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Abstract. Learning deep neural networks that are generalizable across
different domains remains a challenge due to the problem of domain shift.
Unsupervised domain adaptation is a promising avenue which transfers
knowledge from a source domain to a target domain without using any
labels in the target domain. Contemporary techniques focus on extract-
ing domain-invariant features using domain adversarial training. How-
ever, these techniques neglect to learn discriminative class boundaries
in the latent representation space on a target domain and yield limited
adaptation performance. To address this problem, we propose distance
metric guided feature alignment (MetFA) to extract discriminative as
well as domain-invariant features on both source and target domains.
The proposed MetFA method explicitly and directly learns the latent rep-
resentation without using domain adversarial training. Our model inte-
grates class distribution alignment to transfer semantic knowledge from
a source domain to a target domain. We evaluate the proposed method
on fetal ultrasound datasets for cross-device image classification. Exper-
imental results demonstrate that the proposed method outperforms the
state-of-the-art and enables model generalization.

1 Introduction

Despite the success of deep neural networks (DNNs) for medical imaging applica-
tions [4,11,21,26,27], learning a task-specific model which generalizes to various
medical datasets remains a challenge. This is due to the difference of feature
distributions between different datasets, which is known as domain shift [29].
In medical imaging, domain shift can result from different imaging modalities
(e.g., magnetic resonance imaging and ultrasound) or different image acquisition
devices. In this paper, we focus on model generalization between different image
acquisition devices, transferring knowledge from a source device domain to a
target device domain.

Fine-tuning DNNs on labelled data from the target domain is a possible
solution but is often infeasible due to the need for sufficient manual anno-
tations. More importantly, fine-tuned models remain domain specific because
performance gains do not propagate back to the source domain. Deep domain
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adaptation has been widely studied for tackling the problem of domain shift by
extracting domain-invariant features [13,15,22]. Such approaches allow porting
DNNs to the target domain without extensive annotation as well as preserving
performance in both source and target domains. Unsupervised domain adapta-
tion aims at transferring knowledge from a labeled source domain to an unla-
beled target domain where both domains share a common label space [13,20,25].
This setting is important for real-world medical imaging scenarios, where data
annotation is laborious, time consuming and requires rare expertise is available.

In this work, we propose distance metric guided feature alignment (MetFA)
to learn a domain-invariant latent representations for model generalization in an
unsupervised domain adaptation setting. We evaluate the proposed method on a
challenging medical application, the classification of standardized diagnostic fetal
ultrasound (US) view planes during prenatal screening. In many countries, fetal
US is clinical routine for early detection of pathological development and informs
subsequent decisions about treatment and delivery options [31]. However, domain
shift caused by different acquisition devices and prohibitively expensive data
annotation restricts the generalization of vanilla DNN classifiers. We show that
MetFA enables unsupervised cross-device classification in fetal US.

Contribution. The main contributions of this paper are: (1) We propose dis-
tance metric guided feature alignment (MetFA), which learns a shared latent
representation space between a labeled source domain and an unlabeled target
domain; (2) we develop a framework that jointly learns class distribution align-
ment and MetFA, which further transfers semantic knowledge from a source
domain to a target domain for model generalization; (3) we utilize the proposed
method for cross-device anatomical classification in fetal US, which is an impor-
tant medical imaging application that inherently requires knowledge transfer
between different device domains to facilitate the use of DNNs for large scale
population screening (Codes in https://github.com/qingjie99/MetFA).

Related Work. Unsupervised domain adaptation (UDA) mainly focuses
on feature distribution alignment. Most UDA approaches explore an appropriate
metric to measure the distance of feature distributions between two domains and
subsequently train DNNs to minimize this distance [33]. Previous work such as
Maximum Mean Discrepancy [22,35] utilizes kernels to measure the discrepancy
between representations. Recent research explores domain adversarial training,
where a domain discriminator is used to estimate this discrepancy while a fea-
ture extractor tries to deceive the discriminator by learning domain-invariant
representations [2,23,24]. UDA has been applied to various medical imaging
applications such as anatomical segmentation [3,6,9,17,28] and diagnostic clas-
sification [1,16]. Most of these works utilize domain adversarial training for fea-
ture alignment. In contrast to these works, we explicitly manipulate the latent
space to learn discriminative features. Our work is inspired by MiniMax Entropy
(MME) proposed in [30], which estimates domain-invariant prototypes and clus-
ters target domain features around these prototypes in a semi-supervised domain
adaptation setting. In contrast to [30], our method (1) embeds extracted features
into a shared latent space with a fixed prior distribution before prototypes are
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estimated, and (2) simultaneously reduces intra-class variance while increasing
inter-class variance across domains via cross-domain metric learning.

