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Abstract

A methodology for the definition and the performance
assessment of a probabilistic warning model for
rainfall-induced landslides is proposed and tested in a
study area in northern in Italy. To this aim, a database of
513 landslides triggered by rainfall in the period 2010–
2018 and satellite-based rainfall data are used. It is worth
mentioning that both landslide records and rainfall
measurements used for this study are open-access datasets
available online. The methodology developed herein can
be summarized into several successive steps. First, an
automated algorithm is applied for reconstructing the
rainfall conditions responsible for the documented land-
slides in the area of analysis, as well as the rainfall
conditions that did not result in any landslide. Then, the
conditional probabilities of landslide occurrence are
calculated using a two-dimensional Bayesian analysis,
differentiating between single landslide events (SLE) and
areal landslide events (ALE). Subsequently, several
thresholds at different conditional probabilities are eval-
uated, and different combinations are selected for the
activation of two warning levels. For each rainfall
combination, the issuing of warning levels is computed
by comparing the conditional probability of landslide
occurrence with the pre-defined warning level thresholds.
Finally, the optimal thresholds combination to be
employed, i.e. the one providing the best model perfor-
mance in terms of success and error indicators, is selected
using performance indicators derived from a 3 by 3
contingency table.
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Introduction

Rainfall-induced landslides are widespread and destructive
natural phenomena occurring all around the world that often
cause severe human and economic losses (Froude and Petley
2018). Landslide early warning systems (LEWS) are being
increasingly applied as non-structural risk mitigation mea-
sures. LEWS can be designed and employed at two different
reference scales (Calvello 2017; Pecoraro et al. 2019): local
systems address single landslides at slope scale (Lo-LEWS),
while territorial systems (Te-LEWS) deal with multiple
landslides over wide areas at regional.

Te-LEWS are used to provide generalized warnings over
appropriately-defined homogeneous warning zones of rele-
vant extension. Typically, these systems address weather-
induced landslides through the monitoring and prediction of
meteorological parameters. However, the definition of a
regional warning model may be challenging for several
reasons: the reconstruction of rainfall events, the absence of
a direct relationship between rainfall and landslide initiation,
the uncertainty of available landslide catalogues (e.g., Pici-
ullo et al. 2018; Segoni et al. 2018a).

In this study, a conceptual framework for the definition of
probabilistic rainfall thresholds for landslides at regional
scale is developed. The main steps of the proposed approach
are: (i) objective reconstruction of triggering and
non-triggering rainfall conditions taking into account their
frequency, (ii) probabilistic analysis, (iii) definition and
performance evaluation of a two-levels probabilistic warning
model. The proposed procedure has been tested by analyzing
the reported landslides in the period 2010–2018 within a
study area in northern Italy.
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Materials and Methods

Study Area and Database

The study area includes 6 of the 158 weather warning zones
(WZ) defined for hydrogeological risk management in Italy:
Emil-E, Emil-G, Ligu-B, Ligu-C, Tosc-L, and Tosc-S1
(Fig. 1). Although the selected WZ fall into three different
Italian regions, all of them are characterized by high sus-
ceptibility to the occurrence of rainfall-induced landslides.

Indeed, the study area is one of the rainiest of Italy;
moreover, climate change is producing an extraordinary
increase of rainfall intensity in there (Libertino et al. 2018).
As a consequence, this area is one of the most severely
affected by landslides in the last few years in Italy (Battistini
et al. 2013).

In particular, thunderstorms characterized by intense and
very intense rainfall cause widespread and damaging ground
effects, both on the slopes and along the drainage pattern, in
Ligu-B, Ligu-C, Tosc-L, and Tosc-S1 (Roccati et al. 2018).
Besides, the frequency of rapid shallow landslides is mark-
edly increasing in the last few years in Emil-E and Emil-G,
as shortest and more intense rainfalls, typically the main
triggering factor of shallow landslides and debris flows in the
Emilia-Romagna region, became more frequent in the
Mediterranean area due to climate change (Segoni et al.
2018b).

The FraneItalia database (Calvello and Pecoraro 2018)
reports 540 landslide events that occurred in the study area

in the period 2010–2018. 27 records have been excluded
from the analysis performed herein as they are reported as
human- or earthquake-induced landslides or landslides for
which the trigger is not known. Among the 513 landslide
events included in the dataset, 353 are classified as single
landslide events (SLE, red circles in Fig. 1) and the
remaining 160 as areal landslide events (ALE, blue squares
in Fig. 1).

