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Foreword by Mami Mizutori

More landslides can be expected as climate change exacerbates rainfall intensity. The
long-term trend of the last 40 years has seen the number of major recorded extreme weather
events almost double, notably floods, storms, landslides, and wildfires.

Landslides are a serious geological hazard. Among the host of natural triggers are intense
rainfall, flooding, earthquakes or volcanic eruption, and coastal erosion caused by storms that
are all too often tied to the El Niño phenomenon. Human triggers including deforestation,
irrigation or pipe leakage, and mine tailings, or stream and ocean current alteration can also
spark landslides. Landslides can also generate tsunamis, as Indonesia experienced in 2018.

Globally, landslides cause significant economic loss and many deaths and injuries each
year. Therefore, it is important to understand the science of landslides: why they occur, what
factors trigger them, the geology associated with them, and where they are likely to happen.

Landslides with high death tolls are often a result of failures in risk governance, poverty
reduction, environmental protection, land use and the implementation of building codes.
Understanding the interrelationships between earth surface processes, ecological systems, and
human activity is the key to reducing landslide risk.

The Sendai Framework for Disaster Risk Reduction, the global plan to reduce disaster
losses adopted in 2015, emphasizes the importance of tackling these risk drivers through
improved governance and a better understanding of disaster risk.

One important vehicle for doing that is the Sendai Landslide Partnerships 2015–2025 for
global promotion of understanding and reduction of landslide risk facilitated by the Interna-
tional Consortium on Landslides (ICL) and signed by the leaders of 22 global stakeholders,
including the UN Office for Disaster Risk Reduction (UNDRR), during the Third UN World
Conference on Disaster Risk Reduction in Sendai, Japan.

The Sendai Landslide Partnerships—featured on the Sendai Framework Voluntary Com-
mitments online platform—helps to provide practical solutions and tools, education, and
capacity building, to reduce landslide risks.

The work done by the Sendai Partnerships can be of value to many stakeholders including
civil protection, planning, development and transportation authorities, utility managers, agri-
cultural and forest agencies, and the scientific community.
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UNDRR fully supports the work of the Sendai Landslide Partnerships and ICL and looks
forward to an action-oriented outcome from the 5th World Landslide Forum to be held in
November 2020 in Kyoto, Japan. Successful efforts to reduce disaster losses are a major
contribution to achieving the overall 2030 Agenda for Sustainable Development.

Mami Mizutori
United Nations Special Representative of the

Secretary-General for Disaster Risk Reduction
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Foreword by the Assistant Director-General for the
Natural Sciences Sector of UNESCO for the Book
of the 5th World Landslide Forum

As the world slowly recovers from the COVID-19 global pandemic, and looking back at the
way this crisis developed, it becomes evident that as a global community we were not prepared
for an event of this scale. Although not commonly perceived as such, biological hazards such
as epidemics are included in the Sendai Framework for Disaster Risk Reduction 2015–2030.
In that sense, the preparedness approach for a pandemic is very similar to that of a geophysical
natural hazard such as landslides.

Although natural hazards are naturally occurring phenomena, the likelihood of their
occurrence and of associated disasters is rising. Climate change, urban pressure,
under-development and poverty and lack of preparedness are increasingly transforming these
natural hazards into life-threatening disasters with severe economic impacts. Therefore,
Disaster Risk Reduction (DRR) is gaining momentum on the agenda of the UN system of
Organizations including UNESCO. While the Sendai Framework for Disaster Risk Reduction
2015–2030 is the roadmap for DRR, other global agendas including the Sustainable Devel-
opment Goals, the Paris Climate Agreement and the New Urban Agenda have targets which
cannot be attained without DRR.

In shaping its contribution to those global agendas, UNESCO is fully committed in sup-
porting its Member States in risk management, between its different mandates and disciplines
and with relevant partners. The International Consortium on Landslides (ICL) is UNESCO’s
key partner in the field of landslide science. The Organization’s support to the Consortium is
unwavering. Since ICL was established in 2002, the two organizations have a long history of
cooperation and partnership and UNESCO has been associated with almost all of ICL
activities. I am very glad that ICL and UNESCO are mutually benefitting from their
collaboration.

The 5th World Landslide Forum (WLF5) is expected to represent a milestone in the history
of landslide science particularly for scientists and practitioners. One of the major outcomes of
WLF5 will be the Kyoto 2020 Commitment for global promotion of understanding and
reducing landslide disaster risk (KLC2020). This commitment is expected to strengthen and
expand the activities of the Sendai Landslide Partnership 2015–2025. With UNESCO already
engaged as a partner, the adoption of this international commitment will raise global aware-
ness on landslide risk and mobilize wider partnerships that draw together stakeholders from all
levels of society, across different regions, sectors and disciplines.

It is my great pleasure to congratulate the organizers for holding this event and assure you
that UNESCO is fully committed in contributing to its success. As part of that contribution,
our Organization is proud to host a session on landslides and hazard assessment at
UNESCO-designated sites such as natural World Heritage sites, biosphere reserves and
UNESCO Global Geoparks. This session aims to assess landslide impacts on our shared
cultural and natural heritage, providing the best opportunity to generate public awareness and
capacity development for landslide disaster reduction.
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I am confident that WLF5 will contribute to further advance the knowledge of both sci-
entists and practitioners regarding landslide disaster risk reduction. This book paves the way
for the science, knowledge and know-how which will feature in the deliberations of the
Forum. UNESCO commends all of the contributors to this publication. I look forward to an
enhanced collaboration between UNESCO and ICL in future activities and undertakings.

Shamila Nair-Bedouelle
Assistant Director-General for Natural Sciences

UNESCO
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Preface I

Understanding and Reducing Landslide Disaster Risk

Book Series: ICL Contribution to Landslide Disaster Risk

The International Consortium on Landslides (ICL) was established in pursuance of the 2002
Kyoto Declaration “Establishment of an International Consortium on Landslides,” with its
Statutes adopted in January 2002. The Statutes define the General Assembly of ICL as
follows: in order to report and disseminate the activities and achievements of the Consortium,
a General Assembly shall be convened every 3 years by inviting Members of the International
Consortium on Landslides, individual members within those organizations, and all levels of
cooperating organizations and individual researchers, engineers, and administrators. The
General Assembly developed gradually prior to, during and after its first meeting in 2005. In
the light of the 2006 Tokyo Action Plan, the Assembly was further facilitated at, and following
the First World Landslide Forum held in November 2008. On the occasion of each of its
triennial forums, ICL publishes the latest progress of landslide science and technology for the
benefit of the whole landslide community including scientists, engineers, and practitioners in
an understandable form. Full color photos of landslides and full color maps are readily
appreciated by those from different disciplines. We have published full color books on
landslides at each forum. In 2019, ICL created a new book series “ICL Contribution to
Landslide Disaster Risk Reduction” ISSN 2662-1894 (print version) and ISSN 2662-1908
(electronic version). Six volumes of full color books Understanding and Reducing Landslide
Disaster Risk will be published in 2020 as the first group of books of this series.

The Letter of Intent 2005 and the First General Assembly 2005

The United Nations World Conference on Disaster Reduction (WCDR) was held in Kobe,
Japan, 18–22 January 2005. At this Conference, ICL organized session 3.8 “New international
Initiatives for Research and Risk Mitigation of Floods (IFI) and Landslides (IPL)” on 19
January 2005 and adopted a “Letter of Intent” aimed at providing a platform for a holistic
approach in research and learning on ‘Integrated Earth System Risk Analysis and Sustainable
Disaster Management’. This Letter was agreed upon and signed, during the first semester of
2005, by heads of seven global stakeholders including the United Nations Educational, Sci-
entific and Cultural Organization (UNESCO), the World Meteorological Organization
(WMO), the Food and Agriculture Organization of the United Nations (FAO), the United
Nations International Strategy for Disaster Risk Reduction (UNISDR-currently UNDRR), the
United Nations University (UNU), the International Council for Science (ICSU-Currently
ISC), and the World Federation of Engineering Organizations (WFEO).

The first General Assembly of ICL was held at the Keck Center of the National Academy of
Sciences in Washington D.C., USA, on 12–14 October 2005. It was organized after the
aforementioned 2005 World Conference on Disaster Reduction (WCDR). ICL published the
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first full color book reporting on Consortium activities for the initial 3 years, 2002–2005 titled
“Landslides-Risk analysis and sustainable disaster management”. In the preface of this book,
the Letter of Intent for Integrated Earth System Risk Analysis and Sustainable Disaster
Management was introduced. Results of the initial projects of the International Programme on
Landslides (IPL) including IPL C101-1 Landslide investigation in Machu Picchu World
Heritage, Cusco, Peru and previous agreements and MoU between UNESCO, ICL and the
Disaster Prevention Research Institute of Kyoto University including UNESCO/KU/ICL
UNITWIN Cooperation programme were published as well in this book.

The 2006 Tokyo Action Plan and the First World Landslide Forum 2008

Based on the Letter of Intent, the 2006 Tokyo Round-Table Discussion—“Strengthening
Research and Learning on Earth System Risk Analysis and Sustainable Disaster Management
within UN-ISDR as Regards Landslides”—towards a dynamic global network of the Inter-
national Programme on Landslides (IPL) was held at the United Nations University, Tokyo, on
18–20 January 2006. The 2006 Tokyo Action Plan—Strengthening research and learning on
landslides and related earth system disasters for global risk preparedness—was adopted.
The ICL exchanged Memoranda of Understanding (MoUs) concerning strengthening coop-
eration in research and learning on earth system risk analysis and sustainable disaster man-
agement within the framework of the United Nations International Strategy for Disaster
Reduction regarding the implementation of the 2006 Tokyo action plan on landslides with
UNESCO, WMO, FAO, UNISDR (UNDRR), UNU, ICSU (ISC) and WFEO, respectively in
2006. A set of these MoUs established the International Programme on Landslides (IPL) as a
programme of the ICL, the Global Promotion Committee of IPL to manage the IPL, and the
triennial World Landslide Forum (WLF), as well as the concept of the World Centres of
Excellence on Landslide Risk Reduction (WCoE).

The First World Landslide Forum (WLF1) was held at the Headquarters of the United
Nations University, Tokyo, Japan, on 18–21 November 2008. 430 persons from 49
countries/regions/UN entities were in attendance. Both Hans van Ginkel, Under
Secretary-General of the United Nations/Rector of UNU who served as chairperson of the
Independent Panel of Experts to endorse WCoEs, and Salvano Briceno, Director of UNISDR
who served as chairperson of the Global Promotion Committee of IPL, participated in this
Forum. The success of WLF1 paved the way to the successful second and third World
Landslide Forum held in Italy and China respectively.

The Second World Landslide Forum 2011 and the Third World Landslide
Forum 2014

The Second World Landslide Forum (WLF2)—Putting Science into Practice—was held at the
Headquarters of the Food and Agriculture Organization of the United Nations (FAO) on 3–9
October 2011. It was jointly organized by the IPL Global Promotion Committee (ICL,
UNESCO, WMO, FAO, UNDRR, UNU, ISC, WFEO) and two ICL members from Italy: the
Italian Institute for Environmental Protection and Research (ISPRA) and the Earth Science
Department of the University of Florence with support from the Government of Italy and
many Italian landslide-related organizations. It attracted 864 participants from 63 countries.

The Third World Landslide Forum (WLF3) was held at the China National Convention
Center, Beijing, China, on 2–6 June 2014. A high-level panel discussion on an initiative to
create a safer geoenvironment towards the UN Third World Conference on Disaster Risk
Reduction (WCDRR) in 2015 and forward was moderated by Hans van Ginkel, Chair of
Independent Panel of Experts for World Centers of Excellence (WCoE). In a special address to
this high-level panel discussion, Irina Bokova, Director-General of UNESCO, underlined that
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countries should be united to work against natural disasters and expressed commitment that
UNESCO would like to further deepen cooperation with ICL. Ms. Bokova awarded certifi-
cates to 15 World Centres of Excellence.

The Sendai Landslide Partnerships 2015 and the Fourth World Landslide
Forum 2017

The UN Third World Conference on Disaster Risk Reduction (WCDRR) was held in Sendai,
Japan, on 14–18 March 2015. ICL organized the Working Session “Underlying Risk Factors”
together with UNESCO, the Japanese Ministry of Land, Infrastructure, Transport and Tourism
(MLIT) and other competent organizations. The session adopted ISDR-ICL Sendai Partner-
ships 2015–2025 (later changed to Sendai Landslide Partnerships) for global promotion of
understanding and reducing landslide disaster risk as a Voluntary Commitment to the World
Conference on Disaster Risk Reduction, Sendai, Japan, 2015 (later changed to Sendai
Framework for Disaster Risk Reduction). After the session on 16 March 2015, the Partner-
ships was signed by Margareta Wahlström, Special Representative of the UN
Secretary-General for Disaster Risk Reduction, Chief of UNISDR (UNDDR), and other
representatives from 15 intergovernmental, international, and national organizations. Fol-
lowing the Sendai Landslide Partnerships, the Fourth World Landslide Forum was held in
Ljubljana, Slovenia from 29 May to 2 June in 2017. On that occasion, five volumes of full
color books were published to disseminate the advances of landslide science and technology.
The high-level panel discussion on 30 May and the follow-up round table discussion on 31
May adopted the 2017 Ljubljana Declaration on Landslide Risk Reduction. The Declaration
approved the outline of the concept of “Kyoto 2020 Commitment for global promotion of
understanding and reducing landslide disaster risk” to be adopted at the Fifth World Landslide
Forum in Japan, 2020.

The Fifth World Landslide Forum 2020 and the Kyoto Landslide
Commitment 2020

The Fifth World Landslide Forum was planned to be organized on 2–6 November 2020 at the
National Kyoto International Conference Center (KICC) and the preparations for this event
were successfully ongoing until the COVID-19 pandemic occurred over the world in early
2020. The ICL decided to postpone the actual Forum to 2–6 November 2021 at KICC in
Kyoto, Japan. Nevertheless, the publication of six volumes of full color books Understanding
and Reducing Landslide Disaster Risk including reports on the advances in landslide science
and technology from 2017 to 2020 is on schedule. We expect that this book will be useful to
the global landslide community.

The Kyoto Landslide Commitment 2020 will be established during the 2020 ICL-IPL
Online Conference on 2–6 November 2020 on schedule. Joint signatories of Kyoto Landslide
Commitment 2020 are expected to attend a dedicated session of the aforementioned Online
Conference, scheduled on 5 November 2020 which will also include and feature the Decla-
ration of the launching of KLC2020. Landslides: Journal of the International Consortium on
Landslides is the common platform for KLC2020. All partners may contribute and publish
news and reports of their activities such as research, investigation, disaster reduction admin-
istration in the category of News/Kyoto Commitment. Online access or/and hard copy of the
Journal will be sent to KLC2020 partners to apprise them of the updated information from
other partners. As of 21 May 2020, 63 United Nations, International and national organiza-
tions have already signed the KLC2020.
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Call for Partners of KLC2020

Those who are willing to join KLC2020 and share their achievements related to understanding
and reducing landslide disaster risk in their intrinsic missions with other partners are invited to
inform the ICL Secretariat, the host of KLC2020 secretariat (secretariat@iclhq.org). The ICL
secretariat will send the invitation to the aforementioned meeting of the joint signatories and
the declaration of the launching of the KLC2020 on 5 November 2020.

Eligible Organizations to be Partners of the KLC2020

1. ICL member organizations (full members, associate members and supporters)
2. ICL supporting organization from UN, international or national organizations and

programmes
3. Government ministries and offices in countries having more than 2 ICL on-going members
4. International associations /societies that contribute to the organization of WLF5 in 2021

and WLF6 in 2023
5. Other organizations having some aspects of activities related to understanding and

reducing landslide disaster risk as their intrinsic missions.
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Appendix: World Landslide Forum Books
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WLF Place/participants Title Editors Publisher/pages

WLF0
(1st
General
Assembly)
2005

Washington D.C.,
USA
59 from 17
countries/UNs

Landslides-Risk
Analysis and
Sustainable Disaster
Management

Kyoji Sassa,
Hiroshi Fukuoka,
Fawu Wang,
Goghui Wang

Springer/377 pages
ISBN:
978-3-540-2864-6

WLF1
2008

Tokyo, Japan
430 from 49
countries/regions/UNs

Landslides-Disaster
Risk Reduction

Kyoji Sassa,
Paolo Canuti

Springer/649 pages
ISBN:
978-3-540-69966-8

WLF2
2011

Rome, Italy
864 from 63 countries

Landslide Science
and Practice
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Landslides represent a major cause of loss of life, injuries, property damage, socio-economic
disruption and environmental degradation. Froude and Petley (2018) determined that, in the
period from January 2004 to December 2016, 55.997 people were killed in 4.862 landslide
events, with Asia representing the dominant geographical area in terms of distribution.

A contribution to the implementation of effective disaster risk reduction strategies is pro-
vided by landslide monitoring and early warning, which are tools to forecast the potential
occurrence of disasters.

Landslide monitoring means comparing landslide conditions (e.g. areal extent, rate of
movement, surface topography or soil moisture) over time, in order to assess a landslide’s
activity. The measurement of the superficial displacement of a slope often represents the most
effective method for defining its behaviour, allowing for the observation of the response to
triggering factors and for the assessment of the effectiveness of the mitigation measures
(Tofani et al., 2013).

The retrieval over time of superficial ground displacements can be based on conventional
geotechnical techniques, topographical techniques and remote sensing. In particular, remote
sensing images represent a powerful tool to measure landslide displacement, as they offer a
synoptic view that can be repeated at different time intervals and can be available at various
scales.

Earth Observation (EO) techniques are very effective for landslide detection, mapping,
monitoring and hazard assessment. Applications are originating from nearly all types of
sensors available today (Tofani et al., 2013). Rapid developments in this field are fostered by
the very high spatial resolution obtained by optical systems (currently in the order of tens of
centimetres) and by the launching of SAR sensors, purposely built for interferometric appli-
cations with revisiting times of few days, such as TerraSAR-X, COSMO-SkyMed and
Sentinel-1.

Synthetic Aperture Radar (SAR) techniques have been demonstrated to be highly valuable
in measuring land motion. Unlike conventional geodetic monitoring systems, SAR-based
applications permit the measurement of surface deformation over vast areas with millimetre to
centimetre accuracy and at a frequency varying between 1 month to several days with the
earliest satellites. In 2014, the launch of the Sentinel-1 mission provided a new opportunity for
InSAR (Interferometric SAR) monitoring applications due to increased acquisition frequency
and the regularity of acquisitions (Raspini et al., 2019).

Advanced terrestrial remote sensing technologies, such as Ground-Based SAR
(GB-InSAR), Terrestrial Laser Scanner (TLS), Infrared Thermography (IRT) and Digital
Photogrammetry (DP) are nowadays applied in the field of slope instability detection, mapping
and monitoring, for short-/long-term landslide management (real-time, near real-time and
deferred time) (Casagli et al., 2017). They are characterized by operational efficiency and
accuracy of data not reached by traditional methods: high-resolution acquisition, multifunction
versatility, device portability, low-cost sensors, easy and fast data processing. Such equipment
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allows for systematic and easily updatable acquisitions of data that may also enhance the
implementation of effective early warning systems (EWSs)at slope scale (Casagli et al. 2017).

According to United Nations International Strategy for Disaster Reduction (UNISDR,
2009), an EWS is defined as “the set of capacities needed to generate and disseminate timely
and meaningful warning information to enable individuals, communities and organizations
threatened by a hazard to prepare and to act appropriately and in sufficient time to reduce the
possibility of harm or loss”. This definition encompasses both technical-scientific and
social-economic elements, that altogether mark the important, and often neglected, difference
between a mere monitoring system and an EWS.

The definition above also includes the concept that EWSs must be people-centred, that is
the objective must be to empower individuals and communities threatened by hazards to act
and reduce the possibility of loss (UNISDR, 2006), meaning that the population is not a
passive recipient of authorities’ instructions but is an active participant of the civil protection
system.

Two categories of EWSs can be defined on the basis of their scale of analysis: local systems
for single slopes and regional systems. Local-scale landslide EWSs are based on reliable
continuous monitoring of relevant indicators (e.g. displacements, rainfall, groundwater level)
that are assumed to be precursory of landslides triggering or reactivations and that can be
different depending on landslide typology. There are two main approaches for forecasting
aimed at early warning (Intrieri et al., 2019): one makes use of thresholds, i.e. quantitative
signals whose exceeding suggests a probable failure but no time frame for such an occurrence
can be provided; the other approach employs empirical or semi-empirical forecasting methods,
typically based on creep models, that implement equations and/or graphical solutions to obtain
the time of failure.

In a regional-scale EWS two approaches are mainly used: empirical approaches based on
rainfall thresholds and physically based deterministic models. While the first is widely used for
operational applications at the regional scale, the latter are more commonly applied in smaller
areas, since the main constraint to their application at the regional scale is the poor knowledge
of the spatial organization of the hydrological and geotechnical parameters due to the extreme
heterogeneity and inherent variability of the soil when considered at the large scale (Tofani
et al., 2016).

The importance of EWSs for Disaster Risk Reduction (DRR) is highlighted in several risk
reduction policies proposed by international organizations such as the Sendai Framework for
Disaster Risk Reduction 2015–2030 that was adopted at the Third UN World Conference on
Disaster Risk Reduction in Sendai, Japan, on 18 March 2015.

Also the ISDR-ICL Sendai Partnership 2015–2025 (Sassa, 2015), that proposes tools for
implementing and monitoring the post-2015 framework for disaster risk reduction and the
sustainable development goals, agree on the development of fields of cooperation in research
and capacity building focused on the development of people-centred early warning technology
for landslides with increased precision and reliable prediction both in time and location,
especially in a changing climate context. Furthermore, the 2020 Kyoto Commitment
(KC2020) for global promotion of understanding and reducing landslide disaster risk that is
duty to the Sendai Landslide Partnerships 2015–2025, the Sendai Framework for Disaster Risk
Reduction 2015–2030, the 2030 Agenda Sustainable Development Goals, the New Urban
Agenda and the Paris Climate Agreement (Sassa, 2019), clearly highlights the promotion of
people-centred early warning technologies for landslides.

This volume compiles the results of the studies on landslide monitoring and early warning
conducted all over the world. The volume collects one Theme lecture, one Keynote paper and
37 research papers from 17 countries (Australia, China, Czech republic, France, Germany,
Greece, India, Indonesia, Italy, Japan, New Zealand, Norway, Switzerland, Taiwan, United
Kingdom, Uzbekistan, Vietnam).
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The volume starts with the Theme lecture entitled “Monitoring and Early Warning Sys-
tems: Applications and Perspectives” which illustrates and discusses several case studies in
which different risk mitigation strategies based on EWSs are adopted. Each of the cases
presented shows a peculiarity that can help in the definition of a modern and reliable landslide
EWS, while the recent and upcoming technological and scientific advancements are the
premise of even more accurate and meaningful landslide EWSs.

The volume is then divided into two parts: Part I: Monitoring and Remote Sensing for
Landslide Risk Mitigation which collects 18 papers and Part II: Landslide Early Warning
Systems, Forecasting Models and Time Prediction of Landslides which includes 20 papers.

Part I includes the Keynote lecture entitled “Defining Kinematic and Evolutive Features of
Earth Flows Using Integrated Monitoring and Low-Cost Sensors” in which an integrated
monitoring system based on traditional monitoring techniques and specifically developed
low-cost sensors has allowed for the reconstruction of the relationship among basal-slip
surface geometry, deformation styles and pattern, geomorphic structures, movement velocity
and sediment discharge during ordinary and extraordinary movements for three earthflows in
southern Italy. Part I includes also manuscripts on the application of different monitoring
techniques for landslide investigation and risk management, comprising conventional
geotechnical techniques, remote sensing images with special reference to PSI techniques and
geophysical techniques.

Part II contains papers concerning the development and application of EWSs, the fore-
casting of landslides at the regional scale and papers on the time prediction of the landslide
occurrence. The majority of the papers of this part focuses on the development and application
of regional-scale EWSs based on the use of rainfall thresholds, some papers focus on the
application of innovative monitoring techniques for the set-up of local EWSs while few others
propose innovative methods for time prediction of landslides at the regional and local scale.

Florence, Italy Nicola Casagli
Veronica Tofani
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Monitoring and Early Warning Systems:
Applications and Perspectives

Nicola Casagli, Emanuele Intrieri, Tommaso Carlà, Federico Di Traglia,
William Frodella, Giovanni Gigli, Luca Lombardi,
Massimiliano Nocentini, Federico Raspini, and Veronica Tofani

Abstract

One of the most efficient and cost-effective tools for
landslide risk mitigation is often the setup of an early
warning system (EWS). Even if the latter encompass both
technical-scientific and social-economic topics, the focus
of this note is on the monitoring and forecasting compo-
nents of a slope-scale landslide EWS. In this framework, a
landslide monitoring system is required to provide reliable
and continuously updated data for quantitatively catching
the scenario evolution, thus allowing for correct forecast-
ing analyses and prompt actions for risk mitigation.
Landslide monitoring systems based on remote sensing
techniques represent efficient and robust tools for risk
mitigation, allowing for a low environmental and eco-
nomic impact and high operator safety in difficult
environments. Among these techniques, radar interferom-
etry is one of the most widely adopted and reliable
methods, whose advantages include very high accuracy,
operation during all weather conditions, and high spatial
and temporal coverage. Radar interferometry output data,
due to their high accuracy and acquisition frequency
(which is getting higher and higher for satellite applica-
tions too), perfectly fit in the prediction activity, enabling
very often to make accurate and prompt time of failure or
scenario evolution forecasts. In this note, a number of case
studies are presented, describing the employed monitoring
systems and the associated techniques adopted for risk
mitigation. In particular, an integrated EWS for rockslide
risk mitigation, a landslide EWS in a volcanic environ-
ment, a landslide failure prediction using satellite InSAR
and a rockfall monitoring and associated time of failure
prediction are presented. Each of the cases presented

shows a peculiarity that can help in the definition of the
characteristics and potential of a modern and reliable
landslide EWS, while the recent and upcoming techno-
logical and scientific advancements are the premise of
even more accurate and meaningful landslide EWSs.
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Introduction

Among natural hazards, landslides play a relevant role in
terms of life loss. Varnes and IAEG Commission on Land-
slides (1984) found out that ca. 14% of total casualties from
1971 to 1975 were due to slope failure, although accurate
estimations are difficult since landslides are frequently con-
sidered secondary effects and deaths are often attributed to
the primary trigger (storms, earthquakes) (Petley 2012).
Focusing on more recent years, Froude and Petley (2018)
determined that, in the period from January 2004 to
December 2016, 55.997 people were killed in 4.862 land-
slide events, with Asia representing the dominant geo-
graphical area in terms of distribution. On the other hand, the
global annual cost related to landslides is about $19.8 bil-
lion, which is about 17% of the average annual global nat-
ural disaster losses (Haque et al. 2016).

These numbers highlight the importance of continuous
work from both researchers and practitioners in the field of
landslide risk mitigation. Among the many possible
approaches, one that is generally considered cost-effective
and complementary is the setup of early warning systems
(EWS) (Intrieri et al. 2013).

According to United Nations International Strategy for
Disaster Reduction (UNISDR 2009), an EWS is defined as
“the set of capacities needed to generate and disseminate
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timely and meaningful warning information to enable indi-
viduals, communities and organizations threatened by a
hazard to prepare and to act appropriately and in sufficient
time to reduce the possibility of harm or loss”.

This definition encompasses both technical-scientific and
social-economic elements, that altogether mark the impor-
tant, and often neglected, difference between a mere moni-
toring system and an EWS. These elements can be resumed
as:

• knowledge of the risks;
• monitoring and analysis of the hazards;
• forecasting;
• communication or dissemination of alerts and warnings;
• local capabilities to respond to the warnings received

(which includes the education of the population in “nor-
mal times”).

These and other components of an EWS have been fur-
ther detailed by Intrieri et al. (2012) and Fathani et al.
(2016).

The expression “end-to-end warning system” is also used
to emphasize that warning systems need to span all steps
from hazard detection through to community response
(UNISDR 2009).

The definition above also includes the concept that EWSs
must be people-centred, that is the objective must be to
empower individuals and communities threatened by haz-
ards to act and reduce the possibility of loss (UNISDR
2006), meaning that the population is not a passive recipient
of authorities’ instructions but is an active participant of the
civil protection system.

The importance of EWSs for Disaster Risk Reduction
(DRR) is highlighted in several Risk reduction policies
proposed by international organizations such as the Sendai
Framework for Disaster Risk Reduction 2015–2030 that was
adopted at the Third UN World Conference on Disaster Risk
Reduction in Sendai, Japan, on March 18, 2015.

The Sendai Framework for Disaster Risk Reduction
2015–2030 outlines seven clear targets and four priorities for
action to prevent new and reduce existing disaster risks:
(i) Understanding disaster risk; (ii) Strengthening disaster
risk governance to manage disaster risk; (iii) Investing in
disaster reduction for resilience and; (iv) Enhancing disaster
preparedness for effective response, and to “Build Back
Better” in recovery, rehabilitation and reconstruction.

It aims to achieve the substantial reduction of disaster risk
and losses in lives, livelihoods and health and in the eco-
nomic, physical, social, cultural and environmental assets of
persons, businesses, communities and countries over the
next 15 years.

Also the ISDR-ICL Sendai Partnership 2015–2025
(Sassa, 2015) that proposes Tools for implementing and
Monitoring the Post-2015 Framework for Disaster risk
Reduction and the Sustainable Development Goals agree on
the development of fields of cooperation in research and
capacity building focused on the development of
people-centered early warning technology for landslides
with increased precision and reliable prediction both in time
and location, especially in a changing climate context.

The 2020 Kyoto Commitment (KC2020) for global pro-
motion of understanding and reducing landslide disaster risk
is a duty to the Sendai Landslide Partnerships 2015–2025,
the Sendai Framework for Disaster Risk Reduction 2015–
2030, the 2030 Agenda Sustainable Development Goals, the
New Urban Agenda and the Paris Climate Agreement (Sassa
2019). The KC2020 clearly highlights as Action 1 among all
the priority actions the promotion of people-centered early
warning technologies for landslides.

The focus of this paper is on the monitoring and fore-
casting components of a slope-scale landslide EWS, which
will be discussed through the description of some real cases
of early warning experiences, each one peculiar in its own
right. However, by no means it is intended that the social
and cultural side of EWSs are secondary. On the contrary,
activities such as communication campaigns, information
about the risk and the EWS, education about the safe
behaviours, drills, questionnaires to verify the knowledge,
the risk perception and gather feedback are often under-
rated but necessary and relatively not expensive activities,
as the Hong Kong experience clearly shows (Mak et al.
2007; Kong et al. 2020); otherwise, if the operational
systems do not meet the expectations of the end-users, they
might not trust the system (Thiebes and Glade 2016). In
fact, monitoring and forecasting are but two steps in a
longer process that starts from engaging the community in
“normal times” and finishes with communicating an easily
understandable warning using the proper media (Intrieri
et al. 2020).

As far as the technical aspect are concerned, the first stage
is probably defining the most representative parameters for
assessing the stability of the slope (e.g. rainfall, water level,
pore pressures, vibrations, surficial movements, displace-
ments at some depth and so on). Generally, regional-scale
EWSs rely on rainfall (Guzzetti et al. 2020). At slope-scale,
which is the focus of this paper, the choice of the indicators
depends on the type of landslide. For debris flows, pendu-
lums or trip-wires detecting the passage of the material can
be used (Bossi et al. 2015), while for creep landslides the
monitoring of displacement and its derivatives is usually
preferred because they are direct indicators of the stability of
a slope (Intrieri and Gigli 2016; Pecoraro et al. 2019).
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What is invariable is that the monitoring frequency must
keep up with the presumed activation of the landslide (which
means that near real-time monitoring is not always neces-
sary, in some cases daily measurements or less can be
enough, as shown in Gigli et al. 2011). Furthermore,
robustness should be preferred over accuracy. In fact,
pre-failure accelerations follow power-law trends (usually
with a high exponent, which makes them very similar to an
exponential law; Intrieri et al. 2019) which typically cause
very high signal-to-noise ratios. On the other hand, com-
munication failures or damages to the instrumentation
(maybe caused by the landslide’s movements) can compro-
mise the whole system.

Once the key indicators are identified, the appropriate
technology for monitoring must be selected.

Then monitoring data must then be elaborated so that
they can provide input for the prediction activity. There are
two main approaches for forecasting aimed at early warning
(Intrieri et al. 2019): one makes use of thresholds, i.e.
quantitative signals whose exceeding suggests a probable
failure but no time frame for such an occurrence can be
provided; the other approach employs empirical or
semi-empirical forecasting methods, typically based on
creep models, that implement equations and/or graphical
solutions to obtain the time of failure.

Concerning the first approach, the major problem is the
specifying thresholds that are both reliable and effective.
Usually this is done based on past (personal) experience (the
so called “expert judgment”), past trends in the measure-
ments and the knowledge of the rupture mechanism(s),
rather than in objective data (Nadim and Intrieri 2011). The
scientific literature has many cases where expert judgement
is implemented for thresholds definition (Blikra 2012; Iovine
et al. 2006; Lombardi et al. 2017; Zavodni and Broadbent
1978). This is because, in most cases, even for reactivated
landslides, there is no measured record of the indicators
preceding failure.

Thresholds can also be defined using more general, not
site-specific methods, with a certain degree of exportability,
such as those proposed by Brox and Newcomen (2003),
Carlà et al. (2017c), Crosta and Agliardi (2003), Xu et al.
(2011). A more detailed dissertation on this topic can be
found on Intrieri et al. (2019).

Whether the case, warning thresholds should be used
carefully, and there is no justification to define too many
warning levels or too precise limits. For a slope scale EWS,
thresholds derived from kinematic indicators (displacement,
velocity, acceleration) and pore pressure/water table mea-
surements are preferable to rainfall intensity since they are
more directly correlated with the stability conditions of the
slope. Rainfall thresholds could be implemented as well, but
mainly as a support to decision makers or as simple
pre-warnings. In any case, the design of the early warning

system must be flexible such that the threshold parameters
can be changed as more information is gathered on the
performance of the monitoring system and on the behaviour
of the slope or the region being monitored (Nadim and
Intrieri 2011).

The second approach is based on forecasting methods
such as those invented by Azimi et al. (1989), Fukuzono
(1985), Hao et al. (2016), Mufundirwa et al. (2010), Saito
(1969), Voight (1989). Among these, the most used is by far
Fukuzono’s (1985) method, mostly because of its intuitive
graphical solution (Atzeni et al. 2015; Carlà et al. 2017a, b;
Dick et al. 2015; Intrieri et al. 2019; Kothari and Momayez
2018; Rose and Hungr 2007); its rationale is that, if the
displacement velocity of a landslide during the tertiary creep
stage increases (theoretically toward infinite), its inverse
number will tend to decrease to zero. Therefore, extrapo-
lating the inverse velocity until when it intercepts the time
axis will give the time of failure. A common simplification
when applying this method and that can lead to mistakes is
that the interpolation is generally assumed to be linear.

More details on the forecasting methods and their appli-
cations have been discussed by Intrieri et al. (2019).

Of the four case histories presented in this paper, the first
two (Quincinetto landslide and Stromboli volcano) use the
first approach and thresholds defined through expert judge-
ment. The last two (Xinmo and Gallivaggio landslides)
employed the second approach; in particular, Fukuzono’s
method (1985) has been used with hindsight for Xinmo
landslide while for Gallivaggio landslide it ensured the
clearance of the area and the lack of injuries or victims.

Landslide Monitoring

The aim of this section is to describe the landslide moni-
toring systems and the adopted techniques of the following
presented case studies.

The purpose of a landslide monitoring system is to pro-
vide reliable data for catching the characteristic information
of collapses in time, and make a correct analysis, evaluation,
prediction and control of the kinematics and evolutionary
process (Pinggen 2004). The current availability of advanced
remote sensing technologies in the field of landslide analysis
allows for rapid and easily updatable data acquisitions,
improving the monitoring traditional capabilities (Guzzetti
et al. 2012). Landslide monitoring systems based on remote
sensing techniques represent cost-effective means to reduce
the risk, allowing for a low environmental and economic
impact (Intrieri et al. 2012, 2013). Amongst the remote
sensing techniques adopted in an integrated real-time mon-
itoring and warning system, radar interferometry represents
one of the most widely adopted and reliable method for the
remote monitoring of landslide displacements (Casagli et al.
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2017). In this framework ground displacements and slope
deformations represent the relevant parameter for the anal-
ysis of slope instability, especially in the field of failure
prediction (Carlà et al. 2016, 2019a), emergency manage-
ment (Lombardi et al. 2017), long-term stabilization works
(Ferrigno et al. 2017) and residual reactivations (Confuorto
et al. 2017; Frodella et al. 2018). In particular, the ability to
make numerous point measurements of displacement over
the landslide body allows for the detection and mapping of
the actively deforming slopes (Bardi et al. 2014; Bianchini
et al. 2015a, b; Ciampalini et al. 2014, 2015; Nolesini et al.
2016; Raspini et al. 2015; Intrieri et al. 2019), the charac-
terization and monitoring of landslide mechanisms (Tofani
et al. 2013; Solari et al. 2018) and, through the analysis of
time series of deformation, the identification of velocity
changes in the landslide evolution (Berti et al. 2013; Del
Soldato et al. 2018), as well as the modeling of large slope
instability (Berardino et al. 2003).

Rapid developments in this field are fostered by the very
high spatial resolution obtained by the launching of new
Synthetic Aperture Radar (SAR) satellite sensors, purposely
built for interferometric applications with revisiting times of
few days, such as Sentinel-1 (Raspini et al. 2018, 2019; Del
Soldato et al. 2019; Solari et al. 2019).

The family of SAR satellite sensors orbits the Earth at an
altitude ranging from 500 to 800 km, following
sun-synchronous, near-polar orbits, slightly inclined with
respect of Earth meridians. The most commonly used bands
in SAR applications are C-band (5–6 GHz, *5.6 cm
wavelength), X-band (8–12 GHz, *3.1 cm wavelength)
and L-band (1–2 GHz * 23 cm wavelength) with a tem-
poral resolution depending on the satellite revisiting time.

A SAR image is composed of pixels characterized by
amplitude and phase values. Phase values of a single SAR
image partly depend on the sensor-target distance and are the
key element to detect ground displacement. SAR interfer-
ometry is the technique focused on measuring changes of
signal phase over time through the analysis of at least two
SAR images (Fruneau et al. 1996).

A suitable approach to exploit phase variation between
two consecutive radar images acquired over the same target
is the Differential Interferometric SAR (D-InSAR) (Bamler
and Hartl 1998). Geometrical and temporal decorrelation and
atmospheric effects caused by the variation of the phase
reflectivity value of some radar targets reduce the reliability
of the D-InSAR technique (Berardino et al. 2003). In order
to overcome these limitations InSAR-based information can
be enhanced through multi-temporal interferometric tech-
niques (MT-InSAR), based on analysis of long stacks of
coregistered SAR imagery (Ferretti et al. 2001, 2011). An
extensive review of the several developed MT-InSAR
approaches can be found in Crosetto et al. (2016) and
Casagli et al. (2017). MT-InSAR analysis is designed to

generate time series of ground deformation for individual
measurement points, assuming different types of deforma-
tion models (e.g., linear, nonlinear or hybrid). Signal anal-
ysis of a network of coherent radar targets (Permanent
Scatterers, PS) enables to estimate the occurred displace-
ment, acquisitions by acquisition.

Line Of Sight (LOS) deformation rate can be estimated
with an accuracy theoretically better than 0.1 mm/year. Each
measurement is referred temporally and spatially to a unique
reference image and to a stable reference point. In the field
of landslide investigations the potential of SAR data has
been exploited at different scales: from national (Adam et al.
2011) to regional (Meisina et al. 2013, 2016; Ciampalini
et al. 2016a, b) basin (Lu et al. 2012) slope and building
scale (Ciampalini et al. 2014; Bianchini et al. 2015a, b;
Nolesini et al. 2016), as well as in different phases of
landslide response (Canuti et al. 2007) and public safety
(Farina et al. 2008).

The terrestrial application of this technique is carried out
through ground-based radar interferometric systems
(GB-InSAR) and is applied in the field of the monitoring of
slope deformations in the framework short- and long-term
landslide monitoring (Bardi et al. 2017; Carlà et al. 2019b;
Frodella et al. 2016, 2017; Intrieri et al. 2015; Pratesi et al.
2015). These systems are characterized by operational effi-
ciency and accuracy of data not reached by traditional
methods: high-resolution acquisition, multifunction versa-
tility, fast acquisition and data processing (Casagli et al.
2017, 2018).

GB-InSAR systems consist of a computer-controlled
microwave transceiver, characterized by a transmitting and
receiving antennas, which by moving along a mechanical
linear rail is capable to synthesize a linear aperture along the
azimuth direction (Tarchi et al. 1997; Pieraccini et al. 2002).
The obtained SAR image contains amplitude and phase
information of the observed scenario backscattered echo in
the acquiring time interval (than 1 min with the most modern
systems) (Luzi et al. 2004, 2010; Monserrat et al. 2014).

The displacement obtained from the phase difference
calculation can be represented in 2D maps, in which the
chromatic scale covers a total value corresponding to half of
the wavelength used. However, since the phase is periodic, it
cyclically assumes the same values crating image interpret-
ing problems. This issue, known as phase ambiguity, can be
solved through interpretation based on field geological
knowledge or by adopting apposite phase unwrapping
algorithms (Ghiglia and Romero 1994), which count the
number of cycles performed by the wave obtaining cumu-
lated displacement maps. Given the relative short distances
at which GB-InSAR apparatuses usually operate (typically
less than 3 km), they work in Ku band (1.67–2.5 cm).

In landslide studies the main research applications of
GB-InSAR soon became focused on slope monitoring
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(Tarchi et al. 2003; Pieraccini et al. 2002, 2003), civil pro-
tection purposes (Del Ventisette et al. 2011; Bardi et al.
2014, 2017; Lombardi et al. 2017; Frodella et al. 2016,
2017, 2018) and more recently for mining safety (Carlà et al.
2018).

Wireless Sensor Networks (WSNs) are another modern
monitoring tool that are attracting an increasing interest due
to their potentials for applicability in hazardous and inac-
cessible scenarios such as active landslides (Rosi et al.
2011). After deployment in the landslide environment,
wireless sensors create a network by inter-connecting to each
other; this fulfils an important need for real-time monitoring,
especially in hazardous or remote conditions (Mucchi et al.
2018). WSN technology has the capability to quickly cap-
ture, process, and transmit data in real-time (Intrieri et al.
2018a). The WSNs in literature (Hill and Sippel
2002; Terzis et al. 2006; Fernández-Steeger et al. 2009;
Ramesh et al. 2009; Rosi et al. 2011) mainly exploit
radiofrequency signals to provide connectivity to the sensor
nodes not to measure the distance between nodes.

Integrated Landslide EWS

Quincinetto Landslide

The Quincinetto landslide is a large, bowl-shaped slope
instability in hard metamorphic rocks located on a steep
slope in the Dora Baltea valley, at the border between the
Piedmont and Aosta Valley regions (Northern Italy). There
are many unknowns about the exact kinematic and geo-
metrical features of the rockslide, as sub-surface investiga-
tions are virtually impossible due to the difficult site
accessibility; as of today, the site can be accessed only by
walking an arduous mountain trail. The rockslide, whose
volume can be very roughly estimated in about 500 000 m3,
appears as a highly chaotic mass of large, heavily disjointed
blocks and fragments of eclogitic micaschists, which con-
stitute the main lithology in the area; rock blocks vary from
few tens to few thousands of m3 in size. This “debris field” is
distributed throughout the entire rockslide area, and it is split
in two parts by a middle scarp, represented by a sub-vertical
rock cliff of few tens of meters in height. The main head
scarp at the top of the slope is identified by an even higher
sub-vertical cliff (�60 m).

A large talus cone extends from the toe of the rockslide
down to the valley bottom, where several giant remnants
from past rockfall events are found (Fig. 1). In the 1960s, as
the risk related to the Quincinetto landslide had not been
identified, the path of the newly constructed A5 highway
was traced so as to pass right next to the distal edge of the
talus cone. This means that the highway, one of the most
important infrastructures in Northern Italy, is critically

exposed to future rockfalls and rockslide reactivations.
Highway closures would have enormous socio-economic
repercussions, as the road is the main thoroughfare leading
to the Mont Blanc and Grand Saint Bernard tunnels at the
Italy-France and Italy-Switzerland borders, respectively.

The Monitoring Activities

Satellite InSAR monitoring performed by the Sentinel-1
constellation in the period November 2014–March 2020
revealed widespread movements within the rockslide area,
with velocities in the order of 10–30 mm/year (Fig. 2; the
section of the A5 highway at risk can be seen on the upper
right edge of the image). Velocities appear to be higher close
to the top of the talus cone (areas 1 and 3), and slightly lower
in the area between the top and middle scarps (area 2).

The persistent deformation activity is a predisposing
factor for the destabilization and detachment of the blocks at
the toe of the rockslide, some of which exceed 1000 m3 in
size. Due to their size and geometry, these massive blocks lie
in apparent precarious equilibrium (Fig. 3). Figure 2 also
indicates that no measuring points are available between
areas 1 and 3, behind the apex of the talus cone. This is
arguably due to the toe of the rockslide being locally affected
by velocities that are too high for being captured by means
of the InSAR technique.

In November 2018, a GBInSAR campaign was thus
started in order to improve the level of understanding with
regards to the movements of the frontal blocks; the instru-
ment was installed in the valley bottom, at a distance of
about 1 km from the rockslide. The installed GB-InSAR
system operates in the Ku band (frequency of about 17 GHz)
and moves on a 4 m long track to create the so-called

Fig. 1 Rockfall remnant at the toe of the talus cone
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synthetic aperture, in order to improve image resolution and
at the same time maintain a compact and portable size.
Figure 4 shows the resulting cumulative displacements
measured between the start of the monitoring campaign and
March 2020: while poor coverage is obtained over a large
part of the debris field, excellent coverage is obtained over
the two sub-vertical scarps and over the frontal blocks at the
toe of the rockslide, areas that are not visible with the
satellite InSAR monitoring. The frontal blocks indeed
appear to represent by far the most unstable sector, with
cumulative displacements exceeding 20 cm over a 15-month
period. This observation prompted the decision to comple-
ment the GBInSAR monitoring with a WSN of exten-
someters and tiltmeters installed over the two largest blocks
lying in close proximity to the apex of the talus cone. While
no significant tilting was detected, the trends of displacement
measured by the extensometers were in full agreement with

the GBInSAR data. Displacement rates were observed not to
be constant over time, but rather to be sensitive to pulses of
acceleration; Fig. 5 details the displacements of one of the
unstable blocks near the apex of the talus cone, as measured
by the GBInSAR and by an extensometer in the last three
months of 2019. These are also compared with the values of
7-day cumulative rainfall for the same period. It appears that
the deformation activity is significantly controlled by rain-
fall, which dictates the slow-to-fast transition of the dis-
placement rates. Then, these enter a slow decelerating trend
as soon as the phase of heavy precipitation ends.

Results

The results of the monitoring campaigns thus made it pos-
sible to gain critical insights into the complex kinematics of
the Quincinetto landslide and the type of risk potentially
affecting the exposed section of the A5 highway on the
valley bottom. In particular, satellite InSAR data suggested
that there are currently no signs of impending paroxysmal
reactivations of the entire rockslide mass. The major source
of risk is rather associated with the presence of few very
large blocks lying in precarious equilibrium at the forefront
of the slope instability. These appear to be moving according
to a simple sliding mechanism triggered by heavy rainfall,
hence suggesting a high degree of kinematic freedom as well
as a poor amount of cohesion with the bedrock. Continued
movement could eventually lead to toppling of the blocks
over the slope change where the apex of the talus cone is
located, with subsequent rapid fall and rolling towards the
toe of the slope. All these observations allow for the
implementation of a robust early warning strategy, under
which a series of displacement and/or rainfall alert

Fig. 2 Satellite InSAR data collected by the Sentinel-1 constellation in
the period from October 2014 to March 2020

Fig. 3 Frontal image of the Quincinetto landslide, with detail of the
head scarp, middle scarp, and frontal unstable blocks

Fig. 4 Map of cumulative displacements measured by the GBInSAR
in the period from November 2018 to March 2020
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thresholds can be related to a set of predetermined response
actions regulating the management of the traffic on the
highway and the possible enforcement of temporary road
closures. In particular, the EWS was established under a 3
level-scale, with the separation from one level to the other
being defined by a predetermined velocity threshold mea-
sured by the GBInSAR. The three warning levels were
associated with a state of:

1. ordinary alert: no significant movements;
2. moderate alert: beginning of an acceleration phase;
3. high alert: the acceleration phase could potentially lead to

the failure of one of the frontal unstable blocks.

Under ordinary alert, traffic on the highway is regularly
open. If the first warning threshold is surpassed, a partial
road closure is undertaken; this allows technical personnel
to prepare for a possible complete closure of the road
section at risk, while local officials are also informed. At
this stage, the GBInSAR data are also cross-checked with
the extensometer and tiltmeter data, in order to verify the
accuracy of the displacement measurements and exclude
the presence of instrumental error of any kind. If a high
alert stage is then entered, a complete closure of the section
of highway at risk is enforced; at the same time, selected
detour routes and informative panels for the drivers are
activated. The procedure thus makes it possible to coordi-
nate actions and countermeasures in a consistent way, and
to regulate traffic over the A5 highway based on objective
criteria relating the observed displacement rates of the
rockslide with the actual level of risk posed to public
safety.

Landslide EWS in a Volcanic Environment

Stromboli (Italy) is a volcanic island located in the Tyrrhe-
nian Sea, that has experienced several large mass wasting
phenomena, forming two depressions on its NW (Sciara del
Fuoco; SdF) and SE flank, showing bilateral flank instabil-
ity. Nowadays, the activity mainly occurs from a summit
crater terrace located at ca. 750 m a.s.l., and from ephemeral
vents within the SdF (Di Traglia et al. 2018a). The distinc-
tive persistent Strombolian activity is characterized by
intermittent explosions, showing intensity and frequency
fluctuations over time. It is often punctuated by lava over-
flows from the crater terrace (Calvari et al. 2016), and/or by
flank eruptions, with the outpouring of lava flows from lat-
eral vents (Di Traglia et al. 2020). The most hazardous
phenomena that can hit Stromboli Island are mass
flow-induced tsunamis (Fornaciai et al. 2019), which make it
one of the tsunami sources in the Mediterranean Sea (Cerase
et al. 2019). Mass flows can be of two types:

• intrusion-related landslides from the NW unstable flank
of the volcano (Sciara del Fuoco; SdF), as occurred on
30th December 2002 (Tinti et al. 2006);

• by the entry into the sea of pyroclastic density currents
(PDCs) produced during paroxysmal, as occurred on 3rd
July 2019 and 28th August 2019 (Turchi et al. 2020).

Tsunamis occurred in recent times as in 1879, 1916,
1919, 1930, 1944, and 1954, 2002, accounting for an
average of 1 tsunami every 20 years (Maramai et al. 2005),
and affecting the coast of Stromboli (Fornaciai et al. 2019),

Fig. 5 Displacement time series
measured by the GBInSAR and
by one of the extensometers in the
last three months of 2019
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and secondly, the coasts of the other Aeolian islands and the
Tyrrhenian coasts of southern Italy (Fornaciai et al. 2019).
Deposits of potentially tsunamigenic landslides have been
discovered in marine sediments offshore of the island of
Stromboli (Di Roberto et al. 2010). Recent findings revealed
the occurrence of three tsunamis likely related to repeated
flank collapses struck during the Late Middle Ages (Rosi
et al. 2019). Present-day volcano slope instability comprises
mobilization of coarse-grained and fine-grained sediments
directly or indirectly related to the eruptive activity (Di
Traglia et al. 2018b). Slope instability phenomena at
Stromboli are classified, on the base of their size and
movement, into three types (Schaefer et al. 2019):
(1) “deep-seated gravitational slope deformations” evolving
to “rock or debris avalanches” from the SdF (vol-
umes > 106 m3); (2) “rock (rotational or planar) slides”
evolving to “rock avalanches” from the SdF (vol-
umes � 106 m3); 3) “rock falls” or “gravel/debris slides”
evolving to “ gravel/debris flows” (volumes � 105 m3).

The Stromboli GBInSAR Monitoring System

The NE portion of the summit crater terrace and the northern
portion of the SdF are monitored by two GBInSAR devices,
located in a stable area N of the SdF (Fig. 6). The first
GBInSAR (GBInSAR NE400; Model: GBInSAR LiSALab;
Revisiting time: 11 min; Antonello et al. 2004) was installed

in February 2003, during the 2002–03 flank eruption, while
the second device (GBInSAR NE190; Model: GBInSAR
LiSAmobile k09; Revisiting time: 2 min) was installed on
14 December 2014, after the 2014 flank eruption (Di Traglia
et al. 2018a).

Negative and positive values of displacement indicate,
respectively, a movement towards or away from the sensor.
Since the GBInSAR systems are located in a stable area north
of the SdF, and its LOS allows us to detect the N-S compo-
nents of the movements in all direction; negative displacement
may represent inflation of the crater area of the volcano or
inflation and sliding of the SdF, while positive displacement
may represent deflation of the crater area (Casagli et al. 2009).
Range and cross-range resolution are on average 2 m � 2 m,
with a measurement precision referred to the displacement of
less than 1 mm (Casagli et al. 2009). The capability of InSAR
to detect ground displacement depends on the persistence of
phase coherence over appropriate time intervals (Lu et al.
2002). Loss in coherence mainly depends on chaotic ground
movements (Antonello et al. 2004), e.g. grain avalanches.
A coherence mask (threshold = 0.8) is set to mask the noisy
areas of the interferogram (Luzi et al. 2010). The phase values
can be affected by ambiguity (unwrapped phase) but, due to
the short elapsed time (11 min) between two subsequent
measurements on Stromboli volcano, the interferometric dis-
placements are usually smaller than half wavelength and
unwrapping procedures (as described by Ghiglia and Romero
1994) are not necessary.

Fig. 6 Geographic location of
(a) of the island of Stromboli.
(C) PLEAIDES-1 orthorectified
panchromatic image (true colour,
collected on September 2018) of
the island of Stromboli. The
locations of Stromboli and
Ginostra villages, and the Sciara
del Fuoco and the crater terrace
are reported. Interferometric
analysis allows us to derive the
displacement field of the observed
portion of the SdF and of the
crater area in the elapsed time
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Results

The GBInSAR devices usually record (Fig. 7):

• the inflation/deflation of the summit plumbing system (Di
Traglia et al. 2018a);

• the gravitational re-adjustment of the lava breccia,
sometimes evolving into rockfalls (Schaefer et al. 2019);

• thermal contraction of the lava field, mainly in area of
lower pre-effusive slope angle (Schaefer et al. 2019);

• persistent flank motion (Schaefer et al. 2019).

The method proposed by Di Traglia et al. (2014) for
early warning considered only the displacement rate as
proxy for the warning levels for mitigating the risk con-
nected with the Sciara del Fuoco dynamics and the increase
in eruptive activity. The approach was applied during the
2014 flank eruption, allowing for the anticipation of the
beginning of the eruption 11 h in advance (Di Traglia et al.
2017). However, the “displacement rate thresholds”
approach was not enough to discriminate the intensity of
the instability phenomena, given that very high displace-
ment rates can also be measured in very small rock

Fig. 7 Displacement maps based
on the a GBInSAR NE190
(December 2014–December
2015), b GBInSAR NE400
(January 2010–December 2015)
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volumes. For this reason, a new approach was proposed
considering both the displacement rate thresholds and the
magnitude, i.e. the volume characterized by anomalous
displacement rates (Fig. 7). Based on the integration of
GBInSAR displacement rate and different instability sce-
narios (Schaefer et al. 2019), the level of hazard has been
estimated, taking into account the ability to generate tsu-
namis (based on results of Fornaciai et al. 2019). This
coupled method enables to estimate the intensity and to
define levels of criticality for the instability phenomena in
the Sciara del Fuoco area (Fig. 8).

Landslide Forecasting from Satellite

The Xinmo landslide (Ngawa Prefecture, Sichuan Pro-
vince, Mao County, China, Fig. 9) occurred in the early
morning of the 24 June 2017. The landslide can be clas-
sified as a rock avalanche: it originated as a large rockslide
from the ridge of an alpine slope of about 55–60° and
evolved in an extremely rapid flow-like movement of
fragmented rock. The main type of the bedrock in this area
is quartzite with cataclastic texture, then highly susceptible
to fracture and breakup during high velocity movement.
About 4.5 million m3 of rock detached from the top of the
mountain crest. During its travel along the slope, the
landslide entrained a large amount of pre-existing debris.
The landslide hit the Xinmo village with a velocity of
250 km/h (Fan et al. 2017), burying 62 houses and killing
more than 80 people.

The course of the Songping gully, which flows at an
elevation of 2280 m from WNW to SSE in the area, was
dammed for more than 1 km (Scaringi et al. 2018) by the
sliding mass, with a maximum thickness of debris of more
than 10 m and a total area of 1.5 km2.

The mean elevation of the source area of the landslide is
about 3400 m a.s.l., while the foot of the landslide, where the
Xinmo village is located, has an elevation of about 2300 m a.
s.l.; considering the runout distance (L) of about 2600 m, the
angle of reach (fahrböschung) is equal to 22°. This value fits
quite well the empirical graphs for rock avalanches plotting
travel angle against volume (Rickenmann 2005) and area
against volume (Li 1983), obtained with historical data from
the literature. At regional scale (Fig. 9), the landslide area is
situated at the eastern margin of the tectonically active
Tibetan Plateau. The landslide area is placed within a north
trending earthquake zone and it is affected by frequent
earthquakes. Historically, all these events are located along
major faults in the boundary zone between the Tibetan Plateau
and the Sichuan Basin. Although no evidence shows that the
Xinmo landslide was triggered by the repeated earthquakes,
these seismic events may have caused intensive neotectonic
deformations, weakening and partially destabilizing the slope
from where the rock avalanche detached.

Landslide Failure Prediction Using Sentinel-1

Immediately after the landslide an InSAR analysis on a stack
of 45 C-band SAR images (frequency 5.4 GHz, wavelength
5.6 cm) acquired by the ESA (European Space Agency)
Sentinel-1 satellites from 9 October 2014 to 19 June 2017
was performed. The analysis was carried out on Sentinel-1
images acquired with the Interferometric Wide (IW) swath
mode, the main acquisition mode over land which acquires
data with a 250-km swath at 5 m � 14 m spatial resolution.
Images have been captured along satellite track n.62 in
descending orbit and with an incidence angle of 40.78°.

Sentinel-1 archive was processed through the SqueeSAR
approach (Ferretti et al. 2011), one of the most advanced

Fig. 8 Criticality level based on the intersection between the GBInSAR-derived warning levels (rows; derived from Di Traglia et al. 2014, 2017)
and the instability scenario based on the results of the slope stability analysis (columns; Schaefer et al. 2019)
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methods to analyse multi-temporal stacks of SAR acquisi-
tions. SqueeSAR algorithm is designed to identify a grid of
measurement points for which it is possible to estimate the
displacement time series and deformation rate (in mm/year)
both along the satellite LOS. The purpose of the SqueeSAR
analysis was twofold:

(i) detecting and recording any pre-event deformation in
and around the village of Xinmo, leveraging on ground
deformation maps;

(ii) identifying, within time series of displacement, poten-
tial pre-failure signals for the Xinmo landslide.

Results

SqueeSAR results (Fig. 10) highlight the presence of active
movements in the upper sector of the slope above the Xinmo
village, with deformation rates exceeding several millimetres
per year. It is worth remarking that this specific sector of the
slope was the origin of the sliding event. Close to the
landslide scarp, velocity values range between −10 and
−20 mm/year, with peaks of about −30 mm/year. Consid-
ering the acquisition geometry (descending), the westward
orientation of the slope and the negative sign of the move-
ment (i.e., away from sensor), the measured deformation is

Fig. 9 Location of the Xinmo
landslide in the Ngawa
Prefecture, Sichuan Province
(China). Major historical
earthquakes are reported on the
map
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consistent with the occurrence of pre-existing slope insta-
bility in the area affected by the 24 June 2017 landslide.

An advanced and systematic analysis of the displacement
time series allows for the identification of several points
located in the NW sector of the source area exhibiting an
acceleration starting from April 2017. Anomalous accelera-
tions are the most important to detect for early warning
purposes, as they can indicate that the landslide has entered
the tertiary creep and it is approaching collapse (Saito 1969).

Specific forecasting methods exist to determine the
probable time of failure (Intrieri et al. 2019). A retrospective
forecast of the time of failure has been performed starting
from the accelerating time series (Fig. 10b). The Fukuzono
method (Fukuzono 1985) for forecasting the time of failure
has been applied to the displacement data exhibiting pro-
gressive acceleration, pointing out that an accurate estima-
tion of the failure time was already possible since the
beginning of June 2017 (Fig. 10c).

Results obtained for the Xinmo landslide pointed out that
the new generation of satellite radar sensors fosters a new
paradigm in the ground deformation monitoring systems.
The launch, in April 2014, of Sentinel-1 mission opened new
opportunities for InSAR monitoring applications thanks to
the increased acquisition frequency and the regularity of
acquisitions.

Leveraging the enhanced imaging capabilities of Sentinel-1,
advances of computing capacities and refinement of data
screening tools, regional to national scale monitoring systems
are now possible, supporting authorities with prioritization of
the hazards deemed to be most urgent (Raspini et al. 2018).

The potential offered by Sentinel-1 constellation made
InSAR suitable for landslide displacement monitoring, early
identification of rainfall-triggered accelerations (Raspini
et al. 2019) and—under certain circumstances and for some
typologies of phenomena—for the prediction of catastrophic
slope failures (Carlà et al. 2019a).

Fig. 10 Pre-failure sign of the Xinmo landslide as seen from
Sentinel-1. Ground deformation maps are reported on the left side of
the picture. The toe area along the Songping Gully (a), displacement

time series (b) and respective inverse velocity (c) of a point taken from
the accelerating area are included on the right. Modified from Intrieri
et al. (2018b)
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Monitoring and Early Warning of Rapid
Landslides

Rockfall Monitoring

With the exception of open-pit mines and other civil engi-
neering projects, the use of near-real-time slope monitoring
for rockfall forecasting and risk management is still quite
uncommon. Conventional strategies are in fact based on the
design of physical barriers and slope reinforcement systems
(e.g., embankments, ring nets, etc.) for the protection of
areas at risk. With regards to monitoring, standard
geotechnical tools (e.g. crackmeters, extensometers, survey
prisms, etc.) are usually preferred, but point-wise informa-
tion are often unable to give a full picture of the ongoing
instabilities over large rock slopes. This is because it may be
technically or economically impossible to place sensors in
every potential rockfall source area. Other well-established
methodologies include external trigger monitoring, the use
of statistical approaches to assess the spatial or temporal
distribution of rockfall risk, or the detection of pre-failure
damage features through baseline monitoring techniques
(Chau et al. 2003; Rosser et al. 2007; Stock et al. 2012;
Macciotta et al. 2016; Kromer et al. 2017); however, these
solutions may not be appropriate in cases where hourly or
sub-hourly monitoring is required, or in areas characterized
by a constant human presence.

The Italian National Road (NR) 36 is the main thor-
oughfare leading to the Chiavenna Valley (north of Lake
Como, Italy). The Splügen Pass (2117 m a.s.l.) represents
the endpoint of the road and marks the border between Italy
and Switzerland. In its last stretch, the roadway climbs up
the San Giacomo Valley (the northern branch of the Chi-
avenna Valley) with a quick succession of sharp hairpin
bends that are constrained between towering rock walls and
the left bank of the Liro Creek. The Gallivaggio sanctuary
lies between km 126 of the NR 36 and a roughly
500 m-high, sub-vertical granitic slope (Fig. 11). In spite of
the presence of a 4.5–9 m high protection embankment, a
3.5 m high catch fence on top of the embankment, and a
10 m wide catch ditch between the slope and the embank-
ment, rockfalls have repeatedly reached and caused minor
damages to both the NR 36 and the sanctuary in the recent
past. Barriers were in fact not high enough to intercept every
possible rockfall path, since blocks mostly bounce and
fragment over the steep slope with almost no influence of the
rolling component. Moreover, given the considerable fall
height, no physical barrier can have sufficient energy
absorption capacity to efficiently retain large failure vol-
umes. Besides the obvious threat to people safety, rockfalls
in this area can induce road closures lasting for extensive
periods of time. Villages at higher elevation are thereby

subject to losing the sole transportation corridor connecting
them with the rest of Italy.

As crossing of the Splügen Pass is barred by snow during
the winter, closures of the NR 36 in the Gallivaggio area can
determine the isolation of almost 1500 permanent residents.
In this circumstance, the exclusion zone can be bypassed
only by walking a mountain trail running on the opposite
side of the Liro Creek. A detailed description of the geo-
logical and geomorphological features of the study area can
be found in Carlà et al. 2019b.

The Gallivaggio Landslide Monitoring System

In 2016, following up the results of several discontinuous
campaigns performed in the period 2011–2015, a GBInSAR
was permanently deployed on the left bank of the Liro Creek
to survey the deformation of the overhanging slope in
near-real-time. The discontinuous campaigns indicated the
consistent creep of *900 m2 of rock face at the top of the
cliff, as opposed to the substantial stability of the middle and
lower sectors. The selection of this monitoring strategy was
not made with the aim of detecting rockfalls of few m3 in
size, which may result invisible to the GBInSAR. It was
trusted that these events would have been, for the most part,
contained by the physical barriers already in place. The
primary focus was the timely identification of instabilities
with a volume in the order of 102–103 m3 or more, against
which the existing defense systems could not represent a
significant hurdle. In the employed configuration, range and
azimuth resolution of the pixels in the cliff sector of interest
were approximately 75 cm and 180 cm, respectively. The
frequency of image acquisition could be remotely set as low
as 2 min (baseline frequency of 14 min), so as to avoid
phase wrapping issues in the case of accelerating slope
movements. The early-warning system was thus controlled

Fig. 11 View of the monitored sub-vertical granitic slope, as seen
from the Gallivaggio sanctuary
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by a sequence of velocity thresholds. The trigger action
response plan was initially associated with different levels of
surveillance activity, and finally combined with specific civil
protection countermeasures.

Figure 12a supplies the reader with an image of the
*5000 m3 instability that eventually failed on 29 May 2018
(approximate size 20–25 m in height, 21 m in width, and 8–
11 m in thickness). Several large open fractures can be
evidently observed across the entire rock face, as well as an
indentation at the bottom of the picture that made the
unstable volume jut out of the slope. This indentation likely
originated from previous minor rockfalls, which critically
removed support at the base of the overlying mass. The
instability can be associated with a planar mechanism
exploiting a primary basal failure surface (dipping at 55–
60°) and a sub-vertical rear tension crack, opening up to as
much as 2 m (Fig. 12b). At the top of the failed block, a
chaotic pile of large boulders and crushed debris was formed
by the stresses related to significant vertical movements of
the ground.

10 highly coherent pixels were picked as representative
surface points to monitor the evolution of the described
instability. The respective time series of displacement were
automatically updated on a dedicated web platform just
minutes after each new image acquisition. Soon after the
beginning of monitoring, all monitoring points started to
show a steady-state creep behaviour occurring at rates of
1.5–2 cm/year. Potential triggering factors such as heavy
rainfall or abrupt temperature changes did not seem to affect
data trends in a noticeable fashion.

The Monitoring Campaign

At the end of 2017 and in the following months, velocities
progressively increased to values of 3–5 cm/year, and then
experienced an abrupt increment on 13 April 2018 (Fig. 13).
This occurred concurrently with the fall of a few small
blocks (each one less than 0.5 m3) that reached the NR 36
and likely originated around the perimeter of the main
instability.

The upper alarm code was consequently issued, and the
response actions aimed at regulating human presence within
the exclusion zone were undertaken. Velocities fluctuated
around the value of 4 mm/day until the end of April, before
decreasing temporarily to 1–2 mm/day for most of the
month of May. Finally, displacements started to increase
dramatically on the evening of 28 May 2018. The next
morning, about 9 h before ultimate failure, the monitoring
system captured the onset of a slope acceleration which

Fig. 12 a Frontal view and b schematic cross-section of the
*5000 m3 instability (modified after Carlà et al. 2019b)
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closely resembled a classic tertiary creep curve (Saito 1969).
Measured velocities widely exceeded the peak values
detected before (up to 73.5 mm/h). The unstable mass failed
at 4:32 pm local time and subsequently crumbled in a large
number of smaller blocks and fragments, thereby forming a
huge cloud of dust and debris which ran over the valley
floor. An important fraction of the falling material reached
the Gallivaggio sanctuary and the adjacent segment of the
NR 36; nonetheless, the high degree of fragmentation meant
that the exposed elements did not suffer from irreparable
damages. No injuries or fatalities were counted since the area
had been timely cleared.

In the hours leading to the event, failure-time predictions
were continuously performed to assist the government offi-
cials in charge of the emergency and of the evacuation
procedures. Predictions were updated each time a new dis-
placement measurement became available. Figure 14 shows
the inverse velocity analysis (Fukuzono 1985) for 6 control
points, based on a 5-point moving average of the data: a
clear linearity of all the time series is observed from 10:30
am (6 h before the failure). Afterwards, the extrapolated
solutions consistently fell in the interval 4:25–4:45 pm. For
instance, it is worth mentioning that the last prediction for
Point_08 (made at 4:15 pm, before the appearance of phase
wrapping issues in the interferograms) resulted in an
expected failure at 4:28 pm, basically matching the actual
failure-time (4:32 pm). The confidence about the reliability
of the inverse velocity predictions was also strengthened by
the analysis of the peak velocity and peak acceleration val-
ues of the rock mass as the tertiary creep stage progressed.

Federico et al. (2012) first demonstrated the existence of a
broadly linear correlation between the logarithm of these two
parameters in proximity of a large number of slope failures.
The work was later developed by Carlà et al. (2017a, b, c),
who collected GBInSAR data from nine open-pit mine
instabilities in hard intrusive rocks; it was determined that
peak velocity and peak acceleration were linearly correlated
in non-logarithmic form too, and were substantially larger in
those cases that actually evolved into failure (as opposed to
those instabilities which did not fail despite an episode of
notable acceleration). A graph of peak velocity vs. peak
acceleration, based on the one presented in Carlà et al.
(2017a, b, c), is shown in Fig. 15: peak velocity and peak
acceleration registered by all the GBInSAR monitoring

Fig. 13 Cumulative LOS displacements measured by the GBInSAR in
the period 13–26 April 2018, in after a minor rockfall event (black
points indicate no radar return signal)

Fig. 14 Example of inverse velocity analysis on 6 GBInSAR
monitoring points for the prediction of the 29 May 2018 failure

Fig. 15 Graph of peak velocity versus peak acceleration for a number
of slope failure case studies (modified after Carlà et al. 2017a, b, c)
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points were extremely consistent with the findings of the
referenced study.

Moreover, it should be taken into account that the Gal-
livaggio data represent LOS measurements, and that these
were also affected by phase wrapping ambiguity after
4:15 pm. All the collected evidences thus pointed towards a
total and imminent failure of the *5000 m3 instability
above the Gallivaggio sanctuary.

Discussion and Conclusions

Case studies analysis

Each of the cases presented above shows a peculiarity that
can help us in the definition of the characteristics and
potential of a modern landslide EWS.

Quincinetto case study is an example of a highly vul-
nerable and valuable element at risk—the highway con-
necting Italy to France and Switzerland—where the threat of
even small rock fragments reaching the distal carriageway
would cause the complete closure of the street and severe
indirect economic losses. The high risk allows for a high-end
EWS deploying a GBInSAR, periodical Sentinel-1 analyses
and a WSN, all tailored within a communication and
response system that enables to promptly carry out a partial
or total closure or re-opening of the highway depending on
the monitored data and visual verification of the operators.

Each of the three techniques employed fills a specific gap
and has limitations that are compensated by the other two.
GBInSAR is able to produce frequent SAR images (on the
order of seconds to minutes), resulting in very high fre-
quency slope maps and time series. With these fast repeat
time intervals, GBInSAR has led InSAR from mapping to
surveillance and early-warning applications. GBInSAR
capability of producing 2D displacement maps is crucial to
gain insight of the whole monitored area. On the other hand,
it only records LOS movements, can be affected by atmo-
spheric noise and by phase wrapping and ambiguity if high
displacements occur.

The WSN equipped with tiltmeters and extensometers
provides direct movement monitoring of critical unstable
blocks. The measurements are accurate and easy to interpret,
the main noise source being the thermic expansion of the
metal wire of the extensometers. However, the information
acquired is only point-wise, some parts of the instrumenta-
tion can be damaged by the activity of the landslide and
maintenance requires access to the area.

Satellite InSAR monitoring delivers a different coverage
and different LOS measurements with respect to GBInSAR.
On the other hand, data require days to be acquired and
elaborated and can only represent slow movements.

The full potential of satellites, specifically of Sentinel-1
constellation, is proved by the Xinmo case study. This
experience clearly shows that a regular elaboration and
interpretation of satellite data can effectively provide reliable
early warning and ultimately save many lives. This appli-
cation still shows apparent limitations: the landslide must
exhibit a creep behaviour, a slow evolution (i.e. some weeks
of acceleration), which is typically associated with very large
landslides and must have a good data coverage (i.e. scarce
vegetation, no snow, no intense human activity like mining,
sufficient LOS alignment, no layover or shadowing due to
steep slopes). Nevertheless, satellite data often represent the
only existing monitoring information in an area, even remote
and not accessible like the source area from where the
Xinmo landslide originated. Recent experiences (Raspini
et al. 2018) showed that a continuous satellite monitoring
can be performed also for areas as large as Tuscany region in
Italy (nearly 23,000 km2, as opposed to the 460 km2 area
elaborated for the Xinmo landslide) implementing a
semi-automatic detection of measurement points exhibiting
anomalous displacements. In this case, the main difficulty in
terms of early warning is represented by the large extension
of the area and the consequent huge amount of data to be
processed. Del Soldato et al. (2019) estimated in around one
week the time required to run the entire monitoring chain at
regional scale (covered areas of tens of thousands square
km) from the acquisition of Sentinel-1 images to the inter-
pretation of causes and persistence of anomalies of move-
ment. The resulting time is still compatible with several
cases of failure and would drop to around three days in case
of areas of some hundreds of square km (this time would be
mostly used for the elaboration of the raw data, while the
automatic detection of anomalous displacements would only
take a few minutes).

