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Abstract. In this paper, we combine ideas from two different scientific
traditions: 1) graph transformation systems (GTSs) stemming from the
theory of formal languages and concurrency, and 2) mean field approx-
imations (MFAs), a collection of approximation techniques ubiquitous
in the study of complex dynamics. Using existing tools from algebraic
graph rewriting, as well as new ones, we build a framework which gener-
ates rate equations for stochastic GTSs and from which one can derive
MFAs of any order (no longer limited to the humanly computable). The
procedure for deriving rate equations and their approximations can be
automated. An implementation and example models are available online
at https://rhz.github.io/fragger. We apply our techniques and tools to
derive an expression for the mean velocity of a two-legged walker protein
on DNA.

Keywords: Mean field approximations · Graph transformation
systems · Algebraic graph rewriting · Rule-based modelling

1 Introduction

Mean field approximations (MFAs) are used in the study of complex systems to
obtain simplified and revealing descriptions of their dynamics. MFAs are used
in many disparate contexts such as Chemical Reaction Networks (CRNs) and
their derivatives [13,23,34], walkers on bio-polymers [24,44], models of epidemic
spreading [27], and the evolution of social networks [20]. These examples witness
both the power and universality of MFA techniques, and the fact that they are
pursued in a seemingly ad hoc, case-by-case fashion.
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Fig. 1. Stukalin model of a walking DNA bimotor.

The case of CRNs is particularly interesting because they provide a
human-readable, declarative language for a common class of complex systems.
The stochastic semantics of a CRN is given by a continuous-time Markov chain
(CTMC) which gives rise to the so-called master equation (ME). The ME is
a system of differential equations describing the time evolution of the proba-
bility of finding the CRN in any given state. Various tools have been devel-
oped to automate the generation and solution of the ME from a given CRN,
liberating modellers from the daunting task of working with the ME directly
(e.g. [25,36,45]).

Its high dimensionality often precludes exact solutions of the ME. This is
where MFA techniques become effective. The generally countably infinite ME
is replaced by a finite system of differential equations, called the rate equations
(RE) [28,34], which describe the time evolution of the average occurrence count
of individual species. Here, we extend this idea to the case of graphs and, in fact,
the resulting framework subsumes all the examples mentioned above (including
CRNs). The main finding is summarised in a single Eq. (15) which we call the
generalised rate equations for graphs (GREG). We have published in previous
work a solution to this problem for the subclass of reversible graph rewriting sys-
tems [17,18]. The solution presented here is valid for any such system, reversible
or not. The added mathematical difficulty is substantial and concentrates in the
backward modularity Lemma 2. As in Ref. [18], the somewhat informal approach
of Ref. [17] is replaced with precise category-theoretical language with which the
backward modularity Lemma finds a concise and natural formulation.

As the reader will notice, Eq. (15) is entirely combinatorial and can be readily
implemented. Our implementation can be played with at https://rhz.github.io/
fragger. Its source can be found at https://github.com/rhz/fragger.

1.1 Two-Legged DNA Walker

Let us start with an example from biophysics [44]. The model describes a protein
complex walking on DNA. The walker contains two special proteins – the legs
– each binding a different DNA strand. The legs are able to move along the
strands independently but can be at most m DNA segments apart.

Following Stukalin et al. [44], we are interested in computing the velocity at
which a two-legged walker moves on DNA with m = 1. In this case, and assuming
the two legs are symmetric, there are only two configurations a walker can be
in: either extended (E) or compressed (C). Therefore all possible transitions can
be compactly represented by the four rules shown in Fig. 1, where the grey node
represents the walker and white nodes are DNA segments. The polarisation of

https://rhz.github.io/fragger
https://rhz.github.io/fragger
https://github.com/rhz/fragger
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the DNA double helix is represented by the direction of the edge that binds two
consecutive DNA segments. Rules are labelled by two subscripts: the first tells us
if the leg that changes position is moving forward (F) or backward (B), while the
second states whether the rule extends or compresses the current configuration.

The mean velocity V of a single walker in the system can be computed from
the rates at which they move forward and backward and their expected number
of occurrences E[Gi], where Gi is in either of the three possible configurations
depicted in Fig. 1, and [Gi] is short for [Gi] (X(t)), the integer-valued random
variable that tracks the number of occurrences of Gi in the (random) state of
the system X(t) at time t. We call any real- or integer-valued function on X(t)
an observable.

V =
1
2

(
kF,EE

[ ]
+ kF,CE

[ ]
− kB,EE

[ ]
− kB,CE

[ ])

In the case there is only a single motor in the system, the observables [Gi] are
Bernoulli-distributed random variables, and the expectations E[Gi] correspond
to the probabilities of finding the motor in the configuration Gi at any given
time. Thus by constructing the ODEs for these observables, we can compute the
mean velocity of a single motor in the system. That is, we must compute the
rate equations for these graphs.

Intuitively, to compute rate equations we must find all ways in which the
rules can create or destroy an occurrence of an observable of interest. When,
and only when, a rule application and an occurrence of the given observable
overlap, can this occurrence be created or destroyed. A systematic inventory of
all such overlaps can be obtained by enumerating the so-called minimal gluings
(MGs) of the graph underlying the given observable and the left- and right-hand
sides of each rule in the system. MGs show how two graphs can overlap (full
definition in the next section). Such an enumeration of MGs is shown in Fig. 2,
where the two graphs used to compute the MGs are the extended walker motif
– the middle graph in Fig. 1 – and the left-hand side of the forward-extension
rule. The MGs are related and partially ordered by graph morphisms between
them.

In theory, since we are gluing with the left-hand side of a rule each one of
the MGs represents a configuration in which the application of the rule might
destroy an occurrence of the observable. However, if we suppose that walkers
initially have two legs, then 13 of the 21 MGs in Fig. 2 are impossible to pro-
duce by the rules, because no rule can create additional legs. Therefore those
configurations will never be reached by the system and we can disregard them.
If we further suppose the DNA backbone to be simple and non-branching, we
eliminate three more gluings. Finally, if there is only one motor, the remaining
four non-trivial gluings are eliminated. In this way, invariants can considerably
reduce the number of gluings that have to be considered. Removing terms cor-
responding to observables which, under the assumptions above, are identically
zero, we get the following series of ODEs. For readability, only a subset of the
terms is shown, and we write G instead of the proper E[G] in ODEs.
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d

dt
= kF,E −kB,C −kF,C +kB,E

d

dt
= −kF,E +kB,C +kF,C − . . .

d

dt
= kF,E −kB,C −kF,C + . . .

d

dt
= −kF,E +kB,C +kF,C − . . .

d

dt
= . . .