The rainfall measurements were derived from the
satellite-based Tropical Rainfall Measuring Mission
(TRMM) database, which is a joint mission between NASA
and the Japan Aerospace Exploration Agency (JAXA)
launched in late November 1997 for the study of rainfall for
weather and climate research purposes (Huffmann et al.
2007). Precipitation data used in this research have been
derived from the TRMM version 3b42, which includes
gridded precipitation data collected every 3 h at a
0.25° � 0.25° (� 25 km � 25 km) spatial resolution,
extending from latitude 50° S to latitude 50° N. It is worth
mentioning that the spatial resolution is finer respect to local
rain gauge networks usually employed for early warning
purposes.

Satellite rainfall data retrieved from TRMM database
have been analyzed using Google Earth Engine (https://
earthengine.google.com), a cloud-based platform for
planetary-scale environmental data analysis. For the pur-
poses of this study, precipitation measurements have been
aggregated at 3-hourly temporal resolution and the mean
rainfall values over each territorial unit have been calculated.

Fig. 1 Shaded relief map of the
study area showing the 540
rainfall-induced “FraneItalia”
landslide records in the period
2010–2018, differentiated in
single (red circles) and areal
landslide events (blue squares).
The inset shows the location of
the six warning zones in Italy
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Methodology

The methodology developed for the definition of the prob-
abilistic thresholds of landslides occurrence can be
schematized into three main phases: reconstruction of the
rainfall events, probabilistic analysis and definition of the
probabilistic warning model.

In the first phase, the correlation between landslides and
rainfall events in the study area is conducted by recon-
structing the rainfall events, in order to convert a series of
hyetographs into a point cloud in a graph reporting trigger-
ing and non-triggering combinations of rainfall parameters.
Duration (D) and cumulated rainfall (E) are identified as the
most appropriate rainfall parameters to use. To this aim, a
modified version of the “algorithmic” approach developed
by Melillo et al. (2016) is applied.

A reduced set of parameters to account for different
physical settings and operational conditions has been con-
sidered. In particular, all the parameters are differentiated
considering the “warm” springer-summer period, CW, and
the “cold” autumn–winter period, CC (Table 1).

The automated procedure is based on several steps. In the
pre-processing step (S0), the rainfall records lower than a
predefined threshold GS are considered noise and are set to
EH = 0.0 mm. The remaining steps are differentiated into
two main logical blocks. The first block performs the auto-
matic reconstruction of the rainfall events and can be
schematized in the following four steps: (S1) detection of the
isolated rainfall events considering a dry interval, R1 and
exclusion of irrelevant events that do not exceed a prede-
fined threshold ER; (S2) identification of rainfall sub-events
proceeded and followed by dry periods with no rain, R2; (S3)
exclusion of irrelevant sub-events, whose cumulated (total)
rainfall, ES is lower than a given threshold, R3; (S4) identi-
fication of rainfall events, constituted either by a period of
continuous rainfall or by an ensemble of periods considering
a minimum dry period, R4. Successively, in the second block
the algorithm combines information on temporal occurrence
of rainfall events and landslide events, performing three
additional steps: (S5) selection of triggering and
non-triggering rainfall events; (S6) reconstruction of multiple

aggregations of rainfall sub-events that are likely to trigger
landslides; (S7) reconstruction of multiple aggregations of
rainfall sub-events that did not trigger landslides. All the
triggering and non-triggering sub-events identified by the
algorithm are equally possible.

In the second phase, a probabilistic approach based on a
two-dimensional Bayesian analysis, similar to that used by
Berti et al. (2012), is developed to calculate the landslide
probability associated to the different rainfall combinations.
To this aim, the posterior landslide probability is evaluated
considering the joint probability of the duration (D) and
cumulated rainfall (E), as follows:

PðLjD;EÞ ¼ PðLÞ � PðD;EjLÞ
PðD;EÞ ð1Þ

where: P(L|D, E) is the posterior landslide probability; P
(L) is the prior probability; P(D, E|L) is the likelihood; P(D,
E) is the marginal probability. The needed probabilities have
been determined considering that the triggering and
non-triggering rainfall conditions are expressed in terms of
multiple combinations, as follows:

