the honeycomb surface.

From this dataset, we obtained valuable information such as the spatial dis-
tribution of foragers and of the dances they performed, as well as the average
speed of foragers. This information was used to define models for the dance floor
and the density distribution of foragers on the honeycomb surface. This process
is explained in the following section.

2.1 Data Preprocessing

The dataset used for the analysis was collected in 2016 during the months of
July and August in Berlin, Germany. From this dataset, we considered 12 days
between August the 8th and August the 19th, 2016. To focus our attention on the
spatial distribution of foragers and dances, we first analyzed the local weather
conditions—solar radiation, temperature and rainfall—during the experiment
dates. These are known to impact foraging and, consequently, dancing activity
[5,8]. From the analysis, we decided to limit the observation time window
between 10:00 and 16:00 UTC+2, which covers the most favorable conditions
for foraging and accordingly recorded the most relevant dance activity (see the
top-left panel in Fig. 1). Overall, we considered a dataset with a total of 72 h,
that shows fairly similar activity across all days and hours.

2.2 Foragers and Dances Distribution Models

Once obtained the dataset for the analysis, we extracted the information about
the distribution of foragers and dances over the comb, in order to obtain an
empirical model. In the case of the dance distribution, we observed that, within
the considered time window, the dance rate was substantially homogeneous (see
top-right panel in Fig. 1). Hence, we focused on the spatial distribution only.
We began by dividing the surface of the comb in 21× 37 cells of (1 cm2) surface
(the dimensions of the comb used during the recording season was (21 × 37 cm)).
Then, we computed the total number of dances for each cell during a day, as
well as over the full temporal extension of the dataset. As the differences in the
spatial distribution across days were negligible, we focused on the cumulative
distribution over all days. This cumulative distribution was then normalized
to represent the probability of a dance occurring in each of the defined cells.
Finally, we fitted a 2D Gaussian function using non-linear least squares method
to define a model for the dance floor (Gaussian centred at μd = (8.17, 12.42)
with standard deviation σd = (4.92, 3.96) and with standard deviation errors of
[5.28e−2, 4.25e−2, 7.53e−2, 6.02e−2], see the inset in the left panel of Fig. 2)

For the foragers’ spatial distribution, first foragers were identified based on
their social interaction patterns and spatial distributions in the nest [20], then

206 F. Wario et al.

Fig. 1. Top left: Distribution of dances over multiple days. The number of waggle runs
detected by the BeesBook system over a time interval of 1min is displayed through-
out the different days. Note that each dance consists of multiple waggle runs. Top
right: Cumulative number of dances over different days. The cumulative distribution
is approximately linear over the different days, indicating a constant rate of dances,
although this rate differs from day to day. Bottom left: Hellinger distance between con-
secutive empirical density distributions during a day. Density distributions are com-
puted over time intervals of 10 min, and compared to the previous time interval to
show variations over time. Bottom right: Hellinger distance between empirical den-
sity distribution over 10-min intervals, and the overall model obtained from the whole
dataset.

a grid over the image of the comb surface was defined. This grid, however, com-
prised of 46× 70 cells, following the original structure of the BeesBook data-set.
All the spatial parameters obtained for the model were later scaled properly.
We then extracted the time series of the positions of all foragers, splitting the
time series of each day into intervals of 10 min, and computing the cumulative
distribution of foragers on the grid within each interval. These empirical distri-
butions computed over these intervals were used to evaluate their homogeneity
over time. To this end, we computed the similarity between distributions by
means of the Hellinger distance [10]. The analysis shows that foragers density
is fairly consistent during the selected window of time (see bottom-left panel in
Fig. 1).

Similar to the dance distribution, once we validated the temporal homogene-
ity of the foragers’ density, we computed the normalized-cumulative distribution
over the full temporal extension of the dataset. Finally, to obtain a parametric
model of the forager density, we fitted a 2D Gaussian function to the cumu-
lative distribution using non-linear least squares method (Gaussian centred at
μp = (8.73, 11.07) cm, with standard deviation σp = (9.99, 5.60) cm and with
standard deviation errors of [7.62e−2, 4.29e−2, 1.20e−2, 6.14e−2], see Fig. 2 left).
We computed the Hellinger distance between model and distributions of foragers
over time to verify that the model was providing a good representation over and
across different days (see bottom-right panel in Fig. 1). This analysis revealed

Motion Dynamics of Foragers 207

that the model grasps sufficiently well the empirical density distribution of for-
agers extracted from the data across the full observation period.

Overall, the Gaussian models match reasonably well the real-world data, as
shown in Fig. 2 left. In particular, the model for the density distribution of
foragers matches visibly well to real-world data, also confirmed by the small
Hellinger distance of 3.59e−2. Conversely, the Gaussian model for dances has a
worse match to the observation data, mainly due to the absence of parts of the
dances, as the observation camera for detecting dances was covering only the
bottom-left section of the honeycomb close to the entrance. It is interesting to
notice that the distribution of dances is similar to the density distribution, but
shifted towards the entrance to the honeycomb. We hypothesize that such a shift
stems from the fact that dances are executed right after the forager has returned
from a foraging trip. Hence, they could be performed closer to the entrance as
the forager trajectory starts there.

2.3 Multi-agent Simulations

We have built a simulation environment prepared to progressively incorporate
the features derived from the real-world observations, and to test the effect of
different mobility patterns. The virtual arena is customized after the dimensions
of the honeycombs used during the experimental seasons (21×37 cm). Since our
study focuses on mobility patterns that precede and follow dance communication
activity, we only simulate the behavior of forager agents. For each simulation,
we consider a forager population of 200 agents, that corresponds to the aver-
age number of foragers observed during the experimental season. We divided
the forager population into two groups, dancers and followers. According to the
literature [7], between 5% and 10% of the colony population engage in foraging
activities, depending on the colony size and the resources available in the vicin-
ity of the hive. For the colony studied during the experimental season and for
the days we consider to define our models, around 35% of the colony population
was identified as being part of the forager class. For simplicity, we consider in
our simulations 20% of the forager population (or 7% of the colony population)
as dancers (hence, at any time, we count 40 dancers and 160 followers). While
both dancers and followers adopt the same mobility pattern and move over the
comb surface at the same average speed (fixed to 5 mm/s in compatibility to the
observation data), they display different behaviors concerning dance communi-
cation. Dancer agents are the only ones that can switch from move to dance
state, during which they stay still in place and broadcast their known foraging
site. The foraging site is not relevant for the present study, hence it is fixed
and identical for all dancers. In order to reproduce the uniform distribution
of dances over time observed on the experimental data, dancer agents stop and
dance with a fixed probability per unit time pd, which can be tuned to reproduce
the rate observed experimentally in a given day. Considering that the simulation
is advanced by one step every 0.25 s, to obtain in average 400 dances in a day
we set pd = 1.16e−4. Each dance event lasts a fixed amount of time (3 s).

208 F. Wario et al.

Followers, on the other hand, continuously patrol their vicinity in search of
dancing agents (move state). When they come close enough to an agent actively
dancing (within 1 body length, i.e., 2 cm), they switch to the follow state, also
standing still in place until the dancer ends its broadcast. If the interaction
between dancer and follower(s) lasts long enough (>0.25 s), the communication is
considered successful and the follower acquires knowledge of the foraging location
communicated by the dancer.

The simulations employ the Gaussian model for the density distribution of
foragers to determine the mobility pattern of the bees. At initialization, dancers
are positioned at the bottom-left corner of the arena, which corresponds to the
entrance to the hive, while followers are initialized at random positions on the
comb surface following the density distribution model. For each mobility pattern,
dancer agents evaluate at each step whether to dance or not, while followers stop
only when they perceive a dance in their proximity, as specified above. After
performing a dance, the agent is removed from the arena and a new dancer is
introduced at the entrance. In this way, we mimic the behavior of dancer bees
that leave the hive after unloading and communicating the foraging source to
their nestmates [4,15]. Also, in this way we want to test the hypothesis that the
dance distribution is shifted due to a bias in the starting position of the dancers’
trajectories.

In this paper, we report the results for two different mobility patterns adapted
to the density distribution model: a random waypoint model (RWM) and a
biased correlated random walk (CRW). The former uses the foragers density
model as a probability distribution function to draw intermediate location goals.
The latter uses the estimated center of the dance floor as a bias for the random
walk. The details are provided below. Other mobility patterns like Lévy walks
[1] could be considered, which are however less suited for a constrained space
like the beehive.

Random Waypoint Model (RWM). This mobility pattern allows agents to explore
the whole arena by choosing a random destination and moving straight until the
destination is reached. In our simulations, the choice of the new destination is
proportional to the empirical density distribution of foragers. More specifically,
each new destination is drawn randomly exploiting the 2D Gaussian model we
obtained from real-world data. Whenever agents stop—to dance or to follow a
dance—they lose memory of their previous destination, and a new one is drawn
when motion is resumed. This mobility pattern assumes that foragers have some
knowledge of their location over the honeycomb—i.e., a map—that they exploit
to choose where to move next.

Biased Correlated Random Walk (CRW). A correlated random walk is the
simplest mobility pattern that can be imagined for the bees, as well as for
many biological and artificial systems [1,6,9]. With this model, agents alternate
straight walks and random turns. In this simulations, the duration of the straight
walks is sampled from a folded normal distribution N(0, σw), with σw = 0.75 s.

Motion Dynamics of Foragers 209

The turning angle is instead drawn from a wrapped Cauchy distribution, char-
acterized by the following probability density function:

fC(θ;μ, ρ) =
1 − ρ2

2π (1 + ρ2 − 2ρ cos (θ − μ))
. (1)

where μ represents the average and ρ the skewness of the distribution. In our
simulation, μ = 0 implies that the turning angle is correlated with the current
direction of motion, while the parameter ρ is varied to control the degree of
correlation of the random walk, obtaining different levels of persistence in moving
towards a given direction. Considering that 0 ≤ ρ < 1, smaller values lead to a
more uniform distribution, hence less correlated walks, while higher values of ρ
correspond to a skewed distribution, hence highly correlated walks.

The location bias parameter β is used to calibrate the agents’ bias to move
towards the center of the foragers’ density distribution. At every turning event,
the agent evaluates whether to draw a new random angle or to orientate towards
the center of the foragers’ density model, based on the probability β. In the
latter case, a Gaussian noise N(0, σβ) is also added to the rotation angle, with
σβ = 0.2π. This value has been empirically tuned to account for imprecision in
the rotation towards the center of the dance floor.

While moving, agents can reach the borders of the arena. Since only one
side of the comb is simulated, the arena is considered to be bounded, and when
agents come across one of the borders during their motion, they stop and change
direction moving away from the border towards the center of the forager density
distribution. Additionally, whenever agents stop to dance or to follow a dance,
they lose memory of the previous direction of motion, and they chose a new
orientation uniformly-random as soon as they resume motion.

3 Results

We performed extensive simulations to understand the effect of the mobility
pattern on (i) the density distribution of agents during simulations, (ii) the
distribution of dances by simulated agents and (iii) the ability to transfer infor-
mation between dancers and followers. In all simulations, dancers and followers
employ the same mobility pattern. We implemented a total of thirteen different
scenarios: one with RWM calibrated with the empirical density distribution of
foragers, and 12 with the CRW by varying the parameters ρ ∈ {0, 0.3, 0.6, 0.9}
and β ∈ {0.01, 0.05, 0.1}. For each scenario, we ran 100 simulations, each one for
T = 28800 time steps, equivalent to 2 h of colony activity. Similar to what was
done with the real-world observation data, we divide the arena in a grid to com-
pute the spatial distribution of foragers and dances. We also record which dancers
and followers interact during dance communication events (dance partners) to
analyze the information transfer and the level of mixing in the population.

210 F. Wario et al.

The density distribution of all forager agents under the RWM mobility pat-
tern is shown in Fig. 2 right. The correspondence with the Gaussian model
calibrated on the empirical density distribution of foragers is remarkable, as also
testified by the small Hellinger distance between the empirical density distribu-
tion and the simulations, which averages to 0.028 (see Fig. 4). This is somewhat
expected given that the RWM exploits the full Gaussian model of the empiri-
cal density distribution to determine target destinations; hence movements are
constrained within the areas with higher observed density. The distribution of
dances shows a pattern similar to the forager density, with a negligible shift
towards the entrance. This is because the RWM is characterized by a quick dif-
fusion towards the area in which target destinations are sampled, hence it is not
impacted significantly by the initial position of the (dancer) agents.

Fig. 2. Left: Overall empirical density distribution of foragers computed on the
whole dataset. The background heatmap represents the empirical density distribu-
tion obtained from data. The white isolines represent the Gaussian model fitted on the
data (centred at μp = (8.73, 11.07) cm, with standard deviation σp = (9.99, 5.60) cm).
Inset: overall dance distribution obtained from data. The black isolines correspond to
the Gaussian model fitted on these data (center at μd = (8.17, 12.42) with standard
deviation σd = (4.92, 3.96)). Note that the observation camera for dance events covers
only the bottom-left part of the honeycomb, hence data points on the right part are
missing. Right: density distribution of foragers obtained from simulations using the
RWM. The heatmap corresponds to the distribution, while the white isolines corre-
spond to the Gaussian model estimated from the real-world data. Inset: distribution
of dances obtained from simulations. The black isolines correspond to the Gaussian
model estimated from the data.

When the CRW mobility pattern is employed for dancers and followers, the
interplay between persistence in motion and bias to return to the dance floor
strongly determines the spatial distribution of the agents, as shown in Fig. 3.
Specifically, the larger the location bias β, the narrower the dispersion of agents
around the center of the density distribution model. Indeed, when the agents
orientate towards the dance floor center with higher probability, they remain
clustered and do not diffuse much across the honeycomb. The correlation coeffi-
cient ρ instead determines how much an agent would persist in a chosen direction.
Generally speaking, higher values of ρ correspond to larger diffusion. This is par-
ticularly visible when the location bias β is small (left column in Fig. 3), but

Motion Dynamics of Foragers 211

has the opposite effect with a strong location bias. Indeed, if an agent frequently
reorients towards the center, a high persistence will contribute to move to it
even during the subsequent walks, while a small persistence would make agents
quickly bend in a completely different direction, hence reducing the impact of
the location bias. By comparing the Hellinger distance obtained over the 100
runs shown in Fig. 4, we observe that the best values are for an intermediate
level of β, while we observe that ρ has smaller effects, with opposite trends for
small or high values of β. Compared to the RWM, the CRW density distributions
are slightly worse, but not much difference is observable for β = 0.05.

Fig. 3. Density distribution of foragers for each combination of β and ρ tested with
simulations. The insets represent the distribution of dances for the same combination
of parameters.

The insets in Fig. 3 show the dance distribution obtained with simulations
when the CRW mobility pattern is employed, and compare to the Gaussian fit
obtained from real-world data (black). The shift towards the entrance is remark-
able especially for low location bias (β = 0.01) and for small CRW persistence
(ρ = 0). The former entails that movements are not frequently oriented toward
the center, the latter entails a small diffusion of the agents. Hence, dancers do
not reach the dance floor quickly and dances are mostly performed close to
the entrance. Conversely, when β is high, dancers quickly stabilize their motion

212 F. Wario et al.

around the final distribution, and the shift towards the entrance is less visi-
ble, in a similar way to what observed with the RWM. Intermediate values of
the location bias correspond to the best qualitative match between the dance
distribution observed in simulation and the model obtained from real data.

Fig. 4. The Hellinger distance computed between the density distribution obtained in
each of the 100 simulation runs, compared to the Gaussian model obtained from the
empirical density distribution.

Finally, we analyze the information transfer efficiency for all the studied
scenarios (see Fig. 5). To this end, we compute the convergence time as the
time required for all followers to obtain information about the foraging site
by attending to one dance, at least. We compute the cumulative distribution
function of the convergence times across the 100 runs using the Kaplan-Meier
estimation [12], censoring those runs that do not converge within the allotted
time. We fit a Weibull distribution on the estimated function and use the fitted
function to compute average and standard deviation of the convergence times.
The average values are shown in the left panel of Fig. 5. Additionally, we show
the average number of followers for each dance event (middle panel) and the
redundancy of information received by a forager, computed as the number of
different dance partners encountered during the simulation (right panel). The
RWM leads to rather fast convergence, with a moderate number of interactions
and mild redundancy (see the red arrow on the colorbars in Fig. 5). Concerning
the CRW, it is possible to note that, the higher the location bias β, the faster
the transfer of information between dancers and followers. This is because the
foragers are compact around the center of the dance floor, and interactions are
numerous (higher number of followers per dance event) but also very redundant
(higher number of partners per follower). Also in this case, the CRW persistence
ρ has opposite effects depending on the location bias β, as the two parameters
concur in determining the diffusion of agents away from the dance floor.

Motion Dynamics of Foragers 213

Fig. 5. Information transfer efficiency and effectiveness with different mobility pat-
terns. Each panel represents the average over 100 runs. The matrices show the results
for CRW. The results for the RWM are indicated by a red triangle on the colorbar.
Left: Average convergence time. Centre: Average number of followers for each dance
event. Right: Redundancy of information received, computed as the average number of
different partners recorded for each follower agent.

4 Discussion and Conclusions

The comparison made between the empirical density distribution and the simu-
lated one allows us to speculate about the plausibility of the mobility pattern we
have implemented. The RWM is clearly the one that produces the best match.
However, its implementation would entail that bees are precisely aware of their
location over the honeycomb, relying on a kind of map to choose the next loca-
tion to move to. Additionally, the negligible shift towards the entrance observed
in the distribution of dances also makes less plausible the RWM. In fact, to
obtain a better match, dancer bees should employ a different map than followers
bees, but as each forager can take both roles, it would be difficult to imag-
ine that the employed map changes according to the role. On the contrary, the
CRW model is based on much more parsimonious assumptions. Here, we assume
only that bees can re-orient towards the dance floor—with noise—with a certain
probability. Having a sense of the direction of the dance floor is a much less
cognitively-demanding ability than a complete map of the honeycomb. Addi-
tionally, the CRW provides a better match for the distribution of dances, for the
same parameters that minimize the difference between empirical and simulated
density distribution of foragers (i.e., β = 0.05). Finally, the ability to trans-
fer information among foragers—as observed with the CRW—also suggests that
intermediate levels of location bias allow to satisfactory deal with the trade-off
between convergence time and redundancy.

Future work will attempt to confirm the above discussion by looking at the
detailed bees trajectories available from the BeesBook system. By looking at
the real trajectories, a data-driven model can be made to determine what type
of motion foragers perform, and how this is impacted by the local density of
bees. Most importantly, we want to differentiate the trajectories that precede a
dance communication event, to distinguish between dancers, followers and “idle”
foragers, in order to understand how the behavioral state of foragers impacts

214 F. Wario et al.

on its motion. We could actually observe differences between them that could
support better techniques to spread information rapidly within the swarm. The
gathered knowledge can be very useful to improve the design of artificial bee-
inspired systems (e.g., swarm robotics systems [9,13]).

Acknowledgements. This work was partially supported by CONACYT, Mexico,
through a grant for postdoctoral stay abroad, scholarship holder No. 272227.

References

1. Bartumeus, F., Da Luz, M.G., Viswanathan, G.M., Catalan, J.: Animal search
strategies: a quantitative random-walk analysis. Ecology 86(11), 3078–3087 (2005).
https://doi.org/10.1890/04-1806

2. Bettstetter, C., Hartenstein, H., Pérez-Costa, X.: Stochastic properties of the ran-
dom waypoint mobility model. Wirel. Netw. 10(5), 555–567 (2004). https://doi.
org/10.1023/B:WINE.0000036458.88990.e5

3. Boenisch, F., Rosemann, B.M., Wild, B., Wario, F., Dormagen, D., Landgraf, T.:
Tracking all members of a honey bee colony over their lifetime. Front. Robot. AI 5,
1–10 (2018). https://doi.org/10.3389/FROBT.2018.00035. https://arxiv.org/abs/
1802.03192

4. Camazine, S., Sneyd, J.: A model of collective nectar source selection by honey bees:
self-organization through simple rules. J. Theoret. Biol. 149(4), 547–571 (1991).
https://doi.org/10.1016/S0022-5193(05)80098-0

5. Clarke, D., Robert, D.: Predictive modelling of honey bee foraging activity using
local weather conditions. Apidologie 49(3), 386–396 (2018). https://doi.org/10.
1007/s13592-018-0565-3

6. Codling, E.A., Plank, M.J., Benhamou, S.: Random walk models in biology. J. R.
Soc. Interface 5(25), 813–834 (2008). https://doi.org/10.1098/rsif.2008.0014

7. Danka, R.G., Gary, N.E.: Estimating foraging populations of honey bees
(Hymenoptera: Apidae) from individual colonies. J. Econ. Entomol. 80(2), 544–547
(1987). https://doi.org/10.1093/jee/80.2.544

8. Devillers, J., Doré, J.C., Tisseur, M., Cluzeau, S., Maurin, G.: Modelling the flight
activity of Apis mellifera at the hive entrance. Comput. Electron. Agric. 42(2),
87–109 (2004). https://doi.org/10.1016/S0168-1699(03)00102-9

9. Dimidov, C., Oriolo, G., Trianni, V.: Random walks in swarm robotics: an experi-
ment with kilobots. In: Dorigo, M., et al. (eds.) ANTS 2016. LNCS, vol. 9882, pp.
185–196. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-44427-7 16

10. Hellinger, E.: Neue Begründung der Theorie quadratischer Formen von
unendlichvielen Veränderlichen. Journal für die reine und angewandte Mathematik
136, 210–271 (1909). http://eudml.org/doc/149313

11. Johnson, B.R.: Division of labor in honeybees: form, function, and proximate mech-
anisms, January 2010. https://doi.org/10.1007/s00265-009-0874-7

12. Kaplan, E.L., Meier, P.: Nonparametric estimation from incomplete observations.
J. Am. Stat. Assoc. 53(282), 457–481 (1958). https://doi.org/10.1080/01621459.
1958.10501452

13. Miletitch, R., Dorigo, M., Trianni, V.: Balancing exploitation of renewable
resources by a robot swarm. Swarm Intell. 12(4), 307–326 (2018). https://doi.
org/10.1007/s11721-018-0159-8

https://doi.org/10.1890/04-1806
https://doi.org/10.1023/B:WINE.0000036458.88990.e5
https://doi.org/10.1023/B:WINE.0000036458.88990.e5
https://doi.org/10.3389/FROBT.2018.00035
https://arxiv.org/abs/1802.03192
https://arxiv.org/abs/1802.03192
https://doi.org/10.1016/S0022-5193(05)80098-0
https://doi.org/10.1007/s13592-018-0565-3
https://doi.org/10.1007/s13592-018-0565-3
https://doi.org/10.1098/rsif.2008.0014
https://doi.org/10.1093/jee/80.2.544
https://doi.org/10.1016/S0168-1699(03)00102-9
https://doi.org/10.1007/978-3-319-44427-7_16
http://eudml.org/doc/149313
https://doi.org/10.1007/s00265-009-0874-7
https://doi.org/10.1080/01621459.1958.10501452
https://doi.org/10.1080/01621459.1958.10501452
https://doi.org/10.1007/s11721-018-0159-8
https://doi.org/10.1007/s11721-018-0159-8

Motion Dynamics of Foragers 215

14. Ortis, G., Frizzera, D., Seffin, E., Annoscia, D., Nazzi, F.: Honeybees use various
criteria to select the site for performing the waggle dances on the comb. Behav.
Ecol. Sociobiol. 73(5), 1–9 (2019). https://doi.org/10.1007/s00265-019-2677-9

15. Seeley, T.D.: Social foraging by honeybees: how colonies allocate foragers among
patches of flowers. Behav. Ecol. Sociobiol. 19(5), 343–354 (1986). https://doi.org/
10.1007/BF00295707

16. Seeley, T.D.: The honey bee colony as a superorganism. Am. Sci. 77(6), 546–553
(1989)

17. Seeley, T.D.: Honeybee Democracy. Princeton University Press, Princeton (2010)
18. Wario, F., Wild, B., Couvillon, M.J., Rojas, R., Landgraf, T.: Automatic methods

for long-term tracking and the detection and decoding of communication dances in
honeybees. Front. Ecol. Evol. 3, 1–14 (2015). https://doi.org/10.3389/fevo.2015.
00103

19. Wario, F., Wild, B., Rojas, R., Landgraf, T.: Automatic detection and decoding
of honey bee waggle dances. PLoS ONE 12(12), 1–16 (2017). https://doi.org/10.
1371/journal.pone.0188626. http://arxiv.org/abs/1708.06590

20. Wild, B., et al.: Social networks predict the life and death of honey bees.
bioRxiv (2020). https://doi.org/10.1101/2020.05.06.076943. https://www.biorxiv.
org/content/early/2020/05/06/2020.05.06.076943

21. Wild, B., Sixt, L., Landgraf, T.: Automatic localization and decoding of honeybee
markers using deep convolutional neural networks, February 2018. http://arxiv.
org/abs/1802.04557

22. Wilson, D.S., Sober, E.: Reviving the superorganism. J. Theoret. Biol. 136(3),
337–356 (1989). https://doi.org/10.1016/S0022-5193(89)80169-9

https://doi.org/10.1007/s00265-019-2677-9
https://doi.org/10.1007/BF00295707
https://doi.org/10.1007/BF00295707
https://doi.org/10.3389/fevo.2015.00103
https://doi.org/10.3389/fevo.2015.00103
https://doi.org/10.1371/journal.pone.0188626
https://doi.org/10.1371/journal.pone.0188626
http://arxiv.org/abs/1708.06590
https://doi.org/10.1101/2020.05.06.076943
https://www.biorxiv.org/content/early/2020/05/06/2020.05.06.076943
https://www.biorxiv.org/content/early/2020/05/06/2020.05.06.076943
http://arxiv.org/abs/1802.04557
http://arxiv.org/abs/1802.04557
https://doi.org/10.1016/S0022-5193(89)80169-9

Multi-robot Coverage Using
Self-organized Networks for

Central Coordination

Aryo Jamshidpey(B) , Weixu Zhu , Mostafa Wahby , Michael Allwright ,
Mary Katherine Heinrich , and Marco Dorigo

IRIDIA, Université Libre de Bruxelles, Brussels, Belgium
{aryo.jamshidpey,weixu.zhu,mostafa.wahby,michael.allwright,

mary.katherine.heinrich,mdorigo}@ulb.ac.be

Abstract. We propose an approach to multi-robot coverage that com-
bines aspects of centralized and decentralized control, based on the exist-
ing ‘mergeable nervous systems’ concept. In our approach, robots self-
organize a dynamic ad-hoc communication network for distributed asym-
metric control, enabling a degree of central coordination. In the coverage
task, simulated ground robots coordinate with UAVs to explore an arena
as uniformly as possible. Compared to strictly centralized and decentral-
ized approaches, we test our approach in terms of coverage percentage,
coverage uniformity, scalability, and fault tolerance.

1 Introduction

Multi-robot coverage control targets the systematic, uniform observation of a
physical area or terrain. A widely studied approach is coverage path planning, in
which the motion of robots is often centrally planned and coordinated, sometimes
with prior knowledge of the size and shape of the environment [4]. Centralized
approaches to coverage path planning have high performance, but are limited
in terms of scalability and fault tolerance, due to a lack of redundancy that
results in single points of failure and communication bottlenecks. Self-organized
approaches to coverage, by contrast, are typically scalable and fault-tolerant,
but are slow and inefficient compared to centralized approaches (e.g., [10]).

We propose a novel approach to multi-robot coverage control that seeks to
combine aspects of centralized and decentralized approaches. Our approach is
based on the existing concept of ‘mergeable nervous systems’ (MNS) [15], where
robots assemble and physically connect, and temporarily yield control of their
sensors and actuators to a single brain robot. In our prior work [25], we have
extended the MNS concept to strictly wireless communication, rather than mak-
ing use of physical connections. In our approach, robots establish asymmet-
ric control over a dynamic ad-hoc communication network that is established
and managed exclusively through self-organization. In this way, a self-organized
network is used to implement some degree of central coordination, combining
aspects of centralized and decentralized control. In this paper, we apply our
c© Springer Nature Switzerland AG 2020
M. Dorigo et al. (Eds.): ANTS 2020, LNCS 12421, pp. 216–228, 2020.
https://doi.org/10.1007/978-3-030-60376-2_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-60376-2_17&domain=pdf
http://orcid.org/0000-0003-2628-1309
http://orcid.org/0000-0002-0329-9592
http://orcid.org/0000-0002-1903-3625
http://orcid.org/0000-0002-0932-3215
http://orcid.org/0000-0002-1595-8487
http://orcid.org/0000-0002-3971-0507
https://doi.org/10.1007/978-3-030-60376-2_17

Multi-robot Coverage Using Self-organized Networks 217

MNS approach to the task of multi-robot coverage. We also define comparable
centralized and decentralized approaches to the considered coverage task and
compare their performance with our hybrid solution. Increased decentralization
in multi-robot systems typically involves increased parallelization and redun-
dancy, such that a group of robots governed by centralized control is likely to be
faster and more efficient than those governed by decentralized control. There-
fore, we would expect a centralized approach to outperform the MNS approach,
which in turn should outperform a decentralized approach. We test this using
experiments in simulation. While decentralization might cause a decrease in effi-
ciency and speed, it also provides desirable features such as increased scalability
and fault tolerance. We therefore test the MNS approach to assess how well
these features typical of decentralization have been preserved in our approach.
Specifically, we assess scalability in terms of robot–robot communication and
interference, and fault tolerance in terms of performance after robot failures.

1.1 Related Work

Coverage control has been widely studied in sensor networks (e.g., [6,23]), and
has also been studied for search and exploration tasks with single robots and
multi-robot systems. In the task of single robot coverage, the robot should gather
information about the environment as efficiently as possible [7,11]. The over-
all time for a coverage task can be decreased by using multiple robots, but
multi-robot approaches require solutions to efficient coordination. In centralized
approaches, multi-robot coverage control is often approached as a path plan-
ning problem [4,5,24] making use of optimization or learning techniques. These
approaches sometimes incorporate aspects of decentralized control. For instance,
in [20], decentralized path planning relies on reinforcement and imitation learn-
ing through a centralized planner. In [14], robots use decentralized control to
initially spread out in the environment, and then use a centralized approach for
online learning of a density function.

In decentralized approaches, solutions to spatial coordination include leaving
markings during exploration (e.g., artificial pheromones [12]), or maintaining
communication (e.g., via line-of-sight [18]). Connectivity maintenance has been
investigated in [13], seeking to maximize coverage and minimize communication
overhead, and also has been investigated in [22], using a Voronoi tessellation
approach to add fault tolerance. Connectivity maintenance during task paral-
lelization has also been studied—using a distributed navigation controller and
a global layer for task scheduling, in [16] it is shown that an hybrid central-
ized/decentralized approach can maintain connectivity in a scenario in which
robots are deployed towards certain task-specific locations in the environment.
Efficiency is also a key challenge for decentralized approaches, as they are prone
to redundancy. In [10], a large number of robots perform coverage by simple
collision avoidance, but full coverage is not guaranteed and efficiency is low, as
robots frequently revisit areas. In a similar approach that reduces repeated cover-
age [8], robots leave markings during exploration; in another, a pheromone-based
approach is used to achieve coverage efficiency [21]. Similar to pheromone-based

218 A. Jamshidpey et al.

approaches, activated beacons are used in [1] to guide coverage in a swarm of
UAVs. Finally, coverage has also been studied in a heterogeneous swarm of robots
with different sensing capabilities [19].

2 Methods

We investigate the applicability of the ‘mergeable nervous systems’ (MNS) [15]
concept to the task of multi-robot coverage control. As the MNS concept com-
bines aspects of centralized and decentralized control, we compare the perfor-
mance of our approach to that of fully centralized control (i.e., all robots are
controlled using global communication by a single robot with a global view)
or fully decentralized control (i.e., all robots are controlled independently). In
the decentralized approach, robots explore the environment by means of a ran-
dom walk without any centralized coordination. In the MNS and centralized
approaches, robots maintain a target formation while exploring the environment
in a coordinated way. In the centralized approach, all robots are given motion
instructions by one robot, whose identity as the central coordinating entity (i.e.,
the master) is predetermined and static. In our MNS approach, robots form
a self-organized communication network—specifically, a directed rooted tree,
where each link connects a parent robot to a child robot. One robot in the MNS
is dynamically assigned the role of the brain, through self-organization (for the
details of this process, see our prior work [25]). The robots use the network to
receive motion instructions from their respective parents in the communication
topology—except for the brain robot, which defines its own motion.

In this section, we describe the methods for our experiments. First, we define
the coverage task. Second, we define the two motion behaviors that the three
approaches can utilize during the coverage task. One is collision avoidance that
is performed by robots independently, and is used in all three approaches. The
other is perimeter following, which directs the motion of one robot, in both the
approaches where robots are coordinated. The perimeter-following behavior is
used by the brain robot in the MNS approach, and by the master robot in the
centralized approach. Third, we define the target formations that robots main-
tain in the MNS and centralized approaches. Fourth, we give the implementation
details of the three approaches. Overall, we keep the implementation details of
the centralized and decentralized approaches as similar as possible to those of
the MNS approach, to facilitate direct comparability. Finally, we describe the
details of our simulation setup and the types of experiments conducted.

2.1 Coverage Task

We define the coverage task as uniform environment exploration—the robots
should collectively visit every portion of the environment, and spend equal time
visiting each portion. The environment is an enclosed square arena with ran-
domly distributed small obstacles. The portions of the arena that need to be
visited are the cells of a 16 × 16 overlay grid (i.e., 256 cells of equal size).

Multi-robot Coverage Using Self-organized Networks 219

Fig. 1. Communication network topologies, and robot positions in the formations (cen-
tralized and MNS approaches). Red arrows show network connections. Light blue zones
indicate approximate UAV field of view. Dashed black lines are not connections, but
help to visualize the zigzag line that ground robots form. (a) Centralized approach.
Connections are predetermined and static. The UAV is the master. (b) MNS app-
roach. Dark blue arrows indicate UAV interchangeability. Network connections are
self-organized; the UAV at the center is the brain. (Color figure online)

The environment is explored by differential drive ground robots, which are capa-
ble of detecting obstacles and other ground robots. In the MNS and centralized
approaches, the ground robots are accompanied by camera-equipped UAVs that
send motion instructions to other robots (both ground robots and other UAVs).

In all approaches, ground robots independently avoid obstacles and other
ground robots. They are equipped with a ring of short-range proximity sensors.
If a robot senses an object in a direction within 60◦ of its heading, it performs
collision avoidance: it turns right if it senses objects only to the left of its heading;
otherwise, it turns left. When not avoiding collisions, a robot follows its default
motion behavior in the respective control approach.

In the centralized and MNS approaches, one robot—the master UAV and
brain UAV respectively—is equipped with a simple motion controller to follow
the arena perimeter. This controller moves the UAV forward in a straight line
unless it detects a boundary, in which case it turns 90◦ to the left, and then moves
forward again. This results in a counter-clockwise motion around the arena. As
this perimeter-following behavior is deterministic, one loop of the master or brain
UAV around the perimeter always takes the same amount of time, in both the
centralized and MNS approaches. A master or brain UAV begins this perimeter-
following behavior after the ground robots have established the target formation
from their randomly distributed starting positions. The master or brain UAV
then continues the behavior at a constant speed, irrespective of the speed of
the other robots, until experiment termination. Given the size and shape of the
target formation and the arena, this simple counter-clockwise path is sufficient
to enable coverage.

In the centralized and MNS approaches, robots establish a target formation
from randomly distributed starting positions, and then maintain that formation
during coverage. In the target formation used here, ground robots are positioned
in a zigzag line (see Fig. 1). The zigzag line formation is selected to reduce the
occurrence of robot-robot collisions, compared to a straight line formation with
smaller gaps between robots. The target formation of ground robots is identical

220 A. Jamshidpey et al.

in the centralized and MNS approaches. In the centralized approach, the master
UAV is positioned above the center of the ground robots (see Fig. 1(a)). All
robots in the centralized approach are always wirelessly connected to the master.
In the MNS approach, the brain UAV is in the same position as the master UAV
of the centralized approach; the other UAVs in the MNS approach are in a
straight row above the ground robots (see Fig. 1(b)). In the MNS approach,
the communication network topology is a caterpillar tree—i.e., a tree in which
all inner nodes are on one central path, to which each leaf node is connected
(see Fig. 1(b)). The centralized and MNS approaches use one and three UAVs,
respectively, and each use nine ground robots. The decentralized approach uses
nine ground robots, which perform a random walk without UAV guidance.

2.2 Approaches to Multi-robot Coverage

In the centralized approach, the default motion behavior for all robots is directly
controlled by the master UAV that acts as central coordinating entity. The mas-
ter UAV can directly communicate with all robots constantly, and can always see
all robots and the full environment, regardless of its position. At the beginning
of an experiment, the master sends all robots motion instructions, to move them
into the target formation. The master then uses its perimeter-following behavior
to follow the arena perimeter, while simultaneously sending all robots motion
instructions, to maintain the target formation (relative to the master UAV).

In the decentralized approach, the default motion behavior for all ground
robots is simply forward motion. At initiation, the robots are distributed ran-
domly and begin moving in random directions. They only change direction as
a result of collision avoidance. Due to the density of obstacles in the environ-
ment, collision avoidance is sufficient to change the robots’ directions frequently
enough for environment exploration.

In our MNS approach, the default motion behavior for non-brain robots is
received from parents in the communication network. Our MNS approach is
based on the existing concept of ‘mergeable nervous systems’ [15], for physi-
cally connected robots that we have extended to wireless connections in prior
work [25]. In this approach, a heterogeneous swarm of UAVs and ground robots
forms a target communication network topology through a self-organized pro-
cess, and then uses this network to pass motion instructions between neighbors,
moving robots into positions and orientations that match a given target forma-
tion. Please refer to [25] for details of the process by which the MNS is estab-
lished and maintained. In the approach, a UAV can establish links with ground
robots in its field of view, and can establish links with other UAVs when there
is a shared ground robot in both their fields of view. In the experiments here,
robots initially use the MNS process to establish the communication network and
target formation. Then, the UAV that has become the brain (one of the three
UAVs) begins to follow the arena perimeter. As the brain moves, it sends motion
instructions to each of its children, which subsequently send motion instructions
to their own children, thereby moving the whole formation.

Multi-robot Coverage Using Self-organized Networks 221

2.3 Experiment Setup

The experiments are conducted using the ARGoS multi-robot simulator [17],
with robot models implemented using an extension [2,3]. The 4 × 4 m2 arena is
fully enclosed, with its bottom-left corner at (0, 0) of the coordinate frame. Static
4×4×2 cm3 obstacles are positioned randomly in the 3.7×3.7 m2 center of the
arena (with uniform distribution). The arena has a 16 × 16 overlay grid (with
0.25 × 0.25 m2 cells). The UAV model has a maximum speed of 7.4 cm/s, and
is equipped with a downward-facing camera. In the MNS approach, each UAV
views a 1.5 × 1.75 m2 rectangular ground area, at the 1.5 m flight altitude used
in the experiments. Collectively, the three UAVs in the default MNS formation
have a 1.5×2.75 m2 view. By contrast, the UAV in the centralized approach has a
full view of the arena at all times. The ground robot model has an average speed
of 6.8 cm/s, and is equipped with a ring of 12 outward-facing proximity sensors
with a 5.0 cm range. Ground robots are topped with fiducial markers encoding
unique IDs, which the UAVs use to detect the relative positions and orientations
of the ground robots. In our setup, UAVs are unable to detect obstacles. In
the MNS approach, the communication range for UAVs and ground robots is
1 m. In the centralized approach, the master UAV has unlimited communication
with all ground robots. The mechanical bodies of UAVs and ground robots are
represented by simple 2.5 cm radius cylinders. In all approaches, if a ground
robot reaches the arena boundary, its normal motion behavior is temporarily
overridden—it turns to a random direction in the 180◦ range facing away from
the boundary, then drives straight forward.

3 Results

In this section, we give the results of our experiments testing performance, scal-
ability, and fault tolerance. In all experiments, we record robot positions. In
all three approaches, ground robots initially face random directions and are
positioned randomly in a 1.0 × 1.25 m2 rectangular area against the southern
arena boundary, following a uniform distribution. In the centralized and MNS
approaches, the UAVs are positioned above the ground robots, near the southern
boundary. Once the formation is established, the master or brain UAV has the
southern boundary in view, and therefore turns left to start following the arena
perimeter. For the centralized and MNS approaches, we define a round as one
complete loop around the arena perimeter.

3.1 Performance

The performance experiments compare the three approaches in terms of coverage
percentage (i.e., the percentage of grid cells visited by at least one ground robot)
and coverage uniformity (i.e., the uniformity of the total time robots spend in
each grid cell), and in terms of the time and energy expended (according to
potential consumption rates). We test the performance of the three approaches

222 A. Jamshidpey et al.

(centralized, MNS, decentralized), with three different numbers of obstacles (100,
200, 300)—in total nine performance experiments.

Real-world energy consumption of UAVs and ground robots can vary con-
siderably. Therefore, we test five possible ratios of UAV-to-ground-robot energy
consumption {0.5, 1, 2, 3, 4}, with the ground robot consumption rate fixed at
30 units per step. Ratios over 1 represent scenarios with small simple ground
robots and powerful UAVs, and ratios of 1 and 0.5 represent scenarios with large
complex ground robots (e.g., quadruped robots) and minimal lightweight UAVs.
Experiments testing the MNS approach terminate at step 4710, at the comple-
tion of one round; others terminate when the robots have consumed the same
total energy as the MNS approach, under the same energy ratio. For example,
under energy ratio 0.5, if the MNS approach has consumed 100 energy units at
step 4710, then 100 energy units is the energy budget for the other approaches
under that ratio. For each experiment type, we execute 10 experiment runs for
each energy ratio termination time.

Table 1. The coverage percentage results of the performance experiments.

MNS Centralized Decentralized

Ratio Energy:
/106

Units

Time
(steps)

#Obstacles
: Coverage
percentage

Time
(steps)

#Obstacles
: Coverage
Percentage

Time
(steps)

#Obstacles
: Coverage
percentage

0.5 1.48365 4710 100 : 96.9%
200 : 95.7%
300 : 92.2%

5206 100 : 98.4%
200 : 97.7%
300 : 96.1%

5495 100 : 86.7%
200 : 80.5%
300 : 76.2%

1 1.6956 4710 100 : 96.9%
200 : 95.7%
300 : 92.2%

5652 100 : 98.8%
200 : 98.1%
300 : 96.7%

6280 100 : 90.2%
200 : 84.8%
300 : 80.1%

2 2.1195 4710 100 : 96.9%
200 : 95.7%
300 : 92.2%

6423 100 : 98.8%
200 : 98.1%
300 : 97.7%

7850 100 : 94.9%
200 : 92.2%
300 : 87.1%

3 2.5434 4710 100 : 96.9%
200 : 95.7%
300 : 92.2%

7065 100 : 98.8%
200 : 98.1%
300 : 97.7%

9420 100 : 97.2%
200 : 95.3%
300 : 91.8%

4 2.9673 4710 100 : 96.9%
200 : 95.7%
300 : 92.2%

7609 100 : 99.2%
200 : 98.4%
300 : 98.1%

10990 100 : 98.4%
200 : 97.3%
300 : 94.5%

Coverage Percentage. We compare the coverage percentage of the three
approaches under equal energy expenditure. Table 1 shows that the centralized
approach outperforms the other approaches for all energy ratios and obstacle
densities, although its performance is only slightly better than that of the MNS

Multi-robot Coverage Using Self-organized Networks 223

approach. When the energy ratio is less than 3, the MNS approach outper-
forms the decentralized approach for all obstacle densities. If time expenditure
is considered, Table 1 shows that, for energy ratios of 3 and 4, the decentralized
approach takes more than twice as much time as the MNS approach and achieves
only slightly better coverage percentage. Because of the high UAV energy cost in
these cases, the decentralized approach is allowed much longer exploration time
than the MNS approach. Table 1 also shows that coverage percentage becomes
lower for all approaches as obstacle density increases. Figure 2 shows the coverage
percentage over time for the three approaches, in two obstacle setups at energy
ratio 4. We report results only for one energy ratio because the graphs are similar
for all energy ratios—the only difference being in the change in the performance
gaps between the three approaches. We have chosen to report energy ratio 4
because it is the worst energy ratio for the MNS approach; the gap between
the MNS approach and the better-performing centralized approach is largest in
this ratio, and the gap between the MNS approach and the worse-performing
decentralized is smallest in this ratio. Figure 2 therefore shows that, in all cases,
the MNS approach substantially outperforms the decentralized approach, and
the centralized approach slightly outperforms the MNS approach. Energy ratio
4 bears the worst performance for the MNS approach because the MNS uses
three UAVs, as opposed to one UAV or no UAVs.

 0

 100

A
ve

ra
ge

 p
er

ce
nt

ag
e

(%
)

Time (steps)

100 obstacles: Average coverage percentage

MNS
Centralized

Decentralized
 1000 11000

 0

 100

A
ve

ra
ge

 p
er

ce
nt

ag
e

(%
)

300 obstacles: Average coverage percentage

MNS
Centralized

Decentralized
Time (steps) 1000 11000

(a) (b)

Fig. 2. Average coverage percentage for MNS, centralized, and decentralized
approaches, with an energy ratio of 4. (a) 100 obstacles setup; (b) 300 obstacles setup.

Coverage Uniformity. For coverage uniformity, we assess the centralized,
MNS and decentralized approaches at the timestep of the first complete MNS
round, and additionally assess the decentralized experiments at energy exhaus-
tion. For each run, vi ∈ v is defined as the total time spent by all robots in cell
i. The coverage uniformity p is the norm of v, calculated as follows:

p =
256∑

i=1

√
|vi − M(v)|, (1)

where M(v) is the median of v. The smaller the value of p, the more uniformity
between cells; the most uniform case is p = 0. Figure 3(a) shows the cover-
age uniformity p of all three approaches, at the step of the first MNS round
completion (step 4710). The centralized approach is the most uniform (i.e., the

224 A. Jamshidpey et al.

smallest p, on average). Figure 3(a) shows that, in terms of coverage unifor-
mity, the MNS approach substantially outperforms the decentralized approach,
and the centralized approach slightly outperforms the MNS approach. While the
MNS and centralized approaches have approximately similar uniformity in later
rounds (i.e., later in time), the uniformity of the decentralized approach becomes
steadily worse over time, as shown in Fig. 3(b). The worsening of uniformity over
time, in the decentralized approach, is most pronounced in the highest obstacle
density. Figure 3(a) also shows that, at the completion of the first MNS round,
the uniformity of all three approaches worsens as obstacle density increases.

