
Alessandro Abate
Tatjana Petrov
Verena Wolf (Eds.)

 123

LN
BI

 1
23

14

18th International Conference, CMSB 2020
Konstanz, Germany, September 23–25, 2020
Proceedings

Computational Methods
in Systems Biology

Lecture Notes in Bioinformatics 12314

Subseries of Lecture Notes in Computer Science

Series Editors

Sorin Istrail
Brown University, Providence, RI, USA

Pavel Pevzner
University of California, San Diego, CA, USA

Michael Waterman
University of Southern California, Los Angeles, CA, USA

Editorial Board Members

Søren Brunak
Technical University of Denmark, Kongens Lyngby, Denmark

Mikhail S. Gelfand
IITP, Research and Training Center on Bioinformatics, Moscow, Russia

Thomas Lengauer
Max Planck Institute for Informatics, Saarbrücken, Germany

Satoru Miyano
University of Tokyo, Tokyo, Japan

Eugene Myers
Max Planck Institute of Molecular Cell Biology and Genetics, Dresden,
Germany

Marie-France Sagot
Université Lyon 1, Villeurbanne, France

David Sankoff
University of Ottawa, Ottawa, Canada

Ron Shamir
Tel Aviv University, Ramat Aviv, Tel Aviv, Israel

Terry Speed
Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia

Martin Vingron
Max Planck Institute for Molecular Genetics, Berlin, Germany

W. Eric Wong
University of Texas at Dallas, Richardson, TX, USA

More information about this series at http://www.springer.com/series/5381

http://www.springer.com/series/5381

Alessandro Abate • Tatjana Petrov •

Verena Wolf (Eds.)

Computational Methods
in Systems Biology
18th International Conference, CMSB 2020
Konstanz, Germany, September 23–25, 2020
Proceedings

123

Editors
Alessandro Abate
Department of Computer Science
University of Oxford
Oxford, UK

Tatjana Petrov
Department of Computer
and Information Science
University of Konstanz
Konstanz, Germany

Verena Wolf
Department of Computer Science
Saarland University
Saarbrücken, Germany

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Bioinformatics
ISBN 978-3-030-60326-7 ISBN 978-3-030-60327-4 (eBook)
https://doi.org/10.1007/978-3-030-60327-4

LNCS Sublibrary: SL8 – Bioinformatics

© Springer Nature Switzerland AG 2020
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://orcid.org/0000-0002-5627-9093
https://orcid.org/0000-0002-9041-0905
https://orcid.org/0000-0001-8460-6007
https://doi.org/10.1007/978-3-030-60327-4

Preface

The 18th conference on Computational Methods in Systems Biology (CMSB 2020)
was held during September 23–25, 2020. The conference was originally planned to be
hosted by the University of Konstanz, but due to the COVID-19 pandemic, CMSB
2020 took place fully online. Recent editions of the CMSB conference series were
organized by the University of Trieste (Italy), Masaryk University in Brno (Czech
Republic), and TU Darmstad (Germany).

The scope of CMSB covers the analysis of biological systems, networks, data, and
corresponding application domains. The conference brings together computer scien-
tists, biologists, mathematicians, engineers, and physicists interested in a system-level
understanding of biological processes. CMSB 2020 has retained the emphasis on
system-level understanding of biological processes – by no means restricted to a
narrow class of mathematical models – and has in particular stressed the importance of
integrating the techniques developed separately in different areas. CMSB 2020 espe-
cially encouraged the presentation of new work concerning integration of machine
learning techniques into modeling and analysis frameworks.

Topics featured in the workshop included formalisms for modeling biological
processes, models and their biological applications, frameworks for model verification,
validation, analysis, and simulation of biological systems, methods for synthetic
biology and biomolecular computing, multi-scale modeling and analysis methods,
collective behavior, high-performance computational systems biology, parallel imple-
mentations, and a new emphasis on machine learning for systems biology, model
inference from experimental data, and model integration from biological databases.

CMSB 2020 was a three-day event, featuring three invited talks, two tutorials,
single-track regular sessions, as well as an interactive session with tool presentations.
The 30-minute presentations of regular papers and 20-minute presentations of tool
papers were of high quality and the participation was lively, interactive, and
stimulating.

45 Program Committee members helped to provide at least three reviews for each
of the 30 submitted contributions, out of which 17 high-quality articles were accepted
to be presented during the single-track sessions. Moreover, five tool paper submissions,
each receiving three reviews for paper presentations, and two reviews from the Tool
Evaluation Committee, were selected for presentation. All accepted contributions
appear (a few after further feedback from a shepherding process by the Program
Committee) as full papers in these proceedings. The articles were bundled into four
thematic sessions, which is reflected in the organization of these proceedings: modeling
and analysis; Boolean networks; identification and inference; and tools. We also hosted
a session on tool papers, with five interactive tool demonstrations.

A highlight of CMSB 2020 was the presence of three high-profile invited speakers
whom we also selected in view of the breadth of the event, covering formal and control
theory methods, theoretical work and laboratory experiments, and modeling for

systems biology, and for collective animal behavior. Iain Couzin, Director of the Max
Planck Institute of Animal Behavior, Department of Collective Behaviour and the
Chair of Biodiversity and Collective Behaviour at the University of Konstanz,
Germany, gave a seminar titled “Employing Immersive Virtual Reality to Reveal
Common Geometric Principles of Individual and Collective Decision-Making.”
Grégory Batt, a research scientist at Inria and at Institut Pasteur, France, gave a seminar
titled “Methods and Tools for the Quantitative Characterization of Engineered
Biomolecular Systems,” and Domitilla Del Vecchio, Professor of Mechanical
Engineering at MIT, USA, gave a talk titled “Context dependence of biological
circuits: Predictive models and engineering solutions.”

Further details on CMSB 2020 are featured on the website: https://cmsb2020.uni-
saarland.de.

Finally, we would like to thank the local organizing team: Jacob Davidson, Matej
Hajnal, Huy Phung, Stefano Tognazzi (University of Konstanz) for their supportive,
can-do attitude. We thank to Stefano Tognazzi, for the technical and logistic solutions
regarding streaming the conference online, as well as for organising the virtual tour
of the city of Konstanz. We further thank to Jennifer Durai and Aamir Rizwani, for
their engagement towards a smooth virtual experience for all presenters and partici-
pants. Thanks to Springer for continuing to host the CMSB proceedings in its Lecture
Notes series. Thanks to the generous support of the Centre for the Advanced Study of
Collective Behaviour (CASCB), it was possible to offer a free registration for the
digital edition of CMSB 2020. Thanks to Ezio Bartocci, François Fages, and Jérôme
Feret from the Steering Committee of CMSB for support and encouragement, to all the
Program Committee members and additional reviewers for their great work in ensuring
the quality of the contributions to CMSB 2020, as well as to all the participants for
contributing to this memorable event. Thanks to Saarland University for hosting the
web-domain of CMSB 2020 and to Whova Virtual Conference Platform for their
services.

September 2020 Alessandro Abate
Tatjana Petrov
Verena Wolf

vi Preface

https://cmsb2020.uni-saarland.de
https://cmsb2020.uni-saarland.de

Organization

Program Committee Chairs

Alessandro Abate University of Oxford, UK
Tatjana Petrov University of Konstanz, Germany
Verena Wolf Saarland University, Germany

Tool Evaluation Committee Chair

David Šafránek Masaryk University, Czech Republic

Local Organization Chair

Tatjana Petrov University of Konstanz, Germany

Local Organization Committee

Jacob Davidson University of Konstanz, Germany
Matej Hajnal Masaryk University, Czech Republic
Stefano Tognazzi University of Konstanz, Germany

Program Committee

Nicos Angelopoulos University of Essex, UK
Paolo Ballarini CentraleSupélec, France
Ezio Bartocci Vienna University of Technology, Austria
Pavol Bokes Comenius University, Slovakia
Luca Bortolussi University of Trieste, Italy
Pierre Boutillier Harvard University, USA
Luca Cardelli Microsoft Research, UK
Milan Česká Brno University of Technology, Czech Republic
Eugenio Cinquemani Inria, France
Neil Dalchau Microsoft Research, UK
François Fages Inria, France
Jerome Feret Inria, France
Christoph Flamm University of Vienna, Austria
Anastasis Georgoulas University College London, UK
Ashutosh Gupta TIFR, India
Matej Hajnal Masaryk University, Czech Republic
Jan Hasenauer University of Bonn, Germany
Monika Heiner Brandenburg University of Technology, Germany
Jane Hillston The University of Edinburgh, UK

Katsumi Inoue NII, Japan
Jan Kretinsky Technical University of Munich, Germany
Jean Krivine CNRS, France
Hillel Kugler Microsoft Research, UK
Morgan Magnin CNRS, France
Dimitrios Milios The University of Edinburgh, UK
Chris Myers The University of Utah, USA
Laura Nenzi University of Trieste, Italy
Joachim Niehren Inria, France
Loïc Paulevé CNRS, LaBRI, France
Carla Piazza University of Udine, Italy
Ovidiu Radulescu University of Montpellier, France
Andre Riberio Tampere University, Finland
Olivier Roux École Centrale de Nantes, France
David Šafránek Masaryk University, Czech Republic
Guido Sanguinetti The University of Edinburgh, UK
Heike Siebert Freie Universität Berlin, Germany
Simone Silvetti University of Udine, Italy
Abhyudai Singh University of Delaware, USA
Scott Smolka Stony Brook University, USA
Carlo Spaccasassi Microsoft Research, UK
Carolyn Talcott SRI International, USA
Mirco Tribastone IMT School for Advanced Studies Lucca, Italy
Adelinde Uhrmacher University of Rostock, Germany
Andrea Vandin Sant’Anna School of Advanced Studies, Italy
Boyan Yordanov Microsoft Research, UK

Additional Reviewers

Jacek Chodak Brandenburg University of Technology, Germany
Pedro Fontanarossa The University of Utah, USA
Shouvik Roy Stony Brook University, USA
Jean-Paul Comet Université Côte d’Azur, France
Aurélien Naldi Inria, France
Maxime Folschette École Centrale de Lille, France
Sylvain Soliman Inria, France
Jeanet Mante The University of Utah, USA
Usama Mehmood Stony Brook University, USA
George Assaf Brandenburg University of Technology, Germany

viii Organization

Sponsors

Organization ix

Invited Talks

Context Dependence of Biological Circuits:
Predictive Models and Engineering Solutions

Domitilla del Vecchio

MIT, USA
ddv@mit.edu

Abstract. Engineering biology has tremendous potential to impact applications,
from energy, to environment, to health. As the sophistication of engineered
biological circuits increases, the ability to predict system behavior becomes
more limited. In fact, while a system’s component may be well characterized in
isolation, its salient properties often change in surprising ways once it interacts
with other systems in the cell. This context-dependence of biological circuits
makes it difficult to perform rational design and leads to lengthy, combinatorial,
design procedures where each component is re-designed ad hoc when other parts
are added to a system. In this talk, I will overview some causes of context-
dependence. I will then focus on problems of resource loading and describe a
design-oriented mathematical model that accounts for it. I will introduce a
general engineering framework, grounded on control theoretic concepts, that can
serve as a basis for creating devices that are “insulated” from context. Example
devices will be introduced for both bacterial and mammalian genetic circuits.
These solutions support rational and modular design of sophisticated genetic
circuits and can serve for engineering biological circuits that are more reliable
and predictable.

Methods and Tools for the Quantitative
Characterization of Engineered

Biomolecular Systems

Gregory Batt1,2

1 Inria Paris, 75012 Paris, France
2 Institut Pasteur, USR 3756 IP CNRS, 75015 Paris, France

gregory.batt@inria.fr

Abstract. Despite many years of research, no standard approach has emerged to
rationally design novel genetic circuits implementing non-trivial functions.
Synthetic biology still largely relies on tinkering. This comes notably from our
limited capacities to quantitatively predict the behavior of biological systems in
different cellular contexts. Iterative approaches, employing design-built-test-
and-learn (DBTL) strategies, have the potential to circumvent this problem.
In this presentation, I will describe some of our efforts to develop an inte-

grated framework supporting DBTL approaches. Firstly, I will present experi-
mental platforms that we have developed to run experiments in an automated
manner. Automation increases throughput, and also, more importantly in fact,
improves standardization and reproducibility. Secondly, I will present recent
results we obtained on the characterization and modeling of several natural and
engineered microbial systems, together with applications to real-time control
and treatment optimization. Finally, I will conclude with recent results on the
optimal design of parallel experiments.

Keywords: Bioreactor and cytometry automation • Microfluidics and micro-
scopy automation • Plate reader automation • Optogenetics • Deterministic and
stochastic modeling • Model predictive control • Process and treatment opti-
mization • Optimal experimental design • Cybergenetics • Antimicrobial resis-
tance • protein bioproduction in yeast

Acknowledgements. This work has been done in collaboration with all the members of the InBio
group at Inria and Institut Pasteur.

Employing Immersive Virtual Reality
to Reveal Common Geometric Principles

of Individual and Collective Decision-Making

Iain Couzin1,2,3

1 University of Konstanz
2 Centre for the Advanced Study of Collective Behaviour
3 Max-Planck Institute of Animal Behaviour, Germany

icouzin@ab.mpg.de

Abstract. Understanding how social influence shapes biological processes is a
central challenge in contemporary science, essential for achieving progress in a
variety of fields ranging from the organization and evolution of coordinated
collective action among cells, or animals, to the dynamics of information
exchange in human societies. Using an integrated experimental and theoretical
approach, involving automated tracking, immersive virtual reality (VR), and
computational visual field reconstruction, I will discuss the discovery of uni-
versal geometric principles of perceptual decision-making across vast scales of
biological organization, from neural collectives within the brains of individual
invertebrates and vertebrates, to the collective movement decisions made by fish
schools and primate societies.

Contents

Modelling and Analysis

Rate Equations for Graphs . 3
Vincent Danos, Tobias Heindel, Ricardo Honorato-Zimmer,
and Sandro Stucki

Stationary Distributions and Metastable Behaviour for Self-regulating
Proteins with General Lifetime Distributions. 27

Candan Çelik, Pavol Bokes, and Abhyudai Singh

Accelerating Reactions at the DNA Can Slow Down Transient
Gene Expression . 44

Pavol Bokes, Julia Klein, and Tatjana Petrov

Graphical Conditions for Rate Independence in Chemical Reaction
Networks . 61

Élisabeth Degrand, François Fages, and Sylvain Soliman

Interval Constraint Satisfaction and Optimization for Biological
Homeostasis and Multistationarity . 79

Aurélien Desoeuvres, Gilles Trombettoni, and Ovidiu Radulescu

Growth Dependent Computation of Chokepoints in Metabolic Networks 102
Alexandru Oarga, Bridget Bannerman, and Jorge Júlvez

On the Complexity of Quadratization for Polynomial
Differential Equations . 120

Mathieu Hemery, François Fages, and Sylvain Soliman

Comparing Probabilistic and Logic Programming Approaches to Predict
the Effects of Enzymes in a Neurodegenerative Disease Model 141

Sophie Le Bars, Jérémie Bourdon, and Carito Guziolowski

Boolean Networks

Control Strategy Identification via Trap Spaces in Boolean Networks 159
Laura Cifuentes Fontanals, Elisa Tonello, and Heike Siebert

Qualitative Analysis of Mammalian Circadian Oscillations:
Cycle Dynamics and Robustness . 176

Ousmane Diop, Madalena Chaves, and Laurent Tournier

Synthesis and Simulation of Ensembles of Boolean Networks
for Cell Fate Decision . 193

Stéphanie Chevalier, Vincent Noël, Laurence Calzone, Andrei Zinovyev,
and Loïc Paulevé

Classifier Construction in Boolean Networks Using Algebraic Methods 210
Robert Schwieger, Matías R. Bender, Heike Siebert,
and Christian Haase

Sequential Temporary and Permanent Control of Boolean Networks 234
Cui Su and Jun Pang

Inference and Identification

ABC(SMC)2: Simultaneous Inference and Model Checking of Chemical
Reaction Networks . 255

Gareth W. Molyneux and Alessandro Abate

Parallel Parameter Synthesis for Multi-affine Hybrid Systems
from Hybrid CTL Specifications . 280

Eva Šmijáková, Samuel Pastva, David Šafránek, and Luboš Brim

Core Models of Receptor Reactions to Evaluate Basic Pathway Designs
Enabling Heterogeneous Commitments to Apoptosis 298

Marielle Péré, Madalena Chaves, and Jérémie Roux

Drawing the Line: Basin Boundaries in Safe Petri Nets 321
Stefan Haar, Loïc Paulevé, and Stefan Schwoon

Tools

ModRev - Model Revision Tool for Boolean Logical Models of Biological
Regulatory Networks . 339

Filipe Gouveia, Inês Lynce, and Pedro T. Monteiro

fnyzer: A Python Package for the Analysis of Flexible Nets 349
Jorge Júlvez and Stephen G. Oliver

eBCSgen: A Software Tool for Biochemical Space Language 356
Matej Troják, David Šafránek, Lukrécia Mertová, and Luboš Brim

What is a Cell Cycle Checkpoint? The TotemBioNet Answer 362
Déborah Boyenval, Gilles Bernot, Hélène Collavizza,
and Jean-Paul Comet

xviii Contents

Kaemika App: Integrating Protocols and Chemical Simulation 373
Luca Cardelli

Tutorials

Tutorial: The CoLoMoTo Interactive Notebook, Accessible
and Reproducible Computational Analyses for Qualitative
Biological Networks . 383

Loïc Paulevé

Integrating Experimental Pharmacology and Systems Biology
for GPCR Drug Discovery . 386

Susanne Roth, Yaroslav Nikolaev, Mirjam Zimmermann,
Nadine Dobberstein, Maria Waldhoer, and Aurélien Rizk

Author Index . 387

Contents xix

Modelling and Analysis

Rate Equations for Graphs

Vincent Danos1, Tobias Heindel2 , Ricardo Honorato-Zimmer3 ,
and Sandro Stucki4(B)

1 CNRS, ENS-PSL, INRIA, Paris, France
vincent.danos@ens.fr

2 Institute of Commercial Information Technology and Quantitative Methods,
Technische Universität Berlin, Berlin, Germany

heindel@tu-berlin.de
3 Centro Interdisciplinario de Neurociencia de Valparáıso, Universidad de Valparáıso,

Valparaiso, Chile
ricardo.honorato@cinv.cl

4 Department of Computer Science and Engineering, University of Gothenburg,
Gothenburg, Sweden
sandro.stucki@gu.se

Abstract. In this paper, we combine ideas from two different scientific
traditions: 1) graph transformation systems (GTSs) stemming from the
theory of formal languages and concurrency, and 2) mean field approx-
imations (MFAs), a collection of approximation techniques ubiquitous
in the study of complex dynamics. Using existing tools from algebraic
graph rewriting, as well as new ones, we build a framework which gener-
ates rate equations for stochastic GTSs and from which one can derive
MFAs of any order (no longer limited to the humanly computable). The
procedure for deriving rate equations and their approximations can be
automated. An implementation and example models are available online
at https://rhz.github.io/fragger. We apply our techniques and tools to
derive an expression for the mean velocity of a two-legged walker protein
on DNA.

Keywords: Mean field approximations · Graph transformation
systems · Algebraic graph rewriting · Rule-based modelling

1 Introduction

Mean field approximations (MFAs) are used in the study of complex systems to
obtain simplified and revealing descriptions of their dynamics. MFAs are used
in many disparate contexts such as Chemical Reaction Networks (CRNs) and
their derivatives [13,23,34], walkers on bio-polymers [24,44], models of epidemic
spreading [27], and the evolution of social networks [20]. These examples witness
both the power and universality of MFA techniques, and the fact that they are
pursued in a seemingly ad hoc, case-by-case fashion.

RH-Z was supported by ANID FONDECYT/POSTDOCTORADO/No3200543.

c© Springer Nature Switzerland AG 2020
A. Abate et al. (Eds.): CMSB 2020, LNBI 12314, pp. 3–26, 2020.
https://doi.org/10.1007/978-3-030-60327-4_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-60327-4_1&domain=pdf
http://orcid.org/0000-0003-3371-8564
http://orcid.org/0000-0003-4396-9762
http://orcid.org/0000-0001-5608-8273
https://rhz.github.io/fragger
https://doi.org/10.1007/978-3-030-60327-4_1

4 V. Danos et al.

kF,E

kB,C

kF,C

kB,E

Fig. 1. Stukalin model of a walking DNA bimotor.

The case of CRNs is particularly interesting because they provide a
human-readable, declarative language for a common class of complex systems.
The stochastic semantics of a CRN is given by a continuous-time Markov chain
(CTMC) which gives rise to the so-called master equation (ME). The ME is
a system of differential equations describing the time evolution of the proba-
bility of finding the CRN in any given state. Various tools have been devel-
oped to automate the generation and solution of the ME from a given CRN,
liberating modellers from the daunting task of working with the ME directly
(e.g. [25,36,45]).

Its high dimensionality often precludes exact solutions of the ME. This is
where MFA techniques become effective. The generally countably infinite ME
is replaced by a finite system of differential equations, called the rate equations
(RE) [28,34], which describe the time evolution of the average occurrence count
of individual species. Here, we extend this idea to the case of graphs and, in fact,
the resulting framework subsumes all the examples mentioned above (including
CRNs). The main finding is summarised in a single Eq. (15) which we call the
generalised rate equations for graphs (GREG). We have published in previous
work a solution to this problem for the subclass of reversible graph rewriting sys-
tems [17,18]. The solution presented here is valid for any such system, reversible
or not. The added mathematical difficulty is substantial and concentrates in the
backward modularity Lemma 2. As in Ref. [18], the somewhat informal approach
of Ref. [17] is replaced with precise category-theoretical language with which the
backward modularity Lemma finds a concise and natural formulation.

As the reader will notice, Eq. (15) is entirely combinatorial and can be readily
implemented. Our implementation can be played with at https://rhz.github.io/
fragger. Its source can be found at https://github.com/rhz/fragger.

1.1 Two-Legged DNA Walker

Let us start with an example from biophysics [44]. The model describes a protein
complex walking on DNA. The walker contains two special proteins – the legs
– each binding a different DNA strand. The legs are able to move along the
strands independently but can be at most m DNA segments apart.

Following Stukalin et al. [44], we are interested in computing the velocity at
which a two-legged walker moves on DNA with m = 1. In this case, and assuming
the two legs are symmetric, there are only two configurations a walker can be
in: either extended (E) or compressed (C). Therefore all possible transitions can
be compactly represented by the four rules shown in Fig. 1, where the grey node
represents the walker and white nodes are DNA segments. The polarisation of

https://rhz.github.io/fragger
https://rhz.github.io/fragger
https://github.com/rhz/fragger

Rate Equations for Graphs 5

the DNA double helix is represented by the direction of the edge that binds two
consecutive DNA segments. Rules are labelled by two subscripts: the first tells us
if the leg that changes position is moving forward (F) or backward (B), while the
second states whether the rule extends or compresses the current configuration.

The mean velocity V of a single walker in the system can be computed from
the rates at which they move forward and backward and their expected number
of occurrences E[Gi], where Gi is in either of the three possible configurations
depicted in Fig. 1, and [Gi] is short for [Gi] (X(t)), the integer-valued random
variable that tracks the number of occurrences of Gi in the (random) state of
the system X(t) at time t. We call any real- or integer-valued function on X(t)
an observable.

V =
1
2

(
kF,EE

[]
+ kF,CE

[]
− kB,EE

[]
− kB,CE

[])

In the case there is only a single motor in the system, the observables [Gi] are
Bernoulli-distributed random variables, and the expectations E[Gi] correspond
to the probabilities of finding the motor in the configuration Gi at any given
time. Thus by constructing the ODEs for these observables, we can compute the
mean velocity of a single motor in the system. That is, we must compute the
rate equations for these graphs.

Intuitively, to compute rate equations we must find all ways in which the
rules can create or destroy an occurrence of an observable of interest. When,
and only when, a rule application and an occurrence of the given observable
overlap, can this occurrence be created or destroyed. A systematic inventory of
all such overlaps can be obtained by enumerating the so-called minimal gluings
(MGs) of the graph underlying the given observable and the left- and right-hand
sides of each rule in the system. MGs show how two graphs can overlap (full
definition in the next section). Such an enumeration of MGs is shown in Fig. 2,
where the two graphs used to compute the MGs are the extended walker motif
– the middle graph in Fig. 1 – and the left-hand side of the forward-extension
rule. The MGs are related and partially ordered by graph morphisms between
them.

In theory, since we are gluing with the left-hand side of a rule each one of
the MGs represents a configuration in which the application of the rule might
destroy an occurrence of the observable. However, if we suppose that walkers
initially have two legs, then 13 of the 21 MGs in Fig. 2 are impossible to pro-
duce by the rules, because no rule can create additional legs. Therefore those
configurations will never be reached by the system and we can disregard them.
If we further suppose the DNA backbone to be simple and non-branching, we
eliminate three more gluings. Finally, if there is only one motor, the remaining
four non-trivial gluings are eliminated. In this way, invariants can considerably
reduce the number of gluings that have to be considered. Removing terms cor-
responding to observables which, under the assumptions above, are identically
zero, we get the following series of ODEs. For readability, only a subset of the
terms is shown, and we write G instead of the proper E[G] in ODEs.

6 V. Danos et al.

d

dt
= kF,E −kB,C −kF,C +kB,E

d

dt
= −kF,E +kB,C +kF,C − . . .

d

dt
= kF,E −kB,C −kF,C + . . .

d

dt
= −kF,E +kB,C +kF,C − . . .

d

dt
= . . .

Notice how only graphs with extra white nodes to the right are obtained
when computing the ODE for the left graph in Fig. 1. The opposite is true for
the right graph in Fig. 1. This infinite expansion can be further simplified if
we assume the DNA chain to be infinite or circular. In this case we can avoid
boundary conditions and replace the left- and right-hand observables below by
the simpler middle observable:

E

⎡
⎣

⎤
⎦ = E

⎡
⎣

⎤
⎦ = E

⎡
⎣

⎤
⎦

The infinite expansion above now boils down to a simple finite ODE system.

d

dt
= kF,E −kB,C −kF,C +kB,E

d

dt
= −kF,E +kB,C +kF,C −kB,E

From the above ODEs and assumptions, we get the steady state equation.

(kF,E + kB,E)E
[]

= (kF,C + kB,C)E
[]

Since we have only one motor,

E

[]
+ E

[]
= 1

Using this, we can derive the steady state value for the mean velocity:

V =
1
2

(
(kF,E − kB,E)E

[]
+ (kF,C − kB,C)E

[])

=
(kF,C + kB,C)(kF,E − kB,E) + (kF,E + kB,E)(kF,C − kB,C)

2(kF,E + kB,E + kF,C + kB,C)

Rate Equations for Graphs 7

This exact equation is derived in Ref. [44]. We obtain it as a particular case of
the general notion of rate equations for graph explained below. It is worth noting
that, despite the simplicity of the equation, it is not easily derivable by hand.
This and other examples are available to play with in our web app at https://
rhz.github.io/fragger/. The example models include

– the DNA walker model described above;
– a population model tracking parent-child and sibling relationships;
– the voter model from Ref. [17];
– the preferential attachment model from Ref. [18].

The DNA walker model presented in this introduction is small and reversible. It
requires no approximation to obtain a finite expansion. By contrast, the popula-
tion model and the preferential attachment model are irreversible; the population
and the voter model require an approximation to obtain a finite expansion.

Fig. 2. The poset of minimal gluings of G2 and G1. The disjoint sum is at the top.
Gluings are layered by the number of node and edge identifications or, equivalently, by
the size of their intersection.

https://rhz.github.io/fragger/
https://rhz.github.io/fragger/
https://rhz.github.io/fragger/?m=bimotor
https://rhz.github.io/fragger/?re=1&m=bunnies
https://rhz.github.io/fragger/?m=voter
https://rhz.github.io/fragger/?m=pa

8 V. Danos et al.

1.2 Discussion

The reasoning and derivation done above in the DNA walker can in fact made
completely general. Given a graph observable [F], meaning a function counting
the number of embeddings of the graph F in the state X, one can build an
ODE which describes the rate at which the mean occurrence count E([F](X(t)))
changes over time.

Because the underlying Markov process X(t) is generated by graph-rewriting
rules, the one combinatorial ingredient to build that equation is the notion of
minimal gluings (MGs) of a pair of graphs. Terms in the ODE for F are derived
from the set of MGs of F with the left and right sides of the rules which generate
X(t). Besides, each term in F ’s ODE depends on the current state only via
expressions of the form E([G]) for G a graph defining a new observable. Thus
each fresh observable [G] can then be submitted to the same treatment, and one
obtains in general a countable system of rate equations for graphs. In good cases
(as in the walker example), the expansion is finite and there is no need for any
approximation. In general, one needs to truncate the expansion. As the MFA
expansion is a symbolic procedure one can pursue it in principle to any order.

The significance of the method hinges both on how many models can be
captured in graph-like languages, and how accurate the obtained MFAs are.
While these models do no exhaust all possibilities, GTSs seem very expressive.
In addition, our approach to the derivation of rate equations for graphs uses a
general categorical treatment which subsumes various graph-like structures such
as: hyper-graphs, typed graphs, etc. [2,35]. This abstract view is mathematically
convenient, and broadens the set of models to which the method applies.

What we know about the existence of solutions to the (in general) count-
able ODE systems generated by our method is limited. For general countable
continuous-time Markov chains and observables, existence of a solution is not
guaranteed [43]. Despite their great popularity, the current mathematical under-
standing of the quality of MFAs only addresses the case of CRNs and density-
dependent Markov chains, with Kurtz’ theory of scalings [23, Chap. 11], or the
case of dynamics on static graphs [27]. Some progress on going beyond the formal
point of view and obtaining existence theorems for solutions of REs for graphs
were reported in Ref. [16]. Another limitation is the accuracy of MFAs once
truncated (as they must be if one wants to plug them in an ODE solver). Even
if an MFA can be built to any desired order, it might still fall short of giving a
sensible picture of the dynamics of interest. Finally, it may also be that the cost
of running a convincing approximation is about the same as that of simulating
the system upfront.

This paper follows ideas on applying the methods of abstract interpretation
to the differential semantics of site graph rewriting [15,26,30]. Another more
remote influence is Lynch’s finite-model theoretic approach to MFAs [39]. From
the GTS side, the theory of site graph rewriting had long been thought to be
a lucky anomaly until a recent series of work showed that most of its ingre-
dients could be made sense of, and given a much larger basis of applications,
through the use of algebraic graph-rewriting techniques [3,31,32]. These latter

Rate Equations for Graphs 9

investigations motivated us to try to address MFA-related questions at a higher
level of generality.

1.3 Relation to the rule-algebraic approach

Another approach to the same broad set of questions started with Behr et
al. introducing ideas from representation theory commonly used in statistical
physics [5]. They show that one can study the algebra of rules and their compo-
sition law in a way that is decoupled from what is actually being re-written. The
“rule-algebraic” theory allows one to derive Kolmogorov equations for observ-
ables based on a systematic use of rule commutators (recently implemented in
[12]). Interestingly, novel notions of graph rewriting appear [11]. Partial dif-
ferential equations describing the generating function of such observables can
be derived systematically [7]. As the theory can handle adhesive categories in
general and sesqui-pushout rewriting [10], it offers an treatment of irreversible
rewrites alternative to the one presented in this paper. (The rule-algebraic app-
roach can also handle application conditions [9]). It will need further ork to
precisely pinpoint how these two threads of work articulate both at the theoret-
ical and at the implementation levels.

Outline. The paper is organised as follows: Sect. 2 collects preliminaries on
graph-rewriting and establishes the key forward and backward modularity lem-
mas; Sect. 3 derives our main result namely a concrete formula for the action of
a generator associated to a set of graph-rewriting rules as specified in Sect. 2.
From this formula, the rate equation for graphs follows easily. Basic category-
theoretical definitions needed in the main text are given in App. A; axiomatic
proofs in App. B.

2 Stochastic Graph Rewriting

We turn now to the graphical framework within which we will carry out the
derivation of our generalised rate equation (GREG) in Sect. 3. We use a categor-
ical approach know as algebraic graph rewriting, specifically the single pushout
(SPO) approach [22,37]. The reasons for this choice are twofold: first, we ben-
efit from a solid body of preexisting work; second, it allows for a succinct and
‘axiomatic’ presentation abstracting over the details of the graph-like structures
that are being rewritten. Working at this high level of abstraction allows us to
identify a set of generic properties necessary for the derivation of the GREG with-
out getting bogged down in the details of the objects being rewritten. Indeed,
while we only treat the case of directed multigraphs (graphs with an arbitrary
number of directed edges between any two nodes) in this section, the proofs
of all lemmas are set in the more general context of adhesive categories [35]
in App. B. This extends the applicability of our technique to rewrite systems
over typed graphs and hypergraphs, among others.

10 V. Danos et al.

For the convenience of the reader, we reproduce from Ref. [18] our basic
definitions for the category Grph of directed multigraphs. Next, we briefly sum-
marise the SPO approach and its stochastic semantics [33]. We conclude with
the modularity lemmas, which are key to the derivation of the GREG in the next
section.

2.1 The Category of Directed Multigraphs

A directed multigraph G consists of a finite set of nodes VG, a finite set of edges
EG, and source and target maps sG, tG : EG → VG. A graph morphism f : G → H
between graphs G and H is a pair of maps fE : EG → EH , fV : VG → VH which
preserve the graph structure, i.e. such that for all e ∈ EG,

sH(fE(e)) = fV (sG(e)) and tH(fE(e)) = fV (tG(e)).

The graphs G and H are called the domain and codomain of f . A graph mor-
phism f : G → H is a monomorphism, or simply a mono, if fV and fE are
injective; it is a graph inclusion if both fV and fE are inclusion maps, in which
case G is a subgraph of H and we write G ⊆ H. Every morphism f : G → H
induces a subgraph f(G) ⊆ H called the direct image (or just the image) of
f in H, such that Vf(G) = fV (VG) and Ef(G) = fE(EG). Figure 3 illustrates a
graph and a graph morphism.

Fig. 3. Examples of a) a directed multigraph, b) a graph morphism.

L K R

G D H

f

α1 α2

g

β1 β2

Fig. 4. A derivation. (Color figure online)

A partial graph morphism p : G ⇀ H is a pair of partial maps pV : VG ⇀ VH

and pE : EG ⇀ EH that preserve the graph structure. Equivalently, p can be
represented as a span of (total) graph morphisms, that is, a pair of morphisms

Rate Equations for Graphs 11

p1 : K → G, p2 : K → H with common domain K, where p1 is mono and K
is the domain of definition of p. We will use whichever representation is more
appropriate for the task at hand. Graphs and graph morphisms form the category
Grph (with the obvious notion of composition and identity) while graphs and
partial graph morphisms form the category Grph∗.

Graph morphisms provide us with a notion of pattern matching on graphs
while partial graph morphisms provide the accompanying notion of rewrite rule.
We restrict pattern matching to monos: a match of a pattern L in a graph G
is a monomorphism f : L → G. We write [L,G] for the set of matches of L
in G. We also restrict rules: a rule is a partial graph morphism α : L ⇀ R =
(α1 : K → L,α2 : K → R) where both α1 and α2 are monos. We say that L and R
are α’s left and right hand side (LHS and RHS). Rules are special cases of partial
graph morphisms and compose as such. Given a rule α : L ⇀ R = (α1, α2), we
define the reverse rule α† : R ⇀ L as the pair α† := (α2, α1), not to be confused
with the inverse of α (which does not exist in general). Note that −† is an
involution, that is, (α†)† = α.

2.2 Graph Rewriting

The basic rewrite steps of a GTS are called derivations. We first describe them
informally. Figure 4 shows a commutative square, with a match f : L → G on the
left and a rule α : L ⇀ R, on top. The match f identifies the subgraph in G that
is to be modified, while the rule α describes how to carry out the modification.
In order to obtain the comatch g : R → H on the right, one starts by removing
nodes and edges from f(L) which do not have a preimage under f ◦ α1, as well as
any edges left dangling (coloured red in the figure). To complete the derivation,
one extends the resulting match by adjoining to D the nodes and edges in R
that do not have a preimage under α2 (coloured green in the figure).

Derivations constructed in this way have the defining property of pushout
squares (PO) in Grph∗, hence the name SPO for the approach. Alternatively,
one can describe a derivation through the properties of its inner squares: the left
square is the final pullback complement (FPBC) of α1 and f , while the right one
is a PO in Grph [14]. (Definitions and basic properties of POs and FPBCs are
given in App. A.)

Definition 1. A derivation of a comatch g : R → H from a match f : L → G by
a rule α = (α1 : K → L,α2 : K → R) is a diagram in Grph such as (1), where
the left square is an FPBC of f and α1 and the right square is a PO,

L K R

G D H

f

α1 α2

h g

β1 β2

(1)
L R

G H

f

α

g

β

(2)

with h, g matches and β = (β1, β2) a rule, called the corule of the derivation.

Equivalently, a derivation of g from f by α is a PO in Grph∗ as in (2), with
corule β. We will mostly use this second characterisation of derivations.

12 V. Danos et al.

Write f ⇒α g if there is a derivation of g from f by α. Since derivations
are POs of partial morphisms and Grph∗ has all such POs [37], the relation
⇒α is total, that is, for any match f and rule α (with common domain), we can
find a comatch g. However, the converse is not true: not every match g having
the RHS of α as its domain is a comatch of a derivation by α. Which is to say,
there might not exist f such that f ⇒α g (the relation ⇒α is not surjective).
When there is such an f , we say g is derivable by α. Consider the example in
Fig. 5. Here, g is α-derivable (as witnessed by f) but h is not: no match of the
LHS could contain a “preimage” of the extra (red) edge e in the codomain of h
because the target node of e has not yet been created.

We say a derivation f ⇒α g (with corule β) is reversible if g ⇒α† f (with
corule β†), and irreversible otherwise. Clearly, derivations are not reversible in
general, otherwise ⇒α would be surjective. Consider the derivation shown in
Fig. 4. The derivation removes two (red) edges from the codomain of f ; the
removal of the lower edge is specified in the LHS of α, whereas the removal of
the upper edge is a side effect of removing the red node to which the edge is
connected (graphs cannot contain dangling edges). Applying the reverse rule α†

to the comatch g restores the red node and the lower red edge, but not the upper
red edge. In other words, f is not α†-derivable, hence the derivation in Fig. 4
is irreversible. In previous work, we have shown how to derive rate equations
for graph transformation systems with only reversible derivations [15,17,18]. In
Sect. 3, we overcome this limitation, giving a procedure that extends to the
irreversible case.

Fig. 5. The match g is α-derivable, while h is not. (Color figure online)

Since POs are unique (up to unique isomorphism), ⇒α is also functional
(up to isomorphism). The fact that derivations are only defined up to isomor-
phism is convenient as it allows us to manipulate them without paying attention
to the concrete naming of nodes and edges. Without this flexibility, stating and
proving properties such as Lemma 2 and 3 below would be exceedingly cumber-
some. On the other hand, when defining the stochastic semantics of our rewrite
systems, it is more convenient to restrict ⇒α to a properly functional relation.
To this end, we fix once and for all, for any given match f : L → G and rule
α : L ⇀ R, a representative f ⇒α α(f) from the corresponding isomorphism
class of derivations, with (unique) comatch α(f) : R → H, and (unique) corule
f(α) : G ⇀ H.

A set of rules R thus defines a labelled transition system (LTS) over graphs,
with corules as transitions, labelled by the associated pair (f, α). Given a rule

Rate Equations for Graphs 13

α : L ⇀ R, we define a stochastic rate matrix Qα := (qα
GH) over graphs as

follows.

qα
GH := |{f ∈ [L,G] | α(f) ∈ [R,H]}| for G �= H,

qα
GG :=

∑
H �=G −qα

GH otherwise. (3)

Given a model, that is to say a finite set of rules R and a rate map k : R → R
+,

we define the model rate matrix Q(R, k) as

Q(R, k) :=
∑

α∈R k(α)Qα (4)

Thus a model defines a CTMC over Grph∗. As R is finite, Q(R, k) is row-finite.

2.3 Composition and Modularity of Derivations

By the well-known Pushout Lemma, derivations can be composed horizontally
(rule composition) and vertically (rule specialisation) in the sense that if inner
squares below are derivations, so are the outer ones:

L R1 R2

G H1 H2

α1

f

α2

g1 g2

L R

G1 H1

G2 H2

α1

f1 g1

α2

f2 g2

Derivations can also be decomposed vertically. First, one has a forward decom-
position (which follows immediately from pasting of POs in Grph∗):

Lemma 1 (Forward modularity). Let α, β, γ be rules and f1, f2, g, g1
matches such that diagrams (5) and (6) are derivations. Then there is a unique
match g2 such that diagram (7) commutes (in Grph∗) and is a vertical compo-
sition of derivations.

L R

S

G H

f1

α

g

f2

β

(5)
L R

S T

f1

α

g1

γ

(6)

L R

S T

G H

f1

α

g1

g

f2

γ

g2

β

(7)

A novel observation, which will play a central role in the next section, is that
one also has a backward decomposition:

Lemma 2 (Backward modularity). Let α, β, γ be rules and f , f1, g1,
g2 matches such that diagrams (8) and (9) are derivations. Then there is a
unique match f2 such that diagram (10) commutes (in Grph∗) and is a vertical
composition of derivations.

14 V. Danos et al.

L R

T

G H

f

α

g1

g2

β

(8)
L R

S T

f1 g1

α†

γ†
(9)

L R

S T

G H

f

α

f1 g1

f2

γ

g2

β

(10)

Forward and backward modularity look deceptively similar, but while Lemma 1
is a standard property of POs, Lemma 2 is decidedly non-standard. Remember
that derivations are generally irreversible. It is therefore not at all obvious that
one should be able to transport factorisations of comatches backwards along
a rule, let alone in a unique fashion. Nor is it obvious that the top half of
the resulting decomposition should be reversible. The crucial ingredient that
makes backward modularity possible is that both matches and rules are monos.
Because rules are (partial) monos, we can reverse α and β in (8), and the result-
ing diagram still commutes (though it is no longer a derivation in general). The
existence and uniqueness of f2 is then a direct consequence of the universal prop-
erty of (9), seen as a PO. The fact that (9) is reversible relies on matches also
being monos, but in a more subtle way. Intuitively, the graph T cannot contain
any superfluous edges of the sort that render the derivation in Fig. 4 irreversible
because, g2 being a mono, such edges would appear in H as subgraphs, con-
tradicting the α-derivability of g2 ◦ g1. Together, the factorisation of f and the
reversibility of (9) then induce the decomposition in (10) by Lemma 1. A full,
axiomatic proof of Lemma 2 is given in App. B.3.

Among other things, Lemma 2 allows one to relate derivability of matches to
reversibility of derivations:

Lemma 3. A match g : R → H is derivable by a rule α : L ⇀ R if and only if
the derivation g ⇒α† f is reversible.

2.4 Gluings

Given G1 ⊆ H and G2 ⊆ H, the union of G1 and G2 in H is the unique subgraph
G1 ∪ G2 of H, such that V(G1∪G2) = VG1 ∪ VG2 and E(G1∪G2) = EG1 ∪ EG2 . The
intersection (G1 ∩ G2) ⊆ H is defined analogously. The subgraphs of H form a
complete distributive lattice with ∪ and ∩ as the join and meet operations. One
can glue arbitrary graphs as follows:

Definition 2. A gluing of graphs G1, G2 is a pair of matches i1 : G1 → U ,
i2 : G2 → U with common codomain U ; if in addition U = i1(G1) ∪ i2(G2), one
says the gluing is minimal.

Two gluings i1 : G1 → U , i2 : G2 → U and j1 : G1 → V , j2 : G2 → V are said
to be isomorphic if there is an isomorphism u : U → V , such that j1 = u ◦ i1
and j2 = u ◦ i2. We write G1 ∗� G2 for the set of isomorphism classes of minimal
gluings (MG) of G1 and G2, and G1∗G2 for an arbitrary choice of representatives
from each class in G1 ∗� G2. Given a gluing μ : G1 → H ← G2, denote by μ̂ its
“tip”, i.e. the common codomain μ̂ = H of μ.

It is easy to see the following (see App. B for an axiomatic proof):

Rate Equations for Graphs 15

Lemma 4. Let G1, G2 be graphs, then G1 ∗ G2 is finite, and for every gluing
f1 : G1 → H, f2 : G2 → H, there is a unique MG i1 : G1 → U , i2 : G2 → U in
G1 ∗ G2 and match u : U → H such that f1 = u ◦ i1 and f2 = u ◦ i2.

See Fig. 2 in Sect. 1 for an example of a set of MGs.

3 Graph-Based GREs

To derive the GRE for graphs (GREG) we follow the development in our previous
work [17,18] with the important difference that we do not assume derivations to
be reversible. The key technical innovation that allows us to avoid the assumption
of reversibility is the backward modularity lemma (Lemma 2).

As sketched in Sect. 1.2, our GRE for graphs is defined in terms of graph
observables, which we now define formally. Fix S to be the countable (up to iso)
set of finite graphs, and let F ∈ S be a graph. The graph observable [F] : S → N

is the integer-valued function [F] (G) := |[F,G]| counting the number of occur-
rences (i.e. matches) of F in a given graph G. Graph observables are elements
of the vector space R

S of real-valued functions on S.
The stochastic rate matrix Qα for a rule α : L ⇀ R defined in (3) is a linear

map on R
S . Its action on an observable [F] is given by

(Qα [F])(G) :=
∑

H qα
GH([F] (G) − [F] (H)) for G,H ∈ S. (11)

Since the sum above is finite, Qα [F] is indeed a well-defined element of R
S .

We call Qα [F] the jump of [F] relative to Qα. Intuitively, (Qα [F])(G) is the
expected rate of change in [F] given that the CTMC sits at G.

To obtain the GREG as sketched in Sect. 1, we want to express the jump
as a finite linear combination of graph observables. We start by substituting the
definition of Qα in (11).

(Qα [F])(G) =
∑

H qα
GH([F] (H) − [F] (G))

=
∑

H

∑
f∈[L,G] s.t. α(f)∈[R,H] (|[F,H]| − |[F,G]|)

=
∑

f∈[L,G] (|[F, cod(α(f))]| − |[F,G]|) .

where the simplification in the last step is justified by the fact that f and α
uniquely determine α(f). The last line suggests a decomposition of Qα [F] as
Qα [F] = Q+

α [F] − Q−
α [F], where Q+

α produces new instances of F while Q−
α

consumes existing ones.
By Lemma 4, we can factor the action of the consumption term Q−

α through
the MGs L ∗ F of L and F to obtain

(Q−
α [F])(G) =

∑
f∈[L,G] |[F,G]| = |[L,G]| · |[F,G]| =

∑
μ∈L∗F |[μ̂, G]| .

The resulting sum is a linear combination of a finite number of graph observables,
which is exactly what we are looking for.

16 V. Danos et al.

Simplifying the production term requires a bit more work. Applying the same
factorisation Lemma 4, we arrive at

(Q+
α [F])(G) =

∑
f∈[L,G] |[F, α̂(f)]|

=
∑

f∈[L,G]

∑
(μ1,μ2)∈R∗F |{g ∈ [μ̂, α̂(f)] | g ◦ μ1 = α(f)}| .

where α̂(f) = cod(α(f)) denotes the codomain of the comatch of f . To sim-
plify this expression further, we use the properties of derivations introduced in
Sect. 2.3. First, we observe that μ1 must be derivable by α for the set of g’s in
the above expression to be nonempty

Lemma 5. Let α : L ⇀ R be a rule and f : L → G, g : R → H, g1 : R → T
matches such that f ⇒α g, but g1 is not derivable by α. Then there is no match
g2 : T → H such that g2 ◦ g1 = g.

Proof. By the contrapositive of backward modularity. Any such g2 would induce,
by Lemma 2, a match f1 : L → S and a derivation f1 ⇒α g1. �
We may therefore restrict the set R ∗ F of right-hand MGs under consideration
to the subset α ∗R F := {(μ1, μ2) ∈ R ∗ F | ∃h. h ⇒α μ1} of MGs with a first
projection derivable by α. Next, we observe that the modularity Lemma 1 and 2
establish a one-to-one correspondence between the set of factorisations of the
comatches α(f) (through the MGs in α ∗R F) and a set of factorisations of the
corresponding matches f .

Lemma 6 (correspondence of matches). Let α, β, γ, f , f1, g, g1 such
that diagrams (12) and (13) are derivations and g1 is derivable by α. Then the
set ML = {f2 ∈ [S,G] | f2 ◦ f1 = f} is in one-to-one correspondence with the set
MR = {g2 ∈ [T,H] | g2 ◦ g1 = g}.

L R

G H

f

α

g

β

(12)
L R

S T

f1 g1

α†

γ†
(13)

Proof. Since g1 is α-derivable, the diagram (13) is reversible, that is, f1 ⇒α g1,
with corule γ (by Lemma 3). Hence, if we are given a match f2 in ML, we can
forward-decompose (12) vertically along the factorisation f2 ◦ f1 = f , resulting
in the diagram below (by forward modularity, Lemma 1).
Furthermore, the comatch g2 is unique with respect to
this decomposition, thus defining a function φ : ML →
MR that maps any f2 in ML to the corresponding
comatch φ(f2) = g2 in MR. We want to show that φ is
a bijection. By backward modularity (Lemma 2), there
is a match f2 ∈ ML for any match g2 ∈ MR such
that φ(f2) = g2 (surjectivity), and furthermore, f2 is the
unique match for which φ(f2) = g2 (injectivity). �

L R

S T

G H

f1

α

g1

g

f2

γ

g2

β

Rate Equations for Graphs 17

Using Lemma 5 and 6, we can simplify Q+
α as follows:

(Q+
α [F])(G) =

∑
f∈[L,G]

∑
μ∈α∗RF

|{g2 ∈ [μ̂, α̂(f)] | g2 ◦ μ1 = α(f)}|

=
∑

μ∈α∗RF

∑
f∈[L,G]

∣∣{f2 ∈ [
α̂†(μ1), G

] | f2 ◦ α†(μ1) = f
}∣∣

=
∑

μ∈α∗RF

∣∣[α̂†(μ1), G
]∣∣

If we set α ∗L F := L ∗ F to symmetrise notation, we obtain

Qα([F]) =
∑

μ∈α∗RF

[
α̂†(μ1)

] − ∑
μ∈α∗LF [μ̂] (14)

Now, in general for a CTMC on a countable state space S, the Markov-
generated and time-dependent probability p on S follows the master equation
[1,40]: d

dtp
T = pT Q. Given an abstract observable f in R

S , and writing
Ep(f) := pT f for the expected value of f according to p, we can then derive
the formal1 Kolmogorov equation for f :

d
dt Ep(f) = d

dtp
T f = pT Qf = Ep(Qf),

giving us an equation for the rate of change of the mean of f(X(t)). Following
this general recipe gives us the GRE for graphs immediately from (14).

d

dt
Ep([F]) = −

∑
α∈R

k(α)
∑

μ∈α∗LF

Ep [μ̂] +
∑
α∈R

k(α)
∑

μ∈α∗RF

Ep

[
α̂†(μ1)

]
. (15)

Remember that μ1 denotes the left injection of the MG μ = (μ1, μ2) while μ̂
denotes its codomain, and that α̂†(f) = cod(α†(f)).

Unsurprisingly, the derivation of (15) was more technically challenging than
that of the GRE for reversible graph rewrite systems (cf. [18, Theorem 2]). Yet
the resulting GREs look almost identical (cf. [18, Eq. (7)]). The crucial difference
is in the production term Q+

α , where we no longer sum over the full set of right-
hand MGs R∗F but only over the subset α∗RF of MGs that are α-derivable. This
extra condition is the price we pay for dealing with irreversibility: irreversible
rules can consume all MGs, but only produce some.

Note that the number of terms in (15) depends on the size of the relevant
sets of left and right-hand MGs, which is worst-case exponential in the size of
the graphs involved, due to the combinatorial nature of MGs. (See Fig. 2 in Sect.
1 for an example.) In practice, one often finds many pairs of irrelevant MGs, the
terms of which cancel out exactly. This reduces the effective size of the equations
but not the overall complexity of generating the GREG.
1 In the present paper, we elide the subtle issues of ensuring that the system of interest

actually satisfies this equation. See the work of Spieksma [43] for the underlying
mathematics or our previous work [16], which additionally considers computability
of the solutions to arbitrary precision.

18 V. Danos et al.

Finally, as said in Sect. 1.2, the repeated application of (15) will lead to an
infinite expansion in general. In practice, the system of ODEs needs to be trun-
cated. For certain models, one can identify invariants in the underlying rewrite
system via static analysis, which result in a finite closure even though the set of
reachable components is demonstrably infinite [19]. We have seen an example in
Sect. 1.

4 Conclusion

We have developed a computer supported method for mean field approximations
(MFA) for stochastic systems with graph-like states that are described by rules of
SPO rewriting. The underlying theory unifies a large and seemingly unstructured
collection of MFA approaches which share a graphical “air de famille”. Based
on the categorical frameworks of graph transformation systems (GTS), we have
developed MFA-specific techniques, in particular concerning the combinatorics
of minimal gluings. The main technical hurdle consisted in showing that the set
of subgraph observables is closed under the action of the rate matrix (a.k.a. the
infinitesimal generator) of the continuous-time Markov chain generated by an
irreversible GTS. The proof is constructive and gives us an explicit term for the
derivative of the mean of any observable of interest.

Mean field approximation and moment-closure methods are of wide use in
applications, as typical probabilistic systems tend to have state spaces which
defy more direct approaches. To reach their full potential, MFAs need to be
combined with reachability and invariant analysis (as illustrated in Sect. 1).

We have worked the construction at the general axiomatic level of SPO-
rewriting with matches and rules restricted to monomorphisms. One interesting
extension is to include nested application conditions (NACs) [29,41] where the
application of a rule can be modulated locally by the context of the match. NACs
are useful in practice, and bring aboard the expressive power of first order logic
in the description of transformation rules. We plan to investigate the extension
of our approach to NACs, and, in particular, whether it is possible to incorporate
them axiomatically, and what additional complexity cost they might incur.

Another direction of future work is to improve on the method of truncation.
In the literature, one often finds graphical MFAs used in combination with con-
ditional independence assumptions to control the size of connected observables,
as e.g. the so-called pair approximation [20,27]. As these methods are known
to improve the accuracy of naive truncation, we wish to understand if and how
they can be brought inside our formal approach.

A Pushout and pull-back complements

Algebraic graph rewriting relies on certain category-theoretical limits and col-
imits [4]. We give definitions of the relevant (co-)limits here along with some of
their basic properties. Among these, pullback complements are the least known.
We refer the interested reader to Ref. [14,21] for a thorough treatment.

Rate Equations for Graphs 19

Q

P Y

X Z

g2

g1

u

p1

p2 f2

f1

(16)

Z X

Y P

Q

f1

f2 i2 g2

i1

g1

u

(17)

Let C be a category.

Definition 3 (Pullback). A pullback of a cospan of morphisms X
f1−−→ Z

f2←−−
X in C is a span X

p1←−− P
p2−−→ Y making the bottom-right square in (16)

commute, and such that for any other span X
g1←−− Q

g2−−→ Y for which the outer
square commutes, there is a unique morphism u : Q → P making the diagram
commute.

Definition 4 (Pushout). A pushout of a span of morphisms X
f1−−→ Z

f2←−− Y

in C is a cospan X
i1−−→ P

i2←−− Y making the top-left square in (17) commute,
and such that for any other cospan X

g1−−→ Q
g2←−− Y for which the outer square

commutes, there is a unique morphism u : P → Q making the diagram commute.

P

X Y

W Z

Q

f ′
1

g′
1

p

f1
g1 f2

g2

u

g′
2

(18)

Definition 5 (Final pullback complement). A final pullback complement
(FPBC) (or simply pullback complement) of a pair of composable morphisms

X
f1−−→ Y

f2−−→ Z in some category C is a pair of composable morphisms X
g1−−→

W
g2−−→ Z making the right inner square in (18) a pullback, such that for any

other pullback P
f ′
1−−→ Y

f2−−→ Z
g′
2←−− Q

g′
1←−− P and morphism p : P → X for which

the diagram commutes, there is a unique morphism u : Q → W that makes the
diagram commute.

The following lemmas, pertaining to the composition of pullbacks, pushouts
and FPBCs, respectively, are used throughout the proofs in App. B. The first two
are dual versions of the well-known “pasting” lemma for pullbacks and pushouts,
and we leave their proofs as an exercise to the reader. A proof of the third lemma
can be found in [38, Proposition 5].

A B C

D E F

g1

f1

g2

f2

g3

h1 h2

(19)

20 V. Danos et al.

Lemma 7 (Pasting of pullbacks). Suppose the right inner square in (19) is
a pullback in some category C. Then the left inner square is a pullback if and
only if the outer square is.

Lemma 8 (Pasting of pushouts). Suppose the left inner square in (19) is a
pushout in some category C. Then the right inner square is a pushout if and only
if the outer square is.

Lemma 9 (Composition of FPBCs). Consider again diagram (19) in some
category C,

– (horizontal composition) if A
g1−−→ D

h1−−→ E and B
g2−−→ E

h2−−→ F are the

FPBCs of A
f1−−→ B

g2−−→ E and B
f2−−→ C

g3−−→ F , respectively, then A
g1−−→

D
h2 ◦ h1−−−−−→ F is the FPBC of A

f2 ◦ f1−−−−→ C
g3−−→ F ;

– (vertical composition) if A
f1−−→ B

g2−−→ E and B
f2−−→ C

g3−−→ F are the FPBCs

of A
g1−−→ D

h1−−→ E and B
g2−−→ E

h2−−→ F , respectively, then A
f2 ◦ f1−−−−→ C

g3−−→
F is the FPBC of A

g1−−→ D
h2 ◦ h1−−−−−→ F .

B Generalised proofs of lemmas

This section contains detailed proofs of the various lemmas introduced in previ-
ous sections. We will present the proofs in a slightly more general setting, namely
that of sesqui-pushout (SqPO) rewriting [14] in arbitrary adhesive categories [35].
To be precise, we assume an ambient category G, such that

– G is adhesive (among other things, this implies that G has all pullbacks as
well as all pushouts along monomorphisms, that monomorphism are stable
under pushout, and that all such pushouts are also pullbacks, cf. [35]),

– G has all final pullback complements (FPBCs) above monomorphisms.

Both these assumptions hold in Grph. Within G, we define derivations as in
Definition 1, taking matches and rules to be monomorphisms and spans thereof,
respectively.

Alternatively, rules can be seen as partial maps [42] in the category G∗,
generalising the interpretation of rules as partial graph morphisms in Grph∗.
Derivations can then be shown to correspond exactly to pushouts of rules along
monomorphisms in G∗ [2, Proposition 2.10], and composition of derivations cor-
responds to pushout composition in G∗.

B.1 Proof of Lemma 4 (minimal gluings)

Let G1 and G2 be graphs, then

1. the set G1 ∗ G2 of MGs of G1 and G1 is finite, and

Rate Equations for Graphs 21

2. for every cospan G1
f1−−→ H

f2←−− G2 of matches, there is a unique MG (G1
i1−−→

U
i2←−− G2) ∈ G1 ∗ G2 and match u : U → H such that f1 = u ◦ i1 and

f2 = u ◦ i2.

Proof. For this proof we will make two additional assumptions on G, namely that
G has all binary products, and that the objects of G are finitely powered, that
is, any object A in G has a finite number of subobjects. Both these assumptions
hold in Grph.

Recall that the subobjects of any object A in G form a poset category Sub(A)
with subobject intersections as products and subobject unions as coproducts. By
stability of monomorphisms under pullback, products (intersections) in Sub(A)
are given by pullbacks in G, and since G is adhesive, coproducts (unions) in
Sub(A) are given by pushouts of pullbacks in G. See [35, Theorem 5.1] for more
details.

G1 ∩ G2

G1 G2

G1 ∪ G2

H

p1 p2

i1

f1

i2

f2u

(20)

We will start by showing that any cospan G1
f1−−→ H

f2←−− G2 of matches in
G factorises uniquely through an element of G1 ∗ G2. Given such a cospan, let
u : G1 ∪ G2 → H be a representative in G of the subject union of f1 and f2 in
Sub(H), with coproduct injections i1 : G1 → G1 ∪ G2 and i2 : G2 → G1 ∪ G2

as in (20). Since u is the mediating morphism of a pullback, it is unique up to
isomorphism of G1 ∪ G2. It remains to show that G1

i1−−→ G1 ∪ G2
i2←−− G2 is

a MG. By adhesiveness of G, the pushout square at the top of (20) is also a
pullback, and hence an intersection of i1 and i2 in Sub(G1 ∪G2). It follows that
idG1∪G2 represents the subobject union of i2 and i2 in Sub(G1 ∪ G2) and hence
G1

i1−−→ G1 ∪ G2
i2←−− G2 is indeed a MG.

The finiteness of G1 ∗ G2 follows from a similar argument. First, note that
|G1 ∗ G2| = |G1 ∗� G2|, so it is sufficient to show that G1 ∗� G2 is finite. Being
a subobject union, every MG is the pushout of a span G1

p1←−− G1 ∩ G2
p2−−→ G2

of matches as in (20). Since isomorphic spans have isomorphic pushouts, there
can be at most as many isomorphism classes of MGs of G1 and G2 as there are
isomorphism classes of spans over G1 and G2. Furthermore, the spans G1

p1←−−
X

p2−−→ G2 are in one-to-one correspondence with the pairings 〈p1, p2〉 : X →
G1 × G2 in G, which represent subobjects in Sub(G1 × G2) (with isomorphic
spans corresponding to identical subobjects). Since G1 × G2 is finitely powered,
there are only a finite number of such subobjects, and hence there can only be a
finite number of isomorphism classes of spans over G1 and G2, which concludes
the proof. �

22 V. Danos et al.

B.2 Proof of Lemma 1 (forward modularity)

Let f1, f2, g, g1 be matches, and α, β, γ rules, such that the diagrams (5) and
(6) are derivations. Then there is a unique match g2, such that diagram (7)
commutes and is a vertical composition of derivations.

L R

S

G H

f1

α

g

f2

β

(5)
L L

S T

f1

α

g1

γ

(6)

L R

S T

G H

f1

α

g1

g

f2

γ

g2

β

(7)

Proof. Using the universal property of the pushout (6), we obtain the mediating
morphism g2 and apply the Pasting Lemma for pushouts to conclude that the
lower square in (7) is a pushout. �

B.3 Proof of Lemma 2 (backward modularity)

Let f , f1, g1, g2 be matches, and α, β, γ rules, such that the diagrams (8) and
(9) are derivations. Then there is a unique match f2, such that diagram (10)
commutes and is a vertical composition of derivations.

L R

T

G H

f

α

g1

g2

β

(8)
L R

S T

f1 g1

α†

γ†
(9)

L R

S T

G H

f

α

f1 g1

f2

γ

g2

β

(10)

Proof. The proof is in three steps: we first construct f1 and f2 in G, then we
show that diagram (10) is indeed a composition of derivations, and finally we
verify the uniqueness of f2 for this property.

Consider diagram (21) below, which is the underlying diagram in G of deriva-
tion (8) from the lemma:

L K R

T

G D H

f

α1

h

α2

g1

g2

β1 β2

(21)

L K R

S E T

G D H

f

f1

α1 α2

h1 g1

f2

γ1 γ2

h2 g2

β1 β2

(22)

The right-hand square is a pushout along monomorphisms, and hence it is also
a pullback in G, and we can decompose it along g1 and g2 to obtain the upper
and lower right squares of diagram (22). By stability of pushouts in G (see [35,
Lemma 4.7]), both these squares are also pushouts. To complete diagram (22),
let its upper-left square be a pushout, and f2 the unique mediating morphism
such that the right-hand side of the diagram commutes.

Rate Equations for Graphs 23

Note that all morphisms in (22), except possibly f2, are monic. The compos-
ites γ1 ◦ h1 and γ2 ◦ h1 are pushout complements of f1 ◦ α1 and g1 ◦ α2, respec-
tively, and hence by [14, proposition 12], they are also FPBCs. It follow that
the upper half of (22) is indeed the underlying diagram in G of both the deriva-
tions in (9) and the upper half of (10). For the lower half of (22) to also be a
derivation, f2 must be a match, so we need to show that it is monic. To show
this, let S

i1−−→ G′ i2←−− D be a pushout of S
γ1←−− E

h2−−→ D, and let u : G′ → G
be its mediating morphism with respect to the lower-left square of (22). Since
h2 is monic, so is i1 (by adhesiveness of G). By pasting of pushouts, u is also

the mediating morphism of the pushout L
i1 ◦ f1−−−−→ G′ i2←−− D with respect to

the left-hand square in (21), which in turn, is also a pullback square. In fact,
the composite pushout is the union of the subobjects represented by f and β1,
and hence by [35, Theorem 5.1], u is a monomorphism. It then follows that the
composite f2 = u ◦ i1 is also a monomorphism.

L K R

S E T

G D H

f

f1

α1 α2

h1 g1

g

f2

γ1 γ2

h′
2 g′

2

β1 β2

(23)

L K R

S E T

G D H

f

f1

α1 α2

h1 g1

g

f ′
2

γ1 γ2

h′′
2

g2

β1 β2

(24)

Now let h′
2 and g′

2 be matches such that diagram (23) commutes and is a com-
position of tiles as per Lemma 1. Then we have β1 ◦ h2 = f2 ◦ γ1 = β1 ◦ h′

2,
and hence h2 = h′

2 because β1 is monic. Furthermore, the top-right square
of (23) is a pushout, and hence g′

2 is the unique mediating morphism such
that β2 ◦ h2 = g′

2 ◦ γ2 and g = g′
2 ◦ g1. But from diagram (22) we know that

β2 ◦ h2 = g2 ◦ γ2 and g = g2 ◦ g1, and hence g′
2 = g2. It follows that the bottom

half of (22) is indeed a derivation.
Finally, let f ′

2 and h′′
2 be any matches such that diagram (24) commutes and

is a composition of tiles. Then h′′
2 = h2 (because β2 ◦ h′′

2 = g2 ◦ γ2 = β2 ◦ h2

and β2 is monic) and f ′
2 = f2 (because it is the unique mediating morphism of

the top-left pushout-square such that β1 ◦ h2 = f ′
2 ◦ γ1 and f = f ′

2 ◦ f1), which
concludes the proof. �

B.4 Proof of Lemma 3 (derivability)

A match g : R → H is derivable by a rule α : L ⇀ R if and only if g ⇒α ◦ α† g.
Equivalently, g is derivable from f by α if and only if the derivation g ⇒α† f is
reversible.

Proof. This is a direct consequence of Lemma 2. First, assume that g : R → H
is derivable by α : L ⇀ R from some match f : L → G, and let h : L → E be the
comatch of some derivation g ⇒α† h. By Lemma 2 (setting g1 = g and f1 = h),
the derivation h ⇒α g exists, and so does g ⇒α ◦ α† g (by horizontal composition
of derivations).

24 V. Danos et al.

Now assume that we are given the derivation g ⇒α ◦ α† g instead, and let
f ′ : L → G′ and h′ : R → E′ be the comatches of some derivations g ⇒α† f ′

and f ′ ⇒α h′. By horizontal composition and uniqueness of derivations up to
isomorphism, we have g ⇒α ◦ α† h′ and g = u ◦ h′ for some (unique) isomorphism
u : E′ �−→ H. Hence there is a derivation f ′ ⇒α g. �

References

1. Anderson, W.J.: Continuous-Time Markov Chains: An Applications-Oriented App-
roach. Springer, New York (2012). https://doi.org/10.1007/978-1-4612-3038-0

2. Baldan, P., Corradini, A., Heindel, T., König, B., Sobocinski, P.: Processes and
unfoldings: concurrent computations in adhesive categories. Math. Struct. Comput.
Sci. 24, 56–103 (2014)

3. Bapodra, M., Heckel, R.: From graph transformations to differential equations.
ECEASST 30, 21 (2010). https://doi.org/10.14279/tuj.eceasst.30.431.405

4. Barr, M., Wells, C.: Category theory for computing science, 2 ed., Prentice Hall
International Series in Computer Science, Prentice Hall (1995)

5. Behr, N., Danos, V., Garnier, I.: Stochastic mechanics of graph rewriting. In:
Proceedings 31st Annual ACM/IEEE Symposium on Logic in Computer Science,
LICS 2016, New York, pp. 46–55. ACM (2016). https://doi.org/10.1145/2933575.
2934537. ISBN 9781450343916

6. Behr, N., Sobocinski, P.: Rule algebras for adhesive categories. Log. Methods Com-
put. Sci. 16(3) (2020). https://lmcs.episciences.org/6628

7. Behr, N., Danos, V., Garnier, I.: Combinatorial conversion and moment bisimu-
lation for stochastic rewriting systems. Log. Methods Comput. Sci. 16(3) (2020).
https://lmcs.episciences.org/6628

8. Behr, N., Krivine, J.: Compositionality of rewriting rules with conditions. CoRR
arXiv:1904.09322 (2019)

9. Behr, N., Krivine, J.: Rewriting theory for the life sciences: a unifying framework
for CTMC semantics. In: Gadducci, F., Kehrer, T. (eds.) Proceedings Graph Trans-
formation, 13th International Conference, ICGT 2020. LNCS, vol. 12150. Springer
(2020). https://doi.org/10.1007/978-3-030-51372-6 11

10. Behr, N.: Sesqui-pushout rewriting: concurrency, associativity and rule algebra
framework. Electron. Proc. Theoret. Comput. Sci. 309, 23–52 (2019). https://doi.
org/10.4204/eptcs.309.2. ISSN 2075-2180

11. Behr, N., Danos, V., Garnier, I., Heindel, T.: The algebras of graph rewriting.
CoRR arXiv:1612.06240 (2016)

12. Behr, N., Saadat, M.G., Heckel, R.: Commutators for stochastic rewriting systems:
theory and implementation in Z3. CoRR arXiv:2003.11010 (2020)

13. Bortolussi, L., Hillston, J., Latella, D., Massink, M.: Continuous approximation of
collective system behaviour: a tutorial. Performance Eval. 70(5), 317–349 (2013)

14. Corradini, A., Heindel, T., Hermann, F., König, B.: Sesqui-pushout rewriting. In:
Corradini, A., Ehrig, H., Montanari, U., Ribeiro, L., Rozenberg, G. (eds.) ICGT
2006. LNCS, vol. 4178, pp. 30–45. Springer, Heidelberg (2006). https://doi.org/10.
1007/11841883 4

15. Danos, V., Harmer, R., Honorato-Zimmer, R., Stucki, S.: Deriving rate equations
for site graph rewriting systems. In: Proceedings 4th International Workshop on
Static Analysis and Systems Biology (SASB 2013). Seattle, WA, USA (2013), (to
appear)

https://doi.org/10.1007/978-1-4612-3038-0
https://doi.org/10.14279/tuj.eceasst.30.431.405
https://doi.org/10.1145/2933575.2934537
https://doi.org/10.1145/2933575.2934537
https://lmcs.episciences.org/6628
https://lmcs.episciences.org/6628
http://arxiv.org/abs/1904.09322
https://doi.org/10.1007/978-3-030-51372-6_11
https://doi.org/10.4204/eptcs.309.2
https://doi.org/10.4204/eptcs.309.2
http://arxiv.org/abs/1612.06240
http://arxiv.org/abs/2003.11010
https://doi.org/10.1007/11841883_4
https://doi.org/10.1007/11841883_4

Rate Equations for Graphs 25

16. Danos, V., Heindel, T., Garnier, I., Simonsen, J.G.: Computing continuous-
time markov chains as transformers of unbounded observables. In: Esparza, J.,
Murawski, A.S. (eds.) FoSSaCS 2017. LNCS, vol. 10203, pp. 338–354. Springer,
Heidelberg (2017). https://doi.org/10.1007/978-3-662-54458-7 20

17. Danos, V., Heindel, T., Honorato-Zimmer, R., Stucki, S.: Approximations for
stochastic graph rewriting. In: Merz, S., Pang, J. (eds.) ICFEM 2014. LNCS, vol.
8829, pp. 1–10. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11737-
9 1

18. Danos, V., Heindel, T., Honorato-Zimmer, R., Stucki, S.: Moment semantics for
reversible rule-based systems. In: Krivine, J., Stefani, J.-B. (eds.) RC 2015. LNCS,
vol. 9138, pp. 3–26. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-
20860-2 1

19. Danos, V., Honorato-Zimmer, R., Jaramillo-Riveri, S., Stucki, S.: Coarse-graining
the dynamics of ideal branched polymers. In: Proceedings 3rd International Work-
shop on Static Analysis and Systems Biology (SASB 2012). ENTCS, vol. 313, pp.
47–64 (2015)

20. Durrett, R., et al.: Graph fission in an evolving voter model. Proc. Nat. Acad. Sci.
109(10), 3682–3687 (2012)

21. Dyckhoff, R., Tholen, W.: Exponentiable morphisms, partial products and pullback
complements. J. Pure Appl. Algebra 49(1–2), 103–116 (1987)

22. Ehrig, H., et al.: Algebraic approaches to graph transformation. Part II: Single
pushout approach and comparison with double pushout approach. In: Rozenberg,
G. (ed.) Handbook of Graph Grammars and Computing by Graph Transformation,
pp. 247–312. World Scientific, River Edge, NJ, USA (1997)

23. Ethier, S.N., Kurtz, T.G.: Markov Processes: Characterization and Convergence.
Wiley (1986)

24. Evans, M.R., Ferrari, P.A., Mallick, K.: Matrix representation of the stationary
measure for the multispecies TASEP. J. Stat. Phys. 135(2), 217–239 (2009)

25. Fages, F., Soliman, S.: Formal cell biology in biocham. In: Bernardo, M., Degano,
P., Zavattaro, G. (eds.) SFM 2008. LNCS, vol. 5016, pp. 54–80. Springer, Heidel-
berg (2008). https://doi.org/10.1007/978-3-540-68894-5 3

26. Feret, J., Danos, V., Harmer, R., Krivine, J., Fontana, W.: Internal coarse-graining
of molecular systems. PNAS 106(16), 6453–8 (2009)

27. Gleeson, J.P.: High-accuracy approximation of binary-state dynamics on networks.
Phys. Rev. Lett. 107(6), 068701 (2011)

28. Grima, R., Thomas, P., Straube, A.V.: How accurate are the nonlinear chemical
Fokker-Planck and chemical Langevin equations? J. Chem. Phys. 135(8), 084103
(2011)

29. Habel, A., Pennemann, K.H.: Correctness of high-level transformation systems
relative to nested conditions. Math. Struct. Comput. Sci. 19(2), 245–296 (2009)

30. Harmer, R., Danos, V., Feret, J., Krivine, J., Fontana, W.: Intrinsic information
carriers in combinatorial dynamical systems. Chaos 20(3), 037108-1–037108-16
(2010). https://doi.org/10.1063/1.3491100

31. Hayman, J., Heindel, T.: Pattern graphs and rule-based models: the semantics of
kappa. In: Pfenning, F. (ed.) FoSSaCS 2013. LNCS, vol. 7794, pp. 1–16. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-37075-5 1

32. Heckel, R.: DPO transformation with open maps. In: Ehrig, H., Engels, G., Kre-
owski, H.-J., Rozenberg, G. (eds.) ICGT 2012. LNCS, vol. 7562, pp. 203–217.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33654-6 14

33. Heckel, R., Lajios, G., Menge, S.: Stochastic graph transformation systems. Fun-
dam. Inform. 74(1), 63–84 (2006)

https://doi.org/10.1007/978-3-662-54458-7_20
https://doi.org/10.1007/978-3-319-11737-9_1
https://doi.org/10.1007/978-3-319-11737-9_1
https://doi.org/10.1007/978-3-319-20860-2_1
https://doi.org/10.1007/978-3-319-20860-2_1
https://doi.org/10.1007/978-3-540-68894-5_3
https://doi.org/10.1063/1.3491100
https://doi.org/10.1007/978-3-642-37075-5_1
https://doi.org/10.1007/978-3-642-33654-6_14

26 V. Danos et al.

34. van Kampen, N.: Stochastic Processes in Physics and Chemistry. North-Holland,
3rd edition (2007)

35. Lack, S., Sobociński, P.: Adhesive and quasiadhesive categories. ITA 39(3), 511–
545 (2005)

36. Lopez, C.F., Muhlich, J.L., Bachman, J.A., Sorger, P.K.: Programming biological
models in Python using PySB. Molecular Syst. Biol. 9(1), 602–625 (2013)

37. Löwe, M.: Algebraic approach to single-pushout graph transformation. Theor.
Comput. Sci. 109(1&2), 181–224 (1993)

38. Löwe, M.: Graph rewriting in span-categories. In: Ehrig, H., Rensink, A., Rozen-
berg, G., Schürr, A. (eds.) ICGT 2010. LNCS, vol. 6372, pp. 218–233. Springer,
Heidelberg (2010). https://doi.org/10.1007/978-3-642-15928-2 15

39. Lynch, J.F.: A logical characterization of individual-based models. In: Logic in
Computer Science, 2008. In: 23rd Annual IEEE Symposium on LICS 2008, pp.
379–390. IEEE (2008)

40. Kulik, R., Soulier, P.: Markov chains. Heavy-Tailed Time Series. SSORFE, pp. 373–
423. Springer, New York (2020). https://doi.org/10.1007/978-1-0716-0737-4 14

41. Rensink, A.: Representing first-order logic using graphs. In: Ehrig, H., Engels, G.,
Parisi-Presicce, F., Rozenberg, G. (eds.) ICGT 2004. LNCS, vol. 3256, pp. 319–335.
Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30203-2 23

42. Robinson, E., Rosolini, G.: Categories of partial maps. Inf. Comput. 79(2), 95–130
(1988)

43. Spieksma, F.M.: Kolmogorov forward equation and explosiveness in countable state
Markov processes. Ann. Oper. Res. 2012, 3–22 (2012). https://doi.org/10.1007/
s10479-012-1262-7

44. Stukalin, E.B., Phillips III, H., Kolomeisky, A.B.: Coupling of two motor proteins:
a new motor can move faster. Phys. Rev. Lett. 94(23), 238101 (2005)

45. Thomas, P., Matuschek, H., Grima, R.: Intrinsic noise analyzer: a software pack-
age for the exploration of stochastic biochemical kinetics using the system size
expansion. PLoS ONE 7(6), e38518 (2012)

https://doi.org/10.1007/978-3-642-15928-2_15
https://doi.org/10.1007/978-1-0716-0737-4_14
https://doi.org/10.1007/978-3-540-30203-2_23
https://doi.org/10.1007/s10479-012-1262-7
https://doi.org/10.1007/s10479-012-1262-7

Stationary Distributions and Metastable
Behaviour for Self-regulating Proteins
with General Lifetime Distributions

Candan Çelik1, Pavol Bokes1,2(B), and Abhyudai Singh3

1 Department of Applied Mathematics and Statistics, Comenius University,
84248 Bratislava, Slovakia

{candan.celik,pavol.bokes}@fmph.uniba.sk
2 Mathematical Institute, Slovak Academy of Sciences, 81473 Bratislava, Slovakia
3 Department of Electrical and Computer Engineering, University of Delaware,

Newark, Delaware 19716, USA
absingh@udel.edu

Abstract. Regulatory molecules such as transcription factors are often
present at relatively small copy numbers in living cells. The copy number
of a particular molecule fluctuates in time due to the random occurrence
of production and degradation reactions. Here we consider a stochastic
model for a self-regulating transcription factor whose lifespan (or time
till degradation) follows a general distribution modelled as per a multi-
dimensional phase-type process. We show that at steady state the protein
copy-number distribution is the same as in a one-dimensional model with
exponentially distributed lifetimes. This invariance result holds only if
molecules are produced one at a time: we provide explicit counterexam-
ples in the bursty production regime. Additionally, we consider the case
of a bistable genetic switch constituted by a positively autoregulating
transcription factor. The switch alternately resides in states of up- and
downregulation and generates bimodal protein distributions. In the con-
text of our invariance result, we investigate how the choice of lifetime
distribution affects the rates of metastable transitions between the two
modes of the distribution. The phase-type model, being non-linear and
multi-dimensional whilst possessing an explicit stationary distribution,
provides a valuable test example for exploring dynamics in complex bio-
logical systems.

Keywords: Stochastic gene expression · Master equation · Stationary
distribution · Metastable systems

CÇ is supported by the Comenius University grant for doctoral students Nos.
UK/201/2019 and UK/106/2020. PB is supported by the Slovak Research and Devel-
opment Agency under the contract No. APVV-18-0308, by the VEGA grant 1/0347/18,
and the EraCoSysMed project 4D-Healing. AS is supported by the National Science
Foundation grant ECCS-1711548 and ARO W911NF-19-1-0243.

c© Springer Nature Switzerland AG 2020
A. Abate et al. (Eds.): CMSB 2020, LNBI 12314, pp. 27–43, 2020.
https://doi.org/10.1007/978-3-030-60327-4_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-60327-4_2&domain=pdf
https://doi.org/10.1007/978-3-030-60327-4_2

28 C. Çelik et al.

1 Introduction

Biochemical processes at the single-cell level involve molecules such as tran-
scription factors that are present at low copy numbers [6,50]. The dynamics
of these processes is therefore well described by stochastic Markov processes in
continuous time with discrete state space [16,24,45]. While few-component or
linear-kinetics systems [17] allow for exact analysis, in more complex system one
often uses approximative methods [13], such as moment closure [4], linear-noise
approximation [3,10], hybrid formulations [27,28,35], and multi-scale techniques
[41,42].

In simplest Markovian formulations, the lifetime of a regulatory molecule
is memoryless, i.e. exponentially distributed [11,51]. However, non-exponential
decay patterns have been observed experimentally for both mRNA transcripts
and proteins [19,39]. Therefore, in this paper we shall consider lifetime distri-
butions that can assume far more complex forms than the simple exponential.
Previous studies of gene-expression models with delayed degradation also pro-
vide examples of non-exponential lifetime distributions [14,40].

In Sect. 2, we formulate, both in the deterministic and stochastic settings, a
one-dimensional model for the abundance of a transcription factor with a memo-
ryless lifetime. Since many transcription factors regulate their own gene expres-
sion [2], we allow the production rate to vary with the copy number. We show
that the deterministic solutions tend to the fixed points of the feedback response
function; in the stochastic framework, we provide the stationary distribution of
the protein copy number.

In Sect. 3, we proceed to characterise the steady-state behaviour of a struc-
tured model that accounts for complex lifetime pathways. The model is mul-
tidimensional, each dimension corresponding to a different class and stage of
a molecule’s lifetime; the chosen structure accounts for a wide class of phase-
type lifetime distributions [36,49]. We demonstrate that the deterministic fixed
points and the stochastic stationary distribution that were found for the one-
dimensional framework remain valid for the total protein amount in the multi-
dimensional setting.

We emphasise that the distribution invariance result rests on the assumption
of non-bursty production of protein. The case of bursty production is briefly
discussed in Sect. 4, where explicit counter-examples are constructed by means
of referring to explicit mean and variance formulae available from literature for
systems without feedback [30,38].

In the final Sect. 5, we approximate the stochastic protein distribution by
a mixture of Gaussians with means at deterministic fixed points and vari-
ances given by the linear-noise approximation [9,32]. Additionally, we study
the rates of metastable transitions [43,47] between the Gaussian modes in the
one-dimensional and structured settings.

Stationary Distributions for Self-regulating Proteins 29

X X + 1X − 1

X/τ f(X)/τ

Fig. 1. A diagram of the one-dimensional model. The number of molecules X can
decrease by one or increase by one. The stochastic rates (or propensities) of these
transitions are indicated above the transition edges.

2 One-Dimensional Model

Deterministic framework. The dynamics of the abundance of protein X at time
t can be modelled deterministically by an ordinary differential equation

dX

dt
= τ−1 (f(X) − X) , (1)

which states that the rate of change in X is equal to the difference of production
and decay rates. The decay rate is proportional to X; the factor of proportion-
ality is the reciprocal of the expected lifetime τ . The rate of production per unit
protein lifetime is denoted by f(X) in (1); the dependence of the production
rate on the protein amount X implements the feedback in the model. Equating
the right-hand side of (1) to zero yields

f(X) = X, (2)

meaning that steady states of (1) are given by the fixed point of the production
response function f(X).

Stochastic framework. The stochastic counterpart of (1) is the Markov process
with discrete states X ∈ N0 in continuous time with transitions X → X − 1 or
X → X+1, occurring with rates X/τ and f(X)/τ respectively (see the schematic
in Fig. 1). Note that in case of a constant production rate, i.e. f(X) ≡ λ, the
model turns into the immigration-and-death process [34]; in queueing theory
this is also known as M/M/∞ queue [23]. The stationary distribution of the
immigration–death process is known to be Poissonian with mean equal to λ [34].

For a system with feedback, the probability P (X, t) of having X molecules
at time t satisfies the master equation

dP (X, t)
dt

= τ−1
(
E

−1 − 1
)
f(X)P (X, t) + τ−1 (E − 1) XP (X, t), (3)

in which E is the van-Kampen step operator [32]. Inserting P (X, t) = π(X)
into (3) and solving the resulting difference equation, one finds a steady-state
distribution in the explicit form

π(X) = π(0)
∏X−1

k=0 f(k)
X!

. (4)

30 C. Çelik et al.

The probability π(0) of having zero molecules plays the role of the normalisation
constant in (4), which can be uniquely determined by imposing the normalisation
condition π(0) + π(1) + . . . = 1. Note that inserting f(X) ≡ λ into (4) results in
the aforementioned Poissonian distribution with π(0) = e−λ.

3 Multiclass–multistage Model

In this section, we introduce a structured multiclass–multistage model which is
an extension of one-dimensional model introduced in the previous section. The
fundamentals of the multidimensional model are as shown in Fig. 2. A newly
produced molecule is assigned into one of K distinct classes. Which class is
selected is chosen randomly according to a discrete distribution p1, . . . , pK . The
lifetime of a molecule in the i-th class consists of Si stages. The holding time in
any of these stages is memoryless (exponential), and parametrised by its mean
τij , where i indicates which class and j indicates which stage. Note that

τ =
K∑

i=1

Si∑

j=1

piτij (5)

gives the expected lifetime of a newly produced molecule. After the last (Si-th)
stage, the molecule is degraded. The total distribution of a molecule lifetime is
a mixture, with weights pi, of the lifetime distributions of the individual classes,
each of which is a convolution of exponential distributions of the durations of
the individual stages; such distributions are referred to as phase-type distribu-
tion and provide a wide family of distribution to approximate practically any
distribution of a positive random variable [49].

We denote by Xij the number of molecules in the i-th class and the j-th
stage of their lifetime, by

X = (X11, . . . , X1S1 ,X21, . . . , X2S2 , . . . , XK1, . . . , XKSK
)

the
∑K

i=1 Si-dimensional copy-number vector, and by

‖X‖ =
K∑

i=1

Si∑

j=1

Xij (6)

the total number of molecules across all classes and stages.

Deterministic framework. The deterministic description of the structured model
is given by a system of coupled ordinary differential equations

dXi1

dt
=

pif (‖X‖)
τ

− Xi1

τi1
, i = 1, . . . , K, (7)

dXij

dt
=

Xij−1

τij−1
− Xij

τij
, i = 1, . . . , K and j = 2, . . . , Si. (8)

Stationary Distributions for Self-regulating Proteins 31

∅

© © ©

©

. . .

. . .

. . .

. . .

© ©

© ©

©©

©

©

∅...
...

...
...

...

f(‖X‖)
τ

p1

1
τ11

1
τ12

1
τ21

1
τ22p2

pK

pK−1

1
τK−1,1

1
τK−1,2

1
τK1

1
τK2

1
τK−1,SK−1

1
τK,SK

1
τ1S1

1
τ2S2

Fig. 2. A schematic representation of multiclass–multistage model. A newly produced
molecule is randomly assigned, according to a prescribed distribution p1, . . . , pK , into
one of K distinct classes. The lifetime of a molecule in the i-th class consists of Si con-
secutive memoryless stages, and ends in the degradation of the molecule. The expected
holding time in the j-th stage of the i-th class is τij . The production rate is a function
of the total number ‖X‖ of molecules across all stages and classes.

The right-hand sides of (7)–(8) are each equal to the difference of appropriate
arrival and departure rates at/from a particular compartment of the structured
model. The departure rates are proportional to the number of molecules in the
compartment, with the reciprocal of the holding time giving the factor of pro-
portionality. The arrival rate takes a different form for the first stages (7) and
for the other stages (8). For the first stage, the arrival is obtained by the prod-
uct of the production rate f(‖X‖)/τ and the probability pi of selecting the i-th
class. For the latter stages, the arrival rate is equal to the departure rate of the
previous stage.

Equating (7)–(8) to zero, we find that

pif (‖X‖)
τ

=
Xi1

τi1
=

Xi2

τi2
= . . . =

Xij

τij
(9)

hold at steady state, from which it follows that

Xij =
piτijf (‖X‖)

τ
. (10)

Summing (10) over i = 1, . . . , K and j = 2, . . . , Si, and using (5) and (6), yield

‖X‖ = f (‖X‖) (11)

32 C. Çelik et al.

for the total protein amount (6). Thus, the protein amount at steady state is
obtained, like in the one-dimensional model, by calculating the fixed points of
the feedback response function.

Combining (11) and (9) we find

Xij =
piτij‖X‖

τ
, (12)

which means that at steady state the total protein amount is distributed among
the compartments proportionally to the product of class assignment probability
and the mean holding time of the particular compartment.

Stochastic framework. Having shown that the stationary behaviour of the one-
dimensional and the structured multi-dimensional models are the same in the
deterministic framework, we next aim to demonstrate that the same is also true
in the stochastic context. Prior to turning our attention to the feedback system,
it is again instructive to discuss the case without regulation, i.e. f(‖X‖) ≡ λ;
the new molecule arrivals are then exponentially distributed. In the language of
queueing theory, the process can be reinterpreted as the M/G/∞ queue with
exponential arrivals of customers, a general phase-type distribution of service
times, and an infinite number of servers. It is well known that the steady-state
distribution of an M/G/∞ queue is Poisson with mean equal to λ [44]. Thus,
without feedback, we obtain the very same Poisson(λ) distribution that applies
in the one-dimensional case.

In the feedback case, the probability P (X, t) of having X = (X11, . . . , XK,SK
)

copy numbers in the individual compartments at any time t satisfies the master
equation

dP (X, t)
dt

= τ−1
K∑

i=1

pi

(
E

−1
i1 − 1

)
f(‖X‖)P (X, t) (13)

+
K∑

i=1

Si−1∑

j=1

τ−1
ij

(
EijE

−1
ij+1 − 1

)
XijP (X, t) (14)

+
K∑

i=1

τ−1
iSi

(EiSi
− 1) XiSi

P (X, t). (15)

The right-hand-side terms (13), (14), and (15) stand for the change in probability
mass function due to the production, moving to next stage, and decay reactions,
respectively. Note that Eij is a step operator which increases the copy number of
molecules in the i-th class at the j-th stage by one [32]. Likewise, E−1

ij decreases
the same copy number by one. Rearrangement of terms in the master equation
yields

Stationary Distributions for Self-regulating Proteins 33

dP (X, t)
dt

=
K∑

i=1

(
τ−1piE

−1
i1 f(‖X‖)P (X, t) − τ−1

i1 Xi1P (X, t)
)

+
K∑

i=1

Si−1∑

j=1

(
τ−1
ij EijE

−1
ij+1XijP (X, t) − τ−1

ij+1Xij+1P (X, t)
)

+
K∑

i=1

τ−1
iSi

EiSi
XiSi

P (X, t) − τ−1f(‖X‖)P (X, t).

Equating the derivative to zero, we derive for the stationary distribution π(X)
an algebraic system

0 =
K∑

i=1

(
τ−1piE

−1
i1 f(‖X‖)π(X) − τ−1

i1 Xi1π(X)
)

+
K∑

i=1

Si−1∑

j=1

(
τ−1
ij EijE

−1
ij+1Xijπ(X) − τ−1

ij+1Xij+1π(X)
)

+
K∑

i=1

τ−1
iSi

EiSi
XiSi

π(X) − τ−1f(‖X‖)π(X).

(16)

Clearly, it is sufficient that

τ−1piE
−1
i1 f(‖X‖)π(X) = τ−1

i1 Xi1π(X),

τ−1
ij EijE

−1
ij+1Xijπ(X) = τ−1

ij+1Xij+1π(X),
K∑

i=1

τ−1
iSi

EiSi
XiSi

π(X) = τ−1f(‖X‖)π(X)

(17)

hold for π(X) in order that (16) be satisfied. One checks by direct substitution
that

π(X) ∝
‖X‖−1∏

k=0

f(k) ×
K∏

i=1

Si∏

j=1

(piτij/τ)Xij

Xij !
(18)

satisfies (17); therefore, (18) represents the stationary distribution of the struc-
tured model. In order to interpret (18), we condition the joint distribution on
the total protein copy number, writing

π(X) = πcond(X | ‖X‖)πtot(‖X‖), (19)

in which the conditional distribution is recognised as the multinomial [31]

πcond(X | ‖X‖) =
(‖X‖

X

) K∏

i=1

Si∏

j=1

(piτij/τ)Xij , (20)

and the total copy number distribution is given by

34 C. Çelik et al.

πtot(‖X‖) = πtot(0)
∏‖X‖−1

k=0 f(k)
‖X‖!

. (21)

By (20), the conditional means of Xij coincide with the deterministic parti-
tioning of the total copy number (12). Importantly, comparing (21) to (4), we
conclude that the one-dimensional and multi-dimensional models generate the
same (total) copy number distributions.

4 Bursting

The independence of stationary distribution on the lifetime distribution relies
on the assumption of non-bursty production of protein that has implicitly been
made in our model. In this section, we allow for the synthesis of protein in
bursts of multiple molecules at a single time [15,18]. Referring to previously
published results [30,38], we provide a counterexample that demonstrates that
in the bursty case different protein lifetime distributions can lead to different
stationary copy-number distributions. The counterexample can be found even in
the absence of feedback.

Bursty production means that the number of molecules can increase within
an infinitesimally small time interval of length dt from X to X + j, where j ≥ 1,
with probability λτ−1bjdt, in which λ is the burst frequency (a constant in the
absence of feedback), τ is the mean protein lifetime, and bj = Prob[B = j] is
the probability mass function of the burst size B. Protein molecules degrade
independently of one another. The distribution of their lifetime T can in general
be described by the survival function G(t) = Prob[T > t]; the mean lifetime
thereby satisfies

τ = −
∫ ∞

0

tG′(t)dt =
∫ ∞

0

G(t)dt. (22)

The copy protein number X at a given time is given by the number of products
that have been produced in a past burst and survived until the given time; this
defines a random process, cf. [30], whose steady-state moments are provided
below. In queueing theory, bursty increases in the state variable are referred to
as batch customer arrivals. Specifically, a bursty gene-expression model without
feedback and with general lifetime distribution corresponds to the MX/G/∞
queue with memoryless (exponential) batch arrivals, general service distribution,
and an infinite number of servers.

Previous analyses [30,38] show that the steady-state protein mean 〈X〉 and
the Fano factor F = Var(X)/〈X〉 are given by

〈X〉 = λ〈B〉, F = 1 + Ks

(〈B2〉
〈B〉 − 1

)
, (23)

where

Ks =

∫ ∞
0

G2(t)dt

τ
(24)

Stationary Distributions for Self-regulating Proteins 35

is referred to as the senescence factor. Elementary calculation shows that Ks =
1/2 if the lifetime distribution is exponential with survival function G(t) =
e−t/τ and that Ks = 1 if the lifetime distribution is deterministic with survival
function G(t) = 1 for t < τ and G(t) = 0 for t ≥ τ . Thus, although two
lifetime distributions result in the same value of the stationary mean protein
copy number, they give a different value of the noise (the Fano factor); therefore
the copy-number distributions are different.

5 Metastable Transitioning

Transcription factors that self-sustain their gene expression by means of a posi-
tive feedback loop can act as a simple genetic switch [5,22]. A positive-feedback
switch can be in two states, one in which the gene is fully activated through
its feedback loop, while in the other the gene is expressed at a basal level. The
switch serves as a basic memory unit, retaining the information on its initial
state on long timescales, and very slowly relaxing towards an equilibrium dis-
tribution. It is therefore important to investigate not only the stationary, but
also transient distributions, which are generated by a positively autoregulating
transcription factor.

Fig. 3. Left: A sigmoid feedback response function (blue curve) intersects the diagonal
(orange line) in multiple fixed points. Ones that are stable to the rate Eq. (1) (full
circles) are interspersed by unstable ones (empty circle). Right: The potential u(x),
defined by (33), is a Lyapunov function of the rate Eq. (1). The local minima, or
the troughs/wells, of the potential are situated at its stable fixed points; the local
maximum, or the barrier, of the potential coincides with the unstable fixed point.
Parameter values for both panels: We use the Hill-type response (25) with a0 = 0.3,
a1 = 1.6, H = 4, Ω = 50.(Color figure online)

Following previous studies [7,12,21], we model positive feedback by the Hill
function response curve

f(X) = Ω

(
a0 +

a1X
H

ΩH + XH

)
, (25)

36 C. Çelik et al.

in which a0 and a1 represent the basal and regulable production rates, H is the
cooperativity coefficient, and Ω gives the critical amount of protein required for
half-stimulation of feedback. Provided that H > 1, one can find a0 and a1 such
that (25) possesses three distinct fixed points X− < X0 < X+, of which the
central is unstable and the other two are stable (Fig. 3, left). The two stable
fixed points provide alternative large-time outcomes of the deterministic models
(1) and (7)–(8).

Bistability of deterministic models translates into bimodal distributions in
the stochastic framework. For large values of Ω, the bimodal protein distribution
can be approximated by a mixture of Gaussian modes which are located at the
stable fixed points X± (see Fig. 4), cf. [9,32],

P (X, t) ∼ p−(t)
e
− (X−X−)2

2σ2−√
2πσ−

+ p+(t)
e
− (X−X+)2

2σ2
+√

2πσ+

. (26)

The mixture approximation (26) is determined not only by the locations X±,
but also on the variances σ2

± and the weights p±(t) of the two modes (which

Fig. 4. Exact stationary protein distribution (4) and the Gaussian-mixture approxima-
tion (26) in varying system-size conditions. The means of the Gaussians are given by the
stable fixed points of f(X); the variances are given by linear-noise approximation (27).
The mixture weights are given by p+(∞) = T+/(T+ + T−), p−(∞) = T−/(T+ + T−),
where the residence times are given by the Arrhenius-type formula (32). We use a Hill-
type response (25) with a0 = 0.3, a1 = 1.6, H = 4, and Ω shown in panel captions.

Stationary Distributions for Self-regulating Proteins 37

are given below). The weights in (26) are allowed to vary with time in order to
account for the slow, metastable transitions that occur between the distribution
modes.

The invariance result for stationary distributions derived in the preceding
sections implies that, in the limit of t → ∞, the protein distribution (26) becomes
independent of the choice of the protein lifetime distribution. In particular, the
same variances σ2

± and the same limit values p±(∞) of the weights will apply for
exponentially distributed and phase-type decay processes. In what follows, we
first consult literature to provide results σ2

± and p±(t) that apply for the one-
dimensional model with exponential decay. Next, we use stochastic simulation to
investigate the effect of phase-type lifespan distributions on the relaxation rate
of p±(t) to the stationary values.

The variances of the modes are obtained by the linear-noise approximation
[37,48] of the master Eq. (3), which yields

σ2
± =

X±
1 − f ′(X±)

; (27)

the right-hand side of (27) is equal to the ratio of a fluctuation term (equal to
the number of molecules) to a dissipation term (obtained by linearising the rate
Eq. (1) around a stable fixed point).

The metastable transitions between the distribution modes can be described
by a random telegraph process (cf. Fig. 5, left), cf. [46],

 1/T−−−−⇀↽−−−
1/T+

⊕, (28)

in which the lumped states and ⊕ correspond to the basins of attractions of
the two stable fixed points; T− and T+ are the respective residence times. The
mixture weights p−(t) and p+(t) in (26) are identified with the probabilities of
the lumped states in (28); these satisfy the Chapman–Kolmogorov equations [8]

dp−
dt

= − p−
T−

+
p+
T+

,
dp+
dt

=
p−
T−

− p+
T+

, (29)

which admit an explicit solution

p+(t) =
T+

T+ + T−
+

(
p+(0) − T+

T+ + T−

)
exp

(
−

(
1

T+
+

1
T−

)
t

)
, (30)

p−(t) =
T−

T+ + T−
+

(
p−(0) − T−

T+ + T−

)
exp

(
−

(
1

T+
+

1
T−

)
t

)
. (31)

The initial probability p+(0) = 1 − p−(0) is set to one or zero in (30)–(31)
depending on whether the model is initialised in the neighbourhood of the upper
or the lower stable fixed point.

With (30)–(31) at hand, the problem of determining the mixture weights
in (26) is reduced to that of determining the residence times T±. Previous

38 C. Çelik et al.

large-deviation and WKB analyses of the one-dimensional model [20,25,26] pro-
vide an Arrhenius-type formula

T± = 2πτX−1
± σ±

√
−σ2

0 exp(u(X0) − u(X±)). (32)

Formula (32) features, on top of the familiar symbols (the mean lifetime τ ,
fixed points X± and X0, linearised variances σ±, and the Ludolph-van-Ceulen
constant π), two new symbols: a value σ2

0 and a function u(X). The value σ2
0

is readily calculated by inserting 0 instead of ± into the fluctuation–dissipation
relation (27); note that for the unstable fixed point X0, the denominator in (27)
is negative (cf. Fig. 3, left), which renders the whole fraction also negative.

In analogy with the Arrhenius law, the function u(X) represents an “energy”
of state X, and is given here explicitly by an indefinite integral [20,25,26]

u(X) =
∫

ln
(

X

f(X)

)
dX. (33)

Note that the derivative of (33),

u′(X) = ln
(

X

f(X)

)
, (34)

is zero if f(X) = X, i.e. at the fixed points of the feedback response function,
is negative if f(X) > X and positive if f(X) < X. Substituting into (33) the

Fig. 5. Left: Large-time stochastic trajectories of a structured two-class model with
parameters as given below. The horizontal lines represent deterministic fixed points as
given by (11)–(12). Right: The number of trajectories, out of 104 simulation repeats,
that reside in the basin of attraction of the upper stable fixed point as function of time.
Simulation is initiated at the upper stable fixed point (the decreasing function) or at
the lower stable fixed point (the increasing function). The dashed black curve gives the
theoretical probability (30) with initial condition p+(0) = 1 (the decreasing solution)
or p+(0) = 0 (the increasing solution). Parameter values: The Hill-function parameters
are: Ω = 50, H = 4, a0 = 0.3, a1 = 1.6. The mean lifetime is τ = 1. The two-stage
model parameters are: K = 1, p1 = 1, S1 = 2, τ11 = τ12 = 0.5. The two-class model
parameters are: K = 2, p1 = 1/6, p2 = 5/6, S1 = S2 = 1, τ11 = 3, τ21 = 3/5.

Stationary Distributions for Self-regulating Proteins 39

solution X = X(t) to the deterministic rate Eq. (1) and evaluating the time
derivative, we find

du(X(t))
dt

= u′(X(t))
dX(t)

dt
= τ−1(f(X) − X) ln

(
X

f(X)

)∣
∣
∣
∣
X=X(t)

≤ 0, (35)

with equality in (35) holding if and only if X is a fixed point of the feedback
response function f(X). Therefore, the energy function u(X) is a Lyapunov
function of the ordinary differential Eq. (1) (Fig. 3, right). The exponentiation in
(32) dramatically amplifies the potential difference between the stable and the
unstable fixed points. For example, a moderately large potential barrier, say 5
(which is about the height of the potential barrier in Fig. 3, right), introduces
a large factor e5 ≈ 150 in (32). This confirms an intuition that metastable
transitions between the distribution modes are very (exponentially) slow.

The random telegraph solution (30) is compared in Fig. 5 to the residence of
stochastically generated trajectories in the basin of attraction of the upper fixed
point. The agreement is close for simulations of the one-dimensional model (with
an exponential lifetime) and for a structured model with one class and two stages
(with an Erlangian lifetime). For a two-class model (with an exponential mixture
lifetime), the transitioning also occurs on the exponentially slow timescale, but
is perceptibly slower. Sample trajectories were generated in Python’s package for
stochastic simulation of biochemical systems GillesPy2 [1]. The one-dimensional
model was initiated with �X+� molecules. The two species in the two-stage and
two-class models were initiated to S and �X+� − S, where S was drawn from
the binomial distribution Binom(�X+�, 0.5).

6 Discussion

In this paper we studied a stochastic chemical reaction system for a self-
regulating protein molecule with exponential and phase-type lifetimes. We
demonstrated that the exponential and phase-type models support the same
stationary distribution of the protein copy number. While stationary distribu-
tions of similar forms have previously been formulated in the context of queueing
theory [23,29,33], our paper provides a self-contained and concise treatment of
the one-dimensional model and the multi-dimensional structured model that is
specifically tailored for applications in systems biology.

We showed that the invariance result rests on the assumption of non-bursty
production of protein. We demonstrated that, in the presence of bursts, expo-
nential and deterministic lifetimes generate stationary protein-level distributions
with different variances.

Deterministic modelling approaches are used in systems biology as widely
as stochastic ones. Therefore, we complemented the stationary analysis of the
stochastic Markov-chain models by a fixed-point analysis of deterministic mod-
els based on differential equations. The result is that, irrespective of lifetime
distribution, the deterministic protein level is attracted, for large times, to the

40 C. Çelik et al.

stable fixed points of the feedback response function. Connecting the stochastic
and deterministic frameworks, we demonstrated that the stationary distribu-
tion of the Markovian model is sharply peaked around the fixed points of the
deterministic equation. We showed that the distribution can be approximated
by a mixture of Gaussian modes with means given by the deterministic fixed
points and variances that are consistent with the traditional linear-noise analy-
sis results.

Next, we focused on the transitions between the distribution modes. These
occur rarely with rates that are exponentially small. We compared an asymptotic
result, derived in previous literature for the one-dimensional model, to stochastic
simulation results of the one-dimensional model and two specific structured mod-
els: we chose a model with one class and two stages and a model with two classes
each with one stage. The simulation results of the one-dimensional and two-stage
models agreed closely to the theoretical prediction; intriguingly, the agreement
with theory was closer for the two-stage model. On the other hand, a two-class
model showed slower transitioning rates. The theoretical asymptotic results have
been derived in [20,25,26] only for the one-dimensional model. Large deviations
in multi-dimensional models are much harder to quantify than one-variable ones.
We believe that the current model, being multi-dimensional while possessing a
tractable steady-state distribution, provides a convenient framework on which
such methodologies can be developed.

In summary, our study provides an invariance-on-lifetime-distribution result
in the deterministic and stochastic contexts for a non-bursty regulatory protein.
While the main results concern the stationary behaviour, our study also performs
simulation, and opens avenue for future enquiries, into the transient transitioning
dynamics.

References

1. Abel, J.H., Drawert, B., Hellander, A., Petzold, L.R.: GillesPy: a python package
for stochastic model building and simulation. IEEE Life Sci. Lett. 2(3), 35–38
(2017)

2. Alon, U.: An Introduction to Systems Biology: Design Principles of Biological
Circuits. Chapman & Hall/CRC (2007)

3. Andreychenko, A., Bortolussi, L., Grima, R., Thomas, P., Wolf, V.: Distribution
approximations for the chemical master equation: comparison of the method of
moments and the system size expansion. In: Graw, F., Matthäus, F., Pahle, J. (eds.)
Modeling Cellular Systems. CMCS, vol. 11, pp. 39–66. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-45833-5 2

4. Backenköhler, M., Bortolussi, L., Wolf, V.: Control variates for stochastic sim-
ulation of chemical reaction networks. In: Bortolussi, L., Sanguinetti, G. (eds.)
CMSB 2019. LNCS, vol. 11773, pp. 42–59. Springer, Cham (2019). https://doi.
org/10.1007/978-3-030-31304-3 3

5. Becskei, A., Séraphin, B., Serrano, L.: Positive feedback in eukaryotic gene net-
works: cell differentiation by graded to binary response conversion. EMBO J. 20,
2528–2535 (2001)

https://doi.org/10.1007/978-3-319-45833-5_2
https://doi.org/10.1007/978-3-030-31304-3_3
https://doi.org/10.1007/978-3-030-31304-3_3

Stationary Distributions for Self-regulating Proteins 41

6. Blake, W., Kaern, M., Cantor, C., Collins, J.: Noise in eukaryotic gene expression.
Nature 422, 633–637 (2003)

7. Bokes, P., Lin, Y., Singh, A.: High cooperativity in negative feedback can amplify
noisy gene expression. Bull. Math. Biol. 80, 1871–1899 (2018)

8. Bokes, P.: Postponing production exponentially enhances the molecular memory
of a stochastic switch. BioRxiv (2020). https://doi.org/10.1101/2020.06.19.160754

9. Bokes, P., Borri, A., Palumbo, P., Singh, A.: Mixture distributions in a stochastic
gene expression model with delayed feedback: a WKB approximation approach. J.
Math. Biol. 81, 343–367 (2020). https://doi.org/10.1007/s00285-020-01512-y

10. Bokes, P., Hojcka, M., Singh, A.: Buffering gene expression noise by microRNA
based feedforward regulation. In: Češka, M., Šafránek, D. (eds.) CMSB 2018.
LNCS, vol. 11095, pp. 129–145. Springer, Cham (2018). https://doi.org/10.1007/
978-3-319-99429-1 8

11. Bokes, P., King, J.R., Wood, A.T., Loose, M.: Exact and approximate distributions
of protein and mRNA levels in the low-copy regime of gene expression. J. Math.
Biol. 64, 829–854 (2012). https://doi.org/10.1007/s00285-011-0433-5

12. Bokes, P., Singh, A.: Controlling noisy expression through auto regulation of burst
frequency and protein stability. In: Češka, M., Paoletti, N. (eds.) HSB 2019. LNCS,
vol. 11705, pp. 80–97. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
28042-0 6

13. Bortolussi, L., Lanciani, R., Nenzi, L.: Model checking Markov population models
by stochastic approximations. Inf. Comput. 262, 189–220 (2018)

14. Bratsun, D., Volfson, D., Tsimring, L.S., Hasty, J.: Delay-induced stochastic oscil-
lations in gene regulation. Proc. Natl. Acad. Sci. U.S.A. 102(41), 14593–14598
(2005)

15. Cai, L., Friedman, N., Xie, X.: Stochastic protein expression in individual cells at
the single molecule level. Nature 440, 358–362 (2006)

16. Cinquemani, E.: Identifiability and reconstruction of biochemical reaction networks
from population snapshot data. Processes 6(9), 136 (2018)

17. Cinquemani, E.: Stochastic reaction networks with input processes: analysis and
application to gene expression inference. Automatica 101, 150–156 (2019)

18. Dar, R.D., Razooky, B.S., Singh, A., Trimeloni, T.V., McCollum, J.M., Cox, C.D.,
Simpson, M.L., Weinberger, L.S.: Transcriptional burst frequency and burst size
are equally modulated across the human genome. Proc. Natl. Acad. Sci. U.S.A.
109, 17454–17459 (2012)

19. Deneke, C., Lipowsky, R., Valleriani, A.: Complex degradation processes lead to
non-exponential decay patterns and age-dependent decay rates of messenger RNA.
PLoS ONE 8(2), e55442 (2013)

20. Escudero, C., Kamenev, A.: Switching rates of multistep reactions. Phys. Rev. E
79(4), 041149 (2009)

21. Friedman, N., Cai, L., Xie, X.: Linking stochastic dynamics to population distri-
bution: an analytical framework of gene expression. Phys. Rev. Lett. 97, 168302
(2006)

22. Griffith, J.: Mathematics of cellular control processes II. Positive feedback to one
gene. J. Theor. Biol. 20(2), 209–216 (1968)

23. Gross, D.: Fundamentals of Queueing Theory. Wiley, Hoboken (2008)
24. Guet, C., Henzinger, T.A., Igler, C., Petrov, T., Sezgin, A.: Transient memory in

gene regulation. In: Bortolussi, L., Sanguinetti, G. (eds.) CMSB 2019. LNCS, vol.
11773, pp. 155–187. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
31304-3 9

https://doi.org/10.1101/2020.06.19.160754
https://doi.org/10.1007/s00285-020-01512-y
https://doi.org/10.1007/978-3-319-99429-1_8
https://doi.org/10.1007/978-3-319-99429-1_8
https://doi.org/10.1007/s00285-011-0433-5
https://doi.org/10.1007/978-3-030-28042-0_6
https://doi.org/10.1007/978-3-030-28042-0_6
https://doi.org/10.1007/978-3-030-31304-3_9
https://doi.org/10.1007/978-3-030-31304-3_9

42 C. Çelik et al.

25. Hanggi, P., Grabert, H., Talkner, P., Thomas, H.: Bistable systems: master equa-
tion versus Fokker-Planck modeling. Phys. Rev. A 29(1), 371 (1984)

26. Hinch, R., Chapman, S.J.: Exponentially slow transitions on a Markov chain: the
frequency of calcium sparks. Eur. J. Appl. Math. 16(04), 427–446 (2005)

27. Innocentini, G.C.P., Antoneli, F., Hodgkinson, A., Radulescu, O.: Effective com-
putational methods for hybrid stochastic gene networks. In: Bortolussi, L., San-
guinetti, G. (eds.) CMSB 2019. LNCS, vol. 11773, pp. 60–77. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-31304-3 4

28. Innocentini, G.C., Hodgkinson, A., Radulescu, O.: Time dependent stochastic
mRNA and protein synthesis in piecewise-deterministic models of gene networks.
Front. Phys. 6, 46 (2018)

29. Jackson, J.R.: Jobshop-like queueing systems. Manage. Sci. 10(1), 131–142 (1963)
30. Jia, T., Kulkarni, R.: Intrinsic noise in stochastic models of gene expression with

molecular memory and bursting. Phys. Rev. Lett. 106(5), 58102 (2011)
31. Johnson, N., Kotz, S., Kemp, A.: Univariate Discrete Distributions, 3rd edn. Wiley,

Hoboken (2005)
32. van Kampen, N.: Stochastic Processes in Physics and Chemistry. Elsevier, Ams-

terdam (2006)
33. Kelly, F.P.: Reversibility and Stochastic Networks. Cambridge University Press,

Cambridge (2011)
34. Kendall, D.: Stochastic processes and population growth. J. Roy. Stat. Soc. B 11,

230–282 (1949)
35. Kurasov, P., Lück, A., Mugnolo, D., Wolf, V.: Stochastic hybrid models of gene

regulatory networks – a PDE approach. Math. Biosci. 305, 170–177 (2018)
36. Lagershausen, S.: Performance Analysis of Closed Queueing Networks, vol. 663.

Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32214-3
37. Lestas, I., Paulsson, J., Ross, N., Vinnicombe, G.: Noise in gene regulatory net-

works. IEEE Trans. Circ. I 53(1), 189–200 (2008)
38. Liu, L., Kashyap, B., Templeton, J.: On the GIX/G/∞ system. J. Appl. Probab.

27(3), 671–683 (1990)
39. McShane, E., Sin, C., Zauber, H., Wells, J.N., Donnelly, N., Wang, X., Hou, J.,

Chen, W., Storchova, Z., Marsh, J.A., et al.: Kinetic analysis of protein stability
reveals age-dependent degradation. Cell 167(3), 803–815 (2016)

40. Miȩkisz, J., Poleszczuk, J., Bodnar, M., Foryś, U.: Stochastic models of gene expres-
sion with delayed degradation. Bull. Math. Biol. 73(9), 2231–2247 (2011)

41. Michaelides, M., Hillston, J., Sanguinetti, G.: Geometric fluid approximation for
general continuous-time Markov chains. Proc. Roy. Soc. A 475(2229), 20190100
(2019)

42. Michaelides, M., Hillston, J., Sanguinetti, G.: Statistical abstraction for multi-scale
spatio-temporal systems. ACM Trans. Model. Comput. Simul. 29(4), 1–29 (2019)

43. Newby, J., Chapman, S.J.: Metastable behavior in Markov processes with internal
states. J. Math. Biol. 69(4), 941–976 (2014)

44. Norris, J.R.: Markov Chains. Cambridge Univ Press, Cambridge (1998)
45. Prajapat, M.K., Ribeiro, A.S.: Added value of autoregulation and multi-step kinet-

ics of transcription initiation. R. Soc. Open Sci. 5(11), 181170 (2018)
46. Ross, S.M.: Introduction to probability models. Academic Press, Cambridge (2014)
47. Samal, S.S., Krishnan, J., Esfahani, A.H., Lüders, C., Weber, A., Radulescu, O.:

Metastable regimes and tipping points of biochemical networks with potential
applications in precision medicine. In: Liò, P., Zuliani, P. (eds.) Automated Reason-
ing for Systems Biology and Medicine. CB, vol. 30, pp. 269–295. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-17297-8 10

https://doi.org/10.1007/978-3-030-31304-3_4
https://doi.org/10.1007/978-3-642-32214-3
https://doi.org/10.1007/978-3-030-17297-8_10

Stationary Distributions for Self-regulating Proteins 43

48. Schnoerr, D., Sanguinetti, G., Grima, R.: Approximation and inference methods
for stochastic biochemical kinetics–a tutorial review. J. Phys. A: Math. Theor.
50(9), 093001 (2017)

49. Soltani, M., Vargas-Garcia, C.A., Antunes, D., Singh, A.: Intercellular variability
in protein levels from stochastic expression and noisy cell cycle processes. PLoS
Comput. Biol. 12(8), e1004972 (2016)

50. Taniguchi, Y., Choi, P., Li, G., Chen, H., Babu, M., Hearn, J., Emili, A., Xie, X.:
Quantifying E. coli proteome and transcriptome with single-molecule sensitivity in
single cells. Science 329, 533–538 (2010)

51. Thattai, M., van Oudenaarden, A.: Intrinsic noise in gene regulatory networks.
Proc. Natl. Acad. Sci. U.S.A. 98(15), 8614–8619 (2001)

Accelerating Reactions at the DNA Can
Slow Down Transient Gene Expression

Pavol Bokes3, Julia Klein1, and Tatjana Petrov1,2(B)

1 Department of Computer and Information Sciences, University of Konstanz,
Konstanz, Germany

tatjana.petrov@gmail.com
2 Centre for the Advanced Study of Collective Behaviour, University of Konstanz,

Konstanz, Germany
3 Department of Applied Mathematics and Statistics, Comenius University,

Bratislava, Slovakia

Abstract. The expression of a gene is characterised by the upstream
transcription factors and the biochemical reactions at the DNA pro-
cessing them. Transient profile of gene expression then depends on the
amount of involved transcription factors, and the scale of kinetic rates of
regulatory reactions at the DNA. Due to the combinatorial explosion of
the number of possible DNA configurations and uncertainty about the
rates, a detailed mechanistic model is often difficult to analyse and even
to write down. For this reason, modelling practice often abstracts away
details such as the relative speed of rates of different reactions at the
DNA, and how these reactions connect to one another. In this paper, we
investigate how the transient gene expression depends on the topology
and scale of the rates of reactions involving the DNA. We consider a
generic example where a single protein is regulated through a number
of arbitrarily connected DNA configurations, without feedback. In our
first result, we analytically show that, if all switching rates are uniformly
speeded up, then, as expected, the protein transient is faster and the
noise is smaller. Our second result finds that, counter-intuitively, if all
rates are fast but some more than others (two orders of magnitude vs.
one order of magnitude), the opposite effect may emerge: time to equili-
bration is slower and protein noise increases. In particular, focusing on
the case of a mechanism with four DNA states, we first illustrate the phe-
nomenon numerically over concrete parameter instances. Then, we use
singular perturbation analysis to systematically show that, in general,
the fast chain with some rates even faster, reduces to a slow-switching
chain. Our analysis has wide implications for quantitative modelling of

TP’s research is supported by the Ministry of Science, Research and the Arts of the
state of Baden-Württemberg, and the DFG Centre of Excellence 2117 ‘Centre for the
Advanced Study of Collective Behaviour’ (ID: 422037984), JK’s research is supported
by Committee on Research of Univ. of Konstanz (AFF), 2020/2021. PB is supported
by the Slovak Research and Development Agency under the contract No. APVV-18-
0308 and by the VEGA grant 1/0347/18. All authors would like to acknowledge Jacob
Davidson and Stefano Tognazzi for useful discussions and feedback.

c© Springer Nature Switzerland AG 2020
A. Abate et al. (Eds.): CMSB 2020, LNBI 12314, pp. 44–60, 2020.
https://doi.org/10.1007/978-3-030-60327-4_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-60327-4_3&domain=pdf
https://doi.org/10.1007/978-3-030-60327-4_3

Accelerating Reactions at the DNA 45

gene regulation: it emphasises the importance of accounting for the net-
work topology of regulation among DNA states, and the importance of
accounting for different magnitudes of respective reaction rates. We con-
clude the paper by discussing the results in context of modelling general
collective behaviour.

