
Carole H. Sudre 
Hamid Fehri et al. (Eds.)

LN
CS

 1
24

43

Second International Workshop, UNSURE 2020
and Third International Workshop, GRAIL 2020
Held in Conjunction with MICCAI 2020
Lima, Peru, October 8, 2020, Proceedings

Uncertainty for Safe Utilization 
of Machine Learning in Medical 
Imaging, and Graphs 
in Biomedical Image Analysis



Lecture Notes in Computer Science 12443

Founding Editors

Gerhard Goos
Karlsruhe Institute of Technology, Karlsruhe, Germany

Juris Hartmanis
Cornell University, Ithaca, NY, USA

Editorial Board Members

Elisa Bertino
Purdue University, West Lafayette, IN, USA

Wen Gao
Peking University, Beijing, China

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Gerhard Woeginger
RWTH Aachen, Aachen, Germany

Moti Yung
Columbia University, New York, NY, USA

https://orcid.org/0000-0001-9619-1558
https://orcid.org/0000-0001-8816-2693


More information about this series at http://www.springer.com/series/7412

http://www.springer.com/series/7412


Carole H. Sudre • Hamid Fehri et al. (Eds.)

Uncertainty for Safe Utilization
of Machine Learning in Medical
Imaging, and Graphs
in Biomedical Image Analysis
Second International Workshop, UNSURE 2020
and Third International Workshop, GRAIL 2020
Held in Conjunction with MICCAI 2020
Lima, Peru, October 8, 2020
Proceedings

123



Editors
Carole H. Sudre
University College London
London, UK

Hamid Fehri
University of Oxford
Oxford, UK

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-030-60364-9 ISBN 978-3-030-60365-6 (eBook)
https://doi.org/10.1007/978-3-030-60365-6

LNCS Sublibrary: SL6 – Image Processing, Computer Vision, Pattern Recognition, and Graphics

© Springer Nature Switzerland AG 2020, corrected publication 2020
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Additional Volume Editors see next page

https://orcid.org/0000-0001-5753-428X
https://orcid.org/0000-0003-2017-2670
https://doi.org/10.1007/978-3-030-60365-6


Additional Volume Editors

UNSURE 2020 Editors

Tal Arbel
McGill University
Montreal, QC, Canada

Adrian Dalca
Massachusetts General Hospital
Charlestown, MA, USA

Koen Van Leemput
Technical University of Denmark
Kongens Lyngby, Denmark

GRAIL 2020 Editors

Aristeidis Sotiras
Washington University School
of Medicine
St. Louis, MO, USA

Enzo Ferrante
Ciudad Universitaria UNL
Santa Fe, Argentina

Christian F. Baumgartner
ETH Zurich
Zürich, Switzerland

Ryutaro Tanno
University College London
London, UK

William M. Wells
Harvard Medical School
Boston, MA, USA

Bartlomiej Papiez
University of Oxford
Oxford, UK

Sarah Parisot
Huawei Noah’s Ark Lab
London, UK

http://orcid.org/0000-0001-8870-3007
http://orcid.org/0000-0002-8422-0136
http://orcid.org/0000-0001-6466-5309
http://orcid.org/0000-0003-0795-8820
http://orcid.org/0000-0002-8500-788X
http://orcid.org/0000-0002-3629-4384
http://orcid.org/0000-0002-8432-2511
http://orcid.org/0000-0002-4598-9700


Preface UNSURE 2020

The Second Workshop on UNcertainty for Safe Utilization of machine lEarning in
mEdical imaging (UNSURE 2020), was organized as a satellite event of the 23rd
International Conference on Medical Image Computing and Computer Assisted
Intervention (MICCAI 2020).

Given the ever-increasing diversity of machine learning techniques in medical
imaging applications, the need to quantify and acknowledge the limitations of a given
technique has been a growing topic of interest of the MICCAI community. The purpose
of this workshop is to develop awareness and encourage research in the field of
uncertainty modeling to enable safe implementation of machine learning tools in the
clinical world.

This year, the proceedings of UNSURE 2020 include 10 high-quality papers that
have been selected among 18 submissions following a double-blind review process.
Each submission of 8 to 10 pages was reviewed by 3 members of the Program
Committee, formed by 26 experts in the field of deep learning, Bayesian modeling, and
Gaussian processes.

The accepted papers cover the fields of uncertainty quantification and modeling, as
well as application to clinical pipelines, with applications ranging from multi-label
segmentation to landmark detection and classification to registration, including image
quality evaluation.

Two keynote presentations, from experts Dr. Yarin Gal, University of Oxford, UK,
and Dr. Herve Delingette, Inria Asclepios, France, further enriched the workshop.

We hope this workshop highlighted both theoretical and practical challenges in
communicating uncertainties, and further encourages research to (a) improve safety in
the application of machine learning tools and (b) assist in the translation of such tools
to clinical practice.

We would like to thank all the authors for submitting their manuscripts to UNSURE,
as well as the Program Committee members for the quality of their feedback and
dedication to the review process.

August 2020 Carole H. Sudre
Tal Arbel

Christian F. Baumgartner
Adrian Dalca

Ryutaro Tanno
Koen Van Leemput
William M. Wells
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Preface GRAIL 2020

The Third International Workshop on Graphs in Biomedical Image Analysis (GRAIL
2020), was organized as a satellite event of the 23rd International Conference on
Medical Image Computing and Computer Assisted Intervention (MICCAI 2020) in
Lima, Peru, which was held completely virtually due to the COVID-19 pandemic.
After the success and positive feedback obtained through previous years, GRAIL had
its third presence at MICCAI 2020, in the spirit of strengthening the links between
graphs and biomedical imaging.

This workshop provides a unique opportunity to meet and discuss both theoretical
advances in graphical methods, as well as the practicality of such methods when
applied to complex biomedical imaging problems. Simultaneously, the workshop seeks
to be an interface to foster future interdisciplinary research, including signal processing
and machine learning on graphs.

Graphs and related graph-based modeling have attracted significant research focus
as they enable us to represent complex data and their interactions in a perceptually
meaningful way. With the emergence of big data in the medical imaging community,
the relevance of graphs as a means to represent data sampled from irregular and non-
Euclidean domains is increasing, together with the development of new inference and
learning methods that operate on such structures. There is a wide range of well-
established and emerging biomedical imaging problems that can benefit from these
advances; we believe that the research presented at this workshop constitutes a clear
example of that.

The GRAIL 2020 proceedings contain 10 high-quality papers of 8 to 12 pages that
were pre-selected through a rigorous peer-review process. All submissions were peer-
reviewed through a double-blind process by at least 3 members of the Program
Committee, comprising 15 experts on graphs in biomedical image analysis, each doing
at least 1 review. The accepted manuscripts cover a wide set of graph-based medical
image analysis methods and applications, including brain connectomics analysis for
anomaly detection, disease diagnosis, and progression modeling through graph
matching, graph-cuts, multi-scale profiling, hierarchical graphs and generating con-
nectivity maps, classification of chest X-ray, mammography and histology images
when limited training data is available using deep graphical models, and data aug-
mentation for laparoscopic procedures, organ surface modeling, and segmentation
using geometric deep networks and graph domain adaptation.

In addition to the papers presented in this LNCS volume, the workshop included
short abstracts and three keynote presentations from world-renowned experts: Prof.
Herve Lombaert, Dr. Ahmad Ahmadi, and Prof. Xavier Bresson, in addition to a
tutorial by Jonny Hancox from NVIDIA. The keynotes and the tutorial were designed
to facilitate the development of new multidisciplinary ideas by introducing ongoing
cutting-edge research in graph-based models within the biomedical image analysis
domain.



We wish to thank all the GRAIL 2020 authors for their participation, and the
members of the Program Committee for their feedback and commitment to the
workshop. We are very grateful to our sponsor NVIDIA for their valuable support and
awarding a GPU to the best workshop presentation.

The proceedings of the workshop are published as a joint LNCS volume alongside
other satellite events organized in conjunction with MICCAI. In addition to the papers,
abstracts and slides presented during the workshop will be made publicly available on
the GRAIL website (http://grail-miccai.github.io/).

August 2020 Hamid Fehri
Aristeidis Sotiras
Bartlomiej Papiez

Enzo Ferrante
Sarah Parisot
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Image Registration via Stochastic
Gradient Markov Chain Monte Carlo

Daniel Grzech(B), Bernhard Kainz, Ben Glocker, and Löıc le Folgoc

Department of Computing, Imperial College London, London, UK
{d.grzech17,b.kainz,b.glocker,l.le-folgoc}@imperial.ac.uk

Abstract. We develop a fully Bayesian framework for non-rigid reg-
istration of three-dimensional medical images, with a focus on uncer-
tainty quantification. Probabilistic registration of large images along
with calibrated uncertainty estimates is difficult for both computational
and modelling reasons. To address the computational issues, we explore
connections between the Markov chain Monte Carlo by backprop and
the variational inference by backprop frameworks in order to efficiently
draw thousands of samples from the posterior distribution. Regarding the
modelling issues, we carefully design a Bayesian model for registration
to overcome the existing barriers when using a dense, high-dimensional,
and diffeomorphic parameterisation of the transformation. This results
in improved calibration of uncertainty estimates.

1 Introduction

Image registration is the problem of aligning images into a common coordinate
system such that the discrete pixel locations carry the same semantic informa-
tion. It is a common pre-processing step for many applications, e.g. the statis-
tical analysis of imaging data and computer-aided diagnosis. Image registration
methods based on deep learning tend to incorporate task-specific knowledge from
large datasets [3], whereas traditional methods are more general purpose [11].
Many established models [9,11,14] are based on the iterative optimisation of an
energy function consisting of task-specific similarity and regularisation terms,
which leads to an estimated deformation field and has to be done independently
for every pair of images to be registered.

VoxelMorph [2,3,6,7] changed this paradigm by learning a function that
maps a pair of input images to a deformation field. This gave a speed-up of several
orders of magnitude while maintaining an accuracy comparable to established
methods. An overview of current learning-based methods for registration can
be found in [16]. With a few notable exceptions [6,7], Bayesian methods are
often shunned when designing novel medical image analysis algorithms because
of their perceived conceptual challenges and computational overhead. Yet in
order to fully explore the parameter space and to lessen the impact of ad-hoc
hyperparameter choices, it is desirable to adopt a Bayesian point of view.

Markov chain Monte Carlo (MCMC) methods have been used for asymptot-
ically exact sampling from the posterior distribution in rigid registration [13],
c© Springer Nature Switzerland AG 2020
C. H. Sudre et al. (Eds.): UNSURE 2020/GRAIL 2020, LNCS 12443, pp. 3–12, 2020.
https://doi.org/10.1007/978-3-030-60365-6_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-60365-6_1&domain=pdf
https://doi.org/10.1007/978-3-030-60365-6_1


4 D. Grzech et al.

and are popular for analysing non-rigid registration uncertainty in intra-subject
studies [20]. Recent research shows that the computational burden of MCMC
can be lessened by embedding it in a multilevel framework [21]. The problem
of uncertainty quantification has also been addressed using variational Bayesian
methods [22]. In [15] the authors compared the quality of uncertainty estimates
from an efficient and approximate variational Bayesian model and a reversible
jump MCMC model, which is asymptotically exact.

We use the stochastic gradient Markov chain Monte Carlo (SG-MCMC) algo-
rithm to establish an efficient posterior sampling algorithm for non-rigid image
registration. SG-MCMC is based on the idea of stochastic gradient descent inter-
preted as a stochastic process with a stationary distribution centred on the
optimum and with a covariance structure that can be used to approximate
the posterior distribution [5,18]. The following is the summary of our main
contributions:

1. We propose an efficient SG-MCMC algorithm for three-dimensional diffeo-
morphic non-rigid image registration;

2. We propose a new regularisation loss, which allows to carry out inference of
the regularisation strength in a setting with a very high number of degrees of
freedom (d.f.);

3. We evaluate the performance of our model both qualitatively and quantita-
tively by analysing the output uncertainty estimates on inter-subject brain
MRI data.

To our knowledge, this is the first time that SG-MCMC has been used for the
task of image registration. The code is available in a public repository: https://
github.com/dgrzech/ir-sgmcmc.

Related Work. Bayesian parameter estimation for established registration
models was proposed in [27]. Bayesian frameworks have been used to character-
ize image intensities [10] and anatomic variability [26]. Kernel regression has also
been used to tackle multi-modal image registration with uncertainty [12,28]. We
believe that our work is the first that efficiently tackles Bayesian image registra-
tion and uncertainty estimation using a very high-dimensional parameterisation
of the transformation.

2 Registration Model

We denote an image pair by D = (F,M), where F : ΩF → R is a fixed image
and M : ΩM → R is a moving image. We assume that F can be generated
from M if deformed by a transformation ϕ : ΩF → ΩM which is parameterised
by w. The goal of registration is to align the underlying domains ΩF and ΩM

using a mapping that roughly visually aligns the images F and M(w) := M ◦
ϕ´1(w) and is physically plausible, i.e. find parameters w such that F » M(w).
We parameterise the transformation using the stationary velocity field (SVF)
formulation. The velocity field is integrated numerically through scaling-and-
squaring which results in a diffeomorphic transformation [1].

https://github.com/dgrzech/ir-sgmcmc
https://github.com/dgrzech/ir-sgmcmc
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Likelihood Model. The likelihood model p (D | w) specifies the relationship
between the data and the transformation parameters through the choice of a
similarity metric. Due to its robustness to linear intensity transformations we
use a similarity metric based on local cross-correlation (LCC). However, because
LCC is not meaningful in a probabilistic context, we opt for the sum of voxel-
wise squared differences instead of the usual sum of the voxel-wise product of
intensities. Thus we can also enhance the likelihood model with extra features.

Denote the fixed and the warped moving images, with intensities standard-
ised to zero mean and unit variance inside a neighbourhood of 3 voxels, as
F and M(w) respectively. Following the example in [15], in order to make the
model more robust to high outlier values caused by acquisition artifacts and mis-
alignment over the course of registration, we adopt a Gaussian mixture model
(GMM) of intensity residuals. At voxel k, the corresponding intensity residual
rk is assigned to the l-th component of the mixture, 1 ď l ď L, if the categor-
ical variable ck P {1, · · · , L} is equal to l. It then follows a normal distribution
N (0, β´1

l ). The component assignment ck follows a categorical distribution and
takes value l with probability ρl. In all experiments we use L = 4 components.

We also use virtual decimation to account for the fact that voxel-wise residu-
als are not independent, preventing over-emphasis on the data term and allowing
to better calibrate uncertainty estimates [23]. The full expression of the image
similarity term is then given by:

Edata = α ˆ ´
N∑

i=1

log
L∑

l=1

√
βl√
2π

ρl exp
(

´βl

2
‖F ´ M(w)‖2

)
(1)

where α is the scalar virtual decimation factor.

Transformation Priors. In Bayesian models, the transformation parameters
are typically regularised with use of a multivariate normal prior p(w | λ) =
|λLT L| 1

2 (2π)´ N
2 exp´ 1

2λ(Lw)T Lw that ensures smoothness, where N is the num-
ber of voxels in the image, λ is a scalar parameter that controls the strength
of regularisation, and L is the matrix of a differential operator, here chosen to
penalise the magnitude of the first derivative of the velocity field. Note that
(Lw)T Lw = ‖Lw‖2.

The regularisation strength parameter λ can be either fixed [3] or learnt
from the data. The latter has been done successfully only in the context of
transformation parameterisations with a relatively low number of d.f., e.g. B-
splines [23] or a sparse learnable parameterisation [15]. In case of an SVF, where
the number of d.f. is orders of magnitude higher, the problem is even more
difficult. The baseline method that we use for comparison with our proposed
regularisation loss, which was described in [23], corresponds to an uninformative
gamma prior.

In order to infer the regularisation strength we specify a prior on the scalar
regularisation energy χ2 := ‖Lw‖2. We use a log-normal prior on χ2 and derive
a prior on the velocity field:
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log p(χ2) 9 log χ2 ` log σχ2 ` (log χ2 ´ μχ2)2

2σ2
χ2

(2)

log p(w) 9 log p(χ2) ` (
ν

2
´ 1) · log χ2 (3)

where ν = N · 3 is the number of d.f. Given semi-informative hyperpriors on
μχ2 and σ2

χ2 , which we discuss in the next section, we can estimate the right
regularisation strength from data. Overall, the regularisation term is given by
Ereg = log p(χ2) ` log p(w).

Hyperpriors. Parameters of the priors are treated as latent variables. We
set the likelihood model hyperpriors similarly to [15], with the parameters
βl assigned independent log-normal priors Lognormal(βl | μβ0 , σ

2
β0

) and the
mixture proportions ρ = (ρ1, · · · , ρL) with an uninformative Dirichlet prior
Dir(ρ | κ), where κ = (κ1, · · · , κL). The problem of inferring regularisation
strength is difficult, so we use semi-informative priors for the transformation
prior parameters. The exponential of the transformation prior parameter μχ2

follows a gamma distribution Γ (exp
(
μχ2

) | aχ2
0
, bχ2

0
) and σ2

χ2 has a log-normal
prior Lognormal(σ2

χ2 | μχ2
0
, σ2

χ2
0
).

3 Variational Inference

To initialise the MCMC algorithm we use the result of variational inference
(VI). We assume that the approximate posterior distribution of the transforma-
tion parameters qw ∼ N (μw, Σw) is a multivariate normal distribution. Due
to the dimensionality of the problem, computing the full covariance matrix
is not possible, so we model it as a sum of diagonal and low-rank parts
Σw = diag(σ2

w) ` uwuT
w, with σ2

w and uw both of size N · 3 ˆ 1. To carry out VI,
we maximise the evidence lower bound (ELBO), which can be written as:

L(q) = Eq [log p(D | w)] ´ DKL(q || p) = ´〈Edata ` Ereg〉q ` H(q) (4)

where DKL(q || p) is the Kullback-Leibler divergence between the approximate
posterior q and the prior p. This corresponds to the sum of similarity and reg-
ularisation terms, with an additional term equal to the entropy of the posterior
distribution H (q). We use the reparameterisation trick with two samples per
update to backpropagate w.r.t. parameters of the approximate variational pos-
terior qw, i.e. μw, σ2

w, and uw.
In order to make optimisation less susceptible to undesired local minima we

take advantage of Sobolev gradients [19]. Samples from qw are convolved with a
Sobolev kernel. To lower the computational cost, we approximate the 3D kernel
by three separable 1D kernels [24].

4 Stochastic Gradient Markov Chain Monte Carlo

We use stochastic gradient Langevin dynamics (SGLD) [4,25] to sample the
transformation parameters in an efficient way:

wk`1 Ð wk ` τσ2
w∇ log q(wk) ` √

2τσwξk (5)
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where τ is the step size, ∇ log q(wk) is an estimate of the gradient of the posterior
probability density function, and ξk is an independent draw from a multivariate
normal distribution with zero mean and an identity covariance matrix.

Given a sufficient number of steps SGLD puts no restrictions on how the
chain is initialised, but in order to lower the mixing time we set w0 Ð μw. In
the limit as τ → 0 and k → 8, it allows for asymptotically exact sampling from
the posterior of the transformation parameters. The scheme suffers from similar
issues as Gibbs sampling used in [15], i.e. high autocorrelation and slow mixing
between modes. On the other hand, the term corresponding to the gradient
of the posterior probability density function allows for more efficient landscape
transversal. Moreover, simplicity of the formulation makes SGLD better suited
to a high-dimensional problem like image registration.

The value of τ is important here and should be smaller than the width of the
most constrained direction in the local energy landscape, which can be estimated
using Σw. We discard the first 2,000 samples output by the algorithm to allow
for the chain to reach the stationary distribution.

5 Experiments

The model was implemented in PyTorch. For all experiments we use three-
dimensional brain MRI scans from the UK Biobank dataset. Input images were
resampled to 963 voxels, with isotropic voxels of length 2.43 mm, and registered
with the affine component of drop2 [8]. Note that the model is not constrained
by memory, so it can be run on higher resolution images to produce output that
is more clinically relevant, while maintaining a high speed of sampling.

We use the Adam optimiser with a learning rate of 5 ˆ 10´3 for VI and the
SGD optimiser with a learning rate of 1 ˆ 10´1 for SG-MCMC. The hyperprior
parameters are set to μβo

= 0, σ2
β0

= 2.3, κ = 0.5, aχ2
0

= 0.5 · ν, bχ2
0

= 0.5 · λ0,
μχ2

0
= 2.8, and σ2

χ2
0

= 5, where λ0 is the desired strength of equivalent L2
regularisation at initialisation. The model is particularly sensitive to the value of
the transformation prior parameters. We start with an identity transformation,
σw of half a voxel in each direction, and uw set to zero, and VI is run until the
loss value plateaus. We are unable to achieve convergence in the sense of the
magnitude of updates to Σw.

Regularisation Strength. In the first experiment we show the benefits of
the proposed regularisation loss. We compare the output of VI when using a
fixed regularisation weight λ P {0.01, 0.1}, the baseline method for learnable
regularisation strength, and the novel regularisation loss. The result is shown in
Fig. 1. The output transformation is highly sensitive to the regularisation weight
and so is registration uncertainty, hence the need for a reliable method to infer
regularisation strength from data.
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Fixed image F and dis-
placement corresp. μw

Warped moving image
M μw

(a) λ 0.01 (b) λ 0.1 (c) Baseline (d) Ours

Fig. 1. Output when using a fixed regularisation weight, the baseline method for learn-
able regularisation strength, and our regularisation loss. For the baseline, the regular-
isation strength is so high that it prevents alignment of the images, showing that the
existing schemes for inferring regularisation strength from data are inadequate in cases
with a very large number of d.f. Middle slice of 3D images in the axial plane.

In Fig. 2 we show the output of VI for two pairs of images which require differ-
ent regularisation strengths. We choose a fixed image F , two moving images M1

and M2, and two regularisation weights λ P {0.1, 0.4}. Use of our regularisation

Fixed image F and dis-
placement corresp. μw

M1 (a) λ 0.1 (b) λ 0.4 (c) Ours

Warped moving image
M1 μw

Fixed image F and
displacement corresp. μw

M (d) λ 0.1 (e) λ 0.4 (f) Ours

Warped moving image
M2 μw

Fig. 2. Output of VI for two pairs of images which require different regularisation
strengths. At initialisation the strength of our loss corresponds to the fixed regularisa-
tion weight λ = 0.4. Middle slice of 3D images in the axial plane.
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loss, which at initialisation corresponds to λ = 0.4, prevents oversmoothing. Due
to its characteristics, it is preferable to initialise its strength to a higher value.

Uncertainty Quantification. To evaluate registration uncertainty we calculate
the mean and the standard deviation of displacement using 50 samples selected
at random from the output of SG-MCMC. Figure 3 shows the result for a pair
of input images. In order to assess the results quantitatively, we use subcorti-
cal structure segmentations. We calculate Dice scores (DSC) and mean surface
distances (MSD) between the fixed segmentation and the moving segmentation
warped with the mean transformation, and compare them to those obtained
using the 50 sample transformations. We report these metrics in Table 1 and
Fig. 3.

The statistics prove that the posterior samples output by SG-MCMC are
of high quality and varied. For a small number of structures (the left and right
accumbens and thalamus, and the right caudate) the metrics are minimally worse
for the mean transformation than before non-rigid registration. In case of the
thalamus this can be attributed to a sub-optimal regularisation strength. The
registration error for the accumbens and the caudate is likely caused by their
tiny size. Thus the label distribution appears credible in the sense defined in [17].
The output is also consistent with previous findings on registration uncertainty,
e.g. higher uncertainty in homogenous regions [23].

Table 1. DSC and MSD for a number of subcortical structures pre-registration and
after applying the mean transformation calculated from the output of SG-MCMC.

Structure DSC MSD (mm)

Before Mean SD Before Mean SD

Brain stem 0.815 0.879 0.002 1.85 1.17 0.03

L/R accumbens 0.593/0.653 0.637/0.592 0.036/0.022 1.20/1.13 1.03/1.18 0.13/0.10

L/R amygdala 0.335/0.644 0.700/0.700 0.019/0.015 2.18/1.44 1.12/1.12 0.08/0.08

L/R caudate 0.705/0.813 0.743/0.790 0.011/0.008 1.37/1.44 1.21/0.99 0.05/0.06

L/R hippocampus 0.708/0.665 0.783/0.781 0.009/0.009 1.45/1.60 1.00/1.03 0.05/0.05

L/R pallidum 0.673/0.794 0.702/0.798 0.014/0.014 1.56/1.12 1.29/0.98 0.07/0.08

L/R putamen 0.772/0.812 0.835/0.856 0.007/0.006 1.30/1.02 0.92/0.78 0.05/0.05

L/R thalamus 0.896/0.920 0.881/0.901 0.005/0.004 0.90/0.67 0.92/0.86 0.04/0.05
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(a) Fixed image (b) Moving image (c) Mean (d) SD magnitude

Fig. 3. Output of SG-MCMC for a pair of input images, calculated using 50 samples.

6 Discussion

Modelling Assumptions. The quality of uncertainty estimates is sensitive to
the initialisation of regularisation loss hyperparameters and the validity of model
assumptions. These include: 1. coinciding image intensities up to the expected
spatial noise offsets, 2. ignoring spatial correlations between residuals, and 3.
the spherical covariance structure of the approximate posterior in VI. The first
assumption is valid in case of mono-modal registration but the model can be
easily adapted to other settings by changing the data loss. In future work we
plan to the use a frequency-domain model to deal with the last assumption.

Implementation and Computational Efficiency. The experiments were run
on a system with an Intel i9-7900X CPU and a GeForce RTX 2080Ti GPU. VI
took approx. 5 min per image pair and SG-MCMC produced 5 samples per sec-
ond. Due to lack of data it is difficult to directly compare the runtime with
that of other Bayesian image registration methods, but it is an order of magni-
tude better than in other recent work [15], while also being three- rather than
two-dimensional.

7 Conclusion

In this paper we present an efficient Bayesian model for three-dimensional medi-
cal image registration. The newly proposed regularisation loss allows to tune the
regularisation strength using a parameterisation of transformation that involves
a very large number of d.f. Sampling from the posterior distribution via SG-
MCMC makes it possible to quantify registration uncertainty for high-resolution
images.
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Abstract. Quantifying segmentation uncertainty has become an impor-
tant issue in medical image analysis due to the inherent ambiguity of
anatomical structures and its pathologies. Recently, neural network-
based uncertainty quantification methods have been successfully applied
to various problems. One of the main limitations of the existing tech-
niques is the high memory requirement during training; which limits their
application to processing smaller field-of-views (FOVs) and/or using
shallower architectures. In this paper, we investigate the effect of using
reversible blocks for building memory-efficient neural network archi-
tectures for quantification of segmentation uncertainty. The reversible
architecture achieves memory saving by exactly computing the activa-
tions from the outputs of the subsequent layers during backpropaga-
tion instead of storing the activations for each layer. We incorporate
the reversible blocks into a recently proposed architecture called PHiSeg
that is developed for uncertainty quantification in medical image segmen-
tation. The reversible architecture, RevPHiSeg, allows training neural
networks for quantifying segmentation uncertainty on GPUs with lim-
ited memory and processing larger FOVs. We perform experiments on
the LIDC-IDRI dataset and an in-house prostate dataset, and present
comparisons with PHiSeg. The results demonstrate that RevPHiSeg con-
sumes ∼30% less memory compared to PHiSeg while achieving very sim-
ilar segmentation accuracy.

Keywords: Reversible neural network · UNet · Variational
auto-encoder

1 Introduction

Segmentation has been a crucial problem in medical image analysis for clinical
diagnosis and many downstream tasks. The majority of the segmentation algo-
rithms in the literature aim to find a single segmentation as a solution which is
a point estimate in the posterior distribution of a segmentation given an image
[13]. However, having a point estimate does not provide a measure of the degree
of confidence in that result, neither does it provide a picture of other probable
c© Springer Nature Switzerland AG 2020
C. H. Sudre et al. (Eds.): UNSURE 2020/GRAIL 2020, LNCS 12443, pp. 13–22, 2020.
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solutions based on the data and the priors. Due to the inherent ambiguities and
uncertainties in many medical images, characterization of the posterior distribu-
tion through its samples plays a crucial role in quantifying the uncertainty and
revealing other plausible segmentations.

There have been some efforts in the literature for generating segmentation
samples from the underlying posterior distribution. One group of methods aims
at using Markov chain Monte Carlo (MCMC) techniques which ensure asymp-
totic convergence to the desired posterior [7–9]. However, these methods suffer
from slow convergence and satisfying the necessary conditions of MCMC is non-
trivial [8,9]. Another group of methods is based on variational inference which
approximate the desired posterior density using a variational function. One of
the pioneering variational inference-based methods that shows significant per-
formance for segmentation uncertainty quantification is Probabilistic U-Net by
Kohl et al. [12]. The method minimizes the Kullback-Leibler (KL) divergence
between a posterior and a prior network during training. Then, the samples are
generated from the learned latent distribution and appended to the penultimate
layer of a U-Net [13] to generate segmentation samples. Recently, Baumgartner
et al. [3] proposed a method called PHiSeg that samples from the learned dis-
tributions in every latent layer of a U-Net instead of the last latent level as in
Probabilistic U-Net. PHiSeg achieves better performance compared to Proba-
bilistic U-Net on various medical image segmentation datasets.

Although, both Probabilistic U-Net and PHiSeg achieve promising perfor-
mance in terms of segmentation quality and uncertainty quantification, they
suffer from a significant memory burden during training. This either limits their
domain of applicability to processing images with small field-of-view which is
not desired especially in medical domain or requires GPUs with large memories
which are very expensive to obtain. To overcome this limitation, we investi-
gate using reversible blocks for building a memory efficient architecture that
generates segmentation samples for uncertainty quantification in medical image
segmentation. To achieve this, we incorporate reversible blocks [10] into PHiSeg
for a smaller memory consumption during training and built a new architecture
called RevPHiSe.g. Reversible blocks have been previously used along with U-
Net [13] for segmentation [4]. They allow us to recover the exact activation of
each layer from the following layer during training and eliminate the need to
store activations for each layer during backpropagation.

We perform experiments on two different datasets: LIDC-IDRI [1,2] and an
in-house prostate data set. The results demonstrate that RevPHiSeg achieves
∼30% less memory consumption compared to PHiSeg by achieving very compet-
itive results in terms of the quality of segmentation samples. The implementation
of RevPHiSeg will be made available.1

1 https://github.com/gigantenbein/UNet-Zoo.

https://github.com/gigantenbein/UNet-Zoo
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2 Methods

In this section, we present RevPHiSeg after providing some background infor-
mation on PHiSeg [3] and reversible blocks [10] for the sake of completeness.

2.1 PHiSeg

PHiSeg aims to approximate the posterior distribution p(z|s,x) using a varia-
tional function as in [11], where x is the input image and s is the segmentation,
and z is the latent representation. In PHiSeg, the latent variable z = {z1, . . . , zL}
is modeled hierarchically as shown in the graphical model in Fig. 1.

z1 z2 z3 zL...

x s

Fig. 1. Graphical model for hierarchical segmentation

Then, the posterior distribution of the segmentation s given an image x can
be written for the general case of L latent levels as:

p(s|x) =
∫

z1,... ,zL

p(s|z1, . . . , zL)p(z1|z2,x) · · · p(zL-1|zL,x)p(zL|x)dz1 . . . dzL

(1)
The posterior distribution p(z|s,x) can be approximated by a variational func-
tion q(z|s,x) using variational inference. Minimizing the Kullback-Leibler (KL)
divergence between p(z|s,x) and q(z|s,x) results in the following lower-bound
estimate of log p(s|x):

log p(s|x) = L(s|x) + KL(q(z|s,x)||p(z|s,x)) (2)

where, L is a lower-bound on log p(s|x) with equality when the approximation
q matches the posterior exactly. The lower bound L(s|x) can be written as

L(s|x) = Eq(z1,... ,zL|x,s)[log p(s|z1, . . . , zL)] − αL KL(q(zL|s,x)||p(zL|x))

−
L−1∑
l=1

αlEq(zl+1|s,x)[KL[q(zl|zl+1, s,x)||p(zl|zl+1,x)]]
(3)

where, αi is a weighting term which we set to 1 in our experiments.
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In PHiSeg [3] the distributions p(zl|zL−1,x) and q(zl|zL−1,x, s) are
parametrized by axis-aligned normal distributions, which are defined as follows:

p(zl|zl+1,x) = N (z|φ(μ)
l (zl+1,x), φ(σ)

l (zl+1,x)) (4)

q(zl|zl+1,x, s) = N (z|θ(μ)l (zl+1,x, s), θ(σ)l (zl+1,x, s)) (5)

where the functions φ and θ are parametrized by neural networks. The architec-
ture is trained by minimizing Eq. 2.

2.2 Reversible Architectures

One of the major reasons for memory consumption in neural networks is due to
storing the activations during the forward pass to be used in backpropagation. To
alleviate the memory burden of the stored activations, Gomes et al. [10] propose
reversible blocks that allow achieving memory savings by avoiding to store the
activations in the forward pass by using reversible layers. Instead, the activations
are computed from the previous layers when needed during backpropagation.

A reversible block consists of two functions F and G as shown in Fig. 2. F
and G can be arbitrary functions such as a fully-connected layer, a convolutional
layer or a nonlinearity. The functions are expected to have the same input and
output dimensions since the performed operations have to be invertible.

Figure 2 shows the computations which take place during the forward (in
Fig. 2a) and the backward (in Fig.2b) passes. Gomes et al. [10] partitions the
input of the reversible block into two groups. The first group x1 flows from
the top batch while the second group uses the bottom one as shown in Fig. 2.
The inputs x1 and x2 are recovered after the backward pass by inverting the
operations in the forward pass with the gradients of F and G with respect to
their parameters.

x1

x2

+

F G

+

y1

y2

Forward pass

x1

x2

−

F G

−

y1

y2

Backward pass

Fig. 2. Sketch of the computations of forward and backward passes in reversible blocks.

2.3 RevPHiSeg

To create a memory-efficient architecture for quantification of segmentation
uncertainty, we incorporated reversible blocks into PHiSeg. When looking for
an option to employ reversible blocks, the convolutional layer offer themselves
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due to the number of activations stored in them. To achieve memory savings,
multiple reversible blocks have to be concatenated which then form a reversible
sequence. Considering Fig. 2, the functions F and G would then correspond to a
3 × 3 convolutional layers with a nonlinearity. For our architecture RevPHiSeg,
each sequence of convolutions in the original PHiSeg was replaced by a sequence
of reversible blocks.

As stated in Sect. 2.2, replacing a function with a reversible block requires
the function to have the same input and out dimensions. For convolutions, this
implies that the convolution needs the same number of input and output chan-
nels. However, PHiSeg resembles a UNet architecture and thus contains convo-
lutions with a different number of input and output channels. We thus decided
to add a 1 × 1 convolution before every reversible sequence where the number
of channels do change. The 1 × 1 convolution have different input and output
dimensions and thus enable having the same input and output dimensions for
the following 3 × 3 convolutions in the reversible blocks as can be seen in Fig. 3.

Applying the same process to each convolutional sequence in PHiSeg, we
obtain the RevPHiSeg architecture shown in Fig. 4. As one can see, each con-
volutional sequence that features a dimension change is preceded by a 1 × 1
convolution.

3x3 3x3 3x3
Cin CoutCout Cout

Non-reversible sequence

1x1 Reversible Sequence
Cin CoutCout

Partly reversible sequence

Fig. 3. Replacing a series of convolutions with a reversible sequence

3 Experimental Results

In this section, we present the experimental results of RevPHiSeg on two differ-
ent data sets: LIDC-IDRI [1,2] and an in-house prostate dataset. We compare
the results with PHiSeg in terms of both segmentation accuracy and memory
consumption.

In our experiments, we chose the same number of latent and resolution levels
as Baumgartner et al. to demonstrate the memory advantage of reversible blocks
in PHiSeg architecture. Therefore, our configuration consisted of 5 latent layers,
where a sampling step takes place, and 7 resolution layers with filters from 32
up to 192.
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3.1 Evaluation Metrics

We obtain the quantitative results indicating the segmentation accuracy by com-
paring the ground truth segmentations of different experts with the segmenta-
tion samples generated by PHiSeg and RevPHiSeg. We exploit various evalua-
tion metrics in our evaluations: Generalised Energy Distance (GED), Normalised
Cross-Correlation (NCC) of the expected cross entropy between the mean seg-
mentations and the mean of the generated samples, and the Dice score (DSC)
[6] per label.

Fig. 4. Reversible PHiSeg with 5 latent levels and 7 resolution levels with corresponding
Posterior, Prior and Likelihood network for training and inference



Reversible PHiSeg 19

GED is defined as

D2
GED(pgt, ps) =

2
nm

n∑
i=1

m∑
j=1

d(si,yj)− 1
n2

n∑
i=1

n∑
j=1

d(si, sj)− 1
m2

m∑
i=1

m∑
j=1

d(yi,yj)

(6)
where, d(·, ·) = 1− IoU(·, ·) with IoU(·, ·) as the intersection over union, m is the
number of ground truth labels, n is the number of segmentation samples, y are
the ground truth samples and s are the segmentation samples. The generalized
energy distance is a measure of the distance between two probability distribu-
tion where we treat the generated segmentations as samples from the approxi-
mate distribution and the ground truth labels as samples from the ground truth
distribution.

To quantify the pixel-wise differences between the samples and ground truths,
we use the normalized cross-correlation(NCC) of the cross entropy between the
mean of the ground truth labels (ȳ) and the mean of the generated samples (s̄),
which is defined as follows:

SNCC(pgt, ps) = Ey∼pgt
[NCC(Es∼ps

[CE(s̄, s)],Es∼ps
[CE(ȳ, s)]) (7)

where pgt is the ground truth distribution and ps is the approximate distribu-
tion [3].

Furthermore, we use the Dice score (DSC) to measure the segmentation accu-
racy of each sample. DSC is a common metric that is used to quantify segmen-
tation accuracy based on the overlap between the ground truth and the segmen-
tation. When computing DSC we randomly choose a ground truth segmentation
among different expert annotations, and calculate the DSC between the selected
ground truth and the segmentation samples. We then average the DSC of these
multiple draws.

We measure the memory consumption of the methods using the PyTorch
function max memory allocated(). PHiSeg is originally implemented in Tensor-
flow. To have a fair comparison, we re-implemented PHiSeg in PyTorch.

3.2 Datasets

The LIDC-IDRI dataset contains 1018 lung CT scans each annotated by 4 radi-
ologists. We use the same preprocessing as in [3,12] and crop a 128×128 squares
centered around the lesions.

The prostate data set is an in-house data set that contains MR images from
68 patients. Each image in the data set has 6 annotations from 4 radiologists
and 2 non-radiologists. We processed the data slice-by-slice (approx. 25 slices
per volume), where we resampled each slice to a resolution of 0.6× 0.6mm2 and
took a central crop of size 192 × 192.

We divide both datasets into a training, testing and validation set using a
random 60-20-20 split.
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3.3 Experimental Setup

In our experiments, we use the network architecture shown in Fig. 4 for PHiSeg
where we use 5 latent levels, L = 5, to generate samples as proposed for PHiSeg
in [3]. The architecture we use for PHiSeg is similar to RevPHiSeg except for
the reversible sequences and 1 × 1 convolutions.

We use the Adam optimizer with a learning rate of 10−3. Furthermore, we
used a weight decay of 10−5. We use ReLU and batch normalization after each
convolutional layer on non-output layer. We train both PHiSeg and RevPHiSeg
for 48 h on an NVIDIA Titan X Pascal. While models are being trained, we
calculate GED, NCC, and DSC on the validation sets. After 48h of training is
done, we choose the model with the lowest GED score on the validation set.
Finally, we evaluate the selected model on test sets to obtain the quantitative
results. We conduct our experiments using an NVIDIA Titan Xp GPU with 12
GB of memory.

3.4 Experimental Results

We present the quantitative results on LIDC-IDRI dataset in Table 1. The quan-
titative results demonstrate that RevPHiSeg achieves almost 30% memory sav-
ings while being quite competitive with PHiSeg in terms of the segmentation
quality.

Using the memory saving achieved by RevPHiSeg, we can process batch sizes
of up to 56, where PHiSeg runs out of memory after batch size 48. Although, we
do not observe any improvement in terms of the segmentation quality when using
larger batch sizes, being able to process larger batches could lead to improvement
depending on the application such as unsupervised contrastive learning [5].

Table 1. Quantitative results of RevPHiSeg and PHiSeg on LIDC-IDRI dataset.

Batch size LIDC-IDRI

D2
GED SNCC Dice Memory (MB)

PHiSeg 12 0.2139 0.8533 0.4991 3251

RevPHiSeg 12 0.2365 0.7943 0.5220 2194

PHiSeg 24 0.2342 0.8296 0.5344 6076

RevPHiSeg 24 0.2396 0.7846 0.5525 4070

PHiSeg 36 0.2166 0.8387 0.5229 8905

RevPHiSeg 36 0.2677 0.7839 0.4995 5903

PHiSeg 48 0.2239 0.8409 0.5224 11374

RevPHiSeg 48 0.2436 0.8069 0.5459 7948

PHiSeg 56 – – - –

RevPHiSeg 56 0.2478 0.7721 0.5361 9238
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Table 2. Quantitative results of RevPHiSeg and PHiSeg on an in-house prostate
dataset.

Resolution Prostate dataset

D2
GED SNCC Dice Memory

PHiSeg 192 0.3578 0.7801 0.7480 6813

RevPHiSeg 192 0.3035 0.75 0.7871 4621

PHiSeg 256 – – – –

RevPHiSeg 256 0.2486 0.6712 0.7094 7582

We present the quantitative results obtained on the in-house prostate dataset
in Table 2. The reversible architecture achieves significant memory saving com-
pared to the vanilla PHiSeg.

The memory saving achieved by RevPHiSeg allows us to process images
with higher resolutions. We perform experiments with two different resolutions:
192×192 and 256×256. While RevPHiSeg can process both resolutions, PHiSeg
cannot process resolutions higher than 192 × 192. Although processing higher
resolutions lead to a better score in terms of GED, the NCC and DSC results get
slightly worse. This may be caused due to the architecture used for 192 × 192 is
not large enough to learn effectively from 256 × 256 images or that the training
time of 48 h was not long enough for the resolution of 256 × 256.

4 Discussion and Conclusion

We investigate using reversible blocks for building a memory-efficient neural
network architecture for generating segmentation samples to quantify segmen-
tation uncertainty in medical images. To this end, we modified a state-of-the-
art method, PHiSeg, by adding reversible blocks to make it memory efficient.
We present quantitative results on two different medical datasets. The results
demonstrate that RevPHiSeg consumes significantly less memory compared to
the non-reversible architecture PHiSe.g. The memory saving enables training
RevPHiSeg on GPUs with limited memory, processing larger resolutions and
using larger batches. Besides the memory saving, RevPHiSeg is quite competi-
tive with PHiSeg in terms of segmentation quality.
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Abstract. Many atlases used for brain parcellation are hierarchically
organised, progressively dividing the brain into smaller sub-regions. How-
ever, state-of-the-art parcellation methods tend to ignore this structure
and treat labels as if they are ‘flat’. We introduce a hierarchically-aware
brain parcellation method that works by predicting the decisions at each
branch in the label tree. We further show how this method can be used
to model uncertainty separately for every branch in this label tree. Our
method exceeds the performance of flat uncertainty methods, whilst also
providing decomposed uncertainty estimates that enable us to obtain
self-consistent parcellations and uncertainty maps at any level of the
label hierarchy. We demonstrate a simple way these decision-specific
uncertainty maps may be used to provided uncertainty-thresholded tis-
sue maps at any level of the label tree.

1 Introduction

Brain parcellation seeks to partition the brain into spatially homogeneous struc-
tural and functional regions, a task fundamental for allowing us to study the
brain in both function and dysfunction. The brain is hierarchically organised,
with smaller subregions performing increasingly specialised functions, and the
atlases classically used for parcellation typically reflect this by defining labels in
a hierarchical tree structure. Manual parcellation is also typically performed
hierarchically; typically semi-automated methods are used to help delineate
larger structures with sufficient tissue contrast, and these are then manually
sub-parcellated using anatomical or functional landmarks [1].

The state-of-the-art for brain parcellation has come to be dominated by con-
volutional neural networks (CNNs). These methods tend to ignore the label
hierarchy, instead adopting a ‘flat’ label structure. However, methods that are
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aware of the label hierarchy are desirable for many reasons. Such methods could
degrade their predictions gracefully, for example labelling a noisy region with
the coarser label ‘cortex’ rather then trying to assign a particular cortical divi-
sion. They also offer the opportunity to train on multiple datasets with differing
degrees of label granularity, assuming those labels can be mapped onto a single
hierarchy.

Hierarchical methods also enable uncertainty to be modelled at different lev-
els of the label tree. There has been recent interest in using uncertainty estimates
provided by CNNs [8,9] to obtain confidence intervals for downstream biomark-
ers such as regional volumes [4,15], which is key if these biomarkers are to be
integrated into clinical pipelines. Flat methods provide only a single uncertainty
measure per voxel, which prevents attribution of the uncertainty to a specific
decision. Hierarchical methods can provide uncertainty for each decision along
the label hierarchy, for example enabling the network to distinguish between rel-
atively easy decisions (e.g. cortex vs non-cortex) and more challenging decisions,
such as delineating cortical sub-regions that are ill-defined on MRI. This could
facilitate more specific and informative confidence bounds for derived biomarkers
used in clinical decision making.

Whilst hierarchical methods have been applied to classification, [3,6,14,16],
there are very few CNN-based methods that attempt hierarchical segmentation.
A method proposed by Liang et al. [12] has been applied to perform hierarchical
parcellation of the cerebellum [5]. A drawback of this approach is that the tree
structure is directly built into the model architecture, requiring a tailored model
to be built for each new label tree.

In this work we make two contributions. Firstly, we extend a method pre-
viously proposed for hierarchical classification [14] to hierarchically-aware seg-
mentation. The method works by predicting decisions at each branch in the
label tree, and has the advantage that it requires no alteration to the network
architecture. Secondly, we show it is possible to use such a model to estimate
uncertainty at each branch in the label tree. Our model with uncertainty matches
the performance of ‘flat’ uncertainty methods, whilst providing us with decom-
posed uncertainty estimates that enable us to obtain consistent parcellations
with corresponding uncertainty at any level of the label tree. We demonstrate
how these decision-specific uncertainty maps can be used to provide uncertainty-
thresholded tissue segmentations at any level of the label tree.

2 Methods

We first review existing flat segmentation models with uncertainty, before
describing how we apply an existing classification model to perform hierarchical
parcellation. We then show how such a model can be used to provide hierarchical
uncertainty estimates. We focus on modelling intrinsic uncertainty in this work,
although the methods presented can be straightforwardly extended to estimating
model uncertainty, too.
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2.1 Flat Parcellation

In a flat segmentation scenario, we consider the task as per-voxel classifica-
tion, where the likelihood for a voxel is given by p(y|W,x) = Softmax

(
fW(x)

)

where fW(x) is the output of a neural network with weights W, input x
is a 3D image volume, and y encodes the C segmentation classes. We seek
the weights W that minimise the negative log-likelihood, yielding the stan-
dard cross-entropy loss function, CE

(
y = c, fW(x)

)
= − log Softmax

(
fW

c (x)
)
.

As in Kendall et al. [8], heteroscedastic intrinsic uncertainty can be modelled
by considering scaling the logits by a second network output, σW(x), giving
a likelihood of p(y|W,x, σ) = Softmax

(
1

σ2(x) f
W(x)

)
. σW(x) is a per-voxel

estimate, so it has the same dimension as x. Employing the approximation
1

σW(x)2

∑
c exp

(
1

σW(x)2
fW

c (x)
)

≈ (∑
c exp

(
fW

c (x)
))σW(x)−2

used in [9] allows
us to write the negative log-likelihood as

L(y = c,x;W) =
CE

(
y = c, fW(x)

)

σW(x)2
+ log σW(x)

2.2 Hierarchical Parcellation

Here we describe the hierarchical classification/detection model proposed by
Redmon et al. [14], and discuss how it can be adapted for segmentation tasks.
The methods described here are general to all label taxonomy trees, but in this
work we specifically consider the tree shown in Fig. 1, described in more detail in
Sect. 3.1. The probabilities at each node obey simple rules: the probabilities of
all a node’s children sum to the probability of the node itself, and so if we take
p(root) = 1 the probabilities of all leaf nodes sum to 1. Leaf node probabilities
can be expressed as the product of conditional probabilities down the tree; for
example using the hierarchy in Fig. 1 we can express p(Right cingulate WM) as

p(Right cingulate WM) = p(Right cingulate|Right WM)p(Right WM|WM) . . .

p(WM|Supra tentorial)p(Supra tentorial|Cranium) . . .

p(Cranium)

where p(Cranium) = 1. Our model predicts the conditional probabilities for each
node, and is optimised using a cross-entropy loss at every level of the tree.

More formally, we label each node i at level l as Ni,l, where l = 0 denotes
the root and l = L the deepest level, giving a maximum height of L + 1. Our
model fW(x) produces a score for each node in the tree, fW(x)i,l. We define a
hierarchical softmax - essentially a softmax over the siblings for a given node -
to produce the conditional probabilities at each node,

pi,l =
exp

(
fW(x)i,l

)
∑

Nj,l=S[Ni,l]
exp (fW(x)j,l)

where S[Ni,l] denotes all the sibling nodes of Ni,l, including itself.
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Fig. 1. The neuro-anatomical label hierarchy considered in this paper, with the path
from the root to the right cingulate highlighted. A larger version of this tree is included
in the supplementary materials.

In the flat case we had a single label per voxel, yc. In the hierarchical case
yc denotes a leaf node of the tree, and we consider the label superset A[yc] =
{Ni,l} comprising all the nodes traversed from the root to the label’s leaf node,
excluding the root node but including itself. The total loss is the summation of
a CE loss calculated at each level of the tree,

L (y = c,x;W) = −
∑

Ni,l∈A[yc]

log pi,l

For parcellation the network makes a prediction per voxel, that is fW(x) ∈
R

x×y×z×H where H is the total number of nodes, making the considerably more
computationally expensive than in classification tasks. The denominator of the
hierarchical softmax can be efficiently calculated as a matrix multiplication,
allowing pi,l to be calculated from the elementwise division of two matrices.

