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Abstract

Hydrogeological hazards now exacerbated by the ongoing
climate change pose serious challenges for the safety of
the population worldwide. Among the others, the landslide
risk can be mitigated by setting up efficient and reliable
early warning systems. To date, rainfall thresholds are one
of the most used tools to forecast the possible occurrence
of rainfall-induced failures in large regions. In Italy a
dense rain gauge network with hourly or sub-hourly
temporal resolution is available. However, in some
developing countries, where ground measurements are
still absent or are available at coarser (daily) temporal
resolution, satellite-based rainfall estimates could be a
vital alternative. For this purpose, the reliability of rainfall
thresholds defined using both satellite (SB) and
ground-based (GB) data and with hourly or daily temporal
resolution is assessed in a study area comprising the
Abruzzo, Marche and Umbria regions (AMU), central
Italy. The comparison between the performance of the
different products allows to test their capability in
eventually can GB rainfall measurements are gathered at
hourly time steps (OBS-H) from a national network and

aggregated on a daily scale (OBS-D); SB rainfall estimates
are retrieved from the Climate Prediction Center Morph-
ing Technique (CMORPH, hourly resolution), and from
the SM2RASC product, based on the application of
SM2RAIN algorithm to ASCAT (Advanced SCATterom-
eter) soil moisture product (daily resolution). Results show
that thresholds defined with GB rainfall data perform
better than those obtained using SB estimates regardless of
the temporal resolution. CMORPH and SM2RASC
thresholds are still able to predict landslide occurrence
although with a high number of false predictions.
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Introduction

Everywhere in the world is by far evident that climate
change has exacerbated hydrogeological hazards (Senevi-
ratne et al. 2012). Since the early twenty-first century, the
global temperature growth is considered to be related to
ever-increasing rainfall intensities (e.g., Trenberth et al.
2003; Watterson and Dix 2003; Hegerl et al. 2004). Such
peaks of precipitation are able to enhance the triggering of
rapid and very rapid landslides (e.g. debris flows, soil slips)
that usually do not leave people time to get rescued.

The global rise of temperature poses serious challenges in
forecasting a likely rising occurrence of rainfall-induced
landslides. Indeed, July 2019 was the month with the highest
number of fatal landslides in the world, claiming the life of
358 people (Petley 2019). Alongside the need to review the
land use policies, there is an increasing need for set up
efficient and reliable landslide early warning systems. The
challenge is global but the means to defend oneself are not
always up to it everywhere. Most of the early warning
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systems for rainfall-induced landslides in the world are
based on rainfall thresholds (Piciullo et al. 2018; Guzzetti
et al. 2020), which are in turn mostly based on rain gauge
measurements (Guzzetti et al. 2008; Segoni et al. 2018).
Most of the areas which face with problems related to
rainfall-triggered landslides do not have dense rain gauge
networks or even they do not have any. In this case, the use
of satellite-based (SB) rainfall data could be the only way to
get prompt information on the (estimated) cumulated rain-
fall. It has been found that satellite rainfall products under-
estimate the precipitation responsible for landslides if
compared to ground-based (GB) measurements (Rossi et al.
2017; Brunetti et al. 2018), thus resulting in lower cumulated
event rainfall–rainfall duration (ED) threshold curves.
However, such underestimation does not affect the product
performance in terms of capability of detecting rainfall
events resulting in landslides.

Another issue is that in many countries the temporal
resolution of the rainfall measurements is daily thus ham-
pering the up-to-date monitoring of the event. In this case,
rainfall thresholds must be represented by equations where
the duration D is in days (d) instead of hours (h), since the

thresholds are valid only for D values multiple of days
(Gariano et al. 2020).

The reliability of preventing landslide hazard using SB or
GB data and with hourly or daily temporal resolution is
assessed in a regional area of Central Italy (Fig. 1), which is
used as a benchmark case study. The selected area includes
three administrative regions, Abruzzo, Marche and Umbria
(AMU). In this study area, ED rainfall thresholds are defined
and validated both from GB and SB rainfall data at hourly
and daily temporal resolutions.

Data and Methods

GB rainfall measurements are obtained at hourly time steps
(OBS-H) from a rain gauge network managed by the Italian
national Civil Protection Department. GB data are even
aggregated on a daily scale (OBS-D) to simulate how per-
formance changes when the landslide occurrence is pre-
dicted with lower temporal resolution data. SB rainfall
estimates available in the area include the Climate Prediction
Center Morphing Technique (CMORPH, Joyce et al. 2004),

Fig. 1 Landslide distribution in
AMU (Abruzzo-Marche-Umbria)
study area
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and the SM2RASC product that is based on the application
of SM2RAIN algorithm (Brocca et al. 2014) to ASCAT
(Advanced SCATterometer) soil moisture product (Wagner
et al. 2013). Soil moisture data come from the Metop-A and
-B satellite, and have a native spatial resolution of 25 km
and a daily temporal resolution. The SM2RASC product
specifically developed for Italy for the period 2008–2015 has
been enhanced to 12.5 km after observation resampling.
CMORPH rainfall estimates are obtained from the Climate
Prediction Center of the National Oceanic and Atmospheric
Administration (NOAA). Here the high-resolution product
(8 km at the equator every 30 min) is used at hourly steps.