For the reasons explained above, GBInSAR can be con-
sidered a cutting-edge technology for the early warning of
large landslides, but it stands out also for more peculiar
applications, such as volcanoes and rockfall monitoring.

The Ku-band (17–17.1 mm wavelength) used by most
GBInSAR apparatuses is able to maintain a good precision
and resolution and at the same time can penetrate dust clouds
that are abundant especially during collapse events and
volcanic explosions and, contrarily to optical remote sensing
techniques, enables to work in variable light and atmo-
spheric conditions. At Stromboli, the GBInSAR systems
have been used to monitor the slope instability in the
northern sector of the SdF and also to detect the inflation and
deflation of the N sector of the crater area, allowing for the
definition of the unstable area within the SdF and also to
outline the structural framework of the summit area.
Therefore, GBInSAR devices resulted in an operational
approach to mitigate landslide risk by defining a relationship
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between measured displacement rates and the associated
instability and eruptive hazards.

Concerning rockfall hazard, this has always been a
challenge in terms of early warning, owing to the sudden
nature of collapses and the typically small dimensions of the
detaching masses. Rose and Hungr (2007) even suggested
that forecasting in brittle (rigid) rocks (where rockfall gen-
erally take place) was impossible, at least for the technical
limitations at that time. However, Carlà et al. (2017a)
demonstrated how the new generation of GBInSAR systems
—with their increased acquisition frequency—were able to
predict, a posteriori, the collapse of 500–1500 m3 wedge and
planar failures in high-grade metamorphic and volcanic
rocks in an open-pit mine. The Gallivaggio landslide expe-
rience corroborates this result in the framework of a public
safety application, where the prediction was made before
failure rather than with hindsight.

Future Perspectives

Research in the landslide EWS field has been experiencing
enticing advancements in the last decade, thanks to the
continuing evolution of monitoring instrumentation and data
analysis techniques.

One of the drawbacks of advanced, real-time monitoring
tools (e.g. GBInSAR) is that they produce a huge amount of
information that may cause logistic problems in data transfer
and storage, that require specific procedures to be treated in a
way that is compatible with a landslide EWS (Intrieri et al.
2017).

On the other hand, the advent of 5G wireless communi-
cations technologies could be a game-changer in a number
of ways that is currently difficult to imagine.

Another issue with big data is that critical information is
often amidst data having scarce or no use for early warning
purposes. With this regard, Tordesillas et al. (2020), in this
very volume, present an innovative method using knowledge
of precursory failure dynamics of granular materials and
advanced data analytics. They distinguish a high-risk small
area from other areas exhibiting comparably higher than
average velocity or even episodes of acceleration. What is
most interesting is that this 0.3 km2 area is detected among
130,000 Sentinel-1 measurement points in a 460 km2 region
around a year prior to the landslide.

Obviously, big data also represent a great potential albeit
one that is rarely fully exploited. For example, GBInSAR
data exhibit an unmatched spatial density of displacement
measurement points but quantitative analyses are often made
using the displacement time series of a few significant
points. Advances in fields such as data analytics, material
science and micromechanics show that, at laboratory sample
scale, the location and geometry of failure are encoded in the

grain motions and can be determined early in the precursory
failure regime (Tordesillas et al. 2013). Recently, Singh and
Tordesillas (2020) upscaled this problem from laboratory
sample scale to landslide scale, where the pixels of a
GBInSAR displacement map replace the grains of the soil
sample. They managed to predict the geometry and location
of the failure zone and time of failure before any tertiary
creep-based forecasting method was applicable.

The increasing availability of monitoring techniques and
the installation of redundant instruments also raises the need
for integrated, user-friendly platforms for data visualization
and management, to be used not only by scientists and
specialized workers (e.g. operators working in open-pit mine
safety) but also by technicians of local administrations or
government institutions and civil protection agencies, which
manage a relevant number of landslide EWSs (Pecoraro
et al. 2019).

This also highlights that the connection with society is
key to a successful landslide EWS, at least for those slope
failures that represent a public threat. In fact, near real-time
instruments, fast data transfers and elaboration algorithms
make it possible to send reliable and timely warnings to the
people exposed, the main problem being whether a correct
communication and information campaign has been carried
out beforehand to make this warning understandable and to
ensure that the population takes the appropriate actions.

A connection with the society also means addressing the
economic factor. A diffusion of low-cost monitoring
instruments suitable for early warning would be beneficial to
a larger diffusion of instrumented sites, which in turn would
also increase the public awareness concerning landslide
hazard. In this regard, there are several technologies that
conceivably can play this role in the future, such as
micro-electro-mechanical systems (MEMSs) (Cina et al.
2019), wireless sensor networks (WSN) (Mucchi et al. 2018;
Muttillo et al. 2019), radio-frequency identification tags
(RFID) (Le Breton et al. 2019), global navigation satellite
system (GNSS) (Notti et al. 2020).

In conclusion, the recent and upcoming technological and
scientific advancements are the premise of even more
accurate and meaningful landslide EWSs. The real challenge
will be played on the social side and it will concern the
ability of scientists and social operators to engage the pop-
ulation, build capacity, increase risk awareness and make
warnings understandable and credible. The increased land-
slide risk at global level caused by demographic growth,
urbanization and climate changes might help to increase
people awareness but will also make the need for effective
responses even more pressing.
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Defining Kinematic and Evolutive Features
of Earth Flows Using Integrated Monitoring
and Low-Cost Sensors

Paola Revellino, Luigi Guerriero, Giuseppe Ruzza,
and Francesco M. Guadagno

Abstract

Mid to long-term monitoring of earth flow displacements
is essential for the understanding of their kinematic
features, process dynamic and evolution, and designing of
mitigation measures. This paper summarizes methods,
results, and interpretations of monitoring activities carried
out between 2006 and 2020 at three earth flow sites in
southern Italy characterised by structurally and litholog-
ically complex slopes: (1) the Montaguto, (2) the Mount
Pizzuto, and (3) the Pietrafitta landslides. By integrating
traditional monitoring techniques and specifically devel-
oped low-cost sensors, kinematic and evolutive features
of the three earth flows were analyses allowing detailed
reconstruction of the relationship among basal-slip sur-
face geometry, deformation styles and pattern, geomor-
phic structures, movement velocity and sediment
discharge during ordinary and extraordinary movements.
Final results highlight that earth flows are composed of
distinct kinematic zones with characteristic longitudinal
velocity profiles. Velocity variation along a kinematic
zone, which is controlled by the basal and lateral
geometry of the slip surface, is consistent with the
distribution of structures on the ground surface of the
flows, reflecting stretching and shortening of material
during movement. Seasonal movements characterized by
alternation between relatively slow persistent movement

and acceleration are induced by material recharge passing
through each kinematic zone and depends from this
amount. Finally, it is empathised the use of low-cost
sensors for displacement monitoring associated with
traditional instrumentations, which give the advantage
to obtain multiple stations distributed over large areas and
reduce the cost of expensive monitoring campaigns.

Keywords

Earth flow � Kinematic � Displacement � Evolution �
Monitoring � Low-cost sensors

Introduction

Earth flows are among the most common mass movement in
nature, and are pervasive in many rapidly eroding landscapes
(Mackey et al. 2009; Revellino et al. 2010). Their architec-
ture derives from a complex evolution regulated by climatic
aspects and the availability of material for sediment-pulse
formation (Guerriero et al. 2014, 2015a, b).

Earth flow activity alternates between long periods of
slow and/or localized movements and surging events (e.g.
Guerriero et al. 2015a).

Persistent-slow movement of earth flows creates defor-
mational structures at their surface (i.e. faults and folds;
Guerriero et al. 2013a, b). Observation of mesoscopic
structures forming their surface (e.g. Guerriero et al. 2014)
shows that earth flow material is affected by both longitu-
dinal extension and shortening, controlled by the geometry
of the basal slip surface (Guerriero et al. 2014). In struc-
turally and lithologically controlled earth flows (e.g. Pinto
et al. 2016), the basal slip surface can be a series of alter-
nating steeply and gently sloping surfaces (e.g. Guerriero
et al. 2014) along the earth flow profile, which confine
distinct kinematic zones operating in unison to transmit
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sediment pulses along the length of the flow (Guerriero et al.
2016a, b).

While slow movement can persist for days, months, or
years (Coe et al. 2003), surges in earth-flow movement are
less common. Velocities of earth flows during slow, per-
sistent, movement range from less than 1 mm/d to several
meters per day (Keefer and Johnson 1983). However,
velocity of several meters per day have been observed also
during earth flow surge (Guerriero et al. 2013a, b). The
highest localized earth-flow surge speed documented in the
literature is 0.13 m/s (Hutchinson et al. 1974).

Movement velocity is controlled by hydrologic forcing,
and seasonal acceleration and deceleration are induced by
variation of the pore-water pressure (e.g. Grelle et al. 2014).
Thus, most earth flows move faster during periods of high
precipitation or snowmelt than during drier periods, and the
correlation between precipitation and velocity is normally
complex (Schulz et al. 2009).

Earth flow surges can occur when prolonged rainfalls are
associated with the loss of efficient drainage pathways
(Handwerger et al. 2013) and new sediment becomes avail-
able in the source area through retrogression of the upper
boundary (e.g., Guerriero et al. 2014). In these conditions, the
earth flow material can fluidize and fail catastrophically.

Each different kinematic behaviour materializes a specific
hazard level that needs to be quantified on the basis of
monitoring data. An accurate identification of hazard also
includes the understanding of factors controlling earth flow
movement (Schulz et al. 2009). In this way, a continuous
monitoring record of earth flow displacement and its envi-
ronmental drivers is essential in defining the dynamic of the
process. Additionally, for earth flow involving human
infrastructures (e.g. roads and railroads) displacement mon-
itoring is crucial for understanding the ongoing evolution
and designing mitigation measures.

Based on the above consideration, this paper summa-
rizes methods, results and interpretation of monitoring
activities carried out between 2006 and 2020 at three earth
flow sites in southern Italy located on structurally complex
slopes: (1) the Montaguto landslide, (2) the Mount Pizzuto
landslide and (3) the Pietrafitta landslide. In particular,
analyses and monitoring investigations helped to define
(i) relation between structures, velocity distributions and
basal slip-surface geometry within individual kinematic
domains of earth flows; (ii) earth flow movement and
related sediment transport during both ordinary and
extraordinary movements, understanding relation and
connectivity between successive kinematic zones;
(iii) monitoring earth flow displacement from specifically
developed low-cost sensors.

The Montaguto Earth Flow

Landslide Description

The Montaguto earth flow (Fig. 1), in southern Italy, is one
of the largest active earth flows in Europe. It is located along
the northern side of the Cervaro River valley.

The landslide is approximately 3 km long and involves
4–6 Mm (Giordan et al. 2013, Guerriero et al. 2013a, b). Its
width ranges from 75 m at the earthflow neck to 450 m in
the upper part of the earth-flow source area. The earth flow
affects an area of about 67 ha and its thickness ranges from a
few meters (*4) to more than 20 m near the toe. The
average slope angle, excluding the headscarp, is approxi-
mately 7.2°.

Early in 2006, the earth flow remobilized and covered the
east–west-trending Italian National Road SS90, damaging
several farmhouses. This reactivation marked the start of the
most intense period of activity because of the large volume
of mobilized material and the impacts to linear infrastruc-
ture. This period culminated on March 2010, when the earth
flow destroyed a segment of the national railway.

Historical records indicate that the Montaguto earth flow
has about a 100-year history of periodic activity characterized
by rapid surges in 1958 and 2006, alternating with longer
periods of quiescence with small and localized displacements
(Guerriero et al. 2013a, 2015a, b). Additional surges involv-
ing only part of the earth flow occurred in 2009 and 2010.

Starting from April 2010, current activity is controlled by
mitigation measures consisting of deep and surficial drainage
and a retaining wall at the toe.

The earth-flow path is complex as it is controlled by major
geologic structures associated (Guerriero et al. 2014, 2019b).
The slope is constituted by Miocene and Pliocene flysch
formations that are lithologically complex, containing a wide
variety of clay beds, marls, sandstones, and conglomerates
11. This geological complexity influences groundwater flow
and many springs are present from 600 m above sea level to
the top of the mountain (Diodato et al. 2014). Several groups
of springs are located along the western flank of the
earth-flow and at/near the head of earth-flow (Fig. 2).

Deformational Structures and Segmentation

Deformational structures and hydrologic features of the
Montaguto earth flow were mapped and monitored starting
form May 2010 (Guerriero et al. 2013a, b) using real-time
kinematic (RTK) Global Positioning System (GPS) tech-
nique, with a dual-frequency GPS receiver.
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The mapped distribution of the structures was used to
identify kinematic zones formed by major paired driving and
resisting earth-flow elements.

Deformational structures comprise normal faults indicat-
ing earth-flow stretching (i.e. driving element), thrust faults
indicating earth-flow shortening (i.e. resisting element),
back-tilted surfaces indicating backward rotation, and
strike-slip faults bounding the earth-flow moving core. This
mapped distribution of the structures was used to identify
kinematic zones formed by major paired driving and
resisting elements.

Each kinematic zone had an area of stretching with one or
more normal faults at its head and an area of shortening with
one or more back-tilted surfaces or thrust faults at its toe
(Fig. 3). In some cases, kinematic zones had a central area of
no stretching or shortening where earth-flow movement
occurred largely by translation along discrete basal and
lateral-slip surfaces. Strike-slip faults represented the surface
expression of lateral-slip surfaces.

Figure 2 shows the configuration of the Montaguto earth
flow in 2010 and the deformational structures. Five active
kinematic zones containing structures indicating both
stretching and shortening were recognized along the earth
flow: the Head, the Hopper, the Neck, the Body and the
Active Toe (see Guerriero et al. 2013a, 2014, b for details).
Two kinematic zones were in the earth-flow source area.

Monitoring of the Movement Velocity

In order to monitoring velocity and structures within the
Neck of the Montaguto earth flow, the displacement of 25
natural and artificial objects (i.e., large rock fragments, drain
pipes, etc.) on the surface of the Neck kinematic zone of the
Montaguto earth flow, visible in successive sets of Eros-B
satellite orthoimages (25/05/2010 and 25/08/2010) were
measured. The EROS-B satellite acquires panchromatic
images with a nadiral Ground Sampling Distance (GSD; i.e.,
spatial resolution) of 0.7 m (single sided pixel dimension)
and the radiometric resolution is within a spectral range of
0.5 to 0.9 µm. Objects consisting of groups of pixels were
recognized on the basis of their geometry and colour (i.e.,
Digital Number) distribution. Corners of object were visu-
ally picked from a computer display, and displacement was
manually measured in a GIS. The irregularly distributed
displacement values were interpolated using the Inverse
power to a distance method to produce a displacement map;
deformational structures were used as breaklines. The error
in displacement was assigned on the basis of the computed
east–west and north–south root mean square errors in the
position of 16 stable ground control points. In the Easting
direction, the 2xRMS values ranged from 0.04 to 0.12 m,
but averaged about 0.08 m. In the Northing direction, the
2xRMS values ranged from 0.02 to 0.18 m, but averaged

Fig. 1 The Montaguto earth flow
on 27 April 2006. Photo taken
from a helicopter looking south
toward the earth-flow toe
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about 0.06 m. Considering that Eastting and Northing RMS
values are not equal, the error in displacement depends on
the azimuth of the displacement vector, with the Easting and
Northing RMS values being the maximum and the minimum
errors, respectively.

Results form displacement monitoring showed that the
Neck was actively moving between May and August 2010
(90 days). The average earthflow velocity over the entire
monitoring period ranges from 0.016 m/d (1.4 m/90 ds) in

the upper and lower parts of the kinematic zone, to
0.066 m/d (6 m/90 ds) in the middle part (Fig. 4). Variation
of earth-flow velocity along the longitudinal axis of the
kinematic zone is shown in the velocity profile in Fig. 4b.
The distribution of displacement and average velocity
(Fig. 4a) corresponds with three structural sectors charac-
terized by (i) normal faults and a linear increase of flow
velocity; (ii) a peak in velocity where the flow moving core
is bounded by strike-slip faults; (iii) a decrease of earth-flow
velocity associated with the existence of thrust faults and a
rapid narrowing of the active flow. Displacement monitor-
ing, and data from Guerriero et al. (2014, 2016a), indicates
that the ground surface of the Montaguto earth flow consist
of structures moving with different styles of deformation.
This structure distribution can be used to infer the geometry
of the basal-slip surface, because of relations between
extensional structures and risers in the basal slip surface and
compressional structures and treads in the slip surface. Such
structures accommodate deformation caused variation in
earth-flow velocity (i.e., acceleration and deceleration).
Moreover, comparison with similar analysis in other earth
flows (e.g. Guerriero et al. 2016c, d) showed that the density
of structures appears to be independent of the magnitude of
velocity change. From this observation, it appears that the
slope angle of the basal-slip surface might control the den-
sity of deformational structures forming during flow
movement.

The Mount Pizzuto Earth Flow

Landslide Description

The Mount Pizzuto earth flow (Guerriero et al. 2016a) is
among the most active landslide of the Benevento province
(Revellino et al. 2010; Grelle et al. 2011). It affects the
northeastern side of Mount Pizzuto from about 720 m above
sea level (a.s.l.) to about 550 m (a.s.l.), and involves an
estimated volume of 300,000 m3 of fine-grained flyschoid
material.

Fig. 2 Structures and kinematic zones of the Montaguto earth flow.
Box b correspond to the sector of Fig. 4

Fig. 3 Schematic longitudinal profile of a kinematic zone within the
earth flow
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From a geological viewpoint, the landslide is located at
an overthrust fault between two different flysch formation.
The tectonic contact between these formations materializes a
WNW-ESE trending thrust fault that constitutes a weak zone
where several landslide source-areas are located. It has a
complex source area with two branches, a 500 m long
transport zone and a fan-shaped bulging toe.

The landslide has been periodically active in the last
decades and, as described by local people, early in 2006, it
surged damming the Ginestra Torrent at its toe.

The earth-flow dam induced episodic floods that period-
ically damaged a segment of a local road and power and
telephone service lines. In 2008, few mitigation structures
were arranged at the foot zone consisting in a man-made
ditch excavated along the torrent course and in the instal-
lation of a large diameter drain. These structures were
destroyed in 2011 by a flood together with the local road and
service lines. In October 2015, two new flooding events

generated by large rainfall affected the landslide area con-
siderably enlarging the bed of the Ginestra torrent.

Deformational structures (e.g. normal faults, thrusts, etc.)
are disseminated along the earth flow surface. Guerriero
et al. (2016a, b) mapped deformational structures and
hydrologic features of the earth flow in September 2014
using real-time kinematic (RTK) Global Positioning System
(GPS). Structures were identified, mapped, and processed in
the same way as at the Montaguto earth flow. Based on the
distribution of these structures, five kinematic zones were
recognised along the earth flow: the head, the hopper, the
neck, the body, and the toe (Fig. 5).

Installation, Distribution and Monitoring of GPS
Points

In April 2014, 35 monitoring points were installed within the
five kinematic zones (from 4 to 9 points for each zone) of the
earth flow (red points 1–35, Fig. 5). Each point consists of a
70 cm long wooden-rebar quipped on its head with a red hat.

Monitoring points were placed approximately along the
longitudinal axis of the earth flow or following two
approximately parallel lines (i.e. along the hopper and at the
toe). The monitoring points placed with a clear view to the
sky were surveyed using Real Time Kinematic GPS tech-
niques (RTK-GPS) during 17 GPS campaigns of 1 day over
a period of 694 days (Table 1). In should be noted that
points 16 and 24 were lost within the earth flow material
after some surveys and replaced with new points on similar
locations, thus compromising the recording continuity for
these points.

We used a Leica Viva-Net rover equipped with a Leica
GS08 dual-frequency antenna for survey 1 and surveys from
12 to 17, and a Geomax Zenith 10/20 rover for surveys from
2 to 11. Real-time correction for high-accuracy measurements
was obtained through the “Regione Campania” network.
Minimum and maximum horizontal errors for the Leica
device are 7 and 19 mm, respectively; while for the Geomax
device they are 20 and 130 mm. Earth flow displacement
vectors were plotted in a GIS environment and used to
describe earth flow kinematics Guerriero et al. (2019a).

Earth Flow Movement and Sediment Discharge

The sediment discharge along the earth flow transport zone
was estimated using displacement/velocity data from suc-
cessive sets of GPS surveys and the cross-sectional geometry
of the earth flow from seismic refraction profiles (Fig. 5,
green lines S1–S4). Sediment discharge was calculated
considering average velocity of monitoring points moving

Fig. 4 a Structures and velocity within the earth flow Neck, and
b velocity profile of sector in a. See Fig. 2b for location
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through the cross sections during different reference periods
(Guerriero et al. 2017a, b).

The total movement of all points was largely dominated
by the horizontal component. Figure 6 displays the hori-
zontal displacement of the monitoring points installed within
the different kinematic zones of the landslide. As shown, the
highest cumulative horizontal displacement of the points
over the entire monitoring period were recorded within the
neck.

The average daily velocity ranges between 14 cm/day at
point 20–0.1 cm/day at point 33 for the all period.

Most of the earth flow movement occurred during two
main episodes (Fig. 6): a first surging event between April
and August, 2014, and a second event between December
2014 and May/June 2015. During these episodes, a maxi-
mum velocity of 250 cm/day was recorded in 2014 and the
earth flow movement assumed the characteristics of a surge.

To calculate sediment discharge, the earth flow transport
zone comprises from sections S1 to S4 (Fig. 5) were con-
sidered. Estimation of sediment discharge passing through
sections S1–S4 is displayed in Fig. 7, were bar graphs and
line graphs show sediment discharge calculated over shorter
and larger periods, respectively.

During the surging episode of the spring–summer 2014,
the sediment discharge averaged over almost 5 months of
activity was approximately constant through the transport
zone.

Therefore, the earth flow was active during the entire
monitoring period with both ordinary and extraordinary
movements and a major phase of acceleration (i.e. earth flow
surge) during the spring 2014, also in response to the intense
rainfall occurred between end of winter and beginning of
spring (e.g. Guerriero et al. 2015a, b).

Field observations and displacement data suggest that the
surging reactivation/phase started from the upper part of the
source area and propagated downslope zones. During such
an episode, the kinematic zones were completely active and
operated in unison to transmit sediment along the transport
zone with a constant sediment discharge. In this period,
sediment discharge calculated at transition sections between
the head and hopper, and the hopper and neck decreased in
time indicating a progressive depletion.

Conversely, in the transition sections between the neck
and body, and between the body and toe, sediment discharge
increased in a first period and then successively decreased
(Fig. 7). These observations seem to suggest that earth flow
movement propagated from the source area towards the toe.

The second phase of acceleration occurs in 2015. The
displacement/velocity data (Fig. 6) seem to indicate that this
seasonal acceleration initiated almost simultaneously within
all kinematic zones. It started at the upper end of each
kinematic zone and propagated downslope (i.e. through the
driving element) while the lower part of the zone was not

Fig. 5 Major structures, kinematic zones, monitoring points, bore-
holes, seismic tomographic profiles and displacement magnitude for the
period May 8-Nov. 28, 2015 (bar graphs)
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Table 1 Survey campaigns at
the Mount Pizzuto earth flow

GPS surveys Date GPS surveys Date

1 April 8, 2014 10 December 19, 2014

2 May 9, 2014 11 February 20, 2015

3 May 21, 2014 12 May 8, 2015

4 June 5, 2014 13 July 11, 2015

5 June 17, 2014 14 September 6, 2015

6 July 17, 2014 15 November 28, 2015

7 July 29, 2014 16 January 29, 2016

8 August 30, 2014 17 March 2, 2016

9 October 25, 2014

Fig. 6 Incremental horizontal
displacement of monitoring
points installed within the
different kinematic zones of the
earthflow. Pink and grey
rectangles indicate periods of
acceleration in 2014 and 2015,
respectively
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moving or was moving with a low velocity. After this
acceleration a period of ordinary activity with local slow
movement interrupted by short periods of dormancy char-
acterizes the earth flow underlying the intermittent nature of
these phenomena. In this period, the sediment discharge was
not constant along the flow.

Displacement and Velocity Profiles

Monitoring points shown in Fig. 5 were used for analysing
displacement and velocity of movement within the different
sector of the earth flow. Considering only position data
derived by the first and the twelfth survey, earth-flow dis-
placement and direction were determined. All of the moni-
toring points moved between the monitoring period and total
movement was largely dominated by the horizontal
component.

The blue line of Fig. 8 shows how displacement varies
along the length of the flow. Similar variation was also
observed within the neck of the Montaguto earth flow. Each
kinematic zone is characterized by an upslope area of
acceleration and a downslope area of deceleration with a
peak of displacement in the middle of each zone. An
exception to this statement is the earth flow Toe where the
displacement vectors linearly decrease toward the toe of the
flow.

Excluding point 18, displacement increases linearly from
the upper end of the Hopper (i.e., point 9) to the earth-flow
neck (i.e., point 21). Considering that this part of the flow is
characterized by a consistent reduction in the width of the
earth-flow, and that field observations indicate constant
sediment supply, we infer that displacement in this part of
the flow is controlled by both lateral and basal geometry of
the basal-slip surface. The presence of a tread causes

deceleration of the flow around point 18 while the presence
of risers induces acceleration of the flow.

In this context, the velocity profile along kinematic zones
appear to have a consistent pattern. These observations
suggest that a relation between the velocity profile of an
active earth flow and its slip surface geometry does exist and
that local variation of flow velocity are controlled by varia-
tions in the slope angle of the slip surface. In other words,
the lateral and basal geometry of the basal slip surface
controls both the kinematic segmentation of an earth flow
and its velocity profile.

Deformational Pattern and Strain Computation

On April 2015, associated to the 35 monitoring points inside
the Mount Pizzuto earth flow, 64 complementary monitoring
points were positioned to form quadrilaterals with the
existing monitoring points (Fig. 5). In each kinematic zone,
we installed from 12 to 28 points and from 1 to 7 quadri-
laterals. In surveying, a quadrilateral is a foursided plane
polygon defined by the survey stations at its four corners that
permit an estimation of the earth-flow’s strain (Baum and
Fleming 1991). In order to determine the size and shape of
the quadrilaterals, the mapped distribution of structures of
Guerriero et al. (2016c, d) were used. Especially, survey
stations were positioned on the ground encompassing an
area characterized by structures indicating a homogeneous
style of deformation.

The points were surveyed using Real Time Kine-
matic GPS and real-time correction. For the analysis, all of
the points were surveyed on May 08, 2015 and on
November 28, 2015 (a time span of 204 days).

Earth-flow strain was computed using the program SSPX
(Cardozo and Allmendinger 2009). SSPX calculates

Fig. 7 Computed sediment
discharge at cross sections S1, S2,
S3, S4 (Fig. 5). a 08.04.14–
30.08.14; b 30.08.14–08.05.15;
c 05.08.15–03.02.15. See Table 1
for periods

32 P. Revellino et al.



best-fitting strain tensors given displacement vectors at a
minimum of three points in 2D. The program offers several
options to compute strain. For our analysis, we used a
modified version of the Delaunay routine (implemented in
SSPX v. 5.8) to compute strain from the displacement of
groups (or polygons) of 4 to 6 monitoring points (or ver-
tices). Since there are more than 3 points in each polygon,
2D strain and its associated error can be calculated. The
results comprise earth-flow 2D finite strain within the
polygons defined by the monitoring points, magnitude and
orientation of principal extension and shortening axes.

An example of the spatial distribution of analysed groups
of monitoring points is shown in Fig. 9, where only the
monitoring points installed in April 2014 and used for strain
computation are labelled. Polygons are coloured based on

the amount of dilatation, which in this 2D case gives an idea
of increase or decrease of area (positive and negative
dilatation, respectively).

Since the earth flow is longitudinal, dilatation also gives an
indication of longitudinal stretching (positive dilatation) and
longitudinal shortening (negative dilatation). Within the
Hopper and Neck (from point 5 to 19), 15 polygons (13 of
which are quadrilaterals) are characterized by both longitu-
dinal stretching and shortening (positive and negative dilata-
tion, respectively). Polygons containing point 4, 5, 11, 13, 14
and 17 are characterized by negative dilatation, while poly-
gons containing points 10, 11, 12 and 14 are characterized by
positive dilatation. In all of these cases principal strain axes
orientations (and strain ellipses) are consistent with the
structures orientation and deformation style in Fig. 5.

Fig. 8 Longitudinal profile of the Mount Pizzuto earth flow showing the geometry of the basal-slip surface (red line) and the displacement profile
(blue line). Start and end points of the displacement profile are arbitrary taken at the beginning and at the end of the topographic profile

Fig. 9 Some results from strain
computation. Polygons are
coloured by dilatation. Strain
ellipses, and principal extension
(red) and shortening (blue) axes
are also included. Principal strain
axes are exaggerated 10 times
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The Pietrafitta Earth Flow

Landslide Description

The Pietrafitta earth flow is an active landslide which
involves the national road SS 87 connecting the cities of
Benevento and Campobasso in Southern Italy. Mobilizing
flysch and clay sequences, the earth flow has a length of
250 m from the source area to the toe and a width of about
100 m on the accumulation area.

The landslide affects the left side of the Reventa torrent
valley from 200 to 250 m above sea level. The landslide had
a complex source area with a, southern, flow-like source
zone and a larger, northern, rotational-slide zone, a short
transport zone, and a 40 m wide active bulging toe. Next to
the southern flow-like source zone, landslide material was
disrupted by multiple sets of tension cracks and isolated
normal faults while, within the northern rotational-slide-like
source, normal faults indicated extending rotation toward the
transport zone.

This deformational pattern had some similarities with
those characterizing the Montaguto and the Mount Pizzuto
earth flows and was related to the longitudinal geometry of
the basal slip surface controlled by the geologic complexity
of the slope. In fact, the Pietraffitta landslide is an example of
earthflow affecting structurally complex formations and
composed of multiple kinematic zones.

Integrated Monitoring System

Due to the landslide, since 2014 one lane only of the SS87
allows the passage of the motor vehicles in an alternating
way; the other lane is occupied by part of the landslide toe.
In order to mitigate the risk of sudden invasions of landslide
material on the transit lane and to design mitigation mea-
sures, an integrated monitoring system of the earth flow
displacement was installed in March 2016 consisting of:
(1) a Ground-based synthetic aperture radar interferometry
(GBInSAR, Fig. 10), located in front of the landslide on the
opposite slope and with an accuracy of less than 1 mm and
an acquisition rate of 4 min; (2) an automatic Total Station
(Robotic station), located near the GBInSAR, looking at 23
reflectors with acquisition rate of 2–6 h; (3) multi‐temporal
scans with terrestrial laser scanner (TLS); (4) a video
surveillance system, installed at the toe and h24 working;
and (5) an experimental low-cost Arduino®-based wire
extensometer (Guerriero et al. 2017a, b) placed along the left
flank of the earth flow toe discussed in the following
paragraph.

The joint use of different accurate monitoring techniques
allowed to detect not only real-time displacement of the

landslide body but also critical conditions of movement
acceleration or material invasion on the road. The integration
and comparison among different displacement information
from the simultaneous combination of different monitoring
techniques adequately allowed to undertake safety counter-
measure and alert procedures in order to stop the traffic at the
right time on the road.

Starting from 2018, due to some mitigation works,
landslide activities reduced at the landslide toe and a new
configuration of the monitoring system was progressively
undertaken. The monitoring system consist of (Fig. 11):
(1) 10 GPS targets (Fig. 12); (2) an experimental continuous
low-cost GPS; (3) an experimental low-cost multi-sensor
station for measuring water discharge from the drainage
trench, consisting of rain gauge, weir and sensor for water
level measurement; (4) an experimental alarmed network for
load-based early warning system; (5) 2 video surveillance
systems, installed at the toe and along the channel and h24
working; (6) a wire extensometer at the head scarp; (7) an
experimental ultrasonic barrier at the landslide toe; (8) multi‐
temporal scans with terrestrial laser scanner (TLS) and
UAV.

In particular, as for the experimental instrumentations,
with the continuous low-cost GPS (see Fig. 11 for location)
it has been experimented the potential of using a
Master-Rover RTK Ublox modules to derive high precision
landslide displacements. The Master station is installed
outside from the landslide broadcasting corrections to the
Rover with a 1hz frequency. In case of displacement higher
than 40 cm, the system managed through an Arduino UNO
board, is programmed to send alert SMSs to a list of num-
bers. This system was tested for the first time in a high risk
condition demonstrating its suitability.

Moreover, for monitoring water drained by a drainage
trench installed within the landslide, a multi-sensor station
was assembled (picture and location in Fig. 11). More
specifically, a squared concrete box was modified in order to
allow the anchorage of an aluminium weir. It was triangu-
larly shaped with an apex angle of 30° allowing a measuring
range of between 1 and 100 l/min. Discharge estimation is
completed measuring the level within the box through an
ultrasonic sensor characterized by a resolution of 1 mm and
a range of 5 m.

The monitoring system is equipped with a rain gage of
0.25 mm of resolution. Sensed data are register every 5 min.
Figure 13 shows flow discharge and rainfall recorded by the
multi-sensor station for a four-day period.

Due to the clay nature of the involved material and the
flow mechanic, the Pietrafitta landslide alternates between
long term slow movement and rapid acceleration that in
some cases mimics a surging event. Figure 14 shows a
recent surging event, materialised by a difference of DEM,
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Fig. 10 Example of
displacements measured by the
GB-InSAR from March, 30th and
April, 29th 2016

Fig. 11 New configuration of
the monitoring system of the
Pietrafitta landslide between early
2018 and late 2019. Image of
27.07.2018
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that is superimposing on the landslide toe and approaching
to the road. On this basis and in order to manage landslide
risk associate to the presence of the National road, an early
warning system based on the use of an instrumented steel
network barrier was developed and installed. Especially,
using steel rebars a steel network was installed normal to the
direction of the movement. For early warning purpose, a
load cell was installed at the network and connected with a
stable point through an auxiliary cable. The system was
configured considering a threshold of force that, once
exceeded, trigger an alert email message. For this purpose a
MRK 1200 Arduino was used. This board is equipped with a
SIGFox communication shield that allow for communicating
also in absence of a GPRS signal.

Finally, for controlling landslide toe advancement, an
array of ultrasonic sensors was installed on the Jersey bars
protecting the road from the landslide in case of sudden
advancement. Especially, since the National road operates
only in one direction and bidirectional vehicular traffic was
managed by alternating flux, two sets of Jersey bars were
present.

For monitoring purpose, sensors were installed on a set of
bars delimiting the left side of the closed roadway and used
the other set as target. The distance between the two set is
continuously measured by ultrasonic sensors and an
Arduino UNO board registers data every 20 min. Monitor-
ing data are used for early warning purpose by selecting a
displacement threshold. Especially, since the roadway is
approximately 4 m wide, we selected an alert threshold of
2 m and an alarm threshold of 3 m.

The choice to joint low-cost sensors to traditional
instrumentations came from the need to find practical solu-
tions and spatial distributed monitored points. In fact,
physical monitoring can be completed with a variety of
instrumentations, but most of them (i) do not allow nearly
continuous monitoring, (ii) imply time-consuming and
expensive monitoring campaigns and/or (iii) cannot be
integrated with additional sensors.

A Low-Cost Arduino®-Based Wire Extensometer
for the Earth Flow Monitoring

Wire extensometers are particularly suitable for continuous
monitoring, especially when it is concentrated along
well-defined shear surfaces, and can be easily integrated in
multisensor monitoring systems. Major disadvantages of
extensometers are their cost (a single-point

Fig. 12 Example of vectors of horizontal displacements obtained from
GPS data for the range periods 28.03.2019–05.09.2019 (red vectors)
and 05.09.2019–30.03.2020 (light blue vectors)
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high-performance sensor is sold at (EUR 1000) and their
sensitivity to temperature is also a function of the charac-
teristics of cabling systems.

For the Pietrafitta earth flow, we assembled a new
Arduino®-based wire-rail extensometer specifically devel-
oped for monitoring earth flow movement (Guerriero et al.
2017a, b). We chose the Arduino board because it has been
successfully used for the development of monitoring systems
for different applications (e.g. Bitella et al. 2014). The sys-
tem integrates a power unit, a data logger and an operating
temperature sensor, has a very low cost (EUR 200), is
configurable with different measurement ranges and accu-
racy and has the potential to work with additional sensors.
We tested extensometer performance at the Pietrafitta earth
flow and compare its measurements with those derived by
successive GPS surveys and discrete rTPS measurements
(Fig. 15).

The low-cost Arduino-based extensometer was installed
along the left flank of the earth flow toe (Fig. 15a). The
installation was completed using a 2.5 m long wire sup-
ported by several rebars, which forms a rail parallel to the
strike-slip fault, materializing the left flank of the flow. In
this way, the extensometer is dragged/moves along the flank
registering the cumulative displacement (scheme is shown in
Fig. 15b) every 30 s.

We used available displacement data to make a compar-
ative analysis of the monitored displacement. To compare
displacement measured with different systems, we installed a
GPS antenna screw mounting and a rTPS target on the wire
extensometer (Fig. 15b).

In particular, the earth flow toe moved approximately 1 m
in 6 days and 6 h. The average velocity calculated on the
basis of these data was about 6.6 mm h-1. In this part of the
flow, the movement was largely dominated by the horizontal
component. This makes it possible to compare the dis-
placement measured by the extensometer and the horizontal
component of the displacement vectors reconstructed with
both the GPS surveys and the rTPS.

The comparison of the results indicates that the total
displacement measured by the extensometer was approxi-
mately the same as that measured by combining GPS and
rTPS surveys, whit a difference of about 1.5 cm (1.5%).
Additionally, the displacement time series reconstructed
using rTPS data perfectly fits the extensometer time series
for the first 4 days of rTPS monitoring, despite a slight
thermal drift of the rTPS (see red curve of Fig. 15c). In the
successive 2 days the degree of fit seems to decrease and
affects the measured total displacement. This was probably
also caused by the deformation of the rail induced by the
tilting of the ground surface around the extensometer.

Fig. 13 Flow discharge and
rainfall recorded by the
multi-sensor station for a four-day
period
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Despite this drawback, the system exhibits a very high
monitoring stability without visible thermal drift, also at
operating temperatures higher than 35 °C.

Conclusion

Mid to long-term monitoring of earth flow displacements is
essential for the understanding of their kinematic features,
process dynamic and evolution, and designing of mitigation
measures.

Monitoring activities here presented allowed to explain
important aspects related to earth flow activity that can be
summarised below:

(1) Earth flows are composed of distinct kinematic zones
with characteristic longitudinal velocity profiles.
Velocity variation along a zone, being consistent with
the distribution of structures on the ground surface of
the flows, is controlled by geometry of the slip surface
and in particular by local variation of the slope angle;

(2) Zones of longitudinal stretching and shortening exist
within earth flows. Such zones correspond to zones of
acceleration and deceleration of the flow, respectively.
Strain analysis indicates that the structures forming at
the surface of the earth flow are consistent with
dilatation computed at polygons defined by GPS mon-
itored points.

(3) Earth flow exhibits a highly seasonal movement char-
acterized by an alternation between acceleration surges
in movement and localized and/or relatively slow per-
sistent movement. This induced an intermittent cascade
effect between kinematic zones controlled by the
amount of material passing through each zone.

Finally, for landslides which need extensive and dis-
tributed monitoring points, monitoring instruments based on
low-cost technology may provide several advantages
including (i) the very low cost, (ii) the potential to integrate
it with additional sensors, (iii) the possibility for use with
different types of landslides. Therefore, the use of low-cost
sensors for displacement monitoring associated with tradi-
tional instrumentations gives the advantage to obtain mul-
tiple stations distributed over large areas and reduce the cost
of expensive monitoring campaigns.

Fig. 14 DoD (Difference of DEM) from orthorectified images of
12.11.19 and 21.01.20 at the Pietrafitta landslide. Coloured scale shows
the thickness of the material moved
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Fig. 15 a Installation
configuration and monitoring
equipment of the extensometer.
b Installation scheme. c Results of
displacement monitoring with the
extensometer and comparison
with GPS derived and rTPS
results. Black circles indicate
error associated with GPS
surveys. Operating temperature
measured by the extensometer is
also shown
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Monitoring of Thermoelastic Wave Within
a Rock Mass Coupling Information from IR
Camera and Crack Meters: A 24-Hour
Experiment on “Branická Skála” Rock
in Prague, Czechia

Ondřej Racek, Jan Blahůt, and Filip Hartvich

Abstract

Results from a 24-hour time-lapse IR camera monitoring
experimental study performed on a rock mass in the city of
Prague are presented. The thermal images were processed
and analysed. Acquired temperatures were coupled with
information from crack meters monitoring of an unstable
block. It has been shown that it is feasible to directly
observe the thermoelastic wave on the monitored block.
Correlations of movements with monitored temperatures
showed that the rock surface temperature is not the only
variable that influences thermally-induced movements.
The movements are probably controlled more by the
overall air/rock mass temperature rather than maximum
and minimum peaks. However, for better understanding of
this phenomena, we suggest monitoring for a longer
period including measurement of temperatures inside the
rock mass.

Keywords

Thermoelastic wave � Rock mass monitoring �
IR camera � Crack meters � Branická skála � Czechia

Introduction

Influence of the temperature changes on rock mass stability
trough thermoelastic dilation of rock blocks has been thor-
oughly discussed in recent literature (Gunzburger et al.
2005; Gischig et al. 2011; Bakun Mazor et al. 2013; Collins
and Stock 2016). In the long term, thermal dilatation can
lead to irreversible movements and block destabilization
(Bakun Mazor et al. 2013; Collins and Stock 2016). The
temperature effect is usually measured directly using tem-
perature sensors placed on the rock surface, or meteorolog-
ical stations placed near the rock slope, whether dilatations
of blocks are measured on discontinuities that limit the
particular blocks (Boyd et al. 1973; Fantini et al. 2016;
Janeras et al. 2017). However, this approach is limited to
single-point measurement of rock temperature and there is
no information on its spatial distribution over the whole rock
mass. As a consequence, the temperature of the rock mass is
known only in few points or only air temperature from the
weather station is known, which can differ from the rock
face significantly (Gruber et al. 2003).

This limitation can be overcome by using infra-red
(IR) cameras, which enable to measure temperature changes
over the whole rock face (Teza et al. 2012). Today the IR
cameras are becoming affordable and are often used in
geological or engineering research (Sobrino et al. 2016).
Using an IR camera, it is possible to measure the spatial and
temporal distribution of temperature values over the visible
part of a rock mass. From the acquired thermal images or
videos it is possible to visualize heating/cooling trends using
appropriate software (Pappalardo et al. 2016). Thermal
images are also suitable for discontinuity detection (Barla
et al. 2016; Seo et al. 2017), porosity measurements (Mineo
and Pappalardo 2016) heat propagation (Fiorucci et al.
2018a), or shading effect (Pappalardo and D’Olivo 2019).
By further examination of thermal images, it is possible to
detect sites with the highest temperature-induced stress
caused by temperature changes (Fiorucci et al. 2018b).
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In the case of rock mass monitoring, IR cameras can be
used for several applications. Guerin et al. (2019) proposed a
methodology which uses IR images to detect rock bridges,
that are important in case of detached block stability. IR
camera can also provide information about temperature
anomalies. These anomalies can be caused by different
lithology/mineralogic content (Yousefi et al. 2016; Liu et al.
2016), by shading effect (Pappalardo and D’Olivo 2019) or
moisture-seepage (Frodella et al. 2017). During the cold
season, wide continuous cracks can be mapped as they appear
warmer due to duction of warmer air from inside the mass
(Baroň et al. 2014). IR camera can be also used to detect rock
flakes (Guerin et al. 2016) that are parts of the rock mass,
which are detached from the mass itself and highly suscep-
tible to form rockfall event (Matasci et al. 2011).

In this study, we used the IR camera as a supplement to
long term monitoring performed on a studied rock face in
Braník, Czechia. Experimental monitoring of a part of rock
mass was performed for a 24 h period during a warm, sunny
July day. The behaviour of minimal, average and maximal
rock mass temperatures during the monitored period was
analysed and this information was coupled with direct
measurements of crack dilation on site.

Experiment Settings

The studied rock slope is called “Branická skála” and forms
part of an abandoned limestone quarry situated on the right
bank of Vltava River in Prague. The rock face has prevailing
SW orientation, with the general aspect of 240°, dipping at
70°. The rock mass is formed by biomicrite and micrite of
light grey to a grey colour layers (Czech Geological Survey
1998) with dip direction and dip of 325/50. The rock slope
reaches 39 m at its highest point and it is highly dissected by
numerous joints and cracks (Fig. 1). It includes frequent
overhangs and loose blocks with sizes ranging from 0.2 to
3 m. Three main joint sets (325/50, 197/89, 085/62) define
the rockfall detachment planes. The strength of the particular
limestone layers is very variable from rather fresh rock,
reaching UCS of 240 MPa to weathered rock with UCS of
90 MPa (Petružálek 2019). The slope stability of this rock
mass has been assessed using different methodologies
(RQD, RSR, Qslope, SMR, GSI and QTS). Despite rather
variable results of the individual methods, the rock mass can
be classified as conditionally unstable (Racek 2020).

An automated meteorological station is installed directly
on the rock mass providing readings of air temperature, air
humidity, atmospheric pressure and precipitation every
10 min. An unstable block is being monitored using three
Gefran PZ-67-A-200 displacement transducers (potentiome-
ter) with a resolution of 0.05 mm coupled with Tertium
Beacon datalogger recording also the air temperature

(Fig. 2). Readings are normally taken once an hour, for the
sake of this experiment, the sampling time has been increased
to every 10 min to match the frequency of the meteodata.

Spatial distribution of rock surface temperatures has been
monitored using an infrared camera FLIR E95 with a
464 � 348 resolution @30 Hz and using 42° lens. The
camera has been placed on a rock outcrop facing the upper
part of the rock mass at a distance of approximately 90 m.
Unfortunately, the monitored unstable block was not directly
visible from this site due to dense trees, but a representative
area nearby was chosen to be monitored. The experiment
took accidentally place during the hottest day recorded in
Prague in summer 2019. The IR monitoring started at 7:30
UTC on 25 July and ended at 7:20 UTC on 26 July. The IR
images have been taken from a fixed position every 10 min.
Every IR image recorded has been calibrated afterwards
using air temperature and humidity records from the metro
station. For this calibration, the emissivity of the rock sur-
face has been fixed on 0.95 (Rubio and Caselles 1997; Rubio
et al. 2003; Danov et al. 2007).

Results and Discussion

The temperatures from the three areas of calibrated IR
thermal images have been analysed: the whole image area
and on two sub-regions—rock slabs above and near the
installed crack meters. 10-minute evolution of air and rock
temperatures is shown in Fig. 3. It can be seen, that air
temperature gradually increased and reached its peak at
14:20 UTC with 38.1 °C. After 16:40 the temperature began
to drop reaching its minimum of 17.9 °C at 3:20.

The differences in temperatures of the rock surface are
controlled by shadowing effect of the overhangs, orientation
of the rock surface (aspect and dip) and by the elevation of
the Sun above the horizon. Heating of the rock mass started
at 7:40 from the southeast part of the rock mass in its upper
parts that are not shadowed by trees and are close to the
vertical. After these upper parts of the rock mass were
heated, direct insolation started to influence rest of the mass,
starting from southwest oriented slabs (left bottom corner on
Fig. 4. This process started to be more obvious at 9:10. In
the initial state of heating, the temperature differences were
relatively high even on small distances due to the shadowing
effect. The central part of the rock face with steeper incli-
nation remained relatively cooler until the afternoon when
became affected by direct sunlight. This effect was most
obvious after 14:00 when the highest temperature of 73.3 °C
as well the highest temperature difference of 40 °C on the
rock mass surface were observed. Heating of the rock con-
tinued until 15:20 when the maximum average temperature
of 47.1 °C was reached. After that, the whole rock started to
cool down and the spatial distribution of temperatures
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became more even. From 17:30, slabs which showed high
temperatures during the heating phase started to cool at a
rather fast pace. However, a major part of the rock remained
warm with an average of almost 30 °C at 21:30. The lowest
average temperature was reached at 5:30 with a value of 21.7
°C. The lowest measured temperature (16.9 °C) was recor-
ded at 5:00. At 7:20 we measured the lowest difference
between maximal and minimal temperature: only 7.4 °C.

The parts of the rock mass warming fastest also showed
fastest cooling. These parts also showed highest temperature
range. Rock slab 1 is a good example of such behaviour. This

slab is southwest oriented and is built by a relatively
light-coloured limestone. According to the record, it is situ-
ated in one of the rock face parts with the highest daily
temperature amplitude. At the beginning of the experiment,
the average temperature of this slab was 22.9 °C, which is
about a degree lower than the whole rock average tempera-
ture. Until 9:30, when direct sunlight reached it, the slab 1,
was warming up relatively slowly about 1 °C per hour. Since
9:30, however, the heating became rather fast with a 1 °C
increase every 10 min. This went on until 12:40 when the
whole slab was heated up to 52.5 °C, i.e. about 10 °C warmer

Fig. 1 Experiment location on
UAV-derived model of the rock
face. a Overview of the “Branická
skála” rock mass; inset figure
shows the location with a red star
(CZ: Czechia, G: Germany, P:
Poland, A: Austria, S: Slovakia).
b Detail of the monitored site
(green rectangle) with the location
of the separately analysed slabs
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Fig. 2 Crack meters on the monitored block

Fig. 3 Temperature graphs. Orange: Air temperature; Blue: rock
surface temperatures derived from IR camera; dashed line: maximum
temperatures; bold line: average temperatures; dotted line minimum
temperatures. a whole observed area; b rock slab 1; c rock slab 2

than the whole rock average at that time. Afterwards, the slab
temperature was still increasing, but at a slower pace until
reaching the maximum average temperature (54.9 °C) as well
as the highest maximal temperature (64.2 °C) at 14:00. From
that time, the rock slab average temperature fluctuated around
55 °C until 15:20 when direct sunlight disappeared and the
cooling of the slab started. At 18:20 the slab 1 average
temperature was already lower than that of the whole rock
face and relatively rapid cooling continued. Slab 1 continued
to cool down faster than the rest of the rock mass, the max-
imum difference between slab 1 and whole rock face tem-
perature occurred at 3:30. From this point, cooling of the slab
1 slows down, however at the end of measuring it was still
about 1 °C cooler than whole rock face.

The rock slab 2 is located slightly lower and more to the
west with respect to the slab 1, however, their geometric
orientation is similar. Also, this part of the rock is formed by
grey limestone with higher roughness than slab 1. Thus it is
more representative compared to conditions of the whole
rock face. This is obvious from the start of measuring when
the average temperature of the rock face and the slab 2
differed only by 0.3 °C. The temperature started to rise
rapidly after 9:10 under direct sunlight. Peak average tem-
perature (47.8 °C) was reached at 13:50 and it is about 0.6 °
C higher and 80 min earlier than for the whole rock. Slab
two is warmer than the whole rock until 15:10 when it lost
the direct sunlight and began to cool down about 3 h earlier
than slab 1. The biggest temperature difference between a
whole rock and slab 2 was measured at 17:40 when slab 2
was 2.8 °C cooler than the whole rock. From that point, the
temperature of slab 2 and the whole rock started to equalize
till 6:30 with a difference of only 0.2 °C.
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Three crack meters are installed at “Branická skála”.
They are codenamed 102D_1; 102D_2 and 0CB7. The crack
meters are placed on a rock block in the vicinity of rock slab
2 (Figs. 1 and 2). Unfortunately, it was not possible to
monitor this particular rock block with the IR camera as the
view was obscured by trees. Two of the crack meters
showed similar behaviour of rock dilation when analysed
using 1-h moving average (Fig. 5). A 1-h moving average
was calculated because it better captures the general crack
behaviour in time than direct results that are influenced by
the resolution of the crack meter (0.05 mm).

All crack meters responded to increased rock surface
temperature by the closing of the monitored cracks. The
maximum closing time is delayed by several tens of minutes
to hours after the maximum air and rock surface tempera-
tures. Crack meter 102D_2 (Fig. 5b) did not record any
obvious response to temperature-induced rock dilation.
However, closing and consequent opening can still be
observed during the 24-hour experiment. This less direct
response of this crack meter to temperature changes might be
explained by the position of the crack meter, which is not

perpendicular to the monitored crack (Fig. 2) and by the
resolution of the readings.

The maximum daily amplitude of movements was
recorded on crack meter 102D_1 (0.35 mm). On the other
crack meters, the amplitude reached 0.1–0.15 mm. This is
far below the long-term amplitude, which reaches 1.40 mm
in case of crack meter 102D_1.

A correlation analyses between the monitored tempera-
tures and crack meter movements was made using Spear-
man correlation analyses (Spearman 1904). The best
correlation was observed in the case of 102D_1 crack meter
and the average temperature of the whole rock mass
(Table 1). This crack meter also shows higher correlation
coefficients with temperatures than the two others. In case
of crack meter 102D_2 no significant correlation was
found, probably due to small measured movements and
position of the crack meter, which is not perpendicular to
the monitored crack. However, in Fig. 5 it is still visible
relation between the movement and the temperature. Lower
correlation with temperature in case of crack meter OCB7
can be caused by the location of the device under the

Fig. 4 IR images of the high and low peaks of maximal, average and minimal rock mass temperatures
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monitored block. At this place, three cracks intersect, so the
measured dilatation is more complicated than the move-
ment measured by crack meter 102D_1.

Conclusions

This experiment has shown that the rock surface temperature
can significantly differ (by tens of °C) at very short distances
and within a short time interval. This leads to rapid changes
in rock stress at short distances, followed by reversible
closing and opening of the cracks. Gradually, this frequently
repeated thermal stress can lead to weathering inside the
rock mass, decrease of the stability and to a rockfall (Collins
and Stock 2016). It has been shown that for proper moni-
toring of crack movements and consequent rockfall hazard
assessment the sub-daily changes are important. When using
lower monitoring frequency, these changes might be recor-
ded unconvincingly or not at all. Another issue arose from
the resolution of the crack meters, as the smallest movements
might not be recorded with devices with lower resolution
than 0.05 mm.

The measured data showed that the thermally-induced
crack movements can be monitored in short time-steps.
Correlations of movements with monitored temperatures
indicate that surface temperature is not the only variable that
influences thermally-induced movements. The movements
are probably controlled more by overall air/rock mass tem-
perature rather than maximum and minimum peaks.
Long-term heat transition inside the rock mass possibly also
plays an important role. To proof this assumption, it is
necessary to perform more detailed research combined with
subsurface temperature monitoring and modelling.

We have shown that the time-lapse IR imaging brings
new spatial information about the thermal behaviour of the
rock surface and helps with the interpretation of movements
on cracks. Thus the use of IR imaging contributes to a better
hazard assessment of rock mass stability. For future appli-
cations, a longer (several days with varying insolation and
temperature conditions) monitoring should be tested together
with more in-depth analysis of induced rock stresses. This
might lead to identification if the areas of high
thermally-induced rock stresses lead to destabilisation of the
rock mass. Yet another aspect of the monitoring should be
the presence and content of water, namely during the winter
as the freezing water is also an important factor in rockfall
initiation. Therefore, the combined monitoring performed
during winter months appears to be essential as, in some
countries including Czechia, most of the recorded rockfalls
occur during winter and spring months (December to
March/April; Adamovič 2020) when temperatures likely
oscillate around 0 °C causing repeated freezing and thawing
of the water present in the rock mass.

Fig. 5 Graphs of the movements recorded on the crack meters. Blue:
air temperature at the datalogger; dotted orange: measured movements;
bold orange: 1-h moving average
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The Role of Measure of Deep-Seated
Displacements in the Monitoring Networks
on Large-Scale Landslide

Paolo Allasia, Marco Baldo, Francesco Faccini, Danilo Godone,
Davide Notti, and Flavio Poggi

Abstract

The aim of this research is to obtain a hydro-
geomorphological and geotechnical model of the Arzeno
and Prato di Reppia large scale landslide for the
geo-hydrological risk management. Arzeno and Reppia
are typical rural villages built in historical times at about
600 m a.s.l. near the main watershed, in the Entella river
catchment (Ligurian Apennine): this is a very common
situation in the Ligurian hinterland, where large land-
slides represent about 15% of the territory. For decades,
there have been reports of slope instability phenomena in
the villages of Arzeno and Prato di Reppia, which are
outlined by several indirect kinematic indicators (mainly
damage on buildings and infrastructures). In order to
improve the comprehension of the landslide kinematic
and the consequences on buildings and infrastructures, in
2017, a drill survey was carried out: one inclinometer case
with robotized system and one piezometer with pressure
transducer for continuous measurement have been
installed in Arzeno. One inclinometer case and one
piezometer case have been installed in Prato di Reppia
village. The monitoring activities show a complex
situation for the studied large-scale landslide: an

evolution of the slope instabilities in several compart-
ments with different kinematics and hydrogeological
set-up is recognized, as well as a good convergence
between satellite, GPS and inclinometric monitoring data.

Keywords

Deep-seated ground deformations � Monitoring
network � InSAR

Introduction

Landslide hazard in mountain environment is very frequent,
representing one of the main issues in natural hazard control.
Among natural causal factors, we can recognize the ground
conditions (lithological and structural features), the geo-
morphological processes (tectonic uplift and fluvial erosion
of the slope toe) and physical processes (heavy and short
rainfalls and prolonged high precipitation). Nevertheless,
landslide hazard is also related to man-made processes, eg.
to the insufficient maintenance of the drainage systems or
land use changes. Climate change in Mediterranean envi-
ronment accelerate landslide dynamic, and this often causes
damages and human losses. A policy based on risk predic-
tion and prevention has been adopted in Italy, and now there
is more interest about the understanding of the landslides
causal factors and their mitigation. A detailed knowledge of
landslide failure mechanisms becomes a main aspect for the
risk reduction management.

In Italy almost all the settlements on slopes were built in
historical times above large scale landslide: these portions of
land were preferred because of their low acclivity, ground-
water and stratigraphy suitable for agriculture. When
studying the features of these landslides, a different mor-
phoclimatic context from the current one (paleolandslides)
must be taken into account; the current movement is mostly
due to a residual-state landslide, with very slow kinematics.
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The aim of this research is to obtain an hydro-
geomorphological and geotechnical model of the Arzeno
and Prato di Reppia large scale landslide for the
geo-hydrological risk management. Arzeno and Reppia are
typical rural villages built in historical times at about 600 m
a.s.l. near the main watershed, in the Entella river catchment
(Ligurian Apennine): this is a very common situation in the
Ligurian hinterland, where large landslides represent about
15% of the territory.

Both the IFFI project (Inventory of Italian landslide
phenomena) and the Entella River Master plan specifically
mention it as a very high geomorphological hazard area
(Fig. 1). For decades, there have been reports of slope
instability phenomena in the villages of Arzeno and Prato di
Reppia, which are outlined by several indirect kinematic
indicators (mainly damage on buildings and infrastructures).
Although it is a low velocity landslide, geomorphological

risk mitigation strategies in this area representing a priority
for public administration: since the third millennium the
municipality of Ne and Liguria Region has been paying
great attention to a better knowledge of the phenomenon and
to activate landslide monitoring activities. The geological
structure of this catchment is internationally well known by
earth science researchers for the ophiolitic sequence with
sedimentary covers.

A careful field survey has made it possible to identify the
most important geological and geomorphological features:
several rock masses with different strength and deformability
behaviour have been recognized: shales with limestone
interlayers, limestones, cherts, ophiolitic breccias, basalts,
serpentinites.

The whole upper catchment examined, on which the
villages of Prato di Reppia and Arzeno are located, shows
evident signs of neotectonic influence: numerous mor-
phological indicators (wetlands in flat areas, trench filled
by swampy deposits, closed depression, counterslope)
suggest, at the base of the large scale landslides, the
presence of a Deep Seated Gravitational Slope Deforma-
tion that affects the whole ridge, slope and valley bottom
system (Fig. 1).

Material and Methods

In recent years, the study area has received a lot of attention
from the regional management offices and the scientific
community (Brandolini et al. 2007). Contemporarily, a small
but constant buildings damages and road deformations has
been observed (Faccini et al. 2019). These issues did not
create substantial problems for the inhabitants life, but
pushed authorities and scientists to an accurate analysis of
the kinematic of the landslide. To increase the knowledge of
the phenomenon, starting from 2018, a terrestrial monitoring
network has been implemented mainly aimed to measuring
subsoil deformations and the groundwater level (Table 1).
The goals were (i) describe the behaviour on the subsoil
(ii) identify kinematic domains (iii) evaluate (if any) sea-
sonal deformation accelerations (iv) describe the behaviour
of the groundwater level in a pseudo-continuous way (Her-
rera et al. 2017). To achieve these goals, a geo-gnostic
activity was carried out and 2 inclinometers and 2
piezometers (coupled) have been installed. In addition to the
deep-seated measurements, to make a robust instrumental
crosscheck, a periodic GNSS network was organized with 3
benchmarks (Fig. 1). At the same time, the analysis of the
InSAR satellite data continued by the Liguria Region,
acquiring dataset from Sentinel and Cosmo-SkyMed plat-
forms (2014–2019). These data will be available in the near
future.

Fig. 1 Upper panel, location of the study area. Lower panel, location
of the installed instruments over landslides: GNSS, Piezometers and
inclinometers (both manual and AIS)
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Ground Deformations (On the Surface)

The development of the last twenty years of remote sensing
techniques allows often and in a quite simple way, to define
a large-scale surface deformations. The availability of pre-
vious data (up to 1992) is very useful to investigate the
history of the landslide with some constraints: i) a sufficient
number of persistent scatterers ii) low landslide velocity.
Persistent scatterer interferometry is one of the most used
techniques for very-slow landsides monitoring (Béjar-Pi-
zarro et al. 2017).We used Persistent Scatterers (PS) InSAR
data available from extraordinary plan of remote sensing
(Piano Straordinario di Telerilevamento-PST) of Italian
environment minister (https://www.pcn.minambiente.it/
mattm/en/project-pst-interferometric-products/). The data
cover the period 1992–2014 using ERS and ENVISAT
satellites of European Space Agency ESA, Cosmo-SkyMed
(CSKM) satellites of Italian Space Agency (ASI). Data from
Sentinel-1 satellites are actually under interpretation and will
be used in further studies.

In parallel to the use of the InSAR data, a small GNSS
network has been installed aimed to: (i) validation of the
inclinometric data (cumulated displacements on the top of
the borehole) (ii) assessing the consistency of deformation
measured by the GNSS system and by the InSAR data recent
(when available).

Deep-Seated Ground Deformations and Water
Table

In order to investigate the subsoil kinematic, two pairs of
inclinometers and piezometers were installed in the areas of
Arzeno and Prato di Reppia respectively. Based on geo-
logical data, the inclinometer tubes were drilled up to about
63 m deep while the piezometric tubes up to about 20 m.
The borehole located in Arzeno has been equipped with a
robotic inclinometer system developed by the CNR IRPI
(Fig. 2).

The robotized inclinometer system was designed with the
goal to automatize the measurement carried out, conven-
tionally, by an operator (Allasia et al. 2018). The system is
composed by two main parts: the Ground Control Unit
(GrCU) and the Inclinometer Control Unit (InclCU). The
first one has the task of probe up-lift/down-lift into the
inclinometer tube while the second, together with the probe,
is the measuring element. These two elements are connected
only by a thin synthetic fiber cable (Dyneema®, 2 mm
diameter) finalized to the mechanical support (and moving)
of the probe into the inclinometer tube. The communications
between GrCU and InclCU take place, via radio, exclusively
during the idle phase. During the down-lift and up-lifts
operations, there are no communications between the sys-
tems and the InclCU is fully autonomous from power supply
and signal analysis point of view. Regarding the second
borehole, located in Prato di Reppia, manual measures with
portable probe have been carried out every 3 months. At the
beginning of 2020 after about 2 years of measures, the
robotic system was moved from Arzeno to Prato di Reppia
(Figs. 2 and 3). This change was necessary because the
periodic measures were unable to describe correctly the
complex evolution of the Prato di Reppia area. The
groundwater measurements were carried out using wireless
and remote controlled electric pressure transducers.

Results and Discussion

The use of a terrestrial monitoring network (subsoil and
surface measurements) allowed deepening what has already
been observed by the InSAR data. An important element to
keep in mind is that the deformations measured on the sur-
face are a sum of what happens in the subsoil. Without
deep-seated deformation measurements, the surface mea-
surement requires a series of geological/geomorphological
considerations and hypotheses with, sometimes, a strong
subjective component. In the illustrated case, a first analysis
based on geology analysis and InSAR data led to the

Table 1 Main characteristics of
the used instrumentations

Type of measure Spatial resolution Temporal
resolution

Notes

Robotized inclinometer
system (AIS)

Single point. Vertical
step 500 mm

1/2 per days Tube length 63 m. Remote
controlled

Manual inclinometer Single point. Step
500 mm

Every
3/4 months

Tube length 63 m

Automatic piezometer Single point Every 3 h Tube length 21 m. Remote
controlled

GNSS benchmark Single point Every
3/4 months
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identification of large areas with very similar characteristics
(from geological point of view and average annual speed).

The obtained data from terrestrial monitoring have made
it possible to improve this interpretation by identifying two
macro sectors (Arzeno and Prato di Reppia) which on the
surface have comparable deformation rates, but very differ-
ent behaviors and characteristics from the subsoil point of
view. Other important differences have been observed on the
groundwater levels both in terms of maximum excursions
and charging/discharging times and velocity.

Ground Deformations (On the Surface)

Concerning the InSAR dataset, both ascending and
descending geometries are available on this area and this
allowed us to estimate vertical and E-W component of

displacement. In this work we used the descending one as it
is more suitable for the slope facing West. Deformation time
series of InSAR and GNSS were summarized in order to
compute the displacement cumulated in the last 28 year of
measurements. In this study the InSAR data were used
to understand the long-term kinematic of landslides and to
compare them with in-situ monitoring. From the Fig. 4 it is
possible to see that the pattern and the rate of displacement is
almost the same for the 3 time interval considered, with
slight low velocity during ENVISAT (2003–2009) moni-
toring. The difference of PS density is mainly related to the
type of processing and to the spatial resolution of satellite
(very high for CSKM). The rate of movement show a peak
in the eastern part of Arzeno village (>30 mm/yr), and an
average velocity of 20 mm/yr for both Arzeno and Prato di
Reppia. Here most of PS are represented by buildings or
structure. A second area with lower displacement rate

Fig. 2 Robotized inclinometer
system, piezometer and GNSS
receiver

52 P. Allasia et al.



(5–10 mm/yr) is located on the outcrop of disaggregated
limestone (‘Calcari a Calpionelle’ formation) between
Arzeno village and the pseudo-karst depression of Piani di
Oneto. In Fig. 5 are shown the time series of displacement
for InSAR and GNSS data for Arzeno (Fig. 5a) and Prato di
Reppia (Fig. 5b). It is possible to note that for the case of
Arzeno the rate of movement is almost constant along time,
while for Prato di Reppia the time series show variability.
A hypothesis on the different rate of displacements in the
two locations, is tied to the stratigraphic and geomechanical
differences. These aspects coupled to the different ground-
water patterns, can be induce different geometries and
dynamics of the slip surfaces. In particular, if we focus on
the most recent period covered by GNSS data it is possible
to see an acceleration of the movement in the last months of
2019 in correspondence of extreme and persistent rainfalls
event. Preliminary results of Sentinel-1 satellites (2014–
2019) show a great correspondence both in displacement
rate and time series with in-situ installed monitoring system.

Deep-Seated Ground Deformations and Water
Table

The analysis of inclinometer data led to the identification of
different behaviors between the Prato di Reppia and Arzeno
Areas. The Prato di Reppia inclinometer identifies two active
sectors with very different displacement rates. The first one,
the most important, is observed at 49 m depth in a sector
characterised by fractured ophiolitic breccia in fine sand
matrix. The second sector, located at a lower despth, pro-
vided considerable deformations only after about a year of

measurements and are approximately a quarter of what was
measured in the deepest sector. Also in this case, the shear
band developed in a ophiolitic breccia. Overall, the cumu-
lated displacement rate has grown in the last two years from
around 20 mm/yr to 28 mm/yr. This increase is mainly due
to the velocity increase in the deepest sector (Fig. 6). As
often happens for periodic measurements, also in this case
the temporal trend was estimated by interpolation between
subsequent measurements (Fig. 7). The observed increase,
was also confirmed by the GNSS surveys and suggested
moving the robotic system on this tube in order to follow
accurately the temporal evolution of the phenomenon.
Thanks to the automation of the system and the ability to
customize the starting point of the robotic measurements, it
was possible to easily connect the manual measurements
with the robotic ones (Fig. 7). The first robotic measure-
ments (about 45 measurements in 40 days) confirmed the
noteworthy deformation trend started following the persis-
tent rainfalls that affected the whole of Liguria region in
November 2019.

Unlike Prato di Reppia, the Arzeno borehole was imme-
diately equipped with the robotic measuring system. The
obtained results highlighted a single active sector at about
17 m depth at the contact between Loamy and sandy silt with
various sized clasts and Gabbro. Overall, at the cumulative
level, the displacement rate remained fairly constant over the
two years and equal to about 18 mm/yr. Also in this case, the
overall displacement was confirmed by GNSS benchmark
located at about 1 m from the inclinometer casing (Figs. 2
and 3). The availability of the measured data in almost con-
tinuous for the entire length of the tube, has also
allowed observing the real trend of deformation over time

Fig. 3 Map with displacements
vector recorded by GNNS an
inclinometer (manual and
robotized)

The Role of Measure of Deep-Seated Displacements … 53



Fig. 4 LOS velocity derived
from InSAR data from
descending geometry dataset of
ERS, ENVISAT and
CosmoSky-Med satellites
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(Figs. 7 and 8). At the maximum deformation depth (17 m),
the local displacement rate is fairly constant (5.2 mm/yr) and
moderate accelerations are observed at the end of the winter
period (up to 6.6 mm/yr). As regards the groundwater level,

the trend between the two sites is generally very different in
terms of maximum excursions, charge and discharge veloc-
ity. The levels observed in the Prato di Reppia piezometer are
characterized by fast increases (even just a few hours after the

a b

Fig. 5 Displacement time series
from 1992 to 2020 based on
InSAR and GNSS data for
Arzeno (a) and Prato di Reppia
(b). In the case b there are no
close data for ENVISAT

Fig. 6 Local (a) and cumulated
(b) displacements for the Arzeno
(left) and Prato (right) boreholes.
For the Arzeno (plotted only 30
over more than 1000 measure)
and for Prato First measure
7/3/2018—Last measure
23/1/2020
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rainfalls start) and by equally rapid decreases. Since
November 2019, some increases have been observed that
have reached and exceeded the ground level (Fig. 8).
Ongoing studies seem to attribute this behaviour to the
presence of complex karst circuits with remarkable water
flows. Concerning the Arzeno piezometer, the response of
rainfalls is slightly slower and the excursions are not com-
parable with those observed in Prato di Reppia. At the
moment, for both cases there are no direct and immediate
relationships with the water level changes but the study is still
ongoing (Lollino et al. 2006). However, as a preliminary
point, for the Prato di Reppia area it is possible to observe a

qualitative relationship between increased of displacements
rate and the high groundwater levels recorded between
November and January (Figs. 7 and 8).

Conclusions

With this preliminary research we have been trying to
highlight the importance of the role of measure of
deep-seated displacements in the monitoring networks on
large-scale landslide for the geo-hydrological risk reduction
and management.

Fig. 7 Time series of selected
depths for Prato borehole (local
displacements). Starting of end
January 2019, the inclinometer
measurements was acquired
automatically using the AIS

Fig. 8 Water levels versus local
displacements in Prato and
Arzeno areas. The inclinometer
time series was chosen using the
depth with maximum
displacements values
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The latest monitoring experiences with Remote Sensing
techniques allow to obtain accurate dataset in space and time
but related only to the surface dynamics. The detected sur-
face displacements in any case must be coupled with
deep-seated on-site measurements in order to identify the
evolution mechanisms of the slip surface.

To this end, continuous real time on-site measurements
are mandatory to the aim of defining the geological kine-
matic of the landslide and to follow his evolution. Moreover,
this approach is crucial for the coexistence with the phe-
nomenon in safety conditions (also using early warning
systems) or to define more efficient remedial works for risk
reduction.
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Flow Slides in Uzbekistan: Overview
and Case Studies

Rustam Niyazov, Bakhtiar Nurtaev, Gani Bimurzaev,
and Mansur Tashpulatov

Abstract

Paper describes in brief spatial distribution of the
landslide-prone areas in Uzbekistan, temporal evolution
of these phenomena during last 60 years and organization
of the landslide monitoring in in the country. Special
emphasis is given to flow slides in loess and clayey often
triggered by the prolonged low-frequency seismic vibra-
tions of the distant deep Hindu Kush earthquakes. Three
typical case studies of such flow slides that occurred in
the recent years are presented and their evolution and
motion characteristics are described. Seismometric mea-
surements performed at the source zone of the Achiyak
landslide prove that the vibration frequency of the deep
Hindu Kush earthquakes coincides with natural frequency
of the loess blanketing the slopes in the foothill areas of
Uzbekistan that cause resonance effects. Multi-stage
evolution of large flow slides some of which transform
into mud flows that can last from several days to several
years is described by examples of the Khandiza and the
Otbokarsai flow slides.

Keywords

Loess �Monitoring � Flow slide �Mudflow � Blockage

Introduction

A systematic study of landslides and their monitoring in
Uzbekistan began in 1958. It was performed, first, by the
special Landslide engineering-geological party, and, since
1994, by the State Hazardous Geological Processes Moni-
toring Survey (hereafter named Survey) that consists of 7
regional stations located in the foothill areas of Uzbekistan.