2.3 Hierarchical Uncertainty

We extend the model by modelling an uncertainty for every decision made along
the tree. The network output σW(x) is now vector-valued, and exists for every
non-leaf node, σW(x)i,l. The loss becomes:
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L (y = c,x;W) = −
∑

Ni,l∈A[yc]

log pi,l

σW(x)2i,l−1

+ log σW(x)i,l−1

In this formulation the uncertainty values in a given voxel are unconstrained if
they do not fall along the decision path for that voxel; for example values of σ
relating to cortical parcellation do not enter into the loss in white matter voxels.
We add a penalty term to encourage shrinking every value of σi,l that does not
fall along the path from the true leaf node to the root node, giving a final loss of

L (y = c,x;W) = −
∑

Ni,l∈A[yc]

(
log pi,l

σW(x)2i,l−1

+ log σW(x)i,l−1

)

+ λ
∑

Ni,l /∈A[yc]

log σW(x)i,l−1

(1)

where λ controls the strength of this penalty.

2.4 Architecture and Implementation Details

The network is a 3D UNet based on the implementation described in the nnUNet
paper [7] and implemented in PyTorch. Our implementation contains three pool-
ing layers and separate, identical decoder branches for the segmentation and
uncertainty outputs. The parcellation branch predicts an output for each leaf
node in the tree for the flat case - 151 for the tree considered in this work -
and in the hierarchical case predicts an output for each node in the tree. As the
hierarchical network does not make any predictions for nodes with no siblings,
as p(node|parent) = 1 always for such nodes, the hierarchical model predicts
213 outputs per voxel for the same tree. The uncertainty branch predicts a sin-
gle channel for flat models, and a number of channels equal to the number of
branches in the label tree for hierarchical models - 61 for the tree in this work. In
practice, log(σ2) is predicted for numerical stability. We set the penalty term in
the hierarchical loss λ = 0.1. Networks were trained on 1103 patches randomly
sampled from the training volume. Group normalisation was used, enabling a
batch size of 1 to be coupled with gradient accumulation to produce an effective
batch size of 3. Models were trained with the Adam optimiser [10] using a learn-
ing rate of 4e−3. Each model was trained for a maximum of 300 epochs with
early stopping if the minimum validation loss did not improve for 15 epochs.

3 Experiments and Results

3.1 Data

We use the hierarchical label tree from the GIF label-fusion framework [2], which
is based on the labelling from the MICCAI 2012 Grand Challenge on label fusion
[11]. In total, there are 151 leaf classes and a hierarchical depth of 6, see Fig. 1.
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We use 593 T1-weighted MRI scans from the ADNI2 dataset [13], with an
average voxel size of 1.18 × 1.05 × 1.05 mm3 and dimension 182 × 244 × 246.
Images were bias-field corrected, oriented to a standard RAS orientation and
cropped using a tight mask. Silver-standard labels were produced using GIF on
multimodal input data, followed by manual quality control and editing where
necessary. 543 scans were used for training and validation, and 50 were reserved
for testing.

Table 1. Dice scores averaged over all classes on the test set for the flat (F ) and
the proposed hierarchical (H) model. Uncertainty-aware models are denoted with an
unc subscript. Values are Median (IQR) across the 50 subjects in the test set. Bold
indicates significantly better performance between model pairs (F vs H, Func vs Hunc),
at p < 0.05, using p-values obtained from a Wilcoxon paired test.

Tree level F H (ours) P Func Hunc (ours) P

Supra/Infra 0.986 (0.003) 0.985 (0.002) <0.00005 0.984 (0.003) 0.984 (0.002) 0.009

Tissue 0.942 (0.007) 0.941 (0.008) <0.00005 0.934 (0.007) 0.934 (0.007) 0.95

Left/Right 0.942 (0.006) 0.938 (0.008) <0.00005 0.932 (0.005) 0.933 (0.006) 0.006

Lobes 0.924 (0.008) 0.922 (0.009) 0.00001 0.913 (0.008) 0.917 (0.008) <0.00005

Sub-lobes 0.891 (0.011) 0.884 (0.013) <0.00005 0.870 (0.013) 0.880 (0.012) <0.00005

All regions 0.861 (0.011) 0.848 (0.015) <0.00005 0.831 (0.018) 0.845 (0.013) <0.00005

3.2 Experiments

We consider the following four models: 1) a baseline network trained on flat
labels with weighted cross-entropy (F ) 2) the same as (F ) but with uncer-
tainty estimates (Func), 3) a network trained on hierarchical labels (H), 4) a
hierarchically-trained network with hierarchical uncertainty estimates (Hunc).
The following experiments were performed:

– Performance comparison using dice overlap on the withheld test data at all
six levels of the tree.

– Qualitative assessment of the uncertainty maps provided by Hunc and Func.
– Comparison of uncertainty-thresholded segmentations from Hunc and Func.

3.3 Results and Discussion

Dice scores for all the models are reported in Table 1. Despite predicting a tree-
structure with >41% more predictions per voxel than the flat model, performance
for H only drops marginally when compared to F , consistent with existing per-
formance comparisons between flat and hierarchical models in classification and
object detection settings [14]. Hunc outperforms Func for the four more fine-
grained levels of the label tree. This is likely due to the empirically observed
difficult in stably training Func; we found no such problems with Hunc, which
was easy to optimise.
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Figure 2 compares the uncertainty map from Func with the total uncertainty
map from Hunc, obtained by summing all uncertainty components at each voxel.
They look visually similar, and the joint histograms demonstrate expected trade-
offs between uncertainty and error rate. Ideally, we would see low counts in the
top-left of the joint histograms, indicating the models do not make confidently
wrong predictions with low uncertainty. We see this desired behavior for Hunc

more strongly than Func.

Fig. 2. Evaluation of the uncertainty from Func and the total uncertainty for Hunc

obtained by summing all uncertainty components. Joint histograms show voxel counts
for σ against (1-predicted probability for true class), averaged across all test subjects.
Blue lines represent the mean error rate and error bars are 25–75 percentiles.

Figure 3 shows uncertainty maps predicted by Hunc for different branches
of the label tree. The model provides sensibly decomposed uncertainty maps
for each decision along the label tree, with uncertainty strongly localised along
decision boundaries. The maps reflect the uncertainty we expect for different
decisions: for example there is highly localised uncertainty along the well con-
trasted WM-CSF boundary, but uncertainty is more spread out on boundaries
between cortical regions which are poorly defined, and subject to high inter-rater
variability.

Figure 4 demonstrates a simple uncertainty-based thresholding method to
obtain upper- and lower-bound cortical maps. They show that the cortical-
specific uncertainty component from Hunc can be used to sensibly threshold
predictions for non-leaf classes, in a way that is not possible for the uncertainty
map from Func which lacks specificity to non-leaf nodes.
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Fig. 3. Demonstration of different uncertainty components for model Hunc at four
different branches of the label hierarchy, shown alongside the tissue class options at that
branch. Colours have been selected to maximise distinguishability between adjacent
classes.

Fig. 4. Demonstration of thresholding predictions according to uncertainty. Ground
truth cortical segmentation is shown on left. Using Hunc a cortex-specific uncertainty
map can be produced, that can be sensibly thresholded to create cortical predictions
at different uncertainty levels. The lack of decision specificity in the single uncertainty
map provided by Func means we cannot perform cortex-specific thresholding - see in
particular the map thresholded at σ < 0.25.

4 Conclusions

We have proposed a hierarchically-aware parcellation model, and demonstrated
how it may be used to produce per-decision measures of uncertainty on the label
tree. Our method outperforms the flat uncertainty model in terms of dice score,
and was less likely than the flat model to make wrong predictions with both high
confidence and low uncertainty. Furthermore we demonstrate the decomposed
uncertainty enables us to produce consistent parcellations along with uncer-
tainty maps for classes higher up the label tree, which is not possible with flat
uncertainty models.
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Abstract. Over the past decade, deep learning has become the gold
standard for automatic medical image segmentation. Every segmentation
task has an underlying uncertainty due to image resolution, annotation
protocol, etc. Therefore, a number of methods and metrics have been
proposed to quantify the uncertainty of neural networks mostly based
on Bayesian deep learning, ensemble learning methods or output prob-
ability calibration. The aim of our research is to assess how reliable the
different uncertainty metrics found in the literature are. We propose a
quantitative and statistical comparison of uncertainty measures based on
the relevance of the uncertainty map to predict misclassification. Four
uncertainty metrics were compared over a set of 144 models. The appli-
cation studied is the segmentation of the lumen and vessel wall of carotid
arteries based on multiple sequences of magnetic resonance (MR) images
in multi-center data.
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1 Introduction

Bayesian methods for neural networks [2,6,14] offer a mathematically grounded
framework to analyse uncertainties. Nonetheless, the early Bayesian networks
were computationally expensive to train, hard to implement and required more
storage than conventional ones. The work of Gal et al. [3] renewed the interest
in the field demonstrating the Bayesian properties of networks using dropout.
The fast uptake of this technique in the field can be mainly attributed to the
light alteration of the original model required.

The uncertainty estimation provided by Bayesian deep learning methods can
be considered in every downstream tasks such as biomarkers extraction, surgery
planning etc. Therefore, Bayesian techniques have known a rising interest in
medical imaging for classification [12], segmentation [15,22] and registration [18].

Little research focuses on comparing the quality of different uncertainties
metrics. A straightforward approach is to investigate the relationship between
different uncertainty metrics and inter-observer variability [1,4]. Alternatively,
in a classification problem, Van Molle et al. [22] introduces an uncertainty met-
ric based on distribution similarity of the two most probable classes. Authors
recommend the use of this uncertainty metric compared to variance based ones
since it is more interpretable. In another work, Mehrtash et al. [9] compares
calibrated and uncalibrated segmentation with negative log likelihood and Brier
score. Finally, Nair et al. [13] compared the gain in segmentation performance
when filtering out the most uncertain voxels for different uncertainty metrics.
However, none of these approaches compare uncertainty metrics for multi-class
segmentation which provide a larger spectrum of uncertainty measures.

To the best of our knowledge, this is the first work, in medical imaging,
that compares quantitatively and statistically the ability of different uncertainty
measures to predict misclassification in a multi-class segmentation context over
a large set of models with widely varying performance, including different vari-
ations of Monte-Carlo dropout (MC dropout) techniques.

2 Methods

2.1 MC Dropout

In the following, θ ∈ Ω represents the parameters of the model, fθ the net-
work with parameters θ, (nx, ny, nz) ∈ N

3 the dimensions of the input images,
M the number of input modalities, C the number of output classes, (x, t) ∈
R

nx×ny×nz×M × R
nx×ny×nz×C a pair input image x with ground truth label

image t, and j ∈ J = {0, ..., nx − 1} × {0, ..., ny − 1} × {0, ..., nz − 1} a 3D
coordinate.

The different models used for carotid artery segmentation are based on the
MC dropout method [3]. To obtain several estimates of the multi-class segmen-
tation at test time, we sample T sets of parameters (θ1, ..., θT ). From those
parameters, we can evaluate T outputs (fθ1(x), ..., fθT (x)) which represent a
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sample of the output distribution q(y|x). From this sample, one can derive the
mean and the covariance of output probabilities at a voxel level in Eq. 1.{

E(q(yj |x)) ≈ 1
T

∑T
t=1 fθt

j (x)
Var(q(yj |x)) ≈ 1

T

∑T
t=1 fθt

j (x)T fθt
j (x) − E(q(yj |x))T

E(q(yj |x))
(1)

An alternative to the original (Bernoulli) dropout that applies binary mul-
tiplicative noise is to use Gaussian multiplicative noise [20]. To make the two
dropout methods comparable, one has to match the expected mean and the
variance of the dropout distributions as shown in the following Eq. 2.⎧⎨

⎩
B = λA
λBernoulli ∼ 1

1−pB(1 − p)
λGaussian ∼ N (1, p

1−p )
(2)

where A is part of the feature maps of a dropout layer input, B is the corre-
sponding feature map of that dropout layer output, λ ∈ R is randomly sampled
from the dropout distribution, p is the dropout rate, B is a Bernoulli distribution
and N is a Gaussian distribution.

2.2 Uncertainty Metrics

Distribution Description. A conventional approach to estimate uncertainty
in a multi-class segmentation is to average the variance over classes [5,19]. In
practice, this is obtained, at a voxel level, averaging the diagonal elements of the
covariance matrix, Eq. 3.

uv(q(yj |x)) =
1
C

Tr[Var(q(yj |x))] (3)

where uv is the averaged variance uncertainty metric and Tr is the trace of
the matrix.

Another widely used uncertainty metric for segmentation is the entropy [23].
In contrast with the variance metric which can be directly computed from data
sampled with MC dropout from the distribution q(yj |x), it requires the estima-
tion of an integral defined in Eq. 4.

uh(q(yj |x)) =
1
C

C−1∑
i=0

∫ 1

0

−qc(yj = t|x)log[qc(yj = t|x)]dt (4)

where uh is the averaged entropy uncertainty metric, qc(yj |x) is the output
distribution of the class c of the voxel j.

Distribution Similarity. Another option to define (voxelwise) classification
uncertainty, is to consider the overlap of the distributions of the two most proba-
ble classes for a given voxel. Van der Molle et al. [22] considered the Bhattacharya
coefficient, since it is interpretable (0: certain, 1: uncertain), Eq. 5.
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Fig. 1. Example of the different uncertainty metrics. From left to right columns repre-
sent, the T1w pre-contrast MR image, the multi-class prediction (blue = background,
green = vessel wall, red = lumen, the level of brightness corresponds to the probability
of the predicted class), the misclassification map and the different uncertainty maps
(averaged variance, averaged entropy, BC, and KL). The rows correspond to predictions
with different networks and level of performances. The indicated Dice is the averaged
Dice over classes (Color figure online)

ub(q(yj |x)) =
∫ 1

0

√
qc1(yj = t|x)qc2(yj = t|x)dt (5)

where ub is the Bhattacharya coefficient based uncertainty metric (BC), c1 and
c2 are the two top classes for voxel j.

Alternatively, Kullback-Leibler divergence provides another measure of dis-
tribution similarity. However, unlike the previous presented uncertainty mea-
sures, a high value represents a small overlap among distributions. Therefore,
the negative of the metric is considered. In addition, the Kullback-Leibler is
made symmetric with respect to the classes c1 and c2, resulting in Eq. 6.

ukl(q(yj |x)) = −DKL[qc1(yj |x)||qc2(yj |x)] − DKL[qc2(yj |x)||qc1(yj |x)] (6)

where ukl is the Kullback-Leibler based uncertainty metric (KL) and DKL

is the Kullback-Leibler divergence.
The distribution q(yj |x) and qc(yj |x) of Eqs. 3, 4, 5 and 6 are approximated

by the distribution of the T outputs (fθ1(x), ..., fθT (x)). The integrals of Eqs. 4,
5 and 6 are estimated with a left Riemann sum with a discretisation of the
interval in nbins.

2.3 Evaluation

Uncertainty Map Quality. To assess the quality of the uncertainty metrics,
we applied the framework developed by Mobiny et al. [11] to the different type
of uncertainty maps. The main idea is to consider uncertainty as a score that
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Table 1. Uncertainty as a predictor of misclassification

Uncertain (u(q(yj |x)) ≥ th) Certain (u(q(yj |x)) < th)

Misclassified TP (th) FN(th)

Correctly classified FP (th) TN(th)

predicts misclassification. From the MC estimates and the ground-truth, one
can obtain a misclassification map m and an uncertainty map u (either uv,
uh, ub, uKL) as described in Fig. 2. Once an uncertainty map is thresholded
at a value th, one can define four types of voxels as summarized in Table 1:
misclassified and uncertain (True Positive (TP) in a sense that the uncertainty
of the voxel accurately predicts its misclassification), misclassified and certain
(False Negative (FN)), correctly classified and uncertain (False Positive (FP))
and correctly classified and certain (True Negative (TN)).

For a given value of the uncertainty threshold th, it is possible to compute the
precision and the recall of uncertainty as a misclassification predictor following:
Pr(th) = TP (th)

TP (th)+FP (th) and Rc(th) = TP (th)
TP (th)+FN(th) . By varying the threshold

over the range of the values of u, one can derive the area under the precision
recall curve (AUC-PR), Eq. 7.

AUC-PR =
|J|∑
i=1

Pr(ui).[Rc(ui) − Rc(ui+1)] (7)

where u1 = u(q(yφ−1◦σ(1)|x)) ≤ u2 = u(q(yφ−1◦σ(2)|x)) ≤ ... ≤ u|J| =
u(q(yφ−1◦σ(|J|)|x)) with φ : i, j, k → 1 + k + i.nx + j.nx.ny transforms 3D coor-
dinates into indices and σ ∈ S|J| is a permutation.

The main advantage of this metric is its independence from uncertainty map
scaling and distribution, as only the order of the voxels in the uncertainty map
matters. For this reason, AUC-PR provides a quantitative evaluation of the
uncertainty map quality that can reliably compare different uncertainty metrics.

Statistical Significance. To assess the statistical significance of our findings
a Bayesian point of view is adopted. One can estimate the posterior distribution
pA,B of the proportion of experiments where the uncertainty metric A has a
higher average of AUC-PR (Eq. 7) over the test set than uncertainty metric
B (with metric A and metric B different). In a Bayesian fashion, we choose a
non-informative prior distribution of pA,B ∼ Beta(1, 1) which corresponds to
a uniform distribution. Over the N experiments, we observe kA,B experiments
where metric A gives a better estimate of misclassification than metric B. Then,
using Bayes rules, the posterior distribution is the following beta distribution,
pA,B ∼ Beta(1+kA,B , 1+N −kA,B). From this Bayesian analysis, one can derive
I95%, the 95% equally tailed credible interval of the parameter pA,B , [7,8].
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3 Experiments

Dataset. We used carotid artery MR images acquired within the multi-center,
multi-scanner PARISK study [21], a large prospective study to improve risk
stratification in patient with mild to moderate carotid artery stenosis (<70%).
The standardized MR images acquisition protocol is described in Table 2. We
used the images of all enrolled subjects (n = 145) at three of the four study centers
as these centers have used the same protocol resulting in a homogeneous set of
data: Amsterdam Medical Center (AMC), the Maastricht University Medical
Center (MUMC) and the University Medical Center of Utrecht (UMCU). The
dataset was split as followed 69 patients in the training set (all from MUMC),
24 patients in the validation set (all from MUMC) and 52 patients in the test
set (15 from MUMC, 24 from UMCU and 13 from AMC).

Table 2. MR images scan parameters (QIR= quadruple inversion recovery,
TSE= turbo spin echo, IR = inversion recovery, FFE = fast field echo and, TFE= turbo
field echo, FA = flip angle, AVS= acquired voxel size, RVS= reconstructed voxel size)

Pulse T1wQIR TSE TOF FFE IR-TFE T2w TSE

sequence Pre-contrast Post-contrast

Repetion time (ms) 800 800 20 3.3 4800

Echo time (ms) 10 10 5 2.1 49

Inversion time (ms) 282,61 282,61 304

FA (degrees) 90 90 20 15 90

AVS (mm2) 0.62× 0.67 0.62× 0.67 0.62× 0.62 0.62× 0.63 0.62× 0.63

RVS (mm2) 0.30× 0.30 0.30× 0.30 0.30× 0.30 0.30× 0.24 0.30× 0.30

Slice thickness (mm) 2 2 2 2 2

Fig. 2. Description of the network architecture and of the uncertainty map testing
framework. The dimensions corresponds to the number of feature maps and the size of
the feature maps
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MR sequences were semi-automatically affinely and elastically registered to
the T1w precontrast sequence. The vessel lumen and outer wall were annotated
manually slice-wise, by trained observers with 3 years of experience, in the T1w
precontrast sequence. Registration and annotation were achieved with Vessel-
Mass software1. The intensity histogram was linearly scaled per image such that
the 5th % was set to 0 and the 95th % was set to 1. The networks were trained
and tested on a region of interest of 128 × 128 × 16 voxels covering one of the
common and internal carotid arteries per scan (either left or right).

Fig. 3. Distribution over the experiments of the average Dice coefficient, for each of
the three classes.

Fig. 4. Distribution over the experiments of the average AUC-PR computed on the
test set. The whiskers represent the 5% and 95% interval.

Network Implementation. The networks used for our experiments are based
on a 3D U-net architecture [17] as shown in Fig. 2. Because of the low resolution
of our problem in the z-axis compared to the resolution on the x-and y-axis, we
apply 2D max-pooling and 2D up-sampling slice-wise instead of their usual 3D
alternatives. We trained the model using Adadelta optimizer [24] for 600 epochs
with training batches of size 1. The network was optimized with the Dice loss
[10]. As data augmentation, on the fly random flips along x axis were used. The
networks were implemented in Python using Pytorch [16], on a NVIDIA GeForce
2080 RTX GPU.

Parameters Under Study. We varied three parameters in our experiments:
the number of images in the training sample to analyse the robustness of the met-
rics to networks with different level of segmentation performances, the dropout
rate, and the dropout type to test different variations of MC dropout. Eight
values of number of images in the training set were used: 3, 5, 9, 15, 25, 30,
40 and 69 images. Also, nine dropout rates were used: 0.1, 0.2, 0.3, 0.4, 0.5,
0.6, 0.7, 0.8 and 0.9. Finally the two types of dropout (Bernoulli and Gaussian
1 https://medisimaging.com/apps/vesselmass-re/.

https://medisimaging.com/apps/vesselmass-re/
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dropout) described in Sect. 2 were considered. For every combination of those
three parameters, we trained a network following the procedure detailed in pre-
vious paragraph. At evaluation time, we discretized the integrals of Eqs. 5, 4 and
6 in nbins = 100 bins and we sampled T = 50 times using MC dropout method.

Results. A visualization of the different uncertainty measures for different level
of performances can be found in Fig. 1. One can find the distribution of the
average Dice per class in Fig. 3. The experiment with the highest averaged Dice
over classes was observed with a model trained with Gaussian dropout and a
dropout rate of 0.3 on the whole training set (69 samples). This method achieved
Dice scores of 0.994 on the background, 0.764 on the vessel wall and 0.885 on
the lumen. Figure 4 shows the distribution over experiments of the AUC-PR
averaged over the test set for the four uncertainty metrics presented in this
article.

Fig. 5. Posterior distribution of pA,B for different metric pairs A and B, the red dashed
line represents the expected value if compared metrics perform equally and the blue
area under the curve represents the 95% credible interval

In our pairwise comparison of the four metrics, ten of the twelve combina-
tions of metrics under study showed statistically significant differences over the
144 experiments (I0.95 does not contain 0.5). Due to the nature of the beta distri-
butions, the distribution of pa,b and pb,a are symmetric with respect to y = 0.5
axis. Therefore, to avoid redundancy only half of the combinations of metric
analysis are reported in Fig. 5.

4 Discussion and Conclusion

We presented a quantitative analysis of four uncertainty metrics as predictors
of misclassification over a large set of MC dropout variations applied to multi-
class segmentation of carotid artery on MR images. This analysis which ranks
voxels based on their uncertainty does not take into account the calibration of
the different metrics. However, calibration can be performed easily for all metrics
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based on the validation set, without altering the rank of uncertainty values for
individual voxels [12].

Our results showed that metrics considering the statistical description of a
distribution averaged over classes performed significantly better than metrics
based on distribution similarity of the top two classes when it comes to predict
misclassification. Furthermore, BC performed better than KL. Those observa-
tions could be attributed to the over-confidence of the softmax output that tends
to polarize the distributions to their extreme values (0 or 1) and how sensitive are
the different metrics to this polarization. Therefore, in vessel segmentation, tak-
ing computation time and metrics performances into account, we advise the use
of the averaged variance which does not require the discretisation of an integral
voxel-wise. Finally, the good performances of the averaged variance and averaged
entropy are consistent with their extensive use in the literature [5,19,23].
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Abstract. In landmark localization, due to ambiguities in defining their
exact position, landmark annotations may suffer from both large inter-
and intra-observer variabilites, which result in uncertain annotations.
Therefore, predicting a single coordinate for a landmark is not sufficient
for modeling the distribution of possible landmark locations. We propose
to learn the Gaussian covariances of target heatmaps, such that covari-
ances for pointed heatmaps correspond to more certain landmarks and
covariances for flat heatmaps to more uncertain or ambiguous landmarks.
By fitting Gaussian functions to the predicted heatmaps, our method is
able to obtain landmark location distributions, which model location
uncertainties. We show on a dataset of left hand radiographs and on a
dataset of lateral cephalograms that the predicted uncertainties correlate
with the landmark error, as well as inter-observer variabilities.

Keywords: Landmark localization · Uncertainty estimation

1 Introduction

Anatomical landmark localization is an important topic in medical image anal-
ysis, e.g., as a preprocessing step for segmentation [1,9], registration [11,19], as
well as for deriving surgical or diagnostic measures like the location of bones
in the hip [2], the curvature of the spine [20], and the misalignment of teeth
or the jaw [21]. Unfortunately, anatomical landmarks can be difficult to define
unambiguously, especially for landmarks that do not lie on distinct anatomi-
cal structures like the tip of the incisor, but on smooth edges like the tip of
the chin. Such ambiguous landmarks are specifically difficult to annotate, which
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Fig. 1. Schematic representation of our proposed method to model annotation ambi-
guities. Although ambiguities are not observable from a single groundtruth annotation
(green cross), they are present in the entirety of the annotated images (red dots).
We model landmark ambiguities with a Gaussian function with covariance Σ that
is learned during training and represents a dataset-based uncertainty. The predicted
heatmap ĥ is fitted with covariance Σ̂ to represent the predicted landmark locations
as a distribution, modeling an image-based uncertainty. (Color figure online)

may lead not only to a large inter-observer variability between different annota-
tors, but also to a large intra-observer variability that is dependent on the daily
constitution of a single annotator. Due to this uncertainty, a machine learning
predictor that has been trained on potentially ambiguous annotations should
model landmarks not only as single locations, but rather as distributions over
possible locations. Predicting such uncertainty measures helps interpreting the
output of machine learning programs [6], which is especially useful in the medical
imaging domain [14,22,23] where explainability is crucial [8].

Methods in anatomical landmark localization predominantly use machine
learning. While random forests have been successfully applied [5,13,18], recently,
convolutional neural networks (CNNs) outperformed other techniques, especially
when doing heatmap regression [2,15–17,24]. In these works, heatmaps have only
been used for predicting single locations, e.g., as the maximum response, and
not for obtaining distributions of possible landmark locations.

We hypothesize that the heatmap regression framework may be used to model
landmark uncertainties (see Fig. 1). We adapt the framework to learn the opti-
mal shape of target heatmaps, which models an uncertainty based on anno-
tation ambiguities in the training dataset. Furthermore, by fitting a Gaussian
function to the predicted heatmap during inference, we do not only predict the
most probable landmark location but its distribution, which models a prediction
uncertainty. Evaluation on datasets of left hand radiographs and lateral cephalo-
grams shows that the uncertainties correlate with the magnitude and direction
of the average localization error, as well as the inter-observer variabilities.

2 Heatmap Regression for Dataset-Based Uncertainty

We perform anatomical landmark localization with CNNs using heatmap regres-
sion [2,15–17,24]. For N target landmarks, the CNN with parameters w predicts
N heatmaps ĥi(x;w), while each heatmap corresponds to a single landmark Li
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with i = {1, ..., N}. A target heatmap is represented as an image of a two-
dimensional Gaussian function hi(x;Σi) : R2 → R, i.e.,

hi(x;Σi) =
γ

√
(2π)2 detΣi

exp
(

−1
2
(x − xi)TΣ−1

i (x − xi)
)

. (1)

The mean of the Gaussian is set to target landmark’s coordinate xi ∈ R
2, while

the shape of the Gaussian is defined by the covariance matrix Σi. A scaling
factor γ is used to avoid numerical instabilities during training.

Differently to other heatmap regression methods, which represent the covari-
ance of the Gaussian with only a single parameter σi, we allow anisotropic Gaus-
sian functions with a general covariance matrix Σi. This way, we do not model
isotropic, axis-aligned Gaussian functions with varying extents but anisotropic
Gaussian functions that have different extents in different directions. The covari-
ance matrix Σi may be decomposed into

Σi = Ri Σ∗
i RT

i , with Ri =
[
cos θi − sin θi
sin θi cos θi

]
and Σ∗

i =
[
σmaj
i 0

0 σmin
i

]
, (2)

where θi represents the rotation of the Gaussian function’s major axis, and σmaj
i

and σmin
i represent its extent in major and minor axis, respectively.

The loss function for simultaneously regressing N heatmaps is defined as

min
w ,Σ1,...,ΣN

N∑

i=1

∑

x

‖ĥi(x;w) − hi(x;Σi)‖22 + α

N∑

i=1

σmaj
i σmin

i . (3)

The first term in (3) minimizes the differences between the predicted heatmaps
ĥi and the target heatmaps hi for all landmarks Li. Since we also treat the covari-
ance parameters of the Gaussian function (θi, σmaj

i , and σmin
i ) as unknowns, we

enable learning them in addition to the network parameters w. Unfortunately,
minimizing the difference between ĥi and hi could lead to the trivial solution
σmaj
i σmin

i → ∞ with hi ≈ 0. To avoid that σmaj
i σmin

i → ∞, the second term in
(3) penalizes σmaj

i σmin
i with factor α.

Analyzing (3) in more detail, not only the predicted heatmaps ĥi aim to be
close to the target heatmaps hi but also the target heatmaps hi aim to be close
to the predicted heatmaps ĥi. For each landmark Li, ĥi and hi receive feedback
from each other during training (see Fig. 1). While the network parameters w are
updated to better model the shape of the target heatmap ĥi, at the same time,
the covariance Σi parameters of each target heatmap hi (θi, σmaj

i , and σmin
i ) are

updated to better model the shape of the predicted heatmap ĥi. Note that Σi is
learned only from single annotations per image, but from all annotated training
images, thus, modeling the ambiguities of landmark annotations for the whole
training dataset and representing a dataset-based uncertainty.

3 Heatmap Fitting for Image-Based Uncertainty

As the output of heatmap regression networks are N heatmaps that correspond
to the N landmarks Li, the landmark’s coordinate x̂i needs to be obtained from
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the predicted heatmaps ĥi. Previous work often uses the coordinate of the maxi-
mum response or the center of mass of the predicted heatmaps as the landmark’s
coordinate. However, this represents only the most probable landmark location,
but not the whole distribution of possible landmark locations.

As the target heatmaps are modeled as Gaussian functions (see (1)), we
expect also the predicted heatmaps to be a Gaussian function. Hence, we capture
the distribution of possible landmark locations by fitting Gaussian functions to
the predicted heatmaps ĥ. We use a robust least squares curve fitting method
[3] to fit the Gaussian function (see (1)) around the maximum of the predicted
heatmaps ĥi and obtain the fitted Gaussian parameters x̂i and Σ̂i with i =
{1, ..., N}. As the fitted Gaussian function models the distribution of possible
locations, the parameters represent a directional image-based uncertainty of the
landmark location during inference.

4 Experimental Setup

Networks: Our proposed method to learn anisotropic Gaussian heatmaps can
be combined with any image-to-image based network architecture. In this work,
we use the SpatialConfiguration-Net (SCN [16]), due to its state-of-the-art per-
formance and publicly available code. We implement learning of Gaussian func-
tions with arbitrary covariance matrices. We use the SCN with the default
parameters trained for 40,000 iterations. We use training data augmentation,
i.e., random intensity shift and scale, translation, scaling, rotation, and elastic
deformation. We use L2 weight regularization with a factor of λ = 0.001. In (1)
we set γ = 100; in (3), we initialize σmaj

i = σmin
i = 3, θi = 0, and set α = 5.

We perform an ablation study on different strategies of using Gaussians.
First, we distinguish whether the target Gaussian heatmaps in (2) are isotropic,
i.e., σmaj = σmin, or anisotropic during training. Second, we distinguish how the
location is obtained from the predicted heatmaps during inference. This can be
done by either taking the maximum [15–17,24], or, as we are proposing, by fitting
Gaussians. We compare networks using isotropic Gaussians as target and taking
the maximum (σ-target, max), fitting isotropic (σ-target, σ̂-fit) and anisotropic
Gaussians (σ-target, Σ̂-fit), as well as networks using anisotropic Gaussians for
target only (Σ-target, σ̂-fit), and for both target and fitting (Σ-target, Σ̂-fit).

Datasets: We evaluate our proposed method on two publicly available datasets
for anatomical landmark localization. The first dataset consists of 895 radio-
graphs of left hands of the Digital Hand Atlas Database System [7,25] with
37 annotated landmarks per image. Each image has been annotated by one of
three experts. The second dataset consists of 400 lateral cephalograms with 19
annotated landmarks per image. This dataset has been used for the ISBI 2015
Cephalometric X-ray Image Analysis Challenge [21], in which each image has
been annotated by both a senior and a junior radiologist. As every image has
been annotated by two radiologists, we are able to measure the inter-observer
variability in this dataset and can compare it with the predicted uncertainty.
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Metrics: For evaluating the landmark localization performance, we use the
point-to-point error PE, i.e., the Euclidean distance between groundtruth x and
prediction x̂. We also calculate the number of outliers #Or for radius r, which
is defined as the number of landmarks with a larger PE of r mm. The outlier
ratio ORr is the percentage of outliers to all predicted landmarks; the success
detection rate is defined as SDRr = 100 − ORr.

Table 1. Quantitative localization results. Top: Results for the cross-validation (CV)
on the hand radiographs. Bottom: Results on the test sets (using the mean annotation
of junior and senior), as well as the CV (using the junior’s annotation) for the lateral
cephalograms. Best values are marked in bold.

hand Method PE (in mm) #Or (ORr in %)

median mean ± SD r = 2mm r = 4 mm r = 10mm

CV Lindner et al. [12] 0.64 0.85 ± 1.01 2094 (6.32%) 347 (1.05%) 20 (0.06%)

Urschler et al. [18] 0.51 0.80 ± 0.93 2586 (7.81%) 510 (1.54%) 18 (0.05%)

Payer et al. [16] 0.43 0.66 ± 0.74 1659 (5.01%) 241 (0.73%) 3 (0.01%)

(σ-target,max) 0.40 0.62 ± 0.72 1507 (4.55%) 263 (0.79%) 4 (0.01%)

(σ-target, σ̂-fit) 0.40 0.61 ± 0.67 1381 (4.17%) 185 (0.56%) 3 (0.01%)

(σ-target, Σ̂-fit) 0.40 0.61 ± 0.66 1354 (4.09%) 161 (0.49%) 3 (0.01%)

(Σ-target, σ̂-fit) 0.39 0.61 ± 0.68 1404 (4.24%) 169 (0.51%) 5 (0.02%)

(Σ-target, Σ̂-fit) 0.39 0.61 ± 0.67 1349 (4.07%) 151 (0.46%) 4 (0.01%)

ceph. Method PE (in mm) SDRr in %

mean ± SD r = 2 mm r = 2.5 mm r = 3 mm r = 4 mm

Test1 Ibragimov et al. [10] 1.67 ± n/a 71.72% 77.40% 81.93% 88.04%

Lindner et al. [12] 1.84 ± n/a 73.68% 80.21% 85.19% 91.47%

Zhong et al. [26] 1.12 ± 0.88 86.91% 91.82% 94.88% 97.90%

Chen et al. [4] 1.17 ± n/a 86.67% 92.67% 95.54% 98.53%

(Σ-target, Σ̂-fit) 1.07 ± 1.02 87.37% 91.86% 94.81% 97.79%

Test2 Ibragimov et al. [10] 1.92 ± n/a 62.74% 70.47% 76.53% 85.11%

Lindner et al. [12] 2.14 ± n/a 66.11% 72.00% 77.63% 87.42%

Zhong et al. [26] 1.42 ± 0.84 76.00% 82.90% 88.74% 94.32%

Chen et al. [4] 1.48 ± n/a 75.05% 82.84% 88.53% 95.05%

(Σ-target, Σ̂-fit) 1.38 ± 1.33 75.11% 82.53% 88.26% 94.58%

CV jun. Lindner et al. [13] 1.20 ± n/a 84.70% 89.38% 92.62% 96.30%

Zhong et al. [26] 1.22 ± 2.45 86.06% 90.84% 94.04% 97.28%

(σ-target,max) 1.02 ± 1.13 88.72% 92.55% 94.83% 97.42%

(σ-target, σ̂-fit) 1.00 ± 1.08 89.64% 93.32% 95.66% 97.91%

(σ-target, Σ̂-fit) 1.00 ± 1.07 89.78% 93.58% 95.80% 97.95%

(Σ-target, σ̂-fit) 0.99 ± 1.08 89.63% 93.55% 95.66% 97.83%

(Σ-target, Σ̂-fit) 0.99 ± 1.07 89.76% 93.74% 95.83% 97.82%

5 Results and Discussion

Comparison with Other Methods: While the main focus of our paper lies
on evaluating the uncertainty measures, we validate our method by comparing
to the state-of-the-art in terms of landmark localization error in Table 1. The
reported metrics and values are taken from the respective publications.
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On a three-fold cross-validation (CV) of the dataset of left hand radiographs,
our proposed method outperforms all previous results. When comparing the dif-
ferent fitting strategies, we can see that defining the landmark coordinate as the
maximum value of the heatmap generated from the network with isotropic tar-
get heatmaps (σ-target, max) leads to the smallest improvements as compared to
the state-of-the-art. When using either isotropic or anisotropic Gaussians during
training and fitting isotropic ones during inference, the results increase slightly
(σ-target, σ̂-fit and Σ-target, σ̂-fit). Finally, fitting anisotropic Gaussians leads
to better results (σ-target, Σ̂-fit and Σ-target, Σ̂-fit), while also using anisotropic
Gaussians during training leads to the overall best results (Σ-target, Σ̂-fit).

We compare to other methods on both test sets Test1 and Test2 of the
lateral cephalograms, where we trained and evaluated networks with the average
coordinate from both radiologist annotations. Here, the methods using CNNs
have similar results, while our method is the most accurate with the smallest PE.
In terms of SDR, our method performs in-line with other methods, while Chen et
al. [4] perform slightly better in Test1 and Zhong et al. [26] in Test2, respectively.
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Fig. 2. Correlation of the mean learned target Gaussian sizes (top) and fitted Gaussian
sizes (bottom) of all landmarks Li to the mean localization error PEi for all images of
the CV of hand radiographs (left), cephalograms with junior annotations (center), and
mean of senior and junior (right) in mm.

As we show in later experiments, there exist systematic shifts for some land-
marks in Test1 and Test2 as compared to the annotations of the training data.
To mitigate this, we follow previous work [13,26] and perform a four-fold CV
experiment trained and evaluated on the junior annotations only. Similar to
the hand radiographs, learning and fitting anisotropic Gaussian functions (Σ-
target, Σ̂-fit) leads to the best results, outperforming all other methods.

Uncertainty Estimation of the Landmark Distributions: Our proposed
method models a dataset-based uncertainty during training as parameters of
the target Gaussian heatmaps (see Sect. 2), as well as an image-based uncer-
tainty during inference by fitting a Gaussian function to the predicted heatmaps
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(see Sect. 3). For evaluating whether the parameters of the target and fitted
Gaussians represent uncertainty measures, we compare the sizes of the Gaus-
sians for each landmark Li with the average PEi in Fig. 2. We evaluate the CV
of the hand dataset, as well as CVs of the cephalograms trained on either the
junior annotations only, or the mean of both junior and senior. We can see that
both the target and fitted heatmap parameters correlate with the PE, thus repre-
senting valid uncertainty measures. We want to highlight that the dataset-based
uncertainty is obtained during network training without requiring validation
images. Thus, it can make use of all annotations of the training dataset and
allows identification of difficult to annotate landmarks, even with only a few
annotated images.

Moreover, our proposed method is also able to model directional uncertain-
ties, which we visualize in Fig. 3 for selected landmarks (for all landmarks, see
the supplementary materials). Here, while both target and predicted heatmaps
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Fig. 3. Input (left), heatmap predictions (middle) and target heatmaps (right) for
selected landmarks. Images show 15 × 15 mm patches around groundtruth annotation
(green cross). The target and predicted heatmaps are superimposed with ellipses rep-
resenting the target and fitted Gaussian parameters, respectively. (Color figure online)
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Fig. 4. Gaussian functions fitted to the predicted heatmaps (left) and offsets of the
groundtruth coordinate to the predictions (right) for selected landmarks. For all images
of the datasets, the fitted Gaussian parameters are shown as blue ellipses, the offsets
as red dots. The average major axis of the fitted Gaussian parameter, as well as the
major axis of a Gaussian distribution fitted to the offsets, are shown as black arrows.
Each tick on the axis lines marks one mm.
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are smaller for landmarks on distinct corners as compared to landmarks on
edges, the heatmaps are also rotated in direction of the underlying edges, as
this is the main source for ambiguities. Interestingly, for landmark L19 of the
hand dataset and landmark L16 of the cephalograms, the predicted heatmap
has a larger extent as compared to the target heatmap. Landmark L19 of the
hand dataset lies on the base of the proximal phalanx of the thumb, which is
often wrongly annotated as the head of the metacarpal. For landmark L16 of the
cephalogram dataset, the predicted heatmaps have a larger extent, as this land-
mark is difficult to annotate unambiguously, which can also be seen in a large
inter-observer variability as shown in later evaluations. Our method is able to
detect such ambiguous landmarks by predicting a larger uncertainty expressed
as more disperse distributions of landmark locations.

To show that the fitted heatmap parameters Σ̂i represent the same distri-
bution as the expected prediction-groundtruth offsets xi − x̂i, we visualize all
fitted heatmaps and offsets for all images of the dataset in Fig. 4 for some exam-
ple landmarks. Here we can see that the fitted heatmap parameters have the
same distribution as the expected groundtruth-prediction offsets. For landmark
L19 of the hand radiograph dataset, we can see two clusters of offsets, showing
well the misannotations as described previously. Overall, these results further
show that the fitted parameters Σ̂i model an image-based landmark location
uncertainty.

Uncertainty Estimation for Modeling the Inter-observer Variability:
As a final experiment, we evaluate how well our proposed method models the
inter-observer variability on the dataset of cephalograms. In Fig. 5, we show
the predicted fitted Gaussian parameters, the groundtruth-prediction offsets, as
well as groundtruth-senior and groundtruth-junior offsets for the CV trained
on the mean of both junior and senior annotations. The plots show that our
proposed method models well the inter-observer variability, leading to fitted
Gaussian parameters Σ̂i that are similar to the expected offsets xi − x̂i. On
these plots we can also see that there may exist a systematic offset between junior
(green) and senior (yellow) annotations, leading to two distinct point clusters
as compared to their mean xi. For landmark L16, which is difficult to annotate
unambiguously, the disagreement of junior and senior is very large on the training
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Fig. 5. Gaussian parameters fitted to the predicted heatmaps (left), offsets of the
groundtruth coordinate to the predictions (middle), and groundtruth-senior and
groundtruth-junior offsets (right) for selected landmarks. The visualization is the same
as in Fig. 4, while the offsets of senior and junior annotation to their mean are shown
as green and orange dots, respectively. (Color figure online)
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dataset. Interestingly, in Test2 their disagreement reduced from more 5 mm to
≈2 mm. This systematic shift of the landmark groundtruth locations for L16 can
explain the reduced performance of all compared methods in Table 1 for Test2.
In conclusion, these results show that the fitted heatmap parameters Σ̂i model
also the landmark location uncertainty in terms of inter-observer variability.

6 Conclusion

We have shown that CNNs using heatmap regression may be used for predicting
location uncertainties. By learning Gaussian parameters of the target heatmaps
and fitting Gaussian functions to the predicted heatmaps, our method is able to
predict distributions of possible landmark locations. While showing state-of-the-
art performance in two datasets, the predicted landmark distributions correlate
with the landmark localization error as well as inter-observer variabilities. In
future work, we plan to extend our method to three dimensional data.
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Abstract. By examining the vessel structure of the eye through retinal
imaging, a variety of abnormalities can be identified. Owing to this, reti-
nal images have an important role in the diagnosis of ocular diseases. The
possibility of performing computer aided artery-vein segmentation has
been the focus of several studies during the recent years and deep neural
networks have become the most popular tool used in artery-vein segmen-
tation. In this work, a Bayesian deep neural network is used for artery-
vein segmentation. Two algorithms, that is, stochastic weight averaging
and stochastic weight averaging Gaussian are studied to improve the
performance of the neural network. The experiments, conducted on the
RITE and DRIVE data sets, and results are provided along side uncer-
tainty quantification analysis. Based on the experiments, weight averag-
ing techniques improve the performance of the network.

Keywords: Uncertainty quantification · Bayesian deep learning ·
Artery-vein segmentation · Blood vessel segmentation · Weight
averaging

1 Introduction

Eye diseases have become a rapidly increasing health threat worldwide. Retinal
images are a great tool for detecting some of the many ocular disease and dis-
eases such as diabetic retinopathy and glaucoma can be detected from retinal
images [12]. Ocular diseases are typically detected from retinal images by ana-
lyzing the vessel structure. The use of retinal images enables the diagnosis of
ocular diseases in their early stages. The task of analyzing the vessel structure
has been traditionally left to medical experts. The attention required by the
medical experts in this tasks is, however, great and the task is very consum-
ing and expensive. Studying the possibilities in making this process faster is for
that reason important, as it would enable wider screenings for ocular diseases
from retinal images. Automated image processing methods are a well-motivated
possibility in solving this problem [3].

The possibility to use computers in performing artery-vein segmenta-
tion has been the focus of a number of studies during the recent years.
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However, artery-vein segmentation still remains a challenging tasks for both
humans and machines alike. Some of the difficulties in artery-vein segmentation
are related to the imaging conditions in which the retinal images are taken. The
images tend to suffer from low contrast and changing lighting conditions, both
of which make the segmentation process harder.

The deep convolutional neural network (DCNN) has recently become the
most common tool used in artery-vein segmentation of retinal images, due to
the DCNNs ability to automatically learn meaningful features from images. In
a paper by Welikala et al., a convolutional neural network (CNN) was used
in artery-vein segmentation. The CNN managed to achieve a 82.26% classifi-
cation rate using UK Biobanks’ retinal image database [13]. Hemelings et al.
proposed the usage of U-Net architecture for artery-vein classification [5]. In the
paper, Hemeling et al. considered the task as a multi-class classification problem
with the goal of labeling pixels into four classes: background, vein, artery and
unknown. The problem was solved using the retinal images found in DRIVE
data set [6] and it achieved classification rates of 94,42% and 94.11% for arter-
ies and veins. Girard et al. [3] modified the U-Net for artery-vein segmentation
and found out that using likelihood score in the minimum spanning tree it was
possible to improve the performance of the network in the case of smaller ves-
sels. The method was tested using DRIVE data set, achieving an accuracy of
94.93%. Zhang et al. proposed cascade refined U-net to be used in artery-vein
classification [14]. The cascade refined U-net consisted of three sub-networks.
The task of the first sub-net (A-net in their paper) was to detect all the vessels
from the input image, B-net segmented veins from the predicted vessels from the
A-net, and finally the C-net segmented the arterioles from the outputs of the
previous nets. In the paper, a classification rate of 97.27% was achieved using the
automatically detected vessels from the RITE data set. In a paper by Garifullin
et al., a dense fully convolutional neural network (Desne-FCN) was used in the
task of artery-vein classification [2]. Using the Dense-FCN architecture and the
RITE data the authors were able to achieve classification rates of 96%, 97% and
97% for vessels, arteries and veins respectively. In addition to that the authors
performed uncertainty quantification on the results obtained using Monte-Carlo
dropout [1] for variational approximation. In the aforementioned article, how-
ever, the authors did not illustrate the model calibration and the experiments
were conducted with one training setup for different labelling strategies. Thus,
the question of reliability of the shown uncertainty estimates arises.

This work illustrates how stochastic weight averaging affects the estimated
uncertainties. In addition, differences between two epistemic uncertainty esti-
mation techniques are illustrated. Both more traditional binary classification
metrics as well as uncertainty quantification metrics are used to evaluate the
algorithms.
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2 Data

The retinal image data set chosen to be used in this work was the DRIVE data
set [6]. The DRIVE data set contains 20 RGB images for testing and 20 for
training. The images are of size 584 × 565.

The AV references standard used in this work is the RITE data set [7]. The
RITE data set extends the DRIVE data set with references for arteries, veins,
overlapping vessels and uncertain vessels. Red labels in the DRIVE data set
stand for arteries, blue labels for veins, green for overlapping vessels and white
ones for uncertain vessels. An example of a retinal image from the DRIVE data
set as well as the corresponding data labels from the RITE data set can be seen
in Fig. 1. During the training the labels for crossings were replaced by labels for
both arteries and veins simultaneously and the uncertain labels were omitted for
arteries and veins and left for the vessels.

Fig. 1. (a) Retinal image from the DRIVE data set. (b) Retinal image labels from
RITE dataset. (Color figure online)

3 Bayesian AV Classification

3.1 Baseline

Garifullin et al. followed a standard approach for deep Bayesian classifica-
tion. First, a neural network f is used to estimate the distribution of logits
parametrized through the estimate of the mean ŷ and variance σσσ of logits for
arteries and veins:

[ŷ,σσσ] = f (x, θθθ) . (1)
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The probability vector p = [partery pvein] of the labels can then be calculated as
follows:

p̂ = sigmoid (ŷ + σσσ � εεε) , εεε ∼ N (0, I) . (2)

Given the probability vector for arteries and veins the probability for the vessels
can be inferred based on the addition law of probability:

pvessel = partery + pvein − parterypvein. (3)

The resulting optimisation objective is a sum of binary cross-entropy functions
for all three labels over all produced aleatoric samples.

The formulae (1)–(3) take into account heteroscedastic aleatoric uncertainty
which is a type of uncertainty dependent on the data capturing imperfect imaging
conditions, labeling and image noise. The second kind of uncertainty is epistemic
uncertainty representing the model’s ignorance. By considering the parameters
of the model as a random variable with the posterior p (θθθ | D) the posterior
predictive distribution over logits can be calculated as follows:

p (y | x,D) =
∫

p (y | x, θθθ) p (θθθ | D) dθθθ. (4)

Typically, the integral (4) is intractable and stochastic approximations are
used in order to estimate the posterior predictive. One of the most common
techniques is to use stochastic variational approximation called MC-Dropout [1]
which employs dropout as a Monte Carlo sampling technique in order to obtain
samples from the model’s posterior. Another widely used method is stochastic
weight averaging Gaussian [11] where the model’s posterior is approximated by
a normal distribution the moments of which are estimated during the training
procedure.

3.2 Stochastic Weight Averaging

Izmailov et al. found out that the values traversed by SGD would be around
the flat regions of the loss surface, without actually reaching the center of this
area [9]. By equally averaging these points traversed by SGD, Izmailov et al.
found out that points that are inside this more desirable part of the loss surface
would be achieved. They named this method stochastic weight averaging (SWA)
and it was shown to improve the results and generalization of networks on a
variety of architectures and in multiple applications. Given initial pre-trained
weights SWA can be implemented as a running average of the weights calculated
while continuing training with an additional computation of batch normalization
statistics after (see [9] for more details).

