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Abstract. Advances in neuroimaging techniques such as diffusion MRI
and functional MRI enabled evaluation of the brain as an information
processing network that is called connectome. Connectomic analysis has
led to numerous findings on the organization of the brain its pathologi-
cal changes with diseases, providing imaging-based biomarkers that help
in diagnosis and prognosis. A large majority of connectomic biomarkers
benefit either from graph-theoretical measures that evaluate brain’s net-
work structure, or use standard metrics such as Euclidean distance or
Pearson’s correlation to show between-connectomes relations. However,
such methods are limited in diagnostic evaluation of diseases, because
they do not simultaneously measure the difference between individual
connectomes, incorporate disease-specific patterns, and utilize network
structure information. To address these limitations, we propose a graph
matching based method to quantify connectomic similarity, which can
be trained for diseases at functional systems level to provide a subject-
specific biomarker assessing the disease. We validate our measure on a
dataset of patients with traumatic brain injury and demonstrate that
our measure achieves better separation between patients and controls
compared to commonly used connectomic similarity measures. We fur-
ther evaluate the vulnerability of the functional systems to the disease
by utilizing the parameter tuning aspect of our method. We finally show
that our similarity score correlates with clinical scores, highlighting its
potential as a subject-specific biomarker for the disease.

Keywords: Graph edit distance · Learning edit costs · Graph
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1 Introduction

Connectomics, the study of connectivity in the brain, has become an indispens-
able tool in the analysis of brain network organization. With the advent of

The original version of this chapter was revised: Figure 2 was updated
with the correct numbers. The correction to this chapter is available at
https://doi.org/10.1007/978-3-030-60365-6 21

c© Springer Nature Switzerland AG 2020, corrected publication 2020
C. H. Sudre et al. (Eds.): UNSURE 2020/GRAIL 2020, LNCS 12443, pp. 131–141, 2020.
https://doi.org/10.1007/978-3-030-60365-6_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-60365-6_13&domain=pdf
https://doi.org/10.1007/978-3-030-60365-6_21
https://doi.org/10.1007/978-3-030-60365-6_13


132 R. S. Shen et al.

imaging techniques such as diffusion MRI or functional MRI, structural or func-
tional connectivity of the brain regions can be modeled efficiently with connec-
tomes, which are annotated graphs with nodes representing brain regions and
edges denoting the relationship between region pairs. Graph theoretical analy-
sis of connectomes has provided novel insights into the network organization of
the healthy brain, widening our understanding of the relationship between brain
and behavior. Additionally, it also introduced imaging biomarkers for neurologi-
cal diseases and disorders in the brain along with useful information about their
recovery patterns [8,25].

Connectomic analysis studies that utilize graph-theoretical tools generally
focus on summary metrics that quantify network properties such as centrality,
local efficiency, small-worldness, or participation coefficient [22]. While making
statistical analysis with these measures is useful for characterizing neurological
patterns at the population level, such an approach is limited in two main aspects
which become more crucial in the assessment of brain disorders. First, these
standalone measures describing network structure do not reveal information on
how much an individual connectome differ from the healthy controls, which
is essential for quantifying the subject-specific brain condition. Second, such
standard measures evaluate generic properties of networks and do not leverage
disorder-specific information that can enhance diagnostic evaluation. On the
other hand, standard measures such as Euclidean distance [18] or Pearson’s
correlation [5] are commonly used to quantify similarity of a connectome (of
possibly a patient) relative to a population (of controls) mainly by considering
the edges independently. However, such standard measures are limited in not
leveraging the connectivity information embedded into the network topology as
well as not being specific to the disease.

Graph matching is a powerful technique for quantifying similarity between
graphs by considering overall network topology in an optimization problem
setup, which is well-studied and widely used in pattern recognition and com-
puter vision over several decades [4]. Despite its strong potential, graph matching
is seldom applied to connectomics [17], with matching-based measures recently
starting to emerge to assess connectomic similarity [14] in healthy subjects [15]
as well as in patients [13,16]. Although graph matching methods presented in
such studies provide subject-specific connectomic similarity scores, they are still
generic measures that do not incorporate disease-specific information. Although
learning over graphs was proposed using Graph Neural Networks in determining
proper distance metrics for connectomes [12], such methods are prone to overfit-
ting and lack interpretability, especially for diseases that are generally examined
using datasets of limited sample size. Consequently, connectomic biomarkers that
i) quantifying differences among connectomes, ii) that utilize network topology
information while iii) allowing to be tuned for specific diseases with limited sam-
ple size are desirable.

