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Abstract. Roboticsmanipulation is still a challenge inmany scenarios, especially
when the orientation of the tool or part is determinant for task success. A study
with pivoting, an in-hand manipulation technique, was conducted, which consists
in re-orienting the part around one rotational axis without dropping. It gets more
complex in industrial robots, which are position controlled and often the user
does not have access to the dynamic parameters. Deep reinforcement learning has
been successful with model free approaches as it learns the behavior of the whole
system. A simulated experiment for pivoting was conducted for part alignment to
a desired angle with a one degree of freedom robot and a parallel gripper. Position
control and torque control were simulated and compared.
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1 Introduction

Many tasks require picking an object in different positions, but the initial grasp may
deviate it from the desired gripping angle. This variation occurs from many factors,
such as distinct initial positions from both gripper and object, changes in friction and
variations on the final position profile. Solutions to this problem are re-grasping or the
use of in-hand manipulation techniques.

Re-grasping restarts the task and try a new pick to minimize the gripping error
[2, 7], which can be very time consuming or not even possible. Meanwhile, in-hand
manipulation aims to solve the problemwhen the object still on the gripper [5]. Although
the positive efficiency, these methods require high mechanical complexity, which is
expensive and time consuming for industrial tasks.

In this paper, we study the pivoting strategy as an in-hand technique for tool-part
reorientation [2]. Pivoting an object consists of rotating it along a single axis to reorient
it to the desired angle. It is very useful specially with parallel grippers, which have a
broad use in industry. Control alternatives for pivoting would be the implementation of
underactuated control of manipulators [9], as the robot would be seeming as the actuated
and the tool or part, not actuated. However, precisemodels of the robot or the parts are not
easily obtainable in industrial setups. Industrial robots commonly have their dynamics
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not known by the user, so friction and size may vary in different scenarios. Also, it is also
difficult to obtain a good friction model for part-tool and robot interaction, especially
for robust simulations.

Deep reinforcement learning has presented itself as a good candidate to solve manip-
ulation problems [3, 6]. However, these setups are expensive and sensor rich, which is
not always the case for industrial applications. Other in-hand manipulations have fewer
complex setups, but they usually use torque-controlled joints, and this option is not
available in industrial robots [4].

We present a deep reinforcement learning setup to learn in-hand manipulation for
positioning part with a parallel gripper in industrial robots. Using Proximal Policy
Optimization as reinforcement learning algorithm, we compare the torque-controlled
approacheswith the proposed position controlled and show the similar learning behavior.

Fig. 1. Rigid bodies model built in Mujoco. Image a) shows the system before a task has started
and b) after it is completed

2 Modeling and Control

This section provides a formalization of the problem and describes the modeling and
control. The goal is to perform the pivoting from an initial angle to the desired angle as
shown in Fig. 1. A parallel gripper holds the part, while the arm can either rotate along a
single axis generating inertial forces to move the part or control the holding pressure on
it by moving its fingers, varying the normal force. We assume that the task to be solved
starts already with the part grasped.

Deep Reinforcement Learning algorithms are good candidates to control the task.
Their negative point is the time it takes to learn in real models, since steps like resetting
the robot on each episode may be very time-consuming. To deal with this setback, we
propose a previous phase, using a simulation to speed up training. Further, the trained
network can be transferred to real applications using transfer learning techniques [11].
We present a robust simulation model, build with Mujoco and its training using the
Proximal Policy Optimization [8] algorithm.
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2.1 Rigid Bodies Modeling

We used Mujoco to build the rigid body model. The main body is composed of a box
Bmain that contains a revolution joint R, limited to ±40◦ and uses a proportional gain of
Kp = 30. A two-finger gripper is used and modeled by two prismatic joints, and thus
controls the pressure over the part, with a limited range of 2.5 mm and Kp = 80. A
free joint is attached to the part, meaning it is free to assume every possible position
in space. Training was conducted with a part of 215 × 120 × 4 mm and 0.82 kg. The
system stands on a horizontal planewith gravity acceleration of−9.81 m/s2. The sliding
friction coefficient between gripper and part is 0.85. The torsional friction, acting around
the contact normal, has a value of 0.004 between each body [4]. To enforce industrial
robots’ applications, we used a position-controlled actuator. For comparing purposes, we
trained a similar model with the same parameters but with a torque-controlled actuator
using with a gear ratio of 20.