Notice how only graphs with extra white nodes to the right are obtained
when computing the ODE for the left graph in Fig. 1. The opposite is true for
the right graph in Fig. 1. This infinite expansion can be further simplified if
we assume the DNA chain to be infinite or circular. In this case we can avoid
boundary conditions and replace the left- and right-hand observables below by
the simpler middle observable:

E

⎡
⎣

⎤
⎦ = E

⎡
⎣

⎤
⎦ = E

⎡
⎣

⎤
⎦

The infinite expansion above now boils down to a simple finite ODE system.

d

dt
= kF,E −kB,C −kF,C +kB,E

d

dt
= −kF,E +kB,C +kF,C −kB,E

From the above ODEs and assumptions, we get the steady state equation.

(kF,E + kB,E)E
[ ]

= (kF,C + kB,C)E
[ ]

Since we have only one motor,

E

[ ]
+ E

[ ]
= 1

Using this, we can derive the steady state value for the mean velocity:

V =
1
2

(
(kF,E − kB,E)E

[ ]
+ (kF,C − kB,C)E

[ ])

=
(kF,C + kB,C)(kF,E − kB,E) + (kF,E + kB,E)(kF,C − kB,C)

2(kF,E + kB,E + kF,C + kB,C)
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This exact equation is derived in Ref. [44]. We obtain it as a particular case of
the general notion of rate equations for graph explained below. It is worth noting
that, despite the simplicity of the equation, it is not easily derivable by hand.
This and other examples are available to play with in our web app at https://
rhz.github.io/fragger/. The example models include

– the DNA walker model described above;
– a population model tracking parent-child and sibling relationships;
– the voter model from Ref. [17];
– the preferential attachment model from Ref. [18].

The DNA walker model presented in this introduction is small and reversible. It
requires no approximation to obtain a finite expansion. By contrast, the popula-
tion model and the preferential attachment model are irreversible; the population
and the voter model require an approximation to obtain a finite expansion.

Fig. 2. The poset of minimal gluings of G2 and G1. The disjoint sum is at the top.
Gluings are layered by the number of node and edge identifications or, equivalently, by
the size of their intersection.

https://rhz.github.io/fragger/
https://rhz.github.io/fragger/
https://rhz.github.io/fragger/?m=bimotor
https://rhz.github.io/fragger/?re=1&m=bunnies
https://rhz.github.io/fragger/?m=voter
https://rhz.github.io/fragger/?m=pa
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1.2 Discussion

The reasoning and derivation done above in the DNA walker can in fact made
completely general. Given a graph observable [F ], meaning a function counting
the number of embeddings of the graph F in the state X, one can build an
ODE which describes the rate at which the mean occurrence count E([F ](X(t)))
changes over time.

Because the underlying Markov process X(t) is generated by graph-rewriting
rules, the one combinatorial ingredient to build that equation is the notion of
minimal gluings (MGs) of a pair of graphs. Terms in the ODE for F are derived
from the set of MGs of F with the left and right sides of the rules which generate
X(t). Besides, each term in F ’s ODE depends on the current state only via
expressions of the form E([G]) for G a graph defining a new observable. Thus
each fresh observable [G] can then be submitted to the same treatment, and one
obtains in general a countable system of rate equations for graphs. In good cases
(as in the walker example), the expansion is finite and there is no need for any
approximation. In general, one needs to truncate the expansion. As the MFA
expansion is a symbolic procedure one can pursue it in principle to any order.

The significance of the method hinges both on how many models can be
captured in graph-like languages, and how accurate the obtained MFAs are.
While these models do no exhaust all possibilities, GTSs seem very expressive.
In addition, our approach to the derivation of rate equations for graphs uses a
general categorical treatment which subsumes various graph-like structures such
as: hyper-graphs, typed graphs, etc. [2,35]. This abstract view is mathematically
convenient, and broadens the set of models to which the method applies.

What we know about the existence of solutions to the (in general) count-
able ODE systems generated by our method is limited. For general countable
continuous-time Markov chains and observables, existence of a solution is not
guaranteed [43]. Despite their great popularity, the current mathematical under-
standing of the quality of MFAs only addresses the case of CRNs and density-
dependent Markov chains, with Kurtz’ theory of scalings [23, Chap. 11], or the
case of dynamics on static graphs [27]. Some progress on going beyond the formal
point of view and obtaining existence theorems for solutions of REs for graphs
were reported in Ref. [16]. Another limitation is the accuracy of MFAs once
truncated (as they must be if one wants to plug them in an ODE solver). Even
if an MFA can be built to any desired order, it might still fall short of giving a
sensible picture of the dynamics of interest. Finally, it may also be that the cost
of running a convincing approximation is about the same as that of simulating
the system upfront.

This paper follows ideas on applying the methods of abstract interpretation
to the differential semantics of site graph rewriting [15,26,30]. Another more
remote influence is Lynch’s finite-model theoretic approach to MFAs [39]. From
the GTS side, the theory of site graph rewriting had long been thought to be
a lucky anomaly until a recent series of work showed that most of its ingre-
dients could be made sense of, and given a much larger basis of applications,
through the use of algebraic graph-rewriting techniques [3,31,32]. These latter
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investigations motivated us to try to address MFA-related questions at a higher
level of generality.

1.3 Relation to the rule-algebraic approach

Another approach to the same broad set of questions started with Behr et
al. introducing ideas from representation theory commonly used in statistical
physics [5]. They show that one can study the algebra of rules and their compo-
sition law in a way that is decoupled from what is actually being re-written. The
“rule-algebraic” theory allows one to derive Kolmogorov equations for observ-
ables based on a systematic use of rule commutators (recently implemented in
[12]). Interestingly, novel notions of graph rewriting appear [11]. Partial dif-
ferential equations describing the generating function of such observables can
be derived systematically [7]. As the theory can handle adhesive categories in
general and sesqui-pushout rewriting [10], it offers an treatment of irreversible
rewrites alternative to the one presented in this paper. (The rule-algebraic app-
roach can also handle application conditions [9]). It will need further ork to
precisely pinpoint how these two threads of work articulate both at the theoret-
ical and at the implementation levels.

