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Abstract. This paper analyses the kinematic behavior of a 4-DOF fully
decoupled parallel manipulators family. These manipulators have a kind
of motion known as Schönflies motion (SM). The kinematic analysis pro-
posed in this paper takes into account the position analysis, differential
kinematics, singularity positions, and workspace analysis of one represen-
tative parallel manipulator (PM) of such a family. Also, the advantages
and applications of this type of parallel manipulators are discussed.
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1 Introduction

The kinematic analysis of PMs is a prolific field of study on robotics since a large
number of them have been proposed and introduced in the past decades. Most
of these manipulators have 6-DOF. However, there are several applications in
which 4-DOF are sufficient [6].

Recently, many researchers proposed the employment of simpler kinematic
structures for some application, that requires less than 6-DOF to accomplish
the desired task. For example, for pick-and-place tasks, a broad exploited appli-
cation on the modern industry needs only 4-DOF, where three translations are
responsible for moving the object from a point to another and one rotation to
orient the object. This kind of motion is known as Schönflies motion (SM) or
3T1R [6].

The isoconstrained or non-overconstrained PMs, are also increasingly pop-
ular for industrial applications. Lee and Lee [6] presented three different iso-
constrained PMs for pick-and-place tasks. The authors developed the kinematic
analysis, including the kinematic equations of motion, jacobian matrix, singulari-
ties analysis, workspace, and performance index. Kong and Gosselin [5] studied a
quadratic 3T1R PM known as Quadrupteron. They presented the direct position
analysis for the Quadrupteron. Moreover, a singularities analysis is presented.
Taking the found results into account, the author illustrated the singularity free
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workspace regions, as well as the input conditions, in order to operate on the
desirable regions.

The possibility of decoupling the end-effector’s position and orientation is
an attractive property on PMs. Di Gregorio [2] identified a group of 63 3T1R
decoupled PMs architectures with three limbs, then he studied them adopting
a unified approach. Carricato [1] presented a methodology using screw theory
to synthesize the diagonal and constant forms to both direct and inverse jaco-
bian matrix. He applied the methodology on a particular family of translational
PMs, making their motions completely decoupled. Furthermore, their kinematic
analysis is straightforward.

In the literature, some authors have discussed and proposed the type synthesis
of architectures that perform the well known SM. One of the most thorough stud-
ies was proposed by Gogu [4], which exposed a total of 619 parallel architectures
with SM. The architectures are classified into distinct families, e.g., fully-parallel
topologies, overactuated topologies, topologies with decoupled motion, et cetera.
PMs with 4-DOF SM applications are very diversified. Stepanenko et al. [10] pre-
sented a new 4DOF 3T1R PM for micromachining applications. This PM has a
decoupled architecture and an elementary kinematic analysis.

Inspired by the diversified applications, this paper proposes a study of the
fully decoupled family architectures with 4-DOF 3T1R PMs, generated in the
type synthesis, proposed by Gogu [4]. Indeed, the proposed study is a kine-
matic analysis of such manipulators. This analysis focuses on position kinemat-
ics, velocity analysis, kinematic singularities, and workspace analysis. This paper
aims to conduct a simple and straightforward kinematic analysis of one parallel
architecture representing its whole PMs family. Such analysis helps to under-
stand these PMs kinematics better, also some advantages are drawn.

This paper is organized as follows. In Sect. 2, the selected PMs family is dis-
cussed, also the selected architecture to represent the whole family is illustrated.
In Sect. 3, the kinematic analysis as a whole is studied, namely the position
kinematics, differential kinematics, kinematic singularities, and the workspace
analysis. Finally in Sect. 4, some advantages and conclusions are presented.

2 The Fully Decoupled Schönflies Motion Family

The PMs family analyzed in this paper was synthesized by Gogu [4]. Gogu [3]
also demonstrated a new formula for mobility, connectivity, redundancy, over-
constraints, and evolutionary morphology. He adopted a unified approach for
type synthesis, providing novel solutions for PM architectures.

This work focuses on the decoupled motion feature. The chosen family is
referred to as “Fully-Parallel Topologies with Decoupled Schönflies Motions,”
henceforth called as “fully decoupled family.” Here, only the simple limb topolo-
gies were considered. The family consist of ten architectures showed in Fig. 1.

These architectures have similar topologies, i.e., they are composed of trans-
lational, revolute, or a combination of both joints (cylindrical joint). Also, this
group is composed of four spatial limbs, three of them are identical, and one is
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Fig. 1. Studied architectures group of the fully decoupled family. (Source:[4])

slightly distinct. The limbs have four or five joints. These limbs connect the fixed
platform towards the moving one. Each of them is combined with one actuator
connected on the fixed platform in a translational or cylindrical pair (just the
translational motion is actuated on the cylindrical joints).