The State monitoring system is divided into 2 parts—the
general regular regional monitoring and the long-term
comprehensive stationary observations at reference sites.
The main task of the Survey is to provide information, alert
and warn public and authorities about the possible activation
of hazardous geological processes close to settlements and
economical facilities in order to arrange security measures
timely.

Regional monitoring is carried out in the spring seasons
(from mid-February till end of May) in high alert mode.
Observations are conducted at 500–570 sites located in the
landslide-prone areas in the Eastern part of Uzbekistan with
mountainous or hilly relief (Fig. 1). Each year, before the
start of the spring, the Survey issues warning information
about possible manifestations of dangerous exogenous pro-
cesses in the territory. If signs of slope processes activation
are detected, the Survey issues an order to the local
administration to start on-site monitoring.

To protect people during the landslide-prone period
temporary evacuation to a safe place is recommended, as a
priority measure. During this period, particular attention is
paid to monitor the climatic conditions to predict large-scale
slope failure. Manifestations of all types of hazardous geo-
logical processes are recorded in the daily regime. In addi-
tion, according to the results of the on-site monitoring,
special 1:25,000–1:10,000 warning maps for linear struc-
tures, for recreation areas and for endangered settlements are
compiled and updated annually.
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General Landslides Statistics

The total number of landslides with volume more than 1
thousand m3 that were formed or reactivated in Uzbekistan
during a 60-years long period is about 3300–3500. If we
consider smaller events there have been more than 12,000
cases. Over decades, the largest number of landslides
occurred in 1958–1970 (991 cases), and in 1991–2000 (934
cases), much more than in 1971–1980 (238 cases), in 1981–
1990 (245 cases), and in 2001–2019 (from 340 to 545
cases). The largest yearly number of landslides was recorded
in 1969 (721 cases), in 1987 (191); in 1993(350), in 1994
(135), in 1998 (142), in 2005 (185) and in 2012
(72) (Fig. 2). 340–350 sites have been affected by large
landslides exceeding 105 m3 in volume and 120–130 events
exceeded 1 million m3. The largest historical event in
Uzbekistan is the Atcha block slide (41.012° N, 70.184° E)
about 800 million m3 in volume (Niyazov 2009).

No clear and justified tendency of the increase or the
decrease of the mean annual number of dangerous exoge-
nous processes have been identified. Many modern

landslides are just the reactivation of the older (prehistoric or
ancient) and often larger landslides. These secondary land-
slides are of various scales and types. Such interrelations
complicate the assessment of the landslides’ frequency at a
large extent (Niyazov and Nurtaev 2014).

1270–1400 householders appeared to be in the landslide
prone zones in different periods of time. By 2015–2019,
their number decreased to 40–80. During last 30 years new
villages have been built, and about 2,000 families have been
relocated there, and, thus, the number of householders that
require resettlement decreases every year.

Landslides caused by anthropogenic impact in different
years ranged from 40 to 60% of their total amount. The flow
slides, which number exceeds 250, though being relatively
rare, in comparison with landslides of other types, represent
the most dangerous type of slope processes due to high
speed of their motion combined with rather large size. It was
found (Niyazov 2009; Niyazov and Nurtaev 2014) that
many of them were associated with Hindu Kush earth-
quakes. Study of the effect of resonance caused by the
long-duration low-frequency oscillations produced by such
earthquakes and combined with the influence of precipitation

Fig. 1 Landslide hazard zoning
map of Eastern Uzbekistan.
Notice that such zoning has been
performed not over the entire
territory but at some particular
areas
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on slopes stability was performed to fulfill the decisions of
the Sendai Framework Program (Sassa 2017).

Self-excited Flow Slides in Loess

Loess deposits, widely developed in Uzbekistan, in the
foothills in particular, are affected by numerous landslides.
Many of them are the flow slides that demonstrate simulta-
neous crushing of soil over the entire landslide area. It
results from the combination of several factors. It was found,
in particular, that the frequency of seismic vibrations caused
by the distant deep Hindu Kush earthquakes coincides with
the natural frequencies on the slope causing resonance
phenomena and the formation of landslides that we called
“the self-excited”.

The simultaneous destabilization of loess deposits over
the entire flow slides source area differs from the formation
mechanism of landslides of other types. Energy provided by
seismic shaking leads to very fast propagation of the
destruction of loess within the source area but has very
limited effect on its further motion, in other words on its
runout. Such landslides are characterized by the distinct
sharp headscarp boundaries, where liquefaction occurs
within the interbeds near the sliding surface, and sliding
concentrates along a thin clayey layer. Soil crushing is
caused by the compression-tension deformations mainly
rather than by shearing, and develops simultaneously all
over the affected slope from its top to base.

Several typical examples of such flow slides that occur-
red during last years, coinciding with deep Hindu Kush
earthquakes are described hereafter.

The Achiyak Landslide

The Achiyak flow slide (41.6383° N, 69.7813° E) was
formed on March 25, 2018, almost simultaneously with the
M 5.1 Hindu Kush earthquake recorded on March 25, at 3 h
17 min (local time), with a focal depth of 297 km. Duration
of oscillations was 90–95 s, dominant frequency 0.8–
2.1 Hz. A landslide was formed in loess with a thickness of
15–20 m, lying on the water-encroached sandy-clayey
rocks. The headscarp shape is rectangular, 80 m wide,
60 m long and 17–18 m deep. The estimated failure volume
of 86.4 thousand m3 (Fig. 3). The landslide mass broken in
separate blocks moved into the riverbed, forming a blockage
up to 100 m wide, 15–25 m long and 5–8 m high. The
headscarp wall is almost vertical and is rather straight in plan
view. It can be assumed that the formation of a landslide was
associated first by tension with a successive sliding.

Fig. 2 Annual occurrence of
landslides in Uzbekistan since
1958

Fig. 3 The Achiyak landslide and location of seismometers (1–7)
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The sliding surface zone of the landslide is gently dipping
with an angle of 4–6˚. The seismometric measurements were
carried out at 7 points located around the headscarp (see
Fig. 3). Recorded resonance frequencies at measurement
points 1, 3, 4, 6—were 1, 2; 2.2; 2.5 Hz, while at the lower
marginal zones at points 5 and 7, they vary from 3.0 to
3.5 Hz. The horizontal to vertical ratios of the spectra
(HVSR) vary from 2.6 to 3.4. The coefficient of seismic
liquefaction of soils ranges from 3 to 9.6, which character-
izes fairly dense rocks. It can be assumed that loess mass
excitation most likely started at the upper and central part of
the landslide where frequency of earthquake vibrations was
close to natural vibration frequency of 2.2–2.5 Hz.

The Khandiza Flow Slide

The Khandiza flow slide (38.587° N, 67.5727° E) 1.5 mil-
lion m3 in volume was formed on April 6, 2015 (Fig. 4). It
occurred in loess with a thickness of 12–15 m to 30 m, lying
on the Cretaceous clays with interbeds of sandstones. It was
preceded by the intensive (43 cm in one day) snow fall on
February 24, 2015, and its fast melting with a rate of 2–8 cm
per day during the last days of March that caused significant
watering of subsurface soils. In addition, according to local
residents, from April 2 to 5 there was watering the garden
located on the landslide body. Landslide was triggered,
likely, by the M 4.2 Hindu Kush earthquake that occurred on
April 5, 2015 at 5:22 (local time) at a focal depth of 128 km.

In 23 days, the total horizontal movement of the landslide
front was 960 m, while during first four days it moved for
570 m. After that the front displacement rate started
decreasing. On the 12th day, when the front displacement
was 954 m, the height of the tongue part began to grow from
10 to 25–30 m and the front width increased from 20–30 m
to 40–75 m. The proximal part of the landslide displaced by

250 m in 23 days, and its displacement rate was relatively
uniform—20 m/day on average. Here the stabilization pro-
cess also began on April 12, when speed started decreasing
up to 7 m/day and, later to 0.1 m/day. In the middle part of
the landslide total horizontal displacement was 317 m. This
is three times less than the movement of the frontal
part. Moreover, in the first four days this part moved for
25 m only, i.e. the rate was the lowest, and the highest
occurred from April 11 to 17 at a speed of 40–70 m/day.
During this period different parts of the landslide moved
uniformly. The stabilization process began on day 16, April
21, when speeds fell to 2–0.2 m/day. In the process of sta-
bilization of the landslide, the most mobile was the middle
zone, i.e. the flow slide moved in pulses.

Next activation occurred in the spring of 2016 when, due
to rainfall, surface displacements were observed in the ton-
gue part of the landslide. Mudflows formed a furrow along
the right side of the flow slide up to 800 m long, 5–6 m
deep, and 8–10 m wide, from which about 20 thousand m3

of landslide masses were eroded.
Two years later, on March 31, 2017, at 10 a.m. landslide

reactivated again. It can be assumed that this activation
(Fig. 5) was predispose by the formation of this erosion
feature.

About 150 thousand m3 of heavily watered loess up to
100 m wide and 5–10 m thick from the upper part of the
slope, along with up to 250 thousand m3 of loam located
downslope that had been displaced in 2015, moved along a
slope of 10–12° and created the flow slide up to ca. 1200 m
long and from 30 to 100 m wide. Experts of the Sur-
khandarya monitoring station organized regular monitoring
of its movement. It was found that the head and middle part
of the landslide on the first day moves at a speed of 3 m/h,
tongue 4–5 m/h, and the horizontal displacement was 70 m.
As a result in the second day (April 1), the accumulation
zone of the 2015 landslide was severely deformed by a series
of arcuate cracks up to 30–40 m long. The bulging bars up
to 2.0 m high divided with furrows up to 7.0 m deep and the
activated landslide deposits moved into the old creek chan-
nel at a speed of 2.5–3.0 m/h. The flow width increased
sharply from 1.5 to 60–100 m, the flow rate was 3.0–
4.0 m/day and increased up to 50 to 80 m/day, being 60–
80 m wide and 5–10 m high.

On the fourth day (April 3), the total displacement of the
80 m wide and 10 m thick flow slide reached 230 m at a
speed of 3–4 m/h. The landslide reached the school building
and began destroying it (see photo at Fig. 5).

In the next two days (April 4–5), the displacement of the
landslide masses was divided into two directions: one went
along the Kharkushsai channel in the form of a mud stream
at a speed of 20–25 m/h; another in the form of a slide
towards the school at a speed of 4.0 m/h. As a result, on the
territory of the destroyed school, the thickness of landslideFig. 4 The Khandiza flow slide after its reactivation in March 2017
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masses increased up to 18–20 m, the width of the landslide
reached 150 m, and the total amount of landslide displace-
ment was 460 m. This displacement of the landslide pro-
voked the movement of soil downstream.

On April 6, 80–100 thousand m3 of debris moved further
downstream the gulley at a speed of 5–6 m/h, reached the
Khursandarya River and partially blocked its riverbed. The
width of this partial blockage was 70 m, it was up to 3.0 m
high and the volume of the dam was estimated as about 50.0
thousand m3. During the following days the liquefied flow
slide mass continued moving into the river and was gradu-
ally eroded by water flow.

The Otbokarsai Flow Slide

On April 23–28, 2019 a landslide of 1.5 million m3 in
volume originated on the upper part of the left-bank slope of
the Otbokarsai River—the tributary of the Djinnidarya River
(39.2048° N, 67.3735° E) (Fig. 6) and converted into highly
mobile flow slide.

Its source zone was composed of loess and of the
underlying Cretaceous sandy-clayey red beds. The landslide
formation took place in three nearby circus-like headscarps.
The first—the central one—was located at the transition
from the slope to the watershed surface, the second one

Fig. 5 Schematic map of the Khandiza flow slide activation in March–
April 2017 compiled by the State Hazardous Geological Processes
Monitoring Survey. Legend: 1—buildings, 2—main headscarp, 3—

additional scarps and fissures. Different colors mark parts of the flow
slide where it moved from March 31 till April 5.

Fig. 6 The Otbokarsai flow slide source zone
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occurred simultaneously to the right from the firs. In plan
view the landslide had a conical shape with a very narrow
(12–15 m) exit at the headscarp base trough which landslide
had to pass moving downslope. The steep backwall was up
to 300 m long and 35–40 m high.

The third, the largest circus-like headscarp, originated on
the watershed surface. According to the local shepherd who
attended the event, it occurred at 6–7 p.m. (local time), i.e.
11–12 h after the first slope failure. The 270–290 m long
and up to 31 m high backwall crossed the watershed surface.
The initial block slide was 300 m wide, and 120–140 m long
and up to 20 m deep. The entire landslide mass rapidly
converted into fragmented and liquefied state. As a result of
the simultaneous movement, there was local blocking of this
flow-like motion. On the left side there are traces of splashes
of liquefied mass, 15–20 m high that left patches of debris
0.2–0.3 m thick. As a result, the flow slide passed for about
240 m and stopped in the upper zone, forming a blockage.
The trigger for the start of the landslide was probably the
Hindu Kush M 4.2 earthquake that occurred, according to
the catalog, on April 23, 2019 at 6 h 31 min (local time) at a
depth of 198 km, i.e. at the same time when landslide had
started forming. And intense rainstorm on April 23 with
cumulative precipitation 35.2 mm followed next day by
even stronger (43.6 mm) rainstorm, provoked watering of
the liquefied soil and the formation of a rapid flow slide.

The first time, on April 25, 2019 morning, this flow slide
passed along the gulley and blocked the Otbokarsai Creek.
The natural dam was 5–8 m high only and 30–40 m long.
The discharge of this creek was up to 0.5–0.7 l/s. Water
accumulated until April 26, when the blockage was breached
producing the mud flow that passed along the Otbokarsai
channel at a distance of 810 m, being 20–40 m wide. It
reached the larger Djinnidarya River and partially blocked it.

The second time a mud flow occurred on April 27 when
the flow 8.0–10.0 m thick passed along the creek. This
mudflow also passed 810 m and blocked the Djinnidarya
River again. This time the blockage was 270 m long, 80–
110 m wide and from 8 to 15.0 m high. Volume of the
blockage was 350 thousand m3. The discharge of this river
was 5–6 m3/s. Within 3 h a dammed lake 200 m long, up to
110 m wide and up to 8–10 m deep was formed. After that
its erosion started at the right bank river side.

The third mud flow originated on April 28 and blocked
the Djinnidarya River channel again forming the dam 4–6 m
higher than at the second time, so that the highway was
blocked. The more than 200 m long dam was eroded in the
zone of the old channel. The erosion channel was 7–10 m
deep and 8–12 m wide.

Photo of the Otbokarsai Creek made on May 16, 2019
(Fig. 7) show that mud flows were 10–12 m thick, with a

flow width of 35–40 m, a gradient of 6–8°, and that prac-
tically no debris accumulated in the channel.

Conclusions

Uzbekistan is a very landslide-prone country where more than
3500 landslides occurred during the last 60 years. The flow
slides in loess are the most hazardous and unpredictable and
pose especial threat. Analysis of the disasters associated with
such events show that in many cases it very difficult to foresee
their runout, location of the sites where the liquefied loess could
be ejected from the channel on the opposite slope and height of
such ejection. Timely prediction of such events is even more
complicated due to their association with seismic shaking.

Such self-excited flow slides are triggered by low-frequency
(0.5—3.5 Hz) prolonged (90–140 s.) vibrations produced by
P-waves of very distant (400–700 km) deep (180–270 km)
Hindukush earthquakes that cause simultaneous liquefaction of
subsurface saturated sediments and tension in the surficial layers.

The characteristic feature of such flow slides is their
recurrent simultaneous activation. Increase of the amount of
the affected soil does not increase the velocity of motion, but
enlarges the runout. Thickness of moving flow and its
mechanical properties are often almost the same along the
entire length. Loess flow slide are usually 1.5–3 m thick,
while clayey flow slides can be 8–10 m thick.

Study of the eroded landslide dams produced by the flow
slides show that their volume can comprise up to 30% of the
entire flow slide volume if it crosses the dammed valley, and
up to 80% if the flow slide moves along the valley. In both
cases dams’ height rarely exceeds 2.5–4.0 m.

Acknowledgements Authors want to express their gratitude to the
anonymous reviewer for valuable comments and to Alexander Strom
for useful discussions and support.

Fig. 7 The Otbokarsai channel after the mud flow
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Long-Term Geophysical Monitoring
of Moisture Driven Landslide Processes

Jonathan Chambers, Philip Meldrum, Paul Wilkinson, Jessica Holmes,
David Huntley, Peter T. Bobrowsky, David Gunn, Sebastian Uhlemann,
and Nick Slater

Abstract

Here we describe the development of a novel characteri-
zation and monitoring technology for unstable natural and
engineered slopes. The system is based on time-lapse
electrical resistivity tomography (ERT), which is a geo-
physical technique used to non-invasively image subsur-
face resistivity to depths of tens of meters. Resistivity is a
useful property because it is sensitive to compositional
variations, changes in moisture content, and ground
movement.We have developed a low-cost systemdesigned
for remote operation, allowing resistivity images to be
captured automatically and streamed via a web interface. It
comprises four key elements: (1) low-power field instru-
mentation; (2) data telemetry and storage; (3) automated

data processing; (4) and web dashboard information
delivery. These elements form the basis of slope condition
monitoring approach that provides near-real-time spatial
information on both subsurface processes and surface
responses. The use of this approach is illustrated with
reference to the Ripley Landslide, a case study that
demonstrates this approach as a means of spatially tracking
complex subsurface moisture driven processes that would
be very difficult to characterize using other approaches (e.g.
surface observations or intrusive sampling). We propose
that this approach could provide sub-surface information in
the context of slope-scale landslide early warning systems.

Keywords

Electrical resistivity tomography � Monitoring �
Geophysics

Introduction

Context and Rationale

Assessment of slope condition and subsurface moisture
movement is essential for providing early warning of haz-
ardous failure events. Conventional approaches to slope
monitoring are often inadequate for predicting failure events.
They are heavily dependent on walk-over surveys, intrusive
investigations, or remotely sensed data such as aerial pho-
tography or LiDAR. However, surface observations (from
walkover or remote sensing) cannot detect the subsurface
precursors to failure; instead they identify failure once it is
expressed at the ground surface, which is often at a late stage
when there is insufficient time to implement low cost
re-medial solutions. Furthermore, they generally provide
relatively low temporal resolution (e.g. weeks to years) due
to the cost of manual site visits or flights. For intrusive
sampling, even with significant numbers of boreholes, it is
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only ever possible to sample a tiny proportion of the overall
volume of the slope, which means that in heterogeneous
ground conditions small-scale processes (e.g. seepages or
piping) can be extremely difficult to detect and characterize.
Consequently, these conventional approaches are often
inadequate for providing early warning of deteriorating
condition or failure.

Here we describe the development and application of a
low-cost low-power geophysical ground imaging system, for
fully automated remote monitoring of unstable slopes. The
purpose of the system is to provide improved decision
support and early warning of deteriorating condition. The
system is called PRIME—‘Proactive Infrastructure Moni-
toring and Evaluation’, and is designed to non-invasively
visualize the interior of both natural and engineered slopes.
It has been applied to a range of moisture driven slope sta-
bility applications (e.g. Huntley et al. 2019; Holmes et al.
2020), indicating its suitability for volumetric tracking of
moisture content changes and ground movement to identify
problems at an early stage. We propose that this system can
support the development of landslide early warning systems
(Guzzetti et al. 2020).

Development of Monitoring Approach

PRIME System Overview

The PRIME system is based on time-lapse electrical resis-
tivity tomography (ERT), which is a geophysical technique
used to generate resistivity images of the subsurface.
Resistivity data are useful measurements to make as they are
sensitive to compositional variations, changes in moisture
content, and also ground movement. PRIME is designed for
remote operation using telemetry, so that ERT images can be
captured automatically and streamed in near-real-time via a
web interface—thereby providing a remote condition mon-
itoring system to reveal sub-surface changes within earth
structures.

The system comprises four key elements (Fig. 1):
(1) Field measurement instrumentation comprising an array
of electrode sensors, the PRIME instrument, and commu-
nications hard-ware; (2) Data telemetry (via wireless transfer
to the office), storage and indexing; (3) Automated data
processing, incorporating quality assessment, filtering,
extraction of movement information, generation of resistiv-
ity images and translation to distributions of moisture con-
tent; and (4) Information delivery via a web dashboard for
analysis, interpretation and early warning alerts.

Measurement Instrumentation

The PRIME system (Fig. 2), comprising the low power
(10 W) PRIME ERT instrument (standard 19-inch module)
connected to the sensor array cables and communications
hard-ware, is housed in a small equipment enclosure and
powered from 12 V batteries that are charged using a small
solar array. The low power consumption of the instrument is
essential to maintain operation in remote areas with no
access to mains electricity.

Measurement data is collected from sensors (metal elec-
trodes) connected to the system by cables, which are typi-
cally deployed at the ground surface in lines (for 2D images)
or grids (for 3D images). The depth of investigation of the
technique is determined by the electrode spacing and spread,
not by the length of the sensor (which is typically <10 cm).
Arrays of surface sensors can give information
non-invasively to tens of metres below the surface. The
resolution of resistivity imaging is limited by the electrode
spacing, which is typically between 0.5 and 5 m. Despite
this constraint however, even small features (whose size is
below the image pixel size, as small as 25 � 25 cm for a
0.5 m electrode spacing) often remain detectable provided
that property contrasts are sufficiently high and the sensor
array configuration is sufficiently sensitive to the region in
which the defect occurs.

The system has 7 measurement channels and can address
up to 256 electrodes (with the option to expand to >1000
electrodes). Tests have shown that the measurement quality
is similar to existing resistivity imaging systems when
using arrays covering 200 m with electrode spacings of 1–
2 m. An SDI-12 interface has been incorporated into the
system, meaning that geotechnical and environmental
sensors (e.g. pore pressure, temperature, rainfall) can be
attached to the system, and data from this interface is
incorporated in the system telemetry. These data assist with
the calibration and interpretation of the geophysical mon-
itoring results.

Data Telemetry and Control

The PRIME system has been designed to be fully
automated/autonomous with measurements scheduled to run
at given times during the day. Measurement data is stored
locally then relayed using wireless telemetry, such as a
GSM/Mobile network (or even a satellite) link. Along with
the measurement data, health logs of system and sensor
performance are also transmitted (Fig. 3).
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Fig. 1 PRIME system—geoelectrical monitoring and early warning workflow

Fig. 2 PRIME system field deployments showing key components and sensor array installation

Fig. 3 PRIME system health logs (contact resistance; reciprocal error, battery voltage, measured voltages)
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Automated Data Processing

For large ERT time-series data sets from multiple sites,
manual processing and interpretation can be time-consuming
and impractical. Consequently, an automated data process-
ing work-flow (Fig. 1—Sect. 3) that comprises several
stages is being implemented.

Stage 1: electrode displacement information is extracted
from the measured data using the method described by
Wilkinson et al. (2016). This information is used as a means
of detecting ground motion, and to provide updated elec-
trode positions.

Stage 2: the data are then inverted to produce 2D or 3D
time-lapse images of subsurface resistivity distribution, to
which a temperature correction is applied to normalise the
resistivity images to mean air temperature (e.g. Chambers
et al. 2014; Uhlemann et al. 2017).

Stage 3: if suitable geotechnical—geophysical property
relationship information is available (e.g. Gunn et al. 2014),
the resistivity images will be converted into images of
moisture content.

Stage 4: we are developing automated approaches to
image analysis drawing upon pattern recognition and change
detection algorithms to assist with interpretation of results
(e.g. Chambers et al. 2015).

Decision Support

The timely and intelligible communication of monitoring
results to stakeholders is essential for an effective decision
support in the context of condition assessment and early
warning. The PRIME system delivers near-real-time infor-
mation in a number of ways. Firstly, the system has an
autonomous monitoring capability, in that it can respond to
environmental triggers (Fig. 4); it uses environmental and
geotechnical sensors (e.g. a rain gauge or pore pressure sen-
sor) that are integrated into the system to trigger high intensity
monitoring and SMS and email-based alerts to stakeholders.

Also, information from the system can be delivered through
a web-dashboard (Fig. 5), where 4D monitoring results can be
interrogated (Fig. 5, top), alarm thresholds can be set, and the
monitoring results can be analysed on a cell by cell basis
(Fig. 5, bottom) and compared with other environmental and
geotechnical monitoring data to facilitate decision support.

Case History—Ripley Landslide, Canada.

The Ripley Landslide is a small (0.04 km2), slow-moving
(355 mm/year), translational landslide on a natural slope in
the Thompson River Valley, and is one of 14 active landslides
along a 10 km stretch of this vital transport corridor (Fig. 6).

Slope failures in this area are having negative impacts on
railway infrastructure, terrestrial and aquatic ecosystems,
public safety, communities, local heritage, and the economy,
and the Ripley Landslide threatens the serviceability of two
national railway lines (Canadian National (CN) and Canadian
Pacific Railway (CPR)), which drives the need for long-term
monitoring at the site (Huntley and Bobrowsky 2014).

A PRIME system was installed on the Ripley Landslide
in November 2017 and has been actively collecting data for
over 2 years. The installation consists of two sensor arrays: a
91 m long array with 45 evenly spaced, buried rod elec-
trodes, oriented NE-SW across the slope, and crossing the
head scarp at the southern end; and a 54 m long array with
27 evenly-spaced, buried rod electrodes, oriented SE-NW
downslope, and spanning the eastern extent of the head
scarp. Measurements are taken every 12 h at the Ripley
Landslide, providing high temporal resolution information
on moisture driven changes to subsurface resistivity. The
data from PRIME were inverted using an iteratively
reweighted Gauss–Newton least-squares method (Loke and
Barker1996) with an L1 norm on the data misfit, an L1
spatial smoothness constraint and an L2 temporal smooth-
ness constraint, and data were inverted in 3D.

The baseline ERT image of the Ripley Landslide from
December 2017 (Fig. 7) shows the resistivity profile of the site,
and the dominant lithological units (high resistivity, coarse
alluvial sediments overlying lower resistivity, high plasticity
glaciolacustrine sediments and Fraser Glaciation diamicton).
Key features of the landslide, including tension cracks, which
are important in providing pathways for surface water to
infiltrate into the body of the landslide, are also illustrated. An
inferred shear surface is presented, although the ERT has been
unable to resolve the exact location of the shear surface of the
landslide as there is no geophysical contrast either side of the
shear surface as it occurs within a single lithological unit. Time
lapse images are shown in Fig. 8, with changes in resistivity
(%) shown in relation to the baseline image.

Figure 8 demonstrates the seasonal changes in resistivity
relating to changes in moisture content, and highlights the
evolution of moisture dynamics in the subsurface throughout
a single freeze–thaw cycle (Holmes et al. 2020). Generally,
the slope is dryer in winter (Fig. 8a), and areas which show a
large increase in resistivity at the very-near-surface are likely
to be indicative of localized freezing in response to sub-zero
temperatures, which are often accompanied by snowfall in
this region of British Columbia. During the spring, which
marks the on-set of the snowmelt season, there is a large
decrease in resistivity, associated with an increase in mois-
ture content as snow melts and water infiltrates into the slope
(Fig. 8b). While the whole of the slope surface exhibits a
decrease in resistivity, key hydrogeological pathways are
revealed. In particular, moisture pathways in the head scarp
zone are highlighted where the wetting front propagates
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down the slip face. Towards the end of the snowmelt season
(Fig. 8c), the slope surface begins to dry again as moisture
levels begin to return to baseline conditions, albeit with
some variation owing to annual differences in weather
conditions.

The Ripley Landslide case study highlights the utility of
PRIME monitoring for contributing to the assessment of
slope stability as it enables a detailed understanding of the
soil moisture pathways and spatial heterogeneities that can-
not be identified using traditional monitoring techniques.

Conclusions

Key Benefits

Spatial/volumetric subsurface information: The use of geo-
physical ground imaging technology will complement
existing landslide monitoring approaches. It extends the
information provided by remote sensing (e.g. aerial pho-
tographs, LiDAR) by illuminating the internal structure of
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Internet

Ethernet Connection

Router PRIME InstrumentCommand Centre
and Data Storage
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Threshold
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High intensity
data collection
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SMS alert to
asset manager
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Fig. 4 Schematic describing PRIME operating in an autonomous [or responsive] monitoring mode, based on measurement and alert triggers using
environmental point sensors (e.g. rain gauge)

Fig. 5 PRIME-Calyx web-dashboard comprising: (1) GIS front end
showing site and sensor locations; (2) Site specific control dashboard
showing summary information and alarm states; (3) ERT data viewer

enabling alarm thresholds to be set for each voxel/pixel; (4) ERT data
viewer enabling time-lapse property changes to be assessed
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the earthwork. It also assists in interpreting data from point
sensors installed in existing monitoring boreholes by pro-
viding spatial information to ‘fill the gaps’ between intrusive
sample/data points. This volumetric approach is important

given that unstable slopes can be highly heterogeneous
structures, in which small-scale deterioration can rapidly
create larger-scale problems, and potentially give rise to
catastrophic failures.

A

B

Fig. 6 a Location of the Ripley Landslide. B Site photograph of the Ripley Landslide showing the surface extent of the landslide on the slope
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Minimally invasive: The deployment of the PRIME
system and sensors cause minimal ground disturbance and
does not need heavy equipment for installation, which can
be advantageous in the context of unstable ground and steep
slopes. Sensors can be installed at or just below the ground
surface across the slope, thereby avoiding the need for
intrusive subsurface installations that could impact on the
integrity of the slope.

Near-real-time monitoring: PRIME is fully automated,
with condition information accessible through a web-based
‘dashboard’ or provided through automatic alarms in the case
of rapid deterioration. Using this approach, a high temporal
resolution (i.e. minutes to hours) can be achieved compared to
walk-over or remotely sensed surveys (i.e. days to weeks).

Contribution to Landslide Early Warning

Landslide early warning systems (LEWs) are being widely
developed and deployed internationally (e.g. Intrieri et al.
2013 and Guzzetti et al. 2020). Although the specific designs
vary, there are generally common features across systems.

These include a consideration of: design and sensor
deployment; acquisition and processing of monitoring data;
forecasting and the development of warning criteria and
thresholds; and risk communication and response. We
anticipate that PRIME technology can be integrated into the
design of existing LEWs at the slope scale. The technology
is intended to provide additional subsurface information in
relation to moisture driven changes in the subsurface; a key
ongoing research goal is to develop thresholds and warning
criteria based on these near-real-time observations. Like-
wise, the facility to deliver monitored data and information
via a web-interface is designed to contribute to the com-
munication of risk and response to changing conditions
within unstable slopes. By illuminating the moisture
dynamics within unstable slopes in near-real-time we
anticipate that geophysical imaging technologies, such as
PRIME, will play an increasingly important role in the
development of LEWs.

Acknowledgements Development of PRIME technology has been
assisted through NERC Grants NE/P00914X/1, NE/M008479/1 and
NE/N012933/1. This paper is published with the permission of the
Executive Director, British Geological Survey (UKRI-NERC).

Fig. 7 Baseline ERT image from the PRIME monitoring of the Ripley
Landslide. Different lithological units are demarcated by the black lines,
and key features of the landslide are highlighted. The dashed white line

shows an inferred failure surface; the spacing of the dashes increases
with depth as the location of the failure surface becomes less certain

Fig. 8 Percentage change in resistivity from the baseline image showing changes in resistivity through one freeze–thaw cycle from initial freezing
(a), to the onset of the snowmelt season (b), to the end of the snowmelt season (c)
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Geophysical Monitoring of Landslides:
State-of-the Art and Recent Advances

Denis Jongmans, Sylvain Fiolleau, and Gregory Bièvre

Abstract

Geophysical monitoring of landslides has developed
strongly in recent years with the use of electrical
resistivity imaging on the one hand, and the application
of techniques based on continuous seismic recordings on
the other hand. The paper resituates these developments
within the general framework of the application of
geophysical methods to landslides and focus on the
definition of relevant geophysical parameters that can be
precursors to activation or reactivation phases. Four
recent case studies from the literature illustrate the
potential and limitations of geophysics for landslide
monitoring. Development prospects, especially for inte-
gration into early warning systems, are discussed.

Keywords
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Introduction

Since the pioneering work of Bogoslovsky and Ogilvy
(1977), geophysical methods have been increasingly used to
characterize landslides, as evidenced by the growth rate of
citations including landslide and geophysics (Jaboyedoff
et al. 2019) and increasing number of review papers on the
subject since the 90ties (among others, McCann and Forster

1990; Hack 2000; Jongmans and Garambois 2007; Van Dam
2012; Perrone et al. 2017; Whiteley et al. 2019; Pazzi et al.
2019). The main reasons for this growing popularity are
known (Jongmans and Garambois 2007): geophysical tech-
niques are non-invasive, low-cost and, unlike geotechnical
techniques such as drilling and penetration tests, they allow a
large volume of ground to be explored. In recent years, data
acquisition and inversion techniques have developed con-
siderably, providing geophysical 2D and 3D images with
increasing resolution. As shown in the bibliometric study of
Jaboyedoff et al. (2019), the geophysical methods most
commonly applied in scientific studies are Electrical Resis-
tivity Tomography and ambient seismic noise techniques
which, when interpreted together, can provide information
on the nature of soil or rock, moisture and rigidity contrast.

However, as Jongmans and Garambois (2007) point out,
geophysical techniques have significant drawbacks: (1) the
resolution decreases with depth, (2) the solution obtained by
the inversion process is generally non-unique and needs to
be calibrated, (3) they provide indirect information (physical
parameters) instead of geological or geotechnical properties.
These drawbacks, as well as a tendency to over-interpret the
data, may explain the reluctance of part of the engineering
community to use geophysical techniques (Jongmans and
Garambois 2007). Recently, Pazzi et al. (2019) analyzed the
efforts of the geophysical community to overcome the lim-
itations identified by Jongmans and Garambois (2007) over
the period (2007–2018). They found that many efforts have
been made in the geological interpretation of geophysical
data but that issues of resolution and penetration are still
little discussed.

Recent reviews have also shown that geophysical moni-
toring studies, particularly over long periods (months to
years) are much less common than exploration studies. The
main reason is of course the enormous effort required to
maintain monitoring systems over long periods in moving
terrain. Convinced that complex structures such as landslides
cannot be understood without the acquisition of detailed data
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sets, several teams have installed observatories measuring
various types of data on unstable slopes. Among others, the
4 sites of the French landslide observatory (https://www.
ano-omiv.cnrs.fr/), the Salcher observatory in Austria
(Stumvoll et al. 2019), the Hollin Hill landslide observatory
in England (https://www.bgs.ac.uk/landslides/) and the
Tokushima Landslide Observatory in Japan (https://www.
dpri.kyoto-u.ac.jp/) are currently in operation. In parallel,
numerous sites have been or are being monitored for sci-
entific or operational purposes for months or years in order
to gain a comprehensive understanding of the landslide
mechanism and to develop early warning systems (e.g.
Helmstetter and Garambois 2010; Hibert et al. 2011;
Mainsant et al. 2012b; Supper et al. 2014; Gance et al. 2016;
Colombero et al. 2018; Bertello et al. 2018).

One major issue raised for the geophysical monitoring of
landslides, which are complex and evolving structures with a
strong hydro-mechanical coupling, is to define which
parameters to measure, where and how. The aim of this
paper is to take stock of the geophysical monitoring results
published in the literature and to draw some perspectives for
the future.

Geophysical Methods

Generalities

Geophysical prospecting is based on physical measurements
(data) from which physical parameters, characteristic of rocks
and soils, can be deduced. The principle of the different geo-
physical methods can be found in general works (Reynolds
2011; Kearey et al. 2013; Everett 2013). A geophysical
method is characterized by its resolution (ability to detect an
object of size D) and its penetration depth (depth beyond
which the object sought no longer has any influence on the
measurement made). For surface measurements, the resolu-
tion generally decreases significantly with depth. The choice
ofmethod(s) to be used depends onfivemain factors (McCann
and Forster 1990): (1) the existence of a geophysical contrast.
The presence of a lithological, mechanical or hydrogeological
contact does not necessarily imply a variation in all geo-
physical properties, (2) the depth and resolution required,
(3) the need to calibrate the geophysical reconnaissance using
geological or geotechnical data, (4) the achievement of a
sufficient signal-to-noise ratio which depends on site condi-
tions, (5) the cost of the reconnaissance campaign.

Geophysical imaging methods have developed consider-
ably over the past 20 years, generally providing the variation
of a geophysical parameter along 2 or 3 spatial coordinates.
Inversion of geophysical data is a complex non-linear

problem and the obtained solution is generally not unique.
The interpretation of the images must then be done critically,
considering all the data available on the site (introduced into
the inversion if possible) and must be the subject of a critical
discussion between geologists, geophysicists and
geotechnicians.

Geophysical Parameters

The most commonly used geophysical parameters in engi-
neering geology are P-wave velocity (Vp), S-wave velocity
(Vs) and electrical resistivity (q). The ranges of variation of
these 3 parameters in the most common natural materials are
presented in the table in Appendix 1. The knowledge of
these three parameters provides initial information on the
nature of the material (rock, soil), its rigidity, compactness
and its degree of water saturation.

Electrical resistivity qR in a geological medium varies
with different parameters and the most commonly used
empirical equation is Archie's modified law (Mavko et al.
2019):

1
qR

¼ 1
aqwU

�mS�n þX ð1Þ

where U is the porosity, qw is the water resistivity, S is the
saturation degree, X is a clay conductivity term, and a, m
and n are constants dependent on the medium. The equation
shows that resistivity decreases with the saturation degree,
the porosity and the presence of clay and increases with the
water resistivity. Another parameter that could significantly
influences electrical resistivity is the ground temperature
which changes with air temperature at shallow depth. An
increase in ground temperature decreases qR (Hayley et al.
2007).

In terms of seismic methods, S-wave velocity (Vs) has
gradually become a geophysical parameter of primary
importance in geotechnical engineering because of its sen-
sitivity to variations in stiffness and cracking in geological
materials (Barton 2006). In the theory of elasticity, Vs is
related to the shear modulus G and density c by the
equation:

Vs ¼
ffiffiffiffi

G

c

s

ð2Þ

Since G and c both vary with porosity, empirical relations
linking Vs and porosity in various dry and saturated mate-
rials have been proposed (e.g. Castagna et al. 1985;
Knackstedt et al. 2005; Mondol et al. 2007), showing the
decrease of Vs with porosity (increase with compactness).
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Application of Geophysical Methods to Landslide
Monitoring

Landslides generally lead to changes in surface and internal
structure, in terms of mechanical and hydrogeological
properties, which may alter the geophysical properties that
can then be used to image the ground movement and track
its temporal evolution. In recent years, time-lapse geophys-
ical methods have developed considerably in an attempt to
track the evolution or triggering of ground movements.

Electrical Resistivity Tomography (ERT) has been par-
ticularly used in this sense (e.g. Bièvre et al. 2012; Supper
et al. 2014; Gance et al. 2016; Perrone et al. 2017; Uhlemann
et al. 2017; Palis et al. 2017) because it makes it possible to
identify and monitor water infiltration, which is one of the
major causes of the triggering or reactivation of ground
movements. Specific methodological developments have
been proposed, allowing to monitor the displacement of the
electrodes within the ground movement (Wilkinson et al.
2010, 2015).

In clay-rich landslides, field and laboratory experiments
have shown that Vs is a parameter very sensitive to clay
deconsolidation and the resulting increase in porosity
(Jongmans et al. 2009; Renalier et al. 2010a), and that rhe-
ological changes in clayey landslides could be tracked by
monitoring Vs (Mainsant et al. 2012a). The measurement of
Vs on landslides can be performed by different methods:
seismic horizontally-polarized shear-wave (SH) refraction
(Jongmans et al. 2009; Uhlemann et al. 2016), inversion of
surface waves generated by an active source or
cross-correlation of seismic noise (Jongmans and Garambois
2007; Renalier et al. 2010b). Temporal monitoring of Vs
with an active source is more complex due to the difficulty of
repeating the same measurement conditions (source and
geophone positions) in a changing environment. Whiteley
et al. (2020) explores the effects and challenges that the
changing topography of landslides (and consequent changes
in source and geophone position) can have on time-lapse
seismic (Vp and Vs-SH) refraction measurements. Recently,
Bertello et al. (2018) have presented results of periodic and
continuous measurements of Rayleigh wave velocity con-
ducted in an active earthflow, showing considerable velocity
variations during landslide reactivation phases.

An alternative is to record ambient vibrations and monitor
derived seismic parameters (Larose et al. 2015). In the case
of rocky sites, a column in the process of decoupling from
the massif exhibits resonance phenomena whose frequencies
can be tracked over time (Lévy et al. 2010). In a medium that
is deconstructing, the cross-correlation of seismic noise
between two sensors (Mainsant et al. 2012b) makes it pos-
sible to measure variations in the rigidity of the environment
based on changes in seismic velocity (surface waves).

Landslides can also be monitored by processing endogenous
failure signals, the number of which usually increases sig-
nificantly before a major event (e.g. Amitrano et al. 2005;
Tonnellier et al. 2013; Poli 2017; Fiolleau et al. 2020).

We then present four case studies (two seismically and
two electrically instrumented sites) illustrating the geo-
physical monitoring of landslides under very different con-
ditions and allowing to draw conclusions and perspectives
for the future.

Geophysical Monitoring of Landslides

Electrical Methods

We present two examples of electrical monitoring of land-
slides affecting clay-rich slopes. The first study applied a
3D-time lapse (4D) electrical imaging to monitor moisture
dynamics during a reactivation of the Hollin Hill landslide
(England). At the second site (Super Sauze, France), elec-
trical resistivity measurements were conducted to monitor
2D water circulation in the shallow zone of the landslide,
evidencing a significant influence of temperature on the
measurements.

Hollin Hill Site

The Hollin Hill landslide is 220 m long, 500 m wide slow
moving composite multiple Earth slide/flow (Uhlemann
et al. 2016, 2017). It affects a gentle slope shaped in four
bedrock formations of Lower to Middle Jurassic age, slightly
dipping to the N and covered by superficial deposits of
variable thickness. From bottom to top, the slope comprises
the Redcar Mudstone (RMF), Staithes Sandstone and
Cleveland Ironstone (SSF), Whitby Mudstone (WMF), and
Dogger Formation (DF) units, slightly dipping to the North.
The Hollin Hill landslide is mainly located in outcropping
mudstones and siltstones (WMF, 25 m thick). Underlying
the poorly drained WMF is the 20 m SSF unit, which is
composed of sandstones and siltstones, and overlies the
mudstone RMF unit. The hydrogeological system of the
slope is then complex with fluctuating aquifers in the per-
meable DF and SSF formations. The landslide is superficial
(a few m thick) and its mechanism evolves from rotational at
the headscarp to translational in the central part of the WMF
and to slide/flow-like movements to the toe over the SSF
formation. The landslide reactivated in December
2012/January 2013, after a very wet summer and prolonged
rainfall in winter. Surface movements of up to 3.5 m
occurred in winter 2012/2013 along the back scarp and
eastern lobe.

Hollin Hill acts as an observatory for landslide research
and has been thoroughly characterized using geotechnical
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and geophysical investigation over the last fifteen years
(Uhlemann et al. 2016). The 3-D ERT monitoring installa-
tion is a rectangular grid of 160 electrodes 4.75 m apart,
made of 5 parallel lines of 32 electrodes with 9.5 m interline
spacing. Electrical data were measured on alternating days.
GPS benchmarks were repeatedly surveyed to estimate the
electrode movements, providing electrode locations for
ERT. The electrical measurement sequence comprised
dipole–dipole measurements, providing 2580 apparent
resistivity measurements. Data were filtered to remove
erroneous measurements. A time-lapse inversion workflow
was defined, in which each inversion uses the electrode
locations of the corresponding date and is constrained to the
resistivity model of the previous time step (Uhlemann et al.
2017). Resistivity values are corrected for temperature
(Hayashi 2004) and are converted to gravimetric moisture
content (GMC) fitting a Waxman Smit model to laboratory
data measured for units WMF and SSF (Uhlemann et al.
2017).

The reference resistivity model (Fig. 1a) was inverted
from data acquired on 19 March 2010, while the derived
moisture model is shown in Fig. 1b. The SSF and WMF
units are clearly imaged as resistive and conductive zones,
respectively. The landslide body is well outlined as con-
ductive lobes over the SSF unit, while it cannot be distin-
guished from the WMF unit. The GMC image shows that the
SSF and WMF units are mainly characterized by low and
high moisture contents, respectively, resulting from the good
and poor drainage in these two formations.

The 43 analysed data sets (one per month) cover a 3-year
period (from March 2010 to July 2013), during which the
landslide reactivation occurred. At the yearly scale, the slope

exhibits characteristic seasonal resistivity fluctuations, with
decreasing moisture content in summer and increasing GMC
in winter. During reactivation (December 2011; Fig. 1c),
ERT shows a preferential flow at a depth of about 3–5 m
below the western lobe, which maintains low pore pressure
at the critical depth and prevent from movement. In contrast,
a significant movement of up to 3.5 m was observed at the
eastern lobe where no such flow was detected. Figure 1c, d
shows GMC changes in December 2012 (during reactiva-
tion) and July 2013 (after reactivation). During the decel-
eration of the movement (July 2013, Fig. 1d), ERT shows a
drainage from WMF to SSF.

4D ERT monitoring of the Hollin Hill slope was shown to
be able to image moisture variations and dynamic prefer-
ential flow paths in the landslide, providing a better under-
standing of the relation between movements and water
circulations. The reactivation of the landslide can be related
to the moment when GMC values are in the range of the
liquid limit (LL) (Hobbs et al. 2012) of the ground. This
offers perspectives for early warning system.

Super Sauze Site

This case history is a thorough study of resistivity variations
generated by rainfalls in the first meters of the Super Sauze
landslide. This 900 m long landslide has developed in the
weathered black marls since the beginning of the 1960s and
affected a volume of about 750,000 m3 (Malet et al. 2005).
The landslide is active (0.05–0.20 m day−1) with a mecha-
nism evolving from sliding in the upper part to flowing in
the lower part. The landside affects a few m thick hetero-
geneous layer made of weathered black marls with the
presence of marl blocks and surface fissures.

An experiment of 1 year was conducted on a 113 m long
longitudinal profile located in the upper part of the landslide
(Gance et al. 2016), with the deployment of 93 electrodes. In
this zone, the water table was located at about 1.5 m depth.
The objective was to track the water infiltration in the vadose
zone. Apparent resistivity sets were measured two times per
day with a sequence of 4300 quadrupoles (gradient array).
The electrical system was complemented by ground water
level and temperature sensors at two plots. Electrode move-
ments were measured with stereo-photogrammetry. Raw
electrical data were filtered to remove erroneous measure-
ments and inverted resistivity values were corrected for
groundwater conductivity and temperature variations.
Figure 1 shows the electrical response to a rainfall that started
on 31 May 2011 with a total amount of 40 mm. The air
temperature was around 12 °C and the groundwater level was
0.5 m depth. Figure 1 first shows a 5% decrease in resistivity
at very shallow depth, which is interpreted as an increase in
water content in the vadose zone. Then (t = 24 h), this
anomaly disappears and conductive zones appear at about

Fig. 1 Electrical imaging of the Hollin Hill site. a Reference model
(19 March 2010). b Derived gravimetric moisture content
(GMC) model. c GMC change of December 2012 highlighting
preferential flow at the western lobe during reactivation of the
landslide. d GMC change of July 2013 showing preferential flow path
from WMF to SSF. Modified from Uhlemann et al. (2017).
Copyright J. Wiley (2017)

78 D. Jongmans et al.



2 m depth. These zones move downslope with time. As
meteoric water infiltrations are very unlikely to generate a
decrease in resistivity below the water table, these anomalies
are interpreted as the infiltration of warmwater propagating in
a fissure network in conditions where the temperature of the
groundwater was about 2 °C. For another rainfall occurring in
summer with an air temperature of 20 °C, the authors
observed that the infiltration of cold rainwater in a warm upper
soil produces a 5% increase of resistivity in the vadose zone
(Fig. 2).

These results illustrate the effect of temperature and heat
exchange between the rain water, the vadose zone and the
groundwater, which may hide variations of the soil water
content but allow imaging water fluxes in the saturated zone.
In the same study, the authors also highlight the sensitivity
of apparent resistivity values to electrode movements, 3D
effects and superficial fissures, which may generate artefacts,

and propose a processing strategy to correct the effects of the
first two factors.

These two case studies of shallow electrical monitoring
illustrate the potential and difficulties of ERT, in particular
the sensitivity of electrical resistivity to temperature. A main
difference between the two cases is the presence at the Hollin
Hill site of permeable unit (SSF) allowing water flows to be
tracked in an unsaturated medium.

Seismic Methods

Continuous seismic recordings are used to derive parameters
that have been shown to be precursors to landslides. Several
cases have been documented in the literature during rock
scale failures with seismic activity (Amitrano et al. 2005)
and resonance frequency (Lévy et al. 2010) as parameters, or
during mudflow triggering, with seismic velocity variation
(Mainsant et al. 2012b).

We present here two recent examples of seismic moni-
toring of landslides affecting clay material. On the first site
(Monte Vecchio, Italy), geophones were deployed on and
outside the earthflow and measured the variations in Ray-
leigh dispersion curves before, during and after rapid
movements with solid-to-fluid transition On the second site
(Harmalière, France), the monitoring was made using con-
tinuous recordings, extracting for precursor parameters
derived from ambient vibrations and microearthquakes.

Monte Vecchio Site

The Monte Vecchio landslide is a 700 m long and 30–50 m
wide superficial earthflow affecting clayey material (old
landslide deposits) over a thickness of about 5–10 m. The
landslide may suddenly reactivate with a remobilization of the
entire mass, associated to a rheological change from a solid to
fluid behavior (Bertello et al. 2018). From February 2014 to
June 2015, the landslide experienced three such flows with
fluidization of the moving mass at least within the upper 2 m.

The reactivation of this landslide was monitored peri-
odically and continuously using two standard techniques
for measuring Rayleigh wave velocities: the active MASW
(Park et al. 1999) and the passive ReMi techniques (Louie
2001). The authors used 4.5-Hz vertical geophones 2 m
apart to record artificial sources and ambient vibrations (for
details, see Bertello et al. (2018)). Periodic measurements
were done every 1–2 months along seven seismic lines,
four of which were located within the landslide.
A cost-effective self-produced monitoring system for con-
tinuous measurements (two minutes every hour) of ambient
vibrations was installed on the main track of the earthflow
after May 16, 2014, allowing an automatic download of the

Fig. 2 Electrical response of the super Sauze landslide to the rainfall
event shown at the top. The resistivity reference model is shown at
t = 0 and the other diagrams show the percentage change of resistivity
from t = 12 h to t = 108 h. Red arrows show the interpreted water
flows. From Gance et al. (2016). Copyright Elsevier (2016)
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data. During the one-year monitoring period, the system
was reinstalled six times due to the strong landslide
activity.

All data were analyzed using a cross-correlation algorithm
to get the fundamental dispersion curve (phase velocity C(f)).
For continuous measurements, C(f) was reliably obtained in a
variable frequency range 5–15 Hz. Periodic measurement
results show a systematic drop in C(f) and a recovery stage
after the three observed flows. Figure 3 shows the variations
in C(f) measured by the monitoring system for three fre-
quencies (8, 11 and 15 Hz) during the flow event of 25 May
2015. The investigation depth for these frequencies is
restricted to the first meters of the landslide.

In the first 3 weeks of May 2015, the earthflow was
moving with a velocity of less than 1 cm/day and the mea-
sured velocities varied between 45 m/s (8 Hz) and 60 m/s
(15 Hz) with a slight trend to decrease. A first rain event
(47 mm) occurred on 22–24 May, which caused an accel-
eration (4 cm/day) and a drop in C(f) to 35–40 m/s at both
frequencies. The mudflow started 16 h after the end of the
rain and reached a velocity peak of 5–10 m/day before
slowing down to about 1 m/day. A second precipitation
(24 mm) occurred in the morning of May 26, provoking a
reacceleration of the landslide with a peak velocity of
22 m/day. The cumulative displacement higher than 35 m
disrupted the monitoring system, which was reinstalled on

June 3, 2015. Phase velocities regularly increase with the
deceleration of the landslide until returning to the initial
values of 45–60 m/s one month after the first acceleration.
The variations in Rayleigh wave phase velocities, which can
be related to Vs changes in the superficial layer, show that
the earthflow material undergoes a significant change in
shear rigidity during each reactivation, with a drop of about
30% in wave velocity followed by a recovery phase.

These observations at Monte Vecchio could be compared
to the results obtained at the Pont Bourquin site, where a
drop of 7% in C(f) was measured over a few days before the
triggering of a mudflow, cross-correlating the ambient
vibrations recorded at two sensors placed on the stable flanks
of the landslide (Mainsant et al. 2012b). This C(f) variation
at 12 Hz was interpreted as a 50% Vs decrease in 2 m layer
located at the base of the landslide (11 m depth). Although a
decrease in Vs was observed at both sites, several major
differences appear between them. The first is the depth of the
layer that initially fluidized (superficial at Monte Vechhio,
deep at Pont Bourquin). Then, the triggering of landslides at
Monte Vecchio is clearly linked to the occurrence of rain-
falls, whereas at Pont Bourquin it seems to have resulted
from the progressive increase of the shear stress by accu-
mulation of slid material. Finally, the mudflow at Pont
Bourquin was preceded in the previous days by a decrease in
Vs not related to the rainfall, while at Monte Vecchio, Vs
decreased concomitantly with the rainfall before the surge.

Harmalière Site

The Harmalière landslide is located in the Trièves region
(French Alps), characterized by the presence of a thick layer
of clay of lacustrine origin (Bièvre et al. 2012). The active
part of the landslide, 1500 m long and 300 m wide on
average, is characterized by a solid behavior at the top
evolving towards a fluid behavior at its toe. Its volume is
estimated at 25 106 m3. After a major activation in 1981, the
main escarpment, which can reach more than 20 m high, has
continuously regressed northwards (several m per year on
average) with phases of acceleration and deceleration.
A major abrupt reactivation of the landslide took place in
late June 2016, when the main escarpment retreated in some
places by 40 m, with an estimated moving volume of 2 106

m3. Following this event, the main escarpment was affected
by numerous small block slides whose volume was between
several tens and several hundreds of m3 (Fiolleau et al.
2020). Seismic equipment comprising two 3 component
sensors and an acquisition station was deployed at the end of
July 2016, on either side of a rear fracture affecting the main
escarpment. The seismic noise was recorded continuously
for 4 months until the 70 m3 block on which the sensor was
installed ruptured on November 25, 2016. In addition to the
seismic noise, the sensors also recorded thousands of signals

Fig. 3 Comparison between a rainfall and cumulative displacement,
b displacement rate, and c Rayleigh velocity measured at different
frequencies by the monitoring system before and after the reactivation
of 25 May 2015. From Bertello et al. (2018). Copyright J. Wiley (2017)
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generated by microearthquakes caused by the sliding of the
block and adjacent blocks. In this study, several seismic
parameters were calculated and monitored until rupture:
(1) the seismic energy SE, (2) the block resonance frequency
fB, (3) the surface wave velocity variation dV/V in the fre-
quency range 1–12 Hz, (4) the corresponding correlation
coefficient CC.

The evolution of these parameters in this order is shown
in Fig. 4, together with air temperature and rainfall (Fig. 4c).
The parameters showed a different sensitivity to the rainfall
preceding the rupture. They all showed a precursor signal

before the rupture, but at different times. The dV/V and CC
parameters are the first to show significant irreversible
variations, about 30 days before the rupture, with a strong
decrease of the CC propagating from high to low frequen-
cies. Just before the break, the signals measured on the block
and behind the block are totally decorrelated over the whole
frequency range, indicating a significant change in the
medium. The seismic energy showed an increase at this date
and increased sharply 3 days before the rupture. On the other
hand, the resonance frequency started to decrease only two
days before the block slipped. These results indicate the
complexity of the failure mechanism in clayey soils. The
interpretation provided by Fiolleau et al. (2020) is that the
significant decrease in CC and the increase in seismic
activity from 25 October onwards is the beginning of the
block slip process. The resonant frequency changes little due
to the probable presence of a shallow clay bridge under
which the fracture surface propagates. This interpretation is
supported by numerical modelling.

These two cases illustrate the seismic response of two
types of landslides (mudflow, slide) stressed by precipita-
tion. At Monte Vecchio, the seismic velocity at shallow
depth decreases directly with the rain before the mudflow. At
Harmalière the seismic response of the block to rain is more
complex but all seismic parameters show significant varia-
tions before failure.

Conclusions

The case studies presented show the interest of geophysical
imaging and monitoring of geophysical parameters (electri-
cal resistivity and seismic velocity). When installed perma-
nently in the field with continuous data acquisition, these
techniques allow the monitoring of hydro-mechanical
changes within a landslide. They are complementary to
time tracking techniques for surface movements (satellite,
UAV, RFID) which are also undergoing spectacular devel-
opment. They must be complemented by conventional
(piezometric level, soil moisture and soil movement) and
meteorological data for a complete understanding of the
processes. In recent years, geophysical monitoring equip-
ment has greatly improved and has become much more
reliable, allowing the acquisition of time series over long
periods (several years). These data are essential to improve
our understanding of the geophysical response of landslides
during their activation and the coupling between geophysical
parameters and geotechnical properties. In addition to their
spatial coverage, another advantage of geophysical methods
is that they can provide information throughout the year,
even under snow cover in mountainous areas.

However, the extensive use of geophysical instruments in
monitoring systems always comes up against a number of

Fig. 4 Summary figure showing the evolution of the five seismic
parameters studied. a Cumulative number of microearthquakes (CNe,
red curve) and the cumulative seismic energy (SE, black curve).
b Normalized HN0/HN1 ratio analysis zoomed in the frequency band
7–12 Hz. c Temperature and cumulative rainfall curves. The dashed
black lines highlight the main rain events. d Rayleigh wave velocity
variation (dV/V) between 1 and 12 Hz. e Correlation coefficient (CC).
On each subplot, the starting point of the precursory signal for each
seismic parameter is indicated by a white arrow. Modified from
Fiolleau et al. (2020). Copyright Oxford University Press (2020)
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bottlenecks. The first is the cost of the instruments, which
remains prohibitive for operational application and still
restricts geophysical monitoring mainly in the field of sci-
entific research. The development of robust, if possible
wireless and inexpensive devices, remains a challenge for a
massive application of these techniques. A second lock is the
definition of the relevant geophysical parameters to be
monitored. In order to be usable and accepted in a moni-
toring system, variations in these parameters must be
understood and comprehensible in terms of changes in the
properties of the sliding mass. In seismic monitoring, several
parameters (resonant frequency, seismic velocity variation,
correlation coefficient and seismic activity or energy) can be
used. The only case study (Harmalière) for which all these
parameters were measured shows the interest but also the
complexity of the seismic ground response before sliding. In
addition, even landslides of the same type can have different
causes and mechanisms. The two mudflows (Pont Bourquin
and MonteVecchio sites) that were seismically monitored
until triggering showed a decrease in surface wave velocity
(and thus in S-wave velocity) with, however, a different
pattern. In the case of the shallow mudflow at Monte Vec-
chio, the decrease in surface wave velocity was instanta-
neous with precipitation, whereas at Pont Bourquin, the
S-wave velocity in the layer that liquefied at a depth of 10 m
decreased several days before the onset of the mudflow.

For electrical monitoring, by far the most important
parameter used is resistivity. The relationship between
electrical resistivity and moisture content appears to be well
established in the case of Holin Hill and could allow for a
possible early-warning when moisture approaches the liquid
limit of the superficial material. However, electrical resis-
tivity is a parameter that is sensitive to other factors such as
shallow soil temperature (as shown in the Super Sauze case
study), porosity and water resistivity. These last two factors
are subject to change during a ground movement and any
resistivity variation cannot be always interpreted as a change
in moisture content. Landslide triggering experiments with
simulated rainfall have also shown that the hydrogeological
triggering conditions (saturation, fluid pressure) may be
more complex than simply reaching a threshold value (e.g.
Lehmann et al. 2013).

Finally, the number of landslide triggers or reactivations
that have been geophysically monitored remains low and the
demonstration of the potential usefulness of geophysical
techniques in warning systems will come from new case
studies such as those presented in this paper.
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Appendix 1

Table showing the ranges of variation of electrical resistivity
and P and S wave velocities in the most common natural
materials. These values are an order of magnitude and may
be modified by weathering processes.

Resistivity (Ωm) Vp
(m/s)

Vs
(m/s)

Soils

Clay 1–50 1100–
2500

30–700

Silt (dry to
saturated)

40–200 300–
1700

100–
500

Dry sand 200–1000 400–
1200

100–
500

Saturated sand 50–200 1500–
2500

100–
500

Contaminated
sand

1–20 1500–
2500

100–
500

Dry gravel 500–1500 500–
1200

100–
500

Saturated gravel 50–250 1500–
2500

100–
500

Rocks

Shale 20–200 2000–
3500

750–
1500

Marl 50–300 1500–
3000

600–
1500

Chalk 100–400 2000–
3000

800–
1300

Sandstone 100–1000 3000–
4500

1200–
2500

Conglomerate 1000–10,000 3000–
4500

1200–
2500

Limestone 1000–6000 3500–
6000

1900–
3300

Weathered
limestone

50–1000 1700–
3000

700–
1500

Dolomite 1000–5000 3500–
6000

1900–
3300

Granite 1000–10,000 4500–
6000

2500–
3300

Weathered
granite

30–500 800–
3500

300–
2000

Basalt 1000–10,000 5000–
6000

2800–
3400

Micaschist 300–1000 2800–
4000

1200–
2000

(continued)
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Resistivity (Ωm) Vp
(m/s)

Vs
(m/s)

Gneiss 700–2000 3500–
6000

1700–
3000

Amphibolite 1000–4000 4000–
6500

2000–
3500

Fresh water 10–100 1450 0

Salt water 0.2–1 1530 0

Ice 1 104–6 3400–
4000

1700–
1900

Concrete 10–2000 (water content
—salinity)

3000–
4500

1700–
2500
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Geophysical Monitoring of Landslides–A
Step Closer Towards Predictive
Understanding?

Sebastian Uhlemann, Jonathan Chambers, Philip Meldrum,
Patrick McClure, and Baptiste Dafflon

Abstract

Landslide early warning is still mostly reliant on precip-
itation thresholds, which can fail to address the subsurface
conditions causing slope instabilities. Here we introduce a
novel approach combining the latest developments in
geophysical and environmental monitoring, with hydro-
logical and geomechanical modelling to provide robust
estimates of current and future Factors-of-Safety of
slopes, which we propose may be a robust measure for
developing early warning thresholds. We aim to develop
a methodology that can predict slope instabilities by
estimating the causing subsurface conditions in near-real
time, thereby allowing for timely early warning to
vulnerable communities and implementation of mitigation
measures. It is shown here applied to a hillslope with a
history of slope failure, using simplified hydrological and
geomechanical models. During the monitoring period,
precipitation events are shown to give rise to the local
water table, thereby reducing the Factor-of-Safety of the
slope. It underlines the value of predicting the effect of
future storm (or precipitation) events, that imply an
additional reduction and hence an increased risk for slope

failure. Although applied to a local hillslope, the same
approach can be upscaled to regional scales using
emerging and established remote sensing and wireless
sensor networks.

Keywords

Electrical resistivity tomography � Landslide
monitoring � Slope stability � Data-driven
hydro-geomechanical modelling

Introduction

Landslides are a major and common natural hazard. They
endanger communities and critical infrastructure, and have
caused more than 28,000 fatalities and more than $1.8 bil-
lion in direct damage within the last decade worldwide.
While seismic events are a likely triggering mechanism in
many areas, exceptional and prolonged precipitation events
triggering landslides are more frequent. This has been
shown, e.g., during the 1997–98 El Niño winter storms,
which caused more than 300 landslides in the San Francisco
Bay Area damaging public and private property, with an
estimated direct cost of $158 million (Godt 1999). Climate
change, causing more frequent weather extremes, is likely to
increase the occurrence of shallow landslides locally and
worldwide. In order to mitigate the risk, there is a need to
improve our understanding of shallow, rainfall-induced
landslide dynamics, which are mostly controlled by hydro-
logical processes (Bogaard and Greco 2016). These pro-
cesses are known to be spatially and temporally highly
heterogeneous. However, the state-of-the-art is still moni-
toring surface expressions of slope failure (i.e. active fail-
ure), either via remote sensing or direct field observations,
rather than monitoring subsurface hydrological properties.
Landslide early warning systems are also still mostly reliant
on precipitation records, rather than soil moisture
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measurements, and hence their reliability has been ques-
tioned (Marra 2019).

Recent developments of geophysical techniques, geo-
electrical monitoring in particular, and wireless sensor net-
works enable near real-time monitoring of subsurface
hydrological properties and processes at unprecedented
spatial and temporal resolution. The novelty of this study lies
in the integration of this high-resolution data with
hydro-geomechanical models. Eventually, this will bring us
one step closer towards predicting and reliable early warning
of slope instability.

While conventional hydrological monitoring data can
readily be implemented in geomechanical modelling (e.g.,
Bordoni et al. 2015; Springman et al. 2013), and geophysical
and hydrological models can be coupled (Hinnell et al. 2010;
Irving and Singha 2010; Singha et al. 2015; Johnson et al.
2017), the link between geophysics and geomechanical
modelling has not yet been established. Bridging this gap
should improve the assessment of Factors-of-Safety (FoS) of
slopes by incorporating spatially and temporarily distributed
measurements of soil moisture, and should enable us to
forecast slope stability by including weather predictions (i.e.
recharge rates) and estimating related subsurface flow con-
ditions. It is anticipated that the real-time FoS and its pre-
dicted future change can be used as a reliable early warning
threshold, e.g. if the predicted FoS becomes close to 1, a
warning should be issued.

Here, we present this approach by linking geophysical
and environmental data with simplified slope stability and
hydrological flow models. We show that including subsur-
face data into the FoS calculation improves this estimate and
that we can use geophysical data to inform hydrological
models to derive subsurface flow related to slope stability.
This approach is exemplary shown applied to a site in
Northern California, which has a long-standing history of
slope instabilities due to prolonged and intense rainfall.

Recent Advances in Subsurface Imaging
and Modelling

Recent advances in geophysical data acquisition and pro-
cessing allow for near-real time monitoring of subsurface
moisture dynamics at high spatial (10′s of cm’s to m’s) and
temporal (hourly to daily) resolution. By using low-cost,
low-powered instrumentation, long-term monitoring at
remote locations has become feasible, while data can be
analysed at near-real time thanks to wireless data commu-
nication technologies (Huntley et al. 2019). This has led to
an increased number of geophysical monitoring studies that
are recording subsurface dynamics over longer periods of
time (Whiteley et al. 2019). While most geotechnical and
geophysical landslides studies treat the problem as 2D,

Uhlemann et al. (2017) has shown that geophysical data can
be used to image 4D spatio-temporal soil moisture dynamics
of landslides prior and post failure, and that thresholds
derived from such data can be used as predictor for slope
instabilities.

Since geophysical data only provide proxies to the
parameters controlling slope stability, such as liquid satu-
ration or pore pressures, integrating geophysical monitoring
with wireless sensor networks is becoming more frequently
applied. Wireless sensor networks employ distributed point
sensing to estimate the variability of those parameters and
combine it with the latest developments in wireless data
transmission to send data to a processing centre, where data
are analysed and used, e.g., for early warning (Ramesh and
Vasudevan 2012; Ramesh 2014; Watlet et al. 2019).

Similar to the developments in data acquisition, also
modelling has progressed. Now we can model subsurface
hydrological and landslide dynamics in 3D and at higher
resolution than a decade ago, not only assuming fully satu-
rated, but also partially saturated and conditions that can
vary in space and time. Hence, real-world failures can be
modelled and those tools be used to predict slope instabili-
ties at local and regional scales.

Monitoring and Early Warning Approach

Our aim is to develop a new methodology that takes
advantage of those recent developments to provide reliable
early warning of landslide hazards to communities at risk.
The methodology is outlined in Fig. 1. and combines geo-
physical and environmental monitoring with hydrological
and geomechanical modelling to estimate and predict slopes
FoS, which can be used as a threshold for landslide early
warning.

The geophysical and environmental monitoring is pro-
viding data regarding groundwater level, soil moisture,
rainfall and temperature data, but also information on soil
characteristics and structure, e.g. clay content. Those data
are then used to parameterize hydrological and slope sta-
bility models. Parameters like groundwater level can readily
be derived from the geophysical and environmental moni-
toring data and can be included into the slope stability
analysis. Hydrological models are used to provide spatial
and temporal distributions of parameters such as pore pres-
sures, which will refine the estimation of stresses in the
slopes. Weather predictions can be used to define potential
recharge volumes, and hence predict groundwater and pore
pressure variations, which, when fed into the geomechanical
models, allow to provide future predictions of FoS at local
and regional scales. Those predictions can then be used as
thresholds for early warning and mitigation measures. In
contrast to conventional early warning systems, which are
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mostly reliant on precipitation data only, this approach uses
subsurface measurements that are directly linked to the cause
of slope instabilities. Hence, we expect these slope stability
assessments and predictions to be more reliable.

Study Site

The site to which we apply this methodology is located in
the San Francisco Bay Area on the west side of the
northwest-trending Berkeley Hills and has a history of slope
failures. The landslide investigated here impacts upon a road
bridge and has been studied intensively. A ground dis-
placement monitoring system is recording displacements
since 2012 and shows movement rates of up to about
10 mm/year, which are correlated with precipitation records
(Cohen-Waeber 2018). The landslide can be classified as a
very slow moving clay rotational slide (Hungr et al. 2014).

Bedrock geology of the Berkeley Hills is complex and
comprises moderately to highly deformed sedimentary,
volcanic, and metamorphic rock units. The site itself is
located within a mapped landslide deposit (up to 18 m thick)
composed of weathered Moraga formation (mainly weath-
ered basalt and andesite flows), which is overlaying Orinda
formation, which is composed of partially bedded,
non-marine, conglomerate sandstone, and green and red silt-
and mudstone. On a regional scale, the Hayward and San
Andreas fault are potential sources of seismic activity.

Monitoring Setup

The monitoring setup is shown in Fig. 2. It comprises
bi-daily acquisition of Electrical Resistivity Tomography
(ERT) data, acquired using a PRIME resistivity monitoring
system employing dipole–dipole measurements on 112
electrodes separated by 0.6 m. Hence, subsurface resistivity
and chances therein are monitored over a length of 66.6 m
and to a depth of approximately 10 m below ground level
(bgl). Soil moisture, temperature, and bulk electrical con-
ductivity are measured every 30 min at 20, 40, and 60 m
along the ERT monitoring line at 0.1, 0.3, and 0.5 m bgl.
Groundwater levels are measured within shallow piezome-
ters (1.83 m bgl) at 20 and 40 m along the ERT line. Pre-
cipitation, air temperature and humidity are recorded at a
15 min interval at the toe of the slope. The system is pow-
ered using solar energy, and its status is transmitted daily via
the Iridium satellite network.

Landslide Structure

Two boreholes in the vicinity of the monitoring site (20–
50 m away) indicate weak clay soils of 5.5–7.3 m thickness
(paleolandslide deposits) overlying friable sandstones and
siltstones of the Orinda formation (Alan Kropp and Asso-
ciates 2006). This observation is in agreement with the 3D
ERT model that was obtained from the site (Fig. 3. recorded
at the end of the dry season in November 2019), which
shows a low resistive layer (>10 Xm) above a more resistive

Fig. 1 Methodology for assessment and prediction of slope stability.
This workflow integrates the latest developments in geophysical and
environmental monitoring with hydrological and geomechanical mod-
elling to provide FoS at local and regional scales that can be used for
landslide early warning

Fig. 2 Map showing 3D ERT data acquisition, ERT monitoring line,
and location of point sensors (P-20, P-40, and P-60 soil moisture,
temperature and electrical conductivity, P-20 and P-40 include
groundwater level monitoring; at P-W precipitation, air temperature
and pressure are measured)
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layer. On the top of the slope, high resistivities are imaged to
deeper depths. This is in agreement with the geological map
that indicates a transition from Moraga formation to pale-
olandslide deposits in this area. The very low resistive fea-
ture in the centre of the volume is interpreted to be fully
saturated clay, with the vadose zone and dry clay soils
above, and the more resistive Orinda formation below.
Hence, the groundwater table is expected to be shallow (1.6–
2.0 m bgl) towards the toe of the slope. This is in agreement
with previous studies that mapped a periodic spring close to
the toe. Note that geophysical inversion, which resulted in
the model of Fig. 3, is inherently non-unique. To reduce the
model space, we applied a L2 smoothness constraint in space
(and time for the monitoring data). As described above, the
resulting model is in good agreement with independent
geological and hydrological information of the site.

Monitoring Results

The monitoring period has covered rainfall events following
an about 6 months long dry period. An initial rainfall event
occurred November 25, with significant (>20 mm/d) and
prolonged rainfall from December 1st to 13th. This caused
soil moisture levels to increase, with every rainfall event
showing a rapid increase followed by a gradational decrease
in soil moisture, with a downward gradient, indicating
downward movement of moisture leading to groundwater
recharge. This is also confirmed by the rise in groundwater
table from >1.83 m to 1.72 m bgl. After this period, rainfall
occurred only occasionally, and with daily accumulations
mostly below 20 mm/d. The 2D ERT baseline model
(Fig. 4c) shows the same observation as were drawn from

the 3D model, with a highly resistive surface layer, repre-
senting dry soil, overlying a layer of low resistivity, span-
ning from 1.6 m to about 8 m bgl, which is interpreted to be
saturated clay. This layer is underlain by a more resistive
layer, representative of the sandstone of the Orinda
formation.

The rainfall commencing December 1st led to a decrease
in resistivity in the majority of the model (Fig. 4d), indi-
cating an increase in soil moisture. The increase in resistivity
between about 1.6–3.0 m bgl is assumed to be caused by an
exchange of pore waters, with the rainfall providing an input
of more resistive pore water.