D

decentralized, over time

(p
)

(p
)

obstacles obstacles obstacles obstacles obstacles obstacles

(a) (b)

Fig. 3. Coverage uniformity (lowest p is the most uniform). (a) Uniformity p of all
approaches (MNS; centralized, C; and decentralized, D), at the timestep of the first
MNS round completion (step 4710). (b) Uniformity p of the decentralized approach,
over time. Uniformity p at the step of energy exhaustion for each energy ratio (R)—i.e.,
p at termination—is compared to p at the step of the first MNS round completion (step
4710) for all five energy ratios—i.e., p early in the run.

3.2 Scalability

The scalability and fault tolerance experiments test whether the MNS approach
displays features that would typically be observed in decentralized robot systems
(cf. [9]). We evaluate scalability in the MNS approach in terms of communication
(i.e., the number of messages exchanged) and interference (i.e., the number of
robot-robot collisions). The scalability experiments are conducted in an arena
without obstacles, with three different swarm sizes that are arranged in the same
type of target formation as the default (caterpillar tree, zigzag line—see Fig. 1),
with 10 runs per swarm size. The sizes are: 1) two UAVs, four ground robots; 2)
four UAVs, eight ground robots; 3) six UAVs, twelve ground robots. Figure 4(a)
shows that the number of messages increases linearly with increasing swarm size,
as robots communicate only with their neighbors in the network. Figure 4(b)
shows that the number of collisions increases steadily at the beginning of the
experiments, as the MNS formation is being established. Once the MNS is estab-
lished and begins to explore the environment, no further robot–robot collisions
are observed.

Multi-robot Coverage Using Self-organized Networks 225

3.3 Fault Tolerance

The ability of the MNS approach to replace a robot after failure, or to repair
a broken network connection, has been demonstrated in [25]. In this paper,
we investigate the fault tolerance of the MNS approach when ground robots
fail and cannot be replaced or repaired, evaluated according to connectivity
and coverage percentage. When a ground robot fails, its network link(s) are
broken, and it can no longer move or communicate with any robots. We use
the default MNS formation (see Fig. 1) and the setup with 100 obstacles, and
impose failure at step 400. We test failure of the following numbers of ground
robots (10 runs each), out of 12 total robots in the swarm: 1, 3, 5, 7, 8. We
assess the impact of the failures on coverage percentage results. As UAV-to-UAV
connections are established indirectly when mutually viewing ground robots, we
also assess the impact of the ground robot failures on parent connectivity (i.e.,
whether the brain UAV maintains communication with the other UAVs, which
are parent nodes in the communication network). Figure 4(c) shows that coverage
percentage decreases as the number of failures increases. Figure 4(d) shows that
parent connectivity is maintained in all cases of 5, 3, or 1 failure(s). In cases
of 7 or 8 failures—in which more than half of the swarm fails—connectivity is
maintained in 70% and 50% of runs, respectively.

Fig. 4. (a–b) Scalability. (a) Number of messages exchanged in the MNS over time. (b)
Number of robot-robot collisions over time. (c–d) Fault tolerance. (c) Coverage per-
centage over time, in MNSs with varying number of failing ground robots. (d) Number
of runs that suffer a brain–parent disconnection, according to number of ground robot
failures (out of 10 total runs for each number of failures).

226 A. Jamshidpey et al.

4 Discussion

In terms of coverage percentage and coverage uniformity, the MNS approach
substantially outperforms the decentralized approach. The decentralized app-
roach requires approximately twice as much time as the MNS approach to reach
similar coverage percentage, when the energy consumption ratio is at least 3 (see
Table 1). If the ratio is less than 3, the decentralized approach never reaches the
coverage percentage of the MNS approach, due to exhaustion of the energy bud-
get. The MNS approach also achieves better coverage uniformity than the decen-
tralized approach; coverage uniformity in the decentralized approaches worsens
over time. The lower performance of the decentralized approach is due to the
uneven distribution of robots that occurs during a random walk. As expected, the
centralized approach outperforms the other two approaches in coverage percent-
age and coverage uniformity. However, the performance difference between the
centralized and MNS approaches is relatively small, compared to that between
the MNS and decentralized.

The scalability of the MNS approach, in terms of number of messages
exchanged and robot-robot collisions, is good (see Fig. 4(a,b)). The number
of messages increases linearly with increasing swarm size, and no robot-robot
collisions are observed after the MNS is established, in any swarm size. The
MNS approach is also fault-tolerant, in terms of connectivity and coverage per-
formance. Substantial drops in performance only occur when more than half of
the swarm fails. Connectivity in the MNS approach might be an advantage over
the decentralized approach in consensus achievement tasks (e.g. collective deci-
sion making or collective sensing). As the MNS approach recovers from brain
failure (see [25]), it also has an advantage over centralized approaches, in which
all robots fail if the master UAV fails.

A possible direction for future development of our MNS approach would be
to adapt the target formation on the fly. In this case, if failures are detected,
the MNS could switch to a new formation shape that is better suited to the
remaining swarm size. In future work, we will extend our MNS approach to
apply it to tasks such as collective sensing, or localization and mapping.

5 Conclusions

We have presented an MNS approach to multi-robot coverage, and tested
its coverage performance against strictly centralized and strictly decentralized
approaches. Our results indicate that the MNS approach significantly outper-
forms the decentralized approach, but is slightly outperformed by the central-
ized approach. We have also tested the MNS approach for its performance in
terms of scalabilty and fault tolerance—two features that are difficult to obtain
with a centralized approach. Our results show that the MNS approach scales
linearly in terms of inter-robot communication, and that its performance and
connectivity are robust to failures if less than 50% of the ground robots fail.
Overall, the results demonstrate that the MNS approach successfully combines

Multi-robot Coverage Using Self-organized Networks 227

aspects of centralized and decentralized control in a coverage task, as it achieves
high performance (similar to centralized approaches), and achieves scalability
and fault tolerance (similar to decentralized approaches).

Acknowledgements. This work is partially supported by the Program of Concerted
Research Actions (ARC) of the Université libre de Bruxelles; by the Ontario Tril-
lium Scholarship Program through the University of Ottawa and the Government of
Ontario, Canada; by the Office of Naval Research Global (Award N62909-19-1-2024);
by the European Union’s Horizon 2020 research and innovation programme under the
Marie Sk�lodowska-Curie grant agreement No 846009; and by the China Scholarship
Council (grant number 201706270186). Mary Katherine Heinrich and Marco Dorigo
acknowledge support from the Belgian F.R.S.-FNRS, of which they are a Postdoctoral
Researcher and a Research Director respectively.

References

1. Albani, D., Nardi, D., Trianni, V.: Field coverage and weed mapping by UAV
swarms. In: 2017 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), pp. 4319–4325. IEEE (2017)

2. Allwright, M., Bhalla, N., Pinciroli, C., Dorigo, M.: ARGoS plug-ins for exper-
iments in autonomous construction. Technical reports, TR/IRIDIA/2018-007,
IRIDIA, Université Libre de Bruxelles, Brussels, Belgium (2018)

3. Allwright, M., Bhalla, N., Pinciroli, C., Dorigo, M.: Simulating multi-robot con-
struction in ARGoS. In: Dorigo, M., Birattari, M., Blum, C., Christensen, A.L.,
Reina, A., Trianni, V. (eds.) ANTS 2018. LNCS, vol. 11172, pp. 188–200. Springer,
Cham (2018). https://doi.org/10.1007/978-3-030-00533-7 15

4. Almadhoun, R., Taha, T., Seneviratne, L., Zweiri, Y.: A survey on multi-robot
coverage path planning for model reconstruction and mapping. SN Appl. Sci. 1(8),
1–24 (2019). https://doi.org/10.1007/s42452-019-0872-y

5. Dewangan, R.K., Shukla, A., Godfrey, W.W.: Survey on prioritized multi robot
path planning. In: IEEE International Conference on Smart Technologies and
Management for Computing, Communication, Controls, Energy and Materials
(ICSTM), pp. 423–428. IEEE (2017)

6. Dieber, B., Micheloni, C., Rinner, B.: Resource-aware coverage and task assignment
in visual sensor networks. IEEE Trans. Circuits Syst. Video Technol. 21(10), 1424–
1437 (2011)

7. Galceran, E., Carreras, M.: A survey on coverage path planning for robotics. Robot.
Auton. Syst. 61(12), 1258–1276 (2013)

8. Ge, S.S., Fua, C.H.: Complete multi-robot coverage of unknown environments with
minimum repeated coverage. In: Proceedings of the 2005 IEEE International Con-
ference on Robotics and Automation, pp. 715–720. IEEE (2005)

9. Hamann, H.: Swarm Robotics: A Formal Approach. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-74528-2

10. Ichikawa, S., Hara, F.: Characteristics of object-searching and object-fetching
behaviors of multi-robot system using local communication. In: Proceedings of
1999 IEEE International Conference on Systems, Man, and Cybernetics, vol. 4,
pp. 775–781. IEEE (1999)

11. Juliá, M., Gil, A., Reinoso, O.: A comparison of path planning strategies for
autonomous exploration and mapping of unknown environments. Auton. Robots
33(4), 427–444 (2012)

https://doi.org/10.1007/978-3-030-00533-7_15
https://doi.org/10.1007/s42452-019-0872-y
https://doi.org/10.1007/978-3-319-74528-2

228 A. Jamshidpey et al.

12. Koenig, S., Liu, Y.: Terrain coverage with ant robots: a simulation study. In: Pro-
ceedings of the Fifth International Conference on Autonomous Agents, pp. 600–
607. Association for Computing Machinery (2001)

13. Laouici, Z., Mami, M.A., Khelfi, M.F.: Cooperative approach for an optimal area
coverage and connectivity in multi-robot systems. In: 2015 International Confer-
ence on Advanced Robotics (ICAR), pp. 176–181. IEEE (2015)

14. Luo, W., Sycara, K.: Adaptive sampling and online learning in multi-robot sensor
coverage with mixture of gaussian processes. In: 2018 IEEE International Confer-
ence on Robotics and Automation (ICRA), pp. 6359–6364. IEEE (2018)

15. Mathews, N., Christensen, A.L., O’Grady, R., Mondada, F., Dorigo, M.: Mergeable
nervous systems for robots. Nat. Commun. 8, 439 (2017)

16. Panerati, J., Gianoli, L., Pinciroli, C., Shabah, A., Nicolescu, G., Beltrame, G.:
From swarms to stars: task coverage in robot swarms with connectivity constraints.
In: 2018 IEEE International Conference on Robotics and Automation (ICRA), pp.
7674–7681. IEEE (2018)

17. Pinciroli, C., et al.: ARGoS: a modular, parallel, multi-engine simulator for multi-
robot systems. Swarm Intell. 6(4), 271–295 (2012)

18. Rekleitis, I., Lee-Shue, V., New, A.P., Choset, H.: Limited communication, multi-
robot team based coverage. In: IEEE International Conference on Robotics and
Automation, 2004, Proceedings. ICRA 2004, vol. 4, pp. 3462–3468. IEEE (2004)

19. Santos, M., Egerstedt, M.: Coverage control for multi-robot teams with hetero-
geneous sensing capabilities using limited communications. In: 2018 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), pp. 5313–
5319. IEEE (2018)

20. Sartoretti, G., et al.: PRIMAL: pathfinding via reinforcement and imitation multi-
agent learning. IEEE Robot. Autom. Lett. 4(3), 2378–2385 (2019)

21. Schroeder, A., Ramakrishnan, S., Manish, K., Trease, B.: Efficient spatial coverage
by a robot swarm based on an ant foraging model and the lévy distribution. Swarm
Intel. 11(1), 39–69 (2017)

22. Siligardi, L., et al.: Robust area coverage with connectivity maintenance. In: 2019
International Conference on Robotics and Automation (ICRA), pp. 2202–2208.
IEEE (2019)

23. Wang, X., Han, S., Wu, Y., Wang, X.: Coverage and energy consumption control
in mobile heterogeneous wireless sensor networks. IEEE Trans. Autom. Control
58(4), 975–988 (2012)

24. Zafar, M.N., Mohanta, J.C.: Methodology for path planning and optimization of
mobile robots: a review. Procedia Comput. Sci. 133, 141–152 (2018)

25. Zhu, W., Allwright, M., Heinrich, M.K., Oğuz, S., Christensen, A.L., Dorigo, M.:
Formation control of UAVs and mobile robots using self-organized communication
topologies. In: Swarm Intelligence - Proceedings of ANTS 2020 - Twelfth Interna-
tional Conference. Lecture Notes in Computer Science. Springer, Heidelberg (2020)

Robot Distancing: Planar Construction
with Lanes

Andrew Vardy(B)

Department of Computer Science, Department of Electrical and Computer
Engineering, Memorial University of Newfoundland, St. John’s, Canada

av@mun.ca

Abstract. We propose a solution to the problem of spatial interfer-
ence between robots engaged in a planar construction task. Planar con-
struction entails a swarm of robots pushing objects into a desired two-
dimensional configuration. This problem is related to object clustering
and sorting as well as collective construction approaches such as wall-
building. In previous work we found robots were highly susceptible to
collisions among themselves and with the boundary of the environment.
Often these collisions led to deadlock and a dramatic reduction in task
performance. To address these problems the solution proposed here sub-
divides the work area into lanes. Each robot determines its own lane
and applies a novel control law to stay within it while nudging objects
inwards towards the goal region. We show results using a realistic simula-
tion environment. These results indicate that subdividing the arena into
lanes can produce mild performance increases while being highly effec-
tive at keeping the robots separated. We also show that the introduction
of lanes increases robustness to unforeseen obstacles in the environment.

1 Introduction

In this paper we address a problem observed in many studies of swarm robotics
and multi-robot systems in general. That problem is spatial interference between
robots. Researchers in swarm robotics have observed that when varying the
number of robots within a fixed space, performance tends to initially increase as
robots are added but then begins to level off and decrease as the robots get in
each other’s way [10]. There is likely no universal solution to this problem, but it
remains worthwhile to attempt to increase the band of superlinear performance
with increasing numbers of robots. We propose an approach to mitigate spatial
interference by subdividing the environment into lanes for a swarm of robots
engaged in a planar construction task. We previously defined planar construction
as ‘the gathering of ambient objects into some desired shape’ [35]. Put simply, the
task here is to gather objects into a linear region at the center of the arena—as
if building a wall.

Planar construction can be considered a sub-area of collective robotic con-
struction (recently reviewed in [24]). It involves the formation of a desired
two-dimensional structure from ambient objects in the environment, requiring
c© Springer Nature Switzerland AG 2020
M. Dorigo et al. (Eds.): ANTS 2020, LNCS 12421, pp. 229–242, 2020.
https://doi.org/10.1007/978-3-030-60376-2_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-60376-2_18&domain=pdf
http://orcid.org/0000-0001-7278-5378
https://doi.org/10.1007/978-3-030-60376-2_18

230 A. Vardy

a combination of capabilities: discovering objects, transporting them towards
the growing structure, and manipulating the structure into a desired shape.
There is a strong relationship with work on foraging [15,23,28], clustering
objects of a single type [1,7,12,16,17,34], and sorting objects of different types
[19–21,36,37]. The shape constructed here is linear and can be considered a wall.
Several other groups have studied the formation of walls by a set of distributed
agents [5,13,29,30].

While there has been a wide variety of work on subdividing space for other
purposes (e.g. exploration [39]) relatively little research has gone into subdividing
space for the purpose of collecting, clustering or manipulating groups of objects.
Schneider-Fontán and Matarić demonstrated perhaps the earliest work in this
vein [27]. They divided a workspace into equal-sized rectangular regions with one
robot assigned to each territory. They addressed the problem of a reduction in
workforce due to robot failures by dividing the overall height of the workspace by
the number of active robots. Their experiments showed that an increase in the
number of robots caused a reduction in performance, likely due to inaccuracies
in the way that objects were handed-off from one territory to the next. Others
have explored the notion of territories formed by the robots themselves [26] but
not in the context of transporting objects. Perhaps the closest recent example
involved subdividing space between an active work area and a waiting area for
robots engaged in a collection and deposit task [18].

Our previous work on the problem of planar construction has focused on
orbital construction, a parsimonious control algorithm that can gather objects
into a shape defined by a scalar field [32]. We previously proposed a somewhat
more complex algorithm for planar construction which relies upon a set of dis-
tinct landmarks to specify the shape of the desired structure [33]. In addition,
we have investigated the use of reinforcement learning for the planar construc-
tion problem [31] and the allocation of roles to robots [11]. In our most recent
work, we provided a realization of the orbital construction algorithm on physical
robots [35]. This was partially successful but we were surprised at the level of
spatial interference between robots and between the robots and the boundary of
the environment. Often there would be collisions near the border which resulted
in deadlock situations. These collisions would often attract other robots and task
performance would plummet.

This experience with the negative effects of spatial interference motivates us
to resolve this problem. The main solution proposed in this paper is to subdi-
vide the work area into lanes that surround a goal region. We present results
in simulation showing that the introduction of lanes can have a minor positive
impact on performance and a substantial benefit in terms of increasing the dis-
tance maintained between robots. When robots operate in close proximity there
is always some non-zero probability that they will collide and that this collision
will result in reduced task performance. By maintaining separation into lanes
we do not ensure high task performance but we do decrease the probability of
collision-induced failures.

Robot Distancing: Planar Construction with Lanes 231

In Sect. 2 we provide some discussion on the top-down specification of a
desired shape and how this relates to the swarm robotics credo of purely local
sensing. Section 3 describes our algorithm and methodology. Section 4 presents
experimental results using a simulation environment. Finally, Sect. 5 presents
some discussion on our results and areas for future work.

2 The Template Perspective

While we are interested in robotic systems with self-organizing properties, it is
likely that most practical applications will involve some level of top-down task
specification. For a construction task, the user may want to specify the location
and constraints on the design. For a task involving area coverage such as cleaning
or painting the user would want to specify the area to be treated. For a task
involving organization of items (e.g. clustering or sorting) the user may want to
specify the area of operation as well as the sites where items are to be collected.
Inspired by its usage in models of nest construction in wasps and ants [2] we
use the term template as a structure or pattern that controls the outcome of an
otherwise self-organized process.

The template may be expressed through pheromones which guide a construc-
tion process, with termite nest construction being perhaps the longest-studied
example [4]. Computational studies have shown the generation of tunnels and
domes by agents that deposit and sense various pheromones [14]. In Ladley and
Bullock’s model the stationary queen termite exudes a template pheromone that
causes agents to deposit material at a characteristic distance from the queen,
eventually leading to the constructing of a “royal chamber”. In this model, the
static template pheromone’s influence combines with the influence of a cement
pheromone that acts as a positive feedback mechanism, encouraging an agent to
deposit material near other recently-deposited material.

For implementation on physical robots it is necessary to make the template
accessible to the robots. One possibility is to use landmarks, which could be
physical or virtual [33]. Most recently we defined a scalar field as the template
and projected it onto a television screen that was the robots’ working surface [35].
Phototransistors on the bottom of the robots would sense the local light value
and use this to guide their movements. This strategy allowed us to incorporate
the user-specified template of the shape while adhering to the swarm robotics
principle of purely local sensing. However, this approach has several practical
limitations. For example, it is clearly infeasible to install a large screen to act as
a floor in real-world applications.

After exploring several different mechanisms for defining a template and mak-
ing it accessible to the underlying robots we believe it is prudent to use a more
generic physical setup that can model various types of concrete implementations.
In this setup we have an overhead camera observing a set of robots on a tabletop.
The robots have AprilTag markers for pose detection in the overhead image [22].
A desktop computer extracts these markers as well as markers or color codes we
attach to other objects in the arena. We have developed a working system that

232 A. Vardy

takes this approach for marine swarm robotics research [9]. This system allows us
to either make use of global information or simulate purely local sensors. Thus,
we can explore a variety of solutions which either adhere (or do not adhere) to
the swarm robotics convention of using purely local information [3].

It could be argued that whatever the physical realization, we are violating
the conventions of swarm robotics by making a global template available to all
robots. However, in the algorithm described below only a local sampling of infor-
mation from the global template is utilized. The structpath data structure used
in Werfel et al.’s well-known work on termite-inspired collective construction
[38] is similar in this sense—robots use knowledge of their position to look up
local information that modulates their behavior. In both Werfel et al.’s work
and ours, this local information provides guidance to the robots on allowable
motions while also serving to specify a desired shape to be constructed.

3 Methodology

3.1 Physical System Modeled

In this paper we only report results from simulation, but we are developing a
physical system consists of 12 robots based on the Pololu 3pi robot, a small circu-
lar robot (9.5 cm in diameter) with differential-drive kinematics1. These robots
operate on a table with a stadium-shaped boundary2 to retain both objects and
robots. The objects the robots operate on are cubes with a side length of 3 cm.
We refer to these cubes as pucks. The robots have a middle plate that serves
as a plow, pushing pucks inwards as the robots circumnavigate the arena along
clockwise orbits. Our simulation model is shown in Fig. 1.

Fig. 1. Screenshot of the CoppeliaSim simulation in progress.

1 https://www.pololu.com/docs/0J21.
2 A stadium consists of a rectangular region in the middle with semicircular ends.

https://www.pololu.com/docs/0J21

Robot Distancing: Planar Construction with Lanes 233

3.2 Generating the Template and Lanes

The template used to specify the desired linear shape as well as to specify lanes
is the distance transform. This is a well-known image processing operation where
some pixels, designated as sources, are set to zero. All other pixels are then set
to contain the distance to the closest source. Sophisticated methods exist to
compute the distance transform efficiently, even on complex meshes [6].

To obtain the distance image (the result of the distance transform), the image
from the overhead camera is first processed using simple color-based thresholding
to yield a binary image with a value of 0 for the stadium-shaped boundary. This
image is flood-filled with 0’s outside the boundary, yielding the image shown in
Fig. 2(a). Figure 2(b) shows the distance image and Fig. 2(c) shows the gradient
computed from the distance image. It is important to note that the distance
image and gradient need only be computed once.

(a) (b)

(c) (d)

Fig. 2. Stages in the processing of an image from the overhead camera to yield the
distance transform and its gradient. (a) Binary image set to 0 for the boundary and
outside the boundary. (b) Distance transform. (c) Gradient of the distance transform.
(d) Contours of the distance transform for Nlanes = 3.

The distance image will be denoted Di,j where i is the column index and j is
the row index. We normalize this image by dividing by the maximum distance,
max(Di,j), yielding D̃i,j ∈ [0, 1].

234 A. Vardy

We will refer to various levels, denoted as τ , which are scalar values defining
a particular contour line of the distance image. The goal region is the ultimate
destination for all pucks in our task and is defined as all (i, j) such that D̃i,j ≥
τgoal. In our experiment τgoal = 0.8. This value can be seen as the innermost
contour line in Fig. 2(d).

Let Nlanes be the number of lanes chosen. Each lane is indexed by an
integer k ∈ [0, . . . , Nlanes − 1]. A pair of levels is used to define each lane:
(τlow(k), τhigh(k)). These are defined as follows for each k:

τlow(k) = τgoal
k

Nlanes
(1)

τhigh(k) = τgoal
k + 1
Nlanes

(2)

k = 0 indicates the outermost lane while k = Nlanes − 1 is the innermost
lane—the lane surrounding the goal region. The control law described below
will drive the robot to skirt the outer edge of the lane. The outer edge of the
outermost lane is the boundary of the arena and the robot will scrape against
this, pushing pucks inwards. For all inner lanes (k > 0) we introduce a small gap
wpuck which is equal to the puck radius converted to its equivalent normalized
distance. Pucks within the gap are not sensed by a robot in the inner lane, but
will continue to be pushed through the gap by robots in the outer lane. Without
the gap there is a tendency for inner robots to attempt to gather pucks that
lie partially out of the lane and inadvertently push them outwards. Figure 2(d)
shows the contours generated when Nlanes = 3.

3.3 Lane Assignment and Re-assignment

Upon initialization, each robot will convert its pose (x, y, θ) to the integer indices
(i, j) which describe the column and row corresponding to the robot’s position
in the distance image. The initial assignment of the robot’s lane is obtained by
searching each lane’s level pair (τlow(k), τhigh(k)) for the one containing D̃i,j .

Each robot can perceive pucks and other robots within a fixed radius and
determine their pose and therefore their level in the distance image. This allows
a robot to restrict its attention to pucks within its lane, which is required by
the control law described below. It also affords determining how many pucks or
robots are within the current lane as compared to adjacent lane(s)3. The robots
maintain short-term estimates of the density of other robots seen within the
current and adjacent lane(s). The lane re-assignment strategy is quite simple—if
fewer robots are observed in an adjacent lane, the robot switches to that lane.

3.4 Control Law

In previous work on planar construction we used a very parsimonious controller
which required sensing the scalar field at three positions in front of the robot,
3 The innermost and outermost lanes have one adjacent lane, while other lanes have

two adjacent lanes.

Robot Distancing: Planar Construction with Lanes 235

as well as sensing the presence of pucks in the left visual field [11,31,32,35].
This controller was effectively “computation-free” in the sense introduced in [8]
meaning that it was a very simple reactive controller. This controller has worked
very well in simulation but exhibits oscillations on physical robots which can
lead the robot to get stuck on the environment’s boundary.

We present here a novel proportional control law to guide each robot within
its lane, while diverting outwards to gather pucks. In the absence of pucks, the
control law drives the robot to follow the inside edge of the robot’s lane, indexed
by k. This inside edge is the contour corresponding to τhigh(k). If a puck within
the robot’s lane (and ahead of the robot) is visible, then we can compute the
puck’s position in the distance image as (p, q). The corresponding value in the
distance image is D̃p,q. We add a small quantity to this corresponding to the
robot’s radius in normalized distance units, denoted wrobot. The purpose of this
addition is to guide the center of the robot to the point where the plow can meet
the puck. We can then compute a target level that defines the contour the robot
will strive to maintain,

τtarget = min(τhigh(k), D̃p,q + wrobot) (3)

The gradient computed from the distance image is used to define the robot’s
desired angle. Whereas the distance image is two-dimensional, the gradient pro-
duces a 2-vector for every position in the distance image. We denote this vector
as ∇D̃i,j = [u v]T . The angle of the gradient relative to the robot is

γ = atan2(v, u) − θ, (4)

where θ is the robot’s heading. If we were only concerned with moving orthogonal
to the gradient in a clockwise orbit, the ideal value of γ would be π

2 . In this case
we could simply use the difference between π

2 and γ as an error signal to achieve
such an orbiting controller. However, such an approach would not maintain the
robot at the target level τtarget.

One simple error signal for controlling the shape of the orbit would be τtarget−
D̃i,j where (i, j) corresponds to the robot’s current position. However, to combine
the error signal for distance with the error signal for γ it is preferable to use a
normalized quantity such as the following,

ε =
τtarget − min(D̃i,j , 2τtarget)

τtarget
. (5)

where ε ∈ [−1, 1]. Whereas ε represents an error signal in distance, ξ represents
an angular error that the controller acts to minimize,

ξ =
(π

2
− Kε

)
� γ (6)

The operator � represents taking the smallest signed difference between angles.
K is a constant that governs how aggressive the controller is in correcting for
distance, versus correcting to be orthogonal to the gradient. In our experiments

236 A. Vardy

we use the value K = 0.9. The final step is to compute the robot’s forward
speed ν and angular speed ω in such a way as to minimize ξ. The following
simple approach achieves this,

ν = cos ξ (7)
ω = sin ξ (8)

3.5 Simulation Environment and Metrics

In our previous work we used a custom two-dimensional simulator capable of
very fast execution [31,35]. This simulator quickly resolved collisions, but not in
the most realistic way. In particular, collisions between the robots and between
the robots and the boundary were not predicted to be problematic. However, in
transitioning to physical robots these collisions were found to be more sustained
and to have more serious consequences than predicted [35]. For these reasons we
have switched to the slower but more realistic simulator CoppeliaSim [25] for
the experiments conducted below.

The main performance metric referred to below is the proportion of pucks in
the goal region. We also compute both the average and the minimum distance
between robots. These are calculated by considering all possible pairs of robots,
without consideration for whether the robots lie within the same lane or not.

4 Experimental Results

Figure 3 shows the performance of the system operating on 75 pucks using 1,
2, or 3 lanes. The three rows in the figure correspond to measurements of the
proportion of robots in the goal region (top row), average distance between
robots (middle row), and minimum distance between robots (bottom row). The
two columns correspond to 6 robots (left) and 12 robots (right).

We consider the 1-lane case to be a benchmark for comparison since all
conditions are the same except for the subdivision into lanes. Considering the
proportion of pucks successfully delivered to the goal region we see a different
time evolution for 2 or 3 lanes compared with 1 lane, but not a large difference
in performance. If steady-state performance is desired, it appears that 2 lanes
would be best for these conditions for either 6 or 12 robots.

Considering average and minimum distances between robots (middle and
bottom rows of Fig. 3, respectively) a much bigger difference between the num-
ber of lanes used is observed. This difference is larger for the case of 12 robots.
The plots show 95% confidence intervals as shaded regions and we can conclude
that when a pair of such intervals do not overlap that the underlying difference is
statistically significant at the p = 0.05 level. If we focus on the end of each simu-
lation run, we can say that that the introduction of lanes significantly increases
the average distance between robots for 6 robots, and significantly increases both
the average and minimum distance between robots for the 12 robot condition.

Robot Distancing: Planar Construction with Lanes 237

(a) (b)

(c) (d)

(e) (f)

Fig. 3. Performance measured in terms of proportion of pucks in the goal region ((a)
and (b)), average distance between robots ((c) and (d)), and minimum distance
between robots ((e) and (f)). Each trace is an average of 10 trials. Shaded regions
with matched colors represent 95% confidence intervals.

238 A. Vardy

(a) 1 lane

(b) 2 lanes

(c) 3 lanes

Fig. 4. Overhead camera images with 12 robots operating on 75 pucks captured at 0,
100, 500, and 1000 time steps.

(a)

(b)

Fig. 5. Impact of an invisible obstacle. (a) Screenshot of the invisible obstacle reducing
performance in the 2-lane configuration. (b) Proportion of pucks moved to the goal by
12 robots in the presence of the invisible obstacle.

Robot Distancing: Planar Construction with Lanes 239

Figure 4 shows the time evolution of overhead camera images captured by
CoppeliaSim with 12 robots. These are samples from the first of 10 trials ran to
produce the plots in Fig. 3. Figure 4(a) shows how with a single lane the robots
tend to form a connected chain. The two lanes are discernible in Fig. 4(b) but
in Fig. 4(c) we see that by time step 1000 (rightmost image) all robots have
converged to the inner or outer lane, leaving none in the middle lane. This is
a weakness of our lane re-assignment strategy since the middle lane has been
vacated yet two pucks remain there. In fact, those 2 pucks remain outside of the
goal region until the end of the run. It is this phenomenon which yields reduced
steady-state performance for the 3-lane condition, as is evident in Fig. 3(b).

We are also interested in the susceptibility of the system to various distur-
bances. One such disturbance is an unforeseen obstacle or blockage. We inserted
a low cylinder near the boundary of the arena which is not perceived by the
robots. This cylinder could represent an irregularity in the floor that was invis-
ible to the robots yet could hinder their progress. Figure 5 shows a screenshot
and a plot averaged over 10 trials. It is clear that the single-lane solution is much
more strongly affected by the cylinder.

5 Conclusions and Future Work

We have presented a strategy for resolving spatial interference between robots
engaged in a planar construction task. Subdividing the work area into lanes
implicitly divides the task among the robots in corresponding lanes. We cannot
argue that the gains in performance are large or statistically significant, but it is
clear that introducing multiple lanes increases both the average and minimum
distance between robots, particularly for higher numbers of robots. Also, the
use of lanes reduces the system’s susceptibility to localized disturbances such as
unforeseen obstacles.

However, much work remains to validate and improve the concepts intro-
duced here. A hardware realization is necessary and we have paved the way for
this by modeling our current fleet of robots and their operating environment. One
clear weakness identified was the lane re-assignment strategy employed which led
to the middle lane being prematurely vacated as shown in Fig. 4(c). We have
used a direct comparison of the count of robots in the current lane versus adja-
cent lanes, which is certainly not the only possibility. The other cue to consider
is the number of pucks observed, either in absolute terms or in comparison to
adjacent lanes. We have previously tested the use of response thresholds in a
similar role and will likely revisit this approach [11]. We are also interested in
studying how our broader strategy for planar construction can be applied to
more complex shapes.

Acknowledgments. Funding provided from the Natural Sciences and Engineering
Research Council of Canada (NSERC) under Discovery Grant RGPIN-2017-06321.
Thanks also to the constructive feedback of the ANTS 2020 reviewers who helped to
clarify the contents presented here.

240 A. Vardy

References

1. Beckers, R., Holland, O., Deneubourg, J.L.: From local actions to global tasks:
stigmergy and collective robotics. In: Artificial Life IV, pp. 181–189. MIT Press,
Cambridge (1994)

2. Bonabeau, E., Dorigo, M., Theraulaz, G.: Swarm Intelligence: From Natural to
Artificial Systems. Oxford University Press, New York (1999)

3. Brambilla, M., Ferrante, E., Birattari, M., Dorigo, M.: Swarm robotics: a review
from the swarm engineering perspective. Swarm Intell. 7(1), 1–41 (2013)

4. Bruinsma, O.H.: An analysis of building behaviour of the termite Macrotermes
subhyalinus (Rambur). Ph.D. thesis (1979)

5. Crabbe, F.L., Dyer, M.G.: Second-order networks for wall-building agents. In:
International Joint Conference on Neural Networks (1999). IJCNN 1999, vol. 3,
pp. 2178–2183. IEEE (1999)

6. Crane, K., Weischedel, C., Wardetzky, M.: The heat method for distance compu-
tation. Commun. ACM 60(11), 90–99 (2017)

7. Deneubourg, J.L., Goss, S., Franks, N., Sendova-Franks, A., Detrain, C., Chrétien,
L.: The dynamics of collective sorting robot-like ants and ant-like robots. In: First
International Confernce on the Simulation of Adaptive Behaviour, pp. 356–363.
MIT Press, Cambridge (1990)

8. Gauci, M., Chen, J., Li, W., Dodd, T.J., Groß, R.: Self-organised aggregation
without computation. Int. J. Robot. Res. 33(9), 1145–1161 (2014). https://doi.
org/10.1177/0278364914525244

9. Gregory, C., Vardy, A.: microUSV: a low-cost platform for indoor marine swarm
robotics research. HardwareX (2020). https://doi.org/10.1016/j.ohx.2020.e00105

10. Hamann, H.: Superlinear scalability in parallel computing and multi-robot systems:
shared resources, collaboration, and network topology. In: Berekovic, M., Buchty,
R., Hamann, H., Koch, D., Pionteck, T. (eds.) ARCS 2018. LNCS, vol. 10793, pp.
31–42. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-77610-1 3

11. Ibrahim, D., Vardy, A.: Adaptive task allocation for planar construction using
response threshold model. In: Mart́ın-Vide, C., Pond, G., Vega-Rodŕıguez, M.A.
(eds.) Theory and Practice of Natural Computing, pp. 173–183. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-34500-6 12

12. Kazadi, S., Abdul-Khaliq, A., Goodman, R.: On the convergence of puck clustering
systems. Robot. Auton. Syst. 38(2), 93–117 (2002)

13. Kazadi, S., Wigglesworth, J., Grosz, A., Lim, A., Vitullo, D.: Swarm-mediated
cluster-based construction. Complex Syst. 15(2), 157 (2004)

14. Ladley, D., Bullock, S.: The role of logistic constraints in termite construction of
chambers and tunnels. J. Theoret. Biol. 234(4), 551 (2005). https://doi.org/10.
1016/j.jtbi.2004.12.012

15. Lein, A., Vaughan, R.T.: Adaptive multi-robot bucket brigade foraging. In: Pro-
ceedings of the Eleventh International Conference on Artificial Life (ALife XI),
August 2008

16. Maris, M., Boeckhorst, R.: Exploiting physical constraints: heap formation through
behavioral error in a group of robots. In: IEEE/RSJ International Conference on
Robots and Systems (IROS), vol. 3, pp. 1655–1660. IEEE Xplore (1996)

17. Martinoli, A., Ijspeert, A., Gambardella, L.: A probabilistic model for understand-
ing and comparing collective aggregation mechanisms. In: Floreano, D., Nicoud,
J.D.., Mondada, F. (eds.) Advances in Artificial Life. Proceedings of the 5th Euro-
pean Conference on Artificial Life (ECAL). Springer, Heidelberg (1999). https://
doi.org/10.1007/3-540-48304-7 77

https://doi.org/10.1177/0278364914525244
https://doi.org/10.1177/0278364914525244
https://doi.org/10.1016/j.ohx.2020.e00105
https://doi.org/10.1007/978-3-319-77610-1_3
https://doi.org/10.1007/978-3-030-34500-6_12
https://doi.org/10.1016/j.jtbi.2004.12.012
https://doi.org/10.1016/j.jtbi.2004.12.012
https://doi.org/10.1007/3-540-48304-7_77
https://doi.org/10.1007/3-540-48304-7_77

Robot Distancing: Planar Construction with Lanes 241

18. Mayya, S., Pierpaoli, P., Egerstedt, M.: Voluntary retreat for decentralized inter-
ference reduction in robot swarms. In: 2019 International Conference on Robotics
and Automation (ICRA), pp. 9667–9673. IEEE (2019)

19. Melhuish, C., Holland, O., Hoddell, S.: Collective sorting and segregation in robots
with minimal sensing. In: 5th International Conference on the Simulation of Adap-
tive Behaviour. MIT Press, Cambridge (1998)

20. Melhuish, C., Sendova-Franks, A.B., Scholes, S., Horsfield, I., Welsby, F.: Ant-
inspired sorting by robots: the importance of initial clustering. J. R. Soc. Interface
3(7), 235–242 (2006)

21. Melhuish, C., Wilson, M., Sendova-Franks, A.: Patch sorting: multi-object cluster-
ing using minimalist robots. In: Kelemen, J., Sośık, P. (eds.) ECAL 2001. LNCS
(LNAI), vol. 2159, pp. 543–552. Springer, Heidelberg (2001). https://doi.org/10.
1007/3-540-44811-X 62

22. Olson, E.: AprilTag: a robust and flexible visual fiducial system. In: Proceedings
of the IEEE International Conference on Robotics and Automation (ICRA), pp.
3400–3407. IEEE Xplore (May 2011)

23. Østergaard, E.H., Sukhatme, G.S., Matarić, M.J.: Emergent bucket brigading -
a simple mechanism for improving performance in multi-robot constrained-space
foraging tasks. In: In Autonomous Agents, pp. 2219–2223 (2001)

24. Petersen, K.H., Napp, N., Stuart-Smith, R., Rus, D., Kovac, M.: A review of col-
lective robotic construction. Sci. Robot. 4(28) (2019). https://doi.org/10.1126/
scirobotics.aau8479. http://robotics.sciencemag.org/content/4/28/eaau8479

25. Rohmer, E., Singh, S.P.N., Freese, M.: CoppeliaSim (formerly V-REP): a ver-
satile and scalable robot simulation framework. In: Proceedings of the Interna-
tional Conference on Intelligent Robots and Systems (IROS) (2013). http://www.
coppeliarobotics.com

26. Schmolke, A., Mallot, H.: Territory formation in mobile robots. In: Artificial Life
VIII, pp. 256–269 (2002)

27. Schneider-Fontán, M., Matarić, M.: Territorial multi-robot task division. IEEE
Trans. Robot. Autom. 14(5), 815–822 (1998)

28. Shell, D., Matarić, M.: On foraging strategies for large-scale multi-robot systems.
In: IEEE/RSJ International Conference on Intelligent Robots and Systems (2006)

29. Soleymani, T., Trianni, V., Bonani, M., Mondada, F., Dorigo, M., et al.: An
autonomous construction system with deformable pockets. Technical report,
IRIDIA Technical Report Series, January, 2014–002. IRIDIA, Université Libre de
Bruxelles, Brussels (2014)

30. Stewart, R.L., Russell, R.A.: A distributed feedback mechanism to regulate wall
construction by a robotic swarm. Adapt. Behav. 14(1), 21–51 (2006)

31. Strickland, C., Churchill, D., Vardy, A.: A reinforcement learning approach to
multi-robot planar construction. In: IEEE International Symposium on Multi-
Robot and Multi-Agent Systems (2019)

32. Vardy, A.: Orbital construction: swarms of simple robots building enclosures. In:
2018 IEEE 3rd International Workshops on Foundations and Applications of Self*
Systems (FAS* W), pp. 147–153 (2018)

33. Vardy, A.: Landmark-guided shape formation by a swarm of robots. In: Correll, N.,
Schwager, M., Otte, M. (eds.) Distributed Autonomous Robotic Systems. SPAR,
vol. 9, pp. 371–383. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
05816-6 26

34. Vardy, A., Vorobyev, G., Banzhaf, W.: Cache consensus: rapid object sorting by
a robotic swarm. Swarm Intell. 8(1), 61–87 (2014). http://www.cs.mun.ca/av/
supp/si12

https://doi.org/10.1007/3-540-44811-X_62
https://doi.org/10.1007/3-540-44811-X_62
https://doi.org/10.1126/scirobotics.aau8479
https://doi.org/10.1126/scirobotics.aau8479
http://robotics.sciencemag.org/content/4/28/eaau8479
http://www.coppeliarobotics.com
http://www.coppeliarobotics.com
https://doi.org/10.1007/978-3-030-05816-6_26
https://doi.org/10.1007/978-3-030-05816-6_26
http://www.cs.mun.ca/av/supp/si12
http://www.cs.mun.ca/av/supp/si12

242 A. Vardy

35. Vardy, A., Ibrahim, D.S.: A swarm of simple robots constructing planar shapes.
arXiv preprint arXiv:2004.13888 (2020)

36. Verret, S., Zhang, H., Meng, M.Q.H.: Collective sorting with local communication.
In: IEEE/RSJ International Conference on Robots and Systems (IROS). IEEE
Xplore (2004)

37. Wang, T., Zhang, H.: Multi-robot collective sorting with local sensing. In: IEEE
Intelligent Automation Conference (IAC) (2003)

38. Werfel, J., Petersen, K., Nagpal, R.: Designing collective behavior in a termite-
inspired robot construction team. Science 343(6172), 754–758 (2014)

39. Wurm, K.M., Stachniss, C., Burgard, W.: Coordinated multi-robot exploration
using a segmentation of the environment. In: 2008 IEEE/RSJ International Con-
ference on Intelligent Robots and Systems, pp. 1160–1165 (2008)

http://arxiv.org/abs/2004.13888

The Pi-puck Ecosystem: Hardware and
Software Support for the e-puck and

e-puck2

Jacob M. Allen1 , Russell Joyce1 , Alan G. Millard2(B) , and Ian Gray1

1 Department of Computer Science, University of York, York, UK
{jma542,russell.joyce,ian.gray}@york.ac.uk

2 Lincoln Centre for Autonomous Systems, University of Lincoln, Lincoln, UK
amillard@lincoln.ac.uk

Abstract. This paper presents a hardware revision of the Pi-puck exten-
sion board that now includes support for the e-puck2. This Raspberry
Pi interface for the e-puck robot provides a feature-rich experimentation
platform suitable for multi-robot and swarm robotics research. We also
present a new expansion board that features a 9-DOF IMU and XBee
interface for increased functionality. We detail the revised Pi-puck hard-
ware and software ecosystem, including ROS support that now allows
mobile robotics algorithms and utilities developed by the ROS commu-
nity to be leveraged by swarm robotics researchers. We also present the
results of an illustrative multi-robot mapping experiment using new long-
range Time-of-Flight distance sensor modules, to demonstrate the ease-of
use and efficacy of this new Pi-puck ecosystem.

1 Introduction

The e-puck robot platform [15] is widely-used for mobile robotics research, and
is a popular choice for swarm robotics due to its size and commercial avail-
ability. Three hardware revisions of the original e-puck (v1.1–1.3) have been
released commercially by GCtronic and EPFL since it was first developed in
2004, followed by the release of the e-puck2 in 2018. Our Pi-puck1 extension
board allows a Raspberry Pi single-board computer to be interfaced with an
e-puck or e-puck2 to enhance its capabilities. It features a range of augmenta-
tions over the base e-puck design, including greater computational power, and
increased communication, sensing and interfacing abilities. The first prototype
design of the Pi-puck extension board was created by the York Robotics Labo-
ratory (YRL) at the University of York, and was published in 2017 [12], before
the release of the e-puck2. The latest version of the hardware was developed
as a collaboration between YRL and GCtronic to support both the e-puck and
e-puck2, and is available to purchase from GCtronic and its distributors.

Nedjah and Junior [17] argue that there is an urgent need to standardise
many aspects of swarm robotics research, so that faster progress can be made
1 https://www.york.ac.uk/robot-lab/pi-puck.

c© Springer Nature Switzerland AG 2020
M. Dorigo et al. (Eds.): ANTS 2020, LNCS 12421, pp. 243–255, 2020.
https://doi.org/10.1007/978-3-030-60376-2_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-60376-2_19&domain=pdf
http://orcid.org/0000-0001-9425-5917
http://orcid.org/0000-0002-6773-3837
http://orcid.org/0000-0002-4424-5953
http://orcid.org/0000-0003-1150-9905
https://www.york.ac.uk/robot-lab/pi-puck
https://doi.org/10.1007/978-3-030-60376-2_19

244 J. M. Allen et al.

towards real-world applications. In particular, they call for standardisation of
hardware and software – the Pi-puck aims to provide a common hardware and
software ecosystem for researchers that wish to run embedded Linux and asso-
ciated software on e-puck robots. The board was designed to replace the now
deprecated Linux extension board developed by the Bristol Robotics Labora-
tory [9], and the Gumstix Overo COM turret [2]. The recently published Xpuck
[7] is an e-puck extension that is similar in spirit to the Pi-puck – extending
the e-puck with a powerful ODROID-XU4 single-board computer through cus-
tom hardware. This greatly enhances the robot’s computational capabilities, but
comes at the cost of size (the form factor of the XU4 is similar to that of the
Raspberry Pi 3 or 4) and power consumption, necessitating the use of an auxil-
iary battery. The Xpuck was also developed prior to the release of the e-puck2,
and its communication with the robot relies on an SPI bus that is not present on
the e-puck2’s expansion connector. In contrast, the Pi-puck has been designed
around the Raspberry Pi Zero to provide a modest compute upgrade while min-
imising size and energy usage, and primarily uses I2C for communication with
the base robot, which is compatible with both the e-puck and e-puck2.