Metric learning aims at learning embedded representations that cluster
similar samples while separating dissimilar samples in latent space [37]. Previous
metric learning methods measure feature similarity by learning a linear Maha-
lanobis distance [19,36]. More recent works focus on deep metric learning, which
learns non-linear relationships of data using DNNs with different losses, such as
contrastive loss [8,14], triplet loss [5,36] and N-pair loss [32]. Deep metric learn-
ing has shown great benefits for domain adaptation. For example, Sohn et al. [33]
proposed a deep metric learning method for unsupervised domain adaptation in
disjoint label space. Dou et al. [10] introduced deep metric learning for domain
generalization. Most existing metric-learning-based domain adaptation methods
only utilize metric learning on the labeled source domain and neglect the rela-
tionship between intra-class samples. In contrast to these methods, we introduce
cross-domain metric learning to (1) jointly measure the similarity between sam-
ples in a labeled source domain and an unlabeled target domain and (2) learn
metrics between different groups of intra-class samples.

2 Method

We are given images and the corresponding labels from a source domain
DS = {XS ,YS} as well as unlabeled images from a target domain DT = {XT }.
Both domains share a common label space and contain M classes. Our goal
is to classify unlabeled target domain data by aligning latent features of both
domains. The proposed method contains three main parts (see Fig. 1): (1) super-
vised classification on the labeled source domain, (2) distance metric guided fea-
ture alignment (MetFA) to transfer knowledge from the source domain to the
target domain, and (3) class distribution alignment to preserve source domain
class relationships in the target domain.

Classification. Classification in the unlabeled target domain is guided by the
labeled source domain by sharing whole networks including an encoder E, a
Gaussian embedding G and a classifier C. The cross-entropy loss is

Lce = −E{x,y}∼{XS ,YS}
M∑

t=1

1[y = t]log(C(G(E(x)))). (1)

Classifier C simultaneously predicts class distributions for the target domain as
PT (ŷ|x)|x∈XT

(abbreviated as PT ). This prediction will be utilized in MetFA.

MetFA: Distance Metric Guided Feature Alignment. Feature embedding
is used to constrain features from both domains to lie in a shared latent space.
In this latent space, class representations (prototypes) are estimated to extract
domain-invariant features in each class, while cross-domain metric learning is
introduced to further separate clusters of different classes in both domains.
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Fig. 1. Left: An overview of the proposed method. Our method consists of (1) super-
vised classification on the labeled source domain (optimize Lce), (2) distance metric
guided feature alignment (MetFA), which aligns features between both domains (opti-
mize Lprior, LH , LM , Lrec), and (3) class distribution alignment, which preserves class
relationships in both domains (optimize LKL). Right: Schematic illustration of LH and
LM optimization.

Feature embedding encourages features (FS , FT ) extracted by an encoder
E to share the same fixed prior distribution in a latent space Z, which is sim-
ilar to distribution matching in a variational autoencoder [18]. In our method,
a Gaussian embedding G is built to model FS and FT by a standard Gaus-
sian distribution N (0, I). Specifically, Zi ∼ q(Z|Xi)|i ∈ {S, T} is sampled from
N (μi, Σi)|i ∈ {S, T} with the reparameterization trick [18], where {μi, Σi} =
G(Fi)|i ∈ {S, T}. The prior alignment loss is the Kullback-Leibler (KL) diver-
gence between N (0, I) and N (μi, Σi)|i ∈ {S, T}, which is

Lprior = DKL(N (μS , ΣS) ‖ N (0, I)) + DKL(N (μT , ΣT )) ‖ N (0, I)). (2)

In order to guarantee that embedded features are representative of the extracted
features, we add a feature reconstruction loss Lrec as a regularizer:

Lrec = ‖FS − ZS‖22 + ‖FT − ZT ‖22. (3)

Feature embedding constrains distribution matching. In the absence of target
domain labels, it is essential for subsequent feature alignment. However, feature
embedding itself is unlikely to ensure that features are domain-invariant and
discriminative between different classes. The rest of MetFA tackles this problem.