In this work, we propose a graph matching based method to quantify con-
nectomic similarity, which can be trained for diseases to provide a subject-
specific score that offers better separation between patients and controls. We use
graph edit distance (GED) to attain graph matching, where we train edit cost
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parameters using Markov Chain Monte Carlo (MCMC) to make our method
disease-specific. We consider the average GED between an individual’s brain
graph and the healthy control population as the measure assessing the state of
the disease for that individual. We demonstrate the utility of our method over
a moderate-to-severe traumatic brain injury (TBI) dataset to provide a connec-
tomic measure for TBI. The contribution of our study is threefold. First, our
score is subject-specific and it incorporates network topology information in the
presence of pathology. Second, training of GED parameters provides us insights
about which functional systems are affected more by the disease at the popu-
lation level. Third, the proposed score can be used as a potential connectomic
biomarker of the disease as it correlates well with clinical scores.

2 Methods

2.1 Graph Edit Distance

Human brain constitutes a network structure that can be represented as connec-
tomes, which are simply graphs encoding structural or functional connectivity
information of brain regions. The presence of neurological disorders commonly
results in changes in the network topology of the brain, such as increased or
decreased connectivity relative to a healthy subject. Consequently, measuring
the connectomic dissimilarity of patients relative to healthy controls is of great
importance in evaluating the effect of pathology.

Graph edit distance is a powerful graph matching technique that quantifies
dissimilarity between two graphs Gp, Gq by calculating the minimum edit cost
to transform Gp into Gq [7]. Edit cost in GED is accounted for by node insertion,
deletion, and substitution operations, which is characterized by the amount of
distortion that each operation introduces. These edit operations, also referred to
as edit paths, reveal a correspondence between nodes of the two graphs. Since
connectomes are special graphs where nodes correspond to brain regions that
are based on the same anatomical atlas for all subjects, nodes in one graph are
likely to get matched to their counterparts in another graph due to anatomical
similarity across people. Structural differences due to subject-specific variations
and alterations induced by pathology of neurological disorders, on the other
hand, would lead to node mismatches, resulting in a larger graph edit distance.

Calculating edit cost requires defining proper cost functions for edit opera-
tions. Since neurological disorders can cause certain cognitive deficits that involve
functional systems of the brain in varying degrees, the manifestation of struc-
tural alterations may be localized or widely distributed, and can be expected
to differ by functional subnetworks rather than having a uniform effect over all
nodes of the graph [8]. To capture such subnetwork dependent patterns at the
population level, we define node substitution cost as the Manhattan distance
between the node attributes weighted by a system-level dysfunction coefficient.

C(vp
i → vq

j ;α) = αsi × αsj × dManhattan(vp
i ,v

q
j ) = αsi × αsj × ||vp

i − vq
j ||1 (1)
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where vp
i and vq

j represent ith and jth nodes in Gp and Gq, respectively. Each
node v is annotated with an Nnode-dimensional feature vector that represents its
connectivity to the rest of the graph, where Nnode is the number of nodes in the
parcellation. The dysfunction coefficient αsi > 0 characterizes the population-
level effect of an edit operation for the system that node i belongs to. The GED
parameter α = {α0, ..., αNsys

} is an Nsys-dimensional vector representing the
dysfunction coefficient for Nsys functional systems pre-defined by the atlas.

We define node insertion and deletion costs similarly, as the weighted Man-
hattan distance between the feature vector of the node and a zero vector.

C(∅ → vq
j ;α) = α2

sj × dManhattan(0,vq
j ) = α2

sj × ||vq
j ||1 (2)

C(vp
i → ∅;α) = α2

si × dManhattan(vp
i ,0) = α2

si × ||vp
i ||1 (3)

Given the edit cost parameter α, GED aims to find optimum edit path
P(Gp, Gq;α) that transforms graph Gp into Gq with minimum edit cost.

dGED(Gp, Gq;α) = min
(e1,...eK)∈P(Gp,Gq ;α)

K∑

k=1

C(ek;α) (4)

where ek indicates an edit operation.
Utilizing the one-to-one mapping between nodes that ensues GED calcula-

tion, we calculate matching accuracy as the rate of correct matches of nodes
between the two graphs [17].

