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Abstract

Time-prediction methods based on monitoring the dis-
placement of a slope are effective for the prevention of
sediment-related disasters. Several models have been
proposed to predict the failure time of a slope based on
the creep theory of soil, which describes the accelerating
surface displacements that precede slope failure. Fuku-
zono’s method has been widely adopted in practice. This
method can only be applied to the period when the
surface displacement accelerates. However, the observed
surface displacement appears to increase monotonically,
slightly repeating the increase and decrease. These results
decrease the accuracy of the predicted failure time.
Thinning out the observed data is effective for minimising
the influence of fluctuations. In this study, we predicted
the failure time of a sandy model slope under artificial
rainfall using four methods based on Fukuzono’s model,
compared the prediction accuracy of each method and
examined the influence of measurement intervals on the
predicted failure time using extracted data at different
measurement intervals. The results showed that the
variation of the extracted data group decreases and
the prediction accuracy of the failure time improves if
the measurement interval increases. Moreover, when the
failure time of a slope is predicted using statistical
methods, the accuracy of the prediction is further
improved.
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Introduction

Disasters of natural and artificial slopes around roads, rail-
ways and residential area are caused by heavy rains. Fur-
thermore, in construction sites, slope failures occur by the
destabilisation of the ground owing to change in stress
caused by the embankment and cut earth. Time prediction
methods based on monitoring the displacement of a slope
using sensors are effective at preventing sediment-related
disasters.

Several methods have been proposed to predict slope
failure using the surface displacement of a slope. The for-
mulae proposed by Fukuzono (1985) have been widely
adopted in practice because of their simplicity. These models
were proposed to predict the failure time of a slope based on
the creep theory of soil, which is divided into three stages:
primary creep (decreasing velocity), secondary creep (con-
stant velocity) and tertiary creep (increasing velocity).

Fukuzono’s model formulates the relationship between
the velocity of the surface displacement and the acceleration
in the tertiary creep stage. Fukuzono found that the loga-
rithm of the acceleration of the surface displacement is
proportional to the logarithm of the velocity in model slope
experiments. Time integration of this relationship leads to
the typical trends of the time variation in the inverse-velocity
of the surface displacement before failure. The failure time
of a slope can be predicted when the extrapolation curves
approach zero. Fukuzono’s method has been widely applied
because of its simplicity and convenience of use.
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His method can only be applied to the period when the
surface displacement accelerates. However, the actual dis-
placement of the slope is complicated owing to variations in
the rainfall intensity and the inhomogeneity of the surface
layer, and it is not easy to specify the period when the sur-
face displacement accelerates. Moreover, the observed dis-
placement appears to increase monotonically, slightly
repeating the increase and decrease, the acceleration varies
widely and some data points become negative. These results
decrease the accuracy of the predicted failure time. Thinning
out the observed data is effective for minimising the influ-
ence of fluctuations.

In this study, we predicted the failure time of a sandy
model slope under artificial rainfall with constant rainfall
conditions using four methods based on Fukuzono’s model
to extract data at difference time intervals. We compared the
prediction accuracy of each method and examined the
influence of measurement intervals on the predicted failure
time.

Methods for Predicting the Failure Time

Fundamental Equation of Fukuzono’s Model

Fukuzono (1985) proposed that the logarithm of the velocity
of the surface displacement is proportional to the logarithm
of the acceleration in the tertiary creep stage, which
describes the accelerating surface displacement before slope
failure, given as

d2x
dt2

¼ a
dx
dt

� �a

ð1Þ

where x is the downward surface displacement along the
slope, t is the time, dx/dt is the velocity, dx2/dt2 is the
acceleration, and a and a are constants. a is greater than 1 in
the period during which the surface displacement
accelerates.

After integrating Eq. (1), the inverse-velocity of the sur-
face displacement can be written as follows:

dt
dx

¼ 1
v
¼ �aða� 1Þf g1=ða�1Þ tr � tð Þ 1

a�1ð Þ ð2Þ

where v is the velocity of the surface displacement and tr is
the failure time. Eq. (2) shows a downward slope; further,
the time approaches the time immediately prior to slope
failure as the inverse-velocity of the surface displacement,
1/v, approaches zero. The curve is linear for a = 2, convex
for a > 2 and concave for 1 < a < 2. The value of a for
actual slope failure ranges from 1.5 to 2.2.

Precise Prediction Method Using Inverse-Velocity

As Eq. (2 becomes linear for a = 2, the failure time is cal-
culated easily using two inverse-velocity values at different
times. However, when a 6¼ 2, it is difficult to predict it
accurately using two values owing to the curvature of the
inverse-velocity curve. Therefore, Fukuzono (1985) pro-
posed the time-prediction method expressed in Eq. (3) by a
time differential in Eq. (2).