3.3 Stochastic Weight Averaging Gaussian

SWAG was first introduced by Maddox et al. [11] for model averaging and uncer-
tainty estimation. The main idea behind is to use SWA to calculate the mean of
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the model’s parameters and at the same time to estimate a diagonal approxima-
tion of the covariance matrix. Thus, the approximated posterior of the model’s
parameters is a normal distribution:

p (θθθ | D) = N (θθθSWA,ΣΣΣSWAG) , (5)

where θθθSWA is a parameter vector estimated with SWA and ΣΣΣSWAG is a corre-
sponding diagonal covariance matrix.

4 Experiments and Results

4.1 Description of Experiments

The parameters and methodologies presented here were selected so that the
baseline model used in this work would be as similar as possible to [2]. The
utilized architecture is Dense-FCN-103 [10]. The baseline model was, however,
re-implemented and the experiments reproduced to some degree in this work.

In all the experiments, the network was first pre-trained on RITE dataset
with random patches of the input images of size 224 × 224. The batch size used
in the pre-training was 5 and the network was pre-trained with 100 epochs and
1000 steps per epoch.

After the pre-training, the networks were fine-tuned with full-size images that
were padded to size of 608 × 608 so that they could be properly compressed by
the downsampling part of the network. The main optimizer used in all of the
experiments was Adadelta with learning rate of 1 and decay rate of 0.95. The use
of either SWA or SWAG would start on a later epochs of full resolution training.

To increase the diversity of the data set data augmentation techniques were
used. The augmentation was performed by applying rotation, flipping, and scal-
ing to the input data. The rotation angles used were 90, 180 and 270 degrees
and the scaling rates were 0.8, 0.9, 1.0, 1.1 and 1.2.

The aleatoric and epistemic uncertainties were estimated using formulae from
[8]. The uncertainties are estimated as an average sum standard deviations per
image Sp =

∑
i

∑
j σj/Ntest, where i is an index of the image, j is an index of

the pixel, and Ntest is the total number of test images (Table 4).

Baseline. The fine-tuning of the network used as baseline was done using 50
epochs with 500 steps per epoch to match the hyperparameters used in [2]. The
batch size used in the fine-tuning of the baseline was selected to be 1. MC-
Dropout was used to quantify epistemic uncertainty.

SWA. The SWA implementation also had 50 epochs with 500 steps in each
epoch in the full resolution training. Like in the baseline the batch size used was
1. The starting epoch for SWA was selected to be 10 and it was only used in the
fine-tuning of the network. The starting epoch was selected through empirical
experimentation. MC-Dropout was used to quantify epistemic uncertainty.
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SWAG. The hyperparameters used in the SWAG implementation were 500
epochs with 50 steps per epoch. This was done so that the Gaussian posteriori
approximation formed by SWAG would be generated from a higher number of
epochs. Like in the baseline the batch size used was 1. The SWAG starting epoch
was selected to be 100. The epistemic uncertainty was quantified by sampling
the model’s parameters from Gaussian distribution (5). Whereas the sampling is
performed from the posterior estimated with SWAG, dropout is still used during
the training phase.

4.2 Performance of the Networks

Due to the fact that artery-vein classification was considered a multilabel prob-
lem, the performance metrics used in were calculated for arteries, veins and
vessels separately. The selected classification metrics were accuracy, sensitiv-
ity, specificity, Area Under the Receiver Operating Characteristic Curve (ROC-
AUC) and Estimated Calibration Error (ECE) [4].

By examining the performance metrics presented in Tables 1, 2 and 3, it can
be seen that SWA improved the network performance overall compared to the
baseline and SWAG models including the model calibration.

Table 1. Network performance in artery classification (the best accuracy and calibra-
tion are in bold)

Method Accuracy Sensitivity Specificity ECE ROC-AUC

Baseline 0.970 0.642 0.990 0.00988 0.974

SWA 0.975 0.690 0.992 0.00943 0.981

SWAG 0.973 0.706 0.989 0.00871 0.966

Table 2. Network performance in vein classification (the best accuracy and calibration
are in bold)

Method Accuracy Sensitivity Specificity ECE ROC-AUC

Baseline 0.971 0.655 0.994 0.0169 0.980

SWA 0.974 0.742 0.991 0.0120 0.991

SWAG 0.971 0.804 0.983 0.0107 0.980

Table 3. Network performance in vessel classification (the best accuracy and calibra-
tion are in bold)

Method Accuracy Sensitivity Specificity ECE ROC-AUC

Baseline 0.957 0.723 0.989 0.0221 0.980

SWA 0.961 0.782 0.986 0.0208 0.983

SWAG 0.961 0.836 0.978 0.0338 0.984
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The example of the segmentation results for SWAG is given in Fig. 2. The
segmentation examples for the baseline and SWA look similar. The uncertainties
of the results were visualized and example figures can be seen in Fig. 3. In the
figure, the intensities of the colors describe the uncertainty in that region as
standard deviations of the predicted probabilities: the higher intensity the higher
the uncertainty.

Fig. 2. (a) The input image; (b) ground truth; (c) mean predicted AV probabilities;
(d) mean predicted vessels probabilities. The results are obtained using SWAG.

From the tables and figures, it can be concluded that the aleatoric uncer-
tainty of the baseline is much higher than those of SWA and SWAG. It can also
be concluded that sampling the network weights from the Gaussian posterior
generated by SWAG to create the variational approximation, rather than using
Monte-Carlo dropout, has a reducing effect on the levels of epistemic uncertainty
present in the predictions. This could probably be explained by the fact that the
variance is estimated only around a local optimum during the late stages of
the training, whereas MC-Dropout is enabled during the whole training process.
From the estimated performance metrics, however, it is difficult to conclude
whether it is a positive or negative effect. One noticeable pattern is the high
epistemic uncertainty near the optic disc when estimated with MC-Dropout. On
the other hand, sampling from Gaussian distribution leads to the high uncer-
tainties mostly near the end points of the blood vessels and the areas after the
crossings which is also present in the case of MC-Dropout.

At the same time one can see that aleatoric uncertainties change when SWA
or SWAG are utilized. Kendall et al. [1] describe the aleatoric uncertainty as a
loss attenuation mechanism allowing the model to adapt the loss dependent on
the data and labelling. While the aleatoric uncertainty is meant to be data depen-
dent, the changes to the training procedure affecting the model’s convergence
and the parameters of the layers predicting variances also affect the predicted
aleatoric uncertainties. For the baseline and SWAG, we can see a similar pattern
of the higher aleatoric uncertainty levels near the optic disc and borders of the
vasculature, whereas the aleatoric uncertainties almost vanish when estimated
using MC-Dropout trained with SWA.
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Table 4. Mean sums of estimated aleatoric and epistemic uncertainties per image.

Method Aleatoric Epistemic

Arteries Veins Vessels Arteries Veins Vessels

Baseline 1276.2 1159.5 1807.5 4853.6 4066.4 5069.7

SWA 3.3 3.5 5.3 4038.6 3882.3 4659.7

SWAG 31.1 38.9 57.3 997.8 1104.3 1396.1

Fig. 3. Aleatoric uncertainties calculated using (a) the baseline, (b) SWA, and (c)
SWAG. Epistemic uncertainties calculated using (d) the baseline, (e) SWA, and (f)
SWAG.

4.3 Conclusions

In this work, the focus was on blood vessel segmentation from retinal images and
on artery-vein classification by using a deep neural network. More specifically,
two algorithms were studied to improve the classification performance and help
in the model calibration. SWA and SWAG algorithms were implemented on top
of the baseline and experimented with the DRIVE and RITE data sets.

The use of SWA improved the performance of the deep neural network on
most of the binary classifications as well as the calibration metrics. SWAG
showed slight improvements in the vessels and artery classification tasks. The
weight averaging as a process significantly affecting the model’s convergence
seems to lead to diminishing aleatoric uncertainties and sampling from the nor-
mal distribution captures less epistemic uncertainty.
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Abstract. Deep learning assisted histopathology has the potential to
extract reproducible and accurate measurements from digitised slides in a
scalable fashion. A typical workflow of such analysis may involve instance
segmentation of relevant tissues followed by feature measurements. Inher-
ent segmentation uncertainties produced by these deep models, however,
could propagate to the downstream measurements, causing biased dis-
tribution estimate of the whole slide. One challenging aspect when han-
dling ambiguous tissues is that the number of instances could differ as
the instance segmentation step may not generalise well to these tissues.
As an attempt to address this problem, we propose to derive a confi-
dence score from the segmentation uncertainties obtained from Bayesian
Neural Networks (BNNs) and utilise these as weights to improve the
distribution estimate. We generate a synthetic dataset that mimics the
diverse and varying visual features of the original data to enable system-
atic experiments. With this dataset we demonstrate the robustness of the
method by extracting several clinically relevant measurements with two
different BNNs. Our results indicate that the distribution estimates are
consistently improved when the instances are weighted by the entropy-
derived confidence measure. In addition, we provide results on applying
the method to the original data.
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1 Introduction

The core goal of computational pathology is to extract clinically relevant infor-
mation from digitised slides that will support the work of human experts. Exam-
ples of such measurements include the size and shape of certain tissue architec-
ture components (e.g. glands, tubules, and cells) as well as their colour and
texture. Accurate evaluation of these measurements is crucial but could also be
very challenging for a number of reasons. Firstly, pathological changes are often
subtle and could easily be overwhelmed by the biopsies’ preparation artefacts.
Secondly, colour and morphological appearances could vary greatly between dif-
ferent datasets which leads to overfitting errors. Thirdly, the quality and number
of annotations could be imbalanced between the easy examples and tissues with
ambiguity. Many measurement errors are the result of downstream propagation
of the segmentation errors of different tissue instances. As segmentation uncer-
tainties are often heteroscedastic, erroneously segmented instances could lead to
systematic errors in the estimated distributions.

As neural networks are now commonly used to perform segmentation tasks,
uncertainty quantification of these black-box models have become particularly
important. To date, a number of Bayesian Neural Networks (BNNs) have suc-
cessfully demonstrated quantification of semantic segmentation errors on every-
day images [7,20] as well as on medical images [4,11,12,21,23]. On the other
hand, uncertainty quantification in object detection task is more challenging
and not as well studied as it involves identifying separate objects in an image.
In this regard, Miller et al. [17,18] employed Monte Carlo (MC) dropout in a
single shot detector and cluster boxes from multiple forward passes based on
spatial and semantic similarities. Instance segmentation is yet more challenging
as it involves delineating the mask of each instance. For this task, Morrison [19]
extended Miller’s implementation to work with MaskRCNNs. Clustering detec-
tion boxes, however, could be a slow process. It may also be difficult to train
the aforementioned end-to-end instance segmentation networks as medical image
datasets are typically very small.

While all the above mentioned focused on the evaluation of segmentation
errors, there has been little discussion on how they can be put to practical use
for risk management or to improve inference. In this paper, we propose to use
confidence measures derived from BNNs to refine the distribution estimate of
our data. Here, instances are weighted by the confidence of their associated
segmentation mask when calculating the distribution. But unlike Nketia and
colleagues [22] who studied cellular segmentation, the confidence scores we use
are derived from a deep BNNs rather than handcrafted.

For our dataset, we initially speculated that domain shift might be the main
source of segmentation errors. Hence we design an experiment to test how our
method performs on images that gradually differ from the training data. We syn-
thesise a dataset based on a VAE-BicycleGAN pipeline [9,14,31] and perform tis-
sue area, colour distribution, and major axis measurements on different subsets of
the synthetic data and the real test images. We find that the confidence-weighted
measurements consistently perform better than the unweighted measurements.
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2 Method

In this section we summarise the theoretical underpinnings of our methodol-
ogy and design an experiment to validate the proposed approach. Firstly, We
elaborate three exemplary histopathological measurements derived from renal
proximal tubules. After that, we describe methods of obtaining confidence scores
from BNNs. Next, we would like to test whether confidence-weighted instances
can improve measurements on slides that contain ambiguous tissue instances. To
achieve this, we generate a synthetic dataset where subsets of images differ grad-
ually from the original training data. Finally, we measure the distance between
various confidence-weighted and non-weighted distributions against the ground
truth.

2.1 Histopathological Measurements

A quantitative histology pipeline typically involves segmentation of relevant tis-
sue components, followed by extraction of features developed based on domain
knowledge. Many of these features and downstream measurements, however, are
sensitive to uncertainties in the segmentation masks.

The simplest of these features would be tissue area measurements, obtained
by summing up the pixels that belongs to an instance. If the predictions are over-
confident, we may end up with fewer, larger instances. A network that produces
under-confident predictions may produce more small instances than a properly
calibrated network.

Another useful clinical feature that could be extracted from the renal biopsies
is the thickness of the proximal tubules’ epithelial cells that outlines the tubules.
If the cells are damaged, they could vacuolate and expand, causing the epithelial
lining to appear thickened. However, in damaged tissue it is often difficult to
determine the boundaries of the epithelial cell lining. Hence, a workaround is to
measure the distribution of H&E/PAS stain with respect to the mask’s distance
transform. We name this measurement yγ and is calculated as follows:

yγ =
∑

m∈M dmxm
∑

m∈M dm

∑
m∈M xm

, (1)

where dm is the distance transform of an instance’s mask measured from the
edge; xm is the pixel value of the image bounded by mask M of the instance.
The two terms in the denominator are normalisation terms that reduces the
dependency of yγ on the size and mean pixel values of the tissue.

As we are measuring the 2D cross section of 3D objects, area measurements
of the tissue structures on its own may not be a very informative pathologi-
cal feature. To augment to such limitations, we can also measure the tissue’s
aspect ratio. This could help us estimate the direction on how the tissue is cut.
This measurement could be determined from the major and minor axis of the
minimum-area rectangle fitted to the segmentation mask. We present measure-
ments of instance area, yγ , and major axis in the following experiment.
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2.2 Uncertainty Estimation

Sample averaged BNNs could produce confidence values that scales more linearly
with the probability the model makes a correct prediction. However, interpre-
tation of the statistical distribution of BNN’s output is important as it would
allow us to better understand to what extent the model can be improved. Given
a BNN has been sampled N iterations during test time, one possible measure to
quantify uncertainty is the predictive entropy H [13]:

H = − 1
N

N∑

i=1

C∑

j=1

ŷij log(ŷij) , (2)

where C are the classes output by the model; ŷij is the probability for each
class j and sample i predicted by a network stochastically initialised based on
some variational parameters θ̂. From H, we can derive a normalised confidence
measure for instance k over the pixels m in the segmentation mask Mk as follows:

gH
k = 1 − 1

|Mk|log(C)

∑

m∈Mk

Hm . (3)

Kendall [8] proposed another measure to quantify uncertainty by decompos-
ing the predictive variance from neural networks into aleatoric and epistemic
terms. Aleatoric variance measures uncertainty as a result of inherent ambigu-
ity or noise of the data whereas epistemic variance measures uncertainty due to
limitations of the model. From these standard errors we can derive the following
confidence measure for instance k:

gσ
k = max

(

1 − 1
|Mk|

∑

m∈Mk

σm(w), 0

)

, (4)

where σm is either the aleatoric or epistemic standard error at a given pixel m.
We use Kwon et al.’s [12] implementation to evaluate σm in our experiment.

2.3 Datasets

The dataset we use for training originated from an organ reperfusion experiment
[28,29]. The slides were obtained from kidneys deemed unsuitable for transplan-
tation and most samples suffered from significant cold ischemic damage. The
tissues were stained with H&E but had been computationally converted to PAS
stain using a CycleGAN [30] with image quality largely indiscernible by our col-
laborating pathologist. The training dataset consists of 1642 patches from 169
kidneys containing 13,103 manually annotated tubules.

Our test dataset consists of 144 PAS-stained slides obtained from the QUOD
Oxford biobank from kidneys that had been transplanted. We annotated 30
patches with a total of 1741 tubules in this dataset.
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For the purpose of our experiment, we also synthesise a dataset that devi-
ates progressively from the training data. We would like the data to fulfill three
requirements. Firstly, the images need to contain tissue structures that exhibit
diverse morphological, textural, and colour variations. Secondly, the images need
to be accompanied by a corresponding segmentation mask to be used as the
ground truth. Thirdly, to simplify how these images are generated we would like
to control these visual changes using a single parameter. While the simplest way
to generate controlled morphological changes is to deform the images and masks
simultaneously, this would provide only limited morphological variations. Con-
sequently, we build a pipeline to generate synthetic images that fulfils the above
requirements using a Variational AutoEncoder (VAE) [9,14] and a BicycleGAN
[31]. A simple schematic and some examples of the synthetic images are shown
in Fig. 1. The VAE learns the underlying morphological variations of the rele-
vant renal tissues, whereas the BicycleGAN is used to convert masks from the
VAE to a diverse set of realistic-looking images. To obtain images that progres-
sively differ from the real data, we sample the VAE 10 times with a latent vector
σVAE ∈ [0.0, 1.8]. This produces masks with varying morphological changes.
Next, the BicycleGAN is used generate 6 images from each mask, one of which
is generated from the encoded vector from the real image (BGAN0), the other 5
are generated from a sampled latent vector (BGAN1). A total of 98,400 synthetic
images are produced but a large number of images do not resemble the mask,
so we select 39,400 images based on the resemblance between the reconstructed
image-mask pair. Details on the synthetic data are described in Supplementary
Material S1.

2.4 Tissue Segmentation

To demonstrate that our method is robust to the choice of hyperparameters, we
perform the experiment on two different networks. We train a UNet [25] with
Monte Carlo Dropout [5] of 0.2 in all but the first and last layer, and another
UNet with Bayes by Backprop and local reparameterisation trick (BBB LRT)
[1,10,26] using a unit Gaussian prior to replace the dropout layers. The number
of trainable parameters for both networks are set to approximately 50.3 M for fair
comparison. We train the networks with 3-fold cross validation while ensuring
that tiles from the same slide are not split. After that, for each network we
obtain 5 Bayesian samples over each of the 3 cross validation models and take
the mean softmax over the 15 predictions. We obtain instances using max-flow
min-cut graph algorithm [2] and classical morphological operations. Instances
smaller than 400 pixels are discarded. More details on the neural networks and
how the tissue instances are obtained can be found in Supplementary Material
S2 and S3 respectively.

3 Experiment Results

The tubule instances’ area, yγ , and major axis measurements are obtained as
described in Sect. 2.1 on the synthetic and the real test datasets. We evaluate
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Fig. 1. Generation of synthetic images and examples. We train a VAE to gener-
ate synthetic masks at varying σVAE based on the encoded embedding (1st row). The
2 − 3rd rows show examples generated by the BicycleGAN based on the mask above.
We generate 6 images per mask, including 1 generated using the encoded vector from
the real image (BGAN0); the other 5 are generated from a sampled vector (BGAN1)
to produce images with diverse tissue texture and background.

the performance of different versions of our proposed method by comparing the
various weighted and unweighted estimated measurements against the ground
truth. Here, we present comparisons of probability distributions (PDF) using the
first Wasserstein distance (WD) [24]. Other metrics such as Kullback–Leibler
(KL) and Jensen-Shannon (JS) distance could also be used and would result in
similar conclusion of the experiment. But we find WD to be most suitable as it
takes into account the metric space and does not approach infinity where the
PDFs are disjoint.

We initially expected WD to be higher for the harder examples. However,
in our results WD tends to decrease with increasing σVAE . To understand this
counter-intuitive trend we inspect the images and observe that instances tend to
shrink in size as σVAE increases. Although the instances become morphologically
less plausible, having fewer touching instances may reduce ambiguity of the
segmentation. Thus we conclude that UNets when trained on our data generalises
to this unseen morphology. An example of this observation is illustrated on the
top row masks in Fig. 1. Next, we define an evaluation metric ΔWD as follows:

ΔWD = WD(P̃ (Y ), P (Y )) − WD(P̃Baseline(Y ), P (Y )) , (5)

where WD is the function for calculating the Wasserstein metric; P̃ (Y ) is the
estimated PDF of interest; P (Y ) is the ground truth PDF; P̃Baseline(Y ) is the
baseline estimated PDF derived from instances segmented by the UNets without
MC Dropout. We plot ΔWD values in Fig. 2. Each plot shows the results of a
different measurement by the UNet with either MC Dropout or BBB LRT. The
x-axes show the different subsets of the synthetic data (σVAE ∈ [0, 1.8]) and the
real test data (real). A more negative ΔWD represents greater improvement.

For the confidence-weighted (CW1 ) measurements, we weight each instance
by confidence derived from entropy (Eq. 3), aleatoric, and epistemic uncertainty
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(Eq. 4) to obtain the estimated PDF. We also split our synthetic dataset by qual-
ity - BGAN0 denotes synthetic encoded images and are better quality than those
generated using a sampled vector with the BicycleGAN (BGAN1 ). For both net-
works, the weighted measurements always appear better than the unweighted
(CW0 ). Instances weighted by entropy generally perform the best, followed by
those weighted by aleatoric uncertainty. Instances weighted by epistemic uncer-
tainty receive the least improvement because the dominant uncertainty in our
dataset is aleatoric.

Fig. 2. Comparison of Measurements. Wasserstein metric comparing distributions
between measurements derived from the predicted instances vs derived from the ground
truth masks. The x-axes show how the improvement changes as the instances differ from
the training data at varying σV AE . The test data (real) is also added to the plot for com-
parison. Values are relative to the baseline. Lower ΔWD means greater improvement.
CW1/0 stands for confidence weighted/unweighted respectively; BGAN1/0 stands for
images with/without BicycleGAN resampling respectively.

In order to compare improvement between different measurements we nor-
malise the WD metric as follows:

WDnorm = (WDCW1 − WDCW0 )/WDCW0 , (6)

where WDCW1 is the confidence-weighted WD; WDCW0 is the unweighted
WD. Table 1 shows the entropy-weighted normalised WD averaged over differ-
ent σVAE . It can be seen that improvement is greater on the image subset with
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poorer quality (BGAN1) than better quality (BGAN0). A similar trend can be
seen in Fig. 2 where greater improvement can be seen on the synthetic dataset
than on the real data. These results suggest our approach becomes more useful
the more different the test data deviates from the training data. We also notice
that improvement is the smallest on major axis measurements. We reason that
major axis measurements are generally more robust to segmentation errors as it
requires a lot of misclassified pixels to change the size of an instance’s bounding
box so the other measurements benefit more from confidence weighting.

Table 1. Improvement in confidence-weighted distribution estimates. A com-
parison of how our approach performs on different BNNs, image quality, and measure-
ments. (Lower is better)

Measurement MC Dropout BBB LRT Mean

BGAN0 BGAN1 BGAN0 BGAN1

Area −0.136 −0.158 −0.214 −0.229 −0.184

yγ −0.246 −0.288 −0.337 −0.369 −0.310

Major axis −0.106 −0.124 −0.188 −0.202 −0.155

Mean −0.163 −0.190 −0.246 −0.267

By looking at how confidence measure correlates with the measured parame-
ters, we find that smaller instances generally have higher entropy as uncertainty
is highest near the edge of the instances. We attribute the reason as to why our
approach works despite the correlation is because the segmentation algorithm
might have picked up lots of false positive small instances so weighting these
instance less counters this correlation.

4 Conclusion

We proposed a method to improve pathological measurements by weighting tis-
sue instances by confidence measures derived from BNNs without the need to
find a hyperparameter to discard instances with high uncertainty.

To demonstrate the performance of our method, we generated synthetic
data with an embedding that progressively differs from the original images.
Confidence-weighted measurements were obtained on both real and synthetic
images using uncertainty derived from UNets with either MC Dropout or Bayes
by Backprop. The weighted distribution improved for all pathological measure-
ments, suggesting that our proposal is robust to the choice of BNN and mea-
surement. We also notice that the improvement is greater over analysis of data
with lesser resemblance to the training data, suggesting that our approach could
be particularly useful for cross-domain datasets. For future work, we will inves-
tigate whether decorrelating pathological parameters with confidence measures
could help to further improve metric estimation.

Our synthetic dataset is available at https://tinyurl.com/vaebicycleganpas.

https://tinyurl.com/vaebicycleganpas


Improving Pathological Measurements with BNNs 69

References

1. Blundell, C., Cornebise, J., Kavukcuoglu, K., Wierstra, D.: Weight uncertainty in
neural networks. arXiv preprint arXiv:1505.05424 (2015)

2. Boykov, Y., Funka-Lea, G.: Graph cuts and efficient ND image segmentation. Int.
J. Comput. Vis. 70(2), 109–131 (2006). https://doi.org/10.1007/s11263-006-7934-
5

3. Chatrian, A., Sirinukunwattana, K., Verrill, C., Rittscher, J.: Towards the identifi-
cation of histology based subtypes in prostate cancer. In: 2019 IEEE 16th Interna-
tional Symposium on Biomedical Imaging (ISBI 2019), pp. 948–952. IEEE (2019)

4. DeVries, T., Taylor, G.W.: Leveraging uncertainty estimates for predicting seg-
mentation quality. arXiv preprint arXiv:1807.00502 (2018)

5. Gal, Y., Ghahramani, Z.: Dropout as a Bayesian approximation: representing
model uncertainty in deep learning. In: International Conference on Machine Learn-
ing, pp. 1050–1059 (2016)

6. Isola, P., Zhu, J.Y., Zhou, T., Efros, A.A.: Image-to-image translation with condi-
tional adversarial networks. In: Proceedings of the IEEE conference on computer
vision and pattern recognition, pp. 1125–1134 (2017)

7. Kendall, A., Badrinarayanan, V., Cipolla, R.: Bayesian SegNet: model uncertainty
in deep convolutional encoder-decoder architectures for scene understanding. arXiv
preprint arXiv:1511.02680 (2015)

8. Kendall, A., Gal, Y.: What uncertainties do we need in Bayesian deep learning
for computer vision? In: Advances in Neural Information Processing Systems, pp.
5574–5584 (2017)

9. Kingma, D.P., Welling, M.: Auto-encoding variational bayes. arXiv preprint
arXiv:1312.6114 (2013)

10. Kingma, D.P., Salimans, T., Welling, M.: Variational dropout and the local repa-
rameterization trick. In: Advances in Neural Information Processing Systems, pp.
2575–2583 (2015)

11. Kohl, S., et al.: A probabilistic U-Net for segmentation of ambiguous images. In:
Advances in Neural Information Processing Systems, pp. 6965–6975 (2018)

12. Kwon, Y., Won, J.H., Kim, B.J., Paik, M.C.: Uncertainty quantification using
Bayesian neural networks in classification: application to biomedical image seg-
mentation. Comput. Stat. Data Anal. 142, 106816 (2020)

13. Lakshminarayanan, B., Pritzel, A., Blundell, C.: Simple and scalable predictive
uncertainty estimation using deep ensembles. In: Advances in Neural Information
Processing Systems, pp. 6402–6413 (2017)

14. Larsen, A.B.L., Sønderby, S.K., Larochelle, H., Winther, O.: Autoencoding beyond
pixels using a learned similarity metric. In: International Conference on Machine
Learning, pp. 1558–1566 (2016)

15. Lin, T.Y., Goyal, P., Girshick, R., He, K., Dollár, P.: Focal loss for dense object
detection. In: Proceedings of the IEEE International Conference on Computer
Vision, pp. 2980–2988 (2017)

16. Maas, A.L., Hannun, A.Y., Ng, A.Y.: Rectifier nonlinearities improve neural net-
work acoustic models. In: Proceedings of the ICML, vol. 30, no. 1, p. 3 (2013)

17. Miller, D., Dayoub, F., Milford, M., Sünderhauf, N.: Evaluating merging strategies
for sampling-based uncertainty techniques in object detection. In: 2019 Interna-
tional Conference on Robotics and Automation (ICRA), pp. 2348–2354. IEEE
(2019)

http://arxiv.org/abs/1505.05424
https://doi.org/10.1007/s11263-006-7934-5
https://doi.org/10.1007/s11263-006-7934-5
http://arxiv.org/abs/1807.00502
http://arxiv.org/abs/1511.02680
http://arxiv.org/abs/1312.6114


70 K. H. Tam et al.

18. Miller, D., Nicholson, L., Dayoub, F., Sünderhauf, N.: Dropout sampling for robust
object detection in open-set conditions. In: 2018 IEEE International Conference
on Robotics and Automation (ICRA), pp. 1–7. IEEE (2018)

19. Morrison, D., Milan, A., Antonakos, E.: Uncertainty-aware instance segmenta-
tion using dropout sampling. Technical report, CVPR Robotic Vision Probabilistic
Object Detection Challenge (2019)

20. Mukhoti, J., Gal, Y.: Evaluating Bayesian deep learning methods for semantic
segmentation. arXiv preprint arXiv:1811.12709 (2018)

21. Ng, M., Guo, F., Biswas, L., Wright, G.A.: Estimating uncertainty in neuralnet-
works for segmentation quality control. Technical report (2018). https://www.doc.
ic.ac.uk/∼bglocker/public/mednips2018/med-nips 2018 paper 105.pdf

22. Nketia, T.A., Noble, J.A., Rittscher, J.: Towards quantifying the impact of cell
boundary estimation on morphometric analysis for phenotypic screening. In: 2015
IEEE 12th International Symposium on Biomedical Imaging (ISBI), pp. 781–784.
IEEE (2015)

23. Orlando, J.I., et al.: U2-Net: a Bayesian U-Net model with epistemic uncertainty
feedback for photoreceptor layer segmentation in pathological oct scans. In: 2019
IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019), pp. 1441–
1445. IEEE (2019)

24. Ramdas, A., Trillos, N.G., Cuturi, M.: On wasserstein two-sample testing and
related families of nonparametric tests. Entropy 19(2), 47 (2017)

25. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomed-
ical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F.
(eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015).
https://doi.org/10.1007/978-3-319-24574-4 28

26. Shridhar, K., Laumann, F., Liwicki, M.: A comprehensive guide to Bayesian convo-
lutional neural network with variational inference. arXiv preprint arXiv:1901.02731
(2019)

27. Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment:
from error visibility to structural similarity. IEEE Trans. Image Process. 13(4),
600–612 (2004)

28. Weissenbacher, A.: Normothermic kidney preservation. Ph.D. thesis, University of
Oxford (2018)

29. Weissenbacher, A., Lo Faro, L., Boubriak, O., Soares, M.F., Roberts, I.S., Hunter,
J.P., Voyce, D., Mikov, N., Cook, A., Ploeg, R.J., et al.: Twenty-four-hour nor-
mothermic perfusion of discarded human kidneys with urine recirculation. Am. J.
Transplant. 19(1), 178–192 (2019)

30. Zhu, J.Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation
using cycle-consistent adversarial networks. In: Proceedings of the IEEE Interna-
tional Conference on Computer Vision, pp. 2223–2232 (2017)

31. Zhu, J.Y., et al.: Toward multimodal image-to-image translation. In: Advances in
neural information processing systems, pp. 465–476 (2017)

http://arxiv.org/abs/1811.12709
https://www.doc.ic.ac.uk/~bglocker/public/mednips2018/med-nips_2018_paper_105.pdf
https://www.doc.ic.ac.uk/~bglocker/public/mednips2018/med-nips_2018_paper_105.pdf
https://doi.org/10.1007/978-3-319-24574-4_28
http://arxiv.org/abs/1901.02731


Improving Reliability of Clinical Models
Using Prediction Calibration

Jayaraman J. Thiagarajan1, Bindya Venkatesh2(B), Deepta Rajan3,
and Prasanna Sattigeri3

1 Lawrence Livermore National Labs, Livermore, USA
2 Arizona State University, Tempe, USA
3 IBM Research AI, New York city, USA

Abstract. The wide-spread adoption of representation learning tech-
nologies in clinical decision making strongly emphasizes the need for
characterizing model reliability and enabling rigorous introspection of
model behavior. In supervised and semi-supervised learning, prediction
calibration has emerged as a key technique to achieve improved general-
ization and to promote trust in learned models. In this paper, we inves-
tigate the effectiveness of different prediction calibration techniques in
improving the reliability of clinical models. First, we introduce reliability
plots, which measures the trade-off between model autonomy and gener-
alization, to quantify model reliability. Second, we propose to utilize an
interval calibration objective in lieu of the standard cross entropy loss to
build classification models. Finally, using a lesion classification problem
with dermoscopy images, we evaluate the proposed prediction calibration
approach against both uncalibrated models as well as existing prediction
calibration techniques such as mixup and single-shot calibration.

Keywords: Prediction calibration · Deep learning · Uncertainty
quantification · Reliability

1 Introduction

Artificial intelligence methods such as deep learning have achieved unprecedented
success with critical decision-making, from diagnosing diseases to prescribing
treatments, in healthcare [4,11,17]. However, to prioritize patient safety, one
must ensure such methods are accurate and reliable [2]. For example, a neural
network model can produce highly concentrated softmax probabilities – suggest-
ing a reliable class assignment – even for out-of-distribution test samples, which
indicates that the confidences are not well-calibrated. This strongly emphasizes
the need to both reliably assess model’s confidences [8,16], and enable rigorous
introspection of model behavior [1,2,23]. As a result, a large class of methods
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that characterize prediction uncertainties in deep models to evaluate their relia-
bility have emerged [5,7,8,10]. A number of studies based on these uncertainty
estimation methods have reported that predictions from deep models are often
poorly calibrated [5,10]. A widely adopted solution to address this limitation is
to incorporate prediction calibration strategies into the learning process [21,22].

In this paper, we propose to study the role of prediction calibration in improv-
ing the reliability of clinical models. To this end, we first introduce reliability
plots, which measure the trade-off between model autonomy and expected gen-
eralization performance by including experts in the loop during inference, as
a holistic evaluation mechanism of model reliability. Using this tool, we study
the effectiveness of existing approaches including standard deep models (uncal-
ibrated) and state-of-the-art prediction calibration techniques such as mixup
regularization [22] and single-shot confidence calibration [18]. Next, we propose
a new prediction calibration technique for classification models based on interval
calibration, which has been found to be highly effective for regression tasks [21].
Finally, using a lesion classification problem with dermoscopy images, we demon-
strate the effectiveness of the proposed approach over existing calibration tech-
niques.

2 Prediction Calibration in Deep Models

Formally, the goal of predictive modeling is to build a functional relationship
between observed input data x (image or a vector representation from a pre-
trained feature extractor) and a response variable y. Without loss of general-
ity, we consider a K–way classification problem where y ∈ Y = {1, 2, · · · ,K}.
This is typically solved using supervised learning, where the expected discrep-
ancy between y and f(x), typically measured using a loss function L(y, f(x)), is
minimized over the joint distribution p(x, y). The predictive modeling process
amounts to estimating the tuple (ŷ, p̂), where ŷ is the predicted label and p̂ is
the likelihood of the prediction. Note, p̂ is a sample from the unknown likelihood
p(y|x), which represents the associated uncertainties in the prediction.

The intricate interactions between data sampling, model selection and the
inherent stochasticity strongly emphasize the need for a rigorous characteriza-
tion of ML algorithms. In conventional statistics, uncertainty quantification (UQ)
provides this characterization by measuring how accurately a model reflects the
physical reality and by studying the impact of different error sources on the pre-
diction [9,10,19]. Consequently, several recent efforts have proposed to utilize
prediction uncertainties in deep models to shed light onto when and how much to
trust the predictions [2,6,15,20]. However, it has been reported in several studies
that these estimators are not inherently well calibrated [12], i.e., the confidences
of a model in its predictions are not correlated to its accuracy. Consequently,
approaches that are aimed at producing well-calibrated predictions have gained
interest. For example, in a fully supervised setting, one might expect a reliable
predictive model not to be overconfident while making wrong predictions [18]. In
practice, these requirements are incorporated as regularization strategies to sys-
tematically adjust the predictions during training, most often leading to better



Improving Reliability of Clinical Models Using Prediction Calibration 73

performing models. Though a large class of methods exist for obtaining cali-
brated predictions [10,13], we focus on two state-of-the-art approaches:

(i) Mixup: This is a popular augmentation strategy [25] that generates addi-
tional synthetic training samples by convexly combining random pairs of images
and their corresponding labels, in order to temper overconfidence in predictions.
Recently, in [22], it was found that mixup regularization led to improved cali-
bration in the resulting model. Formally, mixup training is designed based on
Vicinal Risk Minimization, wherein the model is trained not only on the training
data, but also using samples in the vicinity of each training sample:

x = λxi + (1 − λ)xj ; y = λyi + (1 − λ)yj , (1)

where xi and xj are randomly chosen samples with labels yi and yj . The param-
eter λ, drawn from a symmetric Beta distribution, determines the mixing ratio.

(ii) Single-shot Confidence Calibration (SSC): Seo et al. [18] proposed to
augment a confidence-calibration term to the standard cross-entropy loss and
the two terms are weighted using the variance measured via multiple stochastic
inferences. Mathematically, this can be written as:

1
N

N∑

i=1

−(1 − αi) log(p(ŷi|xi)) + αiDKL(U(y)||p(ŷi|xi)). (2)

Here the first term denotes the cross-entropy loss, and the predictions p(ŷi|xi) are
inferred using stochastic inferences for xi, while the variance (αi) in the predic-
tions is used to balance the loss terms. More specifically, we perform T forward
passes with dropout in the network and promote the softmax probabilities to
be closer to an uniform distribution, i.e. high uncertainty, when the variance is
large. The normalized variance αi is given by the mean of the Bhattacharyya
coefficients between each of the T predictions and the mean prediction.

3 Model Evaluation Using Reliability Plots

While metrics such as accuracy and area under ROC have been widely adopted
for evaluating model performance, we argue that it is critical to understand how
calibrated the confidences of a model are, in order to quantify its reliability.
In practice, metrics such as the empirical calibration error and Brier score are
used to quantify the reliability of classification models. However, these metrics
are known to be insufficient when estimated using smaller datasets and more
importantly are not readily interpretable to a practitioner. Hence, we introduce
reliability plots to study the trade-off between model autonomy and performance
- i.e. by allowing a model to defer from making predictions when its confidence
is low, we can effectively characterize how well the model is calibrated. On one
extreme, the model can defer every decision to the expert thus being not useful
in practice, while on the other hand, by making predictions even in regimes of
large uncertainty, an over-confident model can be unfavorable in clinical settings.
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A reliability plot quantifies this trade-off between model autonomy and
expected test-time performance by including experts (virtually) in the loop dur-
ing inference. We use the held-out validation set to construct a reliability plot
as follows: We first measure the model’s confidence on a prediction for each
sample, e.g. using the entropy of the softmax probabilities from a neural net-
work, H(ρ) =

∑K
k=1 −ρ[k] log ρ[k] where ρ = Softmax(ŷ). Subsequently, we rank

the samples based on their confidences, and hypothesize that one can use the
model’s predictions for the most confident cases and engage the expert to label
less confident samples (i.e. use the true labels from the validation set). The over-
all performance is obtained by combining the predictions from both the model
and the expert. In an ideal scenario, one would expect high validation accura-
cies for the model, while requiring minimal expert involvement. A reliability plot
summarizes this trade-off by varying the % Samples deferred by the model to
an expert and measuring the validation accuracy in each case.

4 A New Prediction Calibration Objective

We now present the proposed prediction calibration approach for classification
problems. Subsequently, we will introduce a simple confidence estimation strat-
egy for our approach, which can be used for assessing the reliability of predic-
tions.

Interval Calibration. The notion of interval calibration comes from the uncer-
tainty quantification literature and is used to evaluate uncertainty estimates
in continuous-valued regression problems. Assuming that a model f produces
prediction intervals, in lieu of simple point estimates, for the response y, i.e.,
[ŷ − δ, ŷ + δ]. Here, δ is used to define the interval. While the point estimate
is a random variable, an interval estimate is a random interval which has a cer-
tain probability of containing a value. Suppose that the likelihood for the true
response y to be contained in the prediction interval is p(ŷ − δ ≤ y ≤ ŷ + δ),
the intervals are considered to be well calibrated if the likelihood matches the
expected confidence level. For a confidence level α, we expect the interval to con-
tain the true response for 100×α% of realizations from p(x). Recently, in [21], it
was showed that interval calibration can be used to design a loss function to cre-
ate well-calibrated deep regression models. In this paper, we propose to leverage
interval calibration to obtain well-calibrated predictions in clinical problems.

Algorithm. Our model is comprised of two modules f and g, implemented as
neural networks, to produce estimates ŷ = f(x) and δ = g(x) respectively. Here,
ŷ ∈ R

K is a vector of predicted logits for each of the K classes. Since the interval
calibration process is defined for continuous-valued targets, we define the loss
function for training on the logits directly. In other words, our models are trained
solely on the interval calibration objective without including standard loss func-
tions like the cross-entropy or the focal loss. To this end, we first transform the
ground truth labels into logits. More specifically, we found that smoothing the
labels led to improved convergence. For example, in our experiments, we consider
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a 7-way classification problem and for a training sample belonging to class 1 we
assigned the logits [+2,−2,−2,−2,−2,−2,−2]. This assignment allows a small
non-zero probability (≈0.015) to each of the other 6 classes. As discussed earlier,
suppose that the likelihood for the true y[k], k ∈ (1, · · · ,K) (K = 7 in our exper-
iments) to be contained in the interval is p(ŷ[k] = −δ[k] ≤ y[k] ≤ ŷ[k] + δ[k]),
the intervals are considered to be well calibrated if the likelihood matches the
expected confidence level. Here, the index k indicates the kth output unit.

Denoting the parameters of the models f and g by θ and φ respectively,
we design an alternating optimization strategy based on interval calibration to
infer the parameters using the labeled data {(xi, yi)}N

i=1. In order to update the
parameters of g, we use an empirical interval calibration error, similar to [21],
evaluated using mini-batches:

φ∗ = arg min
φ

K∑

k=1

∣∣∣∣∣α − 1
N

N∑

i=1

1

[
(ŷi[k] − δi[k]) ≤ yi[k] ≤ (ŷi[k] + δi[k])

]∣∣∣∣∣ , (3)

where δi = g(xi;φ), yi[k] is the kth element of the vector yi and the desired
confidence level α is an input to the algorithm. When updating the parameters
φ, we assume that the estimator f(.; θ) is known and fixed. Now, given the
updated φ, we learn the parameters θ using the following hinge-loss objective:

θ∗ = arg min
θ

K∑

k=1

1
N

N∑

i=1

[
max

(
0, (ŷi[k] − δi[k]) − yi[k] + τ

)

+ max
(

0, yi[k] − (ŷi[k] + δi[k]) + τ

)]
, (4)

where ŷi = f(x; θ) and τ is a threshold set to 0.05 in our experiments. Intuitively,
for a fixed φ, obtaining improved estimates for ŷ can increase the empirical cal-
ibration error in (3) by achieving higher likelihoods even for lower confidence
levels. However, in the subsequent step of updating φ, we expect δ

′
s to become

sharper in order to reduce the calibration error. This collaborative optimiza-
tion process thus leads to superior quality point estimates and highly calibrated
intervals. We repeat the two steps (Eqs. (3) and (4)) until convergence.

Measuring Confidences. In order to construct reliability plots for models
trained using the proposed approach, we define a confidence estimation strategy.
For a test sample x, we first use the predictor f to estimate the logits ŷ and the
corresponding class label 	 = arg maxk ŷ[k]. The confidence for the prediction is
computed using the interval estimator g as follows:

Conf(x) =
δ[	]

max
k �=�

δ[k]
; δ = g(x), 	 = arg max

k
ŷ[k]. (5)

While the numerator indicates the uncertainty in accepting the positive class, the
denominator indicates the worst-case uncertainty in rejecting a negative class.
When this confidence measure is larger than 1, the model effectively avoids
confusion with other classes. On the other hand, for samples near the decision
boundary, the confidence score will be lesser than 1.



76 J. J. Thiagarajan et al.

Fig. 1. Distribution of latent features in each class obtained using DIP-VAE [14]. We
show the decoder reconstruction for the average latent vector in each of the classes.
Furthermore, we illustrate the distribution for each latent dimension obtained using
images from all 7 classes. We observe that these generative factors in addition to
enabling reliable model design, they can provide interpretable signatures that are useful
for discriminating between different lesion types.

5 Experiments

5.1 Dataset and Problem Description

In this paper, we use the ISIC 2018 lesion diagnosis challenge dataset [3,24],
which contains a total of 10, 015 dermoscopic lesion images (corresponding to
the labeled training set) from the HAM10000 database [24]. The images were
acquired with a variety of dermatoscope types from a historical sample of patients
presented for skin cancer screening from multiple institutions. Each image is asso-
ciated with one out of 7 disease states: Melanoma, Melanocytic nevus, Basal
cell carcinoma, Actinic keratosis, Benign keratosis, Dermatofibroma and Vas-
cular lesion. The goal is to build a classifier to predict the disease type from
the image, while satisfying the key design objectives of improved model relia-
bility and being interpretable. Dermatologists use rules of thumb when initially
investigating a skin lesion, for example the widely adopted ABCD signatures:
asymmetry, border, color, and diameter. This naturally motivates the use of rep-
resentation learning approaches that can automatically infer latent concepts to
effectively describe the distribution of images in different classes.

5.2 Model Design

Pre-training. Supervised models built upon representations that align well with
true generative factors of data are found to be robust and interpretable. Most
real-world problems involve raw observations without any supervision about the
generative factors. Consequently, the use of latent generative models with dis-
entanglement has become popular, wherein the goal is to recover a latent space
with statistically independent dimensions – a small change in one of the dimen-
sions often produces interpretable change in the generated data sample.
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Table 1. Comparing prediction performance obtained by including prediction calibra-
tion during model design. We show the weighted area under ROC and the accuracy
scores. The results reported were obtained via 3-fold cross validation and the best
performance is highlited in bold.

Method W-AUC Accuracy

FCNN 0.8 ± 0.003 0.66 ± 0.008

SSC 0.77 ± 0.007 0.66 ± 0.003

Mixup 0.79 ± 0.011 0.69 ± 0.005

Proposed 0.83 ± 0.004 0.72 ± 0.005

In our approach, we use DIP-VAE [14], a variant of Variational Autoencoders
(VAE), which has been shown to be effective on standard disentanglement bench-
marks. The conventional VAE works with a relatively simple and disentangled
prior p(z) with no explicit interaction among the latent dimensions (e.g., the
standard normal N (0, I)). The complexity of the observed data x, modeled by
the decoder, is absorbed in the conditional distribution p(x|z) which infers the
interactions among latent dimensions. Even though the prior is disentangled, it
is possible that the variational distribution q(z) =

∫
q(z|x)p(x)dx (aggregated-

posterior), induced over the latent space, modeled by the encoder, is not disen-
tangled. DIP-VAE encourages a disentangled aggregated-posterior by matching
the covariance of the two distributions q(z) and p(z). This amounts to decorrelat-
ing the dimensions of the inferred latent space. Figure 1 shows the distribution
of latent features obtained using DIP-VAE (10 latent dimensions) for each of
the 7 classes. We also show the decoder reconstruction for the average latent
representation in each class.

Predictive Model. Given the latent representations for the images from the pre-
trained DIP-VAE model, we then construct a fully connected network to predict
the lesion type. The architectures for both models, f and g, were designed as
5–layer fully connected networks with hidden sizes [64, 128, 256, 64, 7] and ReLU
activation. In our experiments, we set the desired confidence level α = 0.9. We
used the Adam optimizer with learning rates 3e−4 and 1e−4 for the two models,
and performed the alternating optimization for 200 iterations.

Baselines. We consider the following baselines that were also trained using the
pre-trained representations from DIP-VAE: (i) a standard fully connected neural
network (FCNN) with the same architecture as described earlier; (ii) a fully
connected network trained using the single-shot calibration technique [18] (SSC);
(iii) fully connected network trained with mixup regularization [22] (Mixup).

5.3 Results

In Table 1, we report the performance of different modeling approaches obtained
using 3–fold cross validation of the proposed approach. As discussed earlier, we
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(a) W-AUC (b) Accuracy

Fig. 2. Reliability plots obtained using the different prediction calibration techniques.
We find that, in both metrics considered, the proposed approach achieves improved
accuracy (in the case of 0% samples excluded) and calibration.

used only the labeled training set from the ISIC 2018 dataset for our evaluation
and all models were trained using representations from a pre-trained DIP-VAE.
Furthermore, in Fig. 2, we show the reliability plots for both the uncalibrated
neural network baseline as well as the different prediction calibration strategies.
When compared to standard cross-entropy based training (uncalibrated), our
confidence estimates are highly effective. For instance, our approach achieves 81%
accuracy on this challenging benchmark with only 15% samples being deferred
to the expert, in contrast to the 75% accuracy of an uncalibrated neural network.
Even though the SSC baseline enforces prediction calibration, it performs poorly
when compared to other approaches. This can be attributed to the sensitivity of
the choice of the layer-wise dropout parameter, particularly in smaller datasets.
Similarly, the performance of Mixup strongly depends on the choice of mixing
hyperparameter. In contrast, our approach does not require hyperparameter tun-
ing, and can consistently produce reliable and safe models.

6 Conclusions

In this work, we demonstrated the importance of calibration strategies in build-
ing reliable models for clinical decision making. We used reliability plots to sim-
ulate the interventional decision making process in safety-critical applications,
thereby enabling effective validation of the model reliability. In addition, we pre-
sented a novel prediction calibration technique, based on interval calibration, for
training classifiers. Using empirical study with a challenging lesion classification
dataset, we showed that the proposed approach consistently outperforms stan-
dard cross-entropy based neural networks, as well as existing prediction calibra-
tion strategies such as mixup and single-shot calibration. Future work includes a
rigorous analysis of the uncertainty estimates obtained using our approach, and
investigating if this approach can be an effective solution for similar small-data
problems commonly encountered in clinical settings.
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Abstract. Uncertainty quantification in inverse medical imaging tasks
with deep learning has received little attention. However, deep models
trained on large data sets tend to hallucinate and create artifacts in
the reconstructed output that are not anatomically present. We use a
randomly initialized convolutional network as parameterization of the
reconstructed image and perform gradient descent to match the observa-
tion, which is known as deep image prior. In this case, the reconstruction
does not suffer from hallucinations as no prior training is performed. We
extend this to a Bayesian approach with Monte Carlo dropout to quantify
both aleatoric and epistemic uncertainty. The presented method is eval-
uated on the task of denoising different medical imaging modalities. The
experimental results show that our approach yields well-calibrated uncer-
tainty. That is, the predictive uncertainty correlates with the predictive
error. This allows for reliable uncertainty estimates and can tackle the
problem of hallucinations and artifacts in inverse medical imaging tasks.