1 Introduction

Gene regulation is one of the most fundamental processes in living systems. The
experimental systems of lac operon in bacteria E. coli and the genetic switch of
bacteriophage lambda virus allowed to unravel the basic molecular mechanisms
of how a gene is turned on and off. These were followed by a molecular-level
explanation of stochastic switching between lysis and lysogeny of phage [22],
all the way to more complex logic gate formalisms that attempt to abstract
more complex biological behaviour [6,12,21]. To date, synthetic biology has
demonstrated remarkable success in engineering simple genetic circuits that are
encoded in DNA and perform their function in vivo. However, significant concep-
tual challenges remain, related to the still unsatisfactory quantitative but also
qualitative understanding of the underlying processes [19,30]. Partly, this is due
to the unknown or unspecified interactions in experiments in vivo (crosstalk,
host-circuit interactions, loading effect). Another major challenge towards ratio-
nal and rigorous design of synthetic circuits is computational modelling: gene
regulation has a combinatorial number of functional entities, it is inherently
stochastic, exhibits multiple time-scales, and experimentally measuring kinetic
parameters/rates is often difficult, imprecise or impossible. In such context, pre-
dicting the transient profile - how gene expression in a population of cells evolves
over time - becomes a computationally expensive task. However, predicting how
the transient phenotype emerges from the mechanistic, molecular interactions,
is crucial both for engineering purposes of synthetic biology (e.g. when com-
posing synthetic systems), as well as for addressing fundamental biological and
evolutionary questions (e.g. for understanding whether the cell aims to create
variability by modulating timing).

Mechanistically, the transcription of a single gene is initiated whenever a sub-
unit of RNA polymerase binds to that gene’s promoter region at the DNA [35].
While such binding can occur spontaneously, it is typically promoted or inhibited
through other species involved in regulation, such as proteins and transcription
factors (TFs). Consequently, the number of possible molecular configurations of
the DNA grows combinatorially with the number of operator sites regulating the
gene in question. For instance, one hypothesised mechanism in lambda-phage,
containing only three left and three right operators, leads to 1200 different DNA
configurations [31]. The combinatorial explosion of the number of possible con-
figurations makes the model tedious to even write down, let alone execute and
make predictions about it. The induced stochastic process enumerates states
which couple the configuration of the DNA, with the copy number of the pro-
tein, and possibly other species involved in regulation, such as mRNA and tran-
scription factors. In order to faithfully predict the stochastic evolution of the

46 P. Bokes et al.

gene product (protein) over time, the modelled system can be solved numeri-
cally, by integrating the Master equation of the stochastic process. This is often
prohibitive in practice, due to large dimensionality and a combinatorial num-
ber of reachable states. For this reason, modelling practice often abstracts away
details and adds assumptions. One popular approach is simulating the system
by Gillespie simulation [7] and statistically inferring the protein expression pro-
file, hence trading off accuracy and precision. Other approaches are based on
mean-field approximations (e.g. deterministic limit [17] and linear-noise approx-
imation [5]), significantly reducing the computational effort. However, mean-field
models do not capture the inherent stochasticity, which is especially prominent
in gene regulation. Further model reduction ideas exploit multi-scaleness of the
system: fast subsystems are identified (possibly dynamically), and assumed to be
reaching an equilibrium fast, relative to the observable dynamics [2,13,29,34].
A special class of reductions based on steady-state assumption is the experi-
mentalists’ favourite approach of statistical thermodynamics limit. This widely
and successfully used method (e.g. [3,24,33]) estimates the probability of being
in any of the possible DNA binding configurations from their relative binding
energies (Boltzmann weights) and the protein concentrations, both of which can
often be experimentally accessed. The statistical thermodynamics limit model
is rooted in the argument that, when the switching rates among DNA config-
urations are fast, the probability distribution over the configurations is rapidly
arriving at its stationary distribution. While this model takes into account the
stochasticity inherent to the DNA binding configurations, it neglects the tran-
sient probabilities in the DNA switching, before the equilibrium is reached. It
abstracts away the relative speed of rates of different reactions at the DNA, and
how they connect to one another. The question arises: how does the transient
gene expression - its shape and duration - depend on the topology and scale of the
rates of reactions involving the DNA? Is it justifiable, in this context, to consider
sufficiently fast propensities as an argument for applying a (quasi-)steady-state
assumption?

In this paper, we investigate how the transient gene expression depends on
the topology and scale of the rates of reactions involving the DNA. In Sect. 2,
we introduce reaction networks, a stochastic process assigned to it, and the
equations for the transient dynamics. In Sect. 3, we describe a generic example
where a single protein is regulated through a number of arbitrarily connected
DNA configurations, without feedback. This means that any transition between
two states of the network is possible. In our first result, we analytically show that,
if all switching rates are uniformly speeded up, then, as expected, the protein
transient is faster and the noise is smaller. In Sect. 3.1, we introduce concrete
parameter instances to illustrate the phenomenon numerically. Then, in Sect. 4,
we present our main result: counter-intuitively, if all rates are fast but some more
than others (two orders of magnitude vs. one order of magnitude), the opposite
effect may emerge: time to equilibration is slower and protein noise increases.
We use singular perturbation analysis to systematically show that, in general,
the fast chain with some rates even faster, exactly reduces to a slow-switching

Accelerating Reactions at the DNA 47

chain. We conclude the paper by discussing the implications of our results in
Sect. 5.

1.1 Related Works

Timing aspects of gene regulation are gaining increasing attention, such as explic-
itly modelling delays in gene expression [28], showcasing dramatic phenotypic
consequences of small delays in the arrival of different TFs [11], resolving the
temporal dynamics of gene regulatory networks from time-series data [10], as
well as the study of transient hysteresis and inherent stochasticity in gene regu-
latory networks [27]. Following the early works on examining the relation between
topology and relaxation to steady states of reaction networks [9], stochastic gene
expression from a promoter model has been studied for multiple states [14]. Sin-
gular perturbation analysis has been used for lumping states of Markov chains
arising in biological applications [4,34]. To the best of our knowledge, none of
these works showcases the phenomenon of obtaining slower dynamics through
faster rates, or, more specifically, slowing down gene expression by speeding up
the reactions at the DNA.

2 Preliminaries

The default rate of gene expression, also referred to as the basal rate, can be
modified by the presence of transcriptional activators and repressors. Activators
are transcription factors (TFs) that bind to specific locations on the DNA, or
to other TFs, and enhance the expression of a gene by promoting the binding
of RNAP. Repressors reduce the expression of gene g, by directly blocking the
binding of RNAP, or indirectly, by inhibiting the activators, or promoting direct
repressors. The mechanism of how and at which rates the molecular species are
interacting is transparently written in a list of reactions. Reactions are equipped
with the stochastic semantics which is valid under mild assumptions [7]. In the
following, we will model gene regulatory mechanisms with the standard Chemical
Reaction Network formalism (CRN).

Definition 1. A reaction system is a pair (S,R), such that S = {S1, . . . ,Ss}
is a finite set of species, and R = {r1, . . . , rr} is a finite set of reactions. The
state of a system can be represented as a multi-set of species, denoted by x =
(x1, ...,xs) ∈ N

s. Each reaction is a triple rj ≡ (aj ,νj , cj) ∈ N
s × N

s × R≥0,
written down in the following form:

a1jS1, . . . , asjSs
cj→ a′

1jS1, . . . , a′
sjSs, such that ∀i.a′

ij = aij + νij .

The vectors aj and a′
j are often called respectively the consumption and pro-

duction vectors due to jth reaction, and cj is the respective kinetic rate. If the
jth reaction occurs, after being in state x, the next state will be x′ = x + νj .
This will be possible only if xi ≥ aij for i = 1, . . . , s.

48 P. Bokes et al.

Stochastic Semantics. The species’ multiplicities follow a continuous-time
Markov chain (CTMC) {X(t)}t≥0, defined over the state space S = {x | x
is reachable from x0 by a finite sequence of reactions from {r1, . . . , rr}}. In other
words, the probability of moving to the state x + νj from x after time Δ is

P(X(t + Δ) = x + νj | X(t) = x) = λj(x)Δ + o(Δ),

with λj the propensity of jth reaction, assumed to follow the principle of mass-
action: λj(x) = cj

∏s
i=1

(
xi

aij

)
. The binomial coefficient

(
xi

aij

)
reflects the proba-

bility of choosing aij molecules of species Si out of xi available ones.

Computing the Transient. Using the vector notation X(t) ∈ N
n for the

marginal of process {X(t)}t≥0 at time t, we can compute this transient dis-
tribution by integrating the chemical master equation (CME). Denoting by
px(t) := P(X(t) = x), the CME for state x ∈ N

s reads

d
dt

px(t) =
r∑

j=1,x−ν j∈S

λj(x − νj)p(x−ν j)(t) −
r∑

j=1

λj(x)px(t). (1)

The solution may be obtained by solving the system of differential equations,
but, due to its high (possibly infinite) dimensionality, it is often statistically
estimated by simulating the traces of {Xt}, known as the stochastic simulation
algorithm (SSA) in chemical literature [7]. As the statistical estimation often
remains computationally expensive for desired accuracy, for the case when the
deterministic model is unsatisfactory due to the low multiplicities of many molec-
ular species [18], different further approximation methods have been proposed,
major challenge to which remains the quantification of approximation accuracy
(see [32] and references therein for a thorough review on the subject).

3 Moment Calculations

We consider a generic example with m different DNA states regulating a sin-
gle protein, without feedback. The configurations of the DNA are indexed by
1, 2 . . . m, and we denote the transition rates between them (reaction propensi-
ties) by qij (we additionally define qii = −∑m

j=1 qij). We assume that the gene
chain is irreducible, justified by the reversibility of all reactions at the DNA. The
dynamics of the protein copy number is modelled as usually by a birth–death
process (with gene-state-dependent birth rate ki and linear death rate δ per
protein). The respective reaction system is schemed in Table 1, left.

The underlying stochastic process {X(t)} takes values in the state space
S ⊆ N

m+1, such that the first m components represent the DNA states, and the
last one is the protein count.

In the following, we will use notation X1:m(t) ∈ {0, 1}m, to denote the pro-
jection of the marginal process at time t, to the DNA-regulatory elements, and,
for better readability, we introduce N(t) := Xm+1(t) to denote the protein count
at time t.

Accelerating Reactions at the DNA 49

In total, since there is exactly one copy of the DNA, any state in S can be seen
as a gene state coupled with the protein copy number, i.e. S ∼= {1, 2, . . . ,m}×N.
We introduce short-hand notation s(i,n) for state x = (0, . . . , 1

︸ ︷︷ ︸
i

, . . . , 0,n) ∈ S.

Allowable transitions and their rates are summarised in Table 1, right.

Table 1. Two equivalent formulations of a multi-state gene expression model. Left : a
reaction system with m + 1 reaction species S1, . . ., Sm (gene states) and Sm+1 = P
(protein) with copy numbers X1(t), . . ., Xm(t) and Xm+1(t) = N(t), whereby X1(t) +
. . .+Xm(t) = 1 holds initially (and throughout time). Right : a two-component Markov
chain in which the first component indexes the gene state and the second component
gives the protein copy number.

Reaction Rate Reset map

Si → Sj qijXi
Xi → Xi − 1

Xj → Xj + 1

Si → Si+ P kiXi N → N + 1

P → ∅ δN N → N − 1

Transition Rate

(i, n) → (j, n) qij

(i, n) → (i, n + 1) ki

(i, n) → (i, n − 1) δn

We arrange the probabilities pn,i(t) := P(X(t) = s(i,n)) of being in gene state
i and having n protein into a column vector

pn(t) = (pn,1(t), . . . , pn,m(t))T .

The probability vector satisfies a system of difference–differential equations

dpn

dt
= Apn + Λk(pn−1 − pn) + δ((n + 1)pn+1 − npn), (2)

where A = Qᵀ is the Markovian generator matrix and Λk is a diagonal square
matrix with the elements of the vector k = (k1, . . . , km)T placed on the main
diagonal. We study (2) subject to the initial condition

pn(0) = δn,n0ej0 (3)

in which n0 is the initial protein copy number, j0 is the initial gene state, δn,n0

represents the Kronecker delta, ej0 is the j0-th element of the standard basis in
the m-dimensional Euclidean space.
Let us introduce the variables

p(t) =
∞∑

n=0

pn(t), 〈N(t)〉 =
∞∑

n=0

n1T pn(t), (4)

f(t) =

(∞∑

n=0

npn(t)

)

− 〈N(t)〉p(t), (5)

σ2(t) =

(∞∑

n=0

n21T pn(t)

)

− 〈N(t)〉2. (6)

50 P. Bokes et al.

Note that 1T pn(t) = pn,1(t) + . . . + pn,m(t), where 1ᵀ = (1, . . . , 1) is the m-
dimensional row vector of ones, gives the marginal protein probability mass func-
tion. It is instructive to interpret the variables p(t) and f(t) from the standpoint
of the reaction-network formulation of the model (Table 1, left). The elements of
the copy-number vector X1:m(t)ᵀ of gene states can be zero or one, with exactly
one of them being equal to one; the gene-state copy-number statistics can be
expressed in terms of (4)–(6) as

〈X1:m(t)〉 = p(t),
〈N(t)X1:m(t)〉 − 〈N(t)〉〈X1:m(t)〉 = f(t),

〈X1:m(t)X1:m (t)ᵀ〉 − 〈X1:m(t)〉〈X1:m(t)〉ᵀ = Σ(t) = Λp(t) − p(t)p(t)T .

The variables (4)–(6) thus fully describe the mean and covariance of the reaction
system in Tabl 1, right. In particular, f(t) is the covariance between the gene
state and protein copy number; Σ(t) is the covariance matrix of the gene state
(with itself).

The variables (4)–(6) satisfy a system of differential equations (see Appendix
B for derivation)

dp

dt
= Ap,

d〈N(t)〉
dt

= kT p − δ〈N(t)〉, (7)

df

dt
= Af − δf + Σk, where Σ = Λp − ppT , (8)

dσ2

dt
= 2kT f + kT p + δ〈N(t)〉 − 2δσ2 (9)

subject to initial conditions

p(0) = ej0 , 〈N(0)〉 = n0, f(0) = 0, σ2(0) = 0, (10)

where ej0 is the j0-th element of the standard basis in m-dimensional Euclidean
space.

Equating the derivatives in (7)–(9) to zero, we obtain steady state protein
mean and Fano factor in the form

〈N(t)〉 =
kT p̄

δ
,

σ2

〈N(t)〉 = 1 +
kT f̄

kT p̄
, (11)

where p̄ and f̄ satisfy algebraic equations

Ap̄ = 0, (A − δ)f̄ + Σk = 0. (12)

We note that the solution f̄ to (12) can be represented as

f̄ =
∫ ∞

0

e−δt
(
etA − p̄1T

)
dtΣk. (13)

Equation (13) connects the magnitude of f̄ to the equilibration timescale of the
gene-state Markov chain (note that p̄1ᵀ = limt→∞ etA). Specifically, if A = Ã/ε,

Accelerating Reactions at the DNA 51

where ε � 1, i.e. the gene transition rates are O(1/ε) large, then substituting
t = εs into (13) implies that

f̄ = ε

∫ ∞

0

(
esÃ − p̄1T

)
dsΣk + O(ε2),

which is O(ε) small. Correspondingly, the (steady-state) protein Fano factor (11)
will differ from the Poissonian value of 1 by an O(ε) quantity. This concludes the
argument that, in agreement with intuition, if all rates are faster by an order of
magnitude (ε−1), then, as expected, the magnitude of equilibration time-scale
of the whole chain scales down with the same factor. The fast fluctuations of the
gene chain are thereby averaged out at the downstream level of the protein.

However, as will be demonstrated in the next section with a specific example
of a four state chain, the largeness of transition rates does not guarantee, on its
own, fast equilibration, and the connectivity of the chain can play a crucial role.
Indeed, we will show that one can slow down equilibriation (and hence increase
protein noise) by increasing some of the transition rates.

Fig. 1. Dependence of 〈N(t)〉 ± σ(t) on t for a value of ε = 0.01, using two regimes. Left:
“fast” scaling regime where all transition rates are O(1/ε). Right: “slow by fast” scaling
regime, where the backward rates are speeded up to O(1/ε2). ODE results (dashed line)
are cross-validated by Gillespie simulations (solid line). The chain is initially at state
j0 = 2, and the amount of protein is set to n0 = 50. The transition matrix parameters

are set to ãg = b̃g = ãr = b̃r = ˜̃ab =
˜̃
bb = 1.

52 P. Bokes et al.

3.1 Four-State Chain

We specifically focus on a case with four gene states, with transition matrix

A =

⎛

⎜
⎜
⎝

−ar ab 0 0
ar −ab − ag bg 0
0 ag −bg − bb br
0 0 bb −br

⎞

⎟
⎟
⎠ (14)

(recall that the matrix A is shown as a transpose of the graph of connections,
the respective graph is depicted in Fig. 2, left). We investigate two alternative,
different scaling regimes with respect to a small dimensionless parameter ε:

Fast. We assume that all transition rates are O(1/ε), i.e.

ag =
ãg

ε
, ab =

ãb

ε
, ar =

ãr

ε
, bg =

b̃g
ε

, bb =
b̃b
ε

, br =
b̃r
ε

,

where ãg, ãb, ãr, b̃g, b̃b, and b̃r are O(1).
Slow by fast. We speed up the backward rates by making them O(1/ε2),
i.e.

ag =
ãg

ε
, ab =

˜̃ab

ε2
, ar =

ãr

ε
, bg =

b̃g
ε

, bb =
˜̃bb
ε2

, br =
b̃r
ε

. (15)

where ãg, ˜̃ab, ãr, b̃g, ˜̃bb, and b̃r are O(1).
We first numerically analyse the transient protein dynamics for these two scaling
scenarios. In Fig. 1, we plot the average protein count and the standard deviation.
Increasing the speed of rates from states 2 (resp. 3) to state 1 (resp. 4) not
only does not increase the scale and decrease the protein noise, but significantly
slows down the protein dynamics and increases noise. In the next section, we
systematically derive that the case ‘slow by fast’ regime is approximated by a
slow-switching 2-state chain (shown in Fig. 2, right).

4 Singular-Perturbation Analysis of the Slow-by-fast
Regime

The probability dynamics generated by the transition matrix (14) in the slow-
by-fast scaling regime (15) is given by a system of four differential equations

ε2
dp1
dt

= ˜̃abp2 − εãrp1, (16)

ε2
dp2
dt

= εãrp1 − εãgp2 − ˜̃abp2 + εb̃gp3, (17)

ε2
dp3
dt

= εãgp2 − εb̃gp3 − ˜̃bbp3 + εb̃rp4, (18)

ε2
dp4
dt

= ˜̃bbp3 − εb̃rp4. (19)

Accelerating Reactions at the DNA 53

Equations such as (16)–(19) whose right-hand sides depend on a small parameter
ε are referred to as perturbation problems. Additionally, problems in which, like
in (16)–(19), the small parameter multiplies one or more derivatives on the left-
hand side, are classified as singularly perturbed [16,23]. We study solutions to
system (16)–(19) that satisfy an intial condition

pi(0) = piniti , i = 1, 2, 3, 4, (20)

where the right-hand side of (20) is a prescribed probability distribution. The
aim of what follows is to characterise the behaviour as ε → 0 of the solution to
(16)–(19) subject to (20).

We look for a solution to (16)–(19) in the form of a regular power series

pi(t; ε) = p
(0)
i (t) + εp

(1)
i (t) + O(ε2), i = 1, 2, 3, 4. (21)

Inserting (21) into (16) and (19) and collecting terms of same order yields

O(1) : p
(0)
2 = p

(0)
3 = 0, (22)

O(ε) : ˜̃abp
(1)
2 = ãrp

(0)
1 , (23)

˜̃bbp
(1)
3 = b̃rp

(0)
4 . (24)

Equations (22) imply that the probability of states 2 or 3 is O(ε)-small. Equa-
tion (23) means that, at the leading order, the probability of state 2 is propor-
tional to that of state 1; equation (24) establishes the analogous for states 3 and
4. Adding (16) to (17), and (18) to (19), yield

ε
d
dt

(p1 + p2) = −ãgp2 + b̃gp3, (25)

ε
d
dt

(p3 + p4) = ãgp2 − b̃gp3. (26)

Inserting (21) into (25)–(26) and collecting O(ε) terms gives

d
dt

(p(0)1 + p
(0)
2) = −ãgp

(1)
2 + b̃gp

(1)
3 , (27)

d
dt

(p(0)3 + p
(0)
4) = ãgp

(1)
2 − b̃gp

(1)
3 . (28)

Inserting (22)–(24) into (27)–(28) yields

dp
(0)
1

dt
= −ãgãr˜̃a

−1
b p

(0)
1 + b̃gb̃r

˜̃b
−1

b p
(0)
4 , (29)

dp
(0)
4

dt
= ãgãr˜̃a

−1
b p

(0)
1 − b̃gb̃r

˜̃b
−1

b p
(0)
4 . (30)

Equations (29)–(30) describe the probability dynamics of a two-state (or
random-telegraph) chain with states 1 and 4 and transition rates ãgãr/˜̃ab and
b̃gb̃r/

˜̃bb between them. Intriguingly, the emergent dynamics of (29)–(30) occurs
on the t = O(1) scale although the original system (16)–(19) featured only
O(1/ε) rates (or faster).

54 P. Bokes et al.

4.1 Inner Solution and Matching

In singular-perturbation studies, the leading-order term of a regular solution (21)
is referred to as the outer solution [15,23]. As is typical in singularly perturbed
problems, the outer solution satisfies a system, here (29)–(30), that is lower-
dimensional than the original system (16)–(19); the remaining components of
the outer solution are trivially given by (22). Therefore, the initial condition (20)
cannot be immediately imposed on the outer solution. In order to formulate an
appropriate initial condition for (29)–(30), we need to study (16)–(19) on the
fast timescale, find the so-called inner solution, and use an asymptotic matching
principle [15,23] to connect the two asymptotic solutions together.

1 2 3 4

ãrε
−1 ãgε

−1 ˜̃bbε−2

b̃rε
−1b̃gε

−1˜̃abε
−2

... reduces to

1 4

ãgãr/˜̃ab

b̃g b̃r/˜̃bb

Fig. 2. (left) Four-state chain at the DNA: all rates are faster than O(1): some by
order or magnitude ε−1, and some even faster, by order of magnitude ε−2. (left) The
emergent dynamics is approximated by a two-state chain. Intriguingly, the emergent
dynamics of occurs on the t = O(1) scale although the original system featured only
O(1/ε) rates and faster.

In order to construct the inner solution, we focus on the fast dynamics of
system (16)–(19) by means of a transformation

t = ε2 T , pi(t) = Pi(T). (31)

Inserting (31) into (16)–(19) yields a time-rescaled system

dP1

dT
= ˜̃abP2 − εãrP1, (32)

dP2

dT
= εãrP1 − εãgP2 − ˜̃abP2 + εb̃gP3, (33)

dP3

dT
= εãgP2 − εb̃gP3 − ˜̃bbP3 + εb̃rP4, (34)

dP4

dT
= ˜̃bbP3 − εb̃rP4. (35)

Note that in the time-rescaled system (32)–(35), the time derivative is no longer
multiplied by a small parameter.

Pi(T ; ε) = P
(0)
i (T) + εP

(1)
i (T) + O(ε2), i = 1, 2, 3, 4. (36)

into (32)–(35) and collecting the O(1) terms yield

dP
(0)
1

dt
= −dP

(0)
2

dt
= ˜̃abP

(0)
2 ,

dP
(0)
3

dt
= −dP

(0)
4

dt
= −˜̃bbP

(0)
3 . (37)

Accelerating Reactions at the DNA 55

Since the reduced problem (37) retains the dimensionality of the original problem
(32)–(35), we can solve it subject to the same initial condition

P
(0)
i (0) = piniti , (38)

which yields

P
(0)
1 (T) = pinit1 + pinit2 (1 − e−˜̃abT), P

(0)
2 (T) = pinit2 e−˜̃abT , (39)

P
(0)
3 (T) = pinit3 e−˜̃bbT , P

(0)
4 (T) = pinit4 + pinit3 (1 − e−˜̃bbT). (40)

Thus, on the inner timescale, there occurs a fast transfer of probability mass
from the states 2 and 3 into the states 1 and 4, respectively.

Fig. 3. The inner, outer, and composite approximations (solid curves) to the first com-
ponent of the exact solution (dashed curve) to (16)–(20) (time is shown at logarithmic
scale). The timescale separation parameter is set to ε = 0.01. The chain is initially at
state 2, i.e. pinit

2 = 1, pinit
1 = pinit

3 = pinit
4 = 0. The transition matrix parameters are set

to ãg = b̃g = ãr = b̃r = ˜̃ab =
˜̃
bb = 1.

According to the asymptotic matching principle [15,23], the large-T behaviour
of the inner and the small-t behaviour of the outer solution overlap, i.e.

p
(0)
1 (0) = P

(0)
1 (∞) = pinit1 + pinit2 , (41)

p
(0)
4 (0) = P

(0)
4 (∞) = pinit3 + pinit4 . (42)

Equations (41)–(42) establish the relationship between the original initial condi-
tion (20) and the initial condition that needs to be imposed for the outer solution;
solving (29)–(30) subject to (41)–(42) yields

p
(0)
1 (t) =

b̃g b̃r
˜̃bb

ãgãr
˜̃ab

+ b̃g b̃r
˜̃bb

+

⎛

⎜
⎝pinit1 + pinit2 −

b̃g b̃r
˜̃bb

ãgãr
˜̃ab

+ b̃g b̃r
˜̃bb

⎞

⎟
⎠ e

−
(

ãgãr
˜
ãb

+
b̃g b̃r
˜
b̃b

)
t
, (43)

56 P. Bokes et al.

p
(0)
4 (t) =

ãgãr
˜̃ab

ãgãr
˜̃ab

+ b̃g b̃r
˜̃bb

+

⎛

⎜
⎝pinit3 + pinit4 −

ãgãr
˜̃ab

ãgãr
˜̃ab

+ b̃g b̃r
˜̃bb

⎞

⎟
⎠ e

−
(

ãg ãr
˜
ãb

+
b̃g b̃r
˜
b̃b

)
t
. (44)

We note that the second and third components of the outer solution are trivially
given by p

(0)
2 (t) = p

(0)
3 (t) = 0 by (22). The outer solution (43)–(44) provides

a close approximation to the original solution for t = O(1) but fails to capture
the behaviour of the initial transient; the inner solution (39)–(40) provides a close
approximation for T = O(1), i.e. t = O(ε2), but disregards the outer dynamics.
A uniformly valid composite solution can be constructed by adding the inner and
outer solutions up, and subtracting the matched value, i.e.

pcomp
1 (t) = p

(0)
1 (t) − pinit2 e−˜̃abt/ε2

, pcomp
2 (t) = pinit2 e−˜̃abt/ε2

, (45)

pcomp
3 (t) = pinit3 e−˜̃bbt/ε2

, pcomp
4 (t) = p

(0)
4 (t) − pinit3 t−˜̃bbt/ε2

. (46)

Figure 3 shows the exact solution to (16)–(20), the inner solution (39)–(40), the
outer solution (43)–(44), and the composite solution (45)–(46).

5 Discussion and FutureWork

The key ingredient of our analysis is the separation of temporal scales at the level
of the gene state chain. If all gene transition rates are of the same order, say O(1/ε),
then the chain equilibrates on a shortO(ε) timescale (theO(1) timescale is assumed
to be that of protein turnover). This situation has been widely considered in liter-
ature, e.g. [25,34]. In the example on which we focused in our analysis, however,
some transition rates are of a larger order, O(1/ε2). These faster rates generate
an O(ε2) short timescale in our model. Importantly (and counterintuitively), the
acceleration of these rates drives an emergent slow transitioning dynamics on the
slow O(1) timescale. This means, in particular, that the transient behaviour, as
well as stochastic noise, is not averaged out but retained at the downstream level
of protein dynamics. We expect that more general networks of gene states can gen-
erate more than two timescales (fast and slow). Results from other works can be
used to compute approximations for multiple timescales [9]. In particular, we note
that although our example retains some O(1/ε) transition rates, no distinguished
dynamics occurs on the corresponding O(ε) timescale. We expect, however, the
intermediate O(ε) timescale can play a distinguished role in more complex sys-
tems.

The possibility of realistic GRNs implementing slow gene expression dynamics
by accelerating reactions at the DNA, opens up fundamental biological questions
related to their regulatory and evolutionary roles. For modelling, the uncertainty
about even the magnitude of biochemical reaction rates pressures us to account for
the potentially emerging slow-by-fast phenomenon: approximations resting on the
argument that all rates are ‘sufficiently fast’, while not accounting for the topology

Accelerating Reactions at the DNA 57

of interactions at the DNA, can lead to wrong conclusions. The key feature of the
4-state example presented in this paper are very fast rates towards two different
states which are poorly connected and consequently hard to leave. This situation
will likely be seen in larger, realistic gene regulatory networks, because the rate of
forming larger functional complexes typically depends on the order of TF’s binding
at the DNA. For instance, in a biologically realisable gene regulatory circuit shown
in [11], a pair of activators and a pair of repressors compete to bind the DNA, so
to rapidly transition to highly stable conformational change at the DNA. One of
the interesting directions for future work is automatising the derivation of singular
perturbation reduction shown in Sect. 4. Such a procedure would allow us to sys-
tematically explore reductions for larger gene regulatory networks. Additionally,
we want to examine different topologies and sizes of networks to generalize our
results. This could reveal if the backward reactions are always the crucial factor in
causing the slow-by-fast phenomenon.

Slow-by-fast phenomena we show here, could appear in application domains
beyond gene regulation, i.e., wherever nodes over a weighted network regulate a
collective response over time. For instance, in network models used to predict the
spread of information or spread of disease, among coupled agents [26,36], or in
network-models for studying the role of communication in wisdom of the crowds
(known to be enhanced by interaction, but at the same time hindered by infor-
mation exchange [1,20]). Finally, networks of neurons are known to have different
intrinsic time-scales, in addition to the time-scales that arise from network connec-
tions [8].

Appendix A:Mechanism of GeneRegulation - Examples

Example 1 (basal gene expression). Basal gene expression with RNAP binding can
be modelled with four reactions, where the first reversible reaction models binding
between the promoter site at the DNA and the polymerase, and the second two
reactions model the protein production and degradation, respectively:

DNA,RNAP ↔ DNA.RNAP at rates k, k−

DNA.RNAP → DNA.RNAP + P at rate α

P → ∅ at rate β.

The state space of the underlying CTMC S ∼= {0, 1} × {0, 1, 2, . . .}, such that
s(1,x) ∈ S denotes an active configuration (where the RNAP is bound to the DNA)
with x ∈ N protein copy number.

Example 2 (adding repression).Repressor blocking the polymerase binding can be
modelled by adding a reaction

DNA,R ↔ DNA.R

In this case, there are three possible promoter configurations, that is, S ∼=
{DNA,DNA.RNAP,DNA.R} × {0, 1, 2, . . .} (states DNA and DNA.R} are inactive
promoter states).

58 P. Bokes et al.

Appendix B: Derivation ofMoment Equations

Multiplying the master equation (2) by n(n − 1) . . . (n − j + 1) and summing over
all n ≥ 0 yields differential equations [37]

dνj

dt
= Aνj + j (Λkνj−1 − δνj) (B1)

for the factorial moments

νj(t) =
∞∑

n=0

n(n − 1) . . . (n − j + 1)pn(t). (B2)

The quantities (4)–(6) can be expressed in terms of the factorial moments as

p = ν0, 〈n〉 = 1ᵀν1, f = ν1 − (1ᵀν1) ν0, σ2 = 1ᵀν2 + 1ᵀν1 − (1ᵀν1)
2 .

(B3)
Differentiating (B3) with respect to t and using (B1), one recovers equations (7)–
(9).

References

1. Becker, J., Brackbill, D., Centola, D.: Network dynamics of social influence in the
wisdom of crowds. Proc. Natl. Acad. Sci. 114(26), E5070–E5076 (2017)

2. Beica, A., Guet, C.C., Petrov, T.: Efficient reduction of kappa models by static
inspection of the rule-set. In: Abate, A., Šafránek, D. (eds.) HSB 2015. LNCS,
vol. 9271, pp. 173–191. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-
26916-0 10

3. Bintu, L.: Transcriptional regulation by the numbers: applications. Curr. Opin.
Genet. Dev. 15(2), 125–135 (2005)

4. Bo, S., Celani, A.: Multiple-scale stochastic processes: decimation, averaging and
beyond. Phys. Rep. 670, 1–59 (2017)

5. Cardelli, L., Kwiatkowska, M., Laurenti, L.: Stochastic analysis of chemical reaction
networks using linear noise approximation. Biosystems 149, 26–33 (2016)

6. Gardner, T.S., Cantor, C.R., Collins, J.J.: Construction of a genetic toggle switch in
Escherichia coli. Nature 403(6767), 339 (2000)

7. Gillespie, D.T.: Exact stochastic simulation of coupled chemical reactions. J. Phys.
Chem. 81, 2340–2361 (1977)

8. Gjorgjieva, J., Drion, G., Marder, E.: Computational implications of biophysical
diversity and multiple timescales in neurons and synapses for circuit performance.
Curr. Opin. Neurobiol. 37, 44–52 (2016)

9. Goban, A.N., Radulescu, O.: Dynamic and static limitation in multiscale reaction
networks, revisited. Adv. Chem. Eng. 34, 103–107 (2008)

10. Greenham, K., McClung, C.R.: Time to build on good design: resolving the temporal
dynamics of gene regulatory networks. Proc. Natl. Acad. Sci. 115(25), 6325–6327
(2018)

https://doi.org/10.1007/978-3-319-26916-0_10
https://doi.org/10.1007/978-3-319-26916-0_10

Accelerating Reactions at the DNA 59

11. Guet, C., Henzinger, T.A., Igler, C., Petrov, T., Sezgin, A.: Transient memory in gene
regulation. In: Bortolussi, L., Sanguinetti, G. (eds.) CMSB 2019. LNCS, vol. 11773,
pp. 155–187. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-31304-3 9

12. Guet, C.C., Elowitz, M.B., Hsing, W., Leibler, S.: Combinatorial synthesis of genetic
networks. Science 296(5572), 1466–1470 (2002)

13. Gunawardena, J.: Time-scale separation-Michaelis and Menten’s old idea, still bear-
ing fruit. FEBS J. 281(2), 473–488 (2014)

14. da Costa Pereira Innocentini, G., Forger, M., Ramos, A.F., Radulescu, O., Hornos,
J.E.M.: Multimodality and flexibility of stochastic gene expression. Bull. Math. Biol.
75(12), 2360–2600 (2013)

15. Kevorkian, J., Cole, J.D.: Perturbation Methods in Applied Mathematics. Springer,
New York (1981). https://doi.org/10.1007/978-1-4757-4213-8

16. Kevorkian, J., Cole, J.D., Nayfeh, A.H.: Perturbation methods in applied mathe-
matics. Bull. Am. Math. Soc. 7, 414–420 (1982)

17. Kurtz, T.G.: Solutions of ordinary differential equations as limits of pure jump
Markov processes. J. Appl. Prob. 7(1), 49–58 (1970)

18. Kurtz, T.G.: Limit theorems for sequences of jump Markov processes approximating
ordinary differential processes. J. Appl. Prob. 8(2), 344–356 (1971)

19. Kwok, R.: Five hard truths for synthetic biology. Nature 463(7279), 288–290 (2010)
20. Lorenz, J., Rauhut, H., Schweitzer, F., Helbing, D.: How social influence can under-

mine the wisdom of crowd effect. Proc. Natl. Acad. Sci. 108(22), 9020–9025 (2011)
21. Marchisio, M.A., Stelling, J.: Automatic design of digital synthetic gene circuits.

PLoS Comput. Biol. 7(2), e1001083 (2011)
22. McAdams, H.H., Arkin, A.: It’s a noisy business! genetic regulation at the Nano-

molar scale. Trends Genet. 15(2), 65–69 (1999)
23. Murray, J.D.: Mathematical Biology: I. Springer, Introduction (2003)
24. Myers, C.J.: Engineering Genetic Circuits. CRC Press, Boca Raton (2009)
25. Newby, J., Chapman, J.: Metastable behavior in Markov processes with internal

states. J. Math. Biol. 69(4), 941–976 (2013). https://doi.org/10.1007/s00285-013-
0723-1

26. Pagliara, R., Leonard, N.E.: Adaptive susceptibility and heterogeneity in contagion
models on networks. IEEE Trans. Automatic Control (2020)

27. Pájaro, M., Otero-Muras, I., Vázquez, C., Alonso, A.A.: Transient hysteresis and
inherent stochasticity in gene regulatory networks. Nat. Commun. 10(1), 1–7 (2019)

28. Parmar, K., Blyuss, K.B., Kyrychko, Y.N., Hogan., S.J.: Time-delayed models
of gene regulatory networks. In: Computational and Mathematical Methods in
Medicine (2015)

29. Peleš, S., Munsky, B., Khammash, M.: Reduction and solution of the chemical mas-
ter equation using time scale separation and finite state projection. J. Chem. Phys.
125(20), 204104 (2006)

30. Rothenberg, E.V.: Causal gene regulatory network modeling and genomics: second-
generation challenges. J. Comput. Biol. 26(7), 703–718 (2019)

31. Santillán, M., Mackey, M.C.: Why the lysogenic state of phage λ is so stable: a math-
ematical modeling approach. Biophys. J. 86(1), 75–84 (2004)

32. Schnoerr, D., Sanguinetti, G., Grima, R.: Approximation and inference methods for
stochastic biochemical kinetics–a tutorial review. J. Phys. A: Math. Theor. 50(9),
093001 (2017)

33. Segal, E., Widom, J.: From DNA sequence to transcriptional behaviour: a quantita-
tive approach. Nat. Rev. Genet. 10(7), 443–456 (2009)

https://doi.org/10.1007/978-3-030-31304-3_9
https://doi.org/10.1007/978-1-4757-4213-8
https://doi.org/10.1007/s00285-013-0723-1
https://doi.org/10.1007/s00285-013-0723-1

60 P. Bokes et al.

34. Srivastava, R., Haseltine, E.L., Mastny, E., Rawlings, J.B.: The stochastic quasi-
steady-state assumption: reducing the model but not the noise. J. Chem. Phys.
134(15), 154109 (2011)

35. Trofimenkoff, E.A.M., Roussel, M.R.: Small binding-site clearance delays are not
negligible in gene expression modeling. Math. Biosci. 108376 (2020)

36. Zhong, Y.D., Leonard, N.E.: A continuous threshold model of cascade dynamics.
arXiv preprint arXiv:1909.11852 (2019)

37. Zhou, T., Liu, T.: Quantitative analysis of gene expression systems. Quant. Biol.
3(4), 168–181 (2015). https://doi.org/10.1007/s40484-015-0056-8

http://arxiv.org/abs/1909.11852
https://doi.org/10.1007/s40484-015-0056-8

Graphical Conditions for Rate
Independence in Chemical Reaction

Networks

Élisabeth Degrand, François Fages(B), and Sylvain Soliman

Inria Saclay-̂Ile de France, Palaiseau, France
Francois.Fages@inria.fr

Abstract. Chemical Reaction Networks (CRNs) provide a useful
abstraction of molecular interaction networks in which molecular struc-
tures as well as mass conservation principles are abstracted away to focus
on the main dynamical properties of the network structure. In their inter-
pretation by ordinary differential equations, we say that a CRN with
distinguished input and output species computes a positive real function
f : R+ → R+, if for any initial concentration x of the input species,
the concentration of the output molecular species stabilizes at concen-
tration f(x). The Turing-completeness of that notion of chemical ana-
log computation has been established by proving that any computable
real function can be computed by a CRN over a finite set of molecu-
lar species. Rate-independent CRNs form a restricted class of CRNs of
high practical value since they enjoy a form of absolute robustness in the
sense that the result is completely independent of the reaction rates and
depends solely on the input concentrations. The functions computed by
rate-independent CRNs have been characterized mathematically as the
set of piecewise linear functions from input species. However, this does
not provide a mean to decide whether a given CRN is rate-independent.
In this paper, we provide graphical conditions on the Petri Net struc-
ture of a CRN which entail the rate-independence property either for all
species or for some output species. We show that in the curated part of
the Biomodels repository, among the 590 reaction models tested, 2 reac-
tion graphs were found to satisfy our rate-independence conditions for all
species, 94 for some output species, among which 29 for some non-trivial
output species. Our graphical conditions are based on a non-standard
use of the Petri net notions of place-invariants and siphons which are
computed by constraint programming techniques for efficiency reasons.

1 Introduction

Chemical Reaction Networks (CRNs) are one fundamental formalism widely used
in chemistry, biochemistry, and more recently computational systems biology
and synthetic biology. CRNs provide an abstraction of molecular interaction
networks in which molecular structures as well as mass conservation principles
are abstracted away. They come with a hierarchy of dynamic Boolean, discrete,
c© Springer Nature Switzerland AG 2020
A. Abate et al. (Eds.): CMSB 2020, LNBI 12314, pp. 61–78, 2020.
https://doi.org/10.1007/978-3-030-60327-4_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-60327-4_4&domain=pdf
https://doi.org/10.1007/978-3-030-60327-4_4

62 É. Degrand et al.

stochastic and differential interpretations [17] which is at the basis of a rich
theory for the analysis of their qualitative dynamical properties [3,14,19], of their
computational power [8,11,15], and on their relevance as a design method for
implementing high-level functions in synthetic biology, using either DNA [10,29]
or DNA-free enzymatic reactions [12,32].

In their interpretation by ordinary differential equations, we say that a CRN
with distinguished input and output species computes a positive real function
f : R+ → R+, if for any initial concentration x of the input species, the con-
centration of the output molecular species stabilizes at concentration f(x). The
Turing-completeness of that notion of chemical analog computation has been
shown by proving that any computable real function can be computed by a
CRN over a finite set of molecular species [15].

In the perspective of biochemical implementations with real enzymes how-
ever, the strong property of rate independence, i.e. independence of the computed
result of the rates of the reactions [33], is a desirable property that greatly eases
their concrete realization, and guarantees a form of absolute robustness of the
CRN. The set of input/output functions computed by a rate-independent CRNs
has been characterized mathematically in [4,9] as the set of piecewise linear
functions. However, this does not give any mean to decide whether a given CRN
is rate-independent or not.

In this paper, we provide purely graphical conditions on the CRN structure
which entail the rate-independence property either for all molecular species or
for some output species. These conditions can be checked statically on the reac-
tion hypergraph of the CRN, i.e. on its Petri net structure, or can be used as
structural constraints in rate-independent CRN design problems.

Example 1. For instance, the reaction a+b=>c computes at steady state the min-
imum of a and b, i.e. c∗ = min(a(0), b(0)) + c(0), a∗ = max(0, a(0) − b(0)),
b∗ = max(0, b(0) − a(0)) whatever the reaction rate is. Our graphical condition
for rate independence on all species assumes that there is no synthesis reaction,
no fork and no loop in the reaction hypergraph (Theorem2 below). This is triv-
ially the case in this CRN and suffices to prove rate-independence for all species
in this example.

Example 2. Similarly, the CRN

a => x+c

b => y+c

x+y => z

c+z => r

assuming x(0) = y(0) = c(0) = z(0) = r(0) = 0, computes at steady state the
maximum of a and b: c∗ = max(a(0), b(0)) (as a(0)+b(0)−min(a(0), b(0))), x∗ =
max(0, a(0)−b(0)), y∗ = max(0, b(0)−a(0)), z∗ = 0, r∗ = min(a(0), b(0)), a∗ =
0, b∗ = 0, independently of the reaction rates. Figure 1 shows some trajecto-
ries obtained with different values for the mass action law kinetics constants
k1, k2, k3, k4 of the four reactions above, with initial concentrations a(0) =
3, b(0) = 1 and 0 for the other species. Here again, our graphical condition

Graphical Conditions for Rate Independence in CRNs 63

is trivially satisfied and demonstrates the rate-independence property of that
CRN for all species, by Theorem 2.

Fig. 1. Computation of max(a, b) with the rate-independent CRN of Example 2 with
mass action law kinetics with different reaction rate constants.

The rest of this paper is organized as follows. In Sect. 3, we first give a
sufficient condition for the rate independence of output species of the CRN.
That condition tests the existence of particular P-invariants and siphons in the
Petri net structure of the CRN. This test is modelled as a constraint satisfaction
problem, and implemented using constraint programming techniques in order to
avoid the enumeration of all P-invariants and siphons that can be in exponential
number. Then in Sect. 4, we give another sufficient condition that entails the
existence of a unique steady state, and ensures that the computed functions for

64 É. Degrand et al.

all species of a CRN are rate-independent. None of these conditions are necessary
conditions but we show with examples that they cover a large class of rate-
independent CRNs. In Sect. 5, we evaluate our conditions on the curated part of
the repository of models BioModels [7] by taking as output species the species
that are produced and not consumed. We show that 2 reaction graphs satisfy our
rate-independence conditions for all species, 94 for some output species, among
which 29 for some non-trivial output species. We conclude on the efficiency of
our purely graphical conditions to test rate-independence of existing CRNs, and
on the possibility to use those conditions as CRN design constraints for synthetic
biology constructs such as [12].

2 Preliminaries

2.1 Notations

Unless explicitly noted, we will denote sets and multisets by capital letters (e.g.
S, also using calligraphic letters for some sets), tuples of values by vectors (e.g.,
x), and elements of those sets or vectors (e.g. real numbers, functions) by small
Roman or Greek letters. For vectors that vary in time, the time will be denoted
using a superscript notation like xt. For a multiset (or a set) M : S → N,
M(x) denotes the multiplicity of element x in M (usually the stoichiometry in
the following), and 0 if the element does not belong to the multiset. By abuse
of notation, ≥ will denote the integer or Boolean pointwise order on vectors,
multisets and sets (i.e. set inclusion), and +, − the corresponding operations
for adding or removing elements. With these unifying notations, set inclusion
may thus be noted S ≤ S′ and set difference S − S′.

2.2 CRN Syntax

We recall here definitions from [16,18] for directed chemical reactions networks.
In this paper, we assume a finite set S = {x1, . . . , xn} of molecular species.

Definition 1. A reaction over S is a triple (R,P, f), where

– R is a multiset of reactants in S,
– P a multiset of products in S,
– and f : Rn → R is a rate function over molecular concentrations or numbers.

A chemical reaction network (CRN) C is a finite set of reactions.

It is worth noting that a molecular species in a reaction can be both a reac-
tant and a product, i.e. a catalyst. Those mathematical definitions are mainly
compatible with SBML [22], however there are some differences. Unlike SBML,
we find it useful to consider only directed reactions (reversible reactions being
represented here by two reactions).

Furthermore, we enforce the following compatibility conditions between the
rate function and the structure of a reaction:

Graphical Conditions for Rate Independence in CRNs 65

Definition 2 ([16,18]). A reaction (R,P, f) over S is well-formed if the follow-
ing conditions hold:

1. f is a non-negative partially differentiable function,
2. xi ∈ R iff ∂f/∂xi(x) > 0 for some value x ∈ R

n
+,

3. f(x1, . . . , xn) = 0 iff there exists xi ∈ R such that xi = 0.

A CRN is well-formed if all its reactions are well-formed.

Those compatibility conditions are necessary to perform structural analyses
of CRN dynamics. They ensure that the reactants contribute positively to the
rate of the reaction at least in some region of the concentration space (condition
2), that the system remains positive (Proposition 2.8 in [16]) and that a reaction
stops only when one of the reactant has been entirely consumed, whatever the
rate function is.

To analyse the notion of function computed by a CRN, we will study the
steady states of the ODE system, i.e., states where dx

dt = 0, the flux fi of each
reaction of C at steady state will be called its steady flux.

A directed weighted bipartite graph GC can be naturally associated to a
chemical reaction network C, with species and reactions as vertices, and stoi-
chiometric coefficients, i.e. multiplicity in the multisets R and P , as weights for
the incoming/outgoing edges.

Example 3. Figure 2 shows the bipartite graph GC of the Example 2 of the intro-
duction. For this graph, the weights are all 1 and are not written for that reason.

Fig. 2. Bipartite graph GC associated to the CRN given in Example 2. The weights are
all equal to 1 and not displayed.

66 É. Degrand et al.

2.3 CRN Semantics

As detailed in [17], a CRN can be interpreted in a hierarchy of semantics with
different formalisms that can be formally related by abstraction relationships
in the framework of abstract interpretation [13]. In this article, we consider the
differential semantics which associates with a CRN C the system ODE(C) of
Ordinary Differential Equations

dxj

dt
=

∑

(Ri,Pi,fi)∈C
(Pi(j) − Ri(j)) · fi

Example 4. Assuming mass action law kinetics for the CRN of Example 2, the
ODEs are:

da/dt = −k1 · a (1)
db/dt = −k2 · b (2)
dc/dt = k1 · a + k2 · b − k4 · c · z (3)
dr/dt = k4 · c · z (4)
dx/dt = k1 · a − k3 · x · y (5)
dy/dt = k2 · b − k3 · x · y (6)
dz/dt = k3 · x · y − k4 · c · z (7)

Definition 3 [15]. The function of time computed by a CRN C from initial
state x ∈ R

n is, if it exists, the solution of the ODE associated to C with initial
conditions x ∈ R

n

Definition 4 [15]. The input/output function computed by a CRN with n
species, on an output species z, a set of m input species y ∈ R

m and a fixed initial
state for the other species x ∈ R

n−m is, if it exists, the function f : Rm → R

for which the ODEs associated to C have a solution which moreover stabilizes on
some value f(x,y) on the z species component.

Definition 5. A CRN is rate-independent on an output species z if the
input/output function computed on z with all species considered as input does
not depend of the rate functions of the reactions.

2.4 Petri Net Structure

The bipartite graph GC of a CRN can be naturally seen as a Petri-net graph
[5,6,30], here used with the continuous Petri-net semantics [20,21,31]. The
species correspond to places and the reactions to transitions of the Petri-net.
We recall here some classical Petri-net concepts [24,28] used in the next section,
since they may have various names depending on the community.

Definition 6. A minimal semi-positive P-invariant is a vector of Nn that is in
the left-kernel of the stoichiometric matrix. Equivalently it is a weighted sum
over places concentrations that remains constant by any transition.

Graphical Conditions for Rate Independence in CRNs 67

A P-surinvariant is a weighted sum that only increases.
The support of a P-invariant or P-surinvariant is the set of places with

non-zero value. Those places will be said to be covered by the P-invariant or
P-surinvariant.

Intuitively a P-invariant is a conservation law of the CRN. The notion of
P-surinvariant will be used to identify the output species of a CRN.

Definition 7. A siphon is a set of places such that for each edge from a tran-
sition to any place of the siphon, there is an edge from a place of the siphon to
that transition.

Intuitively a siphon is a set of places that once empty remains empty, i.e.,
a set of species that cannot be produced again once they have been completely
consumed. Our first condition for rate independence will be based on the follow-
ing.

Definition 8. A critical siphon is a siphon that does not contain the support of
any P-invariant.

A siphon that is not critical contains the support of a P-invariant, therefore
it cannot ever get empty. A critical siphon on the other hand is thus a set of
species that might disappear completely and then always remain absent.

3 Rate Independence Condition for Persistent Outputs

The persistence concept has been introduced to identify Petri nets for which
places remain non-zero [1]. Here we establish a link between this notion of per-
sistence and the rate-independence property of the input/output function com-
puted on some output species.

3.1 Sufficient Graphical Condition

As in [2], we are interested by the persistence not of the whole CRN but of some
species. We will say that a species is an output of a CRN if it is produced and not
consumed (and thus can only increase), i.e. if the stoichiometry of that species
in the product part of any reaction is greater or equal to the reactant part, or
equivalently:

Definition 9. A species is an output of a CRN if it is the singleton support of
a P-surinvariant.

Example 5. In the CRN of Example 2, the max is computed on a non-output
node, c. The min is computed on an output node r. The rate independence of
that CRN on r follows from Theorem 1 below.

Definition 10. A species is structurally persistent if it is covered by a P-
invariant and does not belong to any critical siphon.

68 É. Degrand et al.

Such species’ concentrations will not reach zero for well-formed CRNs as
proved in [1,2], but this section shows that if they are also output species they
converge to a value that is independent of the rates of reactions. Note that such
species might still belong to some non-critical siphons, for instance siphons that
cover the whole P-invariant it is part of.

Theorem 1. If a species p of a well-formed CRN is a structurally persistent
output, then that CRN is rate-independent on p.

Proof. Since p is structurally persistent, it is covered by some P-invariant and
therefore bounded. Since p is an output species and the CRN is well-formed,
dp
dt ≥ 0. Hence its concentration converges to some value p∗.

When p reaches that steady state, all incoming reactions that modify it have
null flux, hence by well-formedness one of their reactants has 0 concentration.
If there are only incoming reactions that do not affect p then it is trivially con-
stant and therefore rate-independent. Otherwise there are some such incoming
reactions with a null reactant.

Now, notice that Prop. 1 of [1] states, albeit with completely different nota-
tions, that if one species of a well-formed CRN reaches 0 then all the species of a
siphon reach 0. Therefore there exists a whole siphon S containing that reactant
and with 0 concentration (intuitively, this reactant also has its input fluxes null,
and one can thus build recursively a whole siphon).

By construction, S′ = {p} ∪ S is also a siphon, and since p is persistent,
S′ is not critical. S′ therefore covers some P-invariant P and all concentrations
are null except that of p in S′. Now P necessarily covers p since otherwise its
conservation would be violated by having all 0 concentrations.

Note that by definition, for each P-invariant V containing p we have at any
time t with state vector xt that V · xt = V · x0. Hence:

p(t) = xt(p) =
V 0 − V · xt

p→0

V (p)
≤ V 0

V (p)

where xt
p→0 is the state vector except for the concentration of p replaced by 0,

and V 0 is a shorthand for V · x0.
At steady state we get p∗ = P 0

P (p) since we proved that all concentrations
other than that of p are null. Hence, we have:

p∗ = min
W

V 0

V (p)

where W = {V | V is a P-invariant covering p}, and which is obviously rate-
independent. ��

3.2 Constraint-Based Programming

It is well-known that there may be an exponential number of P-invariants and
siphons in a Petri net. Therefore, it is important to combine the constraints of

Graphical Conditions for Rate Independence in CRNs 69

both structural conditions for the computation of the minimal P-invariants and
the union of critical siphons, without computing all siphons and P-invariants.
This is the essence of constraint programming and of constraint-based model-
ing of such a decision problem as a constraint satisfaction problem. Further-
more, deciding the existence of a minimal siphon containing a given place is an
NP-complete problem for which constraint programming has already shown its
practical efficiency for enumerating all minimal siphons in BioModels, see [26].

We have thus developed a constraint program dedicated to the computation
of structurally persistent species. For the minimal P-invariants, the constraint
solving problem is the same as in [34] and is quite efficient on CRNs. For the
second part about critical siphons, we use a similar approach but with Boolean
variables to represent our siphons as in [26]. However, we enumerate maximal
siphons here. This amounts to enumerate values 1 before 0, and to add in the
branch-and-bound procedure for optimization that each new siphon must include
at least one new place. Furthermore, we add the constraint that they are critical:
for each P-invariant P , one of the species of its support must be absent (0). We
get the flexibility of our constraint-based approach to add this kind of supple-
mentary constraint while keeping some of the efficiency already demonstrated
before.

In Sect. 5, this constraint program is used to compute the set of outputs and
check if they are structurally persistent for many models of the biomodels.net
repository. There are however a few models on which our constraint program
is quite slow. An alternative constraint solving technique to solve those hard
instances could be to use a SAT solver, at least for the enumeration of critical
siphons, as shown in [26].

4 Global Rate Independence Condition

Theorem 1 above can be used to prove the rate-independence property on some
output species of a CRN, like r in Example 2 for computing the max, but not on
some intermediate species, like c for computing min. In this section we provide
a sufficient condition for proving the rate-independence of a CRN on all species.

4.1 Sufficient Graphical Condition

Definition 11. A chemical reaction network C is synthesis-free if for all reac-
tions (Ri, Pi, fi) of C we have Ri 	≤ Pi.

In other words any reaction need to consume something to produce some-
thing.

Definition 12. A chemical reaction network C is loop-free if there is no circuit
in its associated graph GC.

Definition 13. A chemical reaction network C is fork-free if for all species x ∈
S there is at most one reaction (Ri, Pi, fi) such that Ri(x) > 0.

70 É. Degrand et al.

This is equivalent to saying that the out-degree of species vertices is at most
one in GC .

Definition 14. A funnel CRN is a CRN that is:

1. synthesis-free
2. loop-free
3. fork-free

In Example 2 for computing the maximum concentration of two input species,
A and B, one can easily check that the CRN satisfies the funnel condition (see
Fig. 2). More generally, we can prove that any well-formed funnel CRN has a
single stable state and that this state does not depend on the precise values of
the parameters of the rate functions fi.

Lemma 1. The structure of the bipartite graph GC of a funnel CRN C is a DAG
with leaves that are only species.

Proof. Since C is loop-free, GC is acyclic. Since C is synthesis-free, leaves cannot
be reactions. ��
Lemma 2. All steady fluxes of a funnel CRN C are equal to 0.

Proof. Let us prove the lemma by induction on the topological order of reactions
in GC , this is enough thanks to Lemma 1.

For the base case (smallest reaction in the order), at least one of the species x
such that Ri(x) > Pi(x) is a leaf (synthesis-freeness), then notice that at steady
state, dx

dt = 0 = (Pi(x)−Ri(x))fi since there is no production of x as it is a leaf,
and no other consumption as C is fork-free. Hence fi = 0.

For the induction case, consider a reactant x s.t. Ri(x) > Pi(x) of our reac-
tion. By induction hypothesis, at steady state we have dx

dt = 0 =(Pi(x)−Ri(x))fi

since all productions of x are lower in the topological order, and there is no other
consumption of x as C is fork-free. Hence fi = 0. ��
Definition 15. We shall denote x+

i the total amount of species xi available in
an execution of the corresponding ODE system.

x+
i = x0

i +
∫ +∞

0

dx+
i

dt
= x0

i +
∫ +∞

0

∑

Pj(xi)>Rj(xi)

(Pj(xi) − Rj(xi))fj

Lemma 3. Let C be a well-formed funnel CRN, then for each initial state x0,
if C reaches a steady state x∗, then the total amount x+

i of any species xi can be
computed and is independent from the kinetic functions fj of C.

Proof. Let us proceed by induction on the topological order of species xi in GC .
If xi is a leaf, then since nothing produces it x+

i = x0
i .

Now let us look at the induction case for xi, and consider the set J of reactions
producing xi (i.e., such that Pj(xi) > Rj(xi)).

Graphical Conditions for Rate Independence in CRNs 71

From Lemma 2 we know that for all these reactions fj = 0 at stable state, and
since C is well-formed, it means that there exists at least one species xj0 such that
x∗

j0
= 0. As C is fork-free and well-formed xj0 has only been consumed by reaction

rj , which led to precisely producing an amount of xi equal to x+
j0

(Pj(xi) −
Rj(xi))/(Rj(xj0)−Pj(xj0)), where x+

j0
is available via induction hypothesis. Note

also that j0 = argminxk|Rj(xk)>Pj(xk)
x+

k (Rj(xk)−Pj(xk)) since the reaction will
stop as soon as it has depleted one of its inputs.

Hence x+
i = x0

i +
∑

J x+
j0

(Pj(xi) − Rj(xi))/(Rj(xj0) − Pj(xj0)), which only
depends on the initial state and the stoichiometry. ��
Theorem 2. Let C be a well-formed funnel CRN, then the ODE system asso-
ciated to C has a single steady state x∗ that does not depend on the kinetic
functions fi of C.

Proof. From proof of Lemma 3 one notices that either xi is not consumed at
all and we have x∗

i = x+
i or if j is the only reaction consuming xi, its total

consumption is given by xj0(Rj(xj0) − Pj(xj0)), with j0 defined as in the proof
of Lemma 3.

These x∗
i do not depend on the kinetic functions fi of C.

We prove now that every xi is convergent. It can be first noticed that

xi(t) = xi0 + Fe(t) − Fs(t)

where Fe(t) =
∫ t

0

∑
Pj(xi)>Rj(xi)

(Pj(xi) − Rj(xi))fj is the incoming flux and

Fs(t) =
∫ t

0
(Pk(xi) − Rk(xi))fk is the outgoing flux.

Fe is the integral of a positive quantity, it is then an increasing function.
Moreover, as Fe(t) ≤ x+

i , this function is bounded and then converges to a real
number limit.

Similarly, Fs is increasing and, as xi(t) ≥ 0, we have Fs(t) ≤ x+
i then it is

bounded and converges.
To conclude, xi is a difference of two convergent functions, hence it converges

to a real number.

Corollary 1. Any well-formed funnel CRN is rate-independent for any output
species.

We have thus given here a sufficient condition for a very strong notion of rate-
independence in which all the species of the CRN have a steady state independent
of the reaction rates, as in Example 2.

4.2 Necessary Condition

Our sufficient condition is not a necessary condition for global rate independence.
Basically, forks that join and circuits that leak do not prevent rate independence:

72 É. Degrand et al.

Example 6. The CRN

a=>b.

b=>a.

b=>c.

is not a funnel CRN as it has both a loop (formed by a and b) and a fork (b is a
reactant in two distinct reactions). Nevertheless, this CRN is rate-independent
on all species. The circuit formed by a and b has a leak with the third reaction.
Every molecule of a and b will thus be finally transformed into c whatever the
reaction kinetics are. At the steady state, the concentration of a and b will be
null, and the concentration of c will be the sum of all the initial concentrations.

Nevertheless, we can show that any function computable by a rate indepen-
dent CRN can be computed by a funnel CRN. We first show that funnel CRNs
are composable under certain conditions for rate independent CRNs, similarly
to the composability conditions given in [4].

Definition 16. Two CRNs C1 and C2 are composable if

(
⋃

(R,P,f)∈C1

R ∪ P) ∩ (
⋃

(R′,P ′,f ′)∈C2

R′ ∪ P ′) = {x}

i.e., there is a single species appearing in both sets of reactions.
The composition of C1 and C2 is the union of their sets of reactions. The

species x is called the link between both CRNs.

Lemma 4. The composition of two funnel CRNs is a funnel CRN if the com-
position does not create forks on their link.

Proof. As the reaction rates of the two original CRNs are well-formed, the reac-
tion rates of the resultant CRN are well-formed too. No synthesis and no loop
can be created by the union of two CRNs as all species are different except for
the link. Therefore, the condition to create no fork by composition is sufficient
to ensure that the resultant CRN is a funnel CRN.

Corollary 2. The composition of two funnel CRNs is a funnel CRN if the link
x is reactant in at most one of the CRNs.

Proof. Since both CRNs are funnel, x is a reactant in at most one reaction in
each. Now from our hypothesis it is not reactant at all in one of the CRNs,
hence it appears as reactant in at most one reaction and therefore in no fork.
By Lemma 4, the resulting CRN is a funnel CRN.

Theorem 3. Any function computable by a rate independent CRN is com-
putable by a funnel CRN.

Proof. Using the same theorem from Ovchinnikov [27] as in [9] we note that
any such function f with components fj , 1 ≤ j ≤ p can be written as f(x) =
max1≤i≤q minj∈Si

fj(x) for some family Si ≤ {1, . . . , p}.

Graphical Conditions for Rate Independence in CRNs 73

Each fj is rational linear, so this function can be written: fj(x) =
∑n

1
αj,i

nj
xi.

To compute this linear sum, the following reactions are needed: For every xi, we
add the reactions xi => αj,i · wj which compute w =

∑n
1

αj,i

x i
.

Then we add the reaction nj · wj => yj which compute yj = 1
nj

wj .
The output of the CRN that computes a linear function is a funnel CRN. Both

max and min can be written with a funnel CRN (see respectively Examples 2
and 2) and min can be composed by max as the output of min is not a reactant
in the CRN that computes min. From Corollary 2, the conclusion is immediate.

5 Evaluation on Biomodels

In this section, we evaluate our sufficient condition for rate-independence on the
reaction graphs of the curated part of the repository of models BioModels [7].
These models are numbered from BIOMD0000000001 to BIOMD0000000705. After
excluding the empty models (i.e. models with no reactions or species), 590 models
have been tested in total. As already noted in [16] however, many models in the
curated of BioModels come from ODE models that have not been transcribed
in SBML with well-formed reactions. Basically, some species appearing in the
kinetics are missing as reactants or modifiers in the reactions, or some kinetics are
negative. In this section, we test our graphical conditions for rate independence
on the reaction graphs given for those models, without rewriting the structure
of the reactions when they were not well-formed. Therefore, the actual rate-
independence of the models that satisfy our sufficient criteria is conditioned to
the well-formedness of the CRN.

The evaluation has been performed using Biocham1 with a timeout of 240 s.
The computer used for the evaluation has a quad-processor Intel X3.07 GHz with
8 Gb of RAM.

5.1 Computation of Rate-Independent Output Species

Following Definition 9, we tested the species that constitute the singleton support
of a P-surinvariant. Among the 590 models tested, 340, i.e. 57.6% of them, were
found to have no output species. 94 models, i.e. 15.9% of the models, were
found to have at least one rate-independent output. 27 models, i.e. 4.5%, have
both one rate-independent output and one undecided output, i.e. an output
not satisfying our sufficient condition. 86 models, i.e. 14.5%, have at least one
undecided output.

It is worth noting however that the species that are never modified by a
reaction, i.e. that are only catalysts, remain always constant and thus constitute
trivial rate-independent outputs. Amongst the 94 models with at least one rate-
independent output found during evaluation, 29 have at least one non-trivial
rate-independent output. Table 1 gives some details on the size and computation
time for those 29 models.
1 All our experiments are available on https://lifeware.inria.fr/wiki/Main/Software#

CMSB20b.

https://lifeware.inria.fr/wiki/Main/Software#CMSB20b
https://lifeware.inria.fr/wiki/Main/Software#CMSB20b

74 É. Degrand et al.

Table 1. Model numbers in Biomodels containing non-trivial structurally persistent
output species which are thus rate-independent by Theorem 1. For each model, we
indicate the numbers of species, reactions, rate-independent species, non-trivial rate-
independent species and total computation time in seconds.

Biomodel# #species #reactions #outputs #RI #NTRI NTRI-species Time (s)

037 12 12 2 2 2 Yi, Pi 0.950

104 6 2 3 3 1 species 4 0.074

105 39 94 11 3 1 AggP Proteasome 63.366

143 20 20 4 1 1 MLTH c 3.333

178 6 4 1 1 1 lytic 0.139

227 60 57 2 1 1 s194 17.299

259 17 29 1 1 1 s10 2.308

260 17 29 1 1 1 s10 2.310

261 17 29 1 1 1 s10 2.297

267 4 3 1 1 1 lytic 0.086

283 4 3 1 1 1 Q 0.053

293 136 316 14 4 3 aggE3, aggParkin,

AggP Proteasome

>240

313 16 16 4 2 1 IL13 DecoyR 2.071

336 18 26 1 1 1 IIa 4.148

344 54 80 7 2 1 AggP Proteasome >240

357 9 12 1 1 1 T 0.561

358 12 9 4 2 1 Xa ATIII 0.892

363 4 4 1 1 1 IIa 0.067

366 12 9 4 2 1 Xa ATIII 0.901

415 10 5 7 7 7 s10, s11, s12, s13, s14, s9, s15 0.894

437 61 40 22 8 1 T 16.109

464 14 10 6 3 1 s12 2.282

465 16 14 5 5 1 s23 59.554

525 18 19 8 3 1 p18inactive 33.479

526 18 19 8 3 1 p18inactive 33.858

540 22 11 12 11 8 s14, s15, s16, s17, s18, s19,

s20, s21

56.134

541 37 32 13 9 7 s14, s15, s16, s17, s18, s19,

s21

31.573

559 90 136 18 2 2 s493, s502 150.954

575 76 58 9 1 1 DA GSH 66.806

Now, evaluating by simulation the actual rate-independence property of those
models, and thereby the empirical completeness of our purely graphical criterion
in this benchmark, would raise a number of difficulties. First, as said above, many
SBML models coming from ODE models have not been properly transcribed with
well-formed reactions and would need to be rewritten [16]. Second, some models
may contain additional events or assignment rules which are not reflected in the
CRN reaction graph. Third, the relevant time horizon to consider for simulation
is not specified in the SBML file. In the curated part of BioModels, this time
horizon can range from 20 s to 1 000 000 s.

Nevertheless, we performed some manual testing on 9 models from Table 1,
namely models 37, 104, 105, 143, 178 and 227, which have at least one non-trivial

Graphical Conditions for Rate Independence in CRNs 75

rate-independent output, and models 50, 52 and 54, which have only undecided
outputs. For each model, numerical simulations were done with two different
sets of initial concentrations and two different sets of parameters. Even when it
was not the case in the original models, all the parameters were set to positive
values. All outputs in models 37 and 104 were found rate-independent which
was confirmed by numerical simulation. For model 105, 3 outputs among the
11 outputs of this model were found rate-independent by our algorithm which
seemed again to be confirmed by numerical simulation. Models 143 and 227 are
not well-formed which explains why the species satisfying our graphical criterion
were shown not be rate-independent by numerical simulation. For models with
only undecided outputs, i.e. models 50, 52 and 54, numerical simulations show
that none of their outputs is rate-independent. For these 3 models, 11 undecided
outputs were tested in total. In this manual testing, we did not find any output
that was left undecided by the algorithm and was found rate-independent by
numerical simulation.

5.2 Test of Global Rate-Independence

In this section, we test the criterion given in Definition 14 that ensures the
rate-independence of all the species of a given CRN.

On the 590 reaction models tested, 20 models have reached the time-
out limit of 240 s and were therefore not evaluated. Two models were found
to be rate-independent on all species, namely models BIOMD0000000178 and
BIOMD0000000267. These models constitute a chain of respectively 4 and 3
species. At steady state, all species have a null concentration, except the last
one. The steady state value of the last species is equal to the sum of all the
initial concentrations. These models simulate the onset of paralysis of skeletal
muscles induced by botulinum neurotoxin serotype A. They are used in partic-
ular to get an upper time limit for inhibitors to have an effect [25].

These two models were also found to have rate-independent outputs during
the evaluation of the previous criterion for outputs. The global criterion here
shows that not only the output species of the chain are rate-independent, but
also all the inner species of the chain.

6 Conclusion

We have given two graphical conditions for verifying the rate-independence prop-
erty of a chemical reaction network. First, the absence of synthesis, circuit and
fork in the reaction graph, ensures the existence of a single steady state that
does not depend on the reaction rates, thereby ensuring the existence of a com-
puted input/output function for all species of the CRN and their independence
of the rate of the reactions. Second, the covering of a given output species by
one P-invariant and no critical siphon, provides a criterion to ensure the rate-
independence property of the computed function on that output species.

76 É. Degrand et al.

These graphical conditions are sufficient but none of them is necessary. Eval-
uation in BioModels suggests however that they are already quite powerful since
among the 590 models of the curated part of BioModels tested, 94 reaction
graphs were found rate-independent for some output species, 29 for non-trivial
output species, and 2 for all species which was confirmed for well-formed models.

It is worth noting that our second condition uses the classical Petri net
notions of P-invariant and siphons in a non-standard way for continuous sys-
tems. A similar use has already been done for instance in [1] for the study of
persistence and monotone systems, and interestingly in [23], where the authors
remark the discrepancy there is on the Petri net property of trap between the
standard discrete interpretation, under which a non empty trap remains non
empty, and the continuous interpretation under which a non empty trap may
become empty. This shows the remarkable power of Petri net notions and tools
for the study of continuous dynamical systems, thus beyond standard discrete
Petri nets and outside Petri net theory properly speaking.

As already remarked in previous work [26,34], modeling the computation of
Petri net invariants, siphons and other structural properties as a constraint sat-
isfaction problem provides efficient implementations using general purpose con-
straint solvers, often showing better efficiency than with dedicated algorithms.
This was illustrated here by the use of a constraint logic program to implement
our condition on P-invariants and critical siphons by constraining the search
to those sets of places that satisfy the condition, without having to actually
compute the sets of all P-invariants and critical siphons.

Finally, it is also worth noting that beyond verifying the rate-independence
property of a CRN and identifying the output species for which the computed
function is rate-independent, our graphical conditions may also be considered
as structural constraints to satisfy for the design of rate-independent CRNs in
synthetic biology [12]. They should thus play an important role in CRN design
systems in the future.

Acknowledgement. This work was jointly supported by ANR-MOST BIOPSY Bio-
chemical Programming System grant ANR-16-CE18-0029 and ANR-DFG SYMBIONT
Symbolic Methods for Biological Networks grant ANR-17-CE40-0036.

References

1. Angeli, D., Leenheer, P.D., Sontag, E.D.: A Petri net approach to persistence
analysis in chemical reaction networks. In: Queinnec, I., Tarbouriech, S., Garcia,
G., Niculescu, S.I. (eds.) Biology and Control Theory: Current Challenges. LNCIS,
vol. 357, pp. 181–216. Springer, Heidelberg (2007). https://doi.org/10.1007/978-
3-540-71988-5 9

2. Angeli, D., Leenheer, P.D., Sontag, E.D.: Persistence results for chemical reac-
tion networks with time-dependent kinetics and no global conservation laws. In:
Proceedings of the 48h IEEE Conference on Decision and Control (CDC), pp.
4559–4564. IEEE (2009)

https://doi.org/10.1007/978-3-540-71988-5_9
https://doi.org/10.1007/978-3-540-71988-5_9

Graphical Conditions for Rate Independence in CRNs 77

3. Baudier, A., Fages, F., Soliman, S.: Graphical requirements for multistationarity
in reaction networks and their verification in biomodels. J. Theor. Biol. 459, 79–89
(2018). https://hal.archives-ouvertes.fr/hal-01879735

4. Chalk, C., Kornerup, N., Reeves, W., Soloveichik, D.: Composable rate-
independent computation in continuous chemical reaction networks. In: Češka, M.,
Šafránek, D. (eds.) CMSB 2018. LNCS, vol. 11095, pp. 256–273. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-99429-1 15

5. Chaouiya, C.: Petri net modelling of biological networks. Brief. Bioinform. 8(4),
210–219 (2007)

6. Chaouiya, C., Remy, E., Thieffry, D.: Petri net modelling of biological regulatory
networks. J. Discret. Algorithms 6(2), 165–177 (2008)

7. Chelliah, V., Laibe, C., Novère, N.: Biomodels database: a repository of mathe-
matical models of biological processes. In: Schneider, M.V. (ed.) In Silico Systems
Biology, Methods in Molecular Biology, vol. 1021, pp. 189–199. Humana Press
(2013)

8. Chen, H.L., Doty, D., Soloveichik, D.: Deterministic function computation with
chemical reaction networks. Nat. Comput. 7433, 25–42 (2012)

9. Chen, H.L., Doty, D., Soloveichik, D.: Rate-independent computation in continuous
chemical reaction networks. In: Proceedings of the 5th Conference on Innovations
in Theoretical Computer Science, ITCS 2014, pp. 313–326. ACM, New York (2014)

10. Chen, Y., et al.: Programmable chemical controllers made from DNA. Nat. Nan-
otechnol. 8, 755–762 (2013)

11. Cook, M., Soloveichik, D., Winfree, E., Bruck, J.: Programmability of chemical
reaction networks. In: Condon, A., Harel, D., Kok, J.N., Salomaa, A., Winfree, E.
(eds.) Algorithmic Bioprocesses, pp. 543–584. Springer, Heidelberg (2009). https://
doi.org/10.1007/978-3-540-88869-7 27

12. Courbet, A., Amar, P., Fages, F., Renard, E., Molina, F.: Computer-aided bio-
chemical programming of synthetic microreactors as diagnostic devices. Mol. Syst.
Biol. 14(4), e7845 (2018)

13. Cousot, P., Cousot, R.: Abstract interpretation: a unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In: POPL 1977:
Proceedings of the 6th ACM Symposium on Principles of Programming Languages,
pp. 238–252. ACM Press, New York, Los Angeles (1977)

14. Craciun, G., Feinberg, M.: Multiple equilibria in complex chemical reaction net-
works: II. The species-reaction graph. SIAM J. Appl. Math. 66(4), 1321–1338
(2006)

15. Fages, F., Le Guludec, G., Bournez, O., Pouly, A.: Strong turing completeness
of continuous chemical reaction networks and compilation of mixed analog-digital
programs. In: Feret, J., Koeppl, H. (eds.) CMSB 2017. LNCS, vol. 10545, pp. 108–
127. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-67471-1 7

16. Fages, F., Gay, S., Soliman, S.: Inferring reaction systems from ordinary differential
equations. Theor. Comput. Sci. 599, 64–78 (2015)

17. Fages, F., Soliman, S.: Abstract interpretation and types for systems biology.
Theor. Comput. Sci. 403(1), 52–70 (2008)

18. Fages, F., Soliman, S.: From reaction models to influence graphs and back: a the-
orem. In: Fisher, J. (ed.) FMSB 2008. LNCS, vol. 5054, pp. 90–102. Springer,
Heidelberg (2008). https://doi.org/10.1007/978-3-540-68413-8 7

19. Feinberg, M.: Mathematical aspects of mass action kinetics. In: Lapidus, L.,
Amundson, N.R. (eds.) Chemical Reactor Theory: A Review, Chap. 1, pp. 1–78.
Prentice-Hall (1977)

https://hal.archives-ouvertes.fr/hal-01879735
https://doi.org/10.1007/978-3-319-99429-1_15
https://doi.org/10.1007/978-3-540-88869-7_27
https://doi.org/10.1007/978-3-540-88869-7_27
https://doi.org/10.1007/978-3-319-67471-1_7
https://doi.org/10.1007/978-3-540-68413-8_7

78 É. Degrand et al.

20. Gilbert, D., Heiner, M.: From petri nets to differential equations – an integrative
approach for biochemical network analysis. In: Donatelli, S., Thiagarajan, P.S.
(eds.) ICATPN 2006. LNCS, vol. 4024, pp. 181–200. Springer, Heidelberg (2006).
https://doi.org/10.1007/11767589 11

21. Heiner, M., Gilbert, D., Donaldson, R.: Petri nets for systems and synthetic biology.
In: Bernardo, M., Degano, P., Zavattaro, G. (eds.) SFM 2008. LNCS, vol. 5016, pp.
215–264. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-68894-
5 7

22. Hucka, M., et al.: The systems biology markup language (SBML): a medium for
representation and exchange of biochemical network models. Bioinformatics 19(4),
524–531 (2003)

23. Johnston, M.D., Anderson, D.F., Craciun, G., Brijder, R.: Conditions for extinction
events in chemical reaction networks with discrete state spaces. J. Math. Biol.
76(6), 1535–1558 (2018)

24. von Kamp, A., Schuster, S.: Metatool 5.0: fast and flexible elementary modes anal-
ysis. Bioinformatics 22(15), 1930–1931 (2006)

25. Lebeda, F.J., Adler, M., Erickson, K., Chushak, Y.: Onset dynamics of type A
botulinum neurotoxin-induced paralysis. J. Pharmacok. Pharmacodyn. 35(3), 251–
267 (2008)

26. Nabli, F., Martinez, T., Fages, F., Soliman, S.: On enumerating minimal siphons
in Petri nets using CLP and SAT solvers: theoretical and practical complexity.
Constraints 21(2), 251–276 (2016)

27. Ovchinnikov, S.: Max-min representation of piecewise linear functions. Contrib.
Algebra Geom. 43(1), 297–302 (2002)

28. Peterson, J.L.: Petri Net Theory and the Modeling of Systems. Prentice Hall, New
Jersey (1981)

29. Qian, L., Soloveichik, D., Winfree, E.: Efficient turing-universal computation with
DNA polymers. In: Sakakibara, Y., Mi, Y. (eds.) DNA 2010. LNCS, vol. 6518, pp.
123–140. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-18305-
8 12

30. Reddy, V.N., Mavrovouniotis, M.L., Liebman, M.N.: Petri net representations in
metabolic pathways. In: Hunter, L., Searls, D.B., Shavlik, J.W. (eds.) Proceedings
of the 1st International Conference on Intelligent Systems for Molecular Biology
(ISMB), pp. 328–336. AAAI Press (1993)

31. Sackmann, A., Heiner, M., Koch, I.: Application of Petri net based analysis tech-
niques to signal transduction pathways. BMC Bioinform. 7, 482 (2006)

32. Schneider, F.S., et al.: Biomachines for medical diagnosis. Adv. Mater. Lett. 11(4),
1535–1558 (2020)

33. Senum, P., Riedel, M.: Rate-independent constructs for chemical computation.
PLoS ONE 6(6), e21414 (2011)

34. Soliman, S.: Invariants and other structural properties of biochemical models as a
constraint satisfaction problem. Algorithms Mol. Biol. 7, 15 (2012)

https://doi.org/10.1007/11767589_11
https://doi.org/10.1007/978-3-540-68894-5_7
https://doi.org/10.1007/978-3-540-68894-5_7
https://doi.org/10.1007/978-3-642-18305-8_12
https://doi.org/10.1007/978-3-642-18305-8_12

Interval Constraint Satisfaction
and Optimization for Biological

Homeostasis and Multistationarity

Aurélien Desoeuvres1(B), Gilles Trombettoni2, and Ovidiu Radulescu1

1 LPHI UMR CNRS 5235, University of Montpellier, Montpellier, France
{aurelien.desoeuvres,ovidiu.radulescu}@umontpellier.fr

2 LIRMM, University of Montpellier, CNRS, Montpellier, France
gilles.trombettoni@lirmm.fr

Abstract. Homeostasis occurs in a biological system when some out-
put variable remains approximately constant as one or several input
parameters change over some intervals. When the variable is exactly con-
stant, one talks about absolute concentration robustness (ACR). A dual
and equally important property is multistationarity, which means that
the system has multiple steady states and possible outputs, at constant
parameters. We propose a new computational method based on interval
techniques to find species in biochemical systems that verify homeostasis,
and a similar method for testing multistationarity. We test homeostasis,
ACR and multistationarity on a large collection of biochemical models
from the Biomodels and DOCSS databases. The codes used in this paper
are publicly available at: https://github.com/Glawal/IbexHomeo.

1 Introduction

The 19th century French physiologist Claude Bernard introduced the concept
of homeostasis that plays a crucial role in understanding the functioning of liv-
ing organisms. As he put it, homeostasis, defined as constancy, despite external
changes, of the “milieu intérieur” that contains organs, tissues and cells, is a
prerequisite of life. A simple example of homeostasis is the constancy of body
temperature: our body temperature is maintained in a narrow range around
37◦ C despite large variation of the environment temperature. Another example
is the concentration of many biochemical species (cell processes drivers and regu-
lators such as glucose, ATP, calcium, potassium, cell surface receptors, transcrip-
tion factors, etc.) whose steady state values are kept constant by tight control.
Rather generally, homeostasis refers to constancy of the output w.r.t. variation
of parameters or inputs [10]. Several other concepts such as robustness, resilience
or viability are closely related to homeostasis and sometimes used with overlap-
ping meaning. Robustness refers to the lack of sensitivity of temporal and static
properties of systems w.r.t. parameters and/or initial conditions variation, thus
encompassing homeostasis [4,11,26]. Resilience or viability has a more global,
dynamical significance, meaning the capacity of systems to recover from pertur-
bations via transient states that stay within bounds [3].

c© Springer Nature Switzerland AG 2020
A. Abate et al. (Eds.): CMSB 2020, LNBI 12314, pp. 79–101, 2020.
https://doi.org/10.1007/978-3-030-60327-4_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-60327-4_5&domain=pdf
https://github.com/Glawal/IbexHomeo
https://doi.org/10.1007/978-3-030-60327-4_5

80 A. Desoeuvres et al.

In [27], a special type of homeostasis is studied, named absolute concentration
robustness (ACR), consisting in invariance of the steady state w.r.t. changes of
initial conditions. For chemical reaction network (CRN) models, they proposed a
sufficient graph-theoretical criterion for ACR. Replacing invariance by infinites-
imal sensitivity, [10] presents a way to detect homeostasis in parametric systems
of ordinary differential equations (ODEs). Their approach, based on the singu-
larity theory, was applied to gene circuit models [1]. Our work builds on this
reasoning, using a slightly different definition of homeostasis. Instead of looking
at the infinitesimal variation, we choose to look at intervals. The steady states of
ODE models are computed as solutions of algebraic equations. We are interested
in finding intervals containing all the steady state values of model variables. If
the variables values are contained inside sufficiently narrow intervals, those vari-
ables are stated homeostatic. Sensitivity-like calculations of the input-output
relationship compute derivatives of the output w.r.t. the input and boil down to
linearizations. In contrast, our method guarantees intervals containing the out-
put w.r.t the initial system. This is crucial in applications, whenever parameters
change on wide ranges and models are strongly nonlinear. The interval approach
has thus larger applicability.

Our approach also provides a novel method for testing the multistationarity
of CRNs, occurring when one or several variables can have several values at
the steady state. In this case, we are interested in the number and the actual
space position of all the steady states. Multistationarity is an important problem
in mathematical biology and considerable effort has been devoted to its study,
with a variety of methods: numerical, such as homotopy continuation [28] or
symbolic, such as real triangularization and cylindrical algebraic decomposition
[6]. However, as discussed in [6], numerical errors in homotopy based methods
may lead to failure in the identification of the correct number of steady states,
whereas symbolic methods have a double exponential complexity in the number
of variables and parameters. As solving a system of algebraic equations is the
same as finding intersections of manifolds, each manifold corresponding to an
equation, our problem is equivalent to solving a system of constraints.

In this paper we use the interval constraint programming (ICP) and opti-
mization solvers provided by the Ibex (Interval Based EXplorer) tool, for testing
homeostasis and multistationarity. Although interval solvers are combinatorial
in the worst-case, polynomial-time acceleration algorithms embedded in these
solvers generally make them tractable for small or medium-sized systems. Inter-
val constraint satisfaction methods offer an interesting compromise between good
precision and low complexity calculations. ICP is an important field in com-
puter science and its interaction with biology has cross-fertilization potential.
Although interval methods have already been used in systems biology for coping
with parametric models uncertainty [17,31], to the best of our knowledge, this
is their first application to homeostasis and multistationarity. In an algorith-
mic point of view, this paper reports the first (portfolio) distributed variant of
the IbexOpt Branch and Bound optimizer, where several variants of the solver
are run on different threads and exchange information. Our approach has been
tested on two databases, and this benchmarking represents the first systematic
study of homeostasis, in particular ACR, on realistic CRN models.

Interval Constraint Satisfaction and Optimization 81

Together, our tools can be used to address numerous problems in fundamen-
tal biology and medicine, whenever the stability and controlability of biochemical
variables are concerned. In fundamental biology, both homeostasis and multista-
tionarity are key concepts for understanding cell decision making in development
and adaptation. In personalized medicine, our tests could be used not only for a
better understanding of the loss of homeostasis, for instance in aging and degen-
erative disease, but also for diagnosis and for predicting the effect of therapy to
bring back a normal functioning.

2 Settings and Definitions

Our definition of homeostasis is general and can be applied to any system of
ODEs. For all the applications discussed in this paper, the ODEs systems result
from chemical reactions whose rates are given either by mass action (as in Fein-
berg/Shinar’s analysis of ACR) or by more general kinetic laws.

We consider thus the variables x1, ..., xn, representing species concentrations,
the parameters p1, ..., pr, representing kinetic constants, and a set of differential
equations :

dx1

dt
= f1(x1, ..., xn, p1, ..., pr), . . . ,

dxn

dt
= fn(x1, ..., xn, p1, ..., pr), (1)

where the functions fi, 1 ≤ i ≤ n are at least piecewise differentiable.
We are interested in systems that have steady states, i.e. such that the system

f1(x1, ..., xn, p1, ..., pr) = 0, . . . , fn(x1, ..., xn, p1, ..., pr) = 0 (2)

admits real solutions for fixed parameters p1, . . . , pr. Because x1, ..., xn represent
concentrations, we constrain our study to real positive solutions.

Generally, it is possible to have one or several steady states, or no steady state
at all. The number of steady states can change at bifurcations. For practically all
biochemical models, the functions f1, . . . , fn are rational, and at fixed parameters
(2) defines an algebraic variety. The local dimension of this variety is given by
the rank defect of the Jacobian matrix J , of elements Ji,j = ∂fi

∂xj
, 1 ≤ i, j ≤ n.

When J has full rank, then by the implicit function theorem, the steady
states are isolated points (zero dimensional variety) and all the species are locally
expressible as functions of the parameters:

x1 = Φx1(p), . . . , xn = Φxn
(p). (3)

The functions Φy were called input-output functions in [10], where the input is
the parameters pi and the output variable y is any of the variables xi, 1 ≤ i ≤ n.
Also in the full rank case, a system is called multistationary when, for fixed
parameters there are multiple solutions of (2), i.e. multiple steady states.

J has not full rank in two cases. The first case is at bifurcations, when the
system output changes qualitatively and there is no homeostasis. The second
case is when (1) has l ≤ n independent first integrals, i.e. functions of x that are
constant on any solution of the ODEs (1). In this case the Jacobian matrix has

82 A. Desoeuvres et al.

rank defect l everywhere and steady states form an l-dimensional variety. For
instance, for many biochemical models, there is a full rank constant matrix C
such that

∑n
j=1 Cijfj(x1, ..., xn, p1, ..., pr) = 0, for all x1, ..., xn, p1, ..., pr, 1 ≤ i ≤

l. In this case there are l linear conservation laws, i.e.
∑n

i=1 Cijxj = ki, 1 ≤ i ≤ l
are constant on any solution. Here ki depends only on the initial conditions,
ki =

∑n
i=1 Cijxj(0). In biochemistry, linear conservation laws occur typically

when certain molecules are only modified, or complexified, or translocated from
one compartment to another one, but neither synthesized, nor degraded. The
constant quantities ki correspond to total amounts of such molecules, in various
locations, in various complexes or with various modifications.

A biological system is characterized not only by its parameters but also by
the initial conditions. For instance, in cellular biology, linear conservation laws
represent total amounts of proteins of a given type and of their modifications,
that are constant within a cell type, but may vary from one cell type to another.
Therefore we are interested in the dependence of steady states on initial con-
ditions, represented as values of conservation laws. Because conservation laws
can couple many species, steady states are generically sensitive to their values.
ACR represents a remarkable exception when steady states do not depend on
conservation laws. In order to compute steady states at fixed initial conditions,
we solve the extended system

f1(x1, ..., xn, p1, ..., pr) = 0, . . . , fn−l(x1, ..., xn, p1, ..., pr) = 0,
C11x1 + . . . + C1nxn = k1, . . . , Cl1x1 + . . . + Clnxn = kl, (4)

where ki are considered as extra parameters, and f1, . . . , fn−l are linearly inde-
pendent functions.In this case, excepting the degenerate steady states with zero
concentrations discussed at the end of this section, the Jacobian of the extended
system has full rank and one can define again input-output functions as unique
solutions of (4). Similarly, when the biochemical models has non-linear conserva-
tion laws [9], an independent set of those can be added at the end of the system
to obtain a full rank Jacobian. A system is multistationary if at fixed parameters
there are multiple solutions of (4).

Homeostasis is defined using the input-output functions.

Definition 1. We say that y is a khom-homeostatic variable if no bifurcations
happen in P and if in the path of steady states given by Φy we get :

maxp∈P (Φy(p))
minp∈P (Φy(p))

≤ khom,

where khom ≥ 1. We take khom = 2 in this paper, but a different khom can
be used, depending on the tolerance of the biological system to variation. For
instance, for human glucose homeostasis khom ∈ [1.32, 1.95]. P represents the
space of parameters (P is compact in our examples), and p is a point inside P .
So, we consider homeostasis of y for any change of parameters in P .

We exclude from our definition trivial solutions xi = 0 obtained when

fi(x1, ..., xn, p1, ..., pr) = xni
i gi(x1, ..., xn, p1, ..., pr),

Interval Constraint Satisfaction and Optimization 83

where ni are strictly positive integers, gi are smooth functions with non-zero
derivatives ∂fi/∂xi for xi = 0. These solutions persist for all values of the
parameters and are thus trivially robust. In this case we replace the problem
fi = 0 by the problem gi = 0 that has only non-trivial solutions xi �= 0.

3 Interval Methods for Nonlinear Constraint Solving
and Optimization

3.1 Intervals

Contrary to standard numerical analysis methods that work with single values,
interval methods can manage sets of values enclosed in intervals. By these meth-
ods one can handle exhaustively the set of possible constraint systems solutions,
with guarantees on the answer. Interval methods are therefore particularly useful
for handling nonlinear, non-convex constraint systems.

Definition 2. An interval [xi] = [xi, xi] defines the set of reals xi such that
xi ≤ xi ≤ xi. IR denotes the set of all intervals. A box [x] denotes a Cartesian
product of intervals [x] = [x1] × ... × [xn]. The size or width of a box [x] is given
by w[x] = maxi(w([xi])) where w([xi]) = xi − xi.

Interval arithmetic [22] has been defined to extend to IR the usual mathemat-
ical operators over R (such as +, ·, /, power, sqrt, exp, log, sine). For instance,
the interval sum is defined by [x1] + [x2] = [x1 + x2, x1 + x2]. When a function
f is a composition of elementary functions, an extension of f to intervals must
be defined to ensure a conservative image computation.

Definition 3. (Extension of a function to IR)
Consider a function f : Rn → R.

[f] : IRn → IR is said to be an extension of f to intervals iff:

∀[x] ∈ IR
n [f]([x]) ⊇ {f(y), y ∈ [x]}

∀x ∈ R
n f(x) = [f]([x, x])

The natural extension of a real function f corresponds to the mapping of
f to intervals using interval arithmetic. More sophisticated interval extensions
have been defined, based on interval Taylor forms or exploiting function mono-
tonicity [13].

3.2 Interval Methods for Constraint Solving

Several interval methods have been designed to approximate all the real solu-
tions of equality constraints (h(x) = 0) in a domain defined by an initial box [x].
These methods build a search tree that explores the search space exhaustively
by subdividing [x]. The tree built contains a set of nodes, each of them corre-
sponding to a sub-box of [x]. At each node, the Branch and Contract process
achieves two main operations:

84 A. Desoeuvres et al.

– Bisection: The current box is split into two sub-boxes along one variable
interval.

– Contraction: Both sub-boxes are handled by contraction algorithms that
can remove sub-intervals without solution at the bounds of the boxes.

At the end of this tree search, the “small” boxes of size less than a user-
given precision ε contain all the solutions to the equation system. The process
is combinatorial, but the contraction methods are polynomial-time acceleration
algorithms that make generally the approach tractable for small or medium-
sized systems. Without detailing, contraction methods are built upon interval
arithmetic and can be divided into constraint programming (CP) [5,23,32] and
convexification [21,29] algorithms.

4 Multistationarity

The constraint solving strategy roughly described above is implemented by the
IbexSolve strategy available in the Ibex C++ interval library. IbexSolve can
find all the solutions of (4) with fixed parameters in a straightforward way.

This method is useful for small and medium systems, and sometimes for
large systems, depending on the nature of the constraints and the efficiency of
the contractors. Also, it provides as output each solution box. This output is
easy to read, because (4) has always a finite set of solutions.

In case of large systems, it can be easier to answer the question: do we have
zero, one, or several steady states? In this case, we can use another strategy,
described in the next section, where the problem is reformulated in terms of 2n
constrained global optimization problems: for every variable xi, we call twice an
optimization code that searches for the minimum and the maximum value of xi

while respecting the system (4).

– If the system admits at least two distinct solutions, the criterion used in
Definition 1 (using khom close to 1) will fail for at least one species, i.e. we
will find a species xi whose minimum and maximum values are not close to
each other.

– If the system admits no solution, the first call to the optimizer (i.e., minimiz-
ing x1) will assert it.

– And if we have only one solution, every species will respect the criterion.

Let us give a simple example given by the model 233 in the Biomodels
database [15]. In this model we have two species x and y together with seven
parameters (one for the volume of the compartment, four for kinetic rates, and
two for assumed fixed species). The system of ODEs is given by:

dx

dt
=

2k2k6y − k3x
2 − k4xy − k5x

k1
,

dy

dt
=

−k2k6y + k3x
2

k1
. (5)

After replacing the symbolic parameters by their given values, the steady state
equations read:

16y − x2 − xy − 3
2
x = 0, −8y + x2 = 0. (6)

Interval Constraint Satisfaction and Optimization 85

The system (6) has two non-zero solutions, given by (6,4.5) and (2,0.5). When
the system (6) is tested by IbexHomeo (the dedicated strategy for homeostasis)
on a strictly positive box (to avoid the trivial solution (0,0)), we find x ∈ [2, 6]
and y ∈ [0.5, 4.5]. The homeostasy criterion fails at fixed parameters and we
know that we have multistationarity.

5 IbexHomeo for Finding Homeostatic Species

The new interval solver dedicated to homeostasis proposed in this paper resorts
to several calls to optimization processes. Let us first recall the principles behind
interval Branch and Bound codes for constrained optimization.

5.1 Interval Branch and Bound Methods for Constrained Global
Optimization

Constrained global optimization consists in finding a vector in the domain that
satisfies the constraints while minimizing an objective function.

Definition 4. (Constrained Global Optimization)
Let x = (x1, ..., xn) varying in a box [x], and functions f : Rn → R, g : Rn → R

m,
h : Rn → R

p.
Given the system S = (f, g, h, x, [x]), the constrained global optimization

problem consists in finding f∗ :

f∗ ≡ min
x∈[x]

f(x) subject to g(x) ≤ 0 and h(x) = 0.

f denotes the objective function (Φy in Definition 1), f∗ being the objective
function value (or best “cost”), g and h are inequality and equality constraints
respectively. x is said to be feasible if it satisfies the constraints.

Interval methods can handle constrained global optimization (minimization)
problems having non-convex operators with a Branch and Bound strategy gen-
eralizing the Branch and Contract strategy described in the previous section.
The Branch and Bound solver maintains two bounds lb and ub of f∗. The upper
bound ub of f∗ is the best (lowest) value of f(x) satisfying the constraints found
so far, and the lower bound lb of f∗ is the highest value under which it does not
exist any solution (feasible point). The strategy terminates when ub − lb (or a
relative distance) reaches a user-defined precision εf . To do so, a variable xobj

representing the objective function value and a constraint xobj = f(x) are first
added to the system. Then a tree search is run that calls at each node a bisection
procedure, a contraction procedure, but also an additional bounding procedure
that aims at decreasing ub and increasing lb. Improving lb can be performed by
contraction: it is given by the minimum value of xobj over all the nodes in the
search tree. Improving the upper bound is generally achieved by local numerical
methods. Like any other Branch and Bound method, improving the upper bound
ub allows the strategy to eliminate nodes of the tree for which ub < xobj .

86 A. Desoeuvres et al.

Remark. Interval Branch and Bound codes can solve the optimization prob-
lem defined in Definition 4, but they sometimes require a significant CPU time
because of the guarantee on the equality constraints. A way to better tackle
the problem in practice is to relax equalities h(x) = 0 by pairs of inequalities
−εh ≤ h(x) and h(x) ≤ +εh, where εh is a user-defined positive parameter.
Therefore, in practice, interval Branch and Bound codes generally compute a
feasible vector x satisfying the constraints g(x) ≤ 0 and −εh ≤ h(x) ≤ +εh such
that |f∗ − f(x)| ≤ εf .

The interval Branch and Bound strategy roughly described above is imple-
mented by the IbexOpt strategy available in the Ibex C++ interval library [7].
IbexOpt is described in more details in [24,30].

5.2 A Dedicated Solver for Homeostasis Based on IbexOpt

Remember that we consider a variable xi to be homeostatic if it verifies
Definition 1. For identifying homeostasis, we consider the system (4) in which
the parameters pi and ki can vary.

Bi-optimization for a Given Species xi

Since we want to compute the minimum and the maximum value of xi = Φxi
(p),

the homeostasis detection amounts to two optimization problems, one minimiz-
ing the simple objective function xi, and one maximizing xi, i.e. minimizing −xi.
The two values returned are finally compared to decide the xi homeostasis. It is
useful to consider that minimizing and maximizing xi are somehow symmetric,
allowing the strategy to transmit bounds of xi from one optimization process to
the dual one. These bounds can also be compared during optimization to stop
both optimizations if they give enough information about homeostasis. Indeed,
an optimizer minimizing xi computes [ln, un]
 min(xi), where ln and un are
lb and ub of the objective function xi. An optimizer maximizing xi computes
[ux, lx]
 max(xi), where ux and lx are −ub and −lb of the objective function
−xi. Without detailing, lx/ln is an overestimate of the “distance” between any
two feasible values of xi, and a small value states that the species is homeostatic
(see Definition 1). Conversely, ux/un is an underestimate of any two feasible
values distance, and ux/un > khom asserts that the species is not homeostatic.
This TestHom decision procedure is implemented by Algorithm 1.

Algorithm TestHom(un, ln, ux, lx, khom)
if lx/ln ≤ khom then

return 2 /* homeostatic variable */

if ux/un > khom then
return 1 /* non homeostatic variable */

else
return 0 /* not enough information */

Algorithm 1: The TestHom decision procedure.

Interval Constraint Satisfaction and Optimization 87

Improving Upper Bounding with Fixed Parameters
The bi-optimization described above runs on the system S corresponding to
the system (4), where the equations fj(x, p) = 0 are relaxed by inequalities
−εh ≤ fj(x, p) ≤ +εh; the parameters p can vary in a box [p] and are added to
the set of processed variables. As we are checking for homeostasis, it is impor-
tant to notice that a steady state is expected for every parameter vector p ∈ [p]
(this is not valid, for instance, in the neighborhood of a saddle-node bifurca-
tion, which should be avoided by re-defining [p]). We exploit this key point by
also running minimization and maximization of xi on a system S′, correspond-
ing to the system S where the parameters have been fixed to a random value
p ∈ [p], with the hope that reducing the parameter space allows a faster optimiza-
tion. The computed values constitute feasible points for the initial problem (i.e.,
with parameters that can vary) and can fasten the bi-optimization algorithm
described above. Recall indeed that finding feasible points enables to improve
the upper bound ub of f∗ and to remove from the search tree the nodes with a
greater cost.

Overall, homeostasis detection of species xi is performed by Algorithm 2.

Algorithm Bi-Optimize(xi, t, S = (x × p, [x] × [p], system (4), εh),
P = (εf , t),FP)

Execute in parallel until timeout t:
(un, ln, FP) ← Minimize(xi, S, minxi(FP), P)
(ux, lx, FP) ← Minimize(−xi, S, maxxi(FP), P)
while true do

S′ ← FixRandomParameters(S)
FP ← Minimize(xi, S

′, +∞, P)

return (un, ln, ux, lx, FP)

Algorithm 2: The double optimization process on a given species xi. P is
the set of solver parameters: εf is the user-defined precision on the objective
function value, t is the timeout required.

All the optimization processes are run in parallel and exchange newly found
feasible points stored in FP . Every call to Minimize on S can start with an initial
upper bound initialized with the best feasible point found so far (minxi

(FP) or
maxxi

(FP)).
The minimization processes on S′ are generally fast so that several ones can

be called in a loop (with different parameters fixed to random values) until the
end of the main minimization processes on S.

A Portfolio Strategy for the Bi-optimization
It is important to understand that IbexSolve and IbexOpt are generic strategies.
That is, different procedures can be selected for carrying out the choice of the
next variable interval to bisect (called branching heuristic) or for selecting the
next node to handle in the search tree. It is known that some heuristics in

88 A. Desoeuvres et al.

general useful can be sometimes bad for some specific problems. Therefore we
propose a portfolio parallelization strategy where different processes (threads)
run Branch and Bound algorithms using different branching heuristics (called
cutters hereafter) or node selection heuristics (called nodeSel). These threads
can communicate their bounds to each other, reducing the risks of an ineffective
strategy. In practice, we should modify a call to Minimize as follows:

Minimize(xi, S, P, cutters, nodeSel)

where cutters denotes a set of branching heuristics and nodeSel denotes a set of
node selection heuristics. This routine calls |cutters|×|nodeSel| threads, each of
them corresponding to one Branch and Bound using one branching heuristic in
cutters and one node selection heuristic in nodeSel. These threads work in the
same time on the same problem, but they build different search trees. Therefore
one optimizer can compute an lb value better (greater) than the others. In this
case, it sends it to the other threads.

Heuristics used to split a box are all the variants of the smear branching
strategy described in [30] and [2]. Strategies used to select the next node to be
handled are described in [24]. The cutting strategy lsmear [2] is generally more
efficient than the others, and will be more often used.

The Main IbexHomeo Algorithm
Finally, because we want to determine all the homeostatic species, we run the
double optimization n times, for every species xi, as shown in Algorithm 3. After
a first call to a FirstContraction procedure that contracts the domain [x]× [p],
IbexHomeo calls two successive similar loops of different performance. The first
loop iterates on every species xi and calls on it the double optimization function
Bi-Optimize. The optimization threads are all run using the lsmear branching
heuristic and have a “short” timeout in order to not be blocked by a given
species computation. If a bi-Optimization call on xi reaches the timeout t without
enough information about homeostasis, xi is stored in L and the computation
continues on subsequent species. Since the feasible region defined by S is the
same for each optimization, the next iterations can learn (and store in FP) new
feasible points than can be exploited by other optimization processes. Therefore
the second loop is similar to the first one, but with a greater timeout and more
threads in parallel running more various branching heuristics.

To summarize, the IbexHomeo algorithm creates communicating threads for:

– exploiting the duality min/max of the bi-optimization related to a given
species homeostasis detection,

– finding feasible points more easily,
– running a portfolio of similar Branch and Bound algorithms using different

heuristics.

Interval Constraint Satisfaction and Optimization 89

Algorithm IbexHomeo(S = (x × p, [x] × [p], system (4), εh), P = (εf , t, khom))
cutters ← {lsmear}
nodeSel ← {double heap, cell beam search}
[x] ← FirstContraction([x], S)
FP ← ∅, L ← ∅
foreach xi ∈ x do

(un, ln, ux, lx, FP) ← Bi-Optimize(xi, t, S, P, FP, cutters, nodeSel)
[xi] ← [un, ux]
if timeout(t) and TestHom(un, ln, ux, lx, khom)=0 then

L ← L ∪ xi

t ← 10 t
cutters ← {lsmear, smearSum, smearSumRel, smearMax, smearMaxRel}
foreach xi ∈ L do

(un, ln, ux, lx, FP) ← Bi-Optimize(xi, t, S, P, FP, cutters, nodeSel)
[xi] ← [un, ux]

return HomeostaticSpecies([x],x,khom)

Algorithm 3: Main frame of IbexHomeo. khom ∈ [1, 2] is defined in
Definition 1. Via the procedure HomeostaticSpecies, the algorithm
returns the set of homeostatic variables.

6 Experimental Results

For benchmarking the multistationarity test we have used DOCSS (Database of
Chemical Stability Space, http://docss.ncbs.res.in), a repository of multistation-
ary biochemical circuits. DOCSS contains biochemical circuits with up to four
species and up to five catalytic reactions. The catalytic reactions are decomposed
into several mass action laws, elementary steps. In DOCSS, the models are spec-
ified as short strings of symbols coding for the catalytic reactions and as lists of
numeric parameters. These specifications were first parsed to SBML files, then
to systems of differential equations and conservation laws using tools developed
in [16], and transformed into an input file for our algorithms. For the bench-
marking we have selected all the 210 DOCSS circuits with 3 species (denoted
a,b,c) and 3 catalytic reactions. The mass action models have up to 6 variables
(i.e., the species a,b,c, and several complexes resulting from the decomposition
of catalytic reactions into mass action steps). The steady states of all models
in DOCSS were numerically computed in [25] using a homotopy continuation
method [28]. For all the 3 × 3 models both homotopy and interval IbexSolve
methods find 3 or 4 steady states. Although the positions of most of the solu-
tions are almost identical using the two methods (see Fig. 1), there are a few
exceptions where the two solutions diverge. We have investigated each of these
exceptions. The result is presented in Table 1.

The main reason of discrepancy is a different number of solutions com-
puted by the two methods. For the models with discrepancies we have also
computed symbolic steady state solutions using the Symbolic Math Toolbox of
Matlab R2013b (MathWorks, Natick, USA), though this was not possible for all
the models. The comparison to IbexSolve and homotopy solutions shows that
IbexSolve always finds the right number of solutions in a fraction of a second

http://docss.ncbs.res.in

90 A. Desoeuvres et al.

0

20

40

a

0

20

40

b

0 50 100 150 200
0

10
20

c

Models
10−3 10−2 10−1 100 101 10210−3

10−2

10−1

100

101

102

a ibex

a
ho

m
ot

op
y

)b)a

Fig. 1. Comparison between homotopy and IbexSolve steady states. All the tested
models are multistationary. a) Models were partitioned into two classes, with 3 (appear-
ing first) and 4 homotopy solutions, then sorted by the average of the steady state
concentrations in the homotopy solutions. Homotopy and IbexSolve solutions are rep-
resented as lines (red, green and blue for models with 3 steady states, cyan for the
fourth) and crosses, respectively. b) Values of the steady state concentration a com-
puted by homotopy and IbexSolve. Each IbexSolve steady state was related to the
closest homotopy state (red +), in the Euclidean distance sense; reciprocally, each
homotopy state was related to the closest IbexSolve state (blue crosses) (Color figure
online).

Table 1. Comparison of most divergent Ibex vs. homotopy solutions to symbolic solu-
tions. n is the number of steady states. dist is the distance between sets of steady
states solutions computed by homotopy or IbexSolve and the symbolic solutions, com-
puted as 1

2n
(
∑n

i=1 minj di,j)+
1

2ns
(
∑ns

j=1 mini di,j), where di,j is the Euclidean distance
between the numerical solution i and the symbolic solution j, ns is either the number
of solutions nh found by the homotopy method or the number ni found by IbexSolve.

Model n sym nh homo ni Ibex dist homo dist Ibex

M338-2 3 4 3 0.020087 2.9101e−05

M464-1 3 4 3 0.012388 4.7049e−05

M464-2 3 4 3 0.029019 3.5893e−05

M488-1 3 4 3 0.011739 2.4117e−05

M488-2 3 4 3 0.010935 2.3473e−05

M488-3 3 4 3 0.017165 5.5298e−05

M506-1 4 3 4 0.10086 2.6487e−05

M506-2 4 3 4 0.0069613 4.3250e−06

M506-14 4 3 4 0.0092411 5.0559e−05

M95-1 4 3 4 0.0033133 1.1911e−05

M95-2 4 3 4 0.00063113 1.1230e−05

Interval Constraint Satisfaction and Optimization 91

and computes their positions with better precision than the homotopy method.
We conclude that discrepancies result from the failure of the homotopy method
to identify the right number of solutions.

The homeostasis tests were benchmarked using the database Biomodels
(https://www.ebi.ac.uk/biomodels/), a repository of mathematical models of
biological and biomedical systems; parsed from SBML files to systems of dif-
ferential equations and conservation laws using tools developed in [16], and
transformed into an input file for our algorithms. Of the 297 models initially
considered, 72 were selected. These models have a unique steady state where
every species has a non null concentration. To select them we have considered
several tests described in Table 2.

The selected models were partitioned into three categories depending on the
possible tests: kinetics rates, conservation laws, and volume compartments. We
also tested for ACR the three models described in [27] in which the parameters
have been fixed to random values. These models were previously tested for ACR
by the Shinar/Feinberg topological criterion, therefore should remain so for any
parameter set. As expected, the three models respect the ACR condition.

The initial boxes/domains for the conservation laws and parameters values
were determined from the nominal initial conditions and parameter values found
in the SBML files. The initial intervals bounds were obtained by dividing and
multiplying these nominal values by a factor 10 for total amount of conservation
laws and for volume compartments, and by a factor 100 for kinetics parameters,
respectively. Homeostasis was tested using Definition 1. ACR was tested using
Definition 1 with k → 1, i.e. almost zero width intervals, and where the varying
input parameters are the conservation laws values.

The execution time statistics are given in Table 3.

Table 2. The methodology applied to select models to be tested for homeostasis from
the initial set of models. A test using IbexSolve guarantees the existence and position
of all steady states. Then, each model with a unique steady state having a non zero
concentration is selected. To avoid false positive answer due to a given precision, a
time course beginning from the steady state indicated by IbexSolve has been achieved
using COPASI [12]. These false positive answers may occur in a limit cycle or in a
focus since we use relaxed equalities.

Test # tested # passed

|steady states| ≥ 1 (IbexSolve) 297 191

unique steady state > 0 191 107

non-oscillatory steady state (COPASI) 107 72

We used Biomodels also for multistationarity tests. Among the 297 models
tested for multistationarity using IbexSolve, 63 provide a timeout. For the
solved models, 35 do not have steady-state, 153 have a unique steady state, 42
provide multistationarity, 4 have a continuum of steady states, see Appendix A2.

https://www.ebi.ac.uk/biomodels/

92 A. Desoeuvres et al.

Table 3. Statistics on the homeostasis test using IbexHomeo. Selected biomodels have
been classified for three tests. All of them have been tested w.r.t. the kinetics rates,
and each model presenting at least one conservation law has been tested for ACR.
Moreover, models with several compartments have been tested w.r.t. their volume. As
we have many timeout (computed as 360 s per species, with an average dimension of
51.92 (15.48 for species, and 36.4 for parameters)), the time columns consider only
models that passed the test. The last two columns indicate the models with ACR in
the first test, or with a 2-homeostatic species in other cases (because we get data during
computation it may occur that a timeout model gives us a homeostasis).

Test IbexHomeo # models # timeout Time (s) (min/median/max) Yes No

ACR only 33 17 0.19/4.32/10887 3 14

Kinetics only 72 41 0.4/122/1923 4 29

Compartments only 14 9 0.4/70/189 3 3

7 Discussion and Conclusion

The results of the tests show that interval methods are valuable tools for studying
multistationarity and homeostasis of biochemical models.

In multistationarity studies, our interval algorithms outperform homotopy
continuation based numerical methods; they find the correct number of steady
states, and with a high accuracy. In terms of complexity of calculations they
behave better than symbolic methods. Indeed, IbexSolve solves all the mod-
els in the chosen database (DOCSS). The 210 DOCSS models correspond to
13 different symbolic systems of equations (the remaining differences concern
numerical parameters). The symbolic solver did not find explicit solutions for 1
of these symbolic systems, reduced 3 other models to 4th degree equations in 3.5
to 47 s, and solved the 9 others in times from 2 to 20 s which should be compared
to the fractions of a second needed for the IbexSolve calculations. We did not
perform symbolic calculations on more complex models from Biomodels, that we
expect out of reach of the Matlab symbolic solver. However, the multistationarity
test using IbexSolve performed well on Biomodels with only 63 models out of
the 297 tested producing a timeout. These results are very promising since mul-
tistationarity is a computationally hard problem with numerous applications to
cell fate decision processes in development, cancer, tissue remodelling. As future
work, we plan to test multistationarity of larger models using ICP.

In homeostasis studies, interval methods perform well for small and medium
size models in the Biomodels database. Only 18% of the tested models have
some form of homeostasis (see Appendix A3). When the size of compartments
change, 3 models have homeostasis, with 2 of them presenting species indepen-
dent from parameter changes. For the kinetical parameters change, 4 models
present homeostasis and two of them are of small size (for details, see Appendix
A1): BIOMD614 is a univariate model when steady-state happens only with a
concentration equal to one, and BIOMD629 presents a buffering mechanism (a
buffer is a molecule occurring in much larger amounts than its interactors and
whose concentration is nearly constant). The other two models are BIOMD048
and BIOMD093, where a timeout happens. For the initial conditions change,

Interval Constraint Satisfaction and Optimization 93

3 models presents ACR, and two others (BIOMD041 and BIOMD622) home-
ostasis. Among them, BIOMD413 verifies the conditions of the Shinar-Feinberg
theorem [27], but the other two models (BIOMD489 and BIOMD738) do not
since the deficiency of their reaction network is different from 1. This confirms
that these conditions are sufficient, but not necessary. Our new examples could
be the starting point of research on more general conditions for ACR.

The low proportion of homeostasis could be explained by the possible incom-
pleteness of the biochemical pathways models. Not only these models are not
representing full cells or organisms, but they may also miss regulatory mecha-
nisms required for homeostasis. Negative feed-back interaction is known to be
the main cause of homeostasis (although feed-forward loops can also produce
homeostasis) [8]. As well known in machine learning, it is notoriously difficult to
infer feed-back interaction. For this reason, many of the models in the Biomodels
database were built with interactions that are predominantly forward and have
only few feed-back interactions. It is therefore not a surprise that models that
were on purpose reinforced in negative feed-back to convey biological homeosta-
sis, such as BIOMD041, a model of ATP homeostasis in the cardiac muscle, or
BIOMD433, a model of MAPK signalling robustness, or BIOMD355, a model of
calcium homeostasis, were tested positively for homeostatic species.

Interestingly, our approach emphasizes a duality relationship between home-
ostasis and multistationarity; the former means constant output at variable
input, whereas the latter means multiple output at constant input. In this paper
we were mainly motivated by the formal aspects of this duality allowing to treat
the two problems within the same formalism. Nevertheless, it would be intriguing
to look for biological consequences of this formal duality.

For future work, several directions will be investigated. Homeostasis bench-
marking was restricted to non-oscillating steady states to avoid a detection of
a second steady state inside the oscillatory component, due to equality relax-
ation used in IbexOpt, that could break the homeostasis test. This includes limit
cycles and foci. However, oscillations are ubiquitous in biology and it is worth
extending our homeostasis definitions to these cases as well. Biological systems
are characterized not only by their attractors, but also by the characteristic times
of relaxation to attractors. Homeostasis of relaxation could be approached with
our formalism because relaxation times are reciprocals to solutions of polynomial
characteristic equations.

Other possible improvements concern the performances. As one could see,
many models tested cannot be solved within the timeout. If we can explain
this with a high dimension of the model, several improvements are possible.
First, we know that some convexification contractors using affine arithmetic
[19,20], or specific to quadratic forms, in particular bi-linear forms [18] (and the
pattern x1 x2 is often present in chemical reaction networks) could improve the
contraction part of our strategy.

Another promising improvement should be to exploit that these models come
from ODEs. Indeed, if a steady state is attractive, it is possible to perform a
simulation (with fixed parameters) starting from a random or chosen point of
the box that can end near this steady state. Then, a hybrid strategy using
this new simulation and the branch and bound strategy should be able to get

94 A. Desoeuvres et al.

a feasible point more easily, rendering the comparison for homeostasis more
efficient. Moreover this simulation could be used to check if a steady state found
is unstable or not. Also, adding as a stop criterion the homeostasis test could be
another way to improve it, instead of checking it at a given time.

Acknowledgement. We thank M. Golubiski and F. Antoneli for presenting us the
problem of homeostasy, U. Bhalla and N. Ramakrishnan for sharing their data,
C. Lüders for parsing Biomodels, and F. Fages, G. Chabert and B. Neveu for useful
discussions. The Ibex computations were performed on the high performance facility
MESO@LR of the University of Montpellier. This work is supported by the PRCI
ANR/DFG project Symbiont.

Appendix A1: Homeostasis of Low Complexity Models

BIOMD614 is a one species model, with equation:

ẋ = k1 + k2k3x − k1x − k2k3x
2 (7)

At steady state, this leads to:

k1 + k2k3x = (k1 + k2k3x)x (8)

If k1 �= 0, the only solution to (8) is x = 1, which is the answer given by
IbexHomeo. The model describes the irreversible reaction kinetics of the confor-
mational transition of a human hormone, where x is the fraction of molecules
having undergone the transition, which is inevitably equal to one at the steady
state [14].