AGED|P(Gp,Gq ;α) =
∑Nnode

k=1 δ(ek = vp
k → vq

k)
Nnode

(5)

where δ(·) = 1 if the edit path matches a node to its counterpart and 0 otherwise.
We calculate the GED for each subject relative to the healthy population and

consider the average of these distances as the disease biomarker for each subject.
Since the exact computation of GED is intractable, we use the Kuhn-Munkres
algorithm to calculate an approximate solution to the problem [20].

2.2 Edit Cost Parameter Estimation

In order to tailor the similarity measure specifically for one brain disorder,
we train our algorithm to learn the system-level dysfunction coefficient α by
using the Metropolis-Hastings algorithm, a Markov chain Monte Carlo (MCMC)
method. Our objective in training is based on our hypothesis that matching accu-
racy between a patient and a healthy control should be low due to distortions
induced by disease while matching accuracy between healthy controls should be
high due to a lack of pathology. This objective can be achieved by minimizing
the following energy function:

Ed[α̃,G] =
1

Np

Np∑

i=1

max{0,−(AGED|P(Gc;α̃) − AGED|P(Gpi
,Gc;α̃)) + γ} (6)
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where G denotes the dataset of graphs, AGED|P(Gc;α̃) is the mean of aver-
age matching accuracy of healthy controls while AGED|P(Gpi

,Gc;α̃) is the aver-
age matching accuracy of patient pi relative to healthy controls. Maximizing
Ed[α̃,G] encourages matching accuracy among controls to become higher than
matching accuracy between patients and controls at least by a margin γ. The
estimated dysfunction coefficient α̃ is therefore tuned to capture disease-related
distortion in the brain.

We further impose the following prior term to ensure that all dysfunction
coefficients would be positive:

Ep[α̃] =

{
0 if α̃i > 0, ∀i ∈ {0, .., Nsys}
+∞ otherwise

(7)

Thus, final objective function is defined as follows:

E[α̃,G] = Ed[α̃,G] + Ep[α̃] (8)

We apply simulated annealing for the optimization with the temperature T
controlling the annealing schedule. Current parameter α̃t will be updated by a
new parameter α̃t+1 with the acceptance rate:

a = min{1, exp{−E[α̃t+1,G] − E[α̃t,G]
T

}} (9)

2.3 Interpretation of Dysfunction Coefficients

To interpret the estimated dysfunction coefficients, we highlight that the nodal
structural alterations captured by the Manhattan distance between a subject and
a healthy control would have two components: difference due to disease-induced
pathology and non-disease-related difference due to subject-specific variations.
Tuning GED for dysfunction coefficients could give us information about the
vulnerability of systems to the disease. Intuitively, a larger dysfunction coeffi-
cient will discourage a node in a patient from matching to its counterpart in
a healthy control. Likewise, a small dysfunction coefficient will encourage cor-
rect matching of nodes even with a large difference between two nodal features.
Since our objective function maximizes matching accuracy within controls while
minimizing matching accuracy between patients and controls, functional sys-
tems that are affected by the disease will have a larger dysfunction coefficient
to encourage mismatches for patients. On the other hand, a region where non-
disease-related difference is dominant will have a small dysfunction coefficient
to improve matching accuracy for controls. Therefore, learning of dysfunction
coefficients in MCMC is equivalent to estimating the distribution of pathology
in connectomes at the systems level.

3 Experiments

3.1 Dataset and Preprocessing

We validate our method over a traumatic brain injury dataset consisting of 34
moderate-to-severe patients (12 female) and 35 healthy controls (9 female) that
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pass quality assurance, with the age of patients ranging from 18 to 65 years
(mean = 33.9 years, std = 14.9 years), and the age of healthy controls ranging
from 19 to 56 years (mean = 34.9 years, std = 10.3 years), respectively. Imaging
scans are taken at 3 months post-injury. The Glasgow Outcome Scale-Extended
(GOSE) is used to assess global functional outcome of the TBI patients at the
time of imaging (range = [2, 8], mean = 5.1, std = 1.5).