Outline. The paper is organised as follows: Sect. 2 collects preliminaries on
graph-rewriting and establishes the key forward and backward modularity lem-
mas; Sect. 3 derives our main result namely a concrete formula for the action of
a generator associated to a set of graph-rewriting rules as specified in Sect. 2.
From this formula, the rate equation for graphs follows easily. Basic category-
theoretical definitions needed in the main text are given in App. A; axiomatic
proofs in App. B.

2 Stochastic Graph Rewriting

We turn now to the graphical framework within which we will carry out the
derivation of our generalised rate equation (GREG) in Sect. 3. We use a categor-
ical approach know as algebraic graph rewriting, specifically the single pushout
(SPO) approach [22,37]. The reasons for this choice are twofold: first, we ben-
efit from a solid body of preexisting work; second, it allows for a succinct and
‘axiomatic’ presentation abstracting over the details of the graph-like structures
that are being rewritten. Working at this high level of abstraction allows us to
identify a set of generic properties necessary for the derivation of the GREG with-
out getting bogged down in the details of the objects being rewritten. Indeed,
while we only treat the case of directed multigraphs (graphs with an arbitrary
number of directed edges between any two nodes) in this section, the proofs
of all lemmas are set in the more general context of adhesive categories [35]
in App. B. This extends the applicability of our technique to rewrite systems
over typed graphs and hypergraphs, among others.
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For the convenience of the reader, we reproduce from Ref. [18] our basic
definitions for the category Grph of directed multigraphs. Next, we briefly sum-
marise the SPO approach and its stochastic semantics [33]. We conclude with
the modularity lemmas, which are key to the derivation of the GREG in the next
section.

2.1 The Category of Directed Multigraphs

A directed multigraph G consists of a finite set of nodes VG, a finite set of edges
EG, and source and target maps sG, tG : EG → VG. A graph morphism f : G → H
between graphs G and H is a pair of maps fE : EG → EH , fV : VG → VH which
preserve the graph structure, i.e. such that for all e ∈ EG,

sH(fE(e)) = fV (sG(e)) and tH(fE(e)) = fV (tG(e)).

The graphs G and H are called the domain and codomain of f . A graph mor-
phism f : G → H is a monomorphism, or simply a mono, if fV and fE are
injective; it is a graph inclusion if both fV and fE are inclusion maps, in which
case G is a subgraph of H and we write G ⊆ H. Every morphism f : G → H
induces a subgraph f(G) ⊆ H called the direct image (or just the image) of
f in H, such that Vf(G) = fV (VG) and Ef(G) = fE(EG). Figure 3 illustrates a
graph and a graph morphism.

Fig. 3. Examples of a) a directed multigraph, b) a graph morphism.

L K R

G D H

f

α1 α2

g

β1 β2

Fig. 4. A derivation. (Color figure online)

A partial graph morphism p : G ⇀ H is a pair of partial maps pV : VG ⇀ VH

and pE : EG ⇀ EH that preserve the graph structure. Equivalently, p can be
represented as a span of (total) graph morphisms, that is, a pair of morphisms
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p1 : K → G, p2 : K → H with common domain K, where p1 is mono and K
is the domain of definition of p. We will use whichever representation is more
appropriate for the task at hand. Graphs and graph morphisms form the category
Grph (with the obvious notion of composition and identity) while graphs and
partial graph morphisms form the category Grph∗.

Graph morphisms provide us with a notion of pattern matching on graphs
while partial graph morphisms provide the accompanying notion of rewrite rule.
We restrict pattern matching to monos: a match of a pattern L in a graph G
is a monomorphism f : L → G. We write [L,G] for the set of matches of L
in G. We also restrict rules: a rule is a partial graph morphism α : L ⇀ R =
(α1 : K → L,α2 : K → R) where both α1 and α2 are monos. We say that L and R
are α’s left and right hand side (LHS and RHS). Rules are special cases of partial
graph morphisms and compose as such. Given a rule α : L ⇀ R = (α1, α2), we
define the reverse rule α† : R ⇀ L as the pair α† := (α2, α1), not to be confused
with the inverse of α (which does not exist in general). Note that −† is an
involution, that is, (α†)† = α.

2.2 Graph Rewriting

The basic rewrite steps of a GTS are called derivations. We first describe them
informally. Figure 4 shows a commutative square, with a match f : L → G on the
left and a rule α : L ⇀ R, on top. The match f identifies the subgraph in G that
is to be modified, while the rule α describes how to carry out the modification.
In order to obtain the comatch g : R → H on the right, one starts by removing
nodes and edges from f(L) which do not have a preimage under f ◦ α1, as well as
any edges left dangling (coloured red in the figure). To complete the derivation,
one extends the resulting match by adjoining to D the nodes and edges in R
that do not have a preimage under α2 (coloured green in the figure).

Derivations constructed in this way have the defining property of pushout
squares (PO) in Grph∗, hence the name SPO for the approach. Alternatively,
one can describe a derivation through the properties of its inner squares: the left
square is the final pullback complement (FPBC) of α1 and f , while the right one
is a PO in Grph [14]. (Definitions and basic properties of POs and FPBCs are
given in App. A.)

Definition 1. A derivation of a comatch g : R → H from a match f : L → G by
a rule α = (α1 : K → L,α2 : K → R) is a diagram in Grph such as (1), where
the left square is an FPBC of f and α1 and the right square is a PO,

L K R

G D H

f

α1 α2

h g

β1 β2

(1)
L R

G H

f

α

g

β

(2)

with h, g matches and β = (β1, β2) a rule, called the corule of the derivation.