Nedjah and Junior [17] also encourage the use of Robot Operating System
(ROS) [21] to facilitate standardisation. Although ROS has become the de facto
standard for robotics middleware in single-robot and multi-robot studies, the
swarm robotics research community has generally been reluctant to adopt it.
This can partly be attributed to the fact that many swarm hardware platforms
are microcontroller-based, so cannot run ROS on-board [24], however ROS inte-
gration can still be achieved via wireless communication and the rosserial
interface – see the Mona [25] and HeRo [22] swarm platforms. Additionally, the
ROS communication model is inherently centralised, which is antithetical to the
philosophy of many swarm algorithms.

Rudimentary ROS support was implemented for the previous version of the
Pi-puck [12], and the software infrastructure has now been updated to provide
ROS Melodic support for the latest hardware revision, opening the door to a large
body of existing work developed by the ROS community. This paper discusses
the ROS drivers and ecosystem developed for the Pi-puck platform, and how they
can be leveraged by other swarm robotics researchers. We recognise that the use
of ROS may not be appropriate in some cases, and Pi-puck users may instead opt
for lighter-weight software frameworks designed specifically for swarm robotics
research such as Buzz [19], OpenSwarm [24], or SwarmTalk [26]. For resource-
constrained experiments, the Pi-puck could be programmed to work with these
frameworks instead of ROS.

2 Hardware Changes

There have been several major changes to the design of the Pi-puck hardware
since it was first published in 2017 [12], which add new features, implement
support for the e-puck2, and improve the stability of the platform for large-scale
production. Many of these changes were made after consultation with members of

The Pi-puck Ecosystem 245

Fig. 1. Left : Pi-puck on e-puck2, with six Time-of-Flight distance sensor modules.
Centre: Pi-puck board with YRL Expansion Board, XBee, and OLED display. Right :
Pi-puck on e-puck1, with expansion board and e-ink pHAT showing an ArUco tag.

the swarm robotics community, and with GCtronic as the primary manufacturer
of the e-puck robot. Figure 1 shows the latest version of the Pi-puck extension
board connected to an e-puck robot, along with a further expansion board and
attached hardware (detailed in Sect. 2.1), as well as six Time-of-Flight (ToF)
distance sensor modules.

A full block diagram detailing the hardware of the Pi-puck platform is shown
in Fig. 2, which includes the components added to the robot on the extension
board itself, as well as the major communication buses between the Raspberry
Pi, extension board hardware, and the base e-puck robot. The Raspberry Pi
Zero WH is specifically supported, due to its wide availability, low cost, minimal
power consumption, integrated wireless capabilities, and small physical footprint.
However, it is feasible that other Raspberry Pi and compatible boards could be
used with the Pi-puck if additional mechanical support and wiring were added.

Raspberry Pi Support. The first fundamental change is in the mounting
of the Raspberry Pi board, which is now face-down. This allows Raspberry Pi
boards with pre-soldered headers to be used, which are easier to acquire in large
quantities. A small micro-USB shim has been added to allow USB communica-
tion between the Raspberry Pi and Pi-puck extension board, and an integrated
USB hub allows up to three devices to utilise this connection simultaneously. The
Raspberry Pi UART is also accessible through a micro-USB port on the Pi-puck
board, via a USB-UART converter, allowing a text console on the Raspberry Pi
to be accessed without additional hardware.

Sensor Modules. Six 4-pin sockets are provided around the edge of the
robot for connecting optional I2C sensor modules, allowing for a range of flex-
ible options for experimentation. The mapping application detailed in Sect. 5
uses custom-designed, open-source2 distance sensor boards based around the

2 https://github.com/yorkrobotlab/pi-puck-tof-sensor.

https://github.com/yorkrobotlab/pi-puck-tof-sensor

246 J. M. Allen et al.

VL53L1X ToF laser-ranging module (4 m range) – similar to the VL53L0X dis-
tance sensor on the front of the e-puck2 (with a 2 m range).

 Raspberry Pi

ARM SoC

 Pi-puck Extension Board

 e-puck

SPIUART I C USB

Robot Microcontroller
dsPIC (e-puck)

STM32 (e-puck2)

Bluetooth

e-puck reset
button

Status LEDs

Stepper
motors LEDs IR

sensors
e-puck camera

IMU
analogue (1.1 & 1.2)
I C (1.3 & e-puck2)

Wi-Fi RPi camera

USB UART

UART
headers

Expansion header

microSD card

e-puck
battery Microphones

Auxiliary
battery

Speaker

ADC

RGB LEDs

Speaker
e-puck2 only

I S
microphone

Battery
charger

Sensor Board
Connectors

FT903

USB-A port

Charging
contacts Micro-USB

Distance sensor
e-puck2 only

Other e-puck Extensions
Range and bearing board, ground sensor, etc.

Fig. 2. Overview of interfaces between the Raspberry Pi, Pi-puck extension board,
and e-puck hardware. Arrows show master to slave (I2C/SPI), host to device (USB), or
data/power direction. Dashed lines indicate hardware and connections that are optional
or not available on all e-puck revisions.

Battery Power. The Pi-puck extension board can be powered from either
the standard e-puck battery, an auxiliary battery connected through a JST-PH
socket, or from both batteries simultaneously. When powered from an 1800 mAh
e-puck battery, an idling Pi-puck with no expansion hardware will drain its
battery in approximately 5 h. An active Pi-puck that is performing a simple
obstacle avoidance algorithm controlled from the Raspberry Pi, while fitted with
the extensions shown in Fig. 1 (including an XBee, OLED display and six ToF
sensors), has been measured to last around 1.5 h. Both of these times could be
increased significantly by attaching an auxiliary battery to augment the power
provided by the e-puck battery.

The Pi-puck has two battery charging circuits on-board, to allow for charging
each of the two batteries independently. Batteries can be charged either by con-
necting a 5 V power supply to the sprung charging contacts on the front of the

The Pi-puck Ecosystem 247

robot (e.g. via an external charging wall), or through the integrated micro-USB
socket. Additionally, both battery voltages can be measured in real-time from the
Raspberry Pi using an on-board analogue-to-digital converter (ADC), allowing
automatic shutdown or recharging behaviours to be triggered in software.

Pi-puck Expansion Header

USB UART

I C SPI USB

IMU

24-pin RPi headerNavigation
switchRGB LED

Status LEDs

XBee

GPIO expander

XBee reset
button

Fig. 3. Overview of interfaces between the Pi-puck and YRL Expansion Board. Arrows
show master to slave (I2C/SPI), host to device (USB), or data direction. Dashed lines
indicate hardware and connections that are optional.

Camera Interface. An FTDI FT903 MCU is used to convert the e-puck’s
parallel camera interface to a USB Video Device Class (UVC) peripheral to make
it accessible from the standard Linux kernel and applications on the Raspberry
Pi. Like the Xpuck [7], the Pi-puck can capture 640 × 480 resolution video at
15 frames per second, enabling improved on-board image processing over the
resource-constrained e-puck microcontroller. The Raspberry Pi configures the
camera sensor via I2C, then the FT903 creates the UVC device and streams
the image. The FT903’s firmware can easily be updated over USB using the
Device Firmware Upgrade (DFU) standard, and its UART interface is broken
out to header pins, to allow for customisation of the microcontroller firmware
and support for potential future e-puck camera sensor design changes.

Additional I/O. The Raspberry Pi is connected directly to an I2S microphone
on the Pi-puck extension board, as well as an audio amplifier and speaker. The
Pi-puck board has three additional RGB LEDs that can be individually con-
trolled over the I2C interface, via the FT903 microcontroller. A vertical USB-A
port allows the connection of an additional USB device to the Raspberry Pi,
through the on-board USB hub, and a further USB channel is attached to a
general-purpose expansion header, which also breaks out the I2C and SPI buses
along with power and other signals. Both e-puck1 and e-puck2 UART interfaces
are broken-out to pins on the Pi-puck board, to allow for easier debugging of the
robot’s microcontroller firmware using modern 3.3 V signals.

248 J. M. Allen et al.

2.1 YRL Expansion Board

To complement the base Pi-puck platform, we have developed an additional
board that connects to the expansion header on the top of the robot. This board
has a similar form-factor to the Raspberry Pi Zero, and is physically mounted
to the Raspberry Pi while being electrically connected to the Pi-puck board
(see Fig. 1). An overview of the expansion board hardware is shown in Fig. 3,
including its I2C, SPI and USB interfaces to the base Pi-puck, and additional I/O
options. The hardware designs for the expansion board are fully open source3,
allowing it to be used as a basis for other custom expansion boards if desired.

The expansion board hosts an LSM9DS1 9-DOF IMU, which provides a 3-
axis accelerometer, gyroscope, and magnetometer to the Raspberry Pi over an
I2C interface, and is an essential addition for certain robotics applications such
as SLAM algorithms. This is useful primarily when using the e-puck1, which
only has either a 3-DOF accelerometer connected to the dsPIC, or a 6-DOF
I2C accelerometer and gyroscope (depending on the specific hardware revision),
compared to the e-puck2 which has a built-in MPU-9250 9-DOF IMU.

The expansion board also provides a socket for an XBee radio module, acces-
sible through a USB-UART interface to the Raspberry Pi, and LEDs for showing
the radio status. Using a generic set of headers for the XBee interface allows
multiple generations and specifications of XBee modules to be used, as long as
they comply to the standard pinout. The Pi-puck’s XBee interface enables peer-
to-peer, point-to-point, or mesh networking between robots, and can be used
for transmitting data with higher bandwidth than infrared transceivers, as well
as estimating the distance of neighbouring robots by measuring received signal
strength (see Fig. 4). In addition to robot-to-robot communication, the Pi-puck’s
XBee module could also be integrated with XBee-enabled experimental infras-
tructure like the IRIDIA Task Abstraction Module [1].

One benefit of the Pi-puck is the ability to leverage the Raspberry Pi ecosys-
tem, which is taken further by the expansion board’s 24-pin Raspberry Pi com-
patible header, allowing the robot to be extended with a large variety of existing
hardware. Figure 1 shows the Pi-puck with the off-the-shelf Inky pHAT e-ink
display from Pimoroni [18], which can be used in a swarm context for very
low power dynamic agent identification through ArUco tags [3], and additional
human-swarm interaction possibilities [14], as well as enabling simpler integra-
tion with tools like ARDebug [13]. This is achieved easily though using existing
software packages with minimal modification, and without the need for custom
Linux kernel drivers or firmware.

3 Software Ecosystem

This section describes the software ecosystem that supports the Pi-puck exten-
sion board hardware, including our customised Linux distribution, e-puck micro-
controller firmware, and software interfaces to other e-puck extensions.

3 https://github.com/yorkrobotlab/pi-puck-expansion-board.

https://github.com/yorkrobotlab/pi-puck-expansion-board

The Pi-puck Ecosystem 249

10 50 100 150 200 250 300 350
30

40

50

60

70

80

90

Distance between Pi-pucks (cm)

R
SS

I
ra
ng

e
(

dB
)

Fig. 4. Reported range of XBee packet RSSI (Received Signal Strength Indicator)
values with varying transmission distance between a pair of Pi-pucks.

Linux Distribution. There are currently two main Linux distributions for the
Pi-puck – one supported by GCtronic4 (included on the Pi-puck’s microSD card
when purchased from them), and one created by YRL, which is detailed in this
paper. This allow us to provide support for different features of the platform,
while targeting different users and alternative approaches for packaging software.

The YRL Pi-puck software distribution offers a foundation for research and
education, with a focus on open-source packages that are easy to modify, build
and distribute. The core of the distribution is supplied as a set of Debian packages
that are hosted in a package repository online5, and are available in source format
for modification if desired6. These packages cover the full Linux set-up of the
Pi-puck hardware, as well as providing utilities for controlling and programming
various devices on the robot. Distributing this software via Debian packages
allows for easy installation on any Debian-based Linux distribution, automatic
resolution of any dependencies, and straightforward updates.

To accelerate the initial configuration of each robot, the Pi-puck Debian
packages are built into the Pi-puck Raspbian microSD card image7, which is
created using the pi-gen tool from the Raspberry Pi Foundation. This image
is based on the standard Raspberry Pi Foundation Raspbian Buster image, but
with additional build stages added to include the Pi-puck packages, and to mod-
ify the default Linux configuration to better support a swarm of robots. This
image is supplied both in source form and as a file system image that can be
directly copied onto a microSD card for use with the Raspberry Pi. Additional
files for assisting with the deployment of a swarm of robots are included on the
FAT32 boot partition of the SD card, allowing users to configure parameters
such as Wi-Fi connection details and a unique robot hostname before the image
is first booted. Users can also add additional packages and files into the pi-gen

4 https://www.gctronic.com/doc/index.php?title=Pi-puck.
5 https://www.cs.york.ac.uk/pi-puck/.
6 https://github.com/yorkrobotlab/pi-puck-packages.
7 https://github.com/yorkrobotlab/pi-gen.

https://www.gctronic.com/doc/index.php?title=Pi-puck
https://www.cs.york.ac.uk/pi-puck/
https://github.com/yorkrobotlab/pi-puck-packages
https://github.com/yorkrobotlab/pi-gen

250 J. M. Allen et al.

build system, in order to create a custom Raspbian distribution for a specific
experiment or application.

e-puck Microcontroller Firmware. Alongside the Linux software for the Pi-
puck, the e-puck1 dsPIC firmware has been re-written to support controlling the
robot entirely over I2C, and to update the code to work with modern Microchip
XC16 compilers and the MPLAB X IDE. Firmware for the e-puck2 is currently
provided and supported by GCtronic.

The Pi-puck hardware enables users to program the e-puck1 firmware HEX
file directly from Linux running on the Raspberry Pi, allowing any changes to the
firmware to be easily programmed onto a swarm of robots over an SSH connec-
tion. We provide a new dsPIC bootloader firmware that must be programmed
to each e-puck once using a standard PIC in-circuit debugger to enable this
feature, after which all subsequent programming can be done directly from the
Raspberry Pi, using provided programming scripts. Due to hardware differences,
the same method of firmware programming does not work with the e-puck2’s
microcontrollers, however they could be programmed from the Raspberry Pi
using Bluetooth, Wi-Fi or USB (with the use of an additional cable) instead.

Other e-puck Extensions. The Pi-puck hardware allows the Raspberry Pi to
communicate with any devices on the e-puck’s I2C bus, including other e-puck
extension boards, such as the range and bearing turret [5] and ground sensors
module. Python software has been written to demonstrate how to interface with
the range and bearing turret directly from the Raspberry Pi (with both the stan-
dard and DEMIURGE firmware8), without requiring any input from the e-puck’s
microcontroller, and is provided as an example in the Pi-puck software reposi-
tory. Python code for communicating with the e-puck ground sensors extension
from the Raspberry Pi is also provided, allowing for this to be included in high-
level robot control applications.

4 Robot Operating System (ROS) Support

The base e-puck1 is able to provide limited ROS support via Bluetooth and an
external computer, and the e-puck2 extends this functionality with the option
of using Wi-Fi instead of Bluetooth [4]. The Pi-puck allows ROS nodes to be
executed directly on the robot instead, thanks to the Raspberry Pi’s embedded
Linux operating system. ROS integration for the Pi-puck is implemented by the
pi puck driver package, which contains a series of Python nodes9 that support
the features listed in this section. The Pi-puck ROS repository has been created
for ROS Melodic (supported until May 2023), and has been tested on Raspbian
Buster on the Raspberry Pi.

8 https://github.com/demiurge-project/argos3-epuck/tree/master/erab firmware.
9 https://github.com/yorkrobotlab/pi-puck-ros.

https://github.com/demiurge-project/argos3-epuck/tree/master/erab_firmware
https://github.com/yorkrobotlab/pi-puck-ros

The Pi-puck Ecosystem 251

Motors. The motors node communicates with a robot controller by subscribing
to wheel speeds and publishing the step counts of the e-puck’s stepper motors.
This node interfaces with the e-puck’s microcontroller via I2C to request step
counts and set the speed of each wheel independently, allowing for precise move-
ment and turning. The motors node also publishes nav msgs/Odometry mes-
sages, containing the robot’s pose and linear/angular velocity, estimated from
the motor step counts using dead reckoning.

A base controller node is also provided to convert geometry msgs/Twist
messages (containing the desired linear and angular velocity of the robot) into
control signals for the motors. This allows control of the robot to be abstracted
away from specifying individual wheel speeds, and the implementation auto-
matically scales the wheel speeds to account for combined linear and angular
velocities exceeding physical limits.

Sensors. The short range ir node interfaces with the e-puck’s analogue IR
transceivers, and publishes their readings as eight separate sensor msgs/Range
messages (reflected IR, offset by ambient IR), so they can be used as prox-
imity sensors. The raw IR readings are mapped to distances between 5 mm
and 40 mm by applying a logarithmic least error fit to experimentally-measured
sensor data. The long range ir node similarly interfaces with the Pi-puck’s
optional long-range ToF distance sensors (via STMicro’s pre-built closed-source
driver), and publishes their readings as up to six separate sensor msgs/Range
messages (depending on the number of sensor modules installed).

Many existing ROS SLAM packages (such as GMapping) require distance
data to be presented as sensor msgs/LaserScan messages rather than the point
cloud that is obtained from the individual distance and ToF sensors. To solve
this, a transform is provided that re-exposes a sensor msgs/Range message as
a sensor msgs/LaserScan of three points, denoting the edges and centre of the
field of view of the range sensor. Additionally, for sensor measurements to be
mapped correctly onto the world, the reference frames for the sensors and the
Pi-puck itself must be broadcast as a series of transforms, either statically or
dynamically depending on whether the reference frame can move in relation to
other reference frames. A Unified Robot Description Format (URDF) model is
provided for this purpose, which contains a list of reference frames, and a list of
static transforms between those reference frames. This also allows the Pi-puck
sensor readings to be visualised on a 3D model in RViz.

Power, IMU, and OLED. The power node interfaces with the Pi-puck’s
ADC to obtain the voltages of the e-puck and auxiliary batteries, and publishes
them, along with metadata such as whether the battery is currently charging,
as sensor msgs/BatteryState messages.

Additional support is provided for features of the YRL Expansion Board,
such as the LSM9DS1 IMU and accessories using the 24-pin header. The
imu node interfaces with the IMU on the expansion board, and publishes the

252 J. M. Allen et al.

accelerometer and gyroscope readings as sensor msgs/Imu messages. Magne-
tometer readings are published as sensor msgs/MagneticField messages, and
the robot’s pose is subsequently derived from these two message types using
Madgwick’s IMU and AHRS (Attitude and Heading Reference System) algo-
rithm [10]. Calibration scripts are also provided in order to account for mag-
netic interference from the robot’s motors and speaker. The oled node interfaces
with the optional Adafruit PiOLED display, and subscribes to std msgs/String
and sensor msgs/Image messages published by other nodes, allowing text and
images to be displayed (e.g. robot ID, or status).

Fig. 5. Results of single-robot and multi-robot mapping experiments. From left to
right : test arenas, single-robot mapping with obstacle avoidance, single-robot mapping
with frontier exploration, and swarm mapping.

5 Environment Mapping

As an initial application case study, we present experimental results from an
environment mapping task to demonstrate the applicability of the Pi-puck ROS
platform for swarm experimentation. The focus here is on the integration of the
Pi-puck drivers with existing third-party ROS packages, to highlight the com-
patibility and ease of use of the platform. The currently available experimental
environments are quite small, limiting the maximum swarm size due to practi-
cal working limitations, but experimentation with larger environments and more
robots is planned once possible.

Single-Robot Mapping. Single-robot SLAM has previously been imple-
mented by GCtronic, both using a real e-puck and an e-puck model simulated
in Webots [11]. This was achieved via the e-puck’s Bluetooth ROS driver, the

The Pi-puck Ecosystem 253

Webots ROS interface, and the OpenSLAM GMapping package. However, this
approach used the e-puck’s analogue IR sensors, so the mapping range was lim-
ited to around 40 mm. Longer-range mapping has since been achieved through
the use of ToF sensor modules via an Arduino interface and custom hardware
[16].

To test the compatibility of the Pi-puck ROS drivers with other ROS pack-
ages, we integrated them with the GMapping package [23] (running on a separate
computer) and the default ROS navigation stack. We used a single Pi-puck to
map the two arenas shown in Fig. 5, controlled both via an obstacle avoidance
controller, and with the explore lite frontier exploration package [6]. Both of
these environments were successfully mapped, as shown in Fig. 5.

Multi-robot Mapping. Kegeleirs et al. [8] recently investigated the effect of
different random walk behaviours on an e-puck swarm’s ability to map simple
environments. Their work was implemented using ROS Indigo support for the
e-puck’s Gumstix Overo COM turret and the GMapping package, along with the
multirobot map merge package [6] for combining the maps produced by each
robot. Results from their initial experiments in the ARGoS robot simulator [20]
were quite promising, but unfortunately the maps produced by the real e-puck
robots were far less faithful to the true environment. This can be attributed
to the limited range and high noise of the base e-puck’s IR sensors, as well as
compound odometry errors.

To test the ability of the Pi-puck ROS drivers to work in an environment
where multiple robots are operating together on the same ROS network, a small
swarm of four robots was used to perform mapping (without localisation) using
GMapping while avoiding obstacles. The four individual maps were then com-
bined in real-time using the multirobot map merge package. The Pi-puck swarm
was able to successfully map the environments (as shown in Fig. 5), thanks to
the improved IMU on the expansion board and the longer-range, higher-accuracy
ToF sensor modules. Initial robot positions were randomised, not known to the
swarm, and were not coordinated in any way.

6 Conclusion

The Pi-puck is an open-source extension for the e-puck and e-puck2 robot plat-
forms that expands their capabilities by interfacing with the Raspberry Pi – a
popular single-board computer. This paper has detailed the latest hardware revi-
sion of the Pi-puck, as well as the software infrastructure developed to support
it, including Raspbian and ROS integration. This affords access to the Debian
and ROS ecosystems, allowing for easy use of standard algorithms for tasks such
as navigation and SLAM.

We hope that the hardware presented in this paper will facilitate experi-
mentation with swarm algorithms that were previously either not possible or
inconvenient to implement, and that the evolving software infrastructure con-
tinues to support the efforts of other researchers. Full documentation and source

254 J. M. Allen et al.

code for the Pi-puck platform and associated extensions is available online10, in
addition to the resources on the GCtronic Wiki [4].

References

1. Brutschy, A., et al.: The TAM: abstracting complex tasks in swarm robotics
research. Swarm Intell. 9(1), 1–22 (2015)

2. Garattoni, L., Francesca, G., Brutschy, A., Pinciroli, C., Birattari, M.: Software
infrastructure for e-puck (and TAM). Technical report, TR/IRIDIA/2015-004, Uni-
versité Libre de Bruxelles (2015)

3. Garrido-Jurado, S., Muñoz Salinas, R., Madrid-Cuevas, F., Medina-Carnicer, R.:
Generation of fiducial marker dictionaries using mixed integer linear programming.
Pattern Recogn. 51 (2015)

4. GCtronic: GCtronic Wiki. https://www.gctronic.com/doc/index.php?
title=GCtronic Wiki

5. Gutiérrez, Á., Campo, A., Dorigo, M., Donate, J., Monasterio-Huelin, F., Mag-
dalena, L.: Open e-puck range & bearing miniaturized board for local communica-
tion in swarm robotics. In: International Conference on Robotics and Automation,
pp. 3111–3116. IEEE (2009)

6. Hörner, J.: Map-merging for multi-robot system. Bachelor’s thesis, Charles Uni-
versity in Prague, Faculty of Mathematics and Physics, Prague (2016)

7. Jones, S., Studley, M., Hauert, S., Winfield, A.F.T.: A two teraflop swarm. Front.
Robot. AI Multi-Robot Syst. 5(11), 1–19 (2018)

8. Kegeleirs, M., Garzón Ramos, D., Birattari, M.: Random walk exploration for
swarm mapping. In: Althoefer, K., Konstantinova, J., Zhang, K. (eds.) TAROS
2019. LNCS (LNAI), vol. 11650, pp. 211–222. Springer, Cham (2019). https://doi.
org/10.1007/978-3-030-25332-5 19

9. Liu, W., Winfield, A.F.T.: Open-hardware e-puck Linux extension board for exper-
imental swarm robotics research. Microprocess. Microsyst. 35(1), 60–67 (2011)

10. Madgwick, S.O.H., Harrison, A.J.L., Vaidyanathan, R.: Estimation of IMU and
MARG orientation using a gradient descent algorithm. In: IEEE International
Conference on Rehabilitation Robotics (2011)

11. Michel, O.: Cyberbotics Ltd., Webots: professional mobile robot simulation. Int.
J. Adv. Rob. Syst. 1(1), 5 (2004)

12. Millard, A.G., et al.: The Pi-puck extension board: a Raspberry Pi interface for
the e-puck robot platform. In: International Conference on Intelligent Robots and
Systems (IROS), pp. 741–748. IEEE (2017)

13. Millard, A.G., et al.: ARDebug: an augmented reality tool for analysing and debug-
ging swarm robotic systems. Front. Robot. AI Multi-Robot Syst. 5(87), 1–6 (2018)

14. Millard, A.G., Joyce, R., Gray, I.: Human-swarm interaction via e-ink displays. In:
ICRA Human-Swarm Interaction Workshop (2020)

15. Mondada, F., et al.: The e-puck, a robot designed for education in engineering. In:
Conference on Autonomous Robot Systems and Competitions, vol. 1, pp. 59–65
(2009)

16. Moriarty, D.: Swarm Robotics - Mapping Using E-Pucks: Part II. https://
medium.com/@DanielMoriarty/swarm-robotics-mapping-using-e-pucks-part-ii-
ac15c5d62e3

10 https://pi-puck.readthedocs.io.

https://www.gctronic.com/doc/index.php?title=GCtronic_Wiki
https://www.gctronic.com/doc/index.php?title=GCtronic_Wiki
https://doi.org/10.1007/978-3-030-25332-5_19
https://doi.org/10.1007/978-3-030-25332-5_19
https://medium.com/@DanielMoriarty/swarm-robotics-mapping-using-e-pucks-part-ii-ac15c5d62e3
https://medium.com/@DanielMoriarty/swarm-robotics-mapping-using-e-pucks-part-ii-ac15c5d62e3
https://medium.com/@DanielMoriarty/swarm-robotics-mapping-using-e-pucks-part-ii-ac15c5d62e3
https://pi-puck.readthedocs.io

The Pi-puck Ecosystem 255

17. Nedjah, N., Junior, L.S.: Review of methodologies and tasks in swarm robotics
towards standardization. Swarm Evol. Comput. 50, 100565 (2019)

18. Pimoroni: Inky pHAT EPD Display for Raspberry Pi. https://shop.pimoroni.com/
products/inky-phat

19. Pinciroli, C., Beltrame, G.: Buzz: an extensible programming language for hetero-
geneous swarm robotics. In: International Conference on Intelligent Robots and
Systems (IROS), pp. 3794–3800. IEEE (2016)

20. Pinciroli, C., et al.: ARGoS: a modular, parallel, multi-engine simulator for multi-
robot systems. Swarm Intell. 6(4), 271–295 (2012)

21. Quigley, M., et al.: ROS: an open-source Robot Operating System. In: ICRA Work-
shop on Open Source Software (2009)

22. Rezeck, P.A., Azpurua, H., Chaimowicz, L.: HeRo: an open platform for robotics
research and education. In: Latin American Robotics Symposium (LARS) and
Brazilian Symposium on Robotics (SBR), pp. 1–6. IEEE (2017)

23. ROS Contributors: gmapping - ROS Wiki. http://wiki.ros.org/gmapping
24. Trenkwalder, S.M., Lopes, Y.K., Kolling, A., Christensen, A.L., Prodan, R., Groß,

R.: OpenSwarm: an event-driven embedded operating system for miniature robots.
In: 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), pp. 4483–4490. IEEE (2016)

25. West, A., Arvin, F., Martin, H., Watson, S., Lennox, B.: ROS integration for minia-
ture mobile robots. In: Giuliani, M., Assaf, T., Giannaccini, M.E. (eds.) TAROS
2018. LNCS (LNAI), vol. 10965, pp. 345–356. Springer, Cham (2018). https://doi.
org/10.1007/978-3-319-96728-8 29

26. Zhang, Y., Zhang, L., Wang, H., Bustamante, F.E., Rubenstein, M.: SwarmTalk
- towards benchmark software suites for swarm robotics platforms. In: Proceed-
ings of the 19th International Conference on Autonomous Agents and MultiAgent
Systems, pp. 1638–1646 (2020)

https://shop.pimoroni.com/products/inky-phat
https://shop.pimoroni.com/products/inky-phat
http://wiki.ros.org/gmapping
https://doi.org/10.1007/978-3-319-96728-8_29
https://doi.org/10.1007/978-3-319-96728-8_29

Zealots Attack and the Revenge of the
Commons: Quality vs Quantity in the

Best-of-n

Giulia De Masi1,2(B) , Judhi Prasetyo3,4 , Elio Tuci4 ,
and Eliseo Ferrante1,5

1 Technology Innovation Institute, Abu Dhabi, UAE
2 CNHS, Zayed University, Dubai, UAE

giuliademasi@gmail.com
3 Middlesex University Dubai, Dubai, UAE

4 Université de Namur, Namur, Belgium
5 Vrije Universiteit Amsterdam, Amsterdam, Netherlands

Abstract. In this paper we study the effect of inflexible individuals with
fixed opinions, or zealots, on the dynamics of the best-of-n collective
decision making problem, using both the voter model and the majority
rule decision mechanisms. We consider two options with different qual-
ities, where the lower quality option is associated to a higher number
of zealots. The aim is to study the trade-off between option quality and
zealot quantity for two different scenarios: one in which all agents can
modulate dissemination of their current opinion proportionally to the
option quality, and one in which this capability is only possessed by the
zealots. In both scenarios, our goal is to determine in which conditions
consensus is more biased towards the high or low quality option, and
to determine the indifference curve separating these two regimes. Using
both numerical simulations and ordinary differential equation models,
we find that: i) if all agents can modulate the dissemination time based
on the option quality, then consensus can be driven to the high quality
option when the number of zealots for the other option is not too high; ii)
if only zealots can modulate the dissemination time based on the option
quality, whil e all normal agents cannot distinguish the two options and
cannot differentially disseminate, then consensus no longer depends on
the quality and is driven to the low quality option by the zealots.

1 Introduction

Collective decision making is a process whereby a population of agents makes a
collective decision based only on local perception and communication. Originally
inspired by the behavior of social insects [2,4], collective decision making is con-
sidered an important problem connected to more elaborated collective behaviors
in swarms robotics [28], such as site selection or collective motion [3].

The best-of-n problem [28] is a special case where agents have to chose the
best option among n possible alternatives with potentially different qualities.
c© Springer Nature Switzerland AG 2020
M. Dorigo et al. (Eds.): ANTS 2020, LNCS 12421, pp. 256–268, 2020.
https://doi.org/10.1007/978-3-030-60376-2_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-60376-2_20&domain=pdf
http://orcid.org/0000-0003-3284-880X
http://orcid.org/0000-0003-2319-6627
http://orcid.org/0000-0001-7345-671X
http://orcid.org/0000-0002-2213-8356
https://doi.org/10.1007/978-3-030-60376-2_20

Zealots Attack and the Revenge of the Commons 257

The option quality may be known to swarm members [29], or may need to be
discovered [23–25]. An option can be considered best because it minimizes the
cost required to be evaluated or because its intrinsic quality is the highest [28].
In the latter case, a method to achieve the optimal collective decision is to let
each agent advertise an option for a duration that is proportional to its quality,
a mechanism called “modulation of positive feedback” [8,29,30].

In this paper we focus on the best-of-n problem with n = 2 options in presence
of stubborn individuals, henceforth called zealots. Zealots are individuals that
have a fixed opinion that never changes. We introduce differential option quality
and differential zealot quantity in an antagonistic setting: the two options are
associated to different values of quality and zealot quantities; and the number of
zealots is higher for the option that has a lower quantity, hence it is not obvious
which option will prevail. Two specific cases are compared: i) all agents are able
to measure the quality of the two options and disseminate for a time proportional
to the quality; ii) only zealots and not the normal agents are able to measure
the quality of the different options, and disseminate for a time proportional to
the quality of their opinion, while normal agents disseminate for a time that
is independent from the quality. This last scenario is referring for example to
the case where, in a swarm of robots used for monitoring task, only some of
them (zealots) have additional sensors and they can perceive the quality of the
two options. In this case, the number of zealots can be a design parameter or a
constraint depending on the problem: fully equipped robots with many sensors
are more expensive due to a larger payload.

Using computer simulations and ordinary differential equations (ODEs) mod-
els, we ask the following question: Is the swarm consensus state more biased
towards the option represented by more zealots or the one represented by the
highest quality? We are particularly interested in identifying the “indifference
curve” separating the two regions identified by the consensus state being more
biased towards one or the other option. We investigate whether the indifference
curve behaves differently across two scenarios. Finally, we determine whether
these results are affected by two decision mechanisms: the voter models, whereby
agents change their opinion copying the opinion of a random neighbor, and the
majority model where instead agents adopt the opinion of the local majority.

The remaining of the paper is organized as follows. In Sect. 2, we discuss the
state of art. In Sect. 3, we describe the collective decision-making model utilized
in this study. In Sect. 4 we discuss the results obtained. In Sect. 5, we conclude
the paper and discuss future developments.

2 State of the Art

The best-of-n problem is inspired by biological studies of swarms of ants and
bees [9,15,26]. As extensively discussed in [28], the quality and cost of the options
can further characterize the nature of the best-of-n decision-making problem. In
the current paper, quality and not cost is the main factor driving consensus.

Another important element that bears upon the decision-making dynamics
is the presence of zealots within the swarm. The influence of zealots has been

258 G. De Masi et al.

abundantly studied in physics, but introduced within swarms only recently. In
the following, we will first review the few contributions focusing on zealots within
swarms, and then review some of the work done within physics.

In the context of swarms, a recent study [21] illustrated the impact of zealots
in the context of dynamic environments, where the option qualities can drasti-
cally change over time. Here, the presence of a small number of zealots enables
the swarm to always select the option with the best quality even after abrupt
changes, while without zealots, the swarm is not able to adapt and the consensus
remains frozen. The authors in [5] introduced three types of malicious agents that
can affect resilience of a swarm: contrarians, wishy-washy, and zealots. They per-
formed a preliminary study on their effect on the best-of-n with four mechanisms:
voter, majority, cross inhibition, and k-unanimity (q-voter). In [22], the authors
also looked at the effects of malicious adversarial zealots in a data communi-
cation manipulation scenario, proposing a probabilistic decision-making rule to
increase resilience. A very recent extension has been applied and evaluated the
same scheme to a simulated swarm robotics scenario [14].

In the context of physics, the author in [6] introduced zealots in a model of
pairwise social influence for opinion dynamics, and showed a rich phase diagram
of the possible dynamics when only a small percentage of zealots is present.
In the context of Internet social networks, the best placement of zealots that
maximizes the impact on the consensus dynamics of the population is studied in
[13]. The study shows that a small number of zealots can significantly influence
the overall opinion dynamics and induce the entire population to reach a large
consensus over disputed issues, such as Brexit. In [17], the authors studied the
role of zealots in a social system using the naming game as decision mechanism.
They show that even a very small minority can drive the opinion of a large
population, if committed agents are more active than the others. However, this
effect can be hindered if nodes with the same opinion are more connected with
each other than with nodes with different opinion, producing a polarization inside
the network.

The authors of [11,18] studied the impact of zealots in a social network,
considering different degrees of zealotry. The focus of [11] is studying the effect
of zealotry on the convergence time of the system. In [18], despite having used
the majority rule instead than the voter, the authors were able to find similar
results as in [7,21], in which introducing equal number of zealots on both option
sides prevents the network from reaching a consensus state. Similarly, in [32],
the presence of zealots is proven to prevent the formation of consensus, intro-
ducing instabilities and fluctuations in a binary voter model of a small-world
network. A recent study illustrated in [1] aimed at studying the influence of
zealots on “politically polarized” state vs consensus state and found that higher
“influence of zealots” produces more polarization, shorter time to polarization,
and conversely less consensus and longer to impossible time to consensus.

In [31], the authors showed the presence of a tipping point at which a minority
of zealots is able to swing the initial majority opinion in a network. The study
described in [16] focused on zealots with the voter model to perform peer-to-

Zealots Attack and the Revenge of the Commons 259

peer opinion influence, however differently from our work zealots were nodes of
a complex network. In [10], a scenario with zealots with the majority rule was
studied. The outcome of the system was spontaneous symmetry breaking when
zealot numbers were symmetrical for the two options, while consensus towards
one option emerged even with minimal unbalance in the number of zealots. In
these studies options did not have an intrinsic quality.

Fig. 1. (a) Probabilistic finite state machine. States represent dissemination and explo-
ration states. Solid lines denote deterministic transitions, while dotted lines stochastic
transitions. The symbol V M indicates the model (Voter/Majority) used at the end of
the dissemination state. (b) The simulation arena.

To summarize, zealotry has been abundantly studied in physics, typically
in fixed interaction topologies, and only recently introduced in the context of
swarms, in dynamic local interaction topologies. Compared to the latest work
in swarms [5,14,21,22], to the best of our knowledge, in this paper we study for
the first time the interplay between different option quality and different zealot
quantity, by extending the preliminary study in [19], in which the voter model
only was considered and all the agents were able to disseminate differentially
with quality.

3 The Model

In the best-of-n problem, a swarm of agents has to reach a collective decision
among n possible alternatives. In this paper, the n = 2 opinions considered are
labelled A and B and have intrinsic quality values ρA and ρB . The best collective
decision is made if consensus is for the option with highest quality: formally, a
large majority M ≤ N(1 − δ) of agents agrees on the same option, where δ
is a small number chosen by the experimenter. δ = 0 corresponds to perfect
consensus. Variants of the best-of-n are: the two options may have differential
access times or costs [28], option quality may change over time [19,21], or the
swarm may have a heterogeneous nature [21]. In the latter, a special case consists
in the swarm composed by two different types of agents: zealots, agents with a
fixed unchangeable opinion A or B; and normal agents, initialized with opinion

260 G. De Masi et al.

A or B, but able to change their opinion by applying a decision mechanism that
relies on the observation of other agents in local proximity.

Table 1. Model parameters used in simulations

Parameter Description Values

N Swarm size {100, 1000}
ρA Site A quality 1

ρB Site B quality {1, 1.05, 1.10, .., 2}
σB Proportion of zealots with opinion B to N {0, 0.0125, 0.025, 0.05}
σA Proportion of zealots with opinion A to N {0, 0.05, ..0.5}

3.1 The Simulation Model

Similarly to [20], the behaviour of the agents is controlled by the probabilistic
finite state machine (FSM) shown in Fig. 1a. The FSM has four possible states:
dissemination state of opinion A (DA), dissemination state of opinion B (DB),
exploration state of opinion A (EA), and exploration state of opinion B (EB).
Agents are located in a rectangular arena divided in a central part called the
nest and lateral (left and right) parts called the sites, each associated to A
or B, respectively (see Fig. 1b). All agents are initialized inside the nest, and
move toward the site associated with their opinion to explore that option, for
an exponentially distributed amount of time (sampled independently per agent)
with mean time q, independent of the current opinion. After exploration, agents
have measured the site quality and travel back to the nest after having switched
to the dissemination state associated with their current opinion (DA if they were
in EA, DB if they were in EB).

In the dissemination state at the nest, to meet the well-mixed criterion as
much as possible [12], agents perform a correlated random walk. Each agent
locally broadcasts his opinion continuously, and this message is sensed by other
agents in local proximity that are in the process of applying the decision mecha-
nism (before transitioning back to the exploration state). The time spent by the
agent disseminating its opinion is exponentially distributed with mean propor-
tional to the site quality they have last visited g ·ρi, i ∈ {a, b}. We considered two
different cases in this paper. In the first, both normal agents and zealots with
opinion A disseminate proportional to ρA, and both normal agents and zealots
with opinion B disseminate proportional to ρB . In the second case, only zealots
disseminate proportional to quality (ρA or ρB), while normal agents disseminate
independently from the quality proportionally to ρ = 1. This second case is novel
in this paper and was introduced to determine whether modulation of positive
feedback is effective through zealots only.

At the end of dissemination, normal agents and zealots behave in two different
ways. Normal agents can change their opinion based on the opinions of other

Zealots Attack and the Revenge of the Commons 261

agents within a specified spatial radius (in our simulations set to 10 units). The
voter model or the majority rule is applied: In the case of voter model, the agent
switches its opinion to the one of a random neighbors within the interaction
radius [30]; while in majority rule, the agent switches its opinion to the one of
the majority of its neighbors (G = 2 neighbors [29]).

3.2 ODEs Model

We adapted the model proposed in [21] which extends the ones in [29,30]. The
variables eA, eB , dA, dB model the sub-population of agents exploring site A,
exploring site B, disseminating in the nest opinion A and disseminating in the
nest opinion B, respectively. The variables modeling sub-populations of zealots
are constant. They are denoted with eAS , eBS , dAS , dBS . The total proportion
of agents with opinion A and B are respectively xA = eA + dA + eAS + dAS

and xB = eB + dB + eBS + dBS . The total number of agents is conserved
xA + xB = 1.

The system of 8 ODEs with 8 state variables is given by:

˙dA = − 1
ρANg

dA +
1
q
eA

˙dAS = − 1
ρAg

dAS +
1
q
eAS (1)

˙dB = − 1
ρBNg

dB +
1
q
eB

˙dBS = − 1
ρBg

dBS +
1
q
eBS (2)

˙eA = −1
q
eA +

pAA

ρANg
dA +

pBA

ρBNg
dB ˙eAS = −1

q
eAS +

1
ρAg

dAS (3)

˙eB = −1
q
eB +

1 − pAA

ρANg
dA +

1 − pBA

ρBNg
dB ˙eBS = −1

q
eBS +

1
ρBg

dBS (4)

Equations on the left column describe the dynamics of normal agents, while
equations on the right column describe the dynamics of zealots. In Eq. 1-left,
the proportion of agents disseminating opinion A increases because of agents
returning from the exploration of A at rate 1

q , and decreases because of agents
terminating dissemination at rate 1

ρANg . Similarly, Eq. 2-left describe the rate of
increase of the number of agents disseminating opinion B. In Eq. 3-left the num-
ber of agents exploring site A decreases because of agents finishing exploration at
rate 1

q , and increases because of two contributions: i) agents that had previously
opinion A and kept the same opinion after the application of the voter/majority
model and ii) agents that had previously opinion B but switch to A as a result
of the voter/majority model. Similarly, Eq. 4-left describes how agents exploring
site B vary. The rates pAA, pAB , pBA, and pBB describe the probabilistic out-
come of the two decision mechanisms and are described next. Note that qualities
in the left column equations are indicated with ρAN and ρBN as placeholders.
These correspond to the site qualities ρAN = ρA, ρBN = ρB when all agents
disseminate differentially, while ρAN = ρBN = ρ = 1 when only zealots dissemi-
nate differentially. The dynamic of zealots is described in a very similar way by
the equations on the right column. The only difference consists in the impossi-
bility that a zealot to change its opinion after any interaction, thus the terms

262 G. De Masi et al.

that depend on the decision mechanisms are omitted. For the zealot case, the
dissemination always takes place proportional to ρA and ρB .

Regarding the decision mechanism, for the voter model the probability that
the outcome of the decision is A (resp. B) is the probability that, when observing
a random agent disseminating, that random agent is disseminating A (resp.
B). This is given by the ratio of agents disseminating A with respect to the
total number of agents disseminating: pAA = pBA = dA+dAS

dA+dAS+dB+dBS
(resp.

pBB = pAB = dB+dBS

dA+dAS+dB+dBS
.).

For the majority model, where each agent switches its opinion to the one
hold by the majority of its G neighbors, the two probabilities are simply
given by the cumulative sum of probabilities distributed according to a hyper-
geometric distribution modeling how many neighbors have each of the two
opinions [29]. As in [29], we used: pAA =

∑G+1
G
2

G!
r!(G−r)!p

r(1 − p)G−r and

pBA =
∑G

2
0

G!
r!(G−r)!p

G−r(1 − p)r.

Fig. 2. Consensus heatmaps for the voter model in simulations (first row) and with
ODEs (second row), for all agents performing differential dissemination (a and c) and
for only performing differential dissemination (b and d). In all cases σB = 0.0125, and
N = 1000 in the simulations. The colour scale represents the consensus for A. Dark
blue colors indicate perfect consensus to the best opinion B, dark red colors indicate
perfect consensus to the worst opinion, A, while the white color shows the indifference
curve (consensus state around 0.5). (Color figure online)

Zealots Attack and the Revenge of the Commons 263

4 Experimental Evaluation

The experiments were conducted using a simulation tool originally developed by
[30]. The simulated arena is a rectangular, two-dimensional space. The collision
of the agents is not modeled, however, previous results show that real robot
experiments could be accurately reproduced [27].

In each experiment, σA (resp. σB) is the proportion of zealots committed
to A (resp. B). In every run, we first initialize the zealots according to σA

and σB. Afterwards, we set 50% of the remaining (normal) agents to opinion
A and the remaining (normal) agents to opinion B. We fix N = 1000 agents
and σB = 0.0125, as preliminary [19] as well as current study shows that these
parameters do not affect the results. The nest size to 316 × 316 and two sites
have the same size of the nest. As zealots need to be more numerous for the
option with the lower quality, we set σA ≥ σB and ρA ≤ ρB . Table 1 reports all
parameter values.