This group of architectures has 3T1R motion, that is, three translations along
the Cartesian axes X, Y , and Z combined with one rotation along the X axis in
this particular case. The translational velocity of the moving platform depends
on one actuated joint velocity νi = νi(q̇i), i =1, 2, 3 and the rotational velocity
on two actuated joint velocities ωδ = ωδ(q̇3, q̇4). The moving platform’s action
point is showed as a red dot in Fig. 2a. In other words, the adopted reference
point used to analyze the kinematics depends only on each limb’s actuation.

2.1 Representative Architecture for Kinematic Analysis

Considering the family particularities exposed in Sect. 2 and taking into account
all ten architectures, from a kinematic point of view, they have the same actua-
tion and action behavior. Thus, it is feasible to select one representative archi-
tecture for the kinematic analysis. Without losing generality, the chosen archi-
tecture, that represents the whole family, is shown in Fig. 2a, with its workspace
volume in Fig. 2b, which will be better discussed in Sect. 3.

First, these architectures have 3T1R fully-decoupled motion, with no idle
mobilities. Thus, their jacobian matrices are triangular. The moving platform
rotation is along the same axis for all architectures. Furthermore, the actuators
are always located on the translational joint. These properties make the posi-
tion analysis, differential kinematics, singularity positions, and the workspace
analysis the same for all ten architectures.
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Fig. 2. (a) Selected fully decoupled PM, and (b) its workspace volume representation.

3 Kinematic Analysis

The kinematics of some PM is an important feature, producing pertinent data
that can be assertively used to define its kinematic design. The proper use of
the data provided by the kinematic analysis allows determining a set of geo-
metric parameters. These parameters help achieve the manipulator’s optimal
performance, in terms of its workspace, accuracy, velocity, and so on [7].

3.1 Position Kinematics

A geometric approach is employed for kinematic analysis. The strategy consists
of using generic dimensions, points, and vectors, strategically positioned along
with the manipulator’s limbs, respecting its morphology, the position kinematics
can be calculated. A functional representation of all the four legs is shown in
Fig. 3.

It is possible to see that the manipulator’s legs functional representations
have different perspective views. The first one represents the XZ plane, while the
other ones represent the Y Z plane. Some geometric parameters are thus adopted,
i.e., the points PiA, i = 1, 2, 3, 4 are located on the fixed links. Additionally, the
points PiB are representing 2j , j = A, B, C, D links extremities (distal points),
located near to the passive translational joints in each limb. Both PiA and PiB

points were represented in Fig. 2a, for each limb as white dots.
Moreover, the q̇iq̇iq̇i vectors are the translational velocities of the input links 2j .

Finally, l0 is a generic geometric parameter of the moving platform defining its
length along the X axis, while l2 is the moving platform length along the Y axis.
l3 is a geometric variable that depends on the moving platform angle between
the X axis, namely the φ angle1. All of the parameters, as mentioned above, can
be seen in Fig. 2a.
1 As cited in Sect. 2, the moving platform rotational velocity, including the rotation

magnitude (moving platform inclination), depends on two actuated joints (q̇3,q̇4).



106 P. Rossi et al.

Fig. 3. Functional representation of all manipulator’s limbs.

Once defined these geometric parameters, according to Fig. 3, it can be pos-
tulated the following equations:
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where PiA is a point at the fixed link, so its coordinates have constant values, the
values depend on the manipulator’s dimensions. Also, the point PiB is located
on the same PiA axis, so they have the same coordinates, varying only on the
distance along one axis, which leans on the translational joint direction. The
distance between both points relies on the translation magnitude of the input
link 2j .

Here, with Eq. 1, the position and orientation of the moving platform can
be fully defined as presented in the below equations. In fact, the parameter l3,
was used to calculate the orientation as follows l3 = P4Bz

− Platz. Platz is
the last vector coordinate of the moving platform’s action point. Then, one can
substitute the values accordingly and calculate the φ using its inverse sine:

Plat =

⎡
⎣
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Platy

Platz

⎤
⎦ =

⎡
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P1Ax
− q1 − l0

P2Ay + q2
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⎤
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(P4Az−q4)−(P2Az−q3)

l2

]
. (2)

3.2 Differential Kinematics

The jacobian matrix (J) represents the actuated joints velocities map; likewise,
the same works for the end-effector [8]. The Jacobian can be achieved by differ-
entiating the position kinematics equations. In PMs, the Jacobian can be derived
as follows:

Js · q̇s = Jp · q̇p ⇒ q̇s = Js
−1 · Jp · q̇p and q̇p = Jp

−1 · Js · q̇s, (3)