Keywords: Variational inference · Hallucination · Deep learning

1 Introduction

Noise in medical imaging affects all modalities, including X-ray, magnetic reso-
nance imaging (MRI), computed tomography (CT), ultrasound (US) or optical
coherence tomography (OCT) and can obstruct important details for medical
diagnosis [1,7,16]. Besides “classical” approaches with linear and non-linear fil-
ters, such as the Wiener filter, or wavelet-denoising [3,22], convolutional neural
networks (CNN) have proven to yield superior performance in denoising of nat-
ural and medical images [16,28].

The task of denoising is an inverse image problem and aims at reconstructing
a clean image x̂ from a noisy observation x̃ = c ◦ x. A common assumption of
the noise model c of the image x̃ is additive white Gaussian noise with zero
mean and standard deviation σ [23,28]. Given a noisy image x̃, the denoising
can be expressed as optimization problem of the form

x̂ = arg min
{

L(x̃, x̂) + λR(x̂)
}

. (1)
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C. H. Sudre et al. (Eds.): UNSURE 2020/GRAIL 2020, LNCS 12443, pp. 81–96, 2020.
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ground truth reconstruction

Fig. 1. Hallucinations in reconstructed retinal OCT scan from supervisely trained
CNN. (Left) Ground truth OCT scan. (Right) The white arrow denotes a hallucinated
retinal layer that is anatomically incorrect. Hallucinations are the result of reconstruct-
ing an unseen noisy input using previously learned image statistics.

The reconstruction x̂ should be close to x̃ by means of a similarity metric L, but
with substantially less noise. The regularizer R expresses a prior on the recon-
structed images, which leads to x̂ having less noise than x̃. One usually imposes
a smoothness constrain by penalizing first or higher order spatial derivatives
of the image [24]. More recently, denoising autoencoders have successfully been
used to implicitly learn a regularization prior from a data set with corrupted
and uncorrupted data samples [11]. Autoencoders are usually composed of an
encoding and decoding part with a data bottleneck in between. The encoder
extracts important visual features from the noisy input image and the decoder
reconstructs the input from the extracted features using learned image statistics.

This, however, creates the root problem of medical image denoising with deep
learning that is addressed in this paper. The reconstruction is in accordance
with the expectation of the denoising autoencoder based on previously learned
information. At worst, the reconstruction can contain false image features, that
look like valid features, but are not actually present in the input image. Due
to the excellent denoising performance of autoencoders, those false features can
be indistinguishable from valid features to a layperson and are embedded in an
otherwise visually appealing image. This phenomenon is known as hallucina-
tion and, while acceptable in the reconstruction of natural images [25], must be
avoided at all costs in medical imaging (see Fig. 1). Hallucinations can lead to
false diagnoses and thus severely compromise patient safety.

To further increase the reliability in the denoised medical images, the recon-
struction uncertainty has to be considered. Bayesian autoencoders provide the
mathematical framework to quantify a per-pixel reconstruction uncertainty
[2,4,14]. This allows the detection of hallucinations and other artifacts, given
that the uncertainty is well-calibrated; i. e. the uncertainty corresponds well with
the reconstruction error [15].
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In this work, we employ deep image prior [18] to cope with hallucinations in
medical image denoising and provide a Bayesian approach with Monte Carlo
(MC) dropout [6] that yields well-calibrated reconstruction uncertainty. We
present experimental results on denoising images from low-dose X-ray, ultra-
sound and OCT. Compared to previous work, our approach leads to better
uncertainty estimates and is less prone to overfitting of the noisy image. Our
code is publicly available at github.com/mlaves/uncertainty-deep-image-prior.

2 Related Work

Image Priors. Besides manually crafted priors such as 3D collaborative filter-
ing [5], convolutional denoising autoencoders have been used to implicitly learn
an image prior from data [7,11]. Lempitsky et al. have recently shown that the
excellent performance of deep networks for inverse image tasks, such as denois-
ing, is based not only on their ability to learn image priors from data, but also
on the structure of a convolutional image generator itself [18]. An image gener-
ator network x̂ = fθ (z) with randomly-initialized parameters θ is interpreted
as parameterization of the image. The parameters θ of the network are found
by minimizing the pixel-wise squared error ‖x̃ − fθ (z)‖ with stochastic gradi-
ent descent (SGD). The input z is sampled from a uniform distribution with
additional perturbations by normally distributed noise in every iteration. This
is referred to as deep image prior (DIP). They provided empirical evidence that
the structure of a CNN alone is sufficient to capture enough image statistics to
provide state-of-the-art performance in inverse imaging tasks. During the process
of SGD, low-frequency image features are reconstructed first, followed by higher
frequencies, which makes human supervision necessary to retrieve the optimal
denoised image. Therefore, this approach heavily relies on early stopping in order
to not overfit the noise. However, a key advantage of deep image prior is the
absence of hallucinations, since there is no prior learning. A Bayesian approach
could alleviate overfitting and additionally provide reconstruction uncertainty.

Bayesian Deep Learning. Bayesian neural networks allow estimation of predic-
tive uncertainty [2] and we generally differentiate between aleatoric and epis-
temic uncertainty [12]. Aleatoric uncertainty results from noise in the data (e. g.
speckle noise in US or OCT). It is derived from the conditional log-likelihood
under the maximum likelihood estimation (MLE) or maximum posterior (MAP)
framework and can be captured directly by a deep network (i. e. by subdividing
the last layer of an image generator network). Epistemic uncertainty is caused by
uncertainty in the model parameters. In deep learning, we usually perform MLE
or MAP inference to find a single best estimate θ̂ for the network parameters.
This does not allow estimation of epistemic uncertainty and we therefore place
distributions over the parameters. In Bayesian inference, we want to consider
all possible parameter configurations, weighted by their posterior. Computing
the posterior predictive distribution involves marginalization of the parameters
θ, which is intractable. A common approximation of the posterior distribution

https://github.com/mlaves/uncertainty-deep-image-prior


84 M.-H. Laves et al.

is variational inference with Monte Carlo dropout [6]. It allows estimation of
epistemic uncertainty by Monte Carlo sampling from the posterior of a network,
that has been trained with dropout.

Bayesian Deep Image Prior. Cheng et al. recently provided a Bayesian per-
spective on the deep image prior in the context of natural images, which is
most related to our work [4]. They interpret the convolutional network as spa-
tial random process over the image coordinate space and use stochastic gradient
Langevin dynamics (SGLD) as Bayesian approximation [26] to sample from the
posterior. In SGLD, an MC sampler is derived from SGD by injecting Gaus-
sian noise into the gradients after each backward pass. The authors claim to
have solved the overfitting issue with DIP and to be able to provide uncertainty
estimates. In the following, we will show that this is not the case for medical
image denoising, even when using the code provided by the authors. Further,
the uncertainty estimates from SGLD do not reflect the predictive error with
respect to the noise-free ground truth image.

3 Methods

3.1 Aleatoric Uncertainty with Deep Image Prior

We first revisit the concept of deep image prior for denoising and subsequently
extend it to a Bayesian approach with Monte Carlo dropout to estimate both
aleatoric and epistemic uncertainty. Let x̃ be a noisy image, x the true but
generally unknown noise-free image and fθ an image generator network with
parameter set θ, that outputs the denoised image x̂. In deep image prior, the
optimal parameter point estimate θ̂ is found by maximum likelihood estimation
with gradient descent, which results in minimizing the squared error

θ̂ = arg min ‖x̃ − fθ (z)‖2 (2)

between the generated image fθ and the noisy image x̃. The input z ∼ U(0, 0.1)
of the neural network has the same spatial dimensions as x̃ and is sampled from
a uniform distribution. To ensure that x̂ has less noise, carefully chosen early
stopping must be applied (see Sect. 5).

To quantify aleatoric uncertainty, we assume that the image signal x̃ is sam-
pled from a spatial random process and that each pixel i follows a Gaussian
distribution N (x̃i; x̂i, σ̂

2
i ) with mean x̂i and variance σ̂2

i . We split the last layer
such that the network outputs these values for each pixel

fθ =
[
x̂, σ̂2

]
. (3)

Now, MLE is performed by minimizing the full negative log-likelihood, which
leads to the following optimization criterion [12,15]

L(θ) =
1
N

N∑
i=1

σ̂−2
i

∥∥x̃i − x̂i

∥∥2 + log σ̂2
i , (4)
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where N is the number of pixels per image. In this case, σ̂2 captures the pixel-
wise aleatoric uncertainty and is jointly estimated with x̂ by finding θ that
minimizes Eq. (4) with SGD. For numerical stability, Eq. (4) is implemented
such that the network directly outputs − log σ̂2.

3.2 Epistemic Uncertainty with Bayesian Deep Image Prior

Next, we move towards a Bayesian view to additionally quantify the epistemic
uncertainty. The image generator fθ is extended into a Bayesian neural net-
work under the variational inference framework with MC dropout [6]. A prior
distribution p(θ) ∼ N (0, λ−1I) is placed over the parameters and the network
fθ̃ is trained with dropout by minimizing Eq. (4) with added weight decay. For
inference, T stochastic forward passes with applied dropout are performed to
sample from the approximate Bayesian posterior θ̃ ∼ q(θ). This allows us to
approximate the posterior predictive distribution

p(x̂|x̃) =
∫

p(x̂|θ, x̃)p(θ|x̃) dθ , (5)

which is wider than the distribution from MLE or MAP, as it accounts for
uncertainty in θ. We use Monte Carlo integration to estimate the predictive
mean

x̂ =
1
T

T∑
t=1

x̂t (6)

and predictive variance [12,15]

σ̂2 =
1
T

T∑
t=1

(
x̂t − 1

T

T∑
t=1

x̂t

)2

︸ ︷︷ ︸
epistemic

+
1
T

T∑
t=1

σ̂2
t

︸ ︷︷ ︸
aleatoric

(7)

with fθ̃t
= [x̂t, σ̂

2
t ]. In this work, we use T = 25 MC samples with dropout

probability of p = 0.3. The resulting x̂ is used as estimation of the noise-free
image and σ̂2 is used as uncertainty map. We use the mean over the pixel
coordinates as scalar uncertainty value U .

3.3 Calibration of Uncertainty

Following recent literature, we define predictive uncertainty to be well-calibrated
if it correlates linearly with the predictive error [8,15,19]. More formally, mis-
calibration is quantified with

Eσ̂2

[∣∣(‖x̃ − x̂‖2 ∣∣ σ̂2 = σ2
) − σ2

∣∣] ∀ {
σ2 ∈ R |σ2 ≥ 0

}
. (8)

That is, if all pixels in a batch were estimated with uncertainty of 0.2, we expect
the predictive error (MSE) to also equal 0.2. To approximate Eq. (8) on an
image with finite pixels, we use the uncertainty calibration error (UCE) metric
presented in [15], which involves binning the uncertainty values and computing a
weighted average of absolute differences between MSE and uncertainty per bin.
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xOCT x̃OCT xUS x̃US xxray x̃xray

Fig. 2. Images used to evaluate the denoising performance. The task is to reconstruct
a noise-free image from x̃ without having access to x. OCT and US images are charac-
terized by speckle noise which can be simulated by additive Gaussian noise. Low-dose
X-ray shows uneven photon density that can be simulated by Poisson noise.

4 Experiments

We refer to the presented Bayesian approach to deep image prior with Monte
Carlo dropout as MCDIP and evaluate its denoising performance and the cali-
bration of uncertainty on three different medical imaging modalities (see Fig. 2).
The first test image xOCT shows an OCT scan of a retina affected by choroidal
neovascularization. Next, xUS shows an ultrasound of a fetal head for gestational
age estimation. The third test image xxray shows a chest x-ray for pneumonia
assessment. All test images are arbitrarily sampled from public data sets [9,13]
and have a resolution of 512 × 512 pixel.

Images from optical coherence tomography and ultrasound are prone to
speckle noise due to interference phenomena [21]. Speckle noise can obscure
small anatomical details and reduce image contrast. It is worth mentioning that
speckle patterns also contain information about the microstructure of the tissue.
However, this information is not perceptible to a human observer, therefore the
denoising of such images is desirable. Noise in low-dose X-ray originates from an
uneven photon density and can be modeled with Poisson noise [17,27]. In this
work, we approximate the Poisson noise with Gaussian noise since Poisson(λ)
approaches a Normal distribution as λ → ∞ (see Appendix A.5). We first create
a low-noise image x by smoothing and downsampling the original image from
public data sets using the ANTIALIAS filter from the Python Imaging Library
(PIL) to 256×256 pixel. Downsampling involves averaging over highly correlated
neighboring pixels affected by uncorrelated noise. This decreases the observa-
tion noise by sacrificing image resolution (see Appendix A.4). The downsampled
image acts as ground truth to which we compute the peak signal-to-noise ratio
(PSNR) and the structural similarity (SSIM) of the denoised image x̂. Further,
we compute the UCE and provide calibration diagrams (MSE vs. uncertainty)
to show the (mis-)calibration of the uncertainty estimates.

We compare the results from MCDIP to standard DIP and to DIP with
SGLD from Cheng et al. [4]. SGLD posterior inference is performed by averaging
over T posterior samples x̂ = 1

T

∑T
t=1 x̂t after a “burn in” phase. The posterior

variance is used as an estimator of the epistemic uncertainty 1
T

∑T
t=1 (x̂ − x̂t)

2.
Cheng et al. claim that their approach does not require early stopping and yields
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Fig. 3. Peak signal-to-noise ratio between denoised image x̂ and ground truth x vs.
number of optimizer iterations. DIP and SGLD(+NLL) quickly overfit the noisy image.
MCDIP converges to its highest PSNR value and does not overfit x̃. The plots show
means from 3 runs with different random initialization.

better denoising performance. Additionally, we train the SGLD approach with
the loss function from Eq. (7) to consider aleatoric uncertainty and denote this
with SGLD+NLL. We implement SGLD using the Adam optimizer, which works
better in practice and is more related to preconditioned SGLD [20].

5 Results

The results are presented threefold: We show (1) possible overfitting in Fig. 3 by
plotting the PSNR between the reconstruction x̂ and the ground truth image x;
(2) denoising performance by providing the denoised images in Fig. 4 and PSNR
in Table 1 after convergence (i. e. after 50k optimizer steps); and (3) goodness of
uncertainty in Fig. 5 by providing calibration diagrams and uncertainty maps.

Our experiments confirm what is already known: The non-Bayesian DIP
quickly overfits the noisy image. The narrow peaks in PSNR values during opti-
mization show that manually performed early stopping is essential to obtain a
reconstructed image with less noise (see Fig. 3). The PSNR between x̂ and the
ground truth x approaches the value of the PSNR between the noisy image x̃
and the ground truth, thus reconstructing the noise as well. However, the SGLD
approach shows almost identical overfitting behavior in our experiments. This
is in contrast to what is stated by Chen et al., even when using the original
implementation of SGLD provided by the authors [4]. SGLD+NLL additionally
considers aleatoric uncertainty and converges to a higher PSNR level. This indi-
cates that SGLD+NLL does not overfit the noisy image completely. MCDIP
on the other hand does not show a sharp peak in Fig. 3 and safely converges
to its highest PSNR value. This requires no manual early stopping to obtain
a denoised image. The reconstructed X-ray images after convergence in Fig. 4
underline this: MCDIP does not reconstruct the noise. The PSNR values in
Table 1 confirm these observations. Although it was not the intention of this
work to reach highest-possible PSNR values, MCDIP even outperforms the other
methods with early-stopping applied (see Appendix A.2).
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ground truth DIP SGLD SGLD+NLL MCDIP

Fig. 4. Denoised X-ray images after convergence. Only MCDIP does not show overfit-
ted noise. Additional reconstructions can be found in Appendix A.1.

Table 1. PSNR values after convergence (at least 50k iterations). Note that our goal
was not to reach highest possible PSNR, but to show overfitting in convergence.

PSNR DIP SGLD SGLD+NLL MCDIP

OCT 23.64 ± 0.19 23.58 ± 0.12 24.82 ± 0.12 29.88± 0.03

US 23.55 ± 0.11 23.81 ± 0.15 24.55 ± 0.08 29.67± 0.07

X-ray 23.28 ± 0.08 23.50 ± 0.12 24.60 ± 0.04 31.19± 0.10
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Fig. 5. Calibration diagrams and uncertainty maps for SGLD+NLL with early stop-
ping and MCDIP after convergence on the X-ray image (best viewed with digital zoom).
(Left) The calibration diagrams show MSE vs. uncertainty and provide mean uncer-
tainty (U) and UCE values. (Right) Uncertainty maps show per-pixel uncertainty.

The calibration diagrams and corresponding UCE values in Fig. 5 suggest
that SGLD+NLL is better calibrated than MCDIP. However, due to overfitting
the noisy image without early stopping, the MSE from SGLD+NLL concentrates
around 0.0, which results in low UCE values. On the US and OCT image, the
uncertainty from SGLD+NLL collapses to a single bin in the calibration diagram
and does not allow to reason about the validness of the reconstructed image
(see Fig. 9 in Appendix A.1). The uncertainty map from MCDIP shows high
uncertainty at edges in the image and the mean uncertainty value (denoted by
U) is close to the noise level in all three test images.

6 Discussion and Conclusion

In this paper, we provided a new Bayesian approach to the deep image prior. We
used variational inference with Monte Carlo dropout and the full negative log-



Uncertainty Estimation with Bayesian Deep Image Prior 89

likelihood to both quantify epistemic and aleatoric uncertainty. The presented
approach is applied to medical image denoising of three different modalities and
provides state-of-the-art performance in denoising with deep image prior. Our
Bayesian treatment does not need carefully applied early stopping and yields
well-calibrated uncertainty. We observe the estimated mean uncertainty value
to be close to the noise level of the images.

The question remains why Bayesian deep image prior with SGLD does not
work as well as expected and is outperformed by MC dropout. First, SGLD as
described by Welling et al. requires a strong decay of the step size to ensure
convergence to a mode of the posterior [26]. Cheng et al. did not implement this
and we followed their approach [4]. After implementing the described step size
decay, SGLD did not overfit the noisy image (see AppendixA.3). However, this
requires a carefully chosen step size decay which is equivalent to early stopping.

The deep image prior framework is especially interesting in medical imaging
as it does not require supervised training and thus does not suffer from hallu-
cinations and other artifacts. The presented approach can further be applied to
deformable registration or other inverse image tasks in the medical domain.

A Appendix

A.1 Additional Figures

(See Figs. 6, 7, 8 and 10)

ground truth DIP SGLD SGLD+NLL MCDIP

Fig. 6. Denoised images after convergence.
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ground truth DIP SGLD SGLD+NLL MCDIP

Fig. 7. Denoised images with early-stopping applied.
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Fig. 8. MSE (top row) between denoised x̂ image and noisy image x̃ and SSIM (bottom
row) between denoised x̂ image and ground truth x vs. iteration. Only MCDIP does
not overfit the noisy image and converges with highest similarity to the ground truth.
Despite the claim of the authors, SGLD suffers from overfitting and creates the need for
carefully applied early stopping [4]. Note: We compared both our own implementation
of SGLD and the original code provided by the authors. The plots show means from 3
runs with different random initialization.
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A.2 Additional Tables

(See Table 2, 3 and 4)

Table 2. PSNR with early-stopping.

PSNR DIP SGLD SGLD+NLL MCDIP

OCT 29.88 ± 0.02 29.89 ± 0.05 29.77 ± 0.07 29.92± 0.03

US 29.74 ± 0.05 29.78± 0.02 29.54 ± 0.03 29.7 ± 0.07

X-ray 30.91 ± 0.05 30.98 ± 0.09 30.74 ± 0.03 31.22± 0.1

Table 3. SSIM after convergence.

SSIM DIP SGLD SGLD+NLL MCDIP

OCT 0.582 ± 0.0 0.574 ± 0.0 0.66 ± 0.0 0.872± 0.0

US 0.687 ± 0.0 0.703 ± 0.0 0.723 ± 0.0 0.902± 0.0

X-ray 0.625 ± 0.0 0.631 ± 0.0 0.686 ± 0.0 0.922± 0.0
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Fig. 9. Calibration diagrams and uncertainty maps for SGLD+NLL and MCDIP after
convergence (best viewed with digital zoom). (Left) The calibration diagrams show
MSE vs. uncertainty and provide mean uncertainty (U) and UCE values. (Right) Uncer-
tainty maps show per-pixel uncertainty. Due to overfitting, the MSE and uncertainty
from SGLD+NLL concentrates around 0.0.
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Fig. 10. Calibration diagrams and uncertainty maps for SGLD+NLL after early stop-
ping and MCDIP after convergence (best viewed with digital zoom). (Left) The cal-
ibration diagrams show MSE vs. uncertainty and provide mean uncertainty (U) and
UCE values. (Right) Uncertainty maps show per-pixel uncertainty.

Table 4. SSIM with early-stopping.

SSIM DIP SGLD SGLD+NLL MCDIP

OCT 0.872 ± 0.0 0.872 ± 0.0 0.872 ± 0.0 0.872 ± 0.0

US 0.902 ± 0.0 0.903± 0.0 0.899 ± 0.0 0.903± 0.0

X-ray 0.915 ± 0.0 0.917 ± 0.0 0.912 ± 0.0 0.923± 0.0

A.3 SGLD with Step Size Decay

Additionall, we implement SGLD with step size decay as described by Welling
et al. [26]. The step size ε is used to scale the parameter update in the SGD step
(i.e. the learning rate) and defines the variance of the noise that is injected into
the gradients. Here, we reduce the step size at each step t exponentially with
εt = 0.999tε0. To satisfy the step size property (Eq. (2) in [26]), we fix the step
size once it decreases below 1e-8. We observe no overfitting of the noisy image
with step size decay (see Fig. 11). However, the quality of the resulting denoised
image is very sensitive to the decay scheme. Choosing a decrease that is too
low (i.e. εt = 0.9999tε0) results in overfitting; a decrease that is too high (i.e.
εt = 0.99tε0) results in convergence to a subpar reconstruction. This is equivalent
to carefully applied early stopping and therefore nullifies the advantage of SGLD
for denoising of medical images.
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Fig. 11. Comparison of SGLD and SGLD+LR (with step size decay). Carefully cho-
sen step size decay impedes overfitting the noisy image. (Right) Reconstruction of
SGLD+LR after convergence (no early stopping applied).

A.4 Downsampling

Here, we provide justification why downsampling of an image by averaging neigh-
boring pixels reduces the noise level and can be used as an approximation to a
ground truth noise-free image (by sacrificing image resolution).

Proposition 1. Downsampling of an image reduces the observation noise.

Proof. Let X = μx + εx and Y = μy + εy be two neighboring pixels affected by
additive i.i.d. noise εx, εy ∼ N (0, σ2). The pixels are assumed to be uncorrelated
to noise. Pixels in a local neighborhood are highly correlated and assumed to
be of high similarity μx ≈ μy = μ. Let Z = 1

2 (X + Y ) be the average of two
neighboring pixels (i.e. the result of downsampling). The expectation is given by

E[Z] =
1
2

(E[X] + E[Y ]) (9)

=
1
2
2E[X] (10)

= μ (11)

and the variance is given by

Var [Z] = Var
[
1
2

(X + Y )
]

(12)

=
1
22

(Var [X] + Var [Y ]) (13)

=
1
22

2Var [X] (14)

=
1
2
σ2 . (15)

Thus, if the similarity of neighboring pixels is sufficiently high, downsampling
reduces the variance of average pixel Z by a factor of 2. ��



94 M.-H. Laves et al.

Naturally, two neighboring pixels are not exactly equal. However, downsam-
pling can also be viewed as superposing two signals, each with a highly correlated
and an uncorrelated part. Without providing proof, the amplitude of the addi-
tion of two signals can be viewed as vector addition. In the uncorrelated case,
the two signals are perpendicular to each other and in the correlated case, the
angle between the two signals is acute. Thus, the correlated parts of the two
signals have a higher impact on the resulting addition than the uncorrelated
(noise) parts. In the ideal case, where the noise is uncorrelated and the signals
are in parallel, the same noise reduction as above follows.

A.5 Link Between Poisson Distribution and Normal Distribution

We approximate the Poisson noise to simulate a low-dose X-ray image with a
Normal distribution. It is well-known that the limiting distribution of Poisson(λ)
is Normal as λ → ∞ [10]. For completeness, we list a common proof using the
moment generating function of a standardized Poisson random variable:

Theorem 1. The Poisson(λ) distribution can be approximated with a Normal
distribution as λ → ∞.

Proof. Let Xλ ∼ Poisson(λ), λ ∈ {1, 2, . . .}. The probability mass function of
Xλ is given by

fXλ
(x) =

λxe−λ

x!
x ∈ {0, 1, 2, . . .} . (16)

The moment generating function is given by [10]

MXλ
(t) = E[etXλ ] = eλ(et−1) . (17)

The standardized Poisson random variable

Z =
Xλ − λ√

λ
(18)

has the limiting moment generating function

lim
λ→∞

MZ(t) = lim
λ→∞

E

[
exp

(
t · Xλ − λ√

λ

)]
(19)

= lim
λ→∞

exp
(
−t

√
λ
)
E

[
exp

(
tXλ√

λ

)]
(20)

= lim
λ→∞

exp
(
−t

√
λ
)

exp
(
λ

(
et/

√
λ − 1

))
(21)

= lim
λ→∞

exp
(
−t

√
λ + λ

(
tλ−1/2 + t2λ−1/2 + t3λ−3/2/6 + . . .

))

(22)

= lim
λ→∞

exp
(
t2/2 + t3λ−1/2/6 + . . .

)
(23)

= exp
(
t2/2

)
(24)

which is the moment generating function of a standard normal random
variable. ��
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Abstract. Developmental Dysplasia of the Hip (DDH) is the most com-
mon paediatric hip disorder and a major cause of early hip replacement
and osteoarthritis (OA) in young adults. Clinical practice for diagnosis
remains reliant on manual measurement of pediatric hip joint features
from 2D Ultrasound (US) scans, a process plagued with high inter/intra
operator and scan variability. Recently, 3D US was shown to be markedly
more reliable with deeply-learned image features effectively used to local-
ize and measure anatomical bone landmarks. However, opaqueness of
neural-net based analysis provides no means for assessing the reliabil-
ity of computed results, a limitation that hampers deployment in clini-
cal settings. We propose using interpretable uncertainty measures that
can simultaneously measure bone segmentation reliability and quantify
scan adequacy in clinical DDH assessment from 3D US. Our approach
measures the variability of estimates generated from an encoder-decoder
type CNN optimized for hip joint localization using random dropout. We
quantitatively evaluate our proposed uncertainty estimates on a clinical
dataset comprising 118 neonates. Results demonstrate smaller variability
in dysplasia metrics to be markedly correlated with higher Dice scores
for repeated segmentation estimates. Further, we observe that US scans
with lower dysplasia metric variability are strongly associated with those
labelled as clinically adequate by a human expert. Findings suggest that
our uncertainty estimation may improve clinical workflow acting as a
quality control check on deep learning based analysis. This in turn may
improve overall reliability of the diagnostic process and the prospects of
adoption in clinical settings.

Keywords: Developmental Dysplasia of the Hip (DDH) ·
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1 Introduction

Developmental Dysplasia of the Hip (DDH) - a condition characterized by hip
joint instability, is one of the most common orthopaedic congenital disorders
estimated to affect up to 2.85% of all newborns [5]. Accurate early clinical diag-
nosis of DDH is key for effective treatment [1]. Current clinical practice for DDH
diagnosis relies on 2D Ultrasound (US) imaging of the neonatal hip, owing to its
safety, low-cost, portability and ability to image yet-to-ossify bone structures. In
a typical diagnostic procedure, a sonographer will scan an infant’s hip looking
for relevant anatomical landmarks including the femoral head, ilium and acetab-
ulum. Once judged to be adequate for conducting measurements, the US scan is
saved for quantitative analysis. Later, the sonographer will manually delineate
the bone surfaces and extract metrics like the alpha angle and femoral head
coverage (FHC) to report the dysplastic condition of the infant. However, in a
meta-analysis study [10], Quader et al. reported 2D US to have very low inter-
exam and inter-observer intraclass correlation coefficient (ICC) for alpha angle
and FHC (23% and 2%). This significant variability motivated the exploration
of 3D US as a possibly better alternative for diagnosing DDH.

Quader et al. [9] proposed hand-engineered features including confidence-
weighted local phase symmetry (CSPS) of 3D US images to segment the femoral
head and pelvic bone. In [7], Quader et al. used a 3D alpha angle based on
the hand-engineered features reporting 75% reduction in test-retest variability
compared to standard 2D alpha angle, demonstrating 3D US to be a far more
reproducible alternative than conventional 2D US. More recently, Hariri et al. [3]
proposed using deep-learned features, which were shown to perform better in
bone localization of the hip joint than hand-engineered features, with the latter
having poorer robustness/generalizability to new data. In related work, Paserin
et al. [6] developed an automated deep-learning based scan adequacy assess-
ment method to aid the human operator in classifying US volumes as ‘adequate’
or ‘inadequate’ for subsequent DDH metric extraction, reporting a classifica-
tion Area under the Receiver Operating Characteristic curve (AROC) of 83%.
Despite these recent significant contributions towards deployment of 3D US for
DDH assessment, several limitations remain, the most important of which is
model opacity of neural network models. The black-box nature of deep-learning
frameworks present generalizability and interpretability complications to clinical
adoption.

In this work, we propose an interpretable uncertainty measure that quantifies
a U-Net-like architecture’s reliability in segmenting the hip joint. We deploy this
measure to augment extracted DDH metrics with an estimated uncertainty in
the network’s prediction. In addition to segmentation reliability estimation, we
demonstrate the utility of the uncertainty measure in assessing scan adequacy,
which can provide a more accurate approach to assessing the suitability of the
3D US images for subsequent quantitative analysis in real time during patient
scanning. Our method is based on Gal et al. approach to uncertainty estimation,
which deploys dropout as a simplified bayesian approximation for representing
model uncertainty while maintaining low computational cost [4].
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2 Methods

We propose estimating an interpretable uncertainty measure for clinical use of
automated deep learning-based US image analysis for hip dysplasia diagnosis.
Our measure captures the variability in DDH metric values and 3D US scan
quality as inferred by a CNN. More specifically, we deploy a 3D U-Net-like CNN
for segmenting pelvic bone surfaces that integrates dropout layers at the end
of each encoder-decoder block to approximate the architecture of a Bayesian
neural network by generating Monte-Carlo (MC) samples [4]. We extract diag-
nostic DDH metrics including 3D alpha angle [7] and 3D FHC [8] from said MC
segmentation samples to estimate uncertainty.

2.1 Materials and Experimental Setup

With required research ethics approvals in place, we collected 3D B-mode US
images of the hip from 118 newborns with mean age of 6 weeks using the Ultra-
sonix 4DL14-5/38 3D US probe with transducer centre frequency kept at 7.5
MHz, image depth of 3.8-5 cm and resolution of 0.16 mm/voxel. A specialized
US technician acquired multiple sweeps of both hips for each participant follow-
ing a static assessment protocol with no force applied to the hip. In this study,
we used a subset of the collected data totalling 133 volumes for training and
testing.

2.2 Bone Segmentation and Metric Extraction

We use a 3D U-Net-like architecture as shown in Fig. 1 comprising 4 encoder and
3 decoder blocks which we optimize for segmenting the femoral head, ilium and
acetabulum surfaces of the hip joint area. Each encoder-decoder block extracts
features using a conv3x3 ReLU conv3x3 ReLU arrangement.

Segmentation Network Training: A user who was closely mentored by an
expert radiologist manually traced the iliac bone and femoral head in 64 US
image volumes that we use to train our bone segmentation network. In addition
to manual tracing of relevant anatomical structures, the user labelled the ade-
quacy of each US volume with a ‘yes’, ‘no’ or ‘maybe’ label, where ‘yes’ signified
that all needed bone structures (femoral head, ilium and acetabulum) are ade-
quately visualized in the US volume, ‘no’ reflected absence of some or all of these
structures, and ‘maybe’ denoted border line scans where the user could not make
a clear designation. Our training used 16 (of the 64) volumes for validation. Due
to the limited amount of available labelled training data, we heavily augmented
this dataset including translation, rotation, flipping in medial and lateral direc-
tions, non-uniform zooming, as well as applying elastic deformations. As per the
standard configuration deployed in [3], we used stride 1 for the 3D convolutions
in the expanding and contracting path. We performed max-pooling of stride 2
with a kernel size of 2× 2 in the contracting path and transposed convolution in
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Fig. 1. Architecture used for segmenting the femoral head, ilium and acetabulum sur-
faces of the hip joint area from 3D US scans of infant hips.

the expanding path. A dropout layer with a probability rate of 0.1 was appended
at the end of each block (except for the final convolutional layer) to produce an
MC sample distribution. We trained our network to optimize the Binary Cross
Entropy (BCE) loss for 90 epochs with a batch-size of 1. Network features were
further optimized using stochastic gradient descent with a learning rate of 0.001
and a multi-step learning rate scheduler that decreased the learning rate by a
gamma factor of 0.1 at the 50th and 75th epochs. At inference time, a test US
volume was fed forward into the trained network N times to produce N MC
sample segmentations. We restricted the number of MC samples to 10 at test
time (<1 min) to reduce computational cost, as our training experiments showed
the resulting variance estimates were relatively insensitive to the number of pro-
cessing runs used; a marginal improvement of less than 0.006% when 100 MC
samples were generated instead of 10.

Extraction of DDH Metrics: Using the bone segmentations, we extracted the
3D alpha angle [7] and 3D FHC [8], as their 2D counterparts are most commonly
reported in clinical practice. The 3D alpha(α3D) measured the shallowness of the
hip socket and was defined as the angle between unit normal vectors to planar
surfaces fitted to the ilium and acetabulum in the segmented hip joint (Fig. 1). A
lower alpha angle dipping below normal range signifies increased DDH severity.
The 3D femoral head coverage (FHC3D) measures the percentage of the femoral
head capped by the acetabulum, and is defined as the ratio of the volume of
femoral head contained medial to the ilium plane to total femoral head volume
in the neonatal hip (Fig. 1). Lower FHC3D signifies increased DDH severity.
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2.3 Uncertainty Estimation

Model or epistemic uncertainty signifies the network’s confidence in the predic-
tion. Interpreted as a naive Bayesian approach [2], 3D U-Net can be approxi-
mated as a probabilistic model p(y|x,w) with x as input 3D US volume, y as the
corresponding class label and w as the parameters of the network. As w stores
features of training data, the model’s uncertainty can be evaluated by plac-
ing a prior distribution over the parameter w, denoted by p(w|x, y). However,
such analytical calculation of the function is impractical due to associated heavy
computational cost and extensive training time required. Instead, we use Gal et
al. tractable approach to approximate the distribution using MC sampling. To
estimate the variance in extracted DDH metrics on test data, we estimate the
MC distribution of the samples by enabling dropout activation at test time to
calculate the predictive standard deviation (SD):

SDDDH metric =

√
√
√
√ 1

N

N∑

n=1

(yn − y)2 (1)

where yn denotes the DDH metric calculated from each of N MC sample and y
is the average of the metric given by y = 1

N

∑

n(yn).
Having calculated our uncertainty estimate (SD) for each DDH metric per

volume, we further calculate a structure-wise uncertainty measure similar to Roy
et al. [11]. The structure-wise uncertainty measure is based on the pair-wise Dice
scores of all combinations of MC samples and is evaluated as the average of Dice
scores per test data, for the ilium and acetabulum surface segmentations dMC

IA ,
and the femoral head segmentations dMC

F .

dMC
IA =

1
N

N∑

i,j=1

Dice(IAi, IAj)i�=j (2)

dMC
F =

1
N

N∑

i,j=1

Dice(Fi, Fj)i�=j (3)

where N - number of MC samples, IA - ilium acetabulum segmentation mask, F
- femoral head segmentation mask and i,j - ith and jth MC sample.

3 Results and Discussion

We first evaluated the accuracy of our network comparing to Hariri et al. archi-
tecture [3] by calculating the Dice scores on 69 test volumes. Results demonstrate
that our addition of dropout layers did not result in any sacrifice in network
accuracy, achieving almost the same average Dice score of 85%.

In Fig. 2 we present the scatter plot between our estimated SD in DDH met-
rics and the corresponding structure-wise uncertainty measure (average Dice
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Fig. 2. Scatter plot between structure-wise uncertainty measure in segmented regions
and corresponding deviation estimated in DDH metrics

score of MC samples on the same test data). We observed that SD in 3D alpha
score is negatively correlated with average Dice score of ilium and acetabulum
segmentations, with a correlation value of −0.64. Similar observations were made
for femoral head coverage measurements; SD in 3D FHC was negatively corre-
lated with average Dice score estimated for femoral head segmentations with a
correlation value of −0.67. This confirms that accurate and stable segmentation
of the ilium, acetabulum, and femoral head is necessary for robust alpha angle
and FHC metric extraction. It is worth mentioning that certain outlier cases in
the scatter plots were observed, with concurrent low SD values and low average
Dice scores. This suggests that a combination of high average Dice scores and
low SD may be a better indication of uncertainty, compared to low SD on its
own.

Figure 2 also shows almost all scans with adequacy ‘yes’ labels have low SD
and ‘no’/‘maybe’ labels have high SD. Figure 3 shows qualitative examples of low
and high certainty cases for each of the scan adequacy labels (yes, no, maybe).
We evaluate our proposed uncertainty measure for adequacy classification by
testing for statistical significance between the ‘yes’ and ‘no’/‘maybe’ labels. The
calculated variance in DDH metrics was tested for skewness and found to be not
normally distributed. Hence a non-parametric 2-independent sample test was
performed between the two adequacy groups ‘yes’ and ‘no/maybe’ labels. We
observed a statistically significant difference in SD for 3D alpha between the two
adequacy groups with a p-value of 0.001; similarly for 3D FHC, with a p-value
of 0.0015. This suggests that our proposed uncertainty may be quite valuable as
a tool for sonographers to decide on the inclusion of scans for diagnosis in real
time while scanning a patient: if the calculated variance of DDH metric is low,
the scan can be used for further analysis, otherwise is discarded and a better
scan is pursued. Figure 2 shows that certain ‘yes’ labels were associated with
high SD, and some ‘no’ labels with low SD. These scans are shown in Fig. 4. We
expect that this mislabelling of scan adequacy is related to user error.
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Fig. 3. Qualitative results to show examples of high/low certainty in predictions (bone
segmentation and scan adequacy classification) (a) Yes label with low uncertainty (SD
in α3D = 2.65◦, FHC3D = 3.03%), (b) Yes label with low uncertainty (SD in α3D

= 1.67◦, FHC3D = 1.67%), (c) Yes label with low uncertainty (SD in α3D = 1.15◦,
FHC3D = 1.72%), (d) No label with high uncertainty (SD in α3D = 21.34◦, FHC3D =
20.74%), (e) No label with high uncertainty (SD in α3D = 15.32◦, FHC3D = 6.60%),
(f) No label with high uncertainty (SD in α3D = 21.07◦, FHC3D = 9.11%), (g) Maybe
label with low uncertainty (SD in α3D = 1.25◦, FHC3D = 2.86%), (h) Maybe label
with high uncertainty (SD in α3D = 15.62◦, FHC3D = 11.5%), (i) Maybe label with
high uncertainty (SD in α3D = 10.05◦, FHC3D = 5.42%). Each colour represents each
of the MC sample generated per US volume.
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Fig. 4. Visualization of mislabelled adequacy volumes (a) Yes label with high uncer-
tainty (SD in α3D = 5.59◦, FHC3D = 13.59%), (b) Yes label with high uncertainty
(SD in α3D = 2.86◦, FHC3D = 8.88%), (a) No label with low uncertainty (SD in α3D

= 0.30◦, FHC3D = 3.48%), (a) No label with low uncertainty (SD in α3D = 1.79◦,
FHC3D = 3.32%),

4 Conclusions

We proposed the use of an interpretable model uncertainty measure to augment
a DL framework for DDH assessment. The proposed uncertainty measures help
quantify the network’s reliability in segmenting pelvic bone and femoral head
surfaces in 3D US scans of the neonatal hip and reliability of the DDH metrics
extracted from those segmentation. The measures can be also be used to clas-
sify the adequacy/inadequacy of acquired US scans for subsequent diagnosis of
DDH. Such capabilities have the potential to facilitate and accelerate adoption
of opaque deep learning based DDH analyses in clinical settings. Our future
work will focus on assessing our method’s generalizability to US data collected
at multi-institutional pediatric orthopedic centres evaluating DDH across the
world.
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Abstract. Recently, the use of connectional brain templates (CBTs)
has revolutionized the field of neurological disorder diagnosis through
providing integral representation maps of a population-driven brain con-
nectivity and effective identification of atypical changes in brain con-
nectivity. Ideally, a reliable CBT should satisfy the following criteria:
(1) centeredness as it occupies the center of the brain network popu-
lation, and (2) discriminativeness as it allows to identify differences in
brain connectivity between populations with different brain states (e.g.,
healthy and disordered). Existing state-of-the-art methods for connec-
tional brain template (CBT) estimation from a population of multi-view
brain networks (also called brain multigraphs) learn the integration pro-
cess in a dichotomized manner, where different learning steps are pieced
in together independently. Hence, such frameworks are inherently agnos-
tic to the cumulative estimation error from step to step. This is a key
limitation that we addressed by capitalizing on the power of deep learn-
ing frameworks residing in learning an end-to-end deep mapping using
a single objective function to optimize to transform input data into tar-
get output data. In this paper, we propose to learn a many-to-one deep
learning mapping by designing a clustering-based multi-graph integra-
tor network (MGINet). Our MGINet inputs population of brain multi-
graphs (many) and outputs a single CBT graph (one). We first propose
to tease apart brain multigraph data heterogeneity by first clustering
similar samples together using multi-kernel manifold learning. In this
way, we are optimally learning to disentangle the heterogeneity of our
population and facilitating the integration task for our MGINet. Next,
for each cluster, we first integrate the multigraph of each subject into
a single graph, then merge the generated graphs into a cluster-specific
CBT. Finally, we simply average the cluster-specific CBTs into a final
CBT. Our experimental results show that our MGINet largely outper-
forms state-of-the-art methods in terms of centeredness and represen-
tativeness of the estimated CBT using both autistic and healthy brain
multigraph datasets. Our clustering-based MGINet (cMGINet) source
code is available at https://github.com/basiralab/cMGINet in Python.
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1 Introduction

The use of image-based brain templates (or atlases) [1–5] has been prevalent in
automated brain parcellation and neuroscientific comparative studies –just to
name a few applications. The concept of image brain atlas has been recently
generalized to brain graphs by introducing the network-based brain atlas [6],
also called a connectional brain template (CBT), as an average of a population
of brain graphs, providing an integral connectional map charting the shared
brain connectivities across subjects. In particular, [6] designed a diffusive graph
shrinking technique using populations of unimodal (i.e. single connectivity type)
brain graphs. While this method is able to derive a representative CBT of a
population of brain graphs, the multimodal connectional aspect of the brain as
multigraph is overlooked. In a multigraph representation of the brain wiring,
the interaction between two anatomical regions of interest (ROIs), namely the
multigraph nodes, is encoded in a set of edges of multiple types. Each edge
type is defined using a particular measure for modeling the relationship between
brain ROIs such as functional connectivity derived from resting state functional
magnetic resonance imaging (MRI) or morphological similarity derived from
structural T1-weighted MRI [7].

In the face of the oncoming ‘tsunami’ of disordered neuroimaging datasets
[8,9] on brain graphs, namely the ongoing 14 connectomic brain data collection
studies for Connectome Related to Human Disease (CRHD) initiative funded
by the National Institutes of Health, there is an urgent need for handling con-
nectomic datasets with unprecedented scale and heterogeneity via developing
brain multigraphs integration framework for mapping brain connectivity. Hence,
models that capture the multimodal aspect present in the brains connectional
construct can build connectional templates that are highly designed for mapping
both healthy and disordered populations [10]. To fill this gap, [11] proposed net-
Norm, a brain multigraph integration framework based on first selecting, for each
pair of ROIs, the connectivity weight of most centered subject in the population
to generate a representative population tensor stacking centered network views.
Next, non-linear similarity fusion is used to integrate the population tensor into
a single CBT. So far, existing CBT estimation methods [6,11–13], develop the
integration process in dichotomized steps that are unrelated. Hence, such frame-
works are inherently agnostic to the cumulative estimation error from step to
step.

To address the limitations of such models, we formalize the integration tasks
of a set of multigraphs as a deep learning task, where we aim to learn a many-to-
one none-linear deep mapping from a population of multigraphs to a target CBT
in an end-end-manner using a single objective loss function to optimize. Deep
learning techniques such as convolutional neural networks (CNNs) and recurrent
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neural networks (RNNs) have achieved revolutionary performance results on a
wide range of real world problems from different domains (e.g. chemistry, biol-
ogy, medical imaging) [14]. Despite the indubitable performance of deep learning
approaches, they are heavily dependent on the Euclidean properties of the input
data which makes these techniques hard to apply on non-Euclidean data (i.e.
irregular data shapes) such as graphs. Considering the emergent interest in non-
Euclidean data (e.g. graphs) and the abundance of non-Euclidean data in real
world problems, many methods have been set under the term geometric deep
learning to mathematically suit graph structured data. The earliest applications
of deep learning on graphs were rooted in [15], which proposed the graph neu-
ral network (GNN) architecture as a generalization of neural networks to graph
structures. Other early attempts to extend CNN architecture to graphs were
due to Bruna et al. [16,17], in which a convolution-like operator was defined in
the graph spectral domain. Capitalizing on geometric deep learning, we propose
a multigraph integrator network (MGINet) for estimating a CBT from a pop-
ulation of multigraphs. The MGINet is a two-stage integration approach that
combines a subject-specific integration block and a cluster-specific integration
layer for a given set of graphs. In the first integration block, MGINet integrates
the multigraph of a single subject into a single graph. To effectively, extract
a characteristic graph representation, MGINet identifies the useful edge types
between connected nodes. This identification process results in generating meta-
paths which are composite edge relations of multiple edge attributes. Meta-paths
can be very useful to encapsulate the representative connections of a graph which
evidently leads to a dimensionality reduction. The second stage consists in inte-
grating the produced subject-specific graph in a particular cluster into a new
graph that is representative of all graphs in that cluster. This second integration
involves learning a weighted average vector under the constraint of minimizing
the distance between the resulting template and all multigraphs in the popu-
lations. Through this end-to-end integration process, we learn a single graph
representative of the multigraph population.

Given that brain multigraph data is inherently heterogeneous, we introduce
clustering prior to data integration to reduce the heterogeneity and eventually
facilitate the integration tasks for the MGINet. For clustering, we use multi-
kernel manifold learning introduced in [18] which learns a pairwise similarity
matrix between subjects by combining multiple Gaussian kernels with learned
weights to better capture the data distribution at multiple scales (i.e., stan-
dard deviation of the learned kernels). Next, for each cluster of brain multi-
graphs, we train a MGINet to generate a cluster-specific connectional brain tem-
plate. Finally, we use averaging (linear or nonlinear) to generate the final CBT
that represents the entire population. We compare our methods performance on
both autistic and typical brain multigraph populations against state-of-the-art
method netNorm [11] while also experimenting with different cluster numbers.
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Fig. 1. Overview of the cluster-based multi-graph integrator (cMGINet) pipeline for
connectional brain template estimation (CBT) from a population of brain multigraphs.

2 Proposed Method

We denote tensors by bold face Euler script letters, e.g., T . Matrices are denoted
by boldface capital letters, e.g., X, and scalars are denoted by lower case letters,
e.g., x.

Brain Multigraph Definition. The brain connectivity can be encoded in a
graph G = (V,E), where V = {v1, ..., vN} is a set of n = |V | nodes and E ⊆ V ×V
denotes a set of m = |E| edges connecting pairs of nodes. The graph nodes
represent brain ROIs while the graph edges represent the connectivity weights
between two ROIs. We can describe connectivity weights using many metrics
such as similarity in brain morphology or correlation between neural activities.
Using multiple measures to capture the interactions between ROIs, we define a
brain multigraph as a graph with multiple types of edges by assigning an R

p

vector for each edge with p being the number of edge features (i.e., connectivity
weights). Hence, a brain multigraph can be mathematically encoded in a tensor
A ∈ R

n×n×p to represent the edge features of the graph, which can also be
viewed as a set of stacked adjacency matrices {Ak}p

k=1, where Ak[i, j] is the
value of the kth connectivity attribute of the edge connecting the ith and jth

nodes.
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Problem Definition. Given a population of brain multigraphs {As}N
s=1 com-

prising N subjects, we aim to learn how to integrate them into a single brain
graph, namely a CBT, that represents the center of the population while sat-
isfying the following criteria: (1) centeredness as it occupies the center of the
brain multigraph population, and (2) discriminativeness as it allows to identify
differences in brain connectivity between populations with different brain states
(e.g., healthy and disordered).

Overall Framework. Figure 1 illustrates the steps of our proposed cluster-
based multi-graph integrator network (cMGINet) architecture for connectional
brain estimation of a population of brain multigraphs. Our proposed method
includes these major steps: (i) clustering subjects using MKML [18] to decrease
the heterogeneity of the dataset, (ii) training a cluster-specific multigraph inte-
grator network to extract a unique CBT for subjects in each cluster, and (iii)
population-specific CBT fusion to output a more representative CBT at a pop-
ulation level. These steps will be explained in detail in what follows.