Fig. 3. Consensus heatmap obtained from ODE solution of majority model (σB =
0.0125). Two cases are considered: all agents disseminate for a time proportional to the
quality of the option (Panel a and b) or only zealots disseminate for a time proportional
to the quality of the option (Panel c and d). The colour scale represents NA/N . Blue
cells indicate perfect consensus (agreement to the best opinion, B). Red cells mean
consensus to the worst opinion, A. Tiled cells in (b) and (d) indicate the lack of a
second stable equilibrium. (Color figure online)

264 G. De Masi et al.

4.1 Results with the Voter Model

In Fig. 2, we report the heatmaps obtained from simulations and ODE corre-
sponding to the two cases where all the agents disseminate proportionally to the
quality (panels a and c) and where only zealots disseminate proportionally to the
quality (panels b and d). The simulations results (panels a and b) are reproduced
very well by the ODE predictions (c and d, respectively). When all the agents are
aware or can measure the qualities of the two options, the consensus to the best
option B, represented in blue color, can still be reached despite the increasing
number of zealots of the opposite opinion. Only for very high number of zealots
(larger than 30% of the total agents), consensus is driven to the worst option A.
The indifference curve here is diagonal and depends on both parameters ρB and
σA. The quality of the best option B has a predominant effect with respect to
the quantity of zealots for the worst option A.

On the contrary, if only zealots can measure the quality and disseminate
differentially, consensus is never driven to the best option B, except for the case
where the number of zealots of the worst option is the same or less than the
number of zealots of the best option. In other words, the indifference curve is in
this case vertical and only depends on the parameter σA.

4.2 Results with the Majority Rule

Given the very good results obtained from ODE that accurately reproduce the
multi-agents simulations, we used ODEs to study how the system behaves when
using the majority rule as decision mechanism. These are shown in Fig. 3. Panels
a and b show the case where all agents are disseminating proportionally to the
quality, while panels c and d show the case where only zealots are disseminating
proportionally to the quality. Figure 3 reports only the stable equilibria. In
both cases, two different regimes can be observed. For every value σA, a stable
equilibria appears (left panels), while a second stable equilibrium exists only
for low values of σA (right panels). This additional stable equilibrium for the
worst option A can be explained by the faster and less accurate dynamics of the
majority rule [29]. Looking to the first stable equilibirium (left panels), results
are similar to those of voter model: If all agents disseminate differentially, we
observe a dependency on ρB , while if only zealots disseminate differentially the
results depend only on σA. However, compared to voter decision mechanism,
the majority rule seems more resilient to the quantity of zealots A: When all
agents disseminate differentially, the system is more resilient to σA for lower
values of ρB , while for higher values of ρB the voter and the majority behave
in a similar way; additionally, also when only zealots disseminate differentially
the system can converge to the best option for higher values of σA using the
majority compared to the voter.

We also visualize the bifurcation diagram (Fig. 4) for the case where all
agents disseminate proportionally to the quality (left column) and the case where
zealots only disseminate proportionally to the quality (right column). Every
row represents a different value of ρB = 1, 1.5, 2 respectively. The consensus

Zealots Attack and the Revenge of the Commons 265

Fig. 4. Bifurcation diagram for majority model with all agents disseminating differen-
tially (left column) and with only zealots disseminating differentially (right column)
for different values of ρB : ρB = 1 (first row), ρB = 1.5 (second row), ρB = 2 (third
row). σB = 0.0125 in all plots. Stable equilibria are represented by a continuous line,
while unstable equilibria are represented by a dashed line and indicated with an .̂

state for A, denoted by xA, is studied for increasing σA. Here, we confirm the
presence of two stable equilibria for low values of σA. At some point, a saddle-
node bifurcation occurs, and only one stable equilibrium survives. However, we
observe that the position of the saddle-node bifurcation moves to the right with
respect to σA only for the case where all agents disseminate differentially, and not
for the case where only zealots do so. We believe these dynamics are interesting
because this potentially means that the system is irreversible: if initially the
number of zealots A is low, consensus will very likely be for B. However, if σA

increases, consensus will abruptly change to A after the bifurcation. From that
point onwards, reducing again σA will not recover consensus to B but the system

266 G. De Masi et al.

will be locked in the A consensus state even for progressively lower and lower
values of σA.

5 Conclusions

In this paper the well established model of best-of-n model is investigated by
focusing on the interplay between zealots and quality. We focus on the antago-
nistic scenario in which the number of zealots is higher for the option that has
the lowest quality. Two specific cases are considered: i) both normal agents and
zealots can measure the quality of the two options; ii) only zealots can measure
the quality of the two options.

The main findings of this paper are: i) if both zealots and normal agents have
a different dissemination time determined by the quality of their opinion, the
quality has the capability to drive the consensus to the best option, provided
that the number of stubborn of the worst opinion is not too high; ii) if only
zealots disseminate for a time proportional to the quality of their opinion, the
consensus is driven only by the number of zealots. In this case, the quality never
prevails and the consensus is to the option with higher number of zealots. From
a social perspective, these results show that if only an élite knows how good dif-
ferent alternatives are, or have means to measure this information, the consensus
cannot be driven to the better quality if the number of zealots supporting the
worse quality is higher than the number of zealots supporting the best quality.
This means that zealots can be explicitly designed to manipulate the opinion of
the population. On the contrary, it is of paramount importance, at least in our
models, that the whole population has the means to assess the quality of the
alternatives, because this is the only way to be resilient, up to a given extent, to
zealot manipulations and to achieve the best social good.

In the future, we would like to further analyze the dynamics, especially those
with the majority model that manifested interesting irreversible dynamics. We
would like to relate this model with others such as those based on cross inhibi-
tion [25]. Additionally, from the engineering perspective, we would like to under-
stand whether it is possible to design a resilient mechanism for the normal indi-
viduals to be resilient to zealots even when they cannot measure the quality, in
order to revert the results obtained with zealot-only differential dissemination.
These can be useful in swarm robotics applications whereby sensors necessary
to estimate quality are expensive and can only be produced for a minority of the
individuals.

Acknowledgments. We would like to thank Andreagiovanni Reina and Gabriele
Valentini for the useful discussions on the theoretical models and the latter for the
original multi-agent simulator code.

References

1. Bhat, D., Redner, S.: Nonuniversal opinion dynamics driven by opposing external
influences. Phys. Rev. E 100, 050301 (2019)

Zealots Attack and the Revenge of the Commons 267

2. Bonabeau, E., Dorigo, M., Theraulaz, G.: Swarm Intelligence: From Natural to
Artificial Systems. Oxford University Press, New York (1999)

3. Brambilla, M., Ferrante, E., Birattari, M., Dorigo, M.: Swarm robotics: a review
from the swarm engineering perspective. Swarm Intell. 7(1), 1–41 (2013)

4. Camazine, S., Deneubourg, J.L., Franks, N.R., Sneyd, J., Theraulaz, G., Bonabeau,
E.: Self-Organization in Biological Systems. Princeton University Press, Princeton
(2001)

5. Canciani, F., Talamali, M.S., Marshall, J.A.R., Bose, T., Reina, A.: Keep calm
and vote on: swarm resiliency in collective decision making. In: Proceedings of
Workshop Resilient Robot Teams of the 2019 IEEE International Conference on
Robotics and Automation (ICRA 2019), p. 4, IEEE Press, Piscataway (2019)

6. Colaiori, F., Castellano, C.: Consensus versus persistence of disagreement in opin-
ion formation: the role of zealots. J. Stat. Mech. Theory Exp. 2016(3), 1–8 (2016)

7. De Masi, G., Ferrante, E.: Quality-dependent adaptation in a swarm of drones for
environmental monitoring. In: 2020 Advances in Science and Engineering Technol-
ogy International Conferences (ASET). IEEE Press, Piscataway (2020, to appear)

8. Font Llenas, A., Talamali, M.S., Xu, X., Marshall, J.A.R., Reina, A.: Quality-
sensitive foraging by a robot swarm through virtual pheromone trails. In: Dorigo,
M., Birattari, M., Blum, C., Christensen, A.L., Reina, A., Trianni, V. (eds.) ANTS
2018. LNCS, vol. 11172, pp. 135–149. Springer, Cham (2018). https://doi.org/10.
1007/978-3-030-00533-7 11

9. Franks, N.R., Pratt, S.C., Mallon, E.B., Britton, N.F., Sumpter, D.J.T.: Informa-
tion flow, opinion polling and collective intelligence in house-hunting social insects.
Philos. Trans. R. Soc. B Biol. Sci. 357(1427), 1567–1583 (2002)

10. Galam, S., Jacobs, F.: The role of inflexible minorities in the breaking of democratic
opinion dynamics. Physica A 381(1–2), 366–376 (2007)

11. Ghaderi, J., Srikant, R.: Opinion dynamics in social networks with stubborn agents:
equilibrium and convergence rate. Automatica 50(12), 3209–3215 (2014)

12. Hamann, H.: Opinion dynamics with mobile agents: contrarian effects by spatial
correlations. Front. Robot. AI 5, 63 (2018)

13. Hunter, D.S., Zaman, T.: Optimizing opinions with stubborn agents under time-
varying dynamics (2018)

14. Maitre, G., Tuci, E., Ferrante, E.: Opinion dissemination in a swarm of simulated
robots with stubborn agents: a comparative study. In: A. Hussain, et al. (ed.) IEEE
Congress on Evolutionary Computation, CEC 2020 (within IEEE World Congress
on Computational Intelligence (WCCI) 2020). IEEE Press, Piscataway (2020, to
appear)

15. Marshall, J.A.R., Bogacz, R., Dornhaus, A., P̃lanqué, R., Kovacs, T.,Franks, N.R.:
On optimal decision-making in brains and social insect colonies. J. R. Soc. Interface
6(40), 1065–1074(2009)

16. Masuda, N.: Opinion control in complex networks. New J. Phys. 17, 1–11 (2015)
17. Mistry, D., Zhang, Q., Perra, N., Baronchelli, A.: Committed activists and the

reshaping of status-quo social consensus. and Related Interdisciplinary TopicsPhys.
Rev. E Stat. Nonlin. Soft Matter Phys. 92(4), 1–9 (2015)

18. Mukhopadhyay, A., Mazumdar, R.: Binary opinion dynamics with biased agents
and agents with different degrees of stubbornness. In: 28th International Teletraffic
Congress (ITC28), vol. 01, pp. 261–269. IEEE, Piscataway (2016)

19. Prasetyo, J., De Masi, G., Tuci, E., Ferrante, E.: The effect of differential quality
and differential zealotry in the best-of-n problem. In: Coello, C.A.C., et al. (ed.)
Proceedings of the Twenty-second International Conference on Genetic and Evo-
lutionary Computation (GECCO 2020). ACM, New York, NY (2020, to appear)

https://doi.org/10.1007/978-3-030-00533-7_11
https://doi.org/10.1007/978-3-030-00533-7_11

268 G. De Masi et al.

20. Prasetyo, J., De Masi, G., Ferrante, E.: Collective decision making in dynamic envi-
ronments. Swarm Intell. 13(3), 217–243 (2019). https://doi.org/10.1007/s11721-
019-00169-8

21. Prasetyo, J., De Masi, G., Ranjan, P., Ferrante, E.: The best-of-n problem
with dynamic site qualities: achieving adaptability with stubborn individuals. In:
Dorigo, M., Birattari, M., Blum, C., Christensen, A.L., Reina, A., Trianni, V. (eds.)
ANTS 2018. LNCS, vol. 11172, pp. 239–251. Springer, Cham (2018). https://doi.
org/10.1007/978-3-030-00533-7 19

22. Primiero, G., Tuci, E., Tagliabue, J., Ferrante, E.: Swarm attack: a self-organized
model to recover from malicious communication manipulation in a swarm of simple
simulated agents. In: Dorigo, M., Birattari, M., Blum, C., Christensen, A.L., Reina,
A., Trianni, V. (eds.) ANTS 2018. LNCS, vol. 11172, pp. 213–224. Springer, Cham
(2018). https://doi.org/10.1007/978-3-030-00533-7 17

23. Reina, A., Dorigo, M., Trianni, V.: Towards a cognitive design pattern for collective
decision-making. In: Dorigo, M., et al. (eds.) ANTS 2014. LNCS, vol. 8667, pp.
194–205. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-09952-1 17

24. Reina, A., Miletitch, R., Dorigo, M., Trianni, V.: A quantitative micro-macro
link for collective decisions: the shortest path discovery/selection example. Swarm
Intell. 9(2–3), 75–102 (2015)

25. Reina, A., Valentini, G., Fernández-Oto, C., Dorigo, M., Trianni, V.: A design
pattern for decentralised decision making. PLoS ONE 10(10), e0140950 (2015)

26. Seeley, T.D.: Honeybee Democracy. Princeton University Press, Princeton (2010)
27. Valentini, G., Brambilla, D., Hamann, H., Dorigo, M.: Collective perception of

environmental features in a robot swarm. In: Dorigo, M., et al. (eds.) ANTS 2016.
LNCS, vol. 9882, pp. 65–76. Springer, Cham (2016). https://doi.org/10.1007/978-
3-319-44427-7 6

28. Valentini, G., Ferrante, E., Dorigo, M.: The best-of-n problem in robot swarms:
formalization, state of the art, and novel perspectives. Front. Robot. AI 4, 9 (2017)

29. Valentini, G., Ferrante, E., Hamann, H., Dorigo, M.: Collective decision with 100
Kilobots: Speed versus accuracy in binary discrimination problems. Auton. Agents
Multi-Agent Syst. 30(3), 553–580 (2016)

30. Valentini, G., Hamann, H., Dorigo, M.: Self-organized collective decision making:
The weighted voter model. In: Lomuscio, A., Scerri, P., Bazzan, A., Huhns, M.
(eds.) Proceedings of the 13th International Conference on Autonomous Agents
and Multiagent Systems, AAMAS 2014, IFAAMAS, pp. 45–52 (2014)

31. Xie, J., Sreenivasan, S., Korniss, G., Zhang, W., Lim, C., Szymanski, B.K.: Social
consensus through the influence of committed minorities. and Related Interdisci-
plinary TopicsPhys. Rev. E Stat. Nonlin. Soft Matter Phys. 84(1), 1–9 (2011)

32. Yildiz, E., Ozdaglar, A., Acemoglu, D., Saberi, A., Scaglione, A.: Binary opin-
ion dynamics with stubborn agents. ACM Trans. Econ. Comput. 1(4), 19:1–19:30
(2013)

https://doi.org/10.1007/s11721-019-00169-8
https://doi.org/10.1007/s11721-019-00169-8
https://doi.org/10.1007/978-3-030-00533-7_19
https://doi.org/10.1007/978-3-030-00533-7_19
https://doi.org/10.1007/978-3-030-00533-7_17
https://doi.org/10.1007/978-3-319-09952-1_17
https://doi.org/10.1007/978-3-319-44427-7_6
https://doi.org/10.1007/978-3-319-44427-7_6

Short Papers

AutoMoDe-Arlequin: Neural Networks as
Behavioral Modules for the Automatic
Design of Probabilistic Finite-State

Machines

Antoine Ligot , Ken Hasselmann , and Mauro Birattari(B)

IRIDIA, Université libre de Bruxelles, Brussels, Belgium
mbiro@ulb.ac.be

Abstract. We present Arlequin, an off-line automatic design method
that produces control software for robot swarms by combining behav-
ioral neural-network modules generated via neuro-evolution. The neural-
network modules are automatically generated once, in a mission-agnostic
way, and are then automatically assembled into probabilistic finite-state
machines to perform various missions. With Arlequin, our goal is to
reduce the amount of human intervention that is required for the imple-
mentation or the operation of previously published modular design meth-
ods. Simultaneously, we assess whether neuro-evolution can be used in a
modular design method to produce control software that crosses the real-
ity gap satisfactorily. We present robot experiments in which we compare
Arlequin with Chocolate, a state of the art modular design method, and
EvoStick, a traditional neuro-evolutionary swarm robotics method. The
preliminary results suggest that automatically combining neural-network
modules into probabilistic finite-state machines is a promising approach
to the automatic conception of control software for robot swarms.

1 Introduction

Swarm robotics is an approach to controlling groups of autonomous robots [13].
A robot swarm is a decentralized system in which individual robots do not
have predefined roles and act solely based on the local information collected
through their sensors or shared by nearby peers. A collective behavior in a swarm
emerges from the interactions between the robots, and between the robots and
the environment. These interactions depend on how the system evolves and
are therefore unknown at design time. Designing the individual behavior of the
robots to obtain the desired collective behavior is a challenging task as there is
no general methodology to do so [8].

For specific missions in specific cases, experts can use principled manual
design methods to obtain the desired collective behavior [1,2,7,25,26,31,37,42,
44]. In the general case, however, experts usually proceed by trial and error. An
alternative to manual design exists: optimization-based design, which consists in
searching among a set of possible individual behaviors the one that maximizes a
c© Springer Nature Switzerland AG 2020
M. Dorigo et al. (Eds.): ANTS 2020, LNCS 12421, pp. 271–281, 2020.
https://doi.org/10.1007/978-3-030-60376-2_21

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-60376-2_21&domain=pdf
http://orcid.org/0000-0001-7388-2866
http://orcid.org/0000-0002-8196-9889
http://orcid.org/0000-0003-3309-2194
https://doi.org/10.1007/978-3-030-60376-2_21

272 A. Ligot et al.

mission-depend objective function that measures the performance of the swarm.
These methods can be classified as online or offline [9,18]: in the first case,
the optimization is performed while the robots operate in the environment; in
the second one, it is performed before deployment, typically using computer
simulations. The work presented in this paper belongs in offline automatic design.

A popular approach to the offline automatic design of robot swarms is neuro-
evolutionary swarm robotics [47], in which individual behaviors are artificial
neural networks whose weights, and possibly their topologies, are fine-tuned
by an evolutionary algorithm [5,12,18,46,48]. Unfortunately, neuro-evolutionary
swarm robotics suffers from a major drawback: it typically does not cope well
with the so-called reality gap, that is, the intrinsic difference between simula-
tion and reality [10,30,46]. As a result, the performance of the generated control
software is likely deceiving in reality and drops significantly with respect to the
one observed in simulation [16,41]. Despite the effort made to handle the real-
ity gap [6,17,28–30,32,39], none of the ideas explored so far appears to be the
ultimate solution [18,35,46]. Other approaches to the offline automatic design of
robot swarms, based on modularity, have been proposed: they generate control
software by assembling low-level behavioral modules [14,15,20]. In this paper,
we present a novel automatic modular design method: Arlequin. This method
belongs to the AutoMoDe family [19,20,27,33,45]. The novelty of Arlequin is
that, contrarily to the previous instances of AutoMoDe that automatically com-
bine behavioral modules conceived by hand, it automatically combines behav-
ioral modules that were themselves automatically generated a priori via neuro-
evolutionary swarm robotics. With Arlequin, our goal is two-fold: (i) to conceive
a method that requires less human expertise during its implementation than the
current instances of AutoMoDe, and (ii) further corroborate the conjecture of
Francesca et al. [20] that lead to the creation of AutoMoDe.

Francesca et al. [20] conjectured that the reality gap problem faced in evo-
lutionary swarm robotics bears a resemblance to the generalization problem of
machine learning, and that the performance drop observed when porting con-
trol software to physical robots is due to a sort of overfitting of the conditions
experienced during the design. According to the bias/variance tradeoff [22,49],
the expected generalization error of a learning algorithm can be decomposed
into a bias and a variance factor. High-complexity learning algorithms have high
variance and low bias, whereas low-complexity ones have low variance and high
bias. For an increasing level of complexity, the generalization error typically first
decreases then increases again. To minimize the generalization error, one must
find the optimal level of complexity of the learning algorithm. Based on this
reasoning, Francesca et al. conjectured that the difficulty of evolutionary swarm
robotics to cross the reality gap is due to an excessively high representational
power that entails a sort of overfitting of the idiosyncrasies of simulation [16,41].
The authors therefore created AutoMoDe to have a higher bias than the neuro-
evolutionary approaches in order to decrease the representational capability of
the control architecture, and to hopefully reduce the performance drop experi-
enced. In AutoMoDe, the bias is injected by restricting to the control software

Neural Networks as Modules for the Design of Finite-State Machines 273

to be a combination of pre-existing modules. So far, the empirical evidence indi-
cates that manually conceiving modules in simulation and validating them on
physical robots can effectively limit the overall performance drop caused by the
module level. With Arlequin, we investigate whether the principles of modular-
ity also hold true when the behavioral modules are automatically generated by a
neuro-evolutionary method. That is, we investigate whether the bias injected by
restricting the control software produced to be combination of neural-network
modules is enough to cross the reality gap satisfactorily.

We created Arlequin to be similar in many aspects to Chocolate, a previ-
ously presented instance of AutoMoDe [19]. Indeed, the two methods only differ
in the behavioral modules used. We did so to single out the aspect we wish to
investigate: the relative advantages and disadvantages of generating behavioral
modules automatically. Chocolate has at his disposal six hand-coded behav-
ioral modules, which are replaced by six neural-network modules in Arlequin.
To generate these neural-network modules, we inferred an objective function
describing each of the six hand-coded behavioral modules of Chocolate, and
fed these objective functions to a neuro-evolutionary design method called Evo-
Stick [20]. Similarly to the modules of Chocolate, the neural-network mod-
ules are generated once, independently of the specific missions Arlequin will
then solve. We evaluate the performance of Arlequin on two missions involving
20 e-puck robots. To assess whether the conjecture of Francesca et al. on the
bias/variance tradeoff also holds true when the predefined behavioral modules
are generated automatically via neuro-evolution, we compare the performance
of Arlequin with the ones of EvoStick and Chocolate.

2 AutoMoDe-Arlequin

Arlequin generates control software for a version of the e-puck [40]—a small,
circular, two-wheeled robot—equipped with a range-and-bearing board [24], a
ground sensor module, and an Overo Gumstix board [21]. We considered a subset
of the capabilities of the robot. In particular, the control software that can
be generated has access to the ground sensor module to detect the color of
the ground situated below the robot (i.e., black, gray, or white); the infrared
sensor module to detect the presence of nearby obstacles and of a light source;
the range-and-bearing module to detect the presence of peers within a range
of approximately 0.7 m and to infer a vector Vd indicating their direction of
attraction; and the wheels actuators to move the robot.

Arlequin generates control software by automatically combining predefined
modules into probabilistic finite-state machines. The modules comprise six low-
level behaviors (i.e., simple actions performed by the robot) and six conditions
(i.e., situations experienced by the robot). The low-level behaviors are associated
to states of the probabilistic finite-state machine, whereas the conditions are
associated to transitions. The low-level behavior associated with the active state
is executed as long as the conditions associated with all its outgoing transitions
are evaluated as false. Once a condition associated with an outgoing transition

274 A. Ligot et al.

is evaluated as true, the active state is updated and the corresponding low-level
behavior is executed. Arlequin has many commonalities with AutoMoDe-Choc-
olate [19]. The two methods adopt irace [4,38] as optimization algorithm to
select and combine the different modules into a probabilistic finite-state machine.
The two methods also impose the same constraints on the probabilistic finite-
state machines produced: they can comport up to four states with up to four
outgoing transitions per states. Finally, Arlequin and Chocolate have at their
disposal the same hand-coded condition modules. We refer the reader to the
original description of these conditions [20].

Arlequin and Chocolate differ in the predefined behavioral modules
adopted: Chocolate combines hand-coded parametric modules, whereas Arle-
quin combines neural-network modules generated by EvoStick [20]. EvoStick
is a relatively simple implementation of the classical neuro-evolutionary robotics
approach: it generates control software in the form of neural networks whose
synaptic weights are obtained via an evolutionary process. In EvoStick, the
produced neural networks are fully connected, do not contain hidden layers, and
have 25 input and 2 output nodes. The neural networks are therefore character-
ized by a total of 50 parameters, each being a real value in [−5, 5]. The 25 input
nodes are organized as follows: 3 are dedicated to the readings of the ground
sensors, 8 to the readings of the proximity sensors, 8 to the readings of the light
sensors, 5 to the readings of the range-and-bearing sensors (4 for the scalar pro-
jections of the vector Vd pointing to the neighboring peers on four unit vectors,
and 1 for the number of detected robots), and one serves as bias. The 2 out-
put nodes control the speed of the left and right wheels of the robot. EvoStick
uses populations of 100 individuals and evaluates each individual 10 times per
generation.

To obtain behaviors that are similar to the six hand-coded low-level behaviors
of Chocolate via neuro-evolution, we inferred an objective function for each of
them. We fed these objective functions to EvoStick to generate control software
for a swarm of 20 simulated e-puck, and considered simulation runs of 120 s.
For each of the low-level behaviors, EvoStick generated 10 instances of control
software. We then evaluated each instance of control software 20 times in sim-
ulation using different initial conditions, and selected the ones with the highest
average performance to be used as low-level behaviors for Arlequin. The design
budget allocated to EvoStick is 20 000 execution runs, which corresponds to 20
generations. The six hand-coded low-level behaviors of Chocolate and the cor-
responding objective functions we devised to obtain the automatically generated
modules of Arlequin are described in Sect. 2.1.

2.1 Low-Level Behaviors

Exploration: In Chocolate, the robot moves straight until an obstacle is per-
ceived by its front proximity sensors, then turns on the spot for a random number
of steps drawn in {0, 1, ..., π}. The parameter π ∈ {0, 1, ..., 100} is meant to be
afterwards tuned by the optimization algorithm on a per-mission basis. In Ar-
lequin, the environment is discretized into a two-dimensional grid G, and the

Neural Networks as Modules for the Design of Finite-State Machines 275

objective function considered rewards the number of cells visited individually.
The objective function, to be maximized, is

∑N
r=1

∑X
i=1

∑Y
j=1 Gr[i][j], where

Gr[i][j] = 1 if robot r visited cell Gr(i, j) at least once, 0 otherwise; N is the num-
ber of robots in the swarm; and X = 20 and Y = 20 are the numbers of rows and
columns in grid G, respectively. Stop: In Chocolate, the robot does not move.
In Arlequin, the objective function penalizes the displacement of the individual
robots. The objective function, to be minimized, is

∑T
t=1

∑N
r ||Pr(t)−Pr(t−1)||,

where Pr(t) is the position of robot r at time t, and T is the duration of the
experimental run. Phototaxis: In Chocolate, the robot moves towards the
light, if perceived. Otherwise, the robot moves straight. In Arlequin, the objec-
tive function penalizes the distance between the individual robots and the light.
The objective function, to be minimized, is

∑T
t=1

∑N
r=1 ||Pr(t) − Plight||, where

Pr(t) and Plight are the positions of robot r at time t and of the light, respectively.
Anti-phototaxis: In Chocolate, the robot moves away from the light, if per-
ceived. Otherwise, the robot moves straight. In Arlequin, the objective function
rewards the distance between the individual robots and the light. The objective
function, to be maximized, is

∑T
t=1

∑N
r=1 ||Pr(t)−Plight||, where Pr(t) and Plight

are the positions of robot r at time t and of the light, respectively. Attraction:
In Chocolate, the robot moves towards the neighboring peers (Vd), if perceived.
Otherwise, the robot moves straight. A parameter α ∈ [1, 5] controls the speed
of convergence towards the detected peers and is meant to be afterwards tuned
by the optimization algorithm on a per-mission basis. In Arlequin, the objec-
tive function penalizes the distance between each pair of robots within the swarm.
The objective function, to be minimized, is

∑T
t=1

∑N−1
i=1

∑N
j=i+1 ||Pi(t)−Pj(t)||,

where Pi(t) and Pj(t) are the positions of robot i and j, respectively. Repulsion:
In Chocolate, the robot moves away from the neighboring peers, if perceived.
Otherwise, it moves straight. A parameter α ∈ [1, 5] controls the speed of diver-
gence and is meant to be afterwards tuned by the optimization algorithm on
a per-mission basis. In Arlequin, the objective function rewards, for each indi-
vidual robot, the distance from its closest peer. The objective function, to be
minimized, is

∑T
t=1

∑N
r=1 ||Pr(t)−Prmin

(t)||, where Pr(t) is the position of robot
r and Prmin

(t) is the one of the robot closest to robot r at time t.

3 Experiments

We generated control software with Arlequin, Chocolate, and EvoStick for
two missions: foraging and aggregation-xor [20]. We considered a swarm
of 20 e-puck robots that operate in a dodecagonal arena of 4.91 m2 delimited by
walls. For each mission, the design budget allowed to each method is 200 000
simulation runs. For each mission, we executed each design method 10 times
and collected the best instance of control software produced by each execution.
We assessed the performance of each instance of control software twice: once
in simulation and once on physical robots [3]. We present the results in the
form of notched boxplots: the notches represent the 95% confidence interval
on the position of the median. If the notches of two boxes do not overlap, the

276 A. Ligot et al.

difference between the respective medians is significant [11]. All simulation runs
were performed with ARGoS [43], which allowed us to directly port the control
software generated to the physical robots without any modifications. All the
control software generated, the raw data collected, and the experimental runs
recorded are available online as supplementary material [36] (Fig. 1).

Fig. 1. The arenas and the results of the experiments.

aggregation-xor. The robots must aggregate on one of the two black areas.
After 180 s, the performance measured by the function FA = max(Nl, Nr)/N ,
where Nl and Nr are the number of robots located on each of the two black
area; and N is the total number of robots. In simulation, Arlequin and Choco-
late show similar performance, but Arlequin is outperformed by EvoStick. In
reality, Arlequin and EvoStick suffer from a significant performance drop, with
EvoStick suffering from the reality gap the most. Indeed, the drop experienced
by Arlequin is at most 0.48, whereas the one experienced by EvoStick is at least
0.55, which makes the performance drop experienced by Arlequin significantly
lower than the one experienced by EvoStick (95% confidence computed with
a paired Wilcoxon test). Chocolate shows similar performance in simulation
and in reality. The performance drop experienced by the three methods when
crossing the reality gap is such that, in reality, Arlequin outperforms EvoStick,
but is outperformed by Chocolate.

foraging. The robots must retrieve objects from two source areas (black cir-
cles) and deposit them in a nest (white area). The objects are virtual: a robot is
deemed to carry an object after it enters one of the source areas and to retrieve
the object when it then enters the nest. A light source is placed behind the nest.

Neural Networks as Modules for the Design of Finite-State Machines 277

The performance measured by the function FF = No, where No is the total num-
ber of objects retrieved after 180 s. In simulation, Arlequin is outperformed by
EvoStick and Chocolate. In reality, the three methods suffer from a significant
performance drop, with EvoStick suffering the most, followed by Arlequin, then
Chocolate. The drop of Arlequin is at most 26, whereas the one of EvoStick
is at least 42, which makes the drop of Arlequin significantly lower than the
one of EvoStick (95% confidence computed with a paired Wilcoxon test). As a
result, Arlequin outperforms EvoStick, but is outperformed by Chocolate.

4 Conclusions

We presented Arlequin, a novel instance of AutoMoDe that differs from the pre-
viously presented ones by the nature of the predefined behavioral modules to be
combined: Arlequin uses neural network modules generated via neuro-evolution,
whereas the others use hand-coded ones. The behavioral modules of Arlequin
were generated via EvoStick, a neuro-evolutionary method. We compared the
performance of the control software generated by Arlequin with the one of Evo-
Stick and Chocolate on two missions. In both missions, the control software
produced by Arlequin suffered from a significant performance drop. However,
the control software generated by EvoStick suffered from a significantly larger
drop than the one produced by Arlequin, and as a result, Arlequin outper-
formed EvoStick in reality. This corroborates the conjecture of Francesca et
al. [20]: restricting the control software to be a combination of low-level, simple
behaviors yields better results in reality than the traditional neuro-evolutionary
approach, despite being the other way around in simulation. Our results show
that this holds true also when the low-level behaviors are neural networks.

Future work will explore different ways of generating and selecting the pool
of modules to be combined into probabilistic finite-state machines (i.e., select the
modules on the basis of their performance assessed in pseudo-reality [34,35] or
on physical robots, generate them with the transferability approach [32]). Future
work will also be dedicated to further reducing the human expertise required
during the implementation of Arlequin. Recently, Gomes and Christensen [23]
proposed an approach to conceive low-level behaviors in a completely automated
fashion. Their approach is based on repertoires of behaviors obtained in a task-
agnostic fashion with a diversity algorithm. We wish to investigate how one
could automatically produce control software for swarm robotics by combining
behavioral modules selected from these repertoires.

Acknowledgements. The experiments were conceived by the three authors and per-
formed by AL and KH. The article was drafted by AL and revised by the three authors.
The research was directed by MB.

The project has received funding from the European Research Council (ERC) under
the European Union’s Horizon 2020 research and innovation programme (grant agree-
ment No 681872). MB acknowledges support from the Belgian Fonds de la Recherche
Scientifique – FNRS.

278 A. Ligot et al.

References

1. Beal, J., Dulman, S., Usbeck, K., Viroli, M., Correll, N.: Organizing the aggregate:
languages for spatial computing. In: Marjan, M. (ed.) Formal and Practical Aspects
of Domain-Specific Languages: Recent Developments, pp. 436–501. IGI Global,
Hershey (2012). https://doi.org/10.4018/978-1-4666-2092-6.ch016

2. Berman, S., Kumar, V., Nagpal, R.: Design of control policies for spatially inho-
mogeneous robot swarms with application to commercial pollination. In: IEEE
International Conference on Robotics and Automation, ICRA, Piscataway, NJ,
USA, pp. 378–385. IEEE (2011). https://doi.org/10.1109/ICRA.2011.5980440

3. Birattari, M.: On the estimation of the expected performance of a metaheuristic
on a class of instances. How many instances, how many runs? Technical report
TR/IRIDIA/2004-01, IRIDIA, Université libre de Bruxelles, Belgium (2004)

4. Birattari, M., Yuan, Z., Balaprakash, P., Stützle, T.: F-race and iterated F-race:
an overview. In: Bartz-Beielstein, T., Chiarandini, M., Paquete, L., Preuss, M.
(eds.) Experimental Methods for the Analysis of Optimization Algorithms, pp.
311–336. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-02538-
9 13

5. Bongard, J.C.: Evolutionary robotics. Commun. ACM 56(8), 74–83 (2013)
6. Bongard, J.C., Lipson, H.: Once more unto the breach: co-evolving a robot and its

simulator. In: Pollack, J.B., Bedau, M.A., Husbands, P., Watson, R.A., Ikegami,
T. (eds.) Artificial Life IX: Proceedings of the Conference on the Simulation and
Synthesis of Living Systems, pp. 57–62. MIT Press, Cambridge (2004)

7. Brambilla, M., Brutschy, A., Dorigo, M., Birattari, M.: Property-driven design
for swarm robotics: a design method based on prescriptive modeling and model
checking. ACM Trans. Auton. Adapt. Syst. 9(4), 17:1–17:28 (2014). https://doi.
org/10.1145/2700318

8. Brambilla, M., Ferrante, E., Birattari, M., Dorigo, M.: Swarm robotics: a review
from the swarm engineering perspective. Swarm Intell. 7(1), 1–41 (2013). https://
doi.org/10.1007/s11721-012-0075-2

9. Bredeche, N., Haasdijk, E., Prieto, A.: Embodied evolution in collective robotics:
a review. Front. Robot. AI 5, 12 (2018). https://doi.org/10.3389/frobt.2018.00012

10. Brooks, R.A.: Artificial life and real robots. In: Varela, F.J., Bourgine, P. (eds.)
Towards a Practice of Autonomous Systems. Proceedings of the First European
Conference on Artificial Life, pp. 3–10. MIT Press, Cambridge (1992)

11. Chambers, J.M., Cleveland, W.S., Kleiner, B., Tukey, P.A.: Graphical Methods
For Data Analysis. CRC Press, Belmont (1983)

12. Doncieux, S., Mouret, J.-B.: Beyond black-box optimization: a review of selective
pressures for evolutionary robotics. Evol. Intell. 7(2), 71–93 (2014). https://doi.
org/10.1007/s12065-014-0110-x

13. Dorigo, M., Birattari, M., Brambilla, M.: Swarm robotics. Scholarpedia 9(1), 1463
(2014). https://doi.org/10.4249/scholarpedia.1463

14. Duarte, M., et al.: Evolution of collective behaviors for a real swarm of aquatic
surface robots. Plos One 11(3), e0151834 (2016). https://doi.org/10.1371/journal.
pone.0151834

15. Duarte, M., Oliveira, S.M., Christensen, A.L.: Evolution of hierarchical controllers
for multirobot systems. In: Sayama, H., Rieffel, J., Risi, S., Doursat, R., Lipson,
H. (eds.) Artificial Life 14. Proceedings of the Fourteenth International Confer-
ence on the Synthesis and Simulation of Living Systems, pp. 657–664. MIT Press,
Cambridge (2014). https://doi.org/10.7551/978-0-262-32621-6-ch105

https://doi.org/10.4018/978-1-4666-2092-6.ch016
https://doi.org/10.1109/ICRA.2011.5980440
https://doi.org/10.1007/978-3-642-02538-9_13
https://doi.org/10.1007/978-3-642-02538-9_13
https://doi.org/10.1145/2700318
https://doi.org/10.1145/2700318
https://doi.org/10.1007/s11721-012-0075-2
https://doi.org/10.1007/s11721-012-0075-2
https://doi.org/10.3389/frobt.2018.00012
https://doi.org/10.1007/s12065-014-0110-x
https://doi.org/10.1007/s12065-014-0110-x
https://doi.org/10.4249/scholarpedia.1463
https://doi.org/10.1371/journal.pone.0151834
https://doi.org/10.1371/journal.pone.0151834
https://doi.org/10.7551/978-0-262-32621-6-ch105

Neural Networks as Modules for the Design of Finite-State Machines 279

16. Floreano, D., Husbands, P., Nolfi, S.: Evolutionary robotics. In: Siciliano, B.,
Khatib, O. (eds.) Springer Handbook of Robotics, pp. 1423–1451. Springer, Hei-
delberg (2008). https://doi.org/10.1007/978-3-540-30301-5 62

17. Floreano, D., Mondada, F.: Evolution of plastic neurocontrollers for situated
agents. In: Maes, P., Matarić, M.J., Meyer, J.A., Pollack, J.B., Wilson, S.W. (eds.)
From Animals to Animats 4: Proceedings of the Fourth International Conference
on Simulation of Adaptive Behavior (SAB), pp. 402–410. MIT Press, Cambridge
(1996)

18. Francesca, G., Birattari, M.: Automatic design of robot swarms: achievements and
challenges. Front. Robot. AI 3(29), 1–9 (2016). https://doi.org/10.3389/frobt.2016.
00029

19. Francesca, G., et al.: AutoMoDe-chocolate: automatic design of control software
for robot swarms. Swarm Intell. 9(2–3), 125–152 (2015). https://doi.org/10.1007/
s11721-015-0107-9

20. Francesca, G., Brambilla, M., Brutschy, A., Trianni, V., Birattari, M.: AutoMoDe:
a novel approach to the automatic design of control software for robot swarms.
Swarm Intell. 8(2), 89–112 (2014). https://doi.org/10.1007/s11721-014-0092-4

21. Garattoni, L., Francesca, G., Brutschy, A., Pinciroli, C., Birattari, M.: Software
infrastructure for e-puck (and TAM). Technical report TR/IRIDIA/2015-004,
IRIDIA, Université libre de Bruxelles, Belgium (2015)

22. Geman, S., Bienenstock, E., Doursat, R.: Neural networks and the bias/variance
dilemma. Neural Comput. 4(1), 1–58 (1992). https://doi.org/10.1162/neco.1992.
4.1.1

23. Gomes, J., Christensen, A.L.: Task-agnostic evolution of diverse repertoires of
swarm behaviours. In: Dorigo, M., Birattari, M., Blum, C., Christensen, A.L.,
Reina, A., Trianni, V. (eds.) ANTS 2018. LNCS, vol. 11172, pp. 225–238. Springer,
Cham (2018). https://doi.org/10.1007/978-3-030-00533-7 18

24. Gutiérrez, Á., Campo, A., Dorigo, M., Donate, J., Monasterio-Huelin, F., Mag-
dalena, L.: Open e-puck range & bearing miniaturized board for local commu-
nication in swarm robotics. In: Kosuge, K. (ed.) IEEE International Conference
on Robotics and Automation, ICRA, Piscataway, NJ, USA, pp. 3111–3116. IEEE
(2009). https://doi.org/10.1109/ROBOT.2009.5152456

25. Hamann, H.: Swarm Robotics: A Formal Approach. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-74528-2

26. Hamann, H., Wörn, H.: A framework of space-time continuous models for algorithm
design in swarm robotics. Swarm Intell. 2(2–4), 209–239 (2008). https://doi.org/
10.1007/s11721-008-0015-3

27. Hasselmann, K., Robert, F., Birattari, M.: Automatic design of communication-
based behaviors for robot swarms. In: Dorigo, M., Birattari, M., Blum, C., Chris-
tensen, A.L., Reina, A., Trianni, V. (eds.) ANTS 2018. LNCS, vol. 11172, pp.
16–29. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00533-7 2

28. Jakobi, N.: Evolutionary robotics and the radical envelope-of-noise hypothesis.
Adapt. Behav. 6(2), 325–368 (1997). https://doi.org/10.1177/105971239700600205

29. Jakobi, N.: Minimal simulations for evolutionary robotics. Ph.D. thesis, University
of Sussex, Falmer, UK (1998)

30. Jakobi, N., Husbands, P., Harvey, I.: Noise and the reality gap: the use of simulation
in evolutionary robotics. In: Morán, F., Moreno, A., Merelo, J.J., Chacón, P. (eds.)
ECAL 1995. LNCS, vol. 929, pp. 704–720. Springer, Heidelberg (1995). https://
doi.org/10.1007/3-540-59496-5 337

31. Kazadi, S.: Model independence in swarm robotics. Int. J. Intell. Comput. Cybern.
2(4), 672–694 (2009). https://doi.org/10.1108/17563780911005836

https://doi.org/10.1007/978-3-540-30301-5_62
https://doi.org/10.3389/frobt.2016.00029
https://doi.org/10.3389/frobt.2016.00029
https://doi.org/10.1007/s11721-015-0107-9
https://doi.org/10.1007/s11721-015-0107-9
https://doi.org/10.1007/s11721-014-0092-4
https://doi.org/10.1162/neco.1992.4.1.1
https://doi.org/10.1162/neco.1992.4.1.1
https://doi.org/10.1007/978-3-030-00533-7_18
https://doi.org/10.1109/ROBOT.2009.5152456
https://doi.org/10.1007/978-3-319-74528-2
https://doi.org/10.1007/s11721-008-0015-3
https://doi.org/10.1007/s11721-008-0015-3
https://doi.org/10.1007/978-3-030-00533-7_2
https://doi.org/10.1177/105971239700600205
https://doi.org/10.1007/3-540-59496-5_337
https://doi.org/10.1007/3-540-59496-5_337
https://doi.org/10.1108/17563780911005836

280 A. Ligot et al.

32. Koos, S., Mouret, J.B., Doncieux, S.: The transferability approach: crossing the
reality gap in evolutionary robotics. IEEE Trans. Evol. Comput 17(1), 122–145
(2013). https://doi.org/10.1109/TEVC.2012.2185849

33. Kuckling, J., Ligot, A., Bozhinoski, D., Birattari, M.: Behavior trees as a control
architecture in the automatic modular design of robot swarms. In: Dorigo, M.,
Birattari, M., Blum, C., Christensen, A.L., Reina, A., Trianni, V. (eds.) ANTS
2018. LNCS, vol. 11172, pp. 30–43. Springer, Cham (2018). https://doi.org/10.
1007/978-3-030-00533-7 3

34. Ligot, A., Birattari, M.: On mimicking the effects of the reality gap with simulation-
only experiments. In: Dorigo, M., Birattari, M., Blum, C., Christensen, A.L., Reina,
A., Trianni, V. (eds.) ANTS 2018. LNCS, vol. 11172, pp. 109–122. Springer, Cham
(2018). https://doi.org/10.1007/978-3-030-00533-7 9

35. Ligot, A., Birattari, M.: Simulation-only experiments to mimic the effects of the
reality gap in the automatic design of robot swarms. Swarm Intell. 14(1), 1–24
(2019). https://doi.org/10.1007/s11721-019-00175-w

36. Ligot, A., Hasselmann, K., Birattari, M.: AutoMoDe-Arlequin: neural networks as
behavioral modules for the automatic design of probabilistic finite state machines:
supplementary material (2020). http://iridia.ulb.ac.be/supp/IridiaSupp2020-005/
index.html

37. Lopes, Y.K., Trenkwalder, S.M., Leal, A.B., Dodd, T.J., Groß, R.: Supervisory con-
trol theory applied to swarm robotics. Swarm Intell. 10(1), 65–97 (2016). https://
doi.org/10.1007/s11721-016-0119-0

38. López-Ibáñez, M., Dubois-Lacoste, J., Pérez Cáceres, L., Birattari, M., Stützle, T.:
The irace package: iterated racing for automatic algorithm configuration. Oper.
Res. Perspect. 3, 43–58 (2016). https://doi.org/10.1016/j.orp.2016.09.002

39. Miglino, O., Lund, H.H., Nolfi, S.: Evolving mobile robots in simulated and real
environments. Artif. Life 2(4), 417–434 (1995). https://doi.org/10.1162/artl.1995.
2.4.417

40. Mondada, F., et al.: The e-puck, a robot designed for education in engineering. In:
Gonçalves, P., Torres, P., Alves, C. (eds.) Proceedings of the 9th Conference on
Autonomous Robot Systems and Competitions, pp. 59–65. Instituto Politécnico de
Castelo Branco, Castelo Branco (2009)

41. Nolfi, S., Floreano, D.: Evolutionary Robotics: The Biology, Intelligence, and Tech-
nology of Self-Organizing Machines. MIT Press, Cambridge (2000)

42. Pinciroli, C., Beltrame, G.: Buzz: a programming language for robot swarms. IEEE
Softw. 33(4), 97–100 (2016). https://doi.org/10.1109/MS.2016.95

43. Pinciroli, C., et al.: ARGoS: a modular, parallel, multi-engine simulator for
multi-robot systems. Swarm Intell. 6(4), 271–295 (2012). https://doi.org/10.1007/
s11721-012-0072-5

44. Reina, A., Valentini, G., Fernández-Oto, C., Dorigo, M., Trianni, V.: A design
pattern for decentralised decision making. PLOS ONE 10(10), e0140950 (2015).
https://doi.org/10.1371/journal.pone.0140950

45. Salman, M., Ligot, A., Birattari, M.: Concurrent design of control software and
configuration of hardware for robot swarms under economic constraints. PeerJ
Comput. Sci. 5, e221 (2019). https://doi.org/10.7717/peerj-cs.221

46. Silva, F., Duarte, M., Correia, L., Oliveira, S.M., Christensen, A.L.: Open issues
in evolutionary robotics. Evol. Comput. 24(2), 205–236 (2016). https://doi.org/
10.1162/EVCO a 00172

47. Trianni, V.: Evolutionary Swarm Robotics. Springer, Berlin (2008). https://doi.
org/10.1007/978-3-540-77612-3

https://doi.org/10.1109/TEVC.2012.2185849
https://doi.org/10.1007/978-3-030-00533-7_3
https://doi.org/10.1007/978-3-030-00533-7_3
https://doi.org/10.1007/978-3-030-00533-7_9
https://doi.org/10.1007/s11721-019-00175-w
http://iridia.ulb.ac.be/supp/IridiaSupp2020-005/index.html
http://iridia.ulb.ac.be/supp/IridiaSupp2020-005/index.html
https://doi.org/10.1007/s11721-016-0119-0
https://doi.org/10.1007/s11721-016-0119-0
https://doi.org/10.1016/j.orp.2016.09.002
https://doi.org/10.1162/artl.1995.2.4.417
https://doi.org/10.1162/artl.1995.2.4.417
https://doi.org/10.1109/MS.2016.95
https://doi.org/10.1007/s11721-012-0072-5
https://doi.org/10.1007/s11721-012-0072-5
https://doi.org/10.1371/journal.pone.0140950
https://doi.org/10.7717/peerj-cs.221
https://doi.org/10.1162/EVCO_a_00172
https://doi.org/10.1162/EVCO_a_00172
https://doi.org/10.1007/978-3-540-77612-3
https://doi.org/10.1007/978-3-540-77612-3

Neural Networks as Modules for the Design of Finite-State Machines 281

48. Trianni, V.: Evolutionary robotics: model or design? Front. Robot. AI 1, 13 (2014).
https://doi.org/10.3389/frobt.2014.00013

49. Wolpert, D.: On bias plus variance. Neural Comput. 9, 1211–1243 (1997). https://
doi.org/10.1162/neco.1997.9.6.1211

https://doi.org/10.3389/frobt.2014.00013
https://doi.org/10.1162/neco.1997.9.6.1211
https://doi.org/10.1162/neco.1997.9.6.1211

Coalition Formation Problem: A Group
Dynamics Inspired Swarming Method

Mickaël Bettinelli(B), Michel Occello, and Damien Genthial

Univ. Grenoble Alpes, Grenoble INP, LCIS, 26000 Valence, France
mickael.bettinelli@lcis.grenoble-inp.fr

Abstract. The coalition formation problem arises when heterogeneous
agents need to be gathered in groups in order to combine their capacities
and solve an overall goal. But very often agents are different and can be
distinguished by several characteristics like desires, beliefs or capacities.
Our aim is to make groups of agents according to several characteristics.
We argue that a swarming method inspired by group dynamics allows
groups to be formed on the basis of several characteristics and makes
it very robust in an open system context. We evaluate this approach
by making groups of heterogeneous cognitive agents and show that our
method is adapted to solve this problem.