Further, l3 is directly proportional to the moving platform inclination, since it rep-
resents the φ angle opposite side.
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also considering Jp = ∂F (s)
∂t and Js = ∂F (p)

∂t , the subscript suffix “p” represents
the primary variables, while the “s” one represents the secondary ones [9]. Jp

and Js are respectively inverse and direct Jacobian. Considering the Eq. 3, then
applying it in Eq. (2), one can assertively derive these above equations:

⎧
⎪⎪⎨
⎪⎪⎩

Tx = P1Ax
− q1 − l0

Ty = P2Ay
+ q2

Tz = P3Az − q3
l2 · sinφ = P4Az

− q4 − P2Az
+ q3

⇒

⎧
⎪⎪⎨
⎪⎪⎩

Vx = −q̇1
Vy = q̇2

Vz = −q̇3
l2 · cosφ · ωφ = −q̇4 + q̇3

. (4)

The equation array on the left side means the displacements, while the right
side refers to velocities and represents the time derivative. Therefore, adopting
the Eq. (3), yields:
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3.3 Kinematic Singularities

The singular configuration appears when the rank of the Jacobian matrix drops,
and this also can be detected from calculating the matrix determinant, i.e.,
det(J) = 0.

There are no inverse singularities, once the inverse jacobian matrix never has
the determinant equal to zero (det(Jp) �= 0).

The direct singularities come from the jacobian matrix Js, that is det(Js) =
0 → l2 · cos φ = 0 → cos φ = 0. It follows that these direct singularities occurs
when the moving platform is oriented on 90◦ or −90◦ regarding the X Cartesian
axis.

3.4 Workspace Analysis

To better understand the workspace (WS) of the selected architecture, a dis-
placement study was elaborated similarly as done by Stepanenko et al. [10]. A
CAD model was constructed employing the SOLIDWORKS R© program, and this
model is that one exposed in Fig. 2a.

To construct the model actuators and translational passive joints, a specific
displacement was adopted, q1 = q2 = q3 = q4 = q ⇒ 0 mm ≤ q ≤ 300 mm. The
rotation displacement magnitude on the revolute joints was also determined as
−45◦ ≤ φ ≤ 45◦. Once the action point at the moving platform is defined, it is
possible to import its CAD model coordinates along with the workspace. Thus,
one can plot them and use an algorithm to calculate the whole workspace volume
for an imposed moving platform inclination (φ).

The obtained results are exposed in Table 1, in which Tx, Ty and Tz are
representing the maximum translational displacement along the Cartesian axes.
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Table 1. Results obtained with the displacement study on CAD model.

Phi [◦] Tx [mm] Ty [mm] Tz [mm] WS Volume [cm3]

±45 300 235.57 144.44 10207.72

±33.75 300 262.93 177.78 14023.11

±22.5 300 283.25 215.81 18338.45

±11.25 300 295.77 257.08 22810.96

0 300 300 300 27000

In fact, the workspace volume morphology is a parallelepiped that varies its
pattern between a perfect cube when φ = 0◦, into a generic parallelepiped when
φ �= 0◦. The first case for a perfect cube is seen in Fig. 2b.

To mathematically analyze the workspace in a comprehensive way, one can
represent the moving platform on the Y Z plane perspective, as shown in Fig. 4.

Fig. 4. Two possible situations for the moving platform orientation.

With these values, one can calculate the total translation displacement along
the Y and Z axes by:

{
Ty = (Ty0 − dy)

Tz = (Tz0 − ‖dz‖) ⇒
{

Ty = (Ty0 − l2(1 − cosφ))
Tz = (Tz0 − ‖l2(sinφ)‖) , (6)

where dy and dz represent the dimensional discrepancy along the Y and Z axes,
respectively. One can conclude that this disparity relies on the moving platform
inclination.

The total workspace volume is given by:

WS Volume = Tx · [Ty0 − l2(1 − cosφ)] · [Tz0 − ‖l2(sinφ)‖]. (7)

4 Conclusions

This paper presented the kinematic analysis of the fully decoupled family pro-
posed by Gogu [4], where the simple limb topologies were considered. The posi-
tion and differential kinematics, singularities, and workspace volume have been
studied.

The direct kinematic analysis shows a one-to-one relationship between the
input actuated links and the end-effector position. This peculiarity makes the
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manipulator control easier, facilitating its path-planning calculation. As a con-
sequence of the simple position kinematics, the differential one is also trivial,
producing triangular smooth jacobian matrices, enabling an effortless manipu-
lator velocities mapping.

Kinematic singularities showed themselves as very well-conditioned, the
manipulator has only direct singularities at convenient orientations through-
out the workspace. This fact aids in kinematic singularities avoidance on real
applications.
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