2.2 Control Strategy

In recent years, reinforcement learning algorithms have been increasing its applica-
tions in robotics, demonstrating great potential for solving challenging decision-making
problems. In this section, we provide proper background for Markov Decision Process
(MDP) [10] and Proximal Policy Optimization (PPO) [8]. The goal of any reinforcement
learning algorithm is to solve an MDP, defined as a 4-dimensional tuple (S, A, Pa, Ra),
where S and A are the finite space of states and actions, respectively; st and at are the
observed space and action taken at time t.

The core problem of anMDP is to find a policy π which defines the action π(st) that
our agent will choose at state st . To solve the MDP problem, we address the Proximal
Policy Optimization (PPO), implemented using module SpinningUp [1], an on-policy
algorithm that takes the biggest possible improvement step without causing a perfor-
mance collapse. PPO updates policies via Eq. (1), where θ is the policy parameter, Et

denotes the empirical expectation over timesteps, At is the estimated advantage at time t,
∈ is a hyperparameter (usually 0.2) and rt is the probability ratio under the new and old
policies. The term clip(rt(θ), 1 − ∈, 1 + ∈)At in Eq. (1) works as filter of the proba-
bility ratio, removing the incentive of moving rt outside of [1 − ∈, 1 + ∈], therefore
preventing possible policy degradation.

LCLIP(θ) = Et
[
min(rt(θ)At, clip(rt(θ), 1 − ∈, 1 + ∈)At)

]
, (1)

3 Learning

The Observation Space is composed by the measured variables defined by (2) and the
description of each state is given by Table 1.

st = [
θpart − θtgt, ddist, θ̇grp, θ̇part, drop

]
, (2)

The first parameter, θpart − θtgt , gives us the current distance from the goal, allowing
the network to generalize different policies for different distances. The second one, ddist ,
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Table 1. Description of each element of Eq. (2)

Element Description

θpart Part’s angle with relation to the gripper

θtgt Target angle

ddist Distance between Bupper and Blower

θ̇grp Gripper’s velocity

θ̇part Part’s velocity with relation to the gripper

drop Boolean variable indicating if the part dropped from the gripper

controls the pressure over the part, exerted by the gripper. The third and fourth, θ̇grp and
θ̇part , gives the correct velocity values that generate the expected dislocation of the part.
The drop allows the agent to tell if it is holding the part or not.

The Action Space at each time step t is given by at = [
θgrp, ddist

]
. The first element,

θgrp, represents the gripper’s position. With these 2 actions our agent can accomplish
the objective. Our method validates its proficiency for industrial assembly, where more
complex solutions may be impracticable regardless the success rate. The reward works
with 3 distinct rules, shown in (3). The base rule is present from the beginning of the
simulation until the part reaches the success zone, that is, the region θtgt ± �θ , where
�θ is the acceptable error. Once the part is at the success zone η = 2, otherwise η = 1.
This generate extra incentive of remaining inside this region. To minimize the difference
from θtgt and make sure of the stability, the agent must stay in the success zone for 120
timesteps. The third and last rule applies after reaching the time restriction, when the
episode ends, and the agent receives Rt = 10.

rt =
{

−|θpart−θtgt|
100η , θpart ∈ (−∞,

(
θtgt − �θ

)) ∪ ((
θtgt + �θ

)
,+∞)

10, θpart ∈ [(
θtgt − �θ

)
,
(
θtgt + �θ

)] , (3)

The success zone is given by (4):