1=vð Þ
�

dð1=vÞ
dt

¼ �ða� 1Þ � tr � tð Þ ð3Þ

The curve of Eq. (3) is linear; the failure time, tr, is
predicted by inserting two inverse-velocity values (1/vi-1, 1/
vi) and two inclination values (d(1/vi-1)/dt, d(1/vi)/dt) at two
different times (ti-1, ti) into Eq. (4) as follows:

tr ¼
ti � 1=vi�1ð Þ= d 1=vi�1ð Þ

dt

� �
� ti�1 � 1=við Þ= dð1=viÞ

dt

� �

1=vi�1ð Þ= d 1=vi�1ð Þ
dt

� �
� 1=við Þ= dð1=viÞ

dt

� � ð4Þ

Three Data Prediction Method

Tsuchiya and Omura (1989) proposed the time-prediction
method using time–velocity relationship in Eq.[2] and time–
displacement relationship by time integral in Eq. (2) from
three surface displacement values at equal time intervals. We
improved this method to be applicable to different time
intervals. The failure time, tr, is predicted by inserting three
displacement values (xi-2, xi-1, xi) at three different times (ti-2,
ti-1, ti) as follows:

tr ¼
ti�1 þ tið Þ � xi�xi�1

xi�1�xi�2
� ti�1�ti�2

ti�ti�1

� �a�1
� ti�1 � ti�2ð Þ

2� xi�xi�1
xi�1�xi�2

� ti�1�ti�2

ti�ti�1

� �a�1
�1

� �

ð5Þ

a ¼ 2�
log xi�2�xi�1

xi�1�xi

� �

log xi�1�xi�2
xi�xi�1

� ti�ti�1

ti�1�ti�2

� � ð6Þ

Least Squares Prediction Method

Assuming the curve of Eq. (2) to be linear (a = 2), the
relationship between the inverse-velocity and time is calcu-
lated via the least squares method using all previous
inverse-velocity values from the start of the measurement.
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The failure time, tr, corresponds to the intercept of the
straight line with the time axis.

Nonlinear Regression Prediction Method

The constants a and a in Eq. (1) are calculated by the least
squares methods using velocity and acceleration data plotted
in a double logarithmic chart. The failure time, tr, is pre-
dicted by inserting the constants a and a into Eq. (7) as
follows:

tr ¼ v1�a

aða� 1Þ þ t ð7Þ

Experimental Set-up and Observed Data

In this study, we used the observed surface displacement of a
slope failure experiment that was conducted using the
large-scale rainfall simulator at the National Research
Institute for Earth Science and Disaster Prevention (Sasahara
and Ishizawa 2016). Figure 1 shows a photograph of the
model slope. The model was 300 cm long and 150 cm wide
in the horizontal section and 600 cm long and 150 cm wide
in the slope section with an inclination of 30°. The soil layer
was 50 cm thick and composed of granitic soil. The surface
of the slope was parallel to the base of the slope.

The surface displacement was measured using an exten-
someter with a non-linearity of approximately 0.1 mm; it
was fixed at the upper boundary of the flume. The surface
displacement was defined as the distance between the upper
boundary of the flume and the moving pole at the surface of
the slope at 160 cm from the toe of the slope. The surface
displacement was measured every 10 s.

The rainfall had an intensity of 50 mm/h and continued
until the onset of the failure of the model slope. Slope failure
occurred at 9,220 s, and the surface displacement just before
the slope failure was 1.27 cm.

As the extensometer has an accuracy of 0.1 mm, data were
extracted to be greater than 0.1 mm between the two mea-
surements of the surface displacement. Figure 2 shows the
time variation of the surface displacement and the
inverse-velocity of the surface displacement. The slope of the
inverse-velocity curve before 7,500 s suddenly increases and
decreases and displays a uniform downward slope afterwards.

Data for the Prediction

The time-prediction methods based on Fukuzono’s model
are applied to the tertiary creep stage. However, a curve of
the inverse-velocity has fluctuations and it is difficult to
predict the time of onset of the tertiary creep in actual
practice. Therefore, in this study, all data from the start of
monitoring onwards are used to examine the influence of
measurement intervals of surface displacement, Dx, and
predict the failure time. The data were extracted to be greater
than difference Dx from previous extracted data of the sur-
face displacement: 0.01, 0.05, 0.1 and 0.2 cm.