Clustering Subjects Using Multi-kernel Manifold Learning (MKML)
[18]. Instead of using the whole population to estimate the population CBT,
we first cluster similar samples together using MKML algorithm [18] to create a
homogeneous data distribution within each cluster for effective MGINet training.
MKML takes as input a multi-view connectivity feature matrix of size N ×
(n × (n − 1)/2) × p) where, N is the number of subjects and n×(n−1)/2×p is the
connectivity weights in the off-diagonal upper triangular parts of the multigraph
tensor. The goal is to estimate similarity matrix S of size N × N that captures
the pairwise similarity between subjects. We extract the multi-view connectomic
feature vector fs for each brain multigraph tensor As by concatenating the off-
diagonal upper triangular parts of its frontal view matrices as follows:

fs = ‖p
k=1 As

k[i, j]; ∀(1 ≤ i, j ≤ n); where j > i (1)

where ‖ denotes the concatenation operation.
MKML uses multiple Gaussian kernels with learned weights to better cap-

ture the sample similarity patterns. Compared to using predefined distance met-
rics such as the Euclidean distance, this strategy is more effective in capturing
nonlinear relationships in our high-dimensional heterogeneous brain multigraph
dataset. Gaussian kernels take the form of K (fi, fj) = 1

εij
√
2π

exp
(
−‖fi−fj‖2

2
2ε2ij

)
,

where fi and fj denote the multi-view connectomic feature vectors for ith and
jth subjects, respectively. The variance εij is calculated using the mean Euclidean
distances between the feature vectors of subjects i and j and their respective k
nearest neighbors as follows:

μi =

∑
p∈KNN(fi)||fi−fp‖2

k
, εij =

σ (μi + μj)
2

(2)
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where σ represents the standard deviation of the kernel K. MKML learns
the similarity matrix S ∈ R

N×N by optimizing the following objective function:

min
S,L,w

∑
i,j

−wlKl (fi, fj)Sij + β‖S‖2F + γtr
(
LT (In − S)L

)
+ ρ

∑
l

wl log wl

Subject to:
∑

l wl = 1, wl ≥ 0,LTL = Ic,
∑

j Sij = 1, and Sij ≥ 0 for all
(i, j), where:

�
∑

i,j −wlKl

(
f i, f j

)
Sij captures the relationship between the kernel dis-

tance and the similarity matrix with the intuition that if the kernel distance
between subjects is high the learned similarity should be small.

� β‖S‖2F is the regularization term that prevents over-fitting.
� γtr

(
LT (In − S)L

)
: L is an auxiliary low-dimensional matrix of size N×Nc

where N is the number of subjects and Nc is the number of clusters, enforcing the
low rank constraint on S. The matrix (In − S) is essentially the graph Laplacian.

� ρ
∑

l wl log wl term enforces the selection of multiple kernels as it prohibits
the learned weights from shrinking to 0, which might end up in selecting one
kernel or zero kernels.

MKML objective function is non-convex; however, its terms depending on
S, w and L are convex. So an alternating tri-convex optimization method is
adopted where we fix two of the variables and optimize for the other one [18].
The learned latent matrix L of size R

N×Nc retains the similarities captured
in S in a lower dimensional space which enhances the accuracy of clustering
algorithms. K-means clustering is then applied on the latent matrix to group
similar samples together.

Cluster-Specific MGINet. The MGINet takes in a set of multigraph tensors
{As}N

s=1 and outputs a single n × n matrix (i.e. CBT) that is centered in terms
of Frobenius distance to all connectivity tensors. The MGINet framework was
inspired by graph transformer network introduced in [19], which we have adapted
to our goal by introducing a new population-based objective loss function to opti-
mize. In fact, while the original graph transformer network (GTN) [19] was first
proposed to solve node classification task, here we adapt it to solve a multigraph
integration task. Our MGINet consists of two parts. The first part reduces the
dimensionality of the input subject-specific tensor A ∈ R

n×n×p and transforms
it into a more representative single graph encoded in a n × n matrix (Fig. 1–
C). The second part generates for each cluster the final cluster-specific CBT by
learning a weighted averaging of the previously produced subject-specific brain
graphs. Extraction of single view networks out of multi-view graphs is done by
meta-path generation as explained in [19]. Meta-paths can be used to explain
relationships between nodes that cannot be characterized by a single edge type.
Despite of their specificity, meta-paths are often hard to discover without an
automated generation process specially when it comes to relatively complicated
graphs. The meta-path generation is done via (nl + 1) × 1 × 1 multi-channel
convolutions applied on the connectivity tensor A where nl is the number of
subject graph integration layers. Given the meta-path h describing the relation
R between two nodes which are not necessarily connected by a simple edge,
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we can define the adjacency matrix Ah as the multiplication of the adjacency
matrices of the edge types included in the meta-path h as follows:

Ah = Ap...A2A1 (3)

where Ak denotes the adjacency matrix for the kth edge attribute, (1, 2, ..., p)
the different edge types of R with the tensor subscript denoting a unique edge
type (or connectivity measurement in our scenario). In what follows, we explain
how MGINet generates a meta-path adjacency matrix (Fig. 2).

Fig. 2. Architecture of the subject-level integrator block of the proposed MGINet.

The main goal of our MGINet is to learn the dominant connectivity patterns
across the multigraph tensor within a given population. In our case, a meta-
path allows us to learn deeper relationships between ROIs through capturing
the most salient connectivity weights for a brain multigraph with multiple edge
types. Therefore, the subject-specific CBT will be generated through the learning
of useful meta-paths extracted from subject connectivity tensor. The integration
is done via multiplications of convolutions of the connectivity tensor A. The first
layer consists in the multiplication of two convolutions of the tensor A. In the
second layer, we multiply the resulting tensor from the first layer A(1) by another
convolution of the initial connectivity tensor A(0). The MGINet consists in the
superposition of nl layers containing the same operations. At the lth layer, the
resulting tensor A(l) containing the softly selected edge types is obtained by:

A(l) = A(0) × softmax(Wφ(l)) × A(l−1), l > 1 (4)

Where Wφ(l) ∈ R
nc×p×1×1 is the weight parameter of the 1 × 1 convolution

layer φ(l) that softly selects nc views from the connectivity tensor A and nc is
the number of channels which is a hyperparameter. The resulting tensor A(l) ∈
R

n×n×nc contains the meta-paths generated up until lth graph transformer layer.
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After processing the last layer nl, we calculate the average over the channels of
the final subject-specific CBT (i.e. resulting from the stack of nl subject graph
integration layers). This will reduce the tensor to a subject-specific CBT matrix
Q ∈ R

n×n. Same operations are applied to each subject in the cluster.
To ensure that the CBTs are representative of the initial brain connectivity

graphs, we propose a novel loss function of our graph integrator minimizing the
Frobenius distance between the fused subject-specific CBT matrix and every
view of the connectivity tensors in the same cluster. As such, we are able to
create learners that converge towards meta-path matrices that minimize final
CBT estimation errors while gaining more representetiveness through nl subject
graph integration layers.

Weighted Fusion Network. After obtaining the R
n×n fused connectivity

matrices for each subject (subject-specific CBTs) in the same cluster, a lin-
ear layer is added to integrate the resulting matrices into a new R

n×n matrix
representing all the subjects at a given cluster level (cluster-specific CBT). The
update of the weights of this linear layer is done in the direction of minimizing
the Frobenius distance between the cluster specific CBT and all frontal views of
brain connectivity tensors.

Optimization. To ensure the representativeness of the learnt CBTs across the
training process, we introduce two losses in both subject level and cluster level.
Given Qs the learnt CBT at a subject level for the subject s and Zc the learnt
CBT at a cluster c level, we introduce the subject integration loss as

LSI =
1

Nc

Nc∑
s=1

p∑
k=1

||Qs − As
k||2 (5)

and the cluster integration loss as

LCI =
Nc∑
s=1

p∑
k=1

||Zc − As
k||2 (6)

where Nc is the number of subjects contained in the cluster c. Hence, the
global cMGINet loss function is expressed as:

L = LCI + λLSI (7)

where λ is a hyperparameter used to scale the subject-specific integration
loss. Having these losses, the learning process will tend to minimize the distance
between the learnt CBT and all the population. As a result, the algorithm will
maximize the centeredness of the learnt CBT at a subject level and at a cluster
level.

Population-Specific CBT Fusion. In this section we merge the c cluster
CBTs that each represent a portion of the population, in order to build the final
CBT that represent the entire population. This step will be performed using
linear and non-linear fusion methods. In linear averaging, we simply take the
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average of cluster CBTs while overlooking the possibly complex and nonlinear
relationships between different clusters. In nonlinear averaging, we use similarity
network fusion (SNF) introduced in [20]. SNF integrates multiple networks of
same size into a single network that gathers both local and global similarities
between fused networks.

3 Results and Discussion

Evaluation Dataset. For evaluation, we used a subset of the Autism Brain Imag-
ing Data Exchange ABIDE I public dataset1 comprising 155 autistic spectrum
disorder (ASD) subjects (140 male and 15 female) and 186 normal control (NC)
subjects (155 male, 31 female). Each subject has a T1-weighted MRI, which was
processed using FreeSurfer to extract the right and left hemispheres. Follow-
ing the parcellation of each hemisphere into 35 cortical regions of interest using
Desikan-Killiany cortical atlas, we derive a brain multigraph using the following
cortical attributes (i.e., edge types): maximum principal curvature, cortical thick-
ness, sulcal depth, and average curvature. The connectivity strength between two
ROIs is defined using the absolute difference of their average cortical attribute
as introduced in [21]. For more details about the used cortical brain multigraphs
we refer the reader to [11,22].

Parameter Setting. For MKML parameters, in two different runs, the number of
clusters is empirically set to Nc = 2 and Nc = 3, respectively. For both runs,
the number of kernels is set to 5, using the following standard deviation values
σ = 1.0, 1.25, 1.5, 1.75, 2. For MGINet we trained the model using 300 epochs
with hyperparameters λ = 0.3 and nc = 2. For SNF, the number of nearest
neighbors is set to q = 20. These values were empirically set.

Evaluation Measures and Results. The centeredness and representativeness of
the estimated CBT is evaluated by measuring the Frobenius distance from the
estimated template to each tensor view of each subject in the population. Frobe-
nius distance between two matrices A and B is a scalar value and is calculated
as: dF (A,B) =

√∑
i

∑
j |aij − bij |2. Frobenius distances calculated are normal-

ized using the following formula as in [11] for fair comparison with netNorm :
d′

f = (df − meani)/(maxi − meani) + 1.5, where meani and maxi denote the
average and maximum values of the Frobenius distances calculated between a
given CBT estimation and its source population, respectively. dF is a row vec-
tor of size 1 × N that contains the distance between CBT and ith view in the
population.

For comparative evaluation, we benchmarked cMGINet against (i) state-of-
the-art method netNorm introduced in [11], and (ii) MGINet trained on the
whole population without clustering. In cMGINet the fusion step of merging
resulting cluster CBTs into a single network representing the final CBT is con-
ducted using one of the following merging techniques: linear averaging (average

1 http://fcon 1000.projects.nitrc.org/indi/abide/.
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of cluster CBTs) or nonlinear similarity network fusion (SNF), which nonlinearly
diffuses graphs to ultimately fuse them [20].

Our cMGINet considerably outperformed netNorm [11] by achieving the min-
imum average Frobenius distance for all evaluation datasets in both hemispheres
as shown in (Fig. 3). These results can be explained by comparing the inner
workings of both methods. netNorm constructs a population representative ten-
sor using cross-view feature vectors of subjects. For every pairwise connection
between ROIs, the most representative feature vector is determined by its aver-
age Euclidean distance to the rest of the population multigraphs. In contrast,
cMGINet takes into account the data heterogeneity and learns the optimized

Fig. 3. Evaluation of cMGINet performance in estimating centered and rep-
resentative connectional brain templates. In order to evaluate the centeredness
of the learned connectional brain templates (CBTs), we compute the mean Frobenius
distance between the estimated CBTs and the tensor views of all multigraphs in the
population for both baseline methods as well as our proposed method for both hemi-
spheres. In addition to netNorm introduced in [11] and MGINet without clustering, we
evaluate our cluster-based MGINet on four populations while varying the number of
clusters and using linear and non-linear averaging methods in the last integration step
of cluster-specific CBTs. ASD: autism spectrum disorder. NC: normal control. RH:
right hemisphere. LH: left hemisphere.
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integration for each homogeneous set of multigraphs in an end-to-end manner.
It is quite remarkable the effect that clustering had on MGINet performance.
This might be explained by the fact that deep learning models might struggle
to learn from heterogeneous data distribution; however, with a homogeneous
training set to train on, their performance can be largely boosted.

4 Conclusion

In this paper, we proposed a cluster-based multigraph integrator network for
connectional brain template estimation from a population of multi-view brain
networks (or multigraphs). We showed that our cMGINet outperforms state-
of-the-art methods in generating centered CBTs which better capture distinct
connectional patters in brain multigraph populations. Specifically, by learning
the manifold space where the mutligraphs are nested, we identified homogeneous
clusters. Training our deep integrator on samples with a homogeneous distribu-
tion (i.e., belonging to a single cluster) remarkably improved the centeredness
and representativeness of the learned CBTs in comparison with benchmarks. In
our future work, we will extend the application of our framework to other pop-
ulations with different neurological disorders. Our deep multigraph integration
framework can also be extended to fuse signed and directed multigraphs derived
from other MR modalities such as functional or diffusion MRI.
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Abstract. Graph convolutional network (GCN) has shown its poten-
tial on modeling functional MRI connectivity and recognizing neurolog-
ical disease tasks. However, conventional GCN layers generally inherit
the original graph topology, without the modeling of hierarchical graph
representation. Besides, although the interpretability of GCN has been
widely investigated, such studies only identify several independently
affected brain regions instead of forming them as neurological circuits,
which are more desirable for disease mechanism investigation. In this
paper, we propose a hierarchical dynamic GCN (HD-GCN), which com-
bines the information from both low-order graph composed of brain
regions and high-order graph composed of brain region clusters. The algo-
rithm learns a consistent dynamic graph pooling, which helps improve
the classification accuracy by hierarchical graph representation learning
and could identify the affected neurological circuits. We employed two
datasets to evaluate the generalizability of the proposed method: ADNI
dataset containing 177 AD patients and 115 controls, and Obsessive-
Compulsive Disorder (OCD) dataset including 67 patients and 61 con-
trols. The classification accuracy reaches 89.4% on ADNI dataset and
89.1% on OCD dataset. The affected brain circuits were also identified,
which are consistent with previous psychological studies.

Keywords: Graph convolution · Functional connectivity · Circuit
detection
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1 Introduction

Functional MRI (fMRI) has been investigated to provide representative and
discriminant imaging markers for neurological disease diagnosis due to its ability
of detecting brain activation. The correlations of fMRI signals between each pair
of brain regions form a symmetric functional connectivity matrix and reflect the
connections between spatially distinct neurophysiological events. Such a brain
connectivity network can be described as a graph, with brain anatomical regions
as nodes and functional connectivity as edges. Considering the dynamic property
of brain activation, the concept of dynamic functional connectivity is proposed to
characterize temporal changes of neurophysiological correlations. Thus, dynamic
graph analysis could provide essential insights on the brain connectivity changes
in neurological patients.

Graph convolutional networks aim to learn graph representations using a con-
volutional neural network with a message passing model [4,7], which updates the
representations of every node layer by layer while maintains the graph topology.
However, this model does not consider the hierarchical structures of the graph,
and its performance of graph classification tasks is thus largely limited. To date,
high-order graphical patterns are less explored. Some methods has been proposed
to investigate the high order graph structure and graph coarsening algorithms,
including Deepwalk [8] and node2vec [6] operations. In the context of graph
convolutional networks, Ying et al. [12] proposed a differential pooling (DIFF-
POOL) algorithm, which assigns every node into high-order clusters using a
cluster assignment matrix. Yet, the dynamic property of brain activation has
not been investigated. Also, they failed to produce a group-wise graph pooling
for a given neurological disease, given most graph pooling algorithms generate
distinctive pooling rules for each graph structure.

Although GCN has demonstrated satisfactory performance on classification
tasks, its interpretability is still limited. Current networks use Class Activation
Mapping (CAM) [13] or Gradient Guided CAM (Grad-CAM) [9] for interpreta-
tion and can only help identify one or two independent regions. These methods
are thus limited for explaining neurological diseases because brain regions work
together functionally to process information, and such abnormal areas could be
one or multiple subnetworks containing multiple regions. However, brain regions
usually integrate as groups to account for different cognitive tasks. For exam-
ple, the Default Mode Network (DMN) was reported to affect AD, composed
of posterior cingulate cortex, precuneus, medial prefrontal cortex and angular
gyrus [5]. Researches on OCD have reported the corticostriatalthalamiccortical
(CSTC) circuit as playing an important role in OCD classification [1].

In this paper, we propose a Hierarchical Dynamic GCN (HD-GCN) for func-
tional MRI classification and interpretation. The objective is to address the
above-mentioned two problems, as the hierarchical and dynamic nature of fMRI
networks as well as the GCN interpretability. The proposed network identifies
and processes high-order functional connectivity graph patterns from end to end.
In HD-GCN, we used new node clustering and edge clustering layers to learn
a group-wise graph pooling. These layers could help extract the hierarchical
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graph information and form high-order brain circuits. In addition, the dynamic
graph convolutional layers are used on both the original functional connectivity
graph and the high-order brain graph. Such a hierarchical design also improves
the interpretability of graph convolutional networks for visualization of disease
related connections and subnetworks.

2 Method

An overview of the proposed HD-GCN framework is shown in Fig. 1. Overall,
dynamic graphs are first extracted from fMRI sequences using sliding windows,
where nodes represent brain regions of interest (ROIs), and edges are pairwise
correlations between nodes. Then, graphs are fed into a module of graph con-
volutional LSTM (GCLSTM) for low-order graph processing. Next, nodes and
edges are clustered together, where brain circuits are embedded as nodes in the
newly generated high order graphs. After that, the node representations and
edge connections are refined through a module of edge learning. At last, graphs
are used for diagnosis using a module of GCLSTM with global average pooling
(GAP) and fully connected (FC) layers.

Fig. 1. Overview of the framework of the proposed HD-GCN algorithm. A denotes
the adjacency matrix, and X represents the node feature matrix of a graph. (A1, X1)
and (A2, X2) are the low-order graphs at the original functional connectivity space.
(A3, X3) and (A4, X4) are the high-order graphs representing the connections and fea-
tures of brain circuits. “⇐⇒” implies parameter sharing. Node Clustering (NC) and
Edge Clustering (EC) generate clustered graphs by an assignment matrix P. The edge
learning layer learns a refined connectivity structure between each pair of clusters by
multi-layer perceptron (MLP).
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2.1 Proposed HD-GCN for Classification

Graph Construction. A graph G(V, E) is formed by a set of nodes and con-
nections between these nodes, named as edges. Mathematically, a graph can
be defined by two matrices: the node representation matrix X, describing the
features of each node, and the edge matrix A, containing the topological struc-
ture of the graph. Conventionally, the nodes of functional brain graph are brain
ROIs, and the edge between each pair of brain ROIs is computed by Pearson’s
correlation.

In our method, we proposed to use dynamic graph to model brain functions.
Dynamic functional graph is defined by time-varying node representations and
dynamic functional connectivity matrices. The respective node representation
matrix X(t) ∈ RM×N describes the N -D features for each of the M nodes.
T,M and N represent the number of time-points, the number of nodes and the
dimension of features, respectively.

Each entry of the dynamic edge matrix at time-point t, A(t) ∈ RM×M , rep-
resents the dynamic functional connectivity between two brain ROIs. Dynamic
connectivity is calculated by sliding-window method. A window with fixed length
slides over the entire fMRI time series, and only data points inside the window
are used to calculate the functional connectivity.

Node representations are aggregated by the strength of connectivity in graph
convolutional layers. In order to obtain the high order connectivity pattern of
brain regions, we used functional connectivity matrices as both dynamic node
representations and dynamic edges, i.e. for each dynamic graph, A(t) = X(t) and
M = N .

GC-LSTM. Dynamic graphs require a recurrent structure to handle the tem-
poral information. The recurrent structure is composed of identical basic com-
ponents, known as cells. Each cell receives two inputs: the current graph and the
output from the last cell. The output of each cell was summarized as the new
node features of dynamic graphs for following layers.

LSTM (Long-Short Term Memory) is a widely used variant of recurrent neu-
ral network. It addresses the memory loss problems caused by long input time
series by recording the cell state Ct. Mathematically, for a fixed graph convo-
lutional layer, the gates of t-th hidden cell of graph convolution LSTM follows
these formula:

ForgetGate : ft = σ(ωxf ∗ X(t) + ωhf ∗ ht−1 + ωCf � Ct−1 + bf )

InputGate : it = σ(ωxi ∗ X(t) + ωhi ∗ ht−1 + ωCi � Ct−1 + bi)

MemoryCell : Ct = ft � Ct + it � tanh(wxc ∗ X(t) + whc ∗ ht−1 + bc)

OutputGate : ot = σ(ωxo ∗ X(t) + ωho ∗ ht−1 + ωCo � Ct + bo)
OutputHiddenState : ht = o � tanh(Ct),

(1)
where X(t) is the t-th feature representation matrix. σ represents the activate
function, and w-s are graph convolutional kernels and b-s are biases. ∗ denotes
the graph convolution operator using message passing model. Information flows
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from one cell to following cells along Ct, and inside each cell, information is
selected to be discarded (by forget gate) or memorized (by input gate) from the
cell state Ct. Cell state is then updated after forget gate and input gate. The
final output is computed from the new cell state.

The simplified message passing model for graph convolutional operation can
be mathematically written as,

X(t,l+1) = Φ(A(t,l)X(t,l)Θ(t,l)). (2)

Here, A(t,l) and X(t,l) indicates the correlation matrix and feature matrix at layer
l corresponding to time-point t respectively, Θ(t,l) is the network parameter, and
Φ is the activation function. The message passing model updates the features on
every node according to its correlations with other nodes, which maintains the
graph structure but lacks high-order representation learning.

Node Clustering and Edge Clustering. The graph clustering can be
achieved by using an assignment matrix P to pool M nodes into K clusters
as,

X(t,l+1) = PTX(t,l),

A(t,l+1) = PTA(t,l)P.
(3)

Here, each element of P ∈ RM×K represents the contribution from one original
node to a new cluster. In DIFFPOOL [12], the assignment matrix was learned
from the output of graph convolutional layers, which means that each graph has
its distinctive graph pooling rule according to their graph topology. However, for
the purpose of disease classification and etiology investigation, a time-consistent
and group-wise graph pooling rule is required. Therefore, we proposed to param-
eterize the assignment matrix P as a learnable parameter and updated its values
during training of all time-points on batches.

Edge Learning. The Edge Clustering layer initialized the connections between
brain circuit pair by averaging the original node connections. In order to combine
connection information in the cascaded graph convolutional structure, the net-
work was also generalized to learn edge features from the node representations.
An Edge learning layer stacked behind a GC-LSTM layer on high order graphs
learns refined high-order graph structures from the hidden representations of
every cluster, as follows,

ai,j = MLP (|xi − xj |), (4)

where ai,j is the (i, j)-th element of matrix A and is learned by a nonlinear
projection (MLP) of the absolute difference between the hidden representations
of every clusters. According to Eq. 4, the symmetry and identity of adjacency
matrices could be acquired by ai,j = aj,i and ai,i = 0.

2.2 Visualization of Affected Neurological Circuits

Integration and segregation features are often identified as major brain functional
connectivity patterns. Although many algorithms [9,13] have tried to explain the
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mechanism behind deep learning networks, they only focus on one or two inde-
pendent regions. Our proposed method generates high-order graphs based on
brain region clusters, and therefore can highlight the most important subnet-
works contribute to the classifier.

Fig. 2. The process of decisive brain circuit generation. The GAP layer reduces the
dimension of feature maps X ′

4. The fully connected layer generates diagnosis result by
combining the contribution of each brain cluster. We identified the cluster, which cor-
responds to the largest weight for class Patient, as the most decisive cluster. According
to the node clustering parameter matrix P, major brain regions in the decisive cluster
could also be identified.

Figure 2 illustrates how such decisive subnetworks are determined. One global
average pooling (GAP) layer was stacked behind the final dynamic graph convo-
lutional layer to reduce the temporal dimension of the feature maps. After batch
normalization, one fully connected (FC) layer was used to make a prediction.
The weight in FC layer could be used as the importance score of each cluster.
Moreover, based on the node clustering assignment matrix P, we can determine
the brain regions that were clustered to this decisive cluster. Herein, the top 5
brain regions which contribute the most to the decisive cluster are selected. In
this way, the brain subnetwork that contributes the most to the group differences
according to the HD-GCN framework can be identified and visualized.

3 Experiments

3.1 Data

We used fMRI images from two datasets to demonstrate the generalizability
of the proposed method. A total of 292 subjects were employed from ADNI II
dataset, of which 177 subjects are AD patients and 115 subjects are healthy con-
trols. Functional images from ADNI II dataset were acquired with TR = 3000 ms,
TE = 30 ms, flip angle = 80◦, resolution = 3.3×3.3×3.3mm3, 48 axial slices with
137 dynamic time-points. Our in-house OCD dataset contains 128 subjects, of
which 60 subjects are OCD patients and 68 subjects are healthy controls. Func-
tional images from OCD dataset were acquired with TR = 2000 ms, TE = 60 ms,
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flip angle = 90◦, resolution = 3.0×3.0×4.0mm3, 33 sagittal slices with 170 time-
points.

To avoid over-fitting, we performed a five-fold validation on both dataset. All
subjects are randomly partitioned into five equal size subsamples. Each subsam-
ple was used as validation dataset with other four subsamples as training dataset.
All resting state fMRI data were pre-processed under a standard pipeline, includ-
ing slice time correction, motion correction, spatial and temporal filtering and
covariates regression. To obtain dynamic functional connectivity, a sliding win-
dow with a length of 60 time points and a stride of 7 time points were used.

Methods for ablation studies include Support Vector Machine (SVM) with
linear kernel, Static Graph Convolutional Networks (Static GCN), and GC-
LSTM [11]. For SVM, static functional correlation matrices computed from the
entire fMRI sequences are reshaped as vectors of input features. Static GCN
contains two conventional graph convolutional layers [7] followed by batch nor-
malization layer and fully connected layers. GC-LSTM receives dynamic graphs
as input.

3.2 Experimental Results

Table 1. Classification results on two datasets. The classification results were achieved
after five-fold validation.

Dataset Model Accuracy Sensitivity Specificity

ADNI II SVM 72.6% 64.9% 84.3%

Static GCN 82.8% 84.7% 80.0%

GC-LSTM 83.9% 84.2% 83.5%

HD-GCN 89.4% 90.4% 87.8%

OCD SVM 68.0% 68.3% 67.6%

Static GCN 77.3% 80.0% 75.0%

GC-LSTM 80.5% 78.3% 82.3%

HD-GCN 89.1% 91.7% 86.8%

Classification Performance. The classification results on both datasets are
shown in Table 1, and we also plotted the ROC curve in Fig. 3. For both datasets,
we set the cluster number K = 10, and the number of features for each layer
as N1 = 116, N2 = 64 and N3 = 16. Since we are looking for the high order
connectivity pattern of brain regions, we used functional connectivity matrices as
low order adjacency matrices and initial node representations in our experiment,
i.e. A1 = X1. In this case, the initial features on each brain region became the
functional connectivity with all other nodes.

Decisive Clusters. Using BrainNetViewer [10], we plotted the most decisive
clusters for both AD patients and OCD patients. The result is shown in Fig. 4.
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Fig. 3. The classification ROC curves on (a) ADNI dataset and (b) OCD dataset.

Fig. 4. The identified most decisive cluster for (a) AD patients and (b) OCD patients.

The top 5 regions composing the most decisive cluster for AD classification
are left hippocampus, left and right fusiform, left putamen and right heschl. Hip-
pocampus and temporal lobe have been widely identified as the affected region
during the progression of AD [3]. The proposed method further investigates the
neurological relevance among these regions. For OCD classification, the top 5
regions composing the most decisive cluster are right cingulum, right amygdala,
right pallidum, right middle temporal lobe and vermis. As is shown in Fig. 4(b),
the functional connectivity pattern affecting OCD reported from our method
resembles with the CSTC circuits.
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High Order Graph. Our algorithms partitioned original functional connectiv-
ity graph into ten clusters (i.e. K = 10), while the proposed Edge Clustering and
Edge Learning layers compute the functional connectivity between brain region
clusters and output the topology of high order functional graph. We visualized
the averaged high order graph topology after Edge Learning layer from patients
group in Fig. 5. We discovered that the most decisive cluster (cluster 3 for AD
classification and cluster 7 for OCD classification) has the most degree centrality,
which indicates that most links arise from the most decisive cluster.

Fig. 5. Averaged high-order graph topology learned from Edge Learning Layer. The
color of each node depends on its weight ω in the last fully connected layer. The length
of edges (blue lines) are reciprocals of the results from the Edge Learning layer, and
longer edges represent weaker correlations. Only edges with magnitude under 0.19 (the
average edge magnitude for AD patients) or 0.35 (the average for OCD patients) are
shown. Besides, we also visualize the betweenness centrality [2] of all edges shown.
Betweenness centrality of an edge is the sum of the fraction of all pairs of shortest
paths that pass through this edge, which indicates the graphical importance of this
edge. (Color figure online)

4 Conclusion

We proposed a hierarchical dynamic graph convolutional network for fMRI clas-
sification. Our algorithm processes connectivity graphs hierarchically at different
levels: low-order graphs based on anatomical regions and high-order graph based
on brain circuits or subnetworks. A group-wise graph pooling is designed to con-
nect low-order graphs to high-order graphs over the dynamic time range based
on node clustering and edge clustering layers. An edge learning layer was also
inserted to refine the relationship between each brain region cluster. Experiments
demonstrated that our method not only performs better in terms of classification
but also helps identify the affected brain circuits for neurological diseases and
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better understand the hidden mechanism behind graph convolutional networks
and the pathology of brain diseases. However, there are still some limitations in
this study. For example, we only used functional connectivity as node features,
while features on each node could be the volume, image intensity and shape of
every brain region.
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Abstract. Advances in neuroimaging techniques such as diffusion MRI
and functional MRI enabled evaluation of the brain as an information
processing network that is called connectome. Connectomic analysis has
led to numerous findings on the organization of the brain its pathologi-
cal changes with diseases, providing imaging-based biomarkers that help
in diagnosis and prognosis. A large majority of connectomic biomarkers
benefit either from graph-theoretical measures that evaluate brain’s net-
work structure, or use standard metrics such as Euclidean distance or
Pearson’s correlation to show between-connectomes relations. However,
such methods are limited in diagnostic evaluation of diseases, because
they do not simultaneously measure the difference between individual
connectomes, incorporate disease-specific patterns, and utilize network
structure information. To address these limitations, we propose a graph
matching based method to quantify connectomic similarity, which can
be trained for diseases at functional systems level to provide a subject-
specific biomarker assessing the disease. We validate our measure on a
dataset of patients with traumatic brain injury and demonstrate that
our measure achieves better separation between patients and controls
compared to commonly used connectomic similarity measures. We fur-
ther evaluate the vulnerability of the functional systems to the disease
by utilizing the parameter tuning aspect of our method. We finally show
that our similarity score correlates with clinical scores, highlighting its
potential as a subject-specific biomarker for the disease.

Keywords: Graph edit distance · Learning edit costs · Graph
matching · MCMC · Connectome · Imaging biomarker

1 Introduction

Connectomics, the study of connectivity in the brain, has become an indispens-
able tool in the analysis of brain network organization. With the advent of
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imaging techniques such as diffusion MRI or functional MRI, structural or func-
tional connectivity of the brain regions can be modeled efficiently with connec-
tomes, which are annotated graphs with nodes representing brain regions and
edges denoting the relationship between region pairs. Graph theoretical analy-
sis of connectomes has provided novel insights into the network organization of
the healthy brain, widening our understanding of the relationship between brain
and behavior. Additionally, it also introduced imaging biomarkers for neurologi-
cal diseases and disorders in the brain along with useful information about their
recovery patterns [8,25].

Connectomic analysis studies that utilize graph-theoretical tools generally
focus on summary metrics that quantify network properties such as centrality,
local efficiency, small-worldness, or participation coefficient [22]. While making
statistical analysis with these measures is useful for characterizing neurological
patterns at the population level, such an approach is limited in two main aspects
which become more crucial in the assessment of brain disorders. First, these
standalone measures describing network structure do not reveal information on
how much an individual connectome differ from the healthy controls, which
is essential for quantifying the subject-specific brain condition. Second, such
standard measures evaluate generic properties of networks and do not leverage
disorder-specific information that can enhance diagnostic evaluation. On the
other hand, standard measures such as Euclidean distance [18] or Pearson’s
correlation [5] are commonly used to quantify similarity of a connectome (of
possibly a patient) relative to a population (of controls) mainly by considering
the edges independently. However, such standard measures are limited in not
leveraging the connectivity information embedded into the network topology as
well as not being specific to the disease.

Graph matching is a powerful technique for quantifying similarity between
graphs by considering overall network topology in an optimization problem
setup, which is well-studied and widely used in pattern recognition and com-
puter vision over several decades [4]. Despite its strong potential, graph matching
is seldom applied to connectomics [17], with matching-based measures recently
starting to emerge to assess connectomic similarity [14] in healthy subjects [15]
as well as in patients [13,16]. Although graph matching methods presented in
such studies provide subject-specific connectomic similarity scores, they are still
generic measures that do not incorporate disease-specific information. Although
learning over graphs was proposed using Graph Neural Networks in determining
proper distance metrics for connectomes [12], such methods are prone to overfit-
ting and lack interpretability, especially for diseases that are generally examined
using datasets of limited sample size. Consequently, connectomic biomarkers that
i) quantifying differences among connectomes, ii) that utilize network topology
information while iii) allowing to be tuned for specific diseases with limited sam-
ple size are desirable.

In this work, we propose a graph matching based method to quantify con-
nectomic similarity, which can be trained for diseases to provide a subject-
specific score that offers better separation between patients and controls. We use
graph edit distance (GED) to attain graph matching, where we train edit cost
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parameters using Markov Chain Monte Carlo (MCMC) to make our method
disease-specific. We consider the average GED between an individual’s brain
graph and the healthy control population as the measure assessing the state of
the disease for that individual. We demonstrate the utility of our method over
a moderate-to-severe traumatic brain injury (TBI) dataset to provide a connec-
tomic measure for TBI. The contribution of our study is threefold. First, our
score is subject-specific and it incorporates network topology information in the
presence of pathology. Second, training of GED parameters provides us insights
about which functional systems are affected more by the disease at the popu-
lation level. Third, the proposed score can be used as a potential connectomic
biomarker of the disease as it correlates well with clinical scores.

2 Methods

2.1 Graph Edit Distance

Human brain constitutes a network structure that can be represented as connec-
tomes, which are simply graphs encoding structural or functional connectivity
information of brain regions. The presence of neurological disorders commonly
results in changes in the network topology of the brain, such as increased or
decreased connectivity relative to a healthy subject. Consequently, measuring
the connectomic dissimilarity of patients relative to healthy controls is of great
importance in evaluating the effect of pathology.

Graph edit distance is a powerful graph matching technique that quantifies
dissimilarity between two graphs Gp, Gq by calculating the minimum edit cost
to transform Gp into Gq [7]. Edit cost in GED is accounted for by node insertion,
deletion, and substitution operations, which is characterized by the amount of
distortion that each operation introduces. These edit operations, also referred to
as edit paths, reveal a correspondence between nodes of the two graphs. Since
connectomes are special graphs where nodes correspond to brain regions that
are based on the same anatomical atlas for all subjects, nodes in one graph are
likely to get matched to their counterparts in another graph due to anatomical
similarity across people. Structural differences due to subject-specific variations
and alterations induced by pathology of neurological disorders, on the other
hand, would lead to node mismatches, resulting in a larger graph edit distance.

Calculating edit cost requires defining proper cost functions for edit opera-
tions. Since neurological disorders can cause certain cognitive deficits that involve
functional systems of the brain in varying degrees, the manifestation of struc-
tural alterations may be localized or widely distributed, and can be expected
to differ by functional subnetworks rather than having a uniform effect over all
nodes of the graph [8]. To capture such subnetwork dependent patterns at the
population level, we define node substitution cost as the Manhattan distance
between the node attributes weighted by a system-level dysfunction coefficient.

C(vp
i → vq

j ;α) = αsi × αsj × dManhattan(vp
i ,v

q
j ) = αsi × αsj × ||vp

i − vq
j ||1 (1)
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where vp
i and vq

j represent ith and jth nodes in Gp and Gq, respectively. Each
node v is annotated with an Nnode-dimensional feature vector that represents its
connectivity to the rest of the graph, where Nnode is the number of nodes in the
parcellation. The dysfunction coefficient αsi > 0 characterizes the population-
level effect of an edit operation for the system that node i belongs to. The GED
parameter α = {α0, ..., αNsys

} is an Nsys-dimensional vector representing the
dysfunction coefficient for Nsys functional systems pre-defined by the atlas.

We define node insertion and deletion costs similarly, as the weighted Man-
hattan distance between the feature vector of the node and a zero vector.

C(∅ → vq
j ;α) = α2

sj × dManhattan(0,vq
j ) = α2

sj × ||vq
j ||1 (2)

C(vp
i → ∅;α) = α2

si × dManhattan(vp
i ,0) = α2

si × ||vp
i ||1 (3)

Given the edit cost parameter α, GED aims to find optimum edit path
P(Gp, Gq;α) that transforms graph Gp into Gq with minimum edit cost.

dGED(Gp, Gq;α) = min
(e1,...eK)∈P(Gp,Gq ;α)

K∑

k=1

C(ek;α) (4)

where ek indicates an edit operation.
Utilizing the one-to-one mapping between nodes that ensues GED calcula-

tion, we calculate matching accuracy as the rate of correct matches of nodes
between the two graphs [17].

AGED|P(Gp,Gq ;α) =
∑Nnode

k=1 δ(ek = vp
k → vq

k)
Nnode

(5)

where δ(·) = 1 if the edit path matches a node to its counterpart and 0 otherwise.
We calculate the GED for each subject relative to the healthy population and

consider the average of these distances as the disease biomarker for each subject.
Since the exact computation of GED is intractable, we use the Kuhn-Munkres
algorithm to calculate an approximate solution to the problem [20].

2.2 Edit Cost Parameter Estimation

In order to tailor the similarity measure specifically for one brain disorder,
we train our algorithm to learn the system-level dysfunction coefficient α by
using the Metropolis-Hastings algorithm, a Markov chain Monte Carlo (MCMC)
method. Our objective in training is based on our hypothesis that matching accu-
racy between a patient and a healthy control should be low due to distortions
induced by disease while matching accuracy between healthy controls should be
high due to a lack of pathology. This objective can be achieved by minimizing
the following energy function:

Ed[α̃,G] =
1

Np

Np∑

i=1

max{0,−(AGED|P(Gc;α̃) − AGED|P(Gpi
,Gc;α̃)) + γ} (6)
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where G denotes the dataset of graphs, AGED|P(Gc;α̃) is the mean of aver-
age matching accuracy of healthy controls while AGED|P(Gpi

,Gc;α̃) is the aver-
age matching accuracy of patient pi relative to healthy controls. Maximizing
Ed[α̃,G] encourages matching accuracy among controls to become higher than
matching accuracy between patients and controls at least by a margin γ. The
estimated dysfunction coefficient α̃ is therefore tuned to capture disease-related
distortion in the brain.

We further impose the following prior term to ensure that all dysfunction
coefficients would be positive:

Ep[α̃] =

{
0 if α̃i > 0, ∀i ∈ {0, .., Nsys}
+∞ otherwise

(7)

Thus, final objective function is defined as follows:

E[α̃,G] = Ed[α̃,G] + Ep[α̃] (8)

We apply simulated annealing for the optimization with the temperature T
controlling the annealing schedule. Current parameter α̃t will be updated by a
new parameter α̃t+1 with the acceptance rate:

a = min{1, exp{−E[α̃t+1,G] − E[α̃t,G]
T

}} (9)

2.3 Interpretation of Dysfunction Coefficients

To interpret the estimated dysfunction coefficients, we highlight that the nodal
structural alterations captured by the Manhattan distance between a subject and
a healthy control would have two components: difference due to disease-induced
pathology and non-disease-related difference due to subject-specific variations.
Tuning GED for dysfunction coefficients could give us information about the
vulnerability of systems to the disease. Intuitively, a larger dysfunction coeffi-
cient will discourage a node in a patient from matching to its counterpart in
a healthy control. Likewise, a small dysfunction coefficient will encourage cor-
rect matching of nodes even with a large difference between two nodal features.
Since our objective function maximizes matching accuracy within controls while
minimizing matching accuracy between patients and controls, functional sys-
tems that are affected by the disease will have a larger dysfunction coefficient
to encourage mismatches for patients. On the other hand, a region where non-
disease-related difference is dominant will have a small dysfunction coefficient
to improve matching accuracy for controls. Therefore, learning of dysfunction
coefficients in MCMC is equivalent to estimating the distribution of pathology
in connectomes at the systems level.

3 Experiments

3.1 Dataset and Preprocessing

We validate our method over a traumatic brain injury dataset consisting of 34
moderate-to-severe patients (12 female) and 35 healthy controls (9 female) that
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pass quality assurance, with the age of patients ranging from 18 to 65 years
(mean = 33.9 years, std = 14.9 years), and the age of healthy controls ranging
from 19 to 56 years (mean = 34.9 years, std = 10.3 years), respectively. Imaging
scans are taken at 3 months post-injury. The Glasgow Outcome Scale-Extended
(GOSE) is used to assess global functional outcome of the TBI patients at the
time of imaging (range = [2, 8], mean = 5.1, std = 1.5).

Diffusion weighted imaging scans are acquired on a Siemens 3T TrioTim
whole-body scanner with an 8-channel array head coil (single-shot, spin-echo
sequence, TR/TE = 6500/84 ms, b = 1000 s/mm2, 30 directions, flip angle = 90◦,
resolution = 2.2 × 2.2 × 2.2 mm). High-resolution T1-weighted anatomic images
are also obtained using a 3D MPRAGE imaging sequence with TR = 1620 ms,
TI = 950 ms, TE = 3 ms, flip angle = 15◦, 160 contiguous slices of 1.0 mm thick-
ness, FOV = 192×256mm2, 1NEX, resolution = 1×1×1mm. 100 regions of inter-
ests from Schaefer atlas [21] and additional 16 subcortical regions are extracted
to represent the nodes of the structural network (116 nodes in total). A mask
is defined using voxels with an FA of at least 0.15 for each subject. We perform
deterministic tractography to generate and select 10 million streamlines, which is
seeded randomly within the mask. Angle curvature threshold of 60◦, and a mini-
mum and maximum length threshold of 5 mm and 400 mm are applied, resulting
in a 116 × 116 adjacency matrix of weighted connectivity values, where each
element represents the number of streamlines between regions. Eight functional
systems are identified including 7 subnetworks as described in [24] and another
for representing subcortical regions.

3.2 Experimental Setup

We conduct fivefold cross-validation to evaluate our method. Each testing set
consists of 14 subjects and each training set consists of 55 subjects. In the train-
ing, 8 dysfunction coefficients are initialized with equal weights α̃0 = [1, ..., 1].
We use Multivariate Gaussian distribution αt+1 ∼ N (α̃t|Σ) with σ2 = 0.001 as
the transition probability for iteration t + 1 to generate new parameters. We set
the margin as γ = 0.5. The temperature for simulated annealing is initially set
as T0 = 0.01 and scheduled to decrease as number of iteration t ≥ 0 increases,
following the equation T = T0

ln(t+1) . We set the maximum iterations of MCMC
to be 100 for each fold.

In evaluating test subjects in each fold, we compare our proposed measure
of GED with training of parameters (denoted GED-tr) with two commonly
used connectomic similarity measures: Euclidean distance and Pearson’s dis-
tance (defined as 1 − rPearson). We evaluate the effect of training dysfunction
coefficients in GED-tr by contrasting it with the standard GED without param-
eter tuning (denoted GED-st). We normalized all four measure s by calculating
z-score to make them comparable. All measures were validated at both pop-
ulation and subject-specific level. For the population analysis, we use Welch’s
t-test to examine the group difference of the dissimilarity score between patients
and healthy controls for each fold and use Hedges’ g method to estimate effect
size. As each testing set is independent, p-values and effect sizes in the 5-fold
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study can be combined using Fisher’s method [6] and inverse variance-weighted
average method [10]. For the subject-specific analysis, we use linear regression
to examine the relationship between each measure and the GOSE score.

Fig. 1. Dissimilarity scores of subjects in each group (healthy controls and patients)
with respect to healthy control population (values are normalized using z-score for
comparison). Our proposed method GED-tr achieves the best separation by reduc-
ing variation of scores in controls and increasing the separation between patients and
controls. Note that, effect sizes for significant group differences between patients and
controls are shown above boxes, with significance level after Bonferroni correction being
p ≤ 0.0125.

3.3 Results and Discussions

Population Analysis

Dissimilarity at Connectome Level. Dissimilarity of subjects relative to healthy
controls is shown in Fig. 1 along with effect sizes of group differences between
patients and controls. We observed that although all four dissimilarity mea-
sures show significant group differences between patients and controls (with
p < 0.0125, after Bonferroni multiple comparison correction), our proposed
method GED-tr with parameter tuning demonstrates the largest group differ-
ence with an effect size of 1.19, achieving the best separation between patients
and healthy controls on the TBI dataset. It is followed by Euclidean, GED-
st, and Pearson distance with effect sizes of 0.97, 0.95, and 0.92, respectively.
Comparing group differences between patients and controls for GED with and
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without training of parameters, we observe that GED-tr shows improvements
in reducing the score range and variation in controls while preserving the score
range for patients, highlighting the importance of training parameters for the
disease. It is interesting to note that effect size of GED-st is similar to those of
Euclidean and Pearson’s distance, which might indicate that, although standard
GED considers network topology that is ignored by the other two measures, it
does not improve sensitivity of the measure to the disease without parameter
tuning. In summary, GED-tr achieving the best separation might be attributed
to it combining the information embedded in network topology with tuning of
the parameters for the disease.

Fig. 2. Dysfunction coefficients at functional systems level, with larger dysfunction
coefficients indicating a dominant pathology effect at the associated functional systems.
We observe large coefficient values for limbic and subcortical networks, which highlights
their vulnerability to injury. Note that, dysfunction coefficients are normalized by the
total sum of coefficients to show the relative vulnerability of the systems.

System-Level Dysfunction Coefficients. We present the system-level dysfunction
coefficients estimated by our algorithm for each functional system in Fig. 2. The
limbic system and the subnetwork consisting of subcortical regions are shown
to have the largest values among eight functional systems. These results indi-
cate that network topology of the nodes comprising these systems is affected by
TBI the most. This finding is supported by the significant decline in fractional
anisotropy and the volume reduction in these two subnetworks in the presence
of TBI [3,23,26]. Limbic system and subcortical regions, which are generally
associated with memory and regulating emotions [11,19], also overlaps with the
cognitive deficits such as memory loss and emotional disorders that are com-
monly observed after the brain injury [1]. Our results suggest that default mode,
frontoparietal, salience ventral attention, and dorsal attention network show TBI
specific patterns that can help discriminate TBI patients from healthy controls.
Structural alteration of these regions might be correlated with impairment of
sustained attention and executive function in TBI [2,9]. We note that, since
these results indicate the level of dysfunction at 3 months post-injury, we could
expect to see more immediate or long-term outcomes of the disease by evaluating
a longitudinal TBI dataset that spans acute phase of the disease up to a year
post-injury.
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Fig. 3. Linear regression with GOSE in the patient population. The proposed mea-
sure GED-tr (p = 0.013, R2 = 0.181) has significant linear relationship with GOSE.
Euclidean distance (p = 0.224, R2 = 0.047) and Pearson distance (p = 0.079, R2 =
0.096) are not significant in terms of linear regression with GOSE. Note that, signifi-
cance level after Bonferroni correction is p ≤ 0.016.

Subject-Specific Analysis. Lastly, we report the linear regression analysis
results between each measure and the GOSE score for the patient population
in Fig. 3. We observe that the proposed measure GED-tr shows a significant
negative correlation with GOSE and demonstrates the highest relationship with
R2 = 0.181, while neither Euclidean nor Pearson distance shows significant cor-
relation. The results demonstrate that our measure quantifying dissimilarity of
patients relative to controls correlates well with the clinical score, which shows
its potential as a subject-specific biomarker for the disease. It is interesting to
note that, although we observed in Fig. 1 that our method achieves the smallest
variation among the patient group, it shows a higher correlation with the clin-
ical score relative to Euclidean and Pearson distance as shown in Fig. 3. This
might suggest that our proposed score discards non-disease-related variations
while preserving information about the pathology.

4 Conclusion

In this study, we present a novel subject-specific measure that utilizes a learning-
based graph edit distance to quantify dissimilarity of patients relative to healthy
controls. Our measure provides better separation between patients and controls
for the specific disease as it learns the pattern of the pathology at functional sys-
tems level. With the optimal parameters obtained via MCMC, we demonstrate
on a TBI dataset that our method shows superiority over alternative connectomic
dissimilarity measures in terms of increased group differences between patients
and healthy controls. Our method enables a multi-resolution analysis of brain
dysfunction, with the GED capturing subject-specific structural alterations due
to the disease at the level of the whole brain, and the parameter tuning captur-
ing the vulnerability of functional systems to pathology. Moreover, our measure
is clinically meaningful, since it correlates well with a commonly used clinical
measure of functional outcome in TBI, highlighting its potential to be used as a
connectomic biomarker for neurological diseases.
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We note that factors external to the disease such as age, gender, and volume
of brain, as well as inaccuracies arising from data acquisition and tractographic
biases, could have affected clinical outcomes of our study. Although effects of
these factors are partially alleviated by minimizing graph distance between
healthy controls, we will expand our analysis to regress out these effects in our
future work. In this work, we only demonstrate the utility of our method with
a case study on structural connectomes of TBI patients, the proposed method
can easily be customized as a biomarker for other diseases and disorders, and
be extended to capture the patterns of change over both functional and struc-
tural connectomes. The proposed measure can further be applied in domains
other than disease quantification, such as clustering brain states, participant
identification using connectomic fingerprinting, as well as longitudinal analysis
of connectomes.
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Mustafa Sağlam and Islem Rekik(B)

BASIRA Lab, Faculty of Computer and Informatics,
Istanbul Technical University, Istanbul, Turkey

irekik@itu.edu.tr

http://basira-lab.com

Abstract. The individual brain can be viewed as a highly-complex
multigraph (i.e. a set of graphs also called connectomes), where each
graph represents a unique connectional view of pairwise brain region
(node) relationships such as function or morphology. Due to its multi-
fold complexity, understanding how brain disorders alter not only a single
view of the brain graph, but its multigraph representation at the individ-
ual and population scales, remains one of the most challenging obstacles
to profiling brain connectivity for ultimately disentangling a wide spec-
trum of brain states (e.g.., healthy vs. disordered). Existing graph theory
based works on comparing brain graphs in different states have major
drawbacks. First, these techniques are conventionally designed to oper-
ate on single brain graphs, while brain multigraph representations remain
widely untapped. Second, the bulk of such works lies in using graph com-
parison techniques such as kernel-based or graph distance editing meth-
ods, which fail to simultaneously satisfy graph scalability, node- and
permutation-invariance criteria. To address these limitations and while
cross-pollinating the fields of spectral graph theory and diffusion mod-
els, we unprecedentedly propose an eigen-based cross-diffusion strategy
for multigraph brain integration, comparison, and profiling. Specifically,
we first devise a brain multigraph fusion model guided by eigenvector
centrality to rely on most central nodes in the cross-diffusion process.
Next, since the graph spectrum encodes its shape (or geometry) as if one
can hear the shape of the graph, for the first time, we profile the fused
multigraphs at several diffusion timescales by extracting the compact
heat-trace signatures of their corresponding Laplacian matrices. Such
brain multigraph heat-trace profiles nicely satisfy the three graph com-
parison criteria. More importantly, we reveal for the first time autistic
and healthy profiles of morphological brain multigraphs, derived from
T1-w magnetic resonance imaging (MRI), and demonstrate their dis-
criminability in boosting the classification of unseen samples in com-
parison with state-of-the-art methods. This study presents the first step
towards hearing the shape of the brain multigraph that can be leveraged
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for profiling and disentangling comorbid neurological disorders, thereby
advancing precision medicine.