1 Introduction

Agents in a multi-agent system (MAS) face complex problems and do not always
have all the capabilities to solve them alone. Thus, agents need to share theirs
capacities in cooperative groups in order to reach the overall goal of their system.
They need to find the best suited agents to compose their group in order to
maximize the overall performance for the task resolution. This problem is called
the coalition formation problem and has been addressed in many forms. To
illustrate with a realistic example, in case of a large scale natural disaster [10]
robots with different capabilities may rescue victims and they need to make
coalitions owning the complete capabilities to rescue people. In this work we
present an approach inspired by the group dynamics field in the Humanities
and Social Sciences (HSS) using a swarming model with heterogeneous agents.
Related work is quoted in Sect. 2 and 3 introduces our approach and defines the
problem. A swarming model inspired from the literature is presented in Sect. 4.
The integration of group dynamics features into a swarming context is described
in Sect. 5 and experimental results shown in Sect. 6.

2 Related Work

The coalition formation problem is a broad problem addressed from different
point of views as multi-agent system [16], robotic [6] or swarming [9]. It can be

Grenoble INP—Institute of Engineering Univ. Grenoble Alpes.

c© Springer Nature Switzerland AG 2020
M. Dorigo et al. (Eds.): ANTS 2020, LNCS 12421, pp. 282–289, 2020.
https://doi.org/10.1007/978-3-030-60376-2_22

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-60376-2_22&domain=pdf
https://doi.org/10.1007/978-3-030-60376-2_22

Coalition Formation Using A Swarming Method 283

derived into very similar problems called Task allocation problem [12] or Knap-
sack problem [2]. Swarming approaches [1] are one method used to address this
problem. They often use an optimization method technique called Ant Colony
Optimization (ACO) [19] in order to find optimal coalitions but in this work we
focus on swarming based on social potential field. Social potential field [13] is
a distributed method used to make swarm from individuals by using attraction
and repulsion forces between each individual. Social potential field is used to
bring out a global behavior to individuals. [13] uses it for autonomous multi-
robot control and [15] uses it into the multi-agent system field to make agents
patrol on a terrain with obstacles. Among the swarming literature, some works
are using heterogeneous agents or robots [6,7,17] that have different character-
istics from others: they may have type, abilities or dynamics. [7] uses swarming
with heterogeneous agents in order to achieve a self-organization of a MAS by
modifying force fields depending on the type of agents. The swarming method
used in this paper is inspired from this work. Yet, this work makes possible the
self-organisation of agents into a system based on one characteristic (the type
of agents) in order to make groups of homogeneous agents. The reality is often
more complex and we would like to reuse this method to tackle the coalition
formation problem where agents come together to try to achieve an overall goal
based on more factors than a type or a weight.

3 The Coalition Formation Problem

In a large scale natural disaster scenario, robots can be stuck or destroyed
because of debris. Thus the process of coalition formation has to be dynamic
and robust. It has to be able to take into account the variability of agents and
the openness of the system. This is why we choose a swarming method with social
potential fields to make coalitions: their formation is processed distributively by
each agent allowing to add or remove agents from the system without stopping
it. In addition, agents characteristics can be modified at any time making this
swarming method very robust.

As seen in the Sect. 2 some works focus on segregation of agents into hetero-
geneous swarming models. To the best of our knowledge, work that focuses on
sorting heterogeneous swarms uses heterogeneous agents that differ only in one
characteristic. But in a complex scenario we need agents to own a lot of charac-
teristics as physical characteristics (e.g. battery state, sensors, etc.), capacities
(moving, taking objects, etc.), mental characteristics (e.g. personal goal, desires,
learning skills, etc.), etc. Thus, we propose a social approach of heterogeneous
swarming able to make coalitions from several factors. Because humans are well
suited to form groups and work efficiently in them, we draw inspiration from
the group dynamics field [3] in HSS and use it with the swarming method as a
new approach for the coalition formation problem. The group dynamics is a field
that describes what small groups are, how they are formed and how they are
maintained. This approach makes the group formation possible by taking into
account several factors making heterogeneous swarming more relevant.

284 M. Bettinelli et al.

In the decentralized task allocation problem, we consider a set of N indi-
viduals A = {a0, a1, ..., an} in a 1-dimension Euclidean space. Agents have het-
erogeneous characteristics C = {c0, c1, ..., cn} and desires D = {d0, d1, ..., dn}.
A characteristic ci is meeting a desire di. Each individual an has its own set
of characteristics and desires such that Can

= {cian
, cjan

, ..., cman
} and Dan

=
{dkan

, dlan
, ..., doan

}. Each individual is a point, unaware of its dimension, that
knows the characteristics of all the other agents. The objective of the agents is to
form groups with other agents who best meet their desires such that Caj

⊂ Dai
.

The distance between two agents in the space is an attraction metric represent-
ing the attraction value that two individuals have for each other. It depends on
the extent to which the agent’s desires are satisfied. The shorter the distance, the
stronger the attraction between the agents. A group is a set of agents gi for which
all the agents have an attraction value for each other below a given threshold such
that gi = {ai, aj , ..., am} where ∀ai, aj ∈ gi, attraction(ai → aj) < threshold
and attraction(aj → ai) < threshold. Processing rules of the attraction are
described in the next section through a swarm intelligence method. We assume
here that agents can be part of only one group. In other word, ∀gi, gj , gi∩gj = ∅.

4 Control Law Definition

4.1 Attraction/Repulsion Function

Agents attraction update is processed following this equation:

ẋi =
N∑

j=1,j �=i

f
(
xi − xj

)
f(y) = −y

(
a

‖y‖ − b

‖y‖4
)

(1)

where xi and xj are the position of individuals i and j into the Euclidean space.
f(y) being the attraction/repulsion function inspired from [14] where a and b

are two constants and ||y|| the Euclidean norm given by ||y|| =
√

yT y which
is the distance between two agents in the Euclidean space. We also made two
parameter functions to choose the right a and b constants

fa(z) =
0.05z

2
fb(z) = 20(3+z) · z3 (2)

z being a bias representing social factors described in Sect. 4.2. fa and fb were
both made after empirical tests. They allow to keep a good ratio between a and
b and are well managing the attraction/repulsion function whatever the z value
is. However, these functions were not designed to be optimal.

Note that because the attraction/repulsion function is very similar to the one
from [14], we do not give the theoretical proof of stabilization of this function in
this document. However, you can find it in an extended version on ArXiv and
HAL.

Coalition Formation Using A Swarming Method 285

4.2 Social Factors Integration

In group dynamics, the Group Formation subfield focuses on the processes that
generates bonds of attraction between members of groups. The group formation
process is a complex phenomenon implying numerous dimensions. Among these
dimensions, the attraction principles takes a large part. There are two types of
attraction, the social attraction and the personal attraction. Social attraction is
an attraction for a group whereas the personal attraction is “based on idiosyn-
cratic preferences grounded in personal relationships” [5]. Because in swarming
individuals are not aware of groups they are making, we focus on the personal
attraction allowing to predict whether an individual is attracted to another one
or not. The following principles are based on personal attraction [3,11]:

– proximity principle (p): proximity allows individuals to increase the number
of their interactions. We see here the proximity principle as a distance between
individuals.

– similarity principle (s): individuals like people who are similar to them [4,18].
In our system, the similarity is a distance between mind states of agents.

– complementarity principle (c): individuals like other whose qualities com-
plement their own. We represent it by the complementarity of the agents’
capacities.

– reciprocity principle (r): liking tends to be mutual.
– physical attractiveness principle (a): individuals are more attracted to people

who have a great physical attractiveness [4]. In our system the physical attrac-
tiveness is seen as the adequacy between the characteristics of an individual
and desires of others.

– minimax principle (m): individuals are attracted to people that offer them
maximum reward and minimal cost [4].

We want agents to be able to assess the attraction they have for other agents
in order to allow to form groups into the system. To do so, we build the Eq. 3
that integrates these principles. However, group dynamics is only an inspiration
source to build our equation. Even if we try to be consistent with the literature,
we are not claiming that this equation can be used to predict the attraction
between two real people.

z = (0.5 + p) · average(a, s, c,m) (3)

5 Experimentation

In order to evaluate our mechanisms, we integrated them in an agent model. As
our approach is socially inspired we have chosen the cognitive agent architecture
Soar [8] to which we add specific features involving control laws. We characterize
an agent by four modules that can be seen as sets of information.

– personal characteristics (P): are physical or mental characteristics agents have
(e.g. battery state, weight, shape),

286 M. Bettinelli et al.

– capacities (C): are skills of the agent, actions it can execute on its envi-
ronment, virtual processing it can do, or perceptions it can get from the
environment (e.g. moving, taking objects, etc.),

– beliefs (B): are the facts agents have about their environment (e.g. acquain-
tances characteristic, attraction for acquaintances, its group quality),

– desires (D): are objectives or situations that the agent would like to accom-
plish or bring about (e.g. making a high quality group, resolving its personal
goal, help its group mates);

In this experiment, we are using a 1-dimensions matrix of three floats between 0
and 1 to represent information of each module of our agents. The size of matrices
does not have any importance for the proper functioning of the system. In order
to use these information, we need to integrate the attraction principles from the
Sect. 4.2 to our experimentation. Each principle undergoes a filter function used
to scale each result between 0 and 1.

Proximity principle is the distance between two agents, represented as:

||p|| = xi − xj p = filter(
√
uTu, d) (4)

where xi and xj are the position of agents i and j into the Euclidean space and
d a parameter to be adjusted.

Similarity, Physical attractiveness and Minimax principle are pro-
cessed in the same way as the Proximity principle. The similarity principle is a
distance between the beliefs of two agents. The physical attractiveness princi-
ple is a distance between physical characteristics of one agent and the personal
desires of another agent. The minimax principle is a distance between capacities
of one agents and the desires of another one. Let
M� be the number of elements
of a N dimensions matrix M.

||u|| = xi
B − xj

B s = filter(
√
uTu,
B�) (5)

where xi
b and xj

b are the Belief matrix of agents i and j. The Physical attractive-
ness principle and the minimax principle are processed exactly the same equation
replacing the matrix used depending on the above description.

Complementarity principle is a distance between skills of two agents:

||c|| = xi
C − xj

C c = 1 − filter(
√
uTu,
C�) (6)

where xi
s and xj

s are the skills matrix of agents i and j and
C� the number of
elements in the Capacities matrix.

Reciprocity principle is the mean of z between two individuals.

r = mean(zij , zji) (7)

where zij and zji are a real number representing the attraction of i to j and j
to i. Previous equations undergoing the filter function defined as

filter(x, xmax) = min(
x

xmax
, 1) (8)

Finally, each agent process the control law from the Sect. 4 in 1-dimension
for each other agent of the system.

Coalition Formation Using A Swarming Method 287

6 Evaluation

In order to make each agent characteristics attractive to others, we pseudo-
randomly generate populations of individuals. If the generation was fully random
the characteristics of individuals could not be appropriate to be attractive to
other agents and the number of groups would be unpredictable. Though, agents
characteristics are not known in advance and it allows us to better illustrate the
process of group formation.

(a) (b)

(c) (d)

Fig. 1. Attraction an agent i has for other agents of the system.

Figures 1 illustrate the attraction each agent have for each of their acquain-
tances depending on the number of steps of the simulation. Firstly this simulation
confirms experimentally the proof of stabilization of the attraction. Secondly, we
can see that agents converge towards different attraction values. For example,
agent 0 has a strong attraction for agents 1 and lower ones for agents 2 and
3. These differences are explained by a difference of characteristics that made
agents 2 and 3 unattractive to agent 0. Finally, as illustrated, each agent has an
attraction value over all the others allowing an outside viewer to visualize these
links on a graph. To do so, we process a Gaussian mixture model clustering on
attraction values allowing us to make clusters and to find agents for which they

288 M. Bettinelli et al.

have the strongest attraction. Taking the cluster where attraction has the lowest
average and linking agent to each agent of this cluster makes possible to build
a graph representing groups as illustrated on the Fig. 2(a). Repeating the same
process on a larger agent population (fifty agents, six groups), we obtain the
Fig. 2(b). Moreover, each individual is capable to assess dynamically the attrac-
tion for its acquaintances. It means that even if groups are stabilized for a specific
state of the system they can changed if an agent characteristic is modified. Note
that this visualization is only a representation of the attraction agent have for
each other. Links and groups made on these graphs can be modified depending
on how clusters are built or what you consider being a strong attraction.

(a) Six agents and two groups. (b) Fifty agents and six groups.

Fig. 2. Graph showing formed groups on two cases.

7 Conclusion

This work tackles the coalition formation problem using a group dynamics
inspired swarming approach. Its dynamicity allows to form groups of agents in
an open system with a decentralized manner making this method very robust. In
addition, the group dynamics inspiration from HSS allows the system to make
swarms with heterogeneous agents made by a high number of characteristics.

We showed that our approach is robust and adapted to the coalition for-
mation problem. However, this problem can be enhanced by some realistic con-
straints as overlapping groups or by making agents unaware of all the other
agents. This work will be used into a decision support system for the reman-
ufacturing and the repurposing of post-used products for the Circular project
(ANR-15-IDEX-02). This project focuses on developing the necessary technolo-
gies and conditions to make new circular industrial systems able to transform
post-used products into new products. In this context, formed groups will rep-
resent the new products proposed by the system.

Coalition Formation Using A Swarming Method 289

References

1. Dos Santos, D.S., Bazzan, A.L.: Distributed clustering for group formation and
task allocation in multiagent systems: a swarm intelligence approach. Appl. Soft
Comput. 12(8), 2123–2131 (2012)

2. Feng, Y., Wang, G.-G., Deb, S., Lu, M., Zhao, X.-J.: Solving 0–1 knapsack problem
by a novel binary monarch butterfly optimization. Neural Comput. Appl. 28(7),
1619–1634 (2015). https://doi.org/10.1007/s00521-015-2135-1

3. Forsyth, D.R.: Group dynamics. Cengage Learning (2010)
4. Henningsen, D.D., Henningsen, M.L.M., Booth, P.: Predicting social and personal

attraction in task groups. Groupwork 23(1), 73–93 (2013)
5. Hogg, M.A., Hains, S.C.: Friendship and group identification: a new look at the

role of cohesiveness in groupthink. Eur. J. Soc. Psychol. 28(3), 323–341 (1998)
6. Irfan, M., Farooq, A.: Auction-based task allocation scheme for dynamic coalition

formations in limited robotic swarms with heterogeneous capabilities. In: 2016
International Conference on Intelligent Systems Engineering (ICISE), pp. 210–215.
IEEE (2016)

7. Kumar, M., Garg, D.P., Kumar, V.: Segregation of heterogeneous units in a swarm
of robotic agents. IEEE Trans. Autom. Control 55(3), 743–748 (2010)

8. Laird, J.E., Congdon, C.B.: The soar user’s manual version 9.5. 0. Technical report,
Computer Science and Engineering Department, University of Michigan (2015)

9. Liu, S.h., Zhang, Y., Wu, H.y., Liu, J.: Multi-robot task allocation based on swarm
intelligence. J. Jilin Univ. (Eng. Technol. Ed.) 1, 123–129 (2010)

10. Mouradian, C., Sahoo, J., Glitho, R.H., Morrow, M.J., Polakos, P.A.: A coalition
formation algorithm for multi-robot task allocation in large-scale natural disas-
ters. In: 2017 13th International Wireless Communications and Mobile Computing
Conference (IWCMC), pp. 1909–1914. IEEE (2017)

11. Newcomb, T.M.: Some varieties of interpersonal attraction (1960)
12. Rauniyar, A., Muhuri, P.K.: Multi-robot coalition formation problem: task alloca-

tion with adaptive immigrants based genetic algorithms. In: 2016 IEEE Interna-
tional Conference on Systems, Man, and Cybernetics (SMC), pp. 000137–000142.
IEEE (2016)

13. Reif, J.H., Wang, H.: Social potential fields: a distributed behavioral control for
autonomous robots. Robot. Auton. Syst. 27(3), 171–194 (1999)

14. Shi, H., Xie, G.: Collective dynamics of swarms with a new attraction/repulsion
function. Math. Probl. Eng. 2011 (2011)

15. Shvets, E.: Stochastic multi-agent patrolling using social potential fields. In: ECMS,
pp. 42–49 (2015)

16. Souidi, M.E.H., Piao, S.: A new decentralized approach of multiagent cooperative
pursuit based on the iterated elimination of dominated strategies model. Math.
Probl. Eng. 2016 (2016)

17. Szwaykowska, K., Romero, L.M.y.T., Schwartz, I.B.: Collective motions of hetero-
geneous swarms. IEEE Trans. Autom. Sci. Eng. 12(3), 810–818 (2015)

18. Walster, E., Aronson, V., Abrahams, D., Rottman, L.: Importance of physical
attractiveness in dating behavior. J. Pers. Soc. Psychol. 4(5), 508 (1966)

19. Wu, H., Li, H., Xiao, R., Liu, J.: Modeling and simulation of dynamic ant colony’s
labor division for task allocation of UAV swarm. Phys. A Stat. Mech. Appl. 491,
127–141 (2018)

https://doi.org/10.1007/s00521-015-2135-1

Collective Gradient Perception
in a Flocking Robot Swarm

Tugay Alperen Karagüzel1(B), Ali Emre Turgut1, and Eliseo Ferrante2

1 Department of Mechanical Engineering, Middle East Technical University,
Ankara, Turkey

tugay.karaguzel@gmail.com, aturgut@metu.edu.tr
2 Vrije Universiteit Amsterdam, Amsterdam, The Netherlands

e.ferrante@vu.nl

Abstract. Animals can carry their environmental sensing abilities
beyond their own limits by using the advantage of being in a group.
Some animal groups use this collective ability to migrate or to react
to an environmental cue. The environmental cue sometimes consists of
a gradient in space, for example represented by food concentration or
predators’ odors. In this study, we propose a method for collective gra-
dient perception in a swarm of flocking agents where single individuals
are not capable of perceiving the gradient but only sample information
locally. The proposed method is tested with multi-agent simulations and
compared to standard collective motion methods. It is also evaluated
using realistic dynamical models of autonomous aerial robots within the
Gazebo simulator. The results suggest that the swarm can move collec-
tively towards specific regions of the environment by following a gradient
while solitary agents are incapable of doing it.

1 Introduction

Many different species move in a collective fashion in order to survive [15]. Species
provide various critical advantages from collective motion. Sharing the location
of food [3], avoiding predators [10] and locating the source of nutrient [8] are
some examples of these advantages. In these examples, the direction of motion
of a living creature is often influenced by environmental cues. For some ani-
mals, this directed motion is a group behavior centered around their emergent
sensing [6]. By definition [2], emergent sensing is the social interactions that
facilitate comparisons across scalar measurements made by individuals. These
comparisons lead to a collective computation of the environmental gradient. An
example of emergent sensing can be seen in golden shiners [1]: While a single
golden shiner fish is not capable of sensing the light gradient in order to follow it,
a school of golden shiners is able to gather in the darkest regions of the environ-
ment. Golden shiners achieve this by taking social cues into account in addition
to environmental cues. This combination leads to a collective computation of the
light gradient [11]. The fascinating collective abilities of animal groups have been
inspiring the robotics field for several decades. Swarm robotics has emerged as
c© Springer Nature Switzerland AG 2020
M. Dorigo et al. (Eds.): ANTS 2020, LNCS 12421, pp. 290–297, 2020.
https://doi.org/10.1007/978-3-030-60376-2_23

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-60376-2_23&domain=pdf
https://doi.org/10.1007/978-3-030-60376-2_23

Collective Gradient Perception in a Flocking Robot Swarm 291

a scientific field through inspiration from these studies. The collective motion of
robot swarms is one of the major research areas [4,13]. In [4], a swarm of mobile
ground robots flocks in a pre-defined goal direction by only relying on local sens-
ing and on the on-board computation capabilities of robots. The authors in [16]
present a swarm of autonomous aerial robots wandering in the air as a flock.
Flying robots construct a wireless communication network to share and obtain
information about global positions and velocities. The algorithms used in [5] and
[16] show how the results of nature-inspired approaches can be effective on arti-
ficial systems. Emergent sensing in artificial systems has also been investigated
in different studies. In [12], autonomous robots that are incapable of sensing and
locating an underwater RF source accomplish this task by forming a group. The
work in [14] presents a collective decision making method applied to a group
of simple mobile ground robots that makes them able to perceive the environ-
ment and to decide what is the environmental feature with the highest relative
frequency.

In this paper we propose a novel method for performing collective gradient
sensing, which extends an existing collective motion method [4,13], in a robot
swarm. Every agent in that swarm can sense other agents, the environment
boundaries and a local and scalar environmental cue within a limited range.
The perception and following of the gradient by the swarm is achieved by agents
modifying their desired distances to other agents correlated with their local
environmental perceptions.

2 Methodology

2.1 Standard Collective Motion (SCM)

The swarm consists of N agents which can freely move in a bounded 2-
dimensional environment. At each time instant, the focal agent has a direction
of motion, which is called heading, and it can only move along this heading
direction according to its linear speed. The heading direction changes smoothly
by the angular velocity of the agent. The focal agent i calculates the linear speed
and the angular speed as a function of a virtual force vector that combines all
the local information perceived from its neighbors as:

f i = αpi + βhi + γri (1)

pi is proximal control vector, hi is alignment control vector and ri is avoid-
ance vector. α, β and γ are corresponding weight coefficients for pi, hi and ri.
Proximal control and avoidance are always enabled [13], while we test collective
motion both with and without alignment control, as in [13].

At each time instant, pi is calculated for m perceived neighbors within the
proximal control perception range Dp of the focal agent i.

pi =
∑

m∈N

pm
i (dm

i , σi)∠ejφm
i (2)

292 T. A. Karagüzel et al.

pm
i (dm

i , σi) is the magnitude of proximal control vector and ∠ejφm
i is the angle

of perceived agent m. The magnitude of proximal control vector is calculated as
follows:

pm
i (dm

i , σi) = −ε

[
2

σ4
i

(dm
i)5

− σ2
i

(dm
i)3

]
(3)

dm
i is the relative distance of agent m perceived by i, ε is the strength coeffi-

cient of proximal control vector and σi is the coefficient for desired distance of i to
other agents. The relation between desired distance of i and σi is: di

des = 21/2σi.
We indicate both dm

i and σi as variables because the former changes as a function
of the neighbors distance and the second can change according to the desired
distance modulation method explained in Sect. 2.2.

The alignment control vector hi is found by summing the headings of neigh-
bors within the alignment control communication range Da with heading of the
focal agent i, and normalizing the result.

hi =
∠ejθ0 +

∑
m∈N ∠ejθm

∣∣∣∣∠ejθ0 +
∑

m∈N ∠ejθm

∣∣∣∣ (4)

The heading of agent m located in the communication range Da of i is ∠ejθm
i .

The heading of the focal agent i is ∠ejθ0 . Headings are calculated with respect
to a common frame of reference for all agents and shared in that way. In a
real application, this frame of reference can be implemented either by a digital
compass (“common north”) [13] or with a shared directional signal (such as a
light source) [5].

The avoidance vector ri is calculated for every perceived environment bound-
ary within Dr. The magnitude of avoidance vector [9] is calculated for the all
perceived boundary b among all B environment boundaries as follows and all
boundary avoidance vectors are summed for resultant effect:

rb
i = krep

(
1
Lb

− 1
L0

)(
p b

i

L3
b

)
(5)

krep is the strength coefficient of avoidance vector, L0 is the relaxation thresh-
old of the function and Lb is the perceived distance to boundary b. The unit
vector pb

i designates the direction of boundary b in agent i’s frame of reference.
As in [4], the linear and angular velocities of the focal agent is calculated by

first projecting the resultant virtual force vector f i on the two orthogonal axes of
agent i’s local frame of reference. In local frame of reference, the x-axis is parallel
to the focal agent heading, and the usual right-hand rule is used. The linear and
angular speeds are calculated as: Ui = K1fx and ωi = K2fy, respectively. The
linear speed Ui is determined by multiplying the local x component of f i (fx)
by the linear speed gain K1. The angular speed is determined by multiplying y
component of f i (fy) by angular gain K2. The linear speed is bounded between
0 and Umax and angular speed of the agent i is bounded between −ωmax and
ωmax.

Collective Gradient Perception in a Flocking Robot Swarm 293

2.2 Desired Distance Modulation (DM)

The 2-dimensional environment that agents are located in is assumed to contain
a scalar value at every point of it. Agents can only perceive the value at their
instantaneous positions. The proposed method, which is the contribution of this
paper, suggests that if every agent changes the innate coefficient for desired
distance σi according to the local perceived value G◦, the swarm can collectively
exhibit a taxis behavior towards decreasing gradient values. The function linking
the local perceived value by agent i with the coefficient σi, which is an input for
proximal control vector, for desired distance is:

σi = σmax −
(

G◦

Gmax

)0.1

(σmax − σmin) (6)

σmax and σmin are the maximum and minimum values of σi, respectively.
Gmax is the maximum local value contained in the environment.

3 Multi-agent Simulations

In multi-agent simulations, we consider a swarm of N agents with no inertial
properties. Their positions and headings (both continuous variables) are updated
by discrete integration. We consider a squared arena with 20 units sides. To
implement the gradient, the arena is divided into a square grid and every piece
of the grid, with edge size of 0.025 units, contains a value between 0 and 255. For
any environment, the values of the grids are designed such that the variation is
smooth in all directions. The two environments used in multi-agent simulations
are reported in Fig. 1. An agent can only perceive the value corresponding to its
current grid cell. The perception of the grid value is instantaneous and the agent
does not keep the value of previously seen grids.

We study the effect of two components of the proposed method on the ability
of the swarm to achieve gradient perception and compare them with standard
collective motion (SCM) method. Two components are desired distance modu-
lation (DM) and heading alignment (HA). DM is considered with and without
HA to reveal individual effect of DM in addition to combined effect of DM
and HA on the collective behavior. In SCM , HA is included and desired dis-
tance is constant and same for every agent. We consider two different gradient
models. For a chosen gradient model, the experiment is repeated 512 times for
DM , HA + DM and SCM . In each repetition, agents are initialized around a
randomly chosen center of mass with random positions and orientations. The
control step dt is set to 0.1 s. A single experiment consists of 80000 time steps.
The instantaneous values from the environment are assumed to be perceived
and collected only once every 100 time steps. In addition to local values, average
of all agent positions is found with same rate in order to visualize the group
trajectories. We define and use the average local value to measure the success of
the swarm in perceiving and following the gradient towards decreasing values.
The average local value is calculated as: first, the instantaneously perceived local

294 T. A. Karagüzel et al.

0 10 20
0

10

20

50

100

150

200

250

(a) Gradient Model 1

0 10 20
0

10

20

50
100
150
200
250

(b) Gradient Model 2

Fig. 1. Gradient models used in multi-agent simulations. Color bars show grid values.

values of all the agents in the swarm are averaged; second, the group average is
averaged again over the experiment duration, and a single value is obtained for
each run.

3.1 Results

In Fig. 2, we report results for two different gradient models for all the methods
(SCM , DM and HA + DM), by using colored regions to represent the distri-
bution of data with box plots at the center of each region. The SCM method
fails to minimize the average local value in all gradient models having a median
value between approximately 75 and 150. However, DM and HA+DM methods
perform well in all cases having median values approximately below 10.

When we consider the distributions, SCM method shows a high spread
whereas both DM and HA + DM methods show a very low spread. There
is not a noticeable performance difference of DM and HA+DM in these exper-
iments. In Fig. 3 the average trajectories of the three methods in Gradient Model
1 are plotted. The SCM method shows an homogeneous distribution (Fig. 3a).
DM and HA+DM methods show a clear concentration on the region with low
local values (Fig. 3b and Fig. 3c), DM method being more concentrated on the
central regions.

(a) Gradient Model 1, 40
Agents

(b) Gradient Model 2, 40
Agents

Fig. 2. Distribution of average local values with multi-agent simulations with following
parameter values: N = 40, Dp = 2.0 units, α = 2.0, σmax = 0.6, σmin = 0.2, ε = 12.0,
Da = 2.0 units, β = 2.0, Dr = 0.5 units, γ = 1.0, krep = 80.0, L0 = 0.5, K1 = 0.5,
K2 = 0.06, Umax = 0.05 units/t, ωmax = π/4 rad/t, Gmax = 255, dt = 0.1

Collective Gradient Perception in a Flocking Robot Swarm 295

(a) SCM (b) DM (c) HA+DM

Fig. 3. Average trajectories of center of mass of 40 agents on Gradient Model 1

4 Physics-Based Simulations

Physics-based simulations are conducted with dynamical models1 of Crazyflie2

nano quadcopters. The Gazebo simulator is employed for dynamical calcula-
tions and a modified version of the real Crazyflie firmware (see Footnote 1) is
used as SITL (Software in the Loop). The software framework is constructed
on ROS (Robot Operating System). The velocity commands are produced and
published by corresponding scripts running on ROS [7]. The SITL firmware
receives velocity commands and applies them via low-level controller software.
Velocity commands are not perfectly tracked, as in the real platform. The same
gradient models studied in multi-agent simulations are used in physics-based
simulations. Given the simplicity of the Crazyflie platform and the lack of prox-
imal and environmental sensors, we emulated the required sensors by feeding
the corresponding information to robots in a way that meets the constraints of
the proposed method. The emulation also includes communication for alignment
control. The calculations for linear and angular speeds are repeated 100 times
in a simulated second (dt = 0.01). Calculated linear speed is transformed to a
velocity command fed to SITL firmware. The robot swarm in Gazebo consists of
N = 6 quadcopters. Boundary of the flight arena is a square with an edge size
of 10 units. DM and HA+DM methods are implemented and experiments are
repeated 20 times.

4.1 Results

Figure 4 presents the results of the average local values using DM and HA+DM
methods for two gradient models. Colored regions represent the distribution
of data and box plots are depicted at the center of each region. The results
are qualitatively in accordance with the multi-agent simulations. However, in
physics-based simulations, there is a slight increase in median values and the
distribution is more spread. There could be several reasons for this discrepancy.
In physics-based simulations, robots are modeled realistically considering all the
dynamics, hence velocity tracking of robots is imperfect. In addition to that
1 https://github.com/wuwushrek/sim cf.
2 https://www.bitcraze.io/products/old-products/crazyflie-2-0/.

https://github.com/wuwushrek/sim_cf
https://www.bitcraze.io/products/old-products/crazyflie-2-0/

296 T. A. Karagüzel et al.

(a) Gradient Model 1 (b) Gradient Model 2

Fig. 4. Distribution of average local values of physics-based simulations with following
parameter values: N = 6, Dp = 2.0 units, α = 3.0, σmax = 0.8, σmin = 0.4, ε = 12.0,
Da = 2.0 units, β = 1.0, Dr = 0.5 units, γ = 1.0, krep = 50.0, L0 = 0.5, K1 = 0.5,
K2 = 0.03, Umax = 0.25 units/t, ωmax = 4π rad/t, Gmax = 255, dt = 0.01

position information of the robots is also noisy. Therefore, robots oscillate more
to keep their distances with the neighbors at the desired level increasing the
spread of local value distribution.

5 Conclusion

In this study, we extended the collective motion method introduced in [4,13]
by adding a local perception capability to each robot. Assuming that an envi-
ronment has a gradient of some sort such as food concentration, through agent-
based and physics-based simulations, we showed that robots locally sensing this
gradient while moving collectively as a group were able to move towards spe-
cific regions of the environment. Robots achieve this by simply changing the
desired distance parameter defined in the original model [4,13] based on the
local information about the gradient. The effect of heading alignment control
(HA) together with desired distance modulation (DM) on success of gradient
perception and following is evaluated with systematic experiments on multi-
agent simulations and physics based simulations. Last but not least, the improv-
ing effect of HA on the gradient perception can be observed on simulations with
dynamical robot models as well. Although the mean values are comparably close
to each other for HA + DM and DM , distribution of HA + DM demonstrates
a more consistent and successful collective gradient perception.

References

1. Berdahl, A., Torney, C.J., Ioannou, C.C., Faria, J.J., Couzin, I.D.: Emergent sens-
ing of complex environments by mobile animal groups. Science 339(6119), 574–576
(2013)

2. Berdahl, A.M., et al.: Collective animal navigation and migratory culture: from the-
oretical models to empirical evidence. Philos. Trans. R. Soc. B Biol. Sci. 373(1746),
20170009 (2018)

Collective Gradient Perception in a Flocking Robot Swarm 297

3. Couzin, I.D., Krause, J., Franks, N.R., Levin, S.A.: Effective leadership and
decision-making in animal groups on the move. Nature 433(7025), 513–516 (2005)

4. Ferrante, E., Turgut, A.E., Huepe, C., Stranieri, A., Pinciroli, C., Dorigo, M.: Self-
organized flocking with a mobile robot swarm: a novel motion control method.
Adapt. Behav. 20(6), 460–477 (2012)

5. Ferrante, E., Turgut, A.E., Stranieri, A., Pinciroli, C., Birattari, M., Dorigo,
M.: A self-adaptive communication strategy for flocking in stationary and non-
stationary environments. Nat. Comput. 13(2), 225–245 (2013). https://doi.org/
10.1007/s11047-013-9390-9

6. Grünbaum, D.: Schooling as a strategy for taxis in a noisy environment. Evol. Ecol.
12(5), 503–522 (1998)

7. Hönig, W., Ayanian, N.: Flying Multiple UAVs Using ROS. In: Koubaa, A. (ed.)
Robot Operating System (ROS). SCI, vol. 707, pp. 83–118. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-54927-9 3

8. Kearns, D.B.: A field guide to bacterial swarming motility. Nat. Rev. Microbiol.
8(9), 634–644 (2010). https://doi.org/10.1038/nrmicro2405

9. Khaldi, B., Cherif, F.: A virtual viscoelastic based aggregation model for self-
organization of swarm robots system. In: Alboul, L., Damian, D., Aitken, J. (eds.)
TAROS 2016. LNCS, vol. 9716, pp. 202–213. Springer, Cham (2016). https://doi.
org/10.1007/978-3-319-40379-3 21

10. Olson, R.S., Hintze, A., Dyer, F.C., Knoester, D.B., Adami, C.: Predator confusion
is sufficient to evolve swarming behaviour. J. R. Soc. Interface 10(85), 20130305
(2013)

11. Puckett, J.G., Pokhrel, A.R., Giannini, J.A.: Collective gradient sensing in fish
schools. Sci. Rep. 8(1), 7587 (2018)

12. Shaukat, M., Chitre, M.: Adaptive behaviors in multi-agent source localization
using passive sensing. Adapt. Behav. 24(6), 446–463 (2016)

13. Turgut, A.E., Çelikkanat, H., Gökçe, F., Şahin, E.: Self-organized flocking in mobile
robot swarms. Swarm Intell. 2(2–4), 97–120 (2008)

14. Valentini, G., Brambilla, D., Hamann, H., Dorigo, M.: Collective perception of
environmental features in a robot swarm. In: Dorigo, M., Birattari, M., Li, X.,
López-Ibáñez, M., Ohkura, K., Pinciroli, C., Stützle, T. (eds.) ANTS 2016. LNCS,
vol. 9882, pp. 65–76. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
44427-7 6

15. Vicsek, T., Zafeiris, A.: Collective motion. Phys. Rep. 517(3–4), 71–140 (2012)
16. Vásárhelyi, G., Virágh, C., Somorjai, G., Nepusz, T., Eiben, A.E., Vicsek, T.:

Optimized flocking of autonomous drones in confined environments. Sci. Robot.
3(20) (2018)

https://doi.org/10.1007/s11047-013-9390-9
https://doi.org/10.1007/s11047-013-9390-9
https://doi.org/10.1007/978-3-319-54927-9_3
https://doi.org/10.1038/nrmicro2405
https://doi.org/10.1007/978-3-319-40379-3_21
https://doi.org/10.1007/978-3-319-40379-3_21
https://doi.org/10.1007/978-3-319-44427-7_6
https://doi.org/10.1007/978-3-319-44427-7_6

Fitting Gaussian Mixture Models Using
Cooperative Particle Swarm Optimization

Heinrich Cilliers1 and Andries P. Engelbrecht1,2(B)

1 Computer Science Division, Stellenbosch University, Stellenbosch, South Africa
2 Department of Industrial Engineering and Computer Science Division,

Stellenbosch University, Stellenbosch, South Africa
{19035837,engel}@sun.ac.za

Abstract. Recently, a particle swarm optimization (PSO) algorithm
was used to fit a Gaussian mixture model (GMM). However, this algo-
rithm incorporates an additional step in the optimization process which
increases the algorithm complexity and scales badly to a large number of
components and large datasets. This study proposes a cooperative app-
roach to improve the scalability and complexity of the PSO approach and
illustrates its effectiveness compared to the expectation-maximization
(EM) algorithm and the existing PSO approach when applied to a num-
ber of clustering problems.

1 Introduction

A GMM is a model consisting of a number of Gaussians1, where each Gaus-
sian is characterised by three different parameters. Fitting a GMM is done by
finding suitable estimates for each Gaussian’s parameters. These estimates are
usually found by using the EM algorithm [9]. However, EM is sensitive to its
initialization and is prone to yielding sub-optimal solutions. Ari and Aksoy [1]
designed an algorithm to fit GMMs using PSO, referred to as AA in this paper.
However, AA has some inefficiencies. Firstly, AA incorporates a correspondence
identification step in the optimization process, which increases computational
complexity. Secondly, the variant of PSO scales badly to larger datasets and a
large number of components. Lastly, the mixture coefficients are not optimized
directly by the PSO which could lead to sub-optimal results.

This study proposes a cooperative PSO approach to GMM, where (1) all
parameter estimates are directly estimated using PSO, (2) the correspondence
identification step is omitted, (3) and multiple swarms are used to estimate
parameters cooperatively. This cooperative PSO approach is empirically com-
pared to the EM and the AA algorithm on a number of data clustering problems.
The results show that the cooperative approach outperforms both EM and AA
algorithms w.r.t. overall clustering quality.

The remainder of this paper is as follows: Sect. 2 discusses GMMs briefly,
followed by Sects. 3 and 4 which contain details of the implementations of the
1 Also referred to as components.

c© Springer Nature Switzerland AG 2020
M. Dorigo et al. (Eds.): ANTS 2020, LNCS 12421, pp. 298–305, 2020.
https://doi.org/10.1007/978-3-030-60376-2_24

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-60376-2_24&domain=pdf
http://orcid.org/0000-0002-0242-3539
https://doi.org/10.1007/978-3-030-60376-2_24

Gaussian Mixture Models Using PSO 299

proposed approaches. Section 5 contains a discussion of the empirical procedure
used to evaluate and compare the algorithms. Section 6 contains the results of
the empirical analysis. Finally, Sect. 7 contains the conclusion of this study.

2 Gaussian Mixture Model

Mixture models [6] are probabilistic models representing the distribution over
a general population as a mixture of distributions over a number of sub-
populations. A GMM is a mixture model whereby the distribution over the
entire population, assuming K sub-populations, is modeled by K Gaussians. A
sample from this distribution, denoted by xxx, has the following probability density
function (p.d.f.):

f(xxx) =
K∑

k=1

πk · fN (xxx | μμμk, Σk) (1)

fN (xxx | μμμk, Σk) = (2π)− D
2 |Σk|− 1

2 exp

[
−1

2
(xxx − μμμk)T Σ−1

k (xxx − μμμk)
]

(2)

where the k-th component’s mixture coefficient, mean vector and covariance
matrix is given by πk, μμμk and Σk respectively. In equation (2) fN and D denote
the multivariate normal p.d.f. and the dataset dimensionality, respectively. All
covariance matrices must be positive definite and all mixture coefficients must
sum to one and be a value in (0, 1).

3 Gaussian Mixture Modeling Particle Swarm
Optimization

Assume a D-dimensional dataset and K components. The first proposed algo-
rithm, referred to as the Gaussian mixture modeling PSO (GMMPSO), is an
adapted version of AA [1], based on the inertia weight PSO [10]. Similar to AA,
GMMPSO uses the log-likelihood of the data as the objective function, i.e.

L =
N∑

i=1

log

{
K∑

k=1

π̂k · fN

(
xi|μ̂μμk, Σ̂k

)}
(3)

where the estimates for the mixture coefficient, mean vector and covariance
matrix of the k-th component is given by π̂k, μ̂μμk and Σ̂k, respectively. Similar
to AA, GMMPSO parameterizes each D-dimensional covariance matrix by D

positive real values and τ = D(D−1)
2 real values, representing Eigenvalues and

Givens rotation angles2,3, respectively. Mean vectors are simply parameterized
by D real values representing the vector elements. To parameterize mixture coef-
ficients, consider the concept of normalization. Normalizing a set of K positive

2 The angle of a rotation in a plane described by two axis.
3 For D dimensions there are τ planes wherein a rotation can be applied.

300 H. Cilliers and A. P. Engelbrecht

values {ρk}K
k=1 by their sum yields a set of K values which satisfy the mixture

coefficient constraints. Thus, the K mixture coefficients are parameterized by
K positive real numbers. Now, almost similar to a particle from AA, a particle
from GMMPSO will have the form

pppi =
[
CCCT

1 . . . CCCT
K

]
, where CCCT

k =
[
ρk μk1 . . . μkD λk1 . . . λkD φk1 . . . φkτ

]
(4)

where ρk, μkd, λkd and φke denote the unnormalized mixture coefficient, d-th
dimension of the mean vector, d-th Eigenvalue and e-th Givens rotation angle
of the k-th component. Evaluation of a particle is done after a reconstruction
step, where all parameter estimates are calculated from their respective param-
eterizations. Firstly, mixture coefficient estimates are calculated by using the
aforementioned normalization method. Secondly, the k-th mean vector estimate
is constructed from the μkd values. Lastly, the k-th covariance matrix is con-
structed using Eigen decomposition and rotation matrices. First, let Λk be a
D-dimensional diagonal matrix with {λkd}D

d=1 on its diagonal. Then let Vk be
the product of the basic rotation matrices4 calculated from {φke}τ

e=1 by applying
the method described by Duffin and Barret [4] to each φke. Finally, calculate the
estimate as Σ̂k = VkΛV T

k . The log-likelihood can now be calculated.
Particles are initialized as follows: Let xmin,d and xmax,d represent the mini-

mum and maximum value of the d-th dimension from the given dataset, respec-
tively. Also, let η be the largest Eigenvalue of the sample covariance matrix
calculated from the dataset. Then ρk, μkd, λkd and φke are sampled from a
uniform distribution over the bounds [0, 1], [xmin,d, xmax,d], [0, η] and [−π, π],
respectively for all k and d.

4 Cooperative GMMPSO

The PSO variant used by AA and GMMPSO does not scale well to larger
datasets and a large number of components. Van den Bergh and Engelbrecht
[5] designed a cooperative PSO variant which improved scalability significantly;
thus, a cooperative approach is considered here. Inspired by the CPSO-SK [5]
algorithm, two cooperative GMMPSO (CGMMPSO) variants are proposed.

The first algorithm, referred to as CGMMPSO-K, optimizes the parameters
of a K-GMM5 by assigning a component’s parameters to a single sub-swarm.
Thus, K swarms are utilized during the optimization procedure. The i-th particle
from the k-th subswarm, denoted by pppik, takes on the form pppik = CCCT

k .
The second cooperative variant, referred to as CGMMPSO-K++, uses an

additional swarm dedicated to the mixture coefficients of the K-GMM; thus, K+
1 swarms are used. An arbitrary particle from a component swarm looks similar
to that of CGMMPSO-K, excluding ρk. The position of the i-th particle of the
mixture coefficient swarm, denoted by ppp∗

i , takes on the form ppp∗
i =

[
ρ1 . . . ρK

]
.

4 A matrix which applies a Givens rotation.
5 A GMM assuming K components.

Gaussian Mixture Models Using PSO 301

5 Experimental Setup

This section explains how the experiments were performed, and summarizes the
real-world and artificial datasets used. A synopsis of the performance measures
is provided and the statistical procedure is described.

