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Abstract. Ultrasound simulation based on ray tracing enables the syn-
thesis of highly realistic images. It can provide an interactive environ-
ment for training sonographers as an educational tool. However, due to
high computational demand, there is a trade-off between image quality
and interactivity, potentially leading to sub-optimal results at interactive
rates. In this work we introduce a deep learning approach based on adver-
sarial training that mitigates this trade-off by improving the quality of
simulated images with constant computation time. An image-to-image
translation framework is utilized to translate low quality images into
high quality versions. To incorporate anatomical information potentially
lost in low quality images, we additionally provide segmentation maps
to image translation. Furthermore, we propose to leverage information
from acoustic attenuation maps to better preserve acoustic shadows and
directional artifacts, an invaluable feature for ultrasound image interpre-
tation. The proposed method yields an improvement of 7.2% in Fréchet
Inception Distance and 8.9% in patch-based Kullback-Leibler divergence.
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1 Introduction

Ultrasound (US) is a low-cost, real-time, and portable diagnostic imaging tech-
nique without ionizing radiation, hence widely used in gynecology and obstetrics.
Since its interpretation can be nontrivial due to ultrasound-specific artifacts such
as acoustic shadows and tissue-specific speckle texture, sonographer training is
crucial. For an education tool, ray tracing can be used for US simulation [3,14],
where US wavefront is represented with rays on the GPU to simulate interaction
with tissue layers, whereas speckle patterns are simulated with a convolutional
model of tissue speckle noise. With stochastic Monte-Carlo sampling of rays [11],
this can produce realistic looking images. However, interactive computational
constraints often necessitate a compromise in image quality, e.g. with limited
number of rays or by disabling or reducing essential simulation features.

Deep learning has achieved great success in various computer vision and
graphics tasks. In particular, generative adversarial networks (GANs) [5] have
been demonstrated as a powerful tool for image synthesis and translation [8,23].
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GANs have been widely adapted for various medical image synthesis tasks, such
as image inpainting [2] and cross modality translation in both supervised [1,13]
and unsupervised [20,22] settings. In US image synthesis, a two-stage stack GAN
was introduced in [17] for simulating intravascular US imagery conditioned on
tissue echogenicity map. In [7], freehand US images are generated conditioned
on calibrated physical coordinates. Recently in [18], feasibility of improving the
realism of ray-traced US images has been demonstrated using cycleGAN [23].

In this work we propose a deep learning based approach for improving the
quality of simulated US images that are obtained using a ray tracing algorithm,
such that computationally simpler (low quality) images can be used to generate
higher quality images mimicking a computationally sophisticated simulation that
may not be feasible at interactive frame rates. Access to a simulation framework
together with comprehensive anatomical models allows us to obtain realistic
paired images of differing quality aligned with anatomical models. Therefore, we
tackle this problem in an image-to-image translation setting with paired low and
high quality images. Our framework leverages conditional GANs [12] to recover
image features that are missing in the low quality images. Since low quality
images may have missing anatomical structures, which introduces ambiguities
in the image translation process, we propose to additionally leverage informa-
tion that is readily available from the underlying simulation algorithm. For this
purpose, we use 2D segmentation map slices at given transducer locations, to pro-
vide any anatomical information missing from low quality images. Since major
acoustic effects such as shadows are integral along wave path and hence global
in nature, they would require large network receptive fields to model. Thus, we
further propose to incorporate integral attenuation maps as additional input to
the network. Such segmentation and attenuation maps can be easily obtained as
by-products of ray-based simulation frameworks [3,11,14].

2 Materials and Methods

Data Generation. Simulated B-mode US images are generated using a Monte-
Carlo ray tracing framework on a custom geometric fetal model for obstetric
training [11]. US wave interactions are simulated using a surface ray tracing
model to find the ray segments between tissue boundaries. Tissue properties
such as acoustic impedance, attenuation and speed-of-sound are assigned to each
tissue type from literature and based on sonographers’ visual inspection. Along
each extracted ray segment, a ray-marching algorithm is applied on the GPU
to emulate US scatterer texture by convolving a locally changing point-spread-
function with an underlying tissue scatterer representation generated randomly
using Gaussian distributions per tissue type [10]. Simulated RF data is post-
processed with envelope detection, time-gain compensation, log compression and
scan-conversion into Cartesian coordinates, yielding a gray-scale B-mode image.