BIOMD629 has 2 reactions and 5 species, provides a 2-homeostasis for kinet-
ics parameters with conserved total amounts fixed, provided by the SBML file.
This model does not provide ACR, and the homeostasis found can be explained
by the conserved total amounts, that lock species to a small interval. But if we
change these total amounts and try again an homeostasis test, it should fail.
Indeed this model is given by the equations :

ẋ1 = −k2x1x3 + k3x2, ẋ2 = k2x1x3 − k3x2 − k4x2x4 + k5x5,

ẋ3 = −k2x1x3 + k3x2, ẋ4 = −k4x2x4 + k5x5, ẋ5 = k4x2x4 − k5x5,

x4 + x5 = k6, x2 + x5 + x3 = k7, x2 + x5 + x1 = k8 (9)

Here x3 (receptor), and x4 (coactivator) have been found homeostatic w.r.t.
variations of the kinetics parameters. The total amounts are k6 = 30, k7 =

7
2000 , k8 = 1

2000 . With these values, we get x5 ∈]0, 1
2000 [, which implies x4 ∈

]29.9995, 30.0005[. In the same way we have x2 + x5 ∈]0, 1
2000 [, which implies

x3 ∈] 6
2000 , 7

2000 [. If k6, k7, k8 were closer to each other, there would be no reason
for homeostasis. This example corresponds to the homeostasis mechanism known
in biochemistry as buffering: a buffer is a molecule in much larger amounts than
its interactors and whose concentration is practically constant.

Interval Constraint Satisfaction and Optimization 95

Appendix A2: Multistationarity Statistics

Among the 297 models tested for multistationarity using IbexSolve, 63 provide
a timeout. For the solved models, 35 do not have steady-state, 153 have a unique
steady state, 42 provide multistationarity, 4 have a continuum of steady states.
Theses results are given by IbexSolve, but some multistationarity models, such
as 003, have in reality an oscillatory behavior (Table 4, 5, 6, 7, 8, 9 and 10).

Table 4. Time statistics for multistationarity

models Size (min/max/median/average) Median time (s)

63 (timeout) 3/194/23/37.26 10800

234 (solved) 1/166/8/13.89 0.009439

Multistationnary models :

– 10 steady states: 703.
– 7 steady states: 435.
– 4 steady states: 228, 249, 294, 517, 518, 663, 709.
– 3 steady states: 003, 008, 026, 027, 029, 069, 116, 166, 204, 233, 257, 296, 447,

519, 573, 625, 630, 687, 707, 708, 714, 729.
– 2 steady states: 079, 100, 156, 230, 315, 545, 552, 553, 688, 713, 716.

Appendix A3: Homeostasis Results Tables

Table 5. Models with less than 9 species tested for homeostasis w.r.t. the volume of
compartments. Minimum and maximum volume of each compartment is set as value
given by the SBML file divided by 10 and multiplied by 10, respectively. Kinetic rates
and total amount of conservation laws stay fixed. In BIOMD355, all species are 2-
homeostatic (and seems independent of the volume). In BIOMD433, the species MK P
is 2-homeostatic.

Model (compartments) # varhom Time (s) # var # param varying

BIOMD0000000115 0 120 2 3

BIOMD0000000191 0 0.4 2 2

BIOMD0000000355 9 189 9 4

BIOMD0000000432 0 70 8 2

BIOMD0000000433 1 13.8 8 2

96 A. Desoeuvres et al.

Table 6. Models with less than 11 species tested for ACR, the second number indicate
the number of species that verify 2-homeostasis (ACR included). The minimum and
maximum value of each total amount of conservation laws is the value computed from
the SBML file, divided by 10 and multiplied by 10, respectively. Kinetic rates and
volume compartments stay fixed. FeinbergShinar models serve as tests to confirm that
we detect ACR. In BIOMD041, ATP and ATPi are detected to be 2-homeostatic despite
the timeout. In BIOMD622, R1B, R1Bubd, and Z are also detected to be 2-homeostatic
despite the timeout. In BIOMD413, auxin verify ACR. In BIOMD738, FeDuo, FeRBC,
FeSpleen, FeLiver, Hepcidin, FeRest, FeBM are ACR.

Model (for ACR) # ACR-# hom Time (s) # var # param varying

BIOMD0000000031 0–0 3.81 3 1

BIOMD0000000041 ?–≥ 2 Timeout (2830) 10 3

BIOMD0000000057 0–0 0.56 6 1

BIOMD0000000060 0–0 0.19 4 1

BIOMD0000000084 0–0 2.39 8 4

BIOMD0000000150 0–0 1.13 4 2

BIOMD0000000213 Timeout (1987) 6 1

BIOMD0000000258 0–0 3.15 3 1

BIOMD0000000405 0–0 0.52 5 1

BIOMD0000000413 1–1 6.68 5 1

BIOMD0000000423 Timeout (3071) 9 3

BIOMD0000000432 Timeout (2711) 8 3

BIOMD0000000433 Timeout (2709) 8 3

BIOMD0000000454 0–0 0.3 3 1

BIOMD0000000622 ?–≥ 3 Timeout (3606) 11 1

BIOMD0000000629 0–0 4.32 5 3

BIOMD0000000646 0–0 801 11 1

BIOMD0000000647 0–0 306 11 5

BIOMD0000000738 7–7 557 11 1

FeinbergShinar1 1–1 5.31 7 2

FeinbergShinar2 1–1 3.08 8 2

FeinbergShinar3 1–1 15.23 5 2

Table 7. Models with less than 9 species tested for homeostasis w.r.t. kinetics rates.
The minimum and maximum value of each kinetic rate is given by the SBML file
divided by 100 and multiplied by 100, respectively. In BIOMD614, the unique species
is 2-homeostatic (moreover independent). In BIOMD629, receptor and coactivator are
2-homeostatic.

Models (kinetics) # varhom Time (s) # var # param varying

BIOMD0000000023 0 301 5 60

BIOMD0000000031 0 93.8 3 12

BIOMD0000000057 0 284 6 25

BIOMD0000000060 0 122 4 10

(continued)

Interval Constraint Satisfaction and Optimization 97

Table 7. (continued)

Models (kinetics) # varhom Time (s) # var # param varying

BIOMD0000000065 Timeout (2885) 8 23

BIOMD0000000067 Timeout (2523) 7 20

BIOMD0000000076 0 60 1 20

BIOMD0000000084 0 22 8 17

BIOMD0000000115 Crashed 2 7

BIOMD0000000150 0 243 4 6

BIOMD0000000159 0 91 3 6

BIOMD0000000191 0 89 2 19

BIOMD0000000203 0 876 5 34

BIOMD0000000213 Timeout (2173) 6 46

BIOMD0000000219 0 540 9 74

BIOMD0000000221 Timeout (2902) 8 53

BIOMD0000000222 Timeout (2909) 8 53

BIOMD0000000228 0 1147 9 40

BIOMD0000000240 Timeout (2163) 6 20

BIOMD0000000249 Timeout (2883) 8 7

BIOMD0000000258 0 132 3 9

BIOMD0000000284 0 31 6 3

BIOMD0000000325 0 300 5 16

BIOMD0000000355 Timeout (2287) 9 22

BIOMD0000000405 0 801 5 5

BIOMD0000000413 0 481 5 12

BIOMD0000000414 0 3.7 1 4

BIOMD0000000417 Timeout (360) 1 12

BIOMD0000000423 Timeout (3132) 9 16

BIOMD0000000425 0 0.4 1 6

BIOMD0000000432 ≤ 1 Timeout (1031) 8 26

BIOMD0000000433 ≤ 3 Timeout (1671) 8 26

BIOMD0000000454 Timeout (1022) 3 11

BIOMD0000000456 Timeout (1375) 4 16

BIOMD0000000458 0 93 2 15

BIOMD0000000459 0 63 3 8

BIOMD0000000460 0 122 3 8

BIOMD0000000495 0 365 9 36

BIOMD0000000519 Timeout (1050) 3 8

BIOMD0000000530 0 1923 7 17

BIOMD0000000590 0 540 9 30

BIOMD0000000614 1 17 1 3

BIOMD0000000615 0 160 4 12

BIOMD0000000626 Timeout (632) 6 20

BIOMD0000000629 2 1 5 4

BIOMD0000000708 0 1770 5 13

BIOMD0000000728 0 1 2 4

98 A. Desoeuvres et al.

Table 8. Models with more than 10 species tested for homeostasis w.r.t. the volume of
compartments. Minimum and maximum volume of each compartment is set as value
given by the SBML file divided by 10 and multiplied by 10, respectively. Kinetic rates
and total amount of conservation laws stay fixed. In BIOMD738, we know that at least
Hepcidin is 2-homeostatic (and independent) despite the timeout.

Model (compartments) # varhom Time (s) # var # param varying

BIOMD0000000041 Timeout (3759) 10 2

BIOMD0000000093 Timeout (12901) 34 2

BIOMD0000000123 Timeout (5681) 14 2

BIOMD0000000192 Timeout (3924) 13 2

BIOMD0000000482 Timeout (8308) 23 3

BIOMD0000000491 Timeout (20962) 57 3

BIOMD0000000492 Timeout (19066) 52 3

BIOMD0000000581 Timeout (5359) 27 2

BIOMD0000000738 ≥1 Timeout (3676) 11 7

Table 9. Models with more than 12 species tested for ACR, the second number
indicate the number of species that verify 2-homeostasis (ACR included). The min-
imum and maximum value of each total amount of conservation laws is the value
computed from the SBML file, divided by 10 and multiplied by 10, respectively.
Kinetic rates and volume compartments stay fixed. In BIOMD489, LPS:LBP:CD14:
TLR4:TIRAP:MyD88:IRAK4, IkBb mRNA, IkBe mRNA, LPS:LBP:CD14:TLR4:
RIP1:TRAM:TRIF:TBK/IKKe are detected ACR despite the timeout.

Model (for ACR) # ACR-# hom Time (s) # var # param varying

BIOMD0000000009 Timeout (7988) 22 7

BIOMD0000000011 Timeout (7804) 22 7

BIOMD0000000030 Timeout (6318) 18 3

BIOMD0000000038 Timeout (4400) 13 4

BIOMD0000000048 Timeout (8380) 23 6

BIOMD0000000093 Timeout (12115) 34 6

BIOMD0000000123 0–0 4810 14 3

BIOMD0000000192 0–0 1316 13 3

BIOMD0000000270 0–0 10887 32 9

BIOMD0000000431 Timeout (9808) 27 6

BIOMD0000000489 ≥ 4 - ≥ 4 Timeout (11104) 52 4

BIOMD0000000491 Timeout (19323) 57 1

BIOMD0000000492 Timeout (17524) 52 1

BIOMD0000000581 Timeout (8485) 27 10

Interval Constraint Satisfaction and Optimization 99

Table 10. Models with more than 10 species tested for homeostasis w.r.t. kinetics
rates. The minimum and maximum value of each kinetic rate is given by the SBML file
divided by 100 and multiplied by 100, respectively. In BIOMD048, EGF is detected 2-
homeostatic despite the timeout. In BIOMD093, SHP2 is detected homeostatic despite
the crash.

Models (kinetics) # varhom Time (s) # var # param varying

BIOMD0000000009 Timeout (8239) 22 32

BIOMD0000000011 Timeout (8009) 22 30

BIOMD0000000028 Timeout (5810) 16 27

BIOMD0000000030 Timeout (6571) 18 32

BIOMD0000000038 Timeout (4722) 13 24

BIOMD0000000041 Timeout (3952) 10 25

BIOMD0000000048 ≥1 Timeout (9551) 23 50

BIOMD0000000093 ≥1 Crashed 34 73

BIOMD0000000123 Timeout(5654) 14 22

BIOMD0000000192 Timeout (3923) 13 18

BIOMD0000000218 0 541 12 70

BIOMD0000000270 Timeout (12271) 32 30

BIOMD0000000294 Timeout (3608) 10 10

BIOMD0000000388 Timeout (1801) 11 19

BIOMD0000000431 Timeout (10028) 27 44

BIOMD0000000482 Timeout (8452) 23 56

BIOMD0000000489 Timeout (15513) 52 105

BIOMD0000000491 Timeout 57 172

BIOMD0000000492 Timeout 52 176

BIOMD0000000581 Timeout (9131) 27 35

BIOMD0000000622 Timeout (3618) 11 25

BIOMD0000000646 Timeout (3976) 11 33

BIOMD0000000647 Timeout (1173) 11 11

BIOMD0000000707 Timeout (1746) 5 10

BIOMD0000000738 Timeout (3986) 11 33

References

1. Antoneli, F., Golubitsky, M., Stewart, I.: Homeostasis in a feed forward loop gene
regulatory motif. J. Theor. Biol. 445, 103–109 (2018)

2. Araya, I., Neveu, B.: lsmear: a variable selection strategy for interval branch and
bound solvers. J. Glob. Optim. 71(3), 483–500 (2018)

3. Aubin, J.-P.: Viability Theory. SCFA. Birkhäuser, Boston (2009). https://doi.org/
10.1007/978-0-8176-4910-4

4. Barr, K., Reinitz, J., Radulescu, O.: An in silico analysis of robust but fragile
gene regulation links enhancer length to robustness. PLoS Comput. Biol. 15(11),
e1007497 (2019)

https://doi.org/10.1007/978-0-8176-4910-4
https://doi.org/10.1007/978-0-8176-4910-4

100 A. Desoeuvres et al.

5. Benhamou, F., Goualard, F., Granvilliers, L., Puget, J.-F.: Revising hull and box
consistency. In: Proceedings of ICLP, pp. 230–244 (1999)

6. Bradford, R., et al.: Identifying the parametric occurrence of multiple steady states
for some biological networks. J. Symb. Comput. 98, 84–119 (2020)

7. Chabert, G. (2020). http://www.ibex-lib.org
8. Cooper, S.J.: From Claude Bernard to Walter cannon. Emergence of the concept

of homeostasis. Appetite 51(3), 419–427 (2008)
9. Desoeuvres, A., Iosif, A., Radulescu, O., Seiß, M.: Approximated conservation laws

of chemical reaction networks with multiple time scales. preprint, April 2020
10. Golubitsky, M., Stewart, I.: Homeostasis, singularities, and networks. J. Math.

Biol. 74(1–2), 387–407 (2017)
11. Gorban, A.N., Radulescu, O.: Dynamical robustness of biological networks with

hierarchical distribution of time scales. IET Syst. Biol. 1(4), 238–246 (2007)
12. Hoops, S., et al.: Copasi-a complex pathway simulator. Bioinformatics 22(24),

3067–3074 (2006)
13. Jaulin, L., Kieffer, M., Didrit, O., Walter, E.: Applied Interval Analysis. Springer,

London (2001). https://doi.org/10.1007/978-1-4471-0249-6
14. Kamihira, M., Naito, A., Tuzi, S., Nosaka, A.Y., Saito, H.: Conformational transi-

tions and fibrillation mechanism of human calcitonin as studied by high-resolution
solid-state 13 C NMR. Protein Sci. 9(5), 867–877 (2000)

15. Novere, N., et al.: Biomodels database: a free, centralized database of curated,
published, quantitative kinetic models of biochemical and cellular systems. Nucleic
Acids Res. 34(suppl 1), D689–D691 (2006)

16. Lüders, C., Radulescu, O., et al.: Computational algebra oriented CRN collection
of models (2020, in preparation)

17. Markov, S.: Biomathematics and interval analysis: a prosperous marriage. In: AIP
Conference Proceedings, vol. 1301, pp. 26–36. American Institute of Physics (2010)

18. McCormick, G.P.: Computability of global solutions to factorable nonconvex pro-
grams: part I - convex underestimating problems. Math. Program. 10(1), 147–175
(1976)

19. Messine, F.: Extensions of affine arithmetic: application to unconstrained global
optimization. J. Univ. Comput. Sci. 8(11), 992–1015 (2002)

20. Messine, F., Touhami, A.: A general reliable quadratic form: an extension of affine
arithmetic. Reliable Comput. 12(3), 171–192 (2006)

21. Misener, R., Floudas, C.: ANTIGONE: algorithms for continuous/integer global
optimization of nonlinear equations. J. Glob. Optim. (JOGO) 59(2–3), 503–526
(2014)

22. Moore, R.E.: Interval Analysis, vol. 4. Prentice-Hall, Englewood Cliffs (1966)
23. Neveu, B., Trombettoni, G., Araya, I.: Adaptive constructive interval disjunction:

algorithms and experiments. Constraints J. 20(4), 452–467 (2015)
24. Neveu, B., Trombettoni, G., Araya, I.: Node selection strategies in interval branch

and bound algorithms. J. Glob. Optim. 64(2), 289–304 (2016)
25. Ramakrishnan, N., Bhalla, U.S.: Memory switches in chemical reaction space. PLoS

Comput. Biol. 4(7), e1000122 (2008)
26. Rizk, A., Batt, G., Fages, F., Soliman, S.: A general computational method for

robustness analysis with applications to synthetic gene networks. Bioinformatics
25(12), i169–i178 (2009)

27. Shinar, G., Feinberg, M.: Structural sources of robustness in biochemical reaction
networks. Science 327(5971), 1389–1391 (2010)

28. Sommese, A., Wampler, C.I.: The Numerical Solution of Systems of Polynomials
Arising in Engineering and Science. World Scientific, Singapore (2005)

29. Tawarmalani, M., Sahinidis, N.V.: A polyhedral branch-and-cut approach to global
optimization. Math. Program. 103(2), 225–249 (2005)

http://www.ibex-lib.org
https://doi.org/10.1007/978-1-4471-0249-6

Interval Constraint Satisfaction and Optimization 101

30. Trombettoni, G., Araya, I., Neveu, B., Chabert, G.: Inner regions and interval lin-
earizations for global optimization. In: Twenty-Fifth AAAI Conference on Artificial
Intelligence (2011)

31. Tucker, W., Kutalik, Z., Moulton, V.: Estimating parameters for generalized mass
action models using constraint propagation. Math. Biosci. 208(2), 607–620 (2007)

32. Van Hentenryck, P., Michel, L., Deville, Y.: Numerica : A Modeling Language for
Global Optimization. MIT Press, Cambridge (1997)

Growth Dependent Computation
of Chokepoints in Metabolic Networks

Alexandru Oarga1 , Bridget Bannerman2 , and Jorge Júlvez1(B)

1 Department of Computer Science and Systems Engineering,
University of Zaragoza, Zaragoza, Spain

{718123,julvez}@unizar.es
2 Department of Medicine, University of Cambridge, Cambridge, UK

bpc28@cam.ac.uk

Abstract. Bacterial infections are among the major causes of mortal-
ity in the world. Despite the social and economical burden produced by
bacteria, the number of new drugs to combat them increases very slowly
due to the cost and time to develop them. Thus, innovative approaches
to identify efficiently drug targets are required. In the absence of genetic
information, chokepoint reactions represent appealing drug targets since
their inhibition might involve an important metabolic damage. In con-
trast to the standard definition of chokepoints, which is purely structural,
this paper makes use of the dynamical information of the model to com-
pute chokepoints. This novel approach can provide a more realistic set of
chokepoints. The dependence of the number of chokepoints on the growth
rate is assessed on a number of metabolic networks. A software tool has
been implemented to facilitate the computation of growth dependent
chokepoints by the practitioners.

Keywords: Chokepoint reactions · Metabolic networks · Petri nets ·
Flux Balance Analysis

1 Introduction

Diseases caused by bacteria are one of the main causes of mortality in both devel-
oped and in-development countries. According to the World Health Organisa-
tion (WHO) in 2016, tuberculosis was the tenth cause of death worldwide which
makes its pathogen, Mycobacterium tuberculosis, the infectious agent with the
higher caused mortality. Moreover, upper respiratory system’s diseases caused
by microorganisms, like virus and bacteria, were the fourth cause of mortality
[20]. In 2010 pneumonia was the leading cause of child mortality causing nearly
1.4 million deaths among children younger than 5 years of age [7].

This work was supported by the Spanish Ministry of Science, Innovation and Universi-
ties [ref. Medrese-RTI2018-098543-B-I00], and by the Medical Research Council, UK,
MR/N501864/1.

c© Springer Nature Switzerland AG 2020
A. Abate et al. (Eds.): CMSB 2020, LNBI 12314, pp. 102–119, 2020.
https://doi.org/10.1007/978-3-030-60327-4_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-60327-4_6&domain=pdf
http://orcid.org/0000-0002-7271-733X
http://orcid.org/0000-0002-5746-8283
http://orcid.org/0000-0002-7093-228X
https://doi.org/10.1007/978-3-030-60327-4_6

Growth Dependent Computation of Chokepoints in Metabolic Networks 103

Despite the high mortality caused by bacteria the development of new antibi-
otics is slow and challenging. Furthermore, bacteria have evolved complex mech-
anisms which make them difficult to fight. Thus, there is an urgent need to design
novel methods for the development of new drugs. A promising possibility is to
consider basic cellular processes as targets for antibiotic development [12].

Metabolism is the set of basic life processes that take place in the cell, and it is
the means by which cells can maintain life and grow from their environment. The
metabolism of a cell can be represented by a metabolic network that accounts
for all the metabolic reactions that take place in the cell. A possible strategy
for drug discovery is to find and damage critical vulnerabilities of the metabolic
network that could stop the growth and replication of the bacteria.

Metabolism as a target has been proven to be an interesting approach in
other areas like oncology [9] or viral diseases [10]. A number of methods have
been proposed in order to find vulnerabilities in the metabolism that may lead to
therapeutic results. Some of these methods consider topological properties of the
metabolism with the purpose of finding possible critical spots, as for example:
determine the importance of a metabolite based on the k-shortest paths between
metabolites [15], or consider the inter-reactions dependence to find out how much
influence a reaction has on metabolism [16]. Other methods focus on the genetic
information associated with the metabolism, and compute, for instance, the set
of genes that are essential for the survival of the cell [21].

Although a number of genome-scale models (GEMs) have been developed
recently, most of them just account for the stoichiometry of their reactions and
lack genetic information. This is usually the case in GEMs of bacteria. This
dearth of data hampers the analysis of models, namely those based on gene
essentiality, and calls for the design of computational methods that exploit as
much as possible the available biological information. Here, we focus on the
computation of chokepoints in metabolic networks [18], where a chokepoint is
a reaction that is either the only producer or the only consumer of a given
metabolite. Hence, the inhibition of a chokepoint would lead to the depletion or
unlimited accumulation of metabolites, thus, potentially leading to an important
disruption in the cellular metabolism. Chokepoints are, therefore, appealing drug
targets of the bacterial metabolism.

The current approaches to compute chokepoints are based exclusively on the
topology of the metabolic network and disregard the dynamic information that
might be available. This dynamic information usually refers to the flux bounds
of some metabolic reactions. As it will be shown, ignoring such an information
can lead to the misidentification of chokepoints. The approach presented in this
paper exploits the available flux bounds and computes, for a given growth rate
of the cell, the set of chokepoints of the metabolic network. Such chokepoints
are potential drug targets whose inhibition could involve a metabolic burden at
the given growth rate.

The rest of the paper is organized as follows: Sect. 2 introduces the basic
concepts and definition that will be used in the paper. Section 3 describes the
computational method to obtain growth dependent chokepoints. Section 4 anal-
yses the relationship between growth rate and number of chokepoints in the

104 A. Oarga et al.

GEM of Mycobacterium leprae. The main conclusions of the paper are drawn
in Sect. 5. Finally, Appendix A introduces the software tool developed to com-
pute growth dependent chokepoints, and Appendix B reports the number of
chokepoints found in the GEMs of different microorganisms.

2 Preliminary Concepts and Definitions

2.1 Constraint-Based Models

A constraint-based model [13,19] is a tuple {R, M, S, lb, ub} where R is a
set of reactions, M is a set of metabolites, S ∈ R

|M|×|R| is the stoichiometric
matrix, and lb, ub : R → R are lower and upper flux bounds of the reactions.

Each reaction is associated with a set of reactant metabolites and a set of
product metabolites (one of these sets can be empty). For instance, the reaction
r1 : A → 2B has one reactant, A, and one product, B. The number 2 expresses
the stoichiometric weight, i.e. two units of B are produced per each unit of A
that is consumed. The stoichiometric matrix S accounts for all the stoichiometric
weights of the reactions, i.e. S[m, r] is the stoichiometric weight of metabolite
m ∈ M for reaction r ∈ R. Thus, if S[m, r] < 0 then m is consumed when r
occurs; if S[m, r] > 0 then m is produced when r occurs; and if S[m, r] = 0 then
m is neither consumed nor produced when r occurs.

Constraint-based models can be represented graphically as Petri nets [5,11]
where places, which are drawn as circles, are associated with metabolites, and
transitions, which are drawn as rectangles, are associated with reactions. An
arc from a place(transition) to a transition(place) means that the place is a
reactant(product). The weights of the arcs of the Petri net correspond to the
stoichiometric weights, in other words, the stoichimetric matrix of a constraint-
base model and the incidence matrix of its corresponding Petri net coincide.

Example 1. The Petri net in Fig. 1 represents a simple contraint-based model
that consists of 13 reactions and 9 metabolites. As an example, transition r6
models the reaction r6 : ma → 2md.

2.2 Topological Definitions.

Borrowing the usual Petri net notation (given a node x of a Petri net, •x and
x• denote the sets of the input and output nodes of x respectively), we define
the following sets for constraint-based models:

– Set of products of r: r• = {m ∈ M|S(m, r) > 0}
– Set of reactants of r: •r = {m ∈ M|S(m, r) < 0}
– Set of consumers of m: m• = {r ∈ R|S(m, r) < 0}
– Set of producers of m: •m = {r ∈ R|S(m, r) > 0}

A chokepoint is a reaction that is the only producer or the only consumer of
a metabolite. More formally:

Growth Dependent Computation of Chokepoints in Metabolic Networks 105

Fig. 1. Petri net modelling a constraint-based model. The values lb and ub are the lower
and upper flux bounds of reactions. Non-reversible reactions are represented by simple
rectangles, reversible reactions by double rectangles and dead-reactions by rectangles
with a cross.

Definition 1. A reaction r ∈ R is a chokepoint if there exists m ∈ M such that
m• = {r} or •m = {r}.

The set of chokepoint reactions will be denoted as CP . Notice that the inhibi-
tion of the enzymes associated with a chokepoint will lead either to the depletion
of metabolites (which might be essential for the cell) if the chokepoint is the only
producer, or to the indefinite accumulation of metabolites (which will not be used
as expected or might be toxic) if the chokepoint is the only consumer. Thus, a
chokepoint is an attractive drug target because in both cases, essential functions
of the cell can be affected by its inhibition [18].

A dead-end metabolite (DEM) is a metabolite that lacks either producing or
consuming reactions:

Definition 2. A metabolite m ∈ M is a dead-end metabolite (DEM) if m• = {}
or •m = {}.

106 A. Oarga et al.

The presence of a DEM in the network reflects an incompleteness in the
model, which might require further curation [8].

Example 2. In the Petri net in Fig. 1, r1 is a producer of ma, i.e. r1 ∈ •ma; r4 is
a chokepoint because it is the only producer of mc, i.e. {r4} = •mc and r4 ∈ CP ;
and mh is a dead-end metabolite, i.e. mh ∈ DEM .

2.3 Flux Dependent Definitions

The functions lb and ub establish lower and upper steady state flux bounds
on the reactions, where flux is the rate of turnover of molecules through the
reaction. These functions must satisfy that lb(r) ≤ ub(r) for every r ∈ R. Lower
and upper bounds provide useful information about the system and might alter
the sets of consumer and producer reactions previously defined. Such bounds
will be used in the following to improve the analysis of constraint-based models.

In contrast to Petri nets, these bounds can be negative, and hence, the flux
of a reaction can also be negative. A negative flux implies that the metabolites
on the left-hand side of the reaction (which in principle are “reactants”) are
produced, and the metabolites on the right-hand side of the reaction (which in
principle are “products”) are consumed. A reaction whose flux can be both neg-
ative and positive is called reversible. Functions lb and ub will be used to define
the sets of flux dependent reversible reactions (RRd), dead reactions (DRd), and
non-reversible reactions (NRd), where the subindex d indicates that the sets are
flux dependent :

Definition 3. A reaction r ∈ R is reversible if lb(r) < 0 < ub(r).

The set of reversible reactions is denoted RRd, i.e. RRd = {r ∈ R| r is
reversible}.

Definition 4. A reaction r ∈ R is dead if lb(r) = ub(r) = 0.

The set of dead reactions is denoted DRd, i.e. DRd = {r ∈ R| r is dead}.

Definition 5. A reaction r ∈ R is non-reversible if (0 ≤ lb(r) ∧ 0 < ub(r)) ∨
(lb(r) < 0 ∧ ub(r) ≤ 0).

The set of non-reversible reactions is denoted NRd, i.e. NRd = {r ∈ R| r is
non-reversible }.

Clearly, the sets RRd, DRd and NRd partition the set of reactions R, i.e.
RRd ∪DRd ∪NRd = R, RRd ∩DRd = ∅, DRd ∩NRd = ∅, and RRd ∩NRd = ∅.

Non-reversible, reversible and dead reactions will be represented graphically
as rectangles, double rectangles, and rectangles with a cross inside respectively.

Example 3. In Fig. 1, the above defined sets are: RRd = {r8, r9 r10}, DRd =
{r3}, and NRd = {r1, r2, r4, r5, r6, r7, r11, r12, r13}.

Growth Dependent Computation of Chokepoints in Metabolic Networks 107

Given that, in constraint-based models, reactions can be reversible or can
proceed only backwards, i.e. lb(r) ≤ ub(r) < 0, the concepts related to the
consumption and production of metabolites must be revisited. Thus, new sets of
reactants, products, consumers, and producers which take into account the flux
bounds are defined as follows:

– Set of products of r:
r•
d = {m ∈ M|(S(m, r) > 0 ∧ ub(r) > 0) ∨ (S(m, r) < 0 ∧ lb(r) < 0)}

– Set of reactants of r:
•rd = {m ∈ M|(S(m, r) < 0 ∧ ub(r) > 0) ∨ (S(m, r) > 0 ∧ lb(r) < 0)}

– Set of consumers of m:
m•

d = {r ∈ R|(S(m, r) < 0 ∧ ub(r) > 0) ∨ (S(m, r) > 0 ∧ lb(r) < 0)}
– Set of producers of m:

•md = {r ∈ R|(S(m, r) > 0 ∧ ub(r) > 0) ∨ (S(m, r) < 0 ∧ lb(r) < 0)}
Flux dependent definitions of chokepoints and dead-end metabolites can be

written as:

Definition 6. A reaction r ∈ R is a flux dependent chokepoint if there exists
m ∈ M such that m•

d = {r} or •md = {r}.
Definition 7. A metabolite m ∈ M is a flux dependent dead-end metabolite if
m•

d = {} or •md = {}.
The sets of flux dependent chokepoint reactions and dead-end metabolites

will be denoted as CPd and DEMd respectively.

Example 4. In Fig. 1, r12 is a flux dependent chokepoint, i.e. r12 ∈ CPd; and mh

is a flux dependent dead-end metabolite, i.e. mh ∈ DEMd.

3 Growth Dependent Chokepoints

In GEMs, unknown flux bounds are given default values, e.g.
lb(r) = −1000 mmol g−1 h−1 and ub(r) = 1000 mmol g−1 h−1 (recall that
flux bounds establish the direction in which the reaction can proceed). Thus, all
the reactions that are given default values are considered as reversible. However,
not all the fluxes in the ranges given by the flux bounds of GEMs models are
compatible with a positive growth rate. By using Flux Balance Analysis (FBA)
[14] and Flux Variability Analysis (FVA) [4] it is possible to obtain tighter flux
bounds for a given growth rate. Such tighter bounds could imply that, reactions
which were initially considered as reversible, are in fact non-reversible for the
given growth rate. This might alter the original set of chokepoints, i.e. the set
of chokepoints depend on the growth rate. This section describes how growth
dependent chokepoints can be computed.

Flux Balance Analysis (FBA) is a mathematical procedure for the estimation
of steady state fluxes in constraint-based models. FBA can be used, for instance,
to predict the growth rate of an organism or the rate of production of a given

108 A. Oarga et al.

metabolite. Mathematically, FBA is expressed as a linear programming problem
that maximises an objective function subject to steady state constraints. In the
case of estimating the growth rate, the objective function is biomass production,
a reaction that defines the ratios at which metabolites are converted into basic
constituents of the cell as nucleic acids or proteins [14].

Let v ∈ R
|R| be the vector of fluxes of reactions and v[r] denote the flux of

reaction r. At steady state, it holds that S · v = 0, where S is the stoichiometric
matrix. The steady state fluxes of reactions are also lower and upper bounded
by lb and ub. Thus, the FBA linear programming problem is:

max z · v

st. S · v = 0
lb(r) ≤ v[r] ≤ ub(r) ∀r ∈ R

(1)

where z ∈ R
|R| expresses the objective function.

It is a common assumption that the metabolism of prokaryotes has evolved
to maximize the growth of the cells. Hence, the growth rate given by the biomass
production is an empirically reasonable choice for the objective function of FBA
applied to bacteria [17].

A given growth, i.e. a given flux through the reaction modelling biomass
production, can be achieved by different fluxes of the reactions. This means that
each reaction can have a range of fluxes that is compatible with a given growth.
Flux Variability Analysis (FVA) can be used to compute such range of fluxes for
each reaction [2].

More precisely, FVA [4] is a mathematical procedure to compute the min-
imum and maximum fluxes of reactions that are compatible with some state,
e.g. supporting 90% of the maximum growth yielded by FBA. Among other
applications, FVA can be used to study the network flexibility, and studying the
network response under suboptimal conditions.

Let μmax be the maximum growth calculated by FBA. FVA is computed by
solving two independent linear programming problems per reaction r ∈ R. One
programming problem maximizes the flux of r, v[r], and the other minimizes
v[r]. The constraints of both problems are the same: the steady state condition
S · v = 0, the flux bounds lb(r) ≤ v[r] ≤ ub(r), and the maintenance of the
optimum value given by FBA to a certain degree. This last constraint is expressed
as γ · μmax ≤ z · v where z is the same vector as in (1) and γ ∈ [0, 1] represents
the fraction of optimal value that must be satisfied. Thus, the two programming
problems for a given reaction r ∈ R can be expressed as:

max /min v[r]
st. S · v = 0

lb(r) ≤ v[r] ≤ ub(r) ∀r ∈ R
γ · μmax ≤ z · v

(2)

Let lbγ , ubγ : R → R be the result of running FVA on a constraint-based
model {R, M, S, lb, ub} for a given γ. If the flux bounds lb, ub of the

Growth Dependent Computation of Chokepoints in Metabolic Networks 109

constrained-based model are replaced by lbγ , ubγ , a new constraint-based model,
{R, M, S, lbγ , ubγ}, with more constrained flux bounds is obtained.

Given γ, the sets of flux dependent products, reactants, consumers, and
producers of the model {R, M, S, lbγ , ubγ} are denoted as r•

γ , •rγ ,m•
γ , •mγ

respectively. Similarly, the sets of flux dependent reversible reactions, dead reac-
tions, and non-reversible reactions are denoted as RRγ , DRγ , NRγ respectively.
The sets of flux dependent chokepoint reactions and dead-end metabolites are
denoted as CPγ and DEMγ .

In Algorithm 1, an iterative procedure is proposed that, given an input
constrained-based model and γ, it produces a list of pairs (reactant, reaction)
((reaction, product)) where reaction is a growth dependent chokepoint and
reactant(product) is the metabolite whose only consumer(producer) is reaction.

Algorithm 1. Growth dependent chokepoint reactions computation

INPUT: {R, M, S, lb, ub}, γ.
OUTPUT: List of tuples (reactant, reaction) and (reaction, product) such that
reaction ∈ CPγ and reaction is the only consumer of reactant or the only producer
of product.

1: procedure FindChokepointReactions
2: lbγ , ubγ ← FVA({R, M, S, lb, ub}, γ)
3: {R, M, S, lb, ub} ← {R, M, S, lbγ , ubγ}
4:
5: result ← empty list
6: for reaction in R do
7: for reactant in •reactionγ do
8: if reactant•γ = {reaction} then
9: result ← result + (reactant, reaction)

10: end if
11: end for
12: for product in reaction•

γ do
13: if •productγ = {reaction} then
14: result ← result + (reaction, product)
15: end if
16: end for
17: end for
18: return result
19: end procedure

Prior to the computation of chokepoints (lines 5–18), the algorithm refines the
input model as explained by replacing the initial flux bounds by the flux values
computed with FVA (lines 2–3). To compute chokepoints, the algorithm iterates
over the reactions of the model. For each reaction, the reactants and products
involved are iterated. For each pair (reactant, reaction) and (reaction, product),

110 A. Oarga et al.

if Definition 6 is satisfied, the reaction is considered a chokepoint reaction with
the given metabolite.

Example 5. Let us assume that r13 in Fig. 1 represents growth, i.e. the compo-
nent of z in (1) that corresponds to r13 is equal to 1 and the rest of components
of z are 0. Let us also assume that it is desired to assess the directionality of
the reactions and compute the set of chokepoints when the growth is maximum.
This can be achieved by applying Algorithm 1 with γ = 1. The new flux bounds
yielded by the algorithm are shown in Fig. 2.

As a result of the new flux bounds given to the model, reactions r5, r7
and r11 become dead reactions, i.e. r5, r7, r11 ∈ DR1, and reactions r8, r9, r10,
which where reversible reactions in Fig. 1, become non-reversible reactions, i.e.
r8, r9, r10 ∈ NR1. This change in the directionality of the reactions involves
changes in the set of flux-dependent chokepoints, in particular r6 becomes a
chokepoint, i.e. r6 ∈ CP1, and r11, which was a chokepoint in Fig. 1, becomes a
dead-reaction, i.e. r11 ∈ DR1.

Fig. 2. Petri net resulting from the application of Algorithm 1 to the Petri net in Fig. 1
with r13 as the objective function and γ = 1.

Growth Dependent Computation of Chokepoints in Metabolic Networks 111

4 Chokepoint Analysis

The computation of flux bounds by means of FVA can be carried out with an
optimal state, i.e. γ = 1 in (2), or with suboptimal states, i.e. 0 ≤ γ < 1. While
in an optimal state all the fluxes must be optimally directed towards growth, in
suboptimal states fluxes are allowed to be diverted towards other functionalities.
This section analyses the impact of γ in the sets of reversible, non-reversible,
dead and chokepoint reactions of a constraint-based model. To achieve this goal
the flux bounds of the model will be refined according to different values of γ
and the mentioned sets of reactions will be computed.

All the results presented in this section have been obtained by a software
tool which implements Algorithm 1 and computes the sets RRγ , DRγ , NRγ and
CPγ . A description of the tool can be found in AppendixA. The tool has been
executed on a number of constraint-based models yielding the results presented
in AppendixB.

4.1 Case Study: Mycobacterium Leprae

This subsection presents the results obtained for the constraint-based model of
the in vivo GEM of M. leprae [1,6]. This model is composed of 998 metabo-
lites and 1228 reactions. The sizes of the flux-dependent sets of reactions are
|RRd|= 288, |NRd|= 938, |DRd|= 2, and the number of flux-dependent CP is
|CPd| = 667. In order to assess the dependence of these sets on γ, the flux
bounds of the model have been refined for different values of γ in the interval
[0, 1].

Figure 3 shows the sizes of the sets DRγ , NRγ and CPγ , in plot (a), (b) and
(c) respectively, for different values of γ. Notice that if γ = 0 then the constraint
γ · μmax ≤ z · v in (2) does not impose a minimum growth on the model, and
only the steady state condition S · v = 0 must be satisfied. In addition to the
γ dependent sets, the leftmost value of each plot (depicted in green) in Fig. 3
represents the sizes of the flux-dependent sets prior to FVA, i.e. DRd, NRd and
CPd.

Fig. 3. Sizes of the sets of reactions DRγ , NRγ and CPγ of M. leprae for γ ∈ [0, 1].
The leftmost value of each plot corresponds to DRd, NRd and CPd respectively.

112 A. Oarga et al.

It can be seen that the set of dead reactions exhibits two major increases,
the first one from |DRd| = 2 to |DR0| = 219, and the second one at γ = 1
(|DR1| = 667), see Fig. 3(c). Given that only the steady state condition is active
for γ = 0, the first increase implies that the fluxes of all the reactions in DR0

must necessarily be 0 in the long run regardless of the growth rate. Thus, this
increase can be due to a shortcoming or incompleteness in the model.

The second increase in the set of dead reactions takes place at γ = 1 and
can be caused by the existence of alternative pathways that consume nutrients,
one of them being more efficient than the others in terms of biomass production.
The next subsection proposes simplified models that illustrate how these sudden
increases take place.

With respect to chokepoints, see Fig. 3(b), the number of flux-dependent
chokepoints is |CPd| = 668. This number increases to |CP0| = 733 when the
steady state constraint is forced, and increases slowly with γ, at γ = 0.9 it
holds |CP0.9| = 741. That is, Algorithm 1 identifies more chokepoints than the
ones that are present originally in the model. The sudden drop of chokepoints at
γ = 1, |CP1| = 469, is due to the fact that at the optimal state many chokepoints
become dead reactions as discussed previously.

In a similar way to the set of chokepoints, the number of non-reversible
reactions increases slowly with γ and it falls abruptly at γ = 1. This means that
the sets NRγ and CPγ decrease at the optimal state as many of these reactions
become dead reactions.

Fig. 4. Sankey diagram showing the dependence of the sets NR, RR and DR on the
growth rate.

Figure 4 presents a Sankey diagram showing how reactions are distributed
among the sets NR, RR and DR and the flow of transformations that takes place
among these sets from the initial model to a model refined with a suboptimal
state of γ = 0.9, and from this suboptimal state model to an optimal state model
refined with γ = 1.0. Notice that at γ = 1.0 the set of dead reactions becomes the
largest set of reactions, and that the set of reversible reactions is vastly reduced
at both suboptimal and optimal growth.

Growth Dependent Computation of Chokepoints in Metabolic Networks 113

As it is reported in Appendix B, similar trends to the ones discussed here for
the sets NR, DR and CP are exhibited by other models.

4.2 Dead Reactions and Growth Rate

It has been shown that refining a model with a suboptimal growth can cause the
set of dead reactions, DR, to increase, and also that this set increases further with
an optimal growth refinement. These changes in DR are caused by particular
network structures that can appear in a metabolic network. This subsection
illustrates through an abstract model the types of structures that can produce
such changes in DR.

Fig. 5. Petri net illustrating the evolution of
dead reactions at γ = 0 and γ = 1.

Table 2. Refined model flux
bounds

γ r lbγ(r) ubγ(r) type

0.0 r1 0.0 100.0 NR

r2 0.0 100.0 NR

r3 0.0 100.0 NR

r4 0.0 100.0 NR

r5 0.0 200.0 NR

r6 0.0 200.0 NR

r7 0.0 200.0 NR

r8 0.0 0.0 DR

r9 0.0 0.0 DR

r10 0.0 0.0 DR

0.9 r1 90.0 100.0 NR

r2 0.0 20.0 NR

r3 0.0 20.0 NR

r4 80.0 100.0 NR

r5 160.0 200.0 NR

r6 180.0 200.0 NR

r7 180.0 200.0 NR

r8 0.0 0.0 DR

r9 0.0 0.0 DR

r10 0.0 0.0 DR

1.0 r1 100.0 100.0 NR

r2 0.0 0.0 DR

r3 0.0 0.0 DR

r4 100.0 100.0 NR

r5 200.0 200.0 NR

r6 200.0 200.0 NR

r7 200.0 200.0 NR

r8 0.0 0.0 DR

r9 0.0 0.0 DR

r10 0.0 0.0 DR

Table 1. Initial flux bounds

r lb(r) ub(r) type

r1 0.0 100.0 NR

r2 0.0 1000.0 NR

r3 0.0 1000.0 NR

r4 0.0 1000.0 NR

r5 0.0 1000.0 NR

r6 0.0 1000.0 NR

r7 0.0 1000.0 NR

r8 0.0 1000.0 NR

r9 0.0 1000.0 NR

r10 0.0 1000.0 NR

114 A. Oarga et al.

Let us consider the constraint-based model depicted as a Petri net in Fig. 5.
The lower and upper flux bounds of the model are reported in Table 1 of the
figure. According to such flux bounds all the reactions are non-reversible, i.e.
DR = {}, see column type. The exchange reactions are r1 and r10, which could
model nutrient uptake and secretion of a metabolite respectively. The reaction
modelling biomass production is r7, i.e. the flux of r7 represents the growth
rate of system being modelled. Hence, the objective funcion of FBA, see (1),
is the maximization of v[r7]. For the given net structure and flux bounds, the
maximum growth rate yielded by FBA (1) is μmax = 200.

Table 2 reports the refined flux bounds and the type of each reaction for
γ = 0, γ = 0.9 and γ = 1. If γ = 0 then only the steady state constraint,
S · v = 0, of FVA (2) is taken into account to compute the refined flux bounds.
Thus, any possible steady state must satisfy the bounds, lb0 and ub0, of the rows
associated with γ = 0. For such γ, all the lower bounds, lb0, are kept to 0 and
the upper bounds, ub0, are constrained by the upper flux bound of r1 which is
ub(r1) = 100. It should be noted that ub0(r8) = ub0(r9) = ub0(r10) = 0, that is
reactions r8, r9 and r10 are dead at any steady state, i.e. DR0 = {r8, r9, r10}.

Recall that this increase in the number of dead reactions, DR0, also took
place in the previous subsection for the M. leprae model. The reason why r8
becomes dead is because it is producing a DEM mg, if the flux of r8 was positive
then the concentration of mg would increase indefinitely which contradicts the
existence of a steady state.

Let us now focus on r9 and r10. The steady state condition, S · v = 0, for
metabolite mh imposes v[r9] = v[r10] (i.e. input flux = output flux), while
for mi the steady state condition is 2 · v[r9] = v[r10] (see weight 2 in the arc
(r9,mi). The only fluxes that satisfy these two conditions simultaneously are
v[r9] = v[r10] = 0, i.e. the reactions are dead at any steady state.

At γ = 0.9, the flux of r7 (biomass production) must be at least 0.9 ·μmax =
180. Notice that, although DR0 = DR0.9, the lower bounds of some reactions are
higher at γ = 0.9 than at γ = 1, and the upper bounds of some other reactions
are lower at γ = 0.9 than at γ = 1. In general it holds:

ub0.9[r] − lb0.9[r] ≥ ub1[r] − lb1[r] ∀r ∈ R

In other words, the range of steady state fluxes allowed for each reaction
decreases with γ. This is due to the existence of alternative paths in the metabolic
network. In the present example, there are two alternative pathways to biomass
production, namely p1 = (r1, r2, r3, r6, r7) and p2 = (r1, r4, r5, r6, r7). Notice
that p2 is more advantageous than p1 for biomass production as 2 metabolites
mc are produced per each metabolite ma. Thus, near optimal solutions will tend
to exploit p2 instead of p1. This implies strictly positive lower bounds, lb0.9, for
all the reactions in p2, and decreased upper bounds, ub0.9, for the reactions that
belong exclusively to p1, i.e. r2 and r3.

The interval [lbγ [r], ubγ [r]] shrinks for every reaction r ∈ R as γ increases,
and at γ = 1 the intervals become points. Moreover, at γ = 1 only the most
favourable path p2 can be used, and hence reactions r2 and r3 become dead.

Growth Dependent Computation of Chokepoints in Metabolic Networks 115

This type of phenomenon causes the sudden increase of DR1 in the M. leprae
model of the previous subsection.

5 Conclusions

This work has introduced a computational method to incorporate dynamic infor-
mation, namely flux bounds, in the computation of chokepoints in metabolic net-
works expressed as constraint-based models. The goal behind this approach is to
obtain more realistic chokepoints, which are known to be potential drug targets,
than those based only on the net topology. Given that flux bounds depend on the
growth rate of the organism, the concept of growth dependent chokepoints has
been defined and an algorithm to compute such chokepoints has been designed.

It was found that the number of chokepoints was seriously affected by the
number of dead reactions, i.e. by reactions with null lower and upper flux bounds.
Although the number of dead reactions is not relevant in most of the origi-
nal models, this number increases significantly when dynamic information is
accounted for. A major increase takes place when the steady state constraint is
enforced on the metabolic network, i.e. at γ = 0. As discussed in Subsect. 4.2, we
hypothesize that such an increase is a sign of some incompleteness in the model
such as the existence of dead-end metabolites, or to missing reactions that lead
to the incompatibility of positive fluxes with the network stoichiometry. Another
major increase of dead reactions takes place when the growth rate is maximum,
i.e. at γ = 1. At such a rate, all the flux is diverted towards the optimal paths
for biomass production, and hence, the fluxes of non-optimal alternative paths
leading to biomass production and other non-essential paths become 0, i.e. such
paths contain dead reactions at γ = 1. Thus, in this case dead reactions might
indicate the existence of alternative, or redundant, paths leading to biomass
production. Notice that such redundant paths have the potential to make the
metabolism more robust to attacks.

The protocol for chokepoint computation presented on this paper can reduce
the time spent identifying drug targets in the process of drug discovery. Drug
discovery is a time-consuming process, which involves the identification and
validation of drug targets, optimisation, lead discovery and testing before the
production of drug candidates. Our protocol can contribute reducing the drug
target identification time by prioritising the selection of potential top targets of
the pathogenic organism for subsequent validation and optimisation protocols
of the drug discovery process.

A Appendix

The software tool findCPcli developed in this work consists of a command line
application that, given an input model provided by the user, computes the sizes
of the sets of non-reversible reactions, reversible reactions, dead reactions and
chokepoint reactions for different values of γ. The results are saved in a spread-
sheet file with a format similar to the one presented in Table 3.

116 A. Oarga et al.

The tool findCPcli is distributed as a Python package and requires Python 3.5
or a higher version. The source can be found at github.com/findCP/findCPcli.
findCPcli can be installed with the pip package management tool:

pip install findCPcli

Once installed, the results for a given SBML model can be computed run-
ning:

findCPcli -i <input file> -cp <output file>

where:

– <input file> is the path of the input SBML model file to be used. The
supported file formats are .xml, .json and .yml.

– <output file> is the path of the spreadsheet file that will be saved with the
results computed on the model. The available file formats for the spreadsheet
file are .xls, .xlsx and .ods.

When the above command is executed, the command line application will
inform about the task that will be computed. If the task finishes successfully
and the spreadsheet file has been saved, the application will inform about it and
will end the execution.

Further information about the operations provided by the application can be
found by executing: findCPcli -h .

B Appendix

Table 3 reports the sizes of the sets of reversible, non-reversible, dead and choke-
point reactions for several constraint-based models of the Biomodels repository
[3]. All the results were computed by the tool findCPcli. The maximum CPU
time was 82.776 s to compute the results of model MODEL1507180017 in an
Intel Core i5-9300H CPU @ 2.40 GHz × 8.

Growth Dependent Computation of Chokepoints in Metabolic Networks 117

Table 3. Sizes of the sets of reversible, non-reversible, dead and chokepoint reactions
for several constraint-based models.

γ

Model Set Initial Set 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

mlep inVivo media RRd 288 RRγ 53 52 51 51 51 50 48 48 43 39 10

reactions: 1228 NRd 938 NRγ 956 957 958 958 958 959 961 961 966 970 551

metabolites: 998 DRd 2 DRγ 219 219 219 219 219 219 219 219 219 219 667

CPd 668 CPγ 733 733 733 733 733 733 735 735 739 741 469

MODEL1507180021 RRd 208 RRγ 72 72 72 72 72 72 65 64 63 60 20

reactions: 900 NRd 692 NRγ 710 710 710 710 710 710 717 718 719 722 417

metabolites: 688 DRd 0 DRγ 118 118 118 118 118 118 118 118 118 118 463

(M. tuberculosis) CPd 506 CPγ 504 504 504 504 504 504 510 510 510 512 350

MODEL1507180007 RRd 183 RRγ 27 27 27 26 26 24 24 24 22 20 6

reactions: 554 NRd 371 NRγ 377 377 377 378 378 380 380 380 382 384 304

metabolites: 485 DRd 0 DRγ 150 150 150 150 150 150 150 150 150 150 244

CPd 277 CPγ 315 315 315 315 315 317 317 317 319 319 271

MODEL1507180063 RRd 184 RRγ 32 32 31 31 31 31 28 26 26 13 6

reactions: 556 NRd 370 NRγ 399 399 400 400 400 400 403 405 405 418 316

metabolites: 549 DRd 2 DRγ 125 125 125 125 125 125 125 125 125 125 234

CPd 274 CPγ 316 316 316 316 316 316 318 321 321 330 291

MODEL1507180030 RRd 193 RRγ 28 28 28 28 28 27 27 27 27 27 12

reactions: 560 NRd 305 NRγ 317 317 317 317 317 318 318 318 318 318 278

metabolites: 479 DRd 62 DRγ 215 215 215 215 215 215 215 215 215 215 270

CPd 310 CPγ 257 257 257 257 257 258 258 258 258 258 258

MODEL1507180070 RRd 216 RRγ 25 21 20 18 18 18 17 17 17 17 13

reactions: 743 NRd 513 NRγ 425 429 430 432 432 432 433 433 433 433 420

metabolites: 655 DRd 14 DRγ 293 293 293 293 293 293 293 293 293 293 310

CPd 324 CPγ 330 333 333 335 335 335 335 335 335 335 336

MODEL1507180045 RRd 354 RRγ 171 171 171 171 171 171 171 171 171 169 149

reactions: 778 NRd 424 NRγ 487 487 487 487 487 487 487 487 487 489 295

metabolites: 662 DRd 0 DRγ 120 120 120 120 120 120 120 120 120 120 334

CPd 336 CPγ 387 387 387 387 387 387 387 387 387 389 229

MODEL1507180024 RRd 318 RRγ 75 75 75 75 75 75 75 75 74 62 21

reactions: 832 NRd 514 NRγ 510 510 510 510 510 510 510 510 511 523 438

metabolites: 790 DRd 0 DRγ 247 247 247 247 247 247 247 247 247 247 373

CPd 397 CPγ 406 406 406 406 406 406 406 406 406 414 380

MODEL1507180036 RRd 277 RRγ 103 103 103 103 103 103 99 99 93 89 51

reactions: 870 NRd 593 NRγ 593 593 593 593 593 593 597 597 603 607 460

metabolites: 713 DRd 0 DRγ 174 174 174 174 174 174 174 174 174 174 359

CPd 433 CPγ 402 402 402 402 402 402 406 406 409 411 346

MODEL1507180049 RRd 271 RRγ 189 189 189 189 189 189 189 188 188 184 140

reactions: 971 NRd 700 NRγ 717 717 717 717 717 717 717 718 718 722 388

metabolites: 496 DRd 0 DRγ 65 65 65 65 65 65 65 65 65 65 443

CPd 265 CPγ 273 273 273 273 273 273 273 273 273 273 156

MODEL1507180068 RRd 361 RRγ 84 84 84 84 84 80 80 77 77 77 71

reactions: 1056 NRd 695 NRγ 568 568 568 568 568 572 572 575 575 575 463

metabolites: 911 DRd 0 DRγ 404 404 404 404 404 404 404 404 404 404 522

CPd 549 CPγ 469 469 469 469 469 471 471 474 474 474 395

MODEL1507180060 RRd 254 RRγ 57 57 57 57 54 54 52 50 50 48 8

reactions: 1075 NRd 821 NRγ 610 610 610 610 613 613 615 617 617 619 356

metabolites: 761 DRd 0 DRγ 408 408 408 408 408 408 408 408 408 408 711

CPd 441 CPγ 363 363 363 363 364 364 366 368 368 370 304

(continued)

118 A. Oarga et al.

Table 3. (continued)
γ

Model Set Initial Set 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

MODEL1507180020 RRd 256 RRγ 50 48 48 48 47 47 45 45 45 45 12

reactions: 1110 NRd 751 NRγ 556 558 558 558 559 559 561 561 561 561 367

metabolites: 879 DRd 103 DRγ 504 504 504 504 504 504 504 504 504 504 731

CPd 455 CPγ 396 398 398 398 398 398 400 400 400 400 319

MODEL1507180059 RRd 630 RRγ 203 203 203 203 203 203 202 202 200 196 142

reactions: 1112 NRd 482 NRγ 511 511 511 511 511 511 512 512 514 518 358

metabolites: 1101 DRd 0 DRγ 398 398 398 398 398 398 398 398 398 398 612

CPd 470 CPγ 436 436 436 436 436 436 436 436 436 438 306

MODEL1507180013 RRd 551 RRγ 249 249 249 249 249 249 249 249 247 242 49

reactions: 1245 NRd 694 NRγ 708 708 708 708 708 708 708 708 710 715 390

metabolites: 987 DRd 0 DRγ 288 288 288 288 288 288 288 288 288 288 806

CPd 484 CPγ 533 533 533 533 533 533 533 533 534 536 346

MODEL1507180058 RRd 452 RRγ 155 155 155 155 155 155 155 155 150 147 97

reactions: 1285 NRd 833 NRγ 904 904 904 904 904 904 904 904 909 912 547

metabolites: 943 DRd 0 DRγ 226 226 226 226 226 226 226 226 226 226 641

CPd 584 CPγ 611 611 611 611 611 611 611 611 614 616 409

MODEL1507180015 RRd 1093 RRγ 510 510 510 510 510 510 510 510 510 510 334

reactions: 1681 NRd 588 NRγ 822 822 822 822 822 822 822 822 822 822 667

metabolites: 1381 DRd 0 DRγ 349 349 349 349 349 349 349 349 349 349 680

CPd 473 CPγ 612 612 612 612 612 612 612 612 612 612 551

MODEL1507180054 RRd 546 RRγ 85 85 85 82 80 80 77 77 75 71 10

reactions: 2262 NRd 1716 NRγ 1138 1138 1138 1141 1143 1143 1146 1146 1148 1152 397

metabolites: 1658 DRd 0 DRγ 1039 1039 1039 1039 1039 1039 1039 1039 1039 1039 1855

CPd 1039 CPγ 748 748 748 750 750 750 752 752 754 759 319

MODEL1507180017 RRd 606 RRγ 85 85 85 81 80 78 78 77 77 75 13

reactions: 2546 NRd 1923 NRγ 1504 1504 1504 1508 1509 1511 1511 1512 1512 1514 525

metabolites: 1802 DRd 17 DRγ 957 957 957 957 957 957 957 957 957 957 2008

CPd 1112 CPγ 984 984 984 986 986 988 988 988 988 990 478

References

1. Bannerman, B.P., et al.: Analysis of metabolic pathways in mycobacteria to aid
drug-target identification. bioRxiv (2019). https://doi.org/10.1101/535856

2. Burgard, A.P., Vaidyaraman, S., Maranas, C.D.: Minimal reaction sets for
escherichia coli metabolism under different growth requirements and uptake
environments. Biotechnol. Prog. 17(5), 791–797 (2001). https://doi.org/10.1021/
bp0100880

3. Glont, M., et al.: Biomodels: expanding horizons to include more modelling
approaches and formats. Nucleic Acid Res. 46(D1), D1248–D1253 (2018). https://
doi.org/10.1093/nar/gkx1023

4. Gudmundsson, S., Thiele, I.: Computationally efficient flux variability analysis.
BMC Bioinf. 11(1), 489 (2010). https://doi.org/10.1186/1471-2105-11-489

5. Heiner, M., Gilbert, D., Donaldson, R.: Petri nets for systems and synthetic biology.
In: Bernardo, M., Degano, P., Zavattaro, G. (eds.) SFM 2008. LNCS, vol. 5016, pp.
215–264. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-68894-
5 7

https://doi.org/10.1101/535856
https://doi.org/10.1021/bp0100880
https://doi.org/10.1021/bp0100880
https://doi.org/10.1093/nar/gkx1023
https://doi.org/10.1093/nar/gkx1023
https://doi.org/10.1186/1471-2105-11-489
https://doi.org/10.1007/978-3-540-68894-5_7
https://doi.org/10.1007/978-3-540-68894-5_7

Growth Dependent Computation of Chokepoints in Metabolic Networks 119

6. Karp, P.D., et al.: The BioCyc collection of microbial genomes and metabolic
pathways. Briefings Bioinf. 20(4), 1085–1093 (2017). https://doi.org/10.1093/bib/
bbx085

7. Lamberti, L.M., et al.: Breastfeeding for reducing the risk of pneumonia morbidity
and mortality in children under two: a systematic literature review and meta-
analysis (2013). https://doi.org/10.1186/1471-2458-13-S3-S18

8. Mackie, A., Keseler, I.M., Nolan, L., Karp, P.D., Paulsen, I.T.: Dead end metabo-
lites - defining the known unknowns of the e. coli metabolic network. PLoS ONE
8(9), e75210 (2013). https://doi.org/10.1371/journal.pone.0075210

9. Mazurek, S.: Pyruvate kinase type M2: a key regulator of the metabolic budget
system in tumor cells. Int. J. Biochem. Cell Biol. 43(7), 969–980 (2011). https://
doi.org/10.1016/j.biocel.2010.02.005

10. Munger, J., et al.: Systems-level metabolic flux profiling identifies fatty acid syn-
thesis as a target for antiviral therapy. Nat. Biotechnol. 26(10), 1179–1186 (2008).
https://doi.org/10.1038/nbt.1500

11. Murata, T.: Petri nets: properties, analysis and applications. Proc. IEEE 77(4),
541–580 (1989). https://doi.org/10.1109/5.24143

12. Murima, P., McKinney, J.D., Pethe, K.: Targeting bacterial central metabolism
for drug development, November 2014. https://doi.org/10.1016/j.chembiol.2014.
08.020

13. Orth, J.D., et al.: A comprehensive genome-scale reconstruction of Escherichia coli
metabolism-2011. Mol. Syst. Biol. 7(1), 535 (2011). https://doi.org/10.1038/msb.
2011.65

14. Orth, J.D., Thiele, I., Palsson, B.O.: What is flux balance analysis?, March 2010.
https://doi.org/10.1038/nbt.1614

15. Rahman, S.A., Schomburg, D.: Observing local and global properties of metabolic
pathways: ‘load points’ and ‘choke points’ in the metabolic networks. Bioin-
formatics (Oxford, Engl.) 22(14), 1767–1774 (2006). https://doi.org/10.1093/
bioinformatics/btl181

16. Raman, K., Vashisht, R., Chandra, N.: Strategies for efficient disruption of
metabolism in Mycobacterium tuberculosis from network analysis. Mol. BioSyst.
5(12), 1740–1751 (2009). https://doi.org/10.1039/B905817F

17. Segre, D., Vitkup, D., Church, G.M.: Analysis of optimality in natural and per-
turbed metabolic networks. Proc. Natl. Acad. Sci. 99(23), 15112–15117 (2002).
https://doi.org/10.1073/pnas.232349399

18. Singh, S., Malik, B.K., Sharma, D.K.: Choke point analysis of metabolic path-
ways in E. histolytica: a computational approach for drug target identification.
Bioinformation 2(2), 68–72 (2007). https://doi.org/10.6026/97320630002068

19. Varma, A., Palsson, B.Ø.: Metabolic flux balancing: basic concepts, scientific and
practical use. Nat. Biotechnol. 12(10), 994–998 (1994). https://doi.org/10.1038/
nbt1094-994

20. WHO: WHO — Causes of death. WHO (2018)
21. Zhang, R., Lin, Y.: DEG 5.0, a database of essential genes in both prokaryotes and

eukaryotes. Nucleic Acids Res. 37(suppl 1), D455–D458 (2008). https://doi.org/
10.1093/nar/gkn858

https://doi.org/10.1093/bib/bbx085
https://doi.org/10.1093/bib/bbx085
https://doi.org/10.1186/1471-2458-13-S3-S18
https://doi.org/10.1371/journal.pone.0075210
https://doi.org/10.1016/j.biocel.2010.02.005
https://doi.org/10.1016/j.biocel.2010.02.005
https://doi.org/10.1038/nbt.1500
https://doi.org/10.1109/5.24143
https://doi.org/10.1016/j.chembiol.2014.08.020
https://doi.org/10.1016/j.chembiol.2014.08.020
https://doi.org/10.1038/msb.2011.65
https://doi.org/10.1038/msb.2011.65
https://doi.org/10.1038/nbt.1614
https://doi.org/10.1093/bioinformatics/btl181
https://doi.org/10.1093/bioinformatics/btl181
https://doi.org/10.1039/B905817F
https://doi.org/10.1073/pnas.232349399
https://doi.org/10.6026/97320630002068
https://doi.org/10.1038/nbt1094-994
https://doi.org/10.1038/nbt1094-994
https://doi.org/10.1093/nar/gkn858
https://doi.org/10.1093/nar/gkn858

On the Complexity of Quadratization
for Polynomial Differential Equations

Mathieu Hemery, François Fages(B), and Sylvain Soliman

Inria Saclay Ile de France, EP Lifeware, Palaiseau, France
Francois.Fages@inria.fr

Abstract. Chemical reaction networks (CRNs) are a standard formal-
ism used in chemistry and biology to reason about the dynamics of molec-
ular interaction networks. In their interpretation by ordinary differential
equations, CRNs provide a Turing-complete model of analog computa-
tion, in the sense that any computable function over the reals can be
computed by a finite number of molecular species with a continuous
CRN which approximates the result of that function in one of its com-
ponents in arbitrary precision. The proof of that result is based on a
previous result of Bournez et al. on the Turing-completeness of polyno-
mial ordinary differential equations with polynomial initial conditions
(PIVP). It uses an encoding of real variables by two non-negative vari-
ables for concentrations, and a transformation to an equivalent quadratic
PIVP (i.e. with degrees at most 2) for restricting ourselves to at most
bimolecular reactions. In this paper, we study the theoretical and prac-
tical complexities of the quadratic transformation. We show that both
problems of minimizing either the number of variables (i.e., molecular
species) or the number of monomials (i.e. elementary reactions) in a
quadratic transformation of a PIVP are NP-hard. We present an encod-
ing of those problems in MAX-SAT and show the practical complexity
of this algorithm on a benchmark of quadratization problems inspired
from CRN design problems.

1 Introduction

Chemical reaction networks (CRNs) are a standard formalism used in chemistry
and biology to reason about the dynamics of molecular interaction networks.
A CRN over a vector x of molecular species is a finite set of formal chemical
reactions of the form

r(x)
f(x)−−−→ p(x)

composed of a multiset r(x) of reactants (with multiplicity given by stoichio-
metric coefficients in r), a multiset p(x) of products, and a rate function f(x) on
the quantities of reactants. The structure of a CRN is the same as the structure
of a Petri net, but the rate functions allow for the definition of continuous-time
dynamics in addition to their discrete dynamics: in particular the stochastic
semantics which interprets a CRN by a continuous-time Markov chain, and the
c© Springer Nature Switzerland AG 2020
A. Abate et al. (Eds.): CMSB 2020, LNBI 12314, pp. 120–140, 2020.
https://doi.org/10.1007/978-3-030-60327-4_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-60327-4_7&domain=pdf
https://doi.org/10.1007/978-3-030-60327-4_7

On the Complexity of Quadratization for Polynomial Differential Equations 121

differential semantics which interprets a CRN by a system of ordinary differential
equations (ODEs) [4,6].

In the differential semantics of a CRN R = {rj(x)
fj(x)−−−→ pj(x)}, one asso-

ciates to each molecular species xi a concentration also noted xi by abuse of
notation, with the differential function

dxi

dt
=

∑

j∈R

(pj(xi) − rj(xi)).fj(x).

Mass action law kinetics are monomial rate functions that lead to polynomial
ODEs. The other standard rate functions used such as Michaelis-Menten kinetics
and Hill kinetics are traditionally obtained by approximations of mass action law
systems [11], and can thus be disregarded without loss of generality.

Collision theory shows however that the probabilities of reactions involving
three or more reactants are negligible. Hence from a mechanistic point of view,
the restriction to reactions involving at most two reactant molecules is of prac-
tical importance. We call an elementary CRN (ECRN) a CRN with at most
bimolecular reactions and mass action law kinetics. The restriction to at most
bimolecular reactions leads to polynomial ODEs of degree at most 2.

With these restrictions, ECRNs have been shown to provide a Turing-
complete model of analog computation, in the sense that any computable func-
tion over the reals can be computed by an ECRN which approximates the result
of that function on one of its components in arbitrary precision [5]. More pre-
cisely, we say that a CRN with a distinguished output species x1 generates a
function of time f : R+ → R+ from initial state x(0) if ∀t x1(t) = f(t). A CRN
with distinguished input and output species x0 and x1 computes a positive real
function f : R+ → R+ from initial state xi(0) = q(x0(0)) for some polynomial
q and i ∈ {1, . . . , n}, if for any initial concentration x0(0) of the input species,
the concentration of the output molecular species stabilizes at concentration
x1 = f(x0(0)). The proof of Turing-completeness of ECRNs in [5] is based on
a previous result of Bournez et al. in [1] on the Turing-completeness of polyno-
mial ordinary differential equations with polynomial initial values (PIVPs) for
computing real functions [8]. The proof for ECRNs uses on the one hand, on an
encoding of real variables x by the difference of two non-negative variables x+

and x− for concentrations, and on the other hand, on a transformation of the
PIVP to a quadratic PIVP [2] computing the same function but with degree at
most 2.

In this paper, we study the quadratic transformation problem and its com-
putational complexity.

Example 1. The hill function of order 5:

H5(x) =
x5

1 + x5
.

is an interesting example because it has been shown to provide a good approxi-
mation of the input/output function of the MAPK signalling network which is an

122 M. Hemery et al.

ubiquituous CRN structure present in all eukaryote cells and in several copies [9].
That function is a stiff sigmoid function which provides the MAPK network with
a switch-like response to the input, ultrasensitivity and an analog/digital con-
verter function. It is thus interesting to compare the MAPK network to the CRN
design method above based on the mathematical definition of the H5 function by
ODEs. Following [5], one can easily check that the function H5(x) is computed
by the following PIVP noted in vectorial form for the differential equations1 and
the initial conditions:

d

dt

⎡

⎢⎢⎣

H
I
T
X

⎤

⎥⎥⎦ =

⎡

⎢⎢⎣

5.I2.T 4.X
−5.I2.T 4.X

X
−X

⎤

⎥⎥⎦ ,

⎡

⎢⎢⎣

0
1
0
x

⎤

⎥⎥⎦

t=0

.

For any positive value X(0) = x in the initial condition, we have limt→∞ H(t) =
H5(x). However, this PIVP is of order 7 and its direct implementation by CRN
would involve non-elementary reactions with 7 reactants. In this example, the
proof of existence of a quadratic transformation for PIVPs given in [2] introduces
29 variables, while the MAPK network involves 12 molecular species. In this
paper, we consider the quadratic transformation problem as an optimization
problem which consists in minimizing the dimension of the quadratic PIVP. The
optimization algorithm we propose generates the following optimal ECRN for
implementing h5(x) with only 7 variables (named below by the monomial they
represent, e.g. it4x for I.T 4.X) and 11 reactions with mass action law kinetics
(MA):

MA(5.0) for i+it4x=>h+it4x
MA(1.0) for x=>_
MA(1.0) for 2*x=>tx+2*x
MA(1.0) for tx=>_
MA(3.0) for 2*tx=>t3x+2*tx
MA(1.0) for t3x=>_

MA(1.0) for ix=>_
MA(5.0) for it4x+ix=>it4x
MA(4.0) for ix+t3x=>it4x+ix+t3x
MA(1.0) for it4x=>_
MA(5.0) for 2*it4x=>it4x

In the following, we show that both problems of minimizing either the dimen-
sion (i.e. number of molecular species) or the number of monomials (i.e. number
of reactions2) in a quadratic transformation of a PIVP are NP-hard. The proof
is by reduction of the vertex set covering problem (VSCP). We present an algo-
rithm based on an encoding in a MAX-SAT Boolean satisfiability problem, and

1 More precisely, the first two equations have for solution the Hill function of order 5
as a function of time T , and the last two equations has for effect to stop time T at
initial value X(0).

2 While the correspondance between variables and species is exact, the one between
monomials and reactions is in fact more complicated if stoechiometric coefficients
and rate constants are exchanged when gathering the monomials appearing in the
different differential functions. In the following, we will nonetheless minimize mono-
mials as a proxy for the number of reactions.

On the Complexity of Quadratization for Polynomial Differential Equations 123

show its practicality on a benchmark of quadratization problems inspired from
CRN design problems.

The rest of the paper is organized as follows. In the next section, we define the
quadratic transformation decision problem (QTDP) as the problem of deciding
whether there exists a PIVP quadratization of some given dimension k, and the
associated optimization problem (QTP) to determine the minimum number k of
variables. We also consider the minimization of the number of monomials. The
difficulty of those problems are illustrated with some motivating examples. We
distinguish the succinct representation of the input PIVP by a list of monomials,
under which QTP is shown to be in NEXP, from the non succinct representation
by the full matrix of possible monomials of the input PIVP under which QTP
is shown to be in NP. In Sect. 3, we present an encoding of the QTP as a MAX-
SAT Boolean satisfiability problem, and derive from that encoding an algorithm
to solve QTP and its variant for minimizing the number of monomials.

Then in Sect. 4, we show that the different QTP problems are NP-hard. More
precisely, we show that the decision problem in the non-succinct representation
of the input PIVP is NP-complete by reduction of the Vertex Set Covering
Problem (VSCP), and we conjecture that the decision problem in the succinct
representation is NEXP-complete with the argument that some hard instances
of QTP require an exponential number of variables in the size of the input PIVP.

Then in Sect. 5, we study the practical complexity of QTP. We propose a
benchmark of PIVP quadratization problems inspired from CRN design prob-
lems, and show the performance of the MAX-SAT algorithm on this benchmark3

2 Quadratic Transformation of PIVPs

2.1 Quadratic Projection Theorem

A PIVP is a system of polynomial differential equations given with initial val-
ues. Following the notations of [2], from A the set of real analytic functions, we
say that f ∈ A is projectively polynomial if f is a component of the solution
of a PIVP. We note P the set of such functions, and Pk(n) the subset of func-
tions defined by a PIVP of dimension n and degree at most k. Pk will denote⋃

n∈N
Pk(n).

Example 2. The cosine function belongs to the class P1(2) since it may be defined
over R through the PIVP:

d

dt

[
x
y

]
=

[−y
x

]
,

[
1
0

]

t=0

.

That notation will be kept throughout the article with the last element denoting
the initial condition of the PIVP (at t = 0 by convention).

3 The benchmark and the implementation in BIOCHAM are available online in a
Jupyter notebook at https://lifeware.inria.fr/wiki/Main/Software#CMSB20a.

https://lifeware.inria.fr/wiki/Main/Software#CMSB20a

124 M. Hemery et al.

A folklore theorem of polynomial differential equation systems is that they
can be restricted to degree at most 2 without loss of generality on the generated
functions:

Theorem 1. P = P2: any function generated by a PIVP can be generated by a
PIVP of degree at most two.

The proof given in [2] is based on Algorithm 1 which consists in introducing
as many new variables as the number of possible monomials.

Algorithm 1. Quadratization algorithm of Carothers et al. [2].
Input: PIVP with n variables {x1, . . . , xn}, and maximum power dj per variable.
Output: quadratic PIVP with same output function on variable v1,0,...,0(t).

1. Introduce the variables vi1,...,in = xi1
1 xi2

2 , . . . , xin
n for all ij , 0 ≤ ij ≤ dj , 1 ≤ j ≤ n

satisfying ik > 0 for some variable indice k;
2. If the output variable x1 has a maximum power 0, add the variable v1,0,... = x1.
3. Compute the derivatives of the v variables as functions of the x variables;
4. Replace the monomials in the derivatives of the v variables by monomials of the v

variables with degree at most 2.

While it is obvious that the derivatives of the original variables can be rewrit-
ten by a sum of the new variables, one must check that the derivatives of the
new variables can be written in quadratic form. Let x1, x2 . . . be the variables
of the input PIVP, and dn be the highest degree of xn among all the mono-
mials of the input PIVP. One new variable is introduced for each monomial
v{i1,...,in} =

∏
xin
n that is possible to construct with in ∈ {0, . . . , dn} and at

least one in strictly positive4. It is then clear that the original function is still
computed by the output PIVP of Algorithm1 since we explicitely introduce it.
Furthermore, we can compute the derivative of the new variables:

d

dt

∏
xin
n =

∑

k

⎛

⎝ik
dxk

dt
xik−1
k

∏

n�=k

xin
n

⎞

⎠ , (1)

and it is enough to note that v{i1,...,ik−1,...,in} is one of the new variables and that
dxk

dt has only monomial of degree one in the new set of variables by construction.
This derivative is thus quadratic with respect to the new variables.

Proposition 1. Algorithm1 introduces O(dn) variables where n is the number
of variables and d the maximum power in the original PIVP.

4 One can remark that step 2 in Algorithm 1 was omitted in the original proof of [2]
but is necessary, as shown for instance for the Hill function given in Sect. 5.

On the Complexity of Quadratization for Polynomial Differential Equations 125

Proof. For a PIVP of n variables xi with highest degree di and with a distin-
guished output variable x1, Algorithm 1 introduces

∏
i(di + 1) − 1 + δ(d1, 0) =

O(dn) variables where δ is the Kronecker delta which is 1 iff di = 0 and 0 other-
wise. The first term in the expression comes from the fact that each old variable
xi may appear in the new set of variables with a power ranging from 0 to di.
The second term comes from the exclusion of the null variable, and the last one
prevents us to delete the distinguished output variable if it does not appear in
the derivatives.

However, Algorithm 1 may introduce much more variables than is actually
needed as already shown by Example 1 and more precisely by the examples
below.

2.2 Examples

Example 3. Applying Algorithm1 to the PIVP dtx = xk with the initial condi-
tion x(t = 0) = x0 would introduce k variables for x, x2, . . . , xk. But as it can be
easily checked, that this PIVP can also be quadratized with only two variables:
x, y = xk−1 with

d

dt

[
x
y

]
=

[
xy

(k − 1)y2

]
,

[
x0

xk−1
0

]

t=0

.

In the example above, the number of variables needed does not depend on
the degree of the input PIVP. More generally it is not always the case that
when the degree of a monomial increases, the minimum number of variables in
a quadratized form of the PIVP increases:

Example 4. The system:

d

dt

[
x
y

]
=

[
y3

x3 + x2y2

]

needs 7 variables (x, y, xy, y2, x3, y3, xy2). When increasing the highest degree
by one:

d

dt

[
x
y

]
=

[
y4

x4 + x2y2

]

we need only 6 variables (x, y, x3, y3, x2y, xy2). But pursuing to increase:

d

dt

[
x
y

]
=

[
y5

x5 + x2y2

]

needs now 9 variables for example: x, y, x3, y3, xy2, x4, y4, x3y, xy3. This is still
far less than the solution given by the mathematical proof with the 35 variables
of the monomials smaller than x5y5.

126 M. Hemery et al.

Example 5. On the system d
dt

[
x
y

]
=

[
y3

x3

]
, our algorithm presented in the

sequel returns the following solution with 5 variables a = x, b = y, c = x2,
d = y2, e = xy:

dta = y3 = bd, (2)

dtb = x3 = ac, (3)

dtc = 2xy3 = 2de, (4)

dtd = 2x3y = 2ce, (5)

dte = x4 + y4 = c2 + d2. (6)

A critical aspect of the optimal solution is that it may contain monomials, like
xy here, that do not appear in the derivatives of the initial variables and could
appear unnecessary at first glance.

Example 6. Interestingly, the PODE

d

dt

⎡

⎣
a
b
c

⎤

⎦ =

⎡

⎣
b2 + a2b2c2

c2 + a2b2c2

a2 + a2b2c2

⎤

⎦

where each derivative is composed of the square of the next variable in addition
to a long monomial formed with the square of all possible variables is among the
ones needing the most variables. For this example, the optimal set found by our
algorithm described in the sequel is:

{a, b, c, a2, b2, c2, abc, ab2, ac2, a2b, a2c, bc2, b2c, ab2c2, a2bc2, a2b2c},

that is 16 variables.

Although we have not been able to prove it, the previous example suggests
that a quadratic transformation may effectively need an exponential number of
variables. We thus formulate the following conjecture:

Conjecture 1. The quadratization of PIVPs of the form:

dxi

dt
= x2

i+1 +
∏

x2
j , xi(t = 0) = 1,

with i ∈ (1, . . . , n) and where xn+1 denotes x1, requires an exponential number
of variables in n.

2.3 Quadratic Transformation Problems

The quadratic transformation problem (QTP) is the optimization problem of
determining the minimum number of variables necessary to define an equivalent
quadratic PIVP:

On the Complexity of Quadratization for Polynomial Differential Equations 127

Instance: A PIVP on n variables X = {xi}0≤i≤n−1 with a distinguished output
variable x0.

Output: the minimum number k of functions fj(X) such that {x0, fj(X)}
defines an algebraically equivalent quadratic PIVP.

The associated decision problem (QTDP) is:

Instance: A PIVP on variables X = {xi}, a distinguished variable x0 and an
integer k

Output: existence or not of k functions fj(X) such that {x0, fj(X)}1≤j≤k

defines an algebraically equivalent quadratic PIVP.

It is worth noting that the computational complexity of a decision problem
may change drastically, for instance from NP to NEXP, according to the succinct
or not representation of the input [10]. The representation of the input PIVP
given above by a list of symbolic functions is a succinct representation. A non-
succinct representation of the input PIVP is given by the matrix of monomial
coefficients K : Rn×R

m where n is the dimension of the PIVP and m ≤ (d+1)n

the number of possible monomes to consider (Proposition 1).
Let us denote by nsQTP and nsQTDP the non-succinct variants of the QTP

and QTDP problems.

Proposition 2. nsQTDP ∈ NP. QTDP ∈ NEXP.

Proof. By Proposition 1, the size of a witness for a quadratic PIVP is less than
the non-succinct representation of the input PIVP by the full matrix of possible
monomials. Given such a witness quadratic PIVP one can check in polynomial
time that it defines a quadratic PIVP algebraically equivalent to the original
PIVP. For that, we just have to compute the derivatives of all the new variables
expressed as functions of the old ones; then to express still with the old variables,
all the monomials of degree 2 that may be formed with the new variables (an
operation that is clearly quadratic in the number of variables); and finally to
rewrite all the new derivatives with monomials or quadratics of the new vari-
ables. As each derivative contains only a linear number of monomials, we have a
quadratic algorithm to check the validity of a witness, hence we have nsQTDP
∈ NP.

Now, in the succinct representation of the input PIVP by lists of monomials,
the size of the witness is bound by an exponential in the size of the input PIVP,
hence we simply get QTDP ∈ NEXP.

In the following (Theorem 2), we show that nsQTDP is actually NP-complete,
and thus nsQTP NP-hard, and we conjecture that QTDP is NEXP-complete by
extending our conjecture 1 above to hard instances.

3 MAX-SAT Encoding

The maximum satisfiability problem (MAX-SAT) is a generalization of the
Boolean satisfiability problem SAT, where some soft clauses, that can be either

128 M. Hemery et al.

true or false in a solution, are added to a traditional (hard) SAT problem, and
where the optimization problem of maximizing the number of soft clauses satis-
fied is considered.

Algorithm 1 can be reformulated in MAX-SAT form, by expressing the con-
straints of QTP with Boolean clauses which lead to Algorithm2.

Algorithm 2. Encoding of QTP in MAX-SAT.
1. For each monomial m in the set M considered in Sec. 2.1 (i.e., all those correspond-

ing to variables v of step 1 of Alg. 1), introduce a Boolean variable xm representing
its presence in the reduced system.

2. For each of those monomials, compute its derivative m′ (same as step 2of Alg. 1)
3. For each monomial appearing in any m′, compute all the ways to represent it as

the product of 0 (constant case), 1 or 2 of the monomials of M .
4. Now add to the MAX-SAT model one hard clause imposing that the output variable

is present (i.e., true).
5. Add to the MAX-SAT model one soft clause with the negation of each other

variable. The maximization will therefore try to make as few variables present as
possible.

6. Add a hard clause for each variable imposing that if it is present, its derivative
can be represented (with degree at most 2) in the system. This is done with an
implication: if the variable is true, then take (the CNF representation of) the
conjunction of all the monomials in its derivative, and for each the disjunction of
one of its possible representation computed in step 3 should be true (i.e., present
in the system).

An example of what happens in step 3 is as follows: assume you get the
monomial ab2 in the derivative of the monomial m. There are three different
ways to represent it: as a single variable xab2 , or as a product xaxb2 or xabxb.
Hence in step 6 we will get the CNF representation of xm ⇒ (xab2 ∨ (xa ∧xb2)∨
(xab ∧ xb)) ∨ . . . More generally, we have

Proposition 3. The number of variables in our MAX-SAT model is |M |, and
the number of clauses, because of the DNF-to-CNF conversion is bounded by
O(|M | + 2d), where d is the highest product of the degrees of any monomial of
m′.

Proof. Indeed there are less than d = 1
2

∏
1≤i≤n(di + 1) ways to represent, as

a product (independent of the order) of one or two variables, the monomial∏
xdi
i . This leads, in step 3, to a Boolean representation as a big disjunction

of d conjunctions of two variables, which once converted to CNF amounts to at
worst 2d clauses.

4 NP-Hardness

In this section and Appendix 8 we prove the NP-completeness of nsQTDP,
through a reduction of the Vertex Set Covering Problem (VSCP) [7], i.e. the

On the Complexity of Quadratization for Polynomial Differential Equations 129

problem of determining the minimum number of vertices that touch every edges
of a graph.

We give in Appendix 7 a similar, yet simpler, reduction to show the NP-
hardness of the Max-Horn-SAT problem (while Horn-SAT and Min-Horn-SAT
are in P). It may be useful to the reader to read this proof to help understand
the logic of the reduction before getting into the more complicated details of
the differential equation setting. In essence both reductions work by translating
the choice between the two ends of an edge in a graph in a choice in the other
problem. Let us take an edge and its two vertices that we will call Vi and Vj . For
the Horn-SAT problem, we introduce a clause of the form ¬vi ∨¬vj that ensures
that one of the two variables is set to false in a satisfied instance; setting a vari-
able to false thus indicates that the corresponding vertex is in the covering. For
the quadratic reduction problem, we introduce a monomial of degree 3 (ViVjZ)
in the derivative of an auxiliary variable. To perform a quadratic transforma-
tion, we then have to “split” this monomial as the product of two variables:
ViZ × Vj or Vi × VjZ. The variables of the form ViZ appearing in the reduction
will correspond to the vertex Vi in the covering of the graph.

Another way to see the connection between these reductions lies in the paral-
lel between Horn-SAT as a model of theorem prover (if B and C are true then A
is true) and the Quadratic Transformation as a model of computation (if variable
B and C are computed monomials then A can be).

4.1 Encoding of the Vertex Set Covering Problem

Given a graph G = (V,E), a vertex cover is a subset of vertices, S ⊂ V , so that
every edge has at least one endpoint in S:

∀e = (i, j) ∈ E, (i ∈ S) ∨ (j ∈ S). (7)

The VSCP is the optimization problem of finding the smallest vertex cover
in a given graph:

Instance: Graph G = (V,E)
Output: Smallest number k such that G has a vertex cover of size k.

The associated decision problem is to determine the existence of a vertex cover
of size at most k.

It is well-known that the vertex set covering decision problem is NP-complete.
Here, we prove the same for the non-succinct quadratic transformation problem
for PIVPs (nsQTDP). The general idea is, starting from a graph G, to construct
a PIVP where only the first derivatives contains monomials of degree higher
than 2, in such a way that the set of variables of the output is simply linked
with the elements of the optimal cover S of G.

130 M. Hemery et al.

Starting from a graph G = ({V1, . . . , Vn}, E), we construct PIVP3(G) with
n + 2 variables, defined by:

dV0

dt
=

∑

(Vi,Vj)∈E

ViVjVn+1 + V1, (8)

dVi

dt
=

n+1∑

j=1

ai,jViVj + Vi+1 ∀i ∈ [1, n], (9)

dVn+1

dt
=

n+1∑

j=1

an+1,jVn+1Vj , (10)

ai,j = i(n + 2) + j (11)

and an initial condition of the form: Vi(t = 0) = i
i+1 .

It is worth noting that the ai,j ’s (and the initial conditions) are chosen here
just to be different in each derivative (and variables), this ensures that no polyno-
mial may be used to quadraticly transformed this PIVP. It is interesting to note
that the initial condition are not essential for the proof and that the quadratic
transformation is as hard for PODE as it is for PIVP.

This encoding shows with a proof given in Appendix 8 that

Theorem 2. The nsQTDP (resp. nsQTP) is NP-complete (resp. NP-hard).

In the succinct representation of the input PIVP by a list of symbolic func-
tions, if Conjecture 1 is true, we get that the witness may have an exponential
size in the size of the succinct representation of the input PIVP, which leads us
to:

Conjecture 2. The QTDP is NEXP-complete. QTP is NEXP-hard.

4.2 Minimizing the Number of Monomials

It is legitimate to ask if minimizing the number of monomials (i.e. reactions in
the ECRN framework) is as hard as minimizing the number of variables (i.e.
species). Actually, the proof given above still works for this variant of QTP:

Theorem 3. Given a PIVP P with variables vi, determining a set of variables
v′
j defines through functions fj of the vi: v′

j = fj({vi}) such that the PIVP P ′

thus defined is quadratic, encodes the same function as P and has less than k
monomials is an NP-complete problem.

The proof is given in Appendix 8.4.
Now, as shown in the following section, though of same theoretical complexity

as minimizing the number of species, minimizing the number of reactions seems
a bit easier in practice with the MAX-SAT algorithm.

On the Complexity of Quadratization for Polynomial Differential Equations 131

5 Practical Complexity

5.1 Benchmark of CRN Design Problems

The quadratization problem naturally arises in the synthetic biology perspective
for the problem of designing an ECRN to implement a given high-level function
presented by a PIVP. We propose here such a benchmark of synthesis problems
for sigmoid functions and particularly Hill functions of various order, and other
functions of interest to understand the practical complexity of QTP.

For this article, we were particularly interested in the time taken to find
the optimal solution of the quadratic transformation and as such report the
performance for the resolution of this precise problem. We therefore provide in
Table 1 both the total execution time going from the PIVP to the ECRN (Total
time) and the time taken by the MAX-SAT solver that solves the quadratic

Table 1. Benchmark of quadratization problems given with computation times in ms
for the tranformation to MAX-SAT and for MAX-SAT solving (Algorithm2, the min-
imum number of variables compared to the number of variables found by Algorithm 1,
and the minimum number of monomials (i.e. elementary reactions).

CRN name Algorithm2

total time ms

MAX-

SAT time

ms

Minimum/Algorithm 1

nb. variables

Min reactions

MAX-SAT

time ms

Min reactions

nb. reactions

circular 2,3 80.35 0.2 5/14 0.2 6

circular 2,4 120.4 0.6 6/23 0.6 8

circular 2,5 869.5 7.2 6/34 6.6 8

circular 2,6 54450 754.5 7/47 945.1 10

hard3 1576 7.3 14/34 7.3 28

hard4 28730 369.3 16/43 297.5 31

hill2 77.74 0.1 3/5 0.1 3

hill2x 90.86 0.1 5/11 0.2 7

hill3 78.06 0.1 4/8 0.1 4

hill3x 103.5 0.2 6/17 0.3 9

hill4 85.18 0.1 5/11 0.1 5

hill4x 152.2 0.7 7/23 0.7 11

hill5 84.7 0.2 5/14 0.2 5

hill5x 543.8 5.2 7/29 3.8 11

hill6 103.4 0.3 6/17 0.3 6

hill6x 3934 60.2 8/35 37.3 13

hill7 112.1 0.5 6/20 0.4 6

hill7x 35130 1016 8/41 338.7 13

hill8 151.1 1.3 7/23 1.0 7

hill10 580.7 10.2 7/29 6.8 7

hill15 92850 6486 8/44 2908 8

monom 2 102.5 0.2 6/7 0.3 14

monom 3 567.0 1.0 16/25 1.9 73

selkov 87.68 0.1 4/4 0.2 12

132 M. Hemery et al.

transformation problem while minimizing the number of species (SAT-Sp time).
We also give in the table the number of variables introduced in Algorithm1.
along with the optimal number of variables found by our algorithm (Optimal
var.). We finally mention the time taken to minimize the number of reactions
(SAT-Reac time) and the resulting number of reactions (Optimal reac.). All
computation times are given in milliseconds and were obtained on a personal
laptop (Lenovo W530, Intel Core i7-3720QM CPU, 2.60 GHz x 8).

Our protocol to gather these results is as follow. We first time the whole
process of compiling the PIVP through the “compile from PIVP” command of
Biocham, thus giving the Total time. During the process we keep the temporary
file that were given to the SAT solver and does a second execution of the SAT
solver alone with a verbose output, gathering the information given by the output
to determine the SAT time (doing this twice for both SAT-Sp and SAT-Reac).
Hence, the total time contains the time it takes to construct and write the cnf
file while the MAX-SAT time only measure the resolution of the formulae by
the max sat solver. The time taken to convert the resulting PIVP to the ECRN
language is essentially negligible.

In Table 1, we use the following nomenclature:
“circular(n, k)” denotes a circular PODE with n variables of degree k:

dXi

dt
= Xk

i+1,
dXn

dt
= Xk

1 . (12)

it can be check that introducing all monomials of a single variable (x, x2, . . .) is
sufficient.

“hardk” models are designed to be especially demanding in terms of mono-
mials, the input is:

dA

dt
= Ck + A2B2Ck−1,

dB

dt
= A2,

dC

dt
= B2, (13)

so that while they ask for relatively few variables and are described with a
handful of monomials they actually need most of the variables of the proof
making them interesting to understand the effective structure of the QTP. The
construction is based on the one of circular(n, k) adding a second monomial to
the first derivative in order to make mandatory the usage of variables using
several of the old variables.

“monomn” is one of the most promising model regarding the NEXP com-
plexity as it rely on n variables and a long monomial of size n so that the input
is of size n2. But we suspect it to ask of the order of 2n variables, the input is:

dXi

dt
= X2

(i+1) +
n∏

j=1

X2
j . (14)

(for clarity we do not add the modulo in the equation but Xn+1 is the same as
X1.) We were not able to reduce “long monom 4” despite the reduction being
very quick on the n = 3 case.

On the Complexity of Quadratization for Polynomial Differential Equations 133

“hilln” is the Hill function of order n through the 3 variables PIVP:

dH

dt
= nI2Tn−1,

dI

dt
= −nI2Tn−1,

dT

dt
= 1. (15)

so that H is the desired hill function, I is complementary to the hill function (I+
H = 1) and T is an explicit time variable T = t. The “x” after the model indicate
that the PODE has been modified to take the desired point of computation as
an input, hence the initial concenctration of the X species is now the input of
the computation:

dH

dt
= nI2Tn−1X,

dI

dt
= −nI2Tn−1X,

dT

dt
= X,

dX

dt
= −X. (16)

Table 2. Minimal number of variables and optimal solutions found by Algorithm 2 on
our benchmark of QTP instances (Table 1 and 2).

Model name Optimal solution with a minimum number of variables

circular 2,3 {x, y, xy, x2, y2}
circular 2,4 {x, y, x2y, xy2, x3, y3}
circular 2,5 {x, y, x3y, xy3, x4, y4}
circular 2,6 {x, y, x4y, x3y2, xy4, x5, y5}
hard3 {a, b, c, ac, a2, b2, a2b, ab2, ab2c, b2c, c3, ac3, b2c3, ab2c3}
hard4 {a, b, c, a2, b2, ab2, a2b, b2c, c3, ac3, bc3, a2c2, b2c2, c4, bc4, ab2c3}
hill2 {i, it, h}
hill2x {i, h, x, ix, itx}
hill3 {i, h, it, it2}
hill3x {i, h, x, ix, itx, it2x}
hill4 {i, h, t, it2, it3}
hill4x {i, h, x, ix, tx, itx, it3x}
hill5 {i, h, t, t3, it4}
hill5x {i, h, x, ix, tx, t3x, it4x}
hill6 {i, h, t, it2, it4, it5}
hill6x {h, x, ix, tx, it2x, it3, it3x, it5x}
hill7 {i, h, t, t3, it4, it6}
hill7x {i, h, x, ix, tx, t3x, it6x, it2x}
hill8 {i, h, t, t2, t5, it6, it7}
hill10 {i, h, t, t3, t7, it8, it9}
hill15 {i, h, t, t2, t5, it11, it13, it14}
monom 2 {a, b, a2, b2, a2b, ab2}
monom 3 {a, b, c, a2, b2, c2, abc, ab2, ac2, a2b, a2c, bc2, b2c, ab2c2, a2bc2, a2b2c}
selkov {x, y, xy, x2}

134 M. Hemery et al.

Selkov is a common model of Hopf bifurcation:

dX

dt
= −X + aY + X2Y,

dY

dt
= b − aY − X2Y, (17)

where a and b are tunable parameters

5.2 BioModels Repository

The BioModels database [3] is a repository of models of natural biological pro-
cesses. Among the 653 models from the curated branch of BioModels, only 232
are reaction models with mass action law kinetics thus leading to polynomial
ODEs, among which only 12 are of degrees strictly higher than 2. This is not
surprising because the reaction models in BioModels are mechanistic models
naturally described by elementary CRNs.

The non elementary CRN with mass actions law kinetics of BioModels are
models number: 123, 152, 153, 163, 281, 407, 483, 530, 580, 630, 635, 636. Cur-
rently, our MAX-SAT algorithm fails to solve the QTP optimization problem
on those instances in less than one hour computation time. The encoding in
MAX-SAT is itself very long because of exponential size complexity in those
cases.

To take an example, the model label 123 contains 13 species but only 4
of them participate in monomials of degree greater than 2, namely degree 4.
Manually restricting the quadratic transformation to this set still gives us a
search space of 65 possible variables, a bit larger than what is currently handled
by our algorithm. Pruning further to select a smaller subset of the ODE that
contains two variables and only one of the two problematic monomials, gives us
a model that is easily solved in a few seconds. However, that solution does not
solve optimally the complete model.

6 Conclusion

The problem of CRN design for implementing a given computable real function
presented as the solution of a PIVP has been solved on the theoretical side by
the proof of Turing-completeness for finite continuous CRNs [5]. Nevertheless to
make that approach practical, good algorithms are needed to eliminate degrees
greater than 2 in the PIVP. Though it is well known in dynamical system theory
that there is no loss of generality to consider polynomial ordinary differential
equations with degrees at most 2, that quadratization problem has apparently
not been studied from a computational point of view.

We have shown the NP-hardness of the quadratization optimization problem
in the non succinct representation of the input PIVP by a matrix of monomi-
als, when we want to minimize either the number of species, or the number of
reactions. In the succinct symbolic representation of the input PIVP by list of
monomials, we conjecture that the problem becomes NEXP-hard. A proof would
need to show that the hard instances coming of the vertex set covering problem

On the Complexity of Quadratization for Polynomial Differential Equations 135

used in the proof of NP-completeness, may have optimal solutions of exponential
size in the succinct representation.

Nevertheless, we have shown that an algorithm based an encoding in MAX-
SAT is able to solve interesting CRN design problems in this approach. A par-
ticularly interesting example is the automated synthesis of an abstract CRN of
11 reactions over 7 molecular species to implement the Hill function of order
5 which can be compared to the 10 reactions over 12 species of the concrete
MAPK signalling CRN implementing a similar input/output function [9].

Acknowledgements. This work was jointly supported by ANR-MOST BIOPSY Bio-
chemical Programming System grant ANR-16-CE18-0029 and ANR-DFG SYMBIONT
Symbolic Methods for Biological Networks grant ANR-17-CE40-0036.

7 Appendix: NP-hardness of MAX-Horn-SAT

A Horn clause is a disjunction of literals with at most one positive literal. Horn-
SAT is the problem of deciding the satiafiability of a conjunction of Horn clauses.
Such a problem can be easily solved by unit-clause propagation, as follows

1. Ignore the clauses that contain both a variable and its negation
2. Set all variables to false
3. Initialize the score of each clause to its number of negative literals
4. For each unsatisfied clause with 0 score

(a) If it has no positive literal return Unsatisfiable
(b) Otherwise set the positive literal x to true
(c) Decrement the score of the other clauses having x as negative literal

5. Return Satisfiable

This algorithm clearly shows that Horn-SAT is in P. In addition, this algorithm
obviously minimizes the number of variables set to true. Perhaps surprisingly
however:

Proposition 4. Deciding the satisfiability of a Horn-SAT instance while asking
that at least k variables are set to true is NP-complete and MAX-Horn-SAT is
NP-hard.

Proof. This can be easily shown by reduction of the Vertex Set Covering Prob-
lem. Given a graph G with n vertices, we introduce one variable vi for each
vertex, and one clause ¬vi ∨ ¬vj for each edge (vi, vj). A variable set to false
indicates that the corresponding vertex is in the covering.

Now, there is a vertex set covering with k vertices if and only if there is a
valuation with n − k variables set to true satisfying the Horn-SAT instance.

This concludes the proof of NP-completeness and MAX-Horn-SAT is thus
NP-hard.

In essence, the proof of NP-hardness of the non-succinct quadratic trans-
formation follows the same vein but is quite obfuscated by the details of this
problem.

136 M. Hemery et al.

8 Appendix: Proof of NP-completeness of nsQTDP

In this appendix we prove the NP-completeness of nsQTDP (Theorem 2). We will
construct this proof step by step. In a first time we will describe and study the
encoding of the VSCP as a quadratic reduction, then we will prove that choosing
an optimal set of variables among the ones introduced by the Algorithm Eq. 1
is an NP-hard problem. Then we will explain why allowing other types of new
variables in the output (polynomial or algebraic function) still preserved the
NP-hardness of the problem.

By abuse of notation, we use the same names for the vertices of G and the
variables of the PIVP. (Except, of course, for V0 and Vn+1 that do not exist
in the initial graph.) However, to distinguish between the monomials of the
various PIVP and the variable of the output of the algorithm, these variables
will be indicated with an upper bar like: ViVj while monomials will not. We will
moreover say that a variable is computed while monomial will be designated as
reachable given a certain set of variables.

Let us now investigate the structure of the constructed PIVP.

Lemma 1. Supposing that {V0, . . . , Vn+1} are already computed, then the
derivative of ViVj is quadratic for the set of variables {V0, . . . , Vn+1, ViVj}.
Proof. Denoting X = ViVj , we have:

dX

dt
=

dVi

dt
Vj + Vi

dVj

dt
(18)

=
∑

m

(ai,m + aj,m)ViVjVm + Vi+1Vj + ViVj+1 (19)

=
∑

m

(ai,m + aj,m)XVm + Vi+1Vj + ViVj+1 (20)

where one of the two last term may be missing if i or j is n+1. This is quadratic
with respect to the aforementioned set.

Hence, if all the initial variables are present, we can add or remove variables
of degree two, knowing that there derivatives will always be quadratic. In effect,
this allows us to focus on the monomials in the derivative of V0 as the only
monomials that will need new variables to be reachable.

This property does not hold for variable of degree 3 (and all higher degree).
Indeed, in that case, the last monomials are of degree 3 (and higher) and so
need a way to be computed either by introducing them entirely as new variables
or relying on breaking them between variables of lesser degree that may not be
already computed. The derivative of the variable of degree 3 ViVjVk present for
example the non-quadratic monomials: Vi+1VjVk, ViVj+1Vk, ViVjVk+1.

This is also false for polynomial variables because the derivative all have dif-
ferent rates ai,j that ensure that a polynomial do not appear in its own derivative
as a monomial does. Thus computing a polynomial variable may ask us to com-
pute still other variables.

On the Complexity of Quadratization for Polynomial Differential Equations 137

This property is essential for our proof as it allows us to make a direct
connexion between vertex covering and quadratic reduction, namely that given
a cover S = S1, . . . , Sk of G, the set of functions:

{V0, . . . , Vn+1, S1Vn+1, . . . , SkVn+1} (21)

have n + 2 + k elements and defines a quadratic transformation of PIV P3(G).
It is indeed obvious that the derivative of V0 is quadratic using the fact that

every edge in E has at least one endpoint in S and so each triplet may be
rewritten with two of the new variables. Checking that the other variables also
have quadratic derivatives is easy given Lemma 1.

To prove that our transformation is valid however, we need the opposite! We
want to check that an optimal transformation of PIVP3(G) effectively allows
us to find an optimal vertex covering of G. And essentialy, we will do this by
showing that optimal reduction are of the form of the set Eq. 21 thus making a
direct connexion between optimal covering and quadratic reduction.

Essentialy, the remainder of the proof will be to demonstrate the following
lemma:

Lemma 2. For a given graph G, optimal reductions of PIV P3(G) may be
rewritten in the form of Eq. 21 and thus define an optimal vertex cover of G.

8.1 Restriction of Variables to Monomials Functions

As explained above, we first prove that finding an optimal set of variables among
the monomials described in the paper of Carothers (see Algorithm 1) is an NP-
hard problem. This give us the soften version of Lemma 2:

Lemma 3. Given a graph G, the smallest subset of variables considered in Algo-
rithm 1 that forms a quadratic transformation of PIV P3(G) gives an optimal
vertex cover of G.

Proof. As expressed above, we want to show that optimal reductions are of the
form of Eq. 21, or at least may be easily reshape to be so.

By definition, we need to introduce the first variable V0, the derivative of
which present the term V1, thus asking us to compute it too. Then in turn, it
asks us to compute V2 and so on until all the variables of degree one are present.

Let us take an optimal quadratic transformation, then the different monomi-
als in the derivative of V0 are reachable. This means that if we have a monomial
like ViVjVn+1, at least one of the four following variables is present: ViVn+1,
VjVn+1, ViVj or ViVjVn+1. If we are in the third or fourth case, we can remove
this variable and replace it by ViVn+1. (As all variables of degree one are present,
we know that this new variable preserves the quadraticity of the solution and is
thus still optimal.) Moreover, by the structure of PIV P3(G) variables like these
appear only once in the derivative of V0, thus this transformation still allows us
to compute the desired function.

As we then have all variables of degree one and that all the other variables
are of degree two, we know that the PIVP is quadratic by Lemma 1, moreover we

138 M. Hemery et al.

cannot have increase the number of variables and are thus still optimal. Finally,
we have construct a set like Eq. 21 and have thus defined an optimal covering S
of G with the optimal transformation of PIVP3(G).

To generalize the previous proof to any set of monomials, we note that by
construction, the set of Sect. 2.1 overspan the set of variables that may be used
to define a quadratic transformation. In particular due to the construction of
PIV P3, it contains all monomials of degree one and two that can be formed
with the variables of the input PIVP, and all the monomials that appears in the
derivatives of PIV P3.

Hence, a monomial that is not present in the mathematical proof can only
increase the number of monomials that need to be reached as it appears nowhere
and will need to be computed itself. It thus cannot be present in an optimal set.

8.2 Restriction of Variables to Polynomials Functions

Lemma 4. No polynomial variable is present in an optimal quadratic transfor-
mation of PIV P3.

Proof. The idea is still the same. We want to prove that we need to introduce all
the variables of degree one and once this is done, that using only the variables
that correspond to the vertex cover is preferable. But it is now more tricky as
the ending singulets of the derivative may be added to a polynomial to “save a
variable”.

For the same reason as before, V0 needs to be computed. To investigate why
the other variables Vi are also needed is more complex.

Suppose we wish to avoid computing the variable Vk so that we add it in an
existing polynomial (eventually composed of a single monomial) hence forming
the variable M = P + Vk, where P is some polynomial. Let us look at its
derivative: dM

dt = dP
dt + dVk

dt
As noted above, and due to the presence of the parasitic terms ai,j , M do not

appear in its own derivative. Thus, a transformation like the one of Lemma 1 is
out of hope. Moreover, the derivative of Vk present a term in V 2

k . To compute
it we can either add Vk to our set of variable which is what we try to avoid,
either add V 2

k (or a polynomial incorporating it). But you can check that the
derivatives of such a variable present a term in V 3

k . So either we abdicate and
include the variable of degree one, either you add a polynomial of degree 3, but
this polynomial will ask us a new one of degree 4, etc. To avoid an infinite set
of variables we have to compute Vk, and this is true for all k. Thus all variables
of the initial PIVP need to be present.

Now, for each monomials in the derivatives of the first variable, we have
2 choices on the way it is computed. Either a single variable is introduced to
deal with it and this has already been treated in the previous case. Either all
or part of it is computed as part of a polynomial. To prove that this cannot
be done in an optimal transformation we need to show that doing so imply to
compute additional undesired variables. And once again we can convince ourself
by inspecting such derivatives, for example:

On the Complexity of Quadratization for Polynomial Differential Equations 139

d

dt
(P + ViVj) =

dP

dt
+

dViVj

dt
(22)

=
dP

dt
+

∑

m

(ai,m + aj,m)ViVjVm + . . . (23)

cannot be quadratic if the variable ViVj is not computed, which we try to
avoid or another more complex polynomial specificaly tailored for this purpose.
Thus, trying to hide a part of a monomial in a polynomial to save a variable
always ask at least two variables and cannot be part of an optimal transforma-
tion.

8.3 Quadratic Transformation Without Restriction

Finally, we notice that for a function to be in the output, it have to be polynomial
as it will actually be used to rewrite polynomial functions. Hence, putting the
previous results together we get:

Proposition 5. A graph G with n vertices has a vertex set cover of size k if
and only if PIVP3(G) has a quadratic transformation to a PIVP of dimension
n + k + 2.

which with Proposition 2 concludes the proof of Theorem2.

8.4 Proof of NP-Hardness for Reactions minimization

Theorem 3

Proof. The core of the proof is similar, using the same reduction from VSCP.
Starting from a graph G with n vertices and � edges, we construct PIV P3(G).

As in the previous case, we still have to introduce all the variables of the
form Vi giving us a fixed number of monomials upon which no optimization is
possible. Let us note F (n, �) = n2 + 3n + � + 2 this number.

Then, introducing a variable like ViVj imposes n+3 monomials if i, j
= n+1
and n+2 if i, j = n+1. As we have seen in the previous proof, the optimal cover
set may be expressed using only variables like Vi and ViVn+1, and will thus ask
for k = F (n, �) + ks(n + 2) where ks is the number of vertices in the optimal
covering of G. The main difference with the proof for variables is that we do not
have to check variables of the form ViVj as they ask one more monomial than
the one with j = n + 1 and are thus never optimal.

References

1. Bournez, O., Campagnolo, M.L., Graça, D.S., Hainry, E.: Polynomial differential
equations compute all real computable functions on computable compact intervals.
J. Complex. 23(3), 317–335 (2007)

140 M. Hemery et al.

2. Carothers, D.C., Parker, G.E., Sochacki, J.S., Warne, P.G.: Some properties
of solutions to polynomial systems of differential equations. Electron. J. Diff.
Eqn.2005(40), 1–17 (2005)

3. Chelliah, V., Laibe, C., Novère, N.: Biomodels database: a repository of mathe-
matical models of biological processes. In: Schneider, M.V., (ed.) In Silico Systems
Biology. Methods in Molecular Biology, vol. 1021, pp. 189–199. Humana Press
(2013)

4. Cook, M., Soloveichik, D., Winfree, E., Bruck, J.: Programmability of chemical
reaction networks. In: Condon, A., Harel, D., Kok, J., Salomaa, A., Winfree, E.
(eds.) Algorithmic Bioprocesses. NCS, pp. 543–584. Springer, Berlin, Heidelberg
(2009). https://doi.org/10.1007/978-3-540-88869-7 27

5. Fages, F., Le Guludec, G., Bournez, O., Pouly, A.: Strong turing completeness
of continuous chemical reaction networks and compilation of mixed analog-digital
programs. In: Feret, J., Koeppl, H. (eds.) CMSB 2017. LNCS, vol. 10545, pp. 108–
127. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-67471-1 7

6. Fages, F., Soliman, S.: Abstract interpretation and types for systems biology.
Theor. Comput. Sci. 403(1), 52–70 (2008)

7. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory
of NP-Completeness. Freeman, New York (1979)

8. Graça, D.S., Costa, J.F.: Analog computers and recursive functions over the reals.
J. Complex. 19(5), 644–664 (2003)

9. Huang, C.-Y., Ferrell, J.E.: Ultrasensitivity in the mitogen-activated protein kinase
cascade. PNAS 93(19), 10078–10083 (1996)

10. Papadimitriou, C.H., Yannakakis, M.: A note on succinct representations of graphs.
Inf. Control 71(3), 181–185 (1986)

11. Segel, L.A.: Modeling Dynamic Phenomena in Molecular and Cellular Biology.
Cambridge University Press, New York (1984)

https://doi.org/10.1007/978-3-540-88869-7_27
https://doi.org/10.1007/978-3-319-67471-1_7

Comparing Probabilistic and Logic
Programming Approaches to Predict

the Effects of Enzymes
in a Neurodegenerative Disease Model

Sophie Le Bars1,2, Jérémie Bourdon1,2(B), and Carito Guziolowski1,3(B)

1 LS2N, UMR 6004, Nantes, France
2 Université de Nantes, Nantes, France
Jeremie.Bourdon@univ-nantes.fr

3 Ecole Centrale de Nantes, Nantes, France
Carito.Guziolowski@ec-nantes.fr

Abstract. The impact of a given treatment over a disease can be mod-
eled by measuring the action of genes on enzymes, and the effect of per-
turbing these last over the optimal biomass production of an associated
metabolic network. Following this idea, the relationship between genes
and enzymes can be established using signaling and regulatory networks.
These networks can be modeled using several mathematical paradigms,
such as Boolean or Bayesian networks, among others.

In this study we focus on two approaches related to the cited
paradigms: a logical (discrete) Iggy, and a probabilistic (quantitative)
one Probregnet.

Our objective was to compare the computational predictions of the
enzymes in these models upon a model perturbation. We used data
from two previously published works that focused on the HIF-signaling
pathway, known to regulate cellular processes in hypoxia and angiogen-
esis, and to play a role in neurodegenerative diseases, in particular on
Alzheimer Disease (AD). The first study used Microarray gene expres-
sion datasets from the Hippocampus of 10 AD patients and 13 healthy
ones, the perturbation and thus the prediction was done in silico. The
second one, used RNA-seq data from human umbilical vein endothe-
lial cells over-expressing adenovirally HIF1A proteins, here the enzyme
was experimentally perturbed and the prediction was done in silico too.
Our results on the Microarray dataset were that Iggy and Probregnet
showed very similar (73.3% of agreement) computational enzymes pre-
dictions upon the same perturbation. On the second dataset, we obtained
different enzyme predictions (66.6% of agreement) using both modeling
approaches; however Iggy’s predictions followed experimentally measured
results on enzyme expression.

Keywords: Probabilistic modeling · Logical modeling ·
Neurodegenerative disease · Signaling and regulatory networks

c© Springer Nature Switzerland AG 2020
A. Abate et al. (Eds.): CMSB 2020, LNBI 12314, pp. 141–156, 2020.
https://doi.org/10.1007/978-3-030-60327-4_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-60327-4_8&domain=pdf
https://doi.org/10.1007/978-3-030-60327-4_8

142 S. Le Bars et al.

1 Introduction

A disease or a treatment has a huge impact on the studied organism that can
be observed on the signaling and regulatory network and then on the metabolic
network. These networks are typically studied separately to understand the effect
of a perturbation and the mechanisms behind. The obvious link between the
regulatory and metabolic networks are enzymes [12]. The regulatory network
drives enzyme production which will control the biochemical reactions inside
the metabolic network. Regulatory networks have been studied for a long time
by using different modeling paradigms including Boolean, Neural or Bayesian
networks (see [4,13] for a review). At the same time, Constraint based methods,
such as Flux Balance Analysis (FBA), have been developed to study metabolic
networks.

An integration of these two types of networks may allow a more realistic
modeling of the mechanisms triggered during a perturbation. A first approach
proposed in this context was rFBA [20]. At each time interval, a consistent reg-
ulatory state with metabolic equilibrium state was calculated. Then, FBA was
used to find a steady state flow distribution for the current time interval. A new
metabolic state lead to a new state of regulation and the process was repeated
until it did not evolve anymore. This detailed approach needs an organism easily
cultivable (E. coli for example). Another approach, SR-FBA [21], expresses the
regulatory network in Boolean equations and then translates it into linear equa-
tions, added as constraints in the FBA. This approach needs a huge amount of
preliminary work to translate all the equations and a well known organism such
as E. coli. More recent approaches, adaptable to less known organisms, exist
such as PROM [15] and FlexFlux [14]. PROM uses probabilities to represent
the state of genes that will be used as constraints in FBA but requires hundreds
of Microarray data experiments. FlexFlux obtains, for each component of the
regulatory network, an equilibrium state constraint defined by an upper and
lower bound. These constraints are added to the FBA model. Flexflux needs an
SBML-qual model to extract these equations, such a precise representation is
not always available for some species.

In this paper we aim to compare a recent tool Probregnet [2] and Iggy [1]. Pro-
bregnet uses a Bayesian network model, on which belief propagation techniques
are applied to reason over it. Iggy uses a sign-consistency approach, expressed
as a logic program in Answer Set Programming [18]. Both tools use prior regu-
latory knowledge and are able to make computational predictions upon system
perturbation using few gene expression datasets. The nature of both approaches,
one quantitative, the other discrete, makes it interesting for us to compare them
in the context of enzyme prediction.

The results of this comparison were obtained on the HIF signaling pathway,
known to be of major importance in neurodegenerative diseases [6]. We applied
both tools on a Microarray dataset on Alzheimer’s disease and an RNA-Seq
dataset on human umbilical vein endothelial cells. We built models upon two
regulatory networks of around 80 nodes and 250 edges.

Probabilistic vs. Logic Programming Approaches in Enzyme Predictions 143

We conclude that Iggy is better suited than Probregnet to compute enzyme
predictions (0.038s vs 25s)1. Besides, Iggy and Probregnet showed very sim-
ilar (73.3% of agreement) computational enzymes predictions upon the same
perturbation for Microarray data. On the second dataset, we obtained differ-
ent enzyme predictions (66.6% of agreement) using both modeling approaches;
however Iggy’s predictions followed experimentally measured results on enzyme
expression.

2 Methods

2.1 Data Sets Used to Conduct Our Comparison

Our study is based on two different datasets. The first one is a Microarray gene
expression dataset published in [5] and the second one is an RNA-seq dataset
published in [8].

The Microarray data were measured in the Hippocampus brain region of 10
Alzeihmers’s patients and 13 healthy patients. The Hippocampus is known to
be differentially vulnerable to the histopathological and metabolic features of
Alzheimer’s disease (AD). An Affymetrix Human Genome Array was used and
allowed to collect the expression for 20545 genes.

The RNA-seq data were measured on human umbilical vein endothelial cells
(HUVECs) exposed to constitutively active HIF1A over-expression. This data
was collected for 3 control cells (with normal expression of HIF1A) and 3 cells
with induced over-expression of HIF1A in the form of two types of RNA-seq
datasets, one absolute and the other differential. The absolute RNA-seq datasets,
consisting of 25691 RNA, were normalized using the edgeR R package [16,17].
These normalized RNA-seq data were used to generate the in silico predictions
with Probregnet (see Sect. 2.2). The differential RNA-seq datasets were com-
posed of 1854 genes significantly differentially expressed upon HIF1A induction.
The genes having a significant differential expression were selected using a cutoff
of 1.5, applied on their logarithmic expression. A cutoff of 0.01 was used on the
false discovery rate (FDR). This differential RNA-seq dataset was used to gener-
ate the in silico predictions with Iggy. All the RNA-Seq datasets were extracted
from the GEO database2.

2.2 Regulatory Networks of the HIF-signaling Pathway

In [6] it has been shown that the HIF-signaling pathway is of major importance
in neurodegenerative disease, with a key role of the HIF1A protein. In [2] the
authors built a gene regulatory network for Alzheimer Disease (AD), focused
on the HIF-signaling pathway. We used a signaling and gene regulatory network

1 All computations were performed on a standard laptop machine. Ubuntu 18.04, 64
bits, intel core i7-9850H CPU 2.60 GHz, 32 GB.

2 https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE98060.

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE98060

144 S. Le Bars et al.

built upon the same pathway; for this purpose we use the same methods as pro-
posed in the Probregnet [2] pipeline. These steps are explained in the following
paragraphs. The retrieved networks were afterward modeled and analyzed with
Probregnet and Iggy using two different datasets (see Sect. 2.1).

At first, the HIF-pathway was extracted from the KEGG database thanks
to the graphite R package3. This R package allows to provide networks derived
from different databases based on the pathway topology. In this network, all
the metabolites nodes have been removed and the edges are propagated through
them, and are labeled as indirect processes. The nodes represent either pro-
tein or genes. The edges represent multiple biological processes: ubiquitination,
phosphorylation, binding, inhibition, activation, expression.

Afterward, we reduced this graph by keeping only the nodes of the network
associated with genes present in the gene expression datasets. Since we had
two datasets we will retrieve in these step two reduced networks. The first one
was based on the Microarray data in [5] extracted from the Hippocampus brain
region of healthy and Alzheimer’s disease (AD) patients. The genes which were
kept were those present in either healthy or AD datasets. In the second network,
obtained using the RNA-seq dataset of HUVECS [8], the genes kept were those
that were present in either control or HIF1A induced cells.