5.1 General Experiment Information

Performance was measured on cluster separation, cluster compactness and over-
all quality. Cluster separation is evaluated by the average inter-cluster distance
(Jinter)[8]. Cluster compactness is evaluated by the average weighted intra-
cluster distances, calculated as

Jintra =
1
K

K∑

k=1

∑N
i=1 γk(xxxi) · d(xxxi,μμμk)

∑N
i=1 γk(xxxi)

, where γk(xi) =
πkfN (xxxi|μμμk, Σk)

∑K
l=1 πlfN (xxxi|μμμl, Σl)

(5)
where d(ppp, qqq) denotes the Euclidean distance between ppp and qqq. Lastly, overall
quality is evaluated using the Xie and Beni (XB) index [12] where the distance
from xi to μμμk is weighted with γk(xi). Solutions with small intra-cluster dis-
tances, small XB index and high inter-cluster distances are preferred.

The performances of the EM [9], AA [1] and new algorithms were evaluated on
a set of artificial and three real-world datasets. The EM algorithm was initialized
by the adapted version of the Gonzales algorithm developed by Blömer and
Bujna [2]. Thirty independent runs were performed for each experiment and
algorithm. All PSO algorithms were executed with the same control parameter
values, i.e. an inertia weight of 0.729 and social and cognitive coefficients of 1.494
each [11]. To ensure a fair comparison between all algorithms, a swarm size of
30 was used for all swarms and sub-swarms. At first this might seem unfair to
the single swarm algorithms since the cooperative swarms will have multiples of
30 particles in total. However, if the sub-swarm size of all cooperative variants
are equal to the swarm size of the single swarm variants, then all dimensions in
the solution vector of each algorithm will receive the same number of decision
variable updates. Lastly, to ensure that the means estimated by the PSO-based
algorithms stay within acceptable bounds, all means must satisfy a boundary
constraint: xmin,d ≤ μk,d ≤ xmax,d ∀ k and d. Ari and Aksoy did not state how
mixture coefficients were exactly calculated; thus, for all experiments on AA the
mixture coefficients were calculated as

πk =
1
N

N∑

i=1

f(xi|μμμk, Σk)
∑K

l=1 f(xi|μμμl, Σl)
(6)

A wins and losses approach as used by Georgieva [7] was used to statistically
analyze the overall performance of the algorithms over all datasets. A Mann-
Whitney U test was performed on the results from the 30 independent runs for
each dataset and all combinations of the algorithms. If a statistically significant

302 H. Cilliers and A. P. Engelbrecht

difference exists, the resulting U statistic was used to determine the winning
and losing algorithm. There is no winning or losing algorithm if no statistically
significant difference was found. An algorithm’s score was calculated as #wins−
#losses. The algorithm with the highest score is considered the better algorithm
overall. All statistical tests were performed with a significance level of 5%.

5.2 Datasets

The real-world datasets, acquired from the UCI Machine learning repository6,
include the Iris (4 features, 150 samples), Seeds (7 features, 210 samples) and
Travel Reviews (TR) (11 features, 980 samples) datasets. Since the true number
of clusters are unknown, all algorithms were applied four times to each dataset
with varying numbers of clusters and iterations. Table 2 lists the configuration
for each experiment performed on each dataset. Various artificial datasets were
generated to evaluate the overall effectiveness of all algorithms. These datasets
varied in the number of features (D), true number of clusters (K), number of
samples (N), cluster shape (spherical or elliptical), degree of separation between
clusters (C), and presence of outliers. Table 1 lists the four characteristics of the
nine main configurations of the artificial data and the number of iterations per-
formed by all algorithms on each configuration. Thirty-six artificial data experi-
ments were generated from the different combinations of the main configurations,
cluster shape and outlier presence. All algorithms were applied to the artificial
datasets with the true number of clusters known a priori.

Artificial datasets were generated as follows: Mixture coefficients, denoted by
{πk}K

k=1, were generated by normalising a set of K integer values sampled from
U(1, 10)7. The covariance matrices, denoted by {Σk}K

k=1, were generated in one
of two ways depending on the shape. For spherical clusters Σ was calculated
as s · ID, where s ∼ U(0.5, 20.0) and ID denotes the D-dimensional identity
matrix. For elliptical clusters the covariance matrices were calculated using Σk =
VkΛkV T

k . Vk is the orthogonal matrix yielded from the QR decomposition of a
random matrix, i.e. a matrix with all its entries sampled from U(0, 1). Λk is
a diagonal matrix with each diagonal entry sampled from U(0.5, 20.0). Mean
vectors, denoted by {μμμk}K

k=1, were generated by creating a mean at the origin,
then sequentially generating K − 1 means by using μμμk = μμμl + δk · θθθk, where
δk ∼ U(0, 1), l is a random integer in the bound (1, k−1) and θθθ is a random unit
vector, i.e. θj ∼ U(−1, 1); the vector was then normalised. Afterwards, the means
were moved away from each other until a pairwise separation [3] constraint was
fulfilled for all pairs. Now, for all k, N · πk samples were generated according
to a multivariate Gaussian distribution with mean vector μμμk and covariance
matrix Σk. Lastly, outliers were generated by mutating 5% of the total number
of samples into outliers. The mutation was performed by moving a sample on the

6 Dua, D. and Graff, C. (2019). UCI Machine Learning Repository [http://archive.ics.
uci.edu/ml]. Irvine, CA: University of California, School of Information and Com-
puter Science.

7 U(a, b) denotes a uniform distribution over the interval (a, b).

http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml

Gaussian Mixture Models Using PSO 303

Table 1. Artificial dataset configurations

Configuration D K N C # Iterations

1 2 2 200 3 500

2 3 3 300 3 1500

3 4 4 400 3 3000

4 5 5 500 3 5000

5 3 2 200 2 1000

6 5 3 300 2 3000

7 7 5 500 2 5000

8 5 2 200 1 2500

9 10 3 400 1 5000

Table 2. Real-world dataset config-
urations

Dataset # Clusters # Iterations

Iris 2 2500

Iris 3 3000

Iris 4 3500

Iris 5 4000

Seeds 2 3500

Seeds 3 4250

Seeds 4 5000

Seeds 5 6000

TR 2 5000

TR 3 6000

TR 4 7000

TR 5 8000

Table 3. Cluster compactness
scores per algorithm (sorted in
descending order w.r.t. score)

Algorithm # Wins # Losses Score

EM 106 28 78

CGMMPSO-K 90 23 67

CGMMPSO-K++ 81 27 54

GMMPSO 32 97 −65

AA 13 147 −134

Table 4. Cluster separation scores per algo-
rithm (sorted in descending order w.r.t.
score)

Algorithm # Wins # Losses Score

AA 107 17 90

GMMPSO 58 30 28

CGMMPSO-K 34 45 −11

CGMMPSO-K++ 27 49 −22

EM 9 94 −85

edge of the mixture away from its respective mean till its Mahalanobis distance
is between five and nine units.

6 Results

Tables 3, 4 and 5 summarize the scores achieved by each algorithm for the
Jintra, Jinter and XB measures, respectively. GMMPSO and AA showed better
cluster separation compared to the other algorithms. The AA algorithm yielded
clusters with the best separation, followed by the GMMPSO with the second
best and CGMMPSO-K with the third best score. Despite EM having the best
cluster compactness, the algorithm performed the worst w.r.t. cluster separation.
Finally, regarding the overall clustering quality the CGMMPSO-K algorithm
outperformed all other algorithms, followed by CGMMPSO-K++ in close second
and EM with the third best score. GMMPSO performed the worst w.r.t. overall
clustering quality.

It is evident from the results that CGMMPSO-K outperformed CGMMPSO-
K++ on all measures, making CGMMPSO-K the best overall cooperative vari-
ant. Although GMMPSO did have better cluster separation than CGMMPSO-K,
CGMMPSO-K did outperform GMMPSO w.r.t. cluster compactness and overall

304 H. Cilliers and A. P. Engelbrecht

Table 5. Overall clustering quality scores per algorithm (sorted in descending order
w.r.t. score)

Algorithm # Wins # Losses Score

CGMMPSO-K 53 24 29

CGMMPSO-K++ 57 31 26

EM 58 43 15

AA 48 59 −11

GMMPSO 11 70 −59

clustering quality. Thus, CGMMPSO-K is the best of the three new algorithms.
Note the contrasting results of the EM and AA algorithms. EM performed the
best w.r.t. cluster compactness and AA performed the best w.r.t. cluster sepa-
ration. However, EM outperformed AA w.r.t. overall clustering quality.

Finally, EM performed better than CGMMPSO-K only w.r.t. cluster com-
pactness. However, EM performs worse on both cluster separation and overall
clustering quality. Thus, CGMMPSO-K is regarded as the best overall algorithm
for the considered data clustering problems.

7 Conclusion

This study proposed three particle swarm optimization (PSO) algorithms to esti-
mate parameters for a Gaussian mixture model (GMM). The performance of the
proposed algorithms, the EM algorithm and AA algorithm was evaluated on a
number of artificial and real-world datasets. Their respective performances were
compared and the results revealed that CGMMPSO-K performed the best over-
all. The performance of this approach must still be evaluated on larger datasets
and a larger number of components to properly determine the extent of the
scalability improvement. It would be beneficial to investigate an approach to
dynamically determine the optimal number of components of a GMM, using
PSO.

Acknowledgements. The authors would like to thank the Centre for High Perfor-
mance Computing for the use of their resources to run the simulations used in this
study. As well as the UCI Machine Learning Repository for the real-world datasets
used.

References

1. Ari, C., Aksoy, S.: Maximum likelihood estimation of Gaussian mixture models
using particle swarm optimization. In: Proceedings of the International Conference
on Pattern Recognition, pp. 746–749 (2010)

Gaussian Mixture Models Using PSO 305

2. Blömer, J., Bujna, K.: Adaptive seeding for Gaussian mixture models. In: Bailey,
J., Khan, L., Washio, T., Dobbie, G., Huang, J.Z., Wang, R. (eds.) PAKDD 2016.
LNCS (LNAI), vol. 9652, pp. 296–308. Springer, Cham (2016). https://doi.org/10.
1007/978-3-319-31750-2 24

3. Dasgupta, S.: Learning mixture of Gaussians. In: Proceedings of the 40th Annual
Symposium on Foundations of Computer Science, pp. 634–644 (1999)

4. Duffin, K., Barrett, W.: Spiders: a new user interface for rotation and visualiza-
tion of n-dimensional point sets. In: Proceedings of the 1994 IEEE Conference on
Scientific Visualization, pp. 205–211 (1994)

5. Engelbrecht, A.P., Van den Bergh, F.: A cooperative approach to particle swarm
optimization. Proc. IEEE Trans. Evol. Comput. 8, 225–239 (2004)

6. Gensler, S.: Finite mixture models. In: Homburg, C., Klarmann, M., Vomberg, A.
(eds.) Handbook of Market Research. Springer, Cham (2017). https://doi.org/10.
1007/978-3-319-05542-8 12-1

7. Georgieva, K.: A Computational Intelligence Approach to Clustering of Temporal
Data. Master’s thesis, University of Pretoria, South Africa (2015)

8. Georgieva, K.S., Engelbrecht, A.P.: Dynamic differential evolution algorithm for
clustering temporal data. In: Lirkov, I., Margenov, S., Waśniewski, J. (eds.) LSSC
2013. LNCS, vol. 8353, pp. 240–247. Springer, Heidelberg (2014). https://doi.org/
10.1007/978-3-662-43880-0 26

9. Redner, R., Walker, H.: Mixture densities, maximum likelihood and the EM algo-
rithm. SIAM Rev. 26, 195–239 (1984)

10. Shi, Y., Eberhart, R.: A modified particle swarm optimizer. In: Proceedings of
the 1998 IEEE International Conference on Evolutionary Computation, pp. 69–73
(1998)

11. Shi, Y., Eberhart, R.: Comparing inertia weights and constriction factors in par-
ticle swarm optimization. In: Proceedings of the 2000 Congress on Evolutionary
Computation, vol. 1, pp. 84–88 (2000)

12. Xie, X., Beni, G.: A validity measure for fuzzy clustering. IEEE Trans. Pattern
Anal. Mach. Intell. 13, 841–847 (1991)

https://doi.org/10.1007/978-3-319-31750-2_24
https://doi.org/10.1007/978-3-319-31750-2_24
https://doi.org/10.1007/978-3-319-05542-8_12-1
https://doi.org/10.1007/978-3-319-05542-8_12-1
https://doi.org/10.1007/978-3-662-43880-0_26
https://doi.org/10.1007/978-3-662-43880-0_26

Formation Control of UAVs and Mobile
Robots Using Self-organized
Communication Topologies

Weixu Zhu1(B) , Michael Allwright1 , Mary Katherine Heinrich1 ,
Sinan Oğuz1 , Anders Lyhne Christensen2 ,

and Marco Dorigo1

1 IRIDIA, Université Libre de Bruxelles, Brussels, Belgium
{weixu.zhu,michael.allwright,mary.katherine.heinrich,sinan.oguz,

mdorigo}@ulb.ac.be
2 SDU Biorobotics, The Mærsk Mc-Kinney Møller Institute,

University of Southern Denmark, Odense, Denmark
andc@mmmi.sdu.dk

Abstract. Formation control in a robot swarm targets the overall
swarm shape and relative positions of individual robots during navi-
gation. Existing approaches often use a global reference or have lim-
ited topology flexibility. We propose a novel approach without these
constraints, by extending the concept of ‘mergeable nervous systems’
to establish distributed asymmetric control via a self-organized wire-
less communication network. In simulated experiments with UAVs and
mobile robots, we present a proof-of-concept for three sub-tasks of forma-
tion control: formation establishment, maintenance during motion, and
deformation. We also assess the fault tolerance and scalability of our
approach.

1 Introduction

We target the control of mobile multi-robot formations—in other words, the
maintenance of a possibly adaptive shape during navigation, including both
shape outline and relative positions of individuals. Formation control is more fre-
quently studied in control theory than swarm robotics (cf. distinction pointed out
by [20]). In swarm robotics, physical coordination with non-physical connections
has been studied in flocking (e.g., [7]), where an amorphous group forms dur-
ing motion, and in self-assembly without physical connections, which has been
demonstrated for immobile shapes that are definite and static [18] or amorphous
and adaptive [19]. In these approaches, flexibility of individual robot positions
has been used as a feature, similar to formation-containment control (e.g., [6])
in control theory, which maintains an overall convex hull.

Formation control—maintaining both overall shape and individual rela-
tive positions—merits further study in swarm robotics. We propose an app-
roach based on the existing ‘mergeable nervous systems’ (MNS) [12] concept.
c© Springer Nature Switzerland AG 2020
M. Dorigo et al. (Eds.): ANTS 2020, LNCS 12421, pp. 306–314, 2020.
https://doi.org/10.1007/978-3-030-60376-2_25

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-60376-2_25&domain=pdf
http://orcid.org/0000-0002-0329-9592
http://orcid.org/0000-0002-0932-3215
http://orcid.org/0000-0002-1595-8487
http://orcid.org/0000-0003-2832-1239
http://orcid.org/0000-0002-9994-2908
http://orcid.org/0000-0002-3971-0507
https://doi.org/10.1007/978-3-030-60376-2_25

Formation Control of UAVs and Mobile Robots 307

The MNS concept combines aspects of centralized and decentralized control, via
distributed asymmetric control over a communication graph formed exclusively
by self-organization. Our method targets control of definite swarm shape and rel-
ative positions of individuals, in non-physically connected robots. Widely studied
formation control approaches [1,4,11] primarily make use of formation-level cen-
tral coordination, and include leader–follower [21] (including virtual leader [17]),
virtual structure [9,17], and behavior-based [2,3]. Our proposed hybrid approach
uses a virtual structure that is not only a reference coordinate frame and a tar-
get formation, but also a target topology of the communication network. Robots
cede motion control to distributed leaders (i.e., parents) that are their imme-
diate neighbors in the communication topology, rather than following a single
shared leader. Similarly to behavior-based control, the target formation is not
necessarily rigid, as the parents can adapt the motion control of their immediate
followers (i.e., children) on the fly, during tasks such as obstacle avoidance.

We select the review by [11] to define the aims of our proof-of-concept exper-
iments. Then, a comprehensive approach to formation control should include the
following sub-tasks: 1) formation establishment from random positions, 2) for-
mation maintenance during motion, and 3) formation ‘deformability’ [11] (i.e.,
updating the target formation on the fly) during obstacle avoidance. We test
formation establishment (Sect. 3.1) with various shapes and sizes of target for-
mations. For formation maintenance, we test time-and-position cooperative and
reactive motion, in response to an external stimulus (Sect. 3.2). For formation
deformability, we test a scenario requiring multiple updates to the target for-
mation during obstacle-exposed navigation (Sect. 3.2). We also target benefi-
cial features typically seen in self-organization. First, we test fault tolerance, in
terms of formation recovery after robot failure (Sect. 3.3). Second, we test scal-
ability (Sect. 3.4), in terms of convergence time during formation establishment
(Sect. 3.1) and reaction time in response to an external stimulus (Sect. 3.2).

2 Methods

Our formation control approach is based on the ‘mergeable nervous systems’
(MNS) concept [12], previously demonstrated with physical connections among
ground robots. Here, we extend the concept to non-physical connections, with
self-organized wireless communication topologies in a heterogeneous swarm.

Target Topology, Target Formation, and Motion Control. In our app-
roach, an MNS is a set of robots connected in a self-organized wireless com-
munication network, specifically a directed rooted tree, where the root acts as
the brain robot of the MNS. A self-organization process results in a network
with a given target topology. This network is used to execute distributed motion
control, to move robots to positions and orientations that match a given target
formation. The target topology is represented in graph G, and target formation
is represented by a set of attributes A associated to the links of G. For each
link between a parent robot and child robot, A includes the child target position

308 W. Zhu et al.

and orientation, relative to the parent, and includes the robot type of the child
(either UAV or ground robot). A robot uses the full G and A as reference only
if it is currently a brain. G and A are defined externally and can be updated
during runtime. A non-brain robot receives a portion of the target from its par-
ent, to use as its new reference. Specifically, robot rn receives G′

n, the subgraph
downstream from it, and the associated subset An.

To establish the target formation and maintain it during motion, each child
cedes motion control to its parent, which directs it to the relative position and
orientation indicated in A. The motion instructions communicate linear and
angular velocities, with the parent as reference frame, via the following: 1) new
linear velocity vector v, magnitude in m/s; 2) new angular velocity vector ω,
magnitude in rad/s; and 3) current orientation in unit quaternion qt, represent-
ing rotation axis and angle. To execute the instructions, the child first rotates
v and ω by −qt, resulting in new vectors vq and ωq, then begins moving in
direction vq at speed ||vq|| m/s while rotating around ωq at speed ||ωq|| rad/s.
In order to calculate instructions that will move the child towards the target, the
parent senses its child’s current displacement vector dt and orientation qt, with
itself as reference frame. At each step, the parent sends new motion instructions
after calculating a new desired displacement dt+1 and orientation qt+1 for the
child, and then calculating v and ω according to Eq. 1, as follows:

v = k1

(
dt+1 − dt

||dt+1 − dt||
)
, ω = k2 · ||f(q−1

t+1 × qt)||, (1)

where k1 and k2 are speed constants, and where function f(x) converts a quater-
nion to an Euler angle.

Formation Establishment and Maintenance. A target topology is estab-
lished by robots forming directed communication links, becoming members of
the same MNS. MNS topologies are self-organized via distributed recruitment
operations and handover operations. Recruitment operations form new links. A
robot tries to form new links with another robots if these two robots are not in
the same network. Handover operations redistribute robots if their current topol-
ogy nodes do not match the target G and A. A robot may handover its children
to its parent or other children based on its G and A to change the topology of
the network. Regardless of how robots are initially recruited, those at incorrect
nodes will be shifted along the topology until all robots match the target G and
A. In case of faulty robots, recruitment and handover operations also restore
the target topology. When a robot is moving, it sends motion instruction to its
children to maintain their relative positions and orientations according to A. A
robot reacting to an external signal may send emergency motion instructions
to its neighbors, and the instructions propagate through the MNS. The MNS is
‘deformable’ [11] (i.e., can switch the target formation on the fly) by updating
the target G and A in the brain.

Formation Control of UAVs and Mobile Robots 309

2.1 Experiment Setup

We run experiments with the multi-robot simulator ARGoS [16], using kinematic
robot control. The arena is 10 × 10 × 2.5 m3, fully enclosed, and optionally
includes 0.04× 0.04× 0.02 m3 static obstacles. The UAV model is based on the
DJI F540 multi-rotor frame, which we extend with four ground-facing cameras.
We limit UAV speed to 0.1 m/s, to match the 0.1 m/s maximum speed of the
ground robots. UAVs maintain a 1.5 m altitude, after taking off at the start
of an experiment. The ground robot model is an extended e-puck [8,13,14],
with a fiducial marker (0.03 × 0.03 m2 AprilTag [15]) encoding the robot ID.
Obstacles also have AprilTags, encoding an obstacle identifier. At 1.5 m altitude,
a UAV reliably views a ground area of 1.5 × 1.5 m2, detecting positions and
orientations of ground robots and obstacles. If two UAVs are connected, they
detect each other via ‘virtual sensing’ [10]—they each infer the other’s position
and orientation relative to a mutually detected ground robot. Our setup assumes
restriction to short-range communication. Messages can only be passed between
robots if they are connected in the graph G, or if one is in the other’s field of
view.

We run experiments (video available1) for formation establishment, obstacle
avoidance, fault tolerance, and scalability. We define and use nine target forma-
tions (F1–F9, see Fig. 1(a)). We conduct 100 runs per experiment and record
robot positions throughout. We assess performance via ‘position error’ [11]—i.e.,
the difference between actual relative positions and those indicated in the target
formation.

3 Results

3.1 Formation Establishment

We first test formation establishment from random starting positions. Establish-
ment is considered successful if all robots merge into a single MNS and the robots
achieve the given target formation. We test all nine target formations (100 runs
each). Using the robots’ final node allocations after experiment termination, we
use Euclidean distance to calculate position error E at each timestep, as follows:

E =
1
n

n∑
i=1

Ei, Ei = | d(pi − p1) − d(ri − r1) |, (2)

where n is the total number of robots, pi is a robot’s current position, ri is a
robot’s target position, and i = 1 is the brain. Ei for the brain is always zero,
because the brain’s relative position to itself is constant. Position error E over
time is given in Fig. 1(d), for all nine target formations. In all runs, the swarm
successfully establishes the target formation within 400 s. The larger the swarm
size, the more time it takes to converge. On average, convergence time is 12.79 s
per robot (standard deviation of 5.32 s).
1 http://iridia.ulb.ac.be/supp/IridiaSupp2020-006/index.html.

http://iridia.ulb.ac.be/supp/IridiaSupp2020-006/index.html

310 W. Zhu et al.

F1 F2 F3

F4 F5 F6

F7 F8 F9

(a)

(c) (d)

time (s) 4000

)
m(rorre

0.0

3.0
 Formation establishment

time (s)

)
m(rorr e

4800
0.0

2.0
(e) Obstacle avoidance

(b)

1 2 3 4

Fig. 1. (a) Target formations (F1–F9). Red circles are UAVs, blue are ground robots.
(b) Formation-level obstacle avoidance scenario (screenshot from simulator); deforma-
tion. (c) Ground robot and UAV. (d) Formation establishment results. Average position
error E over time for all target formations (900 runs total). Dark grey shows stan-
dard deviation; light grey shows maximum and minimum. (e) Formation-level obstacle
avoidance results from example run. Position error E over time.

3.2 Formation-Level Obstacle Avoidance

We test ‘deformability’ [11]—i.e., whether the target formation can be updated
on the fly, for instance by switching from a cross-shaped formation to a cir-
cular formation. For deformation, the brain updates the target topology and
formation. Deformation is successful if the MNS establishes the new target for-
mation after an update, such that the position error E returns to its prior level
(approximately 0.1 m position error). In this experiment type, we define a wall
with a narrow opening (a complex obstacle for formation control [11]) and a
small box to be encircled. We use a shepherd robot as stimulus. In step 1, see
Fig. 1(b), the MNS is in formation F9 and moves towards the wall because of
the shepherd robot. In step 2, it switches from the cross-shaped formation F9
to a more elongated formation similar to formation F3, passing the opening. In
step 3, it switches back to formation F9. In step 4, it encounters the small box,
and switches to a circular formation similar to formation F6, surrounding the
box. Position error E (see Eq. 2) over time is given in Fig. 1(e). Peaks occur
when the target formation switches; the largest peak corresponds to the largest
difference between the old and new formations. In all 100 runs, E returns to its
prior stable level, after each formation switch.

Formation Control of UAVs and Mobile Robots 311

3.3 Fault Tolerance

We test recovery of the topology and formation when a robot fails—i.e., its
communication links break and it is arbitrarily displaced. Recovery is successful
if position error returns to its prior level, from before the failure. Searching for
robots is not within the scope of this paper, so the failed robot is displaced to a
random position within the MNS’s field of view. Our approach is tolerant even to
brain failure, as any robot can be replaced by its topologically closest neighbor.
With 100 runs each, we test failure of a leaf node (Fig. 2(a,d)); a non-brain inner
node (Fig. 2(b,e)); and a brain (Fig. 2(c,f)). We begin the assessment of each
experiment at timestep 280 s, once all robots have established formation F9. In
this target formation, all leaf nodes are ground robots and all inner nodes are
UAVs. From the set of robots that are candidates for failure in the respective
experiment (e.g., those at leaf nodes), one robot is randomly selected as the failed
robot, and is removed and displaced at timestep 300 s. Shaded plots of position
error E (see Eq. 2) over time are given in Fig. 2(a–c), and scatter plots of recovery
time in relation to displacement distance of the failed robot are given in Fig. 2(d–
f). Results show that the closer the failed robot is to the brain topologically, the
longer the time to recover (note the different scale on the y-axes of Fig. 2(a–c)),
and the less direct the relationship between displacement distance and recovery
time. This weaker relationship reflects the increased difficulty of recovery, when
the failure is closer to the brain. The MNS succeeds in fully recovering in 99% of
300 runs. In the remaining 1%, one ground robot erroneously moves slightly out
of view; as searching for robots is not part of the experiment setup, it remains
out of view.

(d) (e) (f)

(a) (b) (c) 320

0
0 20

40

0
0 20

)s(e
mit

) s(e
mit

number of robots

number of robotsdistance (m)

)s(e
mit

) s(e
mit

) s(e
mit

4.00.0
0 0 0

160

(g)

distance (m) 4.00.0

320 (h)

distance (m) 3.00.0

320

time (s)

)
m(rorr e

)
m(r orr e

)
m(r orr e

500280
0.0

0.23

time (s) 700280
0.0

1.2

time (s) 700280
0.0

3.5

Fig. 2. (a–f) Formation recovery after three failure types: (a,d) leaf node, (b,e) non-
brain inner node, and (c,f) brain. (a–c) Position error E over time, for each failure type
(100 runs each). (d–f) Relationship between recovery time and displacement distance,
for each failure type (100 runs each). (g–i) Scalability analysis. (g) Convergence time
by number of robots. Each color line indicates average time for a shape type (shape
types F1–3, F4–6, and F7–9 in Fig. 1(a)). Dark grey is standard deviation for all shape
types; light grey, maximum and minimum. (h) Convergence time per robot, by number
of robots. (Color indications match (g).)

312 W. Zhu et al.

3.4 Scalability

We assess scalability in terms of the initial time to converge on the target for-
mation (in Sect. 3.1), and the reaction time during motion while the formation
is being maintained (in Sect. 3.2). The total time to converge (see Fig. 2(g))
tends to increase sublinearly with increasing number of robots—in other words,
the system scales slightly better than linearly. Convergence time per robot (see
Fig. 2(h)) tends to decrease as the number of robots increases. These tendencies
occur because merges often happen in parallel early in the establishment process.
The formation shape also impacts convergence time; as this is a multidimensional
variable, a comprehensive understanding would require further study.

In a physical MNS, reaction time depends on the number of robots a message
passes through [12]. For our wireless MNS, we find that reaction time increases
linearly according to the number of links from the stimulated robot to the fur-
thest robot. Currently, there is no spread; one message takes one simulation step
(200 ms). In real robots, message time will likely vary. In the experiments of [12],
the real message rate was 100 ms (half the rate we set in simulation), using mes-
sages of comparable size. For wireless communication, a candidate for our setup
would be Zigbee, with effective bit rate of 250 kbps [5].

4 Discussion and Conclusions

We have proposed a self-organized approach to formation control based on the
existing concept of ‘mergeable nervous systems,’ which combines aspects of cen-
tralized and decentralized control. Robots in a swarm execute distributed asym-
metric control via self-organized communication topologies. In simulated exper-
iments we have demonstrated a successful proof-of-concept, showing that our
approach can enable a swarm to establish and maintain a given formation while
avoiding obstacles. We have demonstrated that, using the self-organized commu-
nication topology, the formation can recover after robot failure and displacement,
and also can switch to a new formation on the fly. Although these are promis-
ing results, more comprehensive study is required to define the limits of these
features, give formal guarantees, and systematically compare the performance
of our method to other formation control approaches. In order to move our
approach to real-robot experiments, future developments will need to address
conditions such as sensor noise and communication latency, and add a layer of
dynamic control in addition to kinematic control for the UAVs. Overall, we draw
the conclusion that in the tested experimental setup our MNS-based approach
is capable of fault-tolerant and scalable formation control during navigation, in
a heterogeneous robot swarm comprising UAVs and ground robots.

Acknowledgements. This work is partially supported by the Program of Concerted
Research Actions (ARC) of the Université libre de Bruxelles, by the Office of Naval
Research Global (Award N62909-19-1-2024), by the European Union’s Horizon 2020
research and innovation programme under the Marie Sk�lodowska-Curie grant agree-
ment No 846009, and by the China Scholarship Council Award No 201706270186.

Formation Control of UAVs and Mobile Robots 313

Marco Dorigo and Mary Katherine Heinrich acknowledge support from the Belgian
F.R.S.-FNRS, of which they are a Research Director and a Postdoctoral Researcher
respectively.

References

1. Anderson, B.D., Fidan, B., Yu, C., Walle, D.: UAV formation control: theory and
application. In: Blondel, V.D., Boyd, S.P., Kimura, H. (eds.) Recent Advances in
Learning and Control. Lecture Notes in Control and Information Sciences, vol. 371,
pp. 15–33. Springer, London (2008). https://doi.org/10.1007/978-1-84800-155-8 2

2. Balch, T., Arkin, R.C.: Behavior-based formation control for multirobot teams.
IEEE Trans. Robot. Autom. 14(6), 926–939 (1998)

3. Cao, Z., Xie, L., Zhang, B., Wang, S., Tan, M.: Formation constrained multi-robot
system in unknown environments. In: IEEE International Conference on Robotics
and Automation (Cat. No. 03CH37422), vol. 1, pp. 735–740. IEEE (2003)

4. Chen, Y.Q., Wang, Z.: Formation control: a review and a new consideration. In:
IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 3181–
3186. IEEE (2005)

5. Cox, D., Jovanov, E., Milenkovic, A.: Time synchronization for ZigBee networks.
In: Proceedings of the Thirty-Seventh Southeastern Symposium on System Theory,
SSST 2005, pp. 135–138. IEEE (2005)

6. Dong, X., Hua, Y., Zhou, Y., Ren, Z., Zhong, Y.: Theory and experiment on
formation-containment control of multiple multirotor unmanned aerial vehicle sys-
tems. IEEE Trans. Autom. Sci. Eng. 16(1), 229–240 (2018)

7. Ferrante, E., Turgut, A.E., Huepe, C., Stranieri, A., Pinciroli, C., Dorigo, M.: Self-
organized flocking with a mobile robot swarm: a novel motion control method.
Adapt. Behav. 20(6), 460–477 (2012)

8. Gutiérrez, Á., Campo, A., Dorigo, M., Donate, J., Monasterio-Huelin, F., Mag-
dalena, L.: Open e-puck range & bearing miniaturized board for local commu-
nication in swarm robotics. In: IEEE International Conference on Robotics and
Automation, pp. 3111–3116. IEEE (2009)

9. Lewis, M.A., Tan, K.H.: High precision formation control of mobile robots using
virtual structures. Autonom. Robots 4(4), 387–403 (1997). https://doi.org/10.
1023/A:1008814708459

10. Liu, L., Kuo, S.M., Zhou, M.: Virtual sensing techniques and their applications.
In: International Conference on Networking, Sensing and Control, pp. 31–36. IEEE
(2009)

11. Liu, Y., Bucknall, R.: A survey of formation control and motion planning of mul-
tiple unmanned vehicles. Robotica 36(7), 1019–1047 (2018)

12. Mathews, N., Christensen, A.L., O’Grady, R., Mondada, F., Dorigo, M.: Mergeable
nervous systems for robots. Nature Commun. 8, 439 (2017)

13. Millard, A.G., et al.: The Pi-puck extension board: a Raspberry Pi interface for
the e-puck robot platform. In: IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), pp. 741–748. IEEE (2017)

14. Mondada, F., Bonani, et al.: The e-puck, a robot designed for education in engi-
neering. In: Proceedings of the 9th Conference on Autonomous Robot Systems and
Competitions, vol. 1, pp. 59–65. IPCB: Instituto Politécnico de Castelo Branco
(2009)

https://doi.org/10.1007/978-1-84800-155-8_2
https://doi.org/10.1023/A:1008814708459
https://doi.org/10.1023/A:1008814708459

314 W. Zhu et al.

15. Olson, E.: AprilTag: a robust and flexible visual fiducial system. In: Proceedings
of the IEEE International Conference on Robotics and Automation (ICRA), pp.
3400–3407. IEEE, May 2011

16. Pinciroli, C., et al.: ARGoS: a modular, parallel, multi-engine simulator for
multi-robot systems. Swarm Intell. 6(4), 271–295 (2012). https://doi.org/10.1007/
s11721-012-0072-5

17. Ren, W., Sorensen, N.: Distributed coordination architecture for multi-robot for-
mation control. Robot. Auton. Syst. 56(4), 324–333 (2008)

18. Rubenstein, M., Cornejo, A., Nagpal, R.: Programmable self-assembly in a
thousand-robot swarm. Science 345(6198), 795–799 (2014)

19. Soorati, M.D., Heinrich, M.K., Ghofrani, J., Zahadat, P., Hamann, H.: Photo-
morphogenesis for robot self-assembly: adaptivity, collective decision-making, and
self-repair. Bioinspir. Biomim. 14(5), 056006 (2019)

20. Valentini, G., Ferrante, E., Dorigo, M.: The best-of-n problem in robot swarms:
formalization, state of the art, and novel perspectives. Front. Robot. AI 4, 9 (2017)

21. Wang, P.K.: Navigation strategies for multiple autonomous mobile robots moving
in formation. J. Robot. Syst. 8(2), 177–195 (1991)

https://doi.org/10.1007/s11721-012-0072-5
https://doi.org/10.1007/s11721-012-0072-5

Group-Size Regulation in Self-organized
Aggregation in Robot Swarms

Ziya Firat1 , Eliseo Ferrante2,3 , Raina Zakir4, Judhi Prasetyo1,4 ,
and Elio Tuci1(B)

1 Department of Computer Science, University of Namur, Namur, Belgium
{ziya.firat,judhiprasetyo}@student.unamur.be, elio.tuci@unamur.be

2 Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
e.ferrante@vu.nl

3 Technology Innovation Institute, Masdar City, Abu Dhabi, United Arab Emirates
4 Middlesex University Dubai, Dubai, United Arab Emirates

rainazakir@gmail.com

Abstract. In swarm robotics, self-organized aggregation refers to a col-
lective process in which robots form a single aggregate in an arbitrarily
chosen aggregation site among those available in the environment, or just
in an arbitrarily chosen location. Instead of focusing exclusively on the
formation of a single aggregate, in this study we discuss how to design
a swarm of robots capable of generating a variety of final distributions
of the robots to the available aggregation sites. We focus on an environ-
ment with two possible aggregation sites, A and B. Our study is based
on the following working hypothesis: robots distribute on site A and B
in quantities that reflect the relative proportion of robots in the swarm
that selectively avoid A with respect to those that selectively avoid B.
This is with an as minimal as possible proportion of robots in the swarm
that selectively avoid one or the other site. We illustrate the individ-
ual mechanisms designed to implement the above mentioned working
hypothesis, and we discuss the promising results of a set of simulations
that systematically consider a variety of experimental conditions.

1 Introduction

Swarm robotics studied the design of collective behaviors in group of autonomous
robots [4]. Swarm robotics takes inspiration from studies in social insect and
other social animals, whereby simple individuals are able to exhibit superior
collective intelligence when working in groups [2]. The overall goal is to design
systems that are robust, scalable, and flexible like their natural counterparts [4].
To achieve this, swarm robotics relies on the application of the following princi-
ples: i) absence of external infrastructure and reliance on only on-board sensing
and computation; ii) use of local perception and communication only; that is,
each robot can sense and communicate only within a given range via on-board
devices; iii) the process of self-organization, that yields from microscopic behav-
iors and individual interactions to macroscopic complex collective behaviors.
c© Springer Nature Switzerland AG 2020
M. Dorigo et al. (Eds.): ANTS 2020, LNCS 12421, pp. 315–323, 2020.
https://doi.org/10.1007/978-3-030-60376-2_26

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-60376-2_26&domain=pdf
http://orcid.org/0000-0001-6455-0202
http://orcid.org/0000-0002-2213-8356
http://orcid.org/0000-0003-2319-6627
http://orcid.org/0000-0001-7345-671X
https://doi.org/10.1007/978-3-030-60376-2_26

316 Z. Firat et al.

Collective decision-making is the ability to make a collective decisions only
via local interaction and communication [26]. This is an important collective
response which has been extensively studied in swarm robotics. Collective deci-
sion making can take several forms: it can either be studied explicitly [26,27]
or implicitly in other collective behaviors such as collective motion (decision
on a common direction of motion), and aggregation (decision on a common
location for gathering in the environment). Two factors that can synergistically
or antagonistically influence collective decision-making process are asymmetries
in the environment, or the active modulation performed by the all or some of
the swarm members [26]. In a seminal study on collective decision making [8],
the authors studied collective motion models in presence of so called implicit
leaders or informed individuals. These have a preferred direction of motion to
guide collective motion in that direction. The rest of the swarm do not possess
a preferred direction of motion, nor is able to recognize informed individuals.
The main result of the paper is that even a minority of informed individuals is
able to guide the swarm in the desired direction, and that larger groups require
smaller proportion of informed individuals for equal levels of accuracy.

As in [8], also in swarm robotics the framework of informed individuals has
been studied mainly in the context of collective motion [11,12,20]. Recently,
this framework has been ported to another collective behavior, namely self-
organized aggregation [13,14,19]. Self-organized aggregation [1,7,18] is inspired
by the biological study of cockroaches [9,21], where probabilistic models have
been proposed. The same models have been adapted and implemented on dis-
tributed robotic systems [15,16,18]. Besides being another example of collec-
tive decision-making, aggregation is a basic building block for other cooperative
behaviors [10,25]. Self-organized aggregation can take place in environments that
are completely homogeneous (except for boundaries and potential obstacles)
where no perceivable special locations, called sites or shelters, are present, thus
robots are required to aggregate anywhere in this environment [5]. Alternatively,
as it is the case of the current paper, the sites where robots are required to aggre-
gate can be specific areas in the environment that can be clearly perceived by
all or some of the robots [6,17].

In this paper our objective is to go one step beyond the state of the art to fur-
ther study how the framework of informed robots can be used as a guiding prin-
ciple for self-organization. We build upon recent studies on self-organized aggre-
gation with informed robots [13,14,19], where robots need to select only one site
among n possible alternatives, driven by informed robots. Each informed robot
has knowledge on a specific aggregation site to stop on and avoids other aggre-
gation sites. Non-informed robots do not possess this information, therefore may
potentially aggregate on any side. Additionally, informed robots are assumed to
be perceivable, through sensing, by other robots (e.g., they emit a signal), while
non-informed robots cannot be sensed at all. Differently from [13,14,19], in this
paper robots are required to aggregate on both sites according to different pro-
portions as set by the designer. To control the proportion of robots aggregating
on the two sides, we design a novel aggregation method. Informed robots are

Group-Size Regulation in Self-organized Aggregation 317

divided in two types, each preferring one of the two sites over the other. To con-
trol the relative group size on the two sites, the proposed method only requires
the presence of informed robots with internal sub-proportions correlating with
desired global allocation for the whole swarm. We perform our study using both
simulation and real-robot experiments. In simulation we considered a scenarios
in a circular arena where the two aggregation sites are represented by black or
white colored circles, respectively. The results of our simulations show interesting
relationships between swarm size and sub-proportion of informed agents, both on
quality and speed of convergence on the desired aggregation site. In the following
sections, we detailed the methods of our study; we discuss the significance of our
results for the swarm robotics community, and we point to interesting future
directions of work.

2 The Simulation Environment

A swarm of robots is randomly placed in a circular area with the floor colored in
gray except for two circular aggregation sites, one in which the floor is colored
in white and one in which is black. The task of the robots is to form aggregates
on both sites according to rules that prescribe which proportion of the swarm
has to aggregate on the white site and which proportion on the black site. Each
simulated robot is controlled by a probabilistic finite state machine (PFSM),
similar to the one employed in [1,5,7,21]. The robots’ controller is made of three
states: Random Walk (RW), Stay (S), and Leave (L). When in state RW, the
movement of the robot is characterized by an isotropic random walk, with a
fixed step length (5 s, at 10 cm/s), and turning angles chosen from a wrapped
Cauchy probability distribution [22]. Any robot in state RW is continuously
performing an obstacle avoidance behavior. To perform obstacle avoidance, first
the robot stops, and then it changes its headings of a randomly chosen angle
uniformly drawn in [−π, π] until no obstacles are perceived in the forward direc-
tion of motion. Negative angles refer to clockwise rotations, while positive to
anticlockwise rotations.

In our model, we consider two type of robots: informed robots and non-
informed robots. Informed robots systematically rest only on one site. Some of
them, avoid the black site and rest only on the white site (informed robots for
white); others avoid the white site and rest only on the black site (informed
robots for black). Non-informed robots can potentially rest on both types of
site. Note that, the working hypothesis of this study is that the way in which
the swarm distributes among the two aggregation sites reflects the relative pro-
portion of informed robots for black and for white. For example, if 50% of the
informed robots are for black and 50% of them are for white, the swarm should
generate two equal size aggregates one on the black and one on the white site.
This experimental work aims at verifying this working hypothesis by systemati-
cally varying the proportion of informed robots within the swarm. Moreover, for
each proportion of informed robots, we vary the relative proportion of informed
robots for black and for white.

318 Z. Firat et al.

A non-informed robot systematically transits from state RW to state S any-
time it reaches an aggregation site. Informed robots for black undergo the same
state change only when they reach the black site, thus ignoring the white site.
Informed robots for white systematically transits from state RW to state S
anytime they reach a white aggregation site, thus ignoring the black site. For
all types of robots, the transaction from the random walk to resting on a site
happens in the following: the robots moves forward within the site for a limited
number of time steps in order to avoid stopping at the border of the site thus
creating barriers preventing the entrance to other robots. Then, they transitions
from state RW to state S.

The robots leave state S to join state L with a probability Pleave, which is
computed in the following:

Pleave =

{
e−a(k−|n−x|), if n > 0; it applies to all types of robots;
1, if n = 0; only for non-informed robot;

(1)

with a = 2.0 and k = 18. n is current number of informed robots perceived at
the site, and x is the number of informed robots perceived at the site at the
time of joining a site. Note that, for any robot n and x are local estimates based
the number of informed robots in the perceivable neighborhood which is smaller
than the entire site. Pleave is sampled every 20 time steps. When in state L,
a robot leaves the aggregation site by moving forward while avoiding collisions
with other robots until it no longer perceives the site. At this point, the robot
transitions from state L to state RW. While on an aggregation site, informed
robots count themselves in order to estimate n and x.

To model this scenario, we use ARGoS multi engine simulator [23]. The
simulation environment models the circular arena as detailed above, and the
kinematic and sensors readings of the Foot-bots mobile robots [3]. The robot
sensory apparatus includes the proximity sensors positioned around the robot
circular body, four ground sensors positioned two on the front and two on the
back of the robot’s underside, and the range and bearing sensor. The proximity
sensors are used for sensing and avoiding the walls of the arena. The readings
of each ground sensors is set to 0.5 if the sensor is on gray, to 1 if on white, and
0 if on black. A robot perceives an aggregation site when all the four ground
sensors return a value different from 0.5. The range and bearing sensor is used
to avoid collision with other robots and to estimate how many informed robots
are resting on a site within sensor range (i.e., the parameters n and x in Eq. 1).
With this sensor, two robots can perceive each other up to a distance of 0.8
meter.

3 Results

We run two sets of experiments (hereafter, setup 1, and setup 2), in which we
varied the swarm size N , with N = 50 in setup 1, and N = 100 in setup 2. As
aggregation performance are heavily influenced by swarm density [5,13,14,19]

Group-Size Regulation in Self-organized Aggregation 319

(a) (b)

(c) (d)

Fig. 1. Graphs in which the intensity of gray refers to the number of trials, out of 100,
terminated with a particular proportion of robots on each site (i.e., Φb and Φw). The
x-axes refer to the proportion of informed robots for black (ρsb) or for white (ρsw).
The swarm size N and the total proportion of informed robots (ρI) in the swarm are:
(a) N = 50 and ρI = 0.1; (b) N = 50 and ρI = 0.3; (c) N = 100 and ρI = 0.1; (d)
N = 100 and ρI = 0.3. In each of these cases, the x and y-axis of the leftmost graphs
refer to ρsb and Φb, respectively; the x and y-axis of the rightmost graphs refer to ρsw

and Φw, respectively.