Equivalently, a derivation of g from f by α is a PO in Grph∗ as in (2), with
corule β. We will mostly use this second characterisation of derivations.
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Write f ⇒α g if there is a derivation of g from f by α. Since derivations
are POs of partial morphisms and Grph∗ has all such POs [37], the relation
⇒α is total, that is, for any match f and rule α (with common domain), we can
find a comatch g. However, the converse is not true: not every match g having
the RHS of α as its domain is a comatch of a derivation by α. Which is to say,
there might not exist f such that f ⇒α g (the relation ⇒α is not surjective).
When there is such an f , we say g is derivable by α. Consider the example in
Fig. 5. Here, g is α-derivable (as witnessed by f) but h is not: no match of the
LHS could contain a “preimage” of the extra (red) edge e in the codomain of h
because the target node of e has not yet been created.

We say a derivation f ⇒α g (with corule β) is reversible if g ⇒α† f (with
corule β†), and irreversible otherwise. Clearly, derivations are not reversible in
general, otherwise ⇒α would be surjective. Consider the derivation shown in
Fig. 4. The derivation removes two (red) edges from the codomain of f ; the
removal of the lower edge is specified in the LHS of α, whereas the removal of
the upper edge is a side effect of removing the red node to which the edge is
connected (graphs cannot contain dangling edges). Applying the reverse rule α†

to the comatch g restores the red node and the lower red edge, but not the upper
red edge. In other words, f is not α†-derivable, hence the derivation in Fig. 4
is irreversible. In previous work, we have shown how to derive rate equations
for graph transformation systems with only reversible derivations [15,17,18]. In
Sect. 3, we overcome this limitation, giving a procedure that extends to the
irreversible case.

Fig. 5. The match g is α-derivable, while h is not. (Color figure online)

Since POs are unique (up to unique isomorphism), ⇒α is also functional
(up to isomorphism). The fact that derivations are only defined up to isomor-
phism is convenient as it allows us to manipulate them without paying attention
to the concrete naming of nodes and edges. Without this flexibility, stating and
proving properties such as Lemma 2 and 3 below would be exceedingly cumber-
some. On the other hand, when defining the stochastic semantics of our rewrite
systems, it is more convenient to restrict ⇒α to a properly functional relation.
To this end, we fix once and for all, for any given match f : L → G and rule
α : L ⇀ R, a representative f ⇒α α(f) from the corresponding isomorphism
class of derivations, with (unique) comatch α(f) : R → H, and (unique) corule
f(α) : G ⇀ H.

A set of rules R thus defines a labelled transition system (LTS) over graphs,
with corules as transitions, labelled by the associated pair (f, α). Given a rule
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α : L ⇀ R, we define a stochastic rate matrix Qα := (qα
GH) over graphs as

follows.

qα
GH := |{f ∈ [L,G] | α(f) ∈ [R,H]}| for G �= H,

qα
GG :=

∑
H �=G −qα

GH otherwise. (3)

Given a model, that is to say a finite set of rules R and a rate map k : R → R
+,

we define the model rate matrix Q(R, k) as

Q(R, k) :=
∑

α∈R k(α)Qα (4)

Thus a model defines a CTMC over Grph∗. As R is finite, Q(R, k) is row-finite.

2.3 Composition and Modularity of Derivations

By the well-known Pushout Lemma, derivations can be composed horizontally
(rule composition) and vertically (rule specialisation) in the sense that if inner
squares below are derivations, so are the outer ones:

L R1 R2

G H1 H2

α1

f

α2

g1 g2

L R

G1 H1

G2 H2

α1

f1 g1

α2

f2 g2

Derivations can also be decomposed vertically. First, one has a forward decom-
position (which follows immediately from pasting of POs in Grph∗):

Lemma 1 (Forward modularity). Let α, β, γ be rules and f1, f2, g, g1
matches such that diagrams (5) and (6) are derivations. Then there is a unique
match g2 such that diagram (7) commutes (in Grph∗) and is a vertical compo-
sition of derivations.

L R

S

G H

f1

α

g

f2

β

(5)
L R

S T

f1

α

g1

γ

(6)

L R

S T

G H

f1

α

g1

g

f2

γ

g2

β

(7)

A novel observation, which will play a central role in the next section, is that
one also has a backward decomposition:

Lemma 2 (Backward modularity). Let α, β, γ be rules and f , f1, g1,
g2 matches such that diagrams (8) and (9) are derivations. Then there is a
unique match f2 such that diagram (10) commutes (in Grph∗) and is a vertical
composition of derivations.
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L R

T

G H

f

α

g1

g2

β

(8)
L R

S T

f1 g1

α†

γ†
(9)

L R

S T

G H

f

α

f1 g1

f2

γ

g2

β

(10)

Forward and backward modularity look deceptively similar, but while Lemma 1
is a standard property of POs, Lemma 2 is decidedly non-standard. Remember
that derivations are generally irreversible. It is therefore not at all obvious that
one should be able to transport factorisations of comatches backwards along
a rule, let alone in a unique fashion. Nor is it obvious that the top half of
the resulting decomposition should be reversible. The crucial ingredient that
makes backward modularity possible is that both matches and rules are monos.
Because rules are (partial) monos, we can reverse α and β in (8), and the result-
ing diagram still commutes (though it is no longer a derivation in general). The
existence and uniqueness of f2 is then a direct consequence of the universal prop-
erty of (9), seen as a PO. The fact that (9) is reversible relies on matches also
being monos, but in a more subtle way. Intuitively, the graph T cannot contain
any superfluous edges of the sort that render the derivation in Fig. 4 irreversible
because, g2 being a mono, such edges would appear in H as subgraphs, con-
tradicting the α-derivability of g2 ◦ g1. Together, the factorisation of f and the
reversibility of (9) then induce the decomposition in (10) by Lemma 1. A full,
axiomatic proof of Lemma 2 is given in App. B.3.

Among other things, Lemma 2 allows one to relate derivability of matches to
reversibility of derivations:

Lemma 3. A match g : R → H is derivable by a rule α : L ⇀ R if and only if
the derivation g ⇒α† f is reversible.

2.4 Gluings

Given G1 ⊆ H and G2 ⊆ H, the union of G1 and G2 in H is the unique subgraph
G1 ∪ G2 of H, such that V(G1∪G2) = VG1 ∪ VG2 and E(G1∪G2) = EG1 ∪ EG2 . The
intersection (G1 ∩ G2) ⊆ H is defined analogously. The subgraphs of H form a
complete distributive lattice with ∪ and ∩ as the join and meet operations. One
can glue arbitrary graphs as follows:

Definition 2. A gluing of graphs G1, G2 is a pair of matches i1 : G1 → U ,
i2 : G2 → U with common codomain U ; if in addition U = i1(G1) ∪ i2(G2), one
says the gluing is minimal.