The velocity of the surface displacement, vi, is calculated
from vi = (xi–xi−1)/(ti–ti−1), where xi and xi−1 are the surface
displacements at times ti and ti−1. Because vi is the average
velocity between ti−1 and ti, the time against vi, t’i, is set as the
mid of ti and ti−1, specifically t’i = (ti–ti−1)/2. The accelera-
tion of the surface displacement, (dv/dt)i, is calculated from
(dv/dt)i = (vi–vi−1)/(t’i–t’i−1), where vi and vi−1 are the
velocities at times t’i and t’i−1. The time against (dv/dt)i, t’’i, is
to set to the middle of t’i and t’i−1, i.e. t’’i = (t’i–t’i−1)/2.

The failure time is inferred via four prediction methods:
(1) Precise prediction method, (2) Three data prediction
method, (3) Least squares prediction method and (4) Non-
linear regression prediction method, using the extracted dataFig. 1 Overview of the model slope
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from the start of monitoring and onwards. We compare the
prediction accuracy of each method and examine the influ-
ence of measurement intervals on the predicted failure time.

Variation of the Extracted Data

Figure 3 shows the time variation of the displacement and
inverse-velocity for different Dx and the relationship
between velocity and acceleration. The time variation of the
displacement, shown in Fig. 3a, demonstrates behaviour
similar to that of tertiary creep after approximately 6500 s.
When Dx = 0.1 cm or less, the measurement value of
Dx = 0.01 cm is usually reproducible. However, when Dx
0.1 cm, the data could not be extracted at the initial stage of
the tertiary creep and the deviation of the data at the initial
stage increased at 8000 s and earlier. The time variation of
the inverse-velocity, shown in Fig. 3b, significantly varied at

7500 s and earlier for Dx = 0.01 cm; however, this variation
was eliminated by increasing the Dx. When Dx increases, the
number of displacement data to be extracted decreases, and
there are no data at the initial stage of the tertiary creep;
therefore, it is impossible to predict until immediately before
the failure.

As shown in Fig. 3c, the velocity–acceleration relation-
ship originally showed displacement behaviour similar to
that of the tertiary creep stage, and the variation was small.
The larger the Dx, the smaller the number of the data and the
smaller the variation. When the variation decreases, it is
assumed that applicability to Fukuzono’s prediction formula
increases, whereas the previously mentioned issues will
exist.

Results of Time-Prediction of Slope Failure

Figure 4 shows the comparison of the time variation of
difference between the predicted failure time and the elapsed
time, tr–t, obtained using the different prediction methods.
The tr–t implies the time interval for the slope failure. When
the accuracy of prediction is high, tr–t values are plotted in
the positive domain of the graph and tend to zero as the time
approaches the slope failure time (i.e. the time variation of
tr–t has a downward slope). When tr–t values appear in the
negative domain of the graph, the predicted failure time
precedes the elapsed time and the slope failure time is thus
unpredictable.

Using the precise prediction method, when Dx = 0.01
cm, tr–t is nearly 0, i.e. the current time is predicted as the
precise prediction time, indicating that the failure time is
unpredictable. Further, when Dx = 0.05 cm, tr–t signifi-
cantly fluctuates, indicating that the prediction accuracy is
poor. However, when Dx � 0.1 cm, the prediction result is
close to the black broken line, indicating high prediction
accuracy. This result is caused by the precise prediction
method, which predicts using the displacement velocity data
at two different times. If Dx is small, the prediction accuracy
will decrease because of the increasing and decreasing of the
surface displacement even if the data exhibit a behaviour
resembling the tertiary creep.

Based on the three-data prediction method, tr–t signifi-
cantly increases or decreases for both Dx = 0.01 and
0.05 cm, after 8700 s at Dx = 0.05 cm, the prediction result
is close to the black broken line with improved accuracy.
When Dx = 0.1 cm, a table prediction result was obtained
using the precise rediction method; however the accuracy
before 8800 s was reduced by the three-data prediction
method. This demonstrates that the predicted value can
considerably vary depending on the data to be extracted.

As the least squares prediction method predicts using all
data from the start of monitoring onwards, the variation is
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limited and shows a right-downward tendency. The pre-
dicted value is plotted below the black dashed line and is
negative near the failure time, resulting in low prediction
accuracy. As Dx increases, the results approach the black
broken line with improved prediction accuracy. This is
because of data in the initial stage of measurement, showing
that the inverse-velocity is very large. As Dx increases, the
number of data and the value of inverse-velocity in the initial
stage decrease, thus improving the prediction accuracy.

The non-linear regression prediction method is close to
the black dashed line after 8700 s, even when Dx = 0.01 cm,
and comparatively high prediction accuracy results are
obtained. When Dx � 0.05 cm, good prediction accuracy is
obtained because the variation in velocity–acceleration is
small, as seen in Fig. 3c. When Dx = 0.01 cm, the constants
are a = 1.32 and a = 1.79 and the correlation coefficient is
0.94. When Dx � 0.05 cm, the constant a increases from
2.0 to 5.0 and a increase from 1.8 to 2.0. However, the
prediction accuracy is high because the correlation coeffi-
cient is around 0.99 and the curve between inverse-velocity
and time is almost linear (i.e. a is around 2.0).