Table 1. Table showing the characteristics of each experimental condition in simulation

Setup Swarm size Arena diameter (cm) Aggregation site diameter (cm)

1 50 12.9 2.8

2 100 18 4.0

320 Z. Firat et al.

in this paper we have decided to study scalability by keeping the swarm density
constant. Therefore, the diameter of the area, as well as the diameters of the two
sites, is varied as well (see Table 1). In both setups, the diameter of each aggrega-
tion site is large enough to accommodate all the robots of the swarm. Each setup
is made of 25 conditions which differ in the total proportion of informed robots
in the swarm (hereafter, referred to as ρI , with ρI = {0.1, 0.3, 0.5, 0.7, 0.9}), and
in the proportion of ρI that are informed for black (hereafter, referred to as ρsb,
with ρsb = {0.1, 0.2, 0.3, 0.4, 0.5}) and for white (hereafter, referred to as ρsw,
with ρsw = 1− ρsb). For each condition, we execute 100 independent simulation
trials. In each trial, the robots are randomly initialized within the arena. They
autonomously move according to actions determined by their PFSM for 300.000
time steps. One simulated second corresponds to 10 simulation time steps.

We expect that, for any value of ρI , the swarm distributes on each aggregation
site in proportions that reflect the relative proportion of ρsb with respect to ρsw.
For example, for a given ρI , if ρsb = 0.1 and ρsw = 0.9, 10% of the swarm is
expected to aggregate on the black site and the remaining 90% of the swarm is
expected to aggregate on the white site. To evaluate the behavior of the swarm
we recorded the proportion of robots aggregated on the black site (Φb = Nb

N)
and on the white site (Φw = Nw

N), at the end of each simulation run (where
Nb and Nw are the number of robots aggregated on the black and white site,
respectively, and N is the swarm size). In this paper, we show only the results
of setup 1 and 2 relative to those conditions in which ρI = 0.1, 0.3 The results
of these simulations are shown in Fig. 1. Each graph shows the number of trials,
out of 100, terminated with a particular proportion of robots i) on the black
site, for each value of ρsb indicated on the x-axes of the rightmost graph in
Fig. 1a, 1b, 1c, and 1d; ii) on the white site, for each value of ρsw indicated on
the x-axes of the leftmost graph in Fig. 1a, 1b, 1c, and 1d. The swarm size N
and the total proportion of informed robots (ρI) in the swarm are: i) N = 50
and ρI = 0.1 in Fig. 1a; ii) N = 50 and ρI = 0.3 in Fig. 1b; iii) N = 100 and
ρI = 0.1 in Fig. 1c; iv) N = 100 and ρI = 0.3 in Fig. 1d.

Ideally, if the swarm aggregates in way to perfectly reflect the relative pro-
portion of informed robots for black and for white in the swarm, for both N = 50
and N = 100 and for all total proportion of informed robots in the swarm, the
graphs in Fig. 1 would show only black rectangle aligned on the diagonal from
bottom left to top right corners of each graph. In other words, all 100 trials in
each condition of each setup would terminate with Φb = ρsb and Φw = ρsw. The
results of the simulations tend to slightly diverge from this ideal case. However,
we can clearly see that a higher concentration of trials (the darker rectangles for
each case) tend to be aligned on the above mentioned diagonal, with deviations
from the ideal case that remain nevertheless close to the expected result. This
is clearly observable even when the total proportion of informed robots is 0.1 of
N for both setup1 with N = 50 and setup 2 with N = 100 (see Fig. 1a and 1c,
respectively). Note that the results in Fig. 1 refer to the two most challenging
scenarios, in which the total proportion of informed robots in the swarm is rel-
atively low (ρI = 0.1 and ρI = 0.3). For higher proportion of informed robots

Group-Size Regulation in Self-organized Aggregation 321

in the swarm, the results of the simulations tend to get progressively closer to
the best-case scenario, in which simulation trials terminates with Φb = ρsb and
Φw = ρsw.

In summary, the PFSM described in Sect. 2 allows to rather accurately con-
trol the way in which the robots of a swarm distribute on two different aggre-
gation sites simply by regulating the relative proportion of informed robots for
each site, even with a small total proportion of informed robots in the swarm
(ρI = 0.1), and for different swarm sizes.

4 Conclusions

In this paper, we have shown that the aggregation dynamics of a swarm of
robots can be controlled using the system heterogeneity. In this self-organized
aggregation scenario, with a swarm of robots required to operate in an arena
with two aggregation sites, the system heterogeneity is represented by informed
robots; that is, agents that selectively avoid a type of aggregation site (i.e.,
the black/white site) to systematically rest on the other type of site (i.e., the
white/black site). The results of our simulations indicate that with a small pro-
portion of informed robots a designer can effectively control the way in which
an entire swarm distribute on the two aggregation sites. This is because the size
of the robots’ aggregates at each site tends to match the relative proportion of
the two different types of informed robots characterizing the swarm.

We have also performed few preliminary tests with physical robots to test
the effectiveness of the PFSM discussed in Sect. 2 in controlling the aggregation
dynamics of a swarm of kilobot robots [24]. The results of these tests, not shown
in the paper, closely match the results obtained in simulations. Nevertheless, the
behavior of physical robots has been negatively affected by the frequent colli-
sions between the robots and the arena wall which, relatively often, represented
deadlock conditions with the robots unable to generate the virtuous manoeuvres
necessary to recover movement. These tests have been carried out with maxi-
mum 18 kilobots. We believe that the small size of the physical robots swarm
has contributed to limit the influential role of informed robots. However, further
studies with physical robots are required to better characterize the nature of the
relationship between the swarm size and the aggregation mechanisms we have
discussed in this paper.

We believe that the system heterogeneity, relatively neglected in swarm
robotics, can play an important role in the development of mechanisms to control
the self-organized collective responses of swarms of robots. Our research agenda
for the future is focused on the series of experiments based on the hypothesis
that the system heterogeneity has a measurable impact on the outcomes of cer-
tain self-organized processes. We aim to identify these processes and to illustrate
how they can be effectively controlled by manipulating the system heterogeneity.

322 Z. Firat et al.

References

1. Bayindir, L., Şahin, E.: Modeling self-organized aggregation in swarm robotic sys-
tems. In: IEEE Swarm Intelligence Symposium, SIS 2009, pp. 88–95. IEEE (2009)

2. Bonabeau, E., Dorigo, M., Marco, D.d.R.D.F., Theraulaz, G., et al.: Swarm Intelli-
gence: From Natural to Artificial Systems. Oxford University Press, Oxford (1999)

3. Bonani, M., et al.: The MarXbot, a miniature mobile robot opening new perspec-
tives for the collective-robotic research. In: IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), pp. 4187–4193 (2010)

4. Brambilla, M., Ferrante, E., Birattari, M., Dorigo, M.: Swarm robotics: a review
from the swarm engineering perspective. Swarm Intell. 7(1), 1–41 (2013)

5. Cambier, N., Frémont, V., Trianni, V., Ferrante, E.: Embodied evolution of self-
organised aggregation by cultural propagation. In: Dorigo, M., Birattari, M., Blum,
C., Christensen, A.L., Reina, A., Trianni, V. (eds.) ANTS 2018. LNCS, vol. 11172,
pp. 351–359. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00533-
7 29

6. Campo, A., Garnier, S., Dédriche, O., Zekkri, M., Dorigo, M.: Self-organized dis-
crimination of resources. PLoS ONE 6(5), e19888 (2010)

7. Correll, N., Martinoli, A.: Modeling and designing self-organized aggregation in a
swarm of miniature robots. Int. J. Robot. Res. 30(5), 615–626 (2011)

8. Couzin, I., Krause, J., Franks, N., Levin, S.: Effective leadership and decision
making in animal groups on the move. Nature 433, 513–516 (2005)

9. Deneubourg, J., Lioni, A., Detrain, C.: Dynamics of aggregation and emergence of
cooperation. Biol. Bull. 202(3), 262–267 (2002)

10. Dorigo, M., et al.: Evolving self-organizing behaviors for a swarm-bot. Auton.
Robots 17(2), 223–245 (2004)

11. Ferrante, E., Turgut, A.E., Huepe, C., Stranieri, A., Pinciroli, C., Dorigo, M.: Self-
organized flocking with a mobile robot swarm: a novel motion control method.
Adapt. Behav. 20(6), 460–477 (2012)

12. Ferrante, E., Turgut, A.E., Stranieri, A., Pinciroli, C., Birattari, M., Dorigo,
M.: A self-adaptive communication strategy for flocking in stationary and non-
stationary environments. Nat. Comput. 13(2), 225–245 (2013). https://doi.org/
10.1007/s11047-013-9390-9

13. Firat, Z., Ferrante, E., Cambier, N., Tuci, E.: Self-organised aggregation in swarms
of robots with informed robots. In: Fagan, D., Mart́ın-Vide, C., O’Neill, M., Vega-
Rodŕıguez, M.A. (eds.) TPNC 2018. LNCS, vol. 11324, pp. 49–60. Springer, Cham
(2018). https://doi.org/10.1007/978-3-030-04070-3 4

14. Firat, Z., Ferrante, E., Gillet, Y., Tuci, E.: On self-organised aggregation dynamics
in swarms of robots with informed robots. Neural Comput. Appl. 1–17 (2020).
https://doi.org/10.1007/s00521-020-04791-0

15. Garnier, S., et al.: The embodiment of cockroach aggregation behavior in a group
of micro-robots. Artif. Life 14(4), 387–408 (2008)

16. Garnier, S., et al.: Aggregation behaviour as a source of collective decision in a
group of cockroach-like-robots. In: Capcarrère, M.S., Freitas, A.A., Bentley, P.J.,
Johnson, C.G., Timmis, J. (eds.) ECAL 2005. LNCS (LNAI), vol. 3630, pp. 169–
178. Springer, Heidelberg (2005). https://doi.org/10.1007/11553090 18

17. Garnier, S., Gautrais, J., Asadpour, M., Jost, C., Theraulaz, G.: Self-organized
aggregation triggers collective decision making in a group of cockroach-like robots.
Adapt. Behav. 17(2), 109–133 (2009)

https://doi.org/10.1007/978-3-030-00533-7_29
https://doi.org/10.1007/978-3-030-00533-7_29
https://doi.org/10.1007/s11047-013-9390-9
https://doi.org/10.1007/s11047-013-9390-9
https://doi.org/10.1007/978-3-030-04070-3_4
https://doi.org/10.1007/s00521-020-04791-0
https://doi.org/10.1007/11553090_18

Group-Size Regulation in Self-organized Aggregation 323

18. Gauci, M., Chen, J., Li, W., Dodd, T., Groß, R.: Self-organized aggregation without
computation. Int. J. Robot. Res. 33(8), 1145–1161 (2014)

19. Gillet, Y., Ferrante, E., Firat, Z., Tuci, E.: Guiding aggregation dynamics in a
swarm of agents via informed individuals: an analytical study. In: The 2018 Con-
ference on Artificial Life: A Hybrid of the European Conference on Artificial Life
(ECAL) and the International Conference on the Synthesis and Simulation of Liv-
ing Systems (ALIFE), pp. 590–597. MIT Press (2019)

20. Çelikkanat, H., Şahin, E.: Steering self-organized robot flocks through externally
guided individuals. Neural Comput. Appl. 19(6), 849–865 (2010)

21. Jeanson, R., et al.: Self-organized aggregation in cockroaches. Animal Behav. 69(1),
169–180 (2005)

22. Kato, S., Jones, M.: An extended family of circular distributions related to wrapped
Cauchy distributions via Brownian motion. Bernoulli 19(1), 154–171 (2013)

23. Pinciroli, C., et al.: ARGoS: a modular, parallel, multi-engine simulator for multi-
robot systems. Swarm Intell. 6(4), 271–295 (2012)

24. Rubenstein, M., Ahler, C., Hoff, N., Cabrera, A., Nagpal, R.: Kilobot: a low
cost robot with scalable operations designed for collective behaviors. Robot.
Auton. Syst. 62(7), 966–975 (2014). https://doi.org/10.1016/j.robot.2013.08.006.
http://dx.doi.org/10.1016/j.robot.2013.08.006

25. Tuci, E., Alkilabi, M., Akanyety, O.: Cooperative object transport in multi-robot
systems: a review of the state-of-the-art. Front. Robot. AI 5, 1–15 (2018)

26. Valentini, G., Ferrante, E., Dorigo, M.: The best-of-n problem in robot swarms: For-
malization, state of the art, and novel perspectives. Front. Robot. AI 4, 9 (2017).
https://doi.org/10.3389/frobt.2017.00009. https://www.frontiersin.org/article/10.
3389/frobt.2017.00009

27. Valentini, G., Ferrante, E., Hamann, H., Dorigo, M.: Collective decision with 100
Kilobots: speed versus accuracy in binary discrimination problems. Auton. Agents
Multi-Agent Syst. 30(3), 553–580 (2016)

https://doi.org/10.1016/j.robot.2013.08.006
http://dx.doi.org/10.1016/j.robot.2013.08.006
https://doi.org/10.3389/frobt.2017.00009
https://www.frontiersin.org/article/10.3389/frobt.2017.00009
https://www.frontiersin.org/article/10.3389/frobt.2017.00009

On the Effects of Minimally Invasive
Collision Avoidance on an Emergent

Behavior

Chris Taylor(B) , Alex Siebold , and Cameron Nowzari

Department of Electrical and Computer Engineering, George Mason University,
Fairfax, VA, USA

{ctaylo3,asiebold,cnowzari}@gmu.edu

Abstract. Swarms of autonomous agents are useful in many applica-
tions due to their ability to accomplish tasks in a decentralized manner,
making them more robust to failures. Due to the difficulty in running
experiments with large numbers of hardware agents, researchers typically
resort to simulations with simplifying assumptions. While some assump-
tions are tolerable, we feel that two assumptions have been overlooked:
one, that agents take up physical space, and two, that a collision avoid-
ance algorithm is available to add safety to an existing algorithm. While
there do exist minimally invasive collision avoidance algorithms designed
to add safety while minimizing interference in the intended behavior, we
show they can still cause unexpected interference. We use an illustrative
example with a double-milling behavior and show, through simulations,
that the collision avoidance can still cause unexpected interference and
careful parameter tuning is needed.

1 Introduction

Swarms have been extensively studied and are an attractive choice for many
applications due to their decentralized nature and robustness against individ-
ual failures [3,4,12]. A common goal with decentralized control in swarms is to
achieve an emergent behavior [7,12], where the collective behavior of the swarm
has properties that the behaviors of individual agents lack. This is desirable
when agents lack global awareness of the higher level goal or other agents, often
due to limited sensing or computation capabilities.

Since swarm experiments on real hardware are difficult, researchers generally
prototype swarming algorithms in simulations with simplifying assumptions. For
instance, many works assume double-integrator dynamics, noise-free sensing, no
occlusions, ideal communication, or no actuation constraints [6,11,14,20]. In
some cases the assumptions are acceptable and the algorithm’s behavior doesn’t
fundamentally change when replaced with more realistic assumptions. However
we feel two assumptions in particular have been overlooked. The first: that agents
occupy physical space. Many works assume agents have negligible size [14,20], for
instance [20] defines a collision as two agents occupying the exact same position,
c© Springer Nature Switzerland AG 2020
M. Dorigo et al. (Eds.): ANTS 2020, LNCS 12421, pp. 324–332, 2020.
https://doi.org/10.1007/978-3-030-60376-2_27

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-60376-2_27&domain=pdf
http://orcid.org/0000-0002-9554-3854
http://orcid.org/0000-0002-2842-2796
http://orcid.org/0000-0001-7287-9972
https://doi.org/10.1007/978-3-030-60376-2_27

Collision Avoidance and Emergent Behavior 325

[7,10,14] assume agents can pass right through one other, and other works make
no mention of the size of agents [6,9,19].

The second overlooked assumption is that there exists a collision avoidance
algorithm to add safety to an existing algorithm. In some cases this is acceptable
when the behavior is already well-suited to avoid collisions [1]. However, as we
show in a previous work, adding collision avoidance can disrupt certain behaviors
[16]. In this work, we extend the results of [16] but use much more sophisticated
minimally invasive collision avoidance techniques: control barrier certificates [5]
and Optimal Reciprocal Collision Avoidance (ORCA) [17]. We show that there is
still disruption in the intended behavior and it requires careful tuning to achieve
good performance. We validate our results through simulations and explorations
of the parameter space. See [15] for additional details, where the connection
between emergence and collision avoidance is investigated further.

2 Problem Formulation

We wish to understand the effects of imposing two constraints on the swarming
algorithm from Szwaykowska et al. [14]: one, that agents have non-negligible
physical size, and two, that agents must avoid collisions in a realistic manner,
e.g. without resorting to infinite control effort.

2.1 Individual Agent Model

To isolate just the effects of our constraints, we consider a simple agent model.
Letting ri ∈ R

2 be the position of agent i ∈ {1, . . . , N} in a swarm of N agents,
we consider the dynamics

r̈i(t) = ui(t) (1)

with the following two constraints at all times t ∈ R≥0:

C1. No Collisions. Letting r > 0 represent the outer radius of each agent,
agents must obey ‖ri(t) − rj(t)‖ > 2r for all i, j ∈ {1, . . . , N}, i �= j.

C2. Limited Acceleration. We require ‖ui(t)‖ ≤ amax.

2.2 Desired Global Behavior: Ring State

Given the model Eq. (1) and constraints, we now introduce the controller we
replicate from [14]: the ‘ring state’. Without collision avoidance, it is

u∗
i = β(v2

0 − ‖ṙi‖2)ṙi +
α

N − 1

∑

j �=i

(rj(t − td) − ri(t)) . (2)

The input u∗
i consists of two terms (in order): keep the agent’s speed at

approximately v0 > 0 with gain β > 0 and attract toward the delayed position

326 C. Taylor et al.

of other agents td seconds in the past (d for delay), where α adjusts the attraction
strength. We also assume each agent i is also able to immediately sense the state
of local agents in a set Ni defined by a circular sensing radius �r

Ni = {j ∈ {1, . . . , N}}\{i} | ‖ri − rj‖ ≤ �r}. (3)

Using this additional information with the desired input u∗
i , we consider

different collision avoidance wrappers Fcr parameterized by a tunable ‘cautious-
ness’ parameter cr > 0. Fcr is a function of just the desired input and the states
of nearby agents in Ni. To make our dynamics obey constraint C2, we define

clip(x, a) =

{
x ‖x‖ < a,

a x
‖x‖ otherwise.

.

This results in the final dynamics equations of

r̈i = ui

ui = clip[Fcr (u
∗
i , ri, ṙi, {(rj , ṙj)}j∈Ni

), amax]. (4)

Note that the all-to-all sensing in Eq. (2) is delayed by td seconds (e.g.
as communicated over a network), whereas the local sensing used for collision
avoidance in Eq. (4) incurs no delay (e.g. agents sense others without communi-
cation). While the work we replicate [14] explores more realistic communication
constraints, we assume all-to-all, albeit delayed, communication is available since
we are more interested in the effect of collisions on the intended behavior rather
than limited communication.

3 Methodology

In Sect. 3.1, we describe our metrics to quantify the amount of interference
caused by adding collision avoidance. In Sect. 3.2, we describe the two collision-
avoidance algorithms we consider. Then, in Sect. 4, we show the results of apply-
ing collision avoidance to our algorithm of interest.

3.1 Measuring Emergent Behavior Quality

The metrics we introduce in our prior work [16] consist of the ‘fatness’ Φ and
‘tangentness’ τ . Formally, letting μ be the average position of all agents, i.e.
μ = 1

N

∑N
i=1 ri, and rmin, rmax be the minimum and maximum distance from

any agent to the ring center, i.e. rmin = mini∈{1,...,N} ‖ri − μ‖ and rmax =
maxi∈{1,...,N} ‖ri − μ‖, the fatness and tangentness are defined (respectively)
as

Φ(t) = 1 − r2min(t)
r2max(t)

, τ(t) =
1
N

N∑

i=1

∣∣∣∣
ri − μ

‖ri − μ‖ · ṙi
‖ṙi‖

∣∣∣∣. (5)

Collision Avoidance and Emergent Behavior 327

In other words, Φ = 0 implies a perfectly thin ring and Φ = 1 implies an entirely
filled-in disc. τ = 0 represents perfect alignment between agents’ velocities and
their tangent lines and τ = 1 means all agents are misaligned. We also define
Φ(t), τ(t) as the average fatness, tangentness over the time interval [t−T, t]. We
then define a single metric λ ∈ [0, 1] as λ = 1 − max(Φ, τ), where λ = 1
represents a perfect ring and λ = 0 represents maximum disorder.

3.2 Collision Avoidance

Here we summarize each collision avoidance technique that we replicate: ORCA
[17] and CBC [5]. In all cases, we replicate the decentralized version of each
technique where agents are only aware of the positions and velocities of other
agents in their local neighbor set Ni but not their inputs, i.e. agent i doesn’t
know u∗

j from Eq. (2) nor uj from Eq. (4), j �= i.
Both strategies each have their own scalar ‘cautiousness’ parameter, which

we have replaced with our universal tuning parameter cr > 0 where increasing cr
represents an increase in how aggressively agents try to avoid each other. Intu-
itively, we find increasing cr causes agents to make corrective measures earlier.
Both also have a safety distance parameter Ds where each strategy guarantees
‖ri − rj‖ > Ds to satisfy constraint C1 from Sect. 2.1. We set Ds = 2.1r, the
agent diameter plus a 5% margin, to allow for numerical imprecision from dis-
cretization in our simulation.

Control Barrier Certificates (CBC). CBC uses ‘barrier function’ Bij which
is a function of the states ri, rj , ṙi, ṙj of two agents and is defined such that
Bij → ∞ as i is about to collide with j (refer to [5] for the exact definition). To
synthesize a controller, [5] defines the main safety constraint as

Ḃij ≤ 1
crBij

, (6)

where we substitute their tunable parameter with cr. We can express CBC in
our framework as

Fcr (u
∗
i , ri, ṙi, {(rj , ṙj)}j∈Ni

) = arg min
ui

‖ui − u∗
i ‖2

subj to. Ḃij ≤ 1
crBij

∀j ∈ Ni,

‖ui‖∞ ≤ amax.

(7)

Since agents do not know each other’s inputs, agent i assumes u∗
j = 0, j �= i,

i.e. that agent j’s velocity is going to be constant. Equation (7) is a quadratic
program which we solve using the operator splitting quadratic programming
solver (OSQP) [2,13]. If a solution does not exist, we make agent i brake, i.e.
ui = −ṙi, as [18] recommends doing.

328 C. Taylor et al.

CBC has strict requirements on the sensing radius �r in order to function,
which must obey

�r ≥ Ds +
1

4amax

(
3
√

4cramax + 2vmax

)2
, (8)

where we choose vmax = 2v0 from Eq. (2) to allow flexibility in case neighboring
agents violate their speed set-point v0.

Optimal Reciprocal Collision Avoidance (ORCA). This strategy is based
on the velocity obstacle [8,17], which is the set of all relative velocities that would
result in a crash with another agent within cr seconds in the future (we use our
universal tuning parameter cr). ORCA takes this one step further by introducing
the reciprocal velocity obstacle, that is, a more permissive velocity obstacle that
assumes the other agent is also avoiding its velocity obstacle instead of just
continuing in a straight line.

Let B (x, ρ) represent the open ball centered at x of radius ρ, i.e.

B (x, ρ) = {p ∈ R
2 | ‖p − x‖ < ρ}.

Leting ORCAcr
i|j denote the set of safe velocities for agent i assuming that agent

j is also using the ORCA algorithm, then

ORCAcr
i = B (0, v0) ∩

⋂

j∈Ni

ORCAcr
i|j (9)

represents the set of safe velocities slower than the set-point speed v0 for agent
i when considering all of its local neighbors in Ni.

In our discussion of ORCA so far, we consider safe velocity inputs, however
our agent model in Eq. (1) assumes acceleration inputs. To get around this we:
(1) convert each agent’s desired acceleration into the new velocity that would
result from it, i.e. ṙi + Δtu∗

i , (2) find the safe velocity vsafe using ORCA, then
(3) find the input ui necessary to achieve this new velocity.

In summary, the definition of ORCA expressed in our framework is

Fcr (u
∗
i , ri, ṙi, {(rj , ṙj)}j∈Ni

) =
vsafe − ṙi

Δt
vsafe = arg min

v∈ORCAcr
i

‖v − (ṙi + Δtu∗
i)‖

(10)

where Δt is the timestep of the Euler integration in our simulator. Provided Δt
is sufficiently small, we find varying it does not change the results.

4 Results

Here we use our behavior quality metric λ from Sect. 3.1 to assess the interference
caused by ORCA and CBC. In all our experiments, we let the swarm stabilize
for 2,000 simulated seconds then record metrics for an additional 2,000 s, i.e.
t = 4000, T = 2000 from Sect. 3.1.

Collision Avoidance and Emergent Behavior 329

0.1 0.2 0.3
r

2

4

6
c r

r = 0.7

0.1 0.2 0.3
r

r = 1.0

0.1 0.2 0.3
r

r = 2.0

0.00

0.25

0.50

0.75

1.00

λ

Fig. 1. Ring quality λ for ORCA as we vary agent
size r, cautiousness cr, and sensing radius �r

0.2 0.4
r

1

2

3

4

c r

0.00

0.25

0.50

0.75

1.00

λ

Fig. 2. Ring quality λ for
CBC as we vary r, cr

cr = 1

25 50
N

0.0

0.5

1.0

λ

r = 0.05

25 50
N

r = 0.18

25 50
N

r = 0.3
cr = 5

25 50
N

r = 0.05

25 50
N

r = 0.18

25 50
N

r = 0.3

Method
ORCA
CBC

Fig. 3. A comparison of how ORCA and CBC affect the behavior quality λ as the
number of agents is increased. Shaded regions show the 95% confidence intervals.

4.1 Control Barrier Certificates (CBC)

Figure 2 shows the ring quality λ as a function of agent size r and cautiousness
parameter cr, where the other parameters are fixed at N = 20, α = 0.001, td =
2.5, β = 1, v0 = 0.16, amax = 0.6 and �r is set dynamically based on Eq. (8).
For each r, cr pair we run 10 trials with random initial velocities, then take the
average λ value across the trials. We observe that CBC is fairly agnostic to
the choice of cr and only extremely large or small values seem to make much
difference on the behavior quality. Predictably, the quality λ drops off as the
agent size r increases, regardless of the choice of cr. For very large values of
r, CBC tends to cause agents to deadlock in a static clump since most agents
cannot find a solution Eq. (7) and they switch to braking mode.

4.2 Optimal Reciprocal Collision Avoidance (ORCA)

Figure 1 shows the mean ring quality λ as a function of r, cr. We test 60 unique
values of r and cr on each axis, 3 values of �r, and for each r, cr, �r tuple we
simulate 200 trials (we can use more than CBC since ORCA is computationally
cheaper) with random initial velocities, where λ is averaged across all the trials.
The other parameters are fixed at N = 20, α = 0.0008, td = 3.0, β = 2.0, v0 =
0.12, amax = 0.8. Here we notice an unintuitive result in the darker ‘bands’
where λ decreases and then starts increasing again. We find this is due to agents
attempting ‘double-milling’ behavior inside the band, where they attempt to
travel in counter-rotating mills and make erratic movements to avoid each other.

330 C. Taylor et al.

Outside the band, the agents converge on a single direction. Another unintuitive
result we notice with ORCA is ‘unplanned flocking’ where for large values of
r agents appear to align their velocities and move in one direction instead of
forming a ring. Contrast this to CBC, where as r gets too large agents simply
deadlock.

4.3 Comparing ORCA and CBC

Figure 3 shows a comparison of the quality λ of ORCA and CBC as we vary
the number of agents, for 6 combinations of the agent size r and cautiousness
parameter cr. For each selection of parameters we run 100 trials with random
initial velocities. We fix the other parameters at α = 0.0005, td = 2.5, β =
1.0, v0 = 0.12, amax = 0.8 and use Eq. (8) to set �r. We observe another non-
intuitive result similar to the ‘banding’ we describe in Sect. 4.2. At first, the ring
quality λ increases with N as agents converge to single-milling, but then starts
decreasing once the formation gets more crowded.

Comparing each collision avoidance in a fair manner is difficult in general,
but we notice for the parameters shown in Fig. 3 that ORCA generally performs
better for larger and more numerous agents. We suspect this is due to ORCA’s
ability to gracefully degrade the quality of the solution and break the fewest
possible constraints if the problem is infeasible. CBC instead has agents switch
to a braking mode upon infeasibility.

5 Conclusion

Despite using two fairly sophisticated collision avoidance techniques as opposed
to the simpler techniques in [16], we show through an illustrative example that
swarming algorithms can still be disrupted by collision avoidance and we rec-
ommend that such algorithms be co-designed with collision avoidance in mind
as opposed to adding it separately. We believe further research is necessary to
realize existing swarming behaviors on platforms that take up non-negligible
amounts of physical space and cannot collide.

Acknowledgements. This work was supported by the Department of the Navy, Office
of Naval Research (ONR), under federal grants N00014-19-1-2121 and N00014-20-1-2042.
The experiments were run on ARGO, a research computing cluster provided by the Office
of Research Computing at George Mason University, VA. (http://orc.gmu.edu).

http://orc.gmu.edu

Collision Avoidance and Emergent Behavior 331

References

1. Arul, S.H., et al.: LSwarm: efficient collision avoidance for large swarms with cov-
erage constraints in complex urban scenes. IEEE Robot. Autom. Lett. 4(4), 3940–
3947 (2019). https://doi.org/10.1109/lra.2019.2929981

2. Banjac, G., Goulart, P., Stellato, B., Boyd, S.: Infeasibility detection in the alter-
nating direction method of multipliers for convex optimization. J. Optim. Theory
Appl. 183(2), 490–519 (2019). https://doi.org/10.1007/s10957-019-01575-y

3. Bayindir, L.: A review of swarm robotics tasks. Neurocomputing 172, 292–321
(2016). https://doi.org/10.1016/j.neucom.2015.05.116

4. Bonabeau, E., Marco, D.d.R.D.F., Dorigo, M., Theraulaz, G., et al.: Swarm Intel-
ligence: From Natural to Artificial Systems, no. 1, Oxford University Press, Oxford
(1999)

5. Borrmann, U., Wang, L., Ames, A.D., Egerstedt, M.: Control barrier certificates
for safe swarm behavior. IFAC-PapersOnLine 48(27), 68–73 (2015). https://doi.
org/10.1016/j.ifacol.2015.11.154

6. Cao, Y., Ren, W.: Distributed coordinated tracking with reduced interaction via
a variable structure approach. IEEE Trans. Autom. Control 57(1), 33–48 (2012).
https://doi.org/10.1109/TAC.2011.2146830

7. Carrillo, J., D’Orsogna, M., Panferov, V.: Double milling in self-propelled swarms
from kinetic theory. Kinetic Relat. Models 2(2), 363–378 (2009). https://doi.org/
10.3934/krm.2009.2.363

8. Fiorini, P., Shiller, Z.: Motion planning in dynamic environments using veloc-
ity obstacles. Int. J. Robot. Res. 17(7), 760–772 (1998). https://doi.org/10.1177/
027836499801700706

9. Ghapani, S., Mei, J., Ren, W., Song, Y.: Fully distributed flocking with a moving
leader for Lagrange networks with parametric uncertainties. Automatica 67, 67–76
(2016). https://doi.org/10.1016/j.automatica.2016.01.004

10. Mier-Y-Teran-Romero, L., Forgoston, E., Schwartz, I.B.: Coherent pattern pre-
diction in swarms of delay-coupled agents. IEEE Trans. Robot. 28(5), 1034–1044
(2012). https://doi.org/10.1109/TRO.2012.2198511

11. Olfati-Saber, R.: Flocking for multi-agent dynamic systems: algorithms and the-
ory. IEEE Trans. Autom. Control 51(3), 401–420 (2006). https://doi.org/10.1109/
TAC.2005.864190

12. Reynolds, C.W.: Flocks, herds and schools: a distributed behavioral model.
In: ACM SIGGRAPH Computer Graphics, vol. 21, pp. 25–34. New York
(1987). https://doi.org/10.1145/37402.37406, http://portal.acm.org/citation.cfm?
doid=37402.37406

13. Stellato, B., Banjac, G., Goulart, P., Bemporad, A., Boyd, S.: OSQP: an operator
splitting solver for quadratic programs. ArXiv e-prints, November 2017

14. Szwaykowska, K., Schwartz, I.B., Mier-Y-Teran Romero, L., Heckman, C.R., Mox,
D., Hsieh, M.A.: Collective motion patterns of swarms with delay coupling: the-
ory and experiment. Phys. Rev. E 93(3), 032307 (2016). https://doi.org/10.1103/
PhysRevE.93.032307

15. Taylor, C., Luzzi, C., Nowzari, C.: On the effects of collision avoidance on an
emergent swarm behavior. arXiv preprint arXiv:1910.06412 (2019)

16. Taylor, C., Luzzi, C., Nowzari, C.: On the effects of collision avoidance on emergent
swarm behavior (2020, to appear)

https://doi.org/10.1109/lra.2019.2929981
https://doi.org/10.1007/s10957-019-01575-y
https://doi.org/10.1016/j.neucom.2015.05.116
https://doi.org/10.1016/j.ifacol.2015.11.154
https://doi.org/10.1016/j.ifacol.2015.11.154
https://doi.org/10.1109/TAC.2011.2146830
https://doi.org/10.3934/krm.2009.2.363
https://doi.org/10.3934/krm.2009.2.363
https://doi.org/10.1177/027836499801700706
https://doi.org/10.1177/027836499801700706
https://doi.org/10.1016/j.automatica.2016.01.004
https://doi.org/10.1109/TRO.2012.2198511
https://doi.org/10.1109/TAC.2005.864190
https://doi.org/10.1109/TAC.2005.864190
https://doi.org/10.1145/37402.37406
http://portal.acm.org/citation.cfm?doid=37402.37406
http://portal.acm.org/citation.cfm?doid=37402.37406
https://doi.org/10.1103/PhysRevE.93.032307
https://doi.org/10.1103/PhysRevE.93.032307
http://arxiv.org/abs/1910.06412

332 C. Taylor et al.

17. Van Den Berg, J., Guy, S.J., Lin, M., Manocha, D.: Reciprocal n-body collision
avoidance. In: Pradalier C., Siegwart R., Hirzinger G. (eds.) Robotics Research.
Springer Tracts in Advanced Robotics, vol. 70, pp. 3–19 (2011). Springer, Heidel-
berg. https://doi.org/10.1007/978-3-642-19457-3 1

18. Wang, L., Ames, A.D., Egerstedt, M.: Safety barrier certificates for collisions-free
multirobot systems. IEEE Trans. Robot. 33(3), 661–674 (2017). https://doi.org/
10.1109/TRO.2017.2659727

19. Zhan, J., Li, X.: Flocking of multi-agent systems via model predictive control based
on position-only measurements. IEEE Trans. Indust. Inf. 9(1), 377–385 (2013).
https://doi.org/10.1109/TII.2012.2216536

20. Zhang, H.T., Cheng, Z., Chen, G., Li, C.: Model predictive flocking control
for second-order multi-agent systems with input constraints. IEEE Trans. Circ.
Syst. I Regular Pap. 62(6), 1599–1606 (2015). https://doi.org/10.1109/TCSI.2015.
2418871

https://doi.org/10.1007/978-3-642-19457-3_1
https://doi.org/10.1109/TRO.2017.2659727
https://doi.org/10.1109/TRO.2017.2659727
https://doi.org/10.1109/TII.2012.2216536
https://doi.org/10.1109/TCSI.2015.2418871
https://doi.org/10.1109/TCSI.2015.2418871

Set-Based Particle Swarm Optimization
for Portfolio Optimization

Kyle Erwin1 and Andries P. Engelbrecht2(B)

1 Computer Science Division, Stellenbosh University, Stellenbosch, South Africa
kyle.erwin24@gmail.com

2 Department of Industrial Engineering and Computer Science Division,
Stellenbosh University, Stellenbosch, South Africa

engel@sun.ac.za

Abstract. Portfolio optimization is a complex real-world problem where
assets are selected such that profit is maximized while risk is simultane-
ously minimized. In recent years, nature-inspired algorithms have become
a popular choice for efficiently identifying optimal portfolios. This paper
introduces such an algorithm that, unlike previous algorithms, uses a
set-based approach to reduce the dimensionality of the problem and to
determine the appropriate budget al.location for each asset. The results
show that the proposed approach is capable of obtaining good quality
solutions, while being relatively fast.

1 Introduction

In 1952, Markowitz presented the mean-variance model, a portfolio optimiza-
tion model that allowed investors to optimize a portfolio based on a given level
of market risk [7]. The underlying principle of the model is the diversification
of investments such that the riskiness of an asset can be negated by another,
unrelated safe asset. Chang et al. presented an empirical analysis on the applica-
bility of heuristics for an adaptation of the mean-variance model that included
real world constraints [1]. Much of the work done thereafter has been inspired
by Chang et al. [5]. However, the performance of such approaches diminishes
when large asset spaces are considered [10]. Set-based approaches have lead
to improved performance in comparison to their non-set based counterparts,
although the algorithms are dependent on quadratic programming. This paper
proposes a set-based particle swarm optimization (SBPSO) approach, for the
mean-variance portfolio optimization model, that does not require the use of
quadratic programming.

The rest of this paper is organized as follows: Sect. 2 provides an overview
of the concepts presented. Section 3 proposes SBPSO for portfolio optimization.
Section 4 presents the empirical process used. The findings are discussed in
Sect. 5. Section 6 concludes the paper.

c© Springer Nature Switzerland AG 2020
M. Dorigo et al. (Eds.): ANTS 2020, LNCS 12421, pp. 333–339, 2020.
https://doi.org/10.1007/978-3-030-60376-2_28

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-60376-2_28&domain=pdf
https://doi.org/10.1007/978-3-030-60376-2_28

334 K. Erwin and A. P. Engelbrecht

2 Background

This section presents the necessary background for the work presented in this
paper. Section 2.1 presents an overview of portfolio optimization. A genetic algo-
rithm and it’s application to portfolio optimization is discussed in Sect. 2.2.
Section 2.3 describes set-based particle swarm optimization.

2.1 Portfolio Optimization

The mean–variance portfolio model is a two-objective nonlinear quadratic pro-
gramming model, that minimizes risk and maximizes return given a level of risk
tolerance [7]. The model is formulated as follows:

minimize λσ̄ − (1 − λ)R (1)

where σ̄ is the total risk of the portfolio, R is the total return of the portfolio,
and λ represents an investor’s risk tolerance in the range [0, 1]. When λ is equal
to zero, return is to be maximized regardless of the risk involved. In contrast, a λ
value of one minimizes risk irrespective of profits. For the case when 0 < λ < 1,
an explicit trade-off between risk and return is obtained. Thus, by solving the
single-objective model for varying values of λ, a range of efficient portfolios can
be identified. Risk is calculated using

σ̄ =
n∑

i=1

n∑

j=1

σijwiwj (2)

where n is the number of assets, wi and wj is a weighting of assets i and j,
respectively, and σij is the covariance between assets i and j. R is calculated
using

R =
n∑

i=1

Riwi (3)

where Ri is the return of asset i. Equation (1) is subject to the following con-
straints: The total weighting of all assets in the portfolio must be equal to one,
and each asset in the portfolio must have a positive weighting or a weighting of
zero.

2.2 Genetic Algorithm for Portfolio Optimization

Chang et al. found a genetic algorithm (GA) to be a more competitive approach
than a tabu search and simulated annealing for the mean-variance portfolio opti-
mization problem [1]. The GA used by Chang et al. represented solutions to the
mean–variance portfolio optimization problem as individuals, where each geno-
type corresponds to an asset weight. The following operators were used to evolve
the candidate solutions to the portfolio optimization problem: Uniform crossover
between two parents, each selected by tournament selection with a tournament
size of 2, and 10% mutation of one randomly chosen genotype. Equation (1) was
used as the fitness function. Parameter details are given in Sect. 4.

Set-Based Particle Swarm Optimization for Portfolio Optimization 335

2.3 Set-Based Particle Swarm Optimization

Particle swarm optimization (PSO) simulates the social behavior of birds within
a flock, where individuals converge on a single point by exchanging locally avail-
able information [3]. Joost and Engelbrecht proposed SBPSO, a PSO algorithm
based on set-theory [6]. SBPSO defines a particle’s position as P(U), the power
set of U , where U is the universe of elements defined by the problem. In general,
mathematical sets do not have spatial structure, thus velocity is a set of oper-
ation pairs. An operation pair is denoted as (±, e), with (+, e) for the addition
of element e ∈ U and (−, e) for the deletion of element e. Furthermore, due to
the lack of spatial structure, special operators, described below, are required in
order to implement the velocity and position update equations.

The addition of two velocities, V1 ⊕ V2, is a mapping ⊕ : P({+,−} × U)2 →
P({+,−} × U) implemented as the union of the two sets of operation pairs,
V1 ∪ V2. The difference between two positions, X1 � X2, is a mapping � :
P(U)2 → P({+,−}×U) defined as a set of operation pairs that indicate the steps
required to convert X2 into X1, that is ({+} × (X1 \ X2)) ∪ ({−} × (X2 \ X1)).
The multiplication of a velocity by a scalar, η ⊗ V , is a mapping η ⊗ :
[0, 1] × P({+,−} × U) → P({+,−} × U) implemented as the random selec-
tion of �η × |V |	 elements from V . The addition of a velocity and a position,
X � V , is a mapping X � V : P(U) × P({+,−} × U) → P(U) defined as the
action of applying the velocity function V to the position X, X � V = V (X).

The remaining operators use the following function, Nβ,X , to determine the
number of elements to select. Nβ,X is implemented as min {|X|, �β	 + 1Iβ}, where
β is an element of R+, 1Iβ is equal to 1 if r < β − �β	, otherwise 0, and r is a
uniformly randomly sampled value from (0, 1),

The removal of elements X(t) ∪ Y (t) ∪ Ŷ (t) from position X(t) uses the
−

operator, where Y (t) and Ŷ (t) are the cognitive and social guides, respectively.
Denoted as β
− S, where S is shorthand for X(t) ∪ Y (t) ∪ Ŷ (t), is a mapping

+ : [0, |S|]×P(U) → P({+,−}×U). The β
− S operation is calculated using,
β
− S = {−} × (Nβ,S

|S| ⊗ S).

The addition of elements to position X(t) outside of X(t)∩Y (t)∩Ŷ (t) uses the

+ operator. Denoted β
x A, where A is shorthand for U \ (X(t)∩Y (t)∩ Ŷ (t)),
is a mapping
+ : [0, |A|]×P(U) → P({+,−}×U) implemented using, β
+

k A =
{+} × k-Tournament Selection(A,Nβ,A) where k is the number of individuals,
and each tournament consists of Nβ,A elements. The element added to X(t) that
yields the best fitness value is selected as the winner.

Using the above equations, SBPSO defines the velocity update as

Vi(t + 1) = c1r1 ⊗ (Yi(t) � Xi(t)) ⊕ c2r2 ⊗ Ŷi(t) � Xi(t))

⊕ (c3r3
+
k Ai(t)) ⊕ (c4r4
− Si(t))

(4)

where r1, r2, r3, and r4 are random values, each sampled from a standard uniform
distribution in the range [0,1], and c3 and c4 are positive acceleration constants
for the addition and removal of elements, respectively. The position update, is

336 K. Erwin and A. P. Engelbrecht

then the application of the velocity to the position, as shown n the following
equation, Xi(t + 1) = Xi � Vi(t + 1).

3 Set-Based Particle Swarm Optimization for Portfolio
Optimization

This paper proposes SBPSO as approach to the set-based mean-variance port-
folio optimization problem. Each particle represents the assets included in a
candidate portfolio. Unlike previously proposed set-based approaches, a meta-
heuristic is used as the weight optimizer for the selected assets. The inertia PSO
is used in this study as the weight optimizer [8]. The decision to use PSO is moti-
vated by the fact that it is well established as a successful approach to portfolio
optimization [5]. SBPSO and PSO execute in an interleaving fashion. SBPSO
firstly identifies a subset of assets. The inertia PSO then optimizes the weights
of each asset for a fixed number of time steps. This process repeats until the
stopping condition is met. For both PSO algorithms, star network topologies are
used. The
+ operator for SBPSO is re-implemented as the random selection
of Nβ,A elements from A. This is done to reduce the computational complexity
of the proposed approach. SBPSO is expected to be a faster portfolio optimizer
than the GA proposed by Chang et al., with at least similar accuracy [1].

4 Empirical Process

Five benchmarks1 were used to assess the scalability and accuracy of the pro-
posed SBPSO in comparison to Chang et al.’s GA. Namely, Hang Seng (Hong
Kong, 31 assets), DAX 100 (Germany, 85 assets), FTSE 100 (UK, 89 assets), S&P
100 (USA, 98 assets), and Nikkei 225 (Japan, 255 assets). The the mean-variance
model, equation (1), was used as the objective function. The performance of
SBPSO and the GA to optimize the objective function for 50 evenly-spaced λ
values in the range [0,1] was recorded over 30 independent runs. Each algorithm
was allocated 5000 iterations to optimize each λ value, with SBPSO and PSO
interleaving every 10 iterations. A swarm and population size of 20 was used for
both algorithms. To satisfy the positive weight constraint, any negative weight
is treated as zero. The weights are then normalized to ensure that the sum of all
weights is equal to 1. If all weights are negative, a large objective function value
is given to deter the algorithm from that area of the search space.

The parameters for each algorithm were tuned by evaluating 128 parameters
sets. The parameter sets were generated using sequences of Sobol pseudo-random
that spanned the parameter space for SBPSO and the GA [4]. c1 and c2 were
generated in the range [0.00,1.00], and c3 and c4 in the range [0.50,5.00]. For
the GA, the mutation rate was generated in the range [0.01,50], and k in the
range [2]. Recommended parameters for the inertia PSO that satisfy stability
conditions and guarantee that an equilibrium state will be reached were used.
1 http://people.brunel.ac.uk/∼mastjjb/jeb/orlib/portinfo.html.

http://people.brunel.ac.uk/~mastjjb/jeb/orlib/portinfo.html

Set-Based Particle Swarm Optimization for Portfolio Optimization 337

These are w = 0.729844 and c1 = c2 = 1.496180. The parameter sets for each
algorithm were ranked according to their average objective function value for
each of the λ values. The parameter set with the lowest average ranking was
selected as the optimal parameters.

The number of solutions, return, risk, generational distance (GD) [9], inverted
generational distance (IGD) [2], hypervolume (HV) [11] and time were used to
assess the quality, and efficiency, of the obtained solutions. The mean and stan-
dard deviation for each aforementioned performance measures was recorded.
One-tailed Mann Whitney U tests with a level of significance of 95% were per-
formed to test if an algorithm is statistically significantly better than the other.

5 Results

Table 2 presents the results obtained using the optimal parameters for each
algorithm, shown in Table 1.