The rainfall events of late December to January cause
only small changes in the resistivity model, with mostly
decreasing resistivity values throughout the model. This is
indicative of further increases in soil moisture content fol-
lowing a storm event on January 16th. The shallow resis-
tivities (1–2 m bgl) at x = 20 and 40 m (blue and orange
lines in Fig. 4b, respectively) show this resistivity response
to the different rainfall events, with step-like decreases fol-
lowing the storms of December 7th and January 16th, while
the period of small rainfall between those caused resistivities
to increase slightly at x = 40 m, indicating decreasing soil
moisture content, as also measured by the point sensor at
0.5 m bgl.

From this data, the location of the groundwater table can
be mapped through space and time by extracting the inter-
face between the highly resistive upper layer and the less
resistive central layer. This shows that the groundwater table
rose by about 0.3 m, particularly in the lower part of the
slope, following the rainfall events early December (Fig. 5).
The additional rainfall at the end of January 2020 caused an
additional rise by about 0.13 m. These observations are in

Fig. 3 Interpreted 3D ERT
model of the study site,
highlighting the different
lithological units, and showing
the point sensor locations.
Inversion RMS = 4.1%. Blue
isovolume showing
resistivities <6 Xm, red
isovolume resistivities >30 Xm
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Fig. 4 Geophysical and
environmental monitoring data.
a Precipitation and soil moisture
data (at 0.5 m bgl), b water level
(black line) and average
resistivity (shaded area shows the
standard deviation) at 1–2 m bgl
at two locations, c ERT baseline
model, d–e change in resistivity
compared to baseline model

Fig. 5 Simplified slope stability
analysis, accounting for the
groundwater table variations as
mapped from the ERT data. The
FoS for a dry slope (i.e.
groundwater table below the slip
plane) is 2.21, the FoS for the
different groundwater conditions
is provided in the legend

Geophysical Monitoring of Landslides—A Step Closer … 89



broad agreement with the groundwater table and soil mois-
ture measurements obtained from site.

Using a groundwater flow model (PFLOTRAN, Ham-
mond et al. 2014), we estimated that a rainfall period similar
to the one observed early December would cause the
groundwater table to rise on average by 0.21 m from the
January 2020 conditions.

Slope Stability Analysis and Prediction

To introduce our approach, we simplify the slope stability
problem. Given that the paleolandslide deposits were map-
ped with a thickness of up to 18 m and that the top of the
Orinda formation showed a similar friable characteristic to
the overlying soil in soil borings close by, we assume that
the slope consists of one soil type only and that the failure
type is rotational.

The FoS of the slope is determined for the different
groundwater conditions using the General Limit Equilibrium
method (Fredlund and Krahn 1977) implemented in the
python code pyBIMstab (Montoya-Araque and
Suarez-Burgoa 2018), and satisfies both force and moment
equilibrium. Previous studies found the soil to have an
effective cohesion of 7.75 kPa, a unit weight of 18.85
kN/m3, and a friction angle of 24° (Alan Kropp and Asso-
ciates 2006). Analysing more than 5000 possible slip sur-
faces, Fig. 5 shows the slip surface with the smallest FoS
and thus the most likely slip plane. With a maximum depth
of about 12 m, this result is in agreement with previous site
investigations.

For dry conditions, i.e. the groundwater table is below the
proposed slip plane, the FoS is 2.21 and the slope stable.
From the piezometer and ERT data we can derive the
location of the groundwater table at different times. Includ-
ing the conditions of December 1st in the analysis results in
a FoS of 1.42 (Fig. 5). The prolonged and intense rainfall
between December 1st and 13th caused a rise in ground-
water table that reduces the FoS to 1.39. The groundwater
conditions following the storm on January 16th caused a
further reduction of the FoS to 1.38. Continuing from those
conditions and simulating another storm with similar pre-
cipitation to the one observed early December would cause
another rise in groundwater table and hence reduce the FoS
to 1.36.

Although simplified and of limited monitoring length,
these results show the benefit of including estimated and
modelled hydrological subsurface conditions into the slope
stability analysis. It allows to provide a well-informed esti-
mate of current conditions. In addition, by modelling the
impact of future precipitation events on the subsurface
conditions, slope stability in response to these events can be
predicted. While we showed the feasibility of this approach,

we could not validate an early warning threshold, as the
slope remained stable during the monitoring period.

This approach is limited by the accuracy and availability
of the geophysical and environmental data, as well as the
model validity for both hydrological and geomechanical
simulations. Wrong parameterization of the model may
provide erroneous, and hence misleading, FoS estimates.
Nevertheless, we anticipate that incorporating subsurface
information into the early warning methodology will
improve our predictions.

Future work will increase the complexity of both
hydrological and slope stability models, by including sub-
surface layers with different physical properties and
extending the domain from 2D to 3D. Applying this to a
regional scale will increase computational time significantly,
and hence new approaches have to be developed to provide
estimates and predictions of slope stability in near real-time.

Conclusions

Landslide early warning is still mostly reliant on regionally
defined rainfall thresholds. Here, we introduce a methodol-
ogy that combines the latest developments in geophysical
and environmental monitoring, with hydrological and
geomechanical modelling to provide robust estimates of
slope stability and predict its evolution for future precipita-
tion events by including measured and estimated subsurface
conditions.

We introduce this approach using data from a study site
in Northern California with a history of slope instabilities.
From Electrical Resistivity Tomography (ERT) data and a
distributed sensor network, subsurface conditions and vari-
ations in groundwater table are estimated and included in the
slope stability analysis. Using a hydrological model, the
impact of a potential future storm event on the groundwater
conditions are derived and included in the geomechanical
model to predict its impact on the slope stability. During all
conditions, the FoS of the slope is greater than 1, but the
changes in subsurface conditions following winter storms
show a reduction of the FoS, and hence an increase in
potential failure likelihood.

While this approach has been applied to a local hill slope,
it could easily be up-scaled and applied to a regional scale
using emerging remote sensing products for subsurface
characterization (e.g. airborne electromagnetics to map soil–
bedrock interface) and monitoring (e.g. radar-based shallow
soil moisture measurements), and wireless sensor networks
to provide distributed soil moisture data on regional grids.
Using 5G networks, this data could be used real-time to
update current slope stability models. By including weather
forecasts, slope stability could be forecasted and early
warning given to communities at risk, well in advance of
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potentially hazardous conditions. This will ultimately reduce
landslide risk and will aid in protecting vulnerable
communities.
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Recent Advances in High Spatial Resolution
Geophysical Monitoring of Moisture-Induced
Landslides

Jim Whiteley, Arnaud Watlet, Sebastian Uhlemann, Philip Meldrum,
Paul Wilkinson, and Jonathan Chambers

Abstract

Time-lapse geophysical methods are increasingly used to
monitor unstable slopes prone to hydrological destabili-
sation. Geophysical methods are well suited to this
purpose due to the high spatiotemporal resolutions at
which monitoring data can be acquired. In particular,
geoelectrical and seismic approaches are shown to be
particularly beneficial for identifying variations in land-
slide systems at high spatial resolutions. The integrated
use of these approaches, which are sensitive to closely
inter-related hydrogeological features and processes driv-
ing moisture-induced slope instabilities, can reveal the
evolving properties of subsurface materials as they move
toward failure. Here, we highlight recent advances in high
spatial resolution geophysical monitoring with examples
from the Hollin Hill Landslide Observatory, a slow-
moving, clay-rich, moisture–induced landslide located in
North Yorkshire, UK. We present the details of different
high spatial resolution geophysical monitoring arrays
deployed at the site, including electrical resistivity,
seismic refraction, self-potential, and passive seismic,
and consider their relative benefits and weaknesses.
Focusing on electrical resistivity and seismic refraction
monitoring data, we demonstrate how the integrated
analysis of time-lapse data can be used to better
understand the key hydrogeological features and pro-
cesses leading to slope failure.

Keywords

Geophysics � Monitoring � Early-warning �
Geoelectric � Resistivity � Seismic � Refraction

Introduction

For over 30 years, geophysical surveys have been used to
characterise the subsurface of landslide systems (McCann
and Forster 1990; Jongmans and Garambois 2007). For
monitoring landslides at risk of failure, geophysical tech-
niques can broadly be split in to two groups: those with high
temporal resolution (HTR), and those with high spatial res-
olution (HSR) (Whiteley et al. 2019a). Passive seismology is
the predominant HTR geophysical method used for moni-
toring landslides, and in a typical deployment, seismic
waveforms are recorded from a sparse number of sensors
deployed across a landslide surface. Although the cost and
power demands of passive seismic sensors is decreasing, the
number of seismometers deployed is typically limited by
financial and logistical costs, which in turn limits the spatial
resolution of the array. On the other hand, HSR geophysical
methods acquire data using dense 2D or 3D sensor arrays in
which many measurements are acquired during a single
deployment, in order to image the subsurface. These meth-
ods can produce images of subsurface conditions in the form
of two-dimensional (2D) cross-sections and maps, or
three-dimensional (3D) volumes. The multi-dimensional
subsurface information acquired by HSR methods makes
them well suited to identifying subsurface heterogeneity in
landslide systems. Where conventional geotechnical
point-source monitoring data or observations are sparse or
depth-limited, HSR geophysical surveys can be used to
identify lithological units, structural discontinuities and
heterogeneous moisture distributions and dynamics within
the subsurface.

J. Whiteley (&) � A. Watlet � P. Meldrum � P. Wilkinson �
J. Chambers
Geophysical Tomography, British Geological Survey,
Nottingham, NG12 5GG, United Kingdom
e-mail: jwhi@bgs.ac.uk

S. Uhlemann
Energy Geosciences Division, Lawrence Berkeley National
Laboratory, Cyclotron Road, Berkeley, CA 94720, United States

© Springer Nature Switzerland AG 2021
N. Casagli et al. (eds.), Understanding and Reducing Landslide Disaster Risk,
ICL Contribution to Landslide Disaster Risk Reduction,
https://doi.org/10.1007/978-3-030-60311-3_9

93

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-60311-3_9&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-60311-3_9&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-60311-3_9&amp;domain=pdf
mailto:jwhi@bgs.ac.uk
https://doi.org/10.1007/978-3-030-60311-3_9


Two types of HSR geophysics are typically used for the
characterisation and monitoring of landslides: (i) geoelectri-
cal measurements, including electrical resistivity (ER) and
self-potential (SP), and (ii) seismic measurements, including
active seismic refraction (SR) and surface wave (SW) sur-
veys, and short-term recording of passive seismic signals to
measure the horizontal-to-vertical (HV) ratio of seismic
noise.

Acquiring repeat measurements using these different
geophysical methods produces time-lapse images of the
subsurface, providing a means of both characterising a
landslide system, and monitoring changes over time. Due to
the large number of readings in a complete dataset from
which an image of the subsurface can be produced, HSR
methods tend to have lower temporal resolution than HTR
methods; conversely, images produced from HSR methods
(e.g., using ambient noise tomography) tend to have lower
spatial resolution.

There exist many examples of using HSR methods to
monitor landslides: slope moisture dynamics have been
monitored using 4D ER measurements (Uhlemann et al.
2017), the evolution of surface fissuring has been assessed
using SRT and SW surveys (Bièvre et al. 2012), SP surveys
have located water flow pathways in an active landslide
(Colangelo et al. 2006), and sliding surface depth has been
monitored using HV (Imposa et al. 2017). As different HSR
methods are sensitive to different features and processes, the
use of multiple HSR methods to monitor landslide processes
can be highly beneficial. Combining such methods in to a
single comprehensive landslide monitoring campaign can
therefore provide significant insights in to the processes
acting to destabilise slopes at risk of failure.

The sensitivity of geoelectrical methods to moisture
content and of seismic methods to elastic properties and
structural discontinuities, make them well suited for moni-
toring landslides. The shear strength (τf) strength of a
material can be defined as

sf ¼ cþ r� uð Þtan/0
cv ð1Þ

where c is cohesion, σ is total normal stress, u is pore water
pressure, and ϕ’cv is the angle of shear resistance at a critical
state. Where shear strength is greater than shear stress (τd),
the slope has a factor of safety (FOS) > 1, and is in a stable
condition, given as

FOS ¼ sf
sd

: ð2Þ

Given the sensitivity of ER measurements to moisture
content changes, ER monitoring can provide information
regarding the changing state of u in the ground, and

relationships between resistivity and u can be established by
petrophysical tests (Uhlemann et al. 2017). Similarly, SR
measurements can provide information on elastic moduli,
which relate to the changing condition of σ in the landslide
system (Whiteley et al. 2020).

Geophysical Monitoring at the Hollin Hill
Landslide Observatory

The Hollin Hill Landslide Observatory (HHLO) is a
slow-moving, clay-rich landslide in North Yorkshire, UK
(Fig. 1). The underlying geology comprises the failing
Whitby Mudstone Formation (WMF) overlying the stable
Staithes Sandstone Formation (SSF). Contact between these
units is sub-horizontal, dipping to the north and away from
the surface slope angle. An increase in moisture content at
the contact between the SSF and WMF in the mid-slope
cause plastic failure in the WMF, which moves downslope to
form flow lobes. Above the mid-slope, backscarps and
rotational failures develop because of the loss of support by
material downslope.

The HHLO is a testbed for novel geophysical, geotech-
nical and geodetic landslide monitoring systems, and hosted
a range of HSR geophysical methods for over a decade (see
also Whiteley et al. 2019b).

Electrical Resistivity Monitoring

The site is instrumented with a permanent 3D ER monitoring
array to monitor slope moisture dynamics (Fig. 1), com-
prising of five 2D profiles, and orientated parallel to the
slope direction. Measurement schedules and data retrieval
are facilitated via a GPRS connection, and the system is
powered from solar and wind energy generated on site.
The ER system typically acquires data every other day, and
requires periodic maintenance to repair cables that have
suffered damage from landslide displacements (Table 1).
The ER measurements provide information on the seasonal
patterns of wetting and drying within the landslide system,
via the development of petrophysical relationships between
the measured resistivity and moisture content of the land-
slide materials (Uhlemann et al., 2017). The system has
given rise to a number of novel applications for ER moni-
toring of landslides, including contributions to 3D ground
model development (Chambers et al. 2011), tracking of
electrode displacements from ER data (Wilkinson et al.
2016) and rapid electrical resistance monitoring for detecting
landslide movement (Merritt et al. 2018).

94 J. Whiteley et al.



Seismic Refraction and Passive Seismic
Monitoring

Repeat SR measurements (of both P- and S-wave velocity)
are acquired at the site every six to eight weeks, along a
profile co-located with the western profile of the ER moni-
toring array. The manually acquired SR data require site
visits and re-deployment of geophones at each visit, but the
high resolution of the array and sensitivity to variations in
elastic properties (which are induced by moisture content
variation) provide an excellent complement to the higher
temporal resolution ER data (Table 1). Time-lapse changes
in seismic velocity have been linked to variations in the
moisture content of the landslide system (Whiteley et al.
2020).

In addition, occasional HV measurements have been
undertaken at the site to investigate the deeper geological
structures underlying the landslide system, and to identify
variations in the stiffness of near-surface slipped materials.

Self-potential Monitoring

Self-potential measurements are acquired in two ways at the
HHLO; via a permanently installed SP 2D monitoring pro-
file, co-located along the central ER monitoring profile, and
by undertaking repeat visits to the site to measure a 2D grid
to create a map of SP variation across the landslide surface
(Fig. 1).

The SP monitoring data are automatically acquired every
hour, providing very high temporal resolution data, whereas
the manually acquired mapping data are acquired during site
visits every six to eight weeks (Table 1). The SP data are
sensitive to variations in fluid flow, with the distinct geo-
morphological units of the landslide (i.e., rotational move-
ment upslope, flow lobes downslope) showing different
patterns of seasonal SP variation.

Geotechnical and Geodetic Monitoring

To complement and support ongoing geophysical monitor-
ing, the HHLO is instrumented with an array of geotechnical
and geodetic systems for observing slope hydrology
(piezometers, soil moisture sensors, water potential sensors,
weather station), surface and subsurface deformation (GPS
monitoring array, tilt meters, inclinometers, shape
accelerometer arrays, active waveguide sensors) (see Uhle-
mann et al. 2016). The HHLO surface is also regularly
monitored by InSAR and UAV flights (Peppa et al. 2019).
HSR geophysical methods can extrapolate the information
derived from point-sensors in the landslide subsurface, and
remote sensing data are used to update inputs to the geo-
physical modelling, for example, by providing topographic
data for generating inversion meshes.

Integrated Acquisition and Analysis
of Electrical Resistivity and Seismic Refraction
Data

Between October 2016 and August 2018, 11 co-located ER
and SR surveys were acquired from a single profile at the
HHLO. By averaging the results of these surveys across the
22 month monitoring period, the major subsurface discon-
tinuities and units can be identified (Fig. 2a). The ratio
between P- and S-wave velocity (Vp/Vs) obtained from
seismic surveys (Fig. 2b) shows the main contact between

Fig. 1 The location of the HSR geophysical arrays used at the Hollin
Hill Landslide Observatory. See Table 1 for details
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the SSF and WMF at the HHLO. Increased Vp/Vs indicates
not only more saturated material, but also indicates com-
pressible material, such as clay-rich WMF. Variations in
Vp/Vs, which are primarily located in the central zone of
translation at the HHLO, relate to temporal changes in the
elastic properties as the plasticity of the sliding material
increases (Fig. 2d).

The major features of the averaged resistivity show the
difference in moisture content between the saturated WMF
and underlying zones of saturated and unsaturated SSF
(Fig. 2c). Variations in the resistivity across the monitoring
period are concentrated in the flow lobes toward the base of
the slope (Fig. 2e), which tend to show preferential wetting
and drying over the annual climatic cycle through the

formation of preferential flow paths associated with sub-
surface saturation and drainage (Uhlemann et al. 2017).

Conclusions

Integrated HSR geophysical methods provide a rapid, high
resolution and non-invasive means of identifying structural
discontinuities and material heterogeneities in landslide
systems. The HHLO employs a range of automated and
manual HSR geophysical monitoring methods to obtain
time-lapse information relating to key landslide features and
processes contributing to slope destabilisation. Permanently
installed ER and SP arrays provide regular, high temporal

Table 1 Comparative properties of the HSR monitoring methods employed at the Hollin Hill Landslide Observatory, including electrical
resistivity (ER), seismic refraction (SR), self-potential (SP) and horizontal-to-vertical seismic noise (HV) measurements. See Fig. 1 for array
locations

Survey attribute ER SR SP HV

Measurement type Geoelectric Seismic Geoelectric Geoelectric Seismic

Mode of acquisition Active Active Passive Passive Passive

Array dimension 3D 2D (profile) 2D (profile) 2D (map) 1D (interpolated to
make 2D profile)

Type of array
installation

Permanent Transient Permanent Transient Transient

Data retrieval Remote On site Remote On site On site

Landslide property
sensitivity

Moisture content Elastic properties Fluid flow Fluid flow Elastic properties

Spatial resolution of
2D acquisition

High (4.5 m electrode
separation)

Very high (2 m
geophone
separation)

High (4.5 m
electrode
separation)

High (5 m
electrode
separation)

Medium (10 –

25 m station
separation)

Spatial resolution of
3D acquisition

High (9 m 2D profile
separation)

N/A N/A High (9 m 2D
profile
separation)

N/A

Temporal resolution of
acquisition

Days to weeks Weeks to months Minutes to hours Weeks to
months

Years

Ease of data acquisition High (automated) Very low High (automated) Low Low

Intensity of manual
processing

Low Very high Low Medium Medium

Average number of
datasets acquired per
year

175 6 8760 6 0.4

Speed of single 2D
profile acquisition

Fast (<1 h) Medium (2 - 3 h) Fast (<1 h) Fast (<1 h) Slow (>4 h)

Length of operation at
the HHLO

> 10 years 3 years 2 years 2 years 5 years

Main benefit Automation of data
acquisition and
processing

High resolution of
survey data

Automation of data
acquisition

Ease and speed
of acquisition

Ease and speed of
acquisition

Main challenge Array damage by
landslide movement

Acquisition and
processing
intensive

Array damage by
landslide
movement

Uncertainty of
depth sensitivity

Other data
(Vs) required for
processing
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resolution monitoring data that informs the spatial distribu-
tion of moisture content and fluid flow throughout the sub-
surface. Additional manual time-lapse SR, SP and HV
surveys, whilst more laborious, provide crucial supplemen-
tary data to these permanently installed arrays.

Recent developments in the field of passive seismology,
including the continued decreasing financial and logistical

costs associated with deploying increasing numbers of
seismic sensors in the field, as well as novel developments
such as fibre-optic distributed acoustic sensing (DAS) sys-
tems, will dramatically increase the resolution of images that
can be produced from these near-continuous HTR geo-
physical methods. The acquisition of increasingly high
spatiotemporal resolution data will provide unprecedented

Fig. 2 a Conceptual model of the HHLO, developed from geophys-
ical, geotechnical and geodetic data. Below are models of b average P-
to S-wave velocity ratio (Vp/Vs), and c average resistivity, from 11
surveys undertaken between October 2016 and August 2018. The

standard deviation of the d average Vp/Vs model, and e average
resistivity model, indicate areas with greatest temporal variation.
Modified from Whiteley et al. (2020).
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insights in to subsurface processes, but will present a new
array of challenges for efficient data management, process-
ing and analysis. Automated processes relying on machine
learning algorithms and ‘big data’ management strategies
will be needed to handle these increasingly large and com-
plex datasets. However, combining HTR and HSR methods,
such as emerging passive seismic systems with the auto-
mated ER and SP systems deployed at the HHLO, will allow
for unprecedented detail in monitoring unstable slopes at risk
of hydrological destabilisation, and will provide important
inputs to existing local landslide early-warning systems.
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Characteristic Analysis of the Nayong Rock
Avalanche Based on the Seismic Signal

Hao Luo, Aiguo Xing, Kaiping Jin, Shimin Xu, and Yu Zhuang

Abstract

A rock avalanche that destroyed 23 houses and killed 35
people occurred on 28 August 2017, Nayong, SW China.
Combined with the dynamic parameters from seismic
signal inversion, a discrete element model, MatDEM was
used to determine the kinematic behaviour of the rock
avalanche. By comparing the velocity evolution process
of numerical simulation with that of seismic signal
inversion, we are able to find the best fitting parameters.
The dynamic process obtained by modelling was com-
pared with the frequency distribution spectrum of the
nearest seismometer, showing that the dynamic process is
in good agreement with those parameters inverted from
seismic signals. The simulation results show that the
movement process lasted for nearly 40 s, with a maxi-
mum speed of 40 m/s. The selected models and param-
eters contribute to explain the dynamic processes of
similar rock avalanche more accurately and are of
considerable significance to the hazard prediction in karst
area.

Keywords

Rock avalanche dynamics � Avalanche seismology �
Time-series analysis � Discrete element method �Model
calibration

Introduction

Rock avalanches are the most destructive gravitational
instabilities due to their burstiness, high mobility, long
runout, and entrainment capacity. In addition to field
observation and experiments, many dynamic models and
numerical methods have been proposed for predicting the
post-failure behavior and movement process of long runout
rock avalanches (Hungr 1995; Crosta et al. 2003; Cagnoli
and Piersanti 2015). However, it is difficult to obtain the
accurate parameters needed for these numerical models. Due
to the size effect, the experimental results of rock samples
may be inconsistent with the actual material mechanical
parameters during large-scale landslide movement, resulting
in inaccurate simulation results. The validity of these models
and approaches has been verified through comparison with
real events. Nevertheless, owing to the lack of direct
time-dependent observation evidence for rock avalanches’
movement process, few models are considered to be
effective.

Recently, the seismic signals recorded by surrounding
seismometers provided a possible approach to analyze the
energy variation and movement process of rock avalanches
(Allstadt 2013; Ekström and Stark 2013; Hibert et al., 2014;
Moretti et al. 2015). Therefore, using the dynamic parame-
ters obtained by seismic signal inversion can help to con-
strain the numerical simulation.

In this paper, through the analysis of seismic signal, more
constraints are provided for the dynamic process of the
Nayong avalanche. The time frequency distribution spec-
trum, which can reflect the movement stage of the rock
avalanche, can be obtained by Hilbert-Huang Transform.
And through the force–time function, detailed dynamic
characteristics can be determined. Afterward, the runout
behavior of Nayong avalanche was simulated by the 3D
discrete element model, MatDEM, and the simulated results
are verified by comparing in with field investigation and
seismic data. It is expected that this method combining
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seismic signal and simulation model could help in better
understanding the possible mechanism of rock avalanche
and conducting predictive simulations of similar events in
bare karst area.

The Nayong Rock Avalanche

Nayong rock avalanche occurred in Southwest China, where
there are approximately 62 × 104 km2 of bare karst topog-
raphy (Huang and Cai 2007). In the past few years, several
catastrophic rock avalanches, especially triggered by mining
activities and rainfall, were occurred in the karst areas of
China and brought damage to the surrounding infrastructure
and facilities (Yin et al. 2011; Xing et al. 2015). Unlike other
rock avalanches, there is a clear sign of rock collapse of
Nayong rock avalanche and the local residents recorded
even the whole process from rock collapse to debris flow
with smartphone (Fan et al. 2018). Nevertheless, due to its
size and runout distance far beyond the prediction, 35 people
died and 23 houses were destroyed (Fig. 1).

Figure 2 shows the 2D longitudinal profile of Nayong
rock avalanche. This event involved the displaced materials
with a volume of 0.8 Mm3, and this comprise approximately
0.49 Mm3 of rock mass from the source area and 0.31 Mm3

of materials that was entrained along the runout path. The

sliding mass travelled about 820 m along the runout path
with an elevation difference of 280 m, and eventually
deposit at the toe of Pusa village.

Seismic Data and Method

Seismic Data

Six three-component broadband seismometers around the
Nayong County have recorded the seismic signals generated
from the rock avalanche (Fig. 3). According to the records of
the closest station, ZJW station, with a distance of 5.5 km,
the seismic signal started at 10:21:48 local time, increasing
to peak motion at 10:22:23, within a strong signal lasting for
35 s, and gradually fades into the background noise after
10:24:00. The low-frequency component of the seismic
signal is generated by the cycle of loading and unloading of
the solid Earth by the bulk acceleration and deceleration of
the landslide mass, while the high-frequency component is
generated by the friction and collision between rocks and
rock bed (Ekström and Stark 2013). In this study, we use
Hilbert-Huang transform to obtain the time–frequency dis-
tribution spectrum of the seismic signal recorded by ZJW
station (Fig. 4).

Hillslope

Buried village

Buried village

(a)

0 100 200 m 0 200 400 m

(b)

(c)

0 200 400 m

(d)

0 200 400 m

Fig. 1 a Buried village in the
Nayong rock avalanche.
b Location of the hillslope.
c Pre-event image of the Nayong
rock avalanche. d Post-event
image of the Nayong rock
avalanche. 1–1′ Cross-section
line. (Zhu et al. 2019)
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The time–frequency distribution spectrum (Fig. 4) shows
that the low-frequency signal was looming at 10:20:22, and
amplitude was getting intense during 10:20:28.3–10:20:44.7.
From 10:20:44.7, the amplitude was gradually decreased and
finally disappeared in the background noise after 10:20:61.2.
On the other hand, the high-frequency component (which
greater than 0.5 Hz) starts to appear in 25 s and the amplitude
soon reaches the peak. The high-frequency signal appears
suddenly in about 25 s, and the large amplitudewasmaintained
at 22–44 s, then started to decrease at 44.7 s, further decreased
after 61.2 s, finally disappears in the background at the 80 s.

Method

The earthquake produced by landslides or rock avalanches
can be represented by a single-force mechanism (Fukao
1995). Therefore, the solid Earth can be considered a slope
and the sliding mass can be a constant mass body sliding
above the slope (Ekström and Stark 2013). For the sliding
body, the force Fnet is exerted by the Earth’s crust, and there
is another force Fe tð Þ acting on the Earth’s crust, both of
which are equal in magnitude and opposite in direction.
Then the Fe tð Þ is equal to
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Fe tð Þ ¼ �ma

Fe tð Þ is equivalent to the single-force source for generating
long-period seismic signals of rock avalanche (Fukao 1995).
So Fe tð Þ is called force–time function this study. Fe tð Þ can be
determined by inverting the low-frequency seismic data
(Allstadt 2013). The avalanche source is assumed to be a
stationary point source. The impulse response set between the
source and each stations pair are known as Green’s function,
then the seismic displacement records U tð Þ can be expressed
by the convolution of force–time function and Green’s func-
tion (Stein and Wysession 2003).

U tð Þ ¼ Fe tð Þ � GðtÞ
For low-frequency signals, Green’s functions GðtÞ can be

calculated by the wave number integration method. Because
of the insensitivity of low-frequency signals to small-scale
heterogeneity, the 1-D generalized Earth model was used in
this study, which is from Crust 1.0. To make the models
smoother, the force–time function can be inverted by a
damped least-squares approach (Allstadt 2013).

Fe ¼ ðG�TG� þ a2IÞ�1G�TU

where G� is the convolution matrix of Green’s function, I is
the identity matrix and a is the damping coefficient. Once the
force–time function is obtained, we can calculate the
time-varying velocity of the sliding mass v(t) by integrating
the force and displacement d tð Þ by integrating twice.

v tð Þ ¼ � 1
m

Z t

0
Fe sð Þds

d tð Þ ¼ � 1
m

Z Z t

0
Fe sð Þds

In this case, the mass of the sliding body can be estimated
by the results of field investigation. From Fig. 5, we can see
that starting from 23.5 s, the speed of the sliding mass is

increasing rapidly, reaching the maximum of 31.8 m/s at
42.5 s. After that, its speed gradually decreases, almost zero
at 75.8 s. And the maximum movement distance of mass is
774 m.

The Discrete Element Model

For investigating the detailed mechanisms of the Nayong
avalanche, 3D discrete element model, the MatDEM (Liu
et al. 2013) was applied to simulate the kinematic behavior
of sliding mass. In this model, rock and soil are simulated by
a series of tightly packed discrete elements. The motion of
elements follows the Newtonian equation of motion, and the
elements contact through breakable, linear elastic spring in
normal and tangential directions. An artificial viscosity, that
can damp the rebound energy of the particles on boundary, is
added to the model. In the discrete element model,
time-stepping iterative algorithm was developed to model
and observed the dynamic evolution of elements (Cundall
and Stack 1979). To accurately simulate the model’s elastic
properties, the time step should be much smaller than the
natural vibration period of the system. In this study, the time
step is set to 0.02 times of the natural vibration period of the
elements system. MatDEM, adopts GPU matrix calculation
to support the dynamic simulation of millions of discrete
elements. Thus, the entrainable basement layer can also be
constructed with discrete elements. The initial model is
constructed by simulating the gravitational deposition of
discrete elements. The discrete elements with a mean radius
of 5 m have a certain initial velocity in a rectangular simu-
lation box, colliding each other under gravity. Then, they
deposit in a random position under artificial compression.
Deposited elements are shaped according to the digital ele-
vation model. In order to save computation, elements in the
lowest layer are defined as wall elements that do not par-
ticipate in the dynamic simulation process. Based on the
geological properties, other discrete elements are divided
into four layers, in which the source area is divided sepa-
rately due to the severe shattering (Fig. 6).
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Each layer has different mechanical properties (Table 1),
which are obtained by a formula given by Liu that can
convert the laboratory mechanical test data into MatDEM
parameters (Liu et al. 2017).

Results and Discussion

Simulation Results

Previous studies have shown that the friction coefficient has
a tremendous influence on the movement of landslides in
numerical model (Lin and Lin 2015). Consequently, this
study adopts different intergranular friction coefficient of
source area elements (0.4, 0.6 and 0.8) to provide quantita-
tive estimates of the initial conditions. Figure 7 shows the
displacement distribution of sliding elements in three sce-
narios. The final deposition of three different parameters are

all about 600 m long and 400 m wide along the sliding
direction. Compared with the actual event, the simulation
results are roughly the same in length and extends about
100 m to the northeast direction. Similar deposition results
are obtained with different intergranular friction coefficients.

This phenomenon may be because the kinetic energy of
elements is mainly dissipated by the collision between parti-
cles or between particles and the basement. These collisions
caused some elements to spread further and more elements
entrained into the movement. We can see that in the scenario
of low friction coefficient, more elements rushed out of the
main deposition body. Moreover, the displacement of ele-
ments at the front edge of the landslide mass is smaller than
that at the centre of the deposition mass. That means that the
elements at the front edge of the landslidemass are not all from
the source areas, and there are also many elements that were
entrained from the basement. These entrainment phenomena
are also more intense in low friction scenarios.

Fig. 6 Basic numerical model of
Nayong avalanche

Table 1 The numerical
parameters of the avalanche
model

Layer 1 2 3 4

Young modulus, E (GPa) 80 30 40 5

Poisson’s ratio 0.15 0.25 0.2 0.2

Uniaxial tensile strength (MPa) 8 1 3 0.8

Uniaxial compressive strength (MPa) 80 30 30 5

Intergranular friction coefficient, l 0:8 0.6 0.6 0.36

Element density, ρ (kg/m3) 2600 2500 2500 1800
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Best Scenario

We can hardly distinguish which simulation result is most
consistent with the actual event from Fig. 7. With the
dynamic parameters from seismic signal inversion, we can
better judge the numerical simulation (Moretti et al. 2015).

Figure 8 shows the velocity-distance pattern obtained
from numerical simulation of three scenarios and seismic
signal inversion. The velocities of the simulation results are
the average velocity of elements at the front edge of the
sliding mass, while the velocity inversed from the seismic
signal is the centre of the sliding mass. We can see that the
velocity of each scenario is increasing rapidly before the
horizontal distance reaches 100 m, and except for the data
inversed by the seismic signal, the other scenarios reach the
maximum speed when the horizontal distance goes to

200 m, i.e., before the 20 m-high hillslope. With the same
displacement, velocities of sliding mass in different scenar-
ios are just opposite to the order of the intergranular friction
coefficient. The friction coefficient only changes the absolute
value of the sliding mass’s velocity without influencing its
changing law. It indicates that the changing law of the
Nayong avalanche’s velocity is mainly affected by the ter-
rain and the main obstacle to the sliding movement is the
20 m-high hillslope.

Calculating the area difference between the three curves
and the seismic wave inversion curve by integral, we can
judge which scenario can best reflect the dynamic process of
the seismic signal. Table 2 shows that the numerical model,
while the intergranular friction coefficient of source area
elements equal to 0.6, is the best scenario closest to the real
dynamic process of the landslide.

Dynamic Process

Figure 9 shows the evolution of the Nayong rock avalanche
simulated by the best MatDEM scenario. The simulation
starts from the overall rock collapse, namely, 10:22:23.5 on
the day of the disaster. The primary movement process
lasted for about 40 s, and then the sliding body expanded
laterally only. In Fig. 9, elements in the source area began to
rush, and the front edge of landslide mass reached the toe of
the hillslope with a height of about 20 m at 12.6 s. After
31.5 s, the front of the sliding mass almost stopped moving.
The final deposition is about 650 m long and 400 m wide
along the sliding direction. Compared with the actual event,
the simulation results are roughly the same in length and
extends about 150 m to the northeast. In the numerical
simulation, the front edge of the sliding mass is not divided

Fig. 7 Simulation of the numerical model with different intergranular friction coefficients

Fig. 8 Avalanche velocity pattern
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into two branches since the radius of the elements of 5 m is
too large relative to the 20 m-high hillslope.

Figure 9 shows the velocity evolution of sliding mass.
Between 0 and 12.6 s, the speed of the avalanche increases
rapidly. After 12.6 s, the speed of most elements began to
decline. At 18.9 s, only the front edge of sliding mass has a
visible speed. After 31.5 s, the speed of most elements is 0,
and a small number of elements in the source area continue
to fall. The maximum speed of the element is about 40 m/s,
which happened at 12.6 s. At this time, the landslide mass is
passing through the 20 m-high hillslope.

For a comprehensive understanding of dynamic process,
we compare the time–frequency distribution spectrums to
the simulations that best fit the observations, and the UAV
video (Fig. 10). Both Fan et al. (2018) and Zhu et al. (2019)
focus on the analysis of the failure process of the Nayong
avalanche through UAV video, while this paper studies the
rock fall in the source area after the overall collapse. The
magnitude of elements velocity and the number of moving
elements can indicate the intensity of energy release. As
shown in Fig. 10, the changes in velocity and sliding volume
are in good agreement with the seismic signal. At 6.3 s
(10:22:29.8), with materials from the source were getting
high speed, colliding each other violently, and impacting the
basement layer, all the high and low-frequency signal began

to be strong. Between 6.3 and 21.5 s (10:22:29.8–10:22:45),
a large amount of mass was entrained into the high-speed
movement resulting in both the high and low-frequency
signal maintaining a strong amplitude in this period. After
21.5 s (10:22:45), most materials had stopped moving, only
the front end of the sliding body still spreading forward, so
the low-frequency signal was weakened. While the
high-frequency signal remained strong due to the constant
high-speed falling rocks from the source area colliding with
accumulated materials. These rocks impacted the basement
severely, which made the low-frequency signal occasionally
strong during this period. At 38.5 s (10:23:02) the avalanche
movement basically stopped, but the rockfall from source
area continued. Until 56.7 s (10:23:20), the rockfall in the
source area stopped and the seismic signal faded into the
background.

Conclusion

The interpretation of the seismic signal is used to calibrate
the parameters of landslide simulation using the 3D discrete
element model, MatDEM. Analysis of the intensity and time
history of the seismic signals shows that the seismic signals
generated by the Nayong avalanche have obvious

Table 2 Area difference of
velocity function of the distance
between three different scenarios
and seismic inversion

Friction coefficient 0.4 0.6 0.8

Area difference 1798.4 −155.8 −3260.9

Fig. 9 Evolution of the Nayong rock avalanche simulated by MatDEM
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long-period components. Based on the force history, the
time-varying velocity and distance of the Nayong avalanche
can be obtained by integral. Combined with the results of
seismic signal interpretation, the best MatDEM simulation
results are selected from three scenarios. The simulation
results showed that the movement lasted for about 40 s, and
the maximum speed was 40 m/s. The dynamic process is in
good agreement with those parameters obtained from seis-
mic signal inversion.

In summary, due to the uncertainty and suddenness of
occurrence time, many large landslides have no direct evi-
dence of their dynamic process. Conventionally, the
parameter calibration of numerical simulation can only be
based on the back analysis of the field accumulation. For
rock avalanche, although the dynamic process from seismic
signal inversion will be affected by factors such as rockfall
from the source area, it is still an effective method to con-
strain discrete element modelling. Using seismic signals can

Fig. 10 Comparison of the seismogram and time–frequency distribution spectrum of ZJW station with the simulated velocity evolution of best
scenario. Snapshots from UAV video are added
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improve the reliability and accuracy of the results in the
modelling, which is useful for predicting and assessing
further landslide hazards.
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Electrical Resistivity Tomography
(ERT) Based Investigation of Two Landslides
in Guizhou, China

Yu Zhuang and Aiguo Xing

Abstract

On 28th June 2010 and 23th July 2019, two long runout
landslides occurred in the Guizhou province, Southwest
China. These two catastrophic events have a runout
distance [ 1 km and an estimated maximum velocity
[ 40 m/s and caused mass casualties in the local area.
To investigate the spatial distribution of deposits and
better understand the local geological settings of these
two landslides, geophysical surveys, including electrical
resistivity tomography (ERT) and borehole tests were
carried out in this study. The ERT results of the Guanling
landslide are roughly consistent with the borehole data,
indicating the validity of inversion images. Also, due to
the surface and underground river channels, the litholog-
ical boundaries of the Shuicheng landslide determined
through ERT was not very pronounced. Nevertheless, the
location of river channels and deposit characteristics
investigated in situ are in rough agreement with the
inversion results of ERT. It is expected that the results
from the ERT survey are beneficial for the mechanism
analysis of these two long runout landslides and propos-
ing more appropriate actions for the landslide mitigation
activities.

Keywords

Electrical resistivity tomography � Borehole � Guanling
landslide � Shuicheng landslide � Subsurface
investigation

Introduction

In recent years, frequent human activities combined with
complex geological environments caused a huge number of
landslides in the Guizhou, China (Liu et al. 2013). Typically,
on 28th June 2010 and 23th July 2019, two long runout
landslides triggered by the heavy rainfall occurred in the
Guanling and Shuicheng county. To investigate the failure
mechanism and disaster-causing process of such disasters,
several numerical simulations combined laboratory experi-
ments have been performed (Xing et al. 2014; Liu et al.
2015; Kang et al. 2017).

However, before assessing the stability of sliding mass
and planning for remedial measures, a detailed investigation
needs to be performed in terms of topographical and geo-
logical characteristics of a typical landslide (Ochiai et al.
2004; Lee et al. 2008). The topographic characteristic of a
landslide can be obtained based on UAV (unmanned Aerial
Vehicle) surveys, while the geological characteristics can be
determined through the direct method and indirect method
(Holec et al. 2013). Direct methods, including boreholes and
associated techniques, are widely used to determine param-
eters on the lithological, geological, and geotechnical char-
acteristics of a landslide. Nevertheless, the data obtained
through a borehole can only represent a specific point, and
the spatial characteristics of subsurface landslide requires
many tests resulting in a significant increase in cost (Jager
et al. 2013).

Alternatively, geophysical surveys provide detailed
information about landslide profiles with rapid survey and
relative low cost (Jongmans and Garambois 2007). Electrical
resistivity tomography (ERT) is regarded as the most suc-
cessful one to study the internal characteristics of a landslide,
as this method could aid in identifying the subsurface
characteristics of a landslide, and thus provide valuable data
for the landslide analysis (Lee et al. 2008). Therefore, to
improve the understanding about the geological settings and
subsurface conditions of Guanling landslide and Shuicheng
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landslide, ERT surveys based on the Wenner electrode array
were employed on the central and lower part of these two
landslides. Five boreholes were drilled in the Guanling
landslide and detailed investigations were conducted to
verify the validity of ERT inversion results of these two
landslides. The works conducted in this study are expected
to provide valuable information for the reconstruction of
landslide geometry and propose actions for the landslide
mitigation activities.

Electrical Resistivity Tomography Survey

Resistivity measurements are conducted by inputting a cur-
rent into the ground through two steel electrodes and mea-
suring the potential drop at two other electrodes. The
apparent resistivity of subsurface soil can be calculated
based on Ohm’s law. Technically, various arrays are used for
the ERT measurement, and each array has its advantages.
For now, many researches have performed the ERT tests on
the landslide investigation based on the Wenner array, and
the test results indicated that Winner array is robust, high
signal-to-noise ratio, and is suitable for the subsurface
investigation of a landslide (Lee et al. 2008). Also, the
electrical resistivity tomography is derived through the
inversion of the apparent resistivity, and RES-2Dinv is one
of the most famous inversion algorithms (Akpan et al. 2015).
Thus, the Wenner array based ERT measurement was per-
formed in this study. All obvious outliers were removed, and
the RES2Dinv software was selected for the inversion work.
The main characteristics of the ERT survey are presented in
the inverted results of each survey line.

Guanling Landslide

On 28th June 2010, a long runout landslide occurred in the
Guanling, Guizhou, China (N25°59′10′′, E105°16′50′′). The
sliding mass has a travel distance of 1300 m with an ele-
vation difference of about 420 m. This catastrophic event
killed 99 people, injured 38 people, and caused heavy losses
to the property of local people.

Geological and Climate Setting

The study area located in a region of middle-mountain relief
with an elevation ranging from 730 to 1642 m. The exposed
rocks in the study area range in age from the late Permian to
Quaternary. The landslide mainly occurred in the Early
Triassic Yelang sandstone, which is underlain by the Late
Permian Longtan sandy shale (Fig. 1). The landslide area

has a humid subtropical monsoon climate with annual
rainfall averages ranging from 1205 to 1657 mm.

Subsurface Characteristics of the Guanling
Landslide

To investigate the subsurface characteristics of the Guanling
landslide, a detailed field investigation combined with ERT
tests were performed. As shown in Fig. 2, seven survey lines
were conducted, and the sliding mass was divided into four
subzones (zones d-g) according to the surface characteristics
of the deposit.

Figure 3 shows the ERT test results of the Guanling
landslide. The zones of high resistivity represent the frag-
mented rocks of Yelang sandstone from the source area and
the low resistivity anomaly corresponds to the underlying
soft rock of Longtan sandy shale and Quaternary deposits.
The estimated distributions of deposits are drawn with the
dashed lines based on the comparison of ERT inversion
results and field investigation. The discussion of each ERT
profile is shown below.

ERT 1 was set at an elevation ranging from 781 to 848 m
and passing through zones f and g (Fig. 3a). High resistivity
anomalies are identified at the distance of 80–240 m and
300–480 m from the origin of the profile, corresponding to
the fractured rock of Yelang sandstone. Zones of low
resistivity are observed below the surface at the initial 80 m,
and is associated with the mudflow in zone h and loose
Quaternary deposits. Also, it clearly reveals the bedrock at
the bottom of the image with an increasing electrical resis-
tivity value and is likely corresponds to the Longtan sandy
shale. The thickness of landslide deposits ranges from 5 to
20 m with a maximum deposit depth identified at a distance
of 180 m from the origin of the survey line.

ERT 2 was installed at an elevation of 870–1000 m, and
passed through zones e and f (Fig. 3b). The zone of low
resistivity is identified at the initial 140 m of the profile,

Fig. 1 Geological map of the Guanling landslide. a Yongningzhen
limestone; b Yelang sandstone; c Longtan sandy shale; d Permian
basalt; e Stratigraphic boundary; f Fault; g Landslide area;
h Guangzhao reservoir (Xing et al. 2014)
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which is located at the rear part of zone g and corresponds to
the Quaternary deposits with few gravels. Also, high resis-
tivity anomalies were observed in shallow depth at the dis-
tance of 160–280 m and 360–840 m, and is likely related to
the boulder-size Yelang sandstone. Notably, a variation of
resistivity value was identified below the high resistivity
anomalies and is inferred as the boundary of Yelang sand-
stone and original deposits overlying Longtan sandy shale.
The thickness of landslide deposits in this profile ranges
from 4 to 30 m with a maximum deposit depth identified at a
distance of 600–700 m from the origin of the survey line.

ERT 3 was installed at an elevation of 965–1020 m and
passed through zone e (Fig. 3c). A high resistivity anomaly
was observed at the distance of 75–280 m from the origin of
the profile with a maximum resistivity value of larger than
400 X m, corresponding to the landslide deposits. The
thickness of the deposit ranges from 4 to 20 m and increases
from the landslide boundary to the central part of the land-
slide. Also, a boundary was identified between the deposit
and underlying bedrock, providing valuable information for
estimating the burial depth of Longtan sandy shale.

ERT4 was placed across zone f and installed in the
investigated area at an elevation of 828–855 m (Fig. 3d).
Deposits in this region are mainly composed of silty with
gravels in small sizes. High resistivity anomalies corre-
sponding to fractured Yelang sandstone were identified at
the distance of 115–140 m from the origin of the profile.
Also, the region at the distance of 140–240 m shows rela-
tively low resistivity and is related to the Quaternary
deposits. The boundary between original agricultural soil
and landslide deposits was observed at a depth of 5–10 m,
and thus the spatial distribution of deposits along this profile
was determined.

ERT5 was placed through zones d and e and installed at
the elevation of 885–931 m (Fig. 3e). The deposits are
mainly composed of debris-avalanche with boulders and
gravels. High resistivity anomalies were identified at a dis-
tance of 140–190 m from the origin of the survey line,
corresponding to the Yelang sandstone. Moreover, the

a b c d e f g 0 100 200 m  

Fig. 2 Detailed topography of the Guanling landslide. a Landslide
boundary; b Source area; c ERT survey lines; d Boulder-sized debris;
e Gravel-sized debris; f Silty with gravels in small size (<5 cm);
g Mudflow deposits (Xing et al. 2014)
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Fig. 3 Inversion results of the Guanling landslide (ERT1–ERT7).
White dashed line represents the hypothetical boundary of landslide
deposit
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regions at the distance of 40−140 m and 190−235 m indi-
cated zones of low resistivity, and was inferred as Quater-
nary deposits of silts. The deposits along this profile has an
estimated thickness of 2−16 m with a maximum deposit
depth at a distance of about 160 m from the origin of the
survey line.

The inversion images of ERT 6 and ERT 7 show similar
results. These two survey lines were both installed across
zones d and e with a maximum resistivity value larger than
1500 X m. The deposits in this region are mainly composed
of Yelang sandstone with particle size larger than 20 cm and
Quaternary deposits. Also, low resistivity anomalies were
identified below the sliding mass, corresponding to the
Longtan sandy shale and possible overlying agricultural soil.
ERT 6 was placed at an elevation of 943–966 m (Fig. 3f),
and high resistivity anomalies were observed at 60–220 m
from the origin of the survey line. A large area of landslide
deposits located in this region, with the thickness ranging
from 3 to 30 m. For ERT 7, this survey line was placed at an
elevation of 966–972 m (Fig. 3g). It gives a wide distribu-
tion of deposits with a width of approximately 145 m (at the
distance of 35–180 m from the origin of the profile), and a
thickness ranging from 2 to 18 m.

To verify the validity of ERT inversion results, five
boreholes were drilled along the ERT-V line (Fig. 4).
A rough boundary between the landslide deposit and
underlying sandy shale can be observed and the thickness of
landslide deposits determined by the ERT is roughly con-
sistent with the borehole data, indicating that the ERT
method could be used to examine the subsurface character-
istics of a typical landslide.

The integration of all the ERT images shows the variation
of deposit characteristics along the runout path. The peak
value of high resistivity anomalies observed in shallow
depth decreases with the runout distance, and this phe-
nomenon is associated with the fragment of Yelang sand-
stone. With the increase of runout distance, the Yelang
sandstone continues to broke, and thus resulted in the
increase of rock with small particle size in the debris ava-
lanche. Also, the landslide occurred in the hard rock of
Yelang sandstone, which is underlain by the soft rock mass

of Longtan sandy shale. The sliding mass deposited loosely
after the movement, resulting in the high porosity of the
displaced materials. The combination of these factors
eventually caused the spatial characteristics of ERT images
(high resistivity anomalies in the shallow deposits and low
resistivity anomalies in the bedrock and Quaternary
deposits).

Shuicheng Landslide

At 20:40 p.m. on 23th July 2019, a rainfall triggered land-
slide occurred in Shuicheng county, Guizhou, China (N26°
15′27′′, E104°40′03′′). The sliding mass has a runout dis-
tance of 1.3 km and an elevation difference of 465 m. This
catastrophic event travelled forward with high velocity and
finally caused 52 casualties.

Geological and Climate Setting

The study area is in the middle part of Yunnan-Kweichow,
with an elevation ranges from 1180 to 2270 m. The exposed
rocks in the study area range in age from Upper Permian to
Quaternary, and the Shuicheng landslide mainly occurred in
the Emei Mountain basalt (Fig. 5). The study area has a
plateau monsoon climate with an annual rainfall ranging
from 940 to 1450 mm.

Subsurface Characteristic of the Shuicheng
Landslide

To investigate the spatial characteristics of landslide mass of
the Shuicheng landslide, a total of 6 survey lines were
installed in the entrainment and deposit areas of the landslide
(Fig. 6). The electrical resistivity contrasts of the Shuicheng
landslide were not very pronounced because of the surface
and underground river channels in this region. Nevertheless,
combining the field investigation and ERT images, the
location of landslide surface, deposit, and river channels are

Fig. 4 Comparation results of
ERT V and borehole data
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basically identified, and thus the estimated scopes of
deposits are outlined by the dashed line. The detailed anal-
ysis of ERT images is presented as follows.

The ERT1 was placed parallel to the runout direction in the
left gully with an elevation of 1135–1165 m (Fig. 7a). High
resistivity anomalies sporadically distributed along the profile
surface, and these regions have an average electrical resis-
tivity of about 800 X m. Also, a peak value of 5500 X m was
observed at a distance of 180 m, which is related to the broken
Emei Mountain basalt. The deposit along this profile has an
estimated thickness of 2–7 m, and a significant decrease of
electrical resistivity was observed below, corresponding to the
weathered bedrock of Xuanwei formation. Also, a relative
low resistivity anomaly was imaged at 80–120 m from the
origin of survey line, corresponding to the river channel.

ERT2 shows similar surface characteristicswith theERT1.
This survey line was placed perpendicular to landslide direc-
tion with an elevation of 1150–1165 m (Fig. 7b). High resis-
tivity anomalies were imaged sporadically along the profile
with amaximum electrical resistivity value of larger than 6000
X m. The landslide deposits have an inferred thickness of 3–
7 m. A region with low resistivity value was observed at a
distance of 65 m from the origin of the profile, and is inferred
as a river channel. Also, an increase of resistivity value was
imaged in the bedrock. The surface rock mass was strongly

weathered with developed fissures and thus caused the high
degree of saturation and relatively low electrical resistivity.
Notably, the ERT interpretation of the river channel location is
basically consistent with the field investigation results.

ERT3 and ERT4 are a pile of intersecting survey lines
installed in the downstream of the landslide. ERT3 was
installed at an elevation of 1123–1127 m (Fig. 7c). High
resistivity anomalies sporadically distributed along the profile
surface, and the peak electrical resistivity of larger than
4500 X m was imaged at the distance of 70−90 m from the
origin of the survey line. The region with low resistivity
anomaly was observed at a distance of 100 m from the profile
origin and is associated with a river channel. The deposits in
this region have a thickness of 3−10 mwith amaximum depth
at the distance of 80–100 m from the origin of the profile.

As shown in Fig. 7d, ERT4 was placed at an elevation of
1113–1137 m. High resistivity anomalies were imaged at a
distance of 0–50 m and 65–85 m with a maximum resistivity
value of 4000 X m. Low resistivity anomalies were identified
at a distance of 60 m from the origin of the survey line, cor-
responding to the river channel. The deposits in this profile
have a thickness of 3–10 m. Notably, due to the obstruct of a
slope located at a distance of 45 m from the origin of the
profile, the depth of deposits in the left part (0–60 m) is higher

T1f
2 a T1f

1 b P3x
3 P3x

2c d e f gP3x
1 P2

Fig. 5 Geological map of the Shuicheng landslide. a 2nd part of
Feixianguan formation; b 1st part of Feixianguan formation; c 3rd part
of Xuanwei formation; d 2nd part of Xuanwei formation; e 1st part of
Xuanwei formation; f Permian basalt; g landslide area

Fig. 6 Location of ERT survey lines
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than that in the right part (60–120 m). The field investigation
shows that the deposit of left part of profile is mainly com-
posed of Quaternary deposits and few basalts with thick
depth, verifying the validity of ERT inversion results.

ERT 5 was set parallel to the runout direction with an
elevation of 1120–1150 m (Fig. 7e). High resistivity
anomalies were identified at the distance of 55–100 m from
the origin of profile. A maximum electricity value of 5000
X m was observed in a narrow region, corresponding to the
deposits of silty clay with few broken basalts. Deposits along
this profile have an estimated thickness of 3–8 m, and a
pronounced decrease of resistivity value was imaged below,
corresponding to the sandstone and mudstone of Xuanwei
formation. Also, a region with low resistivity anomaly was
imaged at bottom of image, and is inferred as an under-
ground river channel.

For the ERT6, this survey line was installed at an ele-
vation of 1123–1136 m, and shows similar subsurface
characteristics of ERT 5 (Fig. 7f). High resistivity anomalies
were observed at 55–80 m from the origin of profile, and a
maximum resistivity value of larger than 5000 X m was
imaged with a narrow region. The deposits in this region
have an estimated thickness of 2–8 m. Specifically, the
range of high resistivity anomalies ([ 5000 X m) in the
right gully is pronounced smaller than that in the left gully,
and this phenomenon is basically consistent with the field
investigation as the amount of basalt rock mass is dominated
in the left gully.

All the ERT images of the Shuicheng landslide shows
high resistivity anomalies of deposits and low resistivity
anomalies of bedrock. Combined with the detailed field
investigation, the landslide mainly occurred in the hard rock
of Emei Mountain basalt while the bedrock in the deposit
area is inferred as Xuanwei formation with soft rock.
Meanwhile, the displaced materials deposited loosely after
long runout movement, and the strongly weathered bedrock
with developed fissures was in a high degree of saturation.
Thus, high resistivity anomalies of deposits and relatively
low value of bedrock was imaged. Also, a pronounced
variation of electrical resistivity was observed in the ERT
images along the runout path. The amount of basalt in both
gullies is obviously larger than that in the downstream of
landslide, resulting in the high electrical resistivity in two
gullies. Therefore, it is concluded that the ERT images are in
good agreement with the actual condition.

Summary and Conclusion

On 28th June 2010 and 23th July 2019, two long runout
landslides occurred in Guizhou, China. To investigate the
deposit distribution and better understand the geological
settings of these two landslides, ERT surveys combined with

boreholes were conducted. The test results indicated that
ERT is a cost-effective tool that can easily be performed to
provide valuable subsurface data. The main conclusions are
made as follows.

(1) All the inverted ERT images illustrated that high
resistivity anomalies in shallow depth represent the
landslide deposit of hard rock, while the low resistivi-
ties anomalies are associated with the Quaternary
deposits and bedrock.

(2) Five boreholes were conducted in the Guanling land-
slide, and the borehole data verified the validity of ERT
results. Also, the spatial distribution of landslide
deposits determined through ERT images is in good
agreement with the actual situation, as the particle size
and amount of Yelang sandstone decrease with the
increase of runout distance.

(3) The electrical resistivity contrasts of the Shuicheng
landslide were not very pronounced because of the
surface and underground river channels in this region.
Nevertheless, according to the field investigation and
ERT images, the location of landslide surface, deposit,
and river channels determined are roughly consistent
with the actual situation.
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Vibration of Piled Rocks—Which Rock Can
Be Removed?

Kiminori Araiba and Shoji Doshida

Abstract

To identify rocks which can be taken from rock-mound
without disturbing stability of other rocks, vibration
characteristics of rocks in mound were investigated by
measuring vibration of each rock in an artificial mound.
A mound of sand stone rocks of randomly-shaped, length
30–40 cm was constructed on the ground and was
subjected by artificial vibration. The vibration of rock
on the top (“free rock”) and that of a rock supporting the
top rock (“supporting rock”) were measured. Their
characteristics showed that the dominant frequency was
different; 40–50 Hz for the free rock and 50–60 Hz for
the supporting rock. After changing the free rock to a
supporting rock by means of leaning another rock on it,
the dominant frequency became to 50 and 60 Hz. It is
considered that waves of frequency range of 40–50 were
amplified in the free rock in test conditions of this paper.
According to these findings, the authors discussed about
possibility of identify free rocks from supporting rocks by
vibration characteristics.

Keywords

Vibration �Microtremor � Test � Rescue � Rock mound

Introduction

When someone is affected by a landslide, people wish to
rescue him. Evaluation of secondary landslide (Araiba and
Sakai 2014; Araiba and Doshida 2017), prompt finding of

missing people and quick unearthing are important for safe
and effective rescue activity. In this paper, to develop quick
unearthing process, preliminary investigation of character-
istics of vibration of a rock in piled rocks is investigated.

One of the key factors to survive in a confined place, like
deposit of landslide, is the vacant space for breathing (e.g.
Haegeli et al. 2011). The deposit of large rocks has larger
and much number of spaces than those of fine materials, so
searching in rock deposits is considered to have higher pri-
ority than fine materials when people are missing by land-
slide without clue. On the other hand, removing a rock from
randomly-piled mound without disturbing stability of other
rocks is not easy especially when we do not have enough
time for investigation and/or constructing support. Figure 1
is a picture of the site where a boy was rescued from a space
between fallen rocks of landslide due to 2004 Chuetsu
Earthquake, northeast Japan. Then the body of his sister was
found caught between rocks and was diagnosed as instant
death on site. The rescuers could not recover her body by
means of conventional rescue technique mainly because of
difficulties in identifying safe-rock-removing process, then
un-manned heavy machines were adopted (Araiba 2014).
The approach of machines and recovering took a few weeks.
Like this case, it is often the case with us to choose which
rock can be removed without disturbing other rocks but there
is not effective method for this problem.

To answer this question, the authors investigated char-
acteristics of vibration of rocks in piled rocks. We assume
that a “removable rock” can behave (thus oscillate) freely
but the “un-removable rock”, rock supporting other rock(s),
cannot. Whether the difference of constraint of each rock can
be detected as a difference in the characteristics of vibration
was investigated in this paper by means of model tests.

Ogata et al. (2003) investigated characteristics of vibra-
tion of the ground surface and that of the boulder on it by
means of model tests as well as in-situ measurements and
they found difference between them. Uehan et al. (2012)
measured vibration of rock specimen with an artificial notch
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and reported changes in its dominant frequency with depth
of the notch. These studies suggest that the characteristics of
vibration of rock is enough markedly influenced by its sur-
rounding conditions to be detected. The authors constructed
a mound of rocks and measured vibration of rocks.

Figure 2 is a schematic of a mound of rocks. Rocks are
simplified as circles. All rocks are supported its position by
the balance of gravity, normal force(s) from contacting rocks
or ground and friction between them. Removing rock A, B
and C will result in roll of the upper rock, fall of the next to
the next rock and slide of whole mound respectively. Marked
friction and normal forces act on A and B thus they possibly
affect vibration characteristics of these rocks. These two
modes are discussed in this paper. To identify rock C seems
to require consideration not only vibration but also position
of each rock in mound thus it will be left for future study.

Test Method

Ten fresh sandstones, randomly shaped, length of 30–40 cm,
weight of 20–40 kg were randomly mounded on the ground
(Fig. 3). On the top, a rock was placed and named “Rock 1”
and one of rocks supporting it was named “Rock 2”.
Accelerometers was adhered to rocks 1 and 2 using epoxy
putty then microtremors of each rocks and artificial tremor
caused by impact were recorded. The range of accelerometer
was ±2.048 g and sensitivity is 3.9 micro g. Three com-
ponents of vibration were measured but only vertical data is
discussed in this paper as the first step. Data was sampled in
200 Hz using a digital recorder manufactured by Acorn
Technologies, Inc. and bandpass filter of 1–100 Hz with box
window was applied The artificial tremor was generated by
the impact of synthetic resin hammer, head weight 1.1 kg

and arm length 30 cm, on a rock on the ground 1 m distant
from the rock 1 and 2. The head of the hammer was rota-
tionally free-felt with only support of hand from the height
of about 50 cm. Figure 4 is an example of recorded data.

Tests were done with two configurations of rocks. First,
the vibrations of rock 1, free, and rock 2, supporting rock 1,
were recorded, then another rock was leaned to rock 1 thus
rock 1 became “supporting rock” and rock 2 became “sup-
porting two rocks”. The data of the first condition will be
expressed “Rock 1 (free)” and “Rock 2 (supporting) and
those of the second one will be “Rock 1 (supporting) and
“Rock 2 (supporting)” in this paper.

Fig. 1 A boy was rescued from a space between piled rocks of deposit
of landslide caused by 2004 Niigataken-Chuetus earthquake

Fig. 2 Schematics of piled rocks. A, B and C cannot be removed
without disturbing stability of other rocks. A and B are subjected by
force from surrounding rocks, thus their vibrations are considered to be
affected by their constrains. C seems impossible to be identified only by
vibration and this mode is out of scope of this study
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Result and Discussion

Figure 5 shows power spectrums of artificial (impacted)
tremor of rock 1 and 2. The dominant frequency for Rock 1
(free) is 40–50 Hz and that for Rock 2 (supporting) is 50–
60 Hz. Figure 6 shows power spectrums of microtremor,
where marked difference is not seen. It seems that the dif-
ference in characteristics of vibration between rock condi-
tions can be observed when marked tremor is excited.

The vibration of each rock is affected not only by contact
condition with other rocks and incident wave to it but also
by the natural frequency of each rock. The natural frequency
of rock is a function of the shape and the elastic wave speed
of rock. Considering the wave speed to be 4 km/sec and the

representative length of rock to be 40 cm in this experiment,
the natural frequency is 5000 Hz, which is out of the mea-
surement range. Therefore, the difference in the natural fre-
quency of each rock is considered to have little effect on the
difference in vibration characteristics observed in this
experiment.

In real fields, if the wave speed is very slow (for example,
1 km/s; highly weathered rock) and representative length is
very large (for example, 10 m), the natural frequency will be
close (100 Hz for the example) to the measurement range in
this experiment. Further investigation is necessary on whe-
ther difference in the rock vibration between supporting/free
conditions can be detected in such a large and weak rocks,
where the dominant vibration frequency, as well as the
natural frequency, of each rock must be different from
observed in this experiment.

Figure 7 shows ratio of spectrums in Fig. 5. Considering
that vibration of rock 2 (supporting) was incident wave for
Rock 1 (free), waves with frequency of 30–50 Hz were
markedly amplified besides that dominant frequency was

Fig. 3 The first configuration of mound of rocks. Another rock will be
leaned on Rock 1 for the second test condition

Fig. 4 An example of recorded vibration of Rock 1 (free). The data of
microtremor and that of artificial tremor will be analyzed

Fig. 5 Power spectrums of vibration for Rock 1 (free) and for Rock 2
(supporting) excited by artificial impact on the ground about 1 m
distant

Fig. 6 Power spectrums of microtremor for Rock 1 (free) and for Rock
2 (supporting)
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50–60 Hz (Fig. 5). Figure 8 shows power spectrums for
Rock 1(free) and Rock 1 (supporting). When the rock was
free, waves of frequency 30–50 was dominant and those of
50–60 Hz became dominant after it lost freedom. The latter
frequency range is similar to the dominant frequency of
Rock 2 (supporting) (Fig. 5) so authors think that supporting
rocks in a mound have similar vibration and that of free rock
(s) may differ from them.

In this experiment, the mound was composed by ten
rocks. The vibration of mound as a bulk body is determined
by the arrangement of rocks and shape of the mound.
Vibration of rocks on the surface of mound is affected by
incident waves through contact points of rocks and by
boundary conditions. The incident wave is attributed to
vibration of whole mound and the boundary conditions are
attributed to the contact conditions (free/supporting).
Because the incident wave is different for conditions of
mound, we need to focus not on the dominant frequency of a

certain rock vibration but on the difference in dominant
frequency of a certain rock to that of rocks near-by.

The rock mound in this experiment was composed of 10
rocks. Considering the whole mound as one body, its
vibration is affected by its shape, composition and incident
wave from outside. Vibration of individual rock on its sur-
face is affected by vibration of incident wave transmitted
from neighbouring rocks, the natural vibration of the indi-
vidual rock and boundary conditions (contact with other
rocks).

Form these results it can be concluded that vibration of
each rock has own characteristics depending on its constraint
and it can be observed in waves of frequency 1–100, thus
there is a possibility to identify free rock(s) from supporting
rocks.

Conclusion

Vibration of rocks in the mound of ten randomly-shaped,
length 30–40 cm rocks was measured and difference in
frequency characteristics were discussed between a free rock
and a supporting rock. Findings are summarized as follows;

(1) The dominant frequency of the free rock was 40–50 Hz
and that of the supporting rock was 50–60 Hz, thus the
characteristics of vibration of rock was different
between the free rock and the supporting rock.

(2) After changing the free rock to a supporting rock by
means of leaning another rock on it, the dominant
frequency changed its range from 40–50 to 50–60 Hz.

(3) There is a possibility to identify free rocks from sup-
porting rocks by observing vibration characteristics of
each rock.

As a preliminary study, the result of experiment indicates
the possibility of identifying free rocks from supporting
rocks by observing characteristics of vibration. The range of
frequency where the difference was observed may change
with conditions such as the number, size and shape of rocks.
Further investigation is needed to develop a reliable method
for identifying which can be used in the field.
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Urgent Issues and New Suggestions
for Geo-disaster Prevention in Japan

Motoyuki Suzuki, Kyoko Kagohara, Kazuyuki Sakaguchi,
Hiroaki Matsugi, and Satoru Kataoka

Abstract

Following the devastating damage caused by the heavy
rains in western Japan in 2018, the Japan Geotechnical
Society compiled and published recommendations for
future disasters. This report introduces an outline of the
recommendation on slope disasters. In particular, the
recommendation emphasises the need for measures to
evacuate residents from dangerous places before a
disaster occurs. For this purpose, it is noted that it is
important to identify potentially dangerous places and
their characteristics in the long term based on past disaster
information and to inform the residents of the identified
areas. As a pioneering effort to achieve this recommen-
dation, this paper describes the results of research
conducted in Yamaguchi, Hiroshima, Tokyo, and Kuma-
moto in Japan, to clarify the frequency of the occurrence
of debris flows and its utilisation measures. The main
result is that debris flows occur once every few hundred
years in weathered granite areas, whereas volcanic ash

areas experience even more frequent debris flows than
granite areas.

Keywords

Debris flow � Occurrence frequency � Risk assessment �
Disaster history

Introduction

In order to maintain a safe living environment in Japan,
where heavy rain disasters often occur, it is very important to
identify the places where past collapses and debris flows
have occurred and the extent of the resulting damage. Slope
failures and debris flows occur under the same topographic
and geological conditions, hence in the long run they tend to
occur repeatedly at the same or adjacent locations. However,
it is difficult to understand this over the span of one person's
short life. Our predecessors preserved disaster records in the
forms of monuments, documentary records, oral traditions
such as legends, and local festivals in order to transmit these
records to later generations. Unfortunately, modern people
have not correctly recognised this information or used it to
prevent the next disaster. Therefore, it is important to pass on
these results to future generations and to utilise highly reli-
able data based on many years of history when developing
measures to prevent sediment-related disasters.

Under such social conditions, heavy rains in western
Japan in early July 2018 caused devastating damage in
various places. In the Japanese Geotechnical Society (JGS),
the full extent of the damage was investigated at the direc-
tion of the president of the JGS, and a special committee was
organised to make recommendations based on analysis of
the results. The results were published as ‘The Issues of
Geotechnical Engineering for Heavy Rain Geo-Disasters
Based on the Heavy Rain event of July 2018—Recom-
mendations from Geotechnical Engineering’ (JGS 2019).
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This report was then submitted to the Minister of Land,
Infrastructure, Transport, and Tourism by the JGS. The first
author was the leader of the committee’s group on managing
slope disaster preparedness. This group of 28 members
compiled fourteen recommendations based on the results of
several reviews. The titles of the recommendations are given
in Table 1.

Of all these recommendations, recommendation 2.13
noted below relates to the effective use of disaster histories
and is mainly based on the authors’ research results
(Sakaguchi et al. 2018; Matsugi et al. 2018).

The recommendation 2.13: Creation and use of hazard
maps including information on previous geo-disasters is
necessary to develop a hazard map that includes ground
history information that cumulatively records past landslides
and floods. It is necessary for residents to properly under-
stand and share the importance and urgency of information
(sediment disaster alert information, etc.) and to incorporate
sociological ideas for the appropriate evacuation of
residents.

In this study, we investigated the damage caused by
debris flows that occurred as a result of torrential rainfalls in
various places during the past 10 years and assessed the
long-term risk of sediment-related disasters using a research

approach consisting of radiocarbon (14C) dating and litera-
ture surveys. Field surveys were also performed for debris
flow disasters that occurred in Hofu and Yamaguchi Cities in
Yamaguchi Prefecture, Aso City in Kumamoto Prefecture,
Oshima Town in Tokyo, Asaminami and Asakita Wards in
Hiroshima City and Nagiso Town in Nagano Prefecture.
New and old debris flow deposits were identified and
stratigraphically classified. To estimate the ages of these
debris flow deposits, radiocarbon dating was performed on
the organic material in the sediments of the debris flow. The
dating results obtained from this study were collated with the
disaster events described in historical documents remaining
in each area. In addition, we created prototypes of the debris
flow chronology in both Hofu and Hiroshima Cities, plotting
debris flow generation ages and disaster events (Sakaguchi
et al. 2018; Matsugi et al. 2018).

In this paper, the occurrence frequency of sediment-
related disasters in Hofu City, Aso City, Oshima Town, and
Hiroshima City are reported. Based on the survey results for
these four areas, the relationship between topographical and
geological conditions and the frequency of sediment-related
disasters is discussed. Furthermore, based on the recom-
mendations of JGS (2019), the authors suggest ways to use
disaster histories for future disaster prevention.

Table 1 Recommendations from
JGS for slope disaster
preparedness

No. Title of recommendation

2.1 Technology in geotechnical engineering to protect human lives and property

2.2 Improvement of accuracy of risk assessment, effective countermeasures, and maintenance and
upgrade of existing countermeasures

2.3 Development of geo-disaster prevention system based on management of monitoring and real-time
information

2.4 Establishment and disclosure of geotechnical and groundwater information database

2.5 Road/Railway: Efficient disaster preventive inspection by integrated management of design,
construction, and disaster information

2.6 Road/Rail: R&D for preventive maintenance and appropriate regulation and deregulation of
pre-traffic of road and operation control of train

2.7 Road/Railway: Introduction of concept of performance to resist disasters and realisation of
advanced design and countermeasures

2.8 Erosion and mountain controls: Development of a wide-area and efficient geotechnical
investigation method for weathered subsoil

2.9 Erosion and mountain controls: Improvement of performance of erosion control facilities
throughout mountain streams and promotion of education for disaster prevention

2.10 Erosion and mountain controls: Promotion of comprehensive forest management from landscape
and ecosystem to disaster countermeasures

2.11 Residential land: Disclosure of information on residential land safety and promotion of risk
communication

2.12 Residential land: Establishment of a system for inheriting geo-information at transaction of real
estate

2.13 Creation and use of hazard maps including information on previous geo-disasters

2.14 Strengthen public involvement of land and ground
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Debris Flow Disaster in Hofu City, Yamaguchi
Prefecture

Overview of Damage

On July 21, 2009, slope failures and large-scale debris flows
occurred in various places, mainly in Hofu City, Yamaguchi
Prefecture, resulting in 17 deaths in the prefecture. In the
city, heavy rainfall on August 2, 1993 caused several slope
collapses. It is presumed that sediment-related disasters have
been occurred repeatedly in the city in the past. The
mountains in this region are mainly composed of Late
Cretaceous granite (Hiroshima granites). The granite has
been significantly weathered and transformed into sandy and
gravelly soil (Masado). There are also exposed core stones
from the hillside to the summit. In addition, sheeting joints
are densely distributed in the exposed rocks on the collapsed
slope. This paper describes the results of on-site surveys of
six affected areas: Katsusaka, Matsugatani, Gyokusen
Tameike and Mitani River on the right bank of the Saba
River flowing south of Hofu City as well as Manao and
Ishihara on the left bank of the Saba River. In the field
survey, the authors performed stratigraphy of debris flow
deposits and collected samples for 14C dating at 41 locations
where organic material (carbonized plant material) were
found in the sedimentary strata.