US Images. For each regularly-sampled key frame of a simulated US fetal exam,
paired low and high quality images are generated using two simulation passes:
low quality images using one primary ray per US scanline and one elevational
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(a) LQ image (b) HQ image (c) Segmentation (d) Attenuation

Fig. 1. Low quality (a) and high quality (b) simulation outputs, with corresponding
segmentation map (c) and integral attenuation map (d).

layer; and high quality images using 32 primary rays per scanline and three
elevational layers [11]. Other simulation parameters are kept identical for both
simulation passes, cf Table 1. Example B-mode images are shown in Fig. 1(a–b).

Image Mask. A fixed binary image mask demarcating the imaging region after
scan-conversion for the convex probe is also provided as input to the network,
in order to constrain the meaningful image translation region and help to save
generator capacity.

Segmentation Maps. As additional input for our method, segmentation maps
as the cross-section of input triangulated anatomical surfaces are also output by
the simulation, corresponding to each low-/high-quality image, cf Fig. 1(c).

Attenuation Maps. A characteristic feature in real US images is the presence
of directional artifacts, which is also valuable for the interpretation of images,
for instance in diagnosis of pathology. It is therefore important to accurately
simulate such artifacts for training purposes. Besides reflection and refraction
effects, a major source of directional US artifacts is attenuation, which is caused
by a reduction in acoustic intensity along the wave travel path due to local tissue
effects such as absorption, scattering, and mode conversion. Since such artifacts
are not only a function of local tissue properties but an integral function along
the viewing direction, we propose to directly provide this integrated information
to the translation network, hypothesized to improve the quality of translation.

Table 1. Simulation parameters

Parameter Value

Triangles fetus 400k

Triangles mother 275k

Image depth 15.0 cm

Parameter Value

Transducer frequency 8 MHz

Transducer field-of-view 70◦

Axial samples 3072
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Acoustic intensity arriving at a depth z can be modeled as I(z) = I0e
−μz,

where μ is the attenuation constant at a given imaging frequency and I0 is the
initial intensity. Given that the waves travel through different tissue layers with
varying attenuation constants μ(z), the total intensity arriving at a point z can
be approximated by

I(z, μ|z0) = I0

z∏

i=0

e−μ[i] = I0e
− ∑z

i=0 μ[i]. (1)

To approximate such attenuation effect, we create attenuation integral maps a =
e− ∑z

i=0 μ[i], accumulated for each image point along the respective ultrasound
propagation path. For better dynamic range and to avoid outliers, these maps are
normalized by the 98 %ile of image intensities and then scan-converted into the
same Cartesian coordinate frame as the simulated B-mode images. Figure 1(d)
shows sample integral attenuation maps.

Image Translation Network. Our image-to-image translation framework is
based on the pix2pix network proposed in [8]. Simulated low and high quality
US images are considered as source and target domain, respectively, where a
translation network G learns a mapping from the source to the target domain.
Specifically, G maps the low quality US image x, the binary mask m, the segmen-
tation map s, and the attenuation integral map a to the high quality US image
y, i.e.: G : {x,m, s, a} → {y}. The discriminator D is trained to distinguish
between real and fake high quality images conditioned on the corresponding
inputs to the generator. The objective function of the conditional GAN consists
of a weighted sum between a GAN loss LGAN and a data fidelity term LF, i.e.,

L = LGAN(G,D) + λLF(G), (2)
LGAN = Ex̃,y[log D(y|x̃)] + Ex̃[log(1 − D(G(x̃)|x̃)], (3)

LF = Ex̃,y[||y − G(x̃)||1], (4)

where x̃ = (x,m, s, a). Before computing the losses, the output is element-wise
multiplied with the binary mask to restrict the loss to the relevant output regions.

Similarly to [8], we use a deterministic G parametrized using a 8-layer Unet
with skip connections and D using a 4-layer convolutional network, i.e. a patch-
GAN discriminator. Instance normalization is applied before nonlinear acti-
vation. The full field-of-view B-mode images from the simulation are of size
1000 × 1386 pixels. Applying pix2pix directly at such high resolution may lead
to unsatisfactory results, as reported in [19]. We therefore use randomly cropped
patches of a smaller size. A patch size of 512 × 512 pixels is found empirically
to provide sufficient anatomical context, without degradation in image quality.
Figure 2 shows an overview of our network architecture.