Diffusion weighted imaging scans are acquired on a Siemens 3T TrioTim
whole-body scanner with an 8-channel array head coil (single-shot, spin-echo
sequence, TR/TE = 6500/84 ms, b = 1000 s/mm2, 30 directions, flip angle = 90◦,
resolution = 2.2 × 2.2 × 2.2 mm). High-resolution T1-weighted anatomic images
are also obtained using a 3D MPRAGE imaging sequence with TR = 1620 ms,
TI = 950 ms, TE = 3 ms, flip angle = 15◦, 160 contiguous slices of 1.0 mm thick-
ness, FOV = 192×256mm2, 1NEX, resolution = 1×1×1mm. 100 regions of inter-
ests from Schaefer atlas [21] and additional 16 subcortical regions are extracted
to represent the nodes of the structural network (116 nodes in total). A mask
is defined using voxels with an FA of at least 0.15 for each subject. We perform
deterministic tractography to generate and select 10 million streamlines, which is
seeded randomly within the mask. Angle curvature threshold of 60◦, and a mini-
mum and maximum length threshold of 5 mm and 400 mm are applied, resulting
in a 116 × 116 adjacency matrix of weighted connectivity values, where each
element represents the number of streamlines between regions. Eight functional
systems are identified including 7 subnetworks as described in [24] and another
for representing subcortical regions.

3.2 Experimental Setup

We conduct fivefold cross-validation to evaluate our method. Each testing set
consists of 14 subjects and each training set consists of 55 subjects. In the train-
ing, 8 dysfunction coefficients are initialized with equal weights α̃0 = [1, ..., 1].
We use Multivariate Gaussian distribution αt+1 ∼ N (α̃t|Σ) with σ2 = 0.001 as
the transition probability for iteration t + 1 to generate new parameters. We set
the margin as γ = 0.5. The temperature for simulated annealing is initially set
as T0 = 0.01 and scheduled to decrease as number of iteration t ≥ 0 increases,
following the equation T = T0

ln(t+1) . We set the maximum iterations of MCMC
to be 100 for each fold.

In evaluating test subjects in each fold, we compare our proposed measure
of GED with training of parameters (denoted GED-tr) with two commonly
used connectomic similarity measures: Euclidean distance and Pearson’s dis-
tance (defined as 1 − rPearson). We evaluate the effect of training dysfunction
coefficients in GED-tr by contrasting it with the standard GED without param-
eter tuning (denoted GED-st). We normalized all four measure s by calculating
z-score to make them comparable. All measures were validated at both pop-
ulation and subject-specific level. For the population analysis, we use Welch’s
t-test to examine the group difference of the dissimilarity score between patients
and healthy controls for each fold and use Hedges’ g method to estimate effect
size. As each testing set is independent, p-values and effect sizes in the 5-fold
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study can be combined using Fisher’s method [6] and inverse variance-weighted
average method [10]. For the subject-specific analysis, we use linear regression
to examine the relationship between each measure and the GOSE score.

Fig. 1. Dissimilarity scores of subjects in each group (healthy controls and patients)
with respect to healthy control population (values are normalized using z-score for
comparison). Our proposed method GED-tr achieves the best separation by reduc-
ing variation of scores in controls and increasing the separation between patients and
controls. Note that, effect sizes for significant group differences between patients and
controls are shown above boxes, with significance level after Bonferroni correction being
p ≤ 0.0125.

3.3 Results and Discussions

Population Analysis

Dissimilarity at Connectome Level. Dissimilarity of subjects relative to healthy
controls is shown in Fig. 1 along with effect sizes of group differences between
patients and controls. We observed that although all four dissimilarity mea-
sures show significant group differences between patients and controls (with
p < 0.0125, after Bonferroni multiple comparison correction), our proposed
method GED-tr with parameter tuning demonstrates the largest group differ-
ence with an effect size of 1.19, achieving the best separation between patients
and healthy controls on the TBI dataset. It is followed by Euclidean, GED-
st, and Pearson distance with effect sizes of 0.97, 0.95, and 0.92, respectively.
Comparing group differences between patients and controls for GED with and
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without training of parameters, we observe that GED-tr shows improvements
in reducing the score range and variation in controls while preserving the score
range for patients, highlighting the importance of training parameters for the
disease. It is interesting to note that effect size of GED-st is similar to those of
Euclidean and Pearson’s distance, which might indicate that, although standard
GED considers network topology that is ignored by the other two measures, it
does not improve sensitivity of the measure to the disease without parameter
tuning. In summary, GED-tr achieving the best separation might be attributed
to it combining the information embedded in network topology with tuning of
the parameters for the disease.

