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Abstract. Advanced object detectors based on Convolutional Neural
Networks (CNNs) offer high detection rates for many application scenar-
ios but only within their respective training, validation and test data.
Recent studies show that such methods provide a limited generalization
ability for unknown data, even for small image modifications including
a limited scale invariance. Reliable person detection with aerial robots
(Unmanned Aerial Vehicles, UAVs) is an essential task to fulfill high
security requirements or to support robot control, communication, and
human-robot interaction. Particularly in an agricultural context, persons
need to be detected from a long distance and a high altitude to allow
the UAV an adequate and timely response. While UAVs are able to pro-
duce high resolution images that enable the detection of persons from
a longer distance, typical CNN input layer sizes are comparably small.
The inevitable scaling of images to match the input-layer size can lead
to a further reduction in person sizes. We investigate the reliability of
different YOLOv3 architectures for person detection in regard to those
input-scaling effects. The popular VisDrone data set with its varying
image resolutions and relatively small depiction of humans is used as
well as high resolution UAV images from an agricultural data set. To
overcome the scaling problem, an algorithm is presented for segmenting
high resolution images in overlapping tiles that match the input-layer
size. The number and overlap of the tiles are dynamically determined
based on the image resolution. It is shown that the detection rate of very
small persons in high resolution images can be improved using this tiling
approach.

Keywords: Convolutional neural network - Person detection *
Resolution invariance - Input-layer scaling - Image tiling

1 Introduction

The development of high quality, lightweight camera systems enabled their
deployment on drones and therefore many new application areas. The high reso-
lution of the captured images allows the detection of objects from long distances
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and high altitudes. This is an essential safety requirement for an automated
operation of flying drones for example in digital farming. In manual operation,
the pilot typically analyzes the video-stream of the drone directly on his remote
control, however, in an autonomous scenario this task has to be done automat-
ically. The processing of high resolution images with advanced CNN methods
requires a lot of computational power and memory and is therefore still lim-
ited to high-end hardware. Feasible CNNs, like the popular and state-of-the-art
YOLOV3 architecture [1], provide a relativly small input-layer. Hence, an adjust-
ment of the input image is required, which can be realized by (i) cropping, (ii)
resizing with aspect-ratio preservation and padding or (iii) resizing by trivial 2D
sub-sampling disregarding the aspect ratio. In the original YOLOv3 implemen-
tation [2] method (iv) is used, while the framework utilized for our investigations
[3] sub-samples the images by method (v). Resizing with aspect-ratio preserva-
tion can lead to the smallest object sizes among the three adjustment methods
if the input-layer and input-image aspect ratios differ. Using method (vi), the
object-information loss is limited by using the appropriate horizontal and verti-
cal scaling-factors. However, different scaling in horizontal and vertical direction
leads to aspect-ratio distortions that can decrease the detection performance
as CNNs are not robust against such image modifications [4,5]. When address-
ing high resolution images, scaling can even make the detection of very small
objects impossible. Several solutions to this problem have already been proposed
in literature.

Single-stage approaches, on the one hand, focus on special network architec-
tures that allow the processing of the whole high resolution image at once and
avoid or minimize scaling. In [6], a method is presented that reduces the memory
footprint on the GPU by not storing the entire output feature maps after each
layer at the same time but only the parts that are needed for the next processing
step. However, this approach cannot be used for most network architectures (like
YOLOV3) as the whole activation map is not present at any time and certain
operations (e.g. batch normalization) are not possible. Other approaches con-
centrate on special network architectures that have real-time drone application
[7,8] or improved scale invariance [9,10] in mind, but still rely on scaling the
input image to the input-layer size.

Two-stage approaches, on the other hand, search for interesting image areas
first and run the object detector only on these regions to minimize scaling of the
input image. The region proposals can also be realized with neural networks [11-
15]. While these methods limit the computational efforts, the risk of missing very
small persons is high. All state-of-the-art methods utilize some scaling or error-
prone pre-selection of interesting image areas. Our contribution investigates the
capability of different YOLOv3 architectures to find very small persons in high-
resolution images and proposes an image scaling-free method to improve the
detection rate.
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2 Methods

The processing pipeline of the proposed approach is based on the divide-and-
conquer principle. At first, the input image is segmented into overlapping regions
(tiles) that match the CNN input-layer size to avoid image scaling so that persons
keep their size in pixels. One of three investigated CNN architectures (YOLOv3,
YOLOv3-tiny, YOLOv3-spp) is then applied to every tile. The last step consists
of merging the results for each tile to a global information about people positions.