Most of the landslides used here (231) are from a pub-
lished catalogue (Peruccacci et al. 2017) whereas 33 are
found online for a total of 264 rainfall-induced slope failures
in the 8-year period 2008–2015. The main sources of land-
slide information are digital and printed newspapers, blogs,
technical documents, and landslide event reports (mostly
coming from Fire Brigade archives). The location of the
rainfall-induced landslides is shown in Fig. 1 (yellow dots).

The occurrence time of the failure is determined more or
less accurately based on the information available (Peruc-
cacci et al. 2017). For daily rainfall measurements
(SM2RASC and OBS-D) the landslide is arbitrarily set at the
end of the day.

Landslide information is combined with both GB and SB
rainfall data using a tool that automatically reconstructs the
(D, E) rainfall conditions responsible for the landslides and
calculates ED rainfall thresholds (Melillo et al. 2018). The
thresholds are calculated adopting a frequentist method
proposed by Brunetti et al. (2010), and modified by Peruc-
cacci et al. (2012). The threshold is a power law curve

E ¼ a � Dað Þ � Dðc�DcÞ ð1Þ
where E is the cumulated event rainfall (in mm), D is the
duration of the rainfall event (in hours or days), a is a scaling
parameter (the intercept), c is the slope (the scaling expo-
nent), and Da and Dc are the uncertainties associated with a
and c, respectively. The method allows calculating thresh-
olds at any non-exceedance probability (NEP). As an
example, 5% ED thresholds are expected to leave 5% of (D,
E) rainfall conditions below the threshold line.

The validation of the thresholds is used (i) to compare the
performance of the GB and SB rainfall products, and (ii) to
obtain the NEP value at which the threshold performs the
best for each product. For the purpose, 80% of all the (D,E)
rainfall conditions with landslides are selected randomly
(100 times), and are used to define the curves at increasing
NEPs (0.005, 0.5, 1, 1.5, 2, 3, 5, 10, 15, 20, 25, 30, 35, 40,
45, 50). Then, the remaining 20% is used to validate the
thresholds using them as binary classifiers of rainfall events
that triggered or did not trigger landslides. This allows

building a contingency table where a (D, E) pair with
landslide above the given threshold is a true positive (TP),
and below is a false negative (FN). Analogously, a rainfall
event without landslides above the threshold is a false pos-
itive (FP), and below is a true negative (TN). Finally, TPR
(true positive rate or hit rate) and the FPR (false positive rate
or false alarm rate) skill scores are calculated at the selected
NEP values:

TPR ¼ TP
TPþ FN

ð2Þ

FPR ¼ FP
FPþTN

ð3Þ

and are used to perform the receiver operating characteristic
(ROC) analysis (Fawcett 2006) for the four data sets. The
performance of the GB and SB rainfall products is then
assesses based on the minimum distance d of their ROC
curve from the perfect classification point PCP (Gariano
et al. 2015).

Results

In the following, the capability of the SB rainfall products at
hourly and daily temporal resolution to forecast
rainfall-induced landslides using the GB rainfall product as a
reference is assessed. Based on the methods and approaches
described above, the rainfall thresholds for the
hourly-resolution (CMORPH and OBS-H), and the
daily-resolution products (SM2RASC and OBS-D) are cal-
culated and validated.

Rainfall Thresholds

Figure 2 portrays the thresholds at 5% NEP for the OBS-H
(T5,OBS-H) and CMORPH (T5,CMORPH) data sets, which have
both a temporal resolution of one hour. Note that the adopted
tool does not reconstruct the rainfall conditions for all the 264
landslides as in some cases the rain is absent or it is negligible.
This happens more frequently when using SB estimates. The
two curves are somewhat parallel, but the threshold resulting
from the CMORPH estimates is lower than that calculated
with rain gauge hourly measurements (OBS-H). The thresh-
old equations at 5% NEP are listed in Table 1.