Domain-invariant feature extraction is motivated by Minimax Entropy
(MME), proposed by Saito et al. [30]. Using unlabeled data in the target domain,
MME learns a single domain-invariant prototype (a representation point) for
each class in both domains and clusters target domain samples around these
prototypes (see Fig. 1 upper right). We implement prototypes as the weights W
of the last dense layer in the classifier C.

Training MME contains two iterative steps. The first step is to move proto-
types from source domain to target domain, which is maximizing the similarity
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between W and its input features (HT ). This similarity maximization is equiv-
alent to maximizing the entropy of XT with respect to W, using

LH = −Ex∼XT

M∑

i=1

pT (ŷ = i|x) log pT (ŷ = i|x), pT ∈ PT = σ(
1
τ0

WTHT

‖HT ‖ ), (4)

where σ is a softmax function and τ0 is a temperature parameter. The second
step is to assign target domain features to the domain-invariant prototypes. To
achieve this, LH is minimized with respect to E, G and C \W (C without W).

Cross-domain metric learning is proposed to maximize the margin
between different classes across domains. We define latent features of XS and
XT (which are ZS and ZT ) respectively as support samples and query samples.
In cross-domain metric learning the distance between query and support samples
is minimized when they are from the same class and simultaneously maximized
when they are from different classes (see Fig. 1 lower right). The metric loss is

LM =
1
N

M∑

i=1

cTi∑

j=1

log(1 +
k∈[1,M ]∑

k �=i

ed
i
j−dk

j ) = − 1
N

M∑

i=1

cTi∑

j=1

log
ed

i
j

ed
i
j +

∑k∈[1,M ]
k �=i ed

k
j

,

(5)
where N and cTi are the number of all query samples and query samples from
class i. Note that the labels of query samples are PT in Eq. 4. dij is the distance
between a query sample qij and a same class support sample sit. dkj is the distance
between qij and skt from different classes. Considering the relationship between
intra-class samples and using a hard mining strategy [7], we define dij and dkj as

dij = max
t

d(qij , s
i
t), t ∈ [1, cSi ], qij ∼ ZT , sit ∼ ZS ,

dkj = min
t

d(qij , s
k
t ), t ∈ [1, cSk ], qij ∼ ZT , skt ∼ ZS ,

(6)

where cSi and cSk are the number of support samples from class i and class k. We
use the squared Euclidean distance for d(·, ·) in Eq. 6.

Class Distribution Alignment. Apart from structuring a feature space for
better class predictions, we want to further transfer semantic knowledge which is
preserving class relationships between domains. Class distribution alignment is
used for class relationship preservation between multiple labeled source domains
in a domain generalization task [10]. In our method, we align class distributions
between a labeled source domain and an unlabeled target domain. We utilize
the symmetrized KL-divergence to define the class distribution alignment loss

LKL =
1
M

M∑

i=1

Λ[DKL(p̄Si ‖ p̄Ti ) + DKL(p̄Ti ‖ p̄Si )],

p̄Si = σ(
1
τ1

1
cSi

∑

y=i

gSx )|(x,y)∼{XS ,YS}, p̄Ti = σ(
1
τ1

1
cTi

∑

ŷ=i

gTx )|(x,ŷ)∼{XT ,PT (x)}.
(7)
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Here, Λ = [cT1 , cT2 , ..., cTM ] contains the number of target domain samples pre-
dicted for each class. p̄Si and p̄Ti are the ith class distributions in source and
target domain. gSx and gTx are the pre-softmax activations from classifier C and
τ1 is a temperature parameter.

Optimization. The overall objective function of the proposed method is:

min
E,G,C\W

{L + λ6LH}, min
W

{L − λ6LH},

with L = λ1Lce + λ2Lprior + λ3LM + λ4Lrec + λ5LKL.
(8)

Here λ1 to λ6 are hyper-parameters chosen experimentally depending on the
application. Our model is end-to-end trainable, with W and the rest of the
networks are trained in an alternating fashion according to Eq. 8. We apply
L2 regularization (scale = 10−5) to all weights during training to prevent over-
fitting and apply random image flipping as data augmentation. Our model is
trained on a Nvidia Titan X GPU.