Two gluings i1 : G1 → U , i2 : G2 → U and j1 : G1 → V , j2 : G2 → V are said
to be isomorphic if there is an isomorphism u : U → V , such that j1 = u ◦ i1
and j2 = u ◦ i2. We write G1 ∗� G2 for the set of isomorphism classes of minimal
gluings (MG) of G1 and G2, and G1∗G2 for an arbitrary choice of representatives
from each class in G1 ∗� G2. Given a gluing μ : G1 → H ← G2, denote by μ̂ its
“tip”, i.e. the common codomain μ̂ = H of μ.

It is easy to see the following (see App. B for an axiomatic proof):



Rate Equations for Graphs 15

Lemma 4. Let G1, G2 be graphs, then G1 ∗ G2 is finite, and for every gluing
f1 : G1 → H, f2 : G2 → H, there is a unique MG i1 : G1 → U , i2 : G2 → U in
G1 ∗ G2 and match u : U → H such that f1 = u ◦ i1 and f2 = u ◦ i2.

See Fig. 2 in Sect. 1 for an example of a set of MGs.

3 Graph-Based GREs

To derive the GRE for graphs (GREG) we follow the development in our previous
work [17,18] with the important difference that we do not assume derivations to
be reversible. The key technical innovation that allows us to avoid the assumption
of reversibility is the backward modularity lemma (Lemma 2).

As sketched in Sect. 1.2, our GRE for graphs is defined in terms of graph
observables, which we now define formally. Fix S to be the countable (up to iso)
set of finite graphs, and let F ∈ S be a graph. The graph observable [F ] : S → N

is the integer-valued function [F ] (G) := |[F,G]| counting the number of occur-
rences (i.e. matches) of F in a given graph G. Graph observables are elements
of the vector space R

S of real-valued functions on S.
The stochastic rate matrix Qα for a rule α : L ⇀ R defined in (3) is a linear

map on R
S . Its action on an observable [F ] is given by

(Qα [F ])(G) :=
∑

H qα
GH([F ] (G) − [F ] (H)) for G,H ∈ S. (11)

Since the sum above is finite, Qα [F ] is indeed a well-defined element of R
S .

We call Qα [F ] the jump of [F ] relative to Qα. Intuitively, (Qα [F ])(G) is the
expected rate of change in [F ] given that the CTMC sits at G.

To obtain the GREG as sketched in Sect. 1, we want to express the jump
as a finite linear combination of graph observables. We start by substituting the
definition of Qα in (11).

(Qα [F ])(G) =
∑

H qα
GH([F ] (H) − [F ] (G))

=
∑

H

∑
f∈[L,G] s.t. α(f)∈[R,H] (|[F,H]| − |[F,G]|)

=
∑

f∈[L,G] (|[F, cod(α(f))]| − |[F,G]|) .

where the simplification in the last step is justified by the fact that f and α
uniquely determine α(f). The last line suggests a decomposition of Qα [F ] as
Qα [F ] = Q+

α [F ] − Q−
α [F ], where Q+

α produces new instances of F while Q−
α

consumes existing ones.
By Lemma 4, we can factor the action of the consumption term Q−

α through
the MGs L ∗ F of L and F to obtain

(Q−
α [F ])(G) =

∑
f∈[L,G] |[F,G]| = |[L,G]| · |[F,G]| =

∑
μ∈L∗F |[μ̂, G]| .

The resulting sum is a linear combination of a finite number of graph observables,
which is exactly what we are looking for.
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Simplifying the production term requires a bit more work. Applying the same
factorisation Lemma 4, we arrive at

(Q+
α [F ])(G) =

∑
f∈[L,G] |[F, α̂(f)]|

=
∑

f∈[L,G]

∑
(μ1,μ2)∈R∗F |{g ∈ [μ̂, α̂(f)] | g ◦ μ1 = α(f)}| .

where α̂(f) = cod(α(f)) denotes the codomain of the comatch of f . To sim-
plify this expression further, we use the properties of derivations introduced in
Sect. 2.3. First, we observe that μ1 must be derivable by α for the set of g’s in
the above expression to be nonempty

Lemma 5. Let α : L ⇀ R be a rule and f : L → G, g : R → H, g1 : R → T
matches such that f ⇒α g, but g1 is not derivable by α. Then there is no match
g2 : T → H such that g2 ◦ g1 = g.

Proof. By the contrapositive of backward modularity. Any such g2 would induce,
by Lemma 2, a match f1 : L → S and a derivation f1 ⇒α g1. �
We may therefore restrict the set R ∗ F of right-hand MGs under consideration
to the subset α ∗R F := {(μ1, μ2) ∈ R ∗ F | ∃h. h ⇒α μ1} of MGs with a first
projection derivable by α. Next, we observe that the modularity Lemma 1 and 2
establish a one-to-one correspondence between the set of factorisations of the
comatches α(f) (through the MGs in α ∗R F ) and a set of factorisations of the
corresponding matches f .

Lemma 6 (correspondence of matches). Let α, β, γ, f , f1, g, g1 such
that diagrams (12) and (13) are derivations and g1 is derivable by α. Then the
set ML = {f2 ∈ [S,G] | f2 ◦ f1 = f} is in one-to-one correspondence with the set
MR = {g2 ∈ [T,H] | g2 ◦ g1 = g}.