Keywords: Brain multigraph profiling · Eigen-based graph
cross-diffusion · The shape of a graph · Neurological disorders · Graph
heat-tracing

1 Introduction

The development of network neuroscience [1] aims to present a holistic picture of
the brain graph (also called network or connectome), a universal representation
of heterogeneous pairwise brain region relationships (e.g.., correlation in neural
activity or dissimilarity in morphology). Due to its multi-fold complexity, the
underlying causes of neurological and psychiatric disorders, such as Alzheimer’s
disease, autism, and depression remain largely unknown and difficult to pin
down [2,3]. How these brain disorders unfold at the individual and population
scales remains one of the most challenging obstacles to understanding how the
brain graph gets altered by disorders, let alone a brain multigraph. Indeed, using
different measurements, one can build a brain multigraph, composed of a set of
graphs, each capturing a unique view of the brain construct (such as morphology
or function) [1,4,5]. Profiling brain multigraphs remains a formidable challenge
to identify the most representative and shared brain alterations caused by a
specific disorder, namely ‘disorder profile’, in a population of brain multi-graphs.
Such integral profile can be revealed by what we name as multigraph brain profile,
which would constitute an unprecedented contribution to network neuroscience
and brain mapping literature as it would chart the connectional geography of
the brain.

Estimating such profiles highly depends on using reliable graph comparison
techniques. However, existing graph theory based works on comparing brain
graphs in different states have major drawbacks. First, these techniques are con-
ventionally designed to operate on single brain graphs, while brain multigraph
representations remain widely untapped. Second, the bulk of such works lies
in using graph comparison techniques such as kernel-based or graph distance
editing methods, which fail to simultaneously satisfy graph scalability, node-
and permutation-invariance criteria. For instance, one can use graph edit dis-
tance (GED) technique [6] that estimates the minimal number of edit operations
needed to transform a graph into another. However, this is an NP hard problem
that becomes intractable when scaling up graph sizes. Graph multiple kernel-
based comparison methods, on the other hand, are more natural when desiring
scale-adaptivity since each kernel can capture a particular graph scale such as
the multi-scale Laplacian graph kernel method proposed in [7]. However, such
techniques raise a computational overhead cubic in deriving Laplacian matrix
eigenvalues and when the size of the graph exponentially grows. Traditional sta-
tistical methods including the family of spectral distances (FGSD) [8] produces
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a high-dimensional sparse representation as a histogram on the dense bihar-
monic graph kernel; however, such methods are not scale-adaptive and are also
inapplicable to reasonably large graphs due to their quadratic time complexity.

Adding to the difficulty of profiling the state of a single brain graph, profiling
a population of brain multigraphs, to eventually discover disorder-specific pro-
files, presents a big jump in the field of network neuroscience, which we set out
to take in this paper. Specifically, while addressing the aforementioned limita-
tions and while cross-pollinating the fields of spectral graph theory and diffusion
models, we unprecedentedly propose an eigen-based cross-diffusion strategy for
brain multigraph integration, comparison, and profiling. In the first step, we aim
to learn how to fuse a population of brain multigraphs into a single graph by
capitalizing on unsupervised graph diffusion and fusion technique presented in
[9]. However, while cross-diffusing a set of graphs for eventually estimating a rep-
resentative integral graph representation of each individual brain multigraph, [9]
overlooks the topological properties of graph nodes such as node centrality, which
better capture local and global structure of the brain connectivity providing a
more holistic measurement of the brain graph. To address this limitation, we pro-
pose a novel multigraph cross-diffusion based on a graph Laplacian derived from
eigen-centrality measures. In the second step, since a graph spectrum encodes
its shape (or geometry) as if one can hear the shape of the graph [10], for the
first time, we profile the fused multigraphs at several diffusion timescales by
extracting the compact heat-trace signatures of their corresponding Laplacian
matrices. To this aim, we adopt network Laplacian spectral descriptor (NetLSD)
introduced in [11] to produce brain multigraph heat-trace profiles, which nicely
satisfy permutation- and size-invariance, and scale-adaptivity. As one can “hear”
the connectivity of the drum if we were to represent its shape as a graph [10],
in this paper, we hear the connectivity of autistic and healthy morphological
brain multigraphs, derived from T1-w magnetic resonance imaging (MRI). To
further evaluate the discriminability of the discovered population-specific pro-
files, we use the heat-traces of fused brain multigraphs to train and test a linear
support vector machine (SVM) classifier using 5-fold cross-validation. This work
presents the first step towards ‘hearing’ the shape of the brain multigraph that
can be leveraged for profiling and disentangling comorbid neurological disorders,
thereby advancing precision medicine.

2 Proposed Eigen-Based Cross-diffusion and Heat
Tracing of Brain Multigraphs

Problem Statement. Given a population G
s = {G1, . . . ,GS} of S brain multi-

graphs of state s, we aim to profile the brain state of the given population G
s

by graph cross-diffusion and Laplacian-based heat tracing. To this aim, we first
propose an eigen-based cross-diffusion to integrate each individual brain multi-
graph into a single graph. Second, we heat the fused graph by Laplacian spectral
decomposition and discover the profile of a given population G

s by averaging all
subject-specific heat tracing profiles. In this section, we detail the steps of our
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Fig. 1. Proposed eigen-based multigraph cross-diffusion for profiling and comparing
brain multigraphs. A) Dataset G

s of S brain multigraphs of state s (e.g.., disordered
or healthy), each represented as a tensor G with M frontal views encoded in symmetric
connectivity matrices {W1, . . . ,WM}. B) To remove noisy connectivities and for a
more effective graph cross-diffusion, we sparsify each brain graph in G. C) Proposed
brain multigraph cross-diffusion and fusion using eigen centrality to produce the inte-
grated multigraph (i.e., status matrix). D) For each node v in the fused multigraph,
we heat the final status matrix using its Laplacian matrix at different timescales t.
The red arrow points at the active node v. E) Heat-trace based profiling and classifi-
cation. For a given subject i, we average the heat traces across all nodes, producing a
time-dependent heat trace h(t) stored in a heat trace profile vector. By extracting the
final heat-traces of all training profiles and supplying them to a support vector machine
(SVM), we evaluate the discriminative power of our approach in disentangling different
brain states (Color figure online).

eigen-based cross-diffusion for multigraph integration, profiling and comparison
framework. In Fig. 1, we present a flowchart of the five proposed steps including:
A) representation of an individual brain multigraph, B) subject-specific sparsi-
fication of brain multigraphs, C) cross-diffusion and integration of a multigraph
using eigen centrality, D) heat-tracing the integrated multigraph, and E) heat-
trace profiling and classification of brain multigraphs.
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A- Subject-Specific Brain Multigraph Representation. Let Gi =
{G1, . . . ,GM} denote a brain multigraph of subject i in the population G

s,
composed of M fully-connected brain graphs where Gm represents the brain
graph derived from measurement m (e.g.., correlation in neural activity or sim-
ilarity in morphology). Each brain graph Gm ∈ Gi captures a connectional view
of the brain wiring. Particularly, we define a brain multigraph Gi = (V,W) as a
set of nodes V representing brain regions of interest (ROIs) across all views and
W = {W1, . . . ,WM} is a set of symmetric brain connectivity matrices encoding
the pairwise relationship between brain ROIs.

B- Subject-Specific Sparsification of Multigraphs. Prior to the multigraph
diffusion and fusion at the individual level, we first sparsify each brain graph
Gm using different sparsification thresholds for the two following reasons. First,
the brain wiring is sparsely inter-connected system where strong connectivity
within modules supports specialization whereas sparse links between modules
support integration [12] and weak connectivity weights might not capture well
the most important connectional pathways in the brain for the target diffusion
task. Hence, we remove the weak connections by sparsifying each brain graph
independently. Second, diffusion on fully-connected graphs will rapidly converge
to a constant which prohibits a fine-grained characterization of graph topologies
to diffuse among one another [13]. Specifically, for every subject i and each
view m, we vectorize its connectivity matrix Wm by taking the elements in the
off-diagonal upper triangular part. Next, we compute the average mean μm and
standard deviation σm for each view m across all S subjects in G

s. We also define
a set of increasing α coefficients, α = {α1, . . . , αp} to generate p sparsification
thresholds ρp

m = μm +αpσm for each brain graph Gm. Ultimately, for each view,
we sparsify all brain graphs. For easy reference, we keep the same mathematical
notation {W1, . . . ,WM} for the sparsified multigraph adjacency matrices at
fixed thresholds {ρp

m}M
m=1, respectively (Fig. 1–B).

C- Cross-Diffusion and Integration of a Multigraph Using Eigen Cen-
trality. Given a sparsified brain multigraph Gi of subject i, one can leverage the
conventional graph cross-diffusion method introduced in [9] to diffuse each brain
graph across the average of the remaining brain graphs –progressively altering
the individual brain topology in such a way that it resembles more the ‘average’
brain topology. Following the iterative cross-diffusion step, one can integrate all
diffused graphs by simply linearly averaging them as they lie locally near to one
other in the diffused graph manifold. Although compelling, such a technique only
relies on the node degree to define the normalized diffusion kernel, which is a
limited measure of graph topology that can only capture the local neighborhood
of a node in terms of quantify (i.e., number of its neighboring nodes). To better
preserve the graph topology during the diffusion process, we unprecedentedly
introduce a graph diffusion strategy rotted in eigen centrality, a measure of the
influence of a node in a graph based on its eigen centrality. An eigen central
node is directly related to nodes which are central themselves [14]. Hence, it
presents a stronger definition of graph centrality taking into account the entire
pattern in a graph, which is also an intrinsic property of brain networks [15].
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Eigen centrality is a function of the connections of the nodes in one’s neighbor-
hood [16]. For a single view m, let {λ1, . . . , λ|V |} denote the set of eigenvalues
of the graph adjacency matrix Wm and ψ = maxi|λi| its spectral radius, the
eigen centrality of the kth node in Gm is defined as the lth entry component of
the principal eigen vector x, that is xl = 1

ψ

∑|V |
k=1 Wm(l, k)xk [16], where |V |

denotes the number of nodes in the graph. Next, for each graph in Gi, we define
a diagonal matrix Em for its mth view storing graph node eigen centralities. This
will be used to define an eigen centrality-normalized connectivity matrix Pm as
follows (Fig. 1–C): Pm = Em−1

Wm.
Next, for each view m, we iteratively update the status matrix Pm through

diffusing the average global structure of other (M − 1) views of the brain multi-
graph Gi along the eigen centrality diagonal matrix Em, thereby forcing the
connectivity diffusion to go through the most central ROIs in the brain. As
such, we cast a new formalization of edge-based diffusion on graphs guided by
most central nodes, which may overlook noise that distributes randomly and
sparsely in Gm as well as irrelevant connections. At iteration u + 1, we use the
following update rule to compute the status matrix of Gm:

Pm
u+1 = Em × (

1
M − 1

∑

k �=m

Pk
u) × (Em)T (1)

Following u∗ iterations of graph cross-diffusion, we then produce the fused
brain multigraph Pi

u∗ for subject i by linearly averaging the view-specific status
matrices as follows: Pi

u∗ = 1
M

∑M
m=1 Pm

u∗ .

D- Subject-Specific Heat-Tracing of the Fused Multigraph. In this stage,
given the fused status matrix Pi

u∗ , we set out to define a continuous time-
dependent profile (i.e., curve) of the fused brain multigraph of subject i using
a node-based diffusion process. Inspired from the work of [10], we leverage the
graph spectrum encoding its shape (or geometry) to profile Pi

u∗ . To this aim,
we first define the normalized Laplacian matrix Li of the final status matrix
Pi

u∗ as Li = I − S
−1
2 Pi

u∗S
−1
2 , where S is the diagonal strength matrix and

I is the identity matrix. Second, we estimate the spectrum of the normalized
Laplacian Li with eigenvalues {λi

1, . . . , λ
i
|V |} (Fig. 1–D). Next, we use the heat

equation to heat a node v in the fused multigraph at timescale t as follows:
ht(v) =

∑|V |
k=1 e−tλk(v), which is also referred to as the heat trace of node v

[11]. By averaging the heat traces of all nodes in the fused brain multigraph, we
can estimate its heat trace at time t. Ultimately, we create a logarithmic sample
space spanning from 10−2 to 103 to better inspect the descend of heat-traces by
acceleratingly increasing timescales. For nt different timescales in the logarith-
mic space, we compute nt different averaged heat-traces to create a heat trace
vector [hi

t1 , h
i
t2 , . . . , h

i
tnt ] and profile the fused multigraph of a subject i. The

steps of our method are detailed in Algorithm 1.

E- Heat-Trace Profiling and Discriminability of Brain Profiles. Given a
population G

s1 of brain multigraphs of state s1 (e.g.., healthy) and a population
G

s2 of state s2 (e.g.., disordered), we compute the heat trace profile for each
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Algorithm 1. Eigen-based cross-diffusion for multigraph integration and pro-
filing
1: INPUTS:

Gi = {G1, . . . ,GM }: multigraph of the ith subject in dataset G
s of state s

2: for m := 1 to M do
3: Wm ← matrix representation of graph Gm (mth view of Gi)
4: Em ← diagonal matrix built from eigen centralities of Wm

5: Pm
1 ← Em−1

Wm (eigen centrality normalization) � first status matrix
6: end for
7: for each diffusion iteration u ∈ {1, 2, . . . , u∗} do
8: for m := 1 to M do
9: Update the status matrix of the mth view via cross-diffusion using

Pm
u+1 ← Em ×( 1

M−1

∑
k �=m Pk

u)× (Em)T

10: end for
11: end for
12: Compute the final status matrix for subject i using Pi

u∗ ← 1
M

∑M
m=1 Pm

u∗
13: Li ← normalized Laplacian matrix of Pi

u∗ of subject i

14: {λi
1, . . . , λi

k} ← eigenvalues of Laplacian Li of subject i

15: for each logarithmic timescale t ∈ {t1, t2, . . . , tnt} do

16: for each node v of the normalized Laplacian Li of subject i do

17: Compute heat-trace ht(v) =
∑|V |

k=1 e−tλi
k (v)

18: end for
19: Compute time-dependent heat-trace hi

t for subject i averaged across subject nodes at
timescales t

20: end for
21: OUTPUTS: heat-trace vector of subject i, [hi

t1
, hi

t2
, . . . , hi

tnt ]

brain multigraph in each population. Next, we report the average population
heat trace profile by averaging the profiles of all individual multigraphs in the
population. To evaluate the discriminability of the estimated fused multigraph
heat tracing profiles, we train a support vector machine (SVM) with a sigmoid
kernel classifier to classify brain multigraphs in state s1 or s2 using the stable
heat trace value at the tail of the profile curve (Fig. 1–E). Specifically, we use
5-fold cross-validation to train an SVM classifier using the single-valued heat
trace of each subject i. We also define a margin δ(s1, s2) between the two brain
states by computing the absolute difference between the heat trace value at the
tail of both heating profiles.

3 Results and Discussion

Brain Multigraph Dataset and Parameter Setting. We evaluated our
framework on 200 subjects (100 ASD and 100 NC) from Autism Brain Imaging
Data Exchange (ABIDE). For each cortical hemisphere, each subject is repre-
sented by 4 cortical morphological brain networks derived from maximum prin-
cipal curvature, the mean cortical thickness, the mean sulcal depth, and the
average curvature. These networks were derived from T1-weighted magnetic reso-
nance imaging (MRI). Each hemisphere was parcelled into 35 anatomical regions
defining the nodes of each brain graph and encoded in a symmetric matrix that
quantifies morphological dissimilarity between pairs of cortical regions using a
particular measurement (e.g.., cortical thickness) [17–19]. Hence, each cortical
hemisphere is represented by a multigraph consisting of 4 different graphs.
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Fig. 2. Heat-trace profiles of morphological brain multigraphs with healthy and autistic
states and SVM classification results using both proposed eigen-based cross-diffusion
and conventional strength based cross-diffusion method [9]. NC: normal controls. ASD:
autism spectrum disorders. Clearly, our method produces orderly and smooth heat-
trace profiles with larger gaps between brain states, whereas the conventional method
produces fluctuating and wavy profiles. This nicely results in our method achieving
higher classification accuracy at different sparsification thresholds, thereby demonstrat-
ing the discriminativeness of the estimated profiles.

Brain Multigraph Sparsification. For each hemisphere, we set the sparsification
coefficients α to {1.0, 1.4, 1.8, 2.2, 2.6, 3.0} to sparsify the 4 brain graphs in each
multigraph. Next, we plot the average heat-trace profile across subjects in the
same population (i.e., sharing the same state) and report SVM classification
results using 5-fold cross-validation in Fig. 2.

Evaluation and Comparison Methods. We compare the performance of our
eigen-based cross-diffusion framework with conventional strength based cross-
diffusion method [9]. As conventional cross-diffusion method uses a diagonal
matrix storing node strengths on the diagonal, it cannot capture the quality of
the local neighborhoods (e.g.., presence of hub neighbors); whereas our method is
based on eigen centrality measures which assesses the quality of local neighbors
to a given node. Figure 2 shows that [9] produces unstable and highly fluctuat-
ing heat-trace plots, whereas our eigen-based cross-diffusion method generates
ordered and smooth heat-trace plots for ASD and NC brain populations G

ASD

and G
NC . This can be explained by the fact that [9] diffuses a sparse similarity

matrix encoding node similarity to nearby data points, whereas we diffuse the
eigen diagonal matrix which enhances the role of hub nodes as reliable mediators
of information diffusion which cannot be captured by only considering nearest
neighbors. Besides, central nodes are generally more resistant to noise which
can permeate local neighborhoods, thereby privileging their use for stable and
robust diffusion. The orderliness of our method shows its true power in brain
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state classification by SVM. Our proposed method of eigen-based cross-diffusion
boosts the classification results by 2–12% in comparison with baseline method.

In Fig. 3, we display the margin δ(ASD,NC) between two brain populations
for right and left hemispheres at different sparsification thresholds. Clearly, our
method produces larger gaps between autistic and healthy brain state profiles
(blue bars), which demonstrates its discriminative potential for neurological dis-
order diagnosis and classifying brain states. As we increase the sparsification level
of brain multigraphs, the gap first increases then decreases fitting a smooth poly-
nomial curve. We also note that the margin is very low δ(ASD,NC) when using
the original non-sparsified brain multigraphs, implying lower state discrimina-
tiveness. In fact, the sparsification threshold is a hyper-parameter that requires a
deeper investigation. Ideally, one would learn how to identify the best threshold
that allows to identify what individualizes a population of brain multigraphs.

Fig. 3. Comparison the margin δ(ASD, NC) between ASD and NC classes shown in
Fig. 2 at different sparsification levels by our method and [9]. We fitted 5th degree
polynomials to the bar plots.

4 Conclusion

In this work, we introduced a multigraph cross-diffusion, integration and profil-
ing technique based on eigen centrality. The discovered brain multigraph pro-
files were smooth and highly discriminative in comparison with baseline method,
which have utility in diagnosing neurological disorders. Indeed, the wide spec-
trum of the disordered brain connectome [2] demands not only advanced graph
analysis techniques and scalable graph comparison strategies, but it also calls
for new multigraph analysis tools that can unify the multiple graph represen-
tations of the brain including structure and function. In our future work, our
goal is to profile a wide spectrum of brain disorders using functional, structural
and morphological brain graphs in future population comparative connectomics
[20,21].
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Abstract. The varying cortical geometry of the brain creates numer-
ous challenges for its analysis. Recent developments have enabled learn-
ing cortical data directly across multiple brain surfaces via graph con-
volutions. However, current graph learning algorithms fail when brain
surface data are misaligned across subjects, thereby requiring to apply
a costly alignment procedure in pre-processing. Adversarial training is
widely used for unsupervised domain adaptation to improve segmen-
tation performance on target data whose distribution differs from the
training source data. In this paper, we exploit this technique to learn
surface data across inconsistent graph alignments. This novel approach
comprises a segmentator that uses graph convolution layers to enable
parcellation across brain surfaces of varying geometry, and a discrim-
inator that predicts the alignment-domain of surfaces from their seg-
mentation. By trying to fool the discriminator, the adversarial training
learns an alignment-invariant representation which yields consistent par-
cellations for differently-aligned surfaces. Using manually-labeled brain
surface from MindBoggle, the largest publicly available dataset of this
kind, we demonstrate a 2%–13% improvement in mean Dice over a non-
adversarial training strategy, for test brain surfaces with no alignment
or aligned on a different reference than source examples.

1 Introduction

The cerebral cortex is essential to a wide range of cognitive functions. Automated
algorithms for brain surface analysis thus play an important role in understand-
ing the structure and working of this complex organ. Nowadays, deep learning
models such as convolutional neural networks (CNNs) provide state-of-the-art
performance for most image analysis tasks, including image classification, reg-
istration, and segmentation [1]. However, these models typically require large
annotated datasets for training, which are often expensive to obtain in medical
applications. This limitation is especially true for the task of cortical segmen-
tation, also known as parcellation, where generating ground truth data requires
labeling possibly thousands of nodes on a highly-convoluted surface. This burden
also explains why datasets for such tasks are relatively small. For instance, the
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largest publicly-available dataset for cortical parcellation, MindBoggle [2], con-
tains only 101 manually-annotated brain surfaces. Moreover, another common
problem of deep learning models is their lack of robustness to differences in the
distribution of training and test data. Hence, a CNN model trained on the data
from a source domain usually fails to generalize to samples from other domains,
i.e., the target domains.

Unsupervised domain adaptation (UDA) [3] has proven to be a powerful app-
roach for making algorithms trained on source data generalize to examples from
a target domain, without having explicit labels for these examples. Generative
adversarial networks (GANs) [4] leverage adversarial training to produce real-
istic images. In this type of approach, a discriminator network classifies images
produced by a generator network as real or fake, and the generator improves by
learning to fool the discriminator. Following the success of GANs, adversarial
techniques have later been proposed to improve the learning capability of CNNs
across different domains. Adversarial domain adaptation methods for segmenta-
tion [5–10] involve the concurrent training of two networks: a segmentator that
learns to produce accurate segmentation outputs for labeled source examples,
and a discriminator which forces the segmentator to have a similar prediction
for examples of both source and target domains. These adversarial techniques
usually rely on either feature space adaptation or output space adaptation. Ini-
tial works [11,12] focused on matching the distributions of features from source
and target domain examples for classification tasks. As the output of CNNs for
segmentation contains rich semantic information, [13] proposed a method that
instead leverages output space adaptation. Various pixel-wise domain adapta-
tion approaches have been developed for natural color images [12,14]. In medical
image analysis, [15] proposed an adversarial neural network for MRI image seg-
mentation which does not require additional labels on test examples from the
target domain. Likewise, [10] presented a vessel segmentation approach for fun-
dus images, which uses a gradient reversal layer for adversarial training. Recent
work [16] also addressed the problem of domain adaptation by adding a differ-
entiable penalty on the target domain. However, these domain adaptation tech-
niques focus on data lying in the Euclidean space (natural or medical images)
and, therefore, are not suitable for graph structures such as surface meshes.

The image space is inadequate to capture the varying geometry of the cere-
bral cortex. Differences in brain surface geometry hinder statistical frameworks
from exploiting spatial information in Euclidean space. The extension of stan-
dard convolutions to non-Euclidean spaces like manifolds and graphs has led
to the development of various geometric deep learning frameworks [17,18]. A
recent work [19] proposed to use geometric deep learning for segmenting three
cortical regions by relying on the spatial representation of the brain surface
mesh. Later, based on the spectral representation of such meshes, [20] developed
a graph convolution network (GCN) to parcellate the cerebral cortex. Despite
offering more flexibility than Euclidean-based approaches, these methods are
domain-dependent and would fail to generalize to new datasets (domains) with-
out explicit re-training. Moreover, obtaining annotations for these new datasets
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Fig. 1. Overview of our architecture: The input brain graph is mapped to a spec-
tral domain by decomposition of the graph Laplacian. The source and target domain are
obtained by aligning the eigenbases to source reference and targets reference respec-
tively. A segmentator GCN learns to predict a generic cortical parcel label for each
domain. The discriminator aims at classifying the segmentator predictions, thereby
assisting the segmentator GCN in adapting to both source and target domains.

is also challenging and time-consuming, due to the complexity of visualizing and
labeling intricate surfaces.

In this paper, we address the limitations of existing techniques for corti-
cal parcellation by proposing an adversarial domain adaptation method on sur-
face graphs. Specifically, we focus on a problem shared by most GCN-based
approaches, which is the need for a common basis to represent and operate on
graphs. For approaches operating in Euclidean space, bringing surface graphs
to this common basis usually involves transforming and possibly sub-sampling
meshes to match a given reference, which is particularly difficult for convoluted
surfaces like the cortex. As described in [20], this process can be greatly sim-
plified by instead operating in the spectral domain, for instance using spectral
GCNs [21,22]. Nevertheless, spectral GNCs also need to perform some alignment
to work. Hence, these models require computing the eigendecomposition of the
graph Laplacian matrix to embed graphs in a space defined by a fixed eigenba-
sis. However, separate graphs may have different eigenbases, and the eigenvectors
obtained for a given graph are only defined up to a sign and a rotation (if different
eigenvectors share close eigenvalues). Due to these ambiguities, spectral GCNs
cannot be used to compare multiple graphs directly and need an explicit align-
ment of graph eigenbases as an additional pre-processing step. Here, we focus
on generalizing parcellation across multiple brain surface domains by removing
the dependency on these domain-specific alignments.

The contributions of our work are multifold:

– We present, to the best of our knowledge, the first adversarial graph domain
adaptation method for surface segmentation. Our novel method trains two
networks in an adversarial manner, a fully-convolutional GCN segmentator
and a GCN domain discriminator, both of which operate on the spectral
components of surface graphs.

– Compared to existing approaches, our surface segmentation method offers
greater robustness to differences in domain-specific alignment. Hence, our
method yields a higher accuracy for non-aligned brain surfaces compared to
a strategy without adversarial learning. Moreover, it also provides a better
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generalization for surfaces aligned to a different reference, without requiring
an explicit re-alignment or manual annotations of these surfaces.

– We demonstrate the potential of our method for alignment-invariant parcel-
lation of brain surfaces, using data from MindBoggle, the largest publicly-
available manually-labeled surface dataset. Our results show significant mean
Dice improvements compared to the same segmentation network without
adversarial training and over a strong baseline approach based on Spectral
Random Forest.

In the next section, we detail the fundamentals of our graph domain adap-
tation method for surface segmentation, followed by experiments validating the
advantages of our method and a discussion of results.

2 Method

An overview of our proposed method is shown in Fig. 1. In the initial step,
the cortical brain graph is embedded into the spectral domain using the graph
Laplacian operator. Next, samples from the source domain only are aligned to a
reference template using the Iterative Closest Point (ICP) algorithm. This algo-
rithm works by repeating the following two steps until convergence: 1) mapping
each node of the graph to align to its nearest reference node in the embedding
space; 2) computing the orthogonal transformation (i.e., rotation and flip) which
brings nodes nearest to their corresponding reference node. Since this process
is iterative and external to the network architecture, it can be computation-
ally expensive to run. However, we only need to apply it during training and,
as shown in experiments, the proposed method can achieve good performance
on non-aligned test examples by learning an alignment-invariant representation.
Finally, a graph domain adaptation network is trained to perform alignment-
independent parcellation. The segmentator network learns a generic mapping
from input surface features, e.g. the spectral coordinates and sulcal depth of
cortical points, to cortical parcel labels.

2.1 Spectral Embedding of Brain Graphs

We start by describing the spectral graph convolution model used in this work.
Denote as G = {V, E} a brain surface graph with node set V, such that |V| = N ,
and edge set E . Each node i has a feature vector xi ∈ R

3 representing its 3D
coordinates. We map G to a low-dimension manifold using the normalized graph
Laplacian operator L = I − D− 1

2 AD− 1
2 , where A is the weighted adjacency

matrix and D the diagonal degree matrix. Here, we consider weighted edges and
measure the weight between two adjacent nodes as the inverse of their Euclidean
distance, i.e. aij = (‖xi −xj‖+ε)−1 where ε is a small positive constant. Letting
L = UΛU� be the eigendecomposition of L, the normalized spectral coordinates
of nodes are given by ̂U = Λ− 1

2 U. The normalization with Λ− 1
2 is used so that

coordinates corresponding to smaller eigenvalues are given more importance in
the embedding.
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Denote the neighbors of node i ∈ V as Ni = {j | (i, j) ∈ E}. The convolution
operation used in our spectral GCN is defined as

z
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j∈Ni

Ml
∑

q=1

Kl
∑

k=1

w
(l)
pqk y

(l)
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where y
(l)
jq is the feature of node j in the q-th feature map of layer l, w

(l)
pqk

is the weight in the k-th convolution filter between feature maps q and p of
subsequent layers, b

(l)
p is the bias of feature map p at layer l, and σ is a non-

linear activation function. The information of the spectral embedding relating
nodes i and j is included via a symmetric kernel ϕ(ûi, ûj ;Θk) parameterized by
Θk. In this work, we follow [20] and use a Gaussian kernel: ϕ(ûi, ûj ;μk, σk) =
exp

( − σk ‖(ûj − ûi) − μk‖2
)

.

2.2 Graph Domain Adaptation

Our graph domain adaptation architecture contains two blocks: a segmentator
GCN S performing cortical parcellation and a discriminator GCN D, which
predicts if a given parcellation comes from a source or target graph. Let Xsrc

be the set of source graphs and Xtgt the set of unlabeled domain graphs, with
X = Xsrc ∪Xtgt the entire set of graphs available in training. In the first step, we
optimize the segmentator GCN using labeled source graphs G ∈ Xsrc. We feed
the segmentation network’s prediction S(G) to the discriminator D whose role
is to identify the input’s domain (i.e., source or target). The gradients computed
from an adversarial loss on target domain graphs are back-propagated from D to
S, forcing the segmentation to be similar for both the source and target domain
graphs.

As in other adversarial approaches, we define the learning task as a minimax
problem between the segmentator and discriminator networks,

max
D

min
S

L(D,S) =
1

|Xsrc|
∑

G∈Xsrc

Lseg(S(G),yG) − λ

|X |
∑

G∈X
Ldis

(

D(S(G)), zG
)

,

(2)

where Lseg is the supervised segmentation loss on labeled source graphs, and Ldis

is the discriminator loss on both source and target graphs, which is optimized
in an adversarial manner for S and D.

Segmentator Loss. For each input graph, the segmentator network outputs a
parcellation prediction ŷ where ŷic is the probability that node i belongs to parcel
c. In this work, we define the supervised segmentation loss as a combination of
weighted Dice loss and weighted cross-entropy (CE),

Lseg(ŷ,y) =

[

1 − ε + 2
∑N

i=1

∑C
c=1 ωc yic ŷic

ε +
∑N

i=1

∑C
c=1 ωc(yic + ŷic)

]

−
N

∑

i=1

C
∑

c=1

ωc yic ŷic, (3)



Graph Domain Adaptation for Alignment-Invariant Brain Surface 157

with yic being a one-hot encoding of the reference segmentation and ε a small
constant to avoid zero-division. The weights ωc balances the loss for parcels
by increasing the importance given to smaller-sized regions. We follow [20] and
set class weights ωc as the total number of nodes divided by the number of
nodes with label c. In the loss of Eq. (3), CE improves overall accuracy of node
classification while Dice helps to have structured output for each parcel.

Discriminator Loss. Since the discriminator D is a domain classifier, we define
its loss as the binary cross-entropy between its domain prediction (i.e., ẑ = 1 for
source or ẑ = 0 for target):

Ldis(ẑ, z) = − (1 − z) log(1 − ẑ) − z log ẑ. (4)

As mentioned before, this loss is maximized while updating the segmentator’s
parameters and minimized when updating the discriminator. Thus, the segmen-
tator learns to produce surface parcellations that are alignment-invariant.

2.3 Network Architecture

Segmentator: The segmentator is a fully-convolutional GCN comprised of 3
graph convolution layers with respective feature map sizes of 256, 128, and 32.
At the input of the network, each node has 4 features: 3D spectral coordinates
and an additional scalar measuring sulcal depth. All layers have Kl = 6 Gaussian
kernels, similar to [20]. Since the output has 32 parcels, our last layer size is set
to 32. In the last layer, softmax operation is applied for parcellation prediction,
and the remaining layers employ Leaky ReLU as an activation function to obtain
filter responses in Eq. (1).

Discriminator: Similar to the segmentator network, we use 2 graph convo-
lution layers, an average pooling layer, and 3 fully connected (linear) layers for
classifying the segmentation domain. The first graph convolution layer takes seg-
mentation predictions with 32 feature maps as input. Moreover, the output sizes
of the first two layers output are 128 and 64, respectively. Average pooling is
used to reduce the input graph to a 1-D vector for the classification task. Three
fully-connected layers are placed at the end of the network, with respective sizes
of 32, 16, and 1. Each graph convolution layer has Kl = 6 Gaussian kernels.
Sigmoid activation is applied to the last linear layer to predict the input domain
of the graph sample and the remaining layers use Leaky ReLU.

3 Results

We evaluate the performance of our method using MindBoggle [2], the largest
manually-labeled brain surface dataset. This dataset contains the cortical mesh
data of 101 subjects aggregated from multiple sites. Each brain surface includes
32 manually labeled parcels. We split this dataset into 70-10-20 training, vali-
dation and test sets. The training set has only 35 samples for the source and
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Fig. 2. Effect of hyper-parameter λ: Segmentation performance in mean Dice (left)
and Discriminator classification accuracy (right) on test examples, obtained for λ ∈
{0.1, 1, 10}.

target domains each. To have more training samples and thus reduce overfitting,
we sub-sample the node embeddings of each mesh to generate 25 examples of
10K nodes. This data augmentation technique, which is not possible in regular
CNNs, is enabled by the spectral embedding of our approach.

Let Pc be the nodes predicted as having label c ∈ {1, . . . , 32}, and Gc be the
actual set of nodes with this label in the ground-truth parcellation. We evaluate
performance using the mean Dice overlap:

MeanDice(P,G) =
1
32

32
∑

c=1

2 |Pc ∩ Gc|
|Pc| + |Gc| . (5)

All experiments were carried out on an i7 desktop computer with 16 GB of RAM
and an Nvidia Titan X 12 GB GPU. The code for our work is available at the
following URL: https://tinyurl.com/yawdw7hh.

3.1 Effect of λ on Parcellation

The loss function for adversarial training involves hyper-parameter λ, which
controls the trade-off between parcellation accuracy on labeled source data and
fooling the discriminator (i.e., alignment invariance). To assess the impact of this
important hyper-parameter on performance, we show in Fig. 2 the segmentator
mean Dice and discriminator classification accuracy on test examples at different
training epochs, for λ ∈ {0.1, 1, 10}. As expected, when using a large λ = 10,
the model focuses mostly on fooling the discriminator. This results in a low seg-
mentation Dice, and a discriminator accuracy near 50% since the discriminator
cannot distinguish between source and target parcellation outputs. Conversely,
for a small λ = 0.1, the adversarial training gives less importance to fooling
the discriminator, which translates in a high discriminator accuracy. However,
this also leads to a poor performance on target examples, since the parcellation
output for these examples differs greatly from those of source examples. This
illustrates that a stronger adversarial learning is required to align the source
and target domains. For the rest of our experiments, we selected λ = 1 based on
the parcellation accuracy for validation examples.

https://tinyurl.com/yawdw7hh
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Table 1. Comparison with surface segmentation approaches: Mean Dice and
standard deviation on test data. The first result column corresponds to the default
setting where test (i.e., target domain) graphs are not aligned. For the second column,
test graphs were aligned on the same reference as training (i.e., source domain) graphs.
Result columns 3–7 correspond to the setting where all test graphs are aligned to
four randomly-selected target graphs (a different graph for each column). Bold font
highlights a performance statistically higher than all other methods (t-test p < 0.01).

Method No alignment Alignment to reference graph

Source Rand.

target 1

Rand.

target 2

Rand.

target 3

Rand.

target 4

Spectral RF [23] 65.4± 9.0 81.9± 3.4 60.0± 1.8 55.3± 2.1 60.2± 4.0 55.2± 3.0

Seg-GCN [20] 71.4± 7.9 86.5± 2.8 67.8± 2.0 58.8± 2.8 63.5± 3.2 60.1± 3.6

Adv-GCN (ours) 73.8±6.0 85.7± 3.5 73.5±2.0 72.5±2.6 72.4±2.4 71.7±3.3

3.2 Comparison with the State-of-the-art

We next compare our method, called Adv-GCN in the following results, against
two other graph-based approaches for surface parcellation. This first one is the
Spectral Random Forest (RF) algorithm proposed in [23], which performs the
same spectral graph embedding as our method, and then uses the spectral coor-
dinates and sulcal depth at individual nodes to train a RF classifier. As done
in [23], we employed 50 trees to build the RF model. This comparison baseline
was included to show the limitation of point-based approaches which ignore the
relationship between nodes when predicting labels. The second approach, called
Seg-GCN, is the same segmentation GCN as in our method, but trained without
the adversarial loss. For this baseline, which is similar to the method presented
in [20], our goal is to show the benefit of learning an alignment-invariant repre-
sentation with adversarial domain adaptation.

The surface parcellation approaches are compared in three different test set-
tings. In the first one, the approaches are applied on target examples without any
alignment. This corresponds to the normal application setting of our alignment-
invariant method. For the second one, we align all target examples on the same
reference surface as the one used for source examples. This setting requires to
retain the reference surface and apply ICP alignment in pre-processing for each
test surface. Finally, in the third setting, target examples are aligned to a ref-
erence surface chosen randomly in the test set. This last setting corresponds to
the case where we want to parcel surfaces from a dataset which was processed
differently than the source dataset.

Results of this experiment are summarized in Table 1. When test examples
are aligned to the same source reference (i.e., no domain shift), our segmenta-
tion GCN architecture, with or without adversarial learning, outperforms Spec-
tral RF by a large margin. This illustrates the importance of considering the
relationship between different nodes in the graph, as in our graph convolu-
tion model. However, when applied to non-aligned test surface, our Adv-GCN
method achieves a 2.4% improvement in mean Dice over Seg-GCN, and 8.4%
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Fig. 3. Segmentation Dice for individual parcels: Box-plot of mean Dice overlap
achieved by three different methods for all 32 cortical parcels when test subjects are
not aligned.

over Spectral RF. This demonstrates the benefit of learning an alignment-
invariant representation via adversarial domain adaptation. Furthermore, the
improvement provided by our Adv-GCN method is even more significant for sur-
faces aligned to a random target reference (last four columns of Table 1). Thus,
across the four random target references, Adv-GCN yields an average improve-
ment of 14.9% compared to Spectral RF and 10.0% compared to Seg-GCN. This
shows the strength of adversarial learning to match the output distribution for
two fixed domains.

The average Dice overlap for individual parcels is shown in Fig. 3. As can be
seen, Adv-GCN provides a higher mean and smaller variance for most of the 32
parcels. By inspecting results, we find that accuracy is correlated with parcel size,
with larger parcels generally better segmented than smaller ones. Figure 4 shows
qualitative results for different graph segmentation methods. As highlighted by
the red circle, our Adv-CGN gives a more accurate segmentation compared to
Seg-GCN and Spectral RF, with an improvement over 13% in parcel-averaged
Dice.
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Fig. 4. Qualitative comparison: Parcellation outputs of the three surface segmenta-
tion approaches for a single non-aligned test surface. For better visualization, segmented
parcels are drawn on an inflated surface. For each approach, we report the average Dice
and standard deviation computed over the 32 parcels. As highlighted by the red circle,
our adversarial GCN (Adv-CGN) gives a more accurate segmentation compared to
the same model without adversarial training (Seg-GCN) and Spectral Random Forest
(RF).

4 Conclusion

In this paper, we presented a novel adversarial domain adaptation framework
for brain surface parcellation. The proposed algorithm leverages an adversar-
ial training mechanism to obtain an alignment-invariant surface segmentation,
and overcomes the limitations of spectral GCNs [21,22] that require finding an
explicit alignment of graph eigenbases. Table 1 shows a clear improvement in per-
formance over the same spectral GCN without adversarial training (Seg-GCN)
and the Spectral Random Forest (RF) algorithm [23]. Specifically, our method
yields a 2.4% mean Dice improvement over Seg-GCN and 8.4% over Spectral RF,
for non-aligned test surfaces. This improvement reaches over 10% for test surface
aligned to a random target reference. Qualitative results in Fig. 4 illustrate the
better parcellation of our method for non-aligned surfaces.

In some experiments, we observed a tendency of the discriminator to over-
fit the training set, which impeded domain adaptation in the learning process.
In a future study, two strategies could be explored to overcome this problem:
using other types of discriminator, for instance the Least Squares GAN [24] or
Wasserstein GAN [25], and applying data augmentation on labeled brain surface
meshes. While our adversarial graph domain adaptation technique was demon-
strated on cortical parcellation, it also has potential for other surface segmenta-
tion problems where a domain shift is present. Likewise, our method could be
useful for semi-supervised surface segmentation, thereby mitigating the need for
large amounts of labeled surfaces. In this setting, the same architecture could
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be used, however the discriminator would predict if the segmentation output is
for a labeled or unlabeled example from the same domain. We plan to evaluate
the impact of higher frequency input representations with performance measures
such as Hausdorff distance in future work.
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Abstract. Neuroimaging studies of structural connectomes typically
average the data from many subjects and analyse the average properties
of the resulting network. We propose a new framework for individual
brain-network structural abnormality detection. The framework uses a
graph-based anomaly detection algorithm that allows to detect abnor-
mal structural connectivity on a subject level. The proposed method is
generic and can be adapted for a broad range of network abnormality
detection problems. In this study, we apply our method to investigate
the integrity of white matter tracts of 19-year-old extremely preterm
born individuals. We show the feasibility to cast the network abnormal-
ity detection problem into a min-cut max-flow problem, and identify
consistent abnormal white matter tracts in extremely preterm subjects,
including a common network involving the bilateral thalamus and frontal
gyri.

1 Introduction

The neuropsychological outcome and neuroimaging phenotype of preterm-born
children and infants is greatly influenced by premature exposure to the extrauter-
ine environment [2,3,9]. Studies have shown anatomical [2], micro-structural [3]
and a range of neuropsychological differences [9] linked to prematurity. The
majority of neuroimaging studies on preterm populations analyse the aver-
age properties of the preterm group compared to that of the controls. Such
population-level studies usually register all images of a population into a com-
mon space. Due to the anatomical abnormalities associated with the preterm
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brain, such as ventriculomegaly, this step can lead to misleading results. Gener-
ally, analysis that contrast two populations inherently ignore considerable inter-
subject heterogeneity in each group. In the present work, we acknowledge that
besides the normal individual variability, preterm birth has a broad range of
effects on the brain. The most-reported impairments in the preterm born pop-
ulation are negative neuropsychological outcome [9] and white matter (WM)
differences [5] with a varied pattern of severity.

Researchers’ efforts in investigating WM led to developing brain structural
connectomes (or networks) as a promising tool to investigate major brain path-
ways and examine essential circuits [12].

The connectome can be studied as a graph where the nodes are the brain
regions, and the edges quantify inter-connectivity between those areas. The main
aim of the present paper is to detect abnormal WM connectivity. Labels for WM
abnormalities are difficult to obtain. However, we hypothesise that abnormalities
in edge connectivity are unlikely to be isolated and that conversely, anomalies
are likely to be contiguous. Graph-based methods allow us to model this anatom-
ical hypothesis and to detect abnormalities even in the absence of ground-truth
labels.

The min-cut max-flow framework is applied to investigate the integrity of
WM tracts of 19-year-old extremely preterm individuals (born before 27 weeks
completed gestation). We analyse WM connectivity in the individual subject
space by mapping the tracts into structural connectomes; then we separate aber-
rant connectivity from the aged-matched control-group connectivity using the
min-cut max-flow framework. The framework takes into account the anatomical
information of the WM tracts and brain regions to which they are connected.
We use a graph similarity measure based on a Laplacian matrix to measure
the global differences in structural connectivity between a reference connec-
tivity matrix and the connectivity matrix under investigation. While the dis-
tance matrix estimates a global measure of divergence, the min-cut max-flow
framework localises the abnormality. We experimentally show that the proposed
framework can detect consistent abnormal WM tracts across the subjects, and
the abnormal WM tracts identified for each subject correlate with the changes
in structural connectivity as measured by the graph similarity measure.

2 Methods

We describe the data in Sect. 2.1 and the steps to perform tractography and net-
work extraction in Sect. 2.2. Section 2.3 describes the measure we use to quantify
the distance between two brain-networks, while Sect. 2.4 describes the min-cut
max-flow formulation to detect brain-network abnormalities. Figure 1 illustrates
the main steps of the pipeline.

2.1 Data

Diffusion weighted MRI and T1-weighted MRI acquisitions were performed on
a 3T Philips Achieva system for Np = 80 (49/31 females/males) extremely
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Fig. 1. Outline of the methodology to estimate structural networks and find abnormal
structural connections. We performed Anatomically Constrained Tractography (ACT)
(1) [10] to estimate the white matter streamlines. We estimate the structural connec-
tome (3) by quantifying the connectivity between brain regions obtained from Geodesic
Information Flow (GIF) [4] parcellations (2). We compare the structural connectivity
matrix of each extremely preterm born subject GP to the average structural connectiv-
ity matrix of the full-term born subjects GC (4); similar edges have the same colour, the
colour of the abnormal edge in GP is different to the corresponding edges in GC (4). We
cast the problem into a min-cut max-flow framework (5). The detection of structural
brain abnormality (7) results from the graph cut after solving the min-cut max-flow
problem (6).

preterm born 19-year-old individuals and Nc = 36 (19/17 females/males)
full-term born age-matched peers. T1-weighted MRI images were acquired at
TR = 6.93 ms, TE = 3.14 ms and 1 mm isotropic resolution. EPI-SE volumes
of dWMRI were acquired at (2.5 × 2.5 × 3) mm resolution across b-values of
(0, 300, 700, 2000) s/mm2, n: 4, 8, 16, 32 directions, TE: 70 ms, TR: 3500 ms, FOV:
(240 × 240 × 150) mm, flip angle: 90◦, and SENSE factor of 1.

T1-weighted images were bias-corrected using N4ITK algorithm [14].
Diffusion-weighted MRI volumes were corrected for thermal noise [15], Gibbs-
ringing artefacts [7], eddy current-induced distortion and subject movements
artefacts [1].

The median gestational age at birth for extremely preterm born individuals
is 25.14 (CI 95% 22.14–25.86) weeks of gestation. The full term born subjects
were born after 37 weeks of gestation. All the subjects had MRI assessment at
19 years of age.

2.2 Tractography and Networks Extraction

As shown in step 1 of Fig. 1, we generate a whole-brain tractogram for each sub-
ject. A multi-shell multi-tissue approach [6] was used to estimate the response
function for each tissue type. The fibre orientation distribution (FOD) was first
calculated in each voxel using constrained spherical deconvolution (CSD) [13]
and then normalised for inter-subject comparisons. Anatomically Constrained
Tractography (ACT) was performed using dynamic seeding and backtrack re-
tracking algorithms [10]. To account for the fact that the density of the esti-
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mated fibres is not representative of the density of the underlying white mat-
ter fibres, the ten million streamlines generated per subject were filtered using
the spherical-deconvolution informed filtering of tracks (SIFT2) procedure [11].
SIFT2 determines an adequate cross-sectional area for each estimated stream-
line, such that the estimated streamlines densities throughout the white matter
are reflective of the fibre densities computed using the spherical deconvolution
model [11]. As illustrated in Fig. 1, in step 2, tissue parcellations of the corrected
T1-weighted volumes were obtained using Geodesic Information Flow (GIF) [4].
Brain regions of interest (ROI) were defined based on the GIF labelling protocol
[4]. The grey matter areas (121 brain regions) formed the nodes for the brain
network derivation. For each subject n ∈ N , a network Gn = (Q,Z) is defined, in
which each node corresponds to an ROI, and Z is the set of edges connecting the
ROIs. In the network Gn, for all of edges (i, j), we denote gij the strength of the
connectivity between i and j defined by the weighted (SIFT2) [11] contribution
of each streamline connecting i and j. This is illustrated in step 3 of Fig. 1.

2.3 Graph Similarity Measure

We aim to evaluate the divergence of the connectivity matrix of each extremely
preterm born subject from the normality. The graph similarity is quantified using
the spectral distance (SD) [16] of the normalised Laplacian. The eigenvalues of
the normalised Laplacian describe aspects of the global network structure. The
difference between the spectra of normalised Laplacians can be used to quantify
the similarity between networks. The normalised Laplacian L of a graph G with
edge weights gij is defined as L = I − D− 1

2 GD− 1
2 [16], where I is the identity

matrix and D is a diagonal matrix such that D = diag(di) with ∀i di =
∑

j∈Q gij .
To avoid the use of arbitrary control connectivity matrices, we consider the mean
connectivity matrix GC of the full-term born subjects and the corresponding
normalised Laplacian LC . Let LP be the Laplacian of the connectivity matrix
GP of the extremely preterm born subject, the spectral distance SD(LC ,LP) is
defined as the Euclidean distance between the eigenvalues of LC and LP [16]

SD(LC ,LP) =
∑

u

√
(λC

u − λP
u )2 (1)

Therefore we aim to measure the normality of GP using SD(LC ,LP).

2.4 Graph Cut Optimisation for the Detection of Abnormal
Connectivity

This section shows how the problem of detecting anomalies in subject’s connec-
tivity network can be cast as a min-cut max-flow problem.