Estimation of Debris Flow Frequency Through
Dating and Literature Surveys

The samples collected at each site were dated using an
acceleration mass spectrometer (Compact AMS, NEC,
1.5SDH). The 14C ages and calendar ages were calculated by
correcting for the isotope fractionation effect (carbon isotope
ratio d13C) in the measured results. OxCal 14.1 (calibration
curve data: IntCal09) was used for calendar year calibration.
Figure 1 is based on the authors’ data (a part of the data
refers to Sakaguchi et al. 2018); its horizontal axis indicates
each district and the vertical axis indicates the historical date
(CE). The results of Sugihara et al. (2010) are also plotted in
Fig. 1. The measurement results including the error was
around 1340 for all districts. The data obtained showed that
more than one-third of the data was from the 1300s. This
suggests that a large-scale debris flow disaster occurred in
each area at this time. In Katsusaka, debris flows have
occurred frequently since tenth century. The longest debris
flow interval with sedimentary layers coverage was about

300 years and the shortest was about 70 years. Excluding
the debris flow in 2009, it is presumed that at least six debris
flows have occurred in the Manao area and three or more
have occurred in the Katsusaka, Matsugatani, and Ishihara
areas simultaneously or individually. On the other hand, the
dating data was examined for consistency with disaster
records from around 500 CE, which are compiled in
‘Yamaguchi-ken Saii-shi’ (Shimonoseki Local Meteorolog-
ical Observatory 1953). Figure 1 shows the dates of the
events in which earthquakes and heavy rains are mentioned.
The record mentioned heavy rains in 1350. Therefore, this
historical data seems to support the occurrence of a debris
flow in the 1300s, as mentioned above. In addition, it was
confirmed that the dating results and reports in old docu-
ments generally corresponded. According to the same report,
the intervals between heavy rainfalls were very short,
60 years between 1653 and 1713. The report also noted that
earthquakes had occurred frequently since 1677. In partic-
ular, the Hoei earthquake, one of the largest earthquakes in
Japan, was recorded in 1707, and the Aio area near Hofu
City was reported to be severely damaged. The interval
between debris flows immediately after the Hoei earthquake
was particularly short; this is probably because weathered
rocks loosened, and rock masses collapsed due to the effect
of the earthquake, and the subsequent heavy rains made it
prone for debris flow appearances.

In addition, the debris flow sediments could be divided
into gravel-dominated strata and sand-dominated strata
based on the geological observations in the field survey.
Debris flows mainly composed of gravel (debris flow Nos. 2,
4 to 6, and 8 in Fig. 1) occurred in several mountain streams
between 1300 and 1400. It was also found that debris flows
mainly composed of sand (debris flow Nos. 1, 3, and 7)
occurred before and after the debris flows mainly composed
of gravel. This suggests that the debris flow deposits in the
region of Hofu are mainly composed of sand, but there is a
period when gravel is produced, and that gravel also would
be source material for a debris flow.

Although the sediment mainly composed of gravel gen-
erally remained in the midstream of the mountain stream, the
distribution area was large and the layer was thick, indicating
that gravel was produced on a large scale. Debris flows in
mountain streams located in areas where granite is distributed
are expected to occur with a frequency of once every few
hundred years. However, the recurrence interval in the thir-
teenth and fifteenth centuries was approximately 100 years,
while in the eighteenth century, there was a period when the
frequency increased to slightly less than 100 years.
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Topographic and Geological Conditions
and Debris Flow Frequency in Other Areas

Asa-Minami and Asa-Kita Wards, Hiroshima City

Heavy rainfalls from August 19–20, 2014, caused a large
number of debris flows, mainly in Yagi and Midorii,
Asa-minami Ward and Kabe, Asa-Kita Ward, Hiroshima
City. A field survey was conducted on the mountain stream
where the debris flows occurred. A majority of the moun-
tains in Hiroshima City, as well as those in Hofu City,
consist of Late Cretaceous granites (Hiroshima granites).
The main lithology of these Hiroshima granites is weathered
coarse-grained granite. The Jurassic accretionary complex is
distributed along the Ota River from Kabe to Kake. Gentle
slopes and alluvial fans are distributed between the moun-
tains and lowlands. Based on the dating of past debris flow
deposits shown in Fig. 2, it was estimated that more than
five debris flows occurred in the Yagi and more than three
occurred in Kabe-Higashi since the beginning of the CE
before the disaster in 2014 (Matsugi et al. 2018). Umaki was
a place where debris flows occurred due to heavy rain in
2018. The frequency of debris flows in one mountain stream
is expected to be approximately once every several hundred

years as in Hofu City. Past disaster records around Hir-
oshima City are described in ‘Geihan Tsu-shi’ (Rai et al.
1825) and ‘Hishiroma Ken-shi’ (Hiroshima Prefectural
Government 1925). The number of dating materials are
limited, and not all events are available. However, event
No. 5 shown in Fig. 2 corresponds to a description of the
occurrence of a debris flow in 1532 in ‘Intoku Taiheiki’
(1911). Event No. 6 was also found to correspond to a
description of the 1850 landslide in ‘Gion Cho-shi’ (Gion
Town history Compilation Committee 1970). These ages are
almost consistent with the dates of the events in each
document.

Oshima Town, Tokyo

Heavy rains caused by Typhoon No. 26 on October 16, 2013
caused many shallow slope collapses and mudflows at the
western foot of Mt. Mihara, Oshima Town (Izu-Oshima).
Mt. Mihara is a Quaternary volcano, and medium to large
eruptions have occurred 24 times in the last 1500 years.
Tephra was deposited during each eruption. During the
period when the eruptive activity paused, loess was accu-
mulated. The current surface is covered by unconsolidated
volcanic ash layers such as scoria. As it shown in Fig. 3,

Fig. 1 Chronological table of
debris flow occurrence in Hofu
City (a part of the data: Sakaguchi
et al. 2018)
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mudflow sediments were identified as heterogeneous sedi-
ments in which scoria of different colours, lava gravel, and
muddy gravel were mixed. In the valley of Okanazawa,
where a part of the sediment was stripped off during
Typhoon No. 26, it was confirmed that the fourteenth cen-
tury Motomachi lava flow and tephra from the subsequent
eruption activity were stacked.

At that point, it is probable that at least two sediment
flows occurred between the time of the Motomachi lava flow
to the end of 2013. The intervals were approximately 100 to

150 years. Koyama and Suzuki (2014) stated that the last
seven sediment-related disasters (including eruptions)
occurred around Motomachi town. According to historical
sources, the remarkable sediment-related disaster on
Izu-Oshima was caused by heavy rains due to a typhoon
such as the Kanogawa Typhoon in 1958. Previous studies
have shown that disasters occur approximately every 30–
80 years around the Motomachi area, and there is significant
evidence that more frequent sediment flows occur in vol-
canic areas.

Fig. 3 Condition of
sedimentation and geological
profile in the downstream area of
the survey site (Okanazawa) in
Izu-Oshima (JSCE 2015)

Fig. 2 Chronological table of
debris flow occurrence in
Hiroshima City (most of the data:
Matsugi et al. 2018)
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Aso City, Kumamoto Prefecture

The heavy rainfall on July 12, 2012 caused a tongue-like
flaky slope failure everywhere on the outer rim of Mt. Aso.
Mt. Aso is a Quaternary volcano, and the geology of the
survey area is covered with tephra fall above the Aso welded
tuff; a black volcanic ash layer with humus (Kuroboku) is
present near the surface. Three carbon samples collected
from debris flow sediments at Ichinomiya-machi Sakanashi
and Hakoishi Pass (Fig. 4) had more recent ages since 1970.
This suggests that the frequency of debris flows caused by
rainfall is relatively high as compared with those caused by
granite.

Conclusions

The results obtained from this study are summarised as
follows.

(1) In Hofu City and two districts of Hiroshima City where
weathered granite is widely distributed, the frequency
of debris flows in one mountain stream is estimated to
be about once every several hundred years. The reason
why the occurrence interval is longer in granite areas
seems to be due to the debris production and deposition
process in the mountain streams. It is generally under-
stood that the time required for granite up to 1 cm in
depth to be transformed to Masado by weathering is on
the order of thousands of years. Considering the pro-
duction volume of Masado, the debris flow interval
should be on the order of 1000 years. However, debris
flows occurred at shorter intervals of 100–200 years,

and the degree of weathering of the granite gravel
contained in the debris flow deposits was low. The
presence of sheeting jointed rock found on slopes may
promote the progress of debris flows.

(2) It is estimated that shallow landslides, mudflows, and
debris flows occur approximately once every several
decades in one district of Oshima Town and two dis-
tricts of Aso City, which are Quaternary volcanic areas.
The reason for the high frequency of occurrence in
Quaternary volcanic regions is thought to be the
structure of the volcanic ash layer, which has high
permeability on the ground surface, is loosely deposited
along the slope and is vulnerable to precipitation.

(3) Finally, the authors would like to state an effective use
for the findings of this study. In the studied areas, the
risk of sediment-related disasters is very high, and
debris flows have frequently occurred in the past.
Nevertheless, the victims said, ‘I have never heard of
such a disaster here before’, and ‘I believed here was a
safe place'. The lessons learned from past disasters have
not been passed on and used for disaster prevention. For
Japan, which keeps extensive historical records, this is
regrettably wasteful. In the future, information on when,
where, what, and how much has previously happened
should be included in hazard maps by finding traces of
disasters on the ground and comparing them with dis-
aster facts in historical records stored in the area. If
hazard maps are confirmed by the facts, it will raise the
awareness of residents.
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Development of Resident Participation-Type
Slope Measurement/Monitoring System
in Mountain Region

Tomofumi Koyama, Seiji Kondo, Taizo Kobayashi, Shinichi Akutagawa,
Takeshi Sato, Katsuyuki Nakata, and Kazuyuki Shimojima

Abstract

In this paper, the authors proposed the “resident
participation-type slope measurement and monitoring
system” to detect the premonitory symptoms of sediment
disasters in the mountainous area (Takasu Town, Fukui
City, Japan). The key concepts of resident participation-
type slope measurement/monitoring are (1) visualization,
(2) daily routine, and (3) voluntary/proactive involve-
ment. The residents will not only monitor the danger
slopes and notice unusual events, but also try to establish
a system to grasp the slope deformation/displacement
quantitatively. For this purpose, some different types of
sensors based on the on-site visualization (OSV) concept
were introduced to the dangerous slopes and retaining
walls selected by the residents and geotechnical experts.
The OSV sensors are low cost and visually excellent
measuring device with simple measurement principle.

Further improvements of measurement and recording
methodology are required to increase the participation of
residents to the slope measurement and monitoring.

Keywords

Slope measurement/monitoring�Resident participation�
Disaster prevention/mitigation activities � Marginal
settlement � Mountainous area

Introduction

Many villages in mountainous areas in Japan are designated
as sediment-related disaster warning areas, and there is a
high risk of sediment-related disasters such as debris flows
and slope failures. In addition, many villages are becoming
vulnerable due to the aging of the population, so-called
marginal village.

In order to improve the local disaster prevention ability in
mountainous areas, it is necessary to become regional dis-
aster prevention activities as everyday affairs mainly con-
sidering “mutual assistance” and “self-help” of each
individual (Yamori 2017). For this purpose, experts will
discuss with the local residents how to recognize the risks of
sediment-related disasters around them correctly and not to
rely too much on “public assistance” such as information
given from the government. It is necessary for the residents
to consider their own safety by themselves.

In this study, in Takasu Town, Fukui City, Japan in order
to promote local disaster prevention activities, observations
were conducted on slopes that are considered to have a high
risk of collapse based on the results of interviews with res-
idents and on-site surveys by geotechnical experts. By
installing the measurement/monitoring equipment, the resi-
dents will not only monitor the danger points and notice
unusual events, but also try to establish a system to grasp the
slope deformation/displacement quantitatively called the
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“resident participation-type slope measurement/monitoring
system”.

Outline of Takasu Town, Fukui City, Japan

Takasu Town in Fukui City, Fukui Prefecture was selected
as research area. Takasu Town is a rural village located on
the hillside of Mt. Takasu (elevation of 438 m), about 20 km
northwest of the center of Fukui City, with 38 households
and 45 (out of 68) people over 65 years old (the percentage
of population over 65 years is 66%) according to the
demographics of Fukui City (as of March 2020) (Fukui City
2020). Generally, villages over 65 years old with more than
50% of the population are called “marginal villages”, and
those where the age of 65 and over account for more than
70% of the population are called “critical communities”.

There are only two main roads leading to Takasu Town
from center of Fukui City, narrow city roads with a width of
about 4 m. The road in Takasu Town, which is located at a
relatively high altitude of about 200 m above sea level, is a
forest road surrounded by slopes. In addition, as shown in
Fig. 1, the entire town is in a large landslide terrain, and
sediment-related disaster special warning/warning area for
steep slopes exist around the village, and some are desig-
nated as debris flow alert areas. In fact, collapse of living
roads leading to villages, forest roads in the districts, and
fields have frequently occurred, and the frequency of tor-
rential rain has increased in recent years, and therefore,
residents’ awareness toward the risk of landslides is
increasing.

Concept of Slope Measurement/Monitoring
with Residents’ Participation

The following three points should be considered when
developing a slope measurement/monitoring system with the
participation of residents. In other words, (1) visualization,
(2) daily routine, and (3) voluntary/proactive involvement.
Firstly, “visualization” refers to visualization of the danger
level, and it is easy for residents without specialized
knowledge to understand the danger of slopes using simple
observation equipment with simple principles of measure-
ment and monitoring. Secondly, “daily routine” means that
the residents themselves measure and monitor slopes on a
daily basis, rather than conducting them regularly as in
disaster prevention drills. To this end, it is necessary to
propose simple measurement and monitoring methods so
that the residents themselves can easily measure and monitor
the slope from their daily lives, and to devise ways to
incorporate the act of slope measurement and monitoring as
part of their daily lives. Lastly, “voluntary/proactive

involvement” means that more and more residents are
involved in slope measurement and monitoring daily, raising
awareness of “self-help” and disaster prevention. If you
notice “unusual events” on a slope different from your daily
life, you need to be aware that residents who received uni-
lateral information on disaster prevention may also be able to
send information on the contrary.

Monitoring of Dangerous Slopes Using OSV
Sensors

Types of Measuring Equipment and its Principle

Since the main purpose was to make the residents them-
selves involved in measurement and monitoring on a daily
basis, and to be aware of “unusual events” that are different
from the everyday, the measurement and monitoring system
should not be expensive, elaborate, and did not require

Fig. 1 Hazard map related to the sediment-related disaster of Takasu
Town, a officially announced by Fukui City and b enlarged picture of
sediment-related disaster special warning/warning area
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specialized knowledge. Adopted OSV (On-Site Visualiza-
tion) sensors (Akutagawa 2017; OSV conthosium 2020) in
this study, which is a low cost, simple and visually excellent
measuring device.

POCKET (A Pocket-Size Light-Emitting Inclination
Sensor)

The “POCKET” is a device that combines a fixed incli-
nometer and an optical device, and the color of the head
changes according to the set criteria (green, yellow and red).
In this measurement, the sensor was placed at the position
where the inclination of the retaining wall and/or slope was
measured, and the slope stability was confirmed by
observing the color emitted from the head of the device.

Normally, dry batteries are used as the power supply.
However, in this measurement, in order to eliminate the
trouble of replacing the power supply and enable long-term
measurement, the system was changed to a self-power
generation type using a solar battery. POCKET has a built-in
data recording mechanism inside the main unit (1 hour pitch,
data capacity about 1.5 months). If measurement results are
collected, inclination data is stored as digital data in addition
to monitoring by light emission.

SOP

“SOP (Single Observation Point)” is a method of visually
grasping the movement of the measurement target using a
mirror. In the measurement method, a light source is
installed in a stable place where no deformation occurs, and
the light is visually checked by the observer from the same
stable place. The mirror at the measurement point adjusts the
direction so that the observer can see the light reflected on
the mirror at the initial stage. When the measurement target
is deformed/displaced and the mirror rotates or moves, the
image of the light source in the mirror moves from the initial
state. Therefore, the observer can visually grasp the defor-
mation of the measurement target. Furthermore, when the
deformation is large, the reflected light may protrude from
the mirror surface and the image may not be visible.

Theoretically, the rotation angle of the mirror can be
measured from the distance between the observer and the
mirror, the distance between the mirror and the light source.
Therefore, in this measurement, since the observers are
residents who do not have specialized knowledge, we
decided to monitor from the viewpoint of whether the light
moved or not.

A See-Through Pole

“A see-through pole” is a method in which a reference pole
with a viewing window and several observation poles for
measuring displacement are arranged in a straight line, and
the movement (gap) of the observation pole is checked from
the reference pole. In other words, the displacement of the
slope and/or shoulder of roads causes the observation pole to
fall and/or shift, so that the line of sight from the reference
pole is not straight, and the residents visually notice the
deformation of the slope or shoulder of roads easily. If the
grasp of quantitative behavior of the observation pole is
required, the displacement can be quantitatively confirmed
by measuring the mounting position at the beginning of the
installation and performing the survey again when the
deformation occurs.

Installation Location of OSV Measurement
Equipment in Takasu Town

Based on the results of interviews with residents and
reconnaissance by geotechnical experts, totally six danger-
ous slopes and/or retaining walls were selected (two slopes
along the access road (city road) to Takasu Town, one
retaining wall along the agricultural road, one steep
slope/retaining wall behind the elementary school and on
three steep slopes behind the houses) and different types of
OSV sensors were introduced (see Fig. 2). The positions of
the six measurement points selected in this study are shown
from ① to ⑥ in Fig. 2.

Location of measurement points

Fig. 2 The location of the six measurement points selected in this
study
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Deformation Monitoring of Valley Side Slope
Along City Road (①)

This measurement point is along the city road used as
community road. On paved roads with a width of 4 m or
less, there are concerns about deformation of retaining walls
on the mountain side and slope failures on the valley side.
Therefore, a measuring device using poles was installed at
the shoulder of the city road (see Fig. 3). The shoulder of the
road is located near the top of the valley side slope, and this
part may collapse due to deformation of the slope and cut off
the road.

Since the road alignment at the measurement position was
close to a straight line and the street of the pole could be
seen, “a see-through pole” was adopted. The observation
pole was attached to a guardrail column installed on the
shoulder of the road. However, the reference pole, which
should not be affected by the slope displacement, was
installed off the slope and away from the guardrail support.
Slope deformation measurement is performed through a
viewing window installed on the reference pole to measure
whether the street on the observation poles hold a straight
line.

Deformation Monitoring of Valley Side Retaining
Wall Along City Road (②)

At the curved part of the city road (extension of the city road
in ①), the top of the retaining wall on the valley side has
already been deformed so as to fall down to the valley side,
and the paved road is partially cracked. (See Fig. 4a–e).

Since the installation location is a curved section, it is
impossible to see through the street like an observation pole,
so here SOP was adoped to perform deformation measure-
ment. The location of observation point was set on the
shoulder of a relatively wide curve so that the reflecting
mirror could be viewed from there.

A peephole with a diameter of about 5 mm is installed at
the center of the measurement board, and the ovservers
check the red and yellow indications of the measuring plate
reflected on the mirror through the peephole. At the time of
installation, it is adjusted so that the display of the mea-
surement board is reflected on the mirror when looking
through the peephole. A displacement confirmation line is
also drawn radially around the peephole on the back of the
measurement board, and when the retaining wall is dis-
placed, the displacment can be calculated the distance the
peephole and eye position to see the display plate reflected
on the mirror. The displacement confirmation line drawn on
the back of the measurement plate to measure the direction
and the amount of the displacement at that time.

Slope Deformation Measurement Near Rice
Terraces (④)

The rice terraces are on a hill with a height of 4 to 5 m, and a
steep slope continues from the hill. The neighboring houses
are built along the steep slope, and the residents living there
are concerned about the collapse of slope along the rice
terrace. According to the interview surveys, the slope along
the rice terraces is recognized as the one of the most dan-
gerous places in the town (see Fig. 1).

Therefore, the SOP was used to measure the deformation
of the terrace slope. A ridgeway close to the house under the
rice terraces was selected, and three SOP mirrors (reflecting
mirrors) were installed. The light source (small LED light)
and observation points used for the SOP are set next to the
pool at the elementary school and beside the houses under
the terraced terraces. From the installed measurement points,
the angle of the reflector was adjusted so that the remaining
one could be checked from the side of the house under the
terraced rice field. Figures 5a-d show the initial setting state
of SOP and the loaction of reflecting mirrors and observation
points. For the measurement, an LED light is installed at the
light source position to check whether the light from the
reflector is visible. The measurement accuracy is such that
the distance from the observation point to the reflector is
about 70 m, so that the angle change of the reflector is about
0.05° and the light source is not reflected on the mirror. The
measurements by reseidnets were carried out by recording
whether the light reflected by the reflector was visible or not.

Fig. 3 “See-through poles” using observation poles and reference pole
with a viewing window
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Deformation Monitoring of Block Retaining Walls
Along Farm Roads, Block Retaining Walls Behind
Elementary School Gymnasiums, and Slopes
Behind Houses (③, ⑤, ⑥)

The block-retaining wall along the farm road was collapsed
once in the past. After the collapse, the slope above the top
of the retaining wall has been reenforced by ground
improvement. However, it is necessary to monitor the sts-
blility of the slope and check the soundness of the retaining
wall, and therefore selected as a measurement point (see
Fig. 6a).

The only elementary school in the town is currently
closed, but its gymnasium is used as a meeting place for
residents. In addition, it may be used as a temporary

evacuation place at the time of disaster. At present, there is a
block retaining wall behind the gymnasium, and a natural
slope is approaching above the retaining wall. Groundwater
is constantly leaking from the retaining wall. Since the dis-
tance between the gymnasium and the retaining wall is about
1.5 m, the gymnasium may be damaged by flooding during
torrential rainfall and the collapse of the retaining wall.
Therefore, we decided to measure the deformation of the
block-retaining wall behind the gymnasium (see Fig. 6b).

In the town, there is a slope on the back of the house that
exceeds the two-story roof, and there was a place where the
slope collapsed due to past torrential rainfall and sediment
flowed into the house. Residents living there were concerned
about the slope failure, so this slope was selected as a
measurement point, and the deformation of the slope could

Fig. 5 Slope measuement/monitoring using SOP, a rice terraces behind the houses, b reflecting mirrors installed at rice terrace, c light source and
observation points, d location of light source and mirrors

a) b) c)

Fig. 6 Slope measuement/monitoring using POCKET, a block retaining walls along farm roads, b block retaining walls behind elementary school
gymnasiums, and c slopes behind houses

Fig. 4 Slope measuement/monitoring using SOP, a retaing wall, b mirror, c measurement board (front face), d measurement board (back face),
e view from peephole installed at the center of the measurement board
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be measured mainly for the residents living there (see
Fig. 6c).

For these measurement points, slope inclination mea-
surement using POCKET was performed to measure the
deformation of the retaining wall and slope, and the. power
supply of the measuring instruments was secured using solar
panels at all three measurement points. In POCKET, the
color of the light at the head of the measuring instrument
changes depending on the inclination, so when displacement
occurs on each retaining wall and/or slope, the color can be
used to visually judge the situation. In this study, the lighting
color of POCKET is set to be green when the tilt angle does
not change, and to be yellow and red when the inclination
angle changes by 0.2° and 0.4°, respectively. The thresholds
for the set color and angle were set with reference to past
slope failure experiment results (Toyosawa et al. 2007).
When the residents confirmed the change in emission color,
the slope was measured and surveyed separately by
geotechnical experts to check the stability of the slope. The
block retaining wall on the back of the gymnasium has a
long depth, so three POCKETs were installed.

Development of Observation System
and Establishment of Recording Method
of Observation Results

Observation System at the Beginning
of Installation of Measurement Equipment

The installation of all OSV measurement equipment was
completed in mid-November 2017, and on November 26, a
briefing and tour of the use of measurement equipment for
members of the town's voluntary disaster prevention organi-
zation (the chairman of neighborhood association, vigilante,
and group leader). Regarding the measurement/monitoring
system (observation members and measurement frequency,
etc.), the members of the voluntary disaster prevention orga-
nization decided without any instructions or requests from
experts. At the beginning of the decision, it was expected that
the members of the voluntary disaster prevention organization
and the person in charge of the disaster prevention group
would be able to manage all of the measurement equipment
without any difficulty from the installation of the measure-
ment equipment if the measurement was performed once a
month. However, in practice, measurement and monitoring
were hardly performed, and the measurement and monitoring
system was hardly functioning. One of the reasons for this is
that in the method of “measuring/monitoring and recording

when the designated person is decided”, extra tasks are
imposed on the appointed person, although it is a part of
disaster prevention activities. This means that even if resi-
dents are working on it at first, they will gradually feel bur-
dened, which will lead to reduced motivation.

Door-To-Door Survey for Residents

After installation of OSV measurement equipment and
briefing for members of the voluntary disaster prevention
organization, on June 24, 2018, along with disaster pre-
vention drills in Fukui City, explanations and tours for slope
observation and monitoring were held for residents.
Informed the residents of the intention of the “resident
participation-type of slope measurement and monitoring”.
After that, we visited Takasu Town regularly to check the
status of measurement and monitoring, and also conducted
interviews with residents to extract the current problems of
measurement and monitoring.

In particular, in the door-to-door survey conducted on
October 12–13, 2018, some positive and negative responses
from nine people were obtained as follows;

– “For simple observation equipment, POCKET and line of
sight are easy to observe and understand visually.”

– “SOP is easy to understand the principle of measurement,
but it is difficult to handle.”

– “It still don't know if slope monitoring/measurement
really helps to reduce sediment-related disaster.”

Some women in their 80s found a sense of mission and
joy in observation activities. She observed the steep slope
behind her home at the SOP every time it rained, and she
was “prideful of her grandchildren.” This is a good example
of a very positive willingness to the newly assigned role. In
addition, a mobile co-op sales car visits the village twice a
week in front of elementary school. Some residents are
observing at the timing. In this way, by grasping the
behavior pattern and rhythm of life of the residents in the
town in more detail, in addition to the above, daily obser-
vations such as watching observation equipment when
walking near the equipment in addition to walking dogs and
field work. It turns out that there are a several inhabitants
who can reasonably observe slope monitoring in their daily
lives. In addition, as long as these changes were observed, it
was found that the resident-based slope observation system
could take root and have the potential to “make habits (daily
routine)” in the future.
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Management of Observation Records Using IC
Card Reader

Regarding the method of recording observation results, some
people commented that the handwritten measurement record
in ledger at the beginning of the installation. Significant
simplification was required so that measurement and moni-
toring could be performed frequently. Therefore, manage-
ment of observation records using an IC cards and a card
reader was examined (see Fig. 7a).

In the observation, for all OSV measuring equipment, the
observer hold IC cards printed “normal” or “abnormal” as
observation results over the card readers that placed near the
OSV measuring equipment.

As for the POCKET installed behind the elementary
school, if at least one of the three POCKETs displayed
yellow or red, it was determined that there was an abnor-
mality. A pair of IC cards will be distributed to the members
of the “Takasu voluntary slope observation team” as
described in the next section. At the same time, an IC card
was also placed near the measuring equipment so that resi-
dents other than the members of the observation team could
observe. A 12-digit ID is engraved on the IC card, and by
associating the card ID with the distribution destination,
observation records (“who” measured “when”) can be stored
and managed.

The recording of observation results using an IC card and
a card reader started on April 27, 2019. In the future, it is
necessary to collect and analyze observation records and
examine how to link slope measurement and monitoring to
“daily routine” and “voluntary/proactive involvement”.

Formation of “Takasu Voluntary Slope
Observation Team”

As mentioned in the previous section, there are some resi-
dents in Takasu Town who can reasonably observe slope
and be involved in monitoring slope in their daily life. They
will play a central role in slope measurement and monitor-
ing. Specifically, a total of four women, including the
80-year-old woman mentioned above, a woman of the local
welfare officer who is familiar with the situation in Takasu
Town, and women who has an interest in measurement and
monitoring due to the slope behind their home was formed
as a member of the “Takasu voluntary slope observation
team”. Ask the four women mentioned above to always
carry their personal IC cards (a pair of “normal” and “ab-
normal”) and walk around the measuring instruments
installed in the town. When they passed, they observed the
slope and recorded the observation results using IC card
readers.

c)

a) b)
Fig. 7 a IC cards printed
“normal” and “abnormal” and IC
card reader, b “Takasu voluntary
slope observation team -three
hints” and c a card reader
handling manual
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On April 27, 2019, the formation and appointment cere-
mony of the “Takasu voluntary slope observation team” was
held at the Takasu Town Village Center (see Fig. 8). Along
with the letter of appointment, “Takasu voluntary slope
observation team-Three Hints”, a card reader handling
manual (see Figs. 7b and c) was distributed, and the method
of observing slopes and recording the observation results
were confirmed on site.

Communication of Disaster Prevention
Information by “handmade Newspaper
Takasu-Ikusu”

In this study, together with measurement and monitoring of
hazardous slopes, university students handed out handmade
newspaper called “Takasu-Ikasu” and distributed it to resi-
dents about once a month (until the 15th issue as of the end
of June 2019). “ To improve the awareness of disaster pre-
vention and the ability of local disaster prevention.
“Takasu-Ikasu (which means take advantage of the wisdom
passed down in Takasu Twon)” contains not only articles
related to disaster prevention activities, but also information
on the charm of Takasu Town and the wisdom of life rooted
in the community. Figure 9 shows the pages of Nos. 14 and
15 issued in June 2019. In the 14th issue, the appointment
ceremony of the “Takasu voluntary slope observation team”
and the method of confirming the safety of the slope were
described. In the 15th issue, the explanation of POCKET
installed on the block retaining wall at the back of the ele-
mentary school gymnasium and the observation method
were described. In the future, we would like to publish other

Fig. 8 The formation and appointment ceremony of the “Takasu
voluntary slope observation team” was held at the Takasu town village
center

Fig. 9 Handmade newspaper called “Takasu-Ikasu”, a Nos. 14 and b 15 issued in June 2019
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OSV observation equipment (SOP and see through poles) in
the same way so that many residents can be aware of it and
encourage them to take an active part in measurement and
monitoring.

Concluding Remarks

In this paper, the resident participation-type slope
measurement/monitoring system using OSV sensors was
developed and introduced to in Takasu Town, Fukui City,
Japan. Although OSV measurement equipment was able to
achieve “visualization” of the danger of slopes, “daily rou-
tine” and “voluntary/proactive involvement” were still
issues, and more residents worked on measurement and
monitoring on a daily basis. Also it is necessary to further
improve the environment and mechanism for receiving the
information. In addition, if the residents become aware of
unusual events, it is necessary to improve communication
with specialists and shift to a method of quantitatively
measuring slope deformation. In the future, while monitor-
ing the activities of the “Takasu voluntary slope observation
team”, quantitatively assess how the transmission of disaster

prevention information through the “handmade newspaper
Takasu-Ikasu” will contribute to the improvement of resi-
dents’ disaster prevention awareness and local disaster pre-
vention capabilities. We would like to pursue a detailed
analysis and finally aim to establish a “resident participation-
type slope measurement/monitoring system (Takasu
model)”.
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Debris Flow Detection Using a Video Camera

Ko-Fei Liu, Ting-Iu Kuo, and Shih-Chao Wei

Abstract

The early warning of natural hazards is an important issue
that was raised by the 2015 Sendai Framework for
Disaster Risk Reduction. However, early warning sys-
tems need complimentary monitoring systems that them-
selves may be combined with automatic identification and
prediction systems. For debris flows, once a disaster has
been confirmed to have occurred in an upstream area,
early warning of the hazard further downstream may be
predicted with relatively good accuracy in time and space.
In this study, we use video cameras to identify the arrival
times of debris flows using a simple average grey-level
method. We show that this method can automatically
detect the arrival of debris flow events. This method is
tested with both real events video and indoor experiments
during the night with moonlight only illumination. All
tests have an error of less than 1.3 s. The method is fast
and therefore ideal for real-time monitoring and warning.

Keywords

Debris flow � Camera � Monitoring

Introduction

Debris flows are among the most hazardous natural disasters
that can occur on sloping land. To provide safety in
debris-flow-affected areas, an early-warning system is vital.

The most commonly used early-warning systems are
based on indirect warnings using rainfall or hydrology
indices with calibrated thresholds (Jan and Lee 2004; Baum
and Godt 2010; Thiebes 2012). These rainfall-based meth-
ods can issue warnings in an early stage and on a regional
scale. This kind of warning indicates there may be debris
flows within a large area containing many potential
debris-flow streams. However, the specific location of an
occurrence cannot be predicted. Confirmation of a debris
flow still requires in situ monitoring devices or disaster
records.

In recent years, debris-flow detection methods have been
developed based on direct monitoring systems, such as
geophones, video cameras, wire sensors, ultrasonic gauges,
radar, etc. (Itakura et al. 2005). These direct detection
methods can give precise warnings to affected areas. Among
these devices, geophones and cameras have been used most
often for debris flows. However, there is currently no auto-
matic detection and warning system using geophones or
cameras because the event detection threshold changes in
time and still cannot be determined automatically.

Wei and Liu (2019) used the accumulated energy method
combined with the characteristic frequency of debris flows to
resolve the threshold determination problem and detect
debris-flow arrivals. However, since only energy variation
was considered, the events detected through geophones
could be of a range of types, including granular flow, debris
flow, or floods with a high sediment concentration. In these
events, the flow energies may be approximately the same but
the sediment contents to be very different. Thus, additional
information from cameras is essential.

Our research uses a total grey-level method to identify
changes in images. The method is based on identifying large
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changes in an image’s grey level that indicate large changes
to the objects in the images. Thus, information from a
monitoring video camera can indicate changes in flow con-
ditions and thus the detection of a debris-flow event. This
information can in turn be used as part of an early-warning
system.

Event Identification Method

Common Image Processing Methods
Past research using camera adopted the particle-tracking
method to extract information from the video (Arattano and
Grattoni 2000). The same concept has been applied to
tracking surface bubbles, debris, and artificial particles in
large-scale particle image velocimetry (Fujita et al. 1998;
Theule et al. 2018). Many studies used the optical flow
method (Horn and Schunck 1981; Lucas and Kanade 1981;
Farnebäck 2003) to calculate the velocities of particles in
images. After obtaining velocity or particle information, one
can use the information to identify debris flows. Chang and
Lin (2007) used the movement of a specific target for event
detection. They also introduced discrimination of debris
flows and floods by using features of contrast, entropy,
energy, and homogeneity.

However, these methods usually do not produce accurate
results for natural disaster detection, owing to the resolutions
of the images and the fact that particles in video are very
difficult to identify because of mud/water coverage. The
most critical problem is the fundamental assumption used in
particle tracking that the same point maintains the same grey
level in consecutive images, which is normally not true.
Furthermore, tracking analysis is computationally
time-consuming, but time is critical for real-time warning.

Therefore, in this research, rather than use a method that
is sensitive to variation of particular particles, we will
develop a method that does not need to identify particles.
Moreover, this method should be usable in the field and in
night-time when there is otherwise insufficient illumination.

Therefore, we propose the total grey-level method to
identify debris-flow events. We calculate the total grey level
in the region of interest (ROI) and if it changes, this indicates
there are events occurring within the ROI. This can be used
to identify debris flow. After an event is identified, a geo-
phone can be used to confirm if it is debris flow or
high-concentration flow. However, the combination of geo-
phones will not be discussed in the present paper.

Total Grey-Level Method

First, video taken in the field is separated into images.
Within each image, the ROI is defined and all calculation

will be done within the ROI. For each pixel in the ROI, color
is transformed to grey level according to the standard from
the International Telecommunication Union (ITU-R 1990)
code with:

Grey ¼ 0:229� Redþ 0:587� Greenþ 0:114� Blue;

ð1Þ
where each pixel has a grey level from 0 to 255. Then the
total grey level for one ROI is calculated as:

Total Grey Level ¼
X

All points in a frame

Grey: ð2Þ

This total grey level is then divided by the total number of
pixels in the ROI to give the average grey level. If it is very
dark, the average grey level will be close to 0. If it is very
bright, the average grey level will be close to 255. Normal
clear water flow will produce very bright and shining ima-
ges, so the average grey level is around 150 or more. When
debris flow or flood occurs, there is granular material and
mud and the whole image becomes darker. As one of the
characteristics of debris flows is a large amount of granular
material concentrated at the front, the average grey level will
become darker in a short period of time. An example of real
video images taken at Ai-Yu-Zi creek is shown in Fig. 1.

There are boulders of diameter 1 m on top of the flow.
A wave of muddy material can be seen in the third photo.
There are usually 30–60 frames per second for a standard
field camera. Each frame is an image like in Fig. 1, and one
average grey level can be calculated. By plotting the varia-
tion of average grey level over time, the change can be seen
and the rate of change of the average grey level can be
calculated. The temporal variation of average grey level for
Typhoon Mindulle (the case shown in Fig. 1) is plotted in
Fig. 2. For cross referencing, the times corresponding to the
three images in Fig. 1 are marked. It can be seen that
average grey level remains roughly constant before the
debris flow arrives. When the front of the debris flow arrives,
average grey level decreased quickly (from brighter to dar-
ker). After debris flow passed out of the ROI (time 45–50 s),
the grey level roughly returned to its original level. Later
than 50 s, there was flood which increased the grey level.

With the temporal variation of average grey level
obtained, a condition is required to determine the detection
of debris flows. Since average grey level changes for dif-
ferent lighting conditions (sunlight, moonlight, rain), mate-
rials, and flow conditions, it seems impossible to find a fixed
threshold to determine the arrival of an event (a debris flow
or flood). However, before any event, the flow conditions
should be steady or slowly varying, so the grey level should
remain roughly the same for a long period of time. Hence,
the “normal” average grey level for the stable state should be
considered as the reference level. Any normal signals have
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fast-varying “noises”. Therefore, a time average should be
taken to remove these noises. Thus, we average the total
grey level for every 11 frames (frame from t0 − 5 to t0 + 5)
to produce one dataset at each time t0. These averaged values
can effectively remove all pulse irregularities.

To detect a change in average grey level, we use the slope
of Fig. 2. The rate of change of the grey level is calculated
as:

S tð Þ ¼ Ave:Grey tþDtð Þ � Ave:Grey t� Dtð Þ
2Dt

ð3Þ

For every 10 s, we choose the maximum slope Smax

within that 10 s as the representative parameter of flow
condition. While Smax is small, the flow conditions remain
the same. However, if at any moment the calculated slope is
greater than twice the Smax value obtained 2 s before, and
this continues to be true for consecutive a 5 points (1.5 s),
this indicates something happened within the ROI. Then a
debris flow warning will be issued after this detection
process.

This simple procedure is tested through laboratory
experiments. In practice, the warning triggered by video
camera can be checked with detection of geophone or other
sensors but this discussion is excluded in this study.

In this paper, the warning given by the proposed detection
method will be checked with manual tracking of video
images by eyes.

Laboratory Tests

The setup of the experiment is depicted in Fig. 3. The flume
is 5 m long and 60 cm wide. A video camera is mounted on
top of the flume. Lighting is provided from above.

White Styrofoam balls with a density of 21.4 kg/m3 are
used. We mixed 170 balls of diameters from 1.5 to 10 cm.

Fig. 1 Grey-level distributions from video of the Typhoon Mindulle
debris flow. ‘Proportion’ denotes the ratio of the number of pixels of a
given grey level to total number of pixels in the ROI (region of
interest). Next to the grey-level axis, the corresponding brightness is
plotted as a grey-level bar. The vertical line indicates the position of the
average grey level for that image. (1) Debris flow just entering ROI

(from top corner of ROI). The average grey level of the ROI is 114.24.
(2) Front of the debris flow reaches the centre of the image. The average
grey level of the ROI is 105.4. (3) The front of the debris flow just
reaches the boundary of the image. The average grey level of the ROI is
89.07

Fig. 2 Temporal variation of average grey level in Ai-Yu-Zi creek for
Typhoon Mindulle. The first 25 s is noise before the debris flow arrives.
The black line is the average grey level. Darker color indicates a larger
proportion of pixels at that grey level. Pink lines indicate the time
locations for images in Fig. 1
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Then we dropped them as a whole into the flume from
upstream. The balls flowed down the flume with the water
flow at a speed of 20 cm/s. Because the balls float, this is
used to simulate granular material on top of the debris flow
front. The video camera captured images from directly
above. To control the lighting conditions, experiments were
conducted at night. We used four different lighting methods
to test the influence of lighting: strong artificial lighting
(100 W) from on top of the flume, only normal room
lighting (two 60 W from 3 m above), no artificial lighting
but with all windows open to admit moonlight and starlight,
and finally no artificial lighting with all windows closed and
curtains blocking all possible light sources. The corre-
sponding sample photos are shown in Fig. 4.

The resulting average grey levels and the calculated
slopes are depicted in Fig. 5. The solid blue lines are the
average grey levels and the dotted orange lines are the
corresponding slopes. In all cases, the grey-level variation
before arrival of the balls is small. The slope increases are
sufficient to identify the fast change of grey level when the
balls arrive. As lighting becomes weaker, the maximum grey
level becomes smaller, as do the slopes. For strong lighting,
the grey level actually keeps changing, while only the slope
remains the same. However, twice the maximum slope for
previous 10 min gives a good arrival time.

With no lighting, the maximum grey level is only 2.7
(and cannot be identified by human eyes). However, the
slope is still detectable.

The time that the Styrofoam balls enter the ROI is marks
the beginning of event detection. The differences between
the times determined using the total grey-level method are
compared with those identified by eye are listed in Table 1.

The accuracies in all four cases are very good. Since the
time difference between two frames is 0.03 s, these values
indicate the error is between 1 and 7 frames. The most
significant result is for Case 4, where there is no light at all.
The human eye can barely distinguish objects in these
conditions, yet this method can identify the arrival of the
balls. This means that using slope variation enables this
method to work under almost no light and still provide an
automatic early warning.

Application to Ai-Yu-Zi Creek

Test Area

Ai-Yu-Zi Creek located at Shenmu Village, Nantou County,
Taiwan, was selected as the test area. It was identified as
having a high potential for debris flow torrents by the Soil
and Water Conservation Bureau of Taiwan. The length of
the stream is 3.731 km and the watershed area is 405.02 ha.
Stream elevation extends from 1200 to 2500 m with an
average slope of 39.3°. The river width at the monitored
location is approximately 50 m. The study area is mainly
located in the Nanchuang and Nankang formations. These
formations are composed of sandstone, siltstone, shale, and
alternations of sandstone and shale. The landslide area
occupies 12–34.2% (1996–2009) of the whole watershed
area, and it has had an increasing trend in recent years (Chen
et al. 2012). The average annual rainfall is 3054.7 mm with
87% (2644.5 mm) concentrated in the rainy season from
April to October. The observed debris flow events in the are
involve large boulders of typically 1 to 2 m in diameter, and
occasionally boulders of up to 5 m can be observed. All
debris flows have high concentration of granular material,
but concentration changes from event to event.

Test Result

The total grey-level method was used for the video record-
ings made during Typhoon Mindulle. The images were those
shown in Fig. 1. With the total grey-level method and twice
the reference level as the warning criterion, the time of the
warning is marked in Fig. 6.

The time differences for this method applied at Ai-Yu-Zi
creek are listed in Table 2. We tracked frame by frame and

Fig. 3 Flume test setup. Water flow is 20 cm/s to the left. There is
strong lighting from the top and normal room lighting
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when the debris flow front reached the ROI, as judged by
eye, we marked that frame as the arrival time for debris
flows. Also listed in Table 2 are the results using a higher
detection level (five times Smax) and averaging over more
frames (31 frames). The results for criterion of twice the
noise level have a detection time error of less than 1.3 s.
This means that the total grey-level method is acceptable for
use in the field.

Conclusion

In this study, we extracted a region of interest (ROI) from
each frame captured from a video camera setup in both
flume and field tests, conducted image processing and cal-
culated the average total grey level of each image. We
defined the slope of the temporal variation of the average

Fig. 4 Images of balls flowing
down the flume. The white
Styrofoam balls have different
grey levels under different
lighting conditions: (1) strong
lighting provided from on top of
the flume, (2) only normal room
lighting, (3) no indoor lighting
with room lights turned off and
only natural moonlight from one
small window, and (4) curtains
used to block all natural light and
no indoor lighting provided

Fig. 5 Temporal variation of
average grey level. Solid blue
lines are average grey-level
variations. Dotted orange lines are
slope variations. Graphs
correspond to the lighting
conditions in Fig. 4

Table 1 Accuracy of using the total grey-level method to detect events in the flume test. Cases are those shown in Fig. 4. Error is the time
difference between detections from the total grey-level method and by eye. A negative value indicates detection earlier than the actual time (due to
a shadow in front)

Case 1 2 3 4

Error (s) −0.125 −0.041 −0.308 0.267
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total grey level as the main index for determining changes in
flow conditions, and thus detection of debris flows. We
adopted twice the reference level, Smax, of temporal slope
change for detection of events in the video images. Using
laboratory experiments and videos of debris flow in the field,
we showed that the error of detection method is within 1.3 s
of that made by viewing the same imagery with the human
eye. Furthermore, in flume tests, we showed that the method
can be used in even very dark environments without the
need for artificial lighting. This is essential for field moni-
toring and early warning of debris flows, given that these
events can occur at any hour of the day or night. The simple
image-processing method used here requires very little
computational time compared with other image-processing
methods, which is also very desirable for real-time detection
and monitoring.
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Landslide Mapping and Monitoring
with Satellite Interferometry

Federico Raspini, Emanuele Intrieri, Davide Festa, and Nicola Casagli

Abstract

The potential of multi-interferometric approach applied to
the Sentinel-1 acquisitions for the analysis of slope
instabilities is presented and discussed through two
different landslides of very different nature. In the first
case, Sentinel-1 data, systematically acquired with short
revisiting time and promptly processed allows for the
quick identification of the acceleration suffered by
the Carpineta landslide, a large, active earth slide in the
Northern Apennines (Tuscany Region, Italy). In the
second case, a post-event analyses of Sentinel-1 data
permitted the identification of a clear precursory defor-
mation signal for the Xinmo landslide (Mao County,
Sichuan Province, China), a large rock avalanche
occurred in the early morning of 24 June 2017. Results
suggest that advances in satellite sensors, increase of
computing capacity and refinement of data screening
tools can contribute to the design of a new paradigm in
satellite-based monitoring systems. Sentinel-1 data, sys-
tematically acquired over large areas with short revisiting
time, could be used not only as a tool for mapping
unstable areas, but also for landslide monitoring, at least
for some typologies of sliding phenomena.

Keywords

Landslides � Sentinel-1 � Interferometry �Monitoring �
Displacement time series

Introduction

In many landslide studies, the possibility to monitor defor-
mation and to predict future behaviour is still a major con-
cern. To date, early-warning systems have mostly relied on
the availability of detailed, high-frequency data from sensors
installed in situ. Methods deducing reliable failure predic-
tions have been largely applied at local scale, where in situ
monitoring systems can be installed (Intrieri et al. 2019).

The same purpose could not be chased through space-
borne monitoring applications, as these could not yield
information acquired in a sufficiently systematic fashion: the
low data sampling frequency of most of the satellite systems
hampered the possibility to retrieve the necessary details of
tertiary creep characterized by accelerating deformation. So
far, the lack of systematic information on ground displace-
ment acquired at regional scale was another serious limit to
the application of failure prediction methods at wide scale.

Such limitations can be partially solved through the
exploitation of new generation spaceborne platforms. The
launch of Sentinel-1 mission opened a new opportunity for
InSAR (Interferometric Synthetic Aperture Radar) monitor-
ing applications thanks to the increased acquisition fre-
quency, the regularity of acquisitions and the policy on data
access. We demonstrate the potential of satellite InSAR to
spot the onset of landslide acceleration and to identify pre-
cursors to catastrophic slope failures.

Here we present two sets of Sentinel-1 constellation
images processed by means of multi-interferometric
approach for the analysis of two very different slope insta-
bilities (a large earth slide in the Tuscany Region, Italy and a
large rock avalanche in the Xinmo village in China). The
results highlight that satellite InSAR may now be used to
support decision making and enhance predictive ability for
landslide hazard.

This means that the transition from historical analysis of
ground deformation to a continuous monitoring with
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prediction capabilities at regional scale using satellite radar
data is now possible.

Satellite Interferometry

Two large stacks of C-band SAR images (central frequency
5.405 GHz and wavelength 5.6 cm) acquired by Sentinel-1
constellation have been processed by means of the Squee-
SAR algorithm (Ferretti et al. 2011) to generate ground
deformation maps for the Tuscany Region and for the area
affected by the Xinmo landslide. This algorithm represents
the evolution of PSInSAR, the first technique belonging to
the PSI (Persistent Scatterer Interferometry) family specifi-
cally implemented for the processing of multi-temporal radar
imagery (Ferretti et al. 2001). The novelty of PSInSAR
algorithm is the capability of identifying a network of
coherent radar targets, i.e., point-like-targets (PS, Permanent
Scatterers) within the radar image. Such pixels correspond to
manmade objects, outcropping rocks, debris areas or build-
ings that register a steady radar signal over the whole
observation time period. The definition of these points
enables to reduce decorrelation phenomena and obtain a
high signal-to-noise ratio, thus discriminating phase contri-
butions related to displacement from those due to atmo-
sphere, topography and noise.

Over urban fabric, where many stable reflectors can be
identified, PS density can be very high (up to hundreds of PS
per square km). One limitation of this technique is the
impossibility of identifying ‘radar friendly’ targets outside of
urban and peri-urban areas and in highly vegetated zones.

The development of the SqueeSAR techniques con-
tributed to extend the field of application of PSInSAR to
natural terrain, overcoming the main limitation of this
technique. SqueeSAR estimates deformation rates not only
from point-like-targets but also from partially coherent pix-
els, called Distributed Scatterers (DS). DS points correspond
to homogeneous ground surfaces and not to single objects,
i.e., uncultivated areas, deserts, debris covered slopes and
scattered outcrops.

LOS (Line of Sight) deformation rate can be estimated
with an accuracy theoretically lower than 1 mm/yr, at least
for very stable PS during a long-time span. PSI analysis is
designed to generate time-series of ground deformations for
individual reflectors. The accuracy of the single measure-
ment in correspondence of each SAR acquisition ranges
from 1 to 3 mm (Colesanti et al. 2003). Each measurement is
referred temporally and spatially to a unique reference image
and to a stable reference point. Over the last 15 years,
satellite interferometry proved to be a valuable technique for
slope instability investigations (Raspini et al. 2017; Lu et al.
2019).

The launch of Sentinel-1 mission opened a new opportu-
nity for InSAR applications: it provides, on a regional scale,
real-time deformation monitoring and response for geologi-
cal processes. Developed within the Copernicus initiative, the
Sentinel-1 mission is composed of a constellation of two twin
satellites, Sentinel-1A and Sentinel-1B. Launched in April
2014 and in April 2016 respectively, they share the same
orbital plane and ensure a unique revisiting time of 6 days
optimised for SAR interferometry applications.

With respect to previous satellites, Sentinel-1 data couple
some favourable characteristics: regional-scale mapping
capability thanks to the TOPS acquisition mode), systematic
and regular SAR observations and rapid product delivery
(typically less than 3 h).

Sentinel-1 SAR products are freely accessible, thus pro-
viding the scientific community, as well as public and pri-
vate companies, with consistent archives of openly available
data, suitable for monitoring applications relying on the
processing of long series of SAR images.

Sentinel-1 have been used to assess the feasibility
(Novellino et al. 2017; Vecchiotti et al. 2017) and to
establish nationwide ground deformation services (e.g.,
Kalia et al. 2017; Dehls et al. 2019; Balasis-Levinsen et al.
2019; Manunta et al. 2019), by mosaicking adjacent SAR
data stacks, rather than providing new streamlines of infor-
mation for monitoring solutions (Raspini et al. 2018). The
potential offered by the shorter repeat cycle and regularity of
acquisitions of Sentinel-1 with respect to other satellites has
been rarely fully exploited.

The Tuscany Region: Identification
of Landslide Accelerations with Sentinel-1

Benefits deriving from the systematic exploitation of satellite
data for landslides monitoring are presented and discussed
through the case study of the Tuscany Region (Central Italy).
Being characterized by heterogeneous physical settings, with
Apennines flysch ridges marking its northern and eastern
parts, Tuscany Region represents a perfect scenario to test,
tune and refine this new monitoring approach.

The Tuscany Region results to be a very landslide-prone
area. Landslide processes have pervasively shaped the Tus-
can landscape (Rosi et al. 2018 mapped more than 90,000
landslide) and are a major issue for regional authorities.

In October 2016, for the initial implementation of the
continuous monitoring of the Tuscany Region, the images
archives of the Sentinel-1 were acquired and then processed.
This phase ended with the creation of ground deformation
maps with almost 2 million PS points, covering the whole
Tuscan territory, data useful to understand and assess the
stability evolution of the territory.
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In the second phase of the project, started after the pro-
vision of the baseline, the database of ground deformation
measurements was updated by continuous processing of
Sentinel-1 images. Once a new Sentinel-1 image is available,
it is automatically downloaded and added to the existing
archive. The new data stack is then entirely reprocessed to
generate new ground deformation maps and updated dis-
placement time series. At the end of December 2019, a total
of 87 updates have been created for the Tuscany Region,
evenly distributed over the monitoring period (29 updates in
2017, as well as in 2018 and in 2019).

In Fig. 1 velocity maps obtained from the processing of
all the Sentinel-1 images up to December 2019 are reported.
Each velocity map includes more than 900,000 points and
provides a synoptic view of the regional displacement field.
Measurement point are represented by dots coloured
according to their mean velocity along the LOS of the
satellite, expressed in millimetres per year, with positive
values of mean velocity representing displacements towards
the satellite, and negative values representing displacements
away from the satellite.

Displacement time series represent the most advanced
product of any PSI approach, providing the deformation
history over the observed period, and are fundamental for
studying the kinematics of a given phenomenon, highlight-
ing any potential changes occurred during the monitoring
period, such as sudden accelerations prior to a landslide
failure.

Time series, systematically updated with the most recent
available Sentinel-1 acquisition, are analysed to detect
anomalous points (i.e., points where a change in the
dynamics of motion is occurring). Anomalous points are
analysed with the support of thematic information to decide
if an anomalous pattern can be considered worth reporting to
regional authorities (Raspini et al. 2019).

The cluster of anomalous points appeared during winter
2018 in the village of Carpineta (Fig. 1 for location) is a
representative case of significant anomalies of movement
determining a significant level of risk.

Carpineta (municipality of Sambuca Pistoiese) is a
remotely placed village in the Northern Apennines at an
elevation of about 800–850 m a.s.l. on an eastward exposed
slope. From a geological point of view the area is charac-
terized by the presence of a succession of foredeep turbiditic
deposits.

The village is affected by a large, active system of
earth-slides. SqueeSAR results reported in Fig. 2, covering
the time interval from December 2014 to August 2018,
confirmed the presence of active movements. The highest
deformation rates (dark red points in Fig. 2 with values
above 30 mm/yr) were recorded in the central part of the
slope, where the village is located.

Analysis of time series highlight, during winter 2018, the
onset of acceleration which affects, with different timing,
different parts of the landslide.

The acceleration of the Carpineta landslide occurred after
a period of persistent rainfalls in the area: before the start of
acceleration of January 2018, 30-days and 60-days accu-
mulated rainfall of 179.6 and 578.0 mm, respectively, were

Fig. 1 Ground deformation maps for the Tuscany Region obtained
with SqueeSAR processing for ascending (above) and descending
geometry (below)
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registered by the closest rain gauge. In addition to the
rainfalls, an additional contribution has been given by rapid
snow melting, whose effect on the displacement time series
is clearly visible in the form of a reduced signal-to-noise
ratio from late February to mid-March.

In February 2018 a warning to regional authorities was
released in the form of a monitoring bulletin, with the rec-
ommendation of further analysis and on-site validation sur-
veys, which confirmed the presence of diffuse factures to
buildings induced by the long-term landslide movement.

Landslide Failure Prediction using
with Sentinel-1

The Xinmo landslide (Ngawa Prefecture, Sichuan Province,
Mao County, China) occurred at 5:38 am on the 24 June
2017. The landslide can be classified as a rock avalanche: it
started as a large rockslide in the source area and evolved in

an extremely rapid flow-like movement of fragmented rock.
About 4.5 million m3 of rock detached from the top of the
mountain ridge at an average elevation of 3.431 m a.s.l. (Fan
et al. 2017). Along its travel along the steep slope, the
landslide entrained a large amount of pre-existing debris.

The course of the Songping gully, which flows at an
elevation of 2280 m from WNW to SSE in the area, was
dammed for more than 1 km (Scaringi et al. 2018) by a
sliding mass of about 8–13 million m3 (Su et al. 2017), with
a thickness of debris of more than 10 m and a total area of
1.5 km2. The landslide hit the Xinmo village with a velocity
of 250 km/h (Fan et al. 2017), burying 62 houses and killing
more than 80 people.

A post-event InSAR (Interferometric Synthetic Aperture
Radar) analysis on a stack of 45 descending C-band SAR
images acquired by the ESA Sentinel-1 satellites from 9
October 2014 to 19 June 2017 was performed immediately
after the event. The purpose of the analysis was twofold:

(i) detect and record any pre-event deformation in and
around the village of Xinmo;

(ii) identify potential pre-failure signal for the Xinmo
landslide.

Displacement data obtained using the SqueeSAR tech-
nique (Ferretti et al. 2011), provided valuable information on
ground movements before the event (Fig. 3). The area of the
Xinmo village exhibits very low deformation rates, ranging
between − 2.0 and 2.0 mm/year, indicating relatively stable
ground conditions (green regions).

Results highlight the presence of active movements in a
large sector of the slope above the Xinmo village. About 700
measurement points (MPs) are identified, with deformation
rates exceeding several millimetres per year. In the upper
part of the slope, close to the landslide scarp, velocity values
range between—10 and—20 mm/year, with peaks of about
—27 mm/year (where the negative sign indicates a move-
ment away from the sensor). Considering the acquisition
geometry and the orientation of the slope, the measured
deformation rates are consistent with the occurrence of
precursory movements over a large sector of the slope
affected by the 24 June 2017 landslide. It is worth remarking
that this specific sector of the slope was the origin of the
sliding event.

Advanced and systematic analysis of displacement time
series, which describe the evolution of deformation over the
entire monitoring period (from 9 October 2014 to 19 June
2017), is of fundamental importance to understand the
dynamic conditions of a specific landslide, as they highlight
any changes occurred during the investigated period, such as
progressive accelerations before the landslide failure.
Deformation time series of points located in the NW sector

Fig. 2 Ground deformation data for the landslide of Carpineta
(municipality of Sambuca Pistoiese)
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of the source area exhibit an acceleration starting from April
2017. Accelerating areas are the most important to detect for
early warning purposes, as they are directly related to slope
instability. Anomalous accelerations can indicate that the
landslide has entered the tertiary creep and it is approaching
collapse (Saito 1969). Specific forecasting methods exist to
determine the probable time of failure (Fukuzono 1985;
Intrieri et al. 2018).

A retrospective forecast of the time of failure has been
performed starting from the accelerating time series. The
Fukuzono method for forecasting the time of failure has been
applied to the displacement data exhibiting progressive
acceleration, pointing out that an accurate estimation of the
failure time was already possible since the beginning of June.

Conclusions

The launch of Sentinel-1 constellation, a conflict-free mis-
sion, opened the possibility to design of a new paradigm in
satellite-based monitoring systems.

Sentinel-1 data, continuously processed and analysed, can
be exploited to scan wide areas, to spot unstable zones and to
systematically track ground deformation. The main purpose
of this application is the early identification of deviations
from a linear trend of the displacements as it is a direct sign
of a change in the dynamic conditions of a landslide.

Providing continuous displacement monitoring,
Sentinel-1 proved the feasibility, although in retrospect, of
landslide forecasting, a crucial task in any landslide analysis.

Leveraging the enhanced imaging capabilities of
Sentinel-1 and the advances of computing capacities,
regional to national scale monitoring systems are now pos-
sible, at least for some landslide typologies.

Continuous information on where, when and how fast the
ground is moving can be provided, supporting authorities
with prioritization of hazards deemed to be most urgent.
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Fig. 3 Pre-failure sign of the Xinmo landslide as seen from Sentinel-1.
Ground deformation maps are reported on the left side of the picture,
while displacement time series (top) and respective inverse velocity

(bottom) of a point taken from the accelerating area are included on the
right. The red line indicates the actual time of failure (24 June 2017)
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Comparison Between PS and SBAS InSAR
Techniques in Monitoring Shallow
Landslides

Xue Chen, Giulia Tessari, Massimo Fabris, Vladimiro Achilli,
and Mario Floris

Abstract

The main aim of this study is to compare the two
commonly used multi-temporal interferometric synthetic
aperture radar (InSAR) techniques, i.e. permanent scat-
terers (PS) and small baseline subset (SBAS), in moni-
toring shallow landslides. PS and SBAS techniques have
been applied to ascending and descending Sentinel-1
SAR data to measure the rate of surface deformation and
the displacement time series in the Rovegliana area (NE
Italian pre-Alps) from 2014 to 2019. As expected, PS
results cover only urban areas, while those obtained by
SBAS cover up to the 85% of the investigated area.
Velocity maps obtained by the two techniques show that
some sectors of the investigated slope are affected by
active shallow landslides which threaten the stability of
buildings, walls and road network. The comparison
between ascending and descending velocity maps along
the satellite line of sight reveals the presence of a
horizontal component in the east–west direction which is
consistent with the landslide kinematic. The analysis of
the displacement time series shows that, in the case of
linear deformation trends, PS and SBAS results are
similar, whereas, in the case of high oscillations and

non-linear behavior, SBAS technique can provide a better
estimation of the displacements. Besides, SBAS provides
smoother and less noisy displacement time series. How-
ever, both the techniques showed their high capability in
monitoring the evolution of the landslides, which is
crucial for the implementation of effective risk prevention
and mitigation strategies. To deep investigate the differ-
ences between the two techniques, other geomatic
methodologies, based on global navigation satellite
system and terrestrial laser scanning, should be used.

Keywords

DInSAR techniques� PS� SBAS� Sentinel-1� Shallow
landslides � Pre-alps � Italy

Introduction

Differential interferometric synthetic aperture radar (DIn-
SAR) is a powerful remote sensing technique for continuous
detection and monitoring of land surface deformation,
thanks to its cost-effectiveness and high-precision in the
analysis of wide areas. In particular, this technique is cap-
turing the attention of the landslide community in the last
decades (Wasowski and Bovenga 2014). DInSAR uses a
pair of complex-values SAR images, acquired at different
time and from slightly different orbital positions, to generate
an interferogram. The phase difference obtained from the
two acquisitions can be converted into surface land dis-
placement along the satellite line of sight (LOS) (Zeni et al.
2014). Multi-temporal interferometry methods, i.e. perma-
nent scatterers (PS) (Ferretti et al. 2000, 2001; Crosetto et al.
2016) and small baseline subset (SBAS) (Berardino et al.
2002; Casu et al. 2006), overcome the limitation of DInSAR
phase disturbance, such as atmospheric artifacts and topo-
graphic inaccuracies, leading to successful applications in
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landslide investigations (e.g. Colesanti et al. 2003; Hilley
et al. 2004).

PS-InSAR technique generates differential interferograms
with one common master identifying persistent point-wise
reflectors, such as manmade structures and rocks. It is gen-
erally applied to analyse deformation affecting urban areas,
where the number of persistent scatterers is higher than in
natural environments. This technique considers a deforma-
tion model (usually a linear model), avoiding phase filtering
and unwrapping, simplifying the processing chain compared
to the SBAS one.

SBAS-InSAR technique relies on a redundant network of
image pairs,with short spatial andmoderate temporal baseline,
detecting the temporal evolution of the surface deformations
and increasing the spatial coverage, especially over non-urban
areas. This technique extracts the deformation time series from
the observed filtered and unwrapped phases. Considering the
much higher number of generated interferograms, this tech-
nique is more time-consuming from the computational view-
point and for the operator intervention too.

In this paper, a comparison between the results obtained
from PS and SBAS processing of Sentinel-1 data is reported,
in terms of velocity maps and displacement time series,
covering the time period 2014–2019. The analysis was
carried out in an area affected by shallow landslides, located
in the north-eastern Italian pre-Alps. In this area, previous
studies (Tessari et al. 2017) have shown how interferometric
analysis of several SAR datasets, including Sentinel-1A,
represent a useful tool to investigate the instability
phenomena.

Study Area

The study area, named Rovegliana, includes 4.2 km2 wide
unstable slopes located in the north-eastern Italian pre-Alps
(Fig. 1). Several small agglomerates of houses are placed
along the slopes facing to the Agno torrent. Elevation ranges
from 800–900 m to 400–330 m a.s.l. and the average slope
gradient is about 21 degrees.

The bedrock of the slopes is constituted by two heteropic
formations deposited during middle Triassic: Recoaro
limestone and Gracilis Formation. The first one outcrops in
the upper part of the slopes and is composed by limestones,
marly and dolomitic limestones. The second one outcrops in
the middle and lower part of the slopes and consists of an
alternance of sandy and marly limestones, interbedded with
evaporitic dolomites. These formations are highly fractured
due to the tectonic events that occurred during the Upper
Triassic-Jurassic and the Alpine orogeny.

The whole area is prone to instabilities of alluvial and
colluvial depositions resulting in large quantities of debris
material with thickness up to 10 m. The grain size of the

debris is very heterogeneous, from millimetric to decametric
clasts immersed in a clayey and silty sand matrix. Locally,
morphological evidences, such as bumps, dips and sudden
changes in the slope, reveal the presence of large boulders in
the debris, dislocated from the calcareous formation located
at the top of the area.

The slope instabilities were identified through in situ
investigations, aerial photos interpretation and remote sens-
ing surveys (GPS and DInSAR). They consist of translational
and rotational slides, soil slips and superficial slow defor-
mations (creep) which involve the debris cover (Fig. 1). Slide
phenomena and soil slips have a high state of activity and
mainly occur in the wet season (Autumn) after rainfall events
(Toaldo et al. 2016; Tessari et al. 2017). Superficial defor-
mations have displacement rates of few millimetres per year
estimated by previous remote sensing surveys. They do not
show clear geomorphological evidences, but movements
result in damages (cracks) to buildings, walls and road net-
work, and upward curvature of trees.

Data and Methods

Ground deformation over the study area has been measured
using both ascending and descending Sentinel-1 C-band
SAR images, acquired in interferometric wide swath mode,
with a 12-day or 6-day revisit time and a spatial resolution of
about 15 m. 216 images acquired from ascending track 117
(30 March 2015 to 04 November 2019) and 233 images
acquired from descending track 95 (24 October 2014 to 03
November 2019) have been processed.

Fig. 1 Location of the study area (inset) and map of the main
gravitational and erosional processes. The most damaged areas due to
instability phenomena are indicated
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The multi-temporal process of Sentinel-1 data has been
performed through SARscape COTS, using both PS and
SBAS algorithms. These approaches provide their best per-
formances on different types of land cover and objects, point
targets and distributed targets respectively (Pasquali et al.
2014).

The PS technique analyses the deformation of point
scatterers with high temporal stability of the backscattered
signal. It establishes a deformation model based on the phase
difference of each pixel individually, without performing any
phase unwrapping. This leads to preserving the maximum
spatial resolution and the total independency of adjacent
pixel measurements.

The SBAS technique measures deformations of dis-
tributed targets, e.g. sparsely urbanized areas and open
fields. In fact, the volume decorrelation typical of natural
distributed targets is reduced through an adaptive filtering
step. The SBAS processing chain has been applied using an
intermittent approach, which consists of extending the
analysis to those resolution cells where the information has
some temporal gaps because of the signal decorrelation,
leading to coherence values smaller then the established
acceptable threshold, equal to 0.3 in our analysis. Therefore,
SBAS intermittent approach allows to spatially extend the
final results. However, the results reliability is guarantee
through two parameters establishing the minimum accept-
able percentages of interferograms and images, to make sure
that most of the deformation temporal information is pre-
served and directly calculated from the interferograms and
using interpolation in the limited decorrelated temporal
intervals. In detail, the analyses considered 60% as the
percentage of interferograms and 95% as the minimum valid
acquisitions, which means that pixels covering at least 60%
interferometric connections of the whole connections and
95% acquisitions of all the acquisitions are maintained in the
final result. All the pixels which were not respecting this
controls have been discarded.

PS connection sets one image as the master, which is
usually in the middle of the temporal and spatial distribution
of acquisitions, in order to maintain a high coherence with
most of the other images. The master image acquisitions for
ascending and descending are 25 January 2018 and 25
November 2017, respectively. For SBAS connections, we
set 36 days and 100 m as the temporal and spatial baselines
constraints. In this case, we had to manually insert additional
connections before the launch of Sentinel-1B, because of the
low acquisition frequency of 12 days. Then, about 900 pairs
were obtained.

We compared the results from PS- and SBAS- InSAR
techniques considering spatial coverages, velocity distribu-
tion, capability of identifying landslides, and displacement
time series.

Results

Ascending and descending velocity maps derived by PS and
SBAS techniques are shown in Fig. 2. PS and SBAS results
show different spatial coverage and quite similar displace-
ment rates in the coinciding points.

PS points are mainly located in the small urban
agglomerates or roads (see Figs. 2a, b and 1). The density of
PS points in the entire study area is 262 per kilometres in
ascending orbit and 437 per kilometres in descending. In the
landslide areas, the density is higher, with 413 and 767 PS
per kilometres in ascending and descending orbits, respec-
tively. SBAS results cover most of the study area, providing
information not only over anthropic structures but also on
non-urban areas.

Results derived by the SBAS processing of ascending
dataset cover the 85% (3.7 km2) of the entire study area,
those derived by descending track cover the 76% (3.2 km2).
Landslide areas are almost totally covered by both ascending
and descending SBAS results.

The comparison between displacement rates estimated by
the two techniques in all the coinciding points is reported in
Fig. 3. The mean and standard deviation (std) of difference
values (SBAS velocity minus PS ones) are 1.99 and 2.17 for
ascending, and -0.91 and 1.39 for descending datasets,
respectively.

Considering the result coverage in the landslide areas, just
one lanslides (L8) doesn’t contain any PS both in ascending
and descending orbit, while the others contain 4 or more PS
with low variability in the estimated velocities (Tables 1 and
2). In the case of SBAS, more than 80% of landslide areas
are covered by the results of the processing. In this case, the
estimated velocities present quite high variability for each
landslide and the mean values are generally significantly
higher than those calculated by PS.

To compare the results from the two techniques, the
displacement time series obtained by the processing of
descending dataset in the most damaged areas have been
considered (Fig. 4). In general, time series trends and shapes
are very similar (Fig. 4b, c, and f), but SBAS series appear
smoother and less noisy. PS and SBAS time series plotted in
areas 1 and 4 (Fig. 4a and d) show differences in the dis-
placement trends due to a divergence in deformation rate in
the first part of the monitoring period.

Discussion

As expected, the SBAS technique provided a displacement
rate estimation for a larger part of the study area compared to
the PS one. However, both techniques provided very inter-
esting information on the behaviour of the landslides
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affecting the investigated slopes. Both PS and SBAS results
show that in the most active sectors of the area the dis-
placements measured from ascending dataset are positive,
while the descending ones are negative, which means that a
horizontal component from east to west is present. These
results are consistent with the landslide kinematic which

mainly consist of superficial mass movements along the
maximum slope direction, which has a dip toward the
south-west of about 21°.

Considering the whole study area, the differences
between the two techniques in the estimation of the dis-
placements in the coinciding points are quite low (see Figs. 3
and 4) and caused by the different approaches. PS usually
considers only a single pixel located in a building having an
independent behaviour. Otherwise, SBAS measures a mul-
tilooked pixel which mediates the information of building
with the surrounding area. In addition, SBAS includes a
filtering step that makes the pixels spatially correlated.

Analysing each landslide, we found significant differ-
ences in the mean velocity and its variability. In particular,
velocities estimated by SBAS are higher and show high
variability. In the case of PS, only urban areas which are
generally located on flat or gently slope, were detected,
while SBAS provides the deformation rates of also
non-urban and steepest sectors of the landslides which are
generally higher. For this reason, SBAS technique can be
considered more effective than PS in detecting and moni-
toring landslide phenomena.

Fig. 2 Velocity maps derived by
PS- (a, b) and SBAS- (c,
d) InSAR processing of
Sentinel-1 SAR data acquired in
ascending (a, c) and descending
(b, d) tracks. Black circles
indicate the areas most damaged
by instability phenomena

Fig. 3 Difference between velocities obtained by SBAS and PS
techniques in all the coinciding points

158 X. Chen et al.



Regarding the differences in the displacement time series
obtained by the two techniques in the case of the damaged
areas 1 and 4 (Fig. 4a and d), they can be due to the low
frequency of acquisitions before the launch of Sentinel 1B
satellite. The low number of SAR images can limit the
potential of PS approach in detecting a non-linear trend of
the displacement as occurred in the first part of the time
series. Therefore, SBAS results should be considered more
reliable.