L R

G H

f

α

g

β

(12)
L R

S T

f1 g1

α†

γ†
(13)

Proof. Since g1 is α-derivable, the diagram (13) is reversible, that is, f1 ⇒α g1,
with corule γ (by Lemma 3). Hence, if we are given a match f2 in ML, we can
forward-decompose (12) vertically along the factorisation f2 ◦ f1 = f , resulting
in the diagram below (by forward modularity, Lemma 1).
Furthermore, the comatch g2 is unique with respect to
this decomposition, thus defining a function φ : ML →
MR that maps any f2 in ML to the corresponding
comatch φ(f2) = g2 in MR. We want to show that φ is
a bijection. By backward modularity (Lemma 2), there
is a match f2 ∈ ML for any match g2 ∈ MR such
that φ(f2) = g2 (surjectivity), and furthermore, f2 is the
unique match for which φ(f2) = g2 (injectivity). �

L R

S T

G H

f1

α

g1

g

f2

γ

g2

β
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Using Lemma 5 and 6, we can simplify Q+
α as follows:

(Q+
α [F ])(G) =

∑
f∈[L,G]

∑
μ∈α∗RF

|{g2 ∈ [μ̂, α̂(f)] | g2 ◦ μ1 = α(f)}|

=
∑

μ∈α∗RF

∑
f∈[L,G]

∣∣{f2 ∈ [
α̂†(μ1), G

] | f2 ◦ α†(μ1) = f
}∣∣

=
∑

μ∈α∗RF

∣∣[α̂†(μ1), G
]∣∣

If we set α ∗L F := L ∗ F to symmetrise notation, we obtain

Qα([F ]) =
∑

μ∈α∗RF

[
α̂†(μ1)

] − ∑
μ∈α∗LF [μ̂] (14)

Now, in general for a CTMC on a countable state space S, the Markov-
generated and time-dependent probability p on S follows the master equation
[1,40]: d

dtp
T = pT Q. Given an abstract observable f in R

S , and writing
Ep(f) := pT f for the expected value of f according to p, we can then derive
the formal1 Kolmogorov equation for f :

d
dt Ep(f) = d

dtp
T f = pT Qf = Ep(Qf),

giving us an equation for the rate of change of the mean of f(X(t)). Following
this general recipe gives us the GRE for graphs immediately from (14).

d

dt
Ep([F ]) = −

∑
α∈R

k(α)
∑

μ∈α∗LF

Ep [μ̂] +
∑
α∈R

k(α)
∑

μ∈α∗RF

Ep

[
α̂†(μ1)

]
. (15)

Remember that μ1 denotes the left injection of the MG μ = (μ1, μ2) while μ̂
denotes its codomain, and that α̂†(f) = cod(α†(f)).

Unsurprisingly, the derivation of (15) was more technically challenging than
that of the GRE for reversible graph rewrite systems (cf. [18, Theorem 2]). Yet
the resulting GREs look almost identical (cf. [18, Eq. (7)]). The crucial difference
is in the production term Q+

α , where we no longer sum over the full set of right-
hand MGs R∗F but only over the subset α∗RF of MGs that are α-derivable. This
extra condition is the price we pay for dealing with irreversibility: irreversible
rules can consume all MGs, but only produce some.

Note that the number of terms in (15) depends on the size of the relevant
sets of left and right-hand MGs, which is worst-case exponential in the size of
the graphs involved, due to the combinatorial nature of MGs. (See Fig. 2 in Sect.
1 for an example.) In practice, one often finds many pairs of irrelevant MGs, the
terms of which cancel out exactly. This reduces the effective size of the equations
but not the overall complexity of generating the GREG.
1 In the present paper, we elide the subtle issues of ensuring that the system of interest

actually satisfies this equation. See the work of Spieksma [43] for the underlying
mathematics or our previous work [16], which additionally considers computability
of the solutions to arbitrary precision.
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Finally, as said in Sect. 1.2, the repeated application of (15) will lead to an
infinite expansion in general. In practice, the system of ODEs needs to be trun-
cated. For certain models, one can identify invariants in the underlying rewrite
system via static analysis, which result in a finite closure even though the set of
reachable components is demonstrably infinite [19]. We have seen an example in
Sect. 1.

4 Conclusion

We have developed a computer supported method for mean field approximations
(MFA) for stochastic systems with graph-like states that are described by rules of
SPO rewriting. The underlying theory unifies a large and seemingly unstructured
collection of MFA approaches which share a graphical “air de famille”. Based
on the categorical frameworks of graph transformation systems (GTS), we have
developed MFA-specific techniques, in particular concerning the combinatorics
of minimal gluings. The main technical hurdle consisted in showing that the set
of subgraph observables is closed under the action of the rate matrix (a.k.a. the
infinitesimal generator) of the continuous-time Markov chain generated by an
irreversible GTS. The proof is constructive and gives us an explicit term for the
derivative of the mean of any observable of interest.

Mean field approximation and moment-closure methods are of wide use in
applications, as typical probabilistic systems tend to have state spaces which
defy more direct approaches. To reach their full potential, MFAs need to be
combined with reachability and invariant analysis (as illustrated in Sect. 1).

We have worked the construction at the general axiomatic level of SPO-
rewriting with matches and rules restricted to monomorphisms. One interesting
extension is to include nested application conditions (NACs) [29,41] where the
application of a rule can be modulated locally by the context of the match. NACs
are useful in practice, and bring aboard the expressive power of first order logic
in the description of transformation rules. We plan to investigate the extension
of our approach to NACs, and, in particular, whether it is possible to incorporate
them axiomatically, and what additional complexity cost they might incur.

Another direction of future work is to improve on the method of truncation.
In the literature, one often finds graphical MFAs used in combination with con-
ditional independence assumptions to control the size of connected observables,
as e.g. the so-called pair approximation [20,27]. As these methods are known
to improve the accuracy of naive truncation, we wish to understand if and how
they can be brought inside our formal approach.

A Pushout and pull-back complements

Algebraic graph rewriting relies on certain category-theoretical limits and col-
imits [4]. We give definitions of the relevant (co-)limits here along with some of
their basic properties. Among these, pullback complements are the least known.
We refer the interested reader to Ref. [14,21] for a thorough treatment.
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Q

P Y

X Z

g2

g1

u

p1

p2 f2

f1

(16)

Z X

Y P

Q

f1

f2 i2 g2

i1

g1

u

(17)

Let C be a category.

Definition 3 (Pullback). A pullback of a cospan of morphisms X
f1−−→ Z

f2←−−
X in C is a span X

p1←−− P
p2−−→ Y making the bottom-right square in (16)

commute, and such that for any other span X
g1←−− Q

g2−−→ Y for which the outer
square commutes, there is a unique morphism u : Q → P making the diagram
commute.