Min-Cut Max-Flow Framework: Given the group-level reference connec-
tivity matrix GC and the subject-level abnormal connectivity matrix GP (as
illustrated in step 4 of Fig. 1), we aim to identify the abnormal connectivity
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in GP with respect to GC . As each edge (i, j) connects brain regions i and j with
strength of connectivity gij , by comparing the strength of connectivity gij in the
reference connectivity matrix GC and the abnormal connectivity matrix GP , we
aim to separate abnormal edges from normal edges.

We cast this problem into a min-cut max-flow framework [8]. A max-flow
framework involves a fully connected bi-directed graph F = (V, E) with |V| nodes
and |E| directed edges connecting them. An edge (i, j) ∈ Z in the connectivity
matrix Gn is a node v ∈ V in the graph F as illustrated in step 5 of Fig. 1. The
graph F has two additional nodes: the source node s ∈ V and the sink node
t ∈ V. Each edge of F has a fixed and non-negative capacity C which is the
maximum flow that edge can handle. The graph F has three types of edges.
Namely: 1) the edges that connect the source node s ∈ V to the nodes v ∈ V
with capacity Cs,v, the edges that link the sink node t ∈ V to the nodes v ∈ V
with capacity Ct,v and the edges that connect the nodes v ∈ V between each
other with capacity Cv1,v2. The source node s and the sink node t are not directly
connected. According to the max-flow min-cut theorem, the maximum flow from
the source node s ∈ V to the sink node t ∈ V corresponds to the minimum total
capacities of the edges, which, if removed, would partition the graph F into two
subsets: the abnormal nodes set S and the normal nodes set T .

In order to reflect the similarity between the edge (i, j) ∈ GC and the corre-
sponding edge (i, j) ∈ GP , we define the capacity Ct,v as the Gaussian similarity
function between the edge weights gGC

ij and gGP
ij

Ct,v(gGC
ij , gGP

ij ) = K · exp

⎛

⎜
⎝

−
(
gGC
ij − gGP

ij

)2

2σ2

⎞

⎟
⎠ (2)

where K is an arbitrary multiplicative constant. The capacity Cs,v of the
edges connecting the source node s ∈ V with the nodes v ∈ V is set to
K−Ct,v(gGC

ij , gGP
ij ). The capacity Cs,v reflects the extent to which the strength of

connectivity associated with the edge (i, j) ∈ GP is abnormal while the capacity
Ct,v reflects the degree to which the strength of connectivity associated with the
edge (i, j) ∈ GP is normal.

In addition, if one brain region has an abnormal edge connection (i, j), then
the likelihood it has other abnormal edge connections is high. Sporadic abnor-
mal connections are more likely to be due to noise or error in the streamline
reconstruction. Pair of edges of the form (i, j) and (i, y) that are connected to
the same brain region i are considered as neighbours in Gn. To account for that
in the graph F , the capacity of the edges Cv1,v2 is set to a positive constant
value M if the two nodes represent two neighbouring edges in the connectivity
matrices Gn and zero otherwise. Therefore, partitioning the graph into sets S
and T maximises

E =
∑

v∈S
K − Ct,v(gGC

ij , gGP
ij ) +

∑

v∈T
Ct,v(gGC

ij , gGP
ij ) −

∑

v1∈S,v2∈T
Cv1,v2 (3)

which is solved using highest-label preflow-push algorithm.
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Parameter Tuning: The average full-term connectivity matrix is the reference
connectivity matrix GC . The parameters of the graph F are K,σ and M . As K
and M are dependent, we fix K = 104 and determine σ and M using a grid
search such that when the reference connectivity matrix GC is compared to the
connectivity matrix of each full-term born subject, the graph-cut framework
identifies minimal abnormal edges Ec; when the reference connectivity matrix
GC is compared to the connectivity matrix of each extremely preterm subjects,
the graph-cut identifies the maximum number of abnormal edges Ep. Therefore,
the best σ and M maximise the quantity Ep − Ec.

Framework Evaluation: To assess the performance of the min-cut max-flow
framework, we evaluate two aspects: 1) the consistency of the identified abnormal
edges across the subjects and 2) the consistency of the number of the identified
edges Ep with respect to the graph similarity measure SD(LC ,LP). We expect
the number of the identified abnormal edges to correlate with the similarity mea-
sure SD(LC ,LP), as higher SD(LC ,LP) indicates stronger structural deviation
from the reference matrix GC . The identified edges constitute a sub-network for
each subject. It is expected that the identified sub-networks show two character-
istics: 1) a general pattern that is shared between the extremely preterm subjects
as being born extremely preterm might induce similar brain abnormalities, and
2) a distinctive one that is characteristic to individual subjects as result of indi-
vidual variability. To investigate how the identified sub-networks cluster across
the extremely preterm subjects, we use principal component analysis (PCA) to
derive a low-dimensional set of features Xred that represent the original abnor-
mal sub-networks X. We apply PCA to the set of edges X ∈ RNp×|Z| in which
for each extremely preterm subject, we set the edges that have been identified
as abnormal to 1 and 0 otherwise.

Simulation: The weight of each edge is proportional to the WM connecting
the corresponding brain regions. A WM abnormality is a reduction or increase
in the weight of the edges with respect to the reference group (full term born
subjects). Since reduction in WM connectivity is a characteristic of the preterm
brain phenotype [5], we simulate abnormalities of WM connectivity by reducing
weights in GP with respect to GC . To show the ground-truth link between SD and
the percentage of edges identified abnormal edges. We consider GC as a 15 × 15
zero-diagonal symmetric matrix of ones, and consider GP as a 15 × 15 matrix
with synthetic abnormalities. In the beginning, GP is identical to GC , then the
abnormalities are induced by randomly reducing the weights associated with the
edges connected to the same node in GP . In each iteration an additional node is
reduced at random by 90% to 100% until 99% of all the edges are reduced. This
simulation has been carried out on 6 pairs of GC and GP . We used the same K,σ
and M parameters as in real data.
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3 Results

The grid search over the parameters σ and M that minimise the number of
abnormal edges Ec detected in the full-term born subjects and maximise the
number of abnormal edges Ep identified in the extremely preterm born group
shows that the best values are σ = 0.01 and M = 51.

Fig. 2. Visualisation of the relationship between the spectral distance SD(LC ,LP) and
proportion of abnormal edges %EP identified for each extremely preterm subject. The
correlation between SD(LC ,LP) and the proportion of abnormal edges is ρ = 0.71 with
p-value = 10−14.

Figure 2 shows the relationship between SD and the ratio of abnormal to
normal edges in each extremely preterm subject. The correlation between SD
and the total number of abnormal edges Ep is statistically significant (p-value
= 10−14) with a correlation coefficient of ρ = 0.71. On average 11.3% ± 2.5% of
the total edges in extremely preterm subjects have been identified as abnormal.
Figure 3 shows the most identified edges (in 98% of the extremely preterm sub-
ject). These edges form a sub-network related to WM connecting mainly frontal
cortex and deep grey matter regions such as bilateral thalamus and bilateral
frontal gyrus. Moreover, the pattern of the identified sub-network shows hemi-
spheric symmetry. Figure 4 shows a plot of the identified abnormal sub-networks
with respect to the first and second principal components. In addition, the sub-
jects have been colour-coded with respect to the percentage of abnormal edges
that were identified for that subject. Figure 4 shows that the subjects with higher
percentage of abnormal edges form different clusters.
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Fig. 3. Visualisation of the most common identified edges in the extremely preterm
subjects. The connections in green are the abnormal edges, the brain regions in black
are connected by abnormal edges while brain regions in white do not have abnormal
edges.

Fig. 4. Visualisation of the PCA results. The reduced sub-network data is plotted
with respect to the first and second principal component. To visualise the data, an
annotated colour scale is used to represent the percentages of abnormal edges found in
each subject, with black being the least and white being the most.
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Simulation: The figure in the Supplementary Material shows the results for
the relationship between SD and the proportion of abnormal edges that have
been detected in the connectivity matrix with synthetic abnormalities. The figure
displays the results for 6 pairs of GP and GC . The mean correlation coefficient
between the SD and the proportion of abnormal edges is ρ = 0.98 (p-value
= 4 × 10−9). This suggests that the SD metric summarised the amount of local
abnormalities present in the connectivity matrix.

4 Discussion

We propose a new framework for brain-network structural abnormality detection.
The framework is based on a min-cut max-flow algorithm and aims to detect
abnormal structural connectivity at the subject level.

The results show agreement between the graph similarity measure (SD) and
the number of abnormal edges Ep both on the real data (Fig. 2) and on the
data with simulated abnormalities (figure in the Supplementary Material). This
indicates that the framework can detect the number of abnormal edges that is
proportional to how different is the individual connectivity matrix with respect
to the reference connectivity matrix. In the case of real data, the most identified
sub-network across the extremely preterm born subjects (Fig. 3) demonstrates
that there is consistency across the subjects as the abnormal WM connectivity is
distributed between the deep grey matter regions and the frontal cortex. These
results are consistent with previous findings in extremely preterm neonatal pop-
ulation [3] and in extremely preterm adolescents [5]. The agreement between
these findings suggests that WM connectivity in these brain areas is vulnera-
ble to extreme preterm exposure to the extra-uterine environment. Moreover, it
appears that the extremely preterm brain at adolescence does not recover from
early-life WM injury. However, it is still unclear whether the WM alteration rep-
resents a developmental delay or permanent damage. Further analysis of older
preterm samples needs to be performed.

Figure 4 shows clusters of identified sub-networks suggesting that the identi-
fied sub-networks have a variable pattern. The subjects with similar abnormal
sub-networks form clusters. The clustering along the first principal component
might be driven by the number of abnormal edges, while the clustering along the
second principal component is more subtle. In general, it seems that the degree
to which each extremely preterm born subject has been affected by extremely
preterm exposure to the extrauterine environment is variable. In the future, it
would be interesting to analyse how this translates to the varied cognitive out-
come of these subjects [9].

In this study, we demonstrated for the first time the feasibility of casting the
network abnormality detection problem into a min-cut max-flow problem. This
method is able to detect abnormal connectivity at an individual level, compared
to conventional group-wise comparisons. Although the method was employed
to analyse abnormal structural connectivity in extremely preterm subjects, it
can be extended to detect abnormal functional connectivity. This could be of
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great relevance to other conditions such as dementia or autism. Moreover, the
proposed framework could be applied to a broad range of network abnormality
detection beyond the proposed medical application.
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Abstract. Accurate estimation of the age in neonates is useful for mea-
suring neurodevelopmental, medical, and growth outcomes. In this paper,
we propose a novel approach to predict the post-menstrual age (PA) at
scan, using techniques from geometric deep learning, based on the neona-
tal white matter cortical surface. We utilize and compare multiple spe-
cialized neural network architectures that predict the age using different
geometric representations of the cortical surface; we compare MeshCNN,
Pointnet++, GraphCNN, and a volumetric benchmark. The dataset is
part of the Developing Human Connectome Project (dHCP), and is a
cohort of healthy and premature neonates. We evaluate our approach
on 650 subjects (727 scans) with PA ranging from 27 to 45 weeks. Our
results show accurate prediction of the estimated PA, with mean error
less than one week.

Keywords: Brain age · Cortical surface · Developing brain ·
Geometric deep learning · MeshCNN · PointNet · Graph neural
networks

1 Introduction

Precise age estimation in neonates helps measure the risk of neonatal pathol-
ogy and organ maturity. Given that prematurity complications are the leading
cause of all neonatal deaths, according to the world health organization (WHO)1,
precise age estimation may help to reduce the number of neonatal deaths signif-
icantly.

There are different age terminologies during the prenatal period such as ges-
tational age (GA), post-menstrual age (PA), and chronological age (CA) [10].
PA measures the time from the first day of the last menstrual period and the

V. Vosylius, A. Wang, C. Waters, A. Zakharov and F. Ward—Equal contribution.
1 https://www.who.int/news-room/fact-sheets/detail/preterm-birth.

c© Springer Nature Switzerland AG 2020
C. H. Sudre et al. (Eds.): UNSURE 2020/GRAIL 2020, LNCS 12443, pp. 174–186, 2020.
https://doi.org/10.1007/978-3-030-60365-6_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-60365-6_17&domain=pdf
https://www.who.int/news-room/fact-sheets/detail/preterm-birth
https://doi.org/10.1007/978-3-030-60365-6_17


Age Prediction Based on the WM Surface 175

birth time (GA) added to the time elapsed after birth (CA). PA usually repre-
sents the age at scan taken during the neonatal period after the day of birth,
and is normally measured in weeks.

The accuracy of the estimated PA is dependent on GA calculations; however,
traditional methods of calculating the GA use the first day of the last menstrual
period (LMP) as a reference point. As a result, the accuracy of these measure-
ments is error-prone and relies on the patient’s memory. Another method is to
measure the diameter and circumference of the head, cranium, abdomen, and
femur from 2D fetal ultrasound (US) images [26]. However, this method also
relies on operator expertise as well as the biological variations and inconsisten-
cies in skull size approximation, which may lead to age approximation errors
[2]. Therefore, developing automatic models that accurately predict the age can
help with the diagnosis of several neurodevelopmental and psychiatric illnesses
that are rooted in the early neonatal period [29]. In this work, we propose a
deep learning model that can accurately predict the PA using the white matter
(WM) cortical brain surface.

Related Work: A number of machine learning and statistical methods have
been presented for perinatal brain age prediction based on brain image data or
measurements. For example, Towes et al. [31] proposed a feature-based model
for infant age prediction using scale-invariant image features extracted from T1-
weighted MRI scans. Brown et al. [6] presented a method to predict the brain
network age using random forests (RF) classification [3] from diffusion magnetic
resonance imaging (dMRI) data. The output of their model was used to detect
delayed maturation in structural connectomes for preterm infants. Deprez et al.
[9] used logistic growth models to estimate the age of preterm infants based on
segmented myelin-like signals in the thalami and brainstem. Ouyang et al. [25]
predicted the PA of preterm infants by measuring the temporal changes of corti-
cal mean kurtosis (MK) and fractional anisotropy (FA) from non-Gaussian dif-
fusion kurtosis imaging (DKI) and conventional diffusion tensor imaging (DTI).
Hu et al. [18] predicted the infant age using a two-stage hierarchical regression
model based on cortical features. Recently, Galdi et al. [12] combined features
from structural and diffusion MRI to model morphometric similarity networks
(MSNs) that identify the inter-regional similarities between the features. The
calculated MSNs were later used for predicting neonatal brain age. However,
neonatal brain age prediction using deep learning methods has not yet been
explored in the literature.

At the same time, other works have leveraged recent advances in deep learn-
ing for adult brain age prediction. For instance, Jiang et al. [20] presented a 3D
convolutional neural network (CNN) to predict the brain age of healthy adults
using structural network images as an input. Gutiérrez-Becker and Wachinger
[14] proposed a PointNet-based [27] architecture for predicting Alzheimer’s dis-
ease and brain age using multiple brain structures as an input for their model.
Recently, Besson et al. [1] utilize graph CNNs on a surface representation of
the cortical ribbon for sex and age prediction on a data set of 6, 410 healthy
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subjects with ages ranging 6–89 years. Compared to the previous methods, this
work explores a number of directions for predicting the PA from the neonatal
brain surface using geometric deep learning (GDL) approaches.

Contributions: To the best of our knowledge, this is the first work that eval-
uates age prediction from neonatal cortical surface representations. We evalu-
ate a number of GDL architectures, namely PointNet++ [28], MeshCNN [15],
and Graph CNN (GCN) [22]. Each architecture utilizes a different representa-
tion of the cortical surface: PointNet++ performs operations on a point cloud,
MeshCNN operates on the edges of a mesh, and GCN operates directly on the
adjacency, degree, and feature matrices of a graph. Our experiments show that
these GDL techniques can accurately predict the PA from the neonatal corti-
cal surface and outperform a 3D CNN benchmark that utilizes volumetric MRI
data. We use a large dataset of 650 unique subjects (727 scans) with PA ranging
from 26 to 45 weeks.

Outline: The rest of this paper is structured as follows: Sect. 2 provides a brief
background to geometric deep learning (GDL). In Sect. 3 we then describe the
structural details of each GDL architecture that we use. Section 4 outlines the
details of our experiments. We finish by presenting our results followed by the
conclusions and future directions.

2 Background

The majority of work in deep learning for medical imaging typically focuses
on the application of CNNs to Euclidean data, e.g. MRI and ultrasound images
[11,21]. However, CNN-based methods are usually restricted to exploit 2D or 3D
volumetric images in Euclidean domains. This limits their application to com-
plex geometric data defining embedded manifolds, e.g. brain cortical surfaces.
In this case, convolutions are not well-defined, and the notion of CNN must be
generalized to approximate functions in non-Euclidean domains. GDL methods
aim to apply the power of CNNs to such non-Euclidean characterizations [5,24].
GDL methods in the literature can be categorized based on the representation
of their input data as:

• Voxel based: The nodes on a surface are projected to their corresponding
(or nearest) locations in the 3D image [4,32], where typical CNNs can be
applied naturally. The main drawback is losing the surface representation,
where two points far apart on the surface, in terms of its intrinsic geometry,
can be very close in the volumetric or ambient Euclidean space. Furthermore,
the projection to the 3D volume can introduce sampling accuracy errors.

• Point set based: Models encode a set of points or nodes into 3D feature
maps that can be processed by a typical neural network architecture. The
best known models utilizing this approach are PointNet [27] and PointNet++
[28]. They are agnostic to the origin of the point clouds they process and
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have an ability to leverage geometric features of non-Euclidean data. These
models have been shown to achieve good performance efficiently; however,
they cannot preserve relational information between the nodes on the surface.

• Graph based: Models operate on graphs, which additionally encode con-
nectivity information (edges) between the nodes on the surface. Variants of
graph-based methods utilize GCNs to process the Laplacian of the graph in
the spectral domain [7,17]. There are also special graph-based models that
exploit meshes as their input graph. They are designed to operate on mesh
edges and learn generalized convolution and pooling layers [15]. The main
drawback of these models is the difficulty to increase the model capacity or
scale up for large input data.

3 Methods

As mentioned previously, the attempt to generalize the power of CNNs to non-
Euclidean data leads to a set of techniques known as geometric deep learning
(GDL) [5]. In this section, we present a number of GDL techniques for age-
regression on brain surface representations: PointNet++ [28], MeshCNN [15],
and GCN [22]. The cortical surface meshes are extracted from MRI data as
described in [30]. The point-cloud representation is extracted directly from the
nodes (with node features), the graph from the same nodes together with the
connectivity information, and the mesh representation is defined with geometric
edge features described below. We also implement a volumetric 3D CNN as a
baseline. As noted in Sect. 1, each architecture operates on a different represen-
tation of the brain surface, with each representation capturing subtly different
geometric information. The architectures we present here also vary functionally,
i.e., they perform different functions on the surface and therefore learn different
abstractions of the brain surface. By proving that this range of GDL techniques
performs brain-age regression with high accuracy, we show the utility of GDL
to tasks related to the brain surface in general. We now describe the details of
each architecture’s structure and functional operation.

Voxel Based: Similar to [8], we leverage a 3D CNN on spatially-normalized
gray-matter (GM) maps as a baseline model. This baseline ensures the integrity
of our experimentation and allows for a more in-depth analysis of the results
using typical 3D volumetric images instead of surface representation. For this
approach, we consider a set of voxels, V = (v(111), v(112), . . . , v(XY Z)), where
(X,Y,Z) are the dimensions of the volumetric MRI image, and v(xyz) ∈ R

denotes voxel intensity at position (x, y, z). The output of the l-th 3D convo-
lutional layer for the j-th feature map at (x, y, z) position is given by:

v
(xyz)
(l+1)j = ReLU

(
b(l)j +

∑
m

A−1∑
a

B−1∑
b

C−1∑
c

W
(abc)
(l)jm v

(x+a)(y+b)(z+c)
(l)m

)
, (1)
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where b(l)j is the feature map bias term. A, B and C are kernel dimensions. m

indexes the set of feature maps in the l-th layer. W
(abc)
(l)jm denotes weight value at

kernel’s position (a, b, c) in m-th feature map. v
(x+a)(y+b)(z+c)
(l)m is input value at

(x + a, y + b, z + c) in the m-th feature map. Combining several such layers with
ReLU activation, dropout, 3D batch normalization, and the final linear layer, we
are able to learn the weight matrices (kernels) optimizing for L1 loss function.
Figure 1 displays our proposed 3D CNN architecture.

Fig. 1. 3D CNN architecture for age prediction using volumetric spatially-normalized
gray-matter (GM) maps as an input.

Point Based: We consider only the nodes on the brain surface, defined as a set
of points (or point-cloud), V = {v1, v2, . . . , vn} with vi ∈ R

d (d = 3 in our case)
and n is number of nodes. A separate vector containing information about local
features, xi ∈ R

l, is assigned to each point vi, where l is the number of local
features considered. The original PointNet architecture [27], is able to learn a
function f with the use of neural networks γ and h such that,

f(v1, v2, . . . , vn) = γ
(
maxi{h(vi)}

)
. (2)

This technique can approximate functions invariant to input permutation and
linear transformations by using symmetric functions and alignment networks,
respectively. PointNet++ [28] extends this idea to hierarchical learning and
includes sampling and grouping layers together with mini-PointNet layers. Sam-
pling is performed using the farthest-point sampling (FPS), which provides bet-
ter coverage than a completely random selection. Given the sampled centroids,
the grouping layer then creates local point-sets around the centroids using a
distance metric. PointNet++’s hierarchical structure allows for a progressive
abstraction of the input yielding richer encoding of the global and local infor-
mation described by the point-cloud. Figure 2 shows a representation of the
PointNet++ network architecture.



Age Prediction Based on the WM Surface 179

Fig. 2. PointNet++ architecture for age prediction using the nodes on the brain surface
as an input.

Mesh Based: A mesh is defined as a pair of sets consisting of vertices (V )
and connectivity information (F ), with edges (E) defined as a set of connected
pairs of vertices. In contrast to point-cloud techniques, mesh representation pro-
vides non-uniform, geodesic neighborhood information. Here, we use triangu-
lated meshes as commonly used in the brain surface literature. The MeshCNN
architecture [15] consists of two main components for geometric learning: mesh
convolution and pooling, see Fig. 3. Both are operations defined over the input
edges. Mesh convolution can be defined as:

e · k0 +
4∑

i=1

ki · ei, (3)

where k is a kernel and e is an edge feature. ei denotes an edge feature of the i-th
neighboring edge, while total number of neighboring edges equal to 4. The input
edge feature is a 5-dimensional vector containing geometric features: the dihedral
angle, two inner angles, and two edge-length ratios for each face. Importantly,
symmetric functions are applied to ambiguous edge pairs to ensure invariance
with respect to the permutation of the convolutional neighbors. The pooling
component of MeshCNN uses the topology of the mesh to identify adjacency, and
learn to non-uniformly collapse edges that contain the weakest features for the
task at hand. Hence, it forms a process where the network exposes the important
features while discarding the redundant ones. MeshCNN, to our knowledge, is
the only architecture which exhibits such convolution and pooling properties
specialized for triangulated meshes.

Graph Based: A graph, G = (V,E), is defined by a set of nodes (V ) and a
set of edges (E). Each node, vi, represents a point on the brain surface and has
an associated local feature vector, Xi. A graph convolution operation [22] takes
feature matrix X(l) in the l-th layer and outputs:

X(l+1) = σ(D̂− 1
2 ÂD̂− 1

2 X(l)W (l)), (4)

where Â = A+ IN is the adjacency matrix of the graph modified by adding self-
connections using identity matrix IN . N denotes the number of nodes on the
graph. D̂ =

∑
j Âij is the modified degree matrix. X(l+1) is the feature matrix
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Fig. 3. MeshCNN architecture for age prediction using the input brain mesh surface.

in the (l+1)-th layer. Note, that the extracted local features of the surface are
defined by a feature matrix at l = 0 as X(0). Figure 4 demonstrates our proposed
GCN architecture for age prediction. The graph convolutional layers allow the
network to learn meaningful feature vectors at each node using neighboring node
information. Local features across the whole brain are aggregated by averaging
feature vectors across all the nodes, which creates a global feature vector repre-
senting global geometric information of the graph. This global feature vector is
used as input to a linear layer that outputs the predicted scan age.

Fig. 4. GCN architecture for age prediction using the input brain surface graph.

Note the key similarities and differences between the previous architectures:
The graph and mesh based methods operate on the connections between vertices,
and local features are encoded as edge features, in contrast to point-wise features
and operations on points. The graph methods therefore capture more informa-
tion about the local geometric relations between points, which may require more
computational resources to increase the capacity of the model (e.g. GPU mem-
ory). However, point-clouds are simple and unified structures that avoid the
combinatorial irregularities and complexities of meshes, and thus it is easier to
implement more efficient and larger PointNet-based models.

Furthermore, the specialized graph and mesh convolutional operations lever-
age the intrinsic geodesic connections to learn hidden layer representations that
encode both local graph structure and features of nodes. This is especially pow-
erful when combined with MeshCNN’s edge-pooling operations which expose
and expand important features, whilst discarding irrelevant ones, allowing even
richer encodings of the surface to be learned. This is comparable to PointNet++,
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in which the point sampling and grouping layers allow the hierarchical learning
of informative points and encodes these into a rich high-level representation.

4 Experiments

4.1 Data

The neonatal data used in this work are publicly available from the developing
human connectome project (dHCP)2. We excluded files with bad surface quality.
Selected data consists of a cohort of 727 total term and preterm neonatal MRI
scans (650 unique subjects) with PA ranging from 27 to 45 weeks. These data are
split into 477 (65.7%) train, 125 (17.15%) test, and 125 (17.15%) validation sets.
To avoid any bias between these subsets, the data split is stratified on multiple
features: PA (scan age), birth age, and sex. The split is also done on the unique
subjects to avoid data leakage from multiple scans between the subsets. We
validate our approach with experiments on the left and right hemispheres, as well
as on both hemispheres merged. Surface files are decimated to 10,000 vertices to
ensure comparable results between all proposed architectures. The surfaces are
extracted from the segmented T2-weighted images in their native coordinates
[30]. Furthermore, we compare the performance of the GDL models using only
geometric features, and with a range of other local point features, such as cortical
thickness (CT), sulcal depth (SD), curvature (C), and the myelin map (MM).
All cortical features are extracted using the dHCP structural MRI processing
pipeline [23].

4.2 Implementation

3D CNN: Similar to [8], we first segment the cortical gray matter from the
3D MRI scans. Our 3D CNN consists of 12 convolutional layers with ReLU
activation and 3D batch normalization. Three dropout layers with 0.5 probability
are also added after every third convolutional layer. Setting the initial learning
rate to 6.88e−3, we train the model for 1000 epochs and batch size 32, with
Adam optimizer and a scheduler, which decays the learning rate by a factor of
γ = 0.9795 after every epoch. The input images are down-sampled and smoothed
using a discrete Gaussian kernel of size 8.

PointNet: For the implementation of PointNet++, we employ the PyTorch
Geometric3 python library. We use three hierarchical levels containing a sam-
pling layer, a grouping layer and a PointNet layer. We also use ReLU activation
functions and batch normalization [19]. After hierarchical levels, another Point-
Net layer and global max pooling produce the final vector of size 1024 which is
input to 3 fully connected layers producing the final age prediction. Mean square

2 http://www.developingconnectome.org/second-data-release.
3 https://github.com/rusty1s/pytorch geometric.

http://www.developingconnectome.org/second-data-release
https://github.com/rusty1s/pytorch_geometric
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error (MSE) loss criterion, Adam optimizer, and a learning rate scheduler are
employed to train the model, with an initial learning rate of 1e−3 and a lower
bound of 5e−5.

MeshCNN: We adapt the original MeshCNN code4 for the task of age regres-
sion. We use group normalization with two groups, an MSE loss criterion, Adam
optimizer, and a ReduceOnPlateau learning rate scheduler, with an initial learn-
ing rate of 3e−4 and a lower bound of 3e−5. Because of the expensive GPU
memory requirements of the MeshCNN implementation we use a mini-batch of
size one. Weights are initialized using Kaiming normal initialization [16].

GCN: Our GCN implementation is based on the DGL5 library using the graph
convolutions (GCs) defined in [22]. The network architecture consists of two GC
layers, each using ReLU activation, finally the mean feature vector is calculated
across all nodes in the graph before being fed to the linear layer. The weights of
the graph convolutional layers are initialized using Glorot uniform [13] and the
biases were set to zero. We use Adam optimizer with a cosine annealing learning
rate, starting at 8e−4 and decreasing down to 1e−6 with Tmax set to 10. Our
implementation of all previous architectures is publicly available on GitHub:
https://github.com/andwang1/BrainSurfaceTK.

5 Results

Table 1 shows the results of PA prediction using the proposed architectures.
With each of our GDL models, we report mean absolute error (MAE) less
than one week on both the validation and test sets. The best performance
(MAEval = 0.701, MAEtest = 0.6211 weeks) is attained by PointNet++ with
added (local) cortical features (cortical thickness, curvature, and sulcal depth).
This is competitive with the 3D CNN benchmark and indeed, performs better
on the test set (0.62 against 0.82 weeks). The variation in performance between
the validation and test sets is due to slight differences in feature distributions
between these sets, since the number of samples is relatively small and there are
many constraints to satisfy in the splits (sex and age distribution etc.). Due to
containing local connections between points, the data in mesh form is expected
to carry more information than the point cloud representation. Despite this, the
results show that PointNet++ outperforms MeshCNN in both validation and
test MAE. However, an important observation to note is that the MeshCNN
implementation used to generate these results uses only 8k parameters compared
to PointNet’s 1.5M. This suggests that the data representation and the features
used by MeshCNN are very informative and suitable for the regression tasks. On
the other hand, our GCN implementation had only 68k trainable parameters.

4 https://github.com/ranahanocka/MeshCNN.
5 https://www.dgl.ai.

https://github.com/ranahanocka/MeshCNN
https://www.dgl.ai
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Table 1. The detailed results from the proposed architectures using: left or right
hemispheres, or the whole brain.

Model Hemisphere Input size Validation error (wks) Test error (wks) Cortical features

3D CNN GM Maps 50× 60× 60 0.6765 ± 0.5821 0.8221 ± 0.6858 -

PointNet++ Right 10k 0.8980 ± 0.6651 1.0417 ± 0.9201 -

Left 10k 0.9380 ± 0.7012 0.9810 ± 0.9043 -

Whole 10k 0.8128 ± 0.7513 0.8100 ± 0.6918 -

PointNet++

(with cortical

features)

Right 10k 0.7217 ± 0.6138 0.7084 ± 0.5982 CT, C, SD

Left 10k 0.8140 ± 0.5813 0.6915 ± 0.6647 CT, C, SD

Whole 10k 0.7010 ± 0.6209 0.6211 ± 0.4784 CT, C, SD

MeshCNN Right 10k 0.8273 ± 0.6692 0.8797 ± 0.6691 -

Left 10k 0.8986 ± 0.6590 0.8811 ± 0.7056 -

Whole 10k 0.8810 ± 0.6746 0.9555 ± 0.6513 -

GCN Right 10k 1.3029 ± 1.0266 1.3391 ± 1.0307 -

Left 10k 1.2455 ± 0.9432 1.2455 ± 0.9804 -

Whole 10k 1.1208 ± 1.1208 1.1617 ± 0.9348 -

GCN (with

cortical

features)

Right 10k 0.7956 ± 0.9819 0.7793 ± 0.6818 CT, C, SD

Left 10k 0.7589 ± 0.6395 0.7273 ± 0.6403 CT, C, SD

Whole 10k 0.7511 ± 0.6205 0.7182 ± 0.5741 CT, C, SD

Table 2 shows a summary of previous reported results for age prediction in the
literature. Although our results are not directly comparable with the reported
works in the table, because of the differences in the employed input data modal-
ities, validation techniques and variations in age ranges, our prediction error is
the lowest. We also use the biggest dataset size for our experiments compared
to the other published works.

6 Conclusion and Discussions

To the best of our knowledge, this work presents the first study to assess a num-
ber of geometric deep learning (GDL) architectures on the task of PA regression
based on the neonatal white matter surface. We compare several GDL archi-
tectures from the literature that utilize different representations of the brain
surface, either point-clouds, meshes, or graphs. We compare our models against
a 3D CNN baseline architecture for age prediction using the 3D volumetric gray
matter maps. Models are evaluated on a large cohort of 727 term and preterm
scans (650 subjects) with a wide PA range of 27–45 weeks. Our results show accu-
rate prediction of the estimated PA, with the best model’s average error around
0.62 weeks. It is the lowest error compared to previously published works for
predicting PA.

Limitation and Future Direction: We note that there is a trade-off between
graph and point based methods such that graph representations capture more
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Table 2. Results from previous works for age prediction. Our experiments utilize the
biggest dataset for evaluation, showing the lowest error.

Method Input Size of the data Age range (wks) Error (wks)

Toews et al. [31] Scale-invariant

T1w features

92 subjects (230

infant structural

MRIs)

1.1–84.2 CA 10.28

Brown et al. [6] FA-weighted

structural

connectivity

168 DTIs 27–45 PA 1.6

Ouyang et al. [25] Cortical FA and

MK (mean

kurtosis)

89 preterm infants 31.5–41.7 PA 1.41

Deprez et al. [9] Signals in the

thalami and

brainstem

114 preterm

infants

29–44 PA 2.56

Hu et al. [18] Cortical measures 50 healthy

subjects (251

longitudinal

MRIs)

2–6.9 CA 1.58 ± 0.04

Galdi et al. [12] Structural and

diffusion MRI

105 neonates (59

preterm and 46

term)

38–44.56 PA 0.70 ± 0.56

PointNet++

(proposed)

WM surface nodes 650 subjects (727

MRIs)

27–45 PA 0.6211 ± 0.4784

MeshCNN

(proposed)

WM surface mesh 650 subjects (727

MRIs)

27–45 PA 0.9555 ± 0.6513

GCN (proposed) WM surface graph 650 subjects (727

MRIs)

27–45 PA 0.7182 ± 0.5741

geometric information and the networks are more efficient (in that they attain
similar performance with much fewer parameters). However, graph based tech-
niques are also computationally expensive which may limit the model size. On
the other hand, PointNet methods are computationally efficient but the points
do not capture as much information, so much larger models are needed. Similar
to typical CNNs, the proposed GDL architectures can be sensitive to the input
data, e.g. errors on the extracted surface. Hence, as well as suggesting develop-
mental abnormalities, surfaces for which our models predict anomalously inac-
curate PA may have been extracted incorrectly. A future direction of our work
will be to investigate the application of GDL to the association of brain regions
with accurate age prediction. GDL could also be applied to the classification
of preterm neonates from the brain surface, and may provide insights into the
development of the neonatal cortical surface.
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López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11072, pp. 523–531.
Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00931-1 60

15. Hanocka, R., Hertz, A., Fish, N., Giryes, R., Fleishman, S., Cohen-Or, D.:
MeshCNN: a network with an edge. ACM TOG 38(4), 1–12 (2019)

16. He, K., Zhang, X., Ren, S., Sun, J.: Delving deep into rectifiers: surpassing human-
level performance on imagenet classification. In: Proceedings of the IEEE Interna-
tional Conference on Computer Vision, pp. 1026–1034 (2015)

17. Henaff, M., Bruna, J., LeCun, Y.: Deep convolutional networks on graph-structured
data. arXiv preprint arXiv:1506.05163 (2015)

18. Hu, D., Wu, Z., Lin, W., Li, G., Shen, D.: Hierarchical rough-to-fine model for
infant age prediction based on cortical features. IEEE J. Biomed. Health Inf. 24(1),
214–225 (2019)

19. Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by
reducing internal covariate shift. arXiv preprint arXiv:1502.03167 (2015)

20. Jiang, H., et al.: Predicting brain age of healthy adults based on structural MRI
parcellation using convolutional neural networks. Front. Neurol. 10, 1346 (2019)

21. Kamnitsas, K., Ledig, C., Newcombe, V.F., Simpson, J.P., Kane, A.D., Menon,
D.K., Rueckert, D., Glocker, B.: Efficient multi-scale 3D CNN with fully connected
CRF for accurate brain lesion segmentation. Med. Image Anal. 36, 61–78 (2017)

22. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional
networks. arXiv preprint arXiv:1609.02907 (2016)

http://arxiv.org/abs/1608.04236
https://doi.org/10.1007/978-3-319-66182-7_10
http://arxiv.org/abs/1312.6203
https://doi.org/10.1007/978-3-030-00931-1_60
http://arxiv.org/abs/1506.05163
http://arxiv.org/abs/1502.03167
http://arxiv.org/abs/1609.02907


186 V. Vosylius et al.

23. Makropoulos, A.: The developing human connectome project: a minimal process-
ing pipeline for neonatal cortical surface reconstruction. Neuroimage 173, 88–112
(2018)

24. Masci, J., Boscaini, D., Bronstein, M., Vandergheynst, P.: Geodesic convolutional
neural networks on Riemannian manifolds. In: ICCV Workshops, pp. 37–45 (2015)

25. Ouyang, M.: Differential cortical microstructural maturation in the preterm human
brain with diffusion kurtosis and tensor imaging. Proc. Nat. Acad. Sci. 116(10),
4681–4688 (2019)

26. Paladini, D., Malinger, G., Monteagudo, A., Pilu, G., Timor-Tritsch, I., Toi, A.:
Sonographic examination of the fetal central nervous system: guidelines for per-
forming the ‘basic examination’ and the ‘fetal neurosonogram’. Ultrasound Obstet.
Gynecol. 29(1), 109–116 (2007)

27. Qi, C.R., Su, H., Mo, K., Guibas, L.J.: PointNet: deep learning on point sets for
3D classification and segmentation. In: CVPR, pp. 652–660 (2017)

28. Qi, C.R., Yi, L., Su, H., Guibas, L.J.: PointNet++: deep hierarchical feature learn-
ing on point sets in a metric space. In: NeurIPS, pp. 5099–5108 (2017)

29. Rekik, I., Li, G., Yap, P.-T., Chen, G., Lin, W., Shen, D.: A hybrid multishape
learning framework for longitudinal prediction of cortical surfaces and fiber tracts
using neonatal data. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G.,
Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9900, pp. 210–218. Springer, Cham
(2016). https://doi.org/10.1007/978-3-319-46720-7 25

30. Schuh, A., et al.: A deformable model for the reconstruction of the neonatal cortex.
In: ISBI, pp. 800–803. IEEE (2017)

31. Toews, M., Wells, W.M., Zöllei, L.: A feature-based developmental model of the
infant brain in structural MRI. In: Ayache, N., Delingette, H., Golland, P., Mori,
K. (eds.) MICCAI 2012. LNCS, pp. 204–211. Springer, Heidelberg (2012). https://
doi.org/10.1007/978-3-642-33418-4 26

32. Wu, Z., et al.: 3D shapeNets: a deep representation for volumetric shapes. In:
CVPR, pp. 1912–1920 (2015)

https://doi.org/10.1007/978-3-319-46720-7_25
https://doi.org/10.1007/978-3-642-33418-4_26
https://doi.org/10.1007/978-3-642-33418-4_26


The GraphNet Zoo: An All-in-One Graph
Based Deep Semi-supervised Framework

for Medical Image Classification

Marianne de Vriendt1, Philip Sellars2, and Angelica I. Aviles-Rivero3(B)

1 Nabla Technologies, Paris, France
marianne@nabla.com

2 DAMPT, University of Cambridge, Cambridge, UK
ps644@cam.ac.uk

3 DPMMS, University of Cambridge, Cambridge, UK
ai323@cam.ac.uk

Abstract. We consider the problem of classifying a medical image
dataset when we have a limited amounts of labels. This is very common
yet challenging setting as labelled data is expensive, time consuming
to collect and may require expert knowledge. The current classification
go-to of deep supervised learning is unable to cope with such a prob-
lem setup. However, using semi-supervised learning, one can produce
accurate classifications using a significantly reduced amount of labelled
data. Therefore, semi-supervised learning is perfectly suited for medical
image classification. However, there has almost been no uptake of semi-
supervised methods in the medical domain. In this work, we propose
an all-in-one framework for deep semi-supervised classification focusing
on graph based approaches, which up to our knowledge it is the first
time that an approach with minimal labels has been shown to such
an unprecedented scale with medical data. We introduce the concept
of hybrid models by defining a classifier as a combination between an
energy-based model and a deep net. Our energy functional is built on
the Dirichlet energy based on the graph p-Laplacian. Our framework
includes energies based on the �1 and �2 norms. We then connected this
energy model to a deep net to generate a much richer feature space to
construct a stronger graph. Our framework can be set to be adapted
to any complex dataset. We demonstrate, through extensive numerical
comparisons, that our approach readily compete with fully-supervised
state-of-the-art techniques for the applications of Malaria Cells, Mam-
mograms and Chest X-ray classification whilst using only 20% of labels.
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1 Introduction

Deep learning for medical image classification has achieved state-of-the-art
results for a variety of medical image classification challenges [2,22,26,29]. How-
ever, state-of-the-art deep learning frameworks rely upon the existence of a
representative training set, which often requires a large number of manually
labelled medical images. Collecting labelled data for medical imaging is a time-
consuming, expensive and requires domain expertise from trained physicians.
Therefore, obtaining such a representative training set is often a barrier to
machine learning in the medical domain.

Semi-supervised learning (SSL) techniques have been growing massively in
popularity due to the fact they seek to produce an accurate solution whilst using
a minimal size label set. SSL techniques seek to use the information present in a
large number of unlabelled examples combined with a small number of labelled
examples [5] to obtain a better performance than purely using the labelled sam-
ples on their own. There are several different approaches to SSL which can be
split into several board families of methods: low-density separation [4], generative
models [10] and graph based approaches [12,31]. In this paper we will narrow our
discussion to graphical techniques due to their flexibility in dealing with different
data structures, scalability to large problems and their rigorous mathematical
definition.

SSL is perfect for any area which produces large quantities of data but also
incurs a large cost associated with labelling. Thus making SSL techniques a
perfect candidate for use in the field of medical image classification. However,
there has been very limited uptake of semi-supervised learning techniques for use
in medical image classification. In this paper, we seek to bridge this technical gap
and demonstrate, to our knowledge for the first time, the amazing results that
can be obtained by using deep SSL for medical large-scale image classification.

The theoretical foundations of SSL has been studied by the community for
years. But it is only recently that deep semi-supervised learning has be a focus
of great attention. Several techniques has been proposed including [16,23,25].
However, these techniques has been only proven effective for natural images, and
the question of how effective they are on complex datasets such as those coming
from the medical domain has not been investigated yet. This is not obvious–
as there are fundamental differences between natural and medical images [18].
To our knowledge, this paper represented the first major exploration of deep
semi-supervised learning for large scale medical datasets.

Our Contributions. We propose an all-in-one framework for Deep Semi-
Supervised Medical Image Classification framed into a package called GraphNet
Zoo. Our framework works as a hybrid technique that uses an energy model as
a core to drive the uncertainty updates through a deep network. Our particular
highlights are:

– A generalisable framework which is composed of an energy based model and a
deep net. Whilst the embeddings coming from the deep net aim to construct
a robust graph, the optimisation model drives the final graph based classifier.
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Fig. 1. Visual description of our proposed GraphZoo framework. We split the different
graph based models into two different groups, coloured in red and blue, dependent on
whether the algorithm is iterative. No update (red) approaches construct the graph
only once and immediately perform graph based operations such as label propagation.
Update approaches iteratively construct the graphical representation, using the features
extracted from the previous epoch to construct an improved graph. (Color figure online)

Our energy model is based on minimising the Dirichlet energy based on the
graph p-Laplacian, which we integrate two cases: p = 2 and a more robust
functional based on the non-local total variation p = 1. We also show that
our approach can plug-and-play any deep net architecture.

– We demonstrate, through an extensive experiments and for a range of com-
plex medical datasets, that our framework can recreate, and in some cases
outperform, the performance of supervised methods whilst using only 20%.

– To the best of our knowledge, this is the first time that a deep semi-supervised
framework has been applied and been shown to output fantastic performance
to several large-scale medical datasets.

2 GraphNet Zoo: An All-in-One Framework

The lack of a large corpus of well-annotated medical data has motivated the
developed of new techniques, which need a significantly smaller set of labelled
data. Unlike other type of data (e.g. natural images), the complex annotations
required in the medical domain advocates for at least a double reading from
different experts which is highly subjective and prone to error [15]. At the algo-
rithmic level, this is reflected in greater label uncertainty that negatively affects
the classification task. Therefore, how to rely less in annotated data is of a
great interest in the medical domain. The body of literature has explored differ-
ent alternatives including Transfer Learning e.g. [3] and Generative Adversarial
Models e.g. [17] to mitigate somehow the lack of well-annotated medical data.
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However, the existing algorithmic approaches do not consider the discrepancy
between the expert and the ground truth. We address this problem by proposing
a graph-based deep semi-supervised framework. We first formalise the problem
that we aim to solve.
Problem Statement. Assume a set of inputs X := {x1, x2, ..., xn}. For 1 ≤ i ≤
l, xi has a label yi ∈ C := {1, ..., c}, where C is a discrete label set for c classes.
The labels yi form a set Y := {y1, y2, ..., yl}. As such we split X = XL ∪ XU

where XL := {x1, .., xl} and XU := {xl+1, .., xn}. We then seek to use XL, XU

and YL to find an optimal mapping f : X → R
C , with minimal error, that can

accurately predict the labels YU = {yl+1, .., yu+l} for the unlabelled points XU

and potential infinitely unseen instances. The mapping f is parameterised by θ
and can be decomposed as f = φ ◦ ψ, where ψ : X → R

P is a feature extractor
that maps the input to some feature space of dimension P and φ : RP → {0, 1}c

is the classification function. In the context of this paper φ will be a graph based
classifier.

How We Represent the Data? For the majority of existing approaches in
medical classification, the go-to representation of the the data is thee a stan-
dard grid form. In this work, we give a different representation - graphical.
Formally, a given dataset can be represented as an undirected weighted graph
G = (N , E ,W) composed of N = {N1, ..., Nn} nodes. They are connected by
edges E = {Ni − Nj : Ni � Nj ∈ N} with weights wij = F(i, j) ≥ 0 that
represents a similarity measure F between the nodes Ni ∈ N and Nj ∈ N .
If wij = 0 means that (Ni, Nj) /∈ E . In this work, a node represent an image
in the graph. This representation gives different advantages including strong
mathematical properties, the ability to cope with annotation uncertainty and
homogeneous space for highly heterogeneous data.

Our All-in-One Framework. Semi-supervised classification has been explored
from the model-based perspective in the medical domain e.g. [24,27,30]. Our
framework lie in an different category: hybrid techniques, which seeks to keep
the mathematical guarantees of model-based techniques whilst exploiting the
power of deep nets. We remark that we use the term All-in-One to describe the
ability of our framework to plug-in different architectures and energy functionals
without altering either the backbone nor the functionality of our technique.

Our framework has two modes to operate: One Pass Classification and
Dynamic Pass Classification. The key difference lies in the fact that the sec-
ond option allows the uncertainty in the graph to be updated overtime. The
need for having two differing methods is as follows. For more complex datasets,
iterative approaches are often needed to extract a rich feature representation.
However, for simpler datasets, or those for which the training time is longer, a
one-stop construction approach is the only computational feasible approach out
of the two. Both modes are composed of two main parts (i.e. hybrid model): i) a
deep net, fθ, that is used to generalise the feature extraction and reduce uncer-
tainty in the labels and ii) a functional that seeks to diffuse the small amount
of label data to the unlabelled set.
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Our framework uses a given deep net, for example VGG16 or ResNet-18,
defined as f = φ ◦ ψ, where ψ : X → R

P is a feature extractor and φ : RP →
{0, 1}c is the classification function. Firstly, our approach seek to solve one of
the key problems in graph theory, which is – how to construct an accurate
embedding. For this, we extract the embeddings from a given deep net to better
generalise the feature space to construct a graph.

ConvNet

Softmax

Listing 1.1: One Pass Classification

1 Input: Data X = {x1, .., xn},
Labels Y = {y1, .., yl}
Architecture

fθ(.) = ψθ(.) ◦ φθ(.)
2

3 Optimise: Lθ =
∑l

i=i ls(fθ(xi), yi)
4 #Generate features:

5 N = ψ(X)
6 #Construct weighted graph

7 Wij = d(ni, nj)
8 G = (V, E, W )
9 #Compute label diffusion:

10 until convergence:

11 #Hypothesis class H
12 H∗ = argminH∈H Q(H)
13 #Extract generated labels:

14 yi = argmaxkhk
i

15 ---

16 ### energies included Q:

17 ## for the case of p = 2
18 S = D−1/2WD−1/2

19 # given labeled set matrix Y

20 H∗ = (I − αS)−1Y

21 ## for the case of p = 1
22 Δ1(u) = |WD−1u|
23 minimise:

∑
k

Δ1(u
k)

|uk|

ConvNet F
C
+

S
o
f
t
m
a
x

Listing 1.2: Dynamic Pass Classifica-
tion

24 Input: Data X = {x1, .., xn},
Labels Y = {y1, .., yl}
Architecture

fθ(.) = ψθ(.) ◦ φθ(.)
25 Optimise: Lθ =

∑l
i=i ls(fθ(xi), yi)

26 For J epochs:

27 #Generate features:

28 N = ψ(X)
29 #Construct weighted graph

30 Wij = d(ni, nj)
31 G = (V, E, W )
32 #Compute label diffusion:

33 until convergence:

34 #Hypothesis class H
35 H∗ = argminH∈H Q(H)
36 #Extract generated labels:

37 Ŷ = (ŷl+1, .., ŷn)
38 #α(t) balance parameter

39 Optimise:

40 Lθ =
∑l

i=i ls(fθ(xi), yi)
+α(t)

∑n
i=l+1 ls(fθ(xi), ((̂y)i)

41 #Extract Final Generated

Labels

42 Ŷ = (ŷl+1, .., ŷn)

We emphasise that a node represents an image in the graph. For the second
part (i.e. the label diffusion), our setting is focused on the normalised graph
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p-Laplacian Δp(u). Whilst p = 2 has been used extensively in the literature
e.g. [6,7] other more robust functionals have not been deeply explored in the
medical domain. More recently, authors of that [1] explored a more robust func-
tional based on the case for p = 1 Δ1(u) = |WD−1u|, where W is the weight
matrix and D a matrix with the node’s degrees. We show in this work, that
we can plug-in any functional in our framework. Our GraphNet Zoo includes
energies based on p = 2 e.g. [31] and more robust ones based on the p = 1
case e.g. [1]. We explicitly define the process of our framework below and set
explicitly the energies used in this work (see lines 16–23 from the algorithm).