2.1 Tiling

Any image with a width w and/or height h bigger than the input-layer size of
the CNN can be segmented into a minimal number of overlapping tiles with
a width w; and height h; that match the input-layer size. Figure 1 depicts the
segmentation of an image in four tiles. The calculation of the necessary amount
of horizontal tiles n, with an empirically determined maximum overlap Z,q. of
80% to cover an image with arbitrary resolution is shown in Listing 1.1. The
same approach can be applied vertically.

Listing 1.1. Calculating the number of horizontal tiles with a width of 416.

1 float x_max = 0.8;

2 float x = 0.9;

3 int w_t = 416;

4 int n_x = ceil(w / w_t);

5 while (x > x_max) {

6 x = (n_x * w_t - w) / (w_t * (n_x - 1));
7 n_x -= 1;

8 }

The maximum overlap Z,,q; can be adjusted with respect to the person sizes to
avoid splitting them between multiple tiles. If no suitable number of tiles (n, > 1)
can be found based on the minimal/maximal overlap criteria 0 < x < X4z, the
image has to be down-scaled slightly. For images smaller than the input-layer

w
Wi
hy
Fx
y h

Fig. 1. Image segmentation in four overlapping tiles (red, green, blue, yellow). (Color
figure online)
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size zero-padding is used. Persons that are completely inside the overlap area
are contained in both tiles. If the persons are larger than the overlap area or on
a border between two tiles, only a part of them is represented in one tile. The
smaller such a part is, the more difficult it is to derive relevant features of the
person.

2.2 YOLOv3

The YOLOV3 architecture [1] is a convolutional neural network for object detec-
tion that processes the whole input image in a single pass. It predicts bounding
boxes around objects in the original image on three different scales (three output
paths) to allow multi-scale detection. The highest-resolution output path is able
to find the smaller objects in the input image, while the smallest-resolution out-
put path contains information about the bigger objects. The whole architecture
consists of 107 layers making it rather complex. In the default configuration,
the input layer has a size of 416 x 416 pixel. The horizontal and vertical dimen-
sions of the input layer can be adjusted in steps of 32 pixels, and all the feature
maps will scale accordingly. In our tests, we used a standard input-layer size of
416 x 416 pixels and also a slightly increased size of 608 x 608 pixels to address
the differences for high-resolution images. Larger input-layer sizes are not feasi-
ble as the memory requirements scale linearly with the increased size. To avoid
hardware limitations, other compromises would have to be made in the training
process, which outweigh the advantage of the bigger input-layer size with less
input-image scaling.

2.3 YOLOv3-tiny

YOLOv3-tiny is a slimmer and less complex variant of the YOLOv3 architecture
due to a reduced number of layers (21 instead of 107). It lacks the branch that can
detect the smallest objects but allows faster processing. The lower complexity
also reduces the tendency to overfit on small data sets.

2.4 YOLOvV3-spp

The spatial pyramid pooling module (spp) introduced in [10] can be integrated
into the YOLOv3 architecture to obtain a more scale-invariant solution. It uti-
lizes three different parallel max-pooling layers, which pool the input-feature map
with three sliding window sizes. The resulting feature maps are then concate-
nated with the input-feature map before the YOLOv3 architecture continues.
This allows the pooling and concatenation of multi-scale local region features.

2.5 Merging

YOLOvV3 architectures output a list of bounding boxes accompanied by confi-
dence scores per tile. This local information has to be merged into a global one by



Spatial Resolution-Independent CNN-Based Person Detection 193

applying offsets to bounding boxes according to the tile location in the original
image. In image areas with overlapping tiles, objects are often detected twice. In
order to decide which bounding box to keep, the Intersection over Union (IoU)
between two overlapping boxes is calculated. If ToU > 0.7, the two boxes get
merged by using the most-outer corners, and the higher of the two confidence
scores of the two boxes is kept. If 0.5 < IoU < 0.7, the box with the higher
confidence score is kept and the other one is deleted. For boxes with very small
overlap (IoU < 0.5) the boxes are considered to contain different persons.