Definition 4 (Pushout). A pushout of a span of morphisms X
f1−−→ Z

f2←−− Y

in C is a cospan X
i1−−→ P

i2←−− Y making the top-left square in (17) commute,
and such that for any other cospan X

g1−−→ Q
g2←−− Y for which the outer square

commutes, there is a unique morphism u : P → Q making the diagram commute.

P

X Y

W Z

Q

f ′
1

g′
1

p

f1
g1 f2

g2

u

g′
2

(18)

Definition 5 (Final pullback complement). A final pullback complement
(FPBC) (or simply pullback complement) of a pair of composable morphisms

X
f1−−→ Y

f2−−→ Z in some category C is a pair of composable morphisms X
g1−−→

W
g2−−→ Z making the right inner square in (18) a pullback, such that for any

other pullback P
f ′
1−−→ Y

f2−−→ Z
g′
2←−− Q

g′
1←−− P and morphism p : P → X for which

the diagram commutes, there is a unique morphism u : Q → W that makes the
diagram commute.

The following lemmas, pertaining to the composition of pullbacks, pushouts
and FPBCs, respectively, are used throughout the proofs in App. B. The first two
are dual versions of the well-known “pasting” lemma for pullbacks and pushouts,
and we leave their proofs as an exercise to the reader. A proof of the third lemma
can be found in [38, Proposition 5].

A B C

D E F

g1

f1

g2

f2

g3

h1 h2

(19)
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Lemma 7 (Pasting of pullbacks). Suppose the right inner square in (19) is
a pullback in some category C. Then the left inner square is a pullback if and
only if the outer square is.

Lemma 8 (Pasting of pushouts). Suppose the left inner square in (19) is a
pushout in some category C. Then the right inner square is a pushout if and only
if the outer square is.

Lemma 9 (Composition of FPBCs). Consider again diagram (19) in some
category C,

– (horizontal composition) if A
g1−−→ D

h1−−→ E and B
g2−−→ E

h2−−→ F are the

FPBCs of A
f1−−→ B

g2−−→ E and B
f2−−→ C

g3−−→ F , respectively, then A
g1−−→

D
h2 ◦ h1−−−−−→ F is the FPBC of A

f2 ◦ f1−−−−→ C
g3−−→ F ;

– (vertical composition) if A
f1−−→ B

g2−−→ E and B
f2−−→ C

g3−−→ F are the FPBCs

of A
g1−−→ D

h1−−→ E and B
g2−−→ E

h2−−→ F , respectively, then A
f2 ◦ f1−−−−→ C

g3−−→
F is the FPBC of A

g1−−→ D
h2 ◦ h1−−−−−→ F .

B Generalised proofs of lemmas

This section contains detailed proofs of the various lemmas introduced in previ-
ous sections. We will present the proofs in a slightly more general setting, namely
that of sesqui-pushout (SqPO) rewriting [14] in arbitrary adhesive categories [35].
To be precise, we assume an ambient category G, such that

– G is adhesive (among other things, this implies that G has all pullbacks as
well as all pushouts along monomorphisms, that monomorphism are stable
under pushout, and that all such pushouts are also pullbacks, cf. [35]),

– G has all final pullback complements (FPBCs) above monomorphisms.

Both these assumptions hold in Grph. Within G, we define derivations as in
Definition 1, taking matches and rules to be monomorphisms and spans thereof,
respectively.

Alternatively, rules can be seen as partial maps [42] in the category G∗,
generalising the interpretation of rules as partial graph morphisms in Grph∗.
Derivations can then be shown to correspond exactly to pushouts of rules along
monomorphisms in G∗ [2, Proposition 2.10], and composition of derivations cor-
responds to pushout composition in G∗.

B.1 Proof of Lemma 4 (minimal gluings)

Let G1 and G2 be graphs, then

1. the set G1 ∗ G2 of MGs of G1 and G1 is finite, and
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2. for every cospan G1
f1−−→ H

f2←−− G2 of matches, there is a unique MG (G1
i1−−→

U
i2←−− G2) ∈ G1 ∗ G2 and match u : U → H such that f1 = u ◦ i1 and

f2 = u ◦ i2.

Proof. For this proof we will make two additional assumptions on G, namely that
G has all binary products, and that the objects of G are finitely powered, that
is, any object A in G has a finite number of subobjects. Both these assumptions
hold in Grph.

Recall that the subobjects of any object A in G form a poset category Sub(A)
with subobject intersections as products and subobject unions as coproducts. By
stability of monomorphisms under pullback, products (intersections) in Sub(A)
are given by pullbacks in G, and since G is adhesive, coproducts (unions) in
Sub(A) are given by pushouts of pullbacks in G. See [35, Theorem 5.1] for more
details.

G1 ∩ G2

G1 G2

G1 ∪ G2

H

p1 p2

i1

f1

i2

f2u

(20)

We will start by showing that any cospan G1
f1−−→ H

f2←−− G2 of matches in
G factorises uniquely through an element of G1 ∗ G2. Given such a cospan, let
u : G1 ∪ G2 → H be a representative in G of the subject union of f1 and f2 in
Sub(H), with coproduct injections i1 : G1 → G1 ∪ G2 and i2 : G2 → G1 ∪ G2

as in (20). Since u is the mediating morphism of a pullback, it is unique up to
isomorphism of G1 ∪ G2. It remains to show that G1

i1−−→ G1 ∪ G2
i2←−− G2 is

a MG. By adhesiveness of G, the pushout square at the top of (20) is also a
pullback, and hence an intersection of i1 and i2 in Sub(G1 ∪G2). It follows that
idG1∪G2 represents the subobject union of i2 and i2 in Sub(G1 ∪ G2) and hence
G1

i1−−→ G1 ∪ G2
i2←−− G2 is indeed a MG.