�θ =
⎧
⎨

⎩

|θtgt|
7 + 0.3, −6 ≤ θtgt ≤ 6

min
( |θtgt|

7 , 3
)
, θtgt

〈−6 ∪ θtgt
〉
6

, (4)

Using a variable error, instead of fixed 3° for instance, forces the agent to be more
precise for smaller angles and allows it to be able to adequate for larger ones. The limit
of 3° holds this adequacy from going too far and undermine the simulation. In Sect. 4,
Fig. 4 illustrates Eq. (4), defined above. The learning module used is SpinningUp [1]

4 Results

4.1 Training

The training occurred within 2000 episodes. Each episode has the maximum duration
of 4000 timesteps. The number of timesteps per epoch was set to 8000. A multi-layer
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perceptron network was used for function approximation. Various architectures were
tested, but it responded best with 3 hidden layers of 32, 24 and 10 neurons, respectively.
We used the discount factor of λ = 0.99. Figure 2 shows the mean reward of the
position-controlled actuator in blue and torque controlled in red. The system converges
to the object faster in the position-controlled model and remains more stable during the
whole training. It is worth mentioning that all the conditions were kept the same for both
models, changing only the used actuator.

Fig. 2. Mean reward per episode during training phase

4.2 Experiments

In this section, we present the results for 2 different comparisons. The first one compares
practical results of both presented actuators, and the second one reveals the robustness
of our model for different parts.

Since the reward plot in (2) shows a mean value, it can hide some fails. The model
may work very well for some range of angles and fail completely in other range. To
analyze that, Fig. 3 shows the error in degrees when trying to reach a target angle. The
green area represents the success zone, defined in Eq. (4). For each target angle, 30
runs were done, and then we extract the mean value of it. All the results so far were
collected using a single part. To confirm the generalization of the model, we must verify
the task execution on different parts. Therefore, two extra parts were tested: part 2 with
dimensions 120x100x4 mm and 0.38 kg, and part 3 with 180x220x4 mm and 1.27 kg.
The friction was kept the same as the previous experiments.

Figure 4 presents the error for all parts over the target angle. Meanwhile the trained
part was capable to achieve all desired angles under the acceptable errors, due to its high
fidelity to original data, the other had problems and started to deviate with more than
20◦ from initial position, for either parts. This happens since the manipulator needs to
move faster to achieve the target angle, thus applies higher accelerations, leading to not



In-Hand Manipulation via Deep Reinforcement Learning 227

Fig. 3. Deviation from the target angle when in degrees with 2 different actuators

negligible inertial components, which is harder to generalize. This behavior is function
of the inertia of the parts, but also to the friction in interaction between grippers and
part, that is more complex to model and has a wide range of values. For most of angles
range, different parts confirm themodel flexibility, while it is possible to observe failures
for larger angles. In future work, we consider adding different parts during the training
process and include variables like mass and part dimensions to the observation space.

Fig. 4. Deviation from the target angle in degrees for 3 different parts

5 Conclusions

This works proposes the use of reinforcement learning algorithms to solve in-hand
manipulation problems for industrial robots, focused on pivoting. Pivoting consists of the
reorientation of the object by generating inertial forces to move the part. The model was
implemented using a precise physics simulator, Mujoco. The learning algorithm applied
to solve the task was Proximal Policy Optimization and the actuation was executed by
a position controller, present in ubiquitously present in industrial automation systems,
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including robot manipulators. The model achieved a high level of success for position
and torque actuators, corroborating to its robustness. All tests with the training part
achieved small errors.When evaluated for generalization with different parts, the trained
model was able to generalize for angles closer to the initial one, i.e., range of [− 20°,
20°]. On future work, the implementation of a variety of parts during training and the
inclusion of its parameters in the observation space suggest a possible improvement in
the generalization. Also, we would like to evaluate the effect of friction during training
and generalization of the parts, and validate the simulated model on a real robot.
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