3 Evaluation and Results

We evaluate the proposed method on 2D fetal US images acquired during rou-
tine prenatal screening. This US data is obtained by different imaging devices:
Device A (GE Voluson E8) acquires ∼12k images and device B (Philips EPIQ
V7 G) acquires unpaired ∼5.5k images. In both datasets, six anatomical stan-
dard planes have been selected by expert sonographers, including Four Chamber
View (4CH), Abdominal, Left Ventricular Outflow Tract (LVOT), Right Ven-
tricular Outflow Tract (RVOT), Femur and Lips. We evaluate our method in
two scenarios where device A is the source domain while device B is the target
domain, and vice versa. During training, the source domain is fully labeled and
the target domain is unlabeled. In both scenarios, hyper-parameters λ1 to λ6 in
Eq. 8 are λ1 = 10, λ2 = 10−2, λ3 = 10−1, λ4 = 1, λ5 = 10, λ6 = 5. τ0 in Eq. 4
is 0.05 (same to [30]) and τ1 in Eq. 7 is 2 (same to [10]). We use Stochastic
Gradient Descent (SGD) with momentum optimizer to update our model.

Comparison Methods. We evaluate a VGG network which contains an
encoder E and a classifier C from the proposed method as a baseline. This base-
line is trained on data only from the source domain (Source only) to demonstrate
the existence of domain shift. We compare the proposed method with the state-
of-the-art domain-adaptation algorithms, including domain-adversarial training
of neural networks (DANN) [13], adversarial discriminative domain adapta-
tion (ADDA) [34] and semi-supervised domain adaptation via minimax entropy
(MME) [30]. Note that for fair comparison, we use the MME model in an unsu-
pervised learning paradigm. Additionally, given target domain labels, we show
fine-tuned and fully-supervised classification on the target domain as references.
Fine-tuned classification is pre-trained on the labeled source domain and fine-
tuned on the labeled target domain. This fine-tuned model is evaluated on both
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source and target domains. Fully-supervised classification is trained from scratch
on the labeled target domain and evaluated on the target domain.

Ablation Study. We further explore the effectiveness of different components
in the proposed method by removing different loss components: UDA-MetFA-
I: only contains Lce, Lprior and LH ; UDA-MetFA-II: UDA-MetFA-I plus LM ;
UDA-MetFA-III: UDA-MetFA-II plus LKL; UDA-MetFA-IV: UDA-MetFA-II
plus Lrec; UDA-MetFA-V: contains all components.

Table 1. Comparison of Source only, the state-of-the-art and ablation study (UDA-
MetFA- I to V) for fetal US anatomical classification with device A as source
domain and device B as target domain. Fine-tuned and Fully-supervised are
reference results given target domain labels. Best results in bold.