3 Investigations

We investigated three different variants of the YOLOv3 network architecture to
identify their abilities for a detection of small persons in high-resolution images
and to compare the default image-scaling with our segmentation-and-merging
approach.

All models have been pre-trained on the MSCOCO trainval dataset [16],
while a mini-batch size of 64 has been used for all trainings. Each of the three
YOLOv3 architectures is fed with either resized (method (iii)) or segmented
input images that fit the input-layer size.

3.1 VisDrone Data Set

The VisDrone object detection data set [17] is a large-scale benchmark for object
detection tasks with drones. It contains various scenarios in urban and country
environment. The corresponding annotation comprises ten classes (pedestrian,
person, car, van, bus, truck, motor, bicycle, awning-tricycle, and tricycle). As we
focus on person detection only, the classes pedestrian and person are utilized and
merged into a single person class. The VisDrone data set consists of 8 629 images
with public available annotation. This set is divided into 75.0% training, 6.4%
validation and 18.6% additional data for debugging and further validation (test-
dev data). The resolution of the images ranges from 480 x 360 up to 2000 x 1 500
(w x h) pixels. The data set contains images with many very small persons. The
smallest annotated bounding box is only one pixel tall (h;) and three pixels wide
(wp) in an image with a resolution of 1916 x 1078 pixels. This corresponds to a
person size which is even smaller than one pixel after the image is down-scaled
to wy X hy = 416 x 416 or 608 x 608 pixels depending on the CNN input-layer.
The scaling factor f corresponds to
Wt - ht

= 1

=t (1)
and the resulting person size s is

S:wb~hb'f. (2)

When the images are segmented into tiles, the small persons are represented by
an unchanged amount of pixels in the input-layer, and not one persons vanishes
(s large enough) due to f = 1.
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The characteristics of this data set when either using image-scaling or the
proposed segmentation approach is summarized in Table 1. The number of boxes
represents the number of annotated persons in the data set (147,747). When
scaling to the input-layer size of 416 x 416 or 608 x 608 pixels some of these
person will vanish as they will be smaller than one pixel (min(s) < 1).

Segmenting the image in overlapping tiles increases the total number of
bounding boxes due to their multiple representation in the overlapping areas
(cf. Sect.2.1). If a bounding boxes is only partially inside a tile, it has to be
cropped to the tiles dimensions. This leads to the varying person size s distribu-
tion between the two different tile sizes. However, if the new bounding box size
is smaller than 20% of the original bounding box size in one of those tiles, we
discard the corresponding box as it is not very likely to contain enough features
for a person.

Table 1. Analysis of VisDrone data set in terms of person sizes depending on input-
layer size.

Scaling to Tile size
416 x 416 | 608 x 608 | 416 x 416 | 608 x 608
No. of boxes | 147,747 | 147,747 | 657,111 | 990,809

max (s) 9,669.9 20,655.9 |60,629.0 |72,669.9
mean (s) 75.8 161.9 488.4 550.0
min (s) 0.25 0.54 2.0 3.0

3.2 AgriDrone Data Set

AgriDrone is a self-captured data set with focus on person detection in agricul-
tural applications. All 4586 images have been captured by two different drones:
DJI Mavic2 Enterprise and DJI Mavic Pro between Spring and Winter. They
share the same resolution of 3840 x 2160 pixels. The data set is split into 70%
training 10% validation and 20% test data. The AgriDrone data set is much
smaller than the VisDrone set, and the relative sizes of persons are larger. Table 2
summarizes the AgriDrone data and show the same basic findings as Table 1. In
this data set, the persons are large enough to be preserved despite the scaling of
the images (min(s) > 1).