Conclusions

In this study, we compared PS and SBAS InSAR techniques
in monitoring shallow landslides affecting an area located in
the north-eastern Italian pre-Alps. Both techniques provided

very useful information on the landslides. But SBAS has
shown better reliability in landslide detection and monitoring
because of the larger coverage of the results and the ability to
measure non-linear deformation patterns. Mass movements
are often characterized by seasonal oscillations or accelera-
tions, in this case, SBAS can provide smoother and more
detailed displacement time series, leading to deeper insights
on the temporal evolution of instability phenomena. SBAS
allows monitoring both the landslides and the deformations
of structures and infrastructures due to such phenomena,
which is crucial for the implementation of effective risk
prevention and mitigation strategies. However, also PS
technique can provide information on the main landslide
characteristics, but the results are mainly limited to urban
areas, so that it can be considered as a very useful tool for
the monitoring of the elements at risk.

Table 1 Comparison between
velocities estimated by PS and
SBAS in landslide areas
(ascending orbit)

Landslide PS asc SBAS asc

Code Area
(km2)

Number
of points

Mean vel.
(mm/y)

Std Cover.
(%)

Mean vel.
(mm/y)

Std

L0 0.100 53 0 0.5 100 −6.2 5.0

L1 0.080 11 0.8 0.6 100 −6.0 3.6

L2 0.080 8 1.7 0.9 100 −4.8 3.9

L3 0.140 117 0.3 0.4 85 −4.1 4.4

L4 0.020 4 0 0.6 77 −1.1 0.9

L5 0.050 19 0.3 0.3 96 −3.1 2.5

L6 0.500 220 3.4 1.3 90 −3.8 5.3

L7 0.020 29 0.8 0.8 100 −2.2 1.5

L8 0.002 0 - - 100 −12.4 3.7

L9 0.002 7 1.7 0.2 100 −7.9 3.0

L10 0.150 28 0.8 0.3 94 −7.3 4.9

Table 2 Comparison between
velocities estimated by PS and
SBAS in landslide areas
(descending orbit)

Landslide PS desc SBAS desc

Code Area
(km2)

Number
of points

Mean vel.
(mm/y)

Std Cover.
(%)

Mean vel.
(mm/y)

Std

L0 0.100 55 −0.6 0.4 96 −7.7 5.8

L1 0.080 45 −0.2 1.3 100 −4.6 2.8

L2 0.080 30 −2.7 1.2 100 −6.9 2.9

L3 0.140 174 −2.1 1.1 79 −3.8 3.8

L4 0.020 18 0.3 0.4 83 −0.2 2.4

L5 0.050 39 0.3 0.6 85 −0.6 4.3

L6 0.500 435 −5.2 2.3 89 −9.1 4.5

L7 0.020 38 −0.4 1.7 100 −1.3 1.1

L8 0.002 0 - - 100 −5.5 4.4

L9 0.002 8 −3.7 0.6 100 −6.5 3.2

L10 0.150 80 −1.7 0.8 98 −2.0 3.3
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In the next future, the obtained results will be integrated
through ongoing GPS and terrestrial laser scanner surveys,
to verify and, eventually, calibrate interferometry data and
better understand the relationships between landslides and
damages to anthropic structures.
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Analyses of Koitash Landslide, Affecting
Mailuu Suu Valley, Kyrgyzstan, Through
Integrated Remote Sensing Techniques

Giulia Tessari, Loris Copa, Giaime Origgi, Almazbek Torgoev,
Lars Uhlig, and Francesco Holecz

Abstract

This work presents an integrated application of remote
sensing techniques on monitoring post event conditions
of the Koitash landslide, affecting Mailuu Suu valley,
Kyrgyzstan. This area is highly prone to landslide
affecting the slopes next to the numerous radioactive
waste rock dumps and tailings storage facilities dissem-
inated along the valley. In this hazardous context, we
propose a methodology to map the location of recent
landslides, active slopes and strong surface variation, over
large areas. The analysis is tested on the Koitash
landslides and combines several remote sensing datasets.
First, a high-resolution Digital Surface Model (DSM) is
generated using optical tri-stereo acquisitions. The DSM
defines the topographic condition before the slope
collapse. Secondly, a fast mapping of land cover changes
is performed through satellite optical data. Finally,
multi-temporal interferometric techniques are used to
identify strong topographic variation on the Koitash slope
after the collapse and small post event surface deforma-
tion affecting the crown area and the landslide deposits.
Results highlighted the consequences of the landslide on
diverting Mailuu Suu river path, highlighting a strong

topographic variation due to the slope collapse. More-
over, ongoing surface deformations have been identified
not far from tailings storage facilities containing radioac-
tive deposits. The products are generated mainly from
freely available satellite acquisitions, proving the capa-
bility of mapping and monitoring wide areas through a
cost-effective approach.

Keywords

Mailuu Suu landslide � Radioactive waste tailings �
DInSAR techniques � SBAS � Sentinel-1 � Digital
surface model � Land cover changes � Landslide
monitoring

Introduction

Mailuu Suu valley, located in the southern border of Kyr-
gyzstan, Central Asia, is known for the dramatic environ-
mental conditions due to the presence of the storage sites of
uranium radioactive waste, resulted from the uranium min-
ing and postprocessing completed in the late 1960s. Thou-
sands of tonnes of uranium ore and processing waste are
deposited all along this remote valley, in a definitely sensi-
tive setting. In fact, tailings storage facilities are often
located on weakly stable rocks and close to landslides-
hazardous slopes (Torgoev 2008). Therefore, this context is
creating an alarming environmental scenario that could lead
to the contamination of the water supply for the Fergana
valley, the most densely populated part of Central Asia. This
is why this area is considered as one of the most polluted
places in the planet. Numerous studies were carried out to
analyse the main factors triggering landslides, as Golovko
et al. (2017) did in South Kyrgyzstan, generating a landslide
inventory for hazard assessment through remote sensing
data, to facilitate an analysis at regional scale in case of
information scarcity.
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Mailuu Suu area have been studied as some hundred
landslides have affected the region in the last decades
(Aleshin and Torgoev 2014). The recent re-activation of
most of those paleolandslides has been influenced by mining
activities and urbanization combined with geological and
climatic main triggering factors. In this work, we focus on
the re-activation of the Koitash landslide, affecting Mailuu
Suu valley on the 28 April 2017. The landslide was char-
acterized by a sudden and rapid kinematic and the total
change of the slope surface. The rapid collapse of the slope
caused the failure of a large amount of sediments, which
accumulated just next to some of the tailing storage facilities
containing radioactive wastes.

Landslide risk management is increasingly exploiting
remote sensing techniques, often combining radar and
optical remote sensing data, taking advantage of their mul-
tispectral characteristics, high revisiting cycle, wide area
coverage and high spatial resolution (Metternicht et al.
2005). Several applications show how satellite acquisitions
can support a detailed landslide inventory mapping. This can
be address to prevention and disaster risk reduction activities
but also to emergency response phase to estimate the event
extensions, the caused damages and the ground motion sit-
uation and evolution (Casagli et al. 2016).

Here, we present an analysis of the post collapse condi-
tion of Koitash landslide. We integrated and combined dif-
ferent remote sensing techniques to analyse both optical and
Synthetic Aperture Radar (SAR) satellite data. We per-
formed a fast and automatic land cover mapping at large
scale through Sentinel-2 data to detect the changes induced
by the landslide; we generated a high-resolution digital
surface model using tri-stereo optical data to define the slope
topography before the event; finally we applied
multi-temporal interferometric techniques on Sentinel-1
data, acquired after the event, to estimate the slope topo-
graphic changes after the collapse and the eventual ongoing
deformation affecting the area. The choice of focusing on the
post event allows avoiding the temporal decorrelation
affecting the data before and after the collapse (Tessari et al.
2017). The benefit of the proposed approach is here pre-
sented, highlighting the cost-effectiveness, accuracy and
scalability over larger areas towards an operational system

Study Area

Mailuu Suu valley is located in the western boards of Kyr-
gyzstan, in Jalal-Abad region (Fig. 1). This area is set in the
tectonically and seismically active Tien Shan Mountains,
affected by several strong earthquakes in the last century
(Havenith et al. 2006). This area is known for the intense
mining activities dedicated to radioactive uranium ore
extraction, mainly between 1946 and 1968. In fact, in the

framework of the Soviet nuclear program, around 9,100 tons
of Uranium oxide have been produced. These activities have
been abandoned later, as they were no more profitable. More
than 23 unstable Uranium tailings storage facilities with
unstable dams have been left by the Soviet Union on a
tectonically unstable hilly area above the town. Nowadays,
Mailuu Suu is one of the most polluted and radioactive
places in the world. Moreover, the frequent occurrence of
natural hazards, as landslides or floods, make this situation
even more dramatic and dangerous.

This environmentally hazardous area was affected by a
landslide, Koitash landslide, the 28th April 2017. This dra-
matic event caused the river blockage and the formation of a
natural dam and the consequent migration of Mailuu Suu
river, which is flowing at the bottom of the main slope
(Fig. 2). The location of the unstable slope is shown in
Fig. 3, where two optical satellite acquisitions allowed
comparing the slope before and after Koitash landslide.

Methods

Several remote sensing analysis and processing techniques
have been integrated in this study, focusing in several
datasets and sensors. The conceptual analysis workflow is
shown in Fig. 4, where blue boxes refer to the input datasets
required to generate the maps (green boxes) and monitoring
(yellow boxes) outputs.

More in detail, a high resolution Digital Surface Model
(DSM) was generated from stereo or tri-stereo satellite
optical data. The DSM was generated using the Space Stereo
module of the Opticalscape© software, following a standard
photogrammetric workflow. The generated DSM was used
as reference for the two additional analyses steps, the Optical
and the SAR data multi temporal analysis.

Satellite optical data were analysed to generate Land
Cover Map (LCM), to verify the surface condition before
and after the landslide event. The series of LCMs allowed
identifying eventual changes induced by the slope collapse.
The LCM were generated using Mapscape© software to
download, process and extract the entire layer needed to be
ingested into an own developed knowledge-based classifier.
The LCM describes the area of interest in terms of settle-
ments, vegetated area, dense forest, open land and bare soil.

The final steps of the workflow consist of the
multi-temporal interferometric analysis of Synthetic Aper-
ture Radar (SAR) data acquired with both ascending and
descending geometry to retrieve surface deformation and
estimate the collapsed volume. SAR datasets were analysed
through the multi-temporal Small Baseline Subset (SBAS)
technique (Berardino et al. 2002), implemented in the
SARscape© software, to retrieve the evolution of deforma-
tions, highlighting potential accelerations, describing the
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ongoing displacement and the potentially unknown insta-
bility phenomena affecting the area even after the 2017
collapse. The previously generated DSM was used as a
reference in the SBAS processing. The SBAS was run using
an intermittent approach, hence accepting some limited
temporal decorrelations due to the vegetation seasonal
changes, without losing the overall final information.
Velocity and sequence of deformations obtained from the
ascending and descending datasets were then combined and
projected to obtain vertical and east-west velocity maps and
time series of deformations, giving a more detailed infor-
mation about the slope deformation directions. Moreover,
the SBAS chain was calculating the topographic correction
obtained from the SAR dataset respect to the reference

DSM. The topographic variation was used to calculate the
collapsed volume on the slope.

Data

The datasets selected and processed were identified trying to
take advantage to freely available data. Only in case of the
DSM generation, commercial Optical acquisitions were used
as the highest resolution of the freely available ones is 30 m.

The DSM was generated from imagery acquired from the
PRISM (Panchromatic Remote-sensing Instrument for Ste-
reo Mapping) system, a stereoscopic imaging instrument
on-board the ALOS-1 satellite. The instrument provides

Fig. 1 Optical image of the
slope affected by Koitash
landslide (green box), showing
the location of tailings storage
facilities (yellow polygons),
buildings (red polygons) and
Mailuu Suu river (light-blue
polyline)

Fig. 2 Photo of Koitash
landslide few days after the
collapse, showing the deviation of
Mailuu Suu River
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tri-stereo along-track imagery with a ground sampling dis-
tance of 2.5 m at Nadir and a Swath Width of 35 km. The
images were acquired in May 2008. The generated DSM has
a 5 m resolution. This product is one of the most
cost-effective available stereo data, considering their reso-
lution and the cost per square km.

The LCM before and after the landslide event were
generating using the freely available Sentinel-2 data.
Sentinel-2 data are EC Copernicus spaceborne multi-spectral
optical acquisitions, at 10 m resolution. The images were
acquired pre and post event, respectively on the 9th April
2017 and on the 8th June 2017.

The multi-temporal SAR interferometric analyses was
focused on the freely available Sentinel-1 acquisitions.
This EC Copernicus mission provided dense stacks of SAR

images, acquired with two different geometries, along
ascending and descending orbits, with a 15 m resolution and
a 12-day revisiting time. In particular, the analyses consid-
ered the post event time period, using the data acquired after
the slope collapse, from July 2017 up to January 2020. The
analysed datasets consist in 77 ascending images (track 100)
and 76 descending images (track 5).

Results

The LCMs generated from Sentinel-2 data are shown in
Fig. 5, where black boxes highlight the pre and post land-
slide condition. Most of the slope, classified as vegetated
area and dense forest before the event, changed into bare soil
after the collapse. In particular, bare soil on the slope toe
corresponds to the collapsed material. The river path was
deviated of approximately 120 m because of the landside,
causing possible inundation risks for the surrounding
inhabited areas. First results allowed to fast mapping large
areas, identifying the landslide effects from the land cover
variation.

The high-resolution DSM generated from PRISM data
extends over 35 � 35 km2 area. This output has been used
as reference topographic layer during the Sentinel-1 SBAS
processing. Respect to the existing freely available low
resolution DSM, working with a high resolution DSM was
helping on estimating and removing the topographic com-
ponent from each interferogram phase difference, reducing
the presence of topographic residual fringes and facilitating
the unwrapping step. Moreover, the PRISM DSM refers to
2008 acquisitions, before the landslide event, while

Fig. 3 Koitash landslide, located
in Mailuu Suu valley,
Kyrgyzstan. Satellite optical
views of the study area before
(left) and after (right) the
landslide event. Red boxes
identify the unstable slope
(Source Google Earth)

Fig. 4 Methodology conceptual scheme
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Sentinel-1 data span the period 2017–2020, hence a post
landslide period. As a consequence, the topographic cor-
rection obtained from the SAR data, as one of the output of
the SBAS process, measured the dramatic slope morpho-
logical change induced by the landslide. In fact, negative
elevation corrections obtained in the landslide crown area

and the upper part of the slope, correspond to an elevation
reduction because of the material collapse. On the contrary,
the lower part of the slope was interested by the sediment
accumulation, leading to an increase of the elevation, and
therefore a positive elevation correction. These results are
shown in Fig. 6, where the red polygon highlights the

Fig. 5 Land cover maps before
(above) and after (below) the
Koitash landslide, collapsed the
28 April 2017. Black boxes
identify the slope affected by the
landslide. Comparison shows the
variation of the river flow and
increasing of bare soil due to
mass movements
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landslide while the red segment shows the A-A′
cross-section which provides the elevation correction along
the slope. The A-A′ profile in Fig. 7 shows a maximum
sediment accumulation of almost 15 m, while, the depth of
the sliding surface in proximity of the crown area is around
30 m. The collapsed along the scarp caused a downward
displacement of 4.7 million m3, as calculated directly from
the topography correction in Fig. 6. Moreover, the accu-
mulated material covers the original river path, in agreement
with the LCMs in Fig. 5. Additionally, results obtained from
Sentinel-1 provide the ongoing deformations affecting the
slope after the landslide event. Mean rate of deformation
maps, projected along the vertical and east-west directions,
are shown in Fig. 8, where the red polygons identify the
Koitash landslide.

The deformation colour scale ranges from blue to red,
corresponding to subsidence/compaction and uplifting in
case of vertical displacements, while in the horizontal

Fig. 6 Elevation correction,
respect to the reference DSM
obtained from PRISM data
(2008), obtained from SBAS
multi-temporal processing of
Sentinel-1 data acquired between
2017 and 2020. The red polygon
highlighted the Koitash landslide

Fig. 7 Cross section of the elevation correction, respect to the
reference DSM obtained from PRISM data (2008), obtained from
SBAS multi-temporal processing of Sentinel-1 data acquired between
2017 and 2020. The location of the profile is shown in Fig. 6 and it is
represented with a red segment
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deformation map, blue areas are moving westward, while red
areas are moving eastwards, depending on slope aspect.
Results in Fig. 8 show how the slope is clearly affected by
vertical deformation as well as an ongoing horizontal dis-
placement along the west direction, both with a rate over-
coming 40 mm/year.

Three points along the slope have been selected in Fig. 8.
Vertical and east-west time series of deformations are plotted
(Fig. 9). It is possible to notice how the crown area is more
affected by horizontal deformation than vertical ones, while

both the central part and the toe of the slope are showing a
higher vertical component. In addition, P2 and P3 are
characterized by an almost constant linear trend of defor-
mations, while P1 is showing an initial stability followed by
an acceleration, more evident in the vertical component. This
describes a re-activation of the deformation some months
after the landslide. Moreover, the area affected by ongoing
deformation is extending close to the tailing storage facili-
ties, identified by the yellow polygons in Fig. 8, that is
located at approximately 200 m far from the collapsed slope.

Fig. 8 Vertical (above) and
East-West (below) mean velocity
maps obtained from the
processing of Sentinel-1 data
acquired between 2017 and 2020.
The red polygons identify the
location of the landslide. Yellow
polygons correspond to the
radioactive tailing store facilities
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Concluding Remarks

This study analysed the post event condition of Koitash
landslide, located in Mailuu Suu area, integrating different
remote sensing techniques to highlight the potential of this
methodology in case of disaster management, prevention or
intervention.

One of the main advantages of the proposed workflow is
the capability of providing information over large areas,
reducing any possible risk related to field monitoring, par-
ticularly relevant after a landslide collapse. In fact, a first fast
mapping of satellite optical data allowed identifying the
portion of the slope affected by the landslide and tracing the
deviation of the Mailuu Suu river path. The generation of a
5 m resolution DSM supported the definition of the topog-
raphy before the Koitash failure. Moreover, from interfero-
metric SAR data it was measured the ongoing sliding trend,
compaction and deformation affecting the slope even after
the failure. The landslide crown area re-activated in the
spring 2018, one year after the collapse, probably because of
the seasonal rainfall events. The lower part of the slope is
affected by constant deformation rates after the collapse,
probably related to the compaction of the collapsed sedi-
ments. The topographic correction in respect to the reference
DSM retrieved the morphology and elevation changes due to
the landslide giving the necessary information to estimate
the displaced volumes. Therefore, despite Sentinel-1 mission
has been mainly designed to monitor deformations, results
show how the multi-temporal and redundant generation of
interferograms having multiple normal baseline values could

provide useful information in respect to the topographic
changes too.

Future developments of the work could focus on
searching for precursor deformations affecting the slope
before its collapse. In addition, despite the presented results
focused on Koitash landslide, the study was conducted on a
much larger area. In fact, taking advantage of the spatial
coverage of the generated DSM and the freely available
Sentinel-1 and Sentinel-2 datasets, it was possible to extend
the proposed analysis to an area, which extends approxi-
mately 35 � 35 km2. Over the full extension of the analysed
data, several slopes showed ongoing deformations and the
topographic changes indicated numerous collapses occurred
between 2008 and 2017.

Considering the high environmental sensitivity of all
Mailuu Suu valley, because of the numerous radioactive
material storages, being able to identify even small defor-
mations and dramatic topographic changes, is allowing to
have a clearer idea of the most hazardous areas and their
proximity to the uranium deposits. In this context, the pro-
posed methodology demonstrated its cost-effectiveness and
proved to be a powerful mapping tool to identify and
quantify on-going processes in hazardous sites were addi-
tional ground measurements are required or where to install
monitoring instrumentation.
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Fig. 9 Horizontal (red curves)
and vertical (blue curves) time
series of deformations plotted in
P1, P2 and P3, located at the
crown area, the central portion
and the toe of the slope obtained
from the processing of Sentinel-1
data acquired between 2017 and
2020. The location of points is
shown in Fig. 8
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Landslide Monitoring in the Main
Municipalities of Sikkim Himalaya, India,
Through Sentinel-1 SAR Data

Giulia Tessari, Divya Kashyap, and Francesco Holecz

Abstract

Landslides are a large threat that generate important
damage, economic losses and human fatalities worldwide.
Identifying terrain deformations related to these phenom-
ena is critical to reduce their impact. In particular, the
population of the Indian Himalayas are menaced by
landslides, which regularly endanger villages and vital
transport axes. Here we present the monitoring of
instabilities on some urbanized areas of Sikkim State
testing the capabilities of Remote Sensing techniques, and
particularly Multi-temporal analysis of Synthetic Aperture
Radar data. The main municipalities of Sikkim State have
been analysed, covering the most inhabited areas where
landslide effects could be more dramatic for the local
population. We illustrated the results obtained over the
capital, Gangtok, and Namchi. These cases have been
analysed thanks to the global availability of Sentinel-1
SAR data. The main multi-temporal interferometric
techniques have been applied, Small Baseline Subset
(SBAS) and Persistent Scatterers (PS) depending on the
extension and density of the urban areas. These tech-
niques allow to map and measure surface deformations
with a millimetre sensitivity, providing the temporal
evolution of the deformation trends. This is fundamental
to identifying activation/re-activation of landslides and
analyse eventual correlation with external factors. In case
of Gangtok, a strong relation with the rainy season was
easily identified. Advantages and limitation of these
techniques in such arduous areas are discussed.

Keywords

Sikkim Himalaya � Landslide mapping �Multi temporal
InSAR � Sentinel-1

Introduction

Landslides are a large threat to the population of the Indian
Himalayas and regularly endanger villages and vital trans-
port axes. Landslide incidences have been of serious concern
to the societies of the affected regions because of their
potential to cause the loss of life, deteriorate natural
resources, damage infrastructural facilities, etc. According to
a Geological Survey of India study, 12.6% of India's land-
mass falls under the landslide-prone hazardous zone and 8%
of global landslide fatalities are reported from our country.
Out of the total land area prone to landslide, 0.18 million sq
km fall in the northeast Himalayas, including Darjeeling and
Sikkim. Naithani (1999) has estimated that damages caused
by landslides in the Himalayan range cost, on average, more
than one billion US dollar per year, besides causing more
than 200 deaths every year. Only in 1968, more than 33,000
fatalities were reported in Sikkim because of landslides
(Choubey 1992). In the light of these numbers, it is evident
that the monitoring of surface displacements and landslide
movements becomes an important task.

Traditionally, landslide hazard assessment had to be
carried out on-site, relying on ground-based methods (Bha-
sin et al. 2002). Largely field-based approaches are often
made arduous by high risk exposure, as well as observa-
tional biases towards objects in easily accessible areas.
Observable target areas are local to maximally sub-regional.
Due to the large number and extent of the landslide prone
areas in the Himalayas ground-based methods are not suited
for rapid detection and monitoring of hotspot areas. Remote
sensing approaches, on the other hand, enable objective,
safe, and spatial continuous observations at different spatial
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scales, covering large areas. Recently, studies focused on
landslide susceptibility estimation have been performed on
Sikkim cities, e.g. on Gangatok (Kaur et al. 2019). Despite
several studies carried out at landslide prone areas, there is
lack of in depth scientific study to map the temporal evo-
lution of surface deformation affecting the main municipal-
ities and urbanized areas.

Starting from the Nineties, Space-borne Synthetic Aper-
ture Radar (SAR) data demonstrated to be an effective tool to
monitor surface deformations affecting soil, structure and
infrastructures. Numerous works were focus on the use of
SAR data for detecting and monitoring landslides, clarifying
their potentially and limits (Wasowski and Bovegna 2014;
Barra et al. 2016; Béjar-Pizarro et al. 2017; Tessari et al.
2017a). Actually, despite numerous successful applications,
it is fundamental to consider data decorrelation, which typ-
ically affect dense vegetated slopes, layover, shadow and
signal distortions due to the acquisition geometry of SAR
data and the limitations on the maximum detectable defor-
mation velocities (Cascini et al. 2009). In detail, maximum
detectable LOS deformation between two adjacent scatters
cannot exceed k/4 within one revisiting time interval to
prevent ambiguity of phase measurements Therefore, gen-
erally slow landslides can be detected while fast kinematic
ones, as debris-flow as rock falls cannot be analysed through
Interferometric techniques. Some alternatives, as change
detection approach, can be used to map fast surface changes
(Tessari et al. 2017b). The perspective of landslide detection,
mapping and characterization is expected to increase thanks
to a new generation of SAR data, Sentinel-1, currently
acquired by the European Space Agency, which guarantees a
continuous monitoring, covering all over the world surface
at least once every 12 days.

Considering the alarming situation daily faced on the
main Sikkim municipalities, the Cooperation Office of the
Swiss Embassy (SDC) located in New Delhi has been sup-
porting several projects aimed on using new and advanced
technologies to provide the necessary information for risk
mitigation in the Himalayan Region s in the framework of
the action “Strengthening State Strategies for Climate”. In
fact, the outcomes of the present work have been provided to
the Sikkim State Disaster Management Authority (SSDMA).

Study Areas

Sikkim, an Indian small mountainous state in the eastern
Himalayas, located between Nepal, Tibet and Bhutan, covers
an area of 7069 sq. km. It is also a hilly state consisting of
tangled series of interlocking mountain chains rising range
above range from the south to the foot of high peaks, which
marks the snow line in the north. The state has four districts
East District, West District, North District and South District

with their headquarters at Gangtok, Geyzing, Mangan and
Namchi respectively (Fig. 1). Sikkim has a very rugged
topography and formidable physical features. The whole
state is enclosed on three sides by lofty ranges and spurs of
Greater Himalaya with varying heights on three sides.
Within Sikkim, the main municipalities and villages are
almost entirely within the Lesser Himalayas, consisting
mainly Daling group of rocks which have undergone several
episodes of loading, unloading and uplift during the oro-
geny. The result is a hazardous combination of weak geol-
ogy (micro-fractures, joints, fissures, separated foliation
planes, faults etc.) and high relief within short distances. The
main causative factors of slope instability are weak geology,
adverse planar structures in rocks, unstable slope materials,
steep slopes or high relative relief. Moreover, intense rain-
falls cause surface runoff of water, despite man-made drains
are trying to reduce the landslide risk.

In the framework of this project, the main Sikkim
municipalities have been analysed: Gangtok, Namchi,
Geyzing, Pelling, Soreng, Sombaria and Mangan. Here we
present the results of only two cases among these cases:
Gangtok, the densely urbanized capital of Sikkim, and
Namchi, as representative of all the other cases, character-
ized by a sparse, low-density urbanisation.

Data and Methods

Sentinel-1 is a Copernicus programme satellite constellation
run by the European Space Agency, through a constellation
of two polar-orbiting satellite where C-band radar for SAR
applications are installed. Two dataset are available over
Sikkim, respectively acquired by Sentinel-1 satellite while is
flying from South to North (ascending orbit) and from North
to South (descending orbit). The main characteristics of the
two datasets are described in Table 1.

Fig. 1 Location of the Indian Himalayan state of Sikkim and its main
regions, North, West South and East Sikkim with the respective capitals
(left side). Satellite optical map of Sikkim (right side)
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SAR data record the back-scattered signals of ground
surfaces and soil targets. SAR Interferometry consists of the
analysis of the phase difference between two SAR images
referred to equivalent areas, i.e. relative to the same frame
observed from different points of view.

One of the component of the obtained phase difference is
due to possible ground deformations, that can be isolated
through the unwrapping of the phase difference, the
so-called Differential InSAR (DInSAR), to create displace-
ment and velocity maps and identify hazardous phenomena.

Beside the conventional DInSAR, two additional com-
plementary approaches can be used for the measurement of
the temporal evolution of deformations. One is the Persistent
Scatterers (PS) (Ferretti et al. 2001) and the other is the
Small Baseline Subset (SBAS) (Berardino et al. 2002)
technique. PS relies on strong stable point scatterers (such as
rock or man-made structures) while the SBAS is intended for
the analysis of distributed targets. With respect to the PS, the
SBAS technique is less sensitive to the number of acquisi-
tions, because it exploits the spatially distributed coherence,
instead to exclusively consider single points, as in the PS.
However, in general, it is worth mentioning, that the more
the acquisitions, the better the resulting product quality
because the atmospheric component can be better estimated
and reduced. Concerning the displacement, with respect to
the PS technique, which is limited to the linear behaviour,
the SBAS one can estimate quadratic and cubic models.
Moreover, no modelled displacements are derived. On the
maximum displacement, while there is no constraints in
temporal term, the displacement is limited with respect to the
spatial variability, due to the phase unwrapping. In addition,
the SBAS approach is more robust than the PS one, because
it takes advantage from the higher redundancy of all avail-
able cross-interferograms. Depending on each case, the most
adequate multi-temporal InSAR algorithm is applied. The
availability of two acquisition geometries allows retrieving
deformation not only along the satellite Line of Sight
(LOS) but also to project the results along the vertical and
east–west directions.The main challenges with capturing
landslides using these methodologies are both dense vege-
tation and strong topography, which have a negative impact
on the radar signal to properly detect ground movements that

could be identified as landslides. These challenges might be
more easily addressed in the low density urbanized munic-
ipalities, generally located on the top of hills and mountains,
as it happens for the considered cases.

Results

The main results obtained over Namchi and Gangtok consist
on the mean velocity maps of deformation (Fig. 2) and the
time-series of deformation (Fig. 3), available for each pixel
covered by the final results, measured along the satellite
LOS. For all the study areas, both ascending and descending
data have been analysed with PS technique. Therefore, it
was theoretically possible to combine the ascending and
descending LOS velocity to obtain the vertical and east–west
component of deformations. Nevertheless, the composition
is possible only for those pixels where the results are
available for both the acquisition geometries.

In the considered cases, the dense vegetation and the
topographic conditions limited the spatial coverage of the
results and the possibility of combining and project the LOS
results.

The mean velocities maps of Namchi are shown in Fig. 2
where green points are stable, blue ones are moving far from
the satellite while red points are moving towards the satellite
with a maximum velocity rate up to 10 mm/yr. In particular,
Fig. 2 highlight a portion of a slop oriented West-Est, where
the deformation for the ascending and descending datasets
are respectively positive and negative, compatibly with the
different satellite acquisition geometries. The corresponding
time series of deformations are shown in Fig. 3. The dif-
ferent LOS deformation rates are due to a horizontal defor-
mation rate eastwards and a downward component too.

Only in the Gangtok area, also the SBAS technique has
been applied thanks to the spatially distributed coverage of the
results allowing the projection of deformation velocities and
their temporal evolution along the vertical and east–west
directions. The total vertical displacements are shown in the
left panel of Fig. 4, where blue areas are moving downward.
Results highlight that several slopes are affected by defor-
mation exceeding 60 mm in the analysed period (October

Table 1 Main characteristics of
Sentinel-1 SAR datasets analysed
over Sikkim main municipalities

Acquisition geometry

Ascending Descending

Relative orbit 12 48

Number of Scenes 79 90

Time interval Mar 15—Sep 18 Oct 14—Sep 18

Revisiting time 12 days

Resolution 15 m � 15 m
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2014—September 2018), both on slopes oriented to East and
West, on Gangtok city. Horizontal deformations are repre-
sented in the right side of Fig. 4 with westward displacements
in blue and eastward in red. A significant point have been
selected to analyse the behaviour of the ongoing deformations.
Figure 5 shows the vertical time series of deformation (red
curve) which is characterized by some acceleration and
deceleration interval showing a seasonal behaviour. We
search a possible correlation between the oscillation affecting
the time-series of deformation and the rainfall seasonal dis-
tribution. We analysed the cumulative monthly rainfall mea-
sured in Gangotok area. Results of the comparison between
temporal evolution of deformation time-series and the
monthly cumulative rainfalls are presented in Fig. 5.

Comparing the red line, corresponding to the deformation
trend, and the blue curve showing the monthly rainfall, it is
possible to identify a strong connection between the
increasing amount of monthly rainfall (from April/May to
August) and an acceleration of the deformation trends, where
the maximum gradient correspond to the rainfall peaks, while
flat behaviour of the deformation occur in the dry season.

Discussion and Conclusions

The present project has been focused on mapping landslide
affecting the main Sikkim municipalities through the capa-
bilities of space-borne Synthetic Aperture Radar (SAR) data

Fig. 2 Line-of-sight mean velocity map of deformation of Namchi
obtained through PS technique applied to the Sentinel-1 descending
(above) and ascending (below) datasets (time interval October 2014—
September 2018). Blue areas are moving far from the satellite, green
areas are stable while red areas are moving toward the satellite. The red
box show a zoom of an area affected by a landslide

Fig. 3 Time series of deformation of a point selected on the area
affected by deformation (inside the white circle in Fig. 2)

Fig. 4 Vertical (left) and East–West (right) velocity map of deforma-
tions of Gangtok obtained through SBAS technique applied to the
Sentinel-1 datasets (October 2014—September 2018). Green areas are
stable in both the maps, blue areas are moving downwards in the left
map and westward in the right one. Red areas in the right frame are
moving eastwards
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on monitoring surface deformation. The illustrated analyses
have been performed through the processing of Sentinel-1
SAR data, freely available SAR data acquired in the frame-
work of a Copernicus project. All the deformation maps of
Gangtok, Namchi, Geyzing and Pelling, Soreng, Sombaria
and Mangan have been provided to the SSDMA and here two
representative case of Namchi and Gangok have been shown.

They main multi-temporal interferometric techniques, PS
and SBAS have been applied to two stacks of data, acquired
with two different satellite orbits, ascending and descending.
For all the datasets, PS analyses was performed, allowing
retrieving information only over the small building and
houses widely spread on the mountainous/hilly areas.
Because of the localized information, strongly related to the
satellite acquisition geometries, the deformation maps
obtained from the two datasets are characterized by results
overlapping only partially. To avoid losing information, the
projection along the vertical and east–west components has
not been performed, preferring to extend as much as possible
the mapped information.

Only in the case of Sikkim capital, Gangtok, additional
analyses have been performed using SBAS technique and
the satellite LOS results have been combined to obtain the
vertical and east–west components of displacement.

SBAS processing chain showed some restrictions on being
applied in Namchi (as well as in all the other municipalities),
because of the low density of buildings, generally quite spread
and distributed on different crests. This municipality structure
is limiting the spatial distribution of detectable targets, creat-
ing discontinuities on coherent area on the data processing,
and consequently, limiting the SBAS applicability.

Nevertheless, PS technique was able to identify the
localized area affected by deformation, possibly connected to
landslide characterized by slow dynamics.

Interesting results have been obtained on Gangtok area. In
fact, Sikkim capital is definitely the most densely urbanized
municipality of Sikkim. This is a favourable condition as it is
guaranteeing a backscattered SAR signal stable in time.
Consequently, the spatial coverage of the results obtained in
Gangtok is much more extended and continues than in the
other selected municipalities. Moreover, the good coverage
obtained in both the ascending and descending processing
allowed combining the results of the two datasets, and project
the measured time-series of deformation along the horizontal
and vertical directions, providing an additional information
related to the direction of the real displacements. The great
power of this technique on retrieving the temporal evolution
of deformations is particularly interesting as this allows to
identify variable trends, acceleration and oscillation, sup-
porting a post-processing stage of result interpretation, trying
to identify a correlation with triggering factors.

In the case of Gangtok, an attempt of identify a relation
between rainfall season and sliding acceleration has been
performed. This analysis showed a strong correlation
between monthly rainfall and variation of the deformation
behaviour.

Anyway, because of the highly vegetated land surface,
the intense rainy season and the seasonal or permanent snow
cover, these techniques show their limitation on detecting
landslides and deformation in non-urbanized areas.

Nevertheless, some of the limitation could be overcome
according to the following observation. Vegetation variation
is strongly dependent on seasonal and weather conditions.
Therefore, data temporal decorrelation could be more intense
during wet seasons than during dry seasons. As a conse-
quence, a possible improvement on the data processing,
focused on increasing the spatial coverage of the deformation
velocity maps, could be obtained selecting only data acquired
during the dry season. Moreover, sensor wavelength,
depending on the acquisition band, can strongly influence the
sensitivity to surface variation, generally on vegetated sur-
faces. The capability of penetrate vegetation of radar data is
increasing as the wavelength increases. Therefore, using
L-band data instead of C-band ones (as Sentinel-1) could help
on reducing the sensitivity of vegetated surface changes and
the consequent temporal decorrelation. At the moment, the
only available space-borne L-band SAR data are ALOS
Palsar-2, acquired by JAXA. The main limitation of these
data is the poor revisiting time, theoretically 14 day but the
acquisition plan is not very dense around the work and there
are long temporal gaps, where data are available. The pre-
vious point will be solved once the new NASA-ISRO SAR
mission, NISAR, will be launch. NISAR will acquired
L-band SAR data (and S band only over India), with a world
coverage, a revisiting time of 10 days, guaranteeing a con-
stant availability of data. Once this mission will be opera-
tional, the applicability of the proposed multi-temporal

Fig. 5 Vertical time-series of deformation of a selected point in
Gangtok area (red line) compared to the cumulative monthly rainfall
(light-blue curve)
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DInSAR techniques on vegetated areas will dramatically
increase. Finally, more detailed and resolute information
could be obtained on urbanized areas, buildings, streets and
infrastructure, considering higher resolution X-band
SAR data, as the ones acquired by COSMO-SkyMed,
TerraSAR-X and PAZ missions. These acquisitions are
characterized by a 3 to 1 m resolution, enabling to obtain a
much detailed information on the stable scatterers.

All the generated velocity maps should prove their
essential value on defining and installing landslide ground
monitoring system, identifying and limiting the most dan-
gerous areas. Moreover, thanks to the correlation between
slope acceleration and rainfalls, this data could help on
setting and calibrating some alert systems based on rainfalls
(Floris et al. 2013). Eventually, these data could be used as a
reference monitoring system itself, planning to continuously
updates the temporal evolution of deformation, every time
that a new Sentinel-1 scene is acquired over the study area
(Béjar-Pizarro et al. 2017), consciously that, despite dealing
with slow landslide, the 12 day revisiting time could not be
able to catch in time an eventual acceleration of the slope.
Therefore, the integration with future incoming SAR mis-
sion will also help on increasing the frequency of SAR
measurements in case of monitoring applications.
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Part II

Landslide Early Warning Systems, Forecasting
Models and Time Prediction of Landslides



Definition and First Application
of a Probabilistic Warning Model
for Rainfall-Induced Landslides

Gaetano Pecoraro and Michele Calvello

Abstract

A methodology for the definition and the performance
assessment of a probabilistic warning model for
rainfall-induced landslides is proposed and tested in a
study area in northern in Italy. To this aim, a database of
513 landslides triggered by rainfall in the period 2010–
2018 and satellite-based rainfall data are used. It is worth
mentioning that both landslide records and rainfall
measurements used for this study are open-access datasets
available online. The methodology developed herein can
be summarized into several successive steps. First, an
automated algorithm is applied for reconstructing the
rainfall conditions responsible for the documented land-
slides in the area of analysis, as well as the rainfall
conditions that did not result in any landslide. Then, the
conditional probabilities of landslide occurrence are
calculated using a two-dimensional Bayesian analysis,
differentiating between single landslide events (SLE) and
areal landslide events (ALE). Subsequently, several
thresholds at different conditional probabilities are eval-
uated, and different combinations are selected for the
activation of two warning levels. For each rainfall
combination, the issuing of warning levels is computed
by comparing the conditional probability of landslide
occurrence with the pre-defined warning level thresholds.
Finally, the optimal thresholds combination to be
employed, i.e. the one providing the best model perfor-
mance in terms of success and error indicators, is selected
using performance indicators derived from a 3 by 3
contingency table.

Keywords

Landslide � Rainfall � Early warning � Probabilistic
analysis � TRMM � Franeitalia

Introduction

Rainfall-induced landslides are widespread and destructive
natural phenomena occurring all around the world that often
cause severe human and economic losses (Froude and Petley
2018). Landslide early warning systems (LEWS) are being
increasingly applied as non-structural risk mitigation mea-
sures. LEWS can be designed and employed at two different
reference scales (Calvello 2017; Pecoraro et al. 2019): local
systems address single landslides at slope scale (Lo-LEWS),
while territorial systems (Te-LEWS) deal with multiple
landslides over wide areas at regional.

Te-LEWS are used to provide generalized warnings over
appropriately-defined homogeneous warning zones of rele-
vant extension. Typically, these systems address weather-
induced landslides through the monitoring and prediction of
meteorological parameters. However, the definition of a
regional warning model may be challenging for several
reasons: the reconstruction of rainfall events, the absence of
a direct relationship between rainfall and landslide initiation,
the uncertainty of available landslide catalogues (e.g., Pici-
ullo et al. 2018; Segoni et al. 2018a).

In this study, a conceptual framework for the definition of
probabilistic rainfall thresholds for landslides at regional
scale is developed. The main steps of the proposed approach
are: (i) objective reconstruction of triggering and
non-triggering rainfall conditions taking into account their
frequency, (ii) probabilistic analysis, (iii) definition and
performance evaluation of a two-levels probabilistic warning
model. The proposed procedure has been tested by analyzing
the reported landslides in the period 2010–2018 within a
study area in northern Italy.
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Materials and Methods

Study Area and Database

The study area includes 6 of the 158 weather warning zones
(WZ) defined for hydrogeological risk management in Italy:
Emil-E, Emil-G, Ligu-B, Ligu-C, Tosc-L, and Tosc-S1
(Fig. 1). Although the selected WZ fall into three different
Italian regions, all of them are characterized by high sus-
ceptibility to the occurrence of rainfall-induced landslides.

Indeed, the study area is one of the rainiest of Italy;
moreover, climate change is producing an extraordinary
increase of rainfall intensity in there (Libertino et al. 2018).
As a consequence, this area is one of the most severely
affected by landslides in the last few years in Italy (Battistini
et al. 2013).

In particular, thunderstorms characterized by intense and
very intense rainfall cause widespread and damaging ground
effects, both on the slopes and along the drainage pattern, in
Ligu-B, Ligu-C, Tosc-L, and Tosc-S1 (Roccati et al. 2018).
Besides, the frequency of rapid shallow landslides is mark-
edly increasing in the last few years in Emil-E and Emil-G,
as shortest and more intense rainfalls, typically the main
triggering factor of shallow landslides and debris flows in the
Emilia-Romagna region, became more frequent in the
Mediterranean area due to climate change (Segoni et al.
2018b).

The FraneItalia database (Calvello and Pecoraro 2018)
reports 540 landslide events that occurred in the study area

in the period 2010–2018. 27 records have been excluded
from the analysis performed herein as they are reported as
human- or earthquake-induced landslides or landslides for
which the trigger is not known. Among the 513 landslide
events included in the dataset, 353 are classified as single
landslide events (SLE, red circles in Fig. 1) and the
remaining 160 as areal landslide events (ALE, blue squares
in Fig. 1).

The rainfall measurements were derived from the
satellite-based Tropical Rainfall Measuring Mission
(TRMM) database, which is a joint mission between NASA
and the Japan Aerospace Exploration Agency (JAXA)
launched in late November 1997 for the study of rainfall for
weather and climate research purposes (Huffmann et al.
2007). Precipitation data used in this research have been
derived from the TRMM version 3b42, which includes
gridded precipitation data collected every 3 h at a
0.25° � 0.25° (� 25 km � 25 km) spatial resolution,
extending from latitude 50° S to latitude 50° N. It is worth
mentioning that the spatial resolution is finer respect to local
rain gauge networks usually employed for early warning
purposes.

Satellite rainfall data retrieved from TRMM database
have been analyzed using Google Earth Engine (https://
earthengine.google.com), a cloud-based platform for
planetary-scale environmental data analysis. For the pur-
poses of this study, precipitation measurements have been
aggregated at 3-hourly temporal resolution and the mean
rainfall values over each territorial unit have been calculated.

Fig. 1 Shaded relief map of the
study area showing the 540
rainfall-induced “FraneItalia”
landslide records in the period
2010–2018, differentiated in
single (red circles) and areal
landslide events (blue squares).
The inset shows the location of
the six warning zones in Italy
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Methodology

The methodology developed for the definition of the prob-
abilistic thresholds of landslides occurrence can be
schematized into three main phases: reconstruction of the
rainfall events, probabilistic analysis and definition of the
probabilistic warning model.

In the first phase, the correlation between landslides and
rainfall events in the study area is conducted by recon-
structing the rainfall events, in order to convert a series of
hyetographs into a point cloud in a graph reporting trigger-
ing and non-triggering combinations of rainfall parameters.
Duration (D) and cumulated rainfall (E) are identified as the
most appropriate rainfall parameters to use. To this aim, a
modified version of the “algorithmic” approach developed
by Melillo et al. (2016) is applied.

A reduced set of parameters to account for different
physical settings and operational conditions has been con-
sidered. In particular, all the parameters are differentiated
considering the “warm” springer-summer period, CW, and
the “cold” autumn–winter period, CC (Table 1).

The automated procedure is based on several steps. In the
pre-processing step (S0), the rainfall records lower than a
predefined threshold GS are considered noise and are set to
EH = 0.0 mm. The remaining steps are differentiated into
two main logical blocks. The first block performs the auto-
matic reconstruction of the rainfall events and can be
schematized in the following four steps: (S1) detection of the
isolated rainfall events considering a dry interval, R1 and
exclusion of irrelevant events that do not exceed a prede-
fined threshold ER; (S2) identification of rainfall sub-events
proceeded and followed by dry periods with no rain, R2; (S3)
exclusion of irrelevant sub-events, whose cumulated (total)
rainfall, ES is lower than a given threshold, R3; (S4) identi-
fication of rainfall events, constituted either by a period of
continuous rainfall or by an ensemble of periods considering
a minimum dry period, R4. Successively, in the second block
the algorithm combines information on temporal occurrence
of rainfall events and landslide events, performing three
additional steps: (S5) selection of triggering and
non-triggering rainfall events; (S6) reconstruction of multiple

aggregations of rainfall sub-events that are likely to trigger
landslides; (S7) reconstruction of multiple aggregations of
rainfall sub-events that did not trigger landslides. All the
triggering and non-triggering sub-events identified by the
algorithm are equally possible.

In the second phase, a probabilistic approach based on a
two-dimensional Bayesian analysis, similar to that used by
Berti et al. (2012), is developed to calculate the landslide
probability associated to the different rainfall combinations.
To this aim, the posterior landslide probability is evaluated
considering the joint probability of the duration (D) and
cumulated rainfall (E), as follows:

PðLjD;EÞ ¼ PðLÞ � PðD;EjLÞ
PðD;EÞ ð1Þ

where: P(L|D, E) is the posterior landslide probability; P
(L) is the prior probability; P(D, E|L) is the likelihood; P(D,
E) is the marginal probability. The needed probabilities have
been determined considering that the triggering and
non-triggering rainfall conditions are expressed in terms of
multiple combinations, as follows:

PðLÞ ¼ NL

NR
ð2Þ

PðD;EÞ ¼
P

i ni;ðD;EÞ � f i
NR

ð3Þ

PðD;EjLÞ ¼
P

i ni;ðD;EjLÞ � f i
NL

ð4Þ

where: NL is the total number of landslide events that
occurred in the period of analysis; NR is the total number of
rainfall events recorded in the period of analysis; ni,(D,E) is
the number of possible rainfall conditions characterized by
specific values of D and E; ni,(D,E|L) is the number of rainfall
events characterized by specific values of D and E that
resulted in landslides; fi is the relative frequency, defined as

Table 1 Parameters used for the
application of the algorithm
developed by Melillo et al. (2016)

Step Parameter name Parameter value Unit

CW CC

S0 GS 0.2 0.2 mm

S1 ER 0.2 0.2 mm

S1 R1 3 6 h

S2 R2 6 12 h

S3 R3 1 1 mm

S4 R4 48 96 h
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the inverse of the total number of possible aggregations of
sub-events for a given rainfall event.

In the third phase, a warning model is defined employing
two warning levels (WL1 and WL2) associated to the
exceedance of two thresholds (P1 and P2) based on the
probabilities of occurrence of SLE and ALE (Table 2).

In the fourth phase, the performance of the warning
model is analyzed using statistical indicators, following a
procedure similar to that proposed by Calvello and Piciullo
(2016). In particular, the performance analysis of a 3 by 3
contingency matrix is based on a set of two performance
criteria, both of them assigning a meaning to all the elements
of the matrix (Fig. 2). The “alert classification” criterion
employs an alert classification scheme derived from a stan-
dard 2 by 2 contingency table, and identifies correct pre-
dictions (CP), false alerts (FA), missed alerts (MA), and true
negatives (TN). The “grade of accuracy” criterion assigns a
colour code to the components of the matrix in relation to the
agreement between a given warning event and a given
landslide event. Using this criterion, the elements are clas-
sified in four colour-coded classes, as follows: green (Gre)
for the elements which are assumed to be representative of

the best model response, yellow (Yel) for elements repre-
sentative of minor model errors, red (Ora) for elements
representative of a significant model error and purple (Red)
for elements representative of a severe model error.

Considering the two performance criteria, several per-
formance indicators can be derived. Table 3 lists the indi-
cators used in this study.

Results

Rainfall Events Reconstruction

1903 rainfall conditions (D, E) have been identified and
plotted in log–log coordinates (Fig. 3). The 207 rainfall
conditions responsible for triggering 353 SLE (red circles in
Fig. 3) and the 129 rainfall conditions responsible for 160
ALE (blue squares in Fig. 3) are in the range of duration
3 � D � 915 h and in the range of cumulated rainfall
1.02 � E � 243.54 mm. The non-triggering rainfall con-
ditions, reconstructed in the same period, are 1567 (green
circles in Fig. 3). They are in the ranges of 3 � D � 495 h
and 1.01 � E � 311.87 mm.

It is worth mentioning that rainfall combinations char-
acterized by E < 2 mm (grey circles in Fig. 3) constitute a
negligible amount of rain, thus these combinations have
been excluded from the analysis because they are considered
irrelevant for the purpose of early warning.

Probabilistic Analysis

The definition of the probabilistic thresholds is based on a
two-dimensional Bayesian analysis evaluating the condi-
tional probability of landslide occurrence given the joint
probability of D and E. According to the available data, the

Table 2 Warning levels defined
considering the probabilities of
SLE and ALE

Warning level Correlation law

WL1 P(L|D, E)SLE > P1

WL2 P(L|D, E)SLE > P2 or P(L|D, E)ALE > P1

Landslideevents

no SLE ALE

W
ar

ni
ng

 ev
en

ts no TN MA MA

WL1 FA CP CP

WL2 FA CP CP

Fig. 2 Contingency matrix used for the performance analysis of the
probabilistic rainfall thresholds

Table 3 Performance indicators
used for the performance analysis

Performance indicator Symbol Formula

Efficiency index Ieff (TN + CP)/Rijdij

Odds ratio OR (TN + CP)/(FA + MA)

Probability of serious mistakes PSM Red/Rijdij

Probability of serious missed alerts PSM-MA MARed/MA

Probability of serious false alerts PSM-FA FARed/FA

Missed and false alert balance MFB MA/(MA + FA)
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prior landslide probability, P(L) has been calculated using
Eq. (2) and is equal to 18.79% for SLE and 7.44% for ALE.

Successively, the D, E space reported in Fig. 3 has been
divided in 6 � 6 cells, both for SLE and ALE, and the
posterior landslide probabilities, P(L|D, E), have been cal-
culated by applying Eq. (1). Looking at SLE, Fig. 4a dis-
plays that long-duration (12 � D � 915 h), high-
accumulation rainfall (50 � E � 243.54 mm) events
show the highest landslide probabilities (P(L|D, E) > 40%).
The only singularity is represented by the combination
5 � D � 10 h, 50 � E � 243.54 mm, for which P(L|D,
E) = 63.64%. However, this can be considered a singularity,
as it represents only 0.02% of the rainfall combinations that
occurred from 2010 to 2018. The results are substantially
confirmed for ALE (Fig. 4b). Indeed, apart for the singu-
larity already highlighted for SLE, the highest values of the
posterior probability (P(L|D, E) > 20%) are reached again
for 12 � D � 915 h and 50 � E � 243.54 mm.

Probabilistic Warning Model

A performance evaluation has been conducted in order to
identify the optimal two thresholds to be employed in the
warning model. Several combinations have been compared,
by varying the lower threshold, P1 and the upper threshold,
P2. As significant differences in the performance evaluation
depend only on the variations of P1, the results are reported
grouping the thresholds on the basis of P1 (Table 4).

Table 5 shows the results obtained for the five combi-
nations considering the elements of the correlation matrix

reported in Fig. 2. Higher values of CP and Yel are obtained
when the lower probabilities values are considered to define
WL1 (P1 from 10 to 20%). In particular, passing from P20,40–

50 to P30,50 results in a reduction of CP of about 37%.
However, an increase of the P1 threshold results in a sig-
nificant reduction of the FA and Red errors and increasing
values of TN.

Table 6 shows the results in terms of success (Ieff and OR)
and error (PSM, PSM-MA, PSM-FA, and MFB) indicators for the
five different thresholds combinations reported in Table 4.
Concerning the success indicators and, in particular, the
efficiency index (Ieff), raising the value of P1, a general
increase is observed, as it is evident when comparing P10,20–

50 and P12.5,25–50 to P20,40–50 and P30,50. The odds ratio (OR),
which can be considered a rate between correct and wrong
predictions, obviously increases with the reduction of FA
and the increment of TN. However, it should be noted that
passing from P20,40–50 to P30,50 the Probability of serious
missed alerts (PSM-MA) shows an increment of about 25%.
Besides, the majority of the errors are missed alerts, as
demonstrated by the high value of MFB (60.72%). For these
reasons, P20,40–50 can be considered the best-performing
thresholds combination of the 5 considered herein.
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Fig. 3 Rainfall duration (D) versus cumulated rainfall (E) in the study
area from 2010 to 2018. Graph plotted in log–log coordinates
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Conclusions

In this study, a Bayesian approach has been developed for
the definition of a probabilistic warning model for
rainfall-induced landslides. It has been defined using a
landslide inventory retrieved from online news and
satellite-based rainfall measurements. Both landslide records
and satellite rainfall monitoring used in this study come from
open-access datasets available online.

Firstly, the triggering and non-triggering rainfall condi-
tions have been objectively reconstructed. Then, a Bayesian
approach has been applied for calculating the posterior
landslide probabilities of occurrence of single landslide
events (SLE) and areal landslide events (ALE). Finally, a
probabilistic warning model employing two thresholds has
been defined and its performance evaluated using perfor-
mance indicators derived from a 3 by 3 contingency table.

The performed analyses showed that P20,40–50 is the
best-performing thresholds combination, as it represents the

best compromise between the minimization of incorrect
landslide predictions and the maximization of the correct
predictions. Generally, the probabilistic warning model
revealed an overall good performance in predicting landslide
events triggered by significantly different rainfall conditions.
Although the performance of the model can be further
refined considering wider and longer datasets, the prelimi-
nary results achieved herein clearly allow to highlight its
potential for landslide early warning purposes.
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Establishment of an Integrated Landslide
Early Warning and Monitoring System
in Populated Areas

Nikolaos Depountis, Nikolaos Sabatakakis, Katerina Kavoura,
Konstantinos Nikolakopoulos, Panagiotis Elias, and George Drakatos

Abstract

In this work a complete permanent system of timely
landslide warning and monitoring in Greece is presented.
This system is the first that is designed for a densely
residential and mountainous environment. Since 1960’s
several instability phenomena have been recorded in one
of the most traditional settlements in Greece, Metsovo,
Region of Epirus. The last major landslide event occured
in 2010–2011, and lead to serious damages on the
construction and infrastructure within the settlement. The
wider geological regime consists of Olonos-Pindos for-
mations with the main appearance of the flysch one of the
most critical landslide prone geological formations in
Greece. The combinational use of dynamic geotechnical
and satellite research methods is discussed as part of this
study. In addition, one of the main goals of this
investigation is to combine long term monitoring of the
parameters connected to the landslide activity with the
observation of the landslide kinematics in real time for the
planning and realization of a Landslide Early Warning
System (LEWS) in Greece.

Keywords

Greece � Real-time � Monitoring � Landslide early
warning systems (LEWS)

Introduction

Landslide phenomena are included in the natural hazards
with serious socio-economic consequences and with a con-
siderably increasing number of events in the last years, as
much internationally as nationally, mainly because of the
intense anthropogenic intervention in the geo-environment
but also because of the frequent appearance of extreme
meteorological events. Characteristically, from 2000 and on,
an increase that exceeds 25% has been observed in recorded
landslide events in Greece (Sabatakakis et al. 2013).

The monitoring and recording of the kinematics preced-
ing of the activation or reactivation of a landslide, with the
application of geotechnical and remote sensing methods,
with real time measurements is an increasingly important
area in landslide studies (Corsini et al. 2007; Bobrowsky
et al. 2015; Casagli et al. 2017) and seems to conclusively
contribute to the quick evaluation of its style of activity
(WP/WLI 1995). Overall, this knowledge can constitute a
basic tool for the creation of a sufficient and reliable eval-
uation model for the landslide risk, with application
in populated areas and in areas of linear or point
infrastructures.

In Greece, and in particular on the western part, large
landslides have taken place, causing extended destruction to
large road axes and to mountainous settlements. Besides, as
it results from the landslide susceptibility map of Greece
(Sabatakakis et al. 2013), the larger part of Western Greece
is classified as “high” to “extremely high” susceptibility.

The pilot application of a complete permanent system of
landslide early warning and monitoring is presented in this
work, with the combinational use of dynamic geotechnical
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and remote sensing methods. The pilot area corresponds to a
densely built mountainous village of the Region of Epirus,
known as the Metsovo village. This application is the first
that has been realized in a Greek territory and in particularly
in a densely residential environment. Preliminary results
from the application of a similar combinational system with
the use of static geotechnical and remote sensing methods
for another region of Western Greece, have been published
by Nikolakopoulos et al. (2017).

The differentiation and innovation of the present work
lies at the fact that for the first time in Greece, all the known
kinematic monitoring techniques (geotechnical, interferom-
etry, satellite geodesy, remote sensing) are combined on a
“real-time” level for the evolution of the landslides in res-
idential areas. The measurement data and results of these
techniques are transferred on real time to storage stations
and with the proper treatment directly on a specially formed
internet platform (WebGIS). Then the collected data are
ready to be used by a wide spectrum of scientists of com-
petent entities that occupy themselves with landslide risk
management issues. This process reflects to the principal
data basement and is the first step of planning and real-
ization of a landslide early warning system (LEWS) in
Greece.

Study Area

The Metsovo village, Region of Epirus, is built on 1060–
1200 m of altitude on the eastern side of the mountain range
of Pindos. It is a traditional settlement of about 2500 per-
manent residents with high touristic activity “Fig. 1”.

From the geological point of view, the wider area of
Metsovo belongs to the overthrust front of the Olonos–
Pindos zone with the main appearance of the flysch forma-
tion in various phases (Zouros and Mountrakis 1991). The
main geological basement is the medium-thick sandstone
horizon of flysch, interbebbed with thin grey horizons of
siltstone. Deeper layers consist of clay-sandstone comprising
interchanges of fine-grained sandstone and siltstone. Because
of the tectonic deformation that the latter has been submitted
due to an internal thrust in Flysch, in combination with the
intense morphological relief of the study area, serious
instability problems are generally caused in various positions
around. These instabilities are expressed as individual
landslides in the weathering zone of Flysch. Furthermore,
the high percentages of rainfall observed in the area with
average yearly rainfall of 1472 mm (Koumantakis 2011),
mainly during the wet period and the appearance of a

considerable number of springs, favour the slope instabilities
in such types of formations.

Since the 1960’s until today, landslides have been
observed in the settlement with direct impact in the infras-
tructure and the daily life of the residents. In particular, the
main landslides examined in the present study are two and
are located on the southern part of the residential area at the
neighbourhoods of Agios Dimitrios and Agios Charalampos.
The most serious activation for both the partial landslides
took place on 2010 “Fig. 1” with the appearance of frac-
turing and subsidence in the streets and infrastructure as well
as fracturing in houses, some of which are considered as
decrepit. According to the inclinometer measurements taken
on both neighbourhoods since 2010 until today, the move-
ment seems to evolve with very low velocity values, thus the
landslides can be characterized as “extremely slow”
(WP/WLI 1995). More precisely, mean rates of movement
ranged from 7–8 mm per year at Agios Charalampos and
10–12 mm per year at Agios Dimitrios.

In the context of the present project, a rich archive of
studies, technical reports, scientific projects and reports on
the local press was gathered, which was evaluated for the
better approach of the problem and the proper organization
and planning of the landslide observation system.

Establishment of the Landslide Monitoring
System

The observation and analysis of the landslide characteristics
on a large scale (site-scale, >1:500) takes into consideration
some specific criteria (Corominas et al. 2014; Soeters and van
Westen 1996). The selection of the settlement of Metsovo as
a pilot area for the installation of a complete observation
system of the landslides covers these criteria to a great extent,
because: (a) it is a residential area with important infras-
tructure works at risk, (b) the research areas are smaller than
0.1 km2 and focus on periodically activated landsliding
zones, (c) a relatively sufficient knowledge of the engineering
geological and geotechnical conditions of the subsoil and the
geometry of the unstable areas is available and (d) the geo-
materials participating in the phenomenon belong to geo-
logical formations “prone to landslides”. Analyses in this
research scale permit the subsequent development of land-
slide early warning systems (LEWS) exploiting the phe-
nomenon monitoring data (Pecoraro et al. 2019).

The installed landslide monitoring system basically pro-
vides insight into the evolution of surface and subsurface
movements with the combinational use of measurements of
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geotechnics, interferometer, satellite geodesy and
remote-sensing with the parallel real-time monitor of rain-
fall, as it seems that landslides are directly connected with
intense and extended rainfall phenomena “Fig. 2”.

Persistent Scatterers

Persistent Scatterer Interferometry (PSI) is an approach of
interferometry for monitoring Earth’s surface, as it is able to
measure microscale displacements in terrain surface. In
addition, this application permits the measurement of surface
deformation over vast areas with at a frequency varying from
one month to several days with the earliest satellites (Raspini
et al. 2019). For this purpose, five (5) scatterers were
installed in several positions of the study area and satellite

receptions were programmed with a frequency of eleven
(11) days. More specifically, the scatterers are corner
retro-reflectors consisting of perpendicularly intersecting flat
surfaces and they are mainly made of aluminium, for easy
transportation and installation.

Permanent GPS Stations

Permanent GPS stations can monitor the surface deforma-
tions (Gili et al. 2000). The GPS network consists of 2
permanent stations. One of them was installed in a stable
area, while the other one into the landslide zone. The stations
continuously record the land deformation and the data are
transferred in real time to data storage station (NAS server).
Thus, at any given time, the relative position as much of

Fig. 1 Location map of the Metsovo settlement and landsliding areas. The colours of the inserted map refer to the different elevation classes in the
Epirus region
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scatterers as the position of the GPS station located in the
landsliding area will be determined in relation to the stable
stations. A characteristic example of application of this
method constitutes the observation of slopes in southern
Apennines, Italy (Calcaterra et al. 2012).

Unmanned Aerial Vehicle Surveys

They are used for the exact determination of the land
topography, the photogrammetric survey on selected points
of the pilot area and the creation of photomaps and Digital
Surface Models (DSM) of high precision. These data can
also be used as much as basemap for the remaining studies
as for the exact measurement of changes on the relief in case

of land movement. Different studies demonstrating the use
of UAV data for landslide monitoring have been published
in Rau et al. (2011), Turner et al. (2015) and Nikolakopoulos
et al. (2017).

Meteorological Station

The meteorological station is located inside the settlement
very close to the landslide area. Rainfall constitutes a basic
factor for the initiation of landslides (Sabatakakis et al. 2005;
Guzzetti et al. 2008; Lainas et al. 2016) and therefore the
pluviometric data are continuously recorded and sent to the
data storage station (NAS server) in real time. The recording
of rainfall events with the parallel observation of the

Fig. 2 The permanent landslide monitoring system
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landslide evolution rate will permit on the following stage,
the determination of critical values of rainfall thresholds that
activate the landslides, and which will constitute an impor-
tant factor for the formation of the type of warning of EWS.

Inclinometer Boreholes

A network of eight (8) drilling inclinometers has been
installed in the research area that permits the detailed
observation of subsurface displacements, for an extended
period of time. In two of them inclinometers have been
permanently placed (in-place) aiming to the observation in
real time of the movement, the data of which are continu-
ously recorded and sent to the data storage station (NAS
server). Further analysis of the subsurface displacements
time series in combination as much with the surface move-
ment as with the rainfall time series will lead to the full
understanding of the evolution rate of the phenomenon. The
determination of critical speed thresholds, the exceeding of
which can cause noticeable deformations that it is likely to
affect the local society, will also constitute a parameter of the
EWS.

Discussion–Conclusion

Many mountainous villages have been struck by landslides
in western Greece due to growing urbanization and uncon-
trolled land—use in landslide—prone areas, without con-
sidering the engineering geological environment. The
presence of the tectonically highly sheared and weathered
geological formations of the alpine basement (such as flysch)
and the intense geomorphological relief, strongly contribute
to the periodically induced instability phenomena mainly
triggered by heavy rainfalls and extreme meteorological
events.

The study site of Metsovo village, constitutes a typical
example of a mountainous, touristic settlement with intense
anthropogenic activity, periodically stricken by landslide
phenomena that caused severe damages in houses and
infrastructures. The installation of a permanent complete
system for landslide kinematics observation consisting of
persistent scatterers, permanent GPS stations, UAV, mete-
orological station and in place inclinometers, constitutes the
first step for an EWS establishment in Greece.

The obtained results of the system measurements will be
appeared in almost real time, in interactive way through a
specially designed internet platform (WebGIS). That will
constitute a powerful tool for the local authorities and the
residents of the area in case of emergency.
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An Integrated WebGIS System for Shallow
Landslide Hazard Early Warning

Nguyen Duc Ha, Le Quoc Hung, Takahiro Sayama, Kyoji Sassa,
Kaoru Takara, and Khang Dang

Abstract

The landslides are considered as one of the most
dangerous natural disasters and can cause catastrophic
influence on society. Therefore, improving the effective-
ness of landslide early warning systems is an urgent
requirement. The heavy and/or prolonged rainfall is the
main factor that has triggered most of the landslide
events. In this study, we propose the integration of a
geotechnical model—LS-RAPID and a hydrological
model—RRI in a WebGIS system to enhance the
accuracy and efficiency of shallow landslide hazard early
warning for a small basin in Ha Long City, Vietnam.
LS-RAPID model is applied to determine potential

landslide hazard areas and RRI model is employed to
identify subsurface water levels. The system utilized
real-time rainfall data from an automatic weather station
and forecasted rainfall data from the GFS server as input
data for the RRI model running inside the WebGIS
server. By combining simulated results from LS-RAPID
and RRI models, the integrated WebGIS system allows
predicting the occurrence of landslide hazard in both
location and time. With the ability to deliver highly
accurate results in a short time, the system can be very
helpful for the authorities at all levels in making early
landslide hazard warnings that mitigate disasters in
mountainous areas.

Keywords

WebGIS � Landslide hazard � Subsurface water �
LS-RAPID model � RRI model � IDV

Introduction

Due to the widespread ability and destructive power, land-
slides have claimed many lives and severely hindered the
economic development and urbanization of many countries.
To mitigate the landslide disaster, especially human casu-
alties, the most effective method is to identify and early warn
the location and time of landslide hazards. Brabb (1991)
concluded that if the landslides could be predicted early,
more than 90% of the losses could be avoided.

Locating landslide initiation is very important for disaster
preparedness and response. However, in order to effectively
deal with landslide disasters, processes of both the initiation
and the post-failure movement should be predicted (Sassa
et al. 2010).

It is well known that subsurface water generated from
heavy and/or prolonged rainfalls increases the pore water
pressure at potential sliding surfaces and reduces the soil
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strength (Reichenbach et al. 1998; Ekanayake et al. 1999;
Collins and Znidarcic 2004). Therefore, to be able to accu-
rately simulate and predict the location and time of landslide
hazards, the subsurface water level needs to be taken into
account (Bogaard and Greco 2014; An et al. 2016).

WebGIS is a combined product of geographic informa-
tion system (GIS) and internet technologies (Miao and Yuan
2013), and is used to analyze and display the spatial data.
With the rapid development of internet and Web technology,
sharing geographic information and broadcasting spatial
decision in emergencies through the WebGIS system are
considered as one of the fastest and most effective methods
(Zhang et al. 2011; Li et al. 2015; Chen et al. 2016; Mamai
et al. 2017). Hence, WebGIS can play a significant role in
preventing and mitigating landslide disasters (Yu et al. 2007;
Pessina and Meroni 2009; Li et al. 2010; Miao and Yuan
2013).

In addition to the popular WebGIS systems built to
inventory occurred landslides (Devoli et al. 2007; Yanxi
et al. 2009; Dahlhaus et al. 2011; Huang et al. 2013; Chen
et al. 2016), some WebGIS systems have been established
for monitoring and early warning of potential areas of
landslides. In most of these early warning systems, land-
slides are often predicted by empirical methods based on
susceptibility maps, empirical rainfall thresholds, and rain-
fall data (Huggel et al. 2008; Zhang et al. 2011; Hou et al.
2013; Rosi et al. 2017; Artha and Julian 2018). With this
empirical method, WebGIS system can only predict about
the period but cannot accurately indicate the areas where the
landslides will happen. Some warning systems have inte-
grated a landslide model within the WebGIS system for
monitoring and warning the failure of single slopes (Li et al.
2010; Thiebes et al. 2013). In all aforementioned systems,
the coupling of landslide hazard and hydrological models
has not been exploited to improve the effectiveness of dis-
aster mitigation at a basin (or larger) scale.

The capacity of the geotechnical model LS-RAPID
(Sassa et al. 2010) and hydrological model RRI (Sayama
et al. 2012) for predicting the spatial and temporal occur-
rence of landslide hazard was proved when verified with the
reality (Ha et al. 2020). To improve the effectiveness of
mitigating shallow landslide disasters, in this study, we
propose a prototype of an integrated WebGIS system com-
bining the LS-RAPID and RRI models into the WebGIS
system. The following issues will be resolved:

– How should LS-RAPID and RRI models need to be
integrated into the WebGIS system to support the
authorities in early warning of shallow landslides?

– How do rainfall forecast and real-time rainfall data need
to be acquired and processed to be automatically simu-
lated by RRI model inside the WebGIS system?

Study Area

Located in the tropical monsoon region, Vietnam is one of
the countries affected by the global climate change with
abnormal weather events and frequent extreme rainfalls. The
landslides are a common geohazard in the mountainous
areas of Northern Vietnam. Therefore, the development of
methods to help minimize losses related to landslide disas-
ters is very important and urgent.

Ha Long City, Quang Ninh Province, Vietnam has a
complex and diverse topography including hills, mountains,
valleys, coastal areas, and islands. The hilly and mountain-
ous terrain accounts for 70% of the city area and is con-
centrated mainly in the North and Northeast. The mountain
ranges have an average height of 150 m to 250 m, tend to
decrease towards the sea and are intertwined by the narrow
valleys. Many households are living in high-risk areas
affected by the landslides. According to statistics of the
Department of Construction of Quang Ninh Province in
2016, 1,278 households living in 174 zones of high landslide
susceptibility need to be relocated.

The pilot study area is a small basin (about 0.15 km2) in
Cao Thang Ward, Ha Long City. In this area, 3 shallow
landslides were triggered by a historic rainfall in July 2015,
in which 1 landslide destroyed 3 houses and killed 8 people.
This rainfall event was the heaviest downpour in the city in
40 years with the highest rainfall intensity of 86 mm/h and
257 mm in 5 h. The province's economic damages caused
by this rainfall was determined more than 100 million USD
(Fig. 1).

Combining LS-RAPID Geotechnical Model
and RRI Hydrological Model

In the LS-RAPID model, the effect of pore water pressure on
slope stability due to rising water is expressed through the
pore water pressure ratio (ru) based on pore water pressure
and total normal stress acting at the potential sliding surface
(Sassa et al. 2010).

To identify areas of potential landslide hazards, the
LS-RAPID model was applied with a range of ru values
corresponding to different scenarios of the water level (from
no subsurface water to when subsurface water reaches to the
ground surface). The results of applying LS-RAPID
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simulations have identified several potential landslide hazard
areas (see areas A1, A2, B1, B2, C, D in Fig. 2). In each
forecasted hazard area, three regions: landslide scarp, accu-
mulation zone, and landslide initiation part (locating inside
the landslide scarp) were distinguished. In each initiation
part of potential landslide hazards, the threshold value of
pore water pressure ratio (ruT) activating the landslide is also
estimated. The value of a ruT is determined as the ru value
when a potential landslide starts to occur in simulations.

The coupling method of the hydrological—geotechnical
framework is employing shallow landslide trigger: the sub-
surface water to connect the simulation results of LS-RAPID
and RRI models.

Based on the observed rainfall and subsurface water level,
the RRI model was calibrated and then applied to the rainfall
data of the 2015 event. By applying the RRI model, sub-
surface water level maps for all simulation time steps are
generated. From there, the various ru maps for these time
steps are created automatically.

To estimate the probability of landslide occurrence, the
Risk Index (RI) is determined as RI = ru/ruT. In each fore-
casted hazard area, a landslide is likely to happen if the
maximum RI is close to or higher 1 (as the maximum value
of ru in the initiation sources approaches or exceeds the ruT).

For each time step, a RI map is produced by combining
the ru map of that time step and the ruT map.

The framework coupling LS-RAPID and RRI models is
described in more detail in Ha et al. (2020).

Integrated System Architecture for Early
Warning of Shallow Landslide Hazards

State-Funded Landslide Project (SFLP)

The State-Funded Landslide Project (SFLP) “Investigation,
assessment and warning zonation for landslides in the

mountainous regions of Vietnam” has been implementing
for all mountainous provinces (37/64 provinces) of Vietnam
since 2012. In the first phase of the project (ongoing), the
WebGIS system has been used as a tool to fill the missing
information of the occurred landslide and to update new
landslide events. Its spatial database including maps of
landslide inventory, controlling factors, and susceptibility
zonation would support scientific research as well as con-
tribute to local land use planning to improve the coping
capacity of disaster prevention (Hung et al. 2017). In the
second phase (not yet implemented), the SFLP has planned
to transmit emergency information about the possibility of
landslides in critical areas to the government and local
authorities through the WebGIS system. Accordingly,
through this research, LS-RAPID and RRI models were
integrated into the SFLP WebGIS system as a pilot system to
support decision-makers.