Finally, both regulatory networks were converted into a directed acyclic graph
(DAG) by using the pcalg R package4 that allows to extend a partially directed
acyclic graph into a DAG using the algorithm by Dor and Tarsi (1992) [10]. In
this algorithm, the DAG will have the same set of vee-structures as the partially
directed acyclic graph; where a vee-structure is formed by two edges, directed
towards a common head, while their tails are non-adjacent. After this process,
the edges in the DAG are not labeled (or signed) anymore. Since Iggy, contrary
to Probregnet, needs a signed graph, we took into account the edges that were
previously labeled as inhibition in the KEGG database, and the other edges were
all labeled as activation. The final regulatory network consists of 86 nodes and
253 edges for the Microarray data and 81 nodes and 233 edges for the RNA-seq
data. Both are a reduction of the HIF-signaling pathway adapted to the data.

2.3 The Probregnet Pipeline

The Probregnet5 pipeline [2] is a complex and global framework that allows to
integrate a gene regulatory model (based on graph interactions) into a metabolic
network (based on biochemical reactions) using a constraint-based model.

For this paper, we focus on the regulatory network analysis proposed by
Probregnet. This analysis is based on Bayesian networks (BN) also called prob-
abilistic directed acyclic models [3]; which allows a representation of conditional
dependencies between random variables. Probregnet uses a regulatory network of

3 https://www.bioconductor.org/packages/release/bioc/vignettes/graphite/inst/
doc/graphite.pdf.

4 https://cran.r-project.org/web/packages/pcalg/pcalg.pdf.
5 https://github.com/hyu-ub/prob reg net.

https://www.bioconductor.org/packages/release/bioc/vignettes/graphite/inst/doc/graphite.pdf
https://www.bioconductor.org/packages/release/bioc/vignettes/graphite/inst/doc/graphite.pdf
https://cran.r-project.org/web/packages/pcalg/pcalg.pdf
https://github.com/hyu-ub/prob_reg_net

Probabilistic vs. Logic Programming Approaches in Enzyme Predictions 145

the HIF-signaling pathway converted into a DAG (see Sect. 2.2) in which nodes
are genes and edges, interactions between these genes (not signed or labeled).
The BayesnetBP R package [11] is used to parametrize the graph with the gene
expression data [5] by associating a node with its expression value. In a BN,
the value of a child node depends on its parent nodes in the graph. Then, belief
propagation is used to establish the repercussion of the perturbation of a given
node in the graph over the other nodes. In [2] the perturbed node was HIF1A.
The repercussion of the perturbation was monitored thanks to a ratio of the
node expression in the perturbed model compared to the node expression in
the model without perturbation. They focused on 15 enzymes, present in the
network, known to regulate biochemical reactions in the brain.

In our study, we still focus on these 15 enzymes and compute the ratio (or
fold-change) of the enzymes’ expression in a perturbed model compared to the
enzymes’ expression in a model without perturbation. For this, we used different
BNs parametrized for the two different datasets presented in Sect. 2.1.

Bayesian Networks for Our Case-Studies. Recall that the BN is built using
the DAG extracted in Sect. 2.2 parametrized to a specific dataset. Using these
DAGs, we obtained from our two datasets (AD and HUVECs) the following
BNs:

1. Microarray dataset of the Hippocampus brain region
(a) BN parametrized using the Microarray data of the 10 AD patients
(b) Control BN parametrized using the Microarray data of the 13 healthy

individuals
2. Rna-seq dataset of HUVECs

(a) BN parametrized using the RNA-seq data of the 3 adenovirally over-
expressed HIF1A cells

(b) BN parametrized using the RNA-seq data of the 3 HUVECs with normal
HIF1A expression

For BN (2a) and BN (2b), the number of cells was not enough for Probregnet
in order to parametrize the BN. Therefore, for each of the two conditions (normal
and adenovirally over-expressed HIF1A), we completed the 3 HUVECs datasets
with 10 artificially generated datasets (by adding an artificial noise in the data
of 1%).

Enzymes in silico Predictions. For the Microarray dataset of the Hippocam-
pus brain region we computed the fold-change of the 15 enzymes for different
types of in silico perturbations of the model. Equation 1 describes the expression
ratio measured for each enzyme e.

ye =
x
ADp
e

xC
e

(1)

where ye refers to the fold-change (FC) expression of enzyme e; xADp
e , to the

expression of enzyme e obtained after simulation of the AD BN (1a) upon per-
turbation p. This perturbation p was done in three ways: HIF1A over-expressed

146 S. Le Bars et al.

(set to 13 expression level), under-expressed (set to 8 expression level), and
HIF1A unaltered (9.65 expression level). For HIF1A unaltered, enzyme expres-
sion is the average expression of the enzyme in the dataset for AD patients. xC

e

refers to the expression of enzyme e in the control BN (1b) without perturbation,
that is, the average expression of the enzyme in the dataset for healthy patients.

For the RNA-Seq dataset on HUVECs we still focus on the enzyme and only
one in silico perturbation. Equation 2 describes the fold-change computed for
each enzyme e.

ze =
x
Op
e

xH
e

(2)

where ze refers to the FC expression of enzyme e, xOp
e corresponds to the

expression of enzyme e obtained after simulation of the HUVECs over-expressed
BN (2a) upon perturbation p. This perturbation p represents an over-expression
of HIF1A (set to 17 expression level, when HIF1A average expression across
over-expressed samples is 14.5). xH

e refers to the expression of enzyme e in the
BN (2b) without perturbation, that is, the average expression of the enzyme in
unaltered cells.

2.4 Iggy

Iggy [1] is a framework, based on Answer Set Programming [18], to test the
consistency between a directed and signed graph G and a set of experimental
observations µ. G represents a regulatory network, with edges labeled as activa-
tion (“+”) or inhibition (“-”). µ defines an initial partial labeling of the nodes
in G. It is composed of discrete (“+”, over-expressed; “-”, under-expressed; 0,
no-change) changes associated to some nodes; which represent, for example, the
differential expression of a gene between two system conditions. G is consistent
with respect to µ if the logic given by its structure agrees with the signs in µ.
This agreement follows specific constraints over the signs of the edges and the
nodes, which need to be verified in all the graphs. The purpose of this verification
is to find at least one consistent global labeling, which is obtained by assigning
“+”, “-”, or “0” values to all the initially non-observed nodes in the graph, or to
decide that this global labeling assignment is not possible. The constraints used
by Iggy are:

1. The observations in µ must keep their initial labeling.
2. Each node, labeled respectively as + or −, must be justified by at least one

predecessor activating it labeled as + or −, or by one predecessor inhibiting
it labeled as − or + respectively.

3. Each node, labeled as 0 must have only one predecessor labeled as 0 or a
couple of + and − labeled predecessors.

Iggy automatically detects inconsistencies between G and µ, applies minimal
repairs to restore consistency, and predicts the sign of non-observed nodes in G.

Probabilistic vs. Logic Programming Approaches in Enzyme Predictions 147

Generating Discrete Observations from Datasets to Use Iggy. For the
Microarray dataset, we denote as ȳg the ratio (or fold-change) of the average
expression of gene g of AD patients against the average expression of gene g in
healthy individuals. To obtain the associated sign for each gene g in the dataset,
we discretized ȳg, using the thresholds over the distribution of the expression of
the 20545 genes in the dataset as shown in Eq. 3.

sign(ȳg) =

⎧
⎨

⎩

+ if ȳg > Q3

− if ȳg < Q1

0 if 0.99 ≤ ȳg ≤ 1.01
(3)

where Q3 and Q1 refer to the third and first quartiles of the fold-change gene
expression data distribution. From this discretization analysis, the input obser-
vations data for Iggy was composed of 16 “+”, 24 “-”, and 16 “0-changed”
nodes. This set, denoted as µ1, did not include any of the 15 enzymes that
will be computationally predicted. Besides, the sign of 3 other nodes (EP300,
CREBBP, ARNT in Fig. 2), which are direct predecessors of the enzymes, is set
to “0-change” in µ1 so that we can see only the impact of HIF1A on the enzymes.

To simulate a perturbation in Iggy, there is no change in the regulatory
network structure, however the set of observations µ1 changed slightly:

S+ = µ1 + (sign(ȳH) = +)
S− = µ1 + (sign(ȳH) = −)
S0 = µ1 + (sign(ȳH) = 0)

(4)

where ȳH refers to the expression level of HIF1A. We built then three sets of
observations, denoted as Sp, where p refers to the type of sign imposed to the
HIF1A node to simulate an over-, or under-expression of HIF1A, as well as a
non-change effect of this protein.

For RNA-Seq data, we used the logFC between HIF1A over-expressed and
normally expressed already present in the gene differentially expressed data from
RNA-Seq analysis (see Sect. 2.1). We denote this logFC for each gene g as z̄g. To
transform the quantitative value of z̄g in signs we used the same logic as before
but with thresholds better adapted to this dataset (Eq. 5).

sign(z̄g) =

⎧
⎨

⎩

+ if z̄g > 1.5
− if z̄g < −1.5
0 if − 0.15 ≤ z̄g ≤ 0.15

(5)

From this new discretization analysis, the input observations data for Iggy was
composed of 5 “+”, 2 “-”, and 19 “0-changed” nodes. This set, denoted as µ2,
did not include any of the 12 enzymes that will be computationally predicted
and the 3 nodes (EP300, CREBBP, ARNT in Fig. 2) that are direct predecessors
of the enzymes are still set to “0-change”. Only 12 enzymes were kept and not
the 15 initially as three of them (HK3, ENO3 and PDHA2) were not considered
to be expressed in the study (count-per-million,counts scaled by total number

148 S. Le Bars et al.

of reads was under 10) [19]. From µ2 we built two sets of observations, R+ and
R0, where the sign imposed to HIF1A, z̄H , was either “+” (over-expressed) or
0 (unaltered), as described by Eq. 6.

R+ = µ2 + (sign(z̄H) = +)
R0 = µ2 + (sign(z̄H) = 0) (6)

where z̄H refers to the expression level of HIF1A. As for the case of Probregnet,
we focused on the Iggy’s in silico prediction of the 12 enzymes upon HIF1A
perturbations in the system. We recall in Fig. 1 the different steps described in
this Section for Iggy and Probregnet. All scripts and data used in this article are
available in: https://gitlab.univ-nantes.fr/E19D080G/comparing iggy prob.git

Convert HIF-signaling path-
way into DAG

- DAG is signed
- Observations are made with
differential dataset
- HIF1A perturbed is added
by modifying this set of obser-
vation

- DAG is converted into BN
- BP is done with HIF1A per-
turbation

Enzymes behavior is predicted
with a sign

- Enzymes new expression is
predicted
- FC is computed and con-
verted into a sign

Comparison of enzymes
prediction with both tool

Fig. 1. Diagram representing the different steps in order to compare the two
approaches. The steps for both are in blue, those specific to Iggy are on the left in
red and those specific to Probregnet are on the right in green. DAG stand for directed
acyclic graph, BN for Bayesian network and BP for belief propagation (Color figure
online).

3 Results

We focused on the in silico computational predictions from both approaches
on enzymes involved in biochemical reactions of brain metabolism upon HIF1A
stimulation. We illustrate our results in two case studies. The first, uses Microar-
ray gene expression data from the Hippocampus brain region of Alzheimer’s Dis-
ease (AD) patients and healthy individuals. The second, uses RNA-Seq data of 6
Human umbilical vein endothelial cells (HUVECs) over-expressing adenovirally
HIF1A protein or expressing normally HIF1A.

https://gitlab.univ-nantes.fr/E19D080G/comparing_iggy_prob.git

Probabilistic vs. Logic Programming Approaches in Enzyme Predictions 149

3.1 HIF1A Impact on HIF-signaling Pathway for Alzheimer’s
Disease Patients

The Microarray data used for this case-study is presented in Sect. 2.1. The net-
work, corresponds to the HIF signaling pathway (see Sect. 2.2). Both data, gene
expression datasets and network, were transformed (see Sects. 2.2, 2.3 and 2.4)
in order to be used for the comparison of Iggy and Probregnet.

HIF Signaling Pathway. We chose the HIF signaling pathway and focused
on the HIF1A protein, which is a potential therapeutic target for neurodegen-
erative disease [7]. The HIF network, obtained in [2], was extracted from the
KEGG database and then reduced (see Sect. 2.2). The resulting graph from this
network (86 nodes, 253 edges) was built from the experimental data. The nodes
represented genes and proteins, while the edges represented signaling and gene
regulatory interactions. In Fig. 2 we show a subgraph of this HIF graph, focusing
on the genes of the network that are directly connected to the enzymes.

Evolution of Enzyme Production According to HIF1A Fluctuation
with the Bayesian Approach. We present here the results obtained with the
Probregnet pipeline (see Sect. 2.3 and Table 1). We compared three particular
(perturbed) states with respect to an unaltered state of the system, and com-
puted the predictions of the fold-change of the enzymes level for each comparison
(see Eq. 1).

Table 1. The three compared model states. The name of this comparison, used in the
rest of this Section, appears in the first column.

Name Description

HIF1A - AD model with HIF1A under-expressed (HIF1A expression
set to 8) against healthy model without perturbation (HIF1A
normal expression)

HIF1A 0 AD model without perturbation (HIF1A normal expression)
against healthy model without perturbation (HIF1A normal
expression)

HIF1A + AD model with HIF1A over-expressed (HIF1A expression set
to 13) against healthy model without perturbation (HIF1A
normal expression)

150 S. Le Bars et al.

Fig. 2. Subgraph regulatory network of HIF-pathway. Only the enzymes and
their predecessors are represented in this schema. The enzymes are represented as
orange diamonds, the predecessors genes as blue circles, and the perturbed node,
HIF1A, as a yellow circle. The edges represent either activation in green or inhibi-
tion in red (Color figure online).

As we can see in Fig. 3, the predicted fold-change of 9 out of 15 enzymes
increases across the three comparative states of the system ordered as: HIF1A -,
HIF1A 0, HIF1A +.

Evolution of Enzyme Production According to HIF1A Fluctuation
with the Logical Approach. Here we used Iggy with the same regulatory
network as Probregnet with 3 sets of observations (see Eq. 4) that correspond
to the genes variations in each of the three perturbed states (see Table 1). Our
results (see Table 2), focus on the sign prediction of the 15 enzymes. The sign
represents the over-expression (“+”, green), under-expression (“-”, red), and the
no-variation (0, blue) of the level of the enzymes upon each comparative case
detailed in Table 1. All but three of the enzymes are over-expressed when HIF1A
is over-expressed. The three enzymes that are evolving with a contradictory sign
are the ones inhibited by PDK1 (see Fig. 2), this goes in agreement with the
sub-graph topology.

Comparison of the Enzymes Computational Predictions Using Iggy
and Probregnet. Recall that Iggy predicted discrete signs of the nodes in
the graph whereas Probregnet, quantitative values. Thus, for each enzyme, we
compared Iggy’s predicted sign against the derivative sign of the mathemati-
cal curve represented in the plots of Fig. 4. If the sign of the derivative is the
same as the tendencies observed for Iggy in the 3 comparisons, then the name
of the enzyme will appear in green, else, in red. 11 enzymes will evolve in the
same way with the two approaches except for HK1, PFKL, ENO2 and PDHA2.
Probregnet fold-change expression of 3 out of 4 of these enzymes will remain

Probabilistic vs. Logic Programming Approaches in Enzyme Predictions 151

Fig. 3. Probregnet computational predictions using three perturbed states
of the HIF model. Evolution of the fold-change of the 15 enzymes across the per-
turbed system states detailed in Table 1. In the X-axis we show the 3 perturbed states
of the system, in the Y-axis, the value of the predicted fold-change.

Table 2. Iggy’s sign prediction of the 15 enzymes after perturbing HIF1A.

HIF1A - HIF1A 0 HIF1A +

PDHA1 = + PDHA1 = 0 PDHA1 = -

PDHA2 = + PDHA2 = 0 PDHA2 = -

PDHB = + PDHB = 0 PDHB = -

LDHA = - LDHA = 0 LDHA = +

GAPDH = - GAPDH = 0 GAPDH = +

HK1 = - HK1 = 0 HK1 = +

HK2 = - HK2 = 0 HK2 = +

HK3 = - HK3 = 0 HK3 = +

ENO1 = - ENO1 = 0 ENO1 = +

ENO2 = - ENO2 = 0 ENO2 = +

ENO3 = - ENO3 = 0 ENO3 = +

PGK1 = - PGK1 = 0 PGK1 = +

SLC2A1 = - SLC2A1 = 0 SLC2A1 = +

PFKL = - PFKL = 0 PFKL = +

ALDOA = - ALDOA = 0 ALDOA = +

unaltered (difference in fold-change expression of less than 0.1) across the three
comparative cases. Besides, the probabilistic approach does not take the inhibit-
ing effect of PDK1 on the three PDH enzymes into account as it adds a manual
correction by multiplying the fold-change of these three enzymes by the inverse
of the fold-change predicted for PDK1 in [2]. The only one that is significantly
decreasing and opposite to Iggy’s prediction is HK1.

152 S. Le Bars et al.

Fig. 4. Probregnet fold-change evolution (Y-axis) for each of the 15 enzymes
compared to Iggy’s predicted sign. Three comparative cases are studied corre-
sponding to HIFA1 -, HIF1A 0, and HIF1A +, as detailed in Table 1 (X-axis). The 11
enzymes in green are evolving in the same way as the predicted sign of Iggy, while the
4 red ones are evolving in a different way (Color figure online).

3.2 in vitro Over-Expression of HIF1A in HUVECS (Human
Umbilical Vein Endothelial Cells)

The induced over-expression of HIF1A adenovirally allows us to do a compari-
son between Iggy and Probregnet with another dataset, for which experimental
perturbation results are available.

Regulatory Network from HIF Signaling Pathway. As explained in
Sect. 2.2, we converted the HIF signaling pathway into a regulatory network
adapted to the RNA-Seq data. We obtained a new regulatory network of 81
nodes and 233 edges. Its structure is strongly similar to the precedent one and
the enzymes neighbourhood is the same as Fig. 2. The main difference is that
there are new regulators of HIF1A in this regulatory network (7 nodes are pre-
decessors of HIF1A and not only 4 as shown in Fig. 2).

Comparison Between Real Experimental Data and Iggy’s and Pro-
bregnet Computational Predictions. We used the absolute normalized
RNA-Seq dataset for Probregnet; while the differentially one for Iggy (see
Sect. 2.1). The studied condition was the comparison between the enzymes
expression in a model with HIF1A protein induction with respect to a model
without HIF1A induction. Once the graph was made and data transformed we
were able to apply Probregnet and Iggy on these data. Our results are shown in
Fig. 5. We exclude for this study the enzymes HK3, ENO3 and PDHA2 because

Probabilistic vs. Logic Programming Approaches in Enzyme Predictions 153

their expression level was too low in HUVECs cells. Therefore, we will study the
expression of only 12 enzymes.

For Probregnet predictions (blue bars in Fig. 5), we used the normalized
dataset (Sect. 2.1) and computed the fold-change for each enzyme (see Eq. 2).
For Iggy predictions, we generated a new set of observations (see Eq. 6) and
computed the predictions for each enzyme. Recall that the 12 enzymes sign was
not contained in the observation dataset. In Fig. 5, we present only the Iggy
predictions using the observation dataset R+ (see Sect. 2.4). We obtained 10
“+” predictions and 2 “-” predictions in the PDHA1 and PDHB enzymes. The
observation dataset R0, generates “0” predictions (unchanged behaviors) for all
of the 12 enzymes.

For the experimental observations (pink bars in Fig. 5), we used the normal-
ized dataset and computed the fold-change of each enzyme as the average enzyme
expression across HIF1A induced cells against the average enzyme expression
across normal cells.

In Fig. 5 we can see that the enzyme levels evolve in the same way for Iggy
and the real experimental data but slightly differently with Probregnet (8 of 12
have the same tendency). In addition, we compared all the signs predictions for
all the nodes present in the graph (81) and Iggy predicted 65% in the same way
as the real data, while Probregnet only 43.75%.

Fig. 5. Comparison between Probregnet, biological observation and Iggy. The FC of
each enzyme computed with Probregnet is represented by blue bars, while the FC
of biological observation by pink bars. If the Probregnet prediction or the biological
observation of the enzyme agrees with Iggy’s prediction sign, that is FC > 1 agrees
with “+” and FC < 1 agrees with “-”, the enzyme name is colored in green, else, in
red (Color figure online).

4 Discussion

In this study, we are comparing two different modeling approaches, Iggy
and Probregnet, on two datasets. These approaches perform enzyme in silico

154 S. Le Bars et al.

predictions, upon network stimulation. Both require a prior regulatory network:
directed acyclic graph for Probregnet, and directed and signed graph for Iggy;
and few experimental samples: 2 samples in two different conditions for Iggy and
at least 10 samples in one condition for Probregnet to parametrize the BN. These
methods are intrinsically different in the way their predictions are obtained. Iggy,
models network structure and experimental dataset as facts in a logic program
that when executed decides if these information is consistent, performs repairs to
the data, and when consistent, deduces coloring models (solutions) that explain
the qualitative signs (or shifts-of-expression) in some nodes of the graph, given a
graph topology and an initial set of observations describing a shift of equilibrium
(two conditions comparison). Whereas, Probregnet is a two step process : (i) it
learns the Bayesian network parameters from a graph topology and multiple
experimental datasets, (ii) it computes a belief propagation to predict the quan-
titative outcome of a system perturbation. We chose these methods since we
want to investigate the benefit of a discrete and logical approach, such as Iggy,
on the context of gene regulatory and metabolic network integration.

We used as case-study the HIF-signaling pathway. Our results on the Microar-
ray dataset were that Iggy and Probregnet showed very similar (73.3% of agree-
ment) computational enzymes predictions upon the same perturbation. On the
second dataset, we obtained different enzyme predictions (only 66.6% of agree-
ment) using both modeling approaches; however Iggy’s predictions followed
experimentally measured results on enzyme expression. Moreover, concerning
other network species, Iggy was more in agreement with experimental observa-
tions (65%) than Probregnet (≈44%). The lack of a sufficient number (>10) of
gene expression profiles (or datasets) in the case of the HUVECs data may have
impacted the wrong prediction of Probregnet. As in the first case study, some
of the wrong predictions were concerning inhibited enzymes.

Both approaches have their advantages and inconveniences. Probregnet, does
not need a relative (or differential) dataset under another condition. It needs,
however, a small network (tens of components). Iggy handles large-scale net-
works and it has proven its efficiency on networks with more than a thousand
of nodes [9]. Interestingly, the integration process between network and datasets
is different for both approaches. Probregnet performs a linear regression of the
datasets, and requires a previous order (acyclic condition) of the network edges;
while Iggy does not impose this acyclic condition, but will raise places (data-
points) in the dataset where the observation does not agree with the network
structure and proposes automatic repairs. In this context, Iggy performs less
pre-treatment on the network structure. Furthermore, the nature of the com-
putational predictions of both approaches is different. Iggy predicts a discrete
tendency (sign) for the unobserved nodes and not a precise quantitative mea-
sure as given by Probregnet. However, Iggy is able to take into account different
natures of biological interactions such as complex-formations (modeled with a
Boolean and gate), activations, or inhibitions. Regarding the computation-time,
a test was made for this case-study with a network of more than 4000 edges and
1000 nodes where Iggy’s analysis finished in 0.47 s, while Probregnet, after 2 h.

Probabilistic vs. Logic Programming Approaches in Enzyme Predictions 155

This lower computation-time allows Iggy to run several benchmarks of in silico
perturbations.

As a continuation of this work we plan to propose a way to integrate Iggy’s
predictions as constraints in the metabolic reaction equations. The small compu-
tational time of Iggy to propose enzyme predictions upon system perturbations
encourages us to evolve our system. This new version will study the impact,
on the metabolic behavior, of several treatments proposed and in this way will
establish a feed-back of metabolic network biomass prediction on regulatory net-
works. This feedback is currently absent in Probregnet.

References

1. Thiele, S., Cerone, L., Saez-Rodriguez, J., Siegel, A., Guzio�lowski, C., Klamt, S.:
Extended notions of sign consistency to relate experimental data to signaling and
regulatory network topologies. BMC Bioinform. 16, 345 (2015). https://doi.org/
10.1186/s12859-015-0733-7

2. Yu, H., Blair, R.H.: Integration of probabilistic regulatory networks into constraint-
based models of metabolism with applications to Alzheimer’s disease. BMC Bioin-
form. 20, 386 (2019)

3. Cowell, R.G.: Local propagation in conditional Gaussian Bayesian networks. J.
Mach. Learn. Res. 6, 1517–1550 (2005)

4. Yaghoobi, H., Haghipour, S., Hamzeiy, H., Asadi-Khiavi, M.: A review of modeling
techniques for genetic regulatory networks. J. Med. Signals Sens. 2(1), 61–70 (2012)

5. Liang, W.S., Dunckley, T., Beach, T.G., et al.: Gene expression profiles in anatom-
ically and functionally distinct regions of the normal aged human brain. Physiol.
Genomics 28(3), 311–322 (2007)

6. Zhang, Z., Yan, J., Chang, Y., ShiDu Yan, S., Shi, H.: Hypoxia Inducible Factor-1
as a Target for Neurodegenerative Diseases. Curr. Med. Chem. 18(28), 4335–4343
(2011)

7. Ogunshola, O., Antoniou, X.: Contribution of hypoxia to Alzheimer’s disease: is
HIF-1 α a mediator of neurodegeneration? Cell Mol. Life Sci. 66(22), 3555–63
(2009)

8. Downes, N., Laham-Karam, N., Kaikkonen, M., Ylä-Herttuala, S.: Differential but
complementary HIF1α and HIF2α transcriptional regulation. Mol. Ther. J. Am.
Soci. Gene Ther. 26(7), 1735–1745 (2018)

9. Folschette, M., Legagneux, V., Poret, A., Chebouba, L., Guziolowski, C., Théret,
N.: A pipeline to create predictive functional networks: application to the tumor
progression of hepatocellular carcinoma. BMC Bioinform. 21, 18 (2020)

10. Dor, D., Tarsi, M.: A simple algorithm to construct a consistent extension of a
partially orientedgraph. Technicial report R-185, Cognitive Systems Laboratory,
UCLA (1992)

11. Yu, H., Moharil, J., Blair, R.H.: BayesNetBP: an R package for probabilistic rea-
soning in Bayesian networks. In editing

12. Hao, T., Wu, D., Zhao, L., Wang, Q., Wang, E., Sun, J.: The genome-scale inte-
grated networks in microorganisms. Front. Microbiol. 9, 296 (2018). https://doi.
org/10.3389/fmicb.2018.00296

13. Angione, C.: Human systems biology and metabolic modelling: a review-from dis-
ease metabolism to precision medicine. BioMed. Res. Int. 2019, Article ID 8304260
(2019). https://doi.org/10.1155/2019/8304260

https://doi.org/10.1186/s12859-015-0733-7
https://doi.org/10.1186/s12859-015-0733-7
https://doi.org/10.3389/fmicb.2018.00296
https://doi.org/10.3389/fmicb.2018.00296
https://doi.org/10.1155/2019/8304260

156 S. Le Bars et al.

14. Marmiesse, L., Peyraud, R., Cottret, L.: FlexFlux: combining metabolic flux and
regulatory network analyses. BMC Syst. Biol. 9, 93 (2015). https://doi.org/10.
1186/s12918-015-0238-z

15. Chandrasekaran, S., Price, N.D., : Probabilistic integrative modeling of genome-
scale metabolic and regulatory networks in Escherichia coli and Mycobacterium
tuberculosis. Proc. Natl. Acad. Sci. USA 107(41), 17845–1750 (2010). https://doi.
org/10.1073/pnas.1005139107

16. Robinson, M.D., McCarthy, D.J., Smyth, G.K.: edgeR: a bioconductor package
for differential expression analysis of digital gene expression data. Bioinformatics
26(1), 139–140 (2010). https://doi.org/10.1093/bioinformatics/btp616

17. McCarthy, D.J., Chen, Y., Smyth, G.K.: Differential expression analysis of mul-
tifactor RNA-Seq experiments with respect to biological variation. Nucleic Acids
Res. 40(10), 4288–4297 (2012). https://doi.org/10.1093/nar/gks042

18. Lifschitz, V.: What is answer set programming? In: Third AAAI Conference on
Artificial Intelligence (2008)

19. Chen, Y, Lun, A.T.L., Smyth, G.K.: From reads to genes to pathways: differen-
tial expression analysis of RNA-Seq experiments using Rsubread and the edgeR
quasi-likelihood pipeline. F1000Research 5, 1438 (2016). http://f1000research.
com/articles/5-1438

20. Covert, M.W., Schilling, C.H., Palsson, B.: Regulation of gene expression in flux
balance models of metabolism. J. Theor. Biol. 213(1), 73–88 (2001)

21. Shlomi, T., Eisenberg, Y., Sharan, R., Ruppin, E.: A genome-scale computational
study of the interplay between transcriptional regulation and metabolism. Mol.
Syst. Biol. 3, 101 (2007)

https://doi.org/10.1186/s12918-015-0238-z
https://doi.org/10.1186/s12918-015-0238-z
https://doi.org/10.1073/pnas.1005139107
https://doi.org/10.1073/pnas.1005139107
https://doi.org/10.1093/bioinformatics/btp616
https://doi.org/10.1093/nar/gks042
http://f1000research.com/articles/5-1438
http://f1000research.com/articles/5-1438

Boolean Networks

Control Strategy Identification via Trap
Spaces in Boolean Networks

Laura Cifuentes Fontanals1,2(B), Elisa Tonello1, and Heike Siebert1

1 Freie Universität Berlin, Berlin, Germany
l.cifuentes@fu-berlin.de

2 Max Planck Institute for Molecular Genetics, Berlin, Germany

Abstract. The control of biological systems presents interesting appli-
cations such as cell reprogramming or drug target identification. A com-
mon type of control strategy consists in a set of interventions that, by
fixing the values of some variables, force the system to evolve to a desired
state. This work presents a new approach for finding control strategies
in biological systems modeled by Boolean networks. In this context, we
explore the properties of trap spaces, subspaces of the state space which
the dynamics cannot leave. Trap spaces for biological networks can often
be efficiently computed, and provide useful approximations of attraction
basins. Our approach provides control strategies for a target phenotype
that are based on interventions that allow the control to be eventu-
ally released. Moreover, our method can incorporate information about
the attractors to find new control strategies that would escape usual
percolation-based methods. We show the applicability of our approach
to two cell fate decision models.

Keywords: Boolean network · Control strategy · Trap space ·
Phenotype

1 Introduction

The control of biological systems presents interesting applications such as cell
fate reprogramming, drug target identification for disease treatments or stem
cells programming [5,17]. Controlling a cell fate decision network could for
instance allow, in the case of cancer cells, to lead the system to an apoptotic state
and, therefore, evolve towards the elimination of pathological cells [1]. Finding
adequate candidates for control is a complex problem, in particular since the
experimental testing of all the possibilities is not feasible. Mathematical model-
ing can help address this problem by enabling in silico identification of possible
effective candidates.

Electronic supplementary material The online version of this chapter (https://
doi.org/10.1007/978-3-030-60327-4 9) contains supplementary material, which is avail-
able to authorized users.

c© Springer Nature Switzerland AG 2020
A. Abate et al. (Eds.): CMSB 2020, LNBI 12314, pp. 159–175, 2020.
https://doi.org/10.1007/978-3-030-60327-4_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-60327-4_9&domain=pdf
https://doi.org/10.1007/978-3-030-60327-4_9
https://doi.org/10.1007/978-3-030-60327-4_9
https://doi.org/10.1007/978-3-030-60327-4_9

160 L. Cifuentes Fontanals et al.

Modeling of biological processes is often challenged by the lack of information
about kinetic parameters or specific reaction mechanisms. The Boolean formal-
ism aims at capturing the qualitative behavior of systems via a coarse represen-
tation of the relationship between the species of interest. Mechanisms underlying
activation and inhibition processes are summarized in logical functions, allowing
for two activity levels for each variable. The two values can represent for exam-
ple if a gene is expressed or not, or if the concentration of a protein is above or
below a certain threshold. Boolean modeling has in many instances been shown
to capture the fundamental behaviors and dynamics of biological systems and
has been widely used to make predictions or design strategies for therapeutic
interventions [3,6,7].

Control of biological systems is a broad field that encompasses a variety of
approaches and goals. Attractor control aims at leading the system to a desired
attractor, starting from a particular initial state (source-target control) [14] or
from all possible initial states (full-network control) [20]. However, it is often
useful to induce a desired phenotype rather than a specific attractor. Phenotypes
are usually defined in terms of some biomarkers i.e., observable and measurable
components that represent the main characteristics of biological processes. The
approach that focuses control on a set of relevant variables is also known as
target control [16,18]. In this work, we are interested in full-network control for
a target phenotype.

There are different approaches for system interventions, that is, the way the
control is applied to biological systems. In the context of Boolean modeling, we
consider as interventions the perturbations or modifications that fix the value
of some components (node control) [14,20]. In the example of a gene regulatory
network, fixing a variable to a certain value can be understood as the knockout
or permanent activation of a gene. Among other approaches to Boolean network
control is edge control, which targets the interactions between variables [2,15].
For a gene regulatory network, edge control can be interpreted for instance as
the modification of a protein to alter its interaction with a certain gene.

Control of dynamical systems has been a popular research field in systems
biology in the last years, also in the Boolean setting. Many approaches focus
on the structure and topology of the network, for example by looking at feed-
back loops [19] or stable motifs [20], and several studies discuss the complexity
and characteristics of such problems [9,13]. Other approaches include techniques
based on topological information to reduce the size of the search space [16] or
computational algebra methods [15]. Recent works have explored attractor con-
trol through the characterization of basins of attraction, that is, sets of states
from which only a certain attractor can be reached [14]. However, the identi-
fication of basins of attraction might require the exploration of the complete
state space. Attractor reachability can be investigated using trap spaces, which
are subspaces that trajectories cannot leave. By definition, every trap space con-
tains at least one attractor and, therefore, in some cases minimal trap spaces can
be good approximations for the attractors [11]. The identification of trap spaces

Control Strategy Identification via Trap Spaces in Boolean Networks 161

in biological systems can often be performed efficiently by exploiting properties
of the prime implicants [10].

Our approach aims to identify strategies for phenotype control by exploit-
ing properties of trap spaces. We introduce the concept of space of attraction,
a subspace that approximates the basin of attraction, to find control strategies
without the need of computing the whole basin. We extend this idea to define
spaces of attraction for trap spaces and relate them to control strategies, which
are defined as sets of constraints that fix the value of some variables and induce
a certain target phenotype. We exploit properties of trap spaces and computa-
tion techniques for target control to define a new method to compute control
strategies that do not require a permanent intervention and allow the control
to be eventually released. Our approach can incorporate information about the
attractors to obtain new control strategies that might escape percolation-based
target control techniques. The method presented here is widely applicable to
Boolean models of biological systems and can provide, under certain conditions,
control strategies that are independent of the type of update used in the model.

We start by giving a general overview about Boolean modeling (Sect. 2).
Then we introduce the concepts of control strategy and space of attraction in
this setting (Sect. 3), providing the theoretical bases for the computation of some
types of control strategies. In Sect. 4, we present a method to compute control
strategies based on the theoretical principles explained in Sect. 3 and imple-
mented using the prime implicants of the function. Lastly, in Sect. 5 we show the
applicability of our method to two cell fate decision networks [7,21].

2 Background: Boolean Networks and Dynamics

A Boolean network on n variables is defined as a function f : Bn → B
n, where

B = {0, 1}. V = {1, ..., n} is the set of variables of f , Bn is the state space of the
Boolean network and every x ∈ B

n is a state of the state space. For any x ∈ B
n

and I ⊆ V , x̄I is defined as x̄I
i = xi for i ∈ V \I and x̄I

i = 1 − xi for i ∈ I. If
I = {i}, x̄I is written as x̄i.

A dynamics on B
n or state transition graph is a directed graph with vertex

set Bn. There are several ways of associating a dynamics to a Boolean network f .
In the general asynchronous dynamics or general asynchronous state transition
graph GD(f) there exists an edge from a vertex x to a vertex y if and only
if there exists ∅ �= I ⊆ V such that x̄I = y and fi(x) = yi for every i ∈ I.
Note that the general asynchronous dynamics considers transitions which update
subsets of components simultaneously in a non-deterministic way. By choosing
different types of updates, other state transition graphs can be defined. The
asynchronous dynamics AD(f) is defined by considering the transitions updating
only one component at a time and the synchronous dynamics SD(f) considers
only the transitions where all the components that can be updated are updated
at once. Note that AD(f) and SD(f) are subgraphs of GD(f). To simplify the
notation, D(f) will denote any of these dynamics associated to f . The choice of
asynchronous and general asynchronous updates is motivated by the attempt to

162 L. Cifuentes Fontanals et al.

capture different, and sometimes unknown, time scales that might coexist in the
modeled system. An example of asynchronous dynamics of a Boolean network
is shown in Fig. 1.

A trap set T ⊆ B
n is a set such that for all x ∈ T , if y is a successor of x in

the dynamics, then y ∈ T . A minimal trap set under inclusion is an attractor.
An attractor can be a stable state (or fixed point), when it consists only of one
state, or a cyclic (or complex) attractor when it is larger. In biological systems,
stable states can be identified with different cell fates or cell types, and cyclic
attractors with cell cycles or specific cell processes. Given a Boolean function f
and an attractor A, the weak basin of attraction of A is defined as the set of
states x such that there exists a path from x to an element of A in D(f). The
strong basin of attraction of A is the set of states in the weak basin of A that do
not belong to the weak basin of attraction of any other attractor different from
A. Figure 1 shows the weak and strong basins for an attractor in an asynchronous
state transition graph.

The control interventions considered in this work consist in fixing the values
of some components. Formally, given a state c ∈ B

n and a subset of variables
I ⊆ V , we define the subspace induced by c and I as the set Σ(I, c) = {x ∈
B
n| ∀i ∈ I, xi = ci}. The variables in I are called fixed variables, while the other

variables are called free. We denote subspaces as states, using the symbol ∗ for
the free variables. For example, the subspace {x ∈ B

4|x1 = 1 and x3 = 0} is
denoted as 1 ∗ 0∗.

The identification of control variables requires examining the effect that fixing
certain variables has on the dynamics. Given a Boolean function f and a subspace
Θ = Σ(I, c), the restriction of the function f to the subspace Θ is defined as:

f�Θ
: Θ → Θ, where for all i ∈ V , (f�Θ

)i(x) =
{

fi(x), i /∈ I,
ci, i ∈ I.

Note that f�Θ
: Θ → Θ can be identified with a Boolean network g : Bm → B

m,
where m = n−|I|. Via this identification, we extend all the definitions that apply
to a Boolean network to such restrictions. For example, the state transition graph
corresponding to f�Θ

: Θ → Θ is defined as usual, only with vertex set Θ instead
of Bn (see Fig. 2). Moreover, if T is a trap set in D(f), then T ∩ Θ is a trap set
in D(f�Θ

).
A subspace that is also a trap set is called a trap space. While trap sets

and attractors might vary when considering different types of dynamics, trap
spaces are independent of the type of update. The Boolean function represented
in Fig. 1 has four trap spaces: 000, 111, 0 ∗ 0, ∗ ∗ ∗.

In this work we aim at using trap spaces to find control strategies for pheno-
types. Phenotypes are usually defined in terms of the state of some measurable
components called biomarkers, which are observable components that can be
used as indicators of different cell types or cell fates or to distinguish between
healthy and pathological conditions. Although the notion of phenotype is usu-
ally related to stability, we extend this concept to consider any possible state
in order to allow non-attractive states satisfying the phenotype characteristics

Control Strategy Identification via Trap Spaces in Boolean Networks 163

to become attractors in the controlled system. Thus, in this work, we define a
phenotype as a subspace.

3 Spaces of Attraction and Control Strategies

The strong basin of attraction of an attractor A can be naturally related to
control since, by definition, it contains all the states that have paths to A but
not to any other attractor. In contrast to methods requiring basin exploration,
we use subspace approximation of the basins combined with trap spaces com-
putation. To do so, we extend the notion of basin of attraction to trap sets. We
then exploit useful properties of trap spaces, e.g. independence of the update,
efficient identification and potential approximation of attractors, to develop a
new approach for the identification of control strategies.

110 111

100 101

010 011

000 001

Basins of attraction of A1:

• Strong(A1) = {000, 001, 010, 011, 101}
• Weak(A1) = {000, 001, 010, 011, 101, 100, 110}

Spaces of attraction of A1:

• Ω1 = 0∗∗, Ω2 = 00∗, Ω3 = 01∗, Ω4 = 0∗0, Ω5 = 0∗1,
Ω6 = ∗01, Ω7 = 000, Ω8 = 001, Ω9 = 010, Ω10 = 011,
Ω11 = 101, with Ωi � Strong(A1) for all 1 ≤ i ≤ 11.

Fig. 1. Asynchronous dynamics of the Boolean function f(x) = (x̄1x̄2x3 ∨ x1x2,
x1x̄2x̄3 ∨x1x2x3, x1x2 ∨x1x3 ∨x2x3), with attractors A1 = 000 and A2 = 111 and trap
spaces 000, 111, 0 ∗ 0, ∗ ∗ ∗. All the spaces of attraction of A1 are included in its strong
basin (in red) while the basin itself is not a space of attraction. (Color figure online)

3.1 Control Strategies

We now formalise the notion of control strategy. A control strategy is a subspace
defined by a set of interventions that fix the value of some variables and thus
force all attractors to be contained in the subspace defining the phenotype.

Definition 1. Given a Boolean function f and a subspace P ⊆ B
n, a control

strategy (CS) for the phenotype P in D(f) is a subspace Θ ⊆ B
n such that, for

any attractor A of D(f�Θ
), A ⊆ P .

If the desired phenotype is a stable state in the original dynamics (P = {y},
y ∈ B

n), a control strategy for P is a subspace Θ such that y is the only
attractor of f�Θ

. Figure 2 shows an example of a control strategy for a stable
state. The size of the subspace defining a control strategy represents the number
of interventions in the system. Therefore, the most interesting control strategies
are the subspaces that are maximal with respect to inclusion.

164 L. Cifuentes Fontanals et al.

A common approach in the context of control is the use of value percolation
[16,18]. Different combinations of variables to be fixed are considered, and their
values propagated iteratively until an invariant subspace is reached. A combina-
tion of variables and values is an intervention strategy if the subspace obtained at
the end of the iterative percolation process is contained in the target phenotype.
Strategies obtained with this approach satisfy the conditions of Definition 1. How-
ever, the class of control strategies identified by the definition is larger, as we will
discuss in the following.

110 111

100 101

010 011

000 001

100 110

000 010

Fig. 2. Asynchronous dynamics of the Boolean function f(x) = (x1x̄3 ∨ x̄2x̄3, x1 ∨ x3,
x1x3 ∨ x2x3) (left) and f�Ω (x) = (x1 ∨ x̄2, x1, 0) with Ω = ∗ ∗ 0 (right). Ω is a control
strategy for the phenotype P = {110} in AD(f). Ω does not percolate to P .

3.2 Spaces of Attraction

Trap sets are sets of states that the dynamics cannot leave. Each trap set con-
tains, as a consequence, at least one attractor. The concept of basin of attraction
defined for an attractor can be naturally extended to trap sets. As mentioned
before, we wish to approximate basins of attraction by subspaces. Combining
these two ideas, we introduce the concept of space of attraction of a trap set T
as a subspace Ω such that from any state in Ω there exists a path to T and no
trap set disjoint from T is reachable from Ω.

Definition 2. Let f be a Boolean function and T be a trap set of f . A space
of attraction of the trap set T in D(f) is a subspace Ω such that for all x ∈ Ω
and for any trap set S, if there exists a path in D(f) from x to an element of S,
then S ∩ T �= ∅.

Definition 2 implies the existence of a path from the space of attraction Ω to
the trap set T since, for any state in Ω, the trap set consisting of all the states
reachable from it cannot be disjoint from T . A trap set can have many spaces
of attraction. In fact, any subspace contained in a space of attraction is also a
space of attraction. Moreover, if there is only a unique trap set Tm minimal with
respect to inclusion contained in a trap set T , any space of attraction of T is
also a space of attraction of Tm. Both trap spaces and spaces of attraction are
subspaces that characterize the long term behavior of the system. However, in
contrast to trap spaces, spaces of attraction can depend on the update.

If a trap set is an attractor, its spaces of attraction can be related to its basins
of attraction. The spaces of attraction of an attractor A are clearly contained in

Control Strategy Identification via Trap Spaces in Boolean Networks 165

the strong basin of A since, by Definition 2, none of the other attractors can be
reached from any state inside the space of attraction. However, the strong basin
of attraction of A might not be a space of attraction (see Fig. 1).

Spaces of attraction, as well as basins, might include paths crossing non-
attractive cycles in the state transition graph. As a consequence, some paths
starting in the space of attraction (or basin) might not reach the trap set (or
attractor), staying indefinitely in non-attractive cycles. While in very specific
circumstances such behavior might be relevant, generally it constitutes an arti-
fact arising from the non-deterministic update. Here, we extend the standard
view on basins of attraction to spaces of attraction, assuming the trajectories of
interest will eventually leave non-attractive strongly connected components in
the state transition graph.

The condition that a subspace needs to satisfy to be a space of attraction
of a trap set T gets simplified when the subspace considered is the entire state
space. In this case, it is only required that the trap set T can be reached from
every state in the state space (see Lemma 1). This condition already implies that
there cannot be a trap set disjoint from T .

Lemma 1. Let f be a Boolean function and T a trap set of f . Then B
n is a

space of attraction of the trap set T in D(f) if and only if for all x ∈ B
n there

exists a path in D(f) from x to some y ∈ T .

The application of Lemma 1 to the restriction on a subspace immediately
yields the following corollary.

Corollary 1. Let f be a Boolean function, T a trap set of f and Ω a subspace
such that T ⊆ Ω. Then Ω is a space of attraction of T in D(f�Ω

) if and only if
for all x ∈ Ω there exists a path in D(f�Ω

) from x to some y ∈ T .

In other words, a space of attraction of a trap set T for the Boolean function
restricted to that subspace defines the restrictions that we can impose on the
function f to lead the dynamics to T . If T is a trap space, there is always a
trivial space of attraction for the restricted function which is T itself.

Note that a subspace Ω that is a space of attraction of T for the Boolean
function f is not necessarily a space of attraction for f�Ω

(see Fig. 3).

(a)

110 111

100 101

010 011

000 001

100 110

000 010
(b)

110 111

100 101

010 011

000 001

100 110

000 010

Fig. 3. (a) Ω = ∗ ∗ 0 is a space of attraction for AD(f) and AD(f�Ω), with f(x) =
(x̄2 ∨ x1x̄3, x1x̄3 ∨ x2x3, x̄1x̄2 ∨ x2x3) and f�Ω (x) = (x̄2 ∨ x1, x1, 0). (b) Ω = ∗ ∗ 0
is a space of attraction for AD(g) but not for AD(g�Ω), with g(x) = (x1x̄3 ∨ x̄2x3 ∨
x1x̄2, x1x̄3 ∨ x2x3, x̄1x̄2 ∨ x2x3) and g�Ω (x) = (x1, x1, 0).

166 L. Cifuentes Fontanals et al.

Given a trap space T that only contains attractors belonging to a certain
phenotype P , any space of attraction that leads the system to T would also lead
it to an attractor belonging to P . In other words, any space of attraction for
a trap space T is also a control strategy for a phenotype P if T only contains
attractors belonging to P . The following proposition formalizes this idea.

Proposition 1. Let P ⊆ B
n be a subspace and f a Boolean function. Let T be

a trap space such that if A ⊆ T is an attractor of D(f), then A ⊆ P . Let Ω be
a space of attraction of T in D(f�Ω

) such that T ⊆ Ω. Then Ω defines a control
strategy in D(f) for P .

Proof. Let A be an attractor for D(f�Ω
). Then A ⊆ Ω. Since Ω is a space of

attraction of T in D(f�Ω
) and A is a trap set in D(f�Ω

), T ∩ A �= ∅. As T
and A are trap sets, T ∩ A is also a trap set in D(f�Ω

). Since A is minimal,
A = T ∩ A ⊆ T . Then, since T is a trap space and for all x ∈ T, f�Ω

(x) = f(x),
A is also an attractor of D(f) and, therefore, A ⊆ P .
�

Since a trap space is always a space of attraction of itself, given a subspace
P ⊆ B

n, any trap space containing only attractors in P is a control strategy for
P . Note, however, that Proposition 1 does not characterize all the control strate-
gies satisfying Definition 1. The example in Fig. 3 (a) shows a control strategy
Ω that does not percolate to any trap space containing only the attractor 110.

From a theoretical standpoint, the type of control strategies identified by
Proposition 1 allow the interventions to be released after a certain number of
steps. That is because these control strategies induce the target phenotype by
leading the system to a trap space. Once the trap space is reached, the control
can be released and the system will remain in the trap space, eventually evolving
to the phenotype of interest. This additional theoretical property could widen
the range of possible choices for system control. Provided that the time scales
of the processes involved are sufficiently understood, it could allow for instance
to apply interventions relying on agents that decay over time.

3.3 Identification of Spaces of Attraction

As explained in the previous section, control strategies for a phenotype P can be
found by identifying spaces of attraction of trap spaces containing only attractors
in P . In this section, we explore ways of finding these spaces of attraction.

Given a trap space T , we look for a subspace Ω such that from all states in
Ω there is a path to T in D(f�Ω

). To do so, we use the idea of value percolation,
which is a common approach in the context of control. As explained in Sect. 3.1,
it is based on the fact that the constraints given by the fixed variables of a
subspace might induce further variables to get fixed. Thus, in our setting, a
subspace Ω = Σ(W, c) that percolates to the trap space T = Σ(U, c) is a space
of attraction of T in f�Ω

. The following lemma formalizes this idea.

Lemma 2. Let f : Bn → B
n be a Boolean function, c ∈ B

n and S = Σ(U, c),
Ω = Σ(W, c) subspaces of B

n such that S ⊆ Ω and W ⊆ U ⊆ V . If for all

Control Strategy Identification via Trap Spaces in Boolean Networks 167

s ∈ U\W , fs(x) = cs for all x ∈ Ω, then for all x ∈ Ω there exists a path in
D(f�Ω

) from x to some y ∈ S.

Proof. Since the proof depends on the update, we treat each case separately.
D = AD: For each x ∈ Ω and for each s ∈ U\W such that xs �= cs,

fs(x) = cs. Therefore, x admits a successor y in AD(f�Ω
) with ys = cs. This

implies the existence of a path in AD(f�Ω
) from any state in Ω to S.

D = SD: For each x ∈ Ω and for each s ∈ U , fs(x) = cs. Therefore, x admits
a successor y ∈ S ⊆ Ω in SD(f�Ω

).
D = GD: Since all the paths in AD(f) and SD(f) are also paths in GD(f),

the conclusion follows from the previous cases.
�
Lemma 2 can be extended with Corollary 1 to provide conditions that allow

the identification of spaces of attraction.

Lemma 3. Let f : Bn → B
n be a Boolean function and T = Σ(U, c) a trap space

of f with U ⊆ V and c ∈ B
n. Let Ω = Σ(W, c) be a subspace of Bn such that

T ⊆ Ω and W ⊆ U ⊆ V . If fs(x) = cs for all x ∈ Ω and s ∈ U\W , then Ω is a
space of attraction of T for D(f�Ω

).

To improve the spaces of attraction obtained with Proposition 1, we can
extend Lemma 3 applying the idea used in Lemma 2 several times, building a
path of percolated subspaces ending in the trap space T .

Proposition 2. Let f : Bn → B
n be a Boolean function and let c ∈ B

n. Let
T = Σ(U, c) be a trap space and Ω = Σ(W, c) be a subspace containing T with
W ⊆ U ⊆ V . Let I0 = W and Ik+1 = {s ∈ U |s ∈ Ik or fs(x) = cs for all x ∈
Sk}, where Sk = Σ(Ik, c). If there exists a kT such that IkT

= U , then Ω is a
space of attraction of T for D(f�Ω

).

Proposition 2 gives sufficient conditions for a subspace to be a space of attrac-
tion of a trap space in the restriction and, together with Proposition 1, provides a
way to identify control strategies for a given phenotype. However, not all spaces
of attraction fall under the conditions given by Proposition 2. The example in
Fig. 3 (a) shows a space of attraction Ω = ∗ ∗ 0 for a trap space T = 110, which
is a control strategy for P = {110}, where Ω does not percolate to T .

Sometimes the attractors of a system of interest are known. In other cases
they are not known but can be approximated by minimal trap spaces [11], that
is, each minimal trap space contains only one attractor and every attractor is
included in a minimal trap space. This information is not usually exploited by
target control methods, which often rely solely on percolation-like techniques.
The approach described in this work can use this knowledge to find additional
control strategies. If the attractors are known or they can be approximated by
minimal trap spaces, we can easily find trap spaces satisfying the conditions
of Proposition 1 by simply checking whether these attractors or minimal trap
spaces are included in a trap space. Therefore, larger trap spaces containing only
attractors of the target phenotype can be identified. By Proposition 1, spaces

168 L. Cifuentes Fontanals et al.

of attraction for these trap spaces are also control strategies for the phenotype.
These control strategies do not necessarily percolate to the phenotype and, there-
fore, might not be identified by usual percolation techniques. Figure 2 shows an
example of such a control strategy, where Ω = T = ∗ ∗ 0 is a space of attraction
for the trap space T , which contains only the attractor A = 110, and so, is a
control strategy for the phenotype P = A. Note that Ω does not percolate to A.

The attractors of a Boolean network might vary in different dynamics. There-
fore, the trap spaces satisfying Proposition 1 and the control strategies charac-
terized by them might also be dependent on the dynamics. Conversely, the spaces
of attraction obtained by Proposition 2 are independent of the update. Thus,
if the trap spaces considered satisfy the conditions of Proposition 1 in all the
dynamics, the control strategies identified are also independent of the update.

4 Computation of Control Strategies

We propose a method to find control strategies for a given phenotype, using
the ideas explained in the previous section. The main steps of the method are
represented in Fig. 4 and the detailed procedure is shown in Algorithm 1.

In order to implement the computation of the control strategies, we use the
prime implicants of the function. Given a Boolean function f : Bn → B

n, a c-
implicant of fi, with c ∈ B and i ∈ V , is a subspace Q such that fi(x) = c for
all x ∈ Q. A prime implicant is an implicant that is maximal under inclusion.
Given T = Σ(U, c), finding a subspace satisfying the hypothesis of Lemma 3
is equivalent to finding a subspace that is a ci-implicant of fi for all i ∈ U .
Moreover, prime implicants can also be used to compute the trap spaces [10]. The
computation of the prime implicants of a Boolean function is in general a hard
problem. However, networks modeling biological systems are usually relatively
sparse, since the number of components regulating a variable is relatively small
compared to the size of the network. Therefore, they are rather tractable in terms
of prime implicants computation. Several tools are available for the computation
of prime implicants and trap spaces. We use PyBoolNet [12], a Python package
that allows generation and analysis of Boolean networks and provides an efficient
computation of prime implicants and trap spaces for quite large networks.

Phenotype

Boolean network
Prime implicants
and trap spaces

Selected
trap spaces

Spaces of
attraction

Control strategies

Fig. 4. Main steps of the method for finding control strategies for a phenotype, rep-
resented in color boxes according to their role: inputs (blue), precomputation (green),
main computation (beige), output (red). (Color figure online)

Control Strategy Identification via Trap Spaces in Boolean Networks 169

We describe now the main steps of the method, outlined in Fig. 4.

Inputs. The inputs are the Boolean function describing the system and the
subspace of the target phenotype P . The attractors, if known, are also used as
input. Prime implicants and trap spaces can be given as input or computed from
the Boolean function.

Selection of Trap Spaces. Trap spaces of interest are divided into two types:
trap spaces contained in P (Type 1) and trap spaces not contained in P but
containing only attractors in P (Type 2). As trap spaces have been identified
in the previous step, this selection only requires checking whether a trap space
belongs to one of the types (Algorithm 1: 3–5). Trap spaces of Type 2 are only
identified when all the attractors are known or can be approximated by minimal
trap spaces. In order to avoid unnecessary calculations, we do not consider trap
spaces that percolate to smaller ones, since if a trap space T1 percolates to a
trap space T2, all spaces of attractions of T1 are also spaces of attraction of T2.

Algorithm 1. Control strategies for a phenotype P
Input: f Boolean function, P phenotype, attr attractors of f (optional), m limit
size of control strategies (optional)
Output: control strategies for P

1: function ControlStrategies(f , P , attr)
2: T ← trapSpaces(f)
3: selTS ← selectedTrapSpaces1(T, P)
4: if attr �= ∅ then:
5: selTS ← selTS + selectedTrapSpaces2(T, P , attr)

6: CA ← ∅
7: for i in {1, . . . , min(m, n)} do: � n total number of variables
8: S ← {S subspace : |fixed(S)| = i, ∃T ∈ selTS with T ⊆ S}
9: for S in S do:

10: if (S �⊆ S’ for all S’ in CA) and isSpaceAttraction(f , S, selTS) then:
11: add S to CA
12: return CA

Algorithm 2. Subspace is a space of attraction
Input: f Boolean function, S subspace, TS trap spaces
Output: True if S is space of attraction of a trap space in TS. False otherwise.

1: function IsSpaceAttraction(f, S, TS)
2: f’ ← percolateFunction(f, S)
3: return isNotEmpty({T in TS: T ⊆ S and fixed(T) ⊆ fixed(f’)})

Computation of Spaces of Attraction. Spaces of attraction for the trap
spaces from the previous step are computed using the theoretical principles
described in Proposition 2. The detailed procedure is shown in Algorithm 1:

170 L. Cifuentes Fontanals et al.

6–11. For each subspace S that contains at least one of the selected trap spaces
(Algorithm 1: 8), it is checked whether it is a space of attraction for one of the
selected trap spaces (Algorithm 1: 10). To do so, the percolated function of f
obtained by fixing the variables in S is calculated (Algorithm 2: 2). If T is con-
tained in the subspace generated by S and all the variables fixed in T are also
fixed in the percolated function, then the subspace generated by S is a space
of attraction of T (Algorithm 2: 3). Since the aim is to find maximal spaces of
attraction satisfying this property, the subspaces S are taken randomly fixing
an increasing number of variables, so that supersets of sets already defining a
space of attraction are not considered (Algorithm 1: 8, 10).

Output The obtained spaces of attraction are control strategies for the pheno-
type P by Proposition 1 and, therefore, are returned as output.

The method also allows to include some constraints on the control strate-
gies. One example is the exclusion of some components, which can be taken into
account when selecting the subspaces S (Algorithm 1: 8). In addition, limiting
the number of interventions (Algorithm 1: 7) might allow to reduce the compu-
tational cost without losing interesting solutions, since small control strategies
are usually the most relevant.

The computation of trap spaces scales well with the size of the network
[10]. On the other hand, the identification of control strategies is based on the
exploration of all possible candidate subspaces and might pose a difficulty in
terms of scalability over large networks. Possible approaches that address this
point are suggested in the discussion.

5 Application: Cell Fate Decision Networks

In this section we discuss the application of our method to two Boolean networks
describing cell fate decision processes. In the first case study we consider two
different control problems, one having a phenotype as target for the control, the
second targeting single attractors. The second case study focuses on phenotype
control. We compare the control strategies identified by our approach to the
ones obtained using exclusively value percolation, as described in Sect. 3.1. We
show that, for both examples, new control strategies can be identified with the
procedure introduced in this work.

All computations in this section were done on an 8-processor computer,
Intel R©CoreTM i7-2600 CPU at 3.40 GHz, 16 GB memory, without any use of
parallelization. The running times indicated are for the full procedure described
in Section 4, with the time for computing and selecting trap spaces being a
negligible fraction of the total time in all cases. The source code is available at
http://github.com/lauracf/trap-space-control.

5.1 MAPK Network

The network considered in this case study was introduced by Grieco et al. (2013)
[7] to model the effect of the Mitogen-Activated Protein Kinase (MAPK) path-
way on cell fate decisions taken in pathological cells (see Fig. 5). It uses 53

http://github.com/lauracf/trap-space-control

Control Strategy Identification via Trap Spaces in Boolean Networks 171

Boolean variables, four being inputs (DNA-damage, EGFR-stimulus, FGFR3-
stimulus and TGFBR-stimulus) and three outputs (Apoptosis, Proliferation and
Growth-Arrest). The asynchronous dynamics has 18 attractors, 12 being stable
states and 6 cyclic attractors. All of them can be approximated by minimal trap
spaces, since each minimal trap space only contains one attractor and there is
no attractor that is not contained in a minimal trap space [11]. Therefore, we
can use trap spaces of both Type 1 and Type 2 to compute control strategies.

The phenotype chosen as target for the control is the apoptosis phenotype,
which is defined in [7] as the states fixing Apoptosis and Growth Arrest to 1
and Proliferation to 0. There are 103 non-percolating trap spaces, which are
trap spaces that do not percolate to smaller ones, containing only attractors in
the apoptosis phenotype. Of these, 64 are of Type 1 and 39 of Type 2. We set
an upper bound of four components to the size of the control strategies, since
generally only small control strategies are of interest and this limit already allows
to find relevant ones. In addition, we exclude interventions that fix any of the
output nodes of the network. In this setting, we identify two control strategies
of size 1 ({TGFBR-stimulus = 1} and {DNA-damage = 1}) and no control
strategies of size 2, 3 and 4. The running time is around 6 min.

Using exclusively the percolation of the fixed values we identify two control
strategies of size 1 ({TGFBR-stimulus = 1} and {TGFBR = 1}), 121 control
strategies of size 2, 164 of size 3 and 139 of size 4. Looking at the Boolean
function, we observe that TGFBR is uniquely regulated by TGFBR-stimulus,
so fixing TGFBR-stimulus to 1 implies that TGFBR is also fixed to 1 and,
therefore, these interventions are equivalent in terms of their effect on the apop-
tosis phenotype. However, it is obvious that if the control fixing TGFBR to 1 is
released, TGFBR could be updated to zero again by TGFBR-stimulus, and this
change would induce the system to leave the apoptosis phenotype. Therefore,
the control of TGFBR requires a permanent intervention.

Our method uncovers the control strategy {DNA-damage = 1}, which is
not obtained by using solely value percolation. In fact, the percolation of the
subspace defined by this strategy does not reach the phenotype, but stops at
the subspace T = {DNA-damage = 1, ATM = 1, TAOK = 1}. This implies
that the components defining the phenotype can still oscillate in the restricted
system. However, since T is one of the trap spaces selected by our method, all
the attractors inside T belong to the apoptosis phenotype and, therefore, the
constraint {DNA-damage = 1} is identified as a control strategy.

Of the control strategies of size 2, 3 and 4 that can be identified by perco-
lation, 18, 13 and 7 respectively are supersets of the control strategy {DNA-
damage = 1} identified by our method. For this reason, the subspaces obtained
by percolating these interventions are contained in the trap space T mentioned
above and therefore the associated control can be eventually released, without
affecting the reachability of the target. The remaining control strategies are not
guaranteed to lead to a trap space. As a consequence, in these cases, an early
release of the control could lead to the loss of the control goal. This illustrates

172 L. Cifuentes Fontanals et al.

how our method can complement previous approaches, by identifying new con-
trol strategies of low complexity, while at the same time providing information
about the effects of a possible release of the control.

The components appearing in the minimal control strategies identified (DNA-
damage and TGFBR-stimulus) correspond to two inputs of the model. These
inputs represent anti-proliferative stimuli from the MAPK network [7] and,
therefore, can be expected to play an important role in the phenotype deci-
sion. It is, however, certainly interesting that they are capable of fully inducing
the apoptosis phenotype without further conditions on internal processes.

In addition to the control problem for the apoptosis phenotype, we also
searched for control strategies for the 10 apoptotic stable states. We set the
maximum size of control strategies to five. For eight stable states (A1 to A8 in
Table 1) exactly one control strategy of size 4 is obtained. For stable state A9,
two control strategies of size 5 are found, and for A10 no control strategies up to
size 5 are identified. The list of stable states and their control strategies can be
found in the supplementary material. The running time for one stable state is
around 21 min.

Since the chosen stable states belong to the apoptosis phenotype, all the
selected trap spaces are also considered when computing the control strategies
for the apoptosis phenotype. Therefore, the control strategies of the stable states
are subspaces of the ones obtained for the apoptosis phenotype. One of the main
differences is that the four inputs are present in all the control strategies of the
stable states. The input variables are, by definition, not regulated by any com-
ponent, and therefore must be directly controlled if the value in a given steady
state is to be achieved. The analysis of the control problem for the phenotype
revealed that fixing DNA-damage to 1 is enough to lead the system to the apop-
tosis subspace, but fixing the additional inputs is necessary to obtain a specific
steady state. Fixing the four inputs is already enough to induce the stable states
A1 to A8 solely by percolation. However, the stable states A9 and A10 require
additional internal processes to be controlled. For A9, the two control strategies
identified do not percolate directly to the attractor, but lead the dynamics to one
of the selected trap spaces. For A10, no control strategies up to size 5 are found
neither by our method nor percolation techniques, suggesting that a higher num-
ber of interventions might be necessary. These observations show that control
for a phenotype can be more achievable than for a specific attractor, and thus
in some cases more interesting for application.

5.2 T-LGL Network

We now consider a control problem for the network introduced by Zhang et
al. (2008) [21] to model the T cell large granular lymphocite (T-LGL) survival
signaling network (see Fig. 6). It consists of 60 Boolean variables, six being inputs
(CD45, IL15, PDGF, Stimuli, Stimuli2 and TAX) and three readouts (Apoptosis,
Proliferation and Cytoskeleton-signaling). The asynchronous dynamics has 156
attractors, 86 being stable states and 70 cyclic attractors. As in the previous

Control Strategy Identification via Trap Spaces in Boolean Networks 173

network, all of them can be approximated by minimal trap spaces [11]. Thus, we
can use trap spaces of both Type 1 and Type 2 to compute control strategies.

We consider the apoptosis phenotype defined by fixing Apoptosis to 1 and
Proliferation to 0. Note that the third readout, Cytoskeleton signaling, is forced
to 0 by its regulator Apoptosis having value 1. There are 883 non-percolating trap
spaces containing only attractors in the apoptosis phenotype. 729 trap spaces
are of Type 1 and 154 of Type 2. As in the previous case study, we set an upper
bound of four components to the size of the control strategies and we exclude
interventions that fix any of the readout nodes of the network. In this setting,
six control strategies are identified: three of size 3 ({CD45 = 0, IL15 = 0, PDGF
= 1}, {CD45 = 0, IL15 = 0, Stimuli = 1}, {CD45 = 0, IL15 = 0, TAX = 1})
and three of size 4 ({CD45 = 1, PDGF = 0, PDGFR = 0, Stimuli2 = 1}, {CD45
= 1, PDGF = 0, S1P = 0, Stimuli2 = 1}, {CD45 = 1, PDGF = 0, SPHK1 = 0,
Stimuli2 = 1}). The running time is around 12 min.

The three control strategies of size 3 consist only of input components. All the
control strategies of size 4 have three components in common while the fourth
varies within PDGFR, S1P and SPHK1, suggesting that these three interventions
might be equivalent in terms of their effect on the apoptosis phenotype. In fact,
by looking at the Boolean function, we observe that fixing PDGFR = 0, implies
SPHK1 = 0, which also implies S1P = 0. Identifying equivalent interventions a
priori might allow to reduce the computational cost of the method.

Using only percolation we find exactly one control strategy of size 1 ({Caspase
= 1}) and none of size 2, 3 or 4. However, this control strategy is relatively
trivial since the Caspase component is directly regulating Apoptosis. The control
strategies identified by our method do not percolate directly to the phenotype.
At the end of the percolation process, the dynamics reaches one of the trap
spaces selected as containing only attractors in the apoptosis phenotype. This
case study highlights the added value of our approach which can uncover relevant
system interventions not identified by usual percolation approaches.

6 Discussion

In this work, we considered properties of trap spaces and principles of target
control to introduce a new approach to compute control strategies. The proce-
dure proposed is applicable to both phenotype and attractor control and allows
the interventions to be released after a certain amount of time, in contrast to
usual target control methods that require permanent interventions.

The approach presented here is widely applicable to Boolean models of biolog-
ical systems and can provide intervention strategies that are independent of the
type of update considered in the modeling. Moreover, restrictions on the control
strategies, in the form of variables to be excluded, can be added. Our approach
also allows to incorporate information about the attractors, with the possibility
to obtain control strategies that escape regular percolation-based techniques. As
demonstrated with the two case studies, our method can identify new control
strategies that require a small number of control variables, and thus revealing
potentially valuable intervention approaches.

174 L. Cifuentes Fontanals et al.

Our approach efficiently identifies control strategies for relatively large bio-
logical networks. A naturally important further step is a rigorous comparison
with existing methods, for instance approaches based on stable motifs [18,20].
Furthermore, the performance of the method could benefit from the adoption of
fine-tuning strategies developed to speed up some procedures involved in candi-
date screening. For instance, we could consider the reduction of the size of the
search space by identifying a priori equivalent interventions, adapting existing
approaches [16]. Moreover, approaches based on answer set programming have
been used to efficiently compute minimal intervention strategies [8]. One could
investigate extending such approaches to the detection of the control strategies
characterized in our work. Further steps also include the extension of the method
to other types of control, such as edge interventions or sequential control.

Acknowledgements. E.T. was funded by the Volkswagen Stiftung (Volkswagen
Foundation), project ID 93063.

References

1. Baig, S., Seevasant, I., Mohamad, J., Mukheem, A., Huri, H.Z., Kamarul, T.:
Potential of apoptotic pathway-targeted cancer therapeutic research: where do we
stand? Cell Death Dis. 7(1), e2850 (2016). https://doi.org/10.1038/cddis.2015.275

2. Biane, C., Delaplace, F.: Causal reasoning on boolean control networks based
on abduction: theory and application to cancer drug discovery. IEEE/ACM
Trans. Comput. Biol. Bioinform. 16(5), 1574–1585 (2019). https://doi.org/10.
1109/TCBB.2018.2889102

3. Calzone, L., et al.: Mathematical modelling of cell-fate decision in response to
death receptor engagement. PLOS Comput. Biol. 6(3), 1–15 (2010). https://doi.
org/10.1371/journal.pcbi.1000702

4. Chaouiya, C., Naldi, A., Thieffry, D.: Logical modelling of gene regulatory networks
with GINsim. Bacterial Mol. Netw. 804, 463–479 (2012)

5. Csermely, P., Korcsmáros, T., Kiss, H.J., London, G., Nussinov, R.: Structure and
dynamics of molecular networks: a novel paradigm of drug discovery: a compre-
hensive review. Pharmacol. Therapeutics 138(3), 333–408 (2013). https://doi.org/
10.1016/j.pharmthera.2013.01.016

6. Flobak, Å., et al.: Discovery of drug synergies in gastric cancer cells predicted
by logical modeling. PLOS Comput. Biol. 11(8), 1–20 (2015). https://doi.org/10.
1371/journal.pcbi.1004426

7. Grieco, L., Calzone, L., Bernard-Pierrot, I., Radvanyi, F., Kahn-Perlès, B., Thi-
effry, D.: Integrative modelling of the influence of MAPK network on cancer cell
fate decision. PLOS Comput. Biol. 9(10), 1–15 (2013). https://doi.org/10.1371/
journal.pcbi.1003286

8. Kaminski, R., Schaub, T., Siegel, A., Videla, S.: Minimal intervention strategies
in logical signaling networks with asp. Theor. Pract. Logic Program. 13, 675–690
(2013). https://doi.org/10.1017/S1471068413000422

9. Kim, J., Park, S.M., Cho, K.H.: Discovery of a kernel for controlling biomolecular
regulatory networks. Sci. Rep. 3, 2223 (2013). https://doi.org/10.1038/srep02223

10. Klarner, H., Bockmayr, A., Siebert, H.: Computing maximal and minimal trap
spaces of Boolean networks. Natural Comput. 14(4), 535–544 (2015). https://doi.
org/10.1007/s11047-015-9520-7

https://doi.org/10.1038/cddis.2015.275
https://doi.org/10.1109/TCBB.2018.2889102
https://doi.org/10.1109/TCBB.2018.2889102
https://doi.org/10.1371/journal.pcbi.1000702
https://doi.org/10.1371/journal.pcbi.1000702
https://doi.org/10.1016/j.pharmthera.2013.01.016
https://doi.org/10.1016/j.pharmthera.2013.01.016
https://doi.org/10.1371/journal.pcbi.1004426
https://doi.org/10.1371/journal.pcbi.1004426
https://doi.org/10.1371/journal.pcbi.1003286
https://doi.org/10.1371/journal.pcbi.1003286
https://doi.org/10.1017/S1471068413000422
https://doi.org/10.1038/srep02223
https://doi.org/10.1007/s11047-015-9520-7
https://doi.org/10.1007/s11047-015-9520-7

Control Strategy Identification via Trap Spaces in Boolean Networks 175

11. Klarner, H., Siebert, H.: Approximating attractors of Boolean networks by iterative
ctl model checking. Front. Bioeng. Biotechnol. 3, 130 (2015). https://doi.org/10.
3389/fbioe.2015.00130

12. Klarner, H., Streck, A., Siebert, H.: PyBoolNet: a python package for the genera-
tion, analysis and visualization of Boolean networks. Bioinformatics 33(5), 770–772
(2016). https://doi.org/10.1093/bioinformatics/btw682

13. Liu, Y.Y., Slotine, J.J., Barabási, A.L.: Controllability of complex networks. Nature
473, 167–173 (2011). https://doi.org/10.1038/nature10011

14. Mandon, H., Su, C., Haar, S., Pang, J., Paulevé, L.: Sequential reprogramming of
boolean networks made practical. In: Bortolussi, L., Sanguinetti, G. (eds.) Compu-
tational Methods in Systems Biology. vol. 11773, pp. 3–19. Springer International
Publishing, Cham (2019). https://doi.org/10.1007/978-3-030-31304-3 1

15. Murrugarra, D., Veliz-Cuba, A., Aguilar, B., Laubenbacher, R.: Identification of
control targets in boolean molecular network models via computational algebra.
BMC Syst. Biol. 10(1), 94 (2016). https://doi.org/10.1186/s12918-016-0332-x

16. Samaga, R., Kamp, A.V., Klamt, S.: Computing combinatorial intervention strate-
gies and failure modes in signaling networks. J. Comput. Biol. 17(1), 39–53 (2010).
https://doi.org/10.1089/cmb.2009.0121

17. Takahashi, K., Yamanaka, S.: A decade of transcription factor-mediated repro-
gramming to pluripotency. Nat. Rev. Mol. Cell Biol. 17(3), 183–193 (2016).
https://doi.org/10.1038/nrm.2016.8

18. Yang, G., Gómez Tejeda Zañudo, J., Albert, R.: Target control in logical models
using the domain of influence of nodes. Front. Physiol. 9, 454 (2018). DOI: https://
doi.org/10.3389/fphys.2018.00454

19. Zañudo, J.G.T., Yang, G., Albert, R.: Structure-based control of complex net-
works with nonlinear dynamics. Proc. Natl. Acad. Sci. 114(28), 7234–7239 (2017).
https://doi.org/10.1073/pnas.1617387114

20. Zañudo, J.G.T., Albert, R.: Cell fate reprogramming by control of intracellular
network dynamics. PLOS Comput. Biol. 11(4), 1–24 (2015). https://doi.org/10.
1371/journal.pcbi.1004193

21. Zhang, R., et al.: Network model of survival signaling in large granular lymphocyte
leukemia. Proc. Natl. Acad. Sci. 105(42), 16308–16313 (2008). https://doi.org/10.
1073/pnas.0806447105

https://doi.org/10.3389/fbioe.2015.00130
https://doi.org/10.3389/fbioe.2015.00130
https://doi.org/10.1093/bioinformatics/btw682
https://doi.org/10.1038/nature10011
https://doi.org/10.1007/978-3-030-31304-3_1
https://doi.org/10.1186/s12918-016-0332-x
https://doi.org/10.1089/cmb.2009.0121
https://doi.org/10.1038/nrm.2016.8
https://doi.org/10.3389/fphys.2018.00454
https://doi.org/10.3389/fphys.2018.00454
https://doi.org/10.1073/pnas.1617387114
https://doi.org/10.1371/journal.pcbi.1004193
https://doi.org/10.1371/journal.pcbi.1004193
https://doi.org/10.1073/pnas.0806447105
https://doi.org/10.1073/pnas.0806447105

Qualitative Analysis of Mammalian
Circadian Oscillations: Cycle Dynamics

and Robustness

Ousmane Diop1(B), Madalena Chaves2, and Laurent Tournier1

1 MaIAGE, INRAE, Université Paris-Saclay, 78350 Jouy-en-Josas, France
ousmane.diop@inrae.fr

2 Université Côte d’Azur, Inria, INRAE, CNRS, Sorbonne Université, Biocore Team,

Sophia Antipolis, France

Abstract. In asynchronous Boolean models, periodic solutions are rep-
resented by terminal strongly connected graphs, which are typically com-
posed of hundreds of states and transitions. For biological systems, it
becomes a challenging task to compare such mathematical objects with
biological knowledge, or interpret the transitions inside an attractor in
terms of the sequence of events in a biological cycle. A recent methodol-
ogy generates summary graphs to help visualizing complex asynchronous
attractors and order the dynamic progression based on known biologi-
cal data. In this article we apply this method to a Boolean model of
the mammalian circadian clock, for which the summary graph recovers
the main phases of the cycle, in the expected order. It also provides a
detailed view of the attractor, suggesting improvements in the design of
the model’s logical rules and highlighting groups of transitions that are
essential for the attractor’s robustness.

Keywords: Mammalian circadian clock · Asynchronous Boolean
network · Complex attractor · Summary graph

1 Introduction

The analysis of periodic orbits and their properties remains a most challenging
problem in dynamical systems theory. Many living systems exhibit periodical
dynamics and the current literature covers a large diversity of mathematical
models used to represent, explore, and study the mechanisms leading to physical
or biological rhythms [7]. A thorough analysis of such cyclic attractors opens the
door to a whole family of meaningful questions related to the robustness of the
oscillatory behavior, the estimation and control of the period or amplitude of
oscillations in terms of the parameters of the system, the location of the orbit
in the state space, etc.

Supported by the ANR (French agency for research) through project ICycle ANR-16-
CE33-0016-01.

c© Springer Nature Switzerland AG 2020
A. Abate et al. (Eds.): CMSB 2020, LNBI 12314, pp. 176–192, 2020.
https://doi.org/10.1007/978-3-030-60327-4_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-60327-4_10&domain=pdf
https://doi.org/10.1007/978-3-030-60327-4_10

Qualitative Analysis of a Mammalian Circadian Clock Model 177

Very little is known on how to express the properties of a periodic solution in
terms of the system’s parameters but qualitative models, such as piecewise linear
or Boolean models, suggest some ideas. Piecewise linear systems partition the
state space into regions where solutions of the system can be explicitly computed
leading, in some examples, to the estimation of the period and other quantities
in terms of the parameters [13,14]. Boolean models provide an ideal framework
to analyze qualitative dynamical properties by enabling algorithmic approaches
to characterize, for instance, the location of a periodic orbit in the state space,
or the influence of the interaction graph on the dynamical behavior [17,21].

In an asynchronous Boolean network, a periodic orbit corresponds to a ter-
minal strongly connected component of the state transition graph. If the compu-
tation of such an object is not an issue form a theoretical point of view, its size
can grow very large, strongly limiting the biological interpretation of the states
and transitions inside the attractor. To tackle this issue, general approaches can
be used such as model checking techniques [23]. Recently, a dedicated method
developed by Diop et al. [5] proposes to generate a summary graph of an asyn-
chronous attractor, based on a classification of its states according to experi-
mentally observed phases of the biological system. The summary graph provides
a qualitative view of the general progression along the periodic orbit, capturing
the underlying dynamics within the cyclic attractor. In [5] it was successfully
applied to a Boolean model of the mammalian cell cycle [6].

In this paper, we propose to apply the summary graph method to the mam-
malian circadian clock, a biological rhythm which is based on the interactions
among five main proteins CLOCK:BMAL1, REV-ERBα, ROR, PER, and CRY.
The core of the clock mechanism is formed by three feedback loops. First, the
BMAL1 complex promotes the transcription of Per and Cry genes. The corre-
sponding proteins bind to form a complex PER:CRY, which then translocates
to the nucleus where it will block the transcriptional activity of BMAL1, thus
forming a first negative feedback loop. In addition, BMAL1 also promotes the
transcription of the two genes Rev-erb and Ror. Eventually, Bmal1 transcrip-
tion will be inhibited by REV-ERB and activated by ROR, leading to a second
negative loop and a new positive loop, respectively. The periodic behavior of
the clock system is determined in large part by the phase opposition between
CLOCK:BMAL1 and PER:CRY, which corresponds to the day/night succession
(BMAL1 peaks during the day).

Examples of Boolean models for circadian clocks include one for the plant
Arabidopsis thaliana [1] and a compact mammalian clock model [4] which repro-
duces the interplay between the negative feedback loops induced by BMAL1
activity. However, our present objective is to have a deeper understanding of
the circadian cycle recently developed by Almeida et al. [2]. This is a continu-
ous model of the core clock mechanism that faithfully reproduces the circadian
rhythm, by including not only the five main proteins but also their transcription
regulated by clock controlled elements (CCE). To use the graph method [5], we
first construct a Boolean version of the continuous model in [2] that exhibits
one cyclic attractor and, in addition, correctly reproduces the effect of some well

178 O. Diop et al.

known gene knock-outs. Next, Sect. 3 analyzes the cyclic attractor with the sum-
mary graph method, by classifying groups of Boolean states according to their
corresponding circadian time zones. Finally, in Sect. 4 the summary graph is fur-
ther used to identify key groups of transitions within the attractor and relate
them back to parts of the network’s logical rules. This analysis has two out-
comes, first suggesting an improved Boolean rule for one of the variables where
the model lacked clear information. As a second outcome, our analysis predicts
that some transitions, while allowing some short-circuits between phases, seem
to contribute to the overall robustness of the attractor and globally ensure the
good progression of the cell clock.

2 Proposing a New Boolean Model of the Circadian
Clock

As evoked previously, the following Boolean model of the mammalian circadian
clock is highly inspired by the continuous model developed in [2]. In addition
to the three feedback loops already described, this model takes into account
the transcription of the five clock proteins, each regulated through a partic-
ular combination of transcription factors. The latter bind to specific sites on
the promoters, called clock controlled elements (CCEs): Ebox (enhancer box),
Dbox (DBP/E4BP4 response element), and Rbox (REV-ERB/ROR response
element). With the introduction of Dbox (which activates both REV-ERB and
PER), two new proteins are added to the model, DBP and E4BP4, each also
regulated by one of the CCE.

A complete and detailed justification of the continuous model assumptions
and construction can be found in [2], but we provide a brief summary of the
eight variables and corresponding differential equations in Table 1.

2.1 Construction of the Boolean Model

The design of a Boolean or of a continuous model for the same biological system
differs in some fundamental aspects and, in general, there is no direct equivalence
between terms in the two frameworks. For instance, activation and inhibition
links typically have clear logical representations, but the effects of detailed mass-
action kinetics or mass conservation laws are harder to represent in a Boolean
model, and may require the definition of new variables. The purpose of our
Boolean model is to transcribe as closely as possible the interactions in the
continuous model in [2], as described below. The continuous equations and cor-
responding logical rules are shown in Table 1, for a clear comparison between
the two models.

In [2], there are three CCE named Dbox, Ebox, and Rbox, each responding to
the conjugation of two components, an activator and an inhibitor. More precisely,
Dbox is activated by DBP and inhibited by E4, Ebox is activated by Bmal and
inhibited by CRY and Rbox is activated by ROR and inhibited by REV. The
continuous equations are formed by a synthesis term depending on one or two

Qualitative Analysis of a Mammalian Circadian Clock Model 179

Table 1. Differential equations of the circadian clock model in [2] and corresponding
logical rules in the Boolean model. The term MPC = γpcPER · CRY − γcpPC rep-
resents the kinetics of the complex binding: PER+ CRY � PC (mass action law). We
use classical Boolean operators: X ∨ Y (X or Y), X ∧ Y (X and Y) and X (not X).

Continuous equation Logical rule

dBMAL1/dt = Rbox −γbpBMAL1 · PC Bmal′ = Rbox ∧ PC

dROR/dt = Ebox + Rbox −γrorROR ROR′ = Rbox2

ROR2′ = Ebox ∧ Rbox ∧ ROR

dREV/dt = 2Ebox + Dbox −γrevREV REV ′ = Ebox ∨ REV 2

REV 2′ = Ebox ∧ Dbox ∧ REV

dDBP/dt = Ebox −γdbpDBP DBP ′ = Ebox

dE4/dt = 2Rbox −γe4E4 E4′ = Rbox

dCRY/dt = Ebox + 2Rbox −MPC − γcCRY CRY ′ = Ebox ∨ CRY 2

CRY 2′ = Ebox ∧ Rbox ∧ CRY

dPER/dt = Ebox + Dbox −MPC − γpPER PER′ = Ebox ∨ Dbox

dPC/dt = MPC − γbpBMAL1 · PC PC′ = PER ∧ CRY

CCE and a degradation term. The CRY , PER and PC equations also contain
the binding and dissociation terms denoted MPC in Table 1.

In general, Boolean variables are assumed to degrade when not updated in the
next step and, therefore, linear degradation terms do not appear explicitly. Thus,
a naive approach to construct a corresponding Boolean model is to combine the
synthesis terms as logical conjugations or disjunctions of the given variables and
directly obtain the rule, for instance: DBP ′ = Ebox or E4′ = Rbox. However,
not all continuous equations follow this simple construction and other properties
that strongly contribute to the dynamics must be taken into account.

Indeed, (i) some variables have nonlinear degradation (cf. BMAL1), (ii) oth-
ers contain mass-action terms (cf. CRY ,PER,PC) and (iii) three of the vari-
ables are regulated by two CCEs and are themselves regulators of CCEs (ROR,
REV , CRY). This last property implies the existence of different thresholds
for the different regulatory activities. For this reason, ROR, REV , and CRY
are assumed to have an extra discrete level, here represented by extra Boolean
variables ROR2, REV 2, and CRY 2 (following [24]), under the assumption

x =

⎧
⎨

⎩

0 when X = X2 = 0,
1 when X = 1, X2 = 0,
2 when X = X2 = 1.

The states corresponding to X = 0, X2 = 1 have no biological meaning (also
called “forbidden”) and trajectories towards these states from the other “bio-
logical” states must be excluded. This can be achieved by using the method
described in [3] which complements the rules for X ′ = (· · ·) and X2′ = (· · ·) as
follows: X ′ = (· · ·)∨X2 and X2′ = (· · ·)∧X. Since the CCEs appear in additive

180 O. Diop et al.

form in the continuous equations, we assume that only one CCE is sufficient to
trigger the activity of X, while the two CCEs are needed to trigger the activity
of X2. The order in which the CCEs are activated and in turn activate each
variable, was decided by comparing to the continuous solutions. The expressions
for the CCEs are written as logical conjunctions:

Ebox = Bmal ∧ CRY 2, Dbox = DBP ∧ E4,
Rbox = ROR ∧ REV , Rbox2 = ROR2 ∧ REV .

In the continuous model, there is only one nonlinear degradation term, corre-
sponding to the inhibition of BMAL1 transcription by PC (−γbpBMAL1 ·PC).
Accordingly, we assume Bmal is explicitly repressed by PC but, conversely, PC
is not strongly affected (indeed, our analysis showed that a rule of the form
PC = PER ∧ CRY ∧ Bmal prevents oscillatory behavior).

The binding of PER and CRY to form the complex PC is described by
mass-action kinetics in the continuous model (see term MPC in Table 1). In
the Boolean model, for simplicity, we assumed that PC is produced when both
PER and CRY are available, leading to the rule PC = PER ∧ CRY , but no
explicit effect from PC on PER or CRY . Although there is no systematic way
to translate mass-action kinetics or other mass conservation laws into Boolean
factors, and these are usually treated on a case-by-case basis, we will see in
Sect. 4 that the analysis by the summary graph method suggests a refinement
of the PER rule. This refinement can be interpreted as a more suitable way to
include the mass-action terms into the circadian clock Boolean model.

In this way, we obtained a qualitative multi-valued model which closely trans-
lates the differential model of [2]. The multi-valued model is equivalent to the
11-dimensional Boolean network depicted in Table 2, to which the methodology
in [5] can now be applied.

Table 2. Logical rules of the Boolean clock model, with 11 variables.

Bmal′ = ROR ∧ REV ∧ PC

ROR′ = ROR2 ∨ REV

REV ′ = (Bmal ∧ CRY 2) ∨ REV 2

DBP ′ = Bmal ∧ CRY 2

E4′ = ROR ∧ REV

CRY ′ = Bmal ∨ CRY 2

PER′ = (Bmal ∧ CRY 2) ∨ (DBP ∧ E4)

PC′ = PER ∧ CRY

REV 2′ = Bmal ∧ CRY 2 ∧ DBP ∧ E4 ∧ REV

CRY 2′ = Bmal ∧ CRY 2 ∧ ROR ∧ REV ∧ CRY

ROR2′ = Bmal ∧ CRY 2 ∧ ROR ∧ REV

Qualitative Analysis of a Mammalian Circadian Clock Model 181

2.2 First Dynamical Analysis of the Boolean Model

To compute and analyze the dynamical behavior of a Boolean model X ′
i =

Fi(X1, . . . , Xn), i = 1, . . . , n, we need to specify an updating order for the vari-
ables. Applying the logical rules in the order defined by the updating schedule
leads to a state transition graph (STG) with 2n states, where a sequence of
transitions represents a trajectory of the system. To analyze the STG, we first
compute its strongly connected components (SCCs) which are defined as sets of
states C, such that for every pair of states x, y ∈ C, there exist two paths (or
sequences of transitions) in C leading from x to y and from y to x. SCCs may
consist of single or multiple states and may have incoming and outgoing tran-
sitions, but two distinct SCCs can not be mutually connected, otherwise they
would form a single SCC. The asymptotic behavior of the system is thus char-
acterized by the SCCs without outgoing transitions, also called terminal SCCs
or attractors. An attractor with multiple states represents a periodic orbit of the
system.

As a preliminary analysis, we considered the basic synchronous updating
schedule, where all variables are simultaneously updated: Xi[t + 1] = Fi(X[t]).
The synchronous STG of the model contains a single attractor, composed of
only five states. This simple cyclic attractor captures the Bmal/PER:CRY phase
opposition, a central feature in the circadian clock (see Fig. 1).

11111110001 01110111000

11001000000 00000011000

01000000000

Fig. 1. Synchronous attractor of the Boolean model (variables are ordered as in
Table 2). Bold digits indicate the succession of states corresponding to the Bmal/PC
phase opposition: in the left column, Bmal is expressed while PC is turned off, the
former leading to expression of PER and CRY (top left); next PC becomes expressed
and Bmal is turned off (right column), and CRY and PER eventually turn off; at the
bottom both PC and Bmal are off, before a new cycle begins.

In this paper, we will prefer an asynchronous updating schedule as it is
much more realistic from a biological perspective. In this scheme, at most
one variable is updated at each instant. To construct the STG for this asyn-
chronous schedule, for each state X = (X1, . . . , Xn) define the subset of variables
IX = {i : Xi �= Fi(X)}. Then, for each i ∈ IX , add a transition X → Y where
Yi = Fi(X) and Yj = Xj for all j �= i. More details on the asynchronous strategy
can be found for instance in [21]. From a biological point of view, asynchronous
updating is preferable as it allows for variability and different timescales in the
network interactions. From a graph theoretical point of view, synchronous and

182 O. Diop et al.

asynchronous STGs are very different as the asynchronous STG is non determin-
istic, i.e. a state no longer has one and only one successor. Usually, this generates
lots of transitions, making biological interpretation more difficult.

When applied to our circadian model, the asynchronous strategy still gives
a single attractor, but the terminal SCC is now composed of 442 states and
1737 transitions. Interestingly, the five states of the synchronous attractor are
all present in the asynchronous attractor, but the simple cyclic trajectory has
now been replaced by a complex graph with a much larger amount of details. To
further analyze this attractor and validate our model, we consider six different
versions of the model representing six known mutations (see Table 3). For some
of them, circadian oscillations may be completely lost, which in our model trans-
lates to the attractor shrinking to a single fixed state. For others, oscillations
endure but are somewhat degraded (eg. with a shorter period); in those cases
our model conserves a complex attractor, but with less states than the original.
These results seem to confirm that the model in Table 2 reproduces the essential
core of the circadian clock dynamics.

Table 3. Effects of some mutations on the dynamics of the Boolean model.

Mutation Biological phenotype Effect on the attractor

Bmal=0 Arrhythmic (complete loss of
circadian oscillations) [9,18,19]

Single state attractor 0100100000

PER=0 Abnormal circadian oscillations
[9,18,19]

Attractor of 114 states

CRY=0 Abnormal circadian oscillations
[9,18,19]

Attractor of 106 states

REV=0 Shorter cycle period [15,18] Attractor of 80 states

ROR=0 Arrhythmic [9,18] Single state attractor 00000000000

REV=1 Arrhythmic [10] Single state attractor 00100000000

Mutant analysis constitutes an interesting way to validate a discrete dynam-
ical model. Indeed, the comparison between wild type and mutant phenotypes
usually provides qualitative differences, such as the disappearance of oscillations
for instance, that can be well captured by a Boolean model. Nevertheless, when
dealing with such a complex attractor (hundreds of states, thousands of transi-
tions), a more direct comparison of the attractor with biological data is rapidly
limited, hindering model validation. For example, in Table 3 the degradation of
circadian oscillations is paralleled with the number of states in the attractor,
which is questionable. In the following we use the methodology proposed in [5],
constructing a reduced version of the attractor based on biological knowledge.
This summary graph leads to refine the analysis of the attractor, providing fur-
ther validation of the model.

Qualitative Analysis of a Mammalian Circadian Clock Model 183

3 Comparing the Attractor with Circadian Oscillations

3.1 Dividing the Circadian Cycle into Qualitative Phases

In order to further analyze the model’s attractor, a necessary first step is to
classify its states into groups that will correspond to different stages of the
circadian clock. This is essentially a modeling step, therefore there is not a unique
way to make this classification, as it is based on a compromise between available
biological data on the one hand, and the different variables and interactions
included in the model on the other. In the following, we give a brief description of
the main regulatory events during the circadian cycle, together with the modeling
choices we made to deduce the corresponding partition of the attractor’s states.
For a comprehensive biological review we mainly referred to [20]. Note that this
article is based on data at the transcriptional level; therefore, we sometimes used
other sources to complete our classification (see [2,16] and references therein).

As already mentioned, a hallmark of circadian rhythm progression is the
phase opposition between the CLOCK:BMAL1 complex on the one hand and the
PER:CRY complex on the other. This opposition divides the cycle into two major
steps, approximately correlated with the day/night separation (see Fig. 2). More
precisely, [20] introduces two biological phases, respectively called Activation
and Repression. The first one takes place during the day and corresponds to the
activation of Bmal, while PER:CRY is absent. The second one sees the repression
of Bmal and takes place during the night. Projecting this on the variables of our
model, this leads to consider two groups of states: one where Bmal = 1, PC = 0
and one where Bmal = 0, PC = 1.

Fig. 2. Description of the main qualitative stages of the circadian clock. CT stands
for Circadian Time and is an standard marker of time arbitrarily starting (CT0) at
the beginning of activity for a diurnal organism. Top: temporal succession of biological
phases as described in [20]; middle: projection of the main regulatory events on the
model’s variables; bottom: corresponding qualitative phases Vi defined in (1).

These two main phases are separated by intermediate phases called Tran-
scription and Poised state-Derepression in [20]. In the Transcription phase, Per
and Cry genes are transcribed, followed by their complexation and the translo-
cation of the complex into the nucleus. With the lack of precise timing of these

184 O. Diop et al.

events, we decided to subdivide this into a first step where PER or CRY are
present but not at the same time, followed by a second step where they are both
present. The latter corresponds to the pre-formation step of the PER:CRY com-
plex, i.e. PER and CRY have sufficiently accumulated and the complex is about
to form in the cytosol [19]. Finally, after the repression phase, the PER:CRY
complex disappears due to auto-repression of PER and CRY [8]. Again, without
knowing the precise timing of the disappearance of PER, CRY and the complex,
we simply consider intermediary states where Bmal = PC = PER = CRY = 0,
just before the activation of Bmal and the subsequent beginning of a new cycle.

This description leads to the definition of five groups of states in the attractor,
or qualitative phases, denoted by (Vi)1≤i≤5 and defined as follows.

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

V1 = (Bmal ∧ PC) ∧ (PER ∨ CRY) (afternoon),
V2 = (Bmal ∧ PC) ∧ PER ∧ CRY (late afternoon),
V3 = Bmal ∧ PC ∧ PER ∧ CRY (transition day-night),
V4 = Bmal ∧ PC (night),
V5 = Bmal ∧ PC ∧ PER ∧ CRY (late night to next morning).

(1)

These phases are defined by taking into account the main variables of our
Boolean model. They are based on qualitative and not temporal considerations;
however, thanks to the description in [20] we were able to approximately place
them along the circadian time scale (see Fig. 2).

Remark 1. For the sake of convenience, we use the same symbol Vi to designate
both the subset of states in the attractor and the Boolean formula describing
those states. For instance, V4 = Bmal ∧ PC denotes the set of states in the
attractor such that Bmal = 0 and PC = 1.

3.2 Construction of the Summary Graph

Let A = (V,E) denote the attractor, which is a directed graph over |V | =
442 states. The sets Vi defined by (1) are, by definition, subsets of V that are
mutually exclusive. To complete them into a partition of V , introduce the set
U = V \

(⋃5
i=1 Vi

)
, containing “unclassified” states. The first thing to note with

this partition is that every Vi is actually not empty, confirming the attractor
accurately captures all important phases of the circadian clock. To be more
precise, |V1| = 77, |V2| = 31, |V3| = 31, |V4| = 136 and |V5| = 30 and there are
|U | = 137 unclassified states. We now briefly recall the definition of a summary
graph (interested reader may refer to [5] for more details).

Definition 1. The summary graph of the graph A = (V,E) on a partition
P = {V1, V2, . . . , Vk} of V is the directed graph G = (P, E), whose vertices are
the Vi, i = 1, . . . , k and where there is an edge from Vi to Vj iff i �= j and there
exist x ∈ Vi and y ∈ Vj such that (x, y) ∈ E.

From a graph theoretical point of view, G is simply the quotient graph of A on
the partition P. For the sake of simplicity, we use the same symbol Vi to design

Qualitative Analysis of a Mammalian Circadian Clock Model 185

the set of states Vi and the vertex Vi of the summary graph. This enables an
easy description of sets of trajectories in the attractor A: actually, each edge of
the summary graph is unequivocally associated with a subset of asynchronous
transitions in A. The summary graph of the attractor is depicted in Fig. 3 (top
left).

wild type mutant PER = 0

mutant CRY = 0 mutant REV = 0

Fig. 3. Summary graph of the attractor on the partition {U, Vi, i = 1 . . . 5} defined in
(1), in wild type condition as well as for mutants PER = 0, CRY = 0 and REV = 0.

The summary graph in Fig. 3(top left) shows that the expected succession of
phases V1 → V2 → V3 → V4 → V5 → V1 is actually present, confirming the exis-
tence of accurate circadian oscillations in the attractor, with respect to regulators
Bmal, PER , CRY and PER:CRY. Moreover, three one-directional transitions
V2 → V3, V3 → V4, and V4 → V5 even indicate irreversible progression through
the cycle. The edge V2 → V3 corresponds to the formation and translocation of
the PC complex, following the accumulation of PER and CRY. This irreversibil-
ity is in adequacy with [19]: as the main role of PC is to inhibit Bmal, it will
switch off only after Bmal = 0. Similarly, the edge from V3 to V4 corresponds
to transitions where Bmal is repressed, which is known to be irreversible. As
for the edge V4 → V5, it is associated to a set of transitions where PC switches
off and can be viewed as a consequence of PER and CRY auto-repression [8].
From a graph point of view, the presence of these three one-directional edges
imposes a general orientation for the cycle, consistent with what is known on
the opposition between the Activation and Repression phases of [20].

In addition to the summary graph in wild type condition, Fig. 3 also shows
the summary graphs for the three mutants that exhibited oscillatory behaviors
in Table 3: PER = 0, CRY = 0 and REV = 0. Interestingly, the mutation
of REV has a limited impact on the succession of the phases, showing this

186 O. Diop et al.

perturbation does not impair the cycle progression, as it was observed in [15,
18]. For PER and CRY mutants, the perturbation is stronger and the cycle
is impaired. However, we still observe a Bmal oscillation between V1 and V5

(notably through U), confirming circadian oscillations may persist, although in
a degraded form [9,18,19].

Whether in wild type or in mutant conditions, the summary graph reveals
to be a powerful tool to analyze asynchronous attractors of complex oscillatory
biological systems, such as the circadian clock. In the next part, we propose an
extension of this analysis, where we show how to use this tool to help redesign
the network, and assess the general robustness of the model.

4 Advanced Analysis of the Attractor

The summary graphs in Fig. 3 allow a direct comparison of the model’s attractor
with biological knowledge on the circadian cycle, both in wild type and mutant
conditions. In particular, we were able to track the expected succession of qual-
itative phases within the attractor, thus validating that our model captures
the essential core of the regulatory network. Nevertheless, the summary graphs
also point to spurious transitions to (and from) the set of unclassified states U ,
responsible for “short-circuits” between phases. Such spurious trajectories may
reveal abnormal behaviors, with unwanted transitions in the model, or they may
catch important links ensuring the overall robustness of the cycle. In both cases,
the summary graph provides an ideal tool to detect those spurious transitions
and analyze them in a biological context.

4.1 Adjustment of the Attractor and Refinement of the Model

We start with a more in-depth examination of the set U . In Sect. 3 it is defined
as U := V \ (

⋃
i Vi) ⊆ {0, 1}11 and is a subset of 137 states in the attractor that

we were not able to classify according to the general description of the circa-
dian cycle. By assigning the value 1 to the states in U and the value 0 to the
states in V \U , we obtain a partial Boolean function (PBF) that we can identify
using Boolean inference techniques (see [21,22]). The inference consists in iden-
tifying minimal supports1, i.e. minimal subsets of variables that are sufficient
to reproduce the PBF. This function provides an easy way to characterize the
unclassified states, showing they can be decomposed into two components:

U = Bmal ∧ PC ∧ (PER ∨ CRY)
︸ ︷︷ ︸

U1

∨Bmal ∧ PC ∧ PER︸ ︷︷ ︸
U2

. (2)

While the inference of a PBF does not lead to a unique solution in general, here
(2) is actually unique, as the set {Bmal,PC,PER,CRY} is the only minimal
1 In [21], this step is performed by the algorithm REVEAL [11], in [22] it is performed

by the algorithm presented in [12]. Overall, all the inferences performed in the present
paper are fast, due to the small dimension (11) of the network. A general discussion
about the complexity of the inference problem can be found for instance in [22].

Qualitative Analysis of a Mammalian Circadian Clock Model 187

support of the PBF U (it will be the case for all PBF identified in this article). As
before, we conveniently use the same symbol U to designate the set of unclassified
states (within the attractor) and the Boolean function that characterizes them
(see Remark 1 above).

The Boolean formula of U is decomposed as in (2) to highlight two separate
subsets of unclassified states: the first one U1 is composed of states where vari-
ables Bmal and PC are both off whereas the second one U2 is composed of states
where variables Bmal and PC are both on. Specifically, in this second subset the
PER:CRY complex is forming (since it has not repressed Bmal yet) while PER
is switched off. Clearly, such states should not exist in the attractor since PER is
essential for complex formation. In order to observe the interplay between U1, U2

with the different phases Vi, we reconstruct the summary graph of the attractor,
using Definition 1 on the new partition {V1 . . . , V5, U1, U2} (Fig. 4, left).

By looking at this graph, one can see that the set U2 is connected to the rest
of the attractor mainly through phase V3. More precisely, only six transitions
in the attractor are responsible for the entry into U2, all coming from V3. Since
an asynchronous strategy is used, all these transitions can be traced back to
situations where PER has disappeared before the complex PER:CRY has com-
pleted the repression of Bmal, leading to a contradiction. Therefore, we decide
to suppress these transitions in the attractor, leading to the disconnection of the
set U2 (Fig. 4, center).

Fig. 4. Refined summary graphs. Left: initial attractor’s summary graph with U decom-
posed in (U1, U2); center: summary graph once the six transitions V3 → U2 have been
removed; right: summary graph of the new amended model’s attractor.

After the removal of the six transitions in the graph of the attractor, we
obtain a new amended model by applying a few steps. First, we recompute the
strongly connected component decomposition of the truncated attractor. We find
a unique terminal SCC of 393 states, in which the states in U2 have disappeared.
From this SCC we reconstruct the partial truth table of the network on these
393 states, and then use an inference technique to identify the logical rules
corresponding to this partial truth table. The last two steps (construction of
partial truth table, followed by inference) are described in more details in [5]
and, in a different context, in [21]. Finally, the only affected rule of the network
is the rule of variable PER, with the addition of a new (unique) clause:

PER′ = (Bmal ∧ CRY 2) ∨ (DBP ∧ E4)∨(Bmal ∧ PC). (3)

188 O. Diop et al.

To verify that this modification did not alter other parts of the dynamics, we
made the same analyses as in Sects. 2 and 3, confirming that the slight modi-
fication in (3) was sufficient to get rid of unwanted states U2 while conserving
good dynamical properties, in wild type and mutant conditions. The summary
graph of this new amended model is depicted in Fig. 4, on the right.

The modified rule (3) adds a single new interaction in the network, which
is a positive effect of PC onto PER (the positive effect of Bmal to PER was
already present in the original network). Interestingly, this effect was present
in the ODE system of [2], as an unbinding term of the PER:CRY complex. As
already said, such mass action law kinetic terms are often made implicit by
default in the Boolean framework. Here, our method points to the importance
of this particular one to avoid unwanted transitions within the attractor. From
a modeling point of view, the summary graph thus provides a valuable help in
the design of Boolean models of complex, oscillating biological systems.

4.2 A Tool to Assess the General Robustness of the Attractor

The remaining set of unclassified states U1 is composed of states where Bmal
and PC are off while PER or CRY can be on. Contrary to U2, this set is highly
connected to almost every phases of the attractor (see Fig. 4). In total, the four
edges entering in U1 amount to 117 transitions. As before, we tried to remove
those transitions in order to disconnect U1 from the rest of the attractor, thus
obtaining a final summary graph perfectly matching the order of the phases.
However, although showing no more short-cut between phases, this version loses
some essential dynamical property. Indeed, the PER and CRY mutants no longer
exhibit oscillatory behaviors, suggesting that at least a subset of these transitions
are needed for a proper behavior of the model.

Nevertheless, even though those transitions cannot be removed all together,
we can still use the summary graph to investigate the model further and analyze
each edge entering U1 separately, in the context of the circadian cycle.

1. The edge V4 → U1 is associated with 63 transitions in which the variable
PC switches off while PER and CRY are not both deactivated. From a
biological point of view, it means that the PER:CRY complex disappears
before PER and CRY have disappeared, indicating a short half-life of the
complex. These transitions are to be compared with the V4 → V5 transitions
where PC switches off after PER and CRY , suggesting a longer half-life.
In our model the two types of transitions coexist since the relative times of
disappearance of the three components, PER, CRY and PER:CRY are not
taken explicitly into account. Interestingly, note that the removal of the 63
transitions does not affect the global dynamical properties of the attractor,
as the mutants are not affected.

2. The edge V5 → U1 corresponds to 9 transitions in the attractor, in which
the variable PER switches on while Bmal is not yet active. Since PER tran-
scription is activated through the CLOCK:BMAL1 complex, these transitions

Qualitative Analysis of a Mammalian Circadian Clock Model 189

seem rather unrealistic. To investigate further, we removed the transitions and
applied the same technique as before, to obtain the modified PER rule:

PER′ = (Bmal ∧ CRY 2) ∨(Bmal ∧ PC)
∨ [

(DBP ∧ E4)∧(PER ∨ CRY ∨ PC)
]
.

Dynamically, the removal does not affect the main properties of the attractor
(the summary graphs of wild type and mutant conditions are similar) however,
the inferred logical rule exhibits new and undocumented interactions, namely
an auto-activation of PER and a positive effect of CRY on PER. This points
to a specific part of the model that will need a closer look in the future.

3. Finally, the edges V1 → U1 and V2 → U1 correspond to a total of 45 transitions
in which the variable Bmal switches to 0 in the absence of PC. With respect
to circadian clock events, these transitions describe an early deactivation of
Bmal, leading the cycle to bypass the important steps of PER:CRY formation
and translocation (phase V3). However, it is the removal of these transitions
that directly alter the behaviors of the mutants, suggesting they are necessary
to ensure the robustness of the attractor. Their removal leads to a new rule
for Bmal:

Bmal′ = (ROR ∧ REV ∧ PC) ∨ [
(Bmal ∧ (PER ∨ CRY) ∧ PC

]
,

that highlights, besides an auto-activation term, a direct positive effect of
PER and CRY on Bmal. Those new interactions generate two positive feed-
back loops involving Bmal, PER and CRY that directly interfere with the
negative feedback loop between Bmal and PC:

Bmal

��

�� PC�

PER,CRY

�� ��

This alteration of the negative loop is directly responsible for the loss of
robustness of the model.

The objective of this section was to analyse the “short-cut” transitions in the
circadian attractor (see Fig. 4 left). As shown by the three examples above, the
summary graph combined with Boolean inference indicates that some of these
unwarranted transitions should not be removed and, in fact, appear to play
a significant role during the progression of the cycle, namely in the system’s
response to gene knock-outs.

190 O. Diop et al.

5 Conclusions and Perspectives

In this article we used the summary graph, a novel tool introduced in [5], to
analyze a Boolean model of the mammalian circadian cycle regulation. This tool
is well adapted to study biological oscillations, as it provides a rational way to
compare a complex Boolean attractor (with hundreds of states) with an oscil-
lating phenomenon. Combined with Boolean inference techniques, it becomes
particularly useful in model design as it allows to relate a local dynamical prop-
erty of the attractor, such as the transition from one phase to the next, to the
part of the network’s topology directly responsible for it.

After verifying the model’s attractor correctly captures the correct succession
of phases, the summary graph was further analyzed to provide more insight on
the model.

In a first step, our analysis indicates that the attractor contains many “short-
cuts”, that is transitions between states (essentially towards sets U1 and U2)
which may lead to distorted cycles with very short days or very short nights. In
a second step, the analysis shows that some of these short-cuts (those passing
through set U2) can be removed by a refinement of the logical rules. Namely,
the rule of PER should be modified to include the effect of PC dissociation
which, for simplicity, was not taken into account in the initial Boolean model
(compare Table 2 and Eq. (3)). Finally, in a third step, our analysis suggests
that some short-cuts, specifically V1 → U1 and V2 → U1, are necessary for
a correct performance. These transitions are characterized by an early BMAL1
deactivation, and they are responsible also for generating the short cycle mutants
observed in the PER and CRY knock-outs. The transitions through U1 may thus
be necessary to generate circadian cycle robustness in response to perturbations
in gene expression.

More generally, the summary graph provides an efficient way to tackle com-
plex qualitative attractors, by testing the effect of specific perturbations on the
dynamics. In future works we plan to further investigate the role of the states
U1 in maintaining circadian oscillations, by studying the links between state
transitions and the topology of the circadian network.

Acknowledgements. The authors would like to thank Franck Delaunay for many
useful discussions on the circadian clock events, as well as for pointers to relevant
references.

References

1. Akman, O., Watterson, S., Parton, A., Binns, N., Millar, A., Ghazal, P.: Digital
clocks: Simple boolean models can quantitatively describe circadian systems. J. R.
Soc. Interface 9, 2365–2382 (2012)

2. Almeida, S., Chaves, M., Delaunay, F.: Transcription-based circadian mechanism
controls the duration of molecular clock states in response to signaling inputs. J.
Theor. Biol. 484, 110015 (2020)

Qualitative Analysis of a Mammalian Circadian Clock Model 191

3. Chaves, M., Tournier, L., Gouzé, J.L.: Comparing Boolean and piecewise affine
differential models for genetic networks. Acta Biotheor. 58(2–3), 217–232 (2010)

4. Comet, J.P., Bernot, G., Das, A., Diener, F., Massot, C., Cessieux, A.: Simplified
models for the mammalian circadian clock. Procedia Comput. Sci. 11, 127–138
(2012)

5. Diop, O., Tournier, L., Fromion, V.: Summarizing complex asynchronous Boolean
attractors, application to the analysis of a mammalian cell cycle model. In: 18th
European Control Conference (ECC), Naples, Italy, pp. 1677–1682 (2019)

6. Fauré, A., Naldi, A., Chaouiya, C., Thieffry, D.: Dynamical analysis of a generic
boolean model for the control of the mammalian cell cycle. Bioinformatics 22(14),
e124–e131 (2006)

7. Forger, D.B.: Biological Clocks, Rhythms, and Oscillations: The Theory of Biolog-
ical Timekeeping. MIT Press (2017)

8. Gallego, M., Virshup, D.M.: Post-translational modifications regulate the ticking
of the circadian clock. Nat. Rev. Mol. Cell Biol. 8(2), 139–148 (2007)

9. Ko, C.H., Takahashi, J.S.: Molecular components of the mammalian circadian
clock. Hum. Mol. Genet. 15(suppl 2), R271–R277 (2006)

10. Kornmann, B., Schaad, O., Bujard, H., Takahashi, J.S., Schibler, U.: System-driven
and oscillator-dependent circadian transcription in mice with a conditionally active
liver clock. PLoS Biol. 5(2), e34 (2007)

11. Liang, S., Fuhrman, S., Somogyi, R.: Reveal, a general reverse engineering algo-
rithm for inference of genetic network architectures. In: Pacific Symposium on
Biocomputing, vol. 3, pp. 18–29 (1998)

12. Murakami, K., Uno, T.: Efficient algorithms for dualizing large-scale hypergraphs.
Discrete Appl. Math. 170, 83–94 (2014)

13. Ndiaye, I., Chaves, M., Gouzé, J.L.: Oscillations induced by different timescales in
signal transduction modules regulated by slowly evolving protein-protein interac-
tions. IET Syst. Biol. 4(4), 263–276 (2010)

14. Poignard, C., Chaves, M., Gouzé, J.L.: A stability result for periodic solutions of
nonmonotonic smooth negative feedback systems. SIAM J. Appl. Dyn. Syst. 17(2),
1091–1116 (2018)

15. Preitner, N., et al.: The orphan nuclear receptor rev-erbα controls circadian tran-
scription within the positive limb of the mammalian circadian oscillator. Cell
110(2), 251–260 (2002)

16. Relógio, A., Westermark, P.O., Wallach, T., Schellenberg, K., Kramer, A., Herzel,
H.: Tuning the mammalian circadian clock: robust synergy of two loops. PLoS
Comput. Biol. 7(12), e1002309 (2011)

17. Remy, E.: Mossé B., Thieffry D.: Boolean dynamics of compound regulatory cir-
cuits. In: Rogato, A., Zazzu, V., Guarracino, M. (eds.) Dynamics of Mathematical
Models in Biology. Springer, Cham (2016)

18. Ripperger, J.A., Jud, C., Albrecht, U.: The daily rhythm of mice. FEBS Lett.
585(10), 1384–1392 (2011)

19. Rosensweig, C., Green, C.B.: Periodicity, repression, and the molecular architecture
of the mammalian circadian clock. Eur. J. Neurosci. 51(1), 139–165 (2018)

20. Takahashi, J.S.: Transcriptional architecture of the mammalian circadian clock.
Nat. Rev. Genet. 18(3), 164 (2017)

21. Tournier, L., Chaves, M.: Uncovering operational interactions in genetic networks
using asynchronous Boolean dynamics. J. Theor. Biol. 260(2), 196–209 (2009)

22. Tournier, L., Goelzer, A., Fromion, V.: Optimal resource allocation enables mathe-
matical exploration of microbial metabolic configurations. J. Math. Biol. 75, 1349–
1380 (2017). https://doi.org/10.1007/s00285-017-1118-5

https://doi.org/10.1007/s00285-017-1118-5

192 O. Diop et al.

23. Traynard, P., Feillet, C., Soliman, S., Delaunay, F., Fages, F.: Model-based investi-
gation of the circadian clock and cell cycle coupling in mouse embryonic fibroblasts:
Prediction of reverb-α up-regulation during mitosis. BioSyst. 149, 59–69 (2016)

24. Van Ham, P.: How to deal with variables with more than two levels. In: Kinetic
Logic a Boolean Approach to the Analysis of Complex Regulatory Systems, pp.
326–343. Springer, Berlin, Heidelberg (1979)

Synthesis and Simulation of Ensembles
of Boolean Networks for Cell Fate

Decision

Stéphanie Chevalier1, Vincent Noël2, Laurence Calzone2, Andrei Zinovyev2,3,
and Löıc Paulevé4(B)

1 LRI, CNRS, UMR8623, Univ. Paris-Saclay, Orsay, France
2 Institut Curie, INSERM, U. PSL, Mines ParisTech, Paris, France

3 Lobachevsky University, 603000 Nizhny Novgorod, Russia
4 Univ. Bordeaux, Bordeaux INP, CNRS, LaBRI, UMR5800,

33400 Talence, France
loic.pauleve@labri.fr

Abstract. The construction of models of biological networks from prior
knowledge and experimental data often leads to a multitude of candidate
models. Devising a single model from them can require arbitrary choices,
which may lead to strong biases in subsequent predictions.

We introduce here a methodology for a) synthesizing Boolean model
ensembles satisfying a set of biologically relevant constraints and b)
reasoning on the dynamics of the ensembles of models. The synthesis
is performed using Answer-Set Programming, extending prior work to
account for solution diversity and universal constraints on reachable fixed
points, enabling an accurate specification of desired dynamics. The sam-
pled models are then simulated and the results are aggregated through
averaging or can be analyzed as a multi-dimensional distribution.

We illustrate our approach on a previously published Boolean model
of a molecular network regulating the cell fate decisions in cancer progres-
sion. It appears that the ensemble-based approach to Boolean modelling
brings new insights on the variability of synergistic interacting mutations
effect concerning propensity of a cancer cell to metastasize.

1 Introduction

The ability to derive one single model from observations of a biological system
usually faces arbitrary choices, sometimes referred to as art.

Computational models of molecular interaction networks are usually built
from data related to the architecture of the network from known interactions;
and data related to its dynamics, such as measurements of gene expressions or
proteins activity at different times and/or conditions. However, despite huge
advances in experimental technologies, observations of the biological processes
stay very scarce, either in terms of temporal resolution, number of observed

S. Chevalier and V. Noël—Co-first authors.

c© Springer Nature Switzerland AG 2020
A. Abate et al. (Eds.): CMSB 2020, LNBI 12314, pp. 193–209, 2020.
https://doi.org/10.1007/978-3-030-60327-4_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-60327-4_11&domain=pdf
https://doi.org/10.1007/978-3-030-60327-4_11

194 S. Chevalier et al.

entities, synchronisation between measure points, or a variety of experimental
conditions. Combined with complex structures for molecular interactions, the
model engineering problem, in this case, appears to be largely under-specified,
leading to (too) many potential candidate models.

Boolean Networks (BNs), and logical models in general, are widely adopted
for the modelling of signalling pathways and gene and transcription factors net-
works [3,5,28]. With BNs, the activity of components is caricatured to “off” and
“on” , and their evolution is computed according to logical rules (e.g., gene 1
can be active only whenever its activators 2 and 3 are active). However, in prac-
tice, biological data still let open a multitude of candidate BNs. Thus, arbitrary
modelling choices have to be made, e.g., by prioritizing certain logics between
regulators or by preferring smallest/largest models, which may introduce biases
in subsequent model predictions.

In this paper, we present an approach aiming at reducing modelling biases by
constructing and reasoning on dynamics of ensembles of BNs. The idea of ensem-
ble modelling has recently gained momentum with machine learning, notably
with random forests. By analogy, we constitute ensembles of BNs sampled from
the whole multitude of models compatible with network architecture and dynam-
ical properties. They are then simulated asynchronously and the simulations are
aggregated through averaging. The obtained results allow an interpretation at
the level of cell population and take into account its potential heterogeneity.

In the literature, ensembles of random BNs have been employed to show
emerging properties of families of BNs sharing properties related to their archi-
tecture or logic rules [14,16]. In [21], ensembles of BNs sharing a network
architecture are used to assess dynamical properties of qualitative differential
equations. In contrast, our approach is focused on ensembles of models which
satisfy a set of constraints both on their architecture and on their dynamics.
Synthesis of BNs from such constraints received a lot of interest in the litera-
ture [2,6,7,13,24,27], and methods like [2,6,13,27] allows reasoning implicitly
on ensembles of models, notably by enabling checking for their emptiness.