4 Results and Discussion

In total, 24 CNN models have been trained, validated and tested. Three architec-
tures have been investigated in combination with two different input-layer sizes
(416 x 416 and 608 x 608), with or without tiling, and both different data sets.
Following measures in the style of [16] are used for the evaluation of the detec-
tion performance: the mean Average Precision (mAP) metric at a ToU threshold
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Table 2. Analysis of AgriDrone data set in terms of person sizes depending on input-
layer size.

Scaling to Tile size

416 x 416 | 608 x 608 | 416 x 416 | 608 x 608
No. of boxes | 8,746 8,746 14,155 13,296
max (s) 6,890.2 14,718.1 |127,360.0 | 195,048.0
mean (s) 235.5 503.0 8,460.6 9,415.7
min (s) 6.68 14.26 196.0 247.0

Table 3. Object detection results with an input-layer size of 416 x 416 pixels.

Data set | Seg. & Mer. | YOLOv3 YOLOvV3-tiny YOLOvV3-spp

mAP | mAP5o | mAP75 | mAP | mAP5 | mAP75 | mAP | mAPso | mAP75
VisDrone training
Validat Off 9.56 | 33.04 2.19 2.53 | 10.84 3.21 9.57 | 32.98 2.12
Validat On 19.31 | 55.02 8.33 8.92 | 31.10 2.13 18.70 | 55.75 6.89
Test-dev | Off 4.19 | 15.16 0.89 0.96 4.29 0.09 4.35 | 15.79 0.93
Test-dev | On 10.54 | 32.73 4.01 4.52 | 16.54 1.02 10.12 | 31.69 3.82
AgriDrone training
Validat Off 35.55 | 89.83 18.32 21.23 | 64.96 7.96 38.58 | 91.61 23.39
Validat On 31.08 | 78.50 17.64 31.32 | 77.86 17.78 32.65 | 79.90 18.88
Test, Off 34.01 | 85.66 17.04 21.87 | 65.05 8.31 36.92 | 88.32 21.55
Test On 29.25 | 73.74 15.38 31.11 | 76.53 16.07 32.36 | 78.13 18.18

of 0.5 (mAPs5p) and at a JoU threshold of 0.75 (mAP75) as well as the averaged
precision over ToU thresholds 0.5...0.95 in steps of 0.05 (mAP).

Table 3 (input-layer size 416 x 416) and Table4 (input-layer size 608 x 608)
list the overall results of our investigations. When comparing the entries related
to the original approach using scaling (Segmentation & Merging, Seg. & Mer.:
Off), it can be seen that an increased input-layer size helps to detect more
persons. The improvements range up to 12.92% in the mAP5q metric on the
VisDrone validation set using the YOLOv3-spp architecture. The segmentation-
and-merging method always leads to an improvement in detection performance
(with one exception), regardless of the architecture and input-layer size applied
to the VisDrone data set, and the best results could be achieved, when the
corresponding architecture was trained on the segmented images with a tile size
of 416 x 416 pixels. These results prove that an enlarged input layer of size
608 x 608 pixels is still not sufficient for a reliable person detection. Instead,
the person size should be kept using the proposed segmentation-and-merging
approach. For the VisDrone data set, the YOLOv3-tiny architecture generally
performs the worst due to its low complexity, while the two other ones are on
par.

The mentioned effects can only partially be reproduced on the AgriDrone
data. The YOLOv3 and YOLOv3-spp models are probably overfitting on this
data, as it is smaller and has a lower variability. Only with the YOLOv3-tiny
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architecture, the segmentation-and-merging approach leads to an improvement
in the detection performance. As the persons are larger in this data set, the
best results with the YOLOv3-tiny architecture are archived with a tile size of
608 x 608 pixels (mAP5q of 85.63% and 86.25%, respectively). The improve-
ments of the proposed segmentation-and-merging approach are not that notice-
able with this data set as the input-image scaling does not lead to vanished
persons (see Table 2). It can also be speculated that the very large persons that
can fill up to 73.6% of a 416 x 416 pixel-sized tile (Table2) are too large to
be detected or spread over multiple tiles, so that the bounding boxes cannot
be properly merged. Figure 2 visualizes the improvement of the segmentation-
and-merging approach for the (a) VisDrone and (b) AgriDrone data sets. The
magenta bounding boxes represent the ground-truth, the yellow boxes the true-
positives with image-scaling and the cyan ones the true-positives with our app-
roach (segmentation plus merging). The proposed method detects a lot more of
the small humans in Fig. 2(a) while also the relatively big human on the left in
Fig. 2(b) is now localized correctly.