SFLP WebGIS System

Although the applications to build a WebGIS system are
diverse, the general architecture usually consists of three
tiers: database tier, application tier, and user interface tier.
The SFLP WebGIS system was built with free and
open-source software (Fig. 3).

The data tier is built with PostgreSQL database man-
agement system and its extension—PostGIS. PostgreSQL is
a popular database management system, built with open

Fig. 1 Google Earth satellite image of Ha Long City with locations of
the study basin and the weather station

Fig. 2 Potential landslide hazard areas and predicted ruT values at
landslide initiation parts
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source and can be compatible with most popular operating
systems. PostgreSQL is equipped with interfaces to connect
to many programming languages like Python, PHP or Java.
PostGIS is a spatial database extension of PostgreSQL.
Through PostGIS, the location and map information of
spatial objects can be easily queried.

At the application tier, to manage the work inside the
server, the HTTP web server—Apache and the map server—
GeoServer are chosen to use. Web server is a software used
to receive and analyze requests from web users and return
result information. GeoServer is used to perform services of
managing geographic objects over the internet with the OGC
(Open Geospatial Consortium) standards. GeoServer is also
used to specify the visual styles (colors, shapes, trans-
parency) of geographical objects stored in the PostGIS
database.

At the interface tier, OpenLayers communicates with
GeoServer via OGC standard. OpenLayers is a JavaScript
library that helps to build interactive map tools on the web.
With these tools, web users can easily manipulate maps and
geographical objects on web browsers.

Integrate the Hydrological-Geotechnical
Framework into the WebGIS System

The hydrological-geotechnical framework has been inte-
grated with the SFLP WebGIS system in two separate
phases. In the first phase, to identify areas at risk of landslide
hazards and the thresholds of pore water pressure ratio (ruT),
the LS-RAPID model is applied to different scenarios of

subsurface water level. While the simulation with the
LS-RAPID model needs to be done before integrating with
the WebGIS system, in the second phase, the RRI model
needs to be applied automatically regularly within the SFLP
server. In order to predict the time at which landslide hazards
are at risk, variations in the subsurface water level need to be
monitored regularly. From that, the maps of pore water
pressure ratio (ru) according to real-time and forecasted
rainfall data can be generated. These ru maps will be auto-
matically combined with the ruT map to generate RI maps
and support warnings about the location and timing of
possible landslide hazards in the near future. Figure 4 pre-
sents the main steps of the method of combining LS-RAPID
and RRI models in the SFLP WebGIS server to identify RI
maps.

The strategy of applying LS-RAPID and RRI modeling
framework into 2 separate phases is very important for
emergency situations in disaster management and warning
because of the ability to optimize processing time. In addi-
tion, the RRI model has the ability to allow the simulation
process to continue with newly updated data without having
to restart from the beginning of the data series. This feature
is very useful for the early warning system since rainfall data
(real-time data and forecasted data) are regularly updated
(Ha et al. 2020). Specifically for this study area, the
time-consuming of acquiring rainfall data and generating a
RI map for each time step by the author’s personal computer
range from nearly 1 min to a few minutes depending on the
intensity of rainfall.

Connect Real-Time Rainfall Data

A weather station has been installed near the study area
(about 1 km Northeast). The weather station consists of 3
main equipment (Vantage Pro2 equipment manufactured by
David Instruments Corp): an outdoor station, a console, and
a data logger. Rainfall data measured by a rainfall collector

Fig. 3 The three-tier architecture applied for the SFLP WebGIS
system

Fig. 4 Method for generating RI maps inside the SFLP WebGIS server
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in the outdoor station are sent regularly to the console every
10 min by the solar-power transmitter. The data logger is
employed to link the console and the “WeatherLink Cloud”
of David Instruments Corp. With this method, newly
updated data can be automatically displayed on the website
“www.weatherlink.com” every 60 min.

Inside the SFLP server, every 60 min, the Python script is
used to automatically connect to the website “www.weath-
erlink.com” and collect measured rainfall data. Whenever

the rainfall data is updated, the Python script will update the
input data file and send requests via the command line to the
RRI model to perform simulations. The newly acquired
rainfall data is also updated into the database in the Post-
greSQL database management system so that it can display
the rainfall data in time series to users when required.

Connect Forecasted Rainfall Data

To monitor and forecast of the risk of landslide hazards,
real-time rainfall data is a requirement to simulate the
hydrological process in the study basin. However, the pre-
paredness is much more effective, and the damages caused
by landslide hazards can be significantly reduced if fore-
casted rainfall data is also applied.

The Global Forecast System (GFS) is a meteorological
forecast model produced by the National Centers for Envi-
ronmental Prediction (NCEP)—USA. The GFS model pro-
vides forecasted rainfall data for the world four times a day

Fig. 5 Conceptual model of utilizing forecasted rainfall data from the
GFS server

Fig. 6 The graphical user
interface of the WebGIS on
landslides “www.canhbaotruotlo.
vn” which introduces the main
achievements of the SFLP
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(at 00, 06, 12, 18 Universal Time Coordinated). The fore-
casted rainfall data from the GFS model is in a grid format,
with a spatial resolution of 28 km and a time resolution of
3 h.

A typical feature of grid data is that the coordinates are
stored by longitude and latitude, and time is a dimension of
the data structure. These features allow the spatial and
temporal relationships of continuous phenomena in the real
world to be easily expressed (Di et al. 2003).

The grid data from GFS server is automatically accessible
via OPeNDAP protocol. OPeNDAP stands for “Open-source
Project for a Network Data Access Protocol`̀ . This is a
server-client protocol that allows access and sharing of grid
data given by Unidata and is widely used in the Earth Sci-
ence community. A major challenge in using grid data is the
huge database set. For the management and warning of
natural disasters, the information processing time to make a
decision should be shortened as much as possible. Therefore,
it is not appropriate to download the entire database and then
extract the data of the area and the time required to study. To
optimize processing time, the required data of grid data must
be determined on the GFS server side. Then the download
and processing of data will be much faster.

There are many OPeNDAP client software widely used
for connecting OPeNDAP servers and retrieving grid data
such as IDV, MATLAB, GrADS, Ferret, and Pydap. Based
on selection criteria such as software that needs to support
the writing of programming applications, support for build-
ing server-client applications, support for reading and ana-
lyzing grid data, the IDV software has been selected for use

inside the SFLP WebGIS server to address obstacles in
identifying and downloading automatically forecasted rain-
fall data for the study basin (Fig. 5).

The IDV (Integrated Data Viewer) software is developed
by Unidata. This is a Java-based software built to support the
analysis and display of geoscience data. IDV is able to work
with many types of data such as grid data, surface obser-
vations, satellite images, and radar data. An important fea-
ture of IDV software is the ability to identify and query
geo-referenced datasets placed on remote servers. Therefore,
by constructing additional functions for IDV with the Jython
programming language (an implementation of Python to run
on Java platform), a subset of grid data in the spatial range
and time of study can be predefined and automatically
downloaded to the server of the SFLP WebGIS system.

Results

As part of the SFLP project, a national WebGIS system
“www.canhbaotruotlo.vn” has been developed for landslide
inventory and early warning with a simple interface for users
with diverse backgrounds. This WebGIS system is also
considered as one of the interactive interfaces for landslide
research among scientists, managers and local people.

In the first phase of the SFLP Project, the main result is
the spatial database system for landslides. The database
includes maps of landslide inventory and susceptibility
zonation at 1:50,000 scale and information of landslide
controlling factors. This database has been uploaded to the

Fig. 7 Illustration of three warning levels for potential shallow landslide hazard areas would be shown in the WebGIS “www.canhbaotruotlo.vn”
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WebGIS system to share with local authorities and people
about real conditions and potential risks. In addition, the
shared information can contribute significantly to scientific
research. Local people are encouraged to participate in the
WebGIS system to fulfil missing information of the landslide
inventory, update the new landslide areas and inform the
signs of new landslides as detected. Therefore, WebGIS is
also supported with tools that allow local people to easily
inform the authorities and staff of the SFLP Project. This
information, before verified, will be visualized differently
from the style of official data.

In preparation for the second phase of the SFLP Project,
the author proposes an early warning system for shallow
landslides by integrating the coupled hydrological geotech-
nical framework in conjunction with the SFLP WebGIS
system. This system (still under testing period) will be
provided as a reliable reference to assist authorities in
shallow landslide hazard early warning (Fig. 6).

The potential shallow landslide hazard areas A2, C, and
D are being monitored with the application of the
hydrological-geotechnical framework within the SFLP
WebGIS system. Area A1 where a landslide occurred and
areas B1 and B2 where reinforced by structural measures are
not monitored. Figure 7 illustrates three warning levels that
will be used to represent the risk status of the area being
monitored. Three warning levels: safety (in blue), close
monitoring (yellow) and danger (red) are determined based
on the calculated Risk Index (RI) value range: 0 < RI < 0.2
(safety); 0.2 � RI < 0.7 (monitoring); 0.7 � RI (danger).
The value of the RI index is used for each of the potential
hazard area (A2, C, and D) to give a warning that the highest
RI value is calculated in the landslide initiation parts of those
areas.

Discussion and Conclusion

For preventing or mitigating landslide disasters, it is very
important forecasting the process of landslide hazards in
both location and time. In WebGIS systems utilizing
empirical rainfall thresholds, the principal disadvantages are
the occurrence (both location and time) of potential land-
slides are incapable to be determined correctly. In existing
systems applying models for early warning landslides at a
catchment or larger scales, the possible hazard areas are not
identified. In addition, for emergency responses, the pro-
cessing time for landslide simulating might be also an
impediment. By taking advantage of the LS-RAPID and RRI
models, the integrated system can support to forecast both
the initiations and the runout processes of landslide hazards.
Moreover, the application of two models at two separate
phases brings a great advantage to the system in terms of the
processing time necessary in emergency operations.

For the early warning system, in order to increase the
accuracy between predictive and actual results, the uncer-
tainty of the input data needs to be considered and improved.
The resolution of the forecasted rainfall data from GFS is not
high so that warnings are hard to be issued based solely on
this data. However, these data can serve as a reference for
the future trend of rain in the study area.

In this study, the geotechnical model LS-RAPID and
hydrological model RRI are incorporated into the SFLP
WebGIS system as a prototype for the shallow landslide
early warning system. The real-time rainfall data from the
weather station located near the study area and forecasted
rainfall data from the GFS server are automatically extracted
and used regularly as input data for the RRI model. From the
simulation results, the subsurface water level can be esti-
mated for each location. Therefore, potential area and
occurrence time of landslide hazard can be forecasted and
support decision-makers in issuing an early warning.
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The Value of Soil Wetness Measurements
for Regional Landslide Early Warning
Systems

Manfred Stähli and Adrian Wicki

Abstract

Current regional landslide Early Warning Systems
(LEWS) are typically based on rainfall data and rarely
use soil wetness information in spite of the direct
relationship between soil wetness and landslide trigger-
ing. This is partly due to the limited availability of soil
moisture measurement networks and the lack of experi-
ence in interpreting such data. Here we show how soil
wetness measurements could be exploited for LEWS in a
region (or country) with variable topography and soil
composition. In particular, we highlight the relevance of
(steep) topography for the soil wetness observations and
its significance for the interpretation in regard to landslide
criticality. To this end, a field study has been set up and is
currently running in a landslide-susceptible region of
central Switzerland (Emmental) where different soil
wetness measurement methods are compared on a flat
and a steep meadow site. First results suggest that in spite
of noticeable topographical effects on soil drying and
wetting the informative value of these data for LEWS is
not very different for sloped and flat locations. Based on
these findings and a comprehensive analysis of the
co-occurrence between soil wetness indicators and shal-
low landslides across Switzerland we attribute soil
wetness measurements a significant value for landslide
early warning and encourage a wider incorporation of
such data in existing warning systems.

Keywords

Soil moisture � Landslide early warning � Monitoring
systems

Introduction

In mountainous regions, landslides are a serious hazard for
people and infrastructures. In Switzerland, they have caused
a total financial damage of 520 million Euros in the period
from 1972 to 2007 (Hilker et al. 2009) and the death of 74
people between 1946 and 2015 (Badoux et al. 2016). Shal-
low landslides are particularly dangerous due to the short
interval time between activation and failure and their wide-
spread occurrence.

Regional landslide early warning systems (LEWS) have
proven to be a valuable and efficient tool to issue warnings to
the public in order to move people and goods at risks to
safety (Stähli et al. 2015). Existing LEWS have been mostly
based on rainfall exceedance thresholds that empirically
relate precipitation characteristics to the occurrence of
landslides (e.g. Guzzetti et al. 2007). While precipitation
measurements are widely available, rainfall exceedance
thresholds bear specific limitations such as the
non-representation of antecedent wetness conditions and soil
wetness distribution at depth (Godt et al. 2009), or a high
spatial and temporal variability of critical threshold values
(Aleotti 2004; Baum and Godt 2010).

To overcome these limitations, the need for
hydrological-based thresholds has been stated (e.g. Berne
et al. 2013; Devoli 2017). In addition, it has been postulated
that including information on antecedent saturation condi-
tions could effectively reduce both false and missed alarms
(Bogaard and Greco 2018). In fact, recent studies have
demonstrated an improvement of the forecast quality of
rainfall-based LEWS after the inclusion of soil wetness
information derived from measurements (Mirus et al. 2018a,
b; Comegna et al. 2016) or models (Segoni et al. 2018).
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Measuring Soil Wetness for Landslide
Prediction

Shallow landslides are typically triggered after the infiltra-
tion of rainfall or snow melt water and the consequent rise of
the water saturation and perched groundwater tables. The
resulting increase in pore water pressure and decrease in
matric suction may reach critical values at which point the
slope eventually fails (Crozier 1986; Wieczorek 1996).
Measurements of soil wetness have thus long been suggested
to be valuable for assessing the landslide danger (e.g.
Springman et al. 2003; Lu et al. 2010).

Soil wetness is commonly expressed as the volume of
pores that is filled with water divided by the total soil vol-
ume (volumetric water content, VWC, h) or as the pressure
at which water is bounded to the particles (matric potential).
It can be measured or indirectly estimated at different spatial
and temporal scales.

At the scale of soil profiles, soil moisture
probes (time-domain reflectometry, TDR, or capacitance
based) are used to estimate permittivity by electromagnetic
sensors. The permittivity values can then be related to the
VWC using a specific calibration function (Topp et al.
1980). The matric potential can be measured with ten-
siometers consisting of a porous cup on a rigid tube which is
filled with water and connected to a vacuum
gauge that measures pressure levels (Livingston 1908). Both
sensor types allow for continuous soil wetness monitoring.
While they are representative for a specific measurement
volume, multiple probes are usually integrated in depth
profiles.

Electrical resistivity tomography (ERT) allows for a
distributed 2-D VWC estimation along hill-slope transects of
several meters length. Between pairs of equally spaced
electrodes, the potential difference is measured, and by
variation of the electrode geometry, the 2-D distribution of
apparent resistivity is assessed. Specific resistivities are
then deducted by the application of an inversion algo-
rithm (e.g. Kneisel and Hauck 2008). While single mea-
surements depend largely on the lithology, resistivity
changes can be related to changes in the soil water content
(Robinson et al. 2009). This type of measurement allows for
a 2-D VWC estimation and is non-invasive, however the
longer acquisition time results in a lower temporal
resolution.

Soil wetness can also be sensed remotely from space e.g.
using satellite-based measurements of passive or active
microwave emission of the soil surface (Reichle et al. 2017).
However, the spatial resolution of this information is very
coarse, the temporal resolution reduced compared to in-situ
measurements, and the depth of the represented soil wetness
shallow, which strongly limits the potential for LEWS in
mountainous landscapes (Thomas et al. 2019).

Dependence of Soil Wetness on Topography

It is well known that the spatial distribution of soil wetness is
heavily influenced by topography. There are topographical
zones where water accumulates, and such where water can
drain (laterally) relatively quickly. In hydrology, a topo-
graphic wetness index (TWI; Sørensen et al. 2006) is typi-
cally used for discerning these areas.

But not only the lateral water flow in the soil, also soil
evaporation or snow cover distribution is significantly
influenced by the topography, which in turn can lead to
variations in soil wetness.

For LEWS, the question arises to what extent these
topographical effects on soil wetness must be taken into
account, especially since available measurement networks
are often located at flat sites.

Soil Wetness Measurements at a Landslide
Prone Site

In order to assess the representativeness of flat measurement
sites for critical hydrological conditions at hillslopes, a
specific soil wetness observatory has been set up in a land-
slide prone area of central Switzerland (Emmental, Swiss
prealps, Fig. 1). A flat and a sloped location (30° slope
angle) were equipped with various soil wetness measure-
ment sensors in spring 2019. To analyse the potential of the
different measurement techniques for the use in a LEWS,
they were compared in their ability to identify critically
saturated conditions in the upper soil layer.

Monitoring Setup

Capacitance-based soil moisture probes (ECH2O 5TE,
Meter, Germany) and tensiometers (T8, Meter, Germany)

Fig. 1 Soil moisture site (sloped location) in the Napf area
(Switzerland)
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were installed in soil pits at three different depths (15, 50 and
100 cm). Perched ground-water levels are measured using a
piezometer. Additional measurements include air and ground
temperature (temperature probes) as well as precipitation
(tipping bucket).

For comparison, the absolute soil moisture measurements
are normalized for each sensor by the respective maximum
of the time series. Both soil moisture and matric potential
records are integrated to depth profiles by calculating the
profile mean.

To further assess the 2-D distribution of temporal soil
moisture dynamics, an ERT profile line was installed at the
sloped site. It consists of 48 electrodes at an 0.25 m elec-
trode spacing, which is small enough to capture small scale
hydrological processes. Automated measurements were
conducted during precipitation events at hourly time scale,
and a time-lapse tomography inversion scheme was applied
to relate the resistivity changes to changes in soil water
content.

Summer 2019 Results

First results of the soil moisture measurements from April to
November 2019 suggest that differences between the flat and
the sloped measurement site are generally small (Fig. 2).
Differences are smallest near the saturated and the dry end,
and they become larger at intermediately saturated condi-
tions and inhibit an S-shaped relationship between the flat
and the sloped site.

This indicates that during conditions of higher saturation,
the sloped site drains faster (more quickly) but saturates
slower, which can be explained by the larger gravitational
potential (quicker desaturation) and higher surface runoff
rates (slower saturation) due to the slope degree. Conversely,
during drier conditions, the sloped site dries out slower but
saturates faster (more quickly), which we relate to lower
evaporation rates due to the SE exposition and shading by
trees (slower drying rates) and higher infiltration capacity
(quicker saturation).

Potential of an Existing In-situ SWC Network
for LEWS

Soil moisture measurements are becoming more frequent
within operational monitoring networks. To assess the
potential of existing in-situ VWC measurements for regional
landslide early warning, a comprehensive soil moisture data
base was compiled from existing soil moisture monitoring
networks in Switzerland (Fig. 3). In a recent study (Wicki
et al. 2020), the temporal variation of the soil moisture
measurements was compared to the occurrence of landslides
that were recorded in a national landslide inventory (Swiss
flood and landslide damage database, WSL, Fig. 3).

Methodology

VWC time series were first homogenized, normalized by the
minimum and maximum of each time series, and then inte-
grated to ensembles of sensors at each site. At the ensemble
mean time series, the onset and end of individual infiltration
events (i.e. continuous periods of saturation increase) were
identified and various event properties were quantified.

Fig. 2 Profile mean saturation at the sloped site vs. the flat site for the
period of April to November 2019

Fig. 3 Map of Switzerland showing all included soil moisture sites and
landslide records
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Further, infiltration events were classified as landslide trig-
gering or landslide non-triggering based on the coincident
occurrence of landslides within a specific distance from the
site (referred to as the forecast distance). To assess the
distance sensitivity of the model, the forecast distance was
varied in 5 km steps from 5 to 40 km.

Finally, a multiple logistic regression (MLR) function
was fit to the infiltration event set to statistically reproduce
the landslide probability as a function of the infiltration event
properties. To assess the forecast quality of a specific model
fit and to compare different model fits, receiver operating
characteristics (ROC) analysis was performed.

Results

The components of one specific model fit are illustrated in
Fig. 4 for a time period extract from June to July 2014 and at
a sample site (SwissSMEX site Plaffeien, Canton of Fri-
bourg, Northern pre-Alps). During this period, a series of
rainfall events caused widespread landslide activity in all
Switzerland and specifically in the region of Fribourg. The
measurements show a continuous increase in the soil satu-
ration (Fig. 4a). It is accompanied by a initial increase of the
standard deviation which suddenly decreases at I5 (Fig. 4b),

indicating that the soil profile is homogeneously saturated
from then on. It was also during I5 and in the following days
that several landslide events were observed (Fig. 4c). This
elevated landslide danger was reproduced by the MLR
model as a sudden landslide probability increase from I5
onwards (Fig. 4e).

Comparison of the different model fits revealed a strong
distance dependence of the forecast goodness which
increases with short distances between site and landslide.
We explain this distance dependence to be mainly driven by
variations in precipitation (phase, intensity, duration) that
determine the amount of water infiltration, and by variations
of irradiance, wind or humidity that mostly drive the drying
up of the soil. Some forecast skill persists even at a forecast
distance of 40 km. We relate this to spatial persistence of
relative soil moisture anomalies as opposed to absolute soil
moisture differences, which was found in a previous study
for the SwissSMEX sites for much of Switzerland (Mittel-
bach and Seneviratne 2012).

Main model drivers were identified to be the antecedent
saturation (saturation at the onset of an infiltration event), the
two-week preceding maximum saturation and the saturation
change during an infiltration event. Using a model fit that
includes only the antecedent saturation and the saturation
change resulted in almost the same forecast goodness as if all

Fig. 4 Temporal evolution for a sample time period at the
SwissSMEX Site Plaffeien of a the ensemble mean and b ensemble
standard deviation with infiltration events highlighted in red, c recorded
landslides within 15 km distance from the site, d the respective

landslide triggering classification, and e the resulting landslide
triggering probability from one model fit (all event properties, all
sensors, all sites, 15 km forecast distance)
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event properties are considered. This demonstrates the
importance of describing both the medium-term antecedent
conditions as well as the short-term event dynamics, as
previously proposed by Bogaard and Greco (2016).

Considerable differences were found between landslides
triggerd by long-lasting precipitation events compared to
landslides due to thunderstorms. If only the first are con-
sidered, the forecast goodness improves significantly and
event properties that describe the antecedent conditions
become more important. If the latter are included in the
modelling only, the forecast goodness decreases signifi-
cantly and event properties that describe the event dynamics
become more important.

Finally, improvements of the forecast goodness could be
achieved if seasons were considered individually and if the
soil moisture sites were grouped by texture. However, the
analysis was limited by the size of the dataset. Further, it was
shown that most variability could be explained by consid-
ering the uppermost sensors (� 30 cm depth) only.

Conclusions and Outlook

Our experiences from this work so far suggests that in-situ
soil moisture measurements contain specific information on
the regional landslide activity and can be effectively used for
landslide early warning. Most important soil-wetness infor-
mation pointing to the imminence of shallow landslides are
the antecedent saturation and the saturation change during an
infiltration event.

The forecast goodness strongly depends on the distance
between the measurement site and the location of the land-
slide, which is explained to be driven mainly by meteoro-
logical variations. The presence of forecast skill at large
distance underlines the value of focusing on relative changes
as opposed to using absolute soil moisture variations.
Finally, the topographic influence is small if the top 1 m is
considered only. This supports the use of already existing
soil moisture monitoring networks.

Open questions remain about the value of other soil
wetness measurement techniques (tensiometers, ERT). Also,
in our future work we will test to what degree soil wetness
data from measurement networks can be replaced by
numerical soil moisture simulations.
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Technical Concepts for an Early Warning
System for Rainfall Induced Landslides
in Informal Settlements

John Singer, Kurosch Thuro, Moritz Gamperl, Tamara Breuninger,
and Bettina Menschik

Abstract

In developing and emerging countries informal settle-
ments often develop uncontrollably around major cities.
In mountainous regions these low-income settlements
frequently are situated in areas subject to high landslide
risk. An intermediate solution to reduce landslide risk for
the inhabitants is the installation of a landslide early
warning system. The Infom@Risk project is developing a
socially integrated cost-effective landslide early warning
system, that specifically addresses the complex spatial
and social conditions of informal settlements. This paper
discusses some of the technical concepts implemented in
the planned early warning system, such as a low-cost
LoRa wireless geosensor network, the measuring system
“Continuous Shear Monitor” and the methods to be used
in data analysis.

Keywords

Landslide early warning system � Geosensor network �
Continuous shear monitor � Informal settlement

Introduction

Although great advances in the recognition, prediction and
mitigation of landslides have been made in the last decades,
landslide events still claim a high social and economic tri-
bute worldwide. For example, Froude and Petley (2018)
have collected and analyzed records of 4862 fatal landslide
events around the globe in the years 2004–2016 in which in

total nearly 56,000 people were killed. Of these events the
majority (79%) were triggered by rainfall. At the same time
fatal landslide events cluster around cities and occur most
frequently in countries with lower gross national income—
usually developing and emerging countries.

This is often linked to the existence of informal settlements
around cities in low income countries. These unauthorized,
uncontrollably growing settlements often develop due to rural
depopulation and migration towards urban centers e.g. in the
expectation of better economic opportunities, public services
and higher incomes (Hallegatte et al. 2016). In mountainous
terrain informal settlements often are built on previously
unpopulated steep slopes surrounding the city center and thus
are frequently subject to substantial landslide risk. Examples
for such a development can be found in Asia, Africa, South
and Central America (e.g. Smyth and Royle 2000).

Due to their unclear legal status and the magnitude and
extent of landslide hazard present in many informal settle-
ments, municipalities and administrations with limited
financial resources are overwhelmed by the task of imple-
menting necessary mitigation measures or by the controlled
resettlement of the population to safer areas. Several projects
throughout the world have shown that simple to follow
construction and development guidelines as well as low cost
mitigation measures, e.g. based on bioengineering, can sig-
nificantly reduce landslide risk, especially if they are con-
ducted in a socially integrated way (e.g. Holcombe et al.
2016). However, even after implementing such measures,
the remaining landslide risk often is still far above an
acceptable level and the population is still exposed to
potentially deadly landslide hazards.

Early warning systems (EWS) can be an effective mea-
sure to reduce the landslide risk in these areas until final
long-term risk reduction solutions are found. Until now the
use of early warning systems in developing countries has
been limited due to the high costs and complex operation of
such systems. However, with the technological advance and
increasing affordability of monitoring devices, for example
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MEMS (Micro-Electro-Mechanical Systems) sensors and
long-range wireless radio transmission techniques, the
implementation of landslide early warning systems in
informal settlements nowadays is conceivable.

The Inform@Risk research project (2019–2022), which is
funded by the German Federal Ministry of Education and
Research, plans to develop and implement a socially inte-
grated cost-effective landslide early warning system, that
specifically addresses the complex spatial and social condi-
tions of informal settlements. The multidisciplinary project
involves landscape architects (Leibniz University Hannover,
LUH), geologists (Technical University of Munich, TUM),
geotechnical instrumentation experts (AlpGeorisk, AGR),
remote sensing experts (German Aerospace Center Oberp-
faffenhofen, DLR and Expert Office for Aerial Image Eval-
uation and Environmental Issues, SLU), and software
developers (Technical University Deggendorf, THD).

In the following, after shortly introducing the study area,
the technical (monitoring and warning) concepts of the early
warning system, which have been jointly developed by
TUM and AGR, are presented. The other essential elements
of the EWS (UN/ISDR 2006) as e.g. the risk knowledge,
warning dissemination and communication and response
capability are only covered superficially and will be pub-
lished in detail elsewhere. A list of publications related to the
Inform@Risk research project can be found at https://www.
bmbf-client.de/projekte/informrisk.

Study Area: Bello Oriente, Medellin, Colombia

The city of Medellin, Colombia has been chosen as a test site
for the proposed EWS, where according to the municipality
currently 200,000 people live in informal settlements at risk of
landslides. In an extensive qualitative decisioning process
mainly conducted by the municipality of Medellin and
local advisors from universities, associations and non-
governmental organizations (NGO) the informal settlement
above the city district Bello Oriente was chosen as a project
site for the implementation of the early warning system.

Bello Oriente is situated on the northeastern slopes above
the city of Medellin (Fig. 1). Based on preexisting work
from the municipality and especially Werthmann et al.
(2012) and Werthmann and Echeverri (2013) as well as
findings of a first field campaign conducted in mid-2019, a
first assessment of the geology, landslide hazard and land-
slide exposure are given below.

Geology

In the study area, slopes of 25° ± 5° predominate. The
deeper underground consists of dunite, a magmatic rock

which is extremely susceptible to weathering due to its high
iron content (Fig. 2). Accordingly, as a result of the tropical
conditions in the project area, the dunite is mostly covered
with saprolite, a clay rich in situ product of weathering,
which often still shows the original dunite structure.
Depending on the exposure, the saprolite cover has a
thickness between zero and several tens of meters. Espe-
cially in and below steeper segments of the slope, the dunite
and saprolite have already been strongly moved by landslide
processes and are therefore present as colluvium with a
chaotic block-in-matrix structure. (Thuro et al. 2020).

Landslide Hazard

Most landslides observed in the northeast of Medellín are
rotational slides in the deeply weathered soils and colluvium
covering the dunite. On the upper parts of the valley, trans-
lational slides and sometimes rockfalls are more prominent
because the bedrock surface is generally shallower there.
Also, flash floods and debris flows occur, which usually
follow the predefined morphology of the creeks. Due to its
position about halfway up the slope, shallow to medium
depth (1–20 m) rotational slides of medium to big size (10–
100 m in width) are expected to be the most probable type of
landslide to occur in the project area. The area affected by
rockfall and flow type landslides is comparably small.

Fig. 1 Location (white oval) of the project area in the informal
settlements above Bello Oriente, Medellin. Base map: Google maps;
from Thuro et al. (2020)
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The landslides are mostly triggered by rainfall or seismic
events. Another frequent landslide trigger is anthropogenic
activity like construction or leaky water pipes and septic
tanks. When initialized, the slides are expected to have a
wide range of possible velocity profiles, from continuously
slow creeping movements, to slides with rapid acceleration,
complete detachment and depending on the water content
possibly liquefaction and very long runouts.

After conducting a geological exploration campaign,which
includes exploratory drillings and an extensive laboratory
testing program in May/November 2020, a more detailed
assessment and differentiation of the landslide hazard will be
possible.

Landslide Exposure

Preliminary results show that the project area is character-
ized by informal settlements built up by simple wooden or
low strength masonry (mostly without reinforced concrete
frames), one- to two story buildings. In a first analysis DLR
counted 836 buildings in the project area, which are popu-
lated by estimated 1663 persons.

Most of the project area is endangered by the landslide
processes characterized above. As soon as the hazard and
exposure have been evaluated in detail, thematic risk maps
for population, buildings and infrastructure will be compiled
and serve as basis for the detailed planning of the EWS
following the concepts described below.

Technical Concepts for a Landslide Early
Warning System

To date most EWS for rainfall induced landslides either
operate on a regional scale or are developed for a specific,
already known landslide (Pecoraro et al. 2019).

Regional landslide EWS are usually based on statistical
analyses of historic events or process models developed for
geographical information systems (e.g. Marin & Velásquez
2019; Piciullo et al. 2018). These systems can provide a
general indication of the current hazard level and can
highlight the areas with the highest probability for the
development of landslides. While these systems can raise
awareness to affected areas, they cannot deliver site specific
spatially and temporally precise warnings that allow to move
people and assets out of harm’s way, which is the goal of the
Inform@Risk EWS.

In order to achieve this goal, the planned EWS operates at
local scale and incorporates deformation and other
geotechnical monitoring techniques comparable to those
used in site specific EWS. However, as the exact locations of
future developing landslides are unknown and spatially
highly resolved area wide observations with conventional
monitoring techniques would be very costly, new method-
ological and technical concepts are needed to implement
such an EWS.

General Concept

The general idea is to be able to predict the future behavior
of the observed landslide prone area, based on detailed
hydrogeological and geotechnical models, which have been
calibrated by observational data from hydrogeological field
tests, geotechnical laboratory tests and a dense low-cost
geosensor network. By including the triggering process in
the models (e.g. intense precipitation leading to high ground
water levels which trigger landslides), it is feasible to issue
first general notifications, several days to hours in advance of
a critical phase concerning the stability of the slope. When
the onset of slow, but increasing movements is detected,
spatially precise early warnings can be issued. In case of

Fig. 2 Geological overview section through the northeastern slope above Medellin; the study area is situated on the upper slope where deeply
weathered dunites predominate. Adapted from Werthmann et al. (2012)
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further or sudden strong acceleration of the slope, (evacua-
tion-) alarms can be issued hopefully at least hours to min-
utes prior a catastrophic event, allowing people to leave the
endangered area in time.

In order to reliably detect the initiation of landslides—
especially in the small order of magnitude described above
(rotational slides 10–100 m in width)—spatially highly
resolved and accurate deformation observations are required.
To achieve this high measurement density, the application of
a geosensor network consisting of a combination of hori-
zontally installed Continuous Shear Monitor (CSM) and
wire-extensometer measurement systems combined with low
cost wireless sensor nodes is planned (Fig. 3). While the
CSM and wire-extensometer systems provide continuous,
spatially highly resolved deformation observations along
measurement profiles, the wireless sensor nodes add punc-
tual observations based on the integrated MEMS sensors and
other external geotechnical and hydrological sensors.

In order to achieve an optimal effectiveness of the system
in terms of risk reduction, the density of the observations is
varied throughout the project area based on the results of the
risk assessment. In less risk prone areas, the sensor density is
significantly reduced.

While this approach ensures an optimal cost–benefit ratio
of the entire system, it must be emphasized, that especially
small low intensity and very unlikely events might not be
detected.

Geosensor Network

The monitoring system planned for the project site at Bello
Oriente will cover about 20 hectares and consist of
approximately 1.2 km combined CSM- and
wire-extensometer lines and about 75–100 wireless sensor
nodes. These communicate with 2–3 data gateways, which
are distributed throughout the project area.

Combined CSM and Wire-Extensometer Lines
The Continuous Shear Monitor (CSM) is a specialized
advancement of the Time Domain Reflectometry
(TDR) technology for geotechnical applications (Singer
et al. 2009). TDR is an electrical engineering measuring
technique developed in the 1960s for locating cable faults
and breaks in coaxial cables (in German-speaking countries
often referred to as “cable radar”). With the CSM method,
that in addition to the measurement technology itself
includes procedures for the cable installation and signal
processing, shear deformations (deformations perpendicular
to the measuring or cable-axis) along a measuring cable can
be monitored.

The CSM can seamlessly monitor measurement lines up
to several hundreds of meters in length. While the system

can localize and quantify localized shear with high accuracy,
the maximum measurement range of shear deformation is
limited to about 10 cm, when at this point the measurement
cable is severed. In order to accomplish a larger measure-
ment range (1 m and more) and at the same time add the
possibility to detect axial extension along the measurement
line, wire-extensometers are installed parallel to the CSM
cables. These are segmented into elements of maximum
100 m length in order to allow a rough spatial allocation of
the detected deformation. This is sufficient, as the location of
the deformation usually will be provided by the CSM
system.

However, the effort to install these systems is quite high,
as they need to be placed in a trench with concrete backfill.
Ideally the installation can be carried out in the context of
other construction (e.g. streets, sewerage).

LoRa Wireless Sensor Network
The comparably new LoRa (Long Range) wireless tech-
nology allows the transmission of small data packets across
large distances of several kilometers while only requiring
very little power. This makes the development of sensor
networks possible, which can be distributed in a wide area
with little additional infrastructure required. The nodes can
be operated with a few standard AA batteries for a very long
period (up to about 2 years) and using small solar panels
continuous operation for several years is conceivable. As the
required hardware is affordable, the cost of the complete
system is low.

For the Inform@Risk EWS new low cost LoRa sensor
nodes are developed, which are based on the Arduino MKR
WAN 1310 microcontroller. The nodes will include a 24-bit
A/D converter allowing to connect precision analog sensors.
Each node additionally is equipped with a high-quality
MEMS tilt sensor, thermometer and barometer. The devel-
oped circuitry and firmware will be made available and
distributed as open source.

The LoRa nodes transmit their data to LoRa gateways, of
which for redundancy at least 2 are placed in the project
area. These require power and internet access. Any data
received from the LoRa nodes is directly forwarded to the
data server and stored in the project database. The nodes can
also receive commands e.g. to change the measurement
frequency.

Sensor Placement
While the density of observations is determined by the risk
analysis results as described above, the selection and
placement of each individual sensor still must be executed
with extreme care. The target area should be systematically
checked for locations where a sensor most likely will detect
changes in the measured value when a landslide develops.
The resolution and range of the sensor as well as possible
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Fig. 3 Schematic layout of the proposed landslide early warning system (Thuro et al. 2020)
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outside influences on the measurement should also be con-
sidered when placing a sensor. In any case the placement of
each sensor needs to be documented in detail, as this will
allow a better interpretation of the acquired data. In order to
facilitate this process, it is planned to add an interactive
sensor installation guide into the Inform@Risk app.

For the predominating rotational slides expected in the
project area, MEMS inclination sensors seem to be an
appropriate and simple observation method. These will be
attached to buildings and infrastructure which are thought to
tilt, when the slope starts to move. Additionally, small
subsurface inclination probes will be used, which are driven
1–2 m into the ground (see Fig. 3, LoRa Sensor Node inset).

Data Analysis

All data collected from the geosensor network will be
immediately transferred to an off-site central server
(Inform@Risk Cloud), where it is processed and analyzed in
near real time. The data analysis is based on threshold
checks for various datasets, time series analyses and sensor
fusion methods. Based on the analysis results the short- to
medium term hazard level (or probability of failure) is
assessed, and—if deformation is detected—early warnings
and alarms are issued. The main information dissemination
tool will be a newly developed mobile app.

Short- to Medium Term Hazard Level
In order to assess the short- to medium-term hazard level, the
triggering factors rainfall and groundwater height are con-
sidered. On the one hand time series analyses will be per-
formed to identify causal and temporal relationships between
short-, medium- and long-term rainfall and groundwater
levels. On the other hand, the hazard level is determined
using groundwater level thresholds at e.g. 50, 75 and 90% of
the critical water table derived from sensitivity analyses
performed using the geological/geotechnical models created
during the hazard analysis.

Early Warning and Alarms
Early warnings are issued as soon as significant deformation
has been detected. Depending on the amount of deformation
observed, different early waring levels are issued. The
number and value of the static thresholds used to define
these levels will be determined in course of the detailed
hazard analysis, but early warning will most probably cover
the range from mm per year up to cm to dm per hour. Based
on how many/which neighbouring sensor nodes show
deformation, the affected area and landslide mass are esti-
mated and reported. If a further or sudden strong acceleration

is detected, the system can issue an immediate (evacuation)-
alarm using acoustic signals.

Depending on the hazard state, deformation rate and the
affected area different actors (experts, trained community
members, first responders, whole population) are informed.

Usually warnings are checked by an expert before they
are sent to the inhabitants. Only in case at least two neigh-
boring sensor nodes show very strong acceleration at the
same time, the warnings are issued without review. The
exact definition of the warning levels, warning content and
the information dissemination paths will be developed in a
participatory process, ensuring that, if possible, each actor
gets the required information at the right point in time.

Outlook and Conclusion

It is planned to conduct a first test installation of the
Inform@Risk EWS in November/December 2020. Based on
these experiences the implementation of the entire system is
planned for mid 2021. After a testing and evaluation phase
of about 1 year the hopefully fully operational system is
going to be handed off to the municipal early warning
authority SIATA in 2022.

Although the technical concepts for the Inform-@Risk
EWS were designed specifically for the study area of Bello
Oriente, the approach can easily be adopted to many other
areas in the Andes and worldwide.
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Combination of Rainfall Thresholds
and Susceptibility Maps for Early Warning
Purposes for Shallow Landslides at Regional
Scale in Taiwan

An Lu, Wei-Kai Haung, Ching-Fang Lee, Lun-Wei Wei, Hsi-Hung Lin,
and Chun-Chi Chi

Abstract

In this study, the development of landslide susceptibility
and determination of rainfall threshold for shallow
landslides is the main purpose for the prevention of slope
disaster. For appliance of the practical operation of
disaster prevention, almost 185,000 slope units are used
to calculate landslide susceptibility and determine the
rainfall threshold of shallow landslides, which are a
reference of preparation for slope disasters. Time of
occurrence of 941 landslides are collected through field
investigation, and rainfall pattern of each landslides are
analyzed to clarify the relation between landslide and
rainfall. Logistic regression (LR) analysis was performed
to evaluate landslide susceptibility and establish the
assessment method of the rainfall threshold of landslide
by using I3–R24 rainfall thresholds. After verification of
rainfall-induced landslide in Typhoon Meranti (2016), the
result show that the early warning model is suitable for
alerting serious swarm of landslides.

Keywords

Rainfall-induced landslide � Landslide susceptibility
analysis � Rainfall threshold � Early warning

Introduction

Rainfall-induced landslides number among the most perilous
natural hazards, causing severe casualties and economic
losses worldwide. Therefore, many efforts have been made
to evaluate landslide susceptibility and thereby set criteria
for issuing alerts that can save lives and property.

In Taiwan, monsoons and typhoons bring great amounts
of rainfall, up to 3,000 mm/year, and numerous landslides
cause casualties every year. Therefore, recognizing the areas
where rainfall-induced landslides might occur is an urgent
issue.

On the other hand, rainfall thresholds for landslides can
be categorized as either statistical approaches or determin-
istic approaches. In the former method, thresholds are
decided by collecting historical landslide cases and analyz-
ing their rainfall parameters and the probability lines of
rainfall conditions (Guzzetti et al. 2008). In the latter
method, thresholds are decided by calculating the safety
factors of each slope or grid with geomaterial and rainfall
parameters (Kim et al. 2010). Statistical rainfall thresholds
for shallow landslides have been well discussed (Guzzetti
et al. 2007).

This study focused on shallow landslides of the debris
fall, debris topples, debris slide, earthfall, earth topple, and
earth slide types proposed by Varnes (1978) and divided
slope units according to three different landslide suscepti-
bility levels (high, moderate, and low). After that, we
established their rainfall thresholds separately. Furthermore,
we set alert levels by adopting a hazard matrix and examined
whether differentiated warning thresholds for different
degrees of susceptibility existed. Moreover, this study gives
an importance of validating the performance of a landslide
early warning model, especially the false alarms and missed
alarms, to make it feasible for further practical application.
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Study Area

Taiwan is located in the western Pacific Ocean, on the
convergent plate boundary zone of the Philippine Sea Plate
and the Eurasian plate. The orogenic uplift rate is 5–
7 mm/year; however, the exhumation rate is also as high as
3–6 mm/year (Dadson et al. 2003) due to the fractured
geological materials and the high mean annual precipitation
of 2,500–3,000 mm brought by typhoons and monsoons
every year. The frequent natural disasters and high popula-
tion density (23 million people in 36,000 km2) of Taiwan
make it one of the countries most exposed to multiple
hazards.

The study area (Fig. 1) includes 157 1:25,000 scale maps
(about 24,250 km2), and covers densely inhabited and
landslide-threatening hillslopes. The lithological units are
mainly sedimentary rocks composed of sandstone, shale,
mudstone, and metamorphic rocks composed of slate,
argillite, and metasandstone.

Methodology

Slope Unit

Slope units were used for the analysis of landslide suscep-
tibility in this study (Carrara 1988; Carrara et al. 1991, 1995;
Guzzetti et al. 1999; Yang 2017). This study followed the
method proposed by Xie et al. (2004) in delineating slope
units according to gullies and ridges. Almost 185,000 slope
units are found in this study for the establishment of an early
warning system.

Landslide Occurrence Time and Field
Investigation

To analyze the rainfall conditions for each landslide case
used in this study, 941 shallow landslide cases, including
their occurrence times (date and hour) and the characteristics
of the landslides, were gathered for further analysis.

Landslide Susceptibility Analysis

The main purpose of landslide susceptibility analysis is to
determine the effectiveness of each predisposing factor and
the relative possibility of landslide occurrence in a specific
area.

10 � 10 m DEM is adopted to be a basic resolution for
slope unit delineation and landslide susceptibility calcula-
tion. Several predisposing factors that might lead to

landslides were selected initially in this study to construct a
landslide susceptibility model for slope units. These factors
included rock mass strength-size classification (RMSSC I–
VII), dip slope, average slope, variance of slope, ratio of
steep slope, total slope height, average elevation, average
curvature, variance of curvature, fault density, fold density,
average wetness, rainfall intensity, total rainfall, 3-hour
mean rainfall intensity (I3), and 24-hour accumulated rainfall
(R24). In this study, we applied logistic regression (LR) to
evaluate the susceptibility of each slope unit (Guzzetti et al.
1999). The LR function can be expressed as follows:

P ¼ 1
1þ e�z

ð1Þ

Fig. 1 Study area is composed of 4 regions in Taiwan. Basis of
division is different lithological units
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z ¼
Xm
i¼1

Liwi þ
Xn
j¼1

Fjwmþ j þC ð2Þ

where P is landslide susceptibility, Li is RMSSC factor, Fj is
other factors, wi and wm+j are regression coefficients, and
C is a constant. Six event-based landslide inventories in this
study were used to label whether or not landslides occurred
in the slope units. After that, all the slope units were divided
randomly into two groups, one for training the model and the
other for validation. The index indicating landslide/
non-landslide was set as the dependent variable, and all
the landslide susceptibility factors were set as covariates in
SPSS for training of the model. After iterative training, the
regression coefficients of each landslide susceptibility factor,
as well as the success rate curve (SRC), the prediction rate
curve (PRC), and the area under the curve (AUC), were
reported in SPSS. The AUC can be used to examine if the
model predicts landslides well, and the regression coeffi-
cients can be used for the prediction of landslide suscepti-
bility. The individual landslide susceptibilities of slope units
were calculated with this model and classified into high,
moderate and low susceptibility levels.

I3–R24 Rainfall Index and Thresholds

Rainfall-induced landslides are triggered by either
high-intensity rainfall or high accumulated rainfall (Larsen
and Simon 1993; Corominas and Moya 1999; Yu et al.
2006). To identify rainfall indexes responsible for landslides,
the triggering rainfall, including the rainfall intensity (I1, I2,
I3, I4, I5, I6) and accumulated rainfall (R6, R12, R24, R48, R72)
of different time windows of each landslide case were ana-
lyzed according to the landslide occurrence time. The results
revealed that 218 landslides occurred within the 3 h fol-
lowing the highest rainfall intensity, and 242 occurred within
the 3 h following the 2nd or 3rd highest rainfall intensity
(i.e., induced by high rainfall intensity), accounting for
nearly 49% of the landslide cases gathered in this study.
From these results, it became clear that in Taiwan, I3 is the
most important index for landslides induced by rainfall of
short duration but high intensity. On the other hand, 481
landslides occurred close to the end of the rainfall events
(i.e., induced by high accumulated rainfall), accounting for
about 51% of the total cases.

Based on these data and previous studies (Liao et al.
2010), 3-hour mean rainfall intensity (I3) and 24-hour
accumulated rainfall (R24) were chosen respectively as the
short-term and long-term rainfall indexes for the establish-
ment of the rainfall threshold (Fig. 2). We chose 3-hour
mean rainfall intensity here instead of 3-hour accumulated

rainfall to focus on the rainfall of short duration but high
intensity. Similarly, we chose 24-hour accumulated rainfall
to focus on the rainfall of long duration but low intensity.
Finally, rainfall thresholds were decided by plotting the I3
and R24 rainfall index of historical landslides in the I3–R24

diagram (Fig. 3). Here we used the ellipse as the threshold
line, and the parameters a (semi-major axis) and b
(semi-minor axis) of the ellipse were set according to the
slope of best fit line obtained from the least square method.
Thresholds such as 90, 60, 30 and 15% were determined
according to the percentage of historical cases that could be
enveloped under the threshold line; e.g., the 90% threshold
(T90%) included 90% of the historical cases. A higher
threshold indicates a more dangerous condition for the
occurrence of landslides. The original warning values of I3
and R24 of the 90, 60, 30, 15% thresholds were equal to the
semi-minor axis and semi-major axis of each threshold,
respectively. After that, I3 was rounded to the nearest
5 mm/h, and R24 was rounded to the nearest 50 mm for
operational purposes, such as the evacuation of residents.

Landslide Early Warning Model

The landslide early warning model in this study considered
both landslide susceptibility and rainfall thresholds and
alerts were determined by using a hazard matrix. As men-
tioned above, the LR method was applied to analyze the
susceptibility of each slope unit. After that, all the slope units
were categorized into high, moderate, and low susceptibility
levels. We consequently established rainfall thresholds for
each susceptibility level separately and then set alerts of red,
orange, yellow and green according to the level of danger.

High-susceptibility slopes might be more susceptible to
rainfall. Hence, the alerts were set as red (extreme danger
level) for rainfall conditions exceeding the 60% threshold
line, orange (high danger level) for those between the 60 and
30% threshold lines, yellow (medium danger level) for those
between the 30 and 15% threshold lines, and green (low
danger level) for rainfall conditions lower than the 15%
threshold line (Fig. 4). For moderate-susceptibility slopes,
the alerts were set as red for rainfall conditions exceeding the
90% threshold line, orange for those between the 90 and
60% threshold lines, yellow for rainfall conditions between
the 60 and 30% threshold lines, and green for rainfall con-
ditions lower than the 30% threshold line.
Low-susceptibility slopes should be less susceptible to
rainfall. Hence, the alerts were set as orange for rainfall
conditions exceeding the 90% threshold line, yellow for
those were between 90 and 60% threshold lines, and green
for those lower than the 60% threshold line (Fig. 5).
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I3–R24 Rainfall Threshold

We gathered a total of 941 landslide cases in this study and
used 240 cases located in southern Taiwan, consisting of 110
high-susceptibility cases, 84 moderate-susceptibility cases,

and 46 low-susceptibility cases, to establish a
susceptibility-based regional landslide early warning model.
For practical use, the original threshold values of I3 andR24 (as
shown in the parentheses in Fig. 6) were separately rounded to
the nearest 5 mm/h and the nearest 50 mm for an operational
purpose. It was found that the threshold values gradually

Fig. 2 3-hour mean rainfall
intensity (I3) and 24-hour
accumulated rainfall (R24) were
used as short-term and long-term
rainfall indexes for the
establishment of rainfall
thresholds

Fig. 3 Establishment of I3–R24

rainfall thresholds for shallow
landslides. The best fit line was
derived by the least square
method, and the ratio of a and b
was used as the ratio of the
semi-major axis and semi-minor
axis in the ellipse threshold line
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increased as the susceptibility of slope units decreased for the
same alert level, indicating that greater rainfall amounts would
be needed when issuing alters on less susceptible slope units.
These results showed that establishing rainfall thresholds

according to different landslide susceptibilities and then set-
ting alert levels by adopting a hazard matrix provided differ-
entiated not only thresholds but also avoided the over- or
underestimation of the thresholds for slopes.

Fig. 4 Landslide early warning
model and alert considering both
landslide susceptibility and
rainfall thresholds

Fig. 5 Rainfall thresholds for
southern Taiwan. The values
were calculated as 90, 60, 30, and
15% of the original threshold,
respectively. The original values
are shown in parentheses
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Fig. 6 Location and alert level of 12 representative landslides near route 9 caused by Typhoon Meranti in 2016
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Validation of Early Warning Model

During Typhoon Meranti in 2016, 178 shollow landslides
occurred in 29 slope units, including one high-susceptibility
slope, two moderate-susceptibility slopes, and 26 low-
susceptibility slopes. According to newspaper reports, most
of the landslides occurred at 04:00 on September 15, 2016.
Alert level and photo of 12 shollow landslides, which are
representative from 178 shollow landslides, are shown in
Fig. 7. One of them was a red alert level when the landslide
occurred; the others are orange alert level.

The Route 9 410.8 k landslide (Fig. 8) occurred on a
low-susceptibility slope in southern Taiwan. The rainfall
path (Fig. 9) showed that on September 15, the alert was
raised to yellow at 02:00. Then the landslide occurred at
05:00 on September 15. The Route 9 413.5 k landslide
(Fig. 10) occurred on a low-susceptibility slope in southern
Taiwan. The rainfall path (Fig. 10) showed that on
September 15, the alert was raised to yellow at 00:00 and
then to orange at 02:00 during the downpour. Then the
landslide occurred at 04:00 on September 15.

Conclusion

This study attempted to establish regional rainfall thresholds
for shallow landslides according to their landslide suscepti-
bility levels and set alerts with a hazard matrix to provide
more detailed results for disaster mitigation.

This study also examined the relationships between
rainfall indexes and the occurrence of landslides. From 941
landslide cases we gathered, it was found that 3-hour mean
rainfall intensity (I3) and 24-hour accumulated rainfall (R24)
was the most dominant short-term and long-term parameters
responsible for rainfall-induced landslides in Taiwan. There
were 460 cases (about 49%) that occurred within the 3 h
following the highest, 2nd, and 3rd rainfall intensities,
while 24-hour accumulated rainfall had the lowest coeffi-
cient of variation of the long-term rainfall indexes. The I3-
R24 rainfall index was therefore used to establish rainfall
thresholds.

Slope units are categorized into three landslide suscepti-
bility levels (high, moderate, and low) and then separately
established a susceptibility-based regional rainfall threshold.

Fig. 7 Photo of route 9 410.8 k
landslide
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We also set three alert levels, including red (extreme danger
level), orange (high danger level), and yellow (medium
danger level), by adopting a hazard matrix for application to
evacuation decisions.

Validations using landslide cases in Typhoon Meranti in
2016 showed that, for the representative landslide cases in
Typhoon Meranti, orange or red alerts could have been
issued before the landslides occurred.

Fig. 9 Photo of route 9 413.5 k
landslide

Fig. 8 Rainfall path of route 9
410.8 k landslide in the I3–R24

diagram
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It can be concluded that classifying landslide suscepti-
bility and establishing rainfall thresholds separately not only
provides refined thresholds but also avoids over- or under-
estimation of the thresholds for slopes, especially when
considering the application to disaster prevention.
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Development of Landslide Early Warning
System Based on the Satellite-Derived
Rainfall Threshold in Indonesia

Agus Setyo Muntohar, Olga Mavrouli, Victor G. Jetten, Cees J. van
Westen, and Rokhmat Hidayat

Abstract

Landslide is a common natural disaster occurring in
Indonesia during the rainy season from November to
February. Attempts have been made to develop an early
warning system based on the rainfall derived from
satellite observation. It is essential to verify the accuracy
level of the rainfall threshold in predicting the occurrence
of rainfall, causing landslides and non-landslides to model
the lower limit that can be used as an early warning
device of the landslides. In this analysis, modelling was
carried out with an empirical (intensity—duration/ID)
approach using 220 data of rainfall that triggered
landslide with satellite-based TRMM in Indonesia terri-
tory. The intensity and duration of antecedent rainfall
were utilized in rainfall threshold modelling. The rainfall
threshold was validated with ROC analysis. This method
used seven statistics indices and ROC curve to determine
the accuracy rate of the rainfall threshold. The results
showed empirical equation I = 7.83D−0.328 within the
interval time 2–18 days. The results of the analysis of the
ROC on the rainfall threshold indicate that the model has

a good accuracy rate and can be used in an early warning
system of landslide even though it still has a fairly high
error rate.

Keywords

Rainfall � TRMM � Threshold � Warning system

Introduction

Landslides are one of the natural disasters that frequently
occur in one tropical country in Indonesia.. High precipita-
tion can cause unstable soil conditions and cause slope
collapse. Rainfall triggerring landslides can be predicted
using rainfall thresholds used in early warning systems. In
this work, rainfall modeling is generated by evaluating
rainfall intensity and duration of rain from Tropical Satellite
Rainfall Measuring Mission (TRMM) data based on
Multi-Satellite Precipitation Analysis (TMPA) (Mathew
et al. 2013). Each threshold model created has a different
level of accuracy in predicting landslides. Several methods
are frequently used to evaluate the empirical threshold
models.

Rainfall triggering landslides can be divided into two
categories, namely critical and antecedent rainfall. Figure 1
shows the occurrence of rain that can trigger landslides
(Aleotti 2004). Critical rainfall is the amount of rainfall that
has increased drastically and can trigger landslides. Critical
rain can be a trigger for landslides if the rainfall generated is
high, and exceeds the maximum limit. Meanwhile, the
antecedent rain is a successive rainfall event measured prior
to the critical rainfall event until the beginning of the critical
rainfall. Both critical and antecedent rainfall can be used as
parameters in determining the rainfall threshold model.
Measuring antecedent rainfall threshold modeling is simpler
than the critical rainfall. The common empirical model of
rainfall threshold is determined by intensity—duration curve
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(I-D curve) (Aleotti 2004; Guzzetti et al. 2007; Reichenbach
et al. 1998; Muntohar 2008).

The developed-rainfall threshold models for early warn-
ing system must be evaluated to determine the level of
accuracy in predicting landslides during the rainy period.
This level of accuracy can usually be evaluated by
Receiver-Operating Characteristic (ROC) analysis. This
method applies statistical index values and ROC curves that
represent the level of accuracy of the rainfall threshold
model (Fawcett 2006; Zou et al. 2007). The main purpose of
this study is to establish the empirical model of the rain
threshold based on antecedent rainfall intensity and duration.

The accuracy of the empirical model was evaluated by the
ROC method. Thus, the rainfall threshold model can be
implemented in a landslide early warning system.

Research Method

Landslides Inventory in Indonesia 2010–2018

An empirical model of rainfall threshold to predict landslides
requires data such as location, time, and rainfall. Several
landslides in Indonesia have been documented through the
website of the National Disaster Management Agency
(BNPB), the Crisis Centre of the Ministry of Health, and the
Geology Agency. However, many landslides were barely
well recorded at government agencies but reported by
newspapers and online sources. The distribution of landslide
locations is shown in Fig. 2. Total landslides that can be
recorded are 220 locations. The most recorded locations of
landslides were in Java and Sumatra islands, while, in the
regions of Kalimantan, Sulawesi, Papua, and Maluku,
landslides rarely occur. Therefore, the model developed in
this study is valid for the Java and Sumatera islands.

Rainfall Records

The rainfall records for subsequent landslide location was
obtained by the satellite data of the TRMM. Some studies on
the validation of TRMM data over Indonesia have been

Fig. 1 Definition of rainfall parameters for threshold determination
(modified after Aleotti 2004)

Fig. 2 Landslides occurrence in Indonesia during January 2010–December 2018
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conducted by As-Syakur et al. (2011), Sipayung et al.
(2014), Pratama et al. (2016), Giarno et al. (2018), and
Fatkhuroyan et al. (2018). The studies concluded that the
rainfall derived from the satellite was over predicted during
the wet season, but the rainfall was applicable for an early
warning system. The statistical descriptor (mean l, and
deviation standard r) and distribution of the antecedent
rainfall are shown in Fig. 3. The mean value of the duration
of antecedent rainfall is about six days, and the average
antecedent rainfall intensity is 16 mm/day, with the mean
antecedent rainfall is 99 mm.

Empirical Model

Empirical models of landslides were analyzed from 220
daily rainfall records at each landslide location. The rainfall
threshold model was made based on the relationship
between rainfall intensity and duration (I-D). Empirical I-D
curve was developed by regression analysis by determining
the lowest limit on the curve based on the distribution of data
points. Furthermore, empirical equations are approached
with power equation models such as Eq. 1 (Guzzetti et al.
2007).

I ¼ aD�b ð1Þ
where It is rainfall intensity (mm/day), D is he duration of
the rainfall event that triggered each landslides (day), a and b
is the constants obtained from the best fit.

In this study, a model developed was based on the
antecedent rainfall triggering landslides. The definition of
antecedent rainfall and respective duration, as explained by
Aleotti (2004), is presented in Fig. 1. Parameter I in Eq. (1)
is defined as average antecedent rainfall intensity (Iat)
determined by Eq. (2).

Iat ¼ Rat

Dat
ð2Þ

where Rat is the antecedent rain (mm), and Dat is the duration
of the antecedent rainfall (days).

Performance Analysis of the Empirical Model

In this study, the only first-time landslides at a single loca-
tion was counted. The accuracy of the model was tested by a
contingency table, skill scores, and ROC curve. Rainfall
events that are not triggering landslide (no-landslide) were
also collected to evaluate the empirical model. The rainfall
events that are not triggering landslides were defined by the
method proposed by Muntohar and Liao (2008). The rainfall
events with no-landslide were defined at the same location in
previous years, for instance, a landslide occurred at location
L1 on November 21st, 2013 (Tn) during a rainfall event,
which indicates that the slope has not failed on November
21st in previous three years 2012 (Tn−1), 2011 (Tn−2), and
2010 (Tn−m) (see Fig. 4). Thus, the antecedent rainfall and
duration in previous years are defined as no-landslide.
A total of 5468 rainfall events were observed for perfor-
mance analysis.

Contingency Table
The contingency table or confusion matrix considers two
classes of a classification model (classifier) and instances
(Fawcett 2006; Frattini et al. 2010; Piciullo et al. 2016). The
classification model and examples used in this study are
observed landslide and predicted landslide. The contingency
table correlates the observed landslide and predicted land-
slide. The predicted landslide is positive if a rainfall is
positioned at or upper the threshold, whereas the negative is
below the threshold. The positive observation is considered

Fig. 3 The statistical distribution
of antecedent rainfall, Rat (a),
average intensity, Iat (b), and
duration, Dat (c) from the 220
landslide
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as true positive (TP), and is considered as false negative
(FN) below the threshold. The related definitions for nega-
tive results above and below the threshold are false positives
(FP) and true negative (TN). As a consequence, there are
two main cases of prediction: (1) correct prediction: true
positive (TP) and true negative (TN), and (2) wrong pre-
diction: false positive (FP) and false-negative (FN) as pre-
sented in Table 1.

Statistical Indices
Frattini et al. (2010) used statistical indices to assess the
accuracy of empirical models obtained through statistical
analysis between the results of the model and the observed
data. Seven statistical indices were used to analyze the
accuracy of the rainfall threshold model (Fawcett 2006;
Frattini et al. 2010), as presented in Table 2. The indices are

(i) True Positive Rate or hit rate is the ability of the
threshold to identify rainfall events that trigger
landslides;

(ii) False Positive Rate states the level of error in identi-
fying rainfall events that do not trigger landslides;

(iii) True Negative Rate or specificity measures the ability
to identify rainfall events that do not trigger
landslides;

(iv) False Negative Rate states the error rate in identifying
rainfall events that triggered landslides;

(v) Positive Prediction Power or precision is to determine
the probability of a rainfall event which triggers a
landslide;

(vi) Negative Prediction Power measures the probability
of a rainfall event do not trigger a landslide; and

(vii) True Skill Statistics is the ratio between the True
Positive Rate and False Positive Rate.

Fig. 4 A schematic definition of rainfall events with no landslides

Table 1 Confusion matrix for
accuracy analysis of empirical
model of rainfall threshold

Predicted Observed

Landslide No landslide

At or above threshold True positive, TP False positive, FP

Below threshold) False negative, FN True negative, TN

Table 2 Statistical indices for
measuring the level of accuracy

Index Equation Range Best value

True positive rate or hit rate TPR ¼ TP
TPþFN

(0;1) 1

False positive rate FPR ¼ FP
FPþTN

(0;1) 0

True negative rate or specificity TNR ¼ 1� FPR (0;1) 0

False negative rate FNR ¼ 1� TPR (0;1) 0

Positive prediction power or precision PPP ¼ TP
FPþTP

(0;1) 1

Negative prediction power NPP ¼ TN
FNþTN

(0;1) 1

True skill score TSS ¼ TPR� FPR (0;1) 1

(After Fawcett 2006; Frattini et al. 2010; Piciullo et al. 2016)

230 A. S. Muntohar et al.



ROC Curve
The ROC analysis method can be applied to measure the
accuracy of the rainfall threshold. The ROC curve is a
relationship between the True Positive Rate and the False
Positive Rate indices, which at each point shows the level of
the ability of the rainfall threshold to predict landslides. The
level of accuracy is high if the ROC curve is close to the
perfect classification point; for instance, the point with TPR
= 1 and FPR = 0. The area under the curve (AUC) is an area
that shows the level of accuracy of the empirical model.
AUC is area whose value is always between 0 and 1. Ran-
dom Performance results in an AUC value of 0.5 since the
curve obtained is a diagonal line between point (0,0) and
point (1,1). If the AUC is < 0.5, then the statistical model has
a deficient level of accuracy and indicates the worst pre-
diction when applied (Fawcett 2006; Zou et al. 2007).

Result and Discussion

Empirical Rainfall Threshold

The proposed empirical threshold in this study is presented
in Fig. 5. The red line is the best-fit line of threshold. The
threshold was defined by Eq. (3). The I-D threshold of this
study is compared to the other regional thresholds by Caine
(1980), Larsen and Simon (1993), Guzzetti et al. (2007),
Mathew et al. (2013), and Rosi et al. (2017) as illustrated in
Fig. 6. The figure shows that present threshold is lower than
the other empirical equation. The figure also plots the
landslides in Indonesia from year 2000 to 2004 that was
provided by Muntohar (2008). The rainfall was obtained
from the gauge measurement. The plot alludes to show that
the established empirical rainfall threshold has a good per-
formance to predict the landslides.

I ¼ 7:83D�0:328 ð3Þ
However, Rossi et al. (2017) argued that satellite-derived

rainfall could not be used directly in analytical or calibrated
hydrogeological models if they were derived from
gauge-based data unless the estimating satellite are correctly
scaled locally. In terms of locally scale area, Sipayung et al.
(2014) and Pratama et al. (2016) found that rainfall from
gauge measurement was 0.36–0.44 of the rainfall derived
from TRMM. It indicates that the rainfall threshold from
satellite-based rainfall estimation can be applied to predict
the landslide initiation. Furthermore, Kirschbaum and
Stanley (2018) and Guzzetti et al. (2020) stated that satellite
rainfall projections might be useful in determining empirical
rainfall thresholds for landslides initiation or in general for
other hydrogeological models to forecast phenomena of
instability over the large territorial area. Therefore, the
selection of the empirical threshold model is the key to
issuing early warning system (EWS) for rainfall-induced
landslides (Monsieurs et al. 2019; Piciullo et al. 2018).

Performance Evaluation of the Rainfall Threshold
Model

Table 3 presents the confusion matrix to evaluate the per-
formance of the empirical rainfall threshold. The total
number of events of 5468 was evaluated in the performance
analysis. The True Positive was counted as many as 1389
events, while the True Negative, False Positive, and False
Negative were 1572, 121, and 2386 events, respectively.
Further performance analysis for statistical indices of the
model is presented in Table 4.

The empirical model proposed in this study showed a
higher True Positive Rate (TPR = 0.92) but a moderate True

Fig. 5 The proposed I-D curve
as rainfall threshold for landslides
warning
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Negative Rate (TNR = 0.40). The result implies that the
model was right in identifying the occurrence of
rainfall-triggered landslides, but it presented low accuracy in
predicting not-failure case. Estimated TNR values > 0.90
stated that the rainfall threshold is perfect for avoiding alarm
errors in the early warning system (Rosi et al. 2017).
However, the TNR value (TNR = 0.40) of the threshold
could be categorized as low to a moderate level in identi-
fying rainfall events that did not trigger a landslide, which
could cause a high alarm error rate in the warning system.
The FPR value of the threshold was highly moderate
(FPR = 0.60), indicating that the rainfall threshold was
suitable enough to predict the rain event that did not trigger
landslides. The FPR is strongly related to the uncertainty of
rainfall intensity and causing the condition of FP (Guzzetti
et al. 2007).

The PPP value (PPP = 0.37) was relatively low for an
empirical model. The result indicates that the ability to
classify precisely the rainfall-triggered landslide was mini-
mal. Furthermore, there was still a high possibility that the
rain threshold was incorrect in classifying the occurrence of
rainfall-triggered landslides despite having a high TPR
value. However, NPP values > 0.90 indicates that the rain-
fall threshold model has an excellent prediction of rainfall
events that do not trigger landslides (Rosi et al. 2017).
The NPP value obtained in this study was 0.93, showing that
the ability of the rainfall threshold in classifying rainfall
events that did not trigger landslides was very high, despite
the low TNR value.

The TSS index is expressed as an interval number (0,1), if
TSS = 0 then TPR = FPR and TSS = 1 for a perfect pre-
diction level if TPR = 1 and FPR = 0. The high value of
False Positive Rate caused the low value of True Skill
Statistics (TSS). The analysis of this study revealed a TSS
value of 0.32. It means that the rain threshold still has a low
predictive level (Peres and Cancelliere 2014). Overall sta-
tistical evaluation was considered in ROC analysis. The
result is presented in a ROC curve, as in Fig. 7. The diagonal
line is a random performance value of 0.50 (AUC = 0.50),
assuming the true and false are equal (TPR = FPR).
The AUC of the threshold shows that the level of accuracy in
detecting rainfall triggering landslides and non-landslides
was 0.66. Figure 7 shows the AUC and the rain threshold
produce a pretty good level of accuracy since the results
obtained exceed the value of random performance.

Fig. 6 Comparison the threshold
with the worldwide threshold for
rainfall events with landslide in
2000–2004

Table 3 The confusion matrix
for performance evaluation of the
model

Predicted Observed

Landslide No landslide

At or above threshold TP = 1389 FP = 2386

Below threshold) FN = 121 TN = 1572

Table 4 Statistical indices of the model

Index Value

True positive rate (TPR) 0.92

False positive rate (FPR) 0.60

True negative rate (TNR) 0.40

False negative rate (FNR) 0.08

Positive prediction power (PPP) 0.37

Negative Prediction power (NPP) 0.93

True skill statistic (TSS) 0.32
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Application of the Rainfall Threshold Model

The developed rainfall threshold has been implemented in a
prototype of Indonesia Landslides Early Warning System
(ILEWS) by Research Centre of Water Resources of the
Ministry of Public Works and Housing (PUSAIR 2017). The
rainfall threshold model was coupled with the Delft-FEWS
platform. The platform was available to manage the fore-
casting and save the time series data (Werner et al. 2013).
The satellite forecasting rainfall data was automatically
programmed to download the TRMM precipitation data and
forecasting from Weather Agency (BMKG). The territory of
analysis was based on water catchment area which provided
by Directorate General of Water Resources of the Ministry
of Public Works and Housing. The warning scenario is cat-
egorized into three levels as presented in Table 5. Figure 8a
and b illustrate the forecasting rainfall-derived from TRMM

for a day and three days rainfall respectively, while the
predicted landslide is shown in Fig. 8c. The warning has
been displayed on website of SABO Research Centre (http://
202.173.16.248/status_longsor.html). The warning system
can predict landslides with next three days based on the
rainfall forecasted by BMKG. However, it should be noticed
that the ILEWS prototype has limitation on the resolution.
The resolution 0.25° � 0.25° is quite coarse and covers
several river catchment area in one grid (Hidayat et al.
2019).

Conclusion

The research has successful developed a rainfall threshold
based on TRMM satellite observation for landslide predic-
tion. The performance of the empirical threshold model has
been evaluated by several accuracy method including sta-
tistical confusion matrix, skill scores, and ROC analysis. The
application of the model has been also adopted by govern-
ment authority to develop a prototype of Indonesia Land-
slide Early Warning System. Thus far, it can be concluded
that the empirical rainfall threshold I = 7.83D−0.328 was
valid for an interval time 2 to 18 days. The results of the
analysis of the AUC on the rainfall threshold indicate that
the model has a good accuracy rate and can be used as an
early warning system of landslide even though it still has a
fairly error rate. The rainfall threshold model showed a good
level of accuracy in predicting rainfall triggered landslides
and non-landslides events. Thus, it can be implemented in a
landslide early warning system.
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Fig. 7 Calculation for AUC of ROC curve

Table 5 Warning scenario of
prototype of ILEWS

Warning
level

Criteria Remark

Green Daily rainfall and average rainfall for three days is below
the threshold

No landslides

Yellow Daily rainfall and average rainfall for three days is at the
threshold

Potential to landslides (Low
susceptibility)

Red Daily rainfall and average rainfall for three days exceeds
the threshold

Landslides
(High susceptibility)
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Establishing Soil Moisture and Rainfall
Intensity-Duration Thresholds for Initiation
of Mass Movements Along the National
Higway-58 in the Chamoli District
of Uttarakhand

Shobhana Lakhera, P. K. Champati Ray, Michel Jaboyedoff,
and Harshita Tiwari

Abstract

The Rishikesh-Badrinath National Highway 58 (NH-58),
in the district of Chamoli, Uttarakhand, India records
several incidences of landslides and related casualties
every year during intense rainfall periods. Mass move-
ments that occurred along this highway during monsoon,
in the period 2015–2019 have been studied to arrive at
meaningful rainfall and soil moisture thresholds. Data
from the Border Road Organization (BRO) was compiled
for 166 mass movement events, including 67 debris
slides, 33 rock slides, 24 debris flows and complex
movements. The relationship between rainfall maximum
intensity (Imax) and total duration (D) was analysed for
each site and Imax-D thresholds were derived using Global
Precipitation Mission (GPM) half-hourly data. Significant
differences were observed between the derived Imax-D
thresholds, which are: Imax = 59.06D−1.31 (all mass
movements), Imax = 21D−0.96 (debris slides), Imax =
11.55D−0.6 (rock slides) and Imax = 4.45D−0.44 (debris
flows). For short-duration rainfall events (<24 h), higher
maximum intensities were required to trigger debris
flows. In contrast for long duration rainfall events, similar
maximum intensities triggered both landslides and debris
flows. Additionally, the relationship between soil

moisture and rainfall was analysed by deriving maximum
soil moisture (SMmax) based rainfall thresholds (SMmax-
ImaxD) using Global Land Surface Model (GLDAS)
3-hourly data, which makes this study the first attempt
towards development of SMmax-ImaxD thresholds for the
region. The thresholds hence obtained are SMmax = 677.7
ImaxD

−0.96, SMmax = 104.6ImaxD
−0.38, SMmax = 307

ImaxD
−0.68 and SMmax = 878.7ID−0.64 for mass move-

ments, debris slides, rock slides and debris flows,
respectively. Notable differences pertaining typology of
mass movements were observed likewise the Imax-D
thresholds. Also, it was found that a large amount of
rainfall is required to cause an increment in maximum soil
moisture, and any rainfall event which leads to increment
in maximum soil moisture value above 30 mm is likely to
cause a failure. Further, for long duration rainfall events,
soil moisture value (>47 mm) can trigger both landslides
and debris flows.