3 Experiments and Results

Implementation Details and Network Training. We use the Adam opti-
mizer [9] with a learning rate of 0.0002 and exponential decay rates β1 = 0.5
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Fig. 2. Network architecture

and β2 = 0.999. Since GANs in general underfit [21] and the Nash equilibrium is
often not reached in practice, we early stop training at 50k iterations, by when
FID of a randomly-sampled training subset saturates. We use a batch size of 16
and set λ = 100. Our dataset consists of 6669 4-tuples (x, y, s, a) and a constant
binary mask m covering the beam shape for all samples. We use randomly-
selected 6000 images for training and the rest for evaluation. To quantitatively
evaluate our models, from each test image we randomly crop four patches of
size 512 × 512, yielding an evaluation set of 2676 image patches that are not
seen during training. Note that our original dataset consists of images that are
temporally far apart, thus the test images cannot be temporally consecutive and
thus inherently similar to any training images.

Comparative Evaluation. To demonstrate the effectiveness of the proposed
additional inputs from the image formation process, we conduct an ablation
study by considering different combinations of network inputs. We refer the
pix2pix network with low quality image and binary mask in the input channel
as our baseline L2HM. We compare this baseline with the following variants:
1) L2HMS: L2HM with segmentation map s as additional input; 2) L2HMSA:
L2HMS with attenuation integral map a as additional input.

Qualitative Results. Figure 3 shows a visual comparison of the three model
variants on four examples. The baseline L2HM fails to preserve anatomical struc-
tures due to missing structural information in the input images. Resulting ambi-
guities in the network prediction cause artifacts such as blur in regions that
feature fine details such as bones. Providing segmentation maps as additional
input (L2HMS) greatly reduces such artifacts as shown in Fig. 3(c). However,
L2HMS still struggles in modeling complex non-local features such as directional
occlusion artifacts, note the lack of acoustic shadows in Fig. 3(c). In contrast,
our final model L2HMSA is able to accurately synthesize these features and pro-
duces translations significantly closer to the target, as demonstrated in Fig. 3(d).
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(a) Input (b) L2HM (c) L2HMS (d) L2HMSA (e) Target

Fig. 3. Low-quality input (a), GAN outputs (b–d), and high-quality target (e).

In particular, our proposed model with segmentation and attenuation integral
maps is able to recover both missing anatomical structures and directional arte-
facts.

Quantitative Results. The effectiveness of the proposed model is further
evaluated using the following quantitative metrics:

1) PSNR: Peak signal-to-noise ratio between two images A and B is defined by
PSNR = 10 log10(

255
MSE ) with mean squared error MSE between A and B.

2) SSIM: Structural similarity index quantifies the visual changes in structural
information as SSIM(A,B) = (2μAμB+c1)(2σAB+c2)

(μ2
A+μ2

B+c1)(σ2
A+σ2

B+c2)
with regularization con-

stants c1 and c2, local means μA and μB , local standard deviations σA and
σB, and cross covariance σAB . We use the default parameters of the MATLAB
implementation to compute the metric.

3) pKL: Speckle appearance, relevant for tissue characterization in US
images [15], affects image histogram statistics. Hence, discrepancy in his-
togram statistics can quantify differences in tissue-specific speckle patterns.
Kullback-Leibler divergence compares normalized histograms hA and hB of
two images A and B as: KL(hA||hB) =

∑
l=1..d hA[l] log

(
hA[l]
hB [l]

)
. We set the
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number of histogram bins d to 50. To emphasize structural differences, we
calculate KL divergence locally within 32 × 32 sized non-overlapping patches
and report the metric mean, called patch KL (pKL) herein.

4) FID: Fréchet Inception Distance compares the distributions of generated sam-
ples and real samples by computing the distance between two multivariate
Gaussians fitted to hidden activations of Inception network v3. This is a
widely used metric to evaluate GAN performance, capturing both percep-
tual image quality and mode diversity. For this purpose, center crops of test
images are sub-divided into four pieces of 299 × 299, to match Inception v3
input size.