The finiteness of G1 ∗ G2 follows from a similar argument. First, note that
|G1 ∗ G2| = |G1 ∗� G2|, so it is sufficient to show that G1 ∗� G2 is finite. Being
a subobject union, every MG is the pushout of a span G1

p1←−− G1 ∩ G2
p2−−→ G2

of matches as in (20). Since isomorphic spans have isomorphic pushouts, there
can be at most as many isomorphism classes of MGs of G1 and G2 as there are
isomorphism classes of spans over G1 and G2. Furthermore, the spans G1

p1←−−
X

p2−−→ G2 are in one-to-one correspondence with the pairings 〈p1, p2〉 : X →
G1 × G2 in G, which represent subobjects in Sub(G1 × G2) (with isomorphic
spans corresponding to identical subobjects). Since G1 × G2 is finitely powered,
there are only a finite number of such subobjects, and hence there can only be a
finite number of isomorphism classes of spans over G1 and G2, which concludes
the proof. �
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B.2 Proof of Lemma 1 (forward modularity)

Let f1, f2, g, g1 be matches, and α, β, γ rules, such that the diagrams (5) and
(6) are derivations. Then there is a unique match g2, such that diagram (7)
commutes and is a vertical composition of derivations.

L R

S

G H

f1

α

g

f2

β

(5)
L L

S T

f1

α

g1

γ

(6)

L R

S T

G H

f1

α

g1

g

f2

γ

g2

β

(7)

Proof. Using the universal property of the pushout (6), we obtain the mediating
morphism g2 and apply the Pasting Lemma for pushouts to conclude that the
lower square in (7) is a pushout. �

B.3 Proof of Lemma 2 (backward modularity)

Let f , f1, g1, g2 be matches, and α, β, γ rules, such that the diagrams (8) and
(9) are derivations. Then there is a unique match f2, such that diagram (10)
commutes and is a vertical composition of derivations.

L R

T

G H

f

α

g1

g2

β

(8)
L R

S T

f1 g1

α†

γ†
(9)

L R

S T

G H

f

α

f1 g1

f2

γ

g2

β

(10)

Proof. The proof is in three steps: we first construct f1 and f2 in G, then we
show that diagram (10) is indeed a composition of derivations, and finally we
verify the uniqueness of f2 for this property.

Consider diagram (21) below, which is the underlying diagram in G of deriva-
tion (8) from the lemma:

L K R

T

G D H

f

α1

h

α2

g1

g2

β1 β2

(21)

L K R

S E T

G D H

f

f1

α1 α2

h1 g1

f2

γ1 γ2

h2 g2

β1 β2

(22)

The right-hand square is a pushout along monomorphisms, and hence it is also
a pullback in G, and we can decompose it along g1 and g2 to obtain the upper
and lower right squares of diagram (22). By stability of pushouts in G (see [35,
Lemma 4.7]), both these squares are also pushouts. To complete diagram (22),
let its upper-left square be a pushout, and f2 the unique mediating morphism
such that the right-hand side of the diagram commutes.
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Note that all morphisms in (22), except possibly f2, are monic. The compos-
ites γ1 ◦ h1 and γ2 ◦ h1 are pushout complements of f1 ◦ α1 and g1 ◦ α2, respec-
tively, and hence by [14, proposition 12], they are also FPBCs. It follow that
the upper half of (22) is indeed the underlying diagram in G of both the deriva-
tions in (9) and the upper half of (10). For the lower half of (22) to also be a
derivation, f2 must be a match, so we need to show that it is monic. To show
this, let S

i1−−→ G′ i2←−− D be a pushout of S
γ1←−− E

h2−−→ D, and let u : G′ → G
be its mediating morphism with respect to the lower-left square of (22). Since
h2 is monic, so is i1 (by adhesiveness of G). By pasting of pushouts, u is also

the mediating morphism of the pushout L
i1 ◦ f1−−−−→ G′ i2←−− D with respect to

the left-hand square in (21), which in turn, is also a pullback square. In fact,
the composite pushout is the union of the subobjects represented by f and β1,
and hence by [35, Theorem 5.1], u is a monomorphism. It then follows that the
composite f2 = u ◦ i1 is also a monomorphism.

L K R

S E T

G D H

f

f1

α1 α2

h1 g1

g

f2

γ1 γ2

h′
2 g′

2

β1 β2

(23)

L K R

S E T

G D H

f

f1

α1 α2

h1 g1

g

f ′
2

γ1 γ2

h′′
2

g2

β1 β2

(24)

Now let h′
2 and g′

2 be matches such that diagram (23) commutes and is a com-
position of tiles as per Lemma 1. Then we have β1 ◦ h2 = f2 ◦ γ1 = β1 ◦ h′

2,
and hence h2 = h′

2 because β1 is monic. Furthermore, the top-right square
of (23) is a pushout, and hence g′

2 is the unique mediating morphism such
that β2 ◦ h2 = g′

2 ◦ γ2 and g = g′
2 ◦ g1. But from diagram (22) we know that

β2 ◦ h2 = g2 ◦ γ2 and g = g2 ◦ g1, and hence g′
2 = g2. It follows that the bottom

half of (22) is indeed a derivation.
Finally, let f ′

2 and h′′
2 be any matches such that diagram (24) commutes and

is a composition of tiles. Then h′′
2 = h2 (because β2 ◦ h′′

2 = g2 ◦ γ2 = β2 ◦ h2

and β2 is monic) and f ′
2 = f2 (because it is the unique mediating morphism of

the top-left pushout-square such that β1 ◦ h2 = f ′
2 ◦ γ1 and f = f ′

2 ◦ f1), which
concludes the proof. �

B.4 Proof of Lemma 3 (derivability)

A match g : R → H is derivable by a rule α : L ⇀ R if and only if g ⇒α ◦ α† g.
Equivalently, g is derivable from f by α if and only if the derivation g ⇒α† f is
reversible.

Proof. This is a direct consequence of Lemma 2. First, assume that g : R → H
is derivable by α : L ⇀ R from some match f : L → G, and let h : L → E be the
comatch of some derivation g ⇒α† h. By Lemma 2 (setting g1 = g and f1 = h),
the derivation h ⇒α g exists, and so does g ⇒α ◦ α† g (by horizontal composition
of derivations).
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Now assume that we are given the derivation g ⇒α ◦ α† g instead, and let
f ′ : L → G′ and h′ : R → E′ be the comatches of some derivations g ⇒α† f ′

and f ′ ⇒α h′. By horizontal composition and uniqueness of derivations up to
isomorphism, we have g ⇒α ◦ α† h′ and g = u ◦ h′ for some (unique) isomorphism
u : E′ �−→ H. Hence there is a derivation f ′ ⇒α g. �
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