Figure 3 shows the thresholds at 5% NEP for the OBS-D
and SM2RASC data sets, which have both a temporal res-
olution of one day. As for the case of hourly data sets, the
threshold defined using SB rainfall estimates (T5,SM2RASC) is
lower and steeper than the curve calculated with rain gauge
measurements (T5,OBS-D).
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Validation of Thresholds

The validation procedure calculates the TPR and FPR skill
scores (Eqs. 2 and 3) for each data set at the previously
selected NEP values from 0.05 to 50%. The ROC curves for
the four data sets are shown in Fig. 4. The OBS-H ROC
curve exhibits the shortest minimum distance d = 0.22 from
PCP, i.e. this data set performs the best (see the inset table in
Fig. 4). The OBS-D rainfall product performs better than
CMORPH and SM2RASC, the last being the worst in terms
of distance from PCP. The NEP values of the thresholds that
minimize d for each data set vary from 15 to 35%.

Discussion and Conclusions

The aim of this study is assessing the reliability of rainfall
thresholds obtained using different rainfall data types, as a
function of their detection method (GB or SB) and their
temporal resolution (hourly or daily).

Firstly, note that rainfall thresholds in Figs. 2 and 3 are
calculated with hourly and daily temporal resolution,
respectively, and cannot be directly compared being defined
using different units of time. Nevertheless, it is worthwhile

Fig. 2 Rainfall duration D (h) versus cumulated event rainfall E
(mm) conditions that have resulted in landslides for the OBS-H (green)
and CMORPH (violet) data sets and the corresponding ED thresholds at
5% NEPs with associated uncertainty (shaded areas)

Table 1 ED rainfall threshold equations at 5% NEP calculated with GB and SB data sets for hourly and daily temporal resolution

Data set Rainfall threshold at 5% NEP Best NEP % Rainfall threshold at best NEP Units of D Units of E

OBS-H E = (7.5 ± 0.9) D(0.41±0.03) 15 E = (9.9 ± 1.1) D(0.41±0.03) h mm

CMORPH E = (2.4 ± 0.3) D(0.31±0.04) 20 E = (3.8 ± 0.5) D(0.31±0.04) h mm

OBS-D E = (15.4 ± 1.9) D(0.64±0.05) 30 E = (29.2 ± 2.6) D(0.64±0.05) d mm

SM2RASC E = (7.3 ± 0.6) D(0. 90±0.03) 35 E = (12.1 ± 0.8) D(0.90±0.03) d mm

Fig. 3 Rainfall duration D (d) versus cumulated event rainfall E
(mm) conditions that have resulted in landslides for the OBS-D (gray)
and SM2RASC (red) data sets and the corresponding ED thresholds at
5% NEPs with associated uncertainty (shaded areas)

Fig. 4 ROC curves for OBS-H (green), CMORPH (magenta), OBS-D
(gray), and SM2RASC (red) data sets. Horizontal and vertical bars
represent variation ranges of TPR and FPR for the 100 runs in which
the rainfall conditions are randomly selected. The minimum distance d
between PCP and the nearest NEP value for each curve are shown in
the inset
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to compare the cumulated rainfall (E) at D = 24 h obtained
from the four thresholds. The threshold value for E is
28.5 mm using T5,OBS-H, whereas is only 16.1 mm at D = 1
d for T5,OBS-D. The lower value obtained for the OBS-D data
set is likely due to the lower accuracy of a coarser (daily)
temporal resolution (also observed by Gariano et al. 2020).
Conversely, for CMORPH and SM2RASC the mean
cumulated rainfall at 24 h is E = 5.9 mm and 7.5 mm,
respectively. the one between the two satellite products that
provides a higher daily rainfall estimate is SM2RASC,
despite the lower temporal resolution.

Figure 4 shows that thresholds defined with GB rainfall
data (OBS-H and OBS-D) allow to better discriminate
between events that have or have not triggered landslides.
Indeed, for a hit rate TPR = 0.8 (80%), the number of
expected false positive rate is 12% for OBS-H and 26% for
OBS-D. The performance of CMORPH and SM2RASC at
the same hit rate is even worse giving a probability of false
alarms of 40% and 52%, respectively. For each data set, the
minimum distance d between PCP and the ROC curve
identifies the NEP value (inset in Fig. 4), which optimizes
the prediction performance.

Overall, the use of daily data has the global effect of
degrading the reliability of the thresholds, both for GB and
SB rainfall data.

The lower performance of SB with respect to GB rainfall
products is easily ascribed to the high-quality of OBS-H and
OBS-D data sets in AMU, which is based on *150 rain
gauges.

The use of SB rainfall products at different time resolu-
tions shows that CMORPH performs better than SM2RASC
at every NEPs. Generally, SB daily rainfall products (as
SM2RASC) could be used being aware that high TPR values
likely lead to have high FPR values, and therefore unwanted
false alarms.
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