Table 2 summarizes quantitative results for all models and all metrics, with
the additional comparison to the discrepancy between low quality and high qual-
ity images as reference. A preliminary baseline experiment without GAN loss
resulted in very blurry images with an FID score of 184.71. The results in Table 2
demonstrate that L2HMSA achieves the best translation performance in terms
of all proposed metrics. The effectiveness of providing informative inputs to the
network is well demonstrated in the gradual improvement in PSNR, SSIM and
pKL, showing higher fidelity in anatomical structures and directional shadow
artifacts. The metric pKL gives further indication of closer speckle appearance
achieved by L2HMSA. Based on Wilcoxon signed-rank tests, improvements of
L2HMSA over L2HMS and those two over the baseline L2HM are statistically
significant (p < 10−5) for all evaluation metrics. Moreover, FID score indicates
higher statistical similarity between the target and generated images using the
proposed final model, with an improvement of 7.2% compared to L2HM.

Full Field-of-View Images. Above image translation has been demonstrated
on patches. For the entire field-of-view (FoV) US images, patch fusion from
image translation of non-overlapping patches would cause artifacts at image
seams. Averaging overlapping patches, on the other hand, would blur the essen-
tial US texture. Although seamless tiling of US images is possible using graphical
models [4], this requires prohibitively long computation time. Herein, we instead
directly apply our trained generator on full FoV low-quality images, since the
generator is fully convolutional and thus can operate on images of arbitrary
size. Figure 4 shows two examples of translated images by L2HMS and L2HMSA,
demonstrating direct inference on full FoV images. While anatomical structures

Table 2. Quantitative results. %ile refers to 5 percentile values for PSNR and SSIM
and 95 percentile otherwise. Bold number indicates the best performance.

PSNR SSIM [%] pKL (×102) FID

Mean Std %Ile Mean Std %Ile Mean Std %Ile

Low quality 25.31 4.07 20.18 64.05 17.10 35.10 38.90 22.84 82.02 204.60

L2HM 29.07 3.71 24.62 70.75 14.53 45.73 15.14 8.97 31.45 17.88

L2HMS 29.26 3.71 24.78 71.22 14.27 46.37 14.57 9.20 31.41 17.62

L2HMSA 29.40 3.71 24.89 71.47 14.20 46.67 13.80 8.73 29.02 16.59
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(a) Input (b) L2HM (c) L2HMS (d) L2HMSA (e) Target

Fig. 4. Inference on full field-of-view (FoV) images.

are well preserved and the effect of attenuation integral map is apparent, speckle
texture appearance is seen to degrade slightly especially in the top image regions,
where the ultrasound texture looking particularly different due to focusing dif-
ference and near-field effects.

4 Discussion and Conclusions

We have proposed a patch-based generative adversarial network for improving
the quality of simulated US images, via image translation of computationally
low-cost images to high quality simulation outputs. Providing segmentation and
attenuation integral maps to the translation framework greatly improves preser-
vation of anatomical structures and synthesis of important acoustic shadows.
Continuous simulation parameters, such as transmit focus and depth-dependent
lateral resolution, are implicitly captured by our framework thanks to training
on image patches. For discrete simulation parameters such as imaging mode and
transducer frequency that can take a handful of different values in typical clinical
imaging, it is feasible to train a separate GAN for each such setting.

Image rendering time highly depends on chosen simulation parameters and
3D mesh model complexity. For instance, high framerates are reported for a
simpler model in [16]. Rendering high and low quality images herein takes 75 ms
and 40 ms, respectively. Our network inference time with a non-optimized code
is 12.6 ms on average for full FoV images on a GTX 2080 Ti using TensorRT.
This timing improvement is rather a lower-bound, since network inference can
be further accelerated, e.g. with FPGAs [6]. Furthermore, since a pass through
the network runs in constant time, potential time gain can be arbitrarily high
depending on the desired complexity of the target simulation. With our proposed
framework a trade-off between image quality and computational speed is obvi-
ated, thus enabling interactive framerates even with sophisticated anatomical
scenes and computationally-taxing simulation settings. Although the convolu-
tional network can process arbitrary sized image, translating full FoV images
without any artifacts is still a challenge.
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