Table 4. Object detection results with an input-layer size of 608 x 608 pixels.

Data set | Seg. & Mer. | YOLOv3 YOLOv3-tiny YOLOv3-spp
mAP ‘ mAP50 ‘ mAP75 | mAP ‘ mAP50 ‘ mAP75 | mAP ‘ mAP5q ‘ mAP75

VisDrone training

Validat Ooff 14.91 | 45.78 5.15 5.07 | 19.46 0.88 15.01 | 45.90 4.85
Validat On 19.61 | 53.93 8.76 8.77 | 29.99 2.26 17.42 | 50.16 7.40
Test-dev | Off 7.04 | 23.40 2.12 2.14 8.83 0.27 7.64 | 25.44 2.19
Test-dev | On 10.79 | 32.65 4.11 4.63 | 16.81 1.08 9.70 | 30.51 3.51
AgriDrone training

Validat Off 43.04 | 95.35 31.11 31.61 | 84.15 14.93 39.83 | 94.47 23.41
Validat On 38.36 | 85.56 24.31 37.44 | 85.73 23.36 38.10 | 85.95 24.23
Test Off 41.72 | 91.99 29.35 31.45 | 81.08 15.39 39.31 | 91.39 23.60
Test On 38.42 | 87.32 24.32 38.23 | 86.28 25.08 37.71 | 85.83 23.14

The improvement in object detection rates especially for small persons can
also be seen in Fig.3, in particular for the VisDrone data in Fig.3(a). The
relative person size p represents the person size in relation to the original image
resolution with

wb~hb
= 3
p=— (3)

The blue bars show the number of ground-truth bounding boxes of the accord-
ing relative bounding box size. Using the YOLOv3 416 x 416 architecture and
input-image scaling shows a drop-off in detections (true-positives at ToU = 0.5)
towards smaller person sizes (red bars). When the proposed segmentation-and-
merging algorithm is applied, the detection of small persons is improved (green
bars). In Figure 3(b) the improvements are not as visible due to the lack of very
small persons and overfitting of the YOLOv3 architecture on this data set.
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(a) VisDrone data

ik 2 :

(b) AgriDrone data

Fig. 2. Example detections with YOLOv3 416 x 416. Magenta: ground-truth, yellow:
true-positives at ToU = 0.5 (image-scaling), cyan: true-positives at ToU = 0.5 (image
segmentation and merging). (Color figure online)
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Fig. 3. Histogram of small relative person sizes p: annotated (blue), correctly detected
with default image scaling (red) and correctly detected with segmentation-and-merging
approach (green). (Color figure online)

5 Summary

The study has shown that the detection rate of YOLOv3 architectures can be
improved with the proposed method. Instead of using image-modifying pre-
processing (scaling or region selection), a segmentation-and-merging approach
has been investigated. All three investigated YOLOv3 architectures are able to
run in real-time (more than 30 frames per second) on a NVIDIA RTX 2080TI
GPU in the original version. However, the processing time scales linearly with
the number of tiles. The time saved by omitting the slow scaling functions is
consumed by the additional merging algorithm. Especially with very high res-
olution drone images with a lot of tiles (e.g. AgriDrone images) this can lead
to non-real-time processing, even with optimizations like parallel processing of
tiles. In long-distance image capturing scenarios with a drone, the safety require-
ments outweigh the real-time requirements, since the detection of humans from
a greater distance gives the drone more time to react.

The proposed approach is suitable for all image resolutions bigger than the
input-layer size. We proved that the detection rates of small persons in high-
resolution images can be improved, which makes CNNs usable for person detec-
tion with an UAV. Future work should also include the scaled image version to
avoid not detecting persons larger than the tile size. To support reproducible
research, we made the software and data of our study publicly available at [18].
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