Here, we extend prior work on BNs synthesis from reachability and attractor
properties with Most Permissive semantics [2] to support universal properties
on (reachable) fixed points and the specification of network perturbations. The
synthesis is performed with the logic framework of Answer-Set Programming [1]
(ASP). Then, we use heuristics to drive the ASP solver in different regions of
the solution space to sample ensembles of BNs capturing the diversity of the
comprehensive solution set. Dynamics of ensembles are then explored through
stochastic simulations for quantifying the propensities of reachable attractors,
subject to different network perturbations. To that aim, we extended the simu-
lator MaBoSS [22] to support ensembles of BNs as input.

We illustrate our approach on a model of molecular pathways regulating
tumour invasion and migration [4]. We sampled ensembles of BNs sharing the
same network architecture as the original model and constrained by the dynam-
ical properties related to attractor reachability. Then, as in the original study,
we evaluated the shift of reachable phenotypes caused by an epistatic interaction

Synthesis and Simulation of Ensembles of Boolean Networks 195

between mutations in model genes (gain of Notch function and loss of p53 func-
tion). It appears that, contrary to the initial single model analysis, the ensemble
approach reveals a potential variability in the effectiveness of the double mutant
to enhance the metastasis potential.

2 Background

2.1 Boolean Networks

A Boolean network (BN) of dimension n is a function

f : Bn → B
n (1)

where B := {0, 1}. For all i ∈ [n], fi : B
n → B denotes the local function of

the i-th component. A vector x ∈ B
n is called a configuration of the BN f . The

set of components which value differs between two configurations x, y ∈ B
n is

denoted by Δ(x, y) := {i ∈ [n] | xi �= yi}.
A BN f is said locally monotonic whenever each of its local functions is

monotonic (this does not imply f monotonicity). Intuitively, local monotonic-
ity imposes that a variable always appears with the same sign in a minimal
disjunctive/conjunctive normal form of the local functions.

Figure 1 is an example of locally-monotonic BN with n = 3.

Mutations. In the following, we will consider the analysis of a BN f subject
to some permanent perturbations of its components, that we refer to as muta-
tions, being either a gain of function (GoF; locked to 1) and loss of function
(LoF; locked to 0). A mutation is specified by a couple (i, v), where i ∈ [n] is a
component and v ∈ B is its forced value. Given a BN f and a set of mutations
M ⊆ [n] × B, we denote by f/M the mutated BN, where, for each i ∈ [n],
(f/M)i(x) := v if (i, v) ∈ M , and (f/M)i(x) := fi(x) otherwise.

Influence Graph. For each i ∈ [n], fi typically depends on a small subset of
components of the BN. The influence graph summarizes these dependencies with
a positive (resp. negative) edge from node j to i if there are configurations in
which the sole increase of j would strictly increase (resp. decrease) the value of
fi. A node can have both positive and negative influences on i, indicating that
fi is non-monotonic. Remark that different BNs can have the same influence
graph. Fig. 1 (right) shows the influence graph of the BN example.

f1(x) := ¬x2

f2(x) := ¬x1

f3(x) := ¬x1 ∧ x2

1

3
2

Fig. 1. Example of Boolean network f and its influence graph G(f) where positive
edges are with normal tip and negative edges are with bar tip.

196 S. Chevalier et al.

Definition 1. Given a BN f of dimension n, its influence graph G(f) is a
directed graph ([n], E+, E−) with positive and negative edges such that (j, i) ∈
E+ (resp. (j, i) ∈ E−) iff ∃x, y ∈ B

n s.t. Δ(x, y) = {j}, xj < yj, and fi(x) <
fi(y) (resp. fi(x) > fi(y)). The influence graph G = ([n], E+, E−) is a subgraph
of G′ = ([n], E′

+, E′
−), denoted by G ⊆ G′, iff E+ ⊆ E′

+ and E− ⊆ E′
−.

2.2 BN Semantics

From a configuration x ∈ B
n, semantics of BNs specify how to compute the

next possible configurations. One of the most classical semantics is the fully-
asynchronous (often simply called asynchronous), where only one component i
is updated at a time (to the value fi(x)). It can be defined as a binary relation
f−→
a1

between configurations:

Definition 2 (Fully-Asynchronous Semantics).

∀x, y ∈ B
n, x

f−→
a1

y iff ∃i ∈ [n] : Δ(x, y) = {i} ∧ yi = fi(x).

We write ρf
a1(x) := {y ∈ B

n | x
f−→
a1

∗ y} the set of configurations in transitive

relation with x, with
f−→
a1

∗ the reflexive and transitive closure of
f−→
a1

.

However, as demonstrated in [19], the fully-asynchronous semantics of BNs,
as the synchronous and (general) asynchronous, are not faithful abstractions of
quantitative systems: they can both introduce spurious behaviours (as expected
with qualitative models) and miss others.

The Most Permissive (MP) semantics of BNs [19] offers the guarantees to
not preclude any behaviour realisable in any quantitative refinement of the
model, thus providing a formal over-approximation of dynamics. Moreover, the
abstraction is minimal: any behaviour it predicts is realisable by a quantitative
refinement of the BN using the asynchronous semantics. Importantly, the com-
plexity for deciding main dynamical properties is considerably lower than with
(a)synchronous semantics, as we will mention in the next subsection.

MPBNs can be defined by the means of hypercubes (partially) closed by f ,
a hypercube being specified by a vector associating each component to either a
fixed Boolean value or free (∗).

Definition 3 (Hypercube). A hypercube h of dimension n is a vector in
(B ∪ {∗})n. The set of its associated configurations is denoted by c(h) := {x ∈
B

n | ∀i ∈ [n], hi �= ∗ ⇒ xi = hi}.
Given two hypercubes h, h′ ∈ (B ∪ {∗})n, h is smaller than h′ if and only if

∀i ∈ [n], h′
i �= ∗ ⇒ hi = h′

i.

Definition 4 (K-Closed Hypercube). Given a subset of components K ⊆
[n], a hypercube h ∈ (B∪{∗})n is K-closed by f whenever for each configuration
x ∈ c(h), for each component i ∈ K, hi ∈ {∗, fi(x)}.
It is minimal whenever no different K-closed hypercube is smaller than it.

Synthesis and Simulation of Ensembles of Boolean Networks 197

010 110

000 100

011 111

001 101

010 110

000 100

011 111

001 101

010 110

000 100

011 111

001 101

K = {2} K = {1, 3} K = {1, 2, 3}
1 ∗ 0 10∗ 1 ∗ ∗

Fig. 2. Examples of smallest K-closed hypercubes containing the configuration 100
for the BN f of dimension 3 defined by f1(x) := 1, f2(x) := x1, f3(x) := x1 ∧ ¬x3.
Configurations belonging to the hypercube are in bold; these verifying the MP reacha-
bility property are boxed. The hypercube 11∗ is the only one which is closed by f and
minimal.

A hypercube [n]-closed by f is also known as a trap space [15].

Example 1. Let us consider the BN f : B3 → B
3 with f1(x) := 1, f2(x) := x1,

and f3(x) := x1 ∧ ¬x3. The hypercube 1 ∗ ∗ is closed by f , with c(1 ∗ ∗) =
{100, 101, 110, 111}. The hypercube 1 ∗ 0 is the smallest hypercube {2}-closed
by f containing 100; it is not closed by f , nor the smallest hypercube {2}-closed
by f containing 110.

Starting from a configuration x ∈ B
n, the MP semantics allows transitions

towards any configuration y which is present in at least one smallest K-closed
hypercube h containing x, for some K ⊆ n, and so that the state of each com-
ponent i ∈ K of y can be computed by fi from a configuration of h.

Definition 5 (Most-Permissive Semantics). Given a BN f of dimension n
and two configurations x, y ∈ B

n, y ∈ ρf
mp(x) if and only if there exists K ⊆ [n]

such that the smallest K-closed hypercube h containing x verifies (1) y ∈ c(h),
and (2) ∀i ∈ K, there exists a configuration z ∈ c(h) such that fi(z) = yi.

Figure 2 gives examples of computations of ρf
mp.

A way to interpret the MP semantics is to see the components free in a
hypercube as being in the course of changing of state, while other components
can independently consider them either as 0 or 1. This abstracts the missing
information on the ordering of thresholds of activation/inhibition between com-
ponents: while the quantitative value of component u progressively increases, at
a given time it can be high enough to activate a component (i.e., 1) but not
yet high enough to activate another one (i.e., 0). These dynamic states are over-
looked by asynchronous semantics, making it an incorrect over-approximation
of quantitative systems, contrary to the MP semantics [19].

2.3 Dynamical Properties

In the following, we will focus on two main dynamical properties of BNs: reach-
ability which relates to the existence of trajectories between two configurations,

198 S. Chevalier et al.

and attractors which relates to long-run behaviours by identifying the smallest
sets of configurations closed by reachability.

Definition 6 (Reachability). Given two configurations x, y ∈ B
n of a BN f

with semantics σ, y is reachable from x whenever y ∈ ρf
σ(x).

Definition 7 (Attractor). A non-empty set of configurations A ⊆ B
n is an

attractor of the BN f with semantics σ whenever ∀x ∈ A, ρf
σ(x) = A.

When A = {x} for some x ∈ B
n, we say that x is a fixed point.

With MP semantics, attractors match with minimal trap spaces. With fully-
asynchronous semantics, deciding if y ∈ ρf

a1(x) or if x belongs to an attractor are
both PSPACE-complete problems. With MP semantics, deciding if y ∈ ρf

mp(x)
is PTIME if f is locally-monotonic and PNP otherwise; deciding if x belongs to
an attractor is coNP if f is locally-monotonic and coNPcoNP otherwise. Deciding
if there exists a fixed point is NP-complete with both semantics [19].

Notice the following relations between MP and fully-asynchronous semantics:

– x ∈ B
n is a fixed point with MP semantics if and only if it is a fixed point

with full-asynchronous semantics (iff f(x) = x);
– y ∈ B

n is reachable from x ∈ B
n with the fully-asynchronous semantics only

if it is reachable with MP semantics (ρf
a1(x) ⊆ ρf

mp(x));
– the number of attractors with MP semantics is less than or equal to the

number of attractors with fully-asynchronous semantics.

2.4 Answer-Set Programming

Answer Set Programming (ASP; [1,10]) is a declarative approach to solving com-
binatorial satisfaction problems. It is close to SAT (propositional satisfiability)
[17] and known to be efficient for enumerating solutions of NP problems com-
prising up to tens of millions of variables while providing a convenient language
for specifying the problem. We give a very brief overview of ASP syntax and
semantics that we use in the next sections; see [10] for more details.

An ASP program is a Logic Program (LP) being a set of logical rules with
first order logic predicates of the form:

1 a0 ← a1, . . ., an, not an+1, . . ., not an+k.

where ai are (variable-free) atoms, i.e., elements of the Herbrand base, which is
built from all the possible predicates of the LP. The Herbrand base is built by
instantiating the LP predicates with the LP terms (constants or elements of the
Herbrand universe).

Essentially, such a logical rule states that when all a1, . . . , an are true and
none of an+1, . . . , an+k can be proven to be true, then a0 has to be true as well.
Whenever a0 is ⊥ (false), the rule, also called integrity constraint, becomes:

2 ←a1, . . ., an, not an+1, . . ., not an+k.

Synthesis and Simulation of Ensembles of Boolean Networks 199

Such a rule is satisfied only if the right-hand side of the rule is false (at least
one of a1, . . . , an is false or at least one of an+1, . . . , an+k is true). On the other
hand, a0:- (a0 is always true) is abbreviated as a0. A solution (answer set)
is a stable Herbrand model, that is, a minimal set of true atoms where all the
logical rules are satisfied. For instance, consider the following program:

3 a.

4 b ← a.

5 d ← a, c.

It has for unique solution {a, b}: indeed, whereas {a,b,d} does not contradict
the rules, d is not a fact and cannot be derived from a rule; so it is not stable.

ASP allows using variables (starting with an upper-case) instead of
terms/predicates: these template declarations will be expanded before the solv-
ing. We also use the notation a(X): b(X) which is satisfied when for each b(X)

true, a(X) is true. If any term follows such a condition, it is separated with ;.
ASP can express disjunctive logic programs [18], by the means of disjunctions

in the rule head (“;”-separated atoms):

6 a; b ← body.

Such a disjunctive rule implies that solutions are subset minimal: an answer set
is a solution only if none of its subsets is itself a solution [9]. For instance, let’s
consider the disjunction:

7 a; b; c.

The interpretation I = {a, b} is a model but not minimal: both interpretations
{a} and {b} are smaller than I and satisfy the rule. Hence I is not a solution. As
showed in [8], the complexity of problems addressed with ASP can be extended
thanks to disjunctive rules up to 2QBF, i.e. a two quantification levels Boolean
formula (∀x∃y.φ or ∃y∀x.φ where φ is a quantifier-free propositional formula).
Indeed, 2QBF can be reduced to the problem of verifying the existence of an
answer set of a disjunctive ASP program.

3 BN Synthesis from Architecture and Dynamical
Properties

We formulate the problem of BN synthesis as a Boolean satisfiability prob-
lem encoded in ASP. With this approach, we leverage a priori knowledge and
experimental data as constraints on the network architecture and the dynamical
properties of the models under the MP semantics. Our method is based on [2],
which implements constraints on existence and absence of trajectories between
partially-specified configurations, existence of (reachable) fixed points and trap
spaces. In biological applications, these constraints match well the observed prop-
erties of cell populations evolving towards mutually exclusive phenotypes.

In this paper, we extend [2] to support universal properties on (reachable)
attractors. This enables specifying tight dynamical constraints. For instance,

200 S. Chevalier et al.

given a set of experimentally observed phenotypes, existential constraints guar-
antee that at least one attractor of the model dynamics match with each pheno-
type, whereas a universal constraint ensures that every attractor matches with
at least one of the phenotype.

A universal property involves by nature universal quantifiers. ASP can
address formulas implying one level of universal quantifier (i.e., of the form
∃x∀y : P (x, y)) thanks to a technique presented in [8]. To explore a set of values
and check the respect of a property for each, it uses a disjunctive rule and a
saturation on the same term. A disjunctive rule implies the subset minimality
semantics. This minimality ensures an answer set is a solution only if none of its
subsets is itself a solution [9]. Hence, saturating the answer set with the predi-
cates of the disjunction cleverly exploits this minimality: the solver is forced to
ensure that no strict subset of these predicates form a solution.

3.1 Universal Constraints on Fixed Points

We exploit this saturation technique [8,9] for ensuring universal constraints on
the fixed points or fixed points reachable from a given configuration. We describe
here the ASP rules for the universal fixed point constraint, which ensures that
all the fixed points of the BN are compatible with a given set of markers (obser-
vations). To that purpose, we let the solver deduce a configuration z by the
disjunctive rule:

8 cfg(z,N,-1) ; cfg(z,N,1) ← node(N).

The predicate template cfg(X,N,V) assigns the value V to the literal N in the
configuration X. Through the above rule, a set of node values is thus constituted
to define a configuration z, with the predicate cfg(z,N,_) subject to the subset
minimality semantics. To respect the desired property, each configuration z is
either not a fixed point (f(z) �= z) or has the same component states than the
ones expressed in a dedicated predicate. A configuration is not a fixed point
whenever at least one of its component can change of state:

9 mcfg(z,N,V) ← cfg(z,N,V).

10 valid ← cfg(z,N,V) ; eval(z,N,-V).

mcfg(X,N,V) predicate template leads to the evaluation of the configuration X

given the Boolean rules of the network [2]. The reachable values are then stored
in the predicate eval(X,N,V). Whenever it is possible to evaluate a component N

to the opposite value than in z, then z is not a fixed point, making valid true.
Otherwise, z has to have the same component states than those specified by

an observation X marked by the predicate is_universal_fp(X), which is expressed
by the following ASP rule:

11 valid ← cfg(z,N,V):obs(X,N,V); is_universal_fp(X).

Observe in l.10 and l.11 that each time an assignment is in agreement with the
desired property, a predicate valid is deduced, which triggers the saturation of
the configuration z:

Synthesis and Simulation of Ensembles of Boolean Networks 201

12 cfg(z,N,-V) ← cfg(z,N,V), valid.

Thus, when valid is deduced, the answer set contains all possible component
values for z. According to the subset minimality semantics, the solver is then
forced to ensure that there is no sub-answer set. And the only way to find such a
smaller answer-set is to find a z from which valid cannot be deduced, i.e., which
is a counter-example to the universal property: in that case, l.13 eliminates the
answer set:

13 ← not valid.

A variant of this constraint enables to restrict the universal property to fixed
points that are reachable from a given initial configuration. This is specified by
is_universal_fp(X,S) predicates, where S points the initial configuration, and X

to an observation, as used above. By combining such predicates, one can then
specify sets of phenotypes reachable from a given configuration. The encoding
of this variant contains a third way to deduce valid: the non-reachability of the
configuration z from S.

Our implementation also offers to specify mutations, which can be combined
with reachability and with universal constraints on reachable fixed points to
leverage observations about cell fates in different mutation conditions.

3.2 Synthesis Problem

Synthesis requires (i) an influence graph to delimit the interactions that can be
used by the BNs and (ii) the dynamical properties of the behaviours that have
to be reproduced. For modelling the tumour invasion and migration as in [4], the
dynamical properties refer to cell fate observations in different mutation condi-
tions. These fates are described by sets of markers (i.e. a set of values for some
nodes of the network) which constitutes partial observations of genes activity. In
term of dynamics, these observations are related to reachable attractors in the
corresponding mutated BNs.

A (partial) observation o of a configuration of dimension n is specified by
a set of couples associating a component to a Boolean value: o ⊆ [1]n × B,
assuming there is no i ∈ [n] such that {(i, 0), (i, 1)} ⊆ o.

Formally, the synthesis problem we tackle is the following.
Given

– an influence graph G = {[n], E+, E−)
– p partial observations o1, . . . , op

– sets FP, UFP and UA of indices of observations
– sets PR, URFP and URA of couples of indices of observations: URFP ⊆ [p]2

find a locally-monotonic BN f of dimension n such that

– G(f) ⊆ G,
– there exist p configurations x1, . . . , xp such that:

• (observations) ∀m ∈ [p], ∀(i, v) ∈ om, xm
i = v,

202 S. Chevalier et al.

• (positive reachability) ∀(m, m′) ∈ PR, xm′ ∈ ρf
mp(x

m),
• (fixed points) ∀m ∈ FP, f(xm) = xm,
• (universal fixed point) ∀z ∈ B

n, f(z) = z ⇒ ∃m ∈ UFP : ∀(i, v) ∈
om, zi = v;

• (universal reachable fixed point) ∀z ∈ B
n, f(z) = z ⇒ ∃(x, s) ∈ URFP :

z /∈ ρf
mp(s) ∨ ∀(i, v) ∈ x, zi = v;

Each of these constraints can be parametrized by mutations, in which case, the
properties have to be verified on the mutated f .

Remark that such a problem can be non-satisfiable.
Our encoding also offers constraints related to the absence of paths between

configurations (negative reachability) and to trap space where a set of compo-
nents have a fixed state matching with a given observation [2]. Moreover, one
can optionally impose that the influence graph of f is equal to the input G.

Our implementation avoids redundancy in the models by enumerating only
among non-equivalent BNs (i.e., their values differ for at least one configuration).
This is achieved by using a canonical representation of Boolean functions in
disjunctive normal form with a total ordering between clauses.

In total, our encoding generates O(ndk2) atoms and O(nd2k2) rules, where
d is the in-degree of nodes in the influence graph, and k is a fixed bound on
the number of clauses of Boolean functions. Whenever k is set to

(
d

�d/2�
)
, the

complete set of solutions can be enumerated.

3.3 Sampling the Diversity of All Solutions

The whole set of constraints, comprising the domain of admissible BNs and the
dynamical properties they should satisfy, is represented by a single logic program
expressed in ASP, such that each solution corresponds to a distinct BN.

Whereas the enumeration of ASP solutions is known to be efficient, typical
solvers will enumerate solutions by slightly varying parts of a firstly identified
one. Thus, a partial enumeration will very likely give a set of solutions which are
all look alike, e.g., where the Boolean function of only one component varies.

Inspired by [20], we tweak heuristics of the solver clingo [11] to stir it towards
distant solutions: at each solution, we randomly select a subset of variables
assignments and ask the solver to avoid them in the next iterations. At the cost
of enumeration speed, this allows sampling ensembles of diverse BNs.

4 Stochastic Simulations of Ensembles of BNs

4.1 Continuous-Time Boolean Modelling

We first recall the continuous-time Markov chain interpretation of BNs intro-
duced in [23]. Considering a BN f of dimension of n, we represent the state
evolution by a Markov process s : t → s(t) defined on t ∈ I ⊂ R applied on the
network state space, with I the simulation interval. This process is defined by:

Synthesis and Simulation of Ensembles of Boolean Networks 203

1. Its initial condition:
P [s(0) = x], ∀x ∈ B

n

2. Its conditional probabilities (of a single condition):

P [s(t) = y|s(t′) = x], ∀x, y ∈ B
n,∀t′, t ∈ I, t′ < t

In continuous-time, these conditional probabilities are defined as transition
rates [25]: ρ(x → y)(t) ∈ [0,∞]. Because we want a generalization of the fully-
asynchronous Boolean dynamics, transition rates ρ(x → y) are non-zero only

if x
f−→
a1

y, i.e., a single component i ∈ [n] is changing of value. In that case,

each local function fi(x) is replaced by two functions R
up/down
i (x) ∈ [0, ∞]. The

transition rates are defined as follows:

ρ(x → y) =

{
Rup

i (x) if xi = 0
Rdown

i (x) if xi = 1
with Δ(x, y) = {i}

where Rup
i corresponds to the activation rate of node i, and Rdown

i corresponds
to the inactivation rate of node i. Therefore, the continuous Markov process is
completely defined by all these Rup/down and an initial condition. By default,
the value of these rates is set to 1, but they can be modified to represent the
time scales of different processes.

To explore the probability space of this Markov process, we use the Gillespie
algorithm [12]. This algorithm produces a set of realizations or stochastic trajec-
tories of the Markov process. From this finite set, probabilities can be estimated.

To relate continuous-time probabilities to real processes, an observable time
window δt is defined. A discrete-time τ ∈ N stochastic process s(τ) can be
extracted from the continuous-time Markov process:

P [s(τ) = x] ≡ 1
δt

∫ (τ+1)δt

τδt

P [s(t) = x]dt

For each trajectory j, we compute the time for which the system is in state
x in the window [τδt, (τ + 1)δt], and divide it by δt. We obtain an estimate of
P [s(τ) = x] for trajectory j, i.e. P̂j [s(τ) = x]. Then to compute the estimate of
a set of trajectories, we compute the average over j of all P̂j [s(τ) = x].

4.2 Lifting to Ensembles of BNs

To simulate an ensemble of BNs, we first choose a total number of stochas-
tic trajectories M . We generate M/k stochastic trajectories for each model and
compute the average P̂k[s(τ) = x] for all models k. We then compute the average
over k of all P̂k[s(τ) = x], to obtain the P [s(τ) = x] for the ensemble of boolean
networks. We also keep the option to export the individual probability distribu-
tions P̂k[s(τ) = x] to allow us analyzing the composition of the ensemble. The
approach results in time-series of the probability for each observed state. The

204 S. Chevalier et al.

case study hereafter focuses on steady-state analysis. This imposes to simulate
the ensemble long enough to reach stationarity, requiring a preliminary analysis.
We can then study the proportion of each attractor for our ensemble.

We implemented this new feature in the MaBOSS simulation software [22]1.

CMicroenv

DNAdamage

GF

TGFbeta

Metastasis

Migration

InvasionEMT

Apoptosis

CellCycleArrest

p21

CDH1

CDH2

VIM

TWIST1

SNAI1

SNAI2

ZEB1

ZEB2

AKT1

DKK1

CTNNB1

NICD

p63

p53

p73

miR200

miR203

miR34

AKT2

ERK

SMAD

Fig. 3. Influence graph of Cohen’s model relating 32 nodes with 159 edges, where
positive edges are in green and negative in red. (Color figure online)

5 Case Study on Cell Fate Decision Modelling

5.1 Background Model

We illustrate our ensemble modelling approach on a published model of cell fate
decision leading to the early events of the metastasis or cell death through apop-
tosis [4]. Initial triggers, such as DNA damage or micro-environmental cues, and
the activity of some genes or proteins participating in the process affect the final
decision. The signalling pathway involves TGFbeta, WNT, beta-catenin, p53
and its homologs, selected miRNA, and transcription factors of the epithelial to
mesenchymal (EMT) transitions. Figure 3 shows the influence graph of the BN.
The functions of the BN, we refer to as “Cohen’s model”, have been designed
manually so the simulations fit with experimental data related to stable pheno-
types under different single mutations. Then, the initial publication explored the
synergy between mutants that led to metastatic phenotypes.

1 https://maboss.curie.fr, https://github.com/colomoto/pyMaBoSS.

https://maboss.curie.fr
https://github.com/colomoto/pyMaBoSS

Synthesis and Simulation of Ensembles of Boolean Networks 205

5.2 Single Model Analysis

We first reproduced part of the analysis of [4] on the original Cohen’s model
by computing the propensities of attractors reachable from 4 possible initial
conditions, where all nodes are inactive, except miRNAs that are active, and
the 2 nodes modelling DNA damage and micro-environment cues that are free.
We considered the wild-type condition (Fig. 4(a)) with no mutation, and the
double-mutant of p53 LoF and Notch GoF (Fig. 4(b)).

The wild-type model has 9 fixed points that each correspond to one of the 4
identified physiological phenotypes: Apoptosis, EMT, Metastasis (or equivalent
to Migration) and Homeostatic State (HS). The double-mutant shows exclusively
the Metastasis phenotype.

5.3 Ensemble Analysis

Synthesis. To test the impact of alternative Boolean functions, we synthe-
sised ensembles of BNs that share the same influence graph as Cohen’s model
and reproduce the desired dynamics. We synthesized two ensembles of 1,000
diverse BNs each, where we disallowed having cyclic attractors. The first ensem-
ble ensures only the wild-type (WT) behaviour, meaning that all the fixed points
match with one of the 4 physiological phenotypes, and each physiological pheno-
type is reachable from at least one of the initial condition. The second ensemble
adds further constraints related to the single mutations of p53 LoF, which should
show the same behaviour as WT, and Notch GoF, where only 2 of the WT phe-
notypes and a third different one should be observed2.

Ensemble Simulations. With the same settings as with Cohen’s model, we
performed stochastic simulations of the two synthesized ensembles, with uniform
activation and de-activation rates. The WT behaviours look similar, with some
differences in propensities of phenotypes (Fig. 4(c,e)). The double-mutant on
the ensembles shows a much less contrasted picture than on the Cohen’s model.
While Migration becomes the most likely outcome, several other phenotypes are
observed, suggesting a potential variability of the effect of the double-mutation.
Interestingly, even the single mutant constraints of the second ensemble are not
sufficiently restrictive to guarantee the behaviour observed in Cohen’s model.

Variability of Propensities of Phenotypes. To study the ensemble composi-
tion, we want to analyze the steady-state probabilities for each model. Depending
on the results we might have a lot of visited states, which bring a dimensionality
issue. We choose to represent these results using Principal Component Analysis
(PCA) [26], which allows us to visualize the distribution of attractor’s propor-
tions in a reduced number of dimensions.
2 Code, data, and notebooks at https://doi.org/10.5281/zenodo.3938904; Synthesis

has been performed on 36-cores CPUs @ 2.6 Ghz with 192Go of RAM; first ensemble
was generated at a rate of 5 s/model/CPU; second ensemble was generated at a rate
of 3 min/model/CPU.

https://doi.org/10.5281/zenodo.3938904

206 S. Chevalier et al.

a c e

b d f

single model ensemble from WT constraints from WT + mutant constraints
W

T
p5

3
Lo

F/
N

ot
ch

 G
oF

Fig. 4. Simulations results for phenotypes propensities in Cohen’s model (a, b), ensem-
ble from WT constraints (c, d), and ensemble from WT and single mutants constraints
(e, f), in wild-type condition (a, c, e) and double-mutant p53 LoF/Notch GoF (b, d,
f).

Fig. 5. PCA representation of the steady-state distribution of each model of the ensem-
ble from WT and single mutants constraints. Each point represents the result of one
model simulation (blue one are from WT simulations, orange one from p53 LoF/Notch
GoF). Large blue and orange circles highlight the position of the original single Cohen’s
model simulation. The triangular pattern of the distribution comes from the fact that
the phenotype probabilities are located in the n-dimensional simplex. (Color figure
online)

Synthesis and Simulation of Ensembles of Boolean Networks 207

We apply PCA to the probability distribution of each model within the
ensemble from WT and single mutants constraints, allowing us to represent their
respective probability distributions (Fig. 5). The first component, representing
56% of the observed variance, shows a negative correlation between apoptotic
and EMT phenotypes. The second component, representing 24% of observed
variance, shows a negative correlation between EMT without Migration and
EMT with Migration. The distribution of the ensemble’s probability distribu-
tions is diverse, illustrating the performance of the all possible model diversity
sampling. The p53 LoF/Notch GoF double mutant shows a shift towards EMT
and/or Migration phenotypes, away from Apoptotic phenotypes. The alignment
of models on the top-left corresponds to models which don’t show any apoptotic
phenotypes (∼96% of the models).

6 Conclusion

The synthesis of BNs from network architecture and dynamical constraints can
lead to a multitude of admissible solutions.

In this work, we employed Answer-Set Programming to sample ensembles of
diverse BNs, all possessing the same network architecture and satisfying the same
set of dynamical constraints. We significantly extend the previously described
methodology with the new type of biologically relevant universal constraints.

Our synthesis framework enables specifying existence and absence of reach-
ability properties between (partial) configurations of the BN, existence of fixed
points and cyclic attractors matching with observations, and universal proper-
ties on the fixed points and reachable fixed points; all these properties can be
parametrized by mutation settings.

The dynamics of ensembles is explored by stochastic simulations using the
new Ensemble MaBoSS simulator, which is introduced here for the first time.
The ensemble-based simulations are used for computing and comparing propen-
sities of reachable attractors under different mutations or their combinations.
The result of an ensemble-based simulation represents a multidimensional dis-
tribution of the vectors of attractor probabilities, which can be aggregated by
computing its mean point. Moreover, the multi-variate variance of the distribu-
tion can be explored, e.g. by applying the standard machine learning methods
such as Principal Component Analysis, which can lead to the insights about
the diversity of possible modelling scenarios compatible with available biological
knowledge and the experimental data.

As illustrated on a biological case study, BN ensemble modelling brings an
insight into the potential variability of predictions subject to model uncertainty.

In future work, we plan to address the evaluation of the diversity of sam-
pled ensembles, with metrics helping estimate required sample size and compare
sampling heuristics.

208 S. Chevalier et al.

Acknowledgements. This work has been partially supported by Agence Nationale
de la Recherche in the program Investissements d’Avenir (project No. ANR-19-P3IA-
0001; PRAIRIE 3IA Institute), by ANR-FNR project “AlgoReCell” (ANR-16-CE12-
0034), by ITMO Cancer, and by the Ministry of Science and Higher Education of
the Russian Federation (project No. 14.Y26.31.0022). Experiments were carried out
using the PlaFRIM experimental testbed,supported by Inria, CNRS (LABRI and IMB),
Université de Bordeaux, Bordeaux INP and Conseil Régionald’Aquitaine (see https://
www.plafrim.fr).

References

1. Baral, C.: Knowledge Representation, Reasoning and Declarative Problem Solving.
Cambridge University Press, Cambridge (2003)

2. Chevalier, S., Froidevaux, C., Paulevé, L., Zinovyev, A.: Synthesis of Boolean
networks from biological dynamical constraints using answer-set programming.
In: 2019 IEEE 31st International Conference on Tools with Artificial Intelligence
(ICTAI), pp. 34–41 (2019). https://doi.org/10.1109/ICTAI.2019.00014

3. Clarke, M.A., Fisher, J.: Executable cancer models: successes and challenges. Nat.
Rev. Cancer 20, 343–354 (2020). https://doi.org/10.1038/s41568-020-0258-x

4. Cohen, D.P.A., Martignetti, L., Robine, S., Barillot, E., Zinovyev, A., Calzone, L.:
Mathematical modelling of molecular pathways enabling tumour cell invasion and
migration. PLoS Comput. Biol. 11(11), e1004571 (2015). https://doi.org/10.1371/
journal.pcbi.1004571

5. Collombet, S., et al.: Logical modeling of lymphoid and myeloid cell specification
and transdifferentiation. Proc. Nat. Acad. Sci. 114(23), 5792–5799 (2017). https://
doi.org/10.1073/pnas.1610622114

6. Corblin, F., Tripodi, S., Fanchon, E., Ropers, D., Trilling, L.: A declara-
tive constraint-based method for analyzing discrete genetic regulatory networks.
Biosystems 98(2), 91–104 (2009). https://doi.org/10.1016/j.biosystems.2009.07.
007

7. Dorier, J., Crespo, I., Niknejad, A., Liechti, R., Ebeling, M., Xenarios, I.: Boolean
regulatory network reconstruction using literature based knowledge with a genetic
algorithm optimization method. BMC Bioinform. 17(1), 410 (2016). https://doi.
org/10.1186/s12859-016-1287-z

8. Eiter, T., Gottlob, G.: On the computational cost of disjunctive logic programming:
propositional case. Ann. Math. Artif. Intell. 15(3), 289–323 (1995). https://doi.
org/10.1007/BF01536399

9. Eiter, T., Ianni, G., Krennwallner, T.: Answer set programming: a primer. In: Tes-
saris, S., et al. (eds.) Reasoning Web 2009. LNCS, vol. 5689, pp. 40–110. Springer,
Heidelberg (2009). https://doi.org/10.1007/978-3-642-03754-2 2

10. Gebser, M., Kaminski, R., Kaufmann, B., Schaub, T.: Answer set solving in prac-
tice. Synth. Lect. Artif. Intell. Mach. Learn. 6, 1–23 (2012)

11. Gebser, M., Kaminski, R., Kaufmann, B., Schaub, T.: Clingo = ASP + control:
preliminary report. CoRR abs/1405.3694 (2014)

12. Gillespie, D.T.: A general method for numerically simulating the stochastic time
evolution of coupled chemical reactions. J. Comput. Phys. 22(4), 403–434 (1976).
https://doi.org/10.1016/0021-9991(76)90041-3

https://www.plafrim.fr
https://www.plafrim.fr
https://doi.org/10.1109/ICTAI.2019.00014
https://doi.org/10.1038/s41568-020-0258-x
https://doi.org/10.1371/journal.pcbi.1004571
https://doi.org/10.1371/journal.pcbi.1004571
https://doi.org/10.1073/pnas.1610622114
https://doi.org/10.1073/pnas.1610622114
https://doi.org/10.1016/j.biosystems.2009.07.007
https://doi.org/10.1016/j.biosystems.2009.07.007
https://doi.org/10.1186/s12859-016-1287-z
https://doi.org/10.1186/s12859-016-1287-z
https://doi.org/10.1007/BF01536399
https://doi.org/10.1007/BF01536399
https://doi.org/10.1007/978-3-642-03754-2_2
https://doi.org/10.1016/0021-9991(76)90041-3

Synthesis and Simulation of Ensembles of Boolean Networks 209

13. Goldfeder, J., Kugler, H.: BRE: IN - a backend for reasoning about interaction
networks with temporal logic. In: Bortolussi, L., Sanguinetti, G. (eds.) CMSB
2019. LNCS, vol. 11773, pp. 289–295. Springer, Cham (2019). https://doi.org/10.
1007/978-3-030-31304-3 15

14. Kauffman, S.: A proposal for using the ensemble approach to understand genetic
regulatory networks. J. Theor. Biol. 230(4), 581–590 (2004). https://doi.org/10.
1016/j.jtbi.2003.12.017

15. Klarner, H., Bockmayr, A., Siebert, H.: Computing maximal and minimal trap
spaces of Boolean networks. Nat. Comput. 14(4), 535–544 (2015). https://doi.
org/10.1007/s11047-015-9520-7

16. Krawitz, P., Shmulevich, I.: Basin entropy in Boolean network ensembles. Phys.
Rev. Lett. 98(15), 158701 (2007). https://doi.org/10.1103/physrevlett.98.158701

17. Lin, F., Zhao, Y.: ASSAT: computing answer sets of a logic program by SAT solvers.
Artif. Intell. 157(1), 115–137 (2004). https://doi.org/10.1016/j.artint.2004.04.004

18. Lobo, J., Minker, J., Rajasekar, A.: Foundations of Disjunctive Logic Program-
ming. MIT Press, Cambridge (1992)

19. Paulevé, L., Kolčák, J., Chatain, T., Haar, S.: Reconciling qualitative, abstract,
and scalable modeling of biological networks. bioRxiv (2020). https://doi.org/10.
1101/2020.03.22.998377

20. Razzaq, M., Kaminski, R., Romero, J., Schaub, T., Bourdon, J., Guziolowski, C.:
Computing diverse Boolean networks from phosphoproteomic time series data. In:
Češka, M., Šafránek, D. (eds.) CMSB 2018. LNCS, vol. 11095, pp. 59–74. Springer,
Cham (2018). https://doi.org/10.1007/978-3-319-99429-1 4

21. Schwieger, R., Siebert, H.: Graph representations of monotonic Boolean model
pools. In: Feret, J., Koeppl, H. (eds.) CMSB 2017. LNCS, vol. 10545, pp. 233–248.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-67471-1 14

22. Stoll, G., et al.: MaBoSS 2.0: an environment for stochastic Boolean modeling.
Bioinformatics 33(14), 2226–2228 (2017). https://doi.org/10.1093/bioinformatics/
btx123

23. Stoll, G., Viara, E., Barillot, E., Calzone, L.: Continuous time Boolean modeling
for biological signaling: application of Gillespie algorithm. BMC Syst. Biol. 6(1),
116 (2012). https://doi.org/10.1186/1752-0509-6-116

24. Terfve, C., et al.: CellNOptR: a flexible toolkit to train protein signaling networks
to data using multiple logic formalisms. BMC Syst. Biol. 6(1), 133 (2012). https://
doi.org/10.1186/1752-0509-6-133

25. Van Kampen, N.G.: Stochastic Processes in Physics and Chemistry, vol. 1. Elsevier,
Amsterdam (1992)

26. Wold, S., Esbensen, K., Geladi, P.: Principal component analysis. Chemom. Intell.
Lab. Syst. 2(1–3), 37–52 (1987). https://doi.org/10.1016/0169-7439(87)80084-9

27. Yordanov, B., Dunn, S.J., Kugler, H., Smith, A., Martello, G., Emmott, S.: A
method to identify and analyze biological programs through automated reasoning.
Syst. Biol. Appl. 2(1), 1–16 (2016). https://doi.org/10.1038/npjsba.2016.10

28. Zañudo, J.G., Steinway, S.N., Albert, R.: Discrete dynamic network modeling
of oncogenic signaling: mechanistic insights for personalized treatment of cancer.
Curr. Opin. Syst. Biol. 9, 1–10 (2018). https://doi.org/10.1016/j.coisb.2018.02.002

https://doi.org/10.1007/978-3-030-31304-3_15
https://doi.org/10.1007/978-3-030-31304-3_15
https://doi.org/10.1016/j.jtbi.2003.12.017
https://doi.org/10.1016/j.jtbi.2003.12.017
https://doi.org/10.1007/s11047-015-9520-7
https://doi.org/10.1007/s11047-015-9520-7
https://doi.org/10.1103/physrevlett.98.158701
https://doi.org/10.1016/j.artint.2004.04.004
https://doi.org/10.1101/2020.03.22.998377
https://doi.org/10.1101/2020.03.22.998377
https://doi.org/10.1007/978-3-319-99429-1_4
https://doi.org/10.1007/978-3-319-67471-1_14
https://doi.org/10.1093/bioinformatics/btx123
https://doi.org/10.1093/bioinformatics/btx123
https://doi.org/10.1186/1752-0509-6-116
https://doi.org/10.1186/1752-0509-6-133
https://doi.org/10.1186/1752-0509-6-133
https://doi.org/10.1016/0169-7439(87)80084-9
https://doi.org/10.1038/npjsba.2016.10
https://doi.org/10.1016/j.coisb.2018.02.002

Classifier Construction in Boolean
Networks Using Algebraic Methods

Robert Schwieger1(B) , Mat́ıas R. Bender2 , Heike Siebert1,
and Christian Haase1

1 Freie Universität Berlin, Berlin, Germany
rschwieger@zedat.fu-berlin.de

2 Technische Universität Berlin, Berlin, Germany
mbender@math.tu-berlin.de

Abstract. We investigate how classifiers for Boolean networks (BNs)
can be constructed and modified under constraints. A typical constraint
is to observe only states in attractors or even more specifically steady
states of BNs. Steady states of BNs are one of the most interesting fea-
tures for application. Large models can possess many steady states. In
the typical scenario motivating this paper we start from a Boolean model
with a given classification of the state space into phenotypes defined by
high-level readout components. In order to link molecular biomarkers
with experimental design, we search for alternative components suitable
for the given classification task. This is useful for modelers of regulatory
networks for suggesting experiments and measurements based on their
models. It can also help to explain causal relations between components
and phenotypes. To tackle this problem we need to use the structure of
the BN and the constraints. This calls for an algebraic approach. Indeed
we demonstrate that this problem can be reformulated into the language
of algebraic geometry. While already interesting in itself, this allows us to
use Gröbner bases to construct an algorithm for finding such classifiers.
We demonstrate the usefulness of this algorithm as a proof of concept
on a model with 25 components.

Keywords: Boolean networks · Algebraic geometry · Gröbner bases ·
Classifiers

1 Motivation

For the analysis of large regulatory networks so called Boolean networks (BNs)
are used among other modeling frameworks [1,26,32]. They have been applied

Supported by the DFG-funded Cluster of Excellence MATH+: Berlin Mathematics
Research Center, Project AA1-4. Mat́ıas R. Bender was supported by the ERC under
the European’s Horizon 2020 research and innovation programme (grant agreement
No. 787840).

c© Springer Nature Switzerland AG 2020
A. Abate et al. (Eds.): CMSB 2020, LNBI 12314, pp. 210–233, 2020.
https://doi.org/10.1007/978-3-030-60327-4_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-60327-4_12&domain=pdf
http://orcid.org/0000-0002-3389-5387
http://orcid.org/0000-0001-9341-287X
https://doi.org/10.1007/978-3-030-60327-4_12

Classifier Construction in Boolean Networks Using Algebraic Methods 211

frequently in the past [3,18,22,34]. In this approach interactions between differ-
ent components of the regulatory networks are modeled by logical expressions.
Formally, a Boolean network is simply a Boolean function f : {0, 1}n → {0, 1}n,
n ∈ N. This Boolean function contains the information about the interactions
of the components in the network. It is then translated into a so called state
transition graph (STG). There are several slightly different formalisms for the
construction of the STG of a BN. In all cases, the resulting state transition graph
is a directed graph over the set of vertices {0, 1}n. The vertices of the STG are
also called states in the literature about Boolean networks.

Modelers of regulatory networks are frequently – if not to say almost always –
confronted with uncertainties about the exact nature of the interactions among
the components of the network. Consequently, in many modeling approaches
models may exhibit alternative behaviors. In so called asynchronous Boolean
networks for example each state in the state transition graph can have many
potential successor states (see e.g. [9]). More fundamentally, alternative models
are constructed and then compared with each other (see e.g. [33,37]).

To validate or to refine such models we need to measure the real world system
and compare the results with the model(s). However, in reality for networks with
many components it is not realistic to be able to measure all the components.
In this scenario there is an additional step in the above procedure in which
the modeler first needs to select a set of components to be measured which are
relevant for the posed question. This scenario motivates our problem here. How
can a modeler decide which components should be measured? It is clear that the
answer depends on the question posed to the model and on the prior knowledge
or assumptions assumed to be true.

When formalizing this question we are confronted with the task to find differ-
ent representations of partially defined Boolean functions. In the field of logical
analysis of data (LAD) a very similar problem is tackled [2,4,11,23]. Here a list
of binary vectorized samples needs to be extended to a Boolean function – a
so called theory (see e.g. [11, p. 160]). In the literature of LAD this problem is
also referred to as the Extension-Problem [11, p. 161 and p. 170]. Here refor-
mulations into linear integer programs are used frequently [11]. However, they
are more tailored to the case where the partially defined Boolean functions are
defined explicitly by truth tables. In contrast to the scenario in LAD in our case
the sets are typically assumed to be given implicitly (e.g. by so called readout
components).

A common assumption in the field of Boolean modeling is that attractors
play an important role. Attractors of BNs are thought to capture the long term
behavior of the modeled regulatory network. Of special interest among these
attractors are steady states (defined by f(x) = x for a BN f). Consequently, a
typical scenario is that the modeler assumes to observe only states of the modeled
network which correspond to states belonging to attractors or even only steady
states of the STG. The state space is then often partitioned by so-called readout
components into phenotypes.

212 R. Schwieger et al.

Our first contribution will be a reformulation of the above problem into
the language of algebraic geometry. For this purpose we focus on the case of
classification into two phenotypes. This is an important special case. Solutions
to the more general case can be obtained by performing the algorithm iteratively.
The two sets of states A1 and A2 in {0, 1}n describing the phenotypes will be
defined by some polynomial equations in the components of the network. This
algebraic reformulation is possible since we can express the Boolean function
f : {0, 1}n → {0, 1}n with polynomials over F2[x1, . . . , xn] – the polynomial ring
over the finite field of cardinality two (see Sect. 2). In this way we relate the
problem to a large well-developed theoretical framework. Algebraic approaches
for the construction and analysis of BNs and chemical reaction systems have
been used in the past already successfully (see e.g. [24,27,40]). Among other
applications they have been applied to the control of BNs [30] and to the inference
of BNs from data [38,41].

Our second contribution will be to use this algebraic machinery to construct
a new algorithm to find alternative classifiers. To our knowledge this is the first
algorithm that is able to make use of the implicit description of the sets that
should be classified. For this algorithm we use Gröbner bases. Gröbner bases are
one of the most important tools in computational algebraic geometry and they
have been applied in innumerous applications, e.g. cryptography [17], statis-
tics [15], robotics [7], biological dynamical systems [14,25,30,39]. Specialized
algorithms for the computations of Gröbner bases have been developed for the
Boolean case and can be freely accessed [5]. They are able to deal with with
systems of Boolean polynomials with up to several hundreds variables [5] using
a specialized data structure (so called zero-suppressed binary decision diagram
(ZDD) [29]). Such approaches are in many instances competitive with conven-
tional solvers for the Boolean satisfiability problem (SAT-solvers) [5].

Our paper is structured in the following way. We start by giving the math-
ematical background used in the subsequent sections in Sect. 2. In Sect. 3 we
formalize our problem. We then continue in Sect. 4 to give a high-level descrip-
tion of the algorithm we developed for this problem. More details about the used
data structures and performance can be found in Sect. 5. As a proof of concept
we investigate in Sect. 6 a BN of 25 components modeling cell-fate decision [8].
We conclude the paper with discussing potential ways to improve the algorithm.

2 Mathematical Background

In the course of this paper we need some concepts and notation used in com-
putational algebraic geometry. For our purposes, we will give all definitions for
the field of cardinality two denoted by F2 even though they apply to a much
more general setting. For a more extensive and general introduction to algebraic
geometry and Gröbner bases we refer to [12].

We denote the ring of polynomials in x1, . . . , xn over F2 with F2[x1, . . . , xn].
For n ∈ N, let [n] := {1, . . . , n}. Given α = (α1, . . . , αn) ∈ Z

n
≥0, we denote

by xα the monomial
∏

i xαi
i in F2[x1, . . . , xn]. For f1, . . . , fk in F2[x1, . . . , xn]

Classifier Construction in Boolean Networks Using Algebraic Methods 213

we denote with 〈f1, . . . , fk〉 a so-called ideal in F2[x1, . . . , xn] – a subset of
polynomials which is closed under addition and multiplication with elements
in F2[x1, . . . , xn] – generated by these polynomials. The set of Boolean functions
– that is the set of functions from F

n
2 to F2 – will be denoted by B(n). When

speaking about Boolean functions and polynomials in F2[x1, . . . , xn] we need to
take into account that the set of polynomials F2[x1, . . . , xn] does not coincide
with the set of Boolean functions. This is the case since the so-called field poly-
nomials x2

1 − x1, . . . , x2
n − xn evaluate to zero over Fn

2 [20]. Consequently, there
is not a one-to-one correspondence between polynomials and Boolean functions.
However, we can say that any two polynomials whose difference is a sum of field
polynomials corresponds to the same Boolean function (see e.g. [10]). In other
words we can identify the ring of Boolean functions B(n) with the quotient ring
F2[x1, . . . , xn]/〈x2

1 − x1, . . . , x
2
n − xn〉. We will denote both objects with B(n). A

canonical system of representatives of B(n) is linearly spanned by the the square-
free monomials in F2[x1, . . . , xn]. Hence, in what follows when we talk about a
Boolean function f ∈ B(n) as a polynomial in the variables x1, . . . , xn we refer
to the unique polynomial in F2[x1, . . . , xn] which involves only monomials that
are square-free and agrees with f as a Boolean function.

Since we are interested in our application in subsets of Fn
2 , we need to explain

their relationship to the polynomial ring F2[x1, . . . , xn]. This relationship is
established using the notion of the vanishing ideal. Instead of considering a set
B ⊆ F

n
2 we will look at its vanishing ideal I(B) in B(n). The vanishing ideal

of B consists of all Boolean functions which evaluate to zero on B. Conversely,
for an ideal I in B(n) we denote with V(I) the set of points in F

n
2 for which

every Boolean function in I evaluates to zero. Due to the Boolean Nullstellensatz
(see [19,35]) there is an easy relation between a set B ⊆ F

n
2 and its vanishing

ideal I(B): For an ideal I in B(n) such that V(I) �= ∅ and for any polynomial
h ∈ B(n) it holds

h ∈ I ⇔ ∀v ∈ V(I) : h(v) = 0.

In this paper, we will consider Boolean functions whose domain is restricted
to certain states (e.g. attractors or steady states). Hence, there are different
Boolean functions that behave in the same way when we restrict their domain.

Example 1. Consider the set B := {000, 110, 101, 011}. Consider the Boolean
function f := x1 and g := x2 + x3. Both Boolean functions are different, i.e.,
f(1, 1, 1) = 1 and g(1, 1, 1) = 0, but they agree over B.

000 110 101 011
f 0 1 1 0
g 0 1 1 0

.

Note that I(B) = 〈x1 + x2 + x3〉, that is, the ideal I(B) is generated by the
Boolean function x1 + x2 + x3 since it is the unique Boolean function vanishing
only on B.

Given a set B, we write B(n)/I(B) to refer to the set of all the different Boolean
functions on B. As we saw in the previous example, different Boolean functions

214 R. Schwieger et al.

agree on B. Hence, we will be interested in how to obtain certain representatives
of the Boolean function in B(n)/I(B) algorithmically. In our application, the set
B(n)/I(B) will become the set of all possible classifiers we can construct that dif-
fer on B. To obtain specific representatives of a Boolean function in B(n)/I(B)
we will use Gröbner bases. A Gröbner basis of an ideal is a set of generators of
the ideal with some extra properties related to monomial orderings. A monomial
ordering is a total ordering on the set of monomials in F2[x1, . . . , xn] satisfying
some additional properties to ensure the compatibility with the algebraic oper-
ations in F2[x1, . . . , xn] (see [12, p. 69] for details).

For any polynomial in p ∈ F2[x1, . . . , xn] and monomial ordering ≺, we denote
the initial monomial of p by in≺(p), that is the largest monomial appearing in
p with respect to ≺. We are interested in specific orderings – the lexicographical
orderings – on these monomials. As we will see, the usage of lexicographical
orderings in the context of our application will allow us to look for classifiers
which are optimal in a certain sense.

Definition 1 ([12, p. 70]). Let α =
(
α1 . . . αn

)
and β =

(
β1 . . . βn

)
be two

elements in Z
n
≥0. Given a permutation σ of {1, . . . , n}, we say xα �lex(σ) xβ if

there is k ∈ [n] such that

(∀i < k : ασ(i) = βσ(i)) and ασ(k) > βσ(k).

Definition 2 ([36, p. 1]). Let ≺ be any monomial ordering. For an ideal I ⊆
F2[x1, . . . , xn] we define its initial ideal as the ideal

in≺(I) := 〈in≺(f)|f ∈ I〉.
A finite subset G ⊆ I is a Gröbner basis for I with respect to ≺ if in≺(I) is
generated by {in≺(g)|g ∈ G}. If no element of the Gröbner basis G is redundant,
then G is minimal. It is called reduced if for any two distinct elements g, g′ ∈
G no monomial in g′ is divisible by in≺(g). Given an ideal and a monomial
ordering, there is a unique minimal reduced Gröbner basis involving only monic
polynomials; we denote it by G≺(I). Every monomial not lying in in≺(I) is
called standard monomial.

We can extend the monomial orderings to partial orderings of polynomials
on F2[x1, . . . , xn]. Consider polynomials f, g ∈ F2[x1, . . . , xn] and a monomial
ordering �. We say that f � g if in≺(f) � in≺(g) or f − in≺(f) � g − in≺(g).
The division algorithm rewrites every polynomial f ∈ F2[x1, . . . , xn] modulo I
uniquely as a linear combination of these standard monomials [12, Ch. 2]. The
result of this algorithm is called Normal form. For the convenience of the reader,
we state this in the following lemma and definition.

Lemma 1 (Normal Form). Given a monomial ordering �, f ∈ B(n) and an
ideal I there is a unique g ∈ B(n) such that f and g represent the same Boolean
function in B(n)/I and g is minimal with respect to the ordering � among all
the Boolean functions equivalent to f in B(n)/I. We call g the normal form of
f modulo I denoted by NFI(�, f).

Classifier Construction in Boolean Networks Using Algebraic Methods 215

Example 2 (Cont.). Consider the permutation σ of {1, 2, 3} such that σ(i) :=
4 − i. Then, NFI(�σ, f) = NFI(�σ, g) = x1. Hence, if we choose a “good”
monomial ordering, we can get simpler Boolean functions involving less variables.

3 Algebraic Formalization

As discussed in Sect. 1, we start with the assumption that we are given a set of
Boolean vectors B in F

n
2 representing the observable states. In our applications

these states are typically attractors or steady states of a BN. We also assume
that our set B is partitioned into a set of phenotypes, i.e. B = A1 ∪ · · · ∪ Ak.
Our goal is then to find the components that allow us to decide for a vector in B
to which set Ai, i ∈ [k], it belongs. For a set of indices I ⊆ [n] and x ∈ F

n
2 , let us

denote with projI(x) the projection of x onto the components I. Our problem
could be formalized in the following way.

Problem 1 (State-Discrimination-Problem). For a given partition of non-empty
sets A1, . . . , Ak (k ≥ 2) of states B ⊆ {0, 1}n, find the sets of components
∅ �= I ⊆ [n] such that projI(A1), . . . ,projI(Ak) forms a partition of projI(B).

Clearly, since the sets A1, . . . , Ak form a partition of B, we can decide for each
state x in B to which set Ai it belongs. If I ⊆ [n] is a solution to Problem 1,
this decision can be solely based on projI(x) since projI(A1), . . . ,projI(Ak) form
a partition of projI(B). As we discussed in Sect. 1, Problem 1 is equivalent to
Extension-Problem [11, p. 161 and p. 170]. However, in our case the sets in Prob-
lem 1 are typically given implicitly. That is, we are given already some information
about the structure of the sets in the above problem. This calls for an algebraic
approach. We consider the case in Problem 1 where k equals two. This is an impor-
tant special case since many classification problems consist of two sets (e.g. healthy
and sick). Furthermore, solutions to the more general case can be obtained by con-
sidering iteratively the binary case (see also the case study in Sect. 6).

Let I(B) ⊆ F2[x1, . . . , xn] be the vanishing ideal of a set B ⊆ F
n
2 . Let

f : Fn
2 → F2 be a Boolean function which can be identified with an element in

B(n) := F2[x1, . . . , xn]
/〈x2

1 − x1, . . . , x
2
n − xn〉. We want to find representatives

of f in B(n)
/I(B) which depend on a minimal set of variables with respect to

set inclusion or cardinality. We express this in the following form:

Problem 2. For f ∈ B(n) and B ⊆ F
n
2 , find the representatives of f in B(n)

/I(B)
which depend on a set of variables satisfying some minimality criterion.

It is clear that Problem 2 is equivalent to Problem 1 for the case k = 2 since
due to the Boolean Strong Nullstellensatz (see [35]) a Boolean function f is zero
on B if and only if f is in I(B). Therefore, all Boolean functions which are in
the same residue class as f agree with it as Boolean functions on B and vice
versa. The sets of variables each representative depends on are the solutions to
Problem 2. The representatives are then the classifiers.

216 R. Schwieger et al.

Here we will focus on solutions of Problem 2 which are minimal with respect
to set inclusion or cardinality. However, also other optimality criteria are imag-
inable. For example one could introduce some weights for the components. Let
us illustrate Problem 2 with a small example.

Example 3. Consider the set B = {000, 111, 011, 101} ⊂ F
3
2. Then I(B) ⊆ B(3)

is given by 〈
=:f

︷ ︸︸ ︷
x1x2 + x1 + x2 + x3〉 since f is the unique Boolean function that is

zero on B and one on it complement. Let ϕ(x) = x1x2x3. It is easy to check
that for example x1x3 + x2x3 + x3 and x1x2 are different representatives of ϕ
in B(3)

/I(B). The representative x1x2 depends only on two variables while the
other two representatives depend on three.

We can obtain a minimal representative of f in Problem 2 by computing
NFI(≺, f) for a suitable lexicographical ordering ≺.

Proposition 1. Given a set of points B ⊂ F
n
2 and a Boolean function f ∈ B(n)

assume, with no loss of generality, that there is an equivalent Boolean func-
tion g ∈ F2[x1, . . . , xn] modulo I(B) involving only xk, . . . , xn. Consider a
permutation σ of {1, . . . , n} such that σ({k, . . . , n}) = {k, . . . , n}. Then, the
only variables appearing in NFI(≺lex(σ), f) = NFI(≺lex(σ), g) are the ones in
{xk, . . . , xn}. In particular, if there is no Boolean function equivalent to f mod-
ulo I(B) involving a proper subset of {xk, . . . , xn}, then NFI(≺lex(σ), f) =
NFI(≺lex(σ), g) involves all the variables in {xk, . . . , xn}.
Proof. The proof follows from the minimality of NFI(≺lex(σ), f) with respect to
≺lex(σ). Note that, because of the lexicographical ordering ≺lex(σ), any Boolean
function equivalent to f modulo I(B) involving variables in {x1, . . . , xk−1} will
be bigger than g, so it cannot be minimal.

4 Description of the Algorithm

Clearly we could use Proposition 1 to obtain an algorithm that finds the minimal
representatives of ϕ in B(n)/I(B) by iterating over all lexicographical orderings
in F2[x1, . . . , xn]. However, this naive approach has several drawbacks:

1. The number of orderings over B(n) is growing rapidly with n since there are
n! many lexicographical orderings over B(n) to check.

2. We do not obtain for every lexicographical ordering a minimal representative.
Excluding some of these orderings “simultaneously” could be very beneficial.

3. Different monomial orderings can induce the same Gröbner bases. Conse-
quently, the normal form leads to the same representative.

4. Normal forms with different monomial orderings can result in the same rep-
resentative. If we detect such cases we avoid unnecessary computations.

Classifier Construction in Boolean Networks Using Algebraic Methods 217

We describe now an algorithm addressing the first two points. Recall that
for a monomial ordering � and f ∈ B(n), we use the notation NFI(�, f) to
denote the normal form of f in B(n)/I with respect to �. When I is clear from
the context, we write NF(�, f). We denote with ϕ any representative of the
indicator function of A in B(n)

/I(B). Let Var(ϕ) be the variables occurring in
ϕ and Comp(ϕ) be its complement in {x1, . . . , xn}. Instead of iterating through
the orderings on B(n), we consider candidate sets in the power set of {x1, . . . , xn},
denoted by P(x1, . . . , xn) (i.e. we initialize the family of candidate sets P with
P ← P(x1, . . . , xn)). We want to find the sets A in the family of candidate sets P
for which the equality A = Var(ϕ) holds for some minimal solution ϕ to Problem
2, that is, involving the minimal amount of variables. For each candidate set A
involving k variables we pick a lexicographical ordering � for which it holds
Ac � A, i.e. for every variable xi ∈ Ac and xj ∈ A it holds xi � xj , where
Ac := {x1, . . . , xn} \ A. This approach is sufficient to find the minimal solutions
as we will argue below. This addresses the first point above since there are 2n

candidate sets to consider while there are n! many orderings.1

4.1 Excluding Candidate Sets

To address the second point we will exclude after each reduction step a family
of candidate sets. If, for an ordering �, we computed a representative NF(�, ϕ)
we can, independently of the minimality of NF(�, ϕ), exclude some sets in P .
To do so, we define for any set A ⊆ {x1, . . . , xn} the following families of sets:

FORWARD(A) :=
{
B ⊆ {x1, . . . , xn}|A ⊂ B

}
,

FORWARDEQ(A) :=
{
B ⊆ {x1, . . . , xn}|A ⊆ B

}
,

BACKWARD(A) :=
{
B ⊆ {x1, . . . , xn}|B ⊆ A

}
,

SMALLER(A,�) :=
{
x ∈ {x1, . . . , xn}|∃y ∈ A : y � x

}
,

SMALLEREQ(A,�) :=
{
x ∈ {x1, . . . , xn}|∃y ∈ A : y � x

}
.

It is clear that, if we obtain in a reduction step a representative φ = NF(�, ϕ),
we can exclude the sets in FORWARD(Var(φ)) from the candidate sets P . But,
as we see in the following lemma, we can exclude even more candidate sets.

Lemma 2. Let � be a lexicographical ordering and let φ = NF(�, ϕ) be the cor-
responding normal form of ϕ. Then none of the sets A ⊆ SMALLER(Var(φ),�)
can belong to a minimal solution to Problem 2.

Proof. Assume the contrary, that is there is a minimal solution ψ with Var(ψ) ⊆
SMALLER(Var(φ),�). It follows that, by the definition of lexicographical order-
ings, there is at least one y ∈ Var(φ) with y � Var(ψ). Consequently, ψ is smaller
than φ with respect to � which cannot happen by the definition of the normal
form.
1 Note that limn→∞ n!

2n
= ∞, so it is more efficient to iterate through 2n candidate

sets than through n! orderings.

218 R. Schwieger et al.

If we also take the structure of the polynomials into account, we can improve
Lemma 2 further. For this purpose, we look at the initial monomial of φ =
NF(�, ϕ) with respect to �, M := in�(φ). We consider the sets Var(M) and
Comp(M). Given a variable xi ∈ {x1, . . . , xn} and a subset S ⊆ {x1, . . . , xi}, let
S�xi

be the set of variables in S bigger than xi, i.e.

S�xi
:=

{
xj ∈ S|xj � xi

}
.

Lemma 3. Consider a lexicographical ordering �. Let φ = NF(�, ϕ) and M =
in�(φ). If xi ∈ Var(M), then any set S ⊆ SMALLEREQ(Var(φ),�) with xi �∈ S
and S ∩ Comp�xi

(M) = ∅ cannot belong to a minimal solution to Problem 2.

Proof. Note that
∏

j∈S xj ≺ M as M involves xi but
∏

j∈S xj only involves
variables smaller than xi. Then, the proof is analogous to Lemma 2 using the
fact that any minimal solution involving only variables in S has monomials
smaller or equal than

∏
j∈S xj ≺ M . Hence, φ is not minimal with respect to ≺.

In particular, Lemma 3 entails the case where the initial monomial of NF(�, ϕ) is
a product of all variables occurring in NF(�, ϕ). In this case, for every subset S ⊆
Var(φ) ⊆ SMALLEREQ(Var(φ),�) it holds S ∩ Comp(M) = S ∩ Comp(φ) = ∅.
Therefore, according to Lemma 3 NF(�, ϕ) is minimal.

For a lexicographical ordering � and a normal form φ = NF(�, ϕ) we can,
using Lemma 3, exclude the families of sets in (1) from the set of candidates P .

BACKWARD(Si) with xi ∈ Var(in�(φ)) and (1)

Si := SMALLEREQ(Var(φ),�)\({xi} ∪ Comp�xi
(in�(φ))

)

We illustrate this fact with a small example:

Example 4. Consider a lexicographical ordering � with x4 � · · · � x1 and a
normal form φ = NF(�, ϕ) with initial monomial x4x2. Then, we can exclude
from P the sets in BACKWARD({x3, x2, x1}) and BACKWARD({x4, x1}).

Note that if we consider, instead of lexicographical orderings, graded mono-
mial orderings, then we obtain the following version of Lemma 3. This is useful
to lower bound the number of variables in a minimal solution. Also, it could be
useful when considering different optimality criteria.

Lemma 4. Let � be a graded monomial ordering [12, Ch. 8.4]. Then, the total
degree d of NF(�, ϕ) is smaller or equal to the number of variables involved in
any minimal representation of ϕ.

Proof. Assume that ϕ has a representation involving less than d variables. Then,
this representation has to have degree less than d (because every monomial is
square-free). Hence, we get a contradiction because NF(�, ϕ) is not minimal.

We can now use the results above to construct Algorithm 1. In each step of
our algorithm we choose a candidate set A of P and an ordering � satisfying
Ac � A. Then we compute the reduction of ϕ with respect to � with the

Classifier Construction in Boolean Networks Using Algebraic Methods 219

Algorithm 1. compute solutions(ϕ, {x1, . . . , xn}, I)
1: P ← P({x1, . . . , xn})
2: S ← P({x1, . . . , xn})
3: while P �= ∅ do
4: A ← any set in P
5: �← any lexicographical ordering satisfying Comp(A) � A
6: ϕ ← NF(�, ϕ)
7: V ← Var(ϕ)
8: P ← P − FORWARDEQ(V)
9: S ← S − FORWARD(V)

10: for all xi in Var(in≺(ϕ)) do
11: Si ← Compute Si according to Eq.(1)
12: P ← P − BACKWARD(Si)
13: S ← S − BACKWARD(Si)
14: end for
15: end while
16: return S

corresponding Gröbner basis. Let us call the result φ. After each reduction in
Algorithm 1 we exclude from P the sets that we already checked and the sets we
can exclude with the results above. That is, we can exclude from P the candidate
sets FORWARDEQ(Var(φ)) (Line 9 in Algorithm 1) and according to Lemma 3
the family of sets BACKWARD(Si) with xi ∈ Var(in≺(φ)) where Si is defined
according to (1). The algorithm keeps doing this until the set of candidate sets
is empty. To be able to return the solutions we keep simultaneously track of the
set of potential solutions denoted by S. Initially this set equals P . But since we
subtract from S not the set FORWARDEQ(Var(φ)) but FORWARD(Var(φ)) we
keep some of the sets that we checked already in S. This guarantees that S will
contain all solutions when P is empty.

5 Implementation and Benchmarking

When implementing Algorithm 1 the main difficulties we face is an effective
handling of the candidate sets. In each step in the loop in Algorithm 1 we need
to pick a new set A from the family of candidate sets P . Selecting a candidate
set from P is not a trivial task since it structure can become very entangled.
The subtraction of the sets FORWARD(·) and BACKWARD(·) from P can
make the structure of the candidate sets very complicated. In practice this a
very time-consuming part of the algorithm. To tackle this problem we use a
specialized data structure – so-called Zero-suppressed decision diagram (ZDDs)
[28,29] – to represent P . ZDDs are a type of Binary Decision Diagrams (BDDs).
A binary decision diagram represents a Boolean function or a family of sets as
a rooted directed acyclic graph. Specific reduction rules are used to obtain a
compact, memory efficient representation. ZDDs can therefore effectively store
families of sets. Furthermore, set operations can be computed directly on ZDDs.

220 R. Schwieger et al.

This makes them an ideal tool for many combinatorial problems [28]. We refer
to the literature for a more detailed introduction to ZDDs [28,29].

Our implementation in Python can be found at https://git.io/Jfmuc. For the
Gröbner basis calculations as well as the ZDDs we used libraries from PolyBoRi
(see [5]). The computation time for the network with 25 components consid-
ered in the case study in Sect. 6 was around 10 s on a personal computer with
an intel core i5 vPro processor. Other networks we created for test purposes
resulted in similar results (around 30 s for example1.py in the repository). How-
ever, computation time depends highly on the structure of the network and not
only on its size. For a network even larger (example2.py in the repository with
38 components) computations took around two seconds while computations for
a slightly different network of the same size (see example3.py in the repository)
took around a minute. For a similar network (example4.py in the repository)
we aborted the computation after one hour. In general, the complexity of com-
puting Gröbner bases is highly influenced by algebraic properties such as the
regularity of the vanishing ideal of the set we restrict our classifiers to. If the
shapes of the sets in our algorithm are more regular (e.g. some components are
fixed to zero or one) the number of candidate sets is reduced much faster by the
algorithm. Similar, computations seem to be also often faster for networks with
fewer regulatory links.

6 Case Study

Let us consider the Boolean model constructed in [8] modeling cell-fate decision.
These models can be used to identify how and under which conditions the cell
chooses between different types of cell deaths and survival. The complete model
can be found in the BioModels database with the reference MODEL0912180000.
It consists of 25 components. The corresponding Boolean function is depicted in
Table 1. While in [8] the authors use a reduced model (see also [31]) to make
their analysis more tractable, we can and do work with the complete model here.

The Boolean network depicted in Table 1 models the effect of cytokines such
as TNF and FASL on cell death. In the Boolean model they correspond to
input components. These cytokines can trigger cell death by apoptosis or necro-
sis (referred to as non-apoptotic cell death abbreviated by NonACD). Under
different cellular conditions they lead to the activation of pro-survival signaling
pathway(s). Consequently, the model distinguishes three phenotypes: Apoptosis,
NonACD and Survival. Three corresponding signaling pathways are unified in
their model. Finally, specific read-out components for the three phenotypes were
defined. The activation of CASP3 is considered a marker for apoptosis. When
MPT occurs and the level of ATP drops the cell enters non-apoptotic cell death.
If NfκB is activated cells survive [8, p. 4]. This leads to the three classifiers in the
model depicted in Table 2. Each classifier tells us to which cell fate (apoptosis,
NonACD, survival) a state belongs.

https://git.io/Jfmuc

Classifier Construction in Boolean Networks Using Algebraic Methods 221

We are interested in alternative classifiers on the set of attractors of the
Boolean network. Let us denote the union of these attractors2 with B (in agree-
ment with the notation in Problem 2). In this case all attractors are steady
states (see [8, p. 4] for details). For illustrating our results we computed the
steady states of the network using GINsim [21] (see Fig. 1). But this is not nec-
essary for our calculations here. However, we can see that the classifiers given in
[8] indeed result in disjoint sets of phenotypes.

Since the Boolean network in Table 1 possesses only steady states as attrac-
tors we can represent the ideal I(B) in Problem 2 as 〈f1(x) + x1, . . . , fn(x) + xn〉
where f is the Boolean function depicted in Table 1.

Next, we computed for each of the classifiers alternative representations. In
Table 3, we present the nine different minimal representations on B of the clas-
sifier for NonACD. Among these options there are three ways how to construct
a classifier based on one component (that is ATP, MPT or ROS). Also interest-
ingly none of the components in the Boolean network is strictly necessary for
the classification of the phenotypes. Consequently, there are potentially very dif-
ferent biological markers in the underlying modeled regulatory network. Despite
this, there are some restrictions on the construction of the classifier, e.g., if we
want to use the component Cytc, MOMP or SMAC we need to use also the
component labeled as apoptosome. In total, the components useful for the clas-
sification of NonACD are ATP, CASP3, Cytc, MOMP, apoptosome, MPT, ROS
and SMAC. The remaining 17 components are redundant for this purpose.

We obtain similar results for the other two classifiers. For apoptosis we found
17 alternative classifiers depicted in Table 4 involving the nine components (ATP,
BAX, CASP8, Cytc, MOMP, SMAC, MPT, ROS, CASP3 and apoptosome).
For the classifier for survival of the cell depicted in Table 5 we found much
more alternative classifiers (84 alternative classifiers). Most classifiers depend on
four components. But we can observe that each of the components IKK, BCL2,
NFKB1, RIP1ub, XIAP, cFLIP can be used for classification. Computations for
each of the three classifiers took around 10–30 s on a personal computer with an
intel core i5 vPro processor in each case.

7 Possible Further Improvements

There is still some room for further improvement of the above algorithm. We
address the third point in the beginning of Sect. 4. We can represent the lexi-
cographical orderings on B(n) using weight vectors w ∈ N

n. More precisely, let
� be any monomial ordering in F2[x1, . . . , xn] and w ∈ N

n any weight vector.
Then we define �w as follows: for two monomials xα and xβ , α, β ∈ N

n we set

xα �w xβ ⇔ w · α > w · β or (w · α = w · β and xα � xβ)·

2 An attractor of a Boolean network is a terminal strongly connected component of
the corresponding state transition graph.

222 R. Schwieger et al.

According to [36, Prop 1.11] for every monomial ordering � and for every ideal
in F2[x1, . . . , xn] there exists a non-negative integer vector w ∈ N

n s.t. inw(I) =
in�(I) where inw(I) is the ideal generated by the initial forms inw(f), f ∈ I –
that is, the sum of monomials xα in f which are maximal with respect to the
inner product α ·w. We say also in this case w represents � for I. The following
lemma shows how we can construct weight vectors representing lexicographical

Table 1. Boolean network with 25 components given in [8].

Component Update function

ATP 1 + MPT

BAX CASP8 · (1 + BCL2)

BCL2 NFKB1

CASP3 (1 + XIAP) · apoptosome

CASP8 ((1 +DISCTNF) · (1 +DISCFAS) · CASP3 · (1 + cFLIP) + (1 +DISCTNF) ·
DISCFAS · (1 + cFLIP) + (1 + DISCTNF) · (1 + DISCFAS) · CASP3 · (1 +

cFLIP)+(1+DISCTNF)·DISCFAS ·(1+cFLIP))·DISCTNF ·(1+cFLIP)+

((1 +DISCTNF) · (1 +DISCFAS) · CASP3 · (1 + cFLIP) + (1 +DISCTNF) ·
DISCFAS · (1 + cFLIP) + (1 + DISCTNF) · (1 + DISCFAS) · CASP3 · (1 +

cFLIP)+(1+DISCTNF) ·DISCFAS ·(1+cFLIP))+DISCTNF ·(1+cFLIP)

Cytc MOMP

DISCFAS FASL · FADD

DISCTNF TNFR · FADD

FADD FADD

FASL FASL

IKK RIP1ub

MOMP ((1 + BAX) · MPT) · BAX + ((1 + BAX) · MPT) + BAX

MPT (1 + BCL2) · ROS

NFKB1 IKK · (1 + CASP3)

NonACD 1 + ATP

RIP1 (1 + TNFR) · DISCFAS · (1 + CASP8) · TNFR · (1 + CASP8) + (1 + TNFR) ·
DISCFAS · (1 + CASP8) + TNFR · (1 + CASP8)

RIP1K RIP1

RIP1ub RIP1 · cIAP

ROS (1 + RIP1K) · MPT · NFKB1 · RIP1K · (1 + NFKB1) + RIP1K · (1 +

NFKB1) + (1 + RIP1K) · MPT · NFKB1

SMAC MOMP

TNF TNF

TNFR TNF

XIAP (1 + SMAC) · NFKB1

apoptosome ATP · Cytc · (1 + XIAP)

cFLIP NFKB1

cIAP (1 + NFKB1) · (1 + SMAC) · cIAP · NFKB1 · (1 + SMAC) + (1 + NFKB1) ·
(1 + SMAC) · cIAP + NFKB1 · (1 + SMAC)

Table 2. Classifiers for the Boolean network depicted in Table 1.

Bio. interpretation of classifier Classifier

Survival NFKB1

Apoptosis CASP3

NonACD 1 + ATP

Classifier Construction in Boolean Networks Using Algebraic Methods 223

Fig. 1. 27 steady states of the complete BN computed with GINsim [21]. Components
marked with * can either be set to zero or one. Steady states are grouped into pheno-
types. Six steady states are not corresponding to any phenotype.

orderings. Note that each ideal in B(n) is a principal ideal3 and each ideal 〈f〉 in
B(n) corresponds to an ideal 〈f, x2

1 + x1, . . . , x
2
n + xn〉 in F2[x1, . . . , xn]. Let us

also for simplicity consider the lexicographical ordering defined by xn � xn−1 �
· · · � x1. The general case can be obtained by permutation.

Lemma 5. Consider an ideal of the form I = 〈f, x2
1 + x1, . . . , x

2
n + xn〉 ⊆

F2[x1, . . . , xn] and the lexicographical ordering � defined by xn � xn−1 � · · · �
x1. Then � is represented by the weight vector w ∈ Q

n with wk = 1 +
∑k−1

j=1 wj

or alternatively wk = 2k−1.

Proof. Let � be as above and w the corresponding weight vector defined there.
We first show that inw(I) ⊆ in�(I). This is true since by definition of I
we know that the monomials x2

1, . . . , x
2
n are contained in inw(I) (and obvi-

ously in in�(I)). Consequently, we can represent inw(I) in the form inw(I) =
〈inw(g1), . . . , inw(gk), x2

1, . . . , x
2
n〉 with square free polynomials g1, . . . , gk in I.

Now by construction of w for square free polynomials g ∈ F2[x1, . . . , xn] the
equality inw(g) = in�(g) holds. It follows inw(I) ⊆ in�(I). Analogously it
holds in�(I) ⊆ inw(I).

Let us call a reduced Gröbner basis with a distinguished initial monomial a
marked Gröbner basis in accordance with [13, p. 428]. Next, we form equivalence
classes of weight vectors which will lead to the same marked Gröbner bases.

Definition 3 ([13, p. 429]). Let G be any marked Gröbner basis for an ideal I
consisting of t polynomials

gi = xα(i) +
∑

β

ci,βxβ ,

3 This follows from the identity f · (f + g + f · g) = f for f, g ∈ B(n).

224 R. Schwieger et al.

where i ∈ {1, . . . , t} and xα(i) is the initial monomial. We denote with CG the
set

CG =
{
w ∈ (Rn)+ : (α(i) − β) · w ≥ 0 whenever ci,β �= 0

}
.

We can combine Lemma 5 and Definition 3 to potentially improve our algo-
rithm. If we computed for a lexicographical ordering in Algorithm 1 a Gröbner
basis G we can compute and save the equivalence class CG. Now proceeding
with the algorithm, for a new lexicographical ordering we need to check, we can
create the corresponding weight vector w using Lemma 5 and check if w is in
any of the previously computed equivalence classes CG. If this is the case we can
use the result of the previous computation.

Another aspect of the algorithm we can improve is the conversion of Gröbner
bases. For an ideal I(B) = 〈f, x2

1 + x1, . . . , x
2
n + xn〉 the ring F2[x1, . . . , xn]

/I(B)
is zero-dimensional, and so a finite dimensional vector space. Therefore, it is
possible to use linear algebra for the conversion of Gröbner bases. This leads to
the Faugère-Gianni-Lazard-Mora algorithm (FLGM algorithm) [13,16, p. 49].

8 Conclusion

We reformulated Problem 1 into the language of algebraic geometry. To do so we
described the set of potential classifiers using residue classes modulo the vanish-
ing ideal of the attractors or steady states of the Boolean network. This enabled
us to construct an algorithm using normal forms to compute optimal classifiers.
Subsequently we demonstrated the usefulness of this approach by creating an
algorithm that produces the minimal solutions to Problem 1. We showed that
it is possible to apply this algorithm to a model for cell-fate decision with 25
components from [8]. Especially, in combination with reduction algorithms for
Boolean networks this allows us to investigate larger networks.

We hope that it will be also possible to exploit the algebraic reformulation
further to speed up computations to tackle even larger networks. Some parts in
the algorithm can be improved to obtain potentially faster computation times.
For example the conversion between different Gröbner bases can be done more
efficiently using the FLGM algorithm (see [13,16, p. 49–54]) which uses linear
algebra for the conversion of Gröbner bases. Since at the moment of writing this
article there was no implementation of this available in PolyBoRi we did not use
this potential improvement.

However, the main bottleneck for the speed of the algorithm seems to be the
enumeration of possible orderings (or more precisely candidate sets). Therefore,
we believe that this will not lead to a significant increase in speed but this
remains to be tested. Instead we believe, that for larger networks heuristics
should be investigated. Here ideas from the machine learning community could
be useful. Potential crosslinks to classifications problems considered there should
be explored in the future.

Also different optimality criteria for picking classifiers might be useful. For
example one could try to attribute measurement costs to components and pick
polynomial orderings which lead to optimal results in such a context as well.

Classifier Construction in Boolean Networks Using Algebraic Methods 225

In the introduction we mentioned the relationship of Problem 1 to problems
in the LAD community. There one starts typically with a data set of Boolean
vectors. Here we focused on the case where our sets to be classifies are implicitly
given. However, approaches developed for interpolation of Boolean polynomials
from data points such as [6] could be used in the future to tailor our approach
to such scenarios as well.

Appendix

Table 3. 9 different representations of classifier for NonACD (see Sect. 6).

Components Expression

ATP ATP + 1

CASP3, Cytc Cytc+ CASP3

CASP3, MOMP MOMP + CASP3

CASP3, SMAC SMAC + CASP3

Cytc, apoptosome Cytc+ apoptosome

MOMP , apoptosome apoptosome+MOMP

MPT MPT

ROS ROS

SMAC, apoptosome apoptosome+ SMAC

Table 4. 17 different representations of the classifier for apoptosis (see Sect. 6)

Components Expression

ATP,BAX BAX ·ATP

ATP,CASP8 ATP · CASP8

ATP,Cytc Cytc+ATP + 1

ATP,MOMP ATP +MOMP + 1

ATP, SMAC ATP + SMAC + 1

BAX,MPT BAX ·MPT +BAX

BAX,ROS BAX ·ROS +BAX

CASP3, CASP3

CASP8,MPT MPT · CASP8 + CASP8

CASP8, ROS ROS · CASP8 + CASP8

Cytc,MPT Cytc+MPT

Cytc,ROS Cytc+ROS

MOMP,MPT MPT +MOMP

MOMP,ROS ROS +MOMP

MPT, SMAC MPT + SMAC

ROS, SMAC ROS + SMAC

apoptosome, apoptosome

226 R. Schwieger et al.

Table 5. 84 different representations of the classifier of survival of the cell. (see Sect. 6)

Components Expression

ATP , BAX,
DISCFAS, TNF

DISCFAS · BAX + DISCFAS · ATP + DISCFAS ·
TNF + BAX · ATP + BAX · TNF + BAX + ATP · TNF

ATP , BAX,
DISCFAS,
TNFR

DISCFAS · BAX + DISCFAS · ATP + DISCFAS ·
TNFR+BAX ·ATP +BAX ·TNFR+BAX +ATP ·TNFR

ATP , BAX,
FADD, FASL,
TNF

BAX · FASL · FADD + BAX · TNF + ATP · FASL ·
FADD · TNF + ATP · FADD · TNF + ATP · TNF +
FASL · FADD + FADD · TNF

ATP , BAX,
FADD, FASL,
TNFR

BAX · TNFR + BAX · FASL · FADD + ATP · TNFR ·
FASL · FADD + ATP · TNFR · FADD + ATP · TNFR +
TNFR · FADD + FASL · FADD

ATP , CASP3,
DISCFAS, TNF

DISCFAS · ATP · TNF + DISCFAS · ATP + DISCFAS ·
CASP3 + ATP · TNF + TNF · CASP3

ATP , CASP3,
DISCFAS,
TNFR

DISCFAS · ATP · TNFR + DISCFAS · ATP +
DISCFAS · CASP3 + ATP · TNFR + TNFR · CASP3

ATP , CASP3,
FADD, FASL,
TNF

ATP · FASL · FADD · TNF + ATP · FASL · FADD +
ATP · TNF + FASL · FADD · CASP3 + TNF · CASP3

ATP , CASP3,
FADD, FASL,
TNFR

ATP · TNFR · FASL · FADD + ATP · TNFR + ATP ·
FASL · FADD + TNFR · CASP3 + FASL · FADD · CASP3

ATP , CASP8,
DISCFAS, TNF

DISCFAS ·TNF ·CASP8+DISCFAS ·TNF +DISCFAS ·
CASP8 + DISCFAS + ATP · TNF · CASP8 + ATP · TNF

ATP , CASP8,
DISCFAS,
TNFR

DISCFAS · TNFR · CASP8 + DISCFAS · TNFR +
DISCFAS · CASP8 + DISCFAS + ATP · TNFR ·
CASP8 + ATP · TNFR

ATP , CASP8,
FADD, FASL,
TNF

ATP · TNF · CASP8 + ATP · TNF + FASL · FADD ·
TNF · CASP8 + FASL · FADD · TNF + FASL · FADD ·
CASP8 + FASL · FADD

ATP , CASP8,
FADD, FASL,
TNFR

ATP · TNFR + ATP · FASL · CASP8 + ATP · CASP8 +
TNFR ·FASL ·FADD +TNFR ·CASP8+FASL ·FADD ·
CASP8 + FASL · FADD + FASL · CASP8 + CASP8

ATP , DISCFAS,
TNF , apoptosome

DISCFAS · ATP · TNF + DISCFAS · ATP + DISCFAS ·
apoptosome + ATP · TNF + apoptosome · TNF

ATP , DISCFAS,
TNFR,
apoptosome

DISCFAS ·ATP ·TNFR+DISCFAS ·ATP +DISCFAS ·
apoptosome + ATP · TNFR + apoptosome · TNFR

ATP , FADD,
FASL, TNF ,
apoptosome

ATP · FASL · FADD · TNF +ATP · FASL · FADD +ATP ·
TNF + apoptosome · FASL · FADD + apoptosome · TNF

(continued)

Classifier Construction in Boolean Networks Using Algebraic Methods 227

Table 5. (continued)

Components Expression

ATP , FADD,
FASL, TNFR,
apoptosome

ATP ·TNFR ·FASL ·FADD+ATP ·TNFR+ATP ·FASL ·
FADD + apoptosome · TNFR + apoptosome · FASL · FADD

ATP , RIP1 ATP · RIP1

ATP , RIP1K ATP · RIP1K

BAX, DISCFAS,
MPT , TNF

DISCFAS ·BAX +DISCFAS ·MPT +DISCFAS ·TNF +
DISCFAS+BAX ·MPT +BAX ·TNF +MPT ·TNF +TNF

BAX, DISCFAS,
MPT , TNFR

DISCFAS · BAX + DISCFAS · TNFR + DISCFAS ·
MPT + DISCFAS + BAX · TNFR + BAX · MPT +
TNFR · MPT + TNFR

BAX, DISCFAS,
ROS, TNF

DISCFAS ·BAX +DISCFAS ·ROS +DISCFAS ·TNF +
DISCFAS+BAX ·ROS+BAX ·TNF +ROS ·TNF +TNF

BAX, DISCFAS,
ROS, TNFR

DISCFAS · BAX + DISCFAS · TNFR + DISCFAS ·
ROS + DISCFAS + BAX · TNFR + BAX · ROS +
TNFR · ROS + TNFR

BAX, FADD,
FASL, MPT ,
TNF

BAX · FASL · FADD + BAX · TNF + MPT · FASL ·
FADD · TNF + MPT · FADD · TNF + MPT · TNF +
FASL · FADD · TNF + FASL · FADD + TNF

BAX, FADD,
FASL, MPT ,
TNFR

BAX · TNFR + BAX · FASL · FADD + TNFR · MPT ·
FASL · FADD + TNFR · MPT · FADD + TNFR · MPT +
TNFR · FASL · FADD + TNFR + FASL · FADD

BAX, FADD,
FASL, ROS, TNF

BAX · FASL · FADD + BAX · TNF + FASL · FADD ·
ROS · TNF + FASL · FADD · TNF + FASL · FADD +
FADD · ROS · TNF + ROS · TNF + TNF

BAX, FADD,
FASL, ROS,
TNFR

BAX · TNFR + BAX · FASL · FADD + TNFR · FASL ·
FADD · ROS + TNFR · FASL · FADD + TNFR · FADD ·
ROS + TNFR · ROS + TNFR + FASL · FADD

BCL2 BCL2

CASP3,
DISCFAS, MPT ,
TNF

DISCFAS · MPT · TNF + DISCFAS · MPT +
DISCFAS · TNF + DISCFAS · CASP3 + DISCFAS +
MPT · TNF + TNF · CASP3 + TNF

CASP3,
DISCFAS, MPT ,
TNFR

DISCFAS · TNFR · MPT + DISCFAS · TNFR +
DISCFAS · MPT + DISCFAS · CASP3 + DISCFAS +
TNFR · MPT + TNFR · CASP3 + TNFR

CASP3,
DISCFAS, ROS,
TNF

DISCFAS · ROS · TNF + DISCFAS · ROS + DISCFAS ·
TNF + DISCFAS · CASP3 + DISCFAS + ROS · TNF +
TNF · CASP3 + TNF

CASP3,
DISCFAS, ROS,
TNFR

DISCFAS · TNFR · ROS + DISCFAS · TNFR +
DISCFAS · ROS + DISCFAS · CASP3 + DISCFAS +
TNFR · ROS + TNFR · CASP3 + TNFR

CASP3, FADD,
FASL, MPT ,
TNF

MPT · FASL · FADD · TNF + MPT · FASL · FADD +
MPT · TNF + FASL · FADD · TNF + FASL · FADD ·
CASP3 + FASL · FADD + TNF · CASP3 + TNF

(continued)

228 R. Schwieger et al.

Table 5. (continued)

Components Expression

CASP3, FADD,
FASL, MPT ,
TNFR

TNFR · MPT · FASL · FADD + TNFR · MPT + TNFR ·
FASL · FADD + TNFR · CASP3 + TNFR + MPT ·
FASL · FADD + FASL · FADD · CASP3 + FASL · FADD

CASP3, FADD,
FASL, ROS, TNF

FASL · FADD · ROS · TNF + FASL · FADD · ROS +
FASL · FADD · TNF + FASL · FADD · CASP3 + FASL ·
FADD + ROS · TNF + TNF · CASP3 + TNF

CASP3, FADD,
FASL, ROS,
TNFR

TNFR · FASL · FADD · ROS + TNFR · FASL · FADD +
TNFR · ROS + TNFR · CASP3 + TNFR + FASL ·
FADD · ROS + FASL · FADD · CASP3 + FASL · FADD

CASP8,
DISCFAS, MPT ,
TNF

DISCFAS · TNF · CASP8 + DISCFAS · TNF +
DISCFAS · CASP8 + DISCFAS + MPT · TNF ·
CASP8 + MPT · TNF + TNF · CASP8 + TNF

CASP8,
DISCFAS, MPT ,
TNFR

DISCFAS · TNFR + DISCFAS · MPT + DISCFAS ·
CASP8 + DISCFAS + TNFR · MPT + TNFR · CASP8 +
TNFR + MPT · CASP8

CASP8,
DISCFAS, ROS,
TNF

DISCFAS · TNF · CASP8 + DISCFAS · TNF +
DISCFAS · CASP8 + DISCFAS + ROS · TNF · CASP8 +
ROS · TNF + TNF · CASP8 + TNF

CASP8,
DISCFAS, ROS,
TNFR

DISCFAS · TNFR + DISCFAS · ROS + DISCFAS ·
CASP8 + DISCFAS + TNFR · ROS + TNFR · CASP8 +
TNFR + ROS · CASP8

CASP8, FADD,
FASL, MPT ,
TNF

MPT · TNF · CASP8 + MPT · TNF + FASL · FADD ·
TNF · CASP8 + FASL · FADD · TNF + FASL · FADD ·
CASP8 + FASL · FADD + TNF · CASP8 + TNF

CASP8, FADD,
FASL, MPT ,
TNFR

TNFR · MPT + TNFR · FASL · FADD + TNFR ·
CASP8 + TNFR + MPT · FASL · CASP8 + MPT ·
CASP8 + FASL · FADD · CASP8 + FASL · FADD

CASP8, FADD,
FASL, ROS, TNF

FASL · FADD · TNF + FASL · FADD · CASP8 + FASL ·
FADD + FASL · ROS · CASP8 + ROS · TNF + ROS ·
CASP8 + TNF · CASP8 + TNF

CASP8, FADD,
FASL, ROS,
TNFR

TNFR · FASL · FADD + TNFR · ROS + TNFR ·
CASP8 + TNFR + FASL · FADD · CASP8 + FASL ·
FADD + FASL · ROS · CASP8 + ROS · CASP8

Cytc, DISCFAS,
TNF

Cytc · DISCFAS · TNF + Cytc · DISCFAS + Cytc · TNF +
DISCFAS · TNF + DISCFAS + TNF

Cytc, DISCFAS,
TNFR

Cytc · DISCFAS · TNFR + Cytc · DISCFAS + Cytc ·
TNFR + DISCFAS · TNFR + DISCFAS + TNFR

Cytc, FADD,
FASL, TNF

Cytc · FASL · FADD · TNF + Cytc · FASL · FADD + Cytc ·
TNF + FASL · FADD · TNF + FASL · FADD + TNF

(continued)

Classifier Construction in Boolean Networks Using Algebraic Methods 229

Table 5. (continued)

Components Expression

Cytc, FADD,
FASL, TNFR

Cytc ·TNFR ·FASL ·FADD +Cytc ·TNFR+Cytc ·FASL ·
FADD + TNFR · FASL · FADD + TNFR + FASL · FADD

Cytc, RIP1 Cytc · RIP1 + RIP1

Cytc, RIP1K Cytc · RIP1K + RIP1K

DISCFAS,
MOMP , TNF

DISCFAS · MOMP · TNF + DISCFAS · MOMP +
DISCFAS · TNF + DISCFAS + MOMP · TNF + TNF

DISCFAS,
MOMP , TNFR

DISCFAS · TNFR · MOMP + DISCFAS · TNFR +
DISCFAS ·MOMP +DISCFAS+TNFR·MOMP +TNFR

DISCFAS, MPT ,
TNF , apoptosome

DISCFAS · apoptosome + DISCFAS · MPT · TNF +
DISCFAS · MPT + DISCFAS · TNF + DISCFAS +
apoptosome · TNF + MPT · TNF + TNF

DISCFAS, MPT ,
TNFR,
apoptosome

DISCFAS · apoptosome + DISCFAS · TNFR · MPT +
DISCFAS · TNFR + DISCFAS · MPT + DISCFAS +
apoptosome · TNFR + TNFR · MPT + TNFR

DISCFAS, ROS,
TNF , apoptosome

DISCFAS · apoptosome + DISCFAS · ROS · TNF +
DISCFAS · ROS + DISCFAS · TNF + DISCFAS +
apoptosome · TNF + ROS · TNF + TNF

DISCFAS, ROS,
TNFR,
apoptosome

DISCFAS · apoptosome + DISCFAS · TNFR · ROS +
DISCFAS · TNFR + DISCFAS · ROS + DISCFAS +
apoptosome · TNFR + TNFR · ROS + TNFR

DISCFAS,
SMAC, TNF

DISCFAS · SMAC · TNF + DISCFAS · SMAC +
DISCFAS · TNF + DISCFAS + SMAC · TNF + TNF

DISCFAS,
SMAC, TNFR

DISCFAS · TNFR · SMAC + DISCFAS · TNFR +
DISCFAS ·SMAC +DISCFAS +TNFR ·SMAC +TNFR

DISCFAS, TNF ,
cIAP

DISCFAS · TNF · cIAP + DISCFAS · cIAP + TNF · cIAP

DISCFAS,
TNFR, cIAP

DISCFAS ·TNFR·cIAP +DISCFAS ·cIAP +TNFR·cIAP

FADD, FASL,
MOMP , TNF

FASL ·FADD ·MOMP ·TNF +FASL ·FADD ·MOMP +
FASL·FADD·TNF +FASL·FADD+MOMP ·TNF +TNF

FADD, FASL,
MOMP , TNFR

TNFR · FASL · FADD · MOMP + TNFR · FASL ·
FADD + TNFR · MOMP + TNFR + FASL · FADD ·
MOMP + FASL · FADD

FADD, FASL,
MPT , TNF ,
apoptosome

apoptosome · FASL · FADD + apoptosome · TNF + MPT ·
FASL · FADD · TNF + MPT · FASL · FADD + MPT ·
TNF + FASL · FADD · TNF + FASL · FADD + TNF

FADD, FASL,
MPT , TNFR,
apoptosome

apoptosome ·TNFR+apoptosome ·FASL ·FADD +TNFR ·
MPT · FASL · FADD + TNFR · MPT + TNFR · FASL ·
FADD + TNFR + MPT · FASL · FADD + FASL · FADD

(continued)

230 R. Schwieger et al.

Table 5. (continued)

Components Expression

FADD, FASL,
ROS, TNF ,
apoptosome

apoptosome · FASL · FADD + apoptosome · TNF + FASL ·
FADD · ROS · TNF + FASL · FADD · ROS + FASL ·
FADD · TNF + FASL · FADD + ROS · TNF + TNF

FADD, FASL,
ROS, TNFR,
apoptosome

apoptosome ·TNFR+apoptosome ·FASL ·FADD +TNFR ·
FASL · FADD · ROS + TNFR · FASL · FADD + TNFR ·
ROS + TNFR + FASL · FADD · ROS + FASL · FADD

FADD, FASL,
SMAC, TNF

FASL · FADD · SMAC · TNF + FASL · FADD · SMAC +
FASL·FADD ·TNF +FASL·FADD+SMAC ·TNF +TNF

FADD, FASL,
SMAC, TNFR

TNFR · FASL · FADD · SMAC + TNFR · FASL ·
FADD + TNFR · SMAC + TNFR + FASL · FADD ·
SMAC + FASL · FADD

FADD, FASL,
TNF , cIAP

FASL · FADD · TNF · cIAP + FASL · FADD · cIAP +
TNF · cIAP

FADD, FASL,
TNFR, cIAP

TNFR · FASL · FADD · cIAP + TNFR · cIAP + FASL ·
FADD · cIAP

IKK IKK

MOMP , RIP1 MOMP · RIP1 + RIP1

MOMP , RIP1K RIP1K · MOMP + RIP1K

MPT , RIP1 MPT · RIP1 + RIP1

MPT , RIP1K RIP1K · MPT + RIP1K

NFKB1 NFKB1

RIP1, ROS ROS · RIP1 + RIP1

RIP1, SMAC SMAC · RIP1 + RIP1

RIP1, cIAP RIP1 · cIAP

RIP1K, ROS RIP1K · ROS + RIP1K

RIP1K, SMAC RIP1K · SMAC + RIP1K

RIP1K, cIAP RIP1K · cIAP

RIP1ub RIP1ub

XIAP XIAP

cFLIP cFLIP

References

1. Albert, R., Thakar, J.: Boolean modeling: a logic-based dynamic approach for
understanding signaling and regulatory networks and for making useful predictions.
Wiley Interdiscip. Rev.: Syst. Biol. Med. 6(5), 353–369 (2014)

2. Alexe, S., Blackstone, E., Hammer, P.L., Ishwaran, H., Lauer, M.S., Snader, C.E.P.:
Coronary risk prediction by logical analysis of data. Ann. Oper. Res. 119(1–4), 15–
42 (2003)

Classifier Construction in Boolean Networks Using Algebraic Methods 231

3. Bonzanni, N., et al.: Hard-wired heterogeneity in blood stem cells revealed using
a dynamic regulatory network model. Bioinformatics 29(13), i80–i88 (2013)

4. Boros, E., Hammer, P.L., Ibaraki, T., Kogan, A., Mayoraz, E., Muchnik, I.: An
implementation of logical analysis of data. IEEE Trans. Knowl. Data Eng. 12(2),
292–306 (2000)

5. Brickenstein, M., Dreyer, A.: Polybori: a framework for gröbner-basis computations
with Boolean polynomials. J. Symb. Comput. 44(9), 1326–1345 (2009)

6. Brickenstein, M., Dreyer, A.: Gröbner-free normal forms for Boolean polynomials.
J. Symb. Comput. 48, 37–53 (2013)

7. Buchberger, B.: Applications of Gröbner bases in non-linear computational geome-
try. In: Rice, J.R. (ed.) Mathematical Aspects of Scientific Software. The IMA Vol-
umes in Mathematics and its Applications, pp. 59–87. Springer, New York (1988).
https://doi.org/10.1007/978-1-4684-7074-1 3

8. Calzone, L., et al.: Mathematical modelling of cell-fate decision in response to
death receptor engagement. PLOS Comput. Biol. 6(3), 1–15 (2010). https://doi.
org/10.1371/journal.pcbi.1000702

9. Chaouiya, C., Remy, E., Mossé, B., Thieffry, D.: Qualitative analysis of regulatory
graphs: a computational tool based on a discrete formal framework. In: Benvenuti,
L., De Santis, A., Farina, L. (eds.) Positive Systems. Lecture Notes in Control and
Information Science, vol. 294. Springer, Heidelberg. https://doi.org/10.1007/978-
3-540-44928-7 17

10. Cheng, D., Qi, H.: Controllability and observability of Boolean control networks.
Automatica 45(7), 1659–1667 (2009)

11. Chikalov, I., et al.: Logical analysis of data: theory, methodology and applications.
In: Three Approaches to Data Analysis. Intelligent Systems Reference Library, vol.
41. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-28667-4 3

12. Cox, D.A., Little, J., O’Shea, D.: Ideals, Varieties, and Algorithms. UTM. Springer,
Cham (2015). https://doi.org/10.1007/978-3-319-16721-3

13. Cox, D.A., Little, J., O’Shea, D.: Using Algebraic Geometry (2004)
14. Dickenstein, A., Millán, M.P., Shiu, A., Tang, X.: Multistationarity in structured

reaction networks. Bull. Math. Biol. 81(5), 1527–1581 (2019). https://doi.org/10.
1007/s11538-019-00572-6

15. Drton, M., Sturmfels, B., Sullivant, S.: Lectures on Algebraic Statistics. Ober-
wolfach Seminars, Birkhäuser Basel (2009). https://www.springer.com/gp/book/
9783764389048

16. Faugère, J.C., Gianni, P., Lazard, D., Mora, T.: Efficient computation of zero-
dimensional Gröbner bases by change of ordering. J. Symb. Comput. 16(4), 329–
344 (1993)

17. Faugère, J.-C., Joux, A.: Algebraic cryptanalysis of hidden field equation (HFE)
cryptosystems using Gröbner bases. In: Boneh, D. (ed.) CRYPTO 2003. LNCS,
vol. 2729, pp. 44–60. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-
540-45146-4 3

18. Fauré, A., Vreede, B.M., Sucena, É., Chaouiya, C.: A discrete model of drosophila
eggshell patterning reveals cell-autonomous and juxtacrine effects. PLoS Comput.
Biol. 10(3), e1003527 (2014)

19. Gao, S., Platzer, A., Clarke, E.M.: Quantifier elimination over finite fields using
Gröbner bases. In: Winkler, F. (ed.) CAI 2011. LNCS, vol. 6742, pp. 140–157.
Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-21493-6 9

20. Germundsson, R.: Basic results on ideals and varieties in finite fields. Tech. rep.
S-581 83 (1991)

https://doi.org/10.1007/978-1-4684-7074-1_3
https://doi.org/10.1371/journal.pcbi.1000702
https://doi.org/10.1371/journal.pcbi.1000702
https://doi.org/10.1007/978-3-540-44928-7_17
https://doi.org/10.1007/978-3-540-44928-7_17
https://doi.org/10.1007/978-3-642-28667-4_3
https://doi.org/10.1007/978-3-319-16721-3
https://doi.org/10.1007/s11538-019-00572-6
https://doi.org/10.1007/s11538-019-00572-6
https://www.springer.com/gp/book/9783764389048
https://www.springer.com/gp/book/9783764389048
https://doi.org/10.1007/978-3-540-45146-4_3
https://doi.org/10.1007/978-3-540-45146-4_3
https://doi.org/10.1007/978-3-642-21493-6_9

232 R. Schwieger et al.

21. Gonzalez, A.G., Naldi, A., Sánchez, L., Thieffry, D., Chaouiya, C.: GIN-
sim: a software suite for the qualitative modelling, simulation and analy-
sis of regulatory networks. Biosystems 84(2), 91–100 (2006). https://doi.org/
10.1016/j.biosystems.2005.10.003. http://www.sciencedirect.com/science/article/
pii/S0303264705001693

22. González, A., Chaouiya, C., Thieffry, D.: Logical modelling of the role of the Hh
pathway in the patterning of the drosophila wing disc. Bioinformatics 24(16), i234–
i240 (2008)

23. Hammer, P.L., Bonates, T.O.: Logical analysis of data - an overview: from com-
binatorial optimization to medical applications. Ann. Oper. Res. 148(1), 203–225
(2006)

24. Jarrah, A.S., Laubenbacher, R.: Discrete models of biochemical networks: the toric
variety of nested canalyzing functions. In: Anai, H., Horimoto, K., Kutsia, T. (eds.)
AB 2007. LNCS, vol. 4545, pp. 15–22. Springer, Heidelberg (2007). https://doi.org/
10.1007/978-3-540-73433-8 2

25. Laubenbacher, R., Stigler, B.: A computational algebra approach to the reverse
engineering of gene regulatory networks. J. Theor. Biol. 229(4), 523–537
(2004). https://doi.org/10.1016/j.jtbi.2004.04.037. http://www.sciencedirect.com/
science/article/pii/S0022519304001754

26. Le Novere, N.: Quantitative and logic modelling of molecular and gene networks.
Nat. Rev. Genet. 16(3), 146–158 (2015)

27. Millán, M.P., Dickenstein, A., Shiu, A., Conradi, C.: Chemical reaction systems
with toric steady states. Bull. Math. Biol. 74(5), 1027–1065 (2012)

28. Minato, S.I.: Zero-suppressed BDDs for set manipulation in combinatorial prob-
lems. In: Proceedings of the 30th International Design Automation Conference,
pp. 272–277. ACM (1993)

29. Mishchenko, A.: An introduction to zero-suppressed binary decision diagrams. In:
Proceedings of the 12th Symposium on the Integration of Symbolic Computation
and Mechanized Reasoning, vol. 8, pp. 1–15. Citeseer (2001)

30. Murrugarra, D., Veliz-Cuba, A., Aguilar, B., Laubenbacher, R.: Identification of
control targets in Boolean molecular network models via computational algebra.
BMC Syst. Biol. 10(1), 94 (2016). https://doi.org/10.1186/s12918-016-0332-x

31. Naldi, A., Remy, É., Thieffry, D., Chaouiya, C.: Dynamically consistent reduc-
tion of logical regulatory graphs. Theor. Comput. Sci. 412(21), 2207–2218 (2011).
https://doi.org/10.1016/j.tcs.2010.10.021. http://www.sciencedirect.com/science/
article/pii/S0304397510005839

32. Samaga, R., Klamt, S.: Modeling approaches for qualitative and semi-quantitative
analysis of cellular signaling networks. Cell Commun. Signal. 11(1), 43 (2013)

33. Samaga, R., Saez-Rodriguez, J., Alexopoulos, L.G., Sorger, P.K., Klamt, S.:
The logic of EGFR/ERBB signaling: theoretical properties and analysis of high-
throughput data. PLoS Comput. Biol. 5(8), e1000438 (2009)

34. Sánchez, L., Chaouiya, C., Thieffry, D.: Segmenting the fly embryo: logical analysis
of the role of the segment polarity cross-regulatory module. Int. J. Dev. Biol. 52(8),
1059–1075 (2002)

35. Sato, Y., Inoue, S., Suzuki, A., Nabeshima, K., Sakai, K.: Boolean Gröbner bases.
J. Symb. Comput. 46(5), 622–632 (2011)

36. Sturmfels, B.: Gröbner Bases and Convex Polytopes, vol. 8. American Mathemat-
ical Society, Providence (1996)

37. Thobe, K., Sers, C., Siebert, H.: Unraveling the regulation of mTORC2 using
logical modeling. Cell Commun. Signal. 15(1), 6 (2017)

https://doi.org/10.1016/j.biosystems.2005.10.003
https://doi.org/10.1016/j.biosystems.2005.10.003
http://www.sciencedirect.com/science/article/pii/S0303264705001693
http://www.sciencedirect.com/science/article/pii/S0303264705001693
https://doi.org/10.1007/978-3-540-73433-8_2
https://doi.org/10.1007/978-3-540-73433-8_2
https://doi.org/10.1016/j.jtbi.2004.04.037
http://www.sciencedirect.com/science/article/pii/S0022519304001754
http://www.sciencedirect.com/science/article/pii/S0022519304001754
https://doi.org/10.1186/s12918-016-0332-x
https://doi.org/10.1016/j.tcs.2010.10.021
http://www.sciencedirect.com/science/article/pii/S0304397510005839
http://www.sciencedirect.com/science/article/pii/S0304397510005839

Classifier Construction in Boolean Networks Using Algebraic Methods 233

38. Veliz-Cuba, A.: An algebraic approach to reverse engineering finite dynamical sys-
tems arising from biology. SIAM J. Appl. Dyn. Syst. 11(1), 31–48 (2012)

39. Veliz-Cuba, A., Aguilar, B., Hinkelmann, F., Laubenbacher, R.: Steady state anal-
ysis of Boolean molecular network models via model reduction and computational
algebra. BMC Bioinform. 15(1), 221 (2014). https://doi.org/10.1186/1471-2105-
15-221

40. Veliz-Cuba, A., Jarrah, A.S., Laubenbacher, R.: Polynomial algebra of discrete
models in systems biology. Bioinformatics 26(13), 1637–1643 (2010). https://doi.
org/10.1093/bioinformatics/btq240

41. Vera-Licona, P., Jarrah, A., Garcia-Puente, L.D., McGee, J., Laubenbacher, R.:
An algebra-based method for inferring gene regulatory networks. BMC Syst. Biol.
8(1), 37 (2014)

https://doi.org/10.1186/1471-2105-15-221
https://doi.org/10.1186/1471-2105-15-221
https://doi.org/10.1093/bioinformatics/btq240
https://doi.org/10.1093/bioinformatics/btq240

Sequential Temporary and Permanent
Control of Boolean Networks

Cui Su1 and Jun Pang1,2(B)

1 Interdisciplinary Centre for Security, Reliability and Trust,
University of Luxembourg, Esch-sur-Alzette, Luxembourg

{cui.su,jun.pang}@uni.lu
2 Faculty of Science, Technology and Medicine, University of Luxembourg,

Esch-sur-Alzette, Luxembourg

Abstract. Direct cell reprogramming makes it feasible to reprogram
abundant somatic cells into desired cells. It has great potential for regen-
erative medicine and tissue engineering. In this work, we study the con-
trol of biological networks, modelled as Boolean networks, to identify
control paths driving the dynamics of the network from a source attrac-
tor (undesired cells) to the target attractor (desired cells). Instead of
achieving the control in one step, we develop attractor-based sequential
temporary and permanent control methods (AST and ASP) to iden-
tify a sequence of interventions that can alter the dynamics in a stepwise
manner. To improve their feasibility, both AST and ASP only use biolog-
ically observable attractors as intermediates. They can find the shortest
sequential control paths and guarantee 100% reachability of the target
attractor. We apply the two methods to several real-life biological net-
works and compare their performance with the attractor-based sequen-
tial instantaneous control (ASI). The results demonstrate that AST and
ASP have the ability to identify a richer set of control paths with fewer
perturbations than ASI, which will greatly facilitate practical applica-
tions.

Keywords: Boolean networks · Cell reprogramming · Attractors ·
Node perturbations · Sequential control

1 Introduction

Direct cell reprogramming, also called transdifferentiation, has provided a great
opportunity for treating the most devastating diseases that are caused by a
deficiency or defect of certain cells. It allows us to harness abundant somatic
cells and transform them into desired cells to restore the structure and functions
of damaged organs. However, the identification of efficacious intervention targets
hinders the practical application of direct cell reprogramming.

Conventional experimental approaches are usually prohibited due to the
high complexity of biological systems and the high cost of biological experi-
ments [28]. Mathematical modelling of biological systems paves the way to study
c© Springer Nature Switzerland AG 2020
A. Abate et al. (Eds.): CMSB 2020, LNBI 12314, pp. 234–251, 2020.
https://doi.org/10.1007/978-3-030-60327-4_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-60327-4_13&domain=pdf
https://doi.org/10.1007/978-3-030-60327-4_13

Sequential Temporary and Permanent Control of Boolean Networks 235

mechanisms of biological processes and identify therapeutic targets with formal
reasoning and tools. Among various modelling frameworks, Boolean network
(BN) has a distinct advantage [6,7]. It provides a qualitative description of
biological systems and thus evades the parametrisation problem, which often
occurs in quantitative modelling, such as networks of ordinary differential equa-
tions (ODEs). In BNs, molecular species (genes, transcription factors, etc.) are
assigned binary-valued nodes, being either ‘0’ or ‘1’. The value of ‘0’ describes the
absence or inactive state of a species, whereas ‘1’ represents the presence or active
state. Activation/inhibition regulations between species are encoded as Boolean
functions, which determine the evolution of the nodes. The dynamics of a BN
evolves in discrete time under one of the updating schemes, such as synchronous
or asynchronous updating schemes. The asynchronous updating scheme is con-
sidered more realistic than the synchronous one, since it non-deterministically
updates one node at each time step and therefore can capture different biologi-
cal processes at different time scales [19]. The long-run behaviour of the network
dynamics is described as attractors, to one of which the network eventually set-
tles down. Attractors are used to characterise cellular phenotypes or functional
cellular states [5], such as proliferation, differentiation or apoptosis etc. In the
context of BNs, direct cell reprogramming is equivalent to a source-target con-
trol problem: identifying a set of nodes, the perturbation of which can drive the
network dynamics from a source attractor to the desired attractor.

The non-determinism of the asynchronous dynamics of BNs contributes to
a better depiction of biological systems. As a result, it makes the control prob-
lem more challenging and renders the control methods designed for synchronous
BNs inapplicable [8,20,31]. Another major obstacle to the control of BNs is the
infamous state explosion problem — the state space is exponential in the size of
the network. It prohibits the scalability and minimality of the control methods
for asynchronous BNs [10,30]. The limitations of the existing methods motivate
us to work on efficient and efficacious methods for the minimal source-target
control of asynchronous BNs. There are different strategies to solve the control
problem. Based on the control steps, we have one-step control and sequential con-
trol. One-step control applies all the perturbations simultaneously for one time,
while sequential control identifies a sequence of perturbations that are applied
at different time steps. In particular, we are interested in the sequential control
that only adopts attractors as intermediates, called attractor-based sequential
control. Rapid development of gene editing techniques enables us to silence or
overexpress the expression of genes for different periods of time, thus, we have
instantaneous, temporary and permanent perturbations. Instantaneous perturba-
tions are applied instantaneously; temporary perturbations are applied for suffi-
cient time steps and then released; permanent perturbations are applied for all
the following steps. So far, we have developed methods for the minimal one-step
instantaneous, temporary and permanent control (OI, OT and OP) [21,22,26]
and the attractor-based sequential instantaneous control (ASI) [11]. In this work,
we focus on the attractor-based sequential temporary and permanent control
(AST and ASP).

236 C. Su and J. Pang

Due to the intrinsic diversity and complexity of biological systems, no sin-
gle control method can perfectly suit all cases. Thus, it is of great importance
to explore more strategies to provide a number of cautiously selected candi-
dates for later clinical validations. AST and ASP integrate promising factors:
attractor-based sequential control and temporary/permanent control. Attractor-
based sequential control is more practical than the general sequential control [12],
where any state can play the role of intermediate states. Moreover, temporary
and permanent controls have proved their potential in reducing the number of
perturbations [26]. In this work, we continue to develop efficient methods to solve
the AST and ASP control problems. We apply our methods for AST and ASP
to several biological networks to show their ability in finding new control paths
with fewer perturbations compared to our previous methods [11,21,22,26]. We
believe our new methods can provide a better understanding of the mechanism-
of-action of interventions and improve the efficiency of translating identified
reprogramming paths into practical applications.

2 Preliminaries

In this section, we give preliminary notions of Boolean networks.

2.1 Boolean Networks

A Boolean network (BN) describes elements of a dynamical system with binary-
valued nodes and interactions between elements with Boolean functions. It is
formally defined as:

Definition 1 (Boolean networks). A Boolean network is a tuple G = (X,F)
where X = {x1, x2, . . . , xn}, such that xi, i ∈ {1, 2, . . . , n} is a Boolean variable
and F = {f1, f2, . . . , fn} is a set of Boolean functions over X.

For the rest of the exposition, we assume that an arbitrary but fixed network
G = (X,F) of n variables is given to us. For all occurrences of xi and fi,
we assume xi and fi are elements of X and F , respectively. A state s of G
is an element in {0, 1}n. Let S be the set of states of G. For any state s =
(s[1], s[2], . . . , s[n]), and for every i ∈ {1, 2, . . . , n}, the value of s[i], represents
the value that the variable xi takes when the network is in state s. For some
i ∈ {1, 2, . . . , n}, suppose fi depends on xi1 , xi2 , . . . , xik . Then fi(s) denotes the
value fi(s[i1], s[i2], . . . , s[ik]). For two states s, s′ ∈ S, the Hamming distance
between s and s′ is denoted as hd(s, s′).

Definition 2 (Control). A control C is a tuple (0, 1), where 0, 1 ⊆ {1, 2, . . . ,
n} and 0 and 1 are mutually disjoint (possibly empty) sets of indices of nodes
of a Boolean network G. The size of the control C is defined as |C| = |0| + |1|.
Given a state s ∈ S, the application of C to s is defined as a state s′ = C(s)
(s′ ∈ S), such that s′[i] = 0 = 1 − s[i] if i ∈ 0, and s′[i] = 1 = 1 − s[i] if i ∈ 1.

Sequential Temporary and Permanent Control of Boolean Networks 237

Definition 3 (Boolean networks under control). Let C = (0, 1) be
a control and G = (X,F) be a Boolean network. The Boolean network G
under control C, denoted as G|C , is defined as a tuple G|C = (X̂, F̂), where
X̂ = {x̂1, x̂2, . . . , x̂n} and F̂ = {f̂1, f̂2, . . . , f̂n}, such that for all i ∈ {1, 2, . . . , n}:
(1) x̂i = 0 if i ∈ 0, x̂i = 1 if i ∈ 1, and x̂i = xi otherwise;
(2) f̂i = 0 if i ∈ 0, f̂i = 1 if i ∈ 1, and f̂i = fi otherwise.

The state space of G|C , denoted S|C , is derived by fixing the values of the
variables in the set C to their respective values and is defined as S|C = {s ∈
S | s[i] = 1 if i ∈ 1 and s[j] = 0 if j ∈ 0}. Note that S|C ⊆ S. For any subset S′

of S we let S′|C = S′ ∩ S|C .

2.2 Dynamics of Boolean Networks

In this section, we define several notions that can be interpreted on both G and
G|C . We use the generic notion G = (X,F) to represent either G = (X,F) or
G|C = (X̂, F̂). A Boolean network G = (X,F) evolves in discrete time steps
from an initial state s0. Its state changes in every time step according to the
update functions F and the update scheme. Different updating schemes lead
to different dynamics of the network [14,32]. In this work, we are interested
primarily in the asynchronous updating scheme – at each time step, one node is
randomly selected to update its value based on its Boolean function. We define
asynchronous dynamics formally as follows:

Definition 4 (Asynchronous dynamics of Boolean networks). Suppose
s0 ∈ S is an initial state of G. The asynchronous evolution of G is a function
ξ : N → ℘(S) such that ξ(0) = {s0} and for every j ≥ 0, if s ∈ ξ(j) then
s′ ∈ ξ(j + 1) is a possible next state of s iff either hd(s, s′) = 1 and there exists
an i such that s′[i] = fi(s) = 1 − s[i] or hd(s, s′) = 0 and there exists an i such
that s′[i] = fi(s) = s[i].

It is worth noting that the asynchronous dynamics is non-deterministic and
thus it can capture biological processes happening at different classes of time
scales. Henceforth, when we talk about the dynamics of G, we shall mean the
asynchronous dynamics as defined above. The dynamics of a Boolean network
can be described as a transition system (TS).

Definition 5 (Transition system of Boolean networks). The transition
system of a Boolean network G, denoted as TS, is a tuple (S,E), where the
vertices are the set of states S and for any two states s and s′ there is a directed
edge from s to s′, denoted s → s′ iff s′ is a possible next state of s according to
the asynchronous evolution function ξ of G.