PðLÞ ¼ NL

NR
ð2Þ

PðD;EÞ ¼
P

i ni;ðD;EÞ � f i
NR

ð3Þ

PðD;EjLÞ ¼
P

i ni;ðD;EjLÞ � f i
NL

ð4Þ

where: NL is the total number of landslide events that
occurred in the period of analysis; NR is the total number of
rainfall events recorded in the period of analysis; ni,(D,E) is
the number of possible rainfall conditions characterized by
specific values of D and E; ni,(D,E|L) is the number of rainfall
events characterized by specific values of D and E that
resulted in landslides; fi is the relative frequency, defined as

Table 1 Parameters used for the
application of the algorithm
developed by Melillo et al. (2016)

Step Parameter name Parameter value Unit

CW CC

S0 GS 0.2 0.2 mm

S1 ER 0.2 0.2 mm

S1 R1 3 6 h

S2 R2 6 12 h

S3 R3 1 1 mm

S4 R4 48 96 h
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the inverse of the total number of possible aggregations of
sub-events for a given rainfall event.

In the third phase, a warning model is defined employing
two warning levels (WL1 and WL2) associated to the
exceedance of two thresholds (P1 and P2) based on the
probabilities of occurrence of SLE and ALE (Table 2).

In the fourth phase, the performance of the warning
model is analyzed using statistical indicators, following a
procedure similar to that proposed by Calvello and Piciullo
(2016). In particular, the performance analysis of a 3 by 3
contingency matrix is based on a set of two performance
criteria, both of them assigning a meaning to all the elements
of the matrix (Fig. 2). The “alert classification” criterion
employs an alert classification scheme derived from a stan-
dard 2 by 2 contingency table, and identifies correct pre-
dictions (CP), false alerts (FA), missed alerts (MA), and true
negatives (TN). The “grade of accuracy” criterion assigns a
colour code to the components of the matrix in relation to the
agreement between a given warning event and a given
landslide event. Using this criterion, the elements are clas-
sified in four colour-coded classes, as follows: green (Gre)
for the elements which are assumed to be representative of

the best model response, yellow (Yel) for elements repre-
sentative of minor model errors, red (Ora) for elements
representative of a significant model error and purple (Red)
for elements representative of a severe model error.

Considering the two performance criteria, several per-
formance indicators can be derived. Table 3 lists the indi-
cators used in this study.

Results

Rainfall Events Reconstruction

1903 rainfall conditions (D, E) have been identified and
plotted in log–log coordinates (Fig. 3). The 207 rainfall
conditions responsible for triggering 353 SLE (red circles in
Fig. 3) and the 129 rainfall conditions responsible for 160
ALE (blue squares in Fig. 3) are in the range of duration
3 � D � 915 h and in the range of cumulated rainfall
1.02 � E � 243.54 mm. The non-triggering rainfall con-
ditions, reconstructed in the same period, are 1567 (green
circles in Fig. 3). They are in the ranges of 3 � D � 495 h
and 1.01 � E � 311.87 mm.

It is worth mentioning that rainfall combinations char-
acterized by E < 2 mm (grey circles in Fig. 3) constitute a
negligible amount of rain, thus these combinations have
been excluded from the analysis because they are considered
irrelevant for the purpose of early warning.

Probabilistic Analysis

The definition of the probabilistic thresholds is based on a
two-dimensional Bayesian analysis evaluating the condi-
tional probability of landslide occurrence given the joint
probability of D and E. According to the available data, the

Table 2 Warning levels defined
considering the probabilities of
SLE and ALE

Warning level Correlation law

WL1 P(L|D, E)SLE > P1

WL2 P(L|D, E)SLE > P2 or P(L|D, E)ALE > P1

Landslideevents

no SLE ALE

W
ar

ni
ng

 ev
en

ts no TN MA MA

WL1 FA CP CP

WL2 FA CP CP

Fig. 2 Contingency matrix used for the performance analysis of the
probabilistic rainfall thresholds

Table 3 Performance indicators
used for the performance analysis

Performance indicator Symbol Formula

Efficiency index Ieff (TN + CP)/Rijdij

Odds ratio OR (TN + CP)/(FA + MA)

Probability of serious mistakes PSM Red/Rijdij

Probability of serious missed alerts PSM-MA MARed/MA

Probability of serious false alerts PSM-FA FARed/FA

Missed and false alert balance MFB MA/(MA + FA)
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prior landslide probability, P(L) has been calculated using
Eq. (2) and is equal to 18.79% for SLE and 7.44% for ALE.