One-Pass Graph Classification : This mode allows us to perform deep semi-
supervised classification based on the conditional entropy of the class probabil-
ities for the unlabelled set. To train a deep net in a SSL fashion, we rely on
pseudo-labels [8,13] where the key idea is to approximate the class label for the
unlabelled set from the predictions of a deep net fθ. This allows to strengthen
the graph constructions whilst boosting the classification performance. In short,
we extract the embeddings from a deep net trained over the labelled set to build
the graph representation of the data and finally apply label diffusion Q(H). The
precise optimisation process is displayed in lines 1:23 on Listing 1.1.

Dynamic Pass Graph Classification : This mode seeks to improve the uncer-
tainty generated by the pseudo-labels overtime. We observe that whilst the first
alternative offers good results in terms of classification, there is two ways to fur-
ther improve it. Firstly the inferred pseudo-labels clearly do not have the same
confidence in each example, and secondly the pseudo-labels may be imbalanced
over the classes which affect the learning process. We tackle these problems by
associating, to each pseudo-label, a weight reflection the inference certainty. We
use, as in other works [9,20], an entropy measure M : RC → R to assign the
certainty ξi = 1 − (M(h∗

i )/log(C)) to a given example xi. Note that h∗
i comes

from line: 25 of the below algorithm whilst C denotes the classes. The overall
procedure is described in Listing 1.2 (lines 17:42).

We detail the implementation of the two approaches in the Listing 1.1 and
Listing 1.2, which are displayed next.

3 Experimental Results

This section is devoted to give details of the experiments carried out to validate
our proposed framework.

Data Description. We evaluate our approach on three large scale datasets.
The first one is the Malaria Infected Cells [19] dataset. It is composed of 27,558
cell images of size 224×224 with balance instances of parasitised and uninfected
cells. As second dataset, we use the latest version of the very challenging Digital
Database for Screening Mammography (DDSM) dataset called CBIS-DDSM [14].
It has 2478 mammography images from 1249 women the images size can be as
large as 3 k × 3 k pixels. It is composed of roughly 40:60 of benign and malignant
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Table 1. Performance comparison on the Malaria and Mammogram datasets. For both
datasets GraphNet Zoo was able to produce state-of-the-art performance, beating the
compared methods, whilst using far fewer labelled data points.

Malaria Cells Dataset
Fully-Supervised Methods

Method Accuracy (Labelled 70%)
Xception 0.890
VGG-16 0.945
ResNet-50 0.957
AlexNet 0.937

Deep Semi-Supervised Models
Method 10% 20%
GCN [12] 0.865± 0.05 0.895± 0.015

Ours W/[A] 0.877 ±0.006 0.927 ± 0.005
Ours W/[B] 0.930± 0.009 0.943 ±0.005
Ours W/[C] 0.845 ±0.034 0.921± 0.011
Ours W/[A] 0.922 ±0.004 0.928± 0.009
Ours W/[B] 0.94 ±0.0057 0.957± 0.003
Ours W/[C] 0.860 ±0.038 0.929± 0.010

Colour Code and Architectures:

GraphNet Zoo: Model 1; GraphNet Zoo: Model 2

[A]: VGG16; [B]:ResNet-18; [C]: AE

[D]: Custumised CNN; [E]: ResNet-50

CBIS-DDSM dataset
Fully-Supervised Methods

Method [% Labelled] AUC
Shen [22] [85%] 0.85 (val) 0.75 (test)
Zhu [32] [80%] 0.791

Method 20% Labelled – AUC
Ours W/[D] 0.729
Ours W/[E] 0.717
Ours W/[D] 0.721
Ours W/[E] 0.735
Ours W/[E] [40%] 0.811

Fig. 2. Feature representation for the Malaria [19] and Mammogram [14] datasets
using our graph based approaches using a ResNet18 feature extractor. Red dots denote
samples labeled malignant and blue denotes benign samples. (Color figure online)

cases respectively. Finally, we use the ChestX-ray14 dataset [26], which is com-
posed of 112,120 frontal chest view X-ray with size of 1024 × 1024. The dataset
is composed of 14 classes (pathologies).
Parameter Selection. Architectures: We set the learning rate to the common
value of r = 0.001 in all our networks. Additionally, we use the Adam optimiser
with early stopping and a dropout rate of 0.2. Graph: For the graph based
approaches we used k-NN for the graph construction with k=50, α was set with
a grid search in [0, 1]. Moreover, we used p = 2 based energy for the malaria and
the mammograms dataset whilst for the chest-xray we used the label diffusion
based on minimising our energy based p = 1. Data Pre-processing: We follow
standard pre-processing protocol (e.g. as in [21]) to normalise the images so
that the mean of the pixel values is 1 and the standard deviation is 1. For the
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compared approaches, we used the code provided by each author along with
their parameters.

Fig. 3. Example classifications from the Malaria [19] and Mammogram [14] datasets.
For each image we give the ground truth class and the predicted classification. Whilst
our approach works very well, there are still miss-classifications, as in any algorithmic
approach for such applications.

Evaluation Protocol. We use the following evaluation scheme to validate our
framework. We validate our approach by comparing our deep semi-supervised
framework against fully-supervised SOTA-techniques for each particular applica-
tion including the works of that [2,22,26,28,29,32]. Moreover, we also compared
our framework against the semi-supervised techniques of [1,11]. As performance
check we use two metrics: accuracy and a receiver operating characteristic curve
(ROC) analysis based on the Area Under the Curve (AUC). In our reported
results (see Tables), we use green colour to denote the best results. The darkest
green colour denotes the best results whilst the light green colour the second
best performance.
Results and Discussion. We begin by analysing the Malaria [19] and Mam-
mography [14] datasets, see Table 1. As our PnP framework is versatile, we can
apply any combination of feature extractor and graphical classifier, which can
be swapped in and out. To show this ability, we ran our framework using a range
of different architectures and graphical propagators. From a closer look at the
results, we notice that compared to the other SSL approaches the GCN [12]
produces consistently lower results, which suggests that the shallow architecture
of GCN’s generalise poorly to more complex datasets. However, our framework
gives far better results than GCN. We further support our results by running
a comparison against fully supervised methods for each particular application.
For each dataset we learnt on a very small amount of labelled data but yet man-
aged to obtain a great classification performance which was either comparable
to or better than the state-of-the-art supervised approaches which used far more
labels. The fact that our approach worked so well for the CBIS-DDSM dataset
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Table 2. Classification performance on the
ChestXray-14 dataset. When only 20% of the
dataset labelled we are able to beat and perform
in line with recent methods.

ChestXray-14
Fully-Supervised Methods

Method 70% Labelled – AUC
Wang [26] 0.745
Yao [29] 0.761
Yan [28] 0.830

Baltruschat (ResNet-101) [2] 0.785
Baltruschat (ResNet-38) [2] 0.806

Method 20% Labelled – AUC
GraphXNet [1] 0.788
Ours W/[A1] 0.770
Ours W/[A1] 0.795
Ours W/[A2] 0.815

Fig. 4. Visual display of one of
our experiments: a graph out-
put in which each colour rep-
resent one pathology (class).

is of particular interest as it presents a challenging dataset but yet we were
able to get similar performance to SOTA techniques using 20% of the label set
but using 40% we were able to surpass all comparison methods using half the
label set. This could be explained by uncertainty from the experts, contribut-
ing negatively whilst training in a supervised manner but can be regularised
against using semi-supervised approaches. Moreover, by decreasing the number
of annotated samples one also decreases the labelling error and uncertainty in
the classification output.

To test the generalisability of our framework we then applied it to the chal-
lenging ChestXray-14 dataset [26], and the results are reported in Table 2 and
Fig. 4. From the results, one can observe that using far less labels we are able to
match or outperform the SOTA-methods. Overall, we underline the message of
this paper we show that our framework is easy applied to a variety of problems
and that it reliable produces good performance using fewer labels.

4 Conclusion

In the field of medical imaging labelled examples are time consuming and expen-
sive to obtain. Supervised approaches often rely upon a large representative
training set to achieve acceptable performance. In this paper, we explore the
impact that semi-supervised learning (SSL) can have in the domain. We propose
a novel framework for SSL algorithms before applying this framework to three
large scale medical datasets. Through extensive testing, we clearly show that
our graph-based approach can either match or outperform state-of-the-art deep
supervised methods whilst requiring a fraction of the labels – only 20%. Over-
all, we underline the message of our paper, deep SSL classification is reaching
unprecedented performance comparable or better than fully-supervised techniques
whilst requiring minimal labelled set.
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Abstract. In this work we propose a method based on geometric deep
learning to predict the complete surface of the liver, given a partial point
cloud of the organ obtained during the surgical laparoscopic procedure.
We introduce a new data augmentation technique that randomly per-
turbs shapes in their frequency domain to compensate the limited size of
our dataset. The core of our method is a variational autoencoder (VAE)
that is trained to learn a latent space for complete shapes of the liver. At
inference time, the generative part of the model is embedded in an opti-
misation procedure where the latent representation is iteratively updated
to generate a model that matches the intraoperative partial point cloud.
The effect of this optimisation is a progressive non-rigid deformation of
the initially generated shape. Our method is qualitatively evaluated on
real data and quantitatively evaluated on synthetic data. We compared
with a state-of-the-art rigid registration algorithm, that our method out-
performed in visible areas.

Keywords: Laparascopic liver surgery · Geometric deep learning ·
Graph convolution · Surface completion · Variational autoencoder

1 Introduction

The loss of direct vision and tactile feedback in laparoscopic procedures intro-
duces an additional level of complexity for surgeons. Augmented reality (AR) is
a promising approach to alleviate these limitations and provide guidance during
the procedure. However, it remains an open challenge for laparoscopic surgery of
the liver, which is one of the largest and most deformable organs. AR is usually
achieved by registering a preoperative 3D model to the intraoperative laparo-
scopic view. Clinically available state-of-the-art commercial systems use manual
point-based rigid registration [14], while recent research works focus on either
c© Springer Nature Switzerland AG 2020
C. H. Sudre et al. (Eds.): UNSURE 2020/GRAIL 2020, LNCS 12443, pp. 198–207, 2020.
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rigid [12,16] or deformable [3,6,10,13] registration techniques requiring different
amounts of manual interactions and computations on the preoperative data. In
contrast, we formulate the deformable registration as a shape completion prob-
lem that does not rely on patient specific preoperative computations.

Even though the underlying techniques are different, the common application
and presence of an optimisation procedure make our method similar to registra-
tion. We believe that our method has the potential to become a precursor to
a new approach for registration. Thus, we directly compare our method with a
rigid registration algorithm (Go-ICP [20]) that aligns two point clouds. This algo-
rithm was successfully used for laparoscopic liver applications in [12], where the
preoperative model was registered onto the intraoperative point cloud obtained
using an unsupervised neural network for depth estimation. Our method is sim-
ilar, but relying on a manual interaction it is also able to predict a deformed
model that better fits the point cloud. Other methods, such as [10,13] attempt
the registration of preoperative models directly on the intraoperative images
requiring manual image annotations. Even though they still show high errors in
areas not visible from the camera, these methods showed extremely good perfor-
mances in coping with deformations. Both use biomechanical models to simulate
deformations, and [13] requires an additional preoperative step where multiple
possible patient-specifc simulations have to be performed.

The most similar works to ours are [1] and [11]. The former leverages a voxel-
based conditional variational autoencoder (VAE) to complete missing segments
of bone and plan jaw reconstructive surgical procedures. Not only the anatomical
structures considered in their work are not deformable and the missing segments
are small compared to the complete shape, but also their solution is constrained
by the remaining healthy structures. On the other hand, our problem is more
ill-posed because the liver is highly deformable and the missing parts are much
larger than the partial intraoperative shape. In addition, voxel-based represen-
tations of shapes are inefficient volume representations that struggle to achieve
high resolutions and to handle deformations. Therefore, we represent 3D shapes
as Riemannian manifolds discretised into meshes and use geometric deep learning
techniques to process these data. In particular, our work adapts [11] to achieve
shape completion in laparoscopic liver surgery by (i) overcoming the shortage
of data; (ii) compensating the lack of point correspondences between partial
and complete shapes; (iii) redefining the VAE training loss to deal with non-
uniformly sampled meshes; and (iv) leveraging preoperative data for the initial-
isation. The optimisation process for shape completion, makes the methodology
suitable for registration, but there are a few key steps that need innovating. We
believe this is the first attempt to bring geometric deep learning in to computer
assisted interventions.

2 Methods

The proposed method (Fig. 1) estimates the complete mesh of a liver given a
partial point cloud of its surface. A graph convolutional variational autoencoder
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is trained to generate complete shapes (Sect. 2.1) and a distinct optimisation
procedure non-rigidly deforms them to fit the partial point cloud (Sect. 2.2).

Fig. 1. Schematic Description of the Proposed Method. Top: a VAE ({E,G})
is trained on complete preoperative meshes of the liver. Bottom: the shape completion
starts with a manual selection S on the preoperative mesh X. The latent representation
obtained encoding X is used to initialise z. The error between the selection on the
generated mesh (X′

S = S ◦ G(z)) and the partial intraoperative point cloud P is
minimised optimising over z,R, t, which control the shape of new generated meshes,
the rotation of P and its translation respectively.

2.1 Shape Generator

A 3D mesh can be represented as a graph M = {X, ε}, where X ∈ IRN×3

is its vertex embedding and ε ∈ INε×2 is the edge connectivity that defines
its topology. Traditional convolutional operators, well suited for grid data such
as images and voxelizations, are generally incompatible with the non-Euclidean
domain of graphs. Following [11], we chose to build our generative model with the
Feature-Steered graph convolutions defined in [18]. This operator dynamically
assigns filter weights to k-ring neighbourhoods according to the features learned
by the network. In particular, given a generic feature vector field where for each
vertex i we have a feature vector xi, we can define the output of the convolutional
operator as

yi = b +
1

|Ni|
∑

j∈Ni

M∑

m=1

qm(xi,xj)Wmxj (1)

where b is a learnable bias, qm(xi,xj) is a translation-invariant assignment oper-
ator that, using a soft-max over a linear transformation of the local feature vec-
tors, learns to dynamically assign xj to the m-th learnable weight matrix Wm,
and Ni is the neighbour of the i-th vertex with cardinality |Ni|.

Every VAE is made of an encoder-decoder pair, where the decoder is used as
a generative model and is usually referred to as generator. Following this conven-
tion, we define our architecture as a pair {E,G}. Let Xc be the vertex embedding
domain of complete shapes and Z the latent distribution domain. Then, the two
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networks are defined as two non-linear functions such that E : Xc → Z and
G : Z → Xc. With X ∈ Xc and z ∼ Z, the generator is described by the likeli-
hood p(X|z) while the encoder is defined as a variational distribution q(z|X) that
approximates the intractable model posterior distribution. Both E and G are
parametrised by neural networks whose building blocks are the Feature-Steered
graph convolutions. During training, a reconstruction loss (Lrecon) encourages
the output of the VAE to be as close as possible to its input and a regularisation
term (LKL) pushes the variational distribution towards the prior distribution
p(z), which is defined as a standard spherical Gaussian distribution. While we set
LKL to be the Kullback–Leibler (KL) divergence, we define Lrecon as a vertex-
density-weighted mean-squared-errors loss. Let xi be the i-th position vector (i.e.
a feature vector of size 3) and x′

i its corresponding point in X′ = G(E(X)). We
have:

Lrecon =
1
N

N−1∑

i=0

γ‖x′
i − xi‖22 with γ ∝ 1

Ni

∑

j∈Ni

‖xi − xj‖22 (2)

where γ is a vertex-wise weight that increases the contribution of the errors in
low vertex-density regions, thus preventing the generated mesh from fitting only
densely sampled areas. The total loss is then computed as linear combination of
the two terms: Ltot = Lrecon + αLKL.

Data Preparation. Though the chosen graph convolution was proven effec-
tive also on datasets with different graph topologies [18], we decided to remesh
our data in order to have the same topology and known point correspondences
across all the preoperative meshes and all the generated shapes. This accel-
erates and eases the training procedure, allowing us to define a simple and
computationally-efficient loss function (Eq. 2). In addition, thanks to the consis-
tent vertex indexing it is possible to easily perform the initial manual selection
described in Sect. 2.2.

In order to consistently remesh our dataset, we run an optimisation pro-
cedure that iteratively deforms an ico-sphere with a predefined topology and
fixed number of vertices. Following [19], the loss function is given by Lremesh =
λ0LCh + λ1Ln + λ2LL + λ3LE . LCh is the Chamfer distance that averages the
distances between each point in a mesh and the closest point in the other mesh,
and vice versa. Ln is the normal loss that requires the edge between a vertex
and its neighbours to be perpendicular to the normal of the closest vertex in
the ground truth. LL is the mesh Laplacian regularisation loss that avoids self-
intersections, acting as a surface smoothness term. Le is an edge regularisation
that reduces flying vertices by penalising long edges. λ0,1,2,3 are the weights of
each loss term.

Spectral Augmentation. The small size of our dataset makes it difficult to
train a generative model that can generalise to new shapes. Simple shape aug-
mentation techniques such as random rotations, translations and scalings can



202 S. Foti et al.

be used to augment the dataset, but shapes are not deformed and the perfor-
mance gain is therefore limited. Instead of attempting an augmentation in the
spatial domain we propose a data augmentation technique that operates in the
frequency domain, which is a known concept in the literature [17]. However,
we simplify and randomise the spectral deformation making it suitable for data
augmentation. We thus compute the un-normalized graph Laplacian operator
L = D − A, where A ∈ IRN×N is the adjacency matrix and D ∈ IRN×N is the
diagonal degree matrix with Dii =

∑
j Aij . Computing the eigenvalue decompo-

sition of the Laplacian, L = UΛUT , we obtain a set of orthonormal eigenvectors
(columns of U) which are the Fourier bases of the mesh, and a series of eigen-
values (diagonal values of Λ) that are its frequencies. The Fourier transform of
the vertices can be computed as X̂ = UT X and the inverse Fourier transform
as X = UX̂ [5].

Using these operators, each mesh is transformed into its spectral domain,
perturbed, and transformed back to the spatial domain. Hence, the spectral
augmented mesh X† is computed as X† = UξUT X, where ξ is a vector that
randomly perturbs four mesh frequencies. In particular, the first frequency is
never modified because, playing the role of a direct current component [2], it
would not deform the shape. One of the following three frequencies, responsible
for low frequency variations similar to scalings along the three major axes of the
mesh, is arbitrarily perturbed. The remaining three perturbations are applied to
randomly selected higher frequencies with the effect of affecting the fine details
of the shape.

It is worth noting that the remeshed data share the same topology, thus the
set of orthonormal eigenvectors used to compute the direct and inverse Fourier
transforms can be computed one time and then used for every mesh.

2.2 Shape Completion

This section illustrates how a complete shape is obtained from a partial intra-
operative point cloud P ∈ IRP×3. In contrast to [11], we do not have known (or
easily computable) point correspondences between intraoperative point clouds
and the generated meshes. Therefore, we relax this assumption at the expense
of the introduction of a manual step in the procedure. In fact, the surgeon is
asked to roughly select from the preoperative 3D model X ∈ Xc a region of
interest that corresponds to the visible surface in the intraoperative image. To
reduce computational time and increase robustness against the errors in manual
region selection and varying vertex density in the region, we sample the selected
vertices with an iterative farthest point sampling [15], obtaining a selection oper-
ator S that gives sparser and uniformly sampled vertices. Since mesh topology
consistency is guaranteed by construction, the selected vertices will always have
the same indexing for each mesh X′ ∈ Xc generated with the model discussed in
Sect. 2.1. The shape completion problem is thus formulated as finding the best
latent variable z∗ that generates a complete shape X′∗ plausibly fitting P. Given
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X′
S = S ◦ X′ = S ◦ G(z) ⊂ X′ the subset of selected and sampled vertices from

a generated shape, we optimise

min
z,R,t

LCh

(
S ◦ G(z), RP + t

)
. (3)

It is worth mentioning that not having point correspondences between P and
X′

S we cannot compute the rotation R and translation t in a closed form solu-
tion as in [11]. Therefore, they are iteratively updated alongside z in the same
optimisation procedure. The gradient of the loss in Eq. 3 directly influences R
and t, but it needs to be back-propagated through the generator network G,
without updating the network’s weights, to update z. The completion procedure
is initialised by centering P and X′

S , and by setting an initial z = z0 = E(X),
thus using as prior the latent representation of the preoperative mesh. The ini-
tialisation z0 can be further refined to z∗

0 by running a few iterations of a second
optimisation z∗

0 ← arg minz0

(
maxi ‖xi − x′

i‖22
)
. Finally, by adding to the latent

initialisation a small Gaussian noise η ∼ G(0,Σ) with Σii 
 Iii, we can gen-
erate multiple complete shapes conditioned on the preoperative data and that
plausibly fit the intraoperative point cloud P.

3 Results

Our dataset consists of 50 meshes of livers which were segmented and recon-
structed from preoperative CT scans of different patients. The segmentation
and initial mesh generation was performed by Visible Patient. 45 meshes were
used to train the VAE, while the remaining 5 meshes were used as a test set to
evaluate the network, data augmentation, and shape completion. Given the lim-
ited size of the dataset, to not bias results toward the test set, hyperparameters
were tuned on the training set. The study was approved by the local research
ethics committee (Ref: 14/LO/1264) and written consent obtained from each
patient.

The remeshing was performed by deforming an ico-sphere with 2564 vertices.
For this, and all the other optimisations described in this paper, we used the
ADAM optimiser [9]. We remeshed every model with 500 iterations at a fixed
learning rate of lr = 5e−3. The weights of the loss function Lremesh were λ0 = 5,
λ1 = 0.2, λ2 = 0.3, and λ3 = 15.

The VAE was built using M = 8 weight matrices, batch size 20 and latent
size 128. LeakyReLU and batch normalisation were used after every layer. The
network was implemented in PyTorch Geometric [7] and trained for 200 epochs
with lr = 1e−3 and a KL divergence weight α = 1e−6. The training was per-
formed on an NVIDIA Quadro P5000 and took approximately 9 h.

We evaluated the reconstruction performance of the VAE with and without
data augmentation while fixing the number of iterations. Applying the spec-
tral augmentation (Fig. 2A) we generated 100 new meshes for each model in the
training set, thus obtaining 4500 models. An additional online data augmentation
composed of random rotations, scalings, and translations was applied. We obtain

https://www.visiblepatient.com/en/
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Fig. 2. Augmentation and Qualitative Results A: effects of the spectral aug-
mentation where a real liver (green) is subject to two different random augmentation
(black). B : laparoscopic image and comparison between the proposed shape completion
(blue) and the Go-ICP registration (black). The intraoperative point cloud is shown in
red and the selected point in blue. The contours of the silhouettes are overlaied also
on the laparoscopic image. (Color figure online)

a mean-squared testing error of (0.28 ± 0.04) mm when both augmentations are
applied, of (0.45± 0.18) mm with the online augmentation alone, of (0.50± 0.03)
mm with the spectral augmentation only, and of (0.92 ± 0.22) mm without any
augmentation. We then evaluated the computational cost of the spectral aug-
mentation, finding that when it is performed by computing the Fourier operators
for each mesh it takes 0.4532 ± 0.0568 seconds per mesh, while, when the opera-
tors are precomputed (Sect. 2.1) the computational time is reduced by one order
of magnitude to 0.0487 ± 0.0092 seconds per mesh.

Given the lack of intraoperative 3D ground truths for registration in laparo-
scopic liver surgery, the evaluation of our method on real data is purely qualita-
tive. In a real operative scenario the computation of a dense and reliable point
cloud is still a major challenge. To obtain P from rectified images of a calibrated
laparoscope we used an off-the-shelf depth reconstruction network [4]. Given the
predicted depth map and a manual segmentation of the liver, we first compute
P and then estimate the complete shape X′∗ (Fig. 2B).

The quantitative assessment of the shape completion is performed on syn-
thetic data. The five meshes in the test set were manually deformed, trying
to reproduce intraoperative liver deformations similar to those expected in a
laparoscopic procedure and characterised in [8]. To obtain intraoperative par-
tial point clouds, the surface of the deformed models was sampled with vertex
selections on three regions: entire front surface PF , left lobe PL, and right lobe
PR. Each deformed model is considered the intraoperative ground truth XGT

that we want to infer given a partial point cloud. To maintain a higher P den-
sity, XGT was not remeshed. Equation 3 is optimised for 100 iterations using
ADAM with a different learning rate for each term. To encourage the optimi-
sation over z and thus the generation of more diverse, progressively deformed
meshes X′, we set lrz = 5e−2. The learning rates for R and t are empirically
set to lrR = 1e−2 and lrt = 5e−5. Rotations are regressed faster because the
two point clouds were initially centred. In case z0 is further refined to z∗

0, the
same learning rate lrz = 5e−2 is used for 20 iterations. In case multiple complete
shape proposals are desired, Eq. 3 can be generalised to process batches with a
refined initialisation perturbed by η with Σii = 1

10 .
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Fig. 3. Quantitative Results. Rows: results for intraoperative point clouds of front
surface PF , right lobe PR, and left lobe PL. Columns: A) front and back view of
intraoperative point cloud P (red), intraoperative ground truth XGT (green), and
prediction X′∗ (blue). B) Comparison of vertex-wise distances (mm) for the proposed
method (blue) and Go-ICP (pink). We compute errors separately in the visible and
invisible parts of the liver in the camera’s field of view. C) Front and back view of X′∗.
Colours represent the algorithm with a smaller vertex error. (Color figure online)

The shape completion was evaluated for each partial shape without η per-
turbation. Since the procedure requires a manual step currently performed with
a lasso selection that might affect results, we repeated the evaluation 3 times,
for a total of 45 experiments. Selections could be refined and took approximately
one minute each. We compared our method with the rigid registration using Go-
ICP [12] which has comparable computational time to ours. The lack of point
correspondences between XGT and X′∗ does not allow us to evaluate our method
using mean-squared errors. Therefore, we define a variation of LCh that allows
us to compute vertex-wise errors on X′∗. For each vertex of one mesh we com-
pute the distance to the closest point on the other mesh. All the distances are
assigned to the vertices of X′∗ from which they were computed and are locally
averaged. Results are reported in Fig. 3.

4 Conclusion

While this work is about shape completion, we believe it could become an alter-
native to registration or provide a better initialisation for such algorithms. From
Fig. 2 we notice that the proposed method seems to fit better the point cloud
especially on the left lobe. The lack of a ground truth makes impossible to draw
further conclusions from this result. However, observing Fig. 3 (columns B and
C), we can conclude that our method outperforms Go-ICP in visible areas, and,
despite performing worse in invisible areas, it predicts a realistic looking model
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of the liver. Of particular importance is the improvement over visible areas,
because these regions are the only ones in the narrow field of interest of the
surgeon, where an accurate deformation is required. Since the manual selection
of the visible area on the preoperative model affects the quality of the results,
as future work not only we aim at quantifying the uncertainty involved in the
manual interaction, but also at avoiding it by predicting point correspondences
between partial and complete shapes. We also believe that the use of biomechan-
ical constraints for deformation could reduce errors in invisible areas. In fact, the
unconstrained deformations operated by our method through the optimisation
of z, despite generating plausible livers fitting the partial intraoperative point
cloud, often downscale invisible areas. Even though our method can propose
multiple solutions (Sect. 2.2), identifying the correct complete shape is essential
to improve our method and outperform Go-ICP everywhere. Thus, we shall also
research the introduction of biomechanical constraints while avoiding any patient
specific training or simulation. Finally, we are planning to incorporate the liver’s
internal structure in our method in order to overlay them on a laparoscopic video
during surgery.
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Abstract. Cancer diagnosis, prognosis, and therapeutic response pre-
diction are heavily influenced by the relationship between the histopatho-
logical structures and the function of the tissue. Recent approaches
acknowledging the structure-function relationship, have linked the struc-
tural and spatial patterns of cell organization in tissue via cell-graphs to
tumor grades. Though cell organization is imperative, it is insufficient
to entirely represent the histopathological structure. We propose a novel
hierarchical cell-to-tissue-graph (HACT) representation to improve the
structural depiction of the tissue. It consists of a low-level cell-graph,
capturing cell morphology and interactions, a high-level tissue-graph,
capturing morphology and spatial distribution of tissue parts, and cells-
to-tissue hierarchies, encoding the relative spatial distribution of the cells
with respect to the tissue distribution. Further, a hierarchical graph neu-
ral network (HACT-Net) is proposed to efficiently map the HACT rep-
resentations to histopathological breast cancer subtypes. We assess the
methodology on a large set of annotated tissue regions of interest from
H&E stained breast carcinoma whole-slides. Upon evaluation, the pro-
posed method outperformed recent convolutional neural network and
graph neural network approaches for breast cancer multi-class subtyp-
ing. The proposed entity-based topological analysis is more in line with
the pathological diagnostic procedure of the tissue. It provides more com-
mand over the tissue modeling, therefore encourages the further inclusion
of pathological priors into task-specific tissue representation.
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1 Introduction

Breast cancer is the second most common type of cancer with a high mortality
rate in women [23]. A majority of breast lesions are diagnosed according to a
diagnostic spectrum of cancer classes that ranges from benign to invasive. The
classes confer different folds of risk to become invasive. Lesions with atypia or
ductal carcinoma in-situ are associated with higher risks of transitioning to inva-
sive carcinoma compared to benign lesions [6,19]. Thus, accurate discrimination
of these classes is pivotal to determine the optimal treatment plan. However, dis-
tinguishing the classes is not always easy, e.g., in [6] pathologists’ concordance
rates were as low as 48% for atypia. In a clinical setting, pathologists begin the
classification of a tissue biopsy by discerning the morphology and the spatial
distribution of tissue parts, such as epithelium, stroma, necrosis, etc. Then, they
localize their analysis to specific regions of interest (RoI) on the tissue and eval-
uate nuclear phenotype, morphology, topology, and tissue distribution among
several other criteria for the classification. However, such inspections are tedious,
time-consuming, and prone to observer variability, thus increasing the demand
for automated systems in cancer diagnosis. Digital pathology has recently moti-
vated innovative research opportunities in machine learning and computer vision
to automate cancer diagnosis [16]. The most common technique for classifying
RoIs consists of extracting fixed-size patches from an RoI and classifying them
using Convolutional Neural Networks (CNN); then, patch-based predictions are
aggregated to label the RoI [2,18]. Such approaches are limited to finding the
apt patch size and resolution to include context information. It can be achieved
by reducing the resolution at the cost of missing cell-level information, or by
increasing the resolution at the cost of limiting patch size due to computational
challenges. Additionally, patch-based approaches unfairly assume the same label
for an RoI and its corresponding patches. Further, the pixel-based analysis by the
CNNs does not comprehend the essence of biological entities and their biological
context. This inhibits the integration of CNNs and prior pathological knowledge
that would require the selective entity-based implementation of CNNs.

To address the above issues, histopathological structures of tissues have been
represented by cell-graphs (CG) [10], where cells and cellular interactions are pre-
sented as nodes and edges of CG respectively. Then, classical graph learning tech-
niques or graph neural networks (GNNs) learn from CGs to map the structure-
function relationship. Recently various CG representations [7,22,26,29] have
been proposed by varying the graph building strategies or the node attributes.
However, a CG exploits only the cellular morphology and topology and discards
the tissue distribution information such as the stromal microenvironment, tumor
microenvironment, lumen structure, etc. that are vital for appropriate represen-
tation of histopathological structures. Additionally, a CG cannot represent the
hierarchical nature of the tissue. For instance, in [29], a hierarchy is defined from
the cells with learned pooling layers. However, the tissue hierarchy is inaccessible
as the representation does not include high-level tissue features. In [5], the cell-
level and tissue-level information are simply concatenated. Thus, the functional
representation of the tissue cannot leverage the hierarchy between the levels.
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Fig. 1. Block diagram of the proposed methodology including pre-processing module,
HACT representation of a RoI and HACT-Net classifying the RoI.

We address the above shortcomings by proposing a novel HierArchical-Cell-
to-Tissue (HACT) representation of the RoIs. In HACT representation, a low-
level CG captures the cellular morphology and topology; a high-level tissue-graph
(TG) captures the attributes of the tissue parts and their spatial distribution,
and the hierarchy between the CG and the TG captures the relative distribu-
tion of the cells with respect to the tissue distribution. Further, we propose
HACT-Net, a hierarchical GNN to learn from the HACT representation and
predict cancer types. Similar to the RoI diagnostic procedure by the patholo-
gist’s, HACT-Net encodes contextual local and global structural attributes and
interactions, thereby allowing for enriched structure-function relation analysis.

2 Methods

We propose a HACT-representation that consists of a low-level CG, a high level
TG, and cell-to-tissue hierarchies. This representation is processed by HACT-
Net, a hierarchical GNN that employs two GNNs [8,11,14,25,28] to operate at
cell and tissue level. The learned cell node embeddings are combined with the
corresponding tissue node embedding via the cell-to-tissue hierarchies. Figure 1
summarizes the proposed methodology including the pre-processing for stain
normalization [17], HACT-representation building and HACT-Net.

2.1 Representation

We define an undirected graph G := (V,E) as a set of |V | nodes and |E| edges. An
edge between the nodes u and v is denoted by euv or evu. The graph topology
is described by a symmetric adjacency matrix A ∈ R

|V |×|V |, where an entry
Au,v = 1 if euv ∈ E. Each node v is presented by a feature vector h(v) ∈ R

d.
Equivalently, the node features are presented in their matrix form as H ∈ R

|V |×d.
We define the neighborhood of a node v as N (v) := {u ∈ V | v ∈ V, euv ∈ E }.

Cell-Graph (CG): In a CG, each node represents a cell and edges encode cel-
lular interactions. We detect nuclei using the Hover-Net model [9], pre-trained
on the multi-organ nuclei segmentation dataset [15]. For each detected nucleus at
40× resolution, we extract hand-crafted features representing shape, texture and
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spatial location following [29]. Shape features include eccentricity, area, maxi-
mum and minimum length of axis, perimeter, solidity and orientation. Texture
features include average foreground and background difference, standard devia-
tion, skewness and mean entropy of nuclei intensity, and dissimilarity, homogene-
ity, energy and ASM from Gray-Level Co-occurrence Matrix. Nuclei are spatially
encoded by their spatial centroids normalised by the image size. In total, each
nucleus is represented by 18 features, noted as fCG. These features serve as the
initial node embeddings in CG.

To generate the CG topology, we assume that spatially close cells encode
biological interactions and should be connected in CG, and distant cells have
weak cellular interactions, so they should remain disconnected in CG. To this
end, we use the k-Nearest Neighbors (kNN) algorithm to build the initial topol-
ogy, and prune the kNN graph by removing edges lengthier than a threshold
distance dmin. We use L2 norm in the image space to quantify the cellular dis-
tance. Formally, for each node v, an edge evu is built if u ∈ {w | dist(v, w) ≤ dk∧
dist(v, w) < dmin, ∀w ∈ V, v ∈ V, dk = k-th smallest distance in dist(v, w)}. In
our experiments, we set k = 5 and dmin = 50 pixels, i.e. 12.5 µm consider-
ing the scanner resolution of 0.25 µm/pixel. Figure 2(a) presents a sample CG
elucidating the nodes and edges in the zoomed-in sub-image.

Tissue-Graph (TG): To capture the tissue distribution, we construct a TG
by considering interactions among the parts of the tissue. In particular, we con-
sider the SLIC algorithm [1] emphasizing on space proximity to over-segment
tissue parts into non-overlapping homogeneous superpixels. Subsequently, to cre-
ate superpixels capturing meaningful tissue information, we hierarchically merge
adjacent similar superpixels. The similarity is measured by texture attributes,
i.e., contrast, dissimilarity, homogeneity, energy, entropy, and ASM from Gray-
Level Co-occurrence Matrix, and channel-wise color attributes, i.e., 8-bin color
histogram, mean, standard deviation, median, energy, and skewness. Initial over-
segmentation is performed at 10× magnification to detect more homogeneous
superpixels at less computational load. Finally, color and texture features are
extracted for the merged superpixels at 40× magnification to capture informa-
tive local attributes. A supervised random-forest feature selection is employed
and 24 dominant features are selected that classify the superpixels into the
epithelium, stroma, necrosis, and background tissue parts. Additionally, spatial
centroids of superpixels normalized by the image size are included to construct
26-dimensional representations for the superpixels.

To generate the TG topology, we assume that adjacent tissue parts bio-
logically interact and should be connected. To this end, we construct a region
adjacency graph (RAG) [21] using the spatial centroids of the superpixels. The
superpixel attributes define the initial node features, noted as fTG and the RAG
edges define the TG edges. Figure 2(b) presents a sample TG. The large node at
the center represents the centroid of the surrounding stroma that is connected
to the parts of epithelium and background. Thus, TG encodes information from
the tumor and the stroma microenvironment.
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Fig. 2. Visualizing (a) CG, (b) TG, and (c) HACT representations. Nodes are presented
in red and edges in yellow. Cell-to-tissue hierarchies are shown in blue in HACT. Note
that all hierarchies in HACT are not shown for visual clarity. (Color figure online)

HierArchical-Cell-to-Tissue (HACT) Representation: To jointly rep-
resent the low-level CG and high-level TG, we introduce HACT defined as
GHACT := {GCG, GTG, SCG→TG}. GCG = (VCG, ECG) and GTG = (VTG, ETG)
are CG and TG respectively. We introduce an assignment matrix SCG→TG ∈
R

|VCG|×|VTG| that describes a pooling operation to topologically map CG to TG.
SCG→TG is built using the spatial information of nuclei and superpixels, i.e.,
SCG→TG(i, j) = 1 if the nucleus represented by node i in CG spatially belongs
to the superpixel represented by node j in TG. Note that |VCG| � |VTG|. An
overview of HACT in Fig. 2(c) displays the multi-level graphs and the hierar-
chies.

2.2 HACT Graph Neural Networks (HACT-Net)

HACT-Net processes a multi-scale representation of the tissue. Given GHACT, we
learn a graph-level embedding hHACT ∈ R

dHACT that is input to a classification
neural network to predict the classes. We use the Graph Isomorphism Network
(GIN) [28], an instance of message passing neural network [8] with a provably
strong expressive power to learn fixed-size discriminative graph embeddings.

First, we apply TCG GIN layers on GCG to build contextualised cell-node
embeddings. For a node u, we iteratively update the node embedding as:
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h
(t+1)
CG (u) = MLP

(
h
(t)
CG(u) +

∑
w∈NCG(u))

h
(t)
CG(w)

)
(1)

where, t = 0, . . . , TCG, NCG(u) denotes the set of neighborhood cell-nodes
of u, and MLP is a multi-layer perceptron. At t = 0, the initial node embed-
ding is, i.e., h

(0)
CG(u) = fCG(u). After TCG GIN layers, the node embeddings

{h(TCG)
CG (u) | u ∈ VCG} are used as additional tissue-node features, i.e.,

h
(0)
TG(v) = Concat

(
fTG(v),

∑
u∈S(v)

h
(TCG)
CG (u)

)
(2)

where, S(v) := {u ∈ VCG | SCG→TG(u, v) = 1} denotes the set of nodes in
GCG mapping to a node v ∈ VTG in GTG. Analogous to Eq. (1), we apply the
second graph neural network based on GIN layers to GTG to compute the tissue-
node embeddings {h(t)

TG(v) | v ∈ VTG}. At t = TTG, each tissue-node embeddings
encode the cellular and tissue information up to TTG-hops from v.

Finally, the graph level representation hHACT is built by concatenating the
aggregated node embeddings of GTG from all layers [28], i.e.,

hHACT = Concat
({ ∑

v∈GTG

h
(t)
TG(v)

∣∣∣ t = 0, . . . , TTG

})
(3)

The graph-level representations are then processed by an MLP classifier to
predict the cancer subtype.

3 Experimental Results

3.1 Dataset

We introduce a new dataset for BReAst Carcinoma Subtyping (BRACS)1.
BRACS consists of 2080 RoIs acquired from 106 H&E stained breast carcinoma
whole-slide-images (WSI). The WSIs are scanned with Aperio AT2 scanner at
0.25 µm/pixel for 40× resolution. RoIs are selected and annotated independently
by three pathologists using QuPath [3] as: Normal, Benign (includes Benign and
Usual ductal hyperplasia), Atypical (includes Flat epithelial atypia and Atypical
ductal hyperplasia), Ductal carcinoma in situ and Invasive. Disagreed annota-
tions are further discussed and annotated by consensus. BRACS is more than
four times the size of the popular BACH dataset [2] and consists of challeng-
ing typical and atypical hyperplasia subtypes. Unlike BACH, BRACS exhibits
large variability in the RoI dimensions as shown in Table 1. The RoIs repre-
sent a more realistic scenario by including single and multiple glandular regions,
and comprising of prominent diagnostic challenges such as stain variance, tis-
sue preparation artifacts and tissue marking artifacts. Unlike recent graph-based

1 Currently pending approval for releasing the dataset to the research community.
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Table 1. BReAst Carcinoma Subtyping (BRACS) dataset statistics.

approaches on histopathology data [5,26,29] that conduct data splitting at image
level, we perform train, validation and test RoI splits at the WSI-level, such that
two images from the same slide do not belong to different splits. RoIs from the
same WSI can be morphologically and structurally correlated, even if they are
non-overlapping. Thus, image-level splitting leads to over-estimated results on
the evaluation set, and networks trained in such manner lack generalizability to
unseen data. We consider four sets of train, validation and test splits, generated
at random at the WSI-level, to evaluate our methodology. The fold-wise number
of RoIs for train, validation and test sets are provided in Table 1.

3.2 Implementation

All our experiments are conducted using PyTorch [20] and the DGL
library [27]. We benchmark our proposed HACT-Net against several GNN-
and CNN-baselines. Comparison with standalone CG-GNN and TG-GNN assess
the impact of multi-level information processing. Comparison with Concat-
GNN that concatenates CG and TG graph embeddings, i.e., hConcat =
Concat(hCG, hTG), evaluates the benefit of hierarchical-learning. Note that
Concat-GNN is analogous to recently proposed Pathomic Fusion [5]. CNN base-
lines include single scale CNNs [24] at three magnifications, and two multi-scale
CNNs using late fusion with single stream + LSTM [24]. Multi-scale CNNs use
multi-scale patches from (10× + 20×) and (10× + 20× + 40×). Considering
tumor heterogeneity, CNN approaches are limited to 10× to include only one
cancer type in an RoI.

CG-GNN and TG-GNN have four GIN layers with a hidden dimension of
32 in standalone, Concat-GNN and HACT-Net. Each GIN layer uses a 2-layer
MLP with ReLU activation. The classifier is composed of a 2-layer MLP with
64 hidden neurons and five output neurons, i.e., the number of classes. The
model is trained to minimize the cross-entropy loss between the output logits
and the ground truth labels. We set the batch size to 16, the initial learning rate
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Fig. 3. Cell-graph (left) and tissue-graph (right) examples for four cancer subtypes. (a–
b) Normal, (c–d) Benign, (e–f) Atypical, (g–h) DCIS, and (i–j) Invasive. Large central
nodes in the tissue-graphs depict the centroids of the surrounding stroma tissues.
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Table 2. Weighted F1-scores across four test folds. Mean and standard deviation of
fold-wise and class-wise weighted F1-scores. Results expressed in %.

Model/Fold# 1 2 3 4 μ ± σ Normal Benign Atypical DCIS Invasive

CNN (10×) [18,24] 49.85 46.86 51.19 54.04 50.49 47.50 46.00 39.25 51.25 69.75

±2.58 ±2.50 ±7.45 ±3.63 ±2.05 ±4.21

CNN (20×) [18,24] 52.49 51.88 44.38 56.37 51.28 52.25 47.25 44.50 48.25 62.25

±4.34 ±1.64 ±6.80 ±4.56 ±3.56 ±4.44

CNN (40×) [18,24] 40.64 47.30 38.08 48.95 43.74 46.00 35.50 46.75 38.00 56.00

±4.51 ±7.71 ±8.96 ±5.02 ±4.30 ±7.12

Multi-scale CNN 56.17 54.41 53.94 55.66 55.04 57.25 51.75 42.25 54.50 72.25

(10×+20×) [18,24] ±0.90 ±3.90 ±8.78 ±8.73 ±2.06 ±1.92

Multi-scale CNN 58.80 54.64 55.53 53.90 55.72 55.75 52.25 46.75 50.75 71.75

(10×+20×+40×) [18,24] ±1.87 ±1.78 ±6.38 ±2.28 ±2.38 ±3.34

CGCNet [29] 51.54 58.97 56.70 50.44 54.41 53.00 52.25 42.00 57.00 68.25

±3.53 ±2.55 ±4.96 ±8.15 ±5.52 ±2.58

TG-GNN 54.47 55.13 67.84 49.85 56.82 56.78 54.76 48.52 56.53 69.52

±6.67 ±1.89 ±6.62 ±8.76 ±12.78 ±11.00

CG-GNN 61.35 53.81 62.00 55.38 58.13 62.66 64.57 36.18 59.98 68.12

±3.59 ±5.32 ±9.05 ±6.85 ±1.43 ±2.52

Concat-GNN 54.66 54.49 64.59 63.95 59.42 57.00 60.31 49.62 60.65 68.94

±4.85 ±4.06 ±8.36 ±4.71 ±4.94 ±12.47

HACT-Net 62.17 59.06 69.41 60.92 62.89 65.15 58.40 55.45 63.15 73.78

±3.92 ±3.64 ±10.59 ±5.19 ±4.08 ±7.35

to 10−3 and use the Adam [13] optimizer with a weight decay of 5.10−4. For
the single-scale and multi-scale CNNs, we extract patches of size 128 × 128 at
10×, 20× and 40×. Pre-trained ResNet-50 on ImageNet is finetuned to obtain
patch-level feature representations after experimenting with different ResNet,
VGG-Net and DenseNet architectures. All the CNNs use [18] to derive RoI-level
feature representation via aggregate-penultimate technique, and employ a 2-layer
MLP with 64 hidden neurons and five output neurons for RoI classification.
Considering the per-class data imbalance, weighted F1-score is used to quantify
the classification performance. Model with the best weighted F1-score on the
validation set is selected as the final model in each approach.

3.3 Discussion

Figure 3 demonstrates CG and TG representations of sample RoIs from BRACS.
Visual inspection signifies that the CGs aptly encompass the cellular distribution
and interactions. Similarly, the TGs aptly encode the tissue microenvironment
by including the topological distribution of tissue components, such as lumen
in Benign, apical snouts in Atypical, necrosis in DCIS, and tumor-associated
stroma in DCIS and Invasive that are not accessible to CGs. Pathological prior
can be incorporated by selecting a subset of nodes in CG or TG to construct
task-specific representations.
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Table 3. Confusion matrix for the HACT-model on the test samples of Fold 1.

Normal Benign Atypical DCIS Invasive

Normal 33 7 6 1 0

Benign 16 39 8 3 0

Atypical 1 7 36 24 0

DCIS 0 1 8 50 9

Invasive 1 3 4 7 52

Table 2 presents the weighted F1-score on four test folds and their average
statistics for the networks. Standalone CNNs perform better at lower magnifica-
tion by capturing larger context. Multi-scale CNNs perform better by including
context information from multiple magnifications. The CG-GNN and TG-GNN
results signify that topological entity-based paradigm is superior to pixel-based
CNNs. Further, they indicate that tissue distribution information is inferior to
nuclei distribution information for breast cancer subtyping. Our CG-GNN base-
line outperforms CGCNet [29] justifying the use of expressive backbone GNNs
like GIN [28]. Also concatenating the updated node representation at each layer
as shown in Eq. 3 brings a performance boost without additional parameters.
Concat-GNN outperforms TG-GNN and CG-GNN indicating that CG and TG
provide valuable complementary information. Further, HACT-Net outperforms
Concat-GNN confirming that the relationship between the low and high-level
information must be modeled at the local node-level rather than at the graph-
level for better structure-function mapping.

Class-wise performance analysis in Table 2 shows that the invasive category
is the best detected due to the topologically discernible patterns with scat-
tered nodes and edges in CG and TG. Atypical cases are the hardest to model
due to high intra-class variability and high ambiguity with benign and DCIS.
Large drops in performance in the CGCNet and CG-GNN for Atypical con-
vey that standalone cell information is not adequate enough to identify these
patterns. Tissue information such as apical snouts in FEA, necrosis in DCIS,
stroma microenvironment in Benign, etc. bolster the discriminability for Atypi-
cal. Thus, all the networks including TG perform better than CG-GNN for the
Atypical. The CG-GNN and TG-GNN performances for the Normal, Benign, and
DCIS indicate that nuclei information is more informative for these categories.
HACT-Net utilizes both nuclei and tissue distribution properties, thus perform-
ing superior to CG-GNN and TG-GNN for almost all subtypes. Unlike CG-GNN,
HACT-Net utilizes stromal microenvironment around the tumor regions which
is a pivotal factor in breast cancer development [4]. The class-wise comparison
between HACT-Net and Concat-GNN establishes the positive impact of hierar-
chical learning. The gain in class-wise performances of HACT-Net substantiates
that the network does not get biased towards one particular class. The confu-
sion matrix in Table 3 depicts the expected inter-class ambiguities. The per-class
accuracies from Table 3 for Benign without atypia, Atypical, DCIS and Invasive
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are 83%, 53%, 74% and 78% respectively compared to 87%, 48%, 84% and 96%
in [6]. HACT-Net accuracies are promising and can potentially be improved.

Moreover, the paradigm shift from pixel-based to entity-based analysis can
potentially yield interpretability of the deep learning techniques in digital pathol-
ogy. For instance, [29] analyzes the cluster assignment of each node in CG
to group cells according to their appearance and tissue types. [12] introduces
a post-hoc interpretability module for CG-GNN to identify decisive cells and
interactions. However, both approaches are limited to CG analysis. Considering
the pathologically aligned multi-level hierarchical tissue attributes in HACT,
the interpretability of HACT can reveal pathologically crucial entities, such as
nuclei, tissue parts and interactions, to imitate the pathologist’s assessment.

4 Conclusion

In this work, we have proposed a novel hierarchical tissue representation in
combination with a hierarchical GNN to map the histopathological structure
to function relationship. We have extensively compared the proposed methodol-
ogy with the state-of-the-art CNNs and GNNs for breast cancer subtyping. The
enriched multi-level HACT-representation and hierarchical learning strengthen
our methodology to result in superior classification. HACT-representation can
seamlessly scale to any RoI size to incorporate vital local and global context
for subtyping. The entity-based graphical representation yields better control
for pathologically inspired tissue encoding and modeling. The success of our
methodology motivates to explore the inclusion of task-specific pathological prior
knowledge. Further, our hierarchical modeling paves way for recent interpretabil-
ity techniques in digital pathology to decipher the hierarchical nature of the
tissue.
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