A path σ from a state s to a state s′ is a (possibly empty) sequence of
transitions from s to s′. Thus, σ = s0 → s1 → . . . → sk, where s0 = s and
sk = s′. A path from a state s to a subset S′ of S is a path from s to any state
s′ ∈ S′. For a state s ∈ S, reach(s) denotes the set of states S′ such that there

238 C. Su and J. Pang

is a path from s to any s′ ∈ S′ in TS and can be defined as the fixpoint of the
successor operation which is often denoted as post∗. Thus, reach(s) = post∗(s).

The long-run behaviour of the dynamics of a Boolean network is characterised
as attractors, defined as follows.

011

101

001 010

111 100

000

110

A1

A2A3

(a)

011

101

001 010

111 100

000

110

A1

A2A3

(b)

Fig. 1. (a) The transition system of the BN of Example 1; and (b) the control paths of
Example 2 from attractor A1 to attractor A3. Paths indicated with blue (red) arrows
are control paths with instantaneous (temporary/permanent) perturbations. (Color
figure online)

Definition 6 (Attractor). An attractor A of TS is a minimal non-empty
subset of states of S such that for every s ∈ A, reach(s) = A.

Any state which is not part of an attractor is a transient state. An attractor
A of TS is said to be reachable from a state s if reach(s) ∩ A �= ∅. The network
starting at any initial state s0 ∈ S will eventually end up in one of the attractors
of TS and remain there forever unless perturbed. Thus, attractors are used to
hypothesise cellular phenotypes or cell fates. We can easily observe that any
attractor of TS is a bottom strongly connected component of TS .

Let A be the set of attractors of TS . For an attractor A ∈ A, we define the
weak basin and the strong basin of A to imply the commitment of states to A in
Definition 7. Intuitively, the weak basin of A, basWTS (A), includes all the states s
from which there exists at least one path to A. It is possible that there also exist
paths from s to other attractor A′ (A′ �= A) of TS , while the notion of strong
basin does not allow this. The strong basin of A, basSTS (A), consists of all the
states from which there only exist paths to A.

Definition 7 (Weak basin and strong basin). The weak basin of A is
defined as basWTS (A) = {s ∈ S | reach(s) ∩ A �= ∅}; and the strong basin of A is
defined as basSTS (A) = {s ∈ S | reach(s) ∩ A �= ∅ and reach(s) ∩ A′ = ∅ for A′ ∈
A, A′ �= A}.
Example 1. Consider a network G = (X,F), where X = {x1, x2, x3}, F =
{f1, f2, f3}, and f1 = x2, f2 = x1 and f3 = x2 ∧ x3. Its transition system
TS is given in Fig. 1a. This network has three attractors that are marked with
dark grey nodes, including A1 = {000}, A2 = {110}, and A3 = {111}. The

Sequential Temporary and Permanent Control of Boolean Networks 239

strong basin of each attractor is marked as the light grey region. The weak basin
of A1 includes all the states except for states 110 and 111. The weak basin of A2

and A3 are basWTS (A2) = {010, 100, 101, 110} and basWTS (A3) = {011, 101, 111}.

3 Sequential Temporary and Permanent Control

3.1 The Control Problem

As discussed in the introduction, direct cell reprogramming harnesses abundant
somatic cells and reprograms them into desired cells. However, a major obstacle
to the application of this novel technique lies in the identification of effective tar-
gets, the intervention of which can lead to desired changes. We aim to solve this
problem by identifying key molecules based on BNs that model gene regulatory
networks, such that the control of these molecules can drive the dynamics of a
given network from a source attractor to the desired target attractor. We call it
source-target control of BNs.

 basin

 target

other attractors

source

control

(a) One-step control

 basin

 basin

 target

intermediate

source

control control

(b) Sequential control

Fig. 2. Two control strategies. (Color figure online)

Thanks to the rapid advances in gene editing techniques, the control can
be applied for different periods of time. Thus, we have instantaneous control,
temporary control and permanent control. Let As and At denote the source and
target attractors, respectively.

Definition 8 (Instantaneous, temporary and permanent controls).
(1) An instantaneous control is a control C = (0, 1), such that by applying C to
a state s ∈ As instantaneously, the network always reaches the target attractor
At.
(2) A temporary control is a control C = (0, 1), such that there exists a t0 ≥ 0, for
all t ≥ t0, the network always reaches the target attractor At on the application
of C to a state s ∈ As for t steps.
(3) A permanent control is a control C = (0, 1), such that the network always
reaches the target attractor At on the permanent application of C to a state
s ∈ As.

240 C. Su and J. Pang

Temporary control applies perturbations for sufficient time and then is
released, while permanent control maintains the perturbations for all the fol-
lowing time steps. Benefited from the extended intervention effects, temporary
and permanent controls can potentially reduce the number of perturbations,
which makes experiments easier to carry out and less costly [26].

The source-target control can also be achieved in one step or in multiple
steps, called one-step control and sequential control, respectively. As illustrated
in Fig. 2a, one-step control simultaneously applies all the required perturbations
for one time (red arrow) to drive the network from a source state (blue node) to a
state (yellow node), from which the network will converge to the target attractor
in finite time steps (dashed line). In Fig. 2b, sequential control utilises other
states as intermediates and identifies a sequence of perturbations, the application
of which guides the network towards the target attractor in a stepwise manner.
Considering difficulties in conducting clinical experiments, we are interested in
attractor-based sequential control, where only biologically observable attractors
can act as intermediates.

Given a source attractor As and a target attractor At of TS , the one-step
control is formally defined as:

Definition 9 (One-step control). Compute a control CAs→At
, such that the

application of CAs→At
to a state s ∈ As can drive the network towards At.

When the control CAs→At
is the instantaneous, temporary or permanent

control, we call it one-step instantaneous, temporary or permanent control (OI,
OT or OP), respectively. To minimise the experimental costs, we are interested in
the minimal solution Cmin

As→At
, which is the minimal such subset of {1, 2, . . . , n}.

Let A be the attractors of TS . The attractor-based sequential control is defined
as follows:

Definition 10 (Attractor-based sequential control). Find a sequence of
attractors of TS, i.e. {A1, A2, . . . , Am}, where A1 = As, Am = At, Ai �= Aj for
any i, j ∈ [1,m] and 2 ≤ m ≤ |A|, such that after the application of a sequence
of minimal one-step controls {Cmin

A1→A2
, Cmin

A2→A3
, . . . , Cmin

Am−1→Am
}, the network

always eventually reaches Am, i.e. At. We call it an attractor-based sequential
control path, denoted as

ρ : A1

Cmin
A1→A2−−−−−→ A2

Cmin
A2→A3−−−−−→ A3

...−→ . . .
Cmin

Am−1→Am−−−−−−−−→ Am

(|Cmin
A1→A2

|+ |Cmin
A2→A3

|+ . . .+ |Cmin
Am−1→Am

|) is the total number of perturbations.

Similarly, when the control CAs→At
is the instantaneous, temporary or perma-

nent control, we call it attractor-based sequential instantaneous, temporary or
permanent control (ASI, AST or ASP), respectively.

We have developed efficient methods to tackle the minimal OI, OT and OP
control [21,22,26], as well as ASI control [11,12]. Considering the advantages of
sequential control and temporary and permanent perturbations, in this paper,
we shall develop methods to solve the AST and ASP control problems based

Sequential Temporary and Permanent Control of Boolean Networks 241

on the methods for the minimal OT and OP control. Since the problems of
the minimal OT and OP control are at least PSPACE-hard [26], the AST and
ASP control are also computational difficult. We will demonstrate that based on
efficient computation of the minimal OT and OP control, our methods for the
AST and ASP control can also achieve a significant level of efficiency.

3.2 Attractor-Based Sequential Temporary Control

Algorithm 1 describes a procedure Comp Seq Temp to compute AST control
paths within k perturbations. This algorithm is based on our previously proposed
methods, including the computation of weak basin and strong basin [21,22],
denoted Comp Weak Basin and Comp Strong Basin, and the computation
of the minimal OT control [26], denoted Comp Temp Control. Particularly,
the procedure Comp Temp Control is based on Theorem 1.

Theorem 1. A control C = (0, 1) is a minimal temporary control from s to At

iff (1) basSTS (At) ∩ S|C �= ∅ and C(s) ∈ basSTS |C (basSTS (At) ∩ S|C) and (2) C is
a minimal such subset of {1, 2, . . . , n}.

The procedure for the computation of AST control, Comp Seq Temp, takes
as inputs the Boolean functions F , a threshold k of the number of perturbations,
a source attractor As, a target attractor At, and the set of attractors A of TS .
It contains two parts.

The first part includes lines 2–13. For each attractor A (A ∈ A and A �= At),
we generate a dictionary LA to save all the valid sequential control paths from
A to At (line 5). We compute the minimal OT control set from A to At, denoted
CA→At

. CA→At
is considered valid and saved to LA (line 8) if (1) A is the source

attractor As and the number of perturbations |CA→At
| is not greater than k; or

(2) A is not As and |CA→At
| is less or equal to (k − 1). If A is an intermediate

attractor (A �= As), CAs→A requires at least one perturbation. Therefore, the
size of CA→At

should not exceed (k − 1). A is saved to I as an intermediate
attractor if A �= As and |CA→At

| ≤ k − 1.
The second part includes lines 14–31. We extend the control paths computed

in the previous part by iteratively taking every intermediate attractors A′
t ∈ I

as a new target and computing the minimal temporary control from an attractor
A′

s (A′
s ∈ (A \ (A′

t ∪ At))) to A′
t. Specifically, for each new target attractor A′

t,
we compute the minimal temporary control set CA′

s→A′
t

from A′
s to A′

t (line 20).
Then, for every sequential path from A′

t to At, for instance (ΔA′
t→At

, ρA′
t→At

),
we verify whether A′

s can be appended to the beginning of ΔA′
t→At

to form a
new path from A′

s to A′
t based on the following two conditions: (1) A′

s is not an
intermediate attractor in the path A′

t → . . . → At (line 22); and (2) the total
number of perturbations of the new path ΔA′

s→At
should not exceed k (or k−1)

if A′
s = As (or A′

s �= As) (line 25). If both conditions are satisfied, we save the
new path to LA′

s
(line 29) and add A′

s to I ′ as a new candidate intermediate if
A′

s �= As (line 30). After going through all the intermediate attractors in I (lines
16–30), we update the set of intermediate attractors I and repeat steps at lines
14–31 until I is an empty set.

242 C. Su and J. Pang

Algorithm 1. Attractor-based sequential control of BNs
1: procedure Comp Seq Temp(F, k, As, At, A)
2: Initialise a list I := ∅ to store possible intermediate attractors.
3: WBAt :=Comp Weak Basin(F, At) // weak basin of the target
4: SBAt :=Comp Strong Basin(F, At) // strong basin of the target
5: Initialise a dictionary to store paths L := {LA1 , LA2 , . . . , LAm}, Ai ∈ A, Ai �=

At.
6: for A ∈ (A \ At) do //find attractors that have shorter paths to At

7: CA→At :=Comp Temp Control(A,WBAt ,SBAt)
8: if (A = As and |CA→At | ≤ k) or (A �= As and |CA→At | ≤ k − 1) then
9: // CAs→A needs at least one perturbation

10: ΔA→At .add(At)
11: ρA→At .add(CA→At)
12: Add the path (ΔA→At , ρA→At) to LA

13: Add A to I as a candidate intermediate if A �= As.

14: while I �= ∅ do
15: Initialise a new list I ′ := ∅
16: for A′

t ∈ I do // new target
17: WBA′

t
:=Comp Weak basin(F, A′

t)

18: SBA′
t
:=Comp Strong basin(F, A′

t)

19: for A′
s ∈ (A \ (A′

t ∪ At)) do // new source
20: CA′

s→A′
t

:=Comp Temp Control(A′
s,WBA′

t
,SBA′

t
)

21: for (ΔA′
t→At

, ρA′
t→At

) ∈ LA′
t

do

22: if A′
s /∈ ΔA′

t→At
then

23: h: the total number of perturbations required by ρA′
t→At

.
24: h = h + |CA′

s→A′
t
|

25: if (A′
s = As and h ≤ k) or (A′

s �= As and h ≤ k − 1) then
26: ρA′

s→At := ρA′
t→At

; ΔA′
s→At := ΔA′

t→At

27: Insert CA′
s→A′

t
to the beginning of ρA′

s→At .

28: Insert A′
t to the beginning of ΔA′

s→At .
29: Add the extended path (ΔA′

s→At , ρA′
t→At

) to LA′
s
.

30: Add A′
s to I ′ as a candidate intermediate if A′

s �= As.

31: I := I ′

32: Return LAs

33: procedure Perm Control Validation(CA′
s→A′

t
, A′

t, ΔA′
t→At

, ρA′
t→At

)
34: A1 := ΔA′

t→At
[0] // the first intermediate A1 in ΔA′

t→At

35: CA′
t→A1 := ρA′

t→At
[0] // the first control set CA′

t→A1 in ρA′
t→At

36: Δ′ := ΔA′
t→At

.pop(), ρ′ := ρA′
t→At

.pop() //delete the first element

37: C′′ := CA′
s→A′

t
\ CA′

t→A1

38: isValid := True
39: if A′

t|C′′ = A1|C′′ and Δ′ �= ∅ then
40: isValid :=Perm Control Validation(C′′, A′

t, Δ
′, ρ′)

41: else if A′
t|C′′ �= A′|C′′ then

42: isValid := False
return isValid

Sequential Temporary and Permanent Control of Boolean Networks 243

3.3 Attractor-Based Sequential Permanent Control

In this section, we develop an algorithm to solve the ASP control problem. We
have developed an algorithm to compute the minimal OP control [26], denoted
as Comp Perm Control, based on Theorem 2.

Theorem 2. A control C = (0, 1) is a minimal permanent control from s to At

iff (1) C(s) ∈ basSTS |C (At) and (2) C is a minimal such subset of {1, 2, . . . , n}.
The procedure for ASP control explores in the same way as the proce-

dure for AST control, Comp Seq Temp in Algorithm 1, to construct sequen-
tial paths, but it is more involved. It can be achieved by modifying procedure
Comp Seq Temp as follows. First, at lines 7 and 20, we simply replace the
procedure Comp Temp Control with the procedure Comp Perm Control.
Second, when extending the sequential paths (lines 14–31), besides the conditions
at line 26, we add the procedure Perm Control Validation in Algorithm 1 to
verify whether the control CA′

s→A′
t

can be inserted to the beginning of the path
from A′

t to At. Because for each control step of AST, the temporary perturba-
tions are released at one time point to retrieve the original transition system and
let the network evolve spontaneously to the the intermediate/target attractor.
But ASP adopts permanent control that will be maintained for all the following
time steps. Therefore, when extending a permanent control C to the beginning
of a sequential path, it has to be verified whether the application of C will affect
the reachability of the following control steps. To avoid duplication, here we only
give the explanations of the procedure Perm Control Validation. The pur-
pose of this procedure is to verify whether the control CA′

s→A′
t

can be added to
the beginning of ρA′

t→At
to form a new path ρA′

s→At
The verification is carried

out recursively. Let us assume ΔA′
t→At

= {A1, A2, . . . , At}. The first intermedi-
ate attractor is A1 and the control from A′

t to A1 is CA′
t→A1 . Since CA′

s→A′
t

and
CA′

t→A1 may require to perturb the same node in the opposite way, we compute
(CA′

s→A′
t
\ CA′

t→A1) and denote it as C ′′. If the projections of A′
t and A1 to C ′′

are the same, A1 is preserved under the permanent control C ′′ and we proceed
to the remaining control steps (lines 39–40); otherwise, CA′

s→A′
t

is not a valid
control (lines 41–42).

Example 2. To continue with Example 1, we compute the control paths from
A1 to A3. As shown in Fig. 1b, the control path indicated with blue arrows,

A1
{x1,x2}−−−−−→ A2

{x3}−−−→ A3, is the shortest ASI control, which requires three per-
turbations. AST and ASP have the same results indicated with red arrows in
Fig. 1b: A1

{x2}−−−→
{x1}

A2
{x3}−−−→ A3, which require two perturbations in total.

4 Evaluation

In this section, we evaluate the performance of AST and ASP on several real-life
biological networks. To demonstrate their efficacy, we compare their performance
with ASI [11]. The minimal number of perturbations required by OI, OT and OP

244 C. Su and J. Pang

is set as the threshold k of the number of perturbations for ASI, AST and ASP,
respectively. In this way, the results will demonstrate whether AST and ASP
can find sequential paths with fewer perturbations than ASI. All the methods
are implemented as an extension of our software tool ASSA-PBN [14–16]. All
the experiments are performed on a high-performance computing (HPC) plat-
form, which contains CPUs of Intel Xeon Gold 6132 @2.6 GHz. We describe and
discuss the results of the myeloid differentiation network [9] and the Th cell dif-
ferentiation network [17] in detail (Sects. 4.1 and 4.2), and we give an overview
of the results of the other networks (Sect. 4.3).

4.1 The Myeloid Differentiation Network

The myeloid differentiation network is constructed to model the differentiation
process of common myeloid progenitors (CMPs) into four types of mature blood
cells [9]. With our attractor detection method [13], we identify six single-state
attractors of the network, five of which are non-zero attractors (not all the nodes
have a value of ‘0’). It has been validated that expressions of four attractors
correspond to microarray expression profiles of megakaryocytes, erythrocytes,
granulocytes and monocytes [9]. The fifth attractor with the activation of PU1,
cJun and EgrNab might be caused by pathological alterations [9] and the sixth
attractor is an all-zero attractor, where all the nodes have a value of ‘0’.

EgrNab, C/EBP , PU1, cJun, GATA1

megakaryo
cytes

 monocytes

attractor

PU1,
 G

AT
A1 C/EBP

(a) ASI

C/EBP

EgrNab, C/EBP , GATA1

EgrNab, C/EBP , PU1megakaryo
cytes

 monocytes

attractor

PU1

(b) AST/ASP

Fig. 3. Sequential control of the myeloid differentiation network.

We take the conversion from megakaryocytes to monocytes as an example to
show the performance of the methods. Note that the sixth attractor does not
have a biological interpretation and mature erythrocytes in mammals do not
have cell nucleus, therefore we do not consider these two attractors as inter-
mediate attractors. Under this condition, the three methods (ASI, AST, ASP)
identify both one-step and sequential paths as illustrated in Fig. 3. In particu-
lar, the results of AST and ASP are identical. We can see that the minimal OI
control requires the activation of EgrNab, C/EBPα, PU1, cJun and the inhibi-
tion of GATA1 (Fig. 3a); while OT or OP can achieve the goal by either (1) the
activation of EgrNab, C/EBPα and PU1; or (2) the activation of EgrNab and
C/EBPα, together with the inhibition of GATA1 (Fig. 3b). All the sequential

Sequential Temporary and Permanent Control of Boolean Networks 245

paths need two steps, where the fifth attractor is adopted as an intermediate
attractor. For the first step, ASI activates PU1 and inhibits GATA1, while AST
or ASP only needs to activate PU1. When the network converges to the fifth
attractor, all the three methods require to activate C/EBPα. After that, the
network will evolve spontaneously to the target attractor monocytes. Figure 3
shows that AST and ASP are able to identify a path with only two perturbations,
while ASI requires at least three perturbations.

The efficacy of the identified sequential temporary/permanent path is con-
firmed by the predictions in [9]. According to the expression profiles, both PU1
and C/EBPα are not expressed in MegE lineage (megakaryocytes and erythro-
cytes), while they are expressed in GM lineage (monocytes and granulocytes).
In this network, no regulator can activate C/EBPα and PU1 is primarily acti-
vated by C/EBPα. Therefore, C/EBPα has to be altered externally to repro-
gram MegE lineage to GM lineage. However, more perturbations are necessary
to accurately reach the monocytes lineage. Sustained activation of PU1 and the
absence of C/EBPα guide the network to the fifth attractor, the expression of
which differs with monocytes only in C/EBPα [9].

Th17
Th1 Foxp3+

 RORrt+

TregTh1

#p
=
1

#p
=
1

#p=3

(a) ASI

Th17
Th1 Foxp3+

 RORrt+

TregTh1

#p
=
1

#p
=
1

#p=1

#p=3

#p=1

#p=2

(b) AST

Th17
Th1 Foxp3+

 RORrt+

TregTh1
#p
=
1

#p
=
1

#p=1

#p=3

#p=2

#p=2

(c) ASP

Fig. 4. Sequential control of the Th cell differentiation network.

4.2 The Th Cell Differentiation Network

The T-helper (Th) cell differentiation network is a comprehensive model inte-
grating regulatory network and signalling pathways that regulate Th cell dif-
ferentiation [17]. This network consists of 12 single-state attractors under one
initial condition and the attractors can be classified into different Th subtypes
based on the expression of four master regulators [17].

Let Th17 and a Th1 subtype (Th1 Foxp3+ RORrt+) be the source and tar-
get attractors, respectively. For the purpose of illustration, we limit the number
of control paths by only adopting Th1 and Treg as intermediate attractors. In
addition, we set the node ‘proliferation’ as a non-perturbed node, since it denotes

246 C. Su and J. Pang

a cell fate and thus cannot be perturbed in reality. Figure 4 describes the con-
trol paths identified by the three methods. The thickness of arrows implies the
number of control sets and the equations #p = m above each arrow denotes
the number of perturbations required by each step. All the methods identify
sequential paths passing through Th1 and/or Treg. Figure 4a only shows the
shortest ASI path with five perturbations, while AST and ASP provide mul-
tiple paths with only two or three perturbations (Fig. 4b and Fig. 4c), demon-
strating the advantages of AST and ASP in reducing the number of pertur-
bations. Among the sequential paths of AST and ASP, only the AST path,
Th17 IL27R−−−−→ Treg TBET−−−−→ the Th1 subtype, perturbs two nodes, all the other
paths using either temporary or permanent perturbations need to perturb at
least three nodes. This shows that AST has the potential to further reduce the
number of perturbations compared to ASP. Moreover, in terms of the number
of solutions, it is obvious that the arrows in Fig. 4b are thicker than those in
Fig. 4c, which indicates that AST provides more solutions than ASP.

4.3 Other Biological Networks

Besides the myeloid and Th cell differentiation networks, we also apply the three
control methods to several other biological networks [1–4,18,23,24]. Here is a
brief introduction of the networks.

– The cardiac gene regulatory network integrates key regulatory factors that
play key roles in early cardiac development and FHF/SHF determination [4].

– The ERBB receptor-regulated G1/S transition network is built to identify
efficacious targets for treating trastuzumab resistant breast cancer [24].

– The network of PC12 cell differentiation is built to capture the complex inter-
play of molecular factors in the decision of PC12 cell differentiation [18].

– The network of hematopoietic cell specification is constructed to capture the
lymphoid and myeloid cell development [2].

– The network of bladder tumour is constructed to study mutually exclusivity
and co-occurrence in genetic alterations [23].

– The pharmacodynamic model of bortezomib responses integrates major sur-
vival and apoptotic pathways in U266 cells to connect bortezomib exposure
to multiple myeloma cellular proliferation [1].

– The network of a CD4+ immune effector T cell is constructed to capture
cellular dynamics and molecular signalling under both immunocompromised
and healthy settings [3].

Columns 2–4 of Table 1 summarise the number of nodes, edges and attractors
contained in each network. For each network, we choose a pair of source and
target attractors and compute control paths with ASI, AST and ASP.

Efficacy. For each pair of source and target attractors, all the control paths
with at most k perturbation are computed. For the purpose of comparison,
in Table 1, columns 5–7 only summarise the minimal number of perturbations
needed by each control method and columns 8–10 summarise the number of

Sequential Temporary and Permanent Control of Boolean Networks 247

corresponding control paths. The results show that by extending the period of
control time, AST and ASP have the ability to compute more control paths
with fewer perturbations than ASI. This brings significant benefits for practical
applications. First, fewer perturbations can reduce the experimental costs and
make the experiments easier to conduct. Second, a richer set of control paths
provides biologists more options to tackle diverse biological systems.

To further compare AST and ASP, AST is more appealing than ASP. As
discussed in the previous subsection, the control of Th cell differentiation network
(T-diff in Table 1) shows that AST has the potential to identify smaller control
sets than ASP. For the other cases listed in Table 1, although AST requires the
same number of perturbations as ASP, AST identifies more solutions than ASP.
Apart from that, AST has an intrinsic advantage compared to ASP – temporary
control will eventually be released and therefore can eliminate risks of unforeseen
consequences, which may be caused by the permanent shift of the dynamics.

Efficiency. The last three columns of Table 1 give the computation time of ASI,
AST and ASP. Although AST and ASP take longer time than ASI, they are still
quite efficient and are capable of handling large-scale and comprehensive net-
works. In general, the computational time of the methods depends on the size of
the network, the threshold of the number of perturbations k and the number of
existing solutions within the threshold. By increasing the threshold k, our meth-
ods can identify more candidate solutions at the cost of longer computational
time. Currently, due to the lack of large and well-behaved networks, we are not
yet able to find out the precise limit of our methods on the size of networks.

Table 1. Sequential control of several biological networks.

Network |V | |E| |A| #perturbations #paths Time (seconds)

ASI AST ASP ASI AST ASP ASI AST ASP

Myeloid 11 30 6 3 2 2 1 1 1 0.006 0.034 0.038

Cardiac 15 39 6 3 2 2 1 3 2 0.018 0.658 0.653

ERBB 20 52 3 8 3 3 2 3 3 0.007 0.249 0.319

PC12 33 62 7 8 2 2 3 50 30 0.050 1.188 1.462

HSC 33 88 5 12 2 2 2 12 6 0.406 12.217 8.879

Bladder 35 116 4 5 2 2 2 2 2 0.139 0.709 0.676

Bortezomib 67 135 5 3 2 2 1 4 2 1.900 105.184 119.138

T-diff 68 175 12 5 2 3 4 1 14 9.713 95.211 71.044

CD4+ 188 380 6 3 2 2 3 48 6 256.492 539.868 1304.490

5 Discussion

We have demonstrated the potential strengths of AST and ASP, however, they
are not warranted to be the best methods for all kinds of biological systems.

248 C. Su and J. Pang

Indeed, there is no control method that can perfectly solve all the control prob-
lems due to the intrinsic diversity and complexity of biological systems. Given
a specific task, it is thus recommended to compute all the control paths with
available control methods. Various sets of identified therapeutic targets serve as
candidates, such that biologists can choose appropriate targets, the modulation
of which will not disrupt physiological functions of biological systems.

Although the dynamics of asynchronous BNs are non-deterministic, our
methods guarantee to find the shortest control paths with 100% reachability
in silico. Experimental validation is necessary to verify their therapeutic efficacy
in vivo. It is worth noticing that the consistency of the efficacy in silico and in
vivo highly relies on the quality of the constructed BNs. The identified pertur-
bations can effectively modulate the dynamics as expected, provided that the
adopted network well captures the structural and dynamical properties of the
real-life biological system. However, mathematical modelling of vastly complex
biological systems is already a challenging task by itself in systems biology. We
have spotted some flaws of the constructed networks in the literature during
analysis, summarised as follows.

First, simulation is often used to evaluate the stable behaviour of dynamics
in most of the works. However, simulation can hardly cover the entire transition
system of a BN, which is exponential in the size of the network. As a consequence,
the information on attractors is usually incomplete, especially for networks of
medium or large sizes. This problem can be solved by using our attractor detec-
tion method [13,29] to identify all the exact attractors of a network.

Second, we noticed that the attractors of some large networks are purely
induced by input nodes. For instance, given a network with 2 input nodes (nodes
without upstream regulators), it has 22 attractors. Each attractor corresponds
to one combination of the input nodes (00, 01, 10, 11). For such networks, the
input nodes, that have different values in the source and target attractors, are
the key nodes for modulating the dynamics. Such kind of networks may capture
some activation or inhibition regulations, but they fail to depict the intrinsic
mechanisms of biological processes.

Third, in some networks, cell phenotypes or cell fates, such as apoptosis,
proliferation, and differentiation, are represented as marker nodes. Benefited
from this, attractors can be classified based on the expressions of those nodes. A
problem that often occurs is that there does not exist any control sets without
perturbing these marker nodes, however, these nodes can not be perturbed in
reality. Again, we hypothesise that these constructed networks do not reflect the
intrinsic properties of biological systems.

Our methods [11,13,22,26,29] can provide accurate information of the net-
works, such as the number and size of the attractors and potential sets of con-
trol nodes. Such information related to the network dynamics should be taken
into account when inferring the networks by updating the Boolean functions or
adding/deleting regulators.

Sequential Temporary and Permanent Control of Boolean Networks 249

6 Conclusion and Future Work

In this work, we have developed the AST and ASP control methods to identify
sequential control paths for modulating the dynamics of biological systems. To
make it practical, only biologically observable attractors are served as interme-
diates. We compared the performance of the two methods with ASI on a variety
of biological networks. The results show that our new methods have apparent
advantages in reducing the number of perturbations and enriching the diversity
of solutions. Among the three sequential control methods (ASI, AST and ASP),
AST is more preferable because it requires the fewest number of perturbations
and it adopts temporary perturbations which will eventually be released and
thus can evade unforeseen consequences that might be caused by permanent
perturbations.

Until now, we have developed source-target control methods to alter the
dynamics of BNs in different ways. Currently, we are working on a target control
method to identify a subset of nodes, the intervention of which can transform any
somatic cells to the desired cell. We also plan to study the control of probabilistic
Boolean networks [25,27] based on our control methods for BNs. We believe
our works can provide deep insights into regulatory mechanisms of biological
processes and facilitate direct cell reprogramming.

Acknowledgements. This work was partially supported by the project SEC-
PBN funded by University of Luxembourg and the ANR-FNR project AlgoReCell
(INTER/ANR/15/11191283).

References

1. Chudasama, V., Ovacik, M., Abernethy, D., Mager, D.: Logic-based and cellular
pharmacodynamic modeling of bortezomib responses in u266 human myeloma cells.
J. Pharmacol. Experimental Therapeutics 354(3), 448–458 (2015)

2. Collombet, S., et al.: Logical modeling of lymphoid and myeloid cell specification
and transdifferentiation. Proc. National Acad. Sci. 114(23), 5792–5799 (2017)

3. Conroy, B.D., et al.: Design, assessment, and in vivo evaluation of a computational
model illustrating the role of CAV1 in CD4+ T-lymphocytes. Front. Immunol. 5,
599 (2014)

4. Herrmann, F., Groß, A., Zhou, D., Kestler, H.A., Kühl, M.: A Boolean model of the
cardiac gene regulatory network determining first and second heart field identity.
PLoS ONE 7, 1–10 (2012)

5. Huang, S.: Genomics, complexity and drug discovery: insights from Boolean net-
work models of cellular regulation. Pharmacogenomics 2(3), 203–222 (2001)

6. Kauffman, S.A.: Homeostasis and differentiation in random genetic control net-
works. Nature 224, 177–178 (1969)

7. Kauffman, S.A.: Metabolic stability and epigenesis in randomly constructed genetic
nets. J. Theor. Biol. 22(3), 437–467 (1969)

8. Kim, J., Park, S., Cho, K.: Discovery of a kernel for controlling biomolecular reg-
ulatory networks. Sci. Rep. 3(2223) 156–216 (2013)

250 C. Su and J. Pang

9. Krumsiek, J., Marr, C., Schroeder, T., Theis, F.J.: Hierarchical differentiation of
myeloid progenitors is encoded in the transcription factor network. PLoS ONE
6(8), e22649 (2011)

10. Mandon, H., Haar, S., Paulevé, L.: Relationship between the reprogramming deter-
minants of boolean networks and their interaction graph. In: Cinquemani, E.,
Donzé, A. (eds.) HSB 2016. LNCS, vol. 9957, pp. 113–127. Springer, Cham (2016).
https://doi.org/10.1007/978-3-319-47151-8 8

11. Mandon, H., Su, C., Haar, S., Pang, J., Paulevé, L.: Sequential reprogramming of
boolean networks made practical. In: Bortolussi, L., Sanguinetti, G. (eds.) CMSB
2019. LNCS, vol. 11773, pp. 3–19. Springer, Cham (2019). https://doi.org/10.1007/
978-3-030-31304-3 1

12. Mandon, H., Su, C., Pang, J., Paul, S., Haar, S., Paulevé, L.: Algorithms for the
sequential reprogramming of Boolean networks. IEEE/ACM Trans. Comput. Biol.
Bioinform. 16(5), 1610–1619 (2019)

13. Mizera, A., Pang, J., Qu, H., Yuan, Q.: Taming asynchrony for attractor detection
in large Boolean networks. IEEE/ACM Trans. Comput. Biol. Bioinform. 16(1),
31–42 (2019)

14. Mizera, A., Pang, J., Su, C., Yuan, Q.: ASSA-PBN: a toolbox for probabilistic
Boolean networks. IEEE/ACM Trans. Computat. Biol. Bioinform. 15(4), 1203–
1216 (2018)

15. Mizera, A., Pang, J., Yuan, Q.: ASSA-PBN: a tool for approximate steady-state
analysis of large probabilistic Boolean networks. In: Proceedings 13th International
Symposium on Automated Technology for Verification and Analysis. LNCS, vol.
9364, pp. 214–220. Springer (2015)

16. Mizera, A., Pang, J., Yuan, Q.: ASSA-PBN 2.0: a software tool for probabilistic
boolean networks. In: Bartocci, E., Lio, P., Paoletti, N. (eds.) CMSB 2016. LNCS,
vol. 9859, pp. 309–315. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
45177-0 19

17. Naldi, A., Carneiro, J., Chaouiya, C., Thieffry, D.: Diversity and plasticity of th
cell types predicted from regulatory network modelling. PLoS Computat. Biol. 6(9)
1256 (2010)

18. Offermann, B., et al.: Boolean modeling reveals the necessity of transcriptional
regulation for bistability in PC12 cell differentiation. Front. Genetics 7, 44 (2016)

19. Papin, J.A., Hunter, T., Palsson, B.O., Subramaniam, S.: Reconstruction of cellular
signalling networks and analysis of their properties. Nat. Rev. Molecular Cell Biol.
6(2), 99 (2005)

20. Pardo, J., Ivanov, S., Delaplace, F.: Sequential reprogramming of biological network
fate. In: Bortolussi, L., Sanguinetti, G. (eds.) CMSB 2019. LNCS, vol. 11773, pp.
20–41. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-31304-3 2

21. Paul, S., Su, C., Pang, J., Mizera, A.: A decomposition-based approach towards
the control of Boolean networks. In: Proceedings 9th ACM Conference on Bioin-
formatics, Computational Biology, and Health Informatics, pp. 11–20. ACM Press
(2018)

22. Paul, S., Su, C., Pang, J., Mizera, A.: An efficient approach towards the source-
target control of Boolean networks. IEEE/ACM Transactions on Computational
Biology and Bioinformatics (2020), accepted

23. Remy, E., Rebouissou, S., Chaouiya, C., Zinovyev, A., Radvanyi, F., Calzone,
L.: A modeling approach to explain mutually exclusive and co-occurring genetic
alterations in bladder tumorigenesis. Cancer Res. 75(19), 4042–4052 (2015)

24. Sahin, O., et al.: Modeling ERBB receptor-regulated G1/S transition to find novel
targets for de novo trastuzumab resistance. BMC Syst. Biol. 3(1), 1 (2009)

https://doi.org/10.1007/978-3-319-47151-8_8
https://doi.org/10.1007/978-3-030-31304-3_1
https://doi.org/10.1007/978-3-030-31304-3_1
https://doi.org/10.1007/978-3-319-45177-0_19
https://doi.org/10.1007/978-3-319-45177-0_19
https://doi.org/10.1007/978-3-030-31304-3_2

Sequential Temporary and Permanent Control of Boolean Networks 251

25. Shmulevich, I., Dougherty, E.R.: Probabilistic Boolean Networks: The Modeling
and Control of Gene Regulatory Networks. SIAM Press (2010)

26. Su, C., Paul, S., Pang, J.: Controlling large boolean networks with temporary and
permanent perturbations. In: ter Beek, M.H., McIver, A., Oliveira, J.N. (eds.) FM
2019. LNCS, vol. 11800, pp. 707–724. Springer, Cham (2019). https://doi.org/10.
1007/978-3-030-30942-8 41

27. Trairatphisan, P., Mizera, A., Pang, J., Tantar, A.A., Schneider, J., Sauter, T.:
Recent development and biomedical applications of probabilistic Boolean networks.
Cell Commun. Signal. 11, 46 (2013)

28. Wang, L.Z., et al.: A geometrical approach to control and controllability of non-
linear dynamical networks. Nat. Commun. 7, 11323 (2016)

29. Yuan, Q., Mizera, A., Pang, J., Qu, H.: A new decomposition-based method for
detecting attractors in synchronous Boolean networks. Sci. Comput. Program. 180,
18–35 (2019)

30. Zañudo, J.G.T., Albert, R.: Cell fate reprogramming by control of intracellular
network dynamics. PLoS Comput. Biol. 11(4), e1004193 (2015)

31. Zhao, Y., Kim, J., Filippone, M.: Aggregation algorithm towards large-scale
Boolean network analysis. IEEE Trans. Automatic Control 58(8), 1976–1985
(2013)

32. Zhu, P., Han, J.: Asynchronous stochastic Boolean networks as gene network mod-
els. J. Comput. Biol. 21(10), 771–783 (2014)

https://doi.org/10.1007/978-3-030-30942-8_41
https://doi.org/10.1007/978-3-030-30942-8_41

Inference and Identification

ABC(SMC)2: Simultaneous Inference
and Model Checking of Chemical

Reaction Networks

Gareth W. Molyneux(B) and Alessandro Abate

Department of Computer Science, University of Oxford, Oxford OX1 3QD, UK
{gareth.molyneux,alessandro.abate}@cs.ox.ac.uk

Abstract. We present an approach that simultaneously infers model
parameters while statistically verifying properties of interest to chem-
ical reaction networks, which we observe through data and we model
as parametrised continuous-time Markov Chains. The new approach
simultaneously integrates learning models from data, done by likelihood-
free Bayesian inference, specifically Approximate Bayesian Computation,
with formal verification over models, done by statistically model check-
ing properties expressed as logical specifications (in CSL). The approach
generates a probability (or credibility calculation) on whether a given
chemical reaction network satisfies a property of interest.

1 Introduction

Contribution. We introduce a framework that integrates Bayesian inference
and formal verification that additionally employs supervised machine learn-
ing, which allows for model-based probabilistic verification of data-generating
stochastic biological systems. The methodology performs data-driven inference
of accurate models, which contributes to the verification of whether or not the
underlying stochastic system satisfies a given formal property of interest. Verifi-
cation entails the estimation of the probability that models of the system satisfy
a formal specification. Our framework accommodates partially known systems
that might only generate finite, noisy observations. These systems are captured
by parametric models, with uncertain rates within a known stoichiometry.

Related Work. Bayesian inference techniques [9,10] have been applied exten-
sively to biological systems [42,49]. Exact inference is in general difficult due to
the intractability of the likelihood function, which has led to likelihood-free meth-
ods such as Approximate Bayesian Computation (ABC) [44,48]. [22] computes
the probability that an underlying stochastic system satisfies a given property
using data produced by the system and leveraging system’s models. Along this
line of work, the integration of verification of parameterised discrete-time Markov
chains and Bayesian inference is considered in [38], with an extension to Markov
decision processes in [39]. Both [38,39] work with small finite-state models with
c© Springer Nature Switzerland AG 2020
A. Abate et al. (Eds.): CMSB 2020, LNBI 12314, pp. 255–279, 2020.
https://doi.org/10.1007/978-3-030-60327-4_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-60327-4_14&domain=pdf
https://doi.org/10.1007/978-3-030-60327-4_14

256 G. W. Molyneux and A. Abate

fully observable traces, which allows the posterior probability distribution to be
calculated analytically and parameters to be synthesised symbolically. On the
contrary, here we work with partially observed data and stochastic models with
intractable likelihoods, and must rely on likelihood-free methods and statistical
parameter synthesis procedures. Building on previous work [36], which allowed
for likelhood-free Bayesian Verification of systems, the presented framework is
applicable to a wider variety of stochastic models.

Both probabilistic and statistical model checking have been applied to bio-
logical models [31,32,51], with tools for parameter synthesis [11,12]. Although
the parameter synthesis approach in [11] rigorously calculates the satisfaction
probability over the whole parameter space, it suffers from scalability issues. A
Bayesian approach to statistical model checking is considered in [27] and partly
inspires this work. Parametric verification has been considered from a statisti-
cal approach underpinned by Gaussian Processes: smoothed Model checking [5]
provides an estimate of the satisfaction probability with uncertainty estimates,
and has been used for parameter estimation from Boolean observations [7] and
for parameter synthesis [8]. [2] proposes a methodology that, given a reachabil-
ity specification, computes a related probability distribution on the parameter
space, and an automaton-based adaptation of the ABC method is introduced to
estimate it.

Approach. Our framework is as follows (Sect. 3). Given a property of interest,
a class of parametrised models and data from the underlying system, we simul-
taneously infer parameters and perform model-based statistical model checking.
We then use a supervised machine learning method to determine regions of the
parameter space that relate to models verifying the given property of interest.
We integrate the generated posterior over these synthesised parameter regions,
to quantify a probability (or credibility calculation) on whether or not the sys-
tem satisfies the given property. We apply this framework to Chemical Reaction
Networks (CRNs) [23,49] (Sect. 4), representing the data-generating biological
system, which can be modelled by parametrised continuous-time Markov Chains
[28]. We argue that the alternative use of CRN data for black-box statistical
model checking would be infeasible.

2 Background

2.1 Parametric Continuous-Time Markov Chains

Although our methodology can be applied to a number of parametrised stochas-
tic models, in view of the applications of interest we work with discrete-state,
continuous-time Markov chains [28].

Definition 1 (Continuous-timeMarkovChain). Acontinuous-timeMarkov
chain (CTMC) M is a tuple (S,R,AP,L), where;

ABC(SMC)2 257

– S is a finite, non-empty set of states,
– s0 is the initial state of the CTMC,
– R : S × S → R≥0 is the transition rate matrix, where R(s, s′) is the rate of

transition from state s to state s′,
– L : S → 2AP is a labelling function mapping each state, s ∈ S, to the set L(s) ⊆

AP of atomic propositions AP , that hold true in s.

For the models in this paper, we assume s0 is unique and deterministically
given. The transition rate matrix R governs the dynamics of the overall model.

Definition 2 (Path of a CTMC). Let M = (S,R,AP,L) be a CTMC.
An infinite path of a CTMC M is a non-empty sequence s0t0s1t1 . . . where
R(si, si+1) > 0 and ti ∈ R>0 for all i ≥ 0. A finite path is a sequence s0t0s1t1 . . .
sk−1tk−1sk such that sk is absorbing. The value ti represents the amount of
time spent in the state si before jumping to the next state in the chain, namely
state si+1. We denote by PathM(s) the set of all (infinite or finite) paths of
the CTMC M starting in state s. A trace of a CTMC is the mapping of a path
through the labelling function L.

Parametric CTMCs extend the notion of CTMC by allowing transition rates
to depend on a vector of model parameters, θ ∈ R

k. The domain of each param-
eter θi is given by a closed bounded real interval describing the range of possible
values, [θ⊥

i , θ�
i]. The parameter space Θ is defined as the Cartesian product of

the individual intervals, Θ =×i∈{1,...,k}[θ
⊥
i , θ�

i], so that Θ is a hyperrectangle.

Definition 3 (Parametric CTMC). Let Θ be a parameter space. A paramet-
ric Continuous-time Markov Chain (pCTMC) over θ is a tuple (S,Rθ, AP,L):

– S, s0, AP and L are as in Definition 1, and
– θ = (θ1, . . . , θk) is the vector of parameters, taking values in a compact hyper-

rectangle Θ ⊂ R
k
≥0,

– Rθ : S × S → R[θ] is the parametric rate matrix, where R[θ] denotes a set of
polynomials over R

+ with variables θk, θ ∈ Θ.

Given a pCTMC and a parameter space Θ, we denote with MΘ the set
{Mθ, θ ∈ Θ} where Mθ = (S,Rθ, AP,L) is the instantiated CTMC obtained by
replacing the parameters in R with their valuation in θ. So a standard CTMC
is induced by selecting a specific parameter θ ∈ Θ: the sampled paths of an
instantiated pCTMC Mθ are defined similarly to ω. In this work we deal with
Chemical Reaction Networks (CRNs), which have dynamics that can be mod-
elled by CTMCs.

Definition 4 (Chemical Reaction Network). A Chemical Reaction Network
(CRN) C is a tuple (M,X,W,R,υ), where

– M = {m1, . . . , mn} is a set of n species,
– X(t) = (X1(t), ...,Xn(t)) is a vector where each Xi represents the number of

molecules of each species i at time t. X ⊆ N
N the state space,

258 G. W. Molyneux and A. Abate

– R = {r1, . . . , rk} is the set of chemical reactions, each of the form rj =
(vj , αj), with vj the stoichiometry vector of size n and αj = αj(X, υj) is the
propensity or rate function,

– υ = (υ1, . . . , υk) is the vector of (kinetic) parameters, taking values in a
compact hyperrectangle Υ ⊂ R

k.

Each reaction j of the CRN is represented as rj :
∑n

i=1 uj,imi
αj−→ ∑n

i=1 u′
j,imi,

where uj,i (u′
j,i) is the amount of species mi consumed (produced) by reaction

rj . CRNs are used to model many biological processes and can be modelled by
CTMCs if we consider each state of the pCTMC to be a unique combination of
the number of species, taking a given species count X0 to be the initial state of
the pCTMC, s0 = X0. Parametrising the reaction rates within a CRN results in
a parametric CRN (pCRN), which can be modelled as a pCTMC. For the rest
of this paper, with a slight abuse in notation, we will let Mθ be the pCTMC
that represents a pCRN, where θ are the kinetic rates.

2.2 Properties - Continuous Stochastic Logic

We wish to verify properties over CRNs and their pCTMC models. We employ
a time-bounded fragment of continuous stochastic logic (CSL) [1,31].

Definition 5. Let φ be a CSL formula interpreted over states s ∈ S of a
parametrised model Mθ, and ϕ be a formula over its paths. Its syntax is

φ := true | a | ¬φ | φ ∧ φ | φ ∨ φ | P∼ζ [ϕ] ,

ϕ := X [t,t′]φ | φ1U
[t,t′]φ2 ,

where a ∈ AP , ∼ ∈ {<,≤,≥, >}, ζ ∈ [0, 1], and t, t′ ∈ R≥0.

P∼ζ [ϕ] holds if the probability of the path formula ϕ being satisfied from a given
state meets ∼ ζ. Path formulas are defined by combining state formulas through
temporal operators: XIφ is true if φ holds if the next state of the Markov chain
is reached at time τ ∈ I = [t, t′], while φ1U

Iφ2 is true if φ2 is satisfied at some
τ ∈ I and φ1 holds at all preceding time instants [31].

We define a satisfaction function to capture how the satisfaction probability
of a given property over a model paths relates to its parameters and initial state.

Definition 6 (Satisfaction Function). Let φ be a CSL formula, Mθ be a
parametrised model over a space Θ, s0 is the initial state, and PathMθ (s0) is
the set of all paths generated by Mθ with initial state s0. Denote by Λφ : θ → [0, 1]
the satisfaction function such that

Λφ(θ) = P
({ω ∈ PathMθ (s0) |= ϕ} |ω(0) = s0

)
, (1)

where a path ω |= ϕ if its associated trace satisfies the path formula ϕ corre-
sponding to the CSL formula φ. That is, Λφ(θ) is the probability that the set of
paths from a given pCMTC Mθ satisfies a property ϕ. If Λφ(θ) ∼ ζ, then we
say that Mθ |= φ.

ABC(SMC)2 259

2.3 Bayesian Inference

Given a set of observations or data, yobs, a parametrised model (either stochas-
tic or deterministic), Mθ, and prior information, the task of Bayesian infer-
ence is to learn the true model parameter via its probability distribution. Prior
beliefs about the model parameters, expressed through a probability distribu-
tion π(θ), are updated via yobs, where assumptions on the model’s dynamics
are encoded into the likelihood function p(yobs|θ). Using Bayes’ theorem, the
posterior distribution is obtained as π(θ|yobs) = p(yobs|θ)π(θ)/π(yobs). When
likelihood functions are intractable one can resort to likelihood-free methods,
such as Approximate Bayesian Computation (ABC) [44], to approximate this
posterior as πABC(θ|yobs) ≈ π(θ|yobs).

Intractable Likelihoods for CRNs. We discuss next why we resort to
likelihood-free methods for inferring parameters of CRN networks from noisy
data observed at discrete points in time. A biochemical reaction network model
is a discrete-state, continuous-time Markov process, which can be described by
the chemical master equation (CME) [19],

dP(x, t|x0)
dt

=
M∑

j=1

αj(x, θj)P(x − vj , t|x0) − P(x, t|x0)
M∑

j=1

αj(x, θj), (2)

where P(x, t|x0) is the probability that the state of the Markov chain at time t is
X(t) = x, given X(0) = x0, vj,i = u′

j,i −uj,i with vj being the jth column of the
stoichiometric matrix vj,i and θ is the vector of kinetic parameters in the CRN.
The solution of the CME characterises the exact probability that the model
is in any state at any time. Unfortunately, analytic solutions to the CME are
only known for very special (and restrictive) CRNs. Precise traces y ∼ p(y|θ)
from the CRN of interest Mθ can be generated by the stochastic simulation
algorithm [18]. Furthermore, often X(t) cannot be observed directly. Instead, an
observation of the state vector sample path is observed, Y (t) = g(X(t)), where
g is an arbitrary observation function on X(t).

To illustrate why we work with likelihood-free inference, we consider the
simplest case that Y (t) = X(t), that is, the entire trace can be perfectly observed
at time t: in this simpler instance, the likelihood is given by

p(Y |θ) =
W∏

i=1

P(Y (ti), θ, ti − ti−1|Y (ti−1)), (3)

where P is the solution to the chemical master equation which we note is depen-
dent on the kinetic parameters θ, t0 = 0 and W is the number of observations
taken. So even in this simple case the likelihood depends on the solution to the
CME, which is analytically intractable for many cases. As a result, the Bayesian
posterior will not be analytically tractable, hence we resort to likelihood-free
methods, such as ABC.

260 G. W. Molyneux and A. Abate

Approximate Bayesian Computation. ABC methods [44] produce an
approximation to the posterior probability distribution when the likelihood
p(y|θ) is intractable. The likelihood is approximated by matching simulated data
y ∼ p(y|θ) with the observed data yobs, according to some function of the dis-
tance ‖y−yobs‖ or correspondingly over summary statistics of the simulated and
observed data, namely ‖s − sobs‖.

Ideally, the observations yobs are directly mapped to the variables of the
model, which is endowed with sufficient statistics y. However, in many real world
settings, model variables cannot be fully observed, and moreover outputs y can
be perturbed by noise due to measurement error. Since it is in general hard to
identify a finite-dimensional set of sufficient statistics, it is common and compu-
tationally advantageous to use (insufficient) summary statistics s = S(y), where
function S performs a simplification of the signals y (e.g., averaging, smoothing,
or sampling), and which ideally is so that π(θ|yobs) = π(θ|sobs) [40].

The procedure is as follows: first samples are generated by θ∗ ∼ π(θ), each
of which is used to generate simulated data y ∼ p(y|θ), where the proposed
sample θ∗ is accepted if ‖y − yobs‖ ≤ h for some h ≥ 0, h ∈ R

+, and rejected if
‖y − yobs‖ > h. This procedure is equivalent to drawing a sample (θ, y) from the
joint distribution

πABC(θ, y|yobs) ∝ Kh(‖y − yobs‖)p(y|θ)π(θ), (4)

where Kh(u) is a standard smoothing kernel function [43], which depends on a
predetermined distance h and on u = ‖y−yobs‖. A standard choice we use for the
smoothing kernel function is the indicator function, where Kh(‖y − yobs‖) = 1
if ‖y − yobs‖ ≤ h, and Kh(‖y − yobs‖) = 0 otherwise. Accordingly, the ABC
approximation to the true posterior distribution is

πABC(θ|yobs) =
∫

πABC(θ, y|yobs)dy. (5)

As h → 0 samples from the true posterior distribution are obtained [44] as:

lim
h→0

πABC(θ|yobs) ∝
∫

δyobs
(y)p(y|θ)π(θ)dy = p(yobs|θ)π(θ),

where δyobs
(y) is the Dirac delta measure, where δx(A) = 1 if x ∈ A and δx(A) =

0 otherwise. In practice, it is highly unlikely that y ≈ yobs can be generated
from p(y|θ), thus a non-trivial scale parameter h is needed. Furthermore, the
full datasets yobs and y are often replaced by summary statistics sobs and s,
respectively, leading to sampling from the posterior distribution πABC(θ|sobs).
The ABC approximation to π(θ|sobs) is given by

πABC(θ|sobs) ∝
∫

Kh(‖s − sobs‖)p(y|θ)π(θ)dy, (6)

where, by slight abuse of notation, Kh(‖s − sobs‖) is defined as for y, yobs.

ABC(SMC)2 261

Approximate Bayesian Computation - Sequential Monte Carlo. The
major issue with standard ABC is that if the prior π(θ) differs from the pos-
terior distribution, p(θ|yobs), then the acceptance rates, namely the rates at
which sampled parameters are accepted, will be low, thus resulting in more
proposed parameters and associated simulations, which leads to an increase in
computational burden. Approximate Bayesian Computation - Sequential Monte
Carlo (ABCSMC) [47] techniques are developed to mitigate this issue. ABC-
SMC algorithms [46,47] (cf. Appendix A) are designed to overcome this bur-
den by constructing a sequence of slowly-changing intermediate distributions,
fm(θ), m = 0, . . . , M , where f0(θ) = π(θ) is the initial sampling distribution
and fM (θ) = f(θ) is the target distribution of interest, namely the approxi-
mated posterior, πABC(θ|sobs). A population of particles or samples from gen-
eration m, θ

(i)
m , where i = 1, . . . , N is the number of particles, are propagated

between these distributions sequentially, so that these intermediary distributions
act as an importance sampling scheme [44], which is a technique used to sample
from a distribution that over-weights specific regions of interest. This technique
attempts to bridge the gap between the prior π(θ) and the (unknown) poste-
rior π(θ|sobs). In the ABCSMC framework, a natural choice for the sequence of
intermediary distributions is

fm(θ) = πhm

ABC(θ, s|sobs) ∝ Khm
(‖s − sobs‖)p(y|θ)π(θ), (7)

where m = 0, . . . , M and hm is a monotonically decreasing sequence, namely
such that hm > hm+1 ≥ 0. As above, Khm

is the standard smoothing kernel,
which now depends on the distance hm. We expect that limhm→0 πhm

ABC(θ|sobs) =
π(θ|sobs) [44], and that the more samples N are generated, the more accurate
the approximated quantity will become.

A key part of the ABCSMC scheme is the generation of samples θ∗ and
the setting of weights (which is typical for other importance sampling schemes).
Sample θ∗ is initially (m = 0) taken from the prior and subsequently (m > 0)
sampled from the intermediary distributions fm−1(θ) through its corresponding
weights (see below), as parameter θ

(j)
m−1. Afterwards, θ∗ is perturbed into θ∗∗ by a

kernel, Fm(θ∗∗|θ∗). For the perturbed parameter, θ∗∗, a number of Bt simulations
yb, and in turn sb, are generated from p(y|θ∗∗), and the quantity bt(θ∗∗) =
∑Bt

b=1 Khm
(‖sb −sobs‖) is calculated. If bt(θ∗∗) = 0, then θ∗∗ is discarded and we

resample θ∗ again. Otherwise, the accepted θ∗∗ results in the pair {θ
(i)
m , w

(i)
m },

where the corresponding weights w
(i)
m are set to

w(i)
m =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

bt

(
θ(i)m

)
, if m = 0

π
(
θ
(i)
m

)
bt

(
θ
(i)
m

)

∑N
j=1 w

(j)
m−1Fm

(
θ
(i)
m |θ(j)m−1

) , if m > 0
(8)

and later normalised, after re-sampling each ith particle, i = 1, . . . , N . If Bt

is large, the estimate of πABC(θ|sobs) is accurate, which implies the acceptance

262 G. W. Molyneux and A. Abate

probability is accurate, but it might come at the cost of many Monte Carlo draws.
Conversely, if Bt is small, the acceptance probability is cheaper to evaluate [4]
but can become highly variable.

The algorithm controls the transitioning between the intermediary distribu-
tions fm−1(θ) and fm(θ), by setting a user-inputted rate υ, at which the thresh-
olds hm reduce until the algorithm stops. Stopping rules for ABCSMC schemes
vary: here, we have opted for terminating the algorithm after a predetermined
number M of steps (a.k.a. epochs). The algorithm returns weighted samples,

{
θ
(i)
M , w

(i)
M

}
∼ πhM

ABC(θ|sobs) ∝
∫

KhM
(‖s − sobs‖)p(y|θ)π(θ)dy.

2.4 Statistical Model Checking with the Massart Algorithm

Statistical model checking (SMC) techniques are used to estimate the validity of
quantitative properties of probabilistic systems by simulating traces from an exe-
cutable model of the system [33]. Unlike precise (up to numerics) probabilisitic
model checking, SMC results are typically attained with statistical precision and
can come, in particular, with confidence bounds [13,35]. In this work, we require
Monte Carlo simulations to estimate the probability of properties of interest with
a user-defined degree of accuracy (denoted below as ε). This can be obtained via
standard concentration inequalities, such as the Chernoff [13] or the Okamoto
[37] bounds. We wish to estimate a probability Λ̂φ(θ) that approximates the
unknown Λφ(θ) within an absolute error ε and with a (1 − δ) confidence lower
bound, namely

P (|Λ̂φ(θ) − Λφ(θ)| > ε) ≤ δ. (9)

For instance, the Okamoto bound ensures that drawing n ≥ nO = � 1
2ε2 log 2

δ �
simulations, results in an estimate Λ̂φ(θ) with a statistical guarantee as in (9),
where δ = 2 exp

(−2nε2
)
.

In this work, we leverage the sharper Massart bounds [34]: we use the Sequen-
tial Massart algorithm [25,26] (described below), which progressively defines
confidence intervals of the estimated probability and then applies the Massart
bounds [34]. Massart bounds depend on the unknown probability Λφ(θ) that
we are estimating, which forces one to numerically evaluate with certainty an
interval in which Λφ(θ) evolves. Let us denote by C(Λφ(θ), I) the coverage of
Λφ(θ) by a confidence interval I, i.e., the probability that Λφ(θ) ∈ I.

Theorem 1 (Absolute-Error Massart Bound with Coverage [26]). Let
Λ̂φ(θ) be the probability estimated from n Monte Carlo simulations, ε be a given
error, Λ̂L

φ (θ) and Λ̂U
φ (θ) be the lower and upper bounds of a confidence interval

I = [Λ̂L
φ (θ), Λ̂U

φ (θ)] and Ic be its complement within [0, 1]. The Massart bound is
defined as

P (|Λ̂φ(θ) − Λφ(θ)| > ε) ≤ 2 exp
(−nε2ha(Λφ(θ), ε)

)
+ C(Λφ(θ), Ic), (10)

where ha(Λφ(θ), ε) =

{
9
2

1
(3Λφ(θ)+ε)(3(1−Λφ(θ))−ε) , if 0 < Λφ(θ) < 1/2

9
2

1
(3(1−Λφ(θ))+ε)(3Λφ(θ)+ε) , if 1/2 ≤ Λφ(θ) < 1.

ABC(SMC)2 263

Notice that the above theorem requires the true satisfaction probability Λφ(θ),
which is not known. We can replace it with its estimate Λ̂φ(θ), which can be
conservatively set to Λ̂φ(θ) = Λ̂U

φ (θ) if Λ̂U
φ (θ) < 1/2, Λ̂φ(θ) = Λ̂L

φ (θ) if Λ̂L
φ (θ) >

1/2, and Λ̂φ(θ) = 1/2 if 1/2 ∈ I. The following sample-size result follows:

Theorem 2 ([26]). Let α be a coverage parameter chosen such that α < δ
and C(Λφ(θ), Ic) < α. Under the conditions of Theorem 1, a Monte Carlo
algorithm A that outputs an estimate Λ̂φ(θ) fulfils the condition in (9) if
n > � 1

ha(Λφ(θ),ε)ε2
log 2

δ−α�.
The Sequential Massart Algorithm requires three inputs: an error parameter
ε and two confidence parameters δ and α. Initially, Λ̂L

φ (θ) = 0, Λ̂U
φ (θ) = 1,

C(Λφ(θ), [0, 1]c) = 0, and Λ̂φ(θ) = 1/2, which results in the Okamoto-like bound
with ha(1/2, ε) ≈ 2 when ε → 0: the quantity nO = � 1

2ε2 log 2
δ � thus represents an

upper-bound on the number of simulations required for the statistical guarantees.
After each sampled trace, we update both a Monte Carlo estimator and a (1−α)-
confidence interval for Λφ(θ). The updated confidence interval is then used in
the Massart function to compute an updated required sample size n satisfying
Theorem 2. This process is repeated until the calculated sample size is lower
than or equal to the current number of simulated traces.

CSL Property φ
Model Class

(pCTMC) Mθ

Data yobs from
System S

Sample Parameter
θ∗

Estimate Satisfaction Probability
Λ̂φ(θ∗) = P (Mθ∗ |= ϕ)

Bayesian Inference
πhM

ABC(θ
∗|S(yobs))

Parameter Synthesis/Classification
Θφ = {θ ∈ Θ : Mθ |= φ}

= {θ ∈ Θ : Λ̂φ(θ) ∼ ζ} ⊆ Θ

Credibility Calculation
P (S |= φ|S(yobs)) =

∫
Θφ

πhM

ABC(θ|S(yobs))dθ

ABC(SMC)2 Algorithm

Fig. 1. Bayesian Verification via ABC(SMC)2.

264 G. W. Molyneux and A. Abate

2.5 Bayesian Verification

In this work we extend the Bayesian Verification framework (cf. Fig. 4 in the
Appendix) introduced in [36], which addresses the following problem. Consider
a data generating stochastic system S (in this work, a CRN), where we denote
the generated data as yobs. We are interested in verifying a CSL property of
interest φ over system S using sampled observations of the underlying system,
yobs, or a summary statistics sobs = S(yobs) thereof. We assume this goal cannot
be reliably attained by means of statistical techniques directly applied on data
yobs (for instance, in the case studies later, we can access only very few obser-
vations). To tackle this problem, we integrate model-based techniques (formal
verification) with the use of data (Bayesian inference). Suppose that we have suf-
ficient knowledge to propose a parametric model that adequately describes the
underlying system, Mθ. We employ Bayesian inference to learn the posterior
probability distribution of the model, namely π(θ|sobs) from (possibly scarce)
data sobs. We also use this parametric model to formally verify the property
of interest φ, as follows. We synthesise two complementary parameter regions,
Θφ = {θ ∈ Θ : Mθ |= φ} and Θ¬φ = {θ ∈ Θ : Mθ �|= φ}. We then integrate the
inferred posterior probability distribution over Θφ to obtain the credibility cal-
culation, which represents the probability that the underlying system S satisfies
the property:

C = P (S |= φ|sobs) =
∫

Θφ

π(θ|sobs)dθ. (11)

If needed, this integral can be estimated via Monte Carlo methods. A comple-
mentary result can be drawn over Θ¬φ. The full procedure and further details
are presented in [36] and summarised in Appendix B.

The limitations of the Bayesian Verification framework of [36] lie in the
parameter synthesis part. Parameter synthesis of pCTMCs is considered in the
work of [11], and accelerated by means of GPU processing in [12]. This and
related probabilistic approaches to parameter synthesis are limited to finite-
state systems that can be easily uniformised. In many practical applications
they do not scale to realistic models. To address this limitation, we resort to
statistical approaches (via SMC) for parameter synthesis, similar to [8]: whilst
in this work we zoom in on CSL formulae with the provided semantics, it is of
interest to look beyond this logic. We formally integrate the SMC technique into
the algorithm that performs Bayesian inference. More precisely, we utilise the
simulations needed in the ABCSMC algorithm to perform SMC, which yields
the estimation of the probability of satisfying the property of interest, Λ̂φ(θ).
Whilst the ABCSMC algorithm rejects parts of the sampled parameters, we
propose to retain these samples, and their corresponding simulations, to later
provide a classification (via support vector machines) of the parameter space.
With these statistically-estimated parameter regions, we complete the Bayesian
Verification framework, as per (11). The new framework (detailed in the next
section and presented in Fig. 1), which employs models to extract information
from the observation data sobs, is likelihood-free and entirely based on simula-
tions, which makes it usable with models of different size and structure.

ABC(SMC)2 265

3 ABC(SMC)2: Approximate Bayesian Computation -
SequentialMonteCarlowith StatisticalModelChecking

We address the scalability limitations of our previous work [36], and specifically
the parameter synthesis part: in [36] the synthesis was calculated symbolically,
which practically limited the applicability to CTMCs with small state spaces
and a few parameters. We incorporate here statistical model checking within the
Bayesian inference framework and instead estimate parameter regions. We name
the modified algorithm Approximate Bayesian Computation - Sequential Monte
Carlo with Statistical Model Checking: ABC(SMC)2 and present it in Fig. 1.

In the ABCSMC scheme (Algorithm 2 in Appendix A), a total of Bt sim-
ulations are performed for each sampled parameter θ∗∗, whether the sample is
retained or not towards the approximate posterior πhM

ABC(θ|sobs): this leads to
a considerable amount of wasted computational effort. We propose instead to
statistically model check (SMC) each of the sampled parametrised models by
means of the generated simulations, whilst parameter inference on the model
is run (ABCSMC); we shall use the outcome of the SMC algorithm for the
Bayesian Verification framework, by classifying the parameter synthesis regions
using statistical approaches.

At any of the M iterations, for each sampled point θ∗∗ ∈ Θ, we estimate the
probability Λ̂φ(θ∗∗) ≈ Λφ(θ∗∗), with statistical guarantees, that an instantiated
model Mθ∗∗ satisfies a given property of interest φ, namely P (Mθ∗∗ |= ϕ) =
Λ̂φ(θ∗∗). We then proceed with the ABCSMC algorithm as normal, calculating
whether the sampled parameter θ∗∗ contributes to the approximate posterior
(acceptance) or not (rejection). In addition to producing samples {θ

(i)
hM

, w
(i)
hM

},
which allows one to construct an approximation of the posterior distribution
πhM

ABC(θ|sobs), the algorithm outputs
{

θ∗∗, Λ̂φ (θ∗∗) , Λ̂L
φ (θ∗∗) , Λ̂U

φ (θ∗∗)
}

for all
the sampled parameters θ∗∗ (whether accepted or not). These values are later
used to train an SVM classifier to generate the parameter synthesis regions.
We shall then integrate the approximate posterior over the classified parameter
regions, to obtain a credibility calculation.

3.1 ABC(SMC)2

Recall that the output of the ABCSMC algorithm is a set of samples θ
(i)
M with

their corresponding weights w
(i)
M , which satisfy the following:

{θ
(i)
M , w

(i)
M } ∼ πhM

ABC(θ|sobs) ∝
∫

KhM
(‖s − sobs‖) p(y|θ)π(θ)dy, (12)

where i = 1, . . . , N is the number of particles used to approximate the pos-
terior. For each parameter θ∗∗, simulation data is generated from the model
yb ∼ p(y|θ∗∗) to calculate sb = S(yb), for a total of Bt times, and this data is
used to estimate Λ̂φ(θ∗∗) ≈ Λφ(θ∗∗).

We utilise the sequential Massart algorithm [26] presented in the previous
section for this SMC procedure. We replace the number of simulations for each

266 G. W. Molyneux and A. Abate

sampled parameter, Bt, with the calculated minimum number of samples esti-
mated in the sequential Massart algorithm [26], Bt = n ≤ nO, to calculate an
estimated probability Λ̂φ(θ∗∗) with accuracy and confidence. We sample θ∗∗ a
total of R times, whether or not these samples are accepted as samples from the
posterior at any generation m. For these sampled parameters, θ(r), r = 1, . . . , R,
we estimate the corresponding mean estimated probabilities Λ̂φ

(
θ(r)

)
and (1−δ)

uncertainty bounds:
{

θ(r), Λ̂φ

(
θ(r)

)
, Λ̂L

φ

(
θ(r)

)
, Λ̂U

φ

(
θ(r)

)}
. Here R depends on

the acceptance rate of the sampled parameters θ(r), where R ≥ N × M , where
N is the number of particles to sample and M is the total number of generations
of the ABCSMC scheme. From this new algorithm, we obtain a set of weighted
parameter vectors from the final generation M , {θ

(i)
M , w

(i)
M } ∼ πhM

ABC(θ|sobs) where
i = 1, . . . , N , as well as R sampled parameters and their corresponding estimated

probabilities
{

θ(r), Λ̂φ

(
θ(r)

)
, Λ̂L

φ

(
θ(r)

)
, Λ̂U

φ

(
θ(r)

)}R

r=1
.

We present the ABC(SMC)2 scheme in Algorithm 1, with the MASSART
function corresponding to the Absolute-Error Massart Algorithm presented in
Appendix C. The ABC(SMC)2 algorithm takes as inputs a property of interest,
φ, a prior probability distribution π(θ) an absolute-error tolerance ε as well
as a coverage parameter α and confidence value δ. The estimated probabilities{

θ(r), Λ̂φ(θ)(r), Λ̂L
φ (θ)(r), Λ̂U

φ (θ)(r)
}

, will be utilised for approximate parameter
synthesis, which is discussed in the next section.

3.2 Approximate Parameter Synthesis via Statistical MC

The aim of parameter synthesis is to partition the parameter space Θ accord-
ing to the satisfaction of the CSL property φ. Unlike the PMC-based synthesis
in [36] (recalled in Sect. 2.5), we utilise a statistical approach to classify the
parameter space, akin to [8]. So instead of employing the true satisfaction prob-
ability Λφ(θ) ∼ ζ (where ζ is the probability bound contained in formula φ) to
determine Θφ (and its complement), we use Λ̂φ(θ(r)), a statistical approxima-
tion computed at each sampled parameter point θ(r). Evidently, recalling the
confidence parameter δ, we should compute Λ̂φ(θ(r)) ∼ ζ ± ε (where the sign ±
depends on the direction of the inequality ∼).

In practice, we use the estimated lower Λ̂L
φ (θ(r)) and upper bounds Λ̂U

φ (θ(r)),

such that Λφ(θ(r)) ∈
[
Λ̂L

φ (θ(r)), Λ̂U
φ (θ(r))

]
, to partition the parameter space as:

– Θφ = {θ ∈ Θ : Λ̂L
φ (θ) > ζ},

– Θ¬φ = {θ ∈ Θ : Λ̂U
φ (θ) < ζ},

– ΘU = Θ\(Θφ ∪ Θ¬φ).

Notice that these formulas are a function of θ ∈ Θ. Since in the ABC(SMC)2

procedure we generate a finite number of parameter samples θ(r), which are
biased towards the sought posterior distribution, there might be areas of the
parameter space Θ that are insufficiently covered. We thus resort to supervised

ABC(SMC)2 267

Algorithm 1. ABC(SMC)2

Input:

– CSL specification φ
– Prior distribution π(θ) and data generating function p(y|θ)
– A kernel function Kh(u) and scale parameter h > 0 where u = ‖y − yobs‖
– N > 0, number of particles used to estimate posterior distributions
– Sequence of perturbation kernels Fm(θ|θ∗), m = 1, . . . , M
– A quantile υ ∈ [0, 1] to control the rate of decrease of thresholds hm

– Summary statistic function s = S(y)
– Parameters for statistical MC: absolute-error value ε, confidence δ, coverage α

Output:

– Set of weighted parameter vectors
{

θ
(i)
M , w

(i)
M

}N

i=1
drawn from πABC(θ|sobs) ∝ ∫

KhM
(‖s −

sobs‖)p(s|θ)π(θ)ds

– Set of parameters with corresponding estimated mean, Λ̂φ

(
θ(r)

)
and (1− δ) confidence interval[

Λ̂L
φ

(
θ(r)

)
, Λ̂U

φ

(
θ(r)

)]
of estimated probability to satisfy φ, P

(
M

θ(r) |= ϕ
)

= Λ̂φ

(
θ(r)

)
:{

θ(r), Λ̂φ

(
θ(r)

)
, Λ̂L

φ

(
θ(r)

)
, Λ̂U

φ

(
θ(r)

)}

1: Set r = 0
2: for m = 0, . . . , M : do
3: for i = 0, . . . , N : do
4: if m = 0 then
5: Sample θ∗∗ ∼ π(θ)
6: else
7: Sample θ∗ from the previous population {θ

(i)
m−1} with weights {w

(i)
m−1} and perturb the

particle to obtain θ∗∗ ∼ Fm(θ|θ∗)
8: end if.
9: if π(θ∗∗) = 0 then
10: goto line 3
11: end if

12: Calculate
({

Λ̂φ (θ∗∗) , [Λ̂L
φ (θ∗∗) , Λ̂U

φ (θ∗∗)
}

, Bt,
∑Bt

b=1 Khm (‖sb − sobs‖), d̄
)

from the

modified Massart Algorithm: MASSART (ε, δ, α, hm, θ∗∗, sobs)

13: Calculate bt(θ
∗∗) = 1

Bt

∑Bt
b=1 Khm (‖sb − sobs‖)

14: Set
(

θ(r), Λ̂φ

(
θ(r)

)
, Λ̂L

φ

(
θ(r)

)
, Λ̂U

φ

(
θ(r)

))
=

(
θ∗∗, Λ̂φ(θ

∗∗), Λ̂L
φ (θ∗∗), Λ̂U

φ (θ∗∗)
)

15: r ← r + 1
16: if bt(θ

∗∗) = 0 then
17: goto line 3
18: end if
19: Set θ(i)

m = θ∗∗, d̄(i)
m = d̄ = 1

Bt

∑Bt
b=1‖sb − sobs‖ and calculate

20:

w
(i)
m =

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

bt

(
θ
(i)
m

)
, if m = 0

π
(

θ(i)
m

)
bt

(
θ(i)

m

)

∑N
j=1 w

(j)
m−1Fm

(
θ
(i)
m |θ(j)

m−1

) , if m > 0

21: end for

22: Normalise weights: w(i)
m ← w(i)

m /
(∑N

i=1 w(i)
m

)

23: Set hm+1 = (υ/N)
∑N

i=1 d̄(i)
m

24: end for

25: return
{(

θ
(i)
M , w

(i)
M

)}N

i=1
,

{
θ(r), Λ̂φ

(
θ(r)

)
, Λ̂L

φ

(
θ(r)

)
, Λ̂U

φ

(
θ(r)

)}R

r=1

learning techniques to classify parameter synthesis regions: we utilise support
vector machines (SVMs) [14,45] as a classification technique. We train the SVM
classifier on the data produced from the ABC(SMC)2 algorithm, namely on the

268 G. W. Molyneux and A. Abate

set {θ(r), Λ̂φ(θ(r)), Λ̂L
φ (θ(r)), Λ̂U

φ (θ(r))} where r = 1, . . . , R . The SVM which is
trained on this data then provides a non-linear classifying function, ξφ(θ), where
ξφ(θ) = 1 if θ ∈ Θφ, ξφ(θ) = −1 if θ ∈ Θ¬φ and ξφ(θ) = 0 if θ ∈ ΘU .

4 Experiments

Experimental Setup. All experiments have been run on an Intel(R) Xeon(R)
CPU E5-1660 v3 @ 3.00 GHz, 16 cores with 16 GB memory. ABC(SMC)2 is
coded in C++, while Python is used for the SVM classifier. A comparison of the
parameter synthesis technique via PRISM or via SMC and SVM can be seen in
Appendix D.

SIR System and Parameterised Model. Towards an accessible explanation
of the ABC(SMC)2 algorithm, we consider the stochastic SIR epidemic model
[29], which has the same structure (stoichiometry over species counts) as CRNs
[12]. The model describes the dynamics of three epidemic types, a susceptible
group (S), an infected group (I), and a recovered group of individuals (R) - here
we let S, I and R evolve via the rules

S + I
ki−→ I + I, I

kr−→ R.

This is governed by the rate parameters θ = (ki, kr), and each state of the
pCTMC describes the combination of the number of each type (S, I,R) (this
equates to molecule/species counts in CRNs). The initial state of the pCTMC
is s0 = (S0, I0, R0) = (95, 5, 0). We wish to verify the property φ = P>0.1((I >
0)U [100,150](I = 0)), i.e. whether, with a probability greater than 0.1, the infec-
tion dies out within a time interval between t = 100 and t = 150 s. We confine
our parameters to the set Θ = [k⊥

i , k�
i]×[k⊥

r , k�
r] = [5×10−5, 0.003]×[0.005, 0.2].

We generate observation data from the SIR model with three different param-
eter choices, corresponding to the CTMCs Mθφ

, Mθ¬φ
and MθU , where θφ =

(0.002, 0.075), θ¬φ = (0.001, 0.15) and θU = (0.002, 0.125). From Fig. 5a (in
Appendix D), we see that θφ ∈ Θφ, θ¬φ ∈ Θ¬φ, and finally θU is near the
borderline. These models will correspond to three “true” underlying stochas-
tic systems S, with associated observation data. For each instance, we work
with observed data yobs that is sampled at a finite number of time steps. The
observed data consists of only 5 simulated traces, observed at 10 time points.
The summary statistics S(yobs) = sobs is the average of the 5 traces. It is worth
emphasising that with so few observation traces, black-box SMC (directly based
on observation traces, not on model-generated simulations) would be hopeless.

Application of ABC(SMC)2 Algorithm. Our algorithm outputs samples
from the approximated posterior and their corresponding weights,

{
θ
(i)
M , w

(i)
M

}
∼

πhM

ABC(θ|sobs) where i = 1, . . . , N . By the strong law of large numbers,

letting θ̄M =
∑N

i=1 θ
(i)
M w

(i)
M , P

(
limN→∞

∑N
i=1 w

(i)
M θ

(i)
M − E[θ̄M] = 0

)
= 1.

ABC(SMC)2 269

(a) θφ samples. (b) θ¬φ samples. (c) θU samples.

(d) θφ posterior. (e) θ¬φ posterior. (f) θU posterior.

(g) Samples traces from θφ

posterior.
(h) Samples traces from

θ¬φ posterior.
(i) Samples traces from θU

posterior.

Fig. 2. Bayesian Verification results from ABC(SMC)2 for Case θφ (2a and 2d), Case
θ¬φ(2b and 2e), and Case θU (2c and 2f). Sampled points θ with estimated probabilities
Λ̂φ(θ) (2a, 2b and 2c). Inferred posterior πhM

ABC(θ|sobs) and parameter regions (2d, 2e
and 2f). Traces of I molecules simulated from Mθ, with θ sampled from the θφ posterior
(2g), the θ¬φ posterior (2h) and the θU posterior (2i). The set Θφ, is shown in yellow,
whereas Θ¬φ is shown in blue. The undecided areas ΘU is shown in magenta. For Fig.
(2g–2i) the traces colour represent which set the sampled parameters are members of.
(Color figure online)

Thus we assume that the approximated posterior can be modelled by a mul-
tivariate Normal distribution, πhM

ABC(θ|sobs) ≈ N (θ̄M , ΣM), where the mean is
given by θ̄M and the elements of the empirical covariance matrix are defined as

ΣM jk =
1

1 − ∑N
i=1(w

(i)
M)2

N∑

i=1

w
(i)
M

(
θ
(i)
M − θ̄M

)

j

(
θ
(i)
M − θ̄M

)

k
.

We choose the number of samples to be N = 500; the number of sequential
steps to be M = 20; the kernel function Kh(u) to be a simple indicator function,
i.e. Kh(u) = 1 if u < h, Kh(u) = 0 otherwise; the rate at which the thresholds

270 G. W. Molyneux and A. Abate

hm decrease to be υ = 0.5; and the summary statistic s = S(y) is chosen to
be the sample mean of the simulations and of the observations. We choose π(θ)
to be a uniform prior over Θ. The perturbation kernel Fm(θ∗∗|θ∗) is chosen to
be a multivariate Normal distribution, so that θ∗∗ ∼ N (θ∗, 2Σm−1), where the
covariance is twice the second moment computed over the accepted weights and
particles at step m − 1, namely

{
θ
(i)
m−1, w

(i)
m−1

}
, where i = 1, . . . , N . For further

details on alternative choices for threshold sequences, summary statistics and
perturbation kernels, see [3,15,16,41,44].

For the SMC component of the algorithm, we select the parameters (ε, δ, α) =
(0.01, 0.05, 0.001), which results in a maximum number of necessary simula-
tions that equals Bt ≤ nO = � 1

2ε2 log 2
δ � = 18445. At the conclusion of the

ABC(SMC)2 algorithm, we train the classifier over half of the sampled parame-
ters (denoted by θ(r), whether eventually accepted or rejected), with the corre-
sponding estimated probabilities and test it on the other half, which results in
the SVM classifier accuracy in Table 3 in Appendix E.

Outcomes of ABC(SMC)2 Algorithm. For the three case studies, the
inferred mean θ̄M , covariance ΣM , total number of sampled parameters (θ(r),
r = 1, . . . , R) and resulting credibility calculation are given in Table 1, with
corresponding runtimes in Table 4 (Appendix E). Figures 2d, 2e and 2f plot the
inferred posterior, showing the mean (denoted by ×) and 2 standard deviations
from the mean (corresponding ellipse around the mean), as well as the true
parameter value (�). In Case θφ, we can assert, with a parameter synthesis
based off a confidence of (1 − δ) = 0.95 and absolute-error ε = 0.01, that the
underlying stochastic system S does indeed satisfy the property of interest, as
the credibility calculation gives P (S |= φ|S(yobs)) = 1. Case θ¬φ has a low
probability of satisfying the property of interest (P (S |= φ|S(yobs)) = 0.0054),
whereas for Case θU the inferred mean converges to the true mean that we would
expect the estimated probability of satisfying the property to converge to, which
is 0.5.

Table 3 and Fig. 3 suggest that simulation times are largely dependent on the
estimated probabilities, Λ̂φ(θ): the closer the estimated probabilities are to 0.5,

Fig. 3. True parameter values with
corresponding estimated probabilities
using SMC (15000 uniform samples).

Table 1. Number of SMC simulations
used in ABC(SMC)2.

Case Λ̂φ(θ) Total simulations

θφ 0.47254 18445
θ¬φ 0.00408719 2202
θU 0.100433 14775

ABC(SMC)2 271

the larger the number of simulations required. To improve the runtime of Case
θU , we would need to reduce variance and improve the accuracy of the inferred
parameters, for instance by increasing the number of observed data points yobs

or with an alternative choice of either the summary statistics chosen or of the
perturbation kernels [16].

5 Discussion and Future Work

The new ABC(SMC)2 framework allows the Bayesian Verification framework of
[36] to be applied to a wide variety of models. In ABC(SMC)2 we have newly
utilised the simulations needed for the likelihood-free inference (also present in
[36]) for statistical model checking of properties of interest and used the outputs
of this procedure to allow for approximate parameter synthesis. The ABC(SMC)2

framework presented here hinges largely on the ABCSMC scheme of [47] and is
thus bound to its limitations: theoretically, there is nothing stopping the frame-
work to be considered for models with a higher number of latent variables, but we
would expect a higher runtime due to more proposals Fm(θ∗∗|θ∗) being rejected
due to the higher dimensionality and would thus need to employ alternative pro-
posal distributions to those considered here. Another limitation of the framework
is the dependence on a possibly large number of simulations for parameter syn-
thesis (the SMC part), which however it is a strong alternative to the parameter
synthesis technique of [12] that leverages GPU acceleration. To address possi-
bly large simulation times, we can leverage ongoing research on approximation
techniques to speed up simulations of CRNs [6,20,23,48]. Furthermore, the over-
all ABC(SMC)2 scheme can easily be parallelised over its components, namely
CRN simulations [50], ABCSMC inference [24] and the SMC [26] algorithm for
verification.

We plan to apply the framework to different model classes, such as stochastic
differential equations [17,21] and to incorporate the problem of Bayesian model
selection [30,47].

Acknowledgements. Gareth W. Molyneux acknowledges funding from the Univer-
sity of Oxford and the EPSRC & BBSRC Centre for Doctoral Training in Synthetic
Biology (grant EP/L016494/1).

272 G. W. Molyneux and A. Abate

A Approximate Bayesian Computation - Sequential
Monte Carlo (ABCSMC) Algorithm

Algorithm 2. ABCSMC
Input:

– Prior π(θ) and data-generating likelihood function p(yobs|θ)
– A kernel function Kh(u) and scale parameter h > 0 where u = ‖y − yobs‖
– N > 0, number of particles used to estimate posterior distributions
– Sequence of perturbation kernels Fm(θ|θ∗), m = 1, . . . , M
– A quantile υ ∈ [0, 1] to control the rate of decrease of hm

– Summary statistic function s = S(y)
– Bt > 0, number of simulations per sampled particle. For stochastic systems Bt > 1

Output:

– Set of weighted parameter vectors
{

θ
(i)
M , w

(i)
M

}N

i=1
drawn from πABC(θ|sobs) ∝ ∫

KhM
(‖s −

sobs‖)p(y|θ)π(θ)ds

1: for m = 0, . . . , M : do
2: for i = 0, . . . , N : do
3: if m = 0 then
4: Generate θ∗∗ ∼ π(θ)
5: else
6: Generate θ∗ from the previous population {θ

(i)
m−1} with weights {w

(i)
m−1} and perturb

the particle to obtain θ∗∗ ∼ Fm(θ|θ∗)
7: end if
8: if π(θ∗∗) = 0 then
9: goto line 3
10: end if
11: for b = 1, . . . , Bt : do
12: Generate yb ∼ p(y|θ∗∗)
13: Calculate sb = S(yb)
14: end for
15: Calculate bt(θ

∗∗) =
∑Bt

b=1 Khm (‖sb − sobs‖)
16: if bt(θ

∗∗) = 0 then
17: goto line 3
18: end if
19: Set θ(i)

m = θ∗∗, d̄(i)
m = 1

Bt

∑Bt
b=1‖sb − sobs‖ and calculate

20:

w
(i)
m =

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

bt

(
θ
(i)
m

)
, if t = 0

π
(

θ(i)
m

)
bt

(
θ(i)

m

)

∑N
j=1 w

(j)
m−1Fm

(
θ
(i)
m |θ(j)

m−1

) , if t > 0

21: end for

22: Normalise weights: w(i)
m ← w(i)

m /
(∑N

i=1 w(i)
m

)

23: Set hm+1 = (υ/N)
∑N

i=1 d̄(i)
m

24: end for

25: return
{(

θ
(i)
M , w

(i)
M

)}N

i=1

ABC(SMC)2 273

B Bayesian Verification Framework

There are 3 aspects to the Bayesian Verification framework. The Bayesian infer-
ence, parameter synthesis and probability or credibility calculation. The infer-
ence technique we use has been covered in the main text and here we focus on
the parameter synthesis and the probability calculation.

CSL Property, φ
Model Class

(pCTMC) Mθ

Data, yobs from
System, S

Parameter Synthesis
Θφ = {θ ∈ Θ : Mθ |= φ} ⊆ Θ

Bayesian Inference,
πhM

ABC(θ|S(yobs))

Credibility Calculation
C = P (S |= φ|S(yobs)) =

∫
Θφ

πhM

ABC(θ|S(yobs))dθ

Fig. 4. Bayesian Verification Framework of [36].

B.1 Credibility Calculation

In the final phase of the approach, a probability estimate is computed corre-
sponding to the satisfaction of a CSL specification formula φ by a system of
interest such that S |= φ, which we denote as the credibility. To calculate the
credibility that the system satisfies the specified property, we integrate the pos-
terior distribution π(θ|yobs) over the feasible set of parameters Θφ:

Definition 7. Given a CSL specification φ and observed data yobs and sobs =
S(yobs) from the system S, the probability that S |= φ is given by

C = P (S |= φ|sobs) =
∫

Θφ

π(θ|sobs)dθ, (13)

where Θφ denotes the feasible set of parameters.

274 G. W. Molyneux and A. Abate

C Absolute-Error Massart Algorithm

Here we present the slightly modified Sequential Massart Algorithm with Abso-
lute Error (Algorithm 3). The outputs of Algorithm 3 are Λ̂φ(θ), the total num-
ber of simulation undertaken Bt, the sum of the kernel smoothing functions∑Bt

b=1 Khm
(‖sb − sobs‖) and the mean summary statistic produced from n sim-

ulations, d̄. The algorithm is slightly modified to consider the distance function
that is crucial for the ABCSMC aspect of the algorithm.

Algorithm 3. Modified Absolute-Error Sequential Massart Algorithm
Input:

– Absolute-error value ε, a confidence parameter δ and coverage parameter α.
– Current distance threshold hm.
– Sampled parameter θ∗∗.
– True data sobs

– CSL specification φ

Output:

– Estimated probability Λ̂φ(θ
∗∗) with corresponding bounds [ΛL

φ (θ∗∗), ΛU
φ (θ∗∗)].

– Sum of kernel smoothing functions
∑Bt

b=1 Khm (‖sb − sobs‖).
– Mean summary statistic from Bt simulations d̄.

Set Initial number of successes, l = 0, and initial iteration k = 0.
Set Bt = nO , where nO = � 1

2ε2
log 2

δ � is the Okamoto bound and the initial confidence interval

I0 = [a0, b0] = [0, 1] in which Λφ(θ
∗∗) belongs to.

while k < Bt do
k ← k + 1
Generate trace y(k) ∼ p(y|θ∗∗) and calculate sk = S(y(k)).

Calculate Khm (‖sk − sobs‖)
z(y(k)) = 1(y(k) |= φ)

l ← l + z(y(k))
Ik = [ak, bk] ← CONFINT(l, k, α)
if 1/2 ∈ Ik then

Bt = nO
else if bk < 1/2 then

Bt = � 2
ha(bk,ε)ε2

log 2
δ−α �

else
Bt = � 2

ha(ak,ε)ε2
log 2

δ−α �
end if
Bt ← min (Bt, nO)

end while
Calculate d̄ = (1/Bt)

∑Bt
b=1 sb.

Calculate
∑Bt

b=1 Khm (‖sb − sobs‖).
Set ak = Λ̂L

φ (θ∗∗), bk = Λ̂U
φ (θ∗∗).

return Λ̂φ(θ
∗∗) = l/Bt,

∑Bt
b=1 Khm (‖sb − sobs‖), d̄, [Λ̂L

φ (θ∗∗), Λ̂U
φ (θ∗∗)].

ABC(SMC)2 275

D Parameter Synthesis: A Motivating Comparison

(a) (b)

(c) (d)

Fig. 5. The set Θφ, is shown in yellow (lighter colour), meanwhile Θ¬φ, is shown in
blue (darker colour) Θ¬φ. The undecided areas, ΘU (if any) are shown in magenta.
(5a) Parameter regions synthesised by GPU-Accelerated PRISM [12]. (5b) Gridding
scheme. (5c) Parameter regions from SVM classification using 1000 samples from a
uniform distribution. (5d) Estimated probabilities Λφ(θ∗). (Color figure online)

The PRISM-based parameter synthesis technique dissects the parameter space
into 14413 grid regions (cf. Fig. 5b), which results in calculating the satisfaction
probability at 57652 points.

Instead, we consider sampling 1000 points from a Uniform distribution over
the parameter space. We run the Massart algorithm at each point to obtain
an estimated probability with corresponding (1 − δ) confidence bounds, where
δ = 0.05. With these samples and probabilities, we classify parameter regions
with an SVM, which results in Fig. 5c,with corresponding estimated probabil-
ities in Fig. 5d. The runtimes presented in Table 2 suggest that we obtain a
good approximation of the parameter synthesis region in half the time of the
GPU-accelerated PRISM tool, which could be further improved if we parallelised
the computation [26]. These considerations have led us to embed the statistical
parameter synthesis in the parameter inference algorithm.

276 G. W. Molyneux and A. Abate

Table 2. Parameter synthesis runtimes.

Parameter synth Times [seconds]

PRISM-GPU 3096

SVM & SMC 1653.8

E Results of SIR Case Study

In this section we present the inferred posterior from the SIR case study in the
main body of the text in Table 3 with the corresponding runtimes in Table 4.

Table 3. Inferred posterior and Bayesian Verification Results.

Case θ̄M ΣM Sampled SVM Accuracy Credibility

Pars θ∗∗ Accuracy Calculation

θφ

[
0.00215

0.07050

] [
1.46 · 10−8 4.24 · 10−7

4.24 · 10−7 1.97 · 10−5

]
10952 99.6% 1

θ¬φ

[
0.00072

0.14519

] [
2.47 · 10−8 3.41 · 10−6

3.41 · 10−6 9.22 · 10−4

]
10069 99.8% 0.0054

θU

[
0.00193

0.11337

] [
8.89 · 10−8 5.86 · 10−6

5.86 · 10−6 4.21 · 10−4

]
10807 98.7% 0.6784

Table 4. Runtimes for algorithms.

Case Times [seconds]
ABC(SMC)2 SVM Optimisation SVM Classification

θφ 64790 168 3.98
θ¬φ 8014 82 4.25
θU 35833 2166 5.12

References

1. Aziz, A., Sanwal, K., Singhal, V., Brayton, R.: Verifying continuous time Markov
chains. In: Alur, R., Henzinger, T.A. (eds.) CAV 1996. LNCS, vol. 1102, pp. 269–
276. Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-61474-5 75

https://doi.org/10.1007/3-540-61474-5_75

ABC(SMC)2 277

2. Bentriou, M., Ballarini, P., Cournède, P.-H.: Reachability design through approxi-
mate Bayesian computation. In: Bortolussi, L., Sanguinetti, G. (eds.) CMSB 2019.
LNCS, vol. 11773, pp. 207–223. Springer, Cham (2019). https://doi.org/10.1007/
978-3-030-31304-3 11

3. Bonassi, F.V., West, M., et al.: Sequential Monte Carlo with adaptive weights for
approximate Bayesian computation. Bayesian Anal. 10(1), 171–187 (2015)

4. Bornn, L., Pillai, N.S., Smith, A., Woodard, D.: The use of a single pseudo-sample
in approximate Bayesian computation. Stat. Comput. 27(3), 583–590 (2017)

5. Bortolussi, L., Milios, D., Sanguinetti, G.: Smoothed model checking for uncertain
continuous-time Markov chains. Inf. Comput. 247(C), 235–253 (2016)

6. Bortolussi, L., Palmieri, L.: Deep abstractions of chemical reaction networks. In:
Češka, M., Šafránek, D. (eds.) CMSB 2018. LNCS, vol. 11095, pp. 21–38. Springer,
Cham (2018). https://doi.org/10.1007/978-3-319-99429-1 2

7. Bortolussi, L., Sanguinetti, G.: Learning and designing stochastic processes from
logical constraints. In: Joshi, K., Siegle, M., Stoelinga, M., D’Argenio, P.R. (eds.)
QEST 2013. LNCS, vol. 8054, pp. 89–105. Springer, Heidelberg (2013). https://
doi.org/10.1007/978-3-642-40196-1 7

8. Bortolussi, L., Silvetti, S.: Bayesian statistical parameter synthesis for linear tem-
poral properties of stochastic models. In: Beyer, D., Huisman, M. (eds.) TACAS
2018. LNCS, vol. 10806, pp. 396–413. Springer, Cham (2018). https://doi.org/10.
1007/978-3-319-89963-3 23

9. Box, G., Tiao, G.: Bayesian Inference in Statistical Analysis. Wiley Classics
Library, Wiley (1973)

10. Broemeling, L.: Bayesian Inference for Stochastic Processes. CRC Press, Cam-
bridge (2017)

11. Ceska, M., Dannenberg, F., Paoletti, N., Kwiatkowska, M., Brim, L.: Precise
parameter synthesis for stochastic biochemical systems. Acta Inf. 54(6), 589–623
(2014)

12. Ceska, M., Pilar, P., Paoletti, N., Brim, L., Kwiatkowska, M.Z.: PRISM-PSY:
precise GPU-accelerated parameter synthesis for stochastic systems. In: Tools and
Algorithms for the Construction and Analysis of Systems - 22nd International
Conference, TACAS 2016, Held as Part of the European Joint Conferences on
Theory and Practice of Software, ETAPS 2016, Eindhoven, The Netherlands, 2–8
April 2016, Proceedings. pp. 367–384 (2016)

13. Chernoff, H., et al.: A measure of asymptotic efficiency for tests of a hypothesis
based on the sum of observations. Ann. Math. Stat. 23(4), 493–507 (1952)

14. Cortes, C., Vapnik, V.: Support-vector networks. Mach. Learn. 20(3), 273–297
(1995)

15. Del Moral, P., Doucet, A., Jasra, A.: An adaptive sequential Monte Carlo method
for approximate Bayesian computation. Stat. Comput. 22(5), 1009–1020 (2012)

16. Filippi, S., Barnes, C.P., Cornebise, J., Stumpf, M.P.: On optimality of kernels
for approximate Bayesian computation using sequential Monte Carlo. Stat. Appl.
Genetics Molecular Biol. 12(1), 87–107 (2013)

17. Gardiner, C.: Stochastic Methods: A Handbook for the Natural and Social Sciences,
4 edn, vol. 13, Springer, Heidelberg (2009)

18. Gillespie, D.T.: Exact stochastic simulation of coupled chemical reactions. J. Phys.
Chem. 81(25), 2340–2361 (1977)

19. Gillespie, D.T.: A rigorous derivation of the chemical master equation. Phys. A:
Stat. Mech. Appl. 188(1), 404–425 (1992)

20. Gillespie, D.T.: Approximate accelerated stochastic simulation of chemically react-
ing systems. J. Chem. Phys. 115(4), 1716–1733 (2001)

https://doi.org/10.1007/978-3-030-31304-3_11
https://doi.org/10.1007/978-3-030-31304-3_11
https://doi.org/10.1007/978-3-319-99429-1_2
https://doi.org/10.1007/978-3-642-40196-1_7
https://doi.org/10.1007/978-3-642-40196-1_7
https://doi.org/10.1007/978-3-319-89963-3_23
https://doi.org/10.1007/978-3-319-89963-3_23

278 G. W. Molyneux and A. Abate

21. Gillespie, D.T., Gillespie, D.T.: The chemical Langevin equation. J. Chem. Phys.
297, 2000 (2000)

22. Haesaert, S., Van den Hof, P.M., Abate, A.: Data-driven and model-based verifica-
tion via Bayesian identification and reachability analysis. Automatica 79, 115–126
(2017)

23. Higham, D.J.: Modeling and simulating chemical reactions. SIAM Rev. 50(2), 347–
368 (2008)

24. Jagiella, N., Rickert, D., Theis, F.J., Hasenauer, J.: Parallelization and high-
performance computing enables automated statistical inference of multi-scale mod-
els. Cell Syst. 4(2), 194–206 (2017)

25. Jegourel, C., Sun, J., Dong, J.S.: Sequential schemes for frequentist estimation
of properties in statistical model checking. In: Bertrand, N., Bortolussi, L. (eds.)
QEST 2017. LNCS, vol. 10503, pp. 333–350. Springer, Cham (2017). https://doi.
org/10.1007/978-3-319-66335-7 23

26. Jegourel, C., Sun, J., Dong, J.S.: On the sequential Massart algorithm for statis-
tical model checking. In: Margaria, T., Steffen, B. (eds.) ISoLA 2018. LNCS, vol.
11245, pp. 287–304. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-
03421-4 19

27. Jha, S.K., Clarke, E.M., Langmead, C.J., Legay, A., Platzer, A., Zuliani, P.: A
Bayesian approach to model checking biological systems. In: Degano, P., Gorrieri,
R. (eds.) CMSB 2009. LNCS, vol. 5688, pp. 218–234. Springer, Heidelberg (2009).
https://doi.org/10.1007/978-3-642-03845-7 15

28. Karlin, S., Taylor, H., Taylor, H., Taylor, H., Collection, K.M.R.: A First Course
in Stochastic Processes. No. vol. 1, Elsevier Science (1975)

29. Kermack, W.: A contribution to the mathematical theory of epidemics. Proc. Royal
Soc. London A: Math. Phys. Eng. Sci. 115(772), 700–721 (1927)

30. Kirk, P., Thorne, T., Stumpf, M.P.: Model selection in systems and synthetic biol-
ogy. Current Opinion Biotechnol. 24(4), 767–774 (2013)

31. Kwiatkowska, M., Norman, G., Parker, D.: Stochastic model checking. In:
Bernardo, M., Hillston, J. (eds.) SFM 2007. LNCS, vol. 4486, pp. 220–270. Springer,
Heidelberg (2007). https://doi.org/10.1007/978-3-540-72522-0 6

32. Kwiatkowska, M., Thachuk, C.: Probabilistic model checking for biology. In: Soft-
ware Safety and Security. NATO Science for Peace and Security Series - D: Infor-
mation and Communication Security, IOS Press (2014)

33. Legay, A., Delahaye, B., Bensalem, S.: Statistical model checking: an overview. In:
Barringer, H., Falcone, Y., Finkbeiner, B., Havelund, K., Lee, I., Pace, G., Roşu,
G., Sokolsky, O., Tillmann, N. (eds.) RV 2010. LNCS, vol. 6418, pp. 122–135.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-16612-9 11

34. Massart, P.: The tight constant in the Dvoretzky-Kiefer-Wolfowitz inequality. The
annals of Probability pp. 1269–1283 (1990)

35. Metropolis, N., Ulam, S.: The Monte Carlo method. J. Am. Stat. Assoc. 44(247),
335–341 (1949)

36. Molyneux, G.W., Wijesuriya, V.B., Abate, A.: Bayesian verification of chemical
reaction networks. In: Sekerinski, E., et al. (eds.) Formal Methods. FM 2019 Inter-
national Workshops. LNCS, vol. 12233, pp. 461–479. Springer, Cham (2020)

37. Okamoto, M.: Some inequalities relating to the partial sum of binomial probabili-
ties. Ann. Inst. Stat. Math. 10(1), 29–35 (1959)

38. Polgreen, E., Wijesuriya, V.B., Haesaert, S., Abate, A.: Data-efficient Bayesian
verification of parametric Markov chains. In: Quantitative Evaluation of Systems
- 13th International Conference, QEST 2016, Quebec City, QC, Canada, 23–25
August 2016, Proceedings. pp. 35–51 (2016)

https://doi.org/10.1007/978-3-319-66335-7_23
https://doi.org/10.1007/978-3-319-66335-7_23
https://doi.org/10.1007/978-3-030-03421-4_19
https://doi.org/10.1007/978-3-030-03421-4_19
https://doi.org/10.1007/978-3-642-03845-7_15
https://doi.org/10.1007/978-3-540-72522-0_6
https://doi.org/10.1007/978-3-642-16612-9_11

ABC(SMC)2 279

39. Polgreen, E., Wijesuriya, V.B., Haesaert, S., Abate, A.: Automated experiment
design for data-efficient verification of parametric Markov decision processes. In:
Quantitative Evaluation of Systems - 14th International Conference, QEST 2017,
Berlin, Germany, 5–7 September 2017, Proceedings. pp. 259–274 (2017)

40. Prangle, D.: Summary statistics in approximate Bayesian computation. arXiv
preprint arXiv:1512.05633 (2015)

41. Prangle, D., et al.: Adapting the ABC distance function. Bayesian Anal. 12(1),
289–309 (2017)

42. Schnoerr, D., Sanguinetti, G., Grima, R.: Approximation and inference methods
for stochastic biochemical kinetics: a tutorial review. J. Phys. A: Math. Theor.
50(9), 093001 (2017)

43. Sisson, S., Fan, Y., Beaumont, M.: Overview of abc. Handbook of Approximate
Bayesian Computation pp. 3–54 (2018)

44. Sisson, S.A., Fan, Y., Beaumont, M.: Handbook of Approximate Bayesian Com-
putation. Chapman and Hall/CRC, Cambridge (2018)

45. Smola, A.J., Schölkopf, B.: A tutorial on support vector regression. Stat. Comput.
14(3), 199–222 (2004)

46. Toni, T., Stumpf, M.P.: Simulation-based model selection for dynamical systems
in systems and population biology. Bioinformatics 26(1), 104–110 (2010)

47. Toni, T., Welch, D., Strelkowa, N., Ipsen, A., Stumpf, M.P.: Approximate Bayesian
computation scheme for parameter inference and model selection in dynamical
systems. J. Royal Soc. Interface 6(31), 187–202 (2008)

48. Warne, D.J., Baker, R.E., Simpson, M.J.: Simulation and inference algorithms for
stochastic biochemical reaction networks: from basic concepts to state-of-the-art.
J. Royal Soc. Interface 16(151), 20180943 (2019)

49. Wilkinson, D.: Stochastic Modelling for Systems Biology, Second Edition. Chap-
man & Hall/CRC Mathematical and Computational Biology, Taylor & Francis
(2011)

50. Zhou, Y., Liepe, J., Sheng, X., Stumpf, M.P., Barnes, C.: GPU accelerated bio-
chemical network simulation. Bioinformatics 27(6), 874–876 (2011)

51. Zuliani, P.: Statistical model checking for biological applications. Int. J. Softw.
Tools Technol. Transfer 17(4), 527–536 (2015)

http://arxiv.org/abs/1512.05633

Parallel Parameter Synthesis
for Multi-affine Hybrid Systems
from Hybrid CTL Specifications

Eva Šmijáková, Samuel Pastva, David Šafránek(B), and Luboš Brim

Faculty of Informatics, Masaryk University, Brno, Czech Republic
{xsmijak1,xpastva,safranek,brim}@fi.muni.cz

Abstract. We consider the parameter synthesis problem for multi-affine
hybrid systems and properties specified using a hybrid extension of CTL
(HCTL). The goal is to determine the sets of parameter valuations for
which the given hybrid system satisfies the desired HCTL property. As
our main contribution, we propose a shared-memory parallel algorithm
which efficiently computes such parameter valuation sets. We combine a
rectangular discretisation of the continuous dynamics with the discrete
transitions of the hybrid system to obtain a single over-approximating
semi-symbolic transition system. Such system can be then analysed
using a fixed-point parameter synthesis algorithm to obtain all satis-
fying parametrisations. We evaluate the scalability of the method and
demonstrate its applicability in a biological case study.

Keywords: Hybrid systems · Parameter synthesis · Rectangular
abstraction · Semi-symbolic · Hybrid CTL

1 Introduction

In real-world dynamical systems, one encounters a complex interplay of both
continuous and discrete dynamics. This type of behaviour appears in cyber-
physical systems, biochemical or biophysical systems (systems biology), eco-
nomic and social interaction models, or in the infectious disease control (epidemic
systems). In many cases, the continuous part reflects the natural phenomena and
the discrete part arises due to some (not necessarily digital) embedded control
mechanism.

Such systems are formalised by means of hybrid systems (also hybrid
automata (HA)). These typically consist of several modes, each describing the
continuous evolution of the system using ordinary differential equations (ODE).
The modes are then connected using conditional discrete jumps. Parameters
often need to be introduced into the continuous ODE flow or the conditions

L. Brim–This work has been supported by the Czech Science Foundation grant No.
18-00178S.

c© Springer Nature Switzerland AG 2020
A. Abate et al. (Eds.): CMSB 2020, LNBI 12314, pp. 280–297, 2020.
https://doi.org/10.1007/978-3-030-60327-4_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-60327-4_15&domain=pdf
https://doi.org/10.1007/978-3-030-60327-4_15

Parameter Synthesis for Hybrid Systems from Hybrid CTL Specifications 281

of the discrete jumps to represent an unknown or uncertain behaviour of the
system.

We focus on multi-affine hybrid systems, which have a multi-affine vector field
in every mode. Such systems have a large set of applications including infectious
disease models [37], altitude and velocity control systems [5], models of gene
regulation [32], or models of other biological systems with mixed continuous and
discrete variables [18,34].

In typical scenarios, hybrid systems have too many mutually dependent vari-
ables and parameters to be studied analytically. To examine a proposed hypoth-
esis, one commonly relies on computational methods, as these exhibit better
scalability and often do not require expert knowledge.

To rigorously represent a hypothesis about some abstract observable sequence
of events (or event branching) in the behaviour of a hybrid system, we use
temporal logic. We employ an expressive hybrid extension of the computation
tree logic (HCTL) [2]. HCTL extends CTL with first-order quantifiers as well as
specialised operators (bind ↓ and at @) for reasoning about properties of states.

Given an HCTL formula and a parametrised hybrid system, the goal of the
parameter synthesis problem is then to determine the set of parametrisations for
which the system satisfies the given HCTL specification.

Paper Contributions. We introduce a novel approach to the parameter synthesis
of multi-affine hybrid systems that addresses the state space explosion problem
using parallelism and symbolic parameter representation.

– As a specification language, we utilise the expressive HCTL logic. HCTL
enables properties such as un-reachability, general oscillation and stability.

– We consider a wide family of multi-affine hybrid automata (MHA) with
parameters in the continuous flow as well as mode invariants and jumps.

– For such an MHA, we construct a compound parametrised Kripke structure
that over-approximates its behaviour. The continuous modes of the automa-
ton are discretised using rectangular abstraction [4]. To efficiently represent
this structure, we extend the semi-symbolic approach (i.e. an explicit state
space with symbolic parameter sets) proposed in [8].

– We propose a parallel, shared-memory parameter synthesis algorithm based
on [10]. Given a parametrised hybrid automaton H and an HCTL property
ϕ, we compute the set of parametrisations of H for which H |= ϕ.

– We evaluate the scalability of the method and demonstrate its applicability
in a case study based on a complex biological system.

In general, in this paper we give a significant extension of our existing frame-
work for piece-wise multi-affine continuous-time systems [8,10,11] by making it
working with a more general class of systems—multi-affine hybrid automata.
First, we adapt the rectangular abstraction to correctly capture MHA. Second,
we provide novel algorithms working with this class of hybrid systems.

282 E. Šmijáková et al.

Related Work. Hybrid systems are rather ubiquitous in systems biology. A com-
prehensive overview appears in [14,39]. The problem of parameter identification
for HA has also been targeted from several different perspectives:

The closest work considering multi-affine hybrid automata is implemented
in the tool Hydentify [12]. Hydentify considers parameters only in the continu-
ous flow function (we allow parametrised jump guards and invariants as well).
The most significant difference is the abstraction—Hydentify employs several
abstractions that simultaneously over-approximate and under-approximate the
MHA by linear hybrid automata (LHA). In our case, rectangular abstraction is
employed to explicitly discretise the vector field.

On the one hand, LHA abstraction has the advantage of preserving the timing
information, and it also enables the use of efficient symbolic reachability analysis
algorithms, such as in [26]. On the other hand, Hydentify has to iteratively
decompose the parameter space by repeating the (non-parametrised) reachability
task. In our case, a coarser (rectangular) abstraction is not limited to reachability
(we use HCTL as the specification language) and the analysis of parameter space
can be performed symbolically in a single iteration of the parameter synthesis
algorithm, without the need for explicit decomposition.

Rectangular abstraction [6] for parameter synthesis of non-linear (piece-wise
multi-affine) dynamical systems has been originally used in [4] and implemented
in the tool RoVerGeNe (for LTL specifications). The extension to MHA provided
by Hydentify has significantly improved scalability and precision of RoVerGeNe,
but it restricts specifications to reachability and safety questions. Our work
allows more flexibility in the parametrisation of the MHA and extends the set
of supported specification formalisms.

Counterexample-guided abstraction refinement (CEGAR) [19] is also appli-
cable to parameter synthesis of LHAs [25]. In this case, the counterexamples
are paths to the bad states, and the model is refined by restricting the domains
of parameters. The main advantage of CEGAR is efficiency. Compared to the
standard reachability analysis, it is often faster and requires smaller state space.

Breach [22,23] uses simulation-based techniques to analyse hybrid systems.
It performs parameter synthesis of general, non-linear HA with respect to prop-
erties in signal temporal logic. A similar approach is used in Biocham [17] for
LTL [38] and CTL [24]. Simulation-based methods use numerical solvers, and
therefore their precision significantly relies on the quality of parameter space
sampling (unlike abstraction based approaches, there are no global formal guar-
antees). Breach minimises this parameter space sampling error using sensitivity
analysis. Meanwhile, U-Check [13] combines statistics and machine learning to
address the problem of good sampling with statistical guarantees [3,15]. These
approaches are limited to time-bounded behaviour, whereas our approach allows
time-unbounded analysis.

If some parametrisations with the desired behaviour are already known, it
is possible to synthesise the whole set of parametrisations for which the system
preserves the same behaviour using the inverse method [1]. Tool HYMITATOR
implements this approach for LHAs [27].

Parameter Synthesis for Hybrid Systems from Hybrid CTL Specifications 283

Parameter synthesis problem can also be encoded into first-order logic for-
mulae and solved using δ-complete decision procedures [28]. In particular, a
formula is used to describe the states reachable within a finite number of steps.
Parameter synthesis is then reduced to computing a satisfying valuation of the
parameters for such formula [33]. While mostly limited to time-bounded analy-
sis, this framework was successfully used to obtain parameter ranges indicating
disorders in cardiac cells models [31,35].

2 Parameter Synthesis of Hybrid Automata

In this section, we first define the studied class of hybrid automata with param-
eters, and then show how such automata can be transformed into discrete
parametrised Kripke structures (PKS). The construction proceeds in two steps.
First, each continuous mode of the hybrid automaton is translated into a partial
PKS. Then, a compound PKS is created as a combination of the partial PKSs
with jump and reset conditions of the hybrid automaton. We argue that this
Kripke structure over-approximates the behaviour of the original automaton.
We then define hybrid CTL and its semantics over Kripke structures and finally,
parameter synthesis problem for hybrid automata and hybrid CTL.

Preliminaries. We use R and N to denote the set of real and natural numbers
respectively. P(A) denotes the power set (set of all subsets) of A. In general, we
write AB to denote the set of all possible functions B → A. When B is a set
of variables or parameters of the system, such function is often referred to as
valuation (and AB is thus a set of all valuations).

To describe the semantics of a discrete system with parameters, we use the
notion of parametrised Kripke structure [16]:

Definition 1. Let AP be a set of atomic propositions. A parametrised Kripke
structure (PKS) over AP is a tuple K = (P, S, I,→, L) where:

– P is a finite set of parametrisations;
– S is a finite set of states;
– I ⊆ S is the set of initial states;
– L : S → P(AP) is a labelling of states with atomic propositions;
– →⊆ S × P × S is a parametrised transition relation.

We write s
p−→ t instead of (s, p, t) ∈→. We assume that the PKS is total, i.e.

for all s ∈ S and p ∈ P , there exists at least one t such that s
p−→ t. By fixing

a parametrisation p ∈ P we obtain an ordinary (i.e. non-parametrised) Kripke
structure (KS) [20] Kp = (S, I,→p, L). Here, S, I and L are the same as in K
and →p= {(s, t) | (s, p, t) ∈→}.

A path in a non-parametrised KS, Kp, is an infinite sequence of states σ :
N → S, such that for all i ∈ N, (σ(i − 1), σ(i)) ∈→p. We use σi instead of σ(i)
to denote the i-th element on the path. The set of all paths in a KS starting at
s ∈ S is denoted Σs = {σ | σ is a path in the KS and σ0 = s}.

284 E. Šmijáková et al.

2.1 Parametrised Hybrid Automata

Hybrid systems combine the behaviour of discrete and continuous systems. The
typical example of such a system is a physical system whose behaviour depends
on a discrete controller. Hybrid systems can be modelled as hybrid automata
[30].

In practice, some parts of a hybrid system might be unknown or customiz-
able. To describe such systems, we consider parametrised hybrid automata which
allow both parameters in the continuous flow functions as well as parameters
influencing the switching of modes [23,27].

Definition 2. A parametrised hybrid automaton (PHA) H is an ordered tuple
H = (Π,Q,X,F, J,D,E,G,R) where:

– Π is a finite set of real-valued parameters;
– Q is a finite set of discrete modes;
– X is a finite set of real-valued variables;
– F : Q × R

X × R
Π → R

X is a parametrised vector field defining the local
continuous flow via a differential equation ẋ = F (q, x, π);

– J ⊆ Q × R
X is a set of initial states of the PHA;

– D : Q × R
Π → P(RX) is a parametrised domain of a mode, sometimes also

called an invariant of a mode;
– E ⊆ Q × Q is a set of edges (transitions, jumps) between modes;
– G : E × R

Π → P(RX) gives a parametrised guard condition for each jump;
– R : E → P(RX ×R

X) specifies for each jump a reset relation which describes
possible variable valuations before and after a jump.

In this paper, we further restrict PHA to represent a so called piece-wise
multi-affine automaton. Specifically, we assume F to be piece-wise multi-affine
in both variables and parameters. Furthermore, the invariants, jump conditions
and reset conditions of the automaton have to be described using a Boolean com-
bination of inequalities which are affine in both variables and parameters as well.

Finally, we assume the automaton to be bounded. That is, the domain of
every real-valued parameter p ∈ Π is an interval [pmin, pmax] and for every
variable x ∈ X, we also have an interval [xmin, xmax] such that it covers all
values satisfying the related invariant conditions.

The requirement of multi-affinity and boundedness is necessary in order to
enable efficient abstraction techniques for the continuous flow of the automaton
and efficient manipulation of invariants and jumps in general. If one can supply
such operations for a broader class of PHAs, the restrictions can be lifted. We
will further discuss such possible extensions of our method where appropriate.

A state of a PHA is a pair (q, x) where q ∈ Q is the current discrete mode
and x ∈ R

X is the current valuation of X. The state is valid in a PHA for a
parameter valuation π ∈ R

Π if it fulfils the invariant condition, i.e. x ∈ D(q, π).
There are two types of flows in a PHA. The first type is given by the trajecto-

ries of the continuous vector field. This flow is called local and is relevant as long

Parameter Synthesis for Hybrid Systems from Hybrid CTL Specifications 285

as the evolved state fulfils the invariant. The second type of flow is the jump flow
which corresponds to transitions between the individual discrete modes. Jump
j ∈ E is allowed between (q, x) and (q′, x′) for a parameter valuation π only if:

– both (q, x) and (q′, x′) are valid (fulfil the corresponding mode invariants);
– the guard condition of j is satisfied, i.e., x ∈ G(j, π);
– the reset relation of j is such that x resets to x′, i.e., (x, x′) ∈ R(j).

Note that in many practical cases, the reset relation is simply an identity,
in which case one naturally considers only jumps where x = x′ and the third
condition thus becomes unnecessary.

It is important to emphasise that the parameters can be present at three dif-
ferent places in a PHA: flow function parameters, predicates defining an invari-
ant of a mode, and predicates defining a guard condition of a jump. By fixing a
parameter valuation π ∈ R

Π of a PHA H, we obtain an automaton Hπ which has
the same semantics as a standard non-parametrised hybrid automaton specified
in [30].

2.2 Rectangular Abstraction of Parametrised Hybrid Automata

In order to interpret hybrid CTL formulae over a PHA, we first need to transform
the PHA into a PKS. In our case, the PKS over-approximates the behaviour of
the original multi-affine PHA. The construction proceeds in two steps. First, a
partial PKS of the continuous (local) flow is constructed for each discrete mode
of the PHA. Second, the partial PKSs are merged into a single compound PKS
that also incorporates the jumps between individual modes.

Local Mode Abstraction. In order to construct a PKS describing the contin-
uous behaviour of a single discrete mode, we employ rectangular abstraction [4]
for piece-wise multi-affine continuous models. This abstraction was chosen since
it can work with parametrised systems and in the past has been successfully used
for parameter synthesis in ODE models [8]. The choice of abstraction method
greatly influences the class of automata the approach can handle. If a more gen-
eral abstraction method is available, the restriction to piece-wise multi-affine
systems can be lifted. Here, we first give a high-level overview of the abstraction
method and then a brief technical summary. For full technical explanation, the
reader is referred to [4].

The abstraction divides the continuous state space into a set of n-dimensional
rectangles. Transitions are only introduced between adjacent rectangles, i.e. rect-
angles that share an (n−1)-dimensional facet. A transition is introduced between
two rectangles, r1 and r2, if there exists a continuous trajectory which flows from
r1 to r2 through their connecting facet (or more precisely, when the absence of
such trajectory cannot be decided). A self-loop on a rectangle is introduced when-
ever it cannot be decided that eventually every trajectory escapes the rectangle.
As argued in [4], this over-approximates the behaviour of the original continuous
flow. In our case, we further extend the method by removing the discrete states

286 E. Šmijáková et al.

(rectangles) which do not contain any points satisfying the invariant conditions
of the PHA. This does not influence the over-approximation, since these states
would not appear in the original PHA neither.