Table 1. Tuned parameters for each benchmark

Stock market SPSO GA

c1 c2 c3 c4 mr k

Hang Seng 0.375000 0.375000 3.312500 4.437500 0.155469 11

DAX 100 0.117188 0.117188 3.488281 2.714844 0.052109 13

FTSE 100 0.367188 0.867188 2.363281 3.839844 0.017656 16

S & P 100 0.828125 0.484380 2.960938 2.257813 0.270313 3

Nikkei 225 0.828125 0.484380 2.960938 2.257813 0.036797 19

The GA was statistically significantly better at obtaining more optimal solu-
tions than SBPSO for Hang Seng, Dax 100 and Nikkei 225, however, the differ-
ence in number of solutions is small. Furthermore, the profitability of solutions
obtained by either algorithm are similar despite the GA, in general, having
slightly higher return values. SBPSO on average was more capable of obtain-
ing less risky portfolios than the GA, especially for the largest benchmark, i.e.
Nikkei 225.

The GA was shown to be statistically significantly better than SBPSO with
respect to GD for all benchmarks, except for Nikkei 225 where SBPSO is supe-
rior. Furthermore, the GA, on average, obtained better IGD results than SBPSO.
Generally, there was no statistically significant difference in results obtained for
HV. The standard deviations for GD, IGD and HV, in general, were smaller for
the GA than for the SBPSO. However, the performance of SBPSO is in the same
order of magnitude as the GA.

SBPSO was significantly faster than the GA and maintained a similar time
for all benchmarks, whereas the time for GA deteriorated as the number of

338 K. Erwin and A. P. Engelbrecht

Table 2. Mean and standard deviations for each performance measure

N R σ̄ GD IGD HV Time

Hang Seng SBPSO x̄ 31 0.233296 0.055898 0.000980 0.000264 1.181940 12.95

σ 1 0.010148 0.004238 0.000237 0.000014 0.002276 1.08

GA x̄ 31 0.237859 0.057105 0.000248 0.000229 1.182968 101.62

σ 1 0.007075 0.002338 0.000034 0.000010 0.001691 1.50

DAX 100 SBPSO x̄ 31 0.257062 0.028204 0.001668 0.000363 1.191110 32.84

σ 4 0.036299 0.005491 0.000434 0.000031 0.004717 1.46

GA x̄ 38 0.317733 0.034459 0.000292 0.000317 1.197005 300.89

σ 1 0.010734 0.001713 0.000156 0.000019 0.002183 2.98

FTSE 100 SBPSO x̄ 28 0.187684 0.021696 0.000503 0.000246 1.184440 26.48

σ 1 0.006002 0.001063 0.000216 0.000013 0.002397 3.07

GA x̄ 28 0.187028 0.021392 0.000421 0.000243 1.184850 376.74

σ 1 0.007221 0.001208 0.000332 0.000026 0.002126 2.15

S& P 100 SBPSO x̄ 41 0.318468 0.052514 0.000861 0.000273 1.198922 24.77

σ 1 0.012195 0.003196 0.000130 0.000015 0.001561 10.64

GA x̄ 34 0.252994 0.038313 0.000756 0.000270 1.195580 124.68

σ 2 0.018880 0.003900 0.000239 0.000013 0.001941 1.61

Nikkei 225 SBPSO x̄ 39 0.129067 0.030552 0.000770 0.000247 1.195960 26.82

σ 2 0.007218 0.002393 0.000127 0.000014 0.001923 6.02

GA x̄ 44 0.140672 0.036203 0.001692 0.000276 1.196826 1175.73

σ 4 0.013242 0.003323 0.000308 0.000020 0.002132 5.25

assets increased. The average time for SBPSO for the largest benchmark was
approximately four times faster than that of the GA for the smallest benchmark.
The difference in computational time is most notable for Nikkei 225, the largest
benchmark, where SBPSO was approximately 44 times faster than the GA.
However, It should be noted that SBPSO wastes computational budget under
certain circumstances. For example, if a SBPSO particle contains a single asset,
the inertia PSO will waste 10 iterations to optimize the asset weight when the
weight can only ever have a value of one. Secondly, if a candidate solution is
repeatedly found by SBPSO, the inertia PSO does not make use of previously
found best weights. Meaning that the weights have to be potentially rediscovered.

6 Conclusion

This paper proposed set-based particle swarm optimization (SBPSO) for the
mean-variance portfolio optimization problem. SBPSO is used for asset selection
while particle swarm optimization (PSO) is used for asset weight determination.
SBPSO performed similarly to the genetic algorithm (GA) proposed by Chang
et al. [1]. Furthermore, SBPSO was significantly faster than the GA – in one
case, 44 times faster.

Future work will investigate why the performance of SBPSO, in some cases,
is marginally worse than the GA. In order to investigated the causes, a diversity
measure for the SBPSO will be developed to determine if convergence is not

Set-Based Particle Swarm Optimization for Portfolio Optimization 339

too fast. Also, more efficient approaches will be developed to allow the inertia
PSO more time to optimize weights, instead of allowing the inertia PSO a fixed
number of iterations. Also, approaches will be investigated not to loose good
weightings found by the inertia PSO.

Acknowledgements. The authors acknowledge the Centre for High Performance
Computing (CHPC), South Africa, for providing computational resources to this
research project.

References

1. Chang, T., Meade, N., Beasley, J., Sharaiha, Y.: Heuristics for cardinality con-
strained portfolio optimisation. Comput. Oper. Res. 27(13), 1271–1302 (2000).
https://doi.org/10.1016/S0305-0548(99)00074-X

2. Coello Coello, C.A., Reyes Sierra, M.: A study of the parallelization of a coevolu-
tionary multi-objective evolutionary algorithm. In: Monroy, R., Arroyo-Figueroa,
G., Sucar, L.E., Sossa, H. (eds.) MICAI 2004. LNCS (LNAI), vol. 2972, pp. 688–
697. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24694-7 71

3. Eberhart, R., Kennedy, J.: A new optimizer using particle swarm theory. In:
MHS 1995. Proceedings of the Sixth International Symposium on Micro Machine
and Human Science, pp. 39–43, October 1995. https://doi.org/10.1109/MHS.1995.
494215

4. Franken, N.: Visual exploration of algorithm parameter space. In: 2009 IEEE
Congress on Evolutionary Computation, pp. 389–398 (2009)

5. Kalayci, C.B., Ertenlice, O., Akbay, M.A.: A comprehensive review of deterministic
models and applications for mean-variance portfolio optimization. Expert Syst.
Appl. 125, 345–368 (2019). https://doi.org/10.1016/j.eswa.2019.02.011

6. Langeveld, J., Engelbrecht, A.P.: Set-based particle swarm optimization applied
to the multidimensional knapsack problem. Swarm Intell. 6(4), 297–342 (2012).
https://doi.org/10.1007/s11721-012-0073-4

7. Markowitz, H.: Portfolio selection. J. Financ. 7(1), 77–91 (1952). https://doi.org/
10.1111/j.1540-6261.1952.tb01525.x

8. Shi, Y., Eberhart, R.: A modified particle swarm optimizer. In: Proceedings of the
IEEE International Conference on Evolutionary Computation, pp. 69–73 (1998).
https://doi.org/10.1109/ICEC.1998.699146

9. Veldhuizen, D.A.V., Lamont, G.B.: Multiobjective evolutionary algorithm
research: a history and analysis. Technical reports, Department of Electrical and
Computer Engineering. Graduate School of Engineering, Air Force Inst Technol,
Wright Patterson, Technical Report TR-98-03 (1998)

10. Woodside-Oriakhi, M., Lucas, C., Beasley, J.: Heuristic algorithms for the cardinal-
ity constrained efficient frontier. Eur. J. Oper. Res. 213, 538–550 (2011). https://
doi.org/10.1016/j.ejor.2011.03.030

11. Zitzler, E., Thiele, L., Laumanns, M., Fonseca, C.M., da Fonseca, V.G.: Perfor-
mance assessment of multiobjective optimizers: an analysis and review. IEEE
Trans. Evol. Comput. 7(2), 117–132 (2003). https://doi.org/10.1109/TEVC.2003.
810758

https://doi.org/10.1016/S0305-0548(99)00074-X
https://doi.org/10.1007/978-3-540-24694-7_71
https://doi.org/10.1109/MHS.1995.494215
https://doi.org/10.1109/MHS.1995.494215
https://doi.org/10.1016/j.eswa.2019.02.011
https://doi.org/10.1007/s11721-012-0073-4
https://doi.org/10.1111/j.1540-6261.1952.tb01525.x
https://doi.org/10.1111/j.1540-6261.1952.tb01525.x
https://doi.org/10.1109/ICEC.1998.699146
https://doi.org/10.1016/j.ejor.2011.03.030
https://doi.org/10.1016/j.ejor.2011.03.030
https://doi.org/10.1109/TEVC.2003.810758
https://doi.org/10.1109/TEVC.2003.810758

Extended Abstracts

A Probabilistic Bipartite Graph Model for Hub
Based Swarm Solution of the Best-of-N Problem

Michael A. Goodrich(B) and Puneet Jain

Department of Computer Science, Brigham Young University, Provo, UT, USA
mike@cs.byu.edu, puneetj@byu.edu

For spatial swarms, which are characterized by co-located agents, graph-based
models complement agent-based and differential equation models, especially in
providing theoretical results that apply to large-but-finite numbers of agents [4].
For hub-based colony swarms, where agents are often not in spatial proximity [3],
except at a centralized hub, graph-based models do not appear to have received
much attention. This extended abstract presents a graph-based model for a hub-
based colony solving the best-of-N problem [5].

Hub-based colonies are characterized by two different kinds of entities: agents
and sites (locations of interest in the world). Let G = (V,E) be a bipartite
graph with V = Vagent ∪ Vsite partitioned into agent vertices and site vertices.
Since G is bipartite, The edge set E has edges connecting an agent vertex only
to a site vertex. A directed edge between agent a and a site s means the agent is
“committed” to that site (assessing, promoting, committed to, etc.). The quality
of sites is, without loss of generality, a real-valued number in [0, 1].

Two probabilities determine the graph dynamics: the attachment probabil-
ity, which determines when a new edge is formed between an agent and a site,
and the detachment probability, which determines when an existing edge is
removed. Attachment uses the preferential attachment pattern [1] and begins
when an agent is randomly selected with uniform probability. If the agent is
not connected, it randomly chooses a site to which it attaches with a probabil-
ity proportional to the degree of the site. Detachment uses a tunable clustering
pattern [2] and proceeds by selecting an edge with uniform probability from E.
The probability that the edge is removed decreases linearly with site quality.
Popularity-based clustering and degree-based persistence makes it likely that
agents will cluster at the highest quality site, effectually solving the best-of-N
problem. Figure 1 shows snapshots of an agent-based implementation of the
graph dynamics.

Attachment and detachment induce graph dynamics for a discrete-time
Markov process (DTMC) over a finite state space. MATLAB’s dtmc method was
used to compute a numerical solution for how the distribution evolves over time
for nine agents and two sites. The quality of the best site was fixed to qual(s1) =
0.95, and for the second best site was varied between qual(s0) ∈ {0.05, 0.75}.
Thus, the difference in qualities was Δ = qual(s1) − qual(s0) ∈ {0.9, 0.2}.

Two initial distributions were considered: λempty placed all probability mass
on the configuration with no edges, which represents a colony just beginning
the best-of-N problem with no sites discovered. λworst placed all probability on
the configuration with all agents connected to the second-best site, with its
c© Springer Nature Switzerland AG 2020
M. Dorigo et al. (Eds.): ANTS 2020, LNCS 12421, pp. 343–344, 2020.
https://doi.org/10.1007/978-3-030-60376-2

http://orcid.org/0000-0002-2489-5705
http://orcid.org/0000-0002-6420-4999
https://doi.org/10.1007/978-3-030-60376-2

344 M. A. Goodrich and P. Jain

Fig. 1. Snapshots of graph configuration from agent-based simulation converging to
highest quality site. From left to right t = 50, t = 200, t = 350.

0 200 400 600 800 1000
Number of Events

0

0.2

0.4

0.6

0.8

1

P
ro

ba
bi

lit
y

Majority Agents at Best Site?

qual(s
1
)=0.95

9 agents
2 sites

qual(s
0
)=0.75

From empty graph
From second best site

0 20 40 60 80 100
Number of Events

0

0.2

0.4

0.6

0.8

1

P
ro

ba
bi

lit
y

Majority Agents at Best Site?

qual(s
1
)=0.95

qual(s
0
)=0.05

9 agents
2 sites

From empty graph
From second best site

Fig. 2. Evolution of the DTMC state distribution from λempty (solid line) and from
λworst (dashed line). Left: Δ = 0.20, Right: Δ = 0.90.

evolution representing the time taken by the colony to switch “commitment”
from the inferior site to the superior site. Figure 2 shows the probability that
a plurality of agents favors the superior site for a colony with 9 agents. Having
similar site qualities slows convergence to the best site.

Acknowledgements. This extended abstract was partially supported by US Office
of Naval Research grant N00014-18-1-2503. The results are the responsibility of the
authors and not the sponsoring organization.

References

1. Barabási, A.L., Albert, R.: Emergence of scaling in random networks. Science
286(5439), 509–512 (1999)

2. Deijfen, M., Kets, W.: Random intersection graphs with tunable degree distribution
and clustering. Probab. Eng. Inf. Sci. 23(4), 661–674 (2009)

3. Gordon, D.M.: Ant Encounters: Interaction Networks and Colony Behavior. Prince-
ton University Press, Princeton (2010)

4. Mesbahi, M., Egerstedt, M.: Graph Theoretic Methods in Multiagent Networks.
Princeton University Press, Princeton (2010)

5. Valentini, G., Ferrante, E., Dorigo, M.: The best-of-N problem in robot swarms:
formalization, state of the art, and novel perspectives. Front. Robot. AI 4 (Mar
2017)

Ant Colony Optimization for K-Independent
Average Traveling Salesman Problem

Yu Iwasaki and Koji Hasebe(B)

Department of Computer Science, University of Tsukuba Tennodai, Tsukuba,
Ibaraki, Japan

iwasaki@mas.cs.tsukuba.ac.jp, hasebe@cs.tsukuba.ac.jp

The traveling salesman problem (TSP) is applied to constructing a transporta-
tion route. However, it is better to have multiple routes in case of disasters or
accidents. Therefore, we propose a K-Independent average traveling salesman
problem (KI-Average-TSP) that minimizes the weighted sum of the average and
standard deviations of the K circuits’ costs in a complete graph, where the cir-
cuits are mutually independent. Compared to the study to prove propositions
of mutually independent paths, this study actually constructs paths and aver-
age paths [3]. The definition of KI-TSP is presented below, where costavg is the
average of the total cost of K circuits, costsd is the standard deviation of the K
circuits’ costs, and γ, θ are weighting parameters.

min costavg + γ · costθ
sd (1)

subject to
∑

k∈K

xijk ≤ 1 (∀i, j (i �= j)) (2)

∑

j∈V

∑

k∈K

xijk = K (∀i) (3)

∑

j∈V

∑

k∈K

xjik = K (∀i) (4)

∑

i∈T

∑

j∈V \T

xijk ≥ 1 (∀k,∀T ⊂ V (T �= φ, T �= V)) (5)

xijk ∈ {0, 1} (6)

Figure 1 shows an example of K = 2 circuits in a complete graph of
N = 8 vertices. To find approximate solutions to KI-Average-TSP, we propose
K-Independent ant colony optimization (KI-ACO), an extension of the original
ant colony optimization [1]. If K ants construct paths one by one as the original
ACO, the paths constructed later will be longer, resulting in a larger standard
deviation of K paths. Therefore, KI-ACO moves K ants along each edge at
a time, so that all ants can use equally their favorable edges and reduce the
standard deviation. However, as the ants move, the number of reachable ver-
tices for the ants decreases and the circuits construction failure rate increases.
As a countermeasure, we introduce two heuristics to prevent the failure of the
construction.
c© Springer Nature Switzerland AG 2020
M. Dorigo et al. (Eds.): ANTS 2020, LNCS 12421, pp. 345–346, 2020.
https://doi.org/10.1007/978-3-030-60376-2

https://doi.org/10.1007/978-3-030-60376-2

346 Y. Iwasaki and K. Hasebe

Fig. 1. An example of KI-Average-
TSP where the same edge is not shared
by multiple paths in a complete graph.
The orange ant’s path is dependent on
the blue ant’s one.

Fig. 2. An example of 2-best-opt which
swaps e = (a, b) and e′ = (c, d), where
the edge e is used twice. New edges
e1 = (a, c), e2 = (b, d) can reduce the
usage count in e = (a, b).

The first heuristic is the margin residual degree used in the transition prob-
ability equation, representing the number of vertices an ant can move to from
its current vertex. This index is used to reduce the possibility of reusing the
edge used by other ants when close to N -th movement. The second heuristic is
2-best-opt, a method based on 2-opt [2]. Figure 2 shows an example of trying
to exchange an edge e used in multiple paths for another path’s edge by 2-opt.
We apply this method to all edges, correcting the overlapping edges greedily.
After applying 2-best-opt, if K paths are independent, ants deposit pheromone
calculated based on the path cost and the standard deviation. KI-ACO iterates
this process until satisfying termination conditions.

To evaluate our proposed method, we conducted comparative experiments
on the effects of two heuristics and pheromone updates on cost, execution time,
and failure rate. From the result, we observed that KI-ACO with 2-best-opt
and pheromone update improved the failure rate by about 60% and reduced the
weighted sum by about 20%. Besides, margin residual degree reduced the failure
rate, while increasing the execution time.

As a further study, we apply KI-ACO to a network planning problem. Also, to
apply KI-TSP to more realistic problems, we are interested in a relaxed KI-TSP
that allows some edges to be used in multiple paths simultaneously.

References

1. Dorigo, M., Stützle, T.: Ant colony optimization: overview and recent advances. In:
Gendreau, M., Potvin, J.-Y. (eds.) Handbook of Metaheuristics. ISORMS, vol. 272,
pp. 311–351. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-91086-4 10

2. Johnson, D.S., McGeoch, L.A.: The traveling salesman problem: a case study in
local optimization. Local Search Comb. Optim. 1(1), 215–310 (1997)

3. Teng, Y.H., Tan, J.J., Ho, T.Y., Hsu, L.H.: On mutually independent hamiltonian
paths. Appl. Math. Lett. 19(4), 345–350 (2006)

https://doi.org/10.1007/978-3-319-91086-4_10

Construction Coordinated by Stigmergic Blocks

Yating Zheng1,2(B) , Michael Allwright2 , Weixu Zhu2 , Majd Kassawat3 ,
Zhangang Han1 , and Marco Dorigo2

1 School of Systems Science, Beijing Normal University, Beijing, China
zhengyating@mail.bnu.edu.cn, zhan@bnu.edu.cn

2 IRIDIA, Université Libre de Bruxelles, Brussels, Belgium
{michael.allwright,weixu.zhu,marco.dorigo}@ulb.ac.be

3 Universitat Jaume I, Castellon, Spain
majd@uji.es

In swarm robotics, robots coordinate their actions by communicating with their
neighbors and by sensing and modifying their environment [3]. In previous work,
swarms of building robots have been coordinated through stigmergy, where the
observations of previous construction actions trigger further construction actions
[1, 4]. In these systems, the intelligence that coordinates construction is usually
embedded in the robots.

We are currently exploring how swarm construction can be realized when
the intelligence that coordinates construction is distributed between the robots
and the building material. In this abstract, we present a preliminary step to
distributing this intelligence where the building material, in the form of building
blocks, can send and receive messages from other blocks in the same structure.
In our current implementation, we provide the blocks with a description of a
structure. One block then takes the lead and determines where blocks are missing
and should be placed. Figure 1 shows this block relaying this information by
setting the colors of the light-emitting diodes on a structure during manual
assembly.

In initial experiments, we have begun to explore how this setup can be used to
influence the way in which construction unfolds. For example, Fig. 2 shows how
the order in which robots attach blocks could be used to regulate construction so
that the final structure has two blocks on the top layer on opposite sides (either
front-back or left-right).

We have also started to investigate gradient following [5], where blocks use
their light-emitting diodes to communicate the directions in which construction
sites can be found. Figure 3 shows an example of this concept where blue blocks
indicate that the nearest site is to the left and red blocks indicate that the nearest
site is to the right. After both blocks have been attached, the controller sets all
blocks to green to indicate that the structure is complete.

In future work, we will decentralize the approach in this abstract to realize a
swarm robotics construction system where the intelligence is distributed across
both the blocks and the robots. We will use the BuilderBot and Stigmergic
Blocks to validate this approach in order to gain a deeper understanding as to
whether these abstract concepts can be realized in a more realistic setting [2].

c© Springer Nature Switzerland AG 2020
M. Dorigo et al. (Eds.): ANTS 2020, LNCS 12421, pp. 347–348, 2020.
https://doi.org/10.1007/978-3-030-60376-2

http://orcid.org/0000-0002-0261-9742
http://orcid.org/0000-0002-0932-3215
http://orcid.org/0000-0002-0329-9592
http://orcid.org/0000-0002-9330-6855
http://orcid.org/0000-0002-8753-4325
http://orcid.org/0000-0002-3971-0507
https://doi.org/10.1007/978-3-030-60376-2

348 Y. Zheng et al.

Fig. 1. Manual construction guided by the leftmost block

Fig. 2. The block in the center disables construction sites to regulate construction

Fig. 3. The leftmost block shows how to reach a valid construction site

Acknowledgements. This work is partially supported by a Marie Sk�lodowska-Curie
fellowship (grant agreement number 846009), by the Ministerio de Economa y Com-
petitividad (DPI2015-69041-R), and by Universitat Jaume I (UJI-B2018-74). Yating
Zheng and Weixu Zhu acknowledge support from the China Scholarship Council (grants
201806040106 and 201706270186). Marco Dorigo acknowledges support from the Bel-
gian F.R.S.-FNRS, of which he is a research director.

References

1. Allwright, M., Bhalla, N., Dorigo, M.: Structure and markings as stimuli for
autonomous construction. In: 18th International Conference on Advanced Robotics
(ICAR), pp. 296–302. IEEE (2017)

2. Allwright, M., Zhu, W., Dorigo, M.: An open-source multi-robot construction sys-
tem. HardwareX 5, e00050 (2019)

3. Dorigo, M., Birattari, M., Brambilla, M.: Swarm robotics. Scholarpedia 9(1), 1463
(2014)

4. Theraulaz, G., Bonabeau, E.: Coordination in distributed building. Science
269(5224), 686–688 (1995)

5. Werfel, J., Nagpal, R.: Three-dimensional construction with mobile robots and mod-
ular blocks. Int. J. Robot. Res. 27(3–4), 463–479 (2008)

Human-Swarm Teaming with Proximal
Interactions

Mohammad Divband Soorati1(B) , Dimitar Georgiev1 , Javad Ghofrani2 ,
Danesh Tarapore1 , and Sarvapali Ramchurn1

1 School of Electronics and Computer Science, University of Southampton,
Southampton, UK

{m.divband-soorati,dg1g17,d.s.tarapore,sdr1}@soton.ac.uk
2 Department of Informatics and Mathematics, Dresden University of Applied

Sciences, Dresden, Germany
javad.ghofrani@gmail.com

One of the major challenges in human-swarm interaction is acquiring global
information about the swarm’s state and visualizing it to the human operators.
The literature lacks a comprehensive study that eliminates the high communica-
tion costs of human-swarm interaction and allows the operator to continuously
observe the swarm’s state and control the agents [1]. This paper aims at filling
this gap by proposing a minimal framework of human-swarm system with prox-
imal interactions. We consider an example of a disaster management scenario
with a swarm of simulated drones as agents, a human operator, and a disaster
zone. The primary goal of the agents is to disperse and move in the area in a way
that the swarm has maximum certainty about the situation in the mission zone
throughout the runtime. Agents collectively explore and map the environment
by disseminating their observations and incorporating their neighboring agents’
maps. Instead of a global communication infrastructure between the operator
and the agents, we assume that the operator can only communicate with the
agents in its local neighborhood. The operator uses the incoming maps from the
agents around it to estimate the swarm’s state and manipulates the maps to
control the swarm. Each agent updates and communicates two maps, a belief
and a confidence map. A belief map is used as a map representation of the mis-
sion zone. Agents use the belief maps to store their observation of the area. A
confidence map represents the distribution of the swarm as seen by individual
agents. This map determines the agents’ certainty level of the information in the
corresponding cell of the belief map. Using the belief and the confidence maps,
the agents store their representation of the environment and keep their confi-
dence level about its correctness. As agents move and explore the mission zone,
the cells in the belief maps are updated. The corresponding confidence values of
the recently visited cells in the confidence map also increase. We associate time
to the confidence by multiplying the confidence map with an aging factor that is
smaller than one. Agents participate in a collective decision-making process by
continuously sharing their maps (belief and confidence maps) and incorporating
other maps in their own updates.

We create an artificial potential field where high confidence is repulsive and
low confidence is attractive. The agents continuously follow the downhill gradient

c© Springer Nature Switzerland AG 2020
M. Dorigo et al. (Eds.): ANTS 2020, LNCS 12421, pp. 349–350, 2020.
https://doi.org/10.1007/978-3-030-60376-2

http://orcid.org/0000-0001-6954-1284
http://orcid.org/0000-0001-6114-5500
http://orcid.org/0000-0002-9249-7434
http://orcid.org/0000-0002-3226-6861
http://orcid.org/0000-0001-9686-4302
https://doi.org/10.1007/978-3-030-60376-2

350 M. Divband Soorati et al.

of the potential calculated by applying Sobel filter on the confidence map. Agents
move towards the least confidence area and, therefore, try to maximize their
confidence about the environment. As the dynamic of the swarm is determined
by the agents’ confidence, the human operator can control the swarm using the
values in this map to attract the agents to an area or repel them from it. In order
to keep the agents inside the mission zone, the confidence of the boundaries is
set to a high value. A disaster zone with an operator, 15 agents, and a moving
disaster is shown in Fig. 1a. The operator continuously receives up-to-date belief
maps, before (Fig. 1b) and after (Fig. 1c) the movement of the disaster area.
An example of an operator controlling the swarm is also shown in Fig. 1. In this
example, the operator intends to repel the agents from the center of the mission
zone. Figure 1e shows an example of a manipulated confidence map that the
operator disseminates. Figure 1g is the swarm distribution and shows that the
swarm follows the operator’s command and avoids the forbidden flight zone.

(a) area (b) before (c) after

1

0

B
el
ie
f

(d) (e) command

1

0

C
on
fi
de
nc
e

(f) (g) coverage

1

0

C
ov
er
ag
e

(h)

Fig. 1. An example of a moving disaster (a) and the operator’s belief maps, before
(b) and after the displacement (c). An example of an operator’s command (d) and its
effect on the swarm’s distribution (e) are shown.

Our proposed method for human-swarm teaming with proximal interactions
successfully guides a swarm to explore a mission area in a dynamic environment
and allows a single operator to control the swarm. There are several directions
that this research can be extended and further developed. Future studies could
investigate the effect of noise in sensing, positioning, communication, and actu-
ation. We plan to implement our approach on physical unmanned aerial vehicles
to evaluate the performance of the swarm in real world applications.

Acknowledgement. This project was supported by the AXA Research Fund and the
Alan Turing Institute-funded project on Flexible Autonomy for Swarm Robotics.

Reference

1. Kolling, A., Walker, P., Chakraborty, N., Sycara, K., Lewis, M.: Human interaction
with robot swarms: a survey. IEEE Trans. Hum. Mach. Syst. 46(1), 9–26 (2015)

PSO Trajectory Planner for Smooth Differential
Robot Velocities

Aldo Aguilar , Miguel Zea , and Luis A. Rivera(B)

Universidad Del Valle de Guatemala, Guatemala City, Guatemala
{agu15170,mezea,larivera}@uvg.edu.gt

A multi-agent differential robot system requires a definite algorithm to behave as
a swarm with goal searching capabilities. The classic Particle Swarm Optimiza-
tion (PSO) algorithm [1] is a popular tool when it comes to finding the optimal
solution of a determined fitness function. The PSO is designed for swarms of
particles with no mass or physical dimensions, unlike differential robots. Robots’
movements are restricted, as opposed to particles, which can move in any direc-
tion at any velocity. Therefore, it cannot be directly used in goal searching
applications with physical robotic swarms.

In this work, we adapt the PSO algorithm for swarms of differential robots.
We propose the use of the PSO as a trajectory planner to enable the agents
to collectively find the optimal path to a goal. The velocity vectors generated
by the PSO can be used as pointers to new PSO positions xi+1. These multi-
ple reference points can be easily tracked by a differential robot. Based on this
idea, the PSO trajectory planner (PSO-TP) is designed as an algorithm that
is tasked with simply updating the position of the reference waypoint, or PSO
Marker. The PSO marker is then tracked by the kinematic controller of the robot
describing a smooth and continuous path. After a certain amount of iterations
of the kinematic controller tracking the current waypoint, the PSO-TP becomes
active again and it updates the location of the PSO Marker. The kinematic con-
troller starts tracking the new reference point and describes another continuous
path segment. This process is repeated continuously until the PSO-TP converges
to the goal. A new scaling factor η multiplying vi+1 is added to have a direct
control over the length of the PSO velocity vectors, thus limiting the acceptable
distances between the robot and the PSO Marker to avoid the marker surpassing
the search space boundaries and causing the kinematic controllers to saturate
the robots’ actuators. The modified update rule for the particles position is given
by:

xi+1 = xi + ηvi+1 (1)

The PSO-TP needs to take into account the restrictions derived from the
kinematic equations of the robotic agents and the finite dimensions of the search
space. For that purpose, it is coupled with the necessary controllers to map
particle velocities into smooth and continuous differential robot velocities. Since
the differential robot model is non-linear and not controllable, a diffeomorphism
of the original system into a simpler system is required. The implemented con-
trol transformation is based on the assumption that we can directly control the
planar velocities u1 and u2 of a single point in a differential robot. The diffeo-
morphism transforms the control signals into the linear and angular velocities
c© Springer Nature Switzerland AG 2020
M. Dorigo et al. (Eds.): ANTS 2020, LNCS 12421, pp. 351–352, 2020.
https://doi.org/10.1007/978-3-030-60376-2

http://orcid.org/0000-0002-3904-4487
http://orcid.org/0000-0001-7775-3260
http://orcid.org/0000-0002-3379-5570
https://doi.org/10.1007/978-3-030-60376-2

352 A. Aguilar et al.

of the differential robot, which in turn are mapped to wheel velocities using
the unicycle model [4]. Four different controllers combined with the diffeomor-
phism were tested to determine the best in terms of convergence speed, trajec-
tory smoothness and smooth wheel velocities. The four tested controllers were
the Transformed Unicycle Controller (TUC) (Eq. 21 in [3]), Transformed Unicy-
cle with LQR (TUC-LQR), Transformed Unicycle with LQI (TUC-LQI), and a
Lyapunov-stable Pose Controller (LSPC) [2].

After selecting the proper PSO-TP parameters to achieve the desired swarm
behavior, we analysed the PSO-TP implementation on differential robots using
the Webots simulation environment. The simulations were performed using
swarms of 10 E-Puck robots in a 2×2 m space and a sampling period of 32 ms.
The Sphere and Keane benchmark functions were used as fitness functions f(·)
to evaluate the algorithm’s performance. The controllers that tended to gener-
ate straighter paths towards the goal were the TUC-LQR and the TUC-LQI.
We used the minimum energy property of cubic spline interpolations to measure
the smoothness of each actuator velocity signal generated by each controller [5].
The TUC-LQI controller signals presented the lowest average bending energy
results indicating greater control smoothness. Furthermore, it presented a small
standard deviation, which indicated little dependency on the initial positions of
the E-pucks. Control saturation rate for each velocity control signal was also
calculated. The TUC presented actuator saturation between 50% and 90% of
the time, whereas the LSPC, TUC-LQR and TUC-LQI presented no saturation.

In conclusion, the PSO-TP was able to guide a differential robot swarm
towards a goal in a finite amount of time generating smooth trajectories. The
implementation of the PSO Velocity scaling factor η allowed an easier manipula-
tion of the operating range of the PSO-TP. It effectively restricted the positions
of the PSO Marker so that they were always within the search space. The TUC-
LQI controller outperformed the others in terms of achieving smooth continuous
differential robot velocities, while following the paths generated by the PSO tra-
jectory planner. Videos and images demonstrating our results can be found in
https://tinyurl.com/AguilarZeaRivera2020.

References

1. Kennedy, J., Eberhart, R.: Particle swarm optimization. In: ICNN’95 - International
Conference on Neural Networks. vol. 4, pp. 1942–1948 (1995)

2. Malu, S.K., Majumdar, J.: Kinematics, localization and control of differential drive
mobile robot. Glob. J. Res. Eng. 14, 1–7 (2014)

3. Martins, F., Brandão, A.: Motion control and velocity-based dynamic compensation
for mobile robots. Applications of Mobile Robots (Nov 2018)

4. O’Flaherty, R.: A Control Theoretic Perspective on Learning in Robotics. School of
Electrical and Computer Engineering, Georgia Institute of Technology (2016)

5. Wolberg, G., Alfy, I.: An energy-minimization framework for monotonic cubic spline
interpolation. J. Comput. Appl. Math. 143(2), 145–188 (2002)

https://tinyurl.com/AguilarZeaRivera2020

Author Index

Aguilar, Aldo 351
Allen, Jacob M. 243
Allwright, Michael 82, 216, 306, 347
Aust, Till 134

Barr, Earl T. 29
Bettinelli, Mickaël 282
Birattari, Mauro 271
Blum, Christian 16
Bremer, Jörg 68
Bruce, Dan 29

Camacho Villalón, Christian Leonardo 121
Carolus, Timothy G. 96
Christensen, Anders Lyhne 306
Cilliers, Heinrich 298
Clark, David 29
Cleeremans, Axel 161
Coucke, Nicolas 161

De Masi, Giulia 256
Divband Soorati, Mohammad 349
Dorigo, Marco 3, 82, 121, 161, 216, 306,

347
Dormagen, David 203
Doursat, René 42

Engelbrecht, Andries P. 96, 298, 333
Erwin, Kyle 333

Ferrante, Eliseo 256, 290, 315
Firat, Ziya 315

Gaget, Antoine 42
Genthial, Damien 282
Georgiev, Dimitar 349
Ghofrani, Javad 349
Goodrich, Michael A. 343
Gray, Ian 243

Hamann, Heiko 134
Han, Zhangang 347
Hasebe, Koji 345

Hasselmann, Ken 271
Heinrich, Mary Katherine 161, 216, 306

Iwasaki, Yu 345

Jain, Puneet 343
Jamshidpey, Aryo 216
Joyce, Russell 243

Karagüzel, Tugay Alperen 290
Kassawat, Majd 347
Khaluf, Yara 82, 176

Landgraf, Tim 203
Lehnhoff, Sebastian 68
Ligot, Antoine 271

Mai, Sebastian 190
Mathias, H. David 107, 148
Menéndez, Héctor D. 29
Millard, Alan G. 243
Montanier, Jean-Marc 42
Mostaghim, Sanaz 55, 190

Nauta, Johannes 176
Nowzari, Cameron 324
Nurcahyadi, Teddy 16

Occello, Michel 282
Oğuz, Sinan 306

Pacheco, Alexandre 3
Prasetyo, Judhi 256, 315

Ramchurn, Sarvapali 349
Rausch, Ilja 82
Reina, Andreagiovanni 134
Rivera, Luis A. 351
Ruetten, Laik 148

Shan, Qihao 55
Siebold, Alex 324
Simoens, Pieter 82, 176

Strobel, Volker 3
Stützle, Thomas 121

Tarapore, Danesh 349
Taylor, Chris 324
Trianni, Vito 203
Tuci, Elio 256, 315
Turgut, Ali Emre 290

Vardy, Andrew 229

Wahby, Mostafa 216
Wario, Fernando 203
Wild, Benjamin 203
Wu, Annie S. 107, 148

Zakir, Raina 315
Zea, Miguel 351
Zheng, Yating 347
Zhu, Weixu 216, 306, 347

354 Author Index

	Preface
	Organization
	Contents
	Full Papers
	A Blockchain-Controlled Physical Robot Swarm Communicating via an Ad-Hoc Network
	1 Introduction
	2 Methods
	2.1 Experimental Scenario
	2.2 Control Routines
	2.3 Blockchain Technology
	2.4 Ad-Hoc Network
	2.5 Experiment Setup and Evaluation

	3 Results
	3.1 Experiment 1: Increasing Byzantines
	3.2 Experiment 2: Increasing Swarm Size (No Byzantine Robots)
	3.3 Experiment 3: Increasing Swarm Size (20% Byzantines)

	4 Conclusions
	References

	A New Approach for Making Use of Negative Learning in Ant Colony Optimization
	1 Introduction
	2 The CapMDS Problem
	3 Proposed Approach
	3.1 Adding Negative Learning

	4 Experimental Evaluation
	5 Conclusions and Outlook
	References

	Ant Colony Optimization for Object-Oriented Unit Test Generation
	1 Introduction
	2 Related Work
	3 TACO Algorithm
	3.1 Problem Definition
	3.2 Tier I: Goal Prioritization and Selection
	3.3 Tier II: Test Program Synthesis
	3.4 Tier III: Input Data Generation

	4 Evaluation
	5 Conclusion
	References

	Branched Structure Formation in a Decentralized Flock of Wheeled Robots
	1 Introduction
	2 Model
	3 Simulations
	4 Physical Experiments
	5 Conclusion
	References

	Collective Decision Making in Swarm Robotics with Distributed Bayesian Hypothesis Testing
	1 Introduction
	2 Problem Statement and Related Works
	3 Distributed Bayesian Hypothesis Testing
	4 Experiments
	4.1 Finding the Optimal Sampling and Dissemination Interval
	4.2 Comparison with Other Collective Perception Algorithms
	4.3 Estimation Accuracy and Effects of Limiting Maximum Neighbors

	5 Conclusion
	References

	Constrained Scheduling of Step-Controlled Buffering Energy Resources with Ant Colony Optimization
	1 Introduction
	2 Related Work
	3 Problem Statement
	4 Algorithm for Step-Control
	5 Results
	6 Conclusions
	References

	Construction Task Allocation Through the Collective Perception of a Dynamic Environment
	1 Introduction
	2 Related Work
	3 The Model
	3.1 The Retrieval Process of Tiles
	3.2 The Simulated Environment
	3.3 The Robot Behavior

	4 Results and Discussion
	5 Conclusions
	References

	Control Parameter Importance and Sensitivity Analysis of the Multi-Guide Particle Swarm Optimization Algorithm
	1 Introduction
	2 Background
	2.1 Multi-Objective Optimization
	2.2 Multi-Guide Particle Swarm Optimization
	2.3 Stability Analysis
	2.4 Functional Analysis of Variance

	3 Experimental Procedure
	4 Results
	4.1 Variance in Predicted Objective Function Values
	4.2 Response Surface Analysis

	5 Conclusions
	References

	Dynamic Response Thresholds: Heterogeneous Ranges Allow Specialization While Mitigating Convergence to Sink States
	1 Introduction
	2 Collective Tracking Problem
	3 System Details
	4 Experimental Details
	4.1 Results
	4.2 Agent Thresholds and Actions

	5 Conclusions
	References

	Grey Wolf, Firefly and Bat Algorithms: Three Widespread Algorithms that Do Not Contain Any Novelty
	1 Introduction
	2 Particle Swarm Optimization
	3 The Grey Wolf, Firefly, and Bat Algorithms—Explained
	3.1 Grey Wolf Optimizer (GWO)
	3.2 Firefly Algorithm (FA)
	3.3 Bat Algorithm (BA)

	4 Conclusions
	References

	Guerrilla Performance Analysis for Robot Swarms: Degrees of Collaboration and Chains of Interference Events
	1 Introduction
	2 Three General Classes of Performance System Behavior
	2.1 Linear Increase
	2.2 Saturation
	2.3 Increase/Decrease
	2.4 Ambiguous Definition of Swarm Performance

	3 From Eye-Catchers to a Practical Performance Analysis
	3.1 Increase: Low- and High-Order Robot-Robot Collaboration
	3.2 Decrease: Low- and High-Order Robot-Robot Interaction

	4 Conclusion
	References

	Heterogeneous Response Intensity Ranges and Response Probability Improve Goal Achievement in Multi-agent Systems
	1 Introduction
	2 Model and Testbed Problem
	3 Experimental Design
	4 Experimental Results
	5 Conclusions and Future Work
	References

	HuGoS: A Multi-user Virtual Environment for Studying Human–Human Swarm Intelligence
	1 Introduction
	1.1 Related Work

	2 Design of HuGoS: `Humans Go Swarming'
	2.1 Experimentation Scope for Human–Human Swarm Intelligence
	2.2 Features of the HuGoS Virtual Environment

	3 Demonstration of HuGoS Features
	3.1 Case 1: Collective Decision Making
	3.2 Case 2: Social Learning Strategies
	3.3 Case 3: Interaction with Artificial Agents

	4 Discussion
	5 Conclusions
	References

	Memory Induced Aggregation in Collective Foraging
	1 Introduction
	2 Methods
	2.1 Environment
	2.2 Foragers
	2.3 Measuring Aggregation

	3 Results
	4 Conclusion
	References

	Modeling Pathfinding for Swarm Robotics
	1 Introduction
	2 Related Works
	3 Modeling Robot Navigation
	3.1 Vehicle Models
	3.2 Evaluating Plan Quality
	3.3 Multi-objective Multi-path Planning

	4 Experiments
	4.1 Evaluation

	5 Conclusion
	References

	Motion Dynamics of Foragers in Honey Bee Colonies
	1 Introduction
	2 Methodology
	2.1 Data Preprocessing
	2.2 Foragers and Dances Distribution Models
	2.3 Multi-agent Simulations

	3 Results
	4 Discussion and Conclusions
	References

	Multi-robot Coverage Using Self-organized Networks for Central Coordination
	1 Introduction
	1.1 Related Work

	2 Methods
	2.1 Coverage Task
	2.2 Approaches to Multi-robot Coverage
	2.3 Experiment Setup

	3 Results
	3.1 Performance
	3.2 Scalability
	3.3 Fault Tolerance

	4 Discussion
	5 Conclusions
	References

	Robot Distancing: Planar Construction with Lanes
	1 Introduction
	2 The Template Perspective
	3 Methodology
	3.1 Physical System Modeled
	3.2 Generating the Template and Lanes
	3.3 Lane Assignment and Re-assignment
	3.4 Control Law
	3.5 Simulation Environment and Metrics

	4 Experimental Results
	5 Conclusions and Future Work
	References

	The Pi-puck Ecosystem: Hardware and Software Support for the e-puck and e-puck2
	1 Introduction
	2 Hardware Changes
	2.1 YRL Expansion Board

	3 Software Ecosystem
	4 Robot Operating System (ROS) Support
	5 Environment Mapping
	6 Conclusion
	References

	Zealots Attack and the Revenge of the Commons: Quality vs Quantity in the Best-of-n
	1 Introduction
	2 State of the Art
	3 The Model
	3.1 The Simulation Model
	3.2 ODEs Model

	4 Experimental Evaluation
	4.1 Results with the Voter Model
	4.2 Results with the Majority Rule

	5 Conclusions
	References

	Short Papers
	AutoMoDe-Arlequin: Neural Networks as Behavioral Modules for the Automatic Design of Probabilistic Finite-State Machines
	1 Introduction
	2 AutoMoDe-Arlequin
	2.1 Low-Level Behaviors

	3 Experiments
	4 Conclusions
	References

	Coalition Formation Problem: A Group Dynamics Inspired Swarming Method
	1 Introduction
	2 Related Work
	3 The Coalition Formation Problem
	4 Control Law Definition
	4.1 Attraction/Repulsion Function
	4.2 Social Factors Integration

	5 Experimentation
	6 Evaluation
	7 Conclusion
	References

	Collective Gradient Perception in a Flocking Robot Swarm
	1 Introduction
	2 Methodology
	2.1 Standard Collective Motion (SCM)
	2.2 Desired Distance Modulation (DM)

	3 Multi-agent Simulations
	3.1 Results

	4 Physics-Based Simulations
	4.1 Results

	5 Conclusion
	References

	Fitting Gaussian Mixture Models Using Cooperative Particle Swarm Optimization
	1 Introduction
	2 Gaussian Mixture Model
	3 Gaussian Mixture Modeling Particle Swarm Optimization
	4 Cooperative GMMPSO
	5 Experimental Setup
	5.1 General Experiment Information
	5.2 Datasets

	6 Results
	7 Conclusion
	References

	Formation Control of UAVs and Mobile Robots Using Self-organized Communication Topologies
	1 Introduction
	2 Methods
	2.1 Experiment Setup

	3 Results
	3.1 Formation Establishment
	3.2 Formation-Level Obstacle Avoidance
	3.3 Fault Tolerance
	3.4 Scalability

	4 Discussion and Conclusions
	References

	Group-Size Regulation in Self-organized Aggregation in Robot Swarms
	1 Introduction
	2 The Simulation Environment
	3 Results
	4 Conclusions
	References

	On the Effects of Minimally Invasive Collision Avoidance on an Emergent Behavior
	1 Introduction
	2 Problem Formulation
	2.1 Individual Agent Model
	2.2 Desired Global Behavior: Ring State

	3 Methodology
	3.1 Measuring Emergent Behavior Quality
	3.2 Collision Avoidance

	4 Results
	4.1 Control Barrier Certificates (CBC)
	4.2 Optimal Reciprocal Collision Avoidance (ORCA)
	4.3 Comparing ORCA and CBC

	5 Conclusion
	References

	Set-Based Particle Swarm Optimization for Portfolio Optimization
	1 Introduction
	2 Background
	2.1 Portfolio Optimization
	2.2 Genetic Algorithm for Portfolio Optimization
	2.3 Set-Based Particle Swarm Optimization

	3 Set-Based Particle Swarm Optimization for Portfolio Optimization
	4 Empirical Process
	5 Results
	6 Conclusion
	References

	Extended Abstracts
	A Probabilistic Bipartite Graph Model for Hub Based Swarm Solution of the Best-of-N Problem
	References

	Ant Colony Optimization for K-Independent Average Traveling Salesman Problem
	References

	Construction Coordinated by Stigmergic Blocks
	References

	PSO Trajectory Planner for Smooth Differential Robot Velocities
	References

	Author Index