Discussion

As shown in Fig. 3a, as Dx increases, the discrepancy
between measured and extracted data increases. This dis-
crepancy is evaluated using the root mean square error

(RMSE), which is a method for evaluating the variation in
data given by Eq.[8].

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

XN
i¼1

Fi�Aið Þ2
vuut ð8Þ

where N is number of target data, Fi is the measured dis-
placement at time ti, Ai is the extracted displacement at time
ti and Fi-Ai indicates an error. If there are no data at the time
ti among the extracted data, the datum for ti is projected by a
proportional distribution of the extracted data before and
after time ti. In the RMSE, the smaller the value, the smaller
the variation of the extracted data group, i.e. the greater the
reproducibility.

Figure 5 shows a comparison between the RMSE and the
correlation coefficient of the nonlinear regression equation
for the velocity–acceleration relationship when Dx is 1/5000,
1/2500, 1/1670, 1/1000, 1/500 and 1/250 of soil layer
thickness T (0.01, 0.02, 0.03, 0.05, 0.1 and 0.2 cm, respec-
tively). When Dx/T exceeds 1/1670–1/1000, the RMSE
rapidly increases and the reproducibility of measurement
data decreases; however, the correlation coefficient exceeds
0.98, indicating a very high correlation. Moreover, the cor-
relation decreases when the Dx/T is less than 1/1670–1/1000.
These results imply that the appropriate interval for
achieving high prediction accuracy in this study is 1/1670–
1/1000.
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In the least squares prediction method and nonlinear
regression prediction method, it was found that the predic-
tion accuracy tended to improve upon increasing Dx. This
suggests that additional improvement in the accuracy of
prediction is possible by rejecting the data at the initial stage
when the velocity is low (i.e. 1/v is very large). Therefore,
the method based on the moving average acceleration (i.e.
extracting the period where the average acceleration of the
five preceding steps is continuously positive) performed by
Iwata et al. (2017) was used to extract the time after 7600 s
at the tertiary creep stage. The failure time was predicted
using the least squares prediction method and nonlinear
regression prediction method for this period.

Figure 6 shows a comparison of the time variation of tr–
t with the tertiary creep stage. The prediction accuracy of the

least squares prediction method is significantly improved in
comparison with Fig. 4c. Consequently, it can be seen that
to improve the prediction accuracy, rejecting data at the
initial stage is very effective. Furthermore, the influence of
the difference of Dx is not significant because the variation in
data was small, as seen in Fig. 3c.

In comparison with Fig. 4d, the non-linear regression
prediction method shows a slight improvement in the pre-
diction accuracy above 9000 s at Dx = 0.01 cm but no
improvement at 9000 s or less. However, when Dx = 0.05
cm, the prediction accuracy for 8700 s or less declines
because the quantity of the data used in the regression
analysis is small, and the coefficient obtained in the regres-
sion analysis significantly differs owing to the slight changes
in the data.

Conclusion

We predicted the failure time of a sandy model slope using
four methods based on Fukuzono’s model and examined the
influence of measurement intervals on the predicted failure
time. The findings obtained from this study can be sum-
marised as follows:

1. The prediction accuracy decreases owing to the fluctua-
tions of the surface displacement even if the data exhibit
a behaviour resembling the tertiary creep.

2. As the measurement intervals of displacement increase,
the number of the extracted data decreases, the variation
of the extracted data group decreases, thus improving the
prediction accuracy.

3. The prediction accuracy using the precise prediction
method and three-data prediction method is inferior to
other methods because a small number of data are used to
predict the failure time and these methods are susceptible
to fluctuations.

4. The least squares prediction method and non-linear
regression prediction method give relatively stable pre-
diction results. However, when the data in the initial
stage where the velocity is low are included in the used
data, the prediction accuracy decreases.

5. The appropriate measurement interval to achieve high
prediction accuracy in this study is 1/1670–1/1000 of soil
layer thickness.

6. If the surface displacement data in the tertiary creep stage
can be extracted, the prediction accuracy of the least
squares prediction method and non-linear regression can
be significantly improved.

In this study, one problem was that the quantity of the
extracted data decreases as Dx increases because the mea-
surement data are for a small model slope. However, as the
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displacement just before the slope failure is large at the actual
slope, it is assumed that even if Dx is increased, there is no
problem with the number of acquired data being reduced.
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