When dealing with parameters, instead of a yes-no answer, the abstraction
procedure computes for each transition a description of the parameter valuation
set for which it is enabled (i.e. the above mentioned conditions are met), thus
yielding a parametrised Kripke structure. In our case, these parameter valuation
sets can be described using combinations of affine inequalities (due to the chosen
abstraction method). In case of a more general class of hybrid automata, a more
general representation such as semi-algebraic sets or SMT formulae are necessary.

The procedure assumes a PHA H as defined above and a fixed discrete mode
q ∈ Q. As a result, we obtain a PKS Kq = (P q, Sq, Iq, →q, Lq) which describes
the local behaviour of H in mode q.

Furthermore, for each continuous variable v ∈ X we assume a sequence
of thresholds {θv

1 , . . . , θ
v
nv

} ⊂ R ordered such that θv
1 ≤ θv

2 ≤ · · · ≤ θv
nv

and
θv
1 = vmin and θv

nv
= vmax. These thresholds partition the continuous state

space of the automaton into n-dimensional intervals [θv1
j1

, θv1
j1+1]×· · ·×[θvn

jn
, θvn

jn+1]
(here, v1 through vn are the variables of the PHA). These intervals are referred
to as rectangles. Each rectangle is uniquely identified via an n-tuple of indices:
�(j1, . . . , jn) = [θv1

j1
, θv1

j1+1] × · · · × [θvn
jn

, θvn
jn+1], where the range of each ji is

{1, . . . , nvi
− 1}. In each rectangle, the flow F of the PHA must be multi-affine.

Notice that for such rectangle, we can easily perform basic set operations (∈,⊆,
∩, . . .) since it is essentially a set of real valued tuples (each specifying a single
valuation of variables of H).

Using this rectangular partitioning, we can construct Kq as follows:

– The parameter valuations of Kq are given by all possible valuations of param-
eters of H, i.e., P q := R

Π .
– The state space of the PKS is created by taking all n-dimensional rectangles

that contain at least one valid state of H (that is, ∃p ∈ P q : D(q, p) ∩
�(j1, . . . , jn)
= ∅) and extending them with q to indicate the mode which the
rectangle belongs to:

Sq := {(q, r = �(j1, . . . , jn)) | ∃p ∈ P q,∃x ∈ r : x ∈ D(q, p)}

Note that the validity check for each rectangle can be performed due to the
imposed restrictions on the guards of the PHA.

– Initial states are given by the rectangles that contain at least one initial state
of the original PHA, i.e., Iq := {(q, r) ∈ Sq | ∃x ∈ r : (q, x) ∈ J}.

– The labelling function assigns a proposition a ∈ AP to a rectangle r if at
least one point in r satisfies the proposition in H. Formally, Lq((q, r)) :=
{a ∈ AP | (q, r) ∈ Sq ∧∃x ∈ r : x |= a}. Here, a is usually some inequality (or
a Boolean combination of inequalities) defined over variables, e.g., v1 ≥ 3.

– Finally, the procedure for constructing the transition relation →q is described
in [4]—since it only requires the knowledge of Sq and the differential equations
F assumed in mode q, it remains largely the same as for general ODE models.

Parameter Synthesis for Hybrid Systems from Hybrid CTL Specifications 287

The main difference is that here, some rectangles may not be included in the
state space since they do not contain any valid states of H. Such rectangles
are excluded from the abstraction.

Compound Abstraction. Assuming the PKS Kq for each mode q ∈ Q is
available, we can construct the compound PKS (CPKS) that extends the model
with jump transitions between individual modes. CPKS C = (P, S, I,→, L) is
constructed as follows:

– P := R
Π—all Kq share the same set of parameter valuations;

– S :=
⋃

q∈Q Sq—individual states already contain the mode label and thus the
sets of states of local PKSs are disjoint;

– I :=
⋃

q∈Q Iq;
– Proposition labelling function follows individual mode labellings as well.

Additionally, we introduce artificial proposition A(q) that allows us to explic-
itly reference all states of a mode q:

L((q, r)) := Lq((q, r)) ∪ {A(q)}
– The transition relation → consists of two parts, →l (local) and →j (jump),

defined as follows:

→l :=
⋃

q∈Q

→q

→j :=
⋃

e=(q1,q2)∈E

{((q1, s), p, (q2, t)) ∈ S × P × S |

∃x ∈ s, x′ ∈ t : (x, x′) ∈ R(e) ∧ x ∈ G(e, p)}
As we can see, a jump transition is created for every pair of rectangles where
some combination of continuous values satisfies the guard and reset conditions
of some original jump in H. Due to the restrictions imposed on jump and reset
conditions, we can explicitly compute the set of parametrisations for which
this relation holds.

The CPKS C created using this procedure over-approximates the behaviour
of the original multi-affine PHA. The over-approximation of the continuous flows
follows from the correctness of the rectangular abstraction. The discrete jumps
of the automaton are then conservatively re-created in the Kripke structure as
described above. That is, whenever a jump is possible from a rectangle (jump
guard is satisfied in some subset of the rectangle), a transition in the CPKS is
created.

Figure 1 illustrates an example of a rectangular abstraction of a hybrid sys-
tem. On the left, an original hybrid automaton with three modes is depicted. The
black areas do not fulfil the modes invariant conditions. The grey areas represent
guard and reset relations of individual jumps. The dashed arrows represent the

288 E. Šmijáková et al.

mapping of a jump. Here, first jump is mapped to a singular point whereas the
second jump does not override the coordinates of the variables (x′ = x). The
solid arrows depict the vector fields. On the right side, the resulting rectangular
abstraction of the hybrid automaton is shown. The semantics of black and grey
rectangles are the same as on the left side. The small arrows represent local
(flow) transitions and dashed arrows represent jump transitions.

2.3 Hybrid CTL

We use the hybrid extension of the computational tree logic (HCTL) [2] to reason
about properties of interest at the level of CPKS. HCTL allows to express time-
unbounded properties at a very general level. For example, reachability of a single
stable state (or a cycle) can be expressed without addressing a concrete state (or
states on a concrete cycle). This is achieved by state variable quantification and
state binding operators. Branching operators of CTL are used to fully reflect the
non-determinism present in the CPKS.

The formulae of HCTL are defined using the following abstract syntax:

ϕ ::= true | q | ¬ϕ | ϕ1 ∧ ϕ2 | EX ϕ | E (ϕ1 U ϕ2) | AF ϕ |↓ x.ϕ | @x.ϕ | ∃x.ϕ

Here, q ranges over AP and x ranges over the set of state variables V .
In the following, we adapt the semantics of HCTL previously defined in [7]. In

particular, we remove action-labeled operators that were needed for the purpose
of discrete bifurcation analysis.

Fig. 1. (left) A schematic depiction of a hybrid automaton (without parameters) and
(right) its corresponding CPKS. Black areas represent parts of the state space that
do not satisfy the mode invariant conditions. Grey areas connected by dashed arrows
depict the possible discrete jumps between individual modes based on their guard
and reset relations. As we can see, to preserve over-approximation, the abstract grey
rectangles cover larger area than the grey triangles in the original system (i.e. spurious
behaviour is introduced in the abstract system).

First, we extend the KS model with a valuation of the state variables h :
V → S. We use h[x �→ s] to denote a valuation which maps the variable x to

Parameter Synthesis for Hybrid Systems from Hybrid CTL Specifications 289

state s and is otherwise defined as the valuation h. Formally, h[x �→ s](x) =
s, h[x �→ s](y) = h(y) for all y
= x. Second, the definition of the satisfaction of
an HCTL formula in a state of the KS is stated in the following way.

Definition 3. Let K be a KS and h : V → S be a valuation of state variables.
The satisfaction relation for states and paths of K w.r.t. HCTL formulae is
defined as follows:

(K,h, s) |= true

(K,h, s) |= p ⇐⇒ p ∈ L(s)
(K,h, s) |= ¬ϕ ⇐⇒ (K,h, s)
|= ϕ

(K,h, s) |= ϕ1 ∧ ϕ2 ⇐⇒ (K,h, s) |= ϕ1 and (K,h, s) |= ϕ2

(K,h, s) |= EX ϕ ⇐⇒ ∃σ ∈ Σs : (K,h, σ1) |= ϕ

(K,h, s) |= E (ϕ1 U ϕ2) ⇐⇒ ∃σ ∈ Σs and ∃i ∈ N : (K,h, σi) |= ϕ2

and ∀j < i : (K,h, σj) |= ϕ1

(K,h, s) |= AF ϕ ⇐⇒ ∀σ ∈ Σs,∃i ∈ N : (K,σi) |= ϕ

(K,h, s) |= ↓ x.ϕ ⇐⇒ (K,h[x �→ s], s) |= ϕ

(K,h, s) |= ∃x.ϕ ⇐⇒ ∃s′ ∈ S : (K,h[x �→ s′], s) |= ϕ

(K,h, s) |= @x.ϕ ⇐⇒ (K,h, h(x)) |= ϕ

Usually, we are interested in formulae without free variables. In such case
we write (M, s) |= ϕ instead of (M,h, s) |= ϕ as then the choice of h is not
relevant. We also use standard syntactic extensions of HCTL such as universal
quantification ∀x.ϕ meaning ¬∃x.¬ϕ and CTL operators EF (existential finally),
AG (for all globally), and AX (for all successors).

The following three operators make the core of the hybrid extension: ∃x
(exists), ↓ x (bind), and @x (at). The ∃x operator has the same meaning of
existential quantification as in the first-order logic. The ↓ x operator provides a
more specialised alternative to exists as it allows to assign the current state to
the variable x. Finally, the @x operator points the subformula to the state that
has been stored in the variable x.

Some examples of properties of CPKSs expressible in HCTL:

– Reachability of a mode q: EF A(q)
– Unreachability of a mode q: ¬EF A(q)
– Stable steady state (sink): ↓ s.AX s
– Cycle: ↓ s.EXEF s

290 E. Šmijáková et al.

As it has been discussed in Sect. 2.2, paths of CPKS over-approximate the
(uncountable) set of all hybrid trajectories of the abstracted multi-affine PHA.
As a consequence, at the level of PHA we can interpret only those properties
the validity of which cannot be violated by the abstraction. For example, if a
universally quantified formula AF ϕ is satisfied at state s in the CPKS then it
essentially refers to all paths starting in s. These paths over-approximate all PHA
trajectories starting at any point of the rectangle represented by s (there is also
a universal quantification at the level of points covered by the rectangle). In fact,
these paths may include some spurious path—a path that do not correspond to
the behaviour of the PHA. In this (completely universally quantified) situation
there is no problem—the corresponding property can be considered valid also
at the level of the abstracted PHA. However, if a formula EF ϕ is checked
true at some state s of the CPKS then it might be (existentially) true just for
some spurious path and therefore it cannot be guaranteed to be satisfied in the
PHA. As a consequence, only properties containing universal quantification (or
negation of existential quantification) can be correctly interpreted at the level
of PHA (this is the case of all the example properties mentioned above).

2.4 Parameter Synthesis Problem

The goal of parameter synthesis is to find parameter valuations for which the
required properties hold. Given a PHA H, we first transform it to a CPKS C.
Then the constraints on C using HCTL are specified, obtaining a HCTL formula
ϕ. Afterwards, we solve a parameter synthesis problem for C and ϕ by computing
the function FC

ϕ : S → P(P) such that FC
ϕ (s) = {p ∈ P | (Cp, s) |= ϕ}. Finally

we can map this result back to the semantics of PHA H.
For example, the HCTL formula for a reachability of a PHA mode qf is

EF qf . From the result of a parameter synthesis, we can tell for every rectangular
region of the PHA, for what parameter valuations there exists a path from this
region to a state with mode qf .

3 The Algorithmics

Our method relies on the parallel HCTL parameter synthesis algorithm described
in [10]. Conceptually, the algorithm follows the idea of coloured model checking
for CTL [16]. The examined PKS is represented semi-symbolically: while the
state space is explicit, the parameter space is handled symbolically.

This approach allows efficient parallelisation of the time-consuming reacha-
bility procedures by partitioning the state space of the PKS between available
processors. Meanwhile, the parameter space is still represented using compact
symbolic data structures (intervals, polytopes, SMT formulae [8], etc.) which
allows us to reasonably handle large number of parametrisations. The important
consequence is that the parametrisations are not processed individually (such as
during a parameter scan), but in sets. This allows significant performance ben-
efits when similar parametrisations lead to similar behaviour, as these similar
parametrisations are typically all processed together in a single symbolic set.

Parameter Synthesis for Hybrid Systems from Hybrid CTL Specifications 291

For basic CTL, the algorithm [16] recursively follows the structure of the
formula, synthesising parametrisations for individual states and sub-formulae.
For HCTL, the procedure needs to be extended with valuations of the free vari-
ables. Furthermore, the relationships between individual sub-formulae can be
much more intricate. For example, to avoid duplicate computation, one has to
consider more complex conditions than simple syntactic equality (e.g. ↓ x : AXx
and ↓ y : AX y being effectively the same formula).

In [10], a parametrised dependency graph is constructed on-the-fly, based on
the structure of the HCTL property and the structure of the PKS state space.
Such graph is then lazily evaluated, yielding the parameter synthesis results
for individual states such that the FC

ϕ mapping can be constructed. Another
advantage of the on-the-fly dependency graph approach is the fact that partial
results can be immediately discarded once they are no longer needed.

We demonstrate the approach in Fig. 2. The input for the algorithm is a
CPKS, a solver which handles symbolic operations over parametrisation sets, a
communication channel for transferring partial results between parallel workers
and a collection of HCTL properties. The dependency graph is then constructed
on the fly and evaluated with concrete parametrisation sets. Once the root nodes
of the graph are evaluated, the parameter synthesis result is available.

Our implementation of this procedure is developed with the help of existing
algorithms and data-structures provided by Pithya [9]. In Pithya, this parame-
ter synthesis algorithm has been successfully applied to standard ODE models
before [7,21]. As discussed in Sect. 2.2, we compute a rectangular abstraction of
the individual modes of the hybrid system and connect them using discrete jump
transitions into a single CPKS. Such CPKS can be then handled using existing
parameter synthesis procedure provided by Pithya. The prototype implementa-
tion is available at http://github.com/sybila/hybrid-generator.

Fig. 2. Workflow scheme of the parallel HCTL parameter synthesis algorithm. First,
the inputs are translated into a dependency graph of individual sub-problems, merging
any duplicates in the process (in this scheme, diamonds indicate computed values,
circles indicate sub-problems to be evaluated). The graph is then iteratively evaluated,
yielding the parametrisation mapping S → P(P) for every property.

http://github.com/sybila/hybrid-generator

292 E. Šmijáková et al.

4 Experimental Evaluation

Our experimental evaluation consists of two parts. We demonstrate the appli-
cability of our approach to real-world biological systems by analysing a known
diauxic shift model [36]. We then also explore scalability of our parallel approach
with increasing number of available processors.

4.1 Diauxic Shift Model

We consider a hybrid model from [36], representing a diauxic shift in an organism
with a carbon catabolite repression. Such an organism prefers a specific carbon
source (C1) and grows rapidly while the source is available. With C1 depleted, the
organism switches to another source (C2) and regulates its growth aggressively.

The model has two regulated proteins, RP and T2. The presence of RP
is regulated based on the carbon source C1; if the amount of C1 falls below
the threshold γ, RP is suppressed. Similarly, T2 is regulated by RP ; if RP
falls below the threshold α, T2 is suppressed. The model thus consists of four
hybrid modes—the combinations of RP and T2 being suppressed or not. We
use [on, on], [on, off], [off, on], and [off, off] to denote these hybrid modes.
The values indicate the status of RP and T2 respectively (on is active, off is
suppressed).

In its original form, the model is too simplistic for our experiments. The
carbon sources in the model are never replenished. Eventually, all carbon is
exhausted and all activity dies out. This is sufficient for short term simulations
but not for long-term analysis using temporal properties. We thus extend the
model with artificial sources of C1 and RP (inC1 and inRP) considered as param-
eters. Complete model is shown in Fig. 3. We pre-process the model as described
in [29], approximating the non-linear dynamics with piece-wise multi-affine func-
tions.

4.2 Parameter Synthesis

Based on a few simple simulations, we observe that, depending on the values of
inC1 and inRP , the model can stabilise in different hybrid modes as well as oscil-
late between modes indefinitely. Our goal will be to identify the parametrisations
where these different types of long-term behaviour occur.

We use the formula AG A(mode) to identify parametrisations where the
system stabilises in a specific mode (here, A(mode) is a proposition satisfied
in all states of the specific mode). Furthermore, we use ↓ x : AX x to syn-
thesise parametrisations where the system stabilises in exactly one state. To
detect oscillations between two modes, we use the formula AG (AF (A(m1) ∧
A (A(m1) U (A(m2) ∧ A (A(m2) U A(m1))))) where m1 and m2 are different
modes. The formula can be extended by adding additional modes (and until
operators) to describe more complex oscillations.

Parameter Synthesis for Hybrid Systems from Hybrid CTL Specifications 293

Ċ1 = −kcat1T1
C1

KC1 + C1
+ inC1

Ċ2 = −kcat2T2
C2

KC2 + C2

ṘP = kRPR
M

KRP +M
− kdRPRP + inRP

Ṫ1 = kT1R
M

KT1 + M
− kdT1T1

Ṫ2 = kT2R
M

KT2 +M
− kdT2T2

Ṙ = kRR
M

KR + M
− kdRR

Ṁ = kcat1T1
C1

KC1 + C1
+ kcat2T2

C2

KC2 + C2

− kRPR
M

KRP +M
− kT1R

M

KT1 + M

− kT2R
M

KT2 +M
− kRR

M

KR + M

kcat1 = 0.3

kcat2 = 0.2

kR = 0.03

kRP = 0.05

kT1 = kT2 = 0.1

KC1 = KC2 = 1.0

KT1 = KT2 = 1.0

KR = KRP = 1.0

kdT1 = kdT2 = 0.1

kdR = 0.001

kdRP = 0.1

α = γ = 1.0

inC1 ∈ [0, 2]

inRP ∈ [0, 0.4]

Fig. 3. Differential equations of the extended diauxic shift model. The bold expressions
are only present in the corresponding hybrid modes. That is, kRPR M

KRP+M
is removed

in modes where RP is suppressed. The same happens for kT2R M
KT2+M

when T2 is

suppressed.

The abstraction procedure considers C1 ∈ [0, 50], C2 ∈ [0, 35], M ∈ [0, 20],
RP ∈ [0, 3.5], T1 ∈ [0, 8], T2 ∈ [0, 2.5], R ∈ [0, 40] (bounds obtained by sim-
ulations and sampling in the parameter space) and roughly 8 thresholds per
variable, producing ≈2 million valid discrete states.

The results of the analysis are shown in Fig. 4. Notice that the system cannot
stabilise in the mode [on, on] and there is no possibility of oscillation between
three different modes. Also observe that not all behaviour stabilising in a specific
mode reaches a sink state. These only appear for the [off, off] mode.

4.3 Scalability

To evaluate the scalability of our approach, we again use the diauxic shift model
together with an HCTL property specifying that the model oscillates between
all four discrete modes (green areas in Fig. 4). We chose four variants of the
model with varying number of continuous parameters and size of the discrete
state space (depending on the number of thresholds selected during abstraction).

We conducted all measurements using a machine equipped with AMD Ryzen
Threadripper 2990WX 32-Core Processor and 64 GB of memory. The runtime
of each experiment is shown in Table 1.

294 E. Šmijáková et al.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.1

0.2

0.3

0.4

inC1

in
R
P

[off, off] [on, off]

[off, on]

[o
f
f
,
o
f
f
]

[o
n
,
o
f
f
]

[on, off]

[on, on]

[on, on]

[on, off]

[off, on]

[off, off]

Fig. 4. Parameter synthesis results for the extended diauxic shift model. The white
areas depict stable regions (AG mode) with striped areas indicating the presence of
sinks (↓ x : AX x). Coloured areas depict different types of oscillation between modes
indicated in that area. (Color figure online)

Table 1. Scalability results for several variants of the diaux shift model.

Parameter count State count 1 cpu 2 cpu 4 cpu 8 cpu 16 cpu 32 cpu

1 ≈1.9e6 123s 95s 70s 55s 43s 38s

≈4.8e4 5.1s 3.9s 2.7s 1.8s 1.5s 1.3s

2 ≈1.9e6 145s 111s 83s 66s 50s 43s

≈4.8e4 5.9s 4.3s 3.2s 2.2s 1.6s 1.4s

5 Conclusion

In this work, we have presented a novel approach towards parameter synthesis
of a significant class of hybrid systems with an expressive logic HCTL. Our
approach uses rectangular abstraction to transfer the problem to the domain
of state transition systems with a parametrised transition relation. For such an
abstract system, we show how to compute the set of parametrisations for which
the given HCTL specification holds. We evaluate our approach on a non-trivial
real-world biological model.

The first advantage of our approach is the possibility of addressing time-
unbounded properties of the systems dynamics. The second advantage is the
variety of parameters (flow dynamics, jump guards, invariants) our approach
can accommodate. Finally, our algorithm relies on the ideas of parallel parameter
synthesis for CTL, thus enabling full utilisation of high-performance hardware.

Parameter Synthesis for Hybrid Systems from Hybrid CTL Specifications 295

The disadvantage of the method appears to be the employed abstraction.
While very fast and useful in many cases, its exact error (due to the over-
approximation) is not precisely quantifiable. Additionally, this approach still
suffers from state space explosion with respect to the number of system variables.

As future work, we aim to refine this proof of concept implementation into a
stable tool. Moreover, the tool can benefit from future improvements in Pithya,
such as performance and scalability optimisations as well as advanced data struc-
tures for manipulating symbolic parametrisation sets, thus allowing even wider
range of hybrid automata.

References

1. André, É.: IMITATOR: a tool for synthesizing constraints on timing bounds of
timed automata. In: Leucker, M., Morgan, C. (eds.) ICTAC 2009. LNCS, vol.
5684, pp. 336–342. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-
642-03466-4 22

2. Arellano, G., et al.: “Antelope”: a hybrid-logic model checker for branching-time
Boolean GRN analysis. BMC Bioinform. 12(1), 490 (2011)

3. Bartocci, E., Bortolussi, L., Nenzi, L., Sanguinetti, G.: On the robustness of tem-
poral properties for stochastic models. In: Dang, T., Piazza, C. (eds.) Proceed-
ings Second International Workshop on Hybrid Systems and Biology, HSB 2013,
Taormina, Italy, 2nd September 2013. EPTCS, vol. 125, pp. 3–19 (2013)

4. Batt, G., Belta, C., Weiss, R.: Model checking genetic regulatory networks with
parameter uncertainty. In: Bemporad, A., Bicchi, A., Buttazzo, G. (eds.) HSCC
2007. LNCS, vol. 4416, pp. 61–75. Springer, Heidelberg (2007). https://doi.org/10.
1007/978-3-540-71493-4 8

5. Belta, C.: On controlling aircraft and underwater vehicles. In: Proceedings of the
IEEE International Conference on Robotics and Automation, vol. 5, pp. 4905–4910
(2004)

6. Belta, C., Habets, L.: Controlling a class of nonlinear systems on rectangles. IEEE
Trans. Autom. Control 51(11), 1749–1759 (2006)

7. Beneš, N., Brim, L., Demko, M., Pastva, S., Šafránek, D.: A model checking app-
roach to discrete bifurcation analysis. In: Fitzgerald, J., Heitmeyer, C., Gnesi, S.,
Philippou, A. (eds.) FM 2016. LNCS, vol. 9995, pp. 85–101. Springer, Cham (2016).
https://doi.org/10.1007/978-3-319-48989-6 6

8. Beneš, N., Brim, L., Demko, M., Pastva, S., Šafránek, D.: Parallel SMT-based
parameter synthesis with application to piecewise multi-affine systems. In: Artho,
C., Legay, A., Peled, D. (eds.) ATVA 2016. LNCS, vol. 9938, pp. 192–208. Springer,
Cham (2016). https://doi.org/10.1007/978-3-319-46520-3 13

9. Beneš, N., Brim, L., Demko, M., Pastva, S., Šafránek, D.: Pithya: a parallel tool
for parameter synthesis of piecewise multi-affine dynamical systems. In: Majumdar,
R., Kunčak, V. (eds.) CAV 2017. LNCS, vol. 10426, pp. 591–598. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-63387-9 29

10. Beneš, N., Brim, L., Pastva, S., Šafránek, D.: Parallel parameter synthesis algo-
rithm for hybrid CTL. Sci. Comput. Program. 185, 102321 (2019)

11. Beneš, N., Brim, L., Demko, M., Pastva, S., Šafránek, D.: Pithya: a parallel tool
for parameter synthesis of piecewise multi-affine dynamical systems. Int. J. Struct.
Stab. Dyn. (2017)

https://doi.org/10.1007/978-3-642-03466-4_22
https://doi.org/10.1007/978-3-642-03466-4_22
https://doi.org/10.1007/978-3-540-71493-4_8
https://doi.org/10.1007/978-3-540-71493-4_8
https://doi.org/10.1007/978-3-319-48989-6_6
https://doi.org/10.1007/978-3-319-46520-3_13
https://doi.org/10.1007/978-3-319-63387-9_29

296 E. Šmijáková et al.

12. Bogomolov, S., Schilling, C., Bartocci, E., Batt, G., Kong, H., Grosu, R.:
Abstraction-based parameter synthesis for multiaffine systems. Hardw. Softw.:
Verif. Test. 11, 19–35 (2015)

13. Bortolussi, L., Milios, D., Sanguinetti, G.: U-Check: model checking and parameter
synthesis under uncertainty. In: Campos, J., Haverkort, B.R. (eds.) QEST 2015.
LNCS, vol. 9259, pp. 89–104. Springer, Cham (2015). https://doi.org/10.1007/978-
3-319-22264-6 6

14. Bortolussi, L., Policriti, A.: Hybrid systems and biology. In: Bernardo, M., Degano,
P., Zavattaro, G. (eds.) SFM 2008. LNCS, vol. 5016, pp. 424–448. Springer, Hei-
delberg (2008). https://doi.org/10.1007/978-3-540-68894-5 12

15. Bortolussi, L., Sanguinetti, G.: Smoothed model checking for uncertain continuous
time Markov chains. CoRR abs/1402.1450 (2014)

16. Brim, L., Češka, M., Demko, M., Pastva, S., Šafránek, D.: Parameter synthesis by
parallel coloured CTL model checking. In: Roux, O., Bourdon, J. (eds.) CMSB
2015. LNCS, vol. 9308, pp. 251–263. Springer, Cham (2015). https://doi.org/10.
1007/978-3-319-23401-4 21

17. Calzone, L., Fages, F., Soliman, S.: BIOCHAM: an environment for modeling bio-
logical systems and formalizing experimental knowledge. Bioinformatics 22(14),
1805–1807 (2006)

18. Chiang, H.K., Fages, F., Jiang, J.R., Soliman, S.: Hybrid simulations of heteroge-
neous biochemical models in SBML. ACM Trans. Model. Comput. Simul. 25(2),
14:1–14:22 (2015)

19. Clarke, E., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-guided
abstraction refinement. In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS,
vol. 1855, pp. 154–169. Springer, Heidelberg (2000). https://doi.org/10.1007/
10722167 15

20. Clarke Jr., E.M., Grumberg, O., Peled, D.A.: Model Checking. MIT Press, Cam-
bridge (1999)

21. Demko, M., Beneš, N., Brim, L., Pastva, S., Šafránek, D.: High-performance sym-
bolic parameter synthesis of biological models: a case study. In: Bartocci, E., Lio,
P., Paoletti, N. (eds.) CMSB 2016. LNCS, vol. 9859, pp. 82–97. Springer, Cham
(2016). https://doi.org/10.1007/978-3-319-45177-0 6

22. Donzé, A.: Breach, a toolbox for verification and parameter synthesis of hybrid
systems. In: Touili, T., Cook, B., Jackson, P. (eds.) CAV 2010. LNCS, vol. 6174, pp.
167–170. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14295-
6 17

23. Donzé, A., Krogh, B., Rajhans, A.: Parameter synthesis for hybrid systems with
an application to Simulink models. In: Majumdar, R., Tabuada, P. (eds.) HSCC
2009. LNCS, vol. 5469, pp. 165–179. Springer, Heidelberg (2009). https://doi.org/
10.1007/978-3-642-00602-9 12

24. Fages, F., Rizk, A.: From model-checking to temporal logic constraint solving.
In: Gent, I.P. (ed.) CP 2009. LNCS, vol. 5732, pp. 319–334. Springer, Heidelberg
(2009). https://doi.org/10.1007/978-3-642-04244-7 26

25. Frehse, G., Jha, S.K., Krogh, B.H.: A counterexample-guided approach to parame-
ter synthesis for linear hybrid automata. In: Egerstedt, M., Mishra, B. (eds.) HSCC
2008. LNCS, vol. 4981, pp. 187–200. Springer, Heidelberg (2008). https://doi.org/
10.1007/978-3-540-78929-1 14

26. Frehse, G., et al.: SpaceEx: scalable verification of hybrid systems. In: Gopalakr-
ishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 379–395. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-22110-1 30

https://doi.org/10.1007/978-3-319-22264-6_6
https://doi.org/10.1007/978-3-319-22264-6_6
https://doi.org/10.1007/978-3-540-68894-5_12
https://doi.org/10.1007/978-3-319-23401-4_21
https://doi.org/10.1007/978-3-319-23401-4_21
https://doi.org/10.1007/10722167_15
https://doi.org/10.1007/10722167_15
https://doi.org/10.1007/978-3-319-45177-0_6
https://doi.org/10.1007/978-3-642-14295-6_17
https://doi.org/10.1007/978-3-642-14295-6_17
https://doi.org/10.1007/978-3-642-00602-9_12
https://doi.org/10.1007/978-3-642-00602-9_12
https://doi.org/10.1007/978-3-642-04244-7_26
https://doi.org/10.1007/978-3-540-78929-1_14
https://doi.org/10.1007/978-3-540-78929-1_14
https://doi.org/10.1007/978-3-642-22110-1_30

Parameter Synthesis for Hybrid Systems from Hybrid CTL Specifications 297

27. Fribourg, L., Kühne, U.: Parametric verification and test coverage for hybrid
automata using the inverse method. In: Delzanno, G., Potapov, I. (eds.) RP 2011.
LNCS, vol. 6945, pp. 191–204. Springer, Heidelberg (2011). https://doi.org/10.
1007/978-3-642-24288-5 17

28. Gao, S., Kong, S., Clarke, E.M.: dReal: an SMT solver for nonlinear theories over
the reals. In: Automated Deduction - CADE-24, pp. 208–214 (2013)

29. Grosu, R., et al.: From cardiac cells to genetic regulatory networks. In: Gopalakr-
ishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 396–411. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-22110-1 31

30. Henzinger, T.A.: The theory of hybrid automata. In: Proceedings 11th Annual
IEEE Symposium on Logic in Computer Science, pp. 278–292, July 1996

31. Islam, M.A., et al.: Bifurcation analysis of cardiac alternans using δ-decidability.
In: Bartocci, E., Lio, P., Paoletti, N. (eds.) CMSB 2016. LNCS, vol. 9859, pp.
132–146. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-45177-0 9

32. de Jong, H.: Modeling and simulation of genetic regulatory systems: a literature
review. J. Comput. Biol. 9(1), 67–103 (2002)

33. Kong, S., Gao, S., Chen, W., Clarke, E.: dReach: δ-reachability analysis for hybrid
systems. In: Baier, C., Tinelli, C. (eds.) TACAS 2015. LNCS, vol. 9035, pp. 200–
205. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46681-0 15

34. Lincoln, P., Tiwari, A.: Symbolic systems biology: hybrid modeling and analysis
of biological networks. In: Alur, R., Pappas, G.J. (eds.) HSCC 2004. LNCS, vol.
2993, pp. 660–672. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-
540-24743-2 44

35. Liu, B., Kong, S., Gao, S., Zuliani, P., Clarke, E.M.: Parameter synthesis for cardiac
cell hybrid models using δ–decisions. In: Mendes, P., Dada, J.O., Smallbone, K.
(eds.) CMSB 2014. LNCS, vol. 8859, pp. 99–113. Springer, Cham (2014). https://
doi.org/10.1007/978-3-319-12982-2 8

36. Liu, L., Bockmayr, A.: Formalizing metabolic-regulatory networks by hybrid
automata. bioRxiv (2019)

37. Liu, X., Stechlinski, P.: Infectious Disease Modeling. Springer, Cham (2020).
https://doi.org/10.1007/978-3-319-53208-0

38. Rizk, A., Batt, G., Fages, F., Soliman, S.: Continuous valuations of temporal logic
specifications with applications to parameter optimization and robustness mea-
sures. Theor. Comput. Sci. 412(26), 2827–2839 (2011). Foundations of Formal
Reconstruction of Biochemical Networks

39. Stéphanou, A., Volpert, V.: Hybrid modelling in biology: a classification review.
Math. Model. Nat. Phenom. 11(1), 37–48 (2016)

https://doi.org/10.1007/978-3-642-24288-5_17
https://doi.org/10.1007/978-3-642-24288-5_17
https://doi.org/10.1007/978-3-642-22110-1_31
https://doi.org/10.1007/978-3-319-45177-0_9
https://doi.org/10.1007/978-3-662-46681-0_15
https://doi.org/10.1007/978-3-540-24743-2_44
https://doi.org/10.1007/978-3-540-24743-2_44
https://doi.org/10.1007/978-3-319-12982-2_8
https://doi.org/10.1007/978-3-319-12982-2_8
https://doi.org/10.1007/978-3-319-53208-0

Core Models of Receptor Reactions to
Evaluate Basic Pathway Designs Enabling

Heterogeneous Commitments
to Apoptosis

Marielle Péré1,2(B), Madalena Chaves1(B), and Jérémie Roux1,2(B)

1 Université Côte d’Azur, Inria, INRAE, CNRS, Sorbonne Université, Biocore Team,
Sophia Antipolis, France

{marielle.pere,madalena.chaves}@inria.fr, jeremie.roux@univ-cotedazur.fr
2 Université Côte d’Azur, CNRS UMR 7284, Inserm U 1081, Institut de Recherche

sur le Cancer et le Vieillissement de Nice, Centre Antoine Lacassagne,
06107 Nice, France

Abstract. Isogenic cells can respond differently to cytotoxic drugs, such
as the tumor necrosis factor-related apoptosis inducing ligand (TRAIL),
with only a fraction committing to apoptosis. Since non-genetic transient
resistance to TRAIL has been shown to dependent on caspase-8 dynam-
ics at the receptor level in vitro, here we investigate the core reactions
leading to caspase-8 activation, based on mass-action kinetics models, to
evaluate the basic mechanisms giving rise to the observed heterogeneous
response. In this work, we fit our models to single-cell trajectories of
time-resolved caspase-8 activation measured in clonal cells after treat-
ment with TRAIL. Then, we analyse our results to assess the relevance
of each model and evaluate how well it captures the extent of biological
heterogeneity observed in vitro. Particularly, we focus on a positive feed-
back loop on caspase-8, the impacts of initial condition variations and
the relevance of the caspase-8 degradation.

Keywords: ODE · Mass-action kinetics · Parameter identification ·
Apoptosis · Fractional killing · TRAIL · Caspase-8

1 Introduction

Apoptosis plays a key role in human tissue homeostasis. Its disruption causes
well-known diseases such as Alzheimer, Parkinson (excessive apoptosis), or auto-
immune disorders and cancers (lack of apoptosis).

To induce cell death in tumor cells, many treatments have been designed
and tested so far, such as TRAIL-receptor ligands, which present the advan-
tage of sparing healthy cells. TRAIL binds the death receptors (DR4/5) of the
cancer cell, initiating the extrinsic apoptosis pathway. Then, a Death-Inducing
Signaling Complex (DISC) is formed in the cytoplasm with adaptor-proteins
c© Springer Nature Switzerland AG 2020
A. Abate et al. (Eds.): CMSB 2020, LNBI 12314, pp. 298–320, 2020.
https://doi.org/10.1007/978-3-030-60327-4_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-60327-4_16&domain=pdf
https://doi.org/10.1007/978-3-030-60327-4_16

Core Models of Receptor Reactions 299

such as FADD (Fas-Associated protein with Death Domain). This association
allows the recruitment of the pro-caspase 8 and 10 (hereafter pC8 and pC10)
and other proteins. These pro-caspases compete at the DISC level with c-FLIP
[8], an anti-apoptotic protein, to activate the initiator caspase 8 (C8) [31] via
dimerization (or even trimerization) and self-cleavage of pC8 [19]. In many cell
types, once activated, C8 triggers cell death by mediating Bid cleavage causing
the mitochondrial outer membrane permeabilization (MOMP, [4]) which induces
the activation of the effective caspases 3 and 7 (C3 and C7), or “executioner cas-
pase”, leading to DNA fragmentation and cell death [21,30].

Although TRAIL has been a very promising drug thanks to its ability to
target cancer cells specifically, it showed only limited success in the clinic due to
a lack of efficiency. In fact, single-cell studies revealed that cells from the same
clonal population commit differently to cell death when treated with TRAIL (or
other pro-apoptotic drugs), with an important variability in the time of death for
the sensitive cells and with a fraction of cells evading apoptosis entirely. When
the remaining resistant cells are retreated a second time with cancer drugs (even
saturating doses), fractional killing is once again observed. [32,33].

A number of studies and mathematical modeling efforts have evaluated the
origins of drug response heterogeneity, proposing mechanisms such as the random
fixation of TRAIL on the DR4/5 [1,3], the presence of decoy receptors (which
impair the formation of a functional DISC after ligand binding [2]) or the p53
gene effects on TRAIL efficiency [24,25]. The gene CD-95 has also an impact as it
regulates FADD, an essential protein for the pC8 binding to the DISC [5,26–28].
c-FLIP antagonist role has been revealed as well, and gives a better understand-
ing of how it “competes” with pC8 at DISC level to trigger (or not) apoptosis
[5–7,9], (even if C8 and FLIP seem to bind the DISC on different sites, pC8
favors c-FLIP recruitment [8]). The action of C10 is less well identified. It may
be an anti-apoptotic factor in some cases [10], as some members of Bcl-2 family
that competes for activating MOMP downstream [4,21,30]. But C10 has also a
pro-death role [11,12], it can trigger apoptosis in absence of C8 [13,14] and favor
anti-tumorigenesis [15]. Finally, C8 activation has been defined as a determining
factor in cell death decision [16], by showing a threshold in rate and timing for
C8 activation that distinguishes resistant and sensitive cells [17].

These studies lead to the conclusion that cell decision happens before MOMP
and the effector caspase cascade.

Here, taking these insights into consideration with C8 threshold as the main
determinant of cell fate, we aim to identify within the core reactions, basic
pathway designs that capture cell response heterogeneity to TRAIL, and features
of C8 dynamics. Once identified, the next goal is to characterize these regulatory
events, to understand how and to what extent, some proteins may influence the
C8 dynamic and determine how their variation is correlated to the cell-to-cell
variability.

300 M. Péré et al.

In that aim, we especially focus on three points: (i) FADD role and its capac-
ity for regulating C8, (ii) the relevance of caspase clusters composed of C8 and
C10, and (iii) the regulatory effect of the effector caspases on C8 which depends
on a positive feedback loop. To investigate the effect of these interactions and
their relative timing on apoptosis, we then propose four alternative minimal
ODE models. Next, based on the results of Roux et al. [17], these models are
calibrated from single-cell data and the distributions of the different parame-
ters are analysed to find links between the models, the C8 dynamic and the
cell fates. Finally, we study the feedback loop action, quantify the influence of
FADD and C10 and validate our models, explaining the special distribution of
C8 degradation.

2 Modeling the Main Processes of Extrinsic Apoptosis
Initiation

The first goal is to establish the mechanisms responsible for the main path-
way dynamics, and their impact on the C8 activation threshold distinguishing
between TRAIL resistant and sensitive cells. The second aim is to understand
how these mechanistic models can reproduce cell response heterogeneity.

To this end, this study focuses on three different regulation points: the FADD
protein and its capacity for regulation of C8, the importance of C8/C10 cluster in
C8 activation [10] and the possible presence of a dowstream regulatory effect of
C8 [21,30], symbolized here by a positive feedback loop from the effector caspase
cascade on the C8. In each case, our analyses aim to understand the effect of a
given mechanism on the C8 dynamics main features and in which measure this
process is a source of heterogeneity or, at least, source of extrinsic noise.

2.1 Models’ Assumptions

To capture the extrinsic apoptosis core reactions, our models are thus con-
structed with a minimal number of components and steps: the TRAIL binding
on the death-receptor DR4/5, the recruitment of the FADD protein and the ini-
tiator pC8 to form the DISC, the pC8 dimerization, and finally the activation
of C8. (c-FLIP is considered to be in very small quantities and so has a lower
impact on C8 recruitment.)

TRAIL is denoted by T, the DR4/5 receptors become a single component
named R (for Receptor), the pC8 and C8 are grouped to form a unique pro-
tein C8. Instead of the recruitment of a single pC8, our models assume two
molecules simultaneously bind to DISC, since only dimerization or trimerization
of pC8 can trigger apoptosis. FD denotes the FADD protein and Z0 the complex
TRAIL-receptors. The downstream caspase cascade, the MOMP and cell death
are grouped into the component D, with a intermediary complex Z1.

Core Models of Receptor Reactions 301

2.2 Extrinsic Apoptosis Initiation Core Models (EAICM)

Four extrinsic apoptosis initiation core models (EAICM) are proposed, corre-
sponding to the four possible combinations of presence or not of a feedback loop
on C8 conjugated with either the adaptor protein or C8/C10 binding.

The feedback loop is represented by the red links on Fig. 1. Two models focus
on C10/C8 coupling, where the C8 dimerization happens before the C10 binding
(models -cf and -c) to understand how C10 interacts with C8, and finally two
others, where only the FADD reaction and the C8 dimerization are taken into
account (models -af and -a) to examine the importance of the adaptor protein
FADD, especially its regulatory capacity of pC8 recruitment.

Z1Z0R

T

D

C10

2C8

.

→
K1

←
K1

→
K2

←
K2

→
K3

←
K3

Kdeg

α

α

(a) EAICM-cf

Z1Z0R

T

D

2C8

FD

.
→
K1

←
K1

→
K2

←
K2

→
K3

←
K3

Kdeg

α

α

(b) EAICM-af

Z1

2 C8

Z0R

T

D

C10

C8

.

→
K1

←
K1

→
K4

←
K4

→
K3

←
K3

Kdeg

α

α

(c) EAICM-c

Z1

FD

Z0R

T

D

2 C8

C8

.

→
K1

←
K1

→
K2

←
K2

→
K4

←
K4

Kdeg

α

α

(d) EAICM-a

Fig. 1. Extrinsic apoptosic initiation core models (EAICM) schemes (Color figure
online)

In models without feedback loop, ˜C8 is a constant parameter representing
available pC8.

To model the different reactions, we apply the mass-action kinetics and obtain
four models of the form dX/dt = fPr

(X), with f : R
7 → R

7 depending on

the time-independent reaction rate vector Pr = (
→
K1,

←
K1, ..., α), and the initial

conditions:
{

Xc
0 = (T0, R0, C80, C100, Z0,0, Z1,0, D0)

Xa
0 = (T0, R0, C80, FD,0, Z0,0, Z1,0, D0)

302 M. Péré et al.

EAICM-cf:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dT

dt
= −

→
K1 TR +

←
K1 Z0,

dR

dt
= −

→
K1 TR +

←
K1 Z0,

dZ0

dt
=

→
K1 TR −

←
K1 Z0 −

→
K2 Z0C82 +

←
K2 Z1,

dC8

dt
= −2

→
K2 Z0C82 + 2

←
K2 Z1 + α D − Kdeg C8,

dZ1

dt
=

→
K2 Z0C82 −

←
K2 Z1 −

→
K3 Z1C10 +

←
K3 D,

dC10

dt
= −

→
K3 C10Z1 +

←
K3 D,

dD

dt
=

→
K3 Z1C10 −

←
K3 D.

(1)

EAICM-af:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dT

dt
= −

→
K1 TR +

←
K1 Z0,

dR

dt
= −

→
K1 TR +

←
K1 Z0,

dZ0

dt
=

→
K1 TR −

←
K1 Z0 −

→
K2 Z0FD +

←
K2 Z1,

dFD

dt
= −

→
K2 FDZ0 +

←
K2 Z1,

dZ1

dt
=

→
K2 Z0FD −

←
K2 Z1 −

→
K3 Z1C82 +

←
K3 D,

dC8

dt
= −2

→
K3 Z1C82 + 2

←
K3 D + α D − Kdeg C8,

dD

dt
=

→
K3 Z1C82 −

←
K3 D.

(2)

EAICM-c:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dT

dt
= −

→
K1 TR +

←
K1 Z0,

dR

dt
= −

→
K1 TR +

←
K1 Z0,

dZ0

dt
=

→
K1 TR −

←
K1 Z0 −

→
K4 Z0C̃8

2
+

←
K4 Z1,

dC8

dt
= α D − Kdeg C8,

dZ1

dt
=

→
K4 Z0C̃8

2 −
←
K4 Z1 −

→
K3 Z1C10 +

←
K3 D,

dC10

dt
= −

→
K3 C10Z1 +

←
K3 D,

dD

dt
=

→
K3 Z1C10 −

←
K3 D.

(3)

EAICM-a:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dT

dt
= −

→
K1 TR +

←
K1 Z0,

dR

dt
= −

→
K1 TR +

←
K1 Z0,

dZ0

dt
=

→
K1 TR −

←
K1 Z0 −

→
K2 Z0C10 +

←
K2 Z1,

dFD

dt
= −

→
K2 FDZ0 +

←
K2 Z1,

dZ1

dt
=

→
K2 FDZ0 −

←
K2 Z1 −

→
K4 Z1C̃8

2
+

←
K4 D,

dC8

dt
= α D − Kdeg C8,

dD

dt
=

→
K4 Z1C̃8

2 −
←
K4 D.

(4)

Comparing these four alternatives to experimental measurements is then nec-
essary to investigate which of the mechanisms more faithfully reproduces the
data and is capable of better generating the single-cell dynamic properties.

3 Single Cell Model Calibration

Our models are calibrated using single cell data from Roux et al. [17]. The data
measure the C8 activity before MOMP happens for 414 single cells (114 resistant
and 300 sensitive) treated only with 50 ng/mL of TRAIL (and not with cyclohex-
imide contrary to [21,30]), for 10 h. These data were obtained using the Initiator
Caspase-Reporter Protein (IC-RP [21]), a FRET pair of fluorescent proteins that
are linkedby thepeptide sequence ofBid, cleavedbyC8. (FRETthereforedecreases
once IC-RP molecules are cleaved by C8.) In the same time, Bid is cleaved in tBid,
which regulates MOMP in extrinsic apoptosis. As there is no degradation of IC-
RP, contrary to tBid, it accumulates leading to the FRET stabilization at the end
of the experiment for resistant cells that corresponds to the tBid degradation.

The four EAIC models are fitted to each single cell traces separately, as
opposed to fitted to one averaged trace [41,42]. This approach is meant to study

Core Models of Receptor Reactions 303

each single cell’s heterogeneous features and it allows to obtain the parameter
distribution without any assumption.

One model topology is used for both resistant and sensitive cells, since the
clonal cells are genetically homogeneous. (The main differences between the two
populations are attributed to the protein expression levels.)

As onlydata on the evolution ofFRETratio in time is available, andbecause the
models do not take into account the FRET activation, we assume that the FRET
creation corresponds only to a re-scale ofC8, ie that theFRETdynamic is obtained
from the C8 dynamic by changing the amplitude of the C8 curve and the activation
time with a supplementary delay, and so the method compares directly the imple-
mented C8 concentration to the real cleaved C8, with great attention to the slope
as the FRET slope is a major indicator of the C8 activation speed.

3.1 From Qualitative Criteria to Quantitative Reference Values

To evaluate and compare the four models, it is essential to define a set of criteria
to determine how closely each model approaches the real data. This involves
translating the main qualitative properties of the C8 curves into quantitative
values that can be calculated from the model’s solutions. Three fundamental
properties are relevant in C8 dynamic and can be evaluated as reference values,
as follows (see Fig. 2): (i) the time delay before activation of C8 is triggered; (ii)
the mean slope during the C8 activation phase; and (iii) the C8 concentration
reaches a stabilization value, over the last 300 min (especially for resistant cells).
These properties can be turned into reference values by defining:

– T100000 evaluates the initial delay by C8(T100000) = 100000 molecules;
– S is the C8 activation slope, as the maximum of the derivative of C8(t)

between 25 and 275 min, computed using the Matlab function sgolayfilt ;

Fig. 2. Reference values and C8 features scheme

304 M. Péré et al.

– Vfinal gives the final stabilization value, ie C8(600), or the value of C8 at
death time, for sensitive cells.

It must be noticed that the initial decreasing phase isn’t taken into account. It
is due to the photoactivation of the FRET and doesn’t depend on the apoptosis
initiation and as a result, of our models.

3.2 Distinguishing the Effects of Initial Conditions and Rate
Parameters on the System Dynamics

Here, we use a nonlinear least-squares method to determine the parameters
P = (Pr, P

j
i , j ∈ {c, a}) of our models dX/dt = fPr

(X), P j
i ∈ X0, where Pr =

(
←
K1,

→
K1, ...,Kdeg, α) represents the reaction rates and P c

i = (R0, C80, C100) and
P a

i = (R0, C80, FD,0) represent the initial conditions to be evaluated during
the model fit, of models EAICM-cf or EAICM-af, respectively. The other initial
conditions are fixed with values from literature [21].

An euclidean norm is used to compute the cost, given by the differences
between the measurements, denoted by C8ti , ti ∈ T = {5, 10, ..., 600} and the
computed solution C8c of the chosen model taken every 5 min. To take into
account the slope and the final C8 concentration relevance, the cost is weighted
from the 25th min (approximately the beginning time of the increasing phase)
until the end with heavier weight ω between the 25th and the 275th (for the slope
calculated during the increasing phase). For instance, ω = 1000 between min 25
and min 275. After 280 min, ω = 500. Finally, denoted Td, the cell death time,
the cost C is given by:

C2
=

∑

ti∈{5,...,min(20,Td)}

(
C8ti − C8

c
ti

)2
+

∑
ω×

ti∈{25,...,min(275,Td)}

(
C8ti − C8

c
ti

)2
+

∑ ω

2
×

ti∈{280,...,min(600,Td)}

(
C8ti − C8

c
ti

)2
.

(5)

Alternatively, for the resistant population, adding the squared slope difference
between the data and the computed solution, improves the fit. For the sensitive
population, we remove the last parts of the cost when the death time Td is smaller
than the first boundary of the time interval for each one of the three terms of
the sum. To minimize C, we used Matlab and its function fminsearchbnb, to solve
an optimization problem with a physiologically significant initial guess based on
the literature. To access both the individual and joint effects of reaction rate
parameters and initial conditions on the dynamics, the algorithm solves three
different optimization problems,

F1. Minimize the cost C with respect to both Pi and Pr;
F2. Fix initial conditions Pi and minimize cost C with respect to Pr;
F3. Fix reaction constants Pr and minimize cost C with respect to Pi.

Fitting only initial conditions, assumes that the model is “exact” and that the
response heterogeneity comes from environmental conditions and extrinsic noise
only. Conversely, fitting reaction rates only, means that the models have some
variability and possibly unknown or not considered reactions or proteins impact

Core Models of Receptor Reactions 305

the behaviour of C8.

It may be expected that the heterogeneity factors are a mix of the two expla-
nations and so the fit obtained on both initial conditions and reaction rates is
the best but, in this case, the results are less straightforward to interpret.

4 Analysing Mechanisms for Generating Heterogeneity

To simulate the models, we set the initial conditions for TRAIL at T0 = 1500
(from [21]), and the intermediary complexes Z0,0, Z1,0 and D0 equal to 0. Simu-
lations are performed with ode23 for 600 min with a weight ω = 1000 for C. For
the parameter set and the other initial conditions, when they aren’t estimated
by the algorithm, values obtained during a first manual fit on a median real cell
are used.

4.1 Comparison of the Four Core Apoptosis Models

The first point is to elucidate which of the reactions, binding of the receptor
complex to FD or to C10, best reproduces the behaviour heterogeneity of C8.
To determine which of the models of type 1 or 2 best captures the extrinsic
apoptosis dynamics, the norm C and the reference values are computed for 114
resistant cells and 300 sensitive ones. Then, for each type of fit F1 to F3, we
confront the four models by computing, for each cell and each model, the absolute
value of the difference between the data slope and the C8c slope (that is to say
|SEAICM,i − Sdata,i|, i ∈ {1, ..., 414}). Then, comparing the four results for each
cell, the number of cells for which each model gives the lowest result is counted.
The model with the highest score (i.d. the largest number of cell for which the
given model gives the lowest result comparing the four models) is considered to
have the best performance, as summarized in Table 1. In Appendix A, tables for
the cost C, the C8 final value and the delay are given.

Table 1. Number of cell best approached per model and type of fits according to the
slope

fate EAICM-cf EAICM-c EAICM-af EAICM-a Best model

F1
S. cells 120 78 57 45 EAICM-cf

R. cells 59 11 32 12 EAICM-cf

F2
S. cells 108 79 71 42 EAICM-cf

R. cells 75 12 26 1 EAICM-cf

F3
S. cells 269 8 20 3 EAICM-cf

R. cells 51 23 31 9 EAICM-cf

306 M. Péré et al.

Table 1 shows clearly that EAICM-cf performs better, suggesting that the
caspase cluster and the feedback loop are the main mechanisms necessary to
reproduce the variability in C8 slope and general cell response heterogeneity.
The same results are obtained for the delay criteria. Moreover, the feedback
loop seems essential to capture cell C8 dynamics, because none of the models
without feedback loop accurately reproduces the three C8 properties. This result
agrees with the findings of Schwarzer et al. [36] in which they demonstrate in
vivo, the downstream inducing apoptosis effectors’ effects on caspase 8. These
outcomes also reveal that the clusterization of C8/C10, and so the recruitment
and the activation of C8, is more important to C8 dynamics than the presence
of FD in pC8 fixation on DISC. Tummers et al. showed that caspase-8 mediates
inflammasome activation independently of FADD in epithelial cells [38], further
evidence that FADD isn’t mandatory for caspase 8 activity. Future work would
expand the study of this cluster reaction, perhaps adding more variables to
take into account the effects of other proteins since the reactions around pC8
recruitment (especially its interactions with pC10 and c-FLIP) are still unclear.

Another hypothesis could also be made in this case, assuming that in EAICM-
cf, the FD action is not present in the equations but indeed taken into account
since C8 is still recruited at the DISC level.

4.2 The Feedback Loop Mechanism

The second question to address in this Section concerns the effects of the positive
feedback loop on C8 to understand its importance on C8 dynamics.

To evaluate the feedback loop impacts on the C8 dynamic, we use the param-
eters obtained from fit F1, on both initial conditions and reaction rates. Figure 3
and Fig. 4 (a) and (c) compare the FRET ratio and the C8c curve corresponding
to the models 1 with and without feedback for selected resistant and sensitive
cells from the cell populations in [17]. It seems clear that the model without feed-
back fails to reproduce the initial delay before C8 activation. In a second plot,
Fig. 3 and Fig. 4 (b) and (d) compare the relative weights of the different terms
that contribute to C8 activation. This is a method developed by Casagranda
et al. in [34] and consists in representing the absolute values curve of each term
that composes the C8 equation, divided by the sum of all absolute values, to
normalize. For instance, if we consider the following C8 equation of EAICM-cf:

dC8
dt

= −2
→
K2 Z0C82 + 2

←
K2 Z1 + α D − Kdeg C8, (6)

Core Models of Receptor Reactions 307

then the plotted curves are:
⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

|Kdeg C8|
|Kdeg C8| + |α D| + |2

←
K2 Z1| + |2

→
K2 Z0C82|

,

|α D|
|Kdeg C8| + |α D| + |2

←
K2 Z1| + |2

→
K2 Z0C82|

,

|2
←
K2 Z1|

|Kdeg C8| + |α D| + |2
←
K2 Z1| + |2

→
K2 Z0C82|

,

|2
→
K2 Z0C82|

|Kdeg C8| + |α D| + |2
←
K2 Z1| + |2

→
K2 Z0C82|

.

(7)

Similar plots for the EAICM-af and EAICM-a models can be found in
AppendixB. First, comparing Fig. 3 and Fig. 4, notice that there are essentially
no differences between resistant and non resistant cells in the component-wise
analysis. However, there is no activation delay in C8 curve for the models without
a feedback loop. Then, focusing on the |αD| variation (corresponding to the feed-
back loop effect), one can observe that |αD| reaches its maximum and |KdegC8|
its minimum at approximately the same moment, which also coincides with the
moment when C8 starts increasing. Recall that αD drives all the effective caspase
cascade and the feedback loop, so the coincidence between maximum of αD and

(a) Real FRET ratio and C8c for
EAICM-cf

(b) C8 equation component dynamics
for EAICM-cf

(c) Real FRET ratio and C8c for
EAICM-c

(d) C8 equation component dynamics
for EAICM-c

Fig. 3. Comparison of C8 dynamics and main properties for models EAICM-cf (a), (b)
and EAICM-c (c), (d), for the resistant cell n. 10

308 M. Péré et al.

(a) Real FRET ratio and C8c for
EAICM-cf

(b) C8 equation component dynamics
for EAICM-cf

(c) Real FRET ratio and C8c for
EAICM-c

(d) C8 equation component dynamics
for EAICM-c

Fig. 4. Comparison of C8 dynamics and main properties for models EAICM-cf (a),
(b) and EAICM-c (c), (d) for the sensitive cell n. 121 - simulations were performed for
600min for comparison needs

beginning of C8 activation suggests that the feedback loop markedly increases
the production of C8. Finally, observe that, in the absence of feedback loop,
the term |KdegC8| is responsible for all the dynamics of C8, inducing similar
activation slopes for the two phenotypes.

Overall, the feedback loop helps to refine cell decision, by improving mod-
ulation of the activation slope, as illustrated by the term αD: for the sensitive
cell, in the first 50 min αD increases in a much steeper manner. The feedback
represents a supplementary set of regulatory mechanisms that is surely indepen-
dent from the complex TRAIL/receptors and possibly downstream, yet with a
decisive impact on C8 activation.

The next step is evaluating the effect of variability in initial conditions on
both C8 and cell fate.

4.3 Initial Conditions Impacts on Slope Values

This section analyses the initial conditions distributions and compares them with
our reference values, to identify some mathematical patterns that can help pre-
dicting the cell fate. The goal is to find those distributions for which the resistant
and sensitive phenotypes present a significant difference, or a link between the
initial conditions and C8 dynamics.

Core Models of Receptor Reactions 309

(a) EAICM-cf (b) EAICM-c

Fig. 5. Scatter plot of C100 values according to the slope, depending on cell fate, for
the EAICM-cf and EAICM-c

To represent the data obtained after model’s fitting, the bar chart of the
cell density after model fitting according to their parameter distribution and
the scatter plot of the initial condition distribution in logscale according to
our reference values (for example, the slope) are used. For each type of graph,
resistant and sensitive cells are differenciated to find specific behaviours.

The parameters used for comparison are those obtained from fit F3 (only
on the initial conditions), to evaluate the environmental impacts. A clear differ-
ence for C100 between resistant and sensitive cells is observed on the logscale
scatter plots in Fig. 5, with a linear correlation between the slope and the ini-
tial protein value with highly clustered points for the two types of cells. This
is also the case for the FD distribution that can be found in AppendixC. To
understand how these two initial conditions, as well as R0 variation, affect the
C8 dynamics, Fig. 6 shows the evolution of the C8c curves for each model, as
two of the initial conditions are fixed and the third is given by the third is
giving by the median value obtained with the fit on all the parameters for resis-
tant cells (given in AppendixD, in black dash dots on Fig. 6) multiplied by
m ∈ {0, 0.2, 0.4, 0.6, 0.8, 1.2, 1.4, 1.6, 1.8, 2, 4, 10}.

First of all, observe that an increase in the receptor number enhances the
slope of C8 and so it speeds up the C8 production and delays the C8 degrada-
tion since the stabilization happens later but it doesn’t influence the total C8
production (C8 stabilization at the same value). Hence, R0 is likely to contribute
to determination of the C8 activation threshold.

A saturation effect is observed in every model, for the recruited C8, that
can’t exceed a certain threshold in the total C8 production. This is in agreement
with single cell traces since, independently of the TRAIL dose, even at saturated
concentration with all the receptors occupied, not every cell commits to apop-
tosis. An improvement in our models may be necessary to take into account the
necessary receptors trimerization that leads to DISC formation [16].

Another observation is that larger C100 induce larger values for C8 stabi-
lization. An increase in C100 enhances the C8 production speed but doesn’t
impact the degradation beginning time. Observe that C100 also plays a signif-
icant role in feedback loop-free models. This effect of C100 on C8 behaviour

310 M. Péré et al.

(a) EAICM-cf - R0 (b) EAICM-c - R0

(c) EAICM-af - R0 (d) EAICM-a - R0

(e) EAICM-cf - C100 (f) EAICM-c - C100

(g) EAICM-af - FD,0 (h) EAICM-a - FD,0

Fig. 6. Initial condition variation effects on C8 dynamic. The estimated parameters
Pi are indicated at the top left corners and used as reference values to vary the initial
condition, in the range [0, 10X0], where X0 = R0 in (a)–(d); X0 = C100 in (e)–(f); and
X0 = FD,0 in (g)–(h).

confirms the essential role of caspase cluster to trigger cell-death, as shown in
Dickens et al. [16].

Finally, increasing FD,0 delays C8 degradation and improves C8 production
or recruitment, but doesn’t speed up the C8 production since the activation slope
doesn’t show much variation. Furthermore, increasing FD,0 leads to an increase
in C8, thus making it possible to exceed the C8 threshold responsible for cell

Core Models of Receptor Reactions 311

death and confirming that FADD is necessary to trigger the extrinsic cell death
as demonstrated by Kuang et al. in [18]. Similarly to C100, FD also has more
influence on the model without feedback loop, suggesting that the feedback loop
has a saturation effect on C8 dynamic.

4.4 Model Validation and Degradation Specificity

Comparison of the reaction rates distributions, singles out C8 degradation rate
which exhibits a large discrepancy between resistant and sensitive populations,
with values related by a factor Kr

deg ≈ 10Ks
deg.

As seen in Sect. 4.2, degradation is the process that counteracts C8 acti-
vation and, when the term KdegC8 becomes sufficiently high, the stabilization
phase sets in. Decreasing the degradation rate constant should lead to higher
activation slopes and effectively “switch” cells from the resistant to the sensitive
populations.

(a) Comparison of FRET ratio between re-
sistant cells treated only with TRAIL and
cells treated with TRAIL and Bortezomib.

(b) Comparison of C8c from EAICM-cf for
resistant cells treated only with TRAIL,
with Kdeg = 0 and with classic degrada-
tion.

(c) Slope distribution according to the model used and the C8 degradation rate.

Fig. 7. Degradation study

312 M. Péré et al.

Data from [17] includes a second group of 563 cells treated with 50 ng/mL of
TRAIL and 100 ng/mL of Bortezomib, a proteasome inhibitor drug that blocks
C8 degradation and drives the cell to commit apoptosis. To validate our models,
our hypothesis is that, setting Kdeg to zero in model EAICM-cf (while keep-
ing other parameters as estimated for each resistant cell), will elicit the same
response as Bortezomib, thus transforming the resistant population into sensi-
tive. Figure 7(a) shows the FRET ratio of the two groups of cells: the resistant
population of 100 cells treated only with TRAIL and the second group of 563
cells treated with TRAIL and Bortezomib. These experimental results are to be
compared with Fig. 7(b), that represents the C8c EAICM-cf model curves for our
original resistant population, with all the corresponding estimated parameters
except for Kdeg, which is set to 0.

Observe that the model predictions in Fig. 7(b) and (c) are quite similar to
the experimental data. Figure 7 shows that, imposing a null degradation for our
model, allows to reproduce a large heterogeneity range and the main features
(delay and bigger slope) of C8 dynamic of the population treated with Borte-
zomib, thus validating our hypothesis.

Why does the sensitive population of the first group of cells show a markedly
lower Kdeg constant? Perhaps a (negative) feedback or similar mechanism is also
acting on the degradation process, annulling its effect in the case of a steep C8
activation. However, it might be the case that the estimation of Kdeg among the
sensitive population is not fully reliable: indeed, recall that the degradation term
is linear, KdegC8, and that active caspase 8 is absent at the beginning (C8(0) =
0), implying a very low degradation when compared to terms of the form K2Z1

or αD which are proportional to T0R0. In addition, sensitive cells die relatively
early during the first 150 min, so that there are much fewer measurement points
available than for resistant cells. New modeling steps are needed to further study
the C8 degradation process.

5 Discussion and Conclusion

This paper studies the role and the relevance of several components of the extrin-
sic apoptosis initiation pathway in cell response heterogeneity. Four minimal
ODE models are proposed, taking into account the major steps of the extrin-
sic pathway: the TRAIL/receptors association, the DISC formation with the
recruitment of pro-caspase 8 and, either a focus on the FADD action, or a par-
ticular attention to the cluster formation of pC8 and pC10. These models also
represent the C8 activation with (or without) a positive feedback loop on C8 to
integrate a supplementary regulation of C8 downstream. Finally, as cell decision
to commit apoptosis seems to happen before effective caspase activation and
MOMP, all the downstream apoptosis steps were combined in a single variable.

The models were calibrated to single cell data from a cloned population
treated with death ligand TRAIL. The corresponding initial conditions and/or
parameters were analysed to search for correlations between molecular factors
and/or network interactions, and the resulting cell fates.

Core Models of Receptor Reactions 313

Our analysis selects two mechanisms that significantly contribute to cell
response heterogeneity: the clusterization of the caspases C8/C10 and sub-
sequent C8 activation and, to a larger extent, the positive feedback loop.
The formation of C8/C10 clusters accelerates C8 activation by increasing C8
production as well as the slope of the curve (see the effect of C100), while the
FD reaction does not greatly affect the slope but delays the stabilization time.
Therefore, caspase clusterization has a greater capacity to generate variability
in cell response.

The positive feedback is important in the timing of C8 dynamics, particu-
larly in reproducing the initial delay observed in C8 activation. Studying the
components of the C8 equation shows that activation of C8 is triggered when
the feedback loop has a maximum effect on C8 and degradation is still negligible.
Conversely, when the degradation and the feedback loop terms reach similar lev-
els C8 leaves the high slope phase, revealing that the balance between feedback
loop and C8 degradation plays a major role in cell fate.

Another role of the feedback loop is to introduce a saturation on the maxi-
mum level of C8 induced by variability in initial conditions: indeed, for our two
models with positive feedback, increasing the initial numbers of molecules leads
to an increase in the maximum C8 levels, but this maximum value has an upper-
bound independent of the initial numbers. This reveals a large robustness of the
feedback models with respect to variations in initial amounts of molecules.

Finally, our models faithfully reproduce the experiments involving Borte-
zomib, a drug that blocks C8 degradation. In our models, application of Borte-
zomib is represented by setting Kdeg = 0, and the corresponding effect is to
increase all activation slopes into the range observed for the sensitive popula-
tion. Based on the mechanisms and interactions selected by our methods, future
work includes the development of a more detailed model to answer further ques-
tions such as the need for trimerization of the death receptor, understand the
process of caspase degradation during the first hours of C8 activation, or adding
new variables to investigate the impact of the anti-apoptotic component c-FLIP.

Appendices

A Comparison Models Tables

See Tables 2, 3, 4

314 M. Péré et al.

Table 2. Number of cell best approached per model and type of fits, comparing C
value

Fit
Model fate EAICM-cf EAICM-c EAICM-af EAICM-a Best model

F1
S. cells 177 20 95 8 EAICM-cf

R. cells 51 3 52 8 EAICM-cf/EAICM-af

F2
S. cells 0 20 0 280 EAICM-a

R. cells 0 102 0 12 EAICM-c

F3
S. cells 0 63 1 236 EAICM-a

R. cells 2 95 0 17 EAICM-c

Table 3. Number of cell best approached per model and type of fits comparing the
delay, ie |T100000,EAICM,i − T100000,data,i|, i ∈ {1, ..., 414}

Fit
Model fate EAICM-cf EAICM-c EAICM-af EAICM-a Best model

F1
S. cells 132 98 20 50 EAICM-cf

R. cells 46 43 9 16 EAICM-cf

F2
S. cells 130 103 8 59 EAICM-cf

R. cells 55 48 1 10 EAICM-cf

F3
S. cells 222 20 17 41 EAICM-cf

R. cells 64 10 33 7 EAICM-cf

Core Models of Receptor Reactions 315

Table 4. Number of cell best approached per model and type of fits according to C8
final value, ie comparing |Vfinal,EAICM,i − Vfinal,data,i|, i ∈ {1, ..., 414}

Fit
Model fate EAICM-cf EAICM-c EAICM-af EAICM-a Best model

F1
S. cells 91 108 46 55 EAICM-c

R. cells 45 16 35 18 EAICM-cf

F2
S. cells 68 111 59 62 EAICM-c

R. cells 51 10 44 9 EAICM-cf

F3
S. cells 263 0 23 14 EAICM-cf

R. cells 9 26 62 17 EAICM-af

B Feedback Loop Effects for EAICM-af and EAICM-a

See Figs. 8 and 9

(a) Real FRET ratio and C8c for
EAICM-af

(b) C8 equation component dynamics
for EAICM-af

(c) Real FRET ratio and C8c for
EAICM-a

(d) C8 equation component dynamics
for EAICM-a

Fig. 8. Comparison of C8 main features with the dynamic of each C8 equation com-
ponent of EAICM-af (a), (b) and EAICM-a (c), (d) for the resistant cell n. 10

316 M. Péré et al.

(a) Real FRET ratio and C8c for
EAICM-af

(b) C8 equation component dynamics
for EAICM-af

(c) Real FRET ratio and C8c for
EAICM-a

(d) C8 equation component dynamics
for EAICM-a

Fig. 9. Comparison of C8 main features with the dynamic of each C8 equation com-
ponent of EAICM-af (a), (b) and EAICM-a (c), (d) for the sensitive cell n. 121 -
simulations were performed for 600min for comparison needs

C Initial Condition and Cell Fate Correlations
for EAICM-af

See Fig. 10

(a) EAICM-af (b) EAICM-a

Fig. 10. Scatter plot of FD,0 values according to the slope, depending on the cell fate
for EAICM-af and EAICM-a

Core Models of Receptor Reactions 317

D Median Parameter Values from the Fit on Both
Initial Conditions and Reaction Rates Used in Fig. 6

See Table 5

Table 5. Median reaction rates and initial conditions for all models determined with
the fit on both initial conditions and reactions rates

EAICM-cf EAICM-c EAICM-af EAICM-a

R. cells S. cells R. cells S. cells R. cells S. cells R. cells S. cells
→
K1 4.3955e-07 2.7388e-07 6.5892e-08 1.2254e-07 1.6320e-07 4.0018e-07 6.5892e-08 1.2254e-07
←
K1 0.0052 0.01129 1.1176 1.7906 3.4358e-04 0.0011 1.1177 1.7907
→
K2 1.5590e-05 2.4304e-05 0.0525 0.0649 25.5081 14.8725
←
K2 2.9114e-04 9.6920e-04 3.6929e-06 1.2142e-05 2.3934 2.1489
→
K3 0.0012 0.002792 0.002045 0.002206 4.5915e-05 2.1800e-04
←
K3 0.0273 0.1607 20.1550 26.9179 2.0294 9.2971
→
K4 16.5523 25.6951 16.5524 25.6952
←
K4 2.6201 2.6749 2.6202 2.6750

Kdeg 0.0133 0.004012 0.0001165 0.001765 0.0122 0.0108 0.0117 0.0018

α 36.2215 48.8287 1.3188 279.2583 27.3338 76.6511 131.8895 279.2584

R0 7.6248e+04 6.7850e+04 8.6019e+04 4.0387e+04 4.8968e+04 5.6593e+04 8.6020e+04 4.0388e+04

C8,0 288.9734 905.9665 667.2585 337.2630 368.2512 663.5847 667.2585 337.2631

C10,0 2.2325e+03 3.1050e+04 761.9486 1.0829e+04

FD,0 2.9291e+03 5.3681e+04 761.9486 1.0830e+04

E Operation of the Parameter Model and Reference
Value tables

In addition of this article, we provide all the parameters tables and the
reference values tables obtained with our 3 types of fit for the 414 cells
treated with TRAIL only. A line corresponds to one parameter in that order

(C,
→
K1,

←
K1,

→
K2,

←
K2,

→
K3,

←
K3,

→
K4,

←
K4, α, Kdeg, R0, C80, C100 or FD,0) and

without
→
K4 and

←
K4 for models with feedback loop.

Parameters EAICM-cf NON resist fit Pr only.mat

Parameters EAICM-c NON resist fit Pr only.mat

Parameters EAICM-af NON resist fit Pr only.mat

Parameters EAICM-a NON resist fit Pr only.mat

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

12 × 300 table that gives the 8 reactions

rates (10 for models without feedback loop)

in the first lines and the 3 initial conditions

obtained from the fit only on reaction

rates for the 300 sensitive cells for each

model in the last lines.

Parameters EAICM-cf resist fit Pr only.mat

Parameters EAICM-c resist fit Pr only.mat

Parameters EAICM-af resist fit Pr only.mat

Parameters EAICM-a resist fit Pr only.mat

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

12 × 300 table that gives the 8 reactions rates

(10 for models without feedback loop) in the first

lines and the 3 initial conditions obtained from

the fit only on reaction rates for the 114 resistant

cells for each model in the last lines.

318 M. Péré et al.

Parameters EAICM-cf NON resist fit Pi only.mat

Parameters EAICM-c NON resist fit Pi only.mat

Parameters EAICM-af NON resist fit Pi only.mat

Parameters EAICM-a NON resist fit Pi only.mat

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

12 × 300 table that gives the 8 reactions rates

(10 for models without feedback loop) in the first

lines and the 3 initial conditions obtained from

the fit only on intial conditions for the 300

sensitive cells for each model in the last lines.

Parameters EAICM-cf resist fit Pi only.mat

Parameters EAICM-c resist fit Pi only.mat

Parameters EAICM-af resist fit Pi only.mat

Parameters EAICM-a resist fit Pi only.mat

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

12 × 300 table that gives the 8 reactions rates

(10 for models without feedback loop) in the first

lines and the 3 initial conditions obtained from the fit

only on initial conditions for the 114 resistant cells

for each model in the last lines.

Parameters EAICM-cf NON resist fit Pi Pr.mat

Parameters EAICM-c NON resist fit Pi Pr.mat

Parameters EAICM-af NON resist fit Pi Pr.mat

Parameters EAICM-a NON resist fit Pi Pr.mat

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

12 × 300 table that gives the 8 reactions rates

(10 for models without feedback loop) in the first

lines and the 3 initial conditions obtained from the

fit on both reaction rates and initial conditions for

the 300 sensitive cells for each model in

the last lines.

Parameters EAICM-cf resist fit Pi Pr.mat

Parameters EAICM-c resist fit Pi Pr.mat

Parameters EAICM-af resist fit Pi Pr.mat

Parameters EAICM-a resist fit Pi Pr.mat

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

12 × 300 table that gives the 8 reactions rates

(10 for models without feedback loop) in the

first lines and the 3 initial conditions obtained

from the fit on both reaction rates and intial

conditions for the 114 resistant cells for each

model in the last lines.

With the same classification, the files that begin by “Reference value” followed
by the model’s name, the cell fate (“resist” or “NON resist”) and the type of
fit (“Pr only”, “Pi only”, “Pi Pr”), contained 3 lines that gives the value of the
slope, the C8 final value and the delay with T100000 in this order with as many
columns as cells.

References

1. Matveeva, A., et al.: Heterogeneous responses to low level death receptor activation
are explained by random molecular assembly of the Caspase-8 activation platform.
PLoS Comput. Biol. 15(9), e1007374 (2019)

2. Bouralexis, S., Findlay, D.M., Evdokiou, A.: Death to the bad guys: targeting can-
cer via Apo2L/TRAIL. Apoptosis 10(1), 35–51 (2005). https://doi.org/10.1007/
s10495-005-6060-0

3. Shlyakhtina, Y., Pavet, V., Gronemeyer, H.: Dual role of DR5 in death and survival
signaling leads to TRAIL resistance in cancer cells. Cell Death Dis. 8(8), e3025
(2017)

4. Eskes, R., Desagher, S., Antonsson, B., Martinou, J.C.: Bid induces the oligomer-
ization and insertion of Bax into the outer mitochondrial membrane. Mol. Cell.
Biol. 20(3), 929–935 (2000)

5. Fricker, N., Beaudouin, J., Richter, P., Eils, R., Krammer, P.H., Lavrik, I.N.:
Model-based dissection of CD95 signaling dynamics reveals both a pro-and anti-
apoptotic role of c-FLIPL. J. Cell Biol. 190(3), 377–389 (2010)

6. Han, L., Zhao, Y., Jia, X.: Mathematical modeling identified c-FLIP as an apop-
totic switch in death receptor induced apoptosis. Apoptosis 13(10), 1198–1204
(2008). https://doi.org/10.1007/s10495-008-0252-3

7. Tsuchiya, Y., Nakabayashi, O., Nakano, H.: FLIP the Switch: Regulation of Apop-
tosis and Necroptosis by cFLIP. Int. J. Mol. Sci. 16(12), 30321–30341 (2015)

https://doi.org/10.1007/s10495-005-6060-0
https://doi.org/10.1007/s10495-005-6060-0
https://doi.org/10.1007/s10495-008-0252-3

Core Models of Receptor Reactions 319

8. Hughes, M. A., Powley, I.R., Jukes-Jones, R., Horn, S., Feoktistova, M., Fairall, L.
Schwabe, J. WR., Leverkus, M., Cain, K. and MacFarlane, M. : Co-operative and
hierarchical binding of c-FLIP and caspase-8: a unified model defines how c-FLIP
isoforms differentially control cell fate. In Molecular cell, vol. 61, n. 6, p. 834–849.
Elsevier (2016)

9. Hillert, L.K., et al.: Long and short isoforms of c-FLIP act as control checkpoints
of DED filament assembly. Oncogene 39(8), 1756–1772 (2020)

10. Horn, S., et al.: Caspase-10 negatively regulates caspase-8-mediated cell death,
switching the response to CD95L in favor of NF-κB activation and cell survival.
Cell Rep. 19(4), 785–797 (2017)

11. Wang, J., Chun, H.J., Wong, W., Spencer, D.M., Lenardo, M.J.: Caspase-10 is
an initiator caspase in death receptor signaling. Proc. Natl. Acad. Sci. 98(24),
13884–13888 (2001)

12. Wachmann, K., et al.: Activation and specificity of human caspase-10. Biochemistry
49(38), 8307–8315 (2010)

13. Kischkel, F.C., et al.: Death receptor recruitment of endogenous caspase-10 and
apoptosis initiation in the absence of caspase-8. J. Biol. Chem. 276(49), 46639–
46646 (2001)

14. Raulf, N., et al.: Differential response of head and neck cancer cell lines to TRAIL
or SMAC mimetics is associated with the cellular levels and activity of caspase-8
and caspase-10. Br. J Cancer 111(10), 1955–1964 (2014)

15. Kumari, R., Deshmukh, R.S., Das, S.: Caspase-10 inhibits ATP-citrate lyase-
mediated metabolic and epigenetic reprogramming to suppress tumorigenesis. Nat.
Commun. 10(1), 1–15 (2019)

16. Dickens, L.S., et al.: A death effector domain chain DISC model reveals a crucial
role for caspase-8 chain assembly in mediating apoptotic cell death. Molecular Cell
47(2), 291–305 (2012)

17. Roux, J., et al.: Fractional killing arises from cell-to-cell variability in overcoming
a caspase activity threshold. Molecular Syst. Biol. 11(5) (2015)

18. Kuang, A.A., Diehl, G.E., Zhang, J., Winoto, A.: FADD is required for DR4-and
DR5-mediated apoptosis LACK of TRAIL-induced apoptosis in FADD-deficient
mouse embryonic fibroblasts. J. Biol. Chem. 275(33), 25065–25068 (2000)

19. Chang, D.W., Xing, Z., Capacio, V.L., Peter, M.E., Yang, X.: Interdimer processing
mechanism of procaspase-8 activation. EMBO J. 22(16), 4132–4142 (2003)

20. Schleich, K., et al.: Molecular architecture of the DED chains at the DISC: regu-
lation of procaspase-8 activation by short DED proteins c-FLIP and procaspase-8
prodomain. Cell Death Differ. 23(4), 681 (2016)

21. Albeck, J.G., Burke, J.M., Spencer, S.L., Lauffenburger, D.A., Sorger, P.K.: Mod-
eling a snap-action, variable-delay switch controlling extrinsic cell death. PLoS
Biology 6(12), e299 (2008)

22. Lederman, E. E.Hope, J. M., King, M R.: Mass action kinetic model of apoptosis
by TRAIL-functionalized leukocytes. Front. Oncol. 8 (2018)

23. Bertaux, F., Stoma, S., Drasdo, D., Batt, G.: Modeling dynamics of cell-to-cell
variability in TRAIL-induced apoptosis explains fractional killing and predicts
reversible resistance. PLoS Comput. Biol. 10(10), e1003893 (2014)

24. Chong, K.H., Samarasinghe, S., Kulasiri, D., Zheng, J.: Mathematical modelling
of core regulatory mechanism in p53 protein that activates apoptotic switch. J.
Theor. Biol. 462, 134–147 (2019)

25. Ballweg, R., Paek, A.L., Zhang, T.: A dynamical framework for complex fractional
killing. Sci. Rep. 7(1), 8002 (2017)

320 M. Péré et al.

26. Buchbinder, J.H., Pischel, D., Sundmacher, K., Flassig, R.J., Lavrik, I.N.: Quanti-
tative single cell analysis uncovers the life/death decision in CD95 network. PLoS
Comput. Bbiol. 14(9), e1006368 (2018)

27. Bentele, M., et al.: Mathematical modeling reveals threshold mechanism in CD95-
induced apoptosis. J. Cell Biol. 166(6), 839–851 (2004)

28. Neumann, L., et al.: Dynamics within the CD95 death-inducing signaling complex
decide life and death of cells. Molecular Syst. Biol. vol. 6(1) (2010)

29. Paek, A.L., Liu, J.C., Loewer, A., Forrester, W.C., Lahav, G.: Cell-to-cell variation
in p53 dynamics leads to fractional killing. Cell 165(3), 631–642 (2016)

30. Rehm, M., Huber, H.J., Dussmann, H., Prehn, J.H.M.: Systems analysis of effector
caspase activation and its control by X-linked inhibitor of apoptosis protein. EMBO
J. 25(18), 4338–4349 (2006)

31. Martin, D.A., Siegel, R.M., Zheng, L., Lenardo, M.J.: Membrane oligomerization
and cleavage activates the caspase-8 (FLICE/MACHα1) death signal. J. Biol.
Chem. 273(8), 4345–4349 (1998)

32. Fallahi-Sichani, M., Honarnejad, S., Heiser, L.M., Gray, J.W., Sorger, P.K.: Metrics
other than potency reveal systematic variation in responses to cancer drugs. Nat.
Chem. Biol. 9(11), 708 (2013)

33. Flusberg, D.A., Roux, J., Spencer, S.L., Sorger, P.K.: Cells surviving fractional
killing by TRAIL exhibit transient but sustainable resistance and inflammatory
phenotypes. Molecular Biol. Cell 24(14), 2186–2200 (2013)

34. Casagranda, S., Touzeau, S., Ropers, D., Gouzé, J.L.: Principal process analysis
of biological models. BMC Syst. Biol. 12(1), 68 (2018). https://doi.org/10.1186/
s12918-018-0586-6

35. Hillert, L.K., et al.: Dissecting DISC regulation via pharmacological targeting of
caspase-8/c-FLIP L heterodimer. Cell Death Diff. 1–14 (2020)

36. Schwarzer, R., Jiao, H., Wachsmuth, L., Tresch, A., Pasparakis, M.: FADD and
caspase-8 regulate gut homeostasis and inflammation by controlling MLKL-and
GSDMD-mediated death of intestinal epithelial cells. Immunity (2020)

37. Strasser, A., Vaux, D.L.: Cell death in the origin and treatment of cancer. Molecular
Cell (2020)

38. Tummers, B., et al.: Caspase-8-dependent inflammatory responses are controlled
by its adaptor, FADD, and Necroptosis. Immunity (2020)

39. Amaral, M.P., Bortoluci, K.R.: Caspase-8 and FADD: where cell death and inflam-
mation collide. Immunity 52(6), 890–892 (2020)

40. Chaudhry, M.Z., et al.: Cytomegalovirus inhibition of extrinsic apoptosis deter-
mines fitness and resistance to cytotoxic CD8 T cells. Proc. Natl. Acad. Sci.
117(23), 12961–12968 (2020)

41. Llamosi, A., et al.: What population reveals about individual cell identity: single-
cell parameter estimation of models of gene expression in yeast. PLoS Comput.
Biol. 12(2), e1004706 (2016)

42. Pereira, L.C.G.: Thesis : Modeling cell response heterogeneity to pro-apoptotic
ligands. COMUE Université Côte d’Azur (2015–2019)

https://doi.org/10.1186/s12918-018-0586-6
https://doi.org/10.1186/s12918-018-0586-6

Drawing the Line: Basin Boundaries
in Safe Petri Nets

Stefan Haar1(B), Löıc Paulevé2, and Stefan Schwoon1

1 Inria and LSV, CNRS & ENS Paris-Saclay, Université Paris-Saclay, Gif-sur-Yvette,
France

stefan.haar@inria.fr
2 Univ. Bordeaux, Bordeaux INP, CNRS, LaBRI, UMR5800, Talence, France

Abstract. Attractors of network dynamics represent the long-term
behaviours of the modelled system. Understanding the basin of an attrac-
tor, comprising all those states from which the evolution will eventu-
ally lead into that attractor, is therefore crucial for understanding the
response and differentiation capabilities of a dynamical system. Build-
ing on our previous results [2] allowing to find attractors via Petri net
Unfoldings, we exploit further the unfolding technique for a backward
exploration of the state space, starting from a known attractor, and show
how all strong or weak basins of attractions can be explicitly computed.

Keywords: Dynamical systems · Qualitative models · Attractors ·
Concurrency · Biological networks · Epigenetics · Reprogramming

1 Introduction

Multistability is a central feature of models for biological systems. It is implied by
many fundamental biological processes, such as cellular differentiation, cellular
reprogramming, and cell fate decision.

In qualitative models such as Boolean and multivalued networks, multistabil-
ity is tied to the notion of attractors and to their basins. Attractors are usually
defined as the smallest subsets of states from which the system cannot escape.
Then, basins refer to the states of the system which can reach a given attractor.
One can distinguish two kinds of basins for an attractor A: the weak basin of
A which gathers all the states that can reach A, but possibly others; and the
strong basin of A which is the subset of the weak basin which cannot reach other
attractors than A. The strong basin includes the attractor itself, and possibly
other preceding states [15].

Understanding how the system switches from a weak to a strong basin is a
recurrent question when analysing models of signalling and gene regulatory net-
works [5,19]. In [10], the authors provide a method for identifying the states in
which one transition leads to losing the reachability of a given attractor (bifurca-
tion transitions). Whereas the approach can still enumerate only the bifurcation
transitions, it then loses the precious information of the contexts in which the
c© Springer Nature Switzerland AG 2020
A. Abate et al. (Eds.): CMSB 2020, LNBI 12314, pp. 321–336, 2020.
https://doi.org/10.1007/978-3-030-60327-4_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-60327-4_17&domain=pdf
https://doi.org/10.1007/978-3-030-60327-4_17

322 S. Haar et al.

transitions make the system bifurcate from the attractor. Thus, besides listing of
the states on the boundary of a strong basins, the challenge resides in identifying
the specific contexts and sequences of transitions leading to a strong basin.

Let us illustrate on the small automata network example showing bifurcation
transitions reproduced in Fig. 1. The model gathers 3 automata a, b, and c with
respectively 3, 2, and 3 local states. The automata start in the state in gray,
then can undergo transitions (fully) asynchronously. Transitions labeled with
the local states of other automata can only be taken whenever the referenced
automata are in these states. This results in the transition graph of Fig. 2. Two
attractors are reachable: the fixpoint (i.e. singleton attractor) 〈a2, b1, c0〉, and
the cyclic attractor where c is fixed to 2, and a and b oscillate between 0 and
1. The states in gray in Fig. 2 form the weak basin of the fixpoint〈a2, b1, c0〉.
In specific states of this basin, firing the transition t8, which is the transition
of c from 1 to 2 makes the system lose the capability to reach the fixpoint, by
entering in (the strong basin of) the cyclic attractor.

Fig. 1. Running example: Automata network, from [10]; grey-shaded states are initial

In this paper, we address the computation of strong basins that are reachable
from a fixed initial state. We rely on concurrency theory to obtain compact
representations of reachable sequences of transitions by means of safe Petri nets
unfoldings, which avoid the explicit exploration of all interleavings. They provide
a compact and insightful representation of strong basins, by focusing on the
causality and context of transitions.

Safe (or 1-bounded) Petri nets [20] are close to Boolean and multivalued
networks [3], although they enable a more fine-grained specification of the con-
ditions for triggering value changes. Focussing on safe PNs entails no limita-
tion of generality of the model, as two-way behaviour-preserving translations
between boolean and multivalued models exist (see [3] and the appendix of [2]
for discussion). Indeed, instead of a function whose evaluation gives the next
value for each node of the network, Petri nets explicitly specify the nodes that
actually enable each value change, which are typically very few. Unfoldings [8]
of Petri nets, which are essentially event structures in the sense of Winskel
et al. [21] with additional information about states that are crucial in our work
here, bring an acyclic representation of the possible sequences of transitions, akin

Drawing the Line: Basin Boundaries in Safe Petri Nets 323

Fig. 2. Transition graph for the automata network of Fig. 1, from [10]. Attractors are
{〈a2, b1, c0} and {〈a1, b1, c2〉, 〈a0, b1, c2〉, 〈a0, b0, c2〉, 〈a1, b0, c2〉}.

to Mazurkiewicz traces [7]1 but enriched with branching information. From an
unfolding, all reachable states and even attractors [2] can be extracted. Like the
authors of [11] did for transition systems, we will exploit both forward and reverse
dynamics, by constructing reverse unfoldings to explore co-reachable states (i.e.
states from which a given set can be reached).

Here again, the restriction to 1-safe nets is a technical convenience for unfold-
ings but not a strict necessity; the use of finite complete prefixes and application
of our techniques is possible for general bounded2 nets via careful model trans-
lations, not discussed here due to lack of space. Also, there is a variety of other
formal approaches that use concurrency to avoid state space explosion, such as
partial order reduction in reachability-related tasks following Godefroid [12], or
dihomotopy in the sense of Goubault [13]; their angle of attack is on the level of
transition systems, whereas our approach focusses on local causal relations.

Outline. After providing the necessary definitions for Petri nets and their
unfoldings in Sect. 2, we will turn our attention to attractors in Sect. 3. The
algorithm that we had developped in [2] for finding the complete list of attrac-
tors in a safe Petri net, will be extended here. The extended algorithm Attmap
below provides, in addition to the attractors, information about which system
state, called marking for Petri nets, allows to reach which attractor. The out-
put of Attmap includes a function Sig(•) that assigns to every marking the
set of attractors in whose basin of attraction the marking lies. Inversely, the
1 Which Cousot et al. [6] have recently use as theoretical foundation for capturing

which entity of a program is responsible of a given behavior.
2 Note that infinite-state Petri nets do not have finite complete prefixes in our sense.

324 S. Haar et al.

strong basin of an attractor A consists precisely of those markings M for which
Sig(M) = {A}. The second, and final, step is then taken in Sect. 5: we develop
two algorithmic methods (on-line and off-line) built on the same principle; they
delimit the strong basin of any attractor of the net, via a reverse Petri net
unfolding that explores the possible processes that might have led into a given
attractor. Truncating this unfolding at the boundary of the strong basin allows
to exhibit the strong basin as the set of interior configurations in the sense
defined below, of the net structure obtained from unfolding. Sect. 6 concludes.

2 Petri Nets and Unfoldings

Petri Nets. A Petri net is a bipartite directed graph where nodes are either
places or transitions, and places may carry tokens. In this paper, we consider
only safe Petri nets where a place is either active or inactive (as opposed to
general Petri nets, where each place can receive an arbitrary number of tokens,
safe Petri nets allow at most one token per place). The set of currently active
places form the state, or marking, of the net. A transition is called enabled in a
marking if all its input places are active, and no output place is active unless it
is also an input place. The firing of a transition modifies the current marking of
the net by rendering the input places inactive and output places active.

Formally, a net is a tuple N = (P ,T ,F), where T is a set of transitions, P
a set of places, and F ⊆ (P × T) ∪ (T × P) is a flow relation whose elements
are called arcs. A subset M ⊆ P of the places is called a marking. A Petri net
is a tuple N = 〈N ,M0〉, with M0 ⊆ P an initial marking.

In figures, places are represented by circles and the transitions by boxes
(each one with a label identifying it). The arrows represent the arcs. The initial
marking is represented by dots (or tokens) in the marked places. The reverse
net of N is

←−N def= (P ,T ,F−1). For any node x ∈ P ∪ T , we call pre-set of x the
set •x = {y ∈ P ∪ T | (y, x) ∈ F} and post-set of x the set x• = {y ∈ P ∪ T |
(x, y) ∈ F}. A transition t ∈ T is enabled at a marking M , denoted M t→, if
and only (i) •t ⊆ M , and (ii) (M ∩ t•) ⊆ •t . Note that the second requirement is
usually not made in the Petri net literature; however in the class of safe nets (see
below), condition (ii) is true whenever (i) is true. An enabled transition t can
fire, leading to the new marking M ′ = (M \ •t)∪ t•; in that case write M t→ M ′.
A firing sequence is a (finite or infinite) word w = t1t2t3 . . . over T such that
there exist markings M1,M2, . . . such that M0

t1→ M1
t2→ M2

t3→ All markings
in such a firing sequence are called reachable from the initial marking M0. We
denote the set of markings reachable from some marking M in N by RN (M)
(dropping the subscript N if no confusion can arise).

A marking M reachable in (
←−
N ,M0) is said co-reachable from M0 in N ; denote

as
←−
RN (M0) the set of co-reachable markings for M0 and N .

Semantics of Safe Petri Nets. As an important restriction, we require all
Petri nets arising in this paper to be safe, that is, in any reachable marking M
and any transition t such that •t ⊆ M , one has (M ∩ t•) ⊆ •t . For an easier

Drawing the Line: Basin Boundaries in Safe Petri Nets 325

•
a0

a1

a2

b0

•
b1

c2

c1

• c0

θ α β γ δ = t8

ζηε

Fig. 3. Right hand side: A Petri net version of the automata network from Fig. 1
(initial state shifted to < a0, b1, c0 >), reproduced on the left hand side.

formalization of the following concepts, it is possible to introduce complementary
places: a place p is a complement of place p iff

1. •p = p• and p• = •p, and
2. [M0 ∩ {p, p}| = 1.

A Petri net N = (P ,T ,F ,M0) is called complete iff every place in P has at
least one complement in P . Complete Petri nets are safe by construction, since
the number of tokens on a pair of complementary places is an invariant of the
transition firing. Moreover, the reverse net of a complete net is also complete, and
thus safe. For a net N = (P ,T ,F), the completion of N is N̂ = (P
P ,T ,F
F),
where P = { p | p ∈ P } is disjoint from P , and

F def= { (p, t) | (t, p) ∈ F ∩ (T × P) } ∪ { (t , p) | (p, t) ∈ F ∩ (P × T) }

From an initial marking of the net, one can recursively derive all possible tran-
sitions and reachable markings, resulting in the marking graph (Definition 1).
The marking graph is always finite in the case of safe Petri nets. The attrac-
tors reachable from some initial marking of the net are the terminal strongly
connected components of the associated reachability graph.

Definition 1. Let N = (P, T, F) be a net and M a set of markings. The mark-
ing graph induced by M is a directed graph (M, E) such that E ⊆ M × M
contains (M ,M ′) if and only if M t→ M ′ for some t ∈ T; the arc (M ,M ′)
is then labeled by t. The reachability graph of a Petri net (N ,M0) is the
marking graph G(N ,M0) induced by RN (M0). The transition system of a com-
plete net N = (P
 P ,T ,F
 F) is the marking graph TS(N) induced by
{M ∪ P \ M | M ⊆ 2P }.

Note that complementary places are uniquely defined. To keep the presen-
tation legible and compact, we will henceforth drop all complement places from
both notations and figures.

326 S. Haar et al.

a0 b1 c0

a1

a1

a0

a0

a0 a0

b0

b0 b0

a2

c0b1

b1

b1

b1c1

c2

αβ

α β α β

α β

ε
η

θ

θ

ζγ γ

δγ

Fig. 4. A finite complete prefix of the unfolding of the Petri net of Fig. 3; underlined
names indicate fixed conditions, events without outgoing arcs are cut-offs.

Unfoldings. Let us now recall the basics of Petri net unfoldings and how to use
them in finding attractors, following [2]. Roughly speaking (a more extensive
treatment can be found, e.g., in [8]), the unfolding of a Petri net N is an acyclic
Petri net U that has the same behaviours as N (modulo homomorphism). In
general, U is an infinite net, but if N is safe, then it is possible to compute a
finite prefix � of U that is “complete” in the sense that every reachable marking
of N has a reachable counterpart in �, and vice versa [8,18].

Definition 2 (Causality, conflict, concurrency). Let N = 〈P, T, F 〉 be a
net and x, y ∈ P ∪ T two nodes of N . We say that x is a causal predecessor
of y, noted x < y, if there exists a non-empty path of arcs from x to y. We note
x ≤ y if x < y or x = y. If x ≤ y or y ≤ x, then x and y are said to be causally
related. x and y are in conflict, noted x # y, if there exist u, v ∈ T such that
u = v, u ≤ x, v ≤ y, and •u ∩ •v = ∅. We call x and y concurrent, noted x co y,
if they are neither causally related nor in conflict.

Definition 3 (Occurrence net). Let N = 〈P, T, F,M0〉 be a Petri net. We
say that N is an occurrence net if it satisfies the following properties:

1. The causality relation < is acyclic;
2. |•p| ≤ 1 for all places p, and p ∈ M0 iff |•p| = 0;

Drawing the Line: Basin Boundaries in Safe Petri Nets 327

a0 b1 c0

a1
a0

a0

b0

b0

b1 c1

a0

b1 c0

a2

a0
c2

a1

b1

θ

α β

α β

γ

b0a0

b1

αβ

α β

ε
η

θ

ζγ

δ

Fig. 5. The attractors for the Petri net of Fig. 3, represented in the unfolding prefix
of Fig. 4.

3. For every transition t, t # t does not hold, and [x] def= {x | x ≤ t} is finite.

We say that N is a reverse occurrence net iff
←−N is an occurrence net.

As we said before, an unfolding is an “acyclic” version of a safe Petri net N .
This notion of acyclicity is captured by Definition 3.

As is convention in the unfolding literature, we shall refer to the places of an
occurrence net as conditions and to its transitions as events. Due to the structural
constraints, the firing sequences of occurrence nets have special properties: if
some condition c is marked during a run, then the token on c was either present
initially or produced by one particular event (the single event in •c); moreover,
once the token on c is consumed, it can never be replaced by another token, due
to the acyclicity constraint on <.

Definition 4 (Configuration, cut). Let N = 〈B ,E ,G , c0〉 be an occurrence
net. A set C ⊆ E is called configuration of N if (i) C is causally closed, i.e.
e′ < e and e ∈ E imply e′ ∈ E; and (ii) C is conflict-free, i.e. if e, e′ ∈ C, then
¬(e # e′). The cut of C , denoted cut(C), is the set of conditions (c0∪C •)\•C.

Intuitively, a configuration is a set of events that can fire during a firing
sequence of N , and its cut is the set of conditions marked after that firing
sequence. Note that ∅ is a configuration, and that c0 is its cut.

328 S. Haar et al.

We can now define the notion of unfoldings. Let N = 〈P ,T ,F ,M0〉 be a safe
Petri net. The unfolding U = 〈B ,E ,G , c0〉 of N is an (infinite) occurrence net
(equipped with a homomorphism h) such that the firing sequences and reachable
markings of U are exactly the firing sequences and reachable markings of N
(modulo h). U can be inductively constructed as follows:

1. The condition set B is a subset of (E∪{⊥})×P . For a condition b = 〈e, p〉, we
will have e = ⊥ iff b ∈ c0; otherwise e is the singleton event in •b. Moreover,
h(b) = p. The initial marking c0 contains exactly one condition 〈⊥, p〉 for
each initially marked place p ∈ M0 of N .

2. The events of E are a subset of 2B × T . More precisely, for every cut c and
B′ ⊆ c such that {h(b) | b ∈ B ′ } = •t , we have an event e = 〈B ′, t〉. In this
case, we add edges 〈b, e〉 for each b ∈ B ′ (i.e. •e = B ′), we set h(e) = t , and
for each p ∈ t•, we add to B a condition b = 〈e, p〉 connected by an edge
〈e, b〉.

Intuitively, a condition 〈e, p〉 represents the possibility of putting a token onto
place p through a particular firing sequence, while an event 〈B ′, e〉 represents a
possibility of firing transition e in a particular context.

Recall that a finite configuration C of U represents a possible firing sequence
whose resulting marking corresponds, due to the construction of U , to a reachable
marking of N . This marking is defined as Mark(C) := {h(b) | b ∈ cut(C) }.
Since U is infinite in general, we are interested in computing an initial portion
of it (a prefix) that completely characterizes the behaviour of N .

Definition 5 (complete prefix). Let N = 〈P ,T ,F ,M0〉 be a safe Petri net
and U = 〈B ,E ,G , c0〉 its unfolding. A finite occurrence net � = 〈B ′,E ′,G ′, c0〉
is said to be a prefix of U if E ′ ⊆ E is causally closed, B ′ = c0 ∪ E ′•, and G ′

is the restriction of G to B ′ and E ′. A prefix � is said to be complete if for
every reachable marking M of N there exists a configuration C of � such that
(i) Mark(C) = M, and (ii) for each transition t ∈ T enabled in M , there is an
event 〈B ′′, t〉 ∈ E ′ enabled in cut(C) (Fig. 5).

We shall write Π0(N ,M) to denote an arbitrary complete prefix of N from
initial marking M . It is known [9,18] that the construction of such a complete
prefix is indeed possible, and efficient tools [14,22] exist for this purpose. The
precise details of this construction are out of scope for this paper; for what follows
it suffices to know that it essentially follows the construction of U outlined above
but that certain events are flagged as cut-offs when they do not “contribute any
new reachable markings”. The construction then does not continue beyond any
such cut-off event.

3 Attractors

Definitions and Fundamental Properties. The notion of attractor denotes,
informally, a set of states from which the system cannot ’escape’, i.e. from any

Drawing the Line: Basin Boundaries in Safe Petri Nets 329

state of an attractor, only states inside the same attractor are reachable; that is,
the attractors are exactly the terminal SCCs of the transition system. The strong
basin of an attractor A collects those states from which the system eventually
enters A (never to leave it again), and its weak basin those states from which
the system may enter A.

Definition 6. Let N = (P ,T ,F) be a net. An attractor A ⊆ 2P is a bottom
(terminal) strongly connected component (SCC) of TS(N). Denote the set of
attractors (of N) by A, and the set of attractors reachable from a marking M
by

Sig(M) def= {A ∈ A : A ∩ R(M) = ∅}.

In particular, an attractor A is a fixed point iff there is M ∈ M such that
A = {M }, and for any t ∈ T, M t→ M ′ implies M = M ′.

It is important to stress the fact that the SCCs to be considered as attractors
have to be terminal. In the example, the system may (though this is not likely)
cycle forever in the set of states in which neither a2 nor c2 holds; however, this
set is not an attractor. When we wish to give a dynamic characterization of
attraction, and in particular of basins of attraction, it is not enough to require
the existence of infinite runs that stay inside a given state set; we need to restrict
to those runs that ‘eventually explore all accessible branches’. This intuition can
be captured by the notion of fairness: any transition that is enabled infinitely
often, must also eventually occur :

Definition 7. In N as above, an infinite firing sequence M0
t1→ M1

t2→ . . . is fair
iff for all t ∈ T:

∣
∣
∣

{

i ∈ N; Mi
t→

}∣
∣
∣ = ∞ ⇒ {j ∈ N; tj = t} = ∅ (1)

Note that this notion corresponds to weak fairness in the sense of [23], which
is sufficient for our purposes (see also Abadi et al. [1]); we thus speak only of
fairness here. Any such fair sequence will eventually leave any spurious SCC,
and, the state space of the net is finite, sooner or later enter a bottom SCC,
which, of course, it cannot leave anymore. We are thus ready to define:

Definition 8. Let A′ ⊆ A. The strong basin BA′ ⊆ 2P of A′ is the set of
markings from which every fair firing sequence leads eventually into some A ∈
A′; the weak basin WA′ ⊆ 2P of A′ is the set of markings from which some
A ∈ A′ is reachable. By abuse of notation, we will write BA (WA) for BA′

(WA′) when A′ = {A}.

Note that for all attractors A, we have A ⊆ BA ⊆ WA. Also, two distinct
attractors A,A′ must be disjoint, and their strong basins too. However, two
weak basins BA,BA′ are never disjoint, as each contains at least M0.

330 S. Haar et al.

Signatures for Configurations. Lifting the notion of attraction to the level of
configurations, and by abuse of notation, we set, for any configuration C , Hence,

Sig(C) def= Sig(Mark(C)).

Note that in general, for any M there will be several C such that Mark(C) = M .

4 Extracting Attractors from Unfoldings

In this section, we present a new method that identifies, for a given Petri net
N , both its attractors and their basins, based on the unfolding of N . We first
recall the method from our previous work [2] that identifies attractors, and then
present the new algorithm.

Representation of Attractors as Finite Complete Prefixes. The method
from [2] uses unfoldings in two ways: first to find a set of markings which inter-
sects all the attractors, and secondly to output the attractors as a set of finite
complete prefixes.

Every attractor A can be compactly represented as a finite complete prefix
of the unfolding of the Petri net N initialized at some marking M ∈ A. Let us
denote this prefix UM : the markings associated to the configurations of UM are
precisely those of the attractor, moreover the prefix shows the dynamics of the
net while in the attractor. Lastly, the size of UM (as number of non cut-off events)
can be up to exponentially smaller (in case of highly concurrent behaviour) than
the number of markings in the attractor and never exceeds it.

Maximal Configurations and Attractors. Let us recall from [2]:

Property 1. Let N be a Petri net and U a finite complete prefix of its unfolding.
For every attractor A of N , there exists (at least) one maximal configuration of
U whose associated marking belongs to A.

The Attractor Map. The following algorithm generates a ‘map’ of attractors,
i.e. the set of these attractors together with the information which marking
obtained from a maximal configuration of the first complete prefix leads into
which attractor. It is an extension of the algorithm from [2] for finding attractors.

Algorithm Attmap. Initialize. �̂ def= ∅, A∗ def= ∅ and Â def= ∅.

1. Compute a finite complete prefix Π0 of the unfolding of N ; initialise Π
def= Π0.

2. Initialize M to the set Mmax of markings corresponding to maximal config-
urations of Π0.

3. Loop: for M in M do
– Compute a finite complete prefix ΠM of the Petri net N = (N ,M). Grow

Π by appending a copy of ΠM to every configuration CM of Π such that
Mark(CM) = M .

Drawing the Line: Basin Boundaries in Safe Petri Nets 331

– Compute the set nextM
def= {M ′ ∈ M\{M } : M ′ ∈ R(M)} of markings

in M that are reachable from M (reachability check done using ΠM).
• If nextM = ∅ then update �̂ := �̂ ∪ ({M } × nextM);
• If nextM = ∅ then update Â := Â ∪ {ΠM } and A∗ := A∗ ∪ {M }.

4. Output the attractor candidates, i.e. marking set A∗ and the set Â of unfold-
ing prefixes, and the transitive closure � def= (�̂)∗ of �̂.

5. Define the equivalence relation ≡ on A∗ by M ≡ M ′ �↔ M�M ′ ∧ M ′�M
6. In the quotient of A∗ under ≡, one obtains the set of root markings of attrac-

tors as the set A∗ of �-maximal elements; the set A of attractors is the set
of prefixes rooted in some marking from A∗.

7. Compute Sig(•):
– For every marking M ∈ A∗, Sig(M) def= [M]≡.
– For other M ∈ M: Sig(M) def= {[M ′]≡ : M ′ ∈ Â ∧ M�M ′}.
– For all families of configurations (Ci)i∈I ,

• Sig(
⋂

i∈I Ci) =
⋃

i∈I Sig(Ci), and
• if CI

def=
⋃

i∈I Ci ∈ C, then Sig(CI) =
⋂

i∈I Sig(Ci).

Note that every attractor can be represented as an occurrence net AM
def= UM

rooted at some attractor marking M , and that no M can be the root of (or even
belong to the marking set of) two distinct attractors. Moreover, the sets C(M)
contain full information about which marking from M allows to reach which
attractors, via the relation � ⊆ M2.

Comparison with the Original Algorithm From [2]

– Attmap explores, for every M ∈ M, all markings that are reachable from
M , whereas in [2] it was sufficient to detect existence of some such markings;
the worst-case complexity is thus increased by one exponential factor.

– The information about how some attractor was reached is stored during the
procedure, which induces only a bounded increase of computational and stor-
age effort.

– A more fundamental difference is that attractors come out of the [2] algorithm
as individual markings, rather than equivalence classes as in Attmap. The
reason is that the [2] algorithm discards every marking from which an attrac-
tor representative marking is reachable; this reduction is not available in the
above since all reachability information between the candidate markings is
to be stored. In general, this will include mutual reachabilities; the quotient
with respect to ≡ contracts these strongly connected components. Since, by
a classical result from order theory, the preorder � is collapsed into a partial
order by the quotient operation, one retrieves indeed all attractors from the
maximal nodes of �/≡.

5 Basins and Their Boundaries

In this section, we will present methods for computing an unfolding-based rep-
resentation of the strong basin of a given attractor. The two methods represent

332 S. Haar et al.

different tradeoffs w.r.t. time vs space requirements. We will present a so-called
on-line method first and the off-line method later.

On-line Method for Computing Strong Flow Basins. Let N be a net and
A an attractor of N , i.e. a terminal SCC of TS(N). The following procedure
gives a method to compute B(A).

1. Fix any marking M ∈ A, and compute Φ(M) def= Π0(
←−N ,M) = (B,E, F, c0).

Clearly, all M ′ ∈ A, and even all M ′′ ∈ W(A), are represented in Φ(M).
2. Let M← be the set of markings of maximal configurations of Φ(M).
3. Set CA := ∅. For all M ′ ∈ M←, do the following:

(a) Apply the algorithm Attmap on the net (N ,M ′); this computes, among
other things, a complete prefix Π(M ′) as well as Sig(M ′′) for all markings
M ′′ reachable from M ′.

(b) For all minimal configurations C ′ of Π(M ′) satisfying Sig(C ′) = {A},
find a configuration C of Φ(M) such that Mark(C) = Mark(C ′), and add
C to CA.

4. With E′ :=
⋃

C∈CA
C and B′ = •E′ ∪E′• ∪ c0, let Ψ(A) = (B′, E′, F, c0), i.e.

Ψ(A) is the restriction of Φ(M) to the events of configurations in CA.

•
p1

•
p2

•
p3

p4

¬A A

p7

a b c

d

e

p1 p2 p3

p4

A

p7

b c

d

e

p1

p4

A

p7

b

d

p2

p4

A

p7

c

d

p3

A

e

Fig. 6. Illustration of the techniques and concepts used in the computation of Ψ(A).
The attractors of the Petri net on the left hand side are the fixed points, i.e. singleton
markings, A = {{A}} and A = {{¬A}}. From the initial marking M0 = {p1, p2} both
attractors are reachable. Reverse exploration from A yields M← = {{p1, p2}, {p3}}.
Computing Φ({A}) yields the reverse occurrence net second-from-left. The three inte-
rior configurations of Ψ(A) are shown in the figures from center to right; the strong
basin of A is the collection of these configurations and their suffixes.

B(A) is now represented by Ψ(A) and CA in the sense that M1 ∈ B(A) iff
there exists a configuration C ′ ⊆ C with Mark(C ′) = M1 and C ∈ C. We shall
call CA the interior configurations of A, motivated by the following two results:

Lemma 1. Let C ′ ⊆ C be a configuration of Ψ(A) such that C ∈ CA. Then
Mark(C ′) ∈ B(A).

Proof: Let M1 = Mark(C ′) and M ′′ = Mark(C). Since C ′ ⊆ C, we have
that M ′′ is reachable from M1 in

←−
N , and hence M1 is reachable from M ′′ in

Drawing the Line: Basin Boundaries in Safe Petri Nets 333

N . Since Sig(M ′′) = {A}, the only attractor reachable from M1 can be A, too.
Moreover, A is indeed reachable from M1 because C ′ is a configuration of Φ(M),
and therefore reachable in

←−
N from M , where M ∈ A. ��

Lemma 2. For every state M1 ∈ B(A), there is a configuration C ′ of ψ(A)
such that Mark(C ′) = M1 and C ′ ⊆ C for some C ∈ CA.

Proof: In step 1 of the algorithm, Φ(M) represents all markings, including
M1, that can reach A in N and hence M . Therefore, in Φ(M) there exists some
configuration whose marking is M1 and which reaches some maximal configura-
tion of Φ(M). Thus, among the maximal markings in M←, there must be some
M ′ such that M ′ reaches M through M1. On each such path there must be a
first marking M ′′ with Sig(M ′′) = {A}, i.e. M ′′ can reach only A and no other
attractor. Since Π(M ′) contains all markings reachable from M ′, step 3(b) of
the algorithm is bound to find some configuration C ′ whose marking is such an
M ′′. Since M ′′ is also reachable from M in

←−
N , it is represented in Ψ(M), and

therefore a configuration C with Mark(C) = M ′′ will be added to CA. ��

•
p1

•
p2

p3 p4 p5 p6

A¬A

a b

x

c d

uzy

p1 p2

p3 p4 p5 p6

A¬A A¬A

a b

x

c d

uzy

Fig. 7. A net (left) and its complete unfolding (right) with a bifurcation between two
attractors, {A} and {¬A} that requires coordination of two choices. From markings
{p3, p5} and {p4, p6}, it is inevitable to reach {¬A}. That is, the two concurrent choices
- between a and b on the one hand, and c and d on the other - must be coordinated to
ensure that, e.g., {A} is eventually reached; no local choice can achieve this alone.

Note that in general the set of configurations of net Ψ(A) overapproximates
the basin, as there may be non-interior configurations spanned by Ψ(A). The
example in Fig. 6 illustrates this point, see the discussion in the caption.

Off-Line Computation. In step 3 of the above on-line method, the algo-
rithm Attmap is called at runtime, every time some marking M ′ from M←

is inspected. An alternative procedure, which we call off-line, would consist in
computing, before any basin is inspected, the signature for all states of the tran-
sition system of N ; then, the value of Sig(C) would be found, when needed, by
a lookup. Indeed, this computation can be implemented by applying Attmap

334 S. Haar et al.

to a modified complete net with places P ∪ P : add a new place p0 to P and
its complement place p0 to P . Make M ′

0 := P ∪ {p0} the initial marking, and
for each place p ∈ P , add a transition tp with •tp = {p0, p} and tp

• = {p0, p}.
Add a further transition t0 from p0 to p0, i.e. •t0 = {p0} and t0

• = {p0}, and
add p0 to the presets and postsets of all the original transitions of N . In this
way, the modified net can first decide to move to any marking M ⊆ P before
firing t0 and then behaving just like N would, if starting at M . The advantage
of the off-line method is that it avoids computing the same signatures several
times, in the case of overlaps, and that it produces a very rich set of information
about the dynamics of a net, for any further use. Moreover, the computation of
Φ(M) can be limited and treat events e with Mark([e]) = {A} as cut-off points.
Its drawback is in the potentially very big data structures to be explored; the
on-line method may be preferred if the system exhibits many small basins, lim-
iting the number of signatures that are actually required. Which method is to
be preferred, will need to be decided for every net individually.

Example. It is worth noting that the entry into a strong basin need not be
linked to a unique transition; depending on the context, the same transition
may lead either towards or away from some attractor. Consider Fig. 7, letting
M1

def= {p3, p5} and M2
def= {p4, p6}. Indeed, the predecessors of M1 are {p1, p5}

and {p3, p2}, both of which are in the weak basins of both A and ¬A, and thus
not in B¬A (the case for M2 is symmetric). That is, any transition from {a, b, c, d}
may contribute to a path into A, or into ¬A; it is the coordination among these
transitions that decides between the two attractors: occurrence of {a, c} or {b, d}
leads to ¬A, that of {a, d} or {b, c} to A.

p1 p1 p2 p2

p3 p4 p5 p6

A

a b c d

uy

p3 p4 p5 p6

A

uy

Fig. 8. Continuation of the example from Fig. 7. Left: backward unfolding from A to
obtain Φ({A}); one has M← = {{p1}, {p2}}. Right: Ψ({A}), allowing two maximal
and interior configurations.

Boundaries. We note that the above two cases exhibit two very different
behaviours at the boundaries of their strong basins. Let us define a boundary con-
figuration to be a configuration C that is not interior, but such that there exists

Drawing the Line: Basin Boundaries in Safe Petri Nets 335

an ‘immediate predecessor’ interior configuration C ′ ⊆ with C\C ′ consisting in
a single event. Then, in the example of Fig. 6, we have a unique boundary config-
uration C = {b, c, d} with immediate predecessors C1 = {b, d} and C2 = {c, d},
and we observe that C is obtained by a sort of closure operation from the interior
configurations, in the sense that C = C1∪C2. By contrast, the example of Figs. 7
and 8, the boundary configurations are C1 = {a, u}, C2 = {d, u}, C3 = {b, y},
and C4 = {c, y}, and the immediate interior successors C1 = y and C2 = {u}.
No obvious combination of C1 and C2 can produce any Ci. Further classification
and study of these (and potentially other) boundary types is left to future work.

6 Conclusion

We have developped Petri net-represented structures that allow to identify com-
pletely the strong basins of attraction for all attractors present in a finite safe
Petri net. Future work will investigate further the different types of boundaries
encountered here, and aim at refining and evaluating robustness of attractors
and reprogramming strategies [16,17] in the context of concurrency. Finally, in
regard to benchmarks in prior work relying on Petri net unfoldings [2,4], the
time and space consumption of the proposed algorithms allows to envisage their
application to networks with two-digit numbers of nodes. In future work, we will
investigate the implementation of the on-line and off-line algorithms and their
tractability on real-world models of biological systems.

Acknowledgments. This research was supported by Agence Nationale de la
Recherche (ANR) with the ANR-FNR project AlgoReCell (ANR-16-CE12-0034);
Labex DigiCosme (project ANR-11-LABEX-0045-DIGICOSME) operated by ANR as
part of the program “Investissement d’Avenir” Idex Paris-Saclay (ANR-11-IDEX-0003-
02).