Fig. 2. Dysfunction coefficients at functional systems level, with larger dysfunction
coefficients indicating a dominant pathology effect at the associated functional systems.
We observe large coefficient values for limbic and subcortical networks, which highlights
their vulnerability to injury. Note that, dysfunction coefficients are normalized by the
total sum of coefficients to show the relative vulnerability of the systems.

System-Level Dysfunction Coefficients. We present the system-level dysfunction
coefficients estimated by our algorithm for each functional system in Fig. 2. The
limbic system and the subnetwork consisting of subcortical regions are shown
to have the largest values among eight functional systems. These results indi-
cate that network topology of the nodes comprising these systems is affected by
TBI the most. This finding is supported by the significant decline in fractional
anisotropy and the volume reduction in these two subnetworks in the presence
of TBI [3,23,26]. Limbic system and subcortical regions, which are generally
associated with memory and regulating emotions [11,19], also overlaps with the
cognitive deficits such as memory loss and emotional disorders that are com-
monly observed after the brain injury [1]. Our results suggest that default mode,
frontoparietal, salience ventral attention, and dorsal attention network show TBI
specific patterns that can help discriminate TBI patients from healthy controls.
Structural alteration of these regions might be correlated with impairment of
sustained attention and executive function in TBI [2,9]. We note that, since
these results indicate the level of dysfunction at 3 months post-injury, we could
expect to see more immediate or long-term outcomes of the disease by evaluating
a longitudinal TBI dataset that spans acute phase of the disease up to a year
post-injury.
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Fig. 3. Linear regression with GOSE in the patient population. The proposed mea-
sure GED-tr (p = 0.013, R2 = 0.181) has significant linear relationship with GOSE.
Euclidean distance (p = 0.224, R2 = 0.047) and Pearson distance (p = 0.079, R2 =
0.096) are not significant in terms of linear regression with GOSE. Note that, signifi-
cance level after Bonferroni correction is p ≤ 0.016.

Subject-Specific Analysis. Lastly, we report the linear regression analysis
results between each measure and the GOSE score for the patient population
in Fig. 3. We observe that the proposed measure GED-tr shows a significant
negative correlation with GOSE and demonstrates the highest relationship with
R2 = 0.181, while neither Euclidean nor Pearson distance shows significant cor-
relation. The results demonstrate that our measure quantifying dissimilarity of
patients relative to controls correlates well with the clinical score, which shows
its potential as a subject-specific biomarker for the disease. It is interesting to
note that, although we observed in Fig. 1 that our method achieves the smallest
variation among the patient group, it shows a higher correlation with the clin-
ical score relative to Euclidean and Pearson distance as shown in Fig. 3. This
might suggest that our proposed score discards non-disease-related variations
while preserving information about the pathology.

4 Conclusion

In this study, we present a novel subject-specific measure that utilizes a learning-
based graph edit distance to quantify dissimilarity of patients relative to healthy
controls. Our measure provides better separation between patients and controls
for the specific disease as it learns the pattern of the pathology at functional sys-
tems level. With the optimal parameters obtained via MCMC, we demonstrate
on a TBI dataset that our method shows superiority over alternative connectomic
dissimilarity measures in terms of increased group differences between patients
and healthy controls. Our method enables a multi-resolution analysis of brain
dysfunction, with the GED capturing subject-specific structural alterations due
to the disease at the level of the whole brain, and the parameter tuning captur-
ing the vulnerability of functional systems to pathology. Moreover, our measure
is clinically meaningful, since it correlates well with a commonly used clinical
measure of functional outcome in TBI, highlighting its potential to be used as a
connectomic biomarker for neurological diseases.
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We note that factors external to the disease such as age, gender, and volume
of brain, as well as inaccuracies arising from data acquisition and tractographic
biases, could have affected clinical outcomes of our study. Although effects of
these factors are partially alleviated by minimizing graph distance between
healthy controls, we will expand our analysis to regress out these effects in our
future work. In this work, we only demonstrate the utility of our method with
a case study on structural connectomes of TBI patients, the proposed method
can easily be customized as a biomarker for other diseases and disorders, and
be extended to capture the patterns of change over both functional and struc-
tural connectomes. The proposed measure can further be applied in domains
other than disease quantification, such as clustering brain states, participant
identification using connectomic fingerprinting, as well as longitudinal analysis
of connectomes.
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