Methods S: device A T: device B

F1-score Recall Precision F1-score Recall Precision

Source only 0.8782 0.8800 0.8786 0.2455 0.3400 0.3070

ADDA [34] 0.8841 0.8850 0.8860 0.1377 0.2050 0.1623

DANN [13] 0.8321 0.8350 0.8564 0.3390 0.3650 0.3756

MME [30] 0.8876 0.8900 0.8914 0.4398 0.5133 0.4565

UDA-MetFA-I 0.8894 0.8900 0.8911 0.5255 0.5550 0.5599

UDA-MetFA-II 0.8951 0.8967 0.8997 0.5959 0.6400 0.6359

UDA-MetFA-III 0.9202 0.9200 0.9207 0.6301 0.6850 0.6143

UDA-MetFA-IV 0.8970 0.8967 0.8986 0.6930 0.7067 0.7011

UDA-MetFA-V 0.8990 0.9000 0.9027 0.7713 0.7717 0.7874

Fine-tuned 0.7987 0.8050 0.8140 0.7114 0.7150 0.7373

Fully-supervised – – – 0.5919 0.6100 0.6576

Results. Table 1 shows the experimental results of baselines and the ablation
study where device A is the source domain and device B is the target domain.
From this table, we observe that the UDA-MetFA-V model outperforms other
baselines. In the target domain, UDA-MetFA-V achieves an average F1-score of
0.7713 while the highest average F1-score of other baselines is 0.4398 (MME [30]).
UDA-MetFA-I greatly outperforms MME [30] in the target domain, demonstrat-
ing the importance of feature embedding in the proposed method. UDA-MetFA-
V performs better than other ablation models in the target domain, illustrat-
ing the effectiveness of all components in the proposed method. Furthermore,
the results of Fine-tuned and source only in the source domain indicate that
the fine-tuned model remains less generalizable, whereas the proposed method
(UDA-MetFA-V) enables model generalization with improved classification per-
formance in both source and target domains.
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We further compare MME (best baseline in Table 1) with the proposed
method (UDA-MetFA-V) in confusion matrices and t-SNE plots. Figure 2(a)
demonstrates that our method extracts more discriminative features for better
classification, especially on easily confused anatomies (e.g., LVOT vs. RVOT).
Figure 2(b) shows that for UDA-MetFA-V, target features are closer to source
features while features of different classes are more separated. This indicates
that the proposed MetFA benefits the extraction of discriminative and domain-
invariant features.

Table 2 shows the results of comparison methods and the proposed method
(UDA-MetFA-V) on switched domains, where device B is the source domain
and device A is the target domain. We observe that UDA-MetFA-V outperforms
the state-of-the-art in both source and target domains, demonstrating that our
method is capable of successfully transferring knowledge from source domain to
target domain as well as improving model generalization.

MME [30] UDA-MetFA-V

(a) Confusion Matrix

MME [30] UDA-MetFA-V

(b) t-SNE visualization

Fig. 2. Comparison of MME [30] and UDA-MetFA-V on (a) confusion matrix of target
domain (device B) and (b) t-SNE plot of extracted test data features.

Table 2. Comparison of baselines and UDA-MetFA-V with device B as source
domain and device A as target domain. Best results in bold.

Methods S: device B T: device A

F1-score Recall Precision F1-score Recall Precision

Source only 0.5919 0.6100 0.6576 0.2854 0.3300 0.3555

DANN [13] 0.5198 0.5450 0.5451 0.3318 0.3500 0.3450

MME [30] 0.3776 0.4183 0.4500 0.1520 0.1883 0.2101

UDA-MetFA-V 0.7101 0.7150 0.7441 0.5776 0.5550 0.6303

Fully-supervised – – – 0.8782 0.8800 0.8786
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Discussion. Domain adaptation is commonly used to transfer a performant,
task-specific model from a source domain to a target domain. However, the DNNs
learning ability in a source domain can limit this ability in a target domain.
This may explain the lower classification performance of the proposed method
compared with a fully-supervised method in the target domain in Table 2. Cur-
rent UDA methods rarely discuss the performance of DNNs in the source domain.
From Table 2, we observe that tracking the source domain performance can be
potentially used for data selection during model improvement in the source
domain. A limitation of our method is the empirical hyper-parameters selec-
tion. For a specific application, we adjust hyper-parameters according to their
importance and select the best combination with grid search. Meta-learning [12]
will be explored in future work to allow automatic hyper-parameter selection.

4 Conclusion

In this paper, we discuss the problem of model generalization for unsupervised
domain adaption. We propose metric learning for improved feature alignment
(MetFA) to extract discriminative and domain-invariant features across domains.
MetFA explicitly structures latent representations without using domain adver-
sarial training. Our model integrates class distribution alignment for transferring
semantic knowledge from a source domain to a target domain. Experiments on
cross-device fetal US screening images demonstrate the effectiveness and practi-
cal applicability of our method compared with the state-of-the-art.

Acknowledgments. We thank the Welcome Trust IEH Award [102431] and Nvidia
(GPU donations).

Appendices

A Examples of Ultrasound Images

We show more examples of ultrasound images acquired from different image
acquisition devices (Fig. 3).



Unsupervised Cross-domain Image Classification 155

Device A Device B

(a) 4CH

Device A Device B

(b) Abdominal

Device A Device B

(c) Femur

Device A Device B

(d) Lips

Device A Device B

(e) LVOT

Device A Device B

(f) RVOT

Fig. 3. Examples of ultrasound images acquired by different image acquisition devices.
Device A is GE Voluson E8 and device B is Philips EPIQV7 G.

B Split of Training Data

See Table 3.

Table 3. The number of images in each class for training. In the first scenario (S:
device A, T: device B), images in device A are used as labeled data and images in
device B are unlabeled. In the second scenario (S: device B, T: device A), images in
device B are labeled and images in device A are unlabeled.

4CH Abdominal Femur Lips LVOT RVOT

Device A 700 700 700 700 700 700

Device B 828 728 815 600 328 559
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