References

1. Abadi, M., Lamport, L.: The existence of refinement mappings. Theor. Comput.
Sci. 82(2), 253–284 (1991)

2. Chatain, T., Haar, S., Jezequel, L., Paulevé, L., Schwoon, S.: Characterization
of reachable attractors using Petri Net Unfoldings. In: Mendes, P., Dada, J.O.,
Smallbone, K. (eds.) CMSB 2014. LNCS, vol. 8859, pp. 129–142. Springer, Cham
(2014). https://doi.org/10.1007/978-3-319-12982-2 10

3. Chatain, T., Haar, S., Kolcák, J., Paulevé, L., Thakkar, A.: Concurrency in Boolean
networks. Natural Comput. (2019, to appear)

4. Thomas Chatain and Löıc Paulevé. Goal-driven unfolding of petri nets. In Roland
Meyer and Uwe Nestmann, editors, 28th International Conference on Concurrency
Theory, CONCUR 2017, 5–8 September 2017, Berlin, Germany, LIPIcs, vol. 85,
pp. 18:1–18:16. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2017)

5. Cohen, D.P.A., Martignetti, L., Robine, S., Barillot, E., Zinovyev, A., Calzone, L.:
Mathematical modelling of molecular pathways enabling tumour cell invasion and
migration. PLoS Comput. Biol. 11(11), e1004571 (2015)

https://doi.org/10.1007/978-3-319-12982-2_10

336 S. Haar et al.

6. Deng, C., Cousot, P.: Responsibility analysis by abstract interpretation. In: Chang,
B.-Y.E. (ed.) SAS 2019. LNCS, vol. 11822, pp. 368–388. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-32304-2 18

7. Diekert, V., Rozenberg, G. (eds.): The Book of Traces. World Scientific (1995)
8. Esparza, J., Heljanko, K.: Unfoldings - A Partial-Order Approach to Model Check-

ing. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-77426-6
9. Esparza, J., Römer, S., Vogler, W.: An improvement of McMillan’s unfolding algo-

rithm. FMSD 20, 285–310 (2002)
10. Fitime, L.F., Roux, O., Guziolowski, C., Paulevé, L.: Identification of bifurcation

transitions in biological regulatory networks using Answer-Set Programming. Algo-
rithm Molecular Biol. 12(1), 19 (2017)

11. Fueyo, S., Monteiro, P.T., Naldi, A., Dorier, J., Remy, É, Chaouiya, C.:
Reversed dynamics to uncover basins of attraction of asynchronous logical models.
F1000Research 30(6) (2017)

12. Godefroid, P. (ed.): Partial-Order Methods for the Verification of Concurrent Sys-
tems. LNCS, vol. 1032. Springer, Heidelberg (1996). https://doi.org/10.1007/3-
540-60761-7

13. Goubault, É., Raussen, M.: Dihomotopy as a tool in state space analysis tuto-
rial. In: Rajsbaum, S. (ed.) LATIN 2002. LNCS, vol. 2286, pp. 16–37. Springer,
Heidelberg (2002). https://doi.org/10.1007/3-540-45995-2 8

14. Khomenk, V.: Punf. http://homepages.cs.ncl.ac.uk/victor.khomenko/tools/punf/
15. Klarner, H., Siebert, H., Nee, S., Heinitz, F.: Basins of attraction, commitment sets

and phenotypes of Boolean networks. IEEE/ACM Trans. Comput. Biol. Bioinform.
17, 115–1124 (2018)

16. Mandon, H., Su, C., Haar, S., Pang, J., Paulevé, L.: Sequential reprogramming of
Boolean networks made practical. In: Bortolussi, L., Sanguinetti, G. (eds.) CMSB
2019. LNCS, vol. 11773, pp. 3–19. Springer, Cham (2019). https://doi.org/10.1007/
978-3-030-31304-3 1

17. Mandon, H., Su, C., Pang, J., Paul, S., Haar, S., Paulevé, L.: Algorithms for the
sequential reprogramming of Boolean networks. IEEE/ACM Trans. Computat.
Biol. Bioinform. (2019, to appear)

18. McMillan, K.L.: Using unfoldings to avoid the state explosion problem in the ver-
ification of asynchronous circuits. In: CAV, pp. 164–177 (1992)

19. Mendes, N.D., Henriques, R., Remy, E., Carneiro, J., Monteiro, P.T., Chaouiya, C.:
Estimating attractor reachability in asynchronous logical models. Front. Physiol.
9 (2018)

20. Murata, T.: Petri nets: properties, analysis and applications. Proc. IEEE 77(4),
541–580 (1989)

21. Nielsen, M., Plotkin, G.D., Winskel, G.: Petri nets, event structures and domains,
Part I. Theor. Comput. Sci. 13, 85–108 (1981)

22. Schwoon, S.: Mole. http://www.lsv.ens-cachan.fr/∼schwoon/tools/mole/
23. Vogler, W.: Fairness and partial order semantics. Inf. Process. Lett. 55(1), 33–39

(1995)

https://doi.org/10.1007/978-3-030-32304-2_18
https://doi.org/10.1007/978-3-540-77426-6
https://doi.org/10.1007/3-540-60761-7
https://doi.org/10.1007/3-540-60761-7
https://doi.org/10.1007/3-540-45995-2_8
http://homepages.cs.ncl.ac.uk/victor.khomenko/tools/punf/
https://doi.org/10.1007/978-3-030-31304-3_1
https://doi.org/10.1007/978-3-030-31304-3_1
http://www.lsv.ens-cachan.fr/~schwoon/tools/mole/

Tools

ModRev - Model Revision Tool
for Boolean Logical Models of Biological

Regulatory Networks

Filipe Gouveia(B) , Inês Lynce , and Pedro T. Monteiro

Department of Computer Science and Engineering, INESC-ID/Instituto Superior
Técnico, Universidade de Lisboa, Lisbon, Portugal

{filipe.gouveia,ines.lynce,pedro.tiago.monteiro}@tecnico.ulisboa.pt

Abstract. Biological regulatory networks can be represented by com-
putational models, which allow the study and the analysis of biological
behaviours, therefore providing a better understanding of a given biolog-
ical process. However, as new information is acquired, biological models
may need to be revised, in order to also account for this new information.
Here, we present a model revision tool, capable of repairing inconsistent
Boolean biological models. Moreover, the tool is able to confront the
models, both with steady state observations, as well as time-series data,
considering both synchronous and asynchronous update schemes. The
tool was tested with a well-known biological model that was corrupted
with different random changes. The presented tool was able to success-
fully repair the majority of the corrupted models.

1 Introduction

Computational models of biological regulatory networks are of great interest in
Systems Biology [7]. These models, representing complex biological processes,
allow to study and analyse such processes and the corresponding biological
behaviours. Such computational models accommodate the test of hypotheses,
the identification of predictions in silico, and the identification of network prop-
erties of biological regulatory networks.

As new experimental data become available, computational models may
become inconsistent, i.e., models may not be able to reproduce the new informa-
tion acquired. In this case, models need to be revised [8]. However, this model
revision process is mainly a manual task, performed by a modeler, and there-
fore prone to error. Moreover, repairing an inconsistent model is not an easy
task, due to the inherent combinatorial problem associated to all the possible
changes that can be made to render a model consistent. Furthermore, the con-
struction of biological models is also typically a manual task, thus accentuating
the importance of the model revision process.

This work was supported by national funds through Fundação para a Ciência
e a Tecnologia (FCT) with reference SFRH/BD/130253/2017 (PhD grant) and
UIDB/50021/2020 (INESC-ID multi-annual funding).

c© Springer Nature Switzerland AG 2020
A. Abate et al. (Eds.): CMSB 2020, LNBI 12314, pp. 339–348, 2020.
https://doi.org/10.1007/978-3-030-60327-4_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-60327-4_18&domain=pdf
http://orcid.org/0000-0003-1852-2782
http://orcid.org/0000-0003-4868-415X
http://orcid.org/0000-0002-7934-5495
https://doi.org/10.1007/978-3-030-60327-4_18

340 F. Gouveia et al.

v1 v2

v3

fv1 = v2 ∧ v3

fv2 = v1 ∨ ¬v3

fv3 = v1

Fig. 1. Example of a Boolean logical model.

This paper presents a new tool, ModRev, that combines and implements
the methods for model revision from previously published works [5,6]. ModRev
is capable of assessing whether a Boolean logical model of a biological regulatory
network is consistent with new experimental observations. In case of inconsis-
tency, the tool repairs the model to render it consistent.

ModRev is able to consider steady state observations or time-series obser-
vations as experimental data. Moreover, both synchronous and asynchronous
update schemes are supported when considering time-series observations.

The paper is organised as follows. Section 2 presents the background and
related work. The ModRev tool is presented in Sect. 3. Experimental results
are shown in Sect. 4. We discuss the tool features and prospects in Sect. 5.

2 Preliminaries

Biological regulatory networks are composed of biological compounds, and the
corresponding interactions, representing complex biological processes. Different
formalisms can be use to build computational models of regulatory networks,
such as Ordinary Differential Equations (ODE) [7], Piecewise Linear Differ-
ential Equations (PLDE) [2], Logical Formalism [14], Sign Consistency Model
(SCM) [13], among others [2]. Here, we consider the Boolean logical formal-
ism [14], which has proven useful to study and analyse biological behaviours.

A Boolean logical model is usually represented by a regulatory graph and a
set of regulatory functions. A regulatory graph is defined as a tuple (V,E) where
V is a set of nodes representing the biological compounds, and E is the set
of directed edges representing interactions between biological compounds. Each
node is associated with a Boolean variable, representing whether the correspond-
ing compound is present or absent. Edges are associated with a sign, representing
positive interactions (activations) or negative interactions (inhibitions). If there
is an edge from node v1 to node v2 we say that v1 is a regulator of v2. Each node
is also associated with a regulatory function, which is a Boolean function that
given the value of that node regulators determines its next value.

Figure 1 shows an example of a regulatory graph and corresponding regula-
tory functions, where green pointed arrows represent positive interactions, and
red blunt arrows represent negative interactions.

ModRev - Model Revision Tool for Boolean Logical Models 341

2.1 Related Work

Few approaches of model revision processes have been proposed. A first app-
roach of model revision over Thomas’ logical formalism [14] considers that a
model is inconsistent if it is over-constrained [10]. The revision process removes
constraints until the model becomes consistent, probably leading to under-
constrained models, not representing correctly the real biological process. Some
approaches to model revision consider the Sign Consistency Model formal-
ism [3,13]. This formalism, although similar to the logical formalism, relies on
the sign algebra for the sign of the regulatory functions. Therefore, this type
of models lacks in expressiveness in the definition of regulatory functions when
compared to the logical models. In [9], properties found in literature, called rule
of thumbs, are considered to repair inconsistent models. However, this approach
has limitations regarding the repair operations that can be performed, the def-
inition of regulatory functions, and the generation of the networks’ dynamics.
Recently, a model revision approach was proposed for Boolean logical models,
with more expressiveness regarding the definition of regulatory functions [8].
However, it does not take into account the impact of the regulatory function on
the networks’ dynamics. Also, it does not consider adding a missing regulator in
the model as a possible repair operation.

Model

Exp.
Obs.

(C++)

Check
Consistency

(ASP)

Search
Repairs

Select
Optimal

Solutions

No Solution

Consistent

Solutions

Repairs
. . .

Repairs

Fig. 2. Tool architecture.

3 ModRev Tool

ModRev is a freely available model revision tool for Boolean logical models
of biological regulatory networks1. This paper presents a tool that implements
the model revision methods presented in [5] to repair inconsistent models under
steady state, and implements the method presented in [6] for time-series obser-
vations (see [5,6] for a detailed description of the methods).

Considering a Boolean logical model and a set of experimental observations,
ModRev determines whether the model is consistent with the observations.
In case of inconsistency, it determines the minimum set of nodes that must be
1 https://filipegouveia.github.io/ModelRevisionASP/.

https://filipegouveia.github.io/ModelRevisionASP/

342 F. Gouveia et al.

repaired. Four possible repair operations are considered: change a regulatory
function; change the type of interaction (from activation to inhibition and vice-
versa); remove a regulator; and add a regulator.

In order to repair an inconsistent model, the following lexicographic optimi-
sation criteria is defined to minimise the number of operations of: 1) add/remove
regulator; 2) change interaction type; 3) function change. These criteria allows to
give preference to function changes over changes in the structure of the network.

Figure 2 illustrates the tool architecture. Dashed arrows represent alternative
flows, where it is not possible to repair a model, or the model is already consistent
and no repair is needed.

3.1 Input and Output

Regulatory functions supported by ModRev are monotone non-degenerate
Boolean functions. Biologically, a monotone function means that each regu-
lator only has one role, either an activator, or an inhibitor, but not both. A
non-degenerate function means that each regulator influences the output of the
regulatory function. Otherwise, it should not be a regulator. This model revision
process requires the regulatory functions to be represented in Blake Canonical
Form[1], which is a disjunction of all the prime implicants of the function [5,6].

The ModRev tool is based on Answer Set Programming (ASP) [4], and the
input is defined using ASP predicates. To represent a Boolean logical model we
use the predicate vertex(V), to indicate that V is a node of the regulatory graph,
and the predicate edge(V1,V2,S) to represent an edge from V1 to V2 with a sign
S ∈ {0, 1}, where 0 (1) represents a negative (positive) interaction. The predicate
vertex may be omitted if the node can be inferred from edge predicates. To
represent regulatory functions, we use the predicate functionOr(V,1..N) that
indicates that the regulatory function of V is a disjunction of N terms. The pred-
icate functionAnd(V,T,R) is then used to represent that node R is a regulator
of V and is present in the term T of the regulatory function.

ModRev is able to confront a model with a set of experimental observations,
either in steady state, or a time-series data. To represent the set of experimental
observations, the predicate exp(E) is used to identify an experimental observa-
tion E. To represent the observed values of an experiment E, we use the predicate
obs vlabel(E,V,S), which means that node V in experiment E has an observed
value S ∈ {0, 1} considering steady state observations. If time-series observations
are to be considered instead, a similar predicate (obs vlabel(E,T,V,S)) is used,
where T represents the time-step of the observed value.

If ModRev identifies that a given model is not consistent with a set of obser-
vations, it produces all the optimum solutions (repairs) that render the model
consistent. Considering the optimisation criteria defined above, the optimum set
of repair operations are produced.

ModRev - Model Revision Tool for Boolean Logical Models 343

4 Experimental Evaluation

We tested our tool using a Boolean logical model of the segment polarity (SP)
network which plays a role in the fly embryo segmentation [12]. We corrupted
the model using four probability parameters (in percentage): F, the probability
of changing a regulatory function; E, the probability of changing the sign of
an edge; R, the probability of removing a regulator; and A, the probability
of adding a regulator. Table 1 shows 24 combinations of these parameters that
have been considered. For each parameter configuration, 100 corrupted instances
were generated. Also, five time-series observations with twenty time-steps were
considered.

Given a corrupted model and a set of experimental observations, our tool is
able to repair most of the models under a time limit of one hour. Figure 3 shows
the median solving times for each configuration. Considering the synchronous
update scheme, it is possible to observe that, for the configurations with added
or removed regulators, a greater repair time is needed. This is due to the change
in the dimension of the regulatory function, which has a big impact on the tool
performance. Considering the asynchronous update scheme, we can verify that
the tool repairs the corrupted models in less than 2 s. This difference between the

Table 1. Percentage values of F, E, R, and A parameters, of the 24 configurations.

Config. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

F 5 25 50 100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 25 50 100 5 10

E 0 0 0 0 5 10 15 20 25 50 75 0 0 0 0 0 0 0 0 5 25 50 25 10

R 0 0 0 0 0 0 0 0 0 0 0 1 5 10 15 0 0 0 0 0 0 0 5 5

A 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 5 10 15 0 0 0 5 5

0.1

1

10

100

1000

10000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Ti
m
e
(s
)

Quartiles Sync
Median Sync

Quartiles Async
Median Async

Fig. 3. Median time in seconds of solved instances for each corruption configuration,
under synchronous and asynchronous update schemes.

344 F. Gouveia et al.

two update schemes relies on the fact that, in the asynchronous update, only one
regulatory function is updated at each time step. Therefore, fewer constraints
must be verified when looking for possible repair operations.

5 Discussion

Currently, the interaction (input/output) with the ModRev tool is based on
ASP predicates. To be able to facilitate the future interoperability with the
qualitative modelling community, we plan to implement an import/export facil-
ity to be integrated into the BioLQM library [11]. Additionally, we are currently
improving the comparison with time-series data through the implementation of
the fully asynchronous update scheme. This will allow to be more permissive on
the generated dynamics.

A Tutorial

The model shown in Fig. 1 is represented by the following listing:

vertex(v1). vertex(v2). vertex(v3).
edge(v1,v2,1). edge(v1,v3,1). edge(v2,v1,1).
edge(v3,v1,1). edge(v3,v2,0).
functionOr(v1,1..1).
functionAnd(v1,1,v2). functionAnd(v1,1,v3).
functionOr(v2,1..2).
functionAnd(v2,1,v1). functionAnd(v2,2,v3).
functionOr(v3,1..1).
functionAnd(v3,1,v1).

Now let us consider that we want to define a steady state observation in
which v1 has value 0, v2 has value 0, and v3 has value 1, as following:

exp(p1).
obs_vlabel(p1,v1,0). obs_vlabel(p1,v2,0). obs_vlabel(p1,v3,1).

Using ModRev tool, giving the model defined above (as a file model.lp)
and the steady state (as a file obsSS.lp), execute the following command:

$./modrev -m model.lp -obs obsSS.lp -ss

Found solution with 1 repair operation.
Inconsistent node v3.

Repair #1:
Flip sign of edge (v1,v3).

This output means that the model in Fig. 1 can be repaired by changing the
interaction type between v1 and v3. If we repair the model and execute the above
command again, the result will be:

ModRev - Model Revision Tool for Boolean Logical Models 345

This network is consistent!

Now let us assume that the user knows that the interaction between v1 and
v3 is correct, and wants to prevent repairs over it. The predicate fixed(v1,v3).
can be used to define that the edge between these nodes can not be changed or
removed. Adding this predicate to the model and running the command above,
we obtain the following result:

Found solution with 2 repair operations.
Inconsistent node v3.

Repair #1:
Change function of v3 to (v1) || (v3)
Add edge (v3,v3) with sign 1.

A different set of repair operations is obtained that does not change the fixed
edge. Now assume that the user wants to prevent any repair over the node v3.
The predicate fixed(v3). can be used to prevent that node to be inconsistent.
However, in this example, if we prevent any change to node v3, considering its
regulatory function, and that v1 has value 0 and v3 has value 1, and we are in the
presence of a steady state, it becomes impossible to repair the network. In this
case, when the model is over-constrained, using the same command as before,
the tool produces the following message:

It is not possible to repair this network.

Consider now that we have, for the same model in Fig. 1, a time-series data
as shown in Table 2. Consider that this experimental observation with three
time-steps (0, 1 and 2) is considering a synchronous update scheme.

Table 2. Synchronous time-series data

Time
0 1 2

N
o
d
e v1 0 1 0

v2 0 0 0
v3 1 0 0

We can represent the time-series data using the following listing:

#const t = 2.
exp(p2).
obs_vlabel(p2,0,v1,0). obs_vlabel(p2,0,v2,0).
obs_vlabel(p2,0,v3,1).
obs_vlabel(p2,1,v1,1). obs_vlabel(p2,1,v2,0).
obs_vlabel(p2,1,v3,0).
obs_vlabel(p2,2,v1,0). obs_vlabel(p2,2,v2,0).
obs_vlabel(p2,2,v3,0).

346 F. Gouveia et al.

Note that we start the file indicating the maximum value of time step with
#const t = 2.

Using ModRev to verify whether the model is consistent, while considering
the above time-series data (as a file obsTS01.lp) under a synchronous update
scheme, execute the following command:

$./modrev -m model.lp -obs obsTS01.lp -up s

This will produce the following result:

Found solution with 5 repair operations.
Inconsistent node v1.

Repair #1:
Change function of v1 to (v2) || (v3)

Inconsistent node v2.
Repair #1:

Change function of v2 to (v1 && v3)
Flip sign of edge (v1,v2).

Repair #2:
Change function of v2 to (v1 && v3)
Flip sign of edge (v3,v2).

Inconsistent node v3.
Repair #1:

Change function of v3 to (v1 && v2)
Add edge (v2,v3) with sign 1.

Repair #2:
Change function of v3 to (v1 && v3)
Add edge (v3,v3) with sign 1.

Note that now we have multiple choices to render the model consistent. To
repair node v2, for example, one can apply the operations in Repair #1 or in
Repair #2. The same applies to repair node v3.

If instead of a time-series data under a synchronous update scheme, we are
under an asynchronous update scheme, the previous command would change
from -up s to -up a. The option -up indicates the update scheme to be consid-
ered, with argument s for synchronous and a for asynchronous.

ModRev also supports incomplete time-series data. Assume that we have
the experimental observation shown in Table 3, where node v3 was not observed,
and a value of v1 was also not observed.

Consider the following representation of an incomplete time-series data:

#const t = 2.
exp(p3).
obs_vlabel(p3,0,v1,0). obs_vlabel(p3,0,v2,1).
obs_vlabel(p3,1,v2,0).
obs_vlabel(p3,2,v1,1). obs_vlabel(p3,2,v2,0).

ModRev - Model Revision Tool for Boolean Logical Models 347

Table 3. Incomplete synchronous time-series data

Time
0 1 2

N
o
d
e v1 0 1

v2 1 0 0
v3

Executing the following command, while considering the above experimental
observation (as a file obsTS02.lp) under synchronous update scheme, produces
the result below.

$./modrev -m model.lp -obs obsTS02.lp -up s

Found solution with 3 repair operations.
Inconsistent node v1.

Repair #1:
Change function of v1 to (v2) || (v3)
Flip sign of edge (v2,v1).

Inconsistent node v2.
Repair #1:

Change function of v2 to (v1 && v3)

ModRev tool also supports confronting a model with multiple experimental
observations at the same time. For example, we could confront the model of
Fig. 1 with the two time-series data above, using the command:

$./modrev -m model.lp -obs obsTS01.lp obsTS02.lp -up s

Note that the directive #const t = 2 must only be defined once.

References

1. Crama, Y., Hammer, P.L.: Boolean Functions: Theory, Algorithms, and Applica-
tions. Cambridge University Press, Cambridge (2011)

2. De Jong, H.: Modeling and simulation of genetic regulatory systems: a literature
review. J. Comput. Biol. 9(1), 67–103 (2002)

3. Gebser, M., et al.: Repair and prediction (under inconsistency) in large biological
networks with answer set programming. In: Lin, F., Sattler, U., Truszczynski, M.
(eds.) Principles of Knowledge Representation and Reasoning: Proceedings of the
Twelfth International Conference, KR 2010. AAAI Press (2010)

4. Gebser, M., Kaminski, R., Kaufmann, B., Schaub, T.: Answer set solving in prac-
tice. In: Synthesis Lectures on Artificial Intelligence and Machine Learning, vol. 6,
no. 3, pp. 1–238 (2012)

5. Gouveia, F., Lynce, I., Monteiro, P.T.: Revision of Boolean models of regulatory
networks using stable state observations. J. Comput. Biol. 27(2), 144–155 (2020)

348 F. Gouveia et al.

6. Gouveia, F., Lynce, I., Monteiro, P.T.: Semi-automatic model revision of Boolean
regulatory networks: confronting time-series observations with (a)synchronous
dynamics. bioRxiv preprint (2020) https://doi.org/10.1101/2020.05.10.086900

7. Karlebach, G., Shamir, R.: Modelling and analysis of gene regulatory networks.
Nat. Rev. Mol. Cell Biol. 9(10), 770 (2008)

8. Lemos, A., Lynce, I., Monteiro, P.T.: Repairing Boolean logical models from time-
series data using Answer Set Programming. Algorithms Molecular Biol. 14(1), 9
(2019)

9. Merhej, E., Schockaert, S., Cock, M.D.: Repairing inconsistent answer set programs
using rules of thumb: a gene regulatory networks case study. Int. J. Approximate
Reason. 83, 243–264 (2017)

10. Mobilia, N., Rocca, A., Chorlton, S., Fanchon, E., Trilling, L.: Logical modeling and
analysis of regulatory genetic networks in a non monotonic framework. In: Ortuño,
F., Rojas, I. (eds.) IWBBIO 2015. LNCS, vol. 9043, pp. 599–612. Springer, Cham
(2015). https://doi.org/10.1007/978-3-319-16483-0 58

11. Naldi, A.: BioLQM: A java toolkit for the manipulation and conversion of logical
qualitative models of biological networks. Front. Physiol. 9 (2018)

12. Sánchez, L., Chaouiya, C., Thieffry, D.: Segmenting the fly embryo: logical analysis
of the role of the segment polarity cross-regulatory module. Int. J. Dev. Biol. 52(8),
1059–1075 (2002)

13. Siegel, A., Radulescu, O., Le Borgne, M., Veber, P., Ouy, J., Lagarrigue, S.: Quali-
tative analysis of the relation between DNA microarray data and behavioral models
of regulation networks. Biosystems 84(2), 153–174 (2006)

14. Thomas, R.: Boolean formalization of genetic control circuits. J. Theor. Biol. 42(3),
563–585 (1973)

https://doi.org/10.1101/2020.05.10.086900
https://doi.org/10.1007/978-3-319-16483-0_58

fnyzer : A Python Package
for the Analysis of Flexible Nets

Jorge Júlvez1(B) and Stephen G. Oliver2,3

1 Department of Computer Science and Systems Engineering, University of Zaragoza,
Zaragoza, Spain

julvez@unizar.es
2 Cambridge Systems Biology Centre, University of Cambridge, Cambridge, UK

sgo24@cam.ac.uk
3 Department of Biochemistry, University of Cambridge, Cambridge, UK

Abstract. This paper introduces fnyzer, a Python package for the anal-
ysis of Flexible Nets (FNs). FNs is a modelling formalism for dynamical
systems that can accommodate a number of uncertain parameters, and
that is particularly well suited to model the different types of networks
arising in systems biology. fnyzer offers different types of analysis, can
handle nonlinear dynamics, and can transform models expressed in Sys-
tems Biology Markup Language (SBML) into FN format.

1 Overview

Flexible Nets (FNs) [5] is a modelling formalism for dynamical systems, inspired
by Petri [10] nets, that can handle uncertain parameters and that offer different
analysis possibilities. FNs have four types of vertices: places, transitions, event
handlers, and intensity handlers. Places are represented as circles and model
state variables, e.g. metabolites. The value of the state variable, e.g. metabolite
concentration, modelled by a place is called marking. Transitions are represented
as rectangles and model processes that can modify the marking, e.g. reactions.

In addition to places and transitions, FNs incorporate: a) event handlers,
represented as dots, that model how the transitions modify the marking; and b)
intensity handlers, also represented as dots, that model how the marking modifies
the speed (or intensity) of the transitions. This way, places and transitions are not
connected directly but only through handlers. This connection can be established
either by means of arcs, which model consumption/production of marking or
intensity, or edges, which model the use of marking or intensity. In order to
account for the relationships “process–marking change” and “marking–speed
change”, both, event and intensity handlers, are associated with sets of equalities
and inequalities.

As an example, the FN in Fig. 1(a) is composed of 3 places A, B, and C
(with initial markings 6, 4, and 0 respectively) that are connected through the
event handler v by means of arcs. The equalities associated with v determine
the stoichiometry of the reaction modelled by the net, namely a=2b establishes
c© Springer Nature Switzerland AG 2020
A. Abate et al. (Eds.): CMSB 2020, LNBI 12314, pp. 349–355, 2020.
https://doi.org/10.1007/978-3-030-60327-4_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-60327-4_19&domain=pdf
http://orcid.org/0000-0002-7093-228X
http://orcid.org/0000-0003-3410-6439
https://doi.org/10.1007/978-3-030-60327-4_19

350 J. Júlvez and S. G. Oliver

6A 4 B

v : a=2b; b=c

C

a
b

c

(a)

t1
v1

A
s3

t3 v3

v2

B

C v4

t4

(b)

Fig. 1. FNs modelling the stoichiometry of reaction R : 2A+B → C (a) and; exchange
reactions with partially known dynamics (b).

that two units of A are consumed per each unit of B that is consumed; and b=c
establishes that one unit of B is consumed per each unit of C that is produced.
This way, the FN models the reaction R : 2A + B → C, and it does not specify
a speed as there is no transition in the net. FNs are defined in f nyzer by Python
dictionaries, e.g. the Python dictionary that defines the FN in Fig. 1(a) is:

stonet = { # FN modelling reaction R: 2A + B -> C

’name’: ’stonet ’,

’solver ’: ’glpk’,

’places ’: {’A’: {’m0’: 6}, ’B’: {’m0’: 4}, ’C’: {’m0’: 0}},

’vhandlers ’: { # Event handler

’v’: [{’a’: (’A’,’v’), ’b’: (’B’,’v’), ’c’: (’v’,’C’)},

’a == 2*b’, ’b == c’]}, # Stoichiometry

’obj’: {’f’: "m[’C ’]", ’sense ’: ’max’},# Objective function

’options ’: {’antype ’: ’un’} # Untimed analysis

}

Thus, in addition to the net structure determined by the keys places and
vhandlers the dictionary contains information about the objective function and
the type of analysis to be carried out by fnyzer.

Figure 2 sketches (in FN fashion) the main tasks performed by fnyzer in
order to analyse an FN. First, a set of mathematical constraints is derived from
the FN definition and the desired type of analysis. This set of constraints, which
represent necessary reachability conditions, together with an objective function
are used to set up a programming problem by using the package Pyomo [4]. This
programming problem is solved by a state-of-the-art solver (current supported
solvers are CPLEX [1], Gurobi [3] and GLPK [9]) and the obtained solution is
saved in a spreadsheet and plotted.

fnyzer : Flexible Nets AnalYZER 351

Process

Solution

Set of

Constraints

Flexible

Net

Objective

Function

Solver

MILP

Plot

Spreadsheet

PyomoProcess

Data

Analysis

Type
Solution

Fig. 2. Main pipeline of fnyzer from the input data to the results.

2 Installation and Use

fnyzer is an open Python package that can be installed with pip the standard
tool for installing Python packages:

$ pip install fnyzer

The online documentation of fnyzer detailing all the available options can be
found at https://fnyzer.readthedocs.io, the source code is available at https://
bitbucket.org/Julvez/fnyzer, and the file nets/fnexamples.py in that reposi-
tory contains a number of FN examples, e.g. the above dictionary stonet is in
that file.

Assuming that the mentioned file fnexamples.py is in your working direc-
tory, the execution of:

$ fnyzer fnexamples.py stonet

produces: a) the spreadsheet stonet.xls with the optimization results and CPU
times; and b) the file stonet.pkl with the pickled FN object (see “Access-
ing saved objects” in the next section). For the proposed objective function,
max m[C] (i.e. maximize the final concentration of C), the value obtained is 3
(the final concentrations obtained for A and B are 0 and 1 respectively).

3 Main Features

Handling Uncertain Parameters. Assume that the initial concentration of
A in Fig. 1(a) is uncertain, but known to be in the interval [4, 7]. This can
be captured in the stonetdictionary above by setting ’A’: {’m0’: None} and
including a keyword modelling such constraint:

https://fnyzer.readthedocs.io
https://bitbucket.org/Julvez/fnyzer
https://bitbucket.org/Julvez/fnyzer

352 J. Júlvez and S. G. Oliver

8A

v1 t1

s1

s1: x=a; y=

{
0.2 if a ≥ 5.0
a otherwise

t2

a

x

y v2

B

(a) (b)

Fig. 3. (a) Guarded FN modelling the activation of reaction R2 : ∅ → B when A goes
below 5.0; (b) Time trajectories of the concentrations of A and B as plotted by fnyzer.

’m0cons ’: ["4 <= m0[’A ’]", "m0[’A ’] <= 7"]

The optimization of the resulting net (execute “fnyzer fnexamples.py
unstonet’) yields 3.5 as the maximum final concentration for C.

Uncertain stoichiometric weights can be incorporated in a similar way.
Assume that the reaction is R : nA+B → C where n is only partially known, e.g.
n ∈ [19, 21]. Such a reaction can be modelled by substituting in the dictionary
above ’a == 2*b’ by two inequalities ’19*b <= a’, ’a <= 21*b’.

The FN in Fig. 1(b) models a small reaction network composed of the reac-
tions reported in Table 1. Each reaction Ri is modelled by the event handler vi
(also the intensity handler s3 in the case of R3) and the net elements connected
to it. The uncertain rates of R1 and R4 are accounted for by the constraints:

’l0cons ’: ["1 <= l0[’t1 ’]", "l0[’t1 ’] <= 4", "l0[’t4 ’] <= 3"]

that are included in the dictionary (see excnet in the file fnexamples.py that
defines the net. The completely unknown rate of R2 is modelled by absence of
transitions connected to v2. The known rate of R3 is modelled by s3 and t3.

Table 1. Reactions modelled by the FN in Fig. 1(b).

Reaction Modelled by Rate

R1 : ∅ → A v1 In the interval [1, 4]

R2 : ∅ → B v2 Unknown

R3 : A + B → C v3 and s3 Equal to the concentration of A

R4 : C → ∅ v4 In the interval [0, 3]

fnyzer : Flexible Nets AnalYZER 353

Handling Nonlinear Dynamics. The rates of the reactions of the FN in
Fig. 1(b) are either constant or depend linearly on the concentration of metabo-
lites. In order to account for the complex and nonlinear dynamics exhibited
by biological systems, FNs can associate piecewise linear functions with their
intensity handlers. Consider the FN in Fig. 3(a) which models the reactions
R1 : A → ∅ and R2 : ∅ → B. The intensity handler s1 has associated: a) a linear
function x = a which determines that the rate of t1 is equal to the concentration

of A; and b) a piecewise linear function y =

{
0.2 if a ≥ 5.0
a otherwise

which establishes

that the rate of R2 is constant and equal to 0.2 if the concentration of A is
greater than or equal to 5.0, and equal to the concentration of A otherwise. In
the Python dictionary that describes the FN, this is defined by means of two
regions (provided by the key ’regs’), and linear functions associated with them:

’regs’: {’off’: ["m[’A’] >= 5"], ’on’: ["m[’A’] <= 5"]},

’shandlers ’: {

’s1’: [{’a’:(’A’,’s1’), ’x’:(’s1’,’t1’), ’y’:(’s1’,’t2’)},

’x == a’,

{’off’: [’y == 0.2’], ’on’: [’y == a’]}]

},

Types of Analysis. FNs can be analysed by fnyzer under 4 interpretations:
untimed [6], transient state [5], Model Predictive Control (MPC) [7], and steady
state [8]. Assume that it is desired to compute the maximum concentration of A
of the FN in Fig. 1(b) in the steady state. This can be achieved by setting the
analysis type to ’antype’: ’st’, and the objective function to:

’obj’: {’f’: "avm[’A’]", ’sense ’: ’max’}

where avm denotes average marking. The value obtained by fnyzer is 3.0. At
this concentration of A, the flux of all the reactions is 3.0. If the minimum
concentration is desired instead, then the ’sense’ of the objective function must
be set to ’min’. The resulting concentration is 1.0. These values were obtained
by executing “fnyzer fnexamples.py excnet”.

As an example of MPC, time trajectories of the concentrations of A and
B can be obtained by setting the analysis type to ’antype’: ’mpc’. In the
trajectories shown in Fig. 3(b), which were generated by “fnyzer fnexamples
.py guardnet”, 30 time intervals of length 0.1 were considered.

Importing SBML Models. In order to facilitate the manipulation of exist-
ing models, fnyzer offers the possibility of translating COBRA [2] models
to FNs. Assume that a Systems Biology Markup Language (SBML) model,
MODEL000.xml, is available in the working directory, then the lines:

>>> from fnyzer import optimize , cobra2fn

>>> import cobra

>>> cobra_model = cobra.io.read_sbml_model (’MODEL000.xml’)

>>> fndic = cobra2fn(cobra_model)

354 J. Júlvez and S. G. Oliver

convert the model into the dictionary fndic that defines the corresponding FN
and that can be extended, modified and analysed.

Accessing Saved Objects. fnyzer saves the analysis results in a file that can
be easily accessed. For instance, the following lines, read the file guardnet.pkl
generated by “fnyzer fnexamples.py guardnet”, save the results in a different
spreadsheet, plot the trajectories, and write the concentration of A over time:

>>> import pickle

>>> datafile = open("guardnet.pkl", ’rb’)

>>> fn = pickle.load(datafile)

>>> datafile.close ()

>>> fn.writexls("new_guardnet.xls")

>>> fn.plotres ()

>>> [net.places[’A’].m for net in fn.lnets]

In the above lines, the object fn provides access to all the values of the variables
in the FN (see the online documentation for details).

Acknowledgments. This work was supported by the Spanish Ministry of Science,
Innovation and Universities [ref. Medrese-RTI2018-098543-B-I00], by the Biotechnology
& Biological Sciences Research Council (UK) grant no. BB/N02348X/1 as part of
the IBiotech Program, and by the Industrial Biotechnology Catalyst (Innovate UK,
BBSRC, EPSRC) to support the translation, development and commercialisation of
innovative Industrial Biotechnology processes.

References

1. IBM ILOG CPLEX Optimizer (2010). https://www.ibm.com/analytics/cplex-
optimizer

2. Ebrahim, A., Lerman, J.A., Palsson, B.O., Hyduke, D.R.: COBRApy: COnstraints-
Based Reconstruction and Analysis for Python. BMC Syst. Biol. 7(1), 74 (2013).
https://doi.org/10.1186/1752-0509-7-74

3. Gurobi Optimization Inc: Gurobi optimizer reference manual (2015). http://www.
gurobi.com

4. Hart, W.E., et al.: Pyomo-Optimization Modeling in Python, vol. 67, 2nd edn.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-58821-6

5. Júlvez, J., Dikicioglu, D., Oliver, S.G.: Handling variability and incompleteness of
biological data by flexible nets: a case study for Wilson disease. NPJ Syst. Biol.
Appl. 4(1), 7 (2018). https://doi.org/10.1038/s41540-017-0044-x

6. Júlvez, J., Oliver, S.G.: Flexible Nets: a modeling formalism for dynamic sys-
tems with uncertain parameters. Discrete Event Dyn. Syst. 29(3), 367–392 (2019).
https://doi.org/10.1007/s10626-019-00287-9

7. Júlvez, J., Oliver, S.G.: Modeling, analyzing and controlling hybrid systems by
Guarded Flexible Nets. Nonlinear Anal. Hybrid Syst. 32, 131–146 (2019). https://
doi.org/10.1016/j.nahs.2018.11.004

8. Júlvez, J., Oliver, S.G.: Steady State Analysis of Flexible Nets. IEEE Trans.
Autom. Control 1 (2019). https://doi.org/10.1109/TAC.2019.2931836

https://www.ibm.com/analytics/cplex-optimizer
https://www.ibm.com/analytics/cplex-optimizer
https://doi.org/10.1186/1752-0509-7-74
http://www.gurobi.com
http://www.gurobi.com
https://doi.org/10.1007/978-3-319-58821-6
https://doi.org/10.1038/s41540-017-0044-x
https://doi.org/10.1007/s10626-019-00287-9
https://doi.org/10.1016/j.nahs.2018.11.004
https://doi.org/10.1016/j.nahs.2018.11.004
https://doi.org/10.1109/TAC.2019.2931836

fnyzer : Flexible Nets AnalYZER 355

9. Makhorin, A.: GLPK (gnu linear programming kit) (2012). http://www.gnu.org/
software/glpk/glpk.html

10. Murata, T.: Petri Nets: properties, analysis and applications. Procs. IEEE 77(4),
541–580 (1989)

http://www.gnu.org/software/glpk/glpk.html
http://www.gnu.org/software/glpk/glpk.html

eBCSgen: A Software Tool
for Biochemical Space Language

Matej Troják(B), David Šafránek, Lukrécia Mertová, and Luboš Brim

Systems Biology Laboratory, Masaryk University, Brno, Czech Republic
xtrojak@fi.muni.cz

Abstract. eBCSgen is a tool for development and analysis of models
written in Biochemical Space Language (BCSL). BCSL is a rule-based
language for biological systems designed to combine compact description
with a specific level of abstraction which makes it accessible to users from
life sciences. Currently, eBCSgen represents the only tool completely sup-
porting BCSL. It has the form of a command line interface which is inte-
grated into Galaxy – a web-based bioinformatics platform automating
data-driven and model-based analysis pipelines.

1 Introduction

Rule-based modelling is a promising approach in systems biology which can
be used to write mechanistic models of complex reaction systems. Compared
to traditional mechanistic or mathematical approaches such as reaction-based
modelling or ordinary differential equations (ODEs), the rule-based approach
provides a compact form of model description that scales well with the size and
complexity of the modelled system.

Key features of rule-based languages, such as structures binding [3,10], reg-
ulatory interactions [17], modularity [16], or spatial aspects [12], combined with
a language-specific level of abstraction, require the development and analysis of
rule-based models to be supported by software tools. Moreover, to appropriately
reflect the needs of the biological domain, it is necessary to enable analysis of
models with incomplete information (e.g., unknown kinetic parameters).

Several existing rule-based languages are provided with well-established soft-
ware support. Kappa [6] is supported by the Kappa platform [3], providing a
model editor, stochastic simulation, several static analysis procedures accom-
panied by graphical visualisation, and a generator of ODE models. BioNetGen
package [10] provides the tool RuleBender [20] for construction, debugging, anal-
ysis (e.g. simulation, parameter scan), and visualisation of models (e.g. influence
graph, contact map). The software environment BioCham [4] with its custom
language [5] supports multiple semantics and allows, for example, checking of
temporal properties expressed in CTL, analysing models with respect to FO-
LTL properties (measuring the robustness, parameter sensitivity), and simulat-
ing models. Some other languages employ embedding to an existing programming
language (e.g. Chromar [12], PySB [14]).
c© Springer Nature Switzerland AG 2020
A. Abate et al. (Eds.): CMSB 2020, LNBI 12314, pp. 356–361, 2020.
https://doi.org/10.1007/978-3-030-60327-4_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-60327-4_20&domain=pdf
https://doi.org/10.1007/978-3-030-60327-4_20

eBCSgen 357

Our experiences with using these languages in direct collaboration with biol-
ogists have shown that in most cases, it is difficult to train users outside com-
puter science to use these languages directly. Although some of the tools are
quite intuitive, they either do not support various useful features or work with a
very detailed level of abstraction that makes models hard to understand, main-
tain, and re-use. To that end, we have introduced Biochemical Space Language
(BCSL) [9,18], a high-level rule-based language that combines several features of
rule-based frameworks in a single formalism, recently extended by quantitative
aspects [19].

In this paper, we present eBCSgen, a tool for the development and analy-
sis of models written in BCSL. The tool is integrated into Galaxy [1], a web-
based platform for data-intensive biomedical research. It provides a convenient
way to use eBCSgen by the target group of users due to the extensive pop-
ularity of Galaxy in biology-oriented community. Our tool provides interactive
model editor, model simulation, analysis of the model with respect to PCTL [11]
properties, useful static analysis methods, and interactive data visualisation. We
demonstrate the tool usability on a case study describing circadian rhythms in
cyanobacteria. eBCSgen is available online1 within Galaxy. It is accompanied
with a short tutorial2.

2 Biochemical Space Language

In this section, we briefly show the primary features of BCSL on several exam-
ples. For more details, we recommend [18] for formal definition and [19] for formal
semantics and analysis methods.

A BCSL model is given by a set of rules, an initial state, and a set of defini-
tions (optional). A rule describes a pattern how agents (structured objects) can
interact. Examples of the rules are provided below. The initial state defines the
number of individual agents in the initial solution of the system. The definitions
assign particular values to parameters. Additionally, there can be fourth part
defining complex aliases (see below). In the following expression

A(act { o f f }) :: cyt + B() :: cyt ⇒ A(act {on}) .B() :: cyt @ k1×[A() :: cyt]×[B() :: cyt]

there is a rule describing the interaction of agent A() with agent B(), creating a
complex A().B(); moreover, the agent A() changes the state of its feature act
from off to on, meaning its activity was turned on. This interaction takes place
inside cyt (cytosol) physical compartment. The rate of the rule is given by a
mass action kinetic law with no restriction on the particular state of the agent
A(), parameterised by a parameter k1.

The example above demonstrated the basic features of the language – the
formation of a complex and a state change. Additional features are for example
complex dissociation (the rule above with opposite direction), agent formation
(the left-hand side of the rule is empty), and degradation (no right-hand side).
1 https://biodivine-vm.fi.muni.cz/galaxy/.
2 https://biodivine.fi.muni.cz/galaxy/eBCSgen/tutorial.

https://biodivine-vm.fi.muni.cz/galaxy/
https://biodivine.fi.muni.cz/galaxy/eBCSgen/tutorial

358 M. Troják et al.

Among these basic constructs, the language offers several syntactic features
which make BCSL models more readable and compact. Nesting allows “zooming”
inside of individual agents to emphasise the particular part of the agent. For
example, the rule

act { o f f } :A() :A() .B() :: c e l l ⇒ act {on} :A() :A() .B() :: c e l l @ k2×[A() .B() :: c e l l]

describes the state change of feature act inside (indicated by single colon sym-
bol) of agent A() as a part of complex A().B() (localised in compartment cell).
Note that agent ffA(acto).B()::cell represents an equivalent form to that on
the left-hand side of the rule without the usage of the nesting operator.

The syntax using nesting is particularly useful in combination with complex
aliases and variables. The complex alias allows defining a short name for a par-
ticular complex (for example, AB = A().B(), AC = A().C(), AD = A().D()).
The variable can substitute multiple agents on a particular position in the rule,
providing a compact way of aggregating repeating patterns. The rule

act{off}:A():? ::cell ⇒ act{on}:A():? ::cell @ k2×[? ::cell]

followed by ? = AB, AC, AD describes the previous rule and two additional rules
compactly – individual complex aliases are substituted on the position declared
by question mark.

The semantics of the model is given by transitive rewriting of the rules start-
ing with the initial state. The rule rewriting is defined by match–replace relation,
which first selects the suitable candidates from the state (they have to satisfy the
left-hand side of the rule) and then they are replaced according to the right-hand
side of the rule. During this process, the rate is evaluated as a function of the
state. Finally, all outgoing rates from the state are normalised to obtain the prob-
ability of the transition. Following the idea of using approximate models with
discrete-time semantics [2], the obtained transition system is a Discrete Time
Markov Chain (DTMC) or a parametric Markov Chain (pMC) [7,13], depend-
ing on whether there are some parameters used in rule rates which do not have
defined value in definitions section of the model.

3 Implementation

The tool eBCSgen is implemented in Python programming language. It is devel-
oped as a command-line tool with a GUI provided by integration into Galaxy [1],
a web-based scientific analysis platform used to analyse large datasets. With its
three primary features – accessibility, reproducibility, and communication – it is
a very convenient and practical alternative to an individual GUI development.

The Galaxy interface of eBCSgen offers interactive model editor, which can be
used to create and edit BCSL models. The interactivity is ensured by automatic
syntax highlighting and real-time code validation. Any errors in the model code
are immediately highlighted.

The probabilistic behaviour of BCSL model can be analysed with respect to
PCTL [11] properties. PCTL is an extension of computation tree logic (CTL)

eBCSgen 359

which allows for probabilistic quantification of described properties. The given
property is checked using Storm model checker [8] after the corresponding tran-
sition system is generated. The tool allows checking whether a given probability
threshold is satisfied or to find the probability of satisfaction for given path for-
mula. In the case of the parameterised model, Storm is used to solve parameter
synthesis. If the formula has defined probability threshold, then Storm com-
putes the partitioning of the given parameter space (defined by the user) to
regions which satisfy (resp. violate) the property. If the threshold is not given, a
probability function of parameters is computed instead, which evaluates to the
probability of satisfaction for particular parameterisation.

In addition to these analysis methods, the tool provides stochastic simulation
and several static analysis techniques to improve the scalability issues of exhaus-
tive computational methods. In particular, we have developed a method to detect
(potentially) redundant rules in the model. The absence of a redundant rule in
the model does not change the behaviour of the model since a more general rule
already exists in the model. This can be useful in large models to detect poten-
tially conflicting rules and to make the model more compact. Another analysis
technique is used to reduce the context of the model to the minimal level in
order to produce a smaller and more abstract model. The resulting model still
preserves some properties while making the analysis of the model computation-
ally simpler. Finally, the static analysis of unreachability can be used to check
whether an agent is unreachable without the need to enumerate the transition
system. This analysis is based on the idea that in order to reach an agent, there
must be a rule which either produces the agent or its more abstract form.

An important part of the presentation of data produced by eBCSgen is visual-
isation. The result for both types of simulation can be visualised in an interactive
chart and the result of parameter synthesis can be displayed in a visualisation
which shows slices of 2D parameter space projections (Fig. 1 left). Moreover, it is
possible to visualise the generated transition system and the result of he sampling
of the probability function of parameters produced by parameter synthesis.

4 Experimental Results

For the purpose of evaluation, we consider the model Miyoshi et al. [15] describ-
ing circadian rhythms in cyanobacteria formed by three proteins controlled by
repeated phosphorylation and dephosphorylation of key protein and complex
formation with other proteins. A simplified version of the model composed of 10
rules in BCSL (in contrast to 27 explicit reactions) has been analysed using a
prototype version of eBCSgen in [19].

In this paper, we consider a full version of the model3 with 9 rules (note the
number of rules is lower, but the rules are more detailed, representing almost
3 The model files and computed analysis results are available here:
https://biodivine.fi.muni.cz/galaxy/eBCSgen/case-studies/cmsb-2020.
The results for simplified analysis are also publicly available:
https://biodivine.fi.muni.cz/galaxy/eBCSgen/case-studies/nfm-2020.

https://biodivine.fi.muni.cz/galaxy/eBCSgen/case-studies/cmsb-2020
https://biodivine.fi.muni.cz/galaxy/eBCSgen/case-studies/nfm-2020

360 M. Troják et al.

700 explicit reactions) using the abstract syntax described above. Analysis of
this model provided more detailed results compared to the simplified model.
Similarly to the case study in [19], we analysed phosphorylation and dephospho-
rylation phases separately using PCTL parameter synthesis. The more detailed
analyses showed that the oscillatory behaviour is dependent on particular val-
ues of parameters responsible for the dephosphorylation phase (Fig. 1 left). The
original results showed much higher robustness with respect to parameter values
(Fig. 1 right).

Fig. 1. Visualisation of the partitioning of the parameter space as a result of parameter
synthesis for Miyoshi et al. model. The results are computed for the dephosphorylation
phase with respect to the property of reaching a fully dephosphorylated target protein
complex with a probability higher than 0.99. The left figure shows original results
from [19] for a simplified version of the model. The right figure shows results for the
full version of the model.

5 Conclusion

We presented the tool eBCSgen with its primary features and capabilities. The
tool serves as a base for development and analysis of models written in BCSL. It
focuses on user-accessibility of its features. Since the most of the computational
analysis is performed by external tools (e.g. PCTL property checking in Storm,
simulation in Python package scipy), we focused on the language description,
tool capabilities, visualisation as important factors for the user experience, and
briefly explained experimental results from the biological domain. Regarding
the performance of eBCSgen, the present bottleneck is the generation of explicit
transition system. Our future steps are to focus on the scalability issues trying to
completely avoid this step using symbolic approaches or on-the-fly techniques.

eBCSgen 361

References

1. Afgan, E., et al.: The Galaxy platform for accessible, reproducible and collaborative
biomedical analyses: 2018 update. Nucleic Acids Res. 46(W1), W537–W544 (2018)

2. Barbuti, R., et al.: An intermediate language for the stochastic simulation of bio-
logical systems. TCS 410(33–34), 3085–3109 (2009)

3. Boutillier, P., et al.: The Kappa platform for rule-based modeling. Bioinformatics
34(13), i583–i592 (2018)

4. Calzone, L., et al.: BIOCHAM: an environment for modeling biological systems
and formalizing experimental knowledge. Bioinformatics 22(14), 1805–1807 (2006)

5. Chabrier-Rivier, N., Fages, F., Soliman, S.: The biochemical abstract machine
BIOCHAM. In: Danos, V., Schachter, V. (eds.) CMSB 2004. LNCS, vol. 3082, pp.
172–191. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-25974-
9 14

6. Danos, V., Laneve, C.: Formal molecular biology. Theor. Comput. Sci. 325, 69–110
(2004)

7. Daws, C.: Symbolic and parametric model checking of discrete-time Markov chains.
In: Liu, Z., Araki, K. (eds.) ICTAC 2004. LNCS, vol. 3407, pp. 280–294. Springer,
Heidelberg (2005). https://doi.org/10.1007/978-3-540-31862-0 21

8. Dehnert, C., Junges, S., Katoen, J.P., Volk, M.: A STORM is coming: a mod-
ern probabilistic model checker. In: Majumdar, R., Kunčak, V. (eds.) CAV 2017.
LNCS, vol. 10427, pp. 592–600. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-63390-9 31

9. Děd, T., et al.: Formal biochemical space with semantics in Kappa and BNGL.
Electr. Notes Theor. Comput. Sci. 326, 27–49 (2016)

10. Harris, L.A., et al.: BioNetGen 2.2: advances in rule-based modeling. Bioinformat-
ics 32(21), 3366–3368 (2016)

11. Hasson, H., Jonsson, B.: A logic for reasoning about time and probability. FAOC
6, 512–535 (1994)

12. Honorato-Zimmer, R., et al.: Chromar, a language of parameterised agents. Theor.
Comput. Sci. 765, 97–119 (2019)

13. Lanotte, R., et al.: Parametric probabilistic transition systems for system design
and analysis. FAOC 19(1), 93–109 (2007)

14. Lopez, C.F., et al.: Programming biological models in Python using PySB. Mol.
Syst. Biol. 9(1), 646 (2013)

15. Miyoshi, F., et al.: A mathematical model for the Kai-protein-based chemical oscil-
lator and clock gene expression rhythms in Cyanobacteria. J. Biol. Rhythms 22(1),
69–80 (2007)

16. Pedersen, M., et al.: A high-level language for rule-based modelling. PloS One
10(6), e0114296 (2015)

17. Romers, J.C., Krantz, M.: rxncon 2.0: a language for executable molecular systems
biology. bioRxiv (2017)

18. Troják, M., et al.: Executable biochemical space for specification and analysis of
biochemical systems. arXiv 2002.00731 (2020)

19. Troják, M., et al.: Parameter synthesis and robustness analysis of rule-based mod-
els. In: NASA Formal Methods Symposium (2020, published). https://doi.org/10.
1007/978-3-030-55754-6 3

20. Xu, W., et al.: RuleBender: a visual interface for rule-based modeling. Bioinfor-
matics 27(12), 1721–1722 (2011)

https://doi.org/10.1007/978-3-540-25974-9_14
https://doi.org/10.1007/978-3-540-25974-9_14
https://doi.org/10.1007/978-3-540-31862-0_21
https://doi.org/10.1007/978-3-319-63390-9_31
https://doi.org/10.1007/978-3-319-63390-9_31
https://doi.org/10.1007/978-3-030-55754-6_3
https://doi.org/10.1007/978-3-030-55754-6_3

What is a Cell Cycle Checkpoint? The
TotemBioNet Answer

Déborah Boyenval(B), Gilles Bernot, Hélène Collavizza, and Jean-Paul Comet

University Côte d’Azur, I3S Laboratory, UMR CNRS 7271, CS 40121,
06903 Sophia Antipolis Cedex, France

{deborah.boyenval,gilles.bernot,helene.collavizza,
jean-paul.comet}@univ-cotedazur.fr

Abstract. TotemBioNet is a new software platform to assist the design
of qualitative regulatory network models by combining “genetically mod-
ified Hoare logic”, temporal logic model checking and optimized enumer-
ation techniques. TotemBioNet is particularly efficient to manage param-
eter identification, the most critical step of formal modelling. It is also
remarkably flexible and efficient to check properties in order to explore
biological assumptions. To illustrate this efficacy, we address the classical
example of the cell cycle, where the passage from one phase to the next
one, called checkpoint, is crucial but is usually a rather fuzzy informal
concept. The cyclic behaviour of the cell cycle is specified by temporal
logic and the order of individual events inside each phase is explored
thanks to quantifiers introduced in Hoare logic. This way, TotemBioNet
rapidly suggests a sensible formalization of the notion of checkpoint.

Keywords: Regulatory network · Discrete modelling · Parameter
identification · Hoare logic · Temporal logic · Model-checking · Cell
cycle

1 Formal Methods for Thomas Regulatory Networks

In the 70’s, qualitative models based on discrete mathematics [10,17] have proved
useful to understand the main causalities that govern observed phenotypes
[18,19], and the multivalued framework of René Thomas and Houssine Snoussi
has become a classic for biological regulatory networks. It gained new power
with the introduction of formal methods in the early 2000s [4], concomitantly
with [5] for signalling networks.

A qualitative model is an influence graph where the important actors for the
biological question, as well as their interactions, have been inventoried on the
basis of biological knowledge. Formally, the graph covers a huge set of different
discrete models because the strengths of combined activations and inhibitions are
unknown. They are encoded by a set of discrete parameters [15], which we need
to identify: Any biological knowledge reduces the number of possible parame-
ter values, by rejecting the parameterizations that do not comply. Parameter
identification is the most difficult part of the modelling activity.
c© Springer Nature Switzerland AG 2020
A. Abate et al. (Eds.): CMSB 2020, LNBI 12314, pp. 362–372, 2020.
https://doi.org/10.1007/978-3-030-60327-4_21

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-60327-4_21&domain=pdf
https://doi.org/10.1007/978-3-030-60327-4_21

What is a Cell Cycle Checkpoint? The TotemBioNet Answer 363

Simulations rapidly reach their limit, because of the non-determinism of tra-
jectories and of a high number of parameterizations: A finite number of sim-
ulations cannot establish general properties. Formal methods solve this diffi-
culty. There are software platforms based on Thomas’ semantics: some study
the invariants of a given model using Petri net tools [12] and some others per-
form model checking algorithms inspired from program verification techniques
[1,11]. Temporal logics allow to check very general properties, including those
universally quantified on traces, and SMBioNet [4], based on CTL, has made
possible to exhaustively treat sets of models (sets of parameterizations) by opti-
mized enumeration algorithms. Nevertheless, to find the exhaustive set of possi-
ble parameterizations, enumeration asks for exponentially growing computation
time w.r.t. the size and connectivity of the regulatory network.

On another note, biological experiments directly request a set of traces in the
model, and the “genetically modified Hoare logic” [3] is much more effective than
temporal logic for this task. Instead of commonly enumerating parameterizations
as in many approaches [14,16] and [9], it produces a set of constraints on the
parameters that characterizes those in which these traces exist. The program
Hoare-fol [13] efficiently computes these constraints.

TotemBioNet stands out by combining all these approaches in such a way
that modellers converge rapidly toward the exhaustive set of parameterizations
satisfying all formalized biological knowledge.

Finding the set of parameterizations compatible with current knowledge does
not end the modelling activity. It remains to use the model to study the bio-
logical question. . . which, most of the time, is not yet formalized. Each possible
explanation constitutes an hypothesis, and formalizing the latter is necessary
to, at least, check its consistency : if the set of compatible parameterizations is
empty then the hypothesis is inconsistent. TotemBioNet’s ability to repeatedly
question the model about its diverse properties, and to obtain quick answers,
allows for a fast convergence towards a formalisation of the biological question.

2 The Platform TotemBioNet

TotemBioNet supports two variants of temporal logics: CTL and a dedicated
fair-path CTL, needed for certain reachability properties in the Thomas frame-
work. Indeed, the quantifiers A and E in CTL often induce artifactual results
because they consider unfair paths that cross an infinite number of times a given
state but never fire a possible transition from this state. So, universally quanti-
fied CTL formulas to study, for instance, attraction basins become unfairly false.
Fair-path CTL quantifiers A and E simply ignore unfair paths [13]. TotemBioNet
automatically translates fair-path CTL formulas into (more complex) CTL for-
mulas, allowing it to benefit from usual CTL model checking algorithms.

Besides, TotemBioNet Hoare triples contain: a pre-condition describing the
possible initial states of a given biological experiment, a path, and an observed
post-condition. The path abstracts the curves obtained from experimental obser-
vations: according to thresholds setting, a threshold crossing of a variable v along

364 D. Boyenval et al.

the curve is written v+ if v increases, or v− if v decreases. When experimental
conditions are not precise enough to know which variable passes its threshold
first, existential quantifiers can express this uncertainty: ∃(v1+; v2− , v2−; v1+)
means that v1 has increased and v2 has decreased, but in an unknown order. Also,
universal quantifiers permit to abstract together a collection of similar experi-
mental observations. Genetically modified Hoare logic extends classical Hoare
logic by formalising under which conditions on the parameters each v+ or v− of
the path can occur. Then, the usual weakest pre-condition is the constraint on
the parameters that makes the abstract path possible [3].

The inputs of TotemBioNet are: an influence graph, any knowledge on the
parameter values, and properties on the dynamics of the system expressed using
CTL, fair-path CTL, or Hoare triples. TotemBioNet integrates Hoare-fol [8] and
an extended version of SMBioNet [4]. First, Hoare-fol computes and simplifies
the weakest pre-condition wp w.r.t. genetically modified Hoare logic [3]. Then,
the enumeration process of TotemBioNet is based on that of SMBioNet, which
exploits self-influences and the Snoussi constraint (more resources cannot reduce
the expression level) to greatly reduce the enumeration complexity.

TotemBioNet enumerates all parameterizations that satisfy wp: i) if wp ≡
False, the enumeration process stops, ii) if wp is a conjunction of atoms of the
form (Kvi

≤ si) or ¬(Kvi
≤ si) where Kvi

is a parameter and si a threshold
for variable vi, then the enumeration domains of Kvi

are reduced, and iii) if wp
contains disjunctions, the validity of wp is checked on the fly. This considerably
reduces the search space of all possible parameterizations and TotemBioNet gen-
erates, for each remaining parameterization, one input file for the model checker
NuSMV [6]. This file contains the conjunction of temporal formulas and an
automaton which encodes the state transition graph for the current parame-
terization. TotemBioNet also offers environment variables used to freeze some
variables according to an experimental environment (by the way, it also reduces
the number of parameters).

TotemBioNet, see https://gitlab.com/totembionet/totembionet, comes with
many examples that illustrate the combination of CTL properties, fair-path CTL
properties and Hoare triples. TotemBioNet allows one to describe the influence
graph with yEd graph editor (https://www.yworks.com/products/yed). A typical
session consists in building the influence graph using yEd, in automatically gen-
erating the corresponding text file and then in adding temporal properties and
Hoare triples in concrete syntax. TotemBioNet generates an output file (possibly
in csv format) which contains all parameterizations, labeled with “OK” when
the dynamic properties are verified, and if not with all the properties which are
not satisfied.

The global TotemBioNet process is illustrated in Fig. 1.

3 TotemBioNet Use Case: A Simplified Cell Cycle Model

The cell cycle is a series of events leading to correct duplication of DNA of a cell
(synthesis or S phase) and its division into two genetically identical daughter cells

https://gitlab.com/totembionet/totembionet
https://www.yworks.com/products/yed

What is a Cell Cycle Checkpoint? The TotemBioNet Answer 365

Fig. 1. TotemBioNet’ processing flow

(mitosis or M phase). Gap phases G1 and G2 lie respectively before S and M.
Progression through the cell cycle is driven by Cyclins/Cyclin-dependant kinases
complexes (Cyc/Cdks) and their inhibitors. A 5-variables cell-cycle model has
been designed in [2] where the variables sk, a and b are the main Cyc/Cdks
involved in the mammalian cell cycle and en and ep their inhibitors. The inter-
action graph and its variables are detailed in Appendix A. Moreover, the suc-
cession of phases, G1, S, G2 and M, has been described in [2] via the Hoare

triple Hinit :
{

G1init

}
sk+; sk+; en−;

a+; sk−; sk−; b+;

a−; ep+;

en+; b−; ep−;

{
G1init

}
where the pre- and post-condition

G1init specifies the state sk = 0, ep = 0, a = 0, b = 0, en = 1, G1 is the blue
subsequence, S the red one, G2 the dark gray one and M the green one.

Our main question is: Is this small model powerful enough to represent
checkpoints? First, notice that the model assumes constant infusion of growth
factors and consequently its dynamics must always be cyclic. The ability of
TotemBioNet to mix several formal approaches allows us to combine Hinit

and this property specified using fair-path CTL: ϕcyclic ≡ G1init ⇒
AX(AF (G1init)) (where AXAF means a strict future). TotemBioNet results
are synthetized in the first line of Table 1: from the 100800 parameterizations
satisfying Snoussi constraint, 676 of them satisfy the weakest precondition cal-
culated from Hinit. Then 609 out of the 676 also validate ϕcyclic. Notice the
great efficiency of Hoare Logic: The use of the equivalent CTL formula ϕinit (see
Appendix B) instead of the Hinit Hoare triple in the first experiment of the table
would drastically increase the computation time: from 6.1 s to 18.5min for the
same result.

366 D. Boyenval et al.

Another question to understand checkpoint is the order of transitions inside
phases. [2] suggests that some transitions inside a phase may admit permuta-
tions: all transitions except the first one for G1 and S, all transitions for G2 and
none for M. Hforall encodes the 12 possible paths owing to the Forall quantifier,

Hforall :
{

G1init

}
sk+; Forall((sk+; en−), (en−; sk+));

a+; Forall((sk−; sk−; b+), (sk−; b+; sk−), (b+; sk−; sk−));

Forall((ep+; a−), (a−; ep+));

en+; b−; ep−;

{
G1init

}

and surprisingly TotemBioNet returns the same 609 parameterizations!

Table 1. Formal properties of a simplified 5-variables cell cycle model: Hm is the set
of models satisfying Hoare and Snoussi constraints. Sm is the set of selected models
after model-checking of a temporal logic formula on each element of Hm. (Performed
on an Intel Core i7-8650U processor, 1.90 GHz, 8 cores.)

Exp Hoare triple |Hm| Temporal logic formula |Sm| Computation time (s)

1 Hinit 676 ϕcyclic 609 6.1
2 Hforall 676 ϕcyclic 609 6.1
3 Hperm 0 ϕcyclic 0 0.24
4 HpermG1 260 ϕcyclic 240 2.4
5 HpermG1 260 ϕcyclic ∧ ϕG2/M ∧ ϕG1/S 28 2.9

This suggests that a phase could be simply a bag of transitions that can be
performed in arbitrary order. We check this idea with the Hoare triple Hperm

(Appendix C) and TotemBioNet returns a unsatisfiable weakest precondition. So,
let us check individually for G1, S and M. HpermG1 asks for all permutations in
G1, whereas S, G2 and M are the same as in Hforall (Appendix D): TotemBioNet
returns 240 parameterizations. For S and for M no parameterization is selected.
We conclude that the order of transitions suggested in [2] is constrained within
S and M but not within G1 and G2.

Now, having a better idea of what goes on within a phase, it appears that a
checkpoint between two phases, p1 and p2 should ensure that none of the possible
first transitions of p2 can be performed before one of the transitions of p1. The
most biologically important and the most studied checkpoints are G2/M and
G1/S. They can be formalized using Hoare logic but the CTL formula is simpler
if we remark that the first state of a phase is unique, whatever the order of the

previous phases: ϕG2/M ≡

⎛
⎜⎜⎜⎜⎜⎜⎝

sk = 0

∧ ep = 0

∧ a = 1

∧ b = 1

∧ en = 0

⎞
⎟⎟⎟⎟⎟⎟⎠

⇒ ¬

⎛
⎜⎜⎜⎜⎝

EX(en = 1 ∧ EX(a = 0 ∧ EX(ep = 1)))

∨ EX(en = 1 ∧ EX(ep = 1 ∧ EX(a = 0)))

∨ EX(a = 0 ∧ EX(en = 1 ∧ EX(ep = 1)))

∨ EX(ep = 1 ∧ EX(en = 1 ∧ EX(a = 0)))

⎞
⎟⎟⎟⎟⎠

.

What is a Cell Cycle Checkpoint? The TotemBioNet Answer 367

Similarly ϕG1/S is given in Appendix E, and TotemBioNet returns 28 parameter-
izations satisfying ϕG2/M and ϕG1/S in addition to HpermG1 and ϕcyclic. Thus,
checkpoints can be captured in a purely discrete framework. The biologically less
studied checkpoints, S/G2 and M/G1, have been also formalized (Appendix F).
No parameterisation is selected suggesting that the current model is not detailed
enough to satisfy S/G2 or M/G1 checkpoint, as defined.

4 Conclusion

TotemBioNet combines in an optimized manner Hoare logic and (different vari-
ants of) temporal logic. Two of our current works are to facilitate an incremen-
tal analysis of models, as well as to provide a more user-friendly interface with
jupyter notebook as BioCHAM [7] and CoLoMoTo [11] do. TotemBioNet aims
at offering a growing palette of formal methods to the modellers, so that each
biological knowledge can be formalized according to the most suited one. Thanks
to the versatility and efficacy of TotemBioNet, the general properties of qualita-
tive Thomas models can be rapidly checked during their design. We showed on
the small cell cycle model initially specified with a Hoare triple in [2] how the
main properties of the phases can be explored, leading to a proper formalization
of the notions of phase and checkpoint.

Acknowledgements. We are grateful to all contributors/users: M. Folschette (Hoare-
fol), S. Ndèye and E. Gallésio (antlr4 parser and installation scripts), L. Gibart (beta
tests on big models). We are also indebted to A. Richard for SMBioNet and the con-
structive proof of translation from fair-path CTL to CTL. This work also benefited
from fruitful collaborations and discussions with J. Behaegel and F. Delaunay.

368 D. Boyenval et al.

Appendix A: Static Description of the Cell Cycle Model

See Fig. 2.

Fig. 2. A 5-variable interaction graph of the mammalian cell cycle, from [2].
Progression through the cell cycle is driven by 2 types of genetic entities: complexes of
Cyclins/Cyclin-dependant kinases (Cyc/Cdks) and their inhibitors known as ennemies.
The 5 variables of the graph represent these entities, in orange. sk is the abstraction
of both complexes CycE/Cdk2 and CycH/Cdk7, known as starting kinases. a and
b respectively represent CycA/Cdk1 and CycB/Cdk1. en is the abstraction of the
main Cyc/Cdks ennemies: the anaphase-promoting complex APC/Cdh1, cyclin-kinase
inhibitors p21 and p27, and Wee1 protein. The variable ep is the anaphase-promoting
complex APC/Cdc20, which is a Cyc/Cdks ennemy involved in mitosis exit and so-
called exit protein. Regulations between variables are described in [2]. This interaction
graph was designed using the tool yEd (www.yworks.com/products/yed). (Color figure
online)

Appendix B: Equivalent Specification of Hinit using a Fair
CTL Formula

In the first experiment, the cell cycle is specified by the Hinit Hoare triple. Here,
the cell cycle is specified by the ϕinit CTL formula depicting the Hinit path.

ϕinit ≡
⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(sk = 0 ∧ ep = 0 ∧ a = 0 ∧ b = 0 ∧ en = 1)− > EX(sk = 1 ∧ ep = 0 ∧ a = 0 ∧ b = 0 ∧ en = 1)

∧(EX(sk = 2 ∧ ep = 0 ∧ a = 0 ∧ b = 0 ∧ en = 1) ∧ (EX(sk = 2 ∧ ep = 0 ∧ a = 0 ∧ b = 0 ∧ en = 0)

∧(EX(sk = 2 ∧ ep = 0 ∧ a = 1 ∧ b = 0 ∧ en = 0) ∧ (EX(sk = 1 ∧ ep = 0 ∧ a = 1 ∧ b = 0 ∧ en = 0)

∧(EX(sk = 0 ∧ ep = 0 ∧ a = 1 ∧ b = 0 ∧ en = 0) ∧ (EX(sk = 0 ∧ ep = 0 ∧ a = 1 ∧ b = 1 ∧ en = 0)

∧(EX(sk = 0 ∧ ep = 0 ∧ a = 0 ∧ b = 1 ∧ en = 0) ∧ (EX(sk = 0 ∧ ep = 1 ∧ a = 0 ∧ b = 1 ∧ en = 0)

∧(EX(sk = 0 ∧ ep = 1 ∧ a = 0 ∧ b = 1 ∧ en = 1) ∧ (EX(sk = 0 ∧ ep = 1 ∧ a = 0 ∧ b = 0 ∧ en = 1)

∧(EX(sk = 0 ∧ ep = 0 ∧ a = 0 ∧ b = 0 ∧ en = 1))))))))))))

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

https://www.yworks.com/products/yed

What is a Cell Cycle Checkpoint? The TotemBioNet Answer 369

Appendix C: Specification of Hperm

This Hoare triple encodes a cell cycle in which phases are described by all per-
mutations of their respective transitions. G1 is specified in blue, S in red, G2 in
grey and M in green.

Hperm :
{

G1init

}

Forall((sk+; sk+; en−), (sk+; en−; sk+), (en−; sk+; sk+));

Forall((a+; sk−; sk−; b+), (a+; sk−; b+; sk−),

(a+; b+; sk−; sk−), (sk−; a+; sk−; b+),

(sk−; a+; b+; sk−), (b+; a+; sk−; sk−),

(sk−; sk−; a+; b+), (sk−; b+; a+; sk−),

(b+; sk−; a+; sk−), (sk−; sk−; b+; a+),

(sk−; b+; sk−; a+), (b+; sk−; sk−; a+))

Forall[(ep+; a−), (a−; ep+)];

Forall((en+; b−; ep−), (en+; ep−; b−),

(ep−; b−; en+), (ep−; en+; b−),

(b−; en+; ep−), (b−; ep−; en+));

{
G1init

}

Appendix D: Specification of HpermG1

This Hoare triple describes the cell cycle in which G1 in addition to G2 allows
all permutations of its transitions.

HpermG1 :
{

G1init

}

Forall((sk+; sk+; en−),

(sk+; en−; sk+), (en−; sk+; sk+));

a+;

Forall((sk−; sk−; b+), (sk−; b+; sk−),

(b+; sk−; sk−));

Forall((ep+; a−), (a−; ep+));

en+; b−; ep−;

{
G1init

}

Appendix E: Specification of ϕG1/S with CTL

The premise G1init of the formula ϕG1/S is the precondition of the Hoare triple
Hinit defined in [2]. It defines the initial state of G1. The first transition of S, a+,
must not occur before any G1 transition. Thus 9 paths must not exist starting
from the first G1 state encoded in premise.

The notation EX(a = 1∧EX(sk = 1∧EX(en = 0∧EX(sk = 2)) is a CTL
version of the Hoare path: a+; sk+; en−; sk+.

ϕG1/S ≡
(

G1init

)
⇒ ¬

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

EX(a=1 ∧ EX(sk = 1 ∧ EX(en = 0 ∧ EX(sk = 2))))

∨ EX(sk = 1 ∧ EX(a=1 ∧ EX(en = 0 ∧ EX(sk = 2))))

∨ EX(sk = 1 ∧ EX(en = 0 ∧ EX(a=1 ∧ EX(sk = 2))))

∨ EX(a=1 ∧ EX(en = 0 ∧ EX(sk = 1 ∧ EX(sk = 2))))

∨ EX(sk = 1 ∧ EX(a=1 ∧ EX(sk = 1 ∧ EX(en = 0))))

∨ EX(sk = 1 ∧ EX(sk = 2 ∧ EX(a=1 ∧ EX(en = 0))))

∨ EX(a=1 ∧ EX(sk = 1 ∧ EX(sk = 2 ∧ EX(en = 0))))

∨ EX(en = 0 ∧ EX(a=1 ∧ EX(sk = 1 ∧ EX(sk = 2))))

∨ EX(en = 0 ∧ EX(sk = 1 ∧ EX(a=1 ∧ EX(sk = 2))))

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

370 D. Boyenval et al.

Appendix F: Specification and Checking of S/G2
and M/G1 Checkpoints with CTL

The premise of ϕS/G2 formula (see below) encodes the first state of S. a− and
ep+ are the 2 possible first events of G2 according to HpermG1. They must not
occur before completion of S events. Thus 21 paths must not exist starting from
the state in premise. ϕS/G2 is then defined as:

⎛
⎜⎜⎜⎜⎜⎜⎝

sk=2

∧ ep=0

∧ a=0

∧ b=0

∧ en=0

⎞
⎟⎟⎟⎟⎟⎟⎠

⇒ ¬

⎛
⎜⎜⎜⎝

EX(a=1 ∧ EX(sk=1 ∧ EX(sk=0 ∧ EX(a=0 ∧ EX(b=1 ∧ EX(ep=1))))))

∨ EX(a=1 ∧ EX(sk=1 ∧ EX(a=0 ∧ EX(sk=0 ∧ EX(b=1 ∧ EX(ep=1))))))

∨ EX(a=1 ∧ EX(a=0 ∧ EX(sk=1 ∧ EX(sk=0 ∧ EX(b=1 ∧ EX(ep=1))))))

∨ EX(a=1 ∧ EX(b=1 ∧ EX(sk=1 ∧ EX(a=0 ∧ EX(sk=0 ∧ EX(ep=1))))))

∨ EX(a=1 ∧ EX(b=1 ∧ EX(a=0 ∧ EX(sk=1 ∧ EX(sk=0 ∧ EX(ep=1))))))

∨ EX(a=1 ∧ EX(a=0 ∧ EX(b=1 ∧ EX(sk=1 ∧ EX(sk=0 ∧ EX(ep=1))))))

∨ EX(a=1 ∧ EX(sk=1 ∧ EX(b=1 ∧ EX(a=0 ∧ EX(sk=0 ∧ EX(ep=1))))))

∨ EX(a=1 ∧ EX(sk=1 ∧ EX(a=0 ∧ EX(b=1 ∧ EX(sk=0 ∧ EX(ep=1))))))

∨ EX(a=1 ∧ EX(a=0 ∧ EX(sk=1 ∧ EX(b=1 ∧ EX(sk=0 ∧ EX(ep=1))))))

∨ EX(a=1 ∧ EX(sk=1 ∧ EX(sk=0 ∧ EX(ep=1 ∧ EX(b=1 ∧ EX(a=0))))))

∨ EX(a=1 ∧ EX(sk=1 ∧ EX(ep=1 ∧ EX(sk=0 ∧ EX(b=1 ∧ EX(a=0))))))

∨ EX(a=1 ∧ EX(ep=1 ∧ EX(sk=1 ∧ EX(sk=0 ∧ EX(b=1 ∧ EX(a=0))))))

∨ EX(ep=1 ∧ EX(a=1 ∧ EX(sk=1 ∧ EX(sk=0 ∧ EX(b=1 ∧ EX(a=0))))))

∨ EX(a=1 ∧ EX(b=1 ∧ EX(sk=1 ∧ EX(ep=1 ∧ EX(sk=0 ∧ EX(a=0))))))

∨ EX(a=1 ∧ EX(b=1 ∧ EX(ep=1 ∧ EX(sk=1 ∧ EX(sk=0 ∧ EX(a=0))))))

∨ EX(a=1 ∧ EX(ep=1 ∧ EX(b=1 ∧ EX(sk=1 ∧ EX(sk=0 ∧ EX(a=0))))))

∨ EX(ep=1 ∧ EX(a=1 ∧ EX(b=1 ∧ EX(sk=1 ∧ EX(sk=0 ∧ EX(a=0))))))

∨ EX(a=1 ∧ EX(sk=1 ∧ EX(b=1 ∧ EX(ep=1 ∧ EX(sk=0 ∧ EX(a=0))))))

∨ EX(a=1 ∧ EX(sk=1 ∧ EX(ep=1 ∧ EX(b=1 ∧ EX(sk=0 ∧ EX(a=0))))))

∨ EX(a=1 ∧ EX(ep=1 ∧ EX(sk=1 ∧ EX(b=1 ∧ EX(sk=0 ∧ EX(a=0))))))

∨ EX(ep=1 ∧ EX(a=1 ∧ EX(sk=1 ∧ EX(b=1 ∧ EX(sk=0 ∧ EX(a=0))))))

⎞
⎟⎟⎟⎠

Similarly, the premise of ϕM/G1 formula (see below) encodes the first state
of M. sk+ and en− are the 2 possible first events of G1 according to HpermG1.
Thus the 8 paths enabling these events to occur before completion of M events
must not exist, starting from the state in premise. ϕM/G1 is then defined as:

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

sk=0

∧ ep=1

∧ a=0

∧ b=1

∧ en=0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

⇒ ¬

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

EX(en=1 ∧ EX(b=0 ∧ EX(sk=1 ∧ EX(ep=0 ∧ EX(sk=2 ∧ EX(en=0))))))

∨ EX(en=1 ∧ EX(sk=1 ∧ EX(b=0 ∧ EX(ep=0 ∧ EX(sk=2 ∧ EX(en=0))))))

∨ EX(sk=1 ∧ EX(en=1 ∧ EX(b=0 ∧ EX(ep=0 ∧ EX(sk=2 ∧ EX(en=0))))))

∨ EX(en=1 ∧ EX(b=0 ∧ EX(sk=1 ∧ EX(ep=0 ∧ EX(en=0 ∧ EX(sk=2))))))

∨ EX(en=1 ∧ EX(sk=1 ∧ EX(b=0 ∧ EX(ep=0 ∧ EX(en=0 ∧ EX(sk=2))))))

∨ EX(sk=1 ∧ EX(en=1 ∧ EX(b=0 ∧ EX(ep=0 ∧ EX(en=0 ∧ EX(sk=2))))))

∨ EX(en=1 ∧ EX(b=0 ∧ EX(en=0 ∧ EX(ep=0 ∧ EX(sk=1 ∧ EX(sk=2))))))

∨ EX(en=1 ∧ EX(en=0 ∧ EX(b=0 ∧ EX(ep=0 ∧ EX(sk=1 ∧ EX(sk=2))))))

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

TotemBioNet extracts no model (Table 2) for each of these checkpoints, from
which we conclude that the model is not precise enough to capture them.

What is a Cell Cycle Checkpoint? The TotemBioNet Answer 371

Table 2. Verification of S/G2 and M/G1 checkpoints. Hm is the set of models
satisfying Hoare and Snoussi constraints. Sm is the set of selected models after model-
checking of a temporal logic formula on each element of Hm.

Exp Hoare triple |Hm| Temporal logic
formula

|Sm| Computation
time (s)

6 HpermG1 260 ϕcyclic ∧ ϕG2/M ∧
ϕG1/S ∧ ϕS/G2

0 3.5

7 HpermG1 260 ϕcyclic ∧ ϕG2/M ∧
ϕG1/S ∧ ϕM/G1

0 3.2

References

1. Batt, G., Bergamini, D., de Jong, H., Garavel, H., Mateescu, R.: Model checking
genetic regulatory networks using GNA and CADP. In: Graf, S., Mounier, L. (eds.)
SPIN 2004. LNCS, vol. 2989, pp. 158–163. Springer, Heidelberg (2004). https://
doi.org/10.1007/978-3-540-24732-6_12

2. Behaegel, J., Comet, J.P., Bernot, G., Cornillon, E., Delaunay, F.: A hybrid model
of cell cycle in mammals. J. Bioinform. Comput. Biol. 14(1), 1640001 (2016)

3. Bernot, G., Comet, J.P., Khalis, Z., Richard, A., Roux, O.F.: A genetically modified
Hoare logic. Theor. Comput. Sci. 765, 145–157 (2019)

4. Bernot, G., Comet, J.P., Richard, A., Guespin, J.: Application of formal methods to
biological regulatory networks: extending Thomas’ asynchronous logical approach
with temporal logic. J. Theor. Biol. 229(3), 339–347 (2004)

5. Chabrier, N., Fages, F.: Symbolic model checking of biochemical networks. In:
Priami, C. (ed.) CMSB 2003. LNCS, vol. 2602, pp. 149–162. Springer, Heidelberg
(2003). https://doi.org/10.1007/3-540-36481-1_13

6. Cimatti, A., et al.: NuSMV 2: an OpenSource tool for symbolic model checking.
In: Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, pp. 359–364.
Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45657-0_29

7. Fages, F., Soliman, S.: On robustness computation and optimization in BIOCHAM-
4. In: Češvka, M., Šafránek, D. (eds.) CMSB 2018. LNCS, vol. 11095, pp. 292–299.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-99429-1_18

8. Folschette, M.: The Hoare-fol tool. Technical report, Univ. Lille & CNRS UMR
9189 (2019). https://hal.archives-ouvertes.fr/hal-02409801

9. Guziolowski, C., et al.: Exhaustively characterizing feasible logic models of a sig-
naling network using answer set programming. Bioinformatics 30, 1942 (2013)

10. Kauffman, S.A.: Metabolic stability and epigenesis in randomly constructed genetic
nets. J. Theor. Biol. 22(3), 437–467 (1969)

11. Naldi, A., et al.: The CoLoMoTo interactive notebook. Front. Physiol. 9, 680 (2018)
12. Remy, E., Ruet, P., Mendoza, L., Thieffry, D., Chaouiya, C.: From logical regula-

tory graphs to standard Petri nets: dynamical roles and functionality of feedback
circuits. In: Transactions on Computational Systems Biology VII, pp. 56–72 (2006)

13. Richard, A.: Fair Paths in CTL (2008). https://gitlab.com/totembionet/
totembionet

14. Schwab, J., Kühlwein, S., Ikonomi, N., Kühl, M., Kestler, H.: Concepts in Boolean
network modeling: what do they all mean? Comput. Struct. Biotechnol. J. 18,
571-582 (2020)

https://doi.org/10.1007/978-3-540-24732-6_12
https://doi.org/10.1007/978-3-540-24732-6_12
https://doi.org/10.1007/3-540-36481-1_13
https://doi.org/10.1007/3-540-45657-0_29
https://doi.org/10.1007/978-3-319-99429-1_18
https://hal.archives-ouvertes.fr/hal-02409801
https://gitlab.com/totembionet/totembionet
https://gitlab.com/totembionet/totembionet

372 D. Boyenval et al.

15. Snoussi, E.: Qualitative dynamics of a piecewise-linear differential equations: a
discrete mapping approach. Dyn. Stab. Syst. 4, 189–207 (1989)

16. Streck, A., Thobe, K., Siebert, H.: Comparative statistical analysis of qualitative
parametrization set, September 2015

17. Thomas, R.: Boolean formalization of genetic control circuits. J. Theor. Biol. 42(3),
563–585 (1973)

18. Thomas, R.: Logical analysis of systems comprising feedback loops. J. Theor. Biol.
73(4), 631–56 (1978)

19. Thomas, R., Gathoye, A., Lambert, L.: A complex control circuit. Regulation of
immunity in temperate bacteriophages. Eur. J. Biochem. 71(1), 211–227 (1976)

Kaemika App: Integrating Protocols and
Chemical Simulation

Luca Cardelli(B)

University of Oxford, Oxford, UK
luca.a.cardelli@gmail.com

Abstract. Kaemika is an app available on the four major app stores.
It provides deterministic and stochastic simulation, supporting natural
chemical notation enhanced with recursive and conditional generation
of chemical reaction networks. It has a liquid-handling protocol sublan-
guage compiled to a virtual digital microfluidic device. Chemical and
microfluidic simulations can be interleaved for full experimental-cycle
modeling. A novel and unambiguous representation of directed multi-
graphs is used to lay out chemical reaction networks in graphical form.

Keywords: Molecular programming · Digital microfluidics

1 Introduction

Kaemika is a chemical reaction simulator, including a modern graphical user
interface and a functional programming language for platform independent (com-
mand line free) operation. It provides basic deterministic and stochastic simula-
tion functionality, supporting natural chemical notation and enhancing it with
the recursive and conditional generation of chemical reaction networks. It inno-
vates primarily in the integration of liquid-handling protocols with chemical
kinetics, providing a unified semantics for laboratory procedures and the evo-
lution of multiple chemicals samples. Based on a previously presented protocol
language [1], the app demonstrates its potential by compiling its geometry-free
descriptions to a virtual digital microfluidic device that interleaves droplet rout-
ing simulation with chemical simulation, for full experimental-cycle modeling.
Another contribution is a regular and compact representation of directed multi-
graphs, which includes a new representation of Petri nets but is further special-
ized for presenting chemical reaction networks in graphical form.

2 Simulation of Chemical Reaction Networks

Kaemika1 offers deterministic and stochastic simulation of chemical reaction net-
works, aiming for uniformity of techniques over all expressible reaction networks.
Mass action kinetics is used by default, but Hill, Arrhenius, and other kinetics
can be expressed via common algebraic and elementary transcendental functions.
This includes supplying continuous and discontinuous input waveforms.
1 /’kimika/, a homophone of the Italian word for chemistry.

c© Springer Nature Switzerland AG 2020
A. Abate et al. (Eds.): CMSB 2020, LNBI 12314, pp. 373–379, 2020.
https://doi.org/10.1007/978-3-030-60327-4_22

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-60327-4_22&domain=pdf
https://doi.org/10.1007/978-3-030-60327-4_22

374 L. Cardelli

Fig. 1. Graphical user interface (macOS left, Windows UWP right). Script editor (left),
plot (top), reaction score (Mac, bottom right), microfluidics (Windows, bottom right).
Menus and buttons on the sides. Press play to simulate.

Stochasticity is supported via the Linear Noise Approximation (LNA [8]).
Numerical LNA simulations can produce displays for standard deviation, vari-
ance, coefficient of variation, Fano factor, and (variance, etc., of) linear combi-
nations of species. LNA numerical simulations can be applied to all expressible
kinetics, which would be hard to do with other stochastic techniques (e.g., the
Gillespie algorithm needs to be adapted for non mass action kinetics). LNA is
supported also symbolically, providing formal derivatives for the covariance of
any pair of species for all expressible kinetics (as long as the kinetic functions
are differentiable), which can then be externally studied analytically.

The focus on the LNA technique is due to its general and uniform appli-
cability, and to its relative speed and single-shot operation. The LNA is an
approximation of the chemical master equation, and we should complement it
with other techniques whenever possible. But the great convenience of the LNA
makes it, in my opinion, the default every-day solution, especially in the context
of dealing with any (multimolecular, Hill, etc.) reactions that a user may write.

While these simulation techniques are not particularly novel, they are applied
in a uniform and consistent way to facilitate experimentation, so that if a user
can write down a chemical model, then the tool can in fact simulate it at the
click of a button (within the numerical bounds of an ODE solver). An example
is the extension of the LNA semantics to liquid-handling simulations (which is
novel), where the noise present in a compartment is correctly propagated when
the compartment is split or merged with other compartments.

All this functionality is packaged in the interface as a single “play” button
for simulation, plus a toggle for the LNA, and a corresponding “stop” button.

3 Programmatic Generation of Networks and Protocols

Despite their transparency and simplicity, chemical reaction networks become
awkward when they contain many reactions, many repeated subsystems, and
many parameters. This is a classical abstraction problem that has been identified
and addressed long ago [10] and more recently [12]. Kaemika originated from the
desire to build “programmable” (arbitrarily parameterizable) reaction networks

Kaemika App: Integrating Protocols and Chemical Simulation 375

Fig. 2. Predator-eat-predator. Left: a program generating a variable-size chemical net-
work, reactions in red. Top: simulation plot for n = 5. Bottom center: legend. Bottom
right: graphical representation of the generated reaction network. (Color figure online)

with natural chemical notation, e.g. to study their algorithmic capabilities, and
from frustration with existing tools that did not seem to quite meet that need.
(Network generation and repeated triggering of simulations are needed partic-
ularly for the protocol subsystem. The alternative use of general programming
languages leads to loosing the notational convenience of chemical reactions.)

Kaemika adopts modern concepts from functional programming to solve this
problem. First, there is functional programming itself for complete, higher order,
abstraction (“Can a species, or a network, be a parameter to a network?”). We
then use nominal semantics [6] to deal with the generation and lexical binding
of an unbounded number of unique chemical species (“If I create new species
inside a loop, can I plot them?”). Finally we use an output monad [11], which
is a somewhat grandiose but systematic scheme for generating a network of
chemical reactions from a functional computation (“Can I produce a network
whose size is determined by conditional execution?”). All answers are “yes!”.

A short example will have to suffice here. The “Predatorial” function in
Fig. 2 creates a stack of predator-prey relationships in Lotka-Volterra style, and
returns the apex predator. To note: (1) the function is recursive; it internally
creates new species (‘prey’, ‘predator’), initializes them (‘@’), and returns them
(‘yield’), (2) the new species are ‘reported’ as they are created, so that they can
be plotted, (3) chemical notation (in red) is freely intermixed with flow control,
(4) ‘equilibrate’ runs a simulation and plots it, combining all the reports. The
‘equilibrate’ statement can be repeatedly invoked. Through some variations of
the ‘report’ statement one can also capture simulation timecourses, recombine
them within other simulations, and export them as data.

376 L. Cardelli

4 Visualization of Chemical Reaction Networks

Automated layout of reaction networks (multigraphs) is usually highly unsat-
isfactory in the sense of hiding the symmetries of the network, and awkward
in the sense of requiring constant panning and zooming. Kaemika uses a new
graphical representation of directed multigraphs with multiplicities, which are
those needed to unambiguously represent chemical reactions. In first instance,
the problem is the same as visually representing Petri nets; even here we appear
to be making an original contribution. In addition, catalysts are given a more
compact visual representation that extends the basic one for Petri nets.

We call this new representation a reaction score. Like a musical score it has a
set of horizontal lines, each associated with a chemical species rather than a pitch.
Reactions are added to the score in horizontally-bounded vertical tiles. Neither
the horizontal nor vertical orders are important (unlike in musical notation),
and it is useful to be able to manually or automatically reorder species and
reactions to cluster them in different ways. Each reaction A → B is first recast
in the form C,A′ → B′ where for each species s if n ∗ s occurs in A and m ∗ s
occurs in B, then min(n,m) ∗ s are moved into C, and the rest are left in A′ or
B′ (not both). The reaction A′ → B′ is laid out as a Petri net transition and
interconnected. (The Petri net places are stretched out as horizontal lines. The
transition “bars” are placed vertically, handling multimolecular reactions with
repeated connections, or are omitted in 1-input/1-output cases such as all the
ones in Fig. 3). Additional catalytic connections, using a different visual style,
are introduced between the species in C and the stem (transition) of A′ → B′.

Fig. 3. Reaction score. Horizontal lines are species, vertical tiles are reactions.
Blue/blunt are reagents, red/sharp are products, green/circle are catalysts. Note some
evident substructures and symmetries. On the right, for comparison, is the same multi-
graph rendered by GraphViz, where the symmetries become hidden. (Color figure
online)

This representation is complete (any reaction network can be automatically
laid out) and unambiguous (the original reaction network can be recovered from
it, except for the reaction rates and initial conditions).

Kaemika App: Integrating Protocols and Chemical Simulation 377

5 Protocols and Digital Microfluidics

The Kaemika system provides a virtual liquid handling device for the simulation
and visualization of protocols (Fig. 1). We focus on digital microfluidics because
of its generality, simplicity, and programmability, in that a single device can
execute all the basic liquid-handling protocols [2,13], and support automated
observation of the samples [9].

A Kaemika protocol contains information about the kinetics of the reactions
that naturally occur within samples, and also about laboratory manipulations
performed on samples [1]. The two are linked because lab operations affect con-
centrations, volumes, and temperatures, which affect kinetics. Correspondingly,
the execution of a Kaemika protocol intertwines the simulation of individual
reaction networks with the microfluidic manipulation of the samples, including
intertwining the plotting of simulations and the visualization of liquid handling.
The state of a sample at the end of a chemical simulation is propagated to the
following liquid handling operation, and conversely.

A typical digital microfluidics device has a rectangular array of electrically
controlled pads, and some means of adding and removing liquid droplets over its
surface. Injection and extraction may by done by hand, or by extruding standard-
size droplets from larger on-device reservoirs, or by pumps at the device’s periph-
ery. The standard droplet size is around 1µL. Droplets can be moved by changing
the electrical properties of adjacent pads, and multiple droplets can be moved in
parallel. Droplets can be merged by causing one to move over the pad of another,
and split by electrically pulling them in opposite directions. An overhead camera
or an on-surface sensing apparatus may provide feedback about the position of
the droplets.

In a Kaemika droplet simulation, each “sample” (a container for species and
reactions) is represented by a droplet on the device. Mixing, splitting, and dis-
posing of samples is handled by appropriate routing of the droplets over the
device surface: this is automatic, and does not require geometric instructions.

Some physical assumptions are needed for timing, for observation, and for
the handling of temperatures and volumes. We assume that a region of the
device is maintained at a cool temperature. All the staging and mixing operation
are executed in this region, because chemical reactions are assumed not to be
happening during liquid handling: cool temperature and quick execution can
approximate those conditions. We also assume that another region of the device is
maintained at a hot temperature, and an intermediate region is at warm, ambient
temperature. Times passes, logically, only during “equilibrate” operations, which
move droplets into one of the warm or hot regions, according to need, hold them
there for the prescribed time, and then move them back to the cool region.
Observation capabilities (and subsequent feedback into protocols) are highly
hardware dependent [9]: we provide in the language general observability of
concentrations, but this will have to be matched to physical device capabilities.

378 L. Cardelli

6 Implementation and Deployment

The main audience for Keamika is research and higher education environments,
although we have tried to widen its adoption potential by supporting mobile and
dual keyboard/touch devices, and by deploying it to app stores.

Kaemika is written in C# using the Visual Studio/Xamarin IDE, and is
available on four app stores: Windows UWP, macOS, iOS, and Android. A single
Visual Studio solution is used for all platforms, with shared application logic,
compiled under either Windows or macOS; the source code is on GitHub [4].
The language syntax is based on the Gold LALR parser generator [5]. The ODE
solver is OSLO [7]. The basic simulation functionality, including LNA, is common
with many other tools, e.g. [3,10], which otherwise focus on other modeling
aspects. The main Windows and macOS GUI interfaces consist of two similar
separate forms; a separate touch-optimized GUI is used for mobile displays, with
Xamarin providing a unified interface to Android/iOS. Low-level graphics (lines,
splines, fonts, etc.) is shared across Windows/iOS/Android via Skia graphics, but
separate from CoreGraphics for macOS. XAML, which subverts lexical scoping,
typing, error accountability, and reliability, is painstakingly circumvented.

In practice, supporting multiple platforms is not hard, and software changes
propagate easily across them. Rather, the challenge is navigating the parkour-
like registration, provisioning, and app submission procedures of each app store.
Still, I strongly advise this path since it has huge benefits for users in terms of
tool installation, and also of usability (flawed GUIs are store-rejected). In the
end it has huge benefits for developers too, in terms of removing variability of
user configurations and all the related distribution and support issues, which I
found even more challenging than app store approvals.

References

1. Abate, A., Cardelli, L., Kwiatkowska, M., Laurenti, L., Yordanov, B.: Experimental
biological protocols with formal semantics. In: Češka, M., Šafránek, D. (eds.) CMSB
2018. LNCS, vol. 11095, pp. 165–182. Springer, Cham (2018). https://doi.org/10.
1007/978-3-319-99429-1 10

2. Alistar, M., Gaudenz, U.: OpenDrop: an integrated do-it-yourself platform for per-
sonal use of biochips. Bioengineering (Basel) 4(2), 45 (2017)

3. Cardelli, L., Tribastone, M., Tschaikowski, M., Vandin, A.: ERODE: a tool for the
evaluation and reduction of ordinary differential equations. In: Legay, A., Margaria,
T. (eds.) TACAS 2017. LNCS, vol. 10206, pp. 310–328. Springer, Heidelberg (2017).
https://doi.org/10.1007/978-3-662-54580-5 19

4. Cardelli, L.: https://github.com/luca-cardelli/KaemikaXM
5. Cook, D.: Design and development of a grammar oriented parsing system. MSc

Project, California State University Sacramento (2004)
6. Crole, R., Nebel, F.: Nominal lambda calculus: an internal language for FM-

Cartesian closed categories. ENTCS 298, 93–117 (2013)
7. Dalchau, N.: Open solving library for ODEs. https://www.microsoft.com/en-us/

research/project/open-solving-library-for-odes/
8. Ethier, S., Kurtz, T.: Markov Processes. Wiley, Hoboken (2009)

https://doi.org/10.1007/978-3-319-99429-1_10
https://doi.org/10.1007/978-3-319-99429-1_10
https://doi.org/10.1007/978-3-662-54580-5_19
https://github.com/luca-cardelli/KaemikaXM
https://www.microsoft.com/en-us/research/project/open-solving-library-for-odes/
https://www.microsoft.com/en-us/research/project/open-solving-library-for-odes/

Kaemika App: Integrating Protocols and Chemical Simulation 379

9. Freire, S.: Perspectives on digital microfluidics. Sens. Actuators A: Phys. 250,
15–28 (2016)

10. Pedersen, M., Phillips, A.: Towards programming languages for genetic engineering
of living cells. J. R. Soc. Interface 6, S437–S450 (2009)

11. Petricek, T.: What we talk about when we talk about monads. Art Sci. Eng.
Program. 2(2), 12 (2018)

12. Vasic, M., Soloveichik, D., Khurshid, S.: CRN++: molecular programming lan-
guage. Nat. Comput. 19(12), 1–17 (2020)

13. Willsey, M., et al.: Puddle: a dynamic, error-correcting, full-stack microfluidics
platform. In: ASPLOS (2019)

Tutorials

Tutorial: The CoLoMoTo Interactive Notebook,
Accessible and Reproducible Computational
Analyses for Qualitative Biological Networks

Löıc Paulevé(B)

University of Bordeaux, Bordeaux INP, CNRS, LaBRI, UMR5800, 33400 Talence,
France

loic.pauleve@labri.fr

Analysing models of biological networks typically relies on workflows in which
different software tools with sensitive parameters are chained together, many
times with additional manual steps. The accessibility and reproducibility of such
workflows is challenging, as publications often overlook analysis details, and
because some of these tools may be difficult to install, and/or have a steep
learning curve.

The CoLoMoTo Interactive Notebook [1]1 provides a unified environment
to edit, execute, share, and reproduce analyses of qualitative models of biolog-
ical networks. This framework combines the power of different technologies to
ensure repeatability and to reduce users’ learning curve of these technologies.
The framework is distributed as a Docker image with the tools ready to be run
without any installation step besides Docker, and is available on Linux, macOS,
and Microsoft Windows. The embedded computational workflows are edited with
a Jupyter web interface, enabling the inclusion of textual annotations, along with
the explicit code to execute, as well as the visualization of the results. Resulting
notebook files can then be shared and re-executed in the same environment.

To date, the CoLoMoTo Interactive Notebook provides access to the software
tools listed in Table 1 for the modeling and analysis of Boolean and multi-valued
networks. More tools will be included in the future. We developed a Python
interface for each of these tools to offer a seamless integration in the Jupyter
web interface and ease the chaining of complementary analyses. An executable
paper entirely edited within the CoLoMoTo Interactive Notebook accessible and
demonstrating its main features is available at http://doi.org/10.3389/fphys.
2018.00787.

The prime aim of the CoLoMoTo Interactive Notebook is to foster the pro-
duction of accessible and reproducible computational analysis of biological mod-
els, with a focus on qualitative models. The CoLoMoTo Docker image can be
easily extend to include additional tools, and be used by standard workflow
systems, such as SnakeMake, to lighten the burden of installing the different
software tools and make them accessible on different operating systems.

Löıc Paulevé—LP was supported by ANR-FNR project “AlgoReCell” (ANR-16-CE12-
0034).
1 http://colomoto.org/notebook.

c© Springer Nature Switzerland AG 2020
A. Abate et al. (Eds.): CMSB 2020, LNBI 12314, pp. 383–385, 2020.
https://doi.org/10.1007/978-3-030-60327-4

http://doi.org/10.3389/fphys.2018.00787
http://doi.org/10.3389/fphys.2018.00787
http://colomoto.org/notebook
https://doi.org/10.1007/978-3-030-60327-4

384 L. Paulevé

The CoLoMoTo Interactive Notebook is also relevant for teaching purposes.
With Jupyter, students can straightforwardly execute, modify, and extend a
template notebook to learn methods for analysing models of biological networks.

Table 1. Software tools distributed to date in the CoLoMoTo Notebook

Software tool Description

bioLQM Logical Qualitative Modelling toolkit

bioLQM Logical Qualitative Modelling toolkit

CellCollective Model repository and knowledge base

GINsim Boolean and multi-valued network modelling

MaBoSS Markovian Boolean Stochastic Simulator

mpbn Most Permissive Boolean Networks

NuSMV Symbolic model-checker

Pint Static analyzer for dynamics of Automata Networks

R-BoolNet Analysis and reconstruction of Boolean networks dynamics

Objective of the Ttutorial. Give an introduction to different tools related to qual-
itative modelling and analysis of biological networks, and promote frameworks
to ease accessibility and reproducibility of computational analyses.

Program. After a brief introduction to the qualitative modelling of biological
network, the tutorial session will demonstrate how to:

1. create a Boolean network from scratch
2. load an existing model of biological system (e.g.., hosted on GINsim repository

or cellcollective.org)
3. compute stable states with bioLQM and perform model-checking with

NuSMV
4. perform stochastic simulations with MaBoSS
5. perform control prediction and validation using Pint and MaBoSS
6. overview of other included and coming tools and features
7. extend the environment with your own tool

Importantly, the tutorial will emphasize how to use notebooks to improve repro-
ducible research, with good practices for editing and sharing them, and how to
re-execute and adapt them.

Requirements. The CoLoMoTo Notebook requires Docker and optionally
Python. Then, the setup and launch is a matter of a single command. For people
who do not want or fail to install Docker, they will still be able to follow the
tutorial without requiring any specific installation using tmpnb.colomoto.org.

https://cellcollective.org
http://tmpnb.colomoto.org

Tutorial: The CoLoMoTo Interactive Notebook 385

Reference

1. Naldi, A., et al.: The CoLoMoTo interactive notebook: accessible and reproducible
computational analyses for qualitative biological networks. Front. Physiol. 9, 680
(2018). https://doi.org/10.3389/fphys.2018.00680

https://doi.org/10.3389/fphys.2018.00680

Integrating Experimental Pharmacology and
Systems Biology for GPCR Drug Discovery

Susanne Roth, Yaroslav Nikolaev, Mirjam Zimmermann, Nadine Dobberstein,
Maria Waldhoer, and Aurélien Rizk(B)

InterAx Biotech, Villigen, Switzerland
rizk@interaxbiotech.com

Abstract. G protein-coupled receptors (GPCRs) regulate many physi-
ological and pathophysiological processes and constitute a major class
of drug targets. Our ability to design drugs that control the cellu-
lar responses via GPCRs relies on our understanding of how recep-
tors encode and transfer information. Both, i) receptor conformational
changes and ii) activation dynamics of GPCRs are crucial in governing
downstream signaling events, hence, a deeper understanding of how lig-
ands activate and regulate these events are crucial for drug development
and optimization. At InterAx we use Systems Biology as a computational
tool to integrate theoretical knowledge with experimental data of GPCR
mediated signaling and trafficking events. As a result, deeper mechanistic
insights into the dynamic cellular signaling systems activated by these
receptors are achievable. Importantly, such mathematical models allow
to predict experimental outcomes and deliver novel insights into drug
actions on GPCRs.

In this tutorial we will show how an ordinary differential equation
(ODE) model can be developed to describe the trafficking and signaling
events of the beta-2 adrenergic receptor (B2AR) in response to vari-
ous agonists (= asthma drugs). We will present i) time-resolved data
of receptor internalization and recycling and of cyclic AMP accumula-
tion that can be used to parameterize such models, ii) quantification of
parameter identifiability by profile likelihood estimation, iii) validation
of the approach through comparison of predicted kinetic parameters with
direct experimental estimation and iv) clustering of compounds based on
predicted kinetic parameters and comparison with known in-vivo effects.

Keywords: Ordinary differential equations · G protein-coupled
receptors · Drug discovery · Time-resolved signalling assays ·
Compound clustering

c© Springer Nature Switzerland AG 2020
A. Abate et al. (Eds.): CMSB 2020, LNBI 12314, p. 386, 2020.
https://doi.org/10.1007/978-3-030-60327-4

https://doi.org/10.1007/978-3-030-60327-4

Author Index

Abate, Alessandro 255

Bannerman, Bridget 102
Bender, Matías R. 210
Bernot, Gilles 362
Bokes, Pavol 27, 44
Bourdon, Jérémie 141
Boyenval, Déborah 362
Brim, Luboš 280, 356

Calzone, Laurence 193
Cardelli, Luca 373
Çelik, Candan 27
Chaves, Madalena 176, 298
Chevalier, Stéphanie 193
Cifuentes Fontanals, Laura 159
Collavizza, Hélène 362
Comet, Jean-Paul 362

Danos, Vincent 3
Degrand, Élisabeth 61
Desoeuvres, Aurélien 79
Diop, Ousmane 176
Dobberstein, Nadine 386

Fages, François 61, 120

Gouveia, Filipe 339
Guziolowski, Carito 141

Haar, Stefan 321
Haase, Christian 210
Heindel, Tobias 3
Hemery, Mathieu 120
Honorato-Zimmer, Ricardo 3

Júlvez, Jorge 102, 349

Klein, Julia 44

Le Bars, Sophie 141
Lynce, Inês 339

Mertová, Lukrécia 356
Molyneux, Gareth W. 255
Monteiro, Pedro T. 339

Nikolaev, Yaroslav 386
Noël, Vincent 193

Oarga, Alexandru 102
Oliver, Stephen G. 349

Pang, Jun 234
Pastva, Samuel 280
Paulevé, Loïc 193, 321, 383
Péré, Marielle 298
Petrov, Tatjana 44

Radulescu, Ovidiu 79
Rizk, Aurélien 386
Roux, Jérémie 298
Roth, Susanne 386

Šafránek, David 280, 356
Schwieger, Robert 210
Schwoon, Stefan 321
Siebert, Heike 159, 210
Singh, Abhyudai 27
Šmijáková, Eva 280
Soliman, Sylvain 61, 120
Stucki, Sandro 3
Su, Cui 234

Tonello, Elisa 159
Tournier, Laurent 176
Troják, Matej 356
Trombettoni, Gilles 79

Waldhoer, Maria 386

Zimmermann, Mirjam 386
Zinovyev, Andrei 193

	Preface
	Organization
	Invited Talks
	Context Dependence of Biological Circuits: Predictive Models and Engineering Solutions
	Methods and Tools for the Quantitative Characterization of Engineered Biomolecular Systems
	Employing Immersive Virtual Reality to Reveal Common Geometric Principles of Individual and Collective Decision-Making
	Contents
	Modelling and Analysis
	Rate Equations for Graphs
	1 Introduction
	1.1 Two-Legged DNA Walker
	1.2 Discussion
	1.3 Relation to the rule-algebraic approach

	2 Stochastic Graph Rewriting
	2.1 The Category of Directed Multigraphs
	2.2 Graph Rewriting
	2.3 Composition and Modularity of Derivations
	2.4 Gluings

	3 Graph-Based GREs
	4 Conclusion
	A Pushout and pull-back complements
	B Generalised proofs of lemmas
	B.1 Proof of Lemma 4 (minimal gluings)
	B.2 Proof of Lemma 1 (forward modularity)
	B.3 Proof of Lemma 2 (backward modularity)
	B.4 Proof of Lemma 3 (derivability)

	References

	Stationary Distributions and Metastable Behaviour for Self-regulating Proteins with General Lifetime Distributions
	1 Introduction
	2 One-Dimensional Model
	3 Multiclass–multistage Model
	4 Bursting
	5 Metastable Transitioning
	6 Discussion
	References

	Accelerating Reactions at the DNA Can Slow Down Transient Gene Expression
	1 Introduction
	1.1 Related Works

	2 Preliminaries
	3 Moment Calculations
	3.1 Four-State Chain

	4 Singular-Perturbation Analysis of the Slow-by-fast Regime
	4.1 Inner Solution and Matching

	5 Discussion and Future Work
	References

	Graphical Conditions for Rate Independence in Chemical Reaction Networks
	1 Introduction
	2 Preliminaries
	2.1 Notations
	2.2 CRN Syntax
	2.3 CRN Semantics
	2.4 Petri Net Structure

	3 Rate Independence Condition for Persistent Outputs
	3.1 Sufficient Graphical Condition
	3.2 Constraint-Based Programming

	4 Global Rate Independence Condition
	4.1 Sufficient Graphical Condition
	4.2 Necessary Condition

	5 Evaluation on Biomodels
	5.1 Computation of Rate-Independent Output Species
	5.2 Test of Global Rate-Independence

	6 Conclusion
	References

	Interval Constraint Satisfaction and Optimization for Biological Homeostasis and Multistationarity
	1 Introduction
	2 Settings and Definitions
	3 Interval Methods for Nonlinear Constraint Solving and Optimization
	3.1 Intervals
	3.2 Interval Methods for Constraint Solving

	4 Multistationarity
	5 IbexHomeo for Finding Homeostatic Species
	5.1 Interval Branch and Bound Methods for Constrained Global Optimization
	5.2 A Dedicated Solver for Homeostasis Based on IbexOpt

	6 Experimental Results
	7 Discussion and Conclusion
	References

	Growth Dependent Computation of Chokepoints in Metabolic Networks
	1 Introduction
	2 Preliminary Concepts and Definitions
	2.1 Constraint-Based Models
	2.2 Topological Definitions.
	2.3 Flux Dependent Definitions

	3 Growth Dependent Chokepoints
	4 Chokepoint Analysis
	4.1 Case Study: Mycobacterium Leprae
	4.2 Dead Reactions and Growth Rate

	5 Conclusions
	A Appendix
	B Appendix
	References

	On the Complexity of Quadratization for Polynomial Differential Equations
	1 Introduction
	2 Quadratic Transformation of PIVPs
	2.1 Quadratic Projection Theorem
	2.2 Examples
	2.3 Quadratic Transformation Problems

	3 MAX-SAT Encoding
	4 NP-Hardness
	4.1 Encoding of the Vertex Set Covering Problem
	4.2 Minimizing the Number of Monomials

	5 Practical Complexity
	5.1 Benchmark of CRN Design Problems
	5.2 BioModels Repository

	6 Conclusion
	7 Appendix: NP-hardness of MAX-Horn-SAT
	8 Appendix: Proof of NP-completeness of nsQTDP
	8.1 Restriction of Variables to Monomials Functions
	8.2 Restriction of Variables to Polynomials Functions
	8.3 Quadratic Transformation Without Restriction
	8.4 Proof of NP-Hardness for Reactions minimization

	References

	Comparing Probabilistic and Logic Programming Approaches to Predict the Effects of Enzymes in a Neurodegenerative Disease Model
	1 Introduction
	2 Methods
	2.1 Data Sets Used to Conduct Our Comparison
	2.2 Regulatory Networks of the HIF-signaling Pathway
	2.3 The Probregnet Pipeline
	2.4 Iggy

	3 Results
	3.1 HIF1A Impact on HIF-signaling Pathway for Alzheimer's Disease Patients
	3.2 in vitro Over-Expression of HIF1A in HUVECS (Human Umbilical Vein Endothelial Cells)

	4 Discussion
	References

	Boolean Networks
	Control Strategy Identification via Trap Spaces in Boolean Networks
	1 Introduction
	2 Background: Boolean Networks and Dynamics
	3 Spaces of Attraction and Control Strategies
	3.1 Control Strategies
	3.2 Spaces of Attraction
	3.3 Identification of Spaces of Attraction

	4 Computation of Control Strategies
	5 Application: Cell Fate Decision Networks
	5.1 MAPK Network
	5.2 T-LGL Network

	6 Discussion
	References

	Qualitative Analysis of Mammalian Circadian Oscillations: Cycle Dynamics and Robustness
	1 Introduction
	2 Proposing a New Boolean Model of the Circadian Clock
	2.1 Construction of the Boolean Model
	2.2 First Dynamical Analysis of the Boolean Model

	3 Comparing the Attractor with Circadian Oscillations
	3.1 Dividing the Circadian Cycle into Qualitative Phases
	3.2 Construction of the Summary Graph

	4 Advanced Analysis of the Attractor
	4.1 Adjustment of the Attractor and Refinement of the Model
	4.2 A Tool to Assess the General Robustness of the Attractor

	5 Conclusions and Perspectives
	References

	Synthesis and Simulation of Ensembles of Boolean Networks for Cell Fate Decision
	1 Introduction
	2 Background
	2.1 Boolean Networks
	2.2 BN Semantics
	2.3 Dynamical Properties
	2.4 Answer-Set Programming

	3 BN Synthesis from Architecture and Dynamical Properties
	3.1 Universal Constraints on Fixed Points
	3.2 Synthesis Problem
	3.3 Sampling the Diversity of All Solutions

	4 Stochastic Simulations of Ensembles of BNs
	4.1 Continuous-Time Boolean Modelling
	4.2 Lifting to Ensembles of BNs

	5 Case Study on Cell Fate Decision Modelling
	5.1 Background Model
	5.2 Single Model Analysis
	5.3 Ensemble Analysis

	6 Conclusion
	References

	Classifier Construction in Boolean Networks Using Algebraic Methods
	1 Motivation
	2 Mathematical Background
	3 Algebraic Formalization
	4 Description of the Algorithm
	4.1 Excluding Candidate Sets

	5 Implementation and Benchmarking
	6 Case Study
	7 Possible Further Improvements
	8 Conclusion
	References

	Sequential Temporary and Permanent Control of Boolean Networks
	1 Introduction
	2 Preliminaries
	2.1 Boolean Networks
	2.2 Dynamics of Boolean Networks

	3 Sequential Temporary and Permanent Control
	3.1 The Control Problem
	3.2 Attractor-Based Sequential Temporary Control
	3.3 Attractor-Based Sequential Permanent Control

	4 Evaluation
	4.1 The Myeloid Differentiation Network
	4.2 The Th Cell Differentiation Network
	4.3 Other Biological Networks

	5 Discussion
	6 Conclusion and Future Work
	References

	Inference and Identification
	ABC(SMC)2: Simultaneous Inference and Model Checking of Chemical Reaction Networks
	1 Introduction
	2 Background
	2.1 Parametric Continuous-Time Markov Chains
	2.2 Properties - Continuous Stochastic Logic
	2.3 Bayesian Inference
	2.4 Statistical Model Checking with the Massart Algorithm
	2.5 Bayesian Verification

	3 ABC(SMC)2: Approximate Bayesian Computation - Sequential Monte Carlo with Statistical Model Checking
	3.1 ABC(SMC)2
	3.2 Approximate Parameter Synthesis via Statistical MC

	4 Experiments
	5 Discussion and Future Work
	A Approximate Bayesian Computation - Sequential Monte Carlo (ABCSMC) Algorithm
	B Bayesian Verification Framework
	B.1 Credibility Calculation

	C Absolute-Error Massart Algorithm
	D Parameter Synthesis: A Motivating Comparison
	E Results of SIR Case Study
	References

	Parallel Parameter Synthesis for Multi-affine Hybrid Systems from Hybrid CTL Specifications
	1 Introduction
	2 Parameter Synthesis of Hybrid Automata
	2.1 Parametrised Hybrid Automata
	2.2 Rectangular Abstraction of Parametrised Hybrid Automata
	2.3 Hybrid CTL
	2.4 Parameter Synthesis Problem

	3 The Algorithmics
	4 Experimental Evaluation
	4.1 Diauxic Shift Model
	4.2 Parameter Synthesis
	4.3 Scalability

	5 Conclusion
	References

	Core Models of Receptor Reactions to Evaluate Basic Pathway Designs Enabling Heterogeneous Commitments to Apoptosis
	1 Introduction
	2 Modeling the Main Processes of Extrinsic Apoptosis Initiation
	2.1 Models' Assumptions
	2.2 Extrinsic Apoptosis Initiation Core Models (EAICM)

	3 Single Cell Model Calibration
	3.1 From Qualitative Criteria to Quantitative Reference Values
	3.2 Distinguishing the Effects of Initial Conditions and Rate Parameters on the System Dynamics

	4 Analysing Mechanisms for Generating Heterogeneity
	4.1 Comparison of the Four Core Apoptosis Models
	4.2 The Feedback Loop Mechanism
	4.3 Initial Conditions Impacts on Slope Values
	4.4 Model Validation and Degradation Specificity

	5 Discussion and Conclusion
	A Comparison Models Tables
	B Feedback Loop Effects for EAICM-af and EAICM-a
	C Initial Condition and Cell Fate Correlations for EAICM-af
	D Median Parameter Values from the Fit on Both Initial Conditions and Reaction Rates Used in Fig.6
	E Operation of the Parameter Model and Reference Value tables
	References

	Drawing the Line: Basin Boundaries in Safe Petri Nets
	1 Introduction
	2 Petri Nets and Unfoldings
	3 Attractors
	4 Extracting Attractors from Unfoldings
	5 Basins and Their Boundaries
	6 Conclusion
	References

	Tools
	ModRev - Model Revision Tool for Boolean Logical Models of Biological Regulatory Networks
	1 Introduction
	2 Preliminaries
	2.1 Related Work

	3 ModRev Tool
	3.1 Input and Output

	4 Experimental Evaluation
	5 Discussion
	A Tutorial
	References

	fnyzer: A Python Package for the Analysis of Flexible Nets
	1 Overview
	2 Installation and Use
	3 Main Features
	References

	eBCSgen: A Software Tool for Biochemical Space Language
	1 Introduction
	2 Biochemical Space Language
	3 Implementation
	4 Experimental Results
	5 Conclusion
	References

	What is a Cell Cycle Checkpoint? The TotemBioNet Answer
	1 Formal Methods for Thomas Regulatory Networks
	2 The Platform TotemBioNet
	3 TotemBioNet Use Case: A Simplified Cell Cycle Model
	4 Conclusion
	References

	Kaemika App: Integrating Protocols and Chemical Simulation*-6pt
	1 Introduction
	2 Simulation of Chemical Reaction Networks
	3 Programmatic Generation of Networks and Protocols
	4 Visualization of Chemical Reaction Networks
	5 Protocols and Digital Microfluidics
	6 Implementation and Deployment
	References

	Tutorials
	Tutorial: The CoLoMoTo Interactive Notebook, Accessible and Reproducible Computational Analyses for Qualitative Biological Networks
	Reference

	Integrating Experimental Pharmacology and Systems Biology for GPCR Drug Discovery

	Author Index