Successively, the D, E space reported in Fig. 3 has been
divided in 6 � 6 cells, both for SLE and ALE, and the
posterior landslide probabilities, P(L|D, E), have been cal-
culated by applying Eq. (1). Looking at SLE, Fig. 4a dis-
plays that long-duration (12 � D � 915 h), high-
accumulation rainfall (50 � E � 243.54 mm) events
show the highest landslide probabilities (P(L|D, E) > 40%).
The only singularity is represented by the combination
5 � D � 10 h, 50 � E � 243.54 mm, for which P(L|D,
E) = 63.64%. However, this can be considered a singularity,
as it represents only 0.02% of the rainfall combinations that
occurred from 2010 to 2018. The results are substantially
confirmed for ALE (Fig. 4b). Indeed, apart for the singu-
larity already highlighted for SLE, the highest values of the
posterior probability (P(L|D, E) > 20%) are reached again
for 12 � D � 915 h and 50 � E � 243.54 mm.

Probabilistic Warning Model

A performance evaluation has been conducted in order to
identify the optimal two thresholds to be employed in the
warning model. Several combinations have been compared,
by varying the lower threshold, P1 and the upper threshold,
P2. As significant differences in the performance evaluation
depend only on the variations of P1, the results are reported
grouping the thresholds on the basis of P1 (Table 4).

Table 5 shows the results obtained for the five combi-
nations considering the elements of the correlation matrix

reported in Fig. 2. Higher values of CP and Yel are obtained
when the lower probabilities values are considered to define
WL1 (P1 from 10 to 20%). In particular, passing from P20,40–

50 to P30,50 results in a reduction of CP of about 37%.
However, an increase of the P1 threshold results in a sig-
nificant reduction of the FA and Red errors and increasing
values of TN.

Table 6 shows the results in terms of success (Ieff and OR)
and error (PSM, PSM-MA, PSM-FA, and MFB) indicators for the
five different thresholds combinations reported in Table 4.
Concerning the success indicators and, in particular, the
efficiency index (Ieff), raising the value of P1, a general
increase is observed, as it is evident when comparing P10,20–

50 and P12.5,25–50 to P20,40–50 and P30,50. The odds ratio (OR),
which can be considered a rate between correct and wrong
predictions, obviously increases with the reduction of FA
and the increment of TN. However, it should be noted that
passing from P20,40–50 to P30,50 the Probability of serious
missed alerts (PSM-MA) shows an increment of about 25%.
Besides, the majority of the errors are missed alerts, as
demonstrated by the high value of MFB (60.72%). For these
reasons, P20,40–50 can be considered the best-performing
thresholds combination of the 5 considered herein.
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Fig. 3 Rainfall duration (D) versus cumulated rainfall (E) in the study
area from 2010 to 2018. Graph plotted in log–log coordinates
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Conclusions

In this study, a Bayesian approach has been developed for
the definition of a probabilistic warning model for
rainfall-induced landslides. It has been defined using a
landslide inventory retrieved from online news and
satellite-based rainfall measurements. Both landslide records
and satellite rainfall monitoring used in this study come from
open-access datasets available online.

Firstly, the triggering and non-triggering rainfall condi-
tions have been objectively reconstructed. Then, a Bayesian
approach has been applied for calculating the posterior
landslide probabilities of occurrence of single landslide
events (SLE) and areal landslide events (ALE). Finally, a
probabilistic warning model employing two thresholds has
been defined and its performance evaluated using perfor-
mance indicators derived from a 3 by 3 contingency table.

The performed analyses showed that P20,40–50 is the
best-performing thresholds combination, as it represents the

best compromise between the minimization of incorrect
landslide predictions and the maximization of the correct
predictions. Generally, the probabilistic warning model
revealed an overall good performance in predicting landslide
events triggered by significantly different rainfall conditions.
Although the performance of the model can be further
refined considering wider and longer datasets, the prelimi-
nary results achieved herein clearly allow to highlight its
potential for landslide early warning purposes.
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