Keywords

Mass movements � debris slides � Rock slides � Debris
flows � Imax-D thresholds � SMmax-ImaxD thresholds �
Rainfall � Soil moisture

Introduction

Slope failure and related secondary hazards are common
geological hazards in mountainous regions characterized by
high slopes and complex geo-tectonic settings (Aleotti and
Chowdhury 1999). These slope failures often lead to losses
in terms of both life and property. They include mass
movements of all types namely: falling, sliding and flowing
and often occur in combination with triggering agents like
cloudburst, heavy rainfall, earthquakes, and floods. The
factors that control slope instability in such regions involve
geology, geomorphology and hydrology along with intricate
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tectonics, geo-dynamics and climatic factors. Increased
urbanization, accompanied by expansion of roads and
deforestation creates an increasing pressure on the land-
scape, and leads to higher degrees of vulnerability to the
occurrence of mass movement activity in such high altitude
regions.

The Rishikesh-Badrinath NH-58, in the Chamoli district,
Uttarakhand, India has been made by excavations in the
rocks, fluvio-glacial material and talus deposits on the slopes
of valleys. The townships are generally established along-
side the road. The expansion of this road together with rapid
urbanization has rendered these unstable hill slopes, appar-
ently more vulnerable to slope failures. This highway has
socio-economic and cultural importance as it is the only
motorable route connecting Badrinath, an important Hindu
pilgrimage center and other hill cities to the rest of the
nation. Hence slope failures along this route lead to dis-
ruption of traffic leaving the pilgrims, tourists and inhabi-
tants grounded for several hours to days. Destruction of the
highway has deeper impacts as many towns, villages and
hamlets are often completely cut-off from the rest of the
country. Also, the landslides and the involved secondary
hazards such as landslide dams and subsequent flash floods
often turn into major disasters and cause destruction in the
downstream areas. Given these disastrous impacts many
studies have been carried out to derive rainfall triggering
empirical thresholds in the region based on historic analysis
of relationship between rainfall and landslide occurrence.
These triggering thresholds are predominantly focused on
rainfall parameters like rainfall intensity, duration, cumula-
tive rainfall and antecedent rainfall. However rainfall
intensity-duration based thresholds are most widely used
(Kuthari 2007; Guzzetti et al. 2008). Many studies have also
found that peak rainfall intensity and the initiation of mass
movements are often concurrent (Aleotti 2004; Chien-Yuan
et al. 2005; Guzzetti et al. 2008). Other studies have showed
that antecedent rainfall has also played an important role in
the initiation of mass movement (Crozier 1999; Guzzetti
et al. 2008; Mathew et al. 2013). However the simplicity of
empirical approach often neglects important hydrological
and geological controls, but offers a straight forward means
for issuing regional-scale mass movement warnings based
solely on rainfall data.

The processes by which mass movements occurs can be
complex, as a heavy or long duration rainfall event may not
always cause a slope failure. Studies have showed enhanced
soil moisture and rainfall prior to major landslide events in
landslide prone regions of California, U.S.; Leyte, Philip-
pines; and Dhading, Nepal (Ray and Jacobs 2006). One case
study for EL Salvador derived a two-dimension threshold
curve consisting of depth-integrated soil moisture and rain-
fall to predict landslides (Posner and Georgakakos 2015).
Recently, Irawan et al. (2019) and Segoni et al. (2018b)

highligted the integration of soil moisture for improving
landslide early warning. Hence the use of soil moisture as
another variable coupled with rainfall can give a more reli-
able threshold which can incorporate soil properties, terrain
properties, geology and hydrometeorology to an extent
(Segoni et al. 2018a, b; Krøgli et al. 2018). However the
integration of soil moisture data with rainfall is still
uncommon for establishing threshold in the Himalayan
region, therefore, it was explored in the present study.

Study Area

The study focused on the mass movement activity that
occurred along the NH-58 highway in the district of Cha-
moli, Uttarakhand, India. This part of the National Highway
runs around 110 km, aligned alongside the river Alaknanda
from Srinagar to Badrinath and extends in the North from
30.23° N to 30.83° N and in the east from 78.13° E to 79.76°
E (Fig. 1). The highway is constructed by excavating highly
jointed friable rocks and is currently under expansion under
the all-weather road project funded by the central govern-
ment. This has led to a concern that it may further increase
the number of mass movement events along this highway.
The area around the highway is characterized by deep gorges
and resilient peaks with a maximum elevation of 5826 m
masl (Fig. 2a). Primarily the area lies in the moderate alti-
tude zone with mostly areas under 2500 m releif. The
topography is highly rugged, immature and characterized by
moderate to steep slopes controlled by both structural and
lithological factors (Fig. 2b). Geologically, the study area is
divided into three main zones—upper, middle and lower,
which are separated from each other by major faults dis-
ecting the entire region (Validiya 2010) (Fig. 1). The major
drainage in the area constitutes the four main tributaries of
Alaknada namely Dhauliganga, Nandakini, Pindar and
Mandakini all of which rise from high hills forming
sub-parallel drainages. Consequently, the hill slopes are
gullied and dissected. Several streams of Alaknanda like the
Patal Ganga show contribution from deep underground
sources which indicate conditions suitable for landslides.
Accoring to the Central Ground Water Board (CGWB),
India, climate of the district varies from Sub-tropical mon-
soon type (mild winter, hot summer) to Tropical upland type
(mild winter, dry winter, short warm summer). The average
maximum and mininmum temprature for the district varied
between *40 ºC to around −1.5 ºC for the period 2014–
2018 (Fig. 2c). The study area witnesses heavy rainfall
varying from 1000–2500 mm/year. Of this total rainfall
about 50–80% of the rainfall is received during the months
of June to mid-September and extreme rainfall events like
cloudburst are also reported from the region (Fig. 2c). The
region is mostly rain fed, hence landslide activity is mainly
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triggered by rainfall and the role of snow melt is very
marginal in the summer and summer monsoon period.

Methods

Mass Movement Data

The Border Road Organisation (BRO) data for the years 2015–
2019 was sorted for twelve major landslide prone locations
along the NH-58 highway. The location points were chosen
based on three criteria which are landslide history of the
location, socio-economic importance and availability of AWS
(Automated Weather Stations). A total of 166 mass movement
events were used for the creation of database. This included 67
debris slides, 33 rock slides, 24 debris flows. Apart from this 20
events recorded both landslides (rock slides and debris slides)
and debris flows, 12 events recorded both rock slides and
debris slides, 6 events recorded both rock fall and landslides

and 4 individual rock fall events were also recorded in the area.
For each event, the database defines the location and day of the
occurrence of the mass movement. The typology for mass
movement was determined based on the field survey and
ancillary reports from the Uttarakhand Secretariat, Dehradun.
Further it was important to note that majorly shallow debris
slides were present in the study area along with few deep ones.

Rainfall and Soil Moisture Data

The GPM (Global Precipitation Measurement Mission)/
IMERG (Integrated Multi-satellite Retrievals) (level 4, 0.1°
—30 min gridded, 90° N–90° S, 60° N–60° S full, March
2014–March 2019 near real time) data was used for the
study. The GIS extension/product of the GPM data has been
used. The GPM data was then compared with AWS rain
gauge data to determine the correlation between the two
datasets for five functional AWS stations for 2015 (June to

Fig. 1 Geological setting along
the NH-58 highway
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(a)

(c)

(b)

Fig. 2 a Elevation and b slope around the 5 km buffer zone of NH-58 highway. c Monthly rainfall and average temperature distribution in the
Chamoli district from 2014 to 2018 (source Indian Meteorological Department (IMD))

September) and an overall good correlation of nearly 76%
was observed. The soil moisture up to depth of 0–40 cm as
estimated in mm sourced from GLDAS (Global Land
Surface Model) version 2.1 data products (GLDAS_-
NOAH025_3H_2.0). These datasets have a temporal reso-
lution of 3-h and spatial resolution of 0.25° and are available
in netcdf format. The soil moisture data was extracted GIS
layer wise, for the depths up to 0–10 cm and 10–40 cm for
each event day and then stacked together for both the depths
using ArcGIS software, to get a single day file. The soil
moisture values corresponding to both the GIS layers (daily
stack) were then added to get soil moisture up to 0–40 cm.
Soil moisture mean, median and maximum values for the
depth up to 0–40 cm were analysed against the maximum
rainfall intensity values, for the monsoon months i.e. June to
September for five major locations to see how well the two
variables correspond and it was observed that the maximum
soil moisture up to 0–40 cm showed good correlation with
the maximum intensity.

Thresholds

The Imax-D threshold equations were derived empirically
using the log–log scatter plot between the maximum rainfall
intensity picked from the forty eight, half-hourly GPM-GIS
files, for the day of the event and the total rainfall duration
calculated by adding the total number of continuous rainfall
days in hours. Hence the Imax-D threshold is identified on an

Imax-D plot, as the minimum rainfall for which a mass
movement could occur. Similarly, the SMmax-ImaxD thresh-
old equation was calculated using the maximum measured
soil moisture picked from the eight, 3-hourly soil moisture
files and the product of maximum intensity to total duration
measured in mm. As we understand that the landslides &
debris flows are characterised by different mechanism
mainly in terms of the type of movement & material
involved (coarse, fine and bedrock) (Varnes 1978), hence
these were separately analysed to identify the triggers
associated with the type of failure. For the validation of
threshold equation, the 2014 database of BRO was used and
the results are presented in the next section.

Results and Discussion

Rainfall Conditions and Imax-D Thresholds

The maximum intensity value for the mass movement
database varied from as low as 0.1 mm/h to as high as
31.6 mm/h, measured only for two events, and a mean
maximum intensity of 5.6 mm/h. Similarly, the total dura-
tion values varied between lows as 0.5 h to as high as 226 h
with a mean of 85 h. Hence the triggering events have a
wide dispersion in terms of both maximum intensity and
total duration for the mass movement database. Further to
analyse the differences in rainfall conditions between debris
slides, rock slides and debris flows, the normal distribution
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curves for maximum intensity and total duration for the three
mass movement typologies were analysed (Fig. 3b, c). The
maximum intensity normal distribution curve showed that
the highest mean max intensity of 5 mm/h was measured for
debris flows followed by rock slides with a mean max
intensity value of 4.8 mm/h and debris slides with a mean of
3.6 mm/h (Fig. 3b). Also, debris flows measured the highest
standard deviation implying that the maximum intensity
values for debris flow were highly dispersed over the data-
base, however it was found that the dispersion was high
pertaining to two events (16.5 and 16.9 mm/h) which
recorded a very high maximum intensity value in compar-
ison to the other recorded events. Based on the normal
distribution of total duration, debris slides have the highest
mean of 108.7 h followed by rock slides and debris flows
with mean total duration of 96.4 and 96 h, respectively
(Fig. 3c). This indicates that debris slide occurs at longer
duration and hence lower intensity in comparison to debris
flow which occurs at higher intensity, as was observed from
the normalised maximum intensity. Debris slides recorded
the highest standard deviation of 87 showing high dispersion
in terms of total duration with values ranging from very low
to high values (Fig. 3b). This is possibly because of large
variation in the size and depth of debris slides.

As previously mentioned in the methodology section, the
log–log scatter plots between maximum intensity to total
duration were used to determine rainfall thresholds (Fig. 3a).
The resultant equations obtained for different types of mass
movement are as follows:

Imax = 59.06D−1.31 all mass movements
Imax = 21D−0.96 debris slides

Imax = 11.55D−0.6 rock slides
Imax = 4.45D−0.44 debris flows

The scatter plot and threshold for mass movements (all
166 events) indicated that high intensity and low duration
rainfall events can cause mass movements and similarly low
intensity and long duration rainfall events can result in mass
movements (Fig. 3a). From the scatter plot for debris slide,
rock slide and debris flows, it was observed that the debris
flow thresholds lies at the highest level in the graph and has
the highest slope magnitude. This implied that debris flows
occur during highly intense rainfall events in comparison to
rock slides and debris slides. The rock slide threshold was
seen to lie above the debris slide threshold (Fig. 3a), hence it
can be concluded that a higher intensity and longer duration
of rainfall is required to cause a rock slide in comparison to a
debris slide. Further the threshold curves were observed to
become closer as the value of total duration increases and
they nearly meet at 315 h. This indicates that a higher
rainfall intensity is required to cause debris flow in case of
short duration rainfall event compared to rock slide and
debris slide, whereas a long-duration rainfall event will lead
to a gradual increase in groundwater level, soil moisture, and
pore water pressure (Wieczorek and Glade 2005). Therefore,
similar rainfall intensity can trigger debris slide, rock slide
and debris flow, given rainfall duration is sufficiently long.
Also, landslides may completely or partially mobilize to
form debris flows (Iverson et al. 1997), as was seen in the
case of 20 recorded events wherein landslide and debris flow
both occurred.

(a) (b)

(c)

Fig. 3 a Imax-D thresholds for debris slide, rock slide, debris flow and mass movements, b normalized max intensity for debris slide, rock slide
and debris flows and c normalized total duration for debris slide, rock slide and debris flow
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Rainfall Conditions and SMmax-ImaxD Thresholds

The maximum soil moisture for all mass movements varied
between 27.76 mm to 205.663 mmwhereas the values for the
product of maximum intensity to total duration (Imax*D)
varied from as low as 0.6 mm to as high as 31,773 mm
(Fig. 4a). The normal distribution curves for maximum soil
moisture and product of maximum intensity to total duration
were analysed for debris slides, rock slides and debris flows
and the highest mean maximum soil moisture value of
88.9 mm was recorded for debris flows, followed by rock
slides with mean maximum soil moisture value of 82.44 mm
and debris slides with amean of 73.18 mm (Fig. 4b). Also, the
normal distribution curves for all three mass movement
typologies showed similar spread with respect to maximum
soil moisture values (Fig. 4b). From the normal distribution
curve for product of Imax and total D, debris flows showed
exceptionally high mean of 8095.66 mm and a well observed
largest spread i.e. highest standard deviation. It was also
observed that debris flows occurred above 3000 mm of
Imax*D value (Fig. 4c). Themean Imax*D value for rock slides
was 472 mmwhich was higher than debris slides whose mean
Imax*D was measured as 302 mm (Fig. 4c). Also, the spread
for rock slides is larger than debris slides as rock slides have
higher deviation because of some high values whereas debris
slides have lower Imax*D extreme values (Fig. 4c).

The SMmax-ImaxD thresholds were derived using the
scatter plot between maximum soil moisture and the product
of max I and total D. The resultant equations obtained are
given as follows:

SMmax = 677.7ID−0.96 all mass movements.
SMmax = 104.6ID−0.38 debris slides.
SMmax = 307ID−0.68 rock slides.

SMmax = 878.7ID−0.64 debris flows.
Figure 4a shows the SMmax-ImaxD threshold for land-

slides and debris flows. Here it was observed that as we
move from right to left i.e. from higher value of product of
Imax and total D to lower values of Imax*D, the typology of
mass movements changes from debris flows to rock slides to
debris slides. This shows that debris flows occur during more
severe and more prolonged rainfall events in comparison to
debris slides and rock slides as was previously also observed
in the case of Imax-D thresholds. In addition, it was observed
that rock slides and debris slides both occur for Imax*D
values between 3000 to 46 mm, with only a few debris flow
events. While below 46 mm of Imax*D, only Debris slides
were recorded and beyond the Imax*D value of 3000 mm,
majorly only debris flows were recorded. Besides for max
soil moisture, it was observed that above 100 mm of
recorded max soil moisture value, usually debris flows and
rock slides occur. While beyond 125 mm of max soil
moisture, mostly debris flows were observed. Hence from
SMmax-ImaxD threshold curves, it can be concluded that large
increments in value of Imax*D do not cause very high
increments in resultant max soil moisture, which may be due
to saturation and subsequent run-off. Another observation
from the curve is that no mass movements were recorded
below a maximum soil moisture value of 27.76 mm
(*30 mm) for a depth of 0–40 cm of soil. Hence, it can be
concluded that any increment in the value of maximum soil
moisture above *30 mm is likely to cause a slope failure.
In addition it was found that for long duration rainfall events
(>24 h) both landslides and debris flows occurred, when the
recorded soil moisture value was greater than 47 mm. This
was the case for 20 events which recorded both landslides
and debris flows.

(a) (b)

(c)

Fig. 4 a ImaxD-SMmax thresholds for debris slide, rock slide, debris flow and mass movements, b normalized max soil moisture for debris slide,
rock slide and debris flows and c normalized Imax*D for debris slide, rock slide and debris flow
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Comparing ImaxD and SMmax-ImaxD Thresholds

The mass movement database as discussed above were
dispersed in case of maximum intensity and total duration
and therefore the dispersion was also high for Imax*D values.
Whereas the observed dispersion was significantly less for
max soil moisture values. From Imax-D thresholds it was
observed that debris flows were recorded during highly
intense rainfall conditions in comparison to rock slides and
debris slides. The same was observed for SMmax-ImaxD
thresholds. In addition, SMmax-ImaxD thresholds also indi-
cated higher values of max soil moisture for debris flows
compared to rock slides and debris slides. This indicates that
debris flows are caused by highly intense rainfall events
which can lead to significant increase in soil moisture. The
max soil moisture thresholds also indicated that slope failure
only takes place when a threshold value of *30 mm is
exceeded. While the rainfall thresholds suggested that sim-
ilar rainfall intensity can trigger all debris slides, rock slides
and debris flows, given rainfall duration is sufficiently long
and landslides may completely or partially mobilize to form
debris flows. On comparing the scatter plots it was observed
that unlike the rainfall threshold that were more distin-
guishable in terms of magnitude of their slopes, the max soil
moisture thresholds were distinguished by their position in
the SMmax-ImaxD scatter plots with debris flow present to the
left indicating higher ImaxD values than landslides. The
overall accuracy for both ImaxD and SMmax-ImaxD thresholds
was high for predicting slope failures in the study area.

Conclusion

The study established empirical rainfall Imax-D and max soil
moisture thresholds for a part of NH-58 highway in the
district of Chamoli, Uttarkhand, India. The derived thresh-
olds performed well in terms of predicting mass movements
along the NH-58. However, the Imax-D thresholds have
slightly higher prediction accuracy than max soil moisture
thresholds. From both the thresholds it was concluded that
debris flows are triggered by highly intense rainfall events in
comparison to rock slides and debris slides. Also, for a short
duration rainfall event a high intensity of rainfall is required
to cause debris flow while for long duration events both
small and large intensities can trigger debris flow. Moreover,
for a long duration rainfall event (>24 h), the same rainfall
intensity can trigger both landslide and debris flow. The
study also determined that large increments in the value of
the product of max intensity to total duration leads to small
increments in the maximum measured soil moisture and any
increment in the max soil moisture value above *30 mm is
likely to cause a failure. Also, both landslides and debris
flows can occur for a soil moisture value greater than

47 mm, for long duration rainfall event. Thus these thresh-
olds provide a lower cut off of values below which there is
lower probability of occurrence of a mass movement.
Although rainfall is the main triggering factor for slope
failure in the region a heavy or long duration rainfall event
may not always cause a failure. Hence the use of soil
moisture as another variable coupled with rainfall intensity
and duration gives a more reliable threshold curve which
incorporates in itself soil properties, terrain properties,
geology and hydro-meteorology to an extent. Thus the soil
moisture threshold reduces the probability of false alarms
that may result in case of rainfall thresholds and improves
the reliability of threshold to forewarn slope failures.
Therefore together these thresholds can be integrated as the
bases of a multilevel warning system for mass movements.
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The Efficient Early Warning with South East-
Asia Oceania Flash Flood Guidance System
(SAOFFGS)

Agie Wandala Putra, Nn. Ummul Choir Os,
and Imaduddin Salma Faalih

Abstract

The Southeastern Asia-Oceania Flash Flood Guidance
(SAOFFG) system is a part of Global Flash Flood
Guidance System (FFGS). Acting as regional centre of
Southeastern Asia-Oceania Flash Flood Guidance,
Indonesia has the responsibility to provide regional and
national verification of SAOFFGS flash flood forecasts
and warnings. This paper was conducted in order to
explain the implementation of SAOFFG in Indonesia and
to evaluate one of the FFGS threat products used by
BMKG for monitoring and forecasting floods. The
selected study time period and area are based on the
availability of flash flood threat forecast data i.e. IFFT 1-,
3- and 6-h. Flood event data was obtained from flood
report database of BMKG Weather Early-warning subdi-
vision. In order to acquire the statistical results, contin-
gency tables were constructed. Results indicate that
approximately one-half of the flood events were correctly
detected by positive values of IFFT (POD 0.66 for 6-h
IFFT). The best skills, as indicated with a CSI 0.34 occur
in the verification of FFG threat product (IFFT) 1-h and
3-h.

Keywords

Flash flood guidance � Flash flood forecast � Early
warning � Evaluation � Indonesia

Introduction

The Southeastern Asia-Oceania Flash Flood Guidance
(SAOFFG) system is a part of Global Flash Flood Guidance
System (FFGS). In the Southeastern Asia-Oceania, flash
floods play a role in causing significants number of casu-
alties, material loss and infrastructure damage and require
special attention. Referring to Indonesia National Agency for
Disaster Management (BNPB) information, 385 flooding
events occurred in 2019 resulting in the fatalities of 296,
2853 houses devastated, and 257 of damaged educational
facilities. Consequently, relevant authorities need to improve
the early warning system as a part of efforts to reduce vul-
nerability of regions to hydrometeorological hazards.

The planned establishment of SAOFFG regional centre
has been started since February 2016 in the initial planning
meeting held in Indonesia. SAOFFG is the result of col-
laboration between World Meteorological Organization
(WMO), Hydrologic Research Centre (HRC), National
Oceanic and Atmospheric Administration (NOAA), United
States Agency for International Development (USAID), and
Agency for Meteorological, Climatological and Geophysics
(BMKG) aimed at enhancing National Meteorological
Hydrological Services (NMHSs) capacities to issue timely
and accurate flash flood warnings.

This paper was conducted in order to explain the imple-
mentation of SAOFFG in Indonesia and to evaluate one of
the FFGS threat products used by BMKG for monitoring and
forecasting floods even flash floods. Data sources used for
product evaluation include a database of flood or flash flood
reports collected by BMKG Weather Early-warning
subdivision.
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SAOFFG Operational

Mandate and Roles of BMKG

Member States of SAOFFGS are Indonesia which is acting
as regional centre (RC), Malaysia, Brunei Darussalam,
Timor Leste, Philippines and Papua New Guinea. According
to WMO regulations, the RC has the responsibility to assist
with tasks during the regional FFGS development and
implementation phases, including: being focal point for the
collection of the required historical hydro-meteorological
and spatial data from the participating countries establishing
data transfer tools via secure ftp, hosting high performance
servers to run SAOFFG model and allow access to partici-
pating countries for SAOFFGS products, and to receive
real-time data from various sources, and maintaining servers,
operating systems and FFGS application software with the
support of HRC (Fig. 1). In addition, the RC is asked to
provide regional and national verification of SAOFFGS flash
flood forecasts and warnings, and some others unstated
responsibilities in this paper.

Operational Status

Implementation of SAOFFG at BMKG is divided into 3
stages i.e. the trial period beginning from May to October
2019, the operational period at National level in November
2019, and Operational period in Regional SAO level in
March 2020. Daily analysis of SAOFFG report in BMKG is
issued twice a day respectively at 00 and 12 UTC.

Flashflood Guidance System

Meteorological Organization (WMO)/UNESCO in Interna-
tional Glossary of Hydrology (WMO, N. 385 2012) define
flood as follows: Rise, usually brief, in the water level of a
stream or water body to a peak from which the water level
recedes at a slower rate; Relatively high flow as measured by
stage height or discharge. A flash flood is a rapid flooding of
water over land caused by heavy rain or a sudden release of
impounded water (e.g., dam or levee break) in a short period
of time, generally within minutes up to several hours, a time
scale that distinguishes it from fluvial floods (Hong et al.

Fig. 1 SAOFFG system flow
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2013). In Indonesia, floods commonly occur by cause of the
rain, overflowing water in rivers, lack of water absorption
and high rainfall in the upstream areas.

Flash floods need to be treated as a hydrometeorological
event requiring an integration of meteorology and hydrology
in real time with an infusion of local information and
expertise to deliver reliable flashflood warnings. The FFGS
is designed in order to facilitate this requirement. The system
products are made available to forecasters as a diagnostic
tool to analyse weather-related events that can initiate flash
floods and then to make a rapid evaluation for a flash flood
occurence at a location.

Analysis and flood forecast utilizing SAOFFG are carried
out in accordance with the workflow in Fig. 2. The prelim-
inary evaluation is conducted by condering the analysis and
forecast of rainfall, soil mosture above 50%, low FFG val-
ues, and areas of concern. Afterwards, referring to the
meteorological and hydrological conditions of the area of
concern is necessary. To assess the threat of a local flash
flood, the FFGS is designed to allow product adjustments
based on the forecaster’s experience with local conditions,
incorporation of other information and last minute local
observations, or local observer report. The FFG is normally
considered as only as guidance i.e. if the forecaster believes
that a warning should be issued before the rainfall rate
exceeds the FFG value a warning should be issued. In some
parts of the country, quantitative precipitation estimation
(QPE) exceeding FFG is used as a strict threshold for issuing
a warning. In other areas, forecasters may wait for QPE to
reach 125% or 150% of FFG before doing so (Hong and
Gourley 2015). To conduct a flood early warning, there are
several steps to effectively achieve the results. These stages
(Werner et al. 2005) are detection, forecasting, warning and
dissemination, and response. BMKG plays a predominant
role for forecasting rainfall in forecasting stage. Utilization
of SAOFFG providing hydrological data enables forecaster
to prepare a flood forecast by previously discussing with
several relevant agencies. Thus flood warnings could be
issued and be disseminated to users which allowing action or
response could be taken immediately.

In this study, an evaluation of one flash flood threat
products was investigated. FFG refers generally to the vol-
ume of rain of a given duration necessary to cause minor
flooding on small streams (Carpenter et al. 1999). FFG value
indicating the total volume of rainfall over the given duration
which is adequate to cause bankfull flow at the outlet of the
draining stream. A flash flood threat index is the difference
between the actual, persisted or forecast precipitation and the
corresponding FFG diagnostic value for the basin and
duration of interest (1, 3 and 6 h). Threat products generated
in FFG are Imminent Flash Flood Threat (IFFT), Persistence
Flash Flood Threat (PFFT), and Forecast Flash Flood Threat
(FFFT).

Imminent Flash Flood Threat (IFFT)

The imminent flash flood threat index is a diagnostic index,
which only includes uncertainties from estimated precipita-
tion and land-surface model parameters (Georgakakos et al.
2019). Therefore, the uncertainty in these IFFT indices
depends on the available data. IFFT products are available in
image and text formats for 1, 3, and 6 h (mm) for respective
basin. The IFFT value indicates the difference between
Merged Mean Areal Precipitation (MAP) in the given
duration and corresponds to the previous FFG model data
with the same duration in each sub-basin. From this per-
spective, IFFT products can be considered as the current
status of observation. Previous FFG products in periods 1, 3,
and 6 h were carried out in conjunction with the
Merged MAP in the calculation of IFFT.

a. IFFT 01-h: difference from 01-h FFG from the previous
navigation hour model calculation and 01-h
Merged MAP observed over following 1 h (mm/1 h).

b. IFFT 03-h: difference from 03-h FFG from previous
navigation hour model calculations and 03-h
Merged MAP observed over following 3 h (mm/3 h).

Fig. 2 Workflow of SAOFFG daily guidance at BMKG
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c. IFFT 06-h: difference from 06-h FFG from previous
navigation hour model calculations and 06-h
Merged MAP observed over following 6 h (mm/6 h).

Data and Methodology

The trial period of SAOFFG in BMKG has several con-
straints related to input data used in the running process.
Numerical Weather Prediction (NWP) model resolution
needs to be improved to be able to capture the meteoro-
logical events in local scale because this scale notably affects
weather conditions in Indonesia region. Furthermore, the
insufficient number of meteorological stations in Indonesia
results in the less proportional observation data.

Considering the availability of SAOFFG data in the trial
period at BMKG, this study used data from January to
February 2020. Most regions in Indonesia, especially Java,
experience rainy seasons in January and February. Asian
cold monsoon transfers a mass of moisture air into Indonesia
and the peak season of the tropical cyclone in South Indian
Ocean (SIO) is within these months. The occurrence of
tropical cyclones in the SIO is one of the factors that
influences the pattern of weather formation in Indonesia.
Heavy to extreme rain occur in these months which might
induce floods.

Figure 3 shows the monthly rainfall amount in the time
periode of study. The amount of January 2020 monthly

rainfall is in moderate to very high category, especially in
Jakarta and Central Java. The next month, February 2020,
increasing amount of monthly rainfall was indicated almost
uniformly in the Java region with the category of high and
very high monthly rainfall. Jakarta as the Indonesia's capital
experienced flooding exceeding of five times within Jan-
uary–February 2020 period.

The selected study time period and area area based on the
availability of flash threat food forecast data i.e. IFFT 1-, 3-
and 6-h. Flood event data was obtained from flood report
database of BMKG Weather Early-warning subdivision
which routinely collects report on the basis of information
sources from the BMKG stations and mass media. The flood
data is in the form of location and time data including the
hour of the incident.

In order to acquire the statistical results, contingency
tables were constructed (Table 1). To verify the 1-, 3-, and
6-h-duration IFFT, it was assumed that the forecast was
“yes” when the threat index was greater than zero. This
verification process is carried out in 2 schemes, first calcu-
lating hits and misses obtained from the determination of
flood event data in the study area. Based on the verification
guidelines for FFGS product arranged by HRC, IFFT data
used is only at or near the FFGS delineated basin outlets. In
this scheme, IFFT indexes were matched with flood data to
get hits and missed. In the next scheme, false alarms are
calculated by collecting positive IFFT data in study period,
subsequently eliminating data that have the similar time to
flood events in the first scheme.

Fig. 3 Monthly rainfall analysis
in study domain (Java) in Januari
and Februari 2020 (BMKG)

248 A. W. Putra et al.



The scores provide the most meaningful information if
they are computed from large enough samples of cases.
However, severe weather occurrences are rare events, thus
the number of forecasts and observations of severe weather
may be small, which makes the task of verification not only
more important but also more challenging (WMO-No. 1132,
2014). There were 47 flood events being verified throughout
Java during the study period. In the second scheme, the
basin involved for the data retrieval is adjusted to the basin
monitored in the first scheme.

After processing table contingency respectively, hits,
misses, and false alarm were included in statistical compu-
tation presenting:

PoD ¼ Hits

HitsþMisses
ð1Þ

The Probability of Detection (POD) describes the fraction
of the observed flood events detected correctly by the IFFT
forecast. The POD ranges from 0 indicates no skill to 1
indicates a perfect scores.

FAR ¼ FalseAlarms

HitsþFalseAlarms
ð2Þ

The False Alarm Ratio (FAR) corresponds to the fraction
of flood events forecasted by IFFT but not matched with
flood event observation. The FAR ranges from 0 to 1 indi-
cates a perfect score.

CSI ¼ Hits

HitsþMissesþFalseAlarms
ð3Þ

Critical Success Index (CSI) describes skill of the IFFT to
flood events observed. The CSI ranges from 0 to 1 indicates
a perfect skill.

Results

Table 2 presents the results of statistical computation for
IFFT. POD ranges from 0.36 with 1-h IFFT to 0.66 for 6-h
IFFT, which indicates that approximately one-half of the
flood events were correctly detected by positive values of
IFFT. Referring to high FAR values which range from 0.55
to 1, there is an indication of over-forecasting, absence of
flood event data as not reported or recorded in the database
of BMKG Weather Early-warning subdivision, or

combination of both. A high FAR value causes a low CSI
value. The highest CSI values of 0.34 are associated with the
1-h and 3-h IFFT. The lowest CSI value of 0.28 for 6-h IFFT
can be caused by false alarm values which is higher than
those for 1-h and 3-h IFFT.

February 2020 Jakarta Flood

On 25 February 2020, Jakarta witnessed another flood worse
than the January 2020 flood. Flood in urban areas can occur
for two reasons; first, urban areas are flooded due to
overflowing rivers crossing the city. Second, urban flooding
can occur as a special case of flash floods caused by the
inability of drainage to accommodate and drain rainfall.

Referring to the FFG products, the soil moisture fraction
of the upper soil was higher than 0.50 from 16 to 24
February (Fig. 4). This condition had to be monitored for
possible flash flood occurrence especially if the high rainfall
was possible to occur after 24 February. IFFT represents an
“nowcast” weather situation or indicates that a flash flood is
occuring now or is about to occur immediately. IFFT 6-h at
24 February 2020 18 UTC and IFFT 3-h at 21 UTC were
higher than 10 indicating the flash flood occurence is most
likely (Fig. 5). Moreover, the other FFG products and con-
dition of Jakarta as an urban area were also taken into
consideration in decision making of flood warning. Based on
report collected by BMKG Weather Early-warning subdi-
vision, the flood occured starting around 25 February 2020
06 Local Time (24 February 2020 23 UTC).

This study conducts only one method of evaluating the
flash flood threat product used in operational for monitoring
and predicting floods in Indonesia. Derived results show the
best skills, as indicated with a CSI 0.34 occurring in the
verification of flash flood threat product (IFFT) 1-h and 3-h.
FFG threat product is applicable in BMKG to be used by
forecasters as an indicator of flood warning. Definitely
forecasters need to have other consideration before issuing
flood warning which is indicated from the FFG product.
Disaster mitigation efforts require coordination and training
from various stakeholders, such as BNPB, experts from
universities or research institutions for hydrometeorological
analysis and prediction, as well as relevant sector agencies
for law enforcement according to spatial planning.

Table 1 A 2 � 2 contingency table

Observation (event occured)

Yes No

Forecasts Yes Hits False alarms

No Misses Correct negative

Table 2 Statistical Indices for IFFT

IFFT POD FAR CSI

1 h 0.36 1 0.34

3 h 0.53 0.62 0.34

6 h 0.66 0.55 0.28
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Communicating with user agencies is necessary for effective
disaster risk reduction.
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Regional Approaches in Forecasting
Rainfall-Induced Landslides

Maria Teresa Brunetti, Massimo Melillo, Stefano Luigi Gariano,
Luca Ciabatta, Luca Brocca, and Silvia Peruccacci

Abstract

Hydrogeological hazards now exacerbated by the ongoing
climate change pose serious challenges for the safety of
the population worldwide. Among the others, the landslide
risk can be mitigated by setting up efficient and reliable
early warning systems. To date, rainfall thresholds are one
of the most used tools to forecast the possible occurrence
of rainfall-induced failures in large regions. In Italy a
dense rain gauge network with hourly or sub-hourly
temporal resolution is available. However, in some
developing countries, where ground measurements are
still absent or are available at coarser (daily) temporal
resolution, satellite-based rainfall estimates could be a
vital alternative. For this purpose, the reliability of rainfall
thresholds defined using both satellite (SB) and
ground-based (GB) data and with hourly or daily temporal
resolution is assessed in a study area comprising the
Abruzzo, Marche and Umbria regions (AMU), central
Italy. The comparison between the performance of the
different products allows to test their capability in
eventually can GB rainfall measurements are gathered at
hourly time steps (OBS-H) from a national network and

aggregated on a daily scale (OBS-D); SB rainfall estimates
are retrieved from the Climate Prediction Center Morph-
ing Technique (CMORPH, hourly resolution), and from
the SM2RASC product, based on the application of
SM2RAIN algorithm to ASCAT (Advanced SCATterom-
eter) soil moisture product (daily resolution). Results show
that thresholds defined with GB rainfall data perform
better than those obtained using SB estimates regardless of
the temporal resolution. CMORPH and SM2RASC
thresholds are still able to predict landslide occurrence
although with a high number of false predictions.

Keywords

Landslides � Rainfall thresholds � Rain gauges �
Satellites

Introduction

Everywhere in the world is by far evident that climate
change has exacerbated hydrogeological hazards (Senevi-
ratne et al. 2012). Since the early twenty-first century, the
global temperature growth is considered to be related to
ever-increasing rainfall intensities (e.g., Trenberth et al.
2003; Watterson and Dix 2003; Hegerl et al. 2004). Such
peaks of precipitation are able to enhance the triggering of
rapid and very rapid landslides (e.g. debris flows, soil slips)
that usually do not leave people time to get rescued.

The global rise of temperature poses serious challenges in
forecasting a likely rising occurrence of rainfall-induced
landslides. Indeed, July 2019 was the month with the highest
number of fatal landslides in the world, claiming the life of
358 people (Petley 2019). Alongside the need to review the
land use policies, there is an increasing need for set up
efficient and reliable landslide early warning systems. The
challenge is global but the means to defend oneself are not
always up to it everywhere. Most of the early warning
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systems for rainfall-induced landslides in the world are
based on rainfall thresholds (Piciullo et al. 2018; Guzzetti
et al. 2020), which are in turn mostly based on rain gauge
measurements (Guzzetti et al. 2008; Segoni et al. 2018).
Most of the areas which face with problems related to
rainfall-triggered landslides do not have dense rain gauge
networks or even they do not have any. In this case, the use
of satellite-based (SB) rainfall data could be the only way to
get prompt information on the (estimated) cumulated rain-
fall. It has been found that satellite rainfall products under-
estimate the precipitation responsible for landslides if
compared to ground-based (GB) measurements (Rossi et al.
2017; Brunetti et al. 2018), thus resulting in lower cumulated
event rainfall–rainfall duration (ED) threshold curves.
However, such underestimation does not affect the product
performance in terms of capability of detecting rainfall
events resulting in landslides.

Another issue is that in many countries the temporal
resolution of the rainfall measurements is daily thus ham-
pering the up-to-date monitoring of the event. In this case,
rainfall thresholds must be represented by equations where
the duration D is in days (d) instead of hours (h), since the

thresholds are valid only for D values multiple of days
(Gariano et al. 2020).

The reliability of preventing landslide hazard using SB or
GB data and with hourly or daily temporal resolution is
assessed in a regional area of Central Italy (Fig. 1), which is
used as a benchmark case study. The selected area includes
three administrative regions, Abruzzo, Marche and Umbria
(AMU). In this study area, ED rainfall thresholds are defined
and validated both from GB and SB rainfall data at hourly
and daily temporal resolutions.

Data and Methods

GB rainfall measurements are obtained at hourly time steps
(OBS-H) from a rain gauge network managed by the Italian
national Civil Protection Department. GB data are even
aggregated on a daily scale (OBS-D) to simulate how per-
formance changes when the landslide occurrence is pre-
dicted with lower temporal resolution data. SB rainfall
estimates available in the area include the Climate Prediction
Center Morphing Technique (CMORPH, Joyce et al. 2004),

Fig. 1 Landslide distribution in
AMU (Abruzzo-Marche-Umbria)
study area
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and the SM2RASC product that is based on the application
of SM2RAIN algorithm (Brocca et al. 2014) to ASCAT
(Advanced SCATterometer) soil moisture product (Wagner
et al. 2013). Soil moisture data come from the Metop-A and
-B satellite, and have a native spatial resolution of 25 km
and a daily temporal resolution. The SM2RASC product
specifically developed for Italy for the period 2008–2015 has
been enhanced to 12.5 km after observation resampling.
CMORPH rainfall estimates are obtained from the Climate
Prediction Center of the National Oceanic and Atmospheric
Administration (NOAA). Here the high-resolution product
(8 km at the equator every 30 min) is used at hourly steps.

Most of the landslides used here (231) are from a pub-
lished catalogue (Peruccacci et al. 2017) whereas 33 are
found online for a total of 264 rainfall-induced slope failures
in the 8-year period 2008–2015. The main sources of land-
slide information are digital and printed newspapers, blogs,
technical documents, and landslide event reports (mostly
coming from Fire Brigade archives). The location of the
rainfall-induced landslides is shown in Fig. 1 (yellow dots).

The occurrence time of the failure is determined more or
less accurately based on the information available (Peruc-
cacci et al. 2017). For daily rainfall measurements
(SM2RASC and OBS-D) the landslide is arbitrarily set at the
end of the day.

Landslide information is combined with both GB and SB
rainfall data using a tool that automatically reconstructs the
(D, E) rainfall conditions responsible for the landslides and
calculates ED rainfall thresholds (Melillo et al. 2018). The
thresholds are calculated adopting a frequentist method
proposed by Brunetti et al. (2010), and modified by Peruc-
cacci et al. (2012). The threshold is a power law curve

E ¼ a � Dað Þ � Dðc�DcÞ ð1Þ
where E is the cumulated event rainfall (in mm), D is the
duration of the rainfall event (in hours or days), a is a scaling
parameter (the intercept), c is the slope (the scaling expo-
nent), and Da and Dc are the uncertainties associated with a
and c, respectively. The method allows calculating thresh-
olds at any non-exceedance probability (NEP). As an
example, 5% ED thresholds are expected to leave 5% of (D,
E) rainfall conditions below the threshold line.

The validation of the thresholds is used (i) to compare the
performance of the GB and SB rainfall products, and (ii) to
obtain the NEP value at which the threshold performs the
best for each product. For the purpose, 80% of all the (D,E)
rainfall conditions with landslides are selected randomly
(100 times), and are used to define the curves at increasing
NEPs (0.005, 0.5, 1, 1.5, 2, 3, 5, 10, 15, 20, 25, 30, 35, 40,
45, 50). Then, the remaining 20% is used to validate the
thresholds using them as binary classifiers of rainfall events
that triggered or did not trigger landslides. This allows

building a contingency table where a (D, E) pair with
landslide above the given threshold is a true positive (TP),
and below is a false negative (FN). Analogously, a rainfall
event without landslides above the threshold is a false pos-
itive (FP), and below is a true negative (TN). Finally, TPR
(true positive rate or hit rate) and the FPR (false positive rate
or false alarm rate) skill scores are calculated at the selected
NEP values:

TPR ¼ TP
TPþ FN

ð2Þ

FPR ¼ FP
FPþTN

ð3Þ

and are used to perform the receiver operating characteristic
(ROC) analysis (Fawcett 2006) for the four data sets. The
performance of the GB and SB rainfall products is then
assesses based on the minimum distance d of their ROC
curve from the perfect classification point PCP (Gariano
et al. 2015).

Results

In the following, the capability of the SB rainfall products at
hourly and daily temporal resolution to forecast
rainfall-induced landslides using the GB rainfall product as a
reference is assessed. Based on the methods and approaches
described above, the rainfall thresholds for the
hourly-resolution (CMORPH and OBS-H), and the
daily-resolution products (SM2RASC and OBS-D) are cal-
culated and validated.

Rainfall Thresholds

Figure 2 portrays the thresholds at 5% NEP for the OBS-H
(T5,OBS-H) and CMORPH (T5,CMORPH) data sets, which have
both a temporal resolution of one hour. Note that the adopted
tool does not reconstruct the rainfall conditions for all the 264
landslides as in some cases the rain is absent or it is negligible.
This happens more frequently when using SB estimates. The
two curves are somewhat parallel, but the threshold resulting
from the CMORPH estimates is lower than that calculated
with rain gauge hourly measurements (OBS-H). The thresh-
old equations at 5% NEP are listed in Table 1.

Figure 3 shows the thresholds at 5% NEP for the OBS-D
and SM2RASC data sets, which have both a temporal res-
olution of one day. As for the case of hourly data sets, the
threshold defined using SB rainfall estimates (T5,SM2RASC) is
lower and steeper than the curve calculated with rain gauge
measurements (T5,OBS-D).
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Validation of Thresholds

The validation procedure calculates the TPR and FPR skill
scores (Eqs. 2 and 3) for each data set at the previously
selected NEP values from 0.05 to 50%. The ROC curves for
the four data sets are shown in Fig. 4. The OBS-H ROC
curve exhibits the shortest minimum distance d = 0.22 from
PCP, i.e. this data set performs the best (see the inset table in
Fig. 4). The OBS-D rainfall product performs better than
CMORPH and SM2RASC, the last being the worst in terms
of distance from PCP. The NEP values of the thresholds that
minimize d for each data set vary from 15 to 35%.

Discussion and Conclusions

The aim of this study is assessing the reliability of rainfall
thresholds obtained using different rainfall data types, as a
function of their detection method (GB or SB) and their
temporal resolution (hourly or daily).

Firstly, note that rainfall thresholds in Figs. 2 and 3 are
calculated with hourly and daily temporal resolution,
respectively, and cannot be directly compared being defined
using different units of time. Nevertheless, it is worthwhile

Fig. 2 Rainfall duration D (h) versus cumulated event rainfall E
(mm) conditions that have resulted in landslides for the OBS-H (green)
and CMORPH (violet) data sets and the corresponding ED thresholds at
5% NEPs with associated uncertainty (shaded areas)

Table 1 ED rainfall threshold equations at 5% NEP calculated with GB and SB data sets for hourly and daily temporal resolution

Data set Rainfall threshold at 5% NEP Best NEP % Rainfall threshold at best NEP Units of D Units of E

OBS-H E = (7.5 ± 0.9) D(0.41±0.03) 15 E = (9.9 ± 1.1) D(0.41±0.03) h mm

CMORPH E = (2.4 ± 0.3) D(0.31±0.04) 20 E = (3.8 ± 0.5) D(0.31±0.04) h mm

OBS-D E = (15.4 ± 1.9) D(0.64±0.05) 30 E = (29.2 ± 2.6) D(0.64±0.05) d mm

SM2RASC E = (7.3 ± 0.6) D(0. 90±0.03) 35 E = (12.1 ± 0.8) D(0.90±0.03) d mm

Fig. 3 Rainfall duration D (d) versus cumulated event rainfall E
(mm) conditions that have resulted in landslides for the OBS-D (gray)
and SM2RASC (red) data sets and the corresponding ED thresholds at
5% NEPs with associated uncertainty (shaded areas)

Fig. 4 ROC curves for OBS-H (green), CMORPH (magenta), OBS-D
(gray), and SM2RASC (red) data sets. Horizontal and vertical bars
represent variation ranges of TPR and FPR for the 100 runs in which
the rainfall conditions are randomly selected. The minimum distance d
between PCP and the nearest NEP value for each curve are shown in
the inset
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to compare the cumulated rainfall (E) at D = 24 h obtained
from the four thresholds. The threshold value for E is
28.5 mm using T5,OBS-H, whereas is only 16.1 mm at D = 1
d for T5,OBS-D. The lower value obtained for the OBS-D data
set is likely due to the lower accuracy of a coarser (daily)
temporal resolution (also observed by Gariano et al. 2020).
Conversely, for CMORPH and SM2RASC the mean
cumulated rainfall at 24 h is E = 5.9 mm and 7.5 mm,
respectively. the one between the two satellite products that
provides a higher daily rainfall estimate is SM2RASC,
despite the lower temporal resolution.

Figure 4 shows that thresholds defined with GB rainfall
data (OBS-H and OBS-D) allow to better discriminate
between events that have or have not triggered landslides.
Indeed, for a hit rate TPR = 0.8 (80%), the number of
expected false positive rate is 12% for OBS-H and 26% for
OBS-D. The performance of CMORPH and SM2RASC at
the same hit rate is even worse giving a probability of false
alarms of 40% and 52%, respectively. For each data set, the
minimum distance d between PCP and the ROC curve
identifies the NEP value (inset in Fig. 4), which optimizes
the prediction performance.

Overall, the use of daily data has the global effect of
degrading the reliability of the thresholds, both for GB and
SB rainfall data.

The lower performance of SB with respect to GB rainfall
products is easily ascribed to the high-quality of OBS-H and
OBS-D data sets in AMU, which is based on *150 rain
gauges.

The use of SB rainfall products at different time resolu-
tions shows that CMORPH performs better than SM2RASC
at every NEPs. Generally, SB daily rainfall products (as
SM2RASC) could be used being aware that high TPR values
likely lead to have high FPR values, and therefore unwanted
false alarms.
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Seven Years of Landslide Forecasting
in Norway—Strengths and Limitations

Graziella Devoli, Hervé Colleuille, Monica Sund, and Jaran Wasrud

Abstract

The experiences acquired by the Norwegian Landslide
Forecasting and Warning Service during the first 7 years
of operation are herein presented. We summarize the
warnings sent in the period 2013–2019 and we present the
evaluation of the warning performance and discuss some
of the main strengths and limitations of the service. In our
opinion, of imperative importance to the success is: A
national political will, the assignation of the landslide
service to an existing well consolidated flood warning
service and a strong collaboration across public agencies
and a multidisciplinary approach. The existence of a
national landslide database and of an operational dis-
tributed hydrological model, was essential for the rapid
establishment of relationships between landslides events
and hydro-meteorological conditions. A strong develop-
ment of IT-tools and expansion of the meteorological and
hydrological network was also crucial. Yet there are still
several challenges and limitations, such as an insufficient
process-understanding of rainfall- and snowmelt-induced
landslides. The verification of landslide occurrence is also
a difficult and tedious task. Finally, another challenging
task is the prediction of landslides triggered by local
intense rainshowers during summer, and rapid snowmelt
events during winter, due to the limitations that exist in
the models and thresholds currently in use.

Keywords

Rainfall- and snowmelt-induced landslides � Forecasting
and warning services � Early warning systems � Debris
avalanches � Debris flows

Introduction

Early warning systems are useful mitigation options for the
authorities in charge of risk management and governance.
With warning messages, the authorities should invite people
to implement emergency plans, take local actions and trigger
contingency and emergency management in order to reduce
risk of life and damages.

For an effective and successful early warning system,
many efforts from the different sectors of the society are
required at different steps. Politicians may have interest in
establishing such of systems to prevent landslides.
Researchers need to assess landslide hazard and risk, and
design warning models. Forecasters have to run forecasting
and warning services issuing messages, when the landslide
danger increases. Finally, local authorities and population
must take actions and implement emergency plans upon
receipt of warning messages. Coordination and cooperation
among the different sectors are essential.

The organization and the maintenance of a Landslide
Early Warning Systems (LEWS) is complex and require
many key components and steps, as recognized by other
authors (UNISDR 2006; Di Biagio and Kjekstad 2007;
Intrieri et al. 2013; Calvello 2017; Fathani et al 2016; Pici-
ullo et al. 2018).

Two types of LEWS are found worldwide: the one that
address the prevention of single landslides at slope scale, also
called local, and the others that covers a large area predicting
the occurrence of multiple landslide at regional scale, called
territorial/regional (Piciullo et al. 2018; Pecoraro et al.
2018). The majority of the regional LEWS were established
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after 2005 and are managed often by governmental institu-
tions. They cover regions in South-East Asia, USA, Europe
and South America.

The Norwegian Landslide Forecasting and Warning
Service (known as “Jordskredvarslingen” in Norwegian),
has been operational since 2013 and is described in Krøgli
et al. (2018) and Devoli et al. (2018). It is managed by a
governmental institution, the Norwegian Water Resources
and Energy Directorate (NVE), to forecast the level of
danger of rainfall- and snowmelt-induced landslides,
specifically shallow soil slides, debris avalanches, debris
flows and slushflows (herein referred to as landslides). The
service is operative 24/7 and covers the entire country. The
daily management covers: the forecasters assessment of the
danger level with a bulletin twice a day at www.varsom.no,
improvements of organizational tasks, models, and public
information. The main goal of the service is to issue correct
warning levels at regional scale which trigger actions and
implement emergency plans. Four awareness levels are used:
green, yellow, orange and red (see Krøgli et al. 2018 for
more details).

To maintain a system operational over a long time,
periodic evaluations are mandatory to identify strengths or to
detect problems in the system, and then propose changes and
improvements (Segoni et al. 2018).

In this analysis, we aim to summarize the experience
acquired between 2013 and 2019 and to evaluate some of the
work done. We discuss how local and regional authorities
react to warnings and how their response has changed
through the years. Our experience can benefit the start-up of
a similar service in other countries.

Warnings, Landslides and Warning
Performance (2013–2019)

Norway is predominantly a mountainous country, with high
relief and steep topography, product of repeated glaciations.
Because of its elongated shape the country is exposed to a
varied climate all year around. The complex geological
conditions make the country also prone to different types of
landslides (mainly rock falls, rock avalanches, rock slides,
debris flows, debris slides, debris avalanches, clays slides
and quick clay slides) but also slushflows and snow ava-
lanches. The country is divided in 5 major physiographic
regions: Northern Norway (divided in this work in two
sectors Nordland and Troms/Finnmark), Central Norway
(Trøndelag), Western Norway (Vestlandet), Southern Nor-
way (Sørlandet) and South-Eastern Norway (Østlandet).

Warnings issued in the period 2013–2019

The number of days with landslide warnings varies from a
minimum of about 25 days in 2016, to a maximum of
66 days, in 2013 (Fig. 1).

The figure shows all warnings sent for the different
physiographic and climatic regions in Norway (from those
with an annual rainfall amount of 200–300 mm to regions
with rainfall amount of 3000–4000 mm). The figure do not
differentiate the warnings based on the different triggering
conditions. Some of these warnings were sent when high
amount of rainfall episodes were forecasted, while other
were sent because of snowmelt episodes or because of a
combination of both. High soil moisture condition previous
weather events was also an important variable in some of
these cases. The fluctuations in number of warnings is due to
daily fluctuation of both rainfall and snowmelt patterns in the
different regions each year. In some years we sent clearly
more warnings on springs as in 2013 and 2018 because these
years had more snow than normal in South-East Norway and
experienced fast snow melt.

On average, the yellow level is issued 40 days/year,
orange 4 days/year, and red level 0,1 day/year.

Landslide warnings have been sent all year around in all
regions. The average number of warnings per season is
rather similar: 9 days, in summer, 10 in winter, 11 in autumn
and 13 in spring (Fig. 2).

The number of days with landslides warnings during
summer may be lower the last 4 years, since we have started
to better differentiate the warnings sent for those days when
convective clouds were expected. Convective clouds are
responsible of short duration, and mostly intense rainfall,
across localized areas, especially on summer (called herein
heavy rainshowers). It is MET-Norway, in agreement with

Fig. 1 Number of days with warnings issued in the period 2013–2019
with their respective warning levels, and number of days with warnings
for heavy rain showers on summer (issued by MET-Norway)
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NVE, that issues warnings for heavy rainshowers. These
warnings (indicated with a blue colour in Fig. 1) highlight
the risk of surface runoff, storm water in urban areas, local
flooding, local flash floods with erosional damage, debris
flows and debris avalanches at locations impacted by the
heavy showers.

Most of the warnings were issued in Western Norway
(Vestlandet) (22 days in average) (Fig. 3), while the region
that in average received the least landslide warnings (9 days)
was Troms/Finnmark, part of the Northern Norway region.

Landslide events and warning performance

The performance of the service is evaluated by controlling the
number, type, size and consequences of landslides, respect to
the time/area and level of the warning and according to the
definition of the awareness levels. The analysis is done based
on a dataset of landslide events verified by the forecasters in
the aftermaths of a weather event. The verified dataset is
composed by 1052 landslides in the period from 2013 to
2019 (Fig. 4).

Respect to the previous analysis presented in Krøgli et al.
2018, the results presented herein are updated with the last
2 years of observations. The performance at regional scale is
about 98%. Table 1 shows the warning performance in the
analyzed period. The column “correct warning” includes
both true negatives (days with green level and no landslides)
and true positives (days with yellow, orange or red level, and
with a certain number of landslides expected for that level).
The numbers of landslides expected for each level are pre-
sented in Piciullo et al. (2017). The true positives are more
difficult to verify, because of the difficulty to verify the real
number of landslides. In this analysis we consider only the
landslide events verified by the forecasters in the aftermaths
of a weather event to define the true positives. We observe
also that the number of false alarms is clearly reduced from
2013 to 2015 (Table 1) due to an adjustment of the threshold
in Southern and South-Eastern Norway (Krøgli et al. 2018).

User’s response to the warnings

An important user of our warning is the NVE staff working in
the five regional offices (Northern, Central, Western,
Southern and Eastern). NVE is not a primary emergency
agency, but NVE regional staff is often called upon by
municipalities (and the police) for advice during emergen-
cies and crises and in the aftermaths of landslides and floods
affecting settlements. If a landslide warning level is given
(yellow, orange or red), NVE declares a kind of internal
emergency response divided in two levels: “Emergency” and
“High emergency”. “Emergency” is declared on e.g. a major
single landslide involving people and/or in case of landslide
orange or red warning. “High emergency” is declared if
round-the-clock effort is needed from NVE regional staff,
due to e.g. large geographical extent of the hazardous event
(many landslides widespread in the region) or because a

Fig. 2 Number of days with warnings by seasons in the period 2013–
2019. The winter season is from December to February, week 49 to
week 9, Spring from Mars to May, week 10 to 22, Summer from June
to August, week 23–35, Autumn from September to November, week
36–48

Fig. 3 Number of days with warnings divided by regions in the period
2013–2019

Fig. 4 Yearly distribution of landslides, from the verified dataset that
forms the basis for the evaluation of the warning performance
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large number of people is affected. These two emergency
levels always involve the head chief of the regional office,
responsible for the region in which the forecast has been
sent. A few key persons or more may be put in emergency or
standby based on the extent and the level of the warning. In
cases of a lower level forecast (yellow), a NVE regional
office may be set in a mode of “increased vigilance”,
meaning that NVE is following the situation closely, but it is
not implementing any further action at the moment.

Experiences acquired at NVEs Eastern regional office
indicated that the perception of landslide hazards has
increased in the region among responders, authorities and
the population through the years and that the forecast service
has become an important tool in the emergency response
phase. Moreover, the NVE regional staff consider that the
value of the landslide warning is strengthened in those areas
where landslide hazard has been mapped. Municipalities are
then given a possibility to initiate actions for specific
areas/buildings depending on the type(s) of landslide fore-
casted. The available hazard maps can be visualized at
(https://temakart.nve.no/link/?link=Skredfaresone).

The free subscription service by e-mail and/or SMS to the
warning portal varsom.no is also particularly useful for the
regional offices as it provides valuable information to the
expertise and engineers working in NVE throughout
Norway.

A user survey conducted in autumn 2019 shows that the
awareness towards landslide hazards has increase in the last
10 years among emergency authorities. 428 people
answered the survey: 2/3 of them are working at responder
institutions like road authorities or municipalities and 1/3
were population. 59% of the local emergency authorities
answered that they know about damaging landslides and the
required actions, while in 2016 only 42% of them answered
to the same question and back in 2009 only the 37%. This is
not related to an increased number of landslides nationwide,
but to a better hazard knowledge. The increased knowledge
can be attributed to the establishment of the national fore-
casting and warning service and all others NVE systematic
efforts to better prevent landslides, like the landslide hazard

mapping program conducted nationally since 2011. In the
2019 survey, more than 80% of the emergency authorities
said that they have made a local assessment after receiving a
warning. About 70% said that they performed actions. Over
86% of the interviewed emergency authorities expressed that
the warning service is very useful, and they consider it
highly reliable.

Evaluation of the Norwegian LEWS

The organization, operation and maintenance of a LEWS is
complex (Table 2). Periodic evaluation of LEWS can there-
fore be a difficult task, especially if all components should be
evaluated at the same time. In this analysis we evaluate only
some of these steps, indicated by underlined text in Table 2.

Strengths and limitations of the service

Figure 5 shows the organizational history of the Norwe-
gian LEWS. Despite a sporadic attempt of thresholds
development in the late 1990s (Sandersen et al. 1996), it is
only after 2005 that a common national interest grows
towards the mitigation of damages caused by these types of
landslides. The service was operational after a test period of
two years, with research and development (models, thresh-
olds), warning tests, and organization building (guidelines,
recruitment and training of forecasters).

In Fig. 6 we have assembled the main strengths and the
main reasons of success, together with the most important
short- and long-term benefits.

Among the most important challenges are:

(1) A poor understanding and a limited knowledge of
rainfall- and snowmelt-induced landslides and their
conditioning and triggering mechanisms (i.e. weather
and ground conditions). There are few studies and past
investigations of these landslide types and the quality of
the national landslide database is still too poor. Con-
sequently, this has important negative effects in the

Table 1 Warning performance
in percentage (%) for the period
2013–2019. “Correct Warning”
(C), “False Alarm” (FA),
“Missing Event” (ME), “Wrong
level (between yellow and
orange)” (WL)

Year C FA ME WL

2019 97.7 1.0 0.8 0.3

2018 98.1 0.5 0.5 0.5

2017 96.3 1.9 1.1 0.4

2016 98.4 0.8 1.1 0.3

2015 97.9 1.4 0.3 0.4

2014 92.9 5.2 1.2 0.7

2013 94.2 3.3 2.2 0.3
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daily landslide hazard assessment because (a) we lack
of reliable thresholds for the entire country; (b) the
thresholds are more reliable in those regions where past
landslide records have been controlled or are more
complete; (c) the lack of reliable historical records and
thresholds may produce subjective assessments that
depend on the forecaster’s experience.

(2) The prediction of landslides triggered by local and
short-intense rainfalls, product of convective clouds
during summer, is a challenging task to perform with
the available models and thresholds. The number of
heavy rainfall events in summer is expected to increase
in the future due to climate change (Hanssen-Bauer
et al. 2017); the estimation of the expected rainfall
amount and location is very uncertain and prediction
models need to be tested; local short-intense rainfall (1–
3 h) is seldom recorded by official rain gauges and the
observed grid-data of rain on summer at 1 km2, used as
input in our hydrological model, is therefore often
mislead. The NVEs hydrological models are running at
24 h basis. The impact of short-intense rainfall is often

weakly related to pre-existing hydrological conditions
(i.e. groundwater, soil water and river discharge). Due
to the lack of reliable data (time of events, rainfall
records, hydrological modelling), we have not yet cal-
culated landslide thresholds for short-intense rainfall
events.

(3) The prediction of landslides caused by rapid snowmelt
in winter is also challenging because changes in tem-
perature are not taken into account in our hydrological
models.

(4) An important task for forecasters after sending a
warning, is to verify the occurrence and extension of
landslides. Therefore, an overview of spatial and tem-
poral distribution, as well as number, type, and
dimension of all occurred landslides events is strongly
required. An event inventory (that ideally should reg-
ister all landslides occurred during a specific weather
event, Guzzetti el al. 2012) is necessary after a warning
is sent, to evaluate if the warning level and the warning
area were correct and, on the long term, to be used in
the improvement of the landslide thresholds. NVE runs

Table 2 Requirements for operational LEWS. Main key components and steps (K.C.—Key component, S.—Step and R.—Requirement).
Underlined text is further evaluated here

Requirements for LEWS

K.C. Risk knowledge and setting of the system (national and institutional involvement)
S: Identify landslide risks and needs to establish a LEWS. Identify national expertise, institutions, financial support and legal statements
R. Landslides must be a risk (reliable and accurate hazard and risk analyses). LEWS is often the best and cheapest mitigation option for
the society, (prefeasibility study, containing cost and benefits analyses). Political understanding and interest in the organization of EWS.
Available financial support to start. Collaboration among scientific community and politicians. Scientific community with landslide
expertise. Stability and long term politic

K.C. Monitoring, forecasting and warning service (institutional, researcher and forecasters involvement)
S: Implementation of a warning model and a warning service
R. Establishment of the service (internal organization). Legal mandate. Available landslide expertise. Training. Collaboration
(multidisciplinary team). Guidelines and daily procedures
R. Monitoring and modelling. Effective monitoring systems in appropriate locations. Supporting tools (software, hardware, web
platform for sharing data) and daily maintenance. Functioning network for receiving data and forecasts. Reliable historical data.
Reliable hydro-meteorological forecasting models and thresholds
R. Daily operation and hazard assessment. Analysis and daily forecasts and model outputs. Functioning forecasts reception. Functioning
supporting tools, models. Available forecasting expertise. Understanding the forecasts, model output, uncertainties. Objective
interpretation of forecasts. Objective assignment of warning level. Weekly meeting and exchange experience. Freedom to do the daily
hazard assessment without social pressure

K.C. Dissemination and communication (institutional, researcher and forecasters involvement)
S: Implementation of a warning model and a warning service
R. Warning service. Warning tools and platforms for communication available and functioning. Definition of warning criteria, warning
areas and levels. Standards for warning text, symbols. Preparation of warning messages (text, map and level). Communication of
uncertainties. Maintain contact with users and communicate risks, preparing learning material, videos. Use of social media

K.C. Response capability (local users, forecasters, researcher, institutional, national involvement)
S. Evaluate the capability response of the system
R. Emergency plan. Reception and understanding of the warning. Applying emergency plans, take actions
R. Evaluation of performance. Analysis of what happened and performance analyses. Verification of damages. Verification of emergency
plans application and if mitigation actions have been undertaken. Verification of landslide occurrence: control and registrations. Field
campaigns after a specific event, close contact between forecaster and users. Evaluation criteria. Training and education, also of
end-users to a correct interpretation of warning messages. Periodically evaluations of the entire system, propose changes to the
organization or improvements to the system. Identify needs for improve scientific development, landslide hazard education at university
level, review research strategy and balance between research and operation. Building up the credibility of the scientific institution
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Fig. 5 Timeline of the organizational history of the Norwegian LEW. R&D stands for Research and Development

Fig. 6 Main strengths of the Norwegian LEWS
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a national mass movement database in cooperation with
others national institutes, where everybody can register
landslide events (www.skredregistrering.no). Beside
this database, NVE has developed other crowdsourcing
tools to gather real-time observations from field (Krøgli
et al 2018 and references therein). During a weather
event many users, with variate landslide expertise, can
register landslide events. Forecasters at NVE track the
occurrence of landslide events under a specific weather
event through media (radio, newspapers, TV) and reg-
ister them in any of these tools. Beside these efforts
there is not a systematic and not coordinated follow-up
after landslide events, neither the preparation of event
inventories after an event. Consequently, the landslide
events are not systematically registered, and not sys-
tematically controlled and verified. Forecasters use a
“verified landslide dataset” for warning performance
analysis, but this verified information does not always
match with the information in the database.

Conclusions

The landslide forecasting and warning service is in its eight
year. The system is robust in terms of organization, human
resources, financial supports, decision tools and forecasting
models.

The service works well, predicting the main hydromete-
orological conditions that can trigger landslides. The expe-
rience so far, indicates that several yellow levels were
issued, when an orange level should have been sent instead.
Only one day (the 22th of May 2013 in South-Eastern
Norway) had red level during the period 2013–2019. It is too
early to evaluate red levels after only 7 years of operation,
because in general red level should occur very rarely
(50 years return period in analogy to the national flood
warning system). The tendency for improved performance
may be explained both by more experienced forecasters, by
better meteorological forecasts provided by MET Norway
and by a better understanding of the uncertainty in the
hydro-meteorological forecasts.

NVE is continuously working to rationalize and consol-
idate the service, running research projects to improve the
precision and accuracy of the warnings. NVE is also
improving the communication and build up users under-
standing. The success of such systems is like a feedback-
loop. First the EWS need to be reliable enough to be taken
into operation. Thereafter the users must be trained to use the
available information. To ensure a proper response to a
challenging situation, it is an advantage if the latter is a
mutual process where the users needs are taken into account
in the further development of the EWS. Sufficient coverage

of landslide hazard maps is thus a key to extract the full
advantage of the forecast service. NVE is continuously
producing such maps for selected areas and municipalities in
Norway.

We suggest to wait some years before evaluating the
performance of the system. After 8 years it will be possible
to see the results of the LEWS, but only if there is continuity
of the service and annual events. We reccomend to start with
a reliable landslide dataset and models of sufficient resolu-
tion (6, 3 h). Subsequently developing reliable regional
thresholds and thresholds for short intense rainfalls. Heavy
rainshowers in summer are a quite new phenomenon in
Norway. There are still very few long series of rain records
at hourly basis. To handle the challenges with short-intense
rainfall and rapid changes in temperature NVE is currently
developing a hydrological model running at 3 h steps.
Future developments include landslides thresholds for 3, 6
and 12 h.

The service scores a high performance, but some steps are
still challenging. The most time consuming and subjective
task is the quality control of recorded landslides to be used
for performance evaluation and threshold adjustment. The
daily monitoring and systematic registration of landslide
events has contributed to a better understanding of their
physical characteristics and their spatial and temporal trig-
gering conditions. In recent years, new technologies as use
of drones and satellite images offer a possibility to register
data more efficiently. Experience with these technologies for
landslides in Norway, is however limited for the time being.
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Characterization of Hillslope Deposits
for Physically-Based Landslide Forecasting
Models

Veronica Tofani, Gabriele Bicocchi, Elena Benedetta Masi,
Carlo Tacconi Stefanelli, Guglielmo Rossi, and Filippo Catani

Abstract

Physically-based models employed for landslide forecast-
ing are extremely sensitive to the use of geological
information and a standard, universally accepted method
to input maps containing information of geological
interest into the models still has never been established.
In this study, we used the information contained in a
geo-database aimed to characterize the geotechnical and
hydrological parameters of the hillslopes deposits in
Tuscany, to find out how to organize and group the
measurements to spatially create classes that mirror the
distribution of the various types of bedrock lithology.
Despite the deposits analysed are mainly consisting of
well sorted silty sands, statistical analyses carried out on
geotechnical and hydrological parameters highlighted that
it is not possible to define a typical range of values with
relation to the main mapped lithologies, because soil
characteristics are not simply dependent on the bedrock

typology from which the deposits originated. Instead, the
analysis of the relationship of soil parameters with
morphometric parameters (slope angle, profile curvature,
planar curvature) shows that the highest correlation
between the soil grain size class type (USCS classifica-
tion) and morphometric attributes is with slope curvature,
both profile and planar.

Keywords

Soil geotechnics � Physically based modelling �
Landslides � Tuscany

Introduction

Many kinds of physically-based landslide prediction models
for rainfall-triggered shallow landslides have been presented
in the literature so far (Pack et al. 2001; Baum et al. 2002,
2010; Rosso et al. 2006; Simoni et al. 2008; Ren et al. 2010;
Arnone et al. 2011; Mercogliano et al. 2013; Rossi et al.
2013; Alvioli and Baum 2016; Salciarini et al. 2017).

One of the most important factors that influences the pre-
diction accuracy and the sensitivity of the physically-based
model is the availability of detailed databases of physical and
mechanical properties of rocks and soils in the selected study
areas. Geotechnical and hydrological variables are often dif-
ficult to manage, and their measurement is difficult,
time-consuming and expensive, especially when working on
large, geologically complex areas (e.g. Baroni et al. 2010;
Park et al. 2013; Tofani et al. 2017).

In addition, a poor understanding in the of the geotech-
nical and hydrological input parameters with respect to their
spatial organization may endanger the potential application
of numerical models over large areas (e.g. Tofani et al. 2017;
Salvatici et al. 2018).

Data to be inputted and to feed the physically-based
models can be prepared by using different strategies:
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(1) the adoption, for each parameter, of a unique constant
value for the whole study area as retrieved from experi-
mental data or derived from literature data (e.g. Jia et al.
2012; Peres and Cancelliere 2014), (2) the use of constant
values for the parameters for distinct geological, lithologi-
cal or lithotecnical units, as derived from direct measure-
ments (Segoni et al. 2009; Baum et al. 2010; Montrasio
et al. 2011; Zizioli et al. 2013; Bicocchi et al. 2016; Tofani
et al. 2017) or from existing databases and published data
(Ren et al. 2014; Tao and Barros 2014), or (3) the defi-
nition of selected parameters, such as the cohesion and
friction angle values, as random variables using a proba-
bilistic or stochastic approach (e.g. Park et al. 2013; Chen
and Zhang 2014; Raia et al. 2014; Fanelli et al. 2016;
Salciarini et al. 2017).

In this work we discuss how to deal with the geotechnical
and hydrological input data in regional physically-based
models. In particular, we want to find an optimal way (1) to
determine the ranges of variation and the characteristics of
frequency distributions of the geotechnical and hydrogeo-
logical parameters that control shallow landslide triggering
mechanisms, and (2) to describe the spatial variation in the
geotechnical and hydrological data in relation to the infor-
mation contained in the geological maps and to the physical
factors such as morphometric attributes. The area of appli-
cation of this approach is Tuscany region, where more than
one hundred survey points of the geotechnical and hydro-
logical parameters measurements are available (Bicocchi
et al. 2019).

Geographical and Geological Description
of the Study Area

Tuscany region (Fig. 1) is a topographically complex
region located in central Italy strongly affected by shallow
landslides occurring after major meteorological events
(Giannecchini et al. 2007; Mercogliano et al. 2013; Tofani
et al. 2017). The highest ridges are in the northern and
eastern portion of the region. The northwestern part is
characterized by mountains comprised of metamorphic
rocks (i.e. Apuan Alps) and by steep valleys with thick
colluvial and alluvial deposits, while the eastern part is
characterized by mountains mainly formed by sedimentary
rocks and by intermountain basins filled with alluvial
deposits. These mountains belong to the Northern Apen-
nine, a NE-verging fold-and-thrust orogenic belt originated
from the closure of the Jurassic “Ligure-Piemontese”
Ocean and the subsequent Oligocene–Miocene collision
between the continental Corso-Sardinian block and the
Adria microplate (e.g., Boccaletti and Guazzone 1974).

The central and southern parts are characterized by hilly
morphology with an isolated volcanic relief and flat plains
or wide valley floors where the main rivers flow.

A lithological map of the bedrock for Tuscany was pre-
pared (Fig. 1) by customizing that lithological map previ-
ously derived from the geological map of Italy, 1:500,000 by
ISPRA (Italian National Institute for Environmental Pro-
tection and Research). The bedrock, relative to its areal
distribution in the hilly and mountainous part of the region,
is mainly represented by of arenaceous, calcareous and
pelitic flysch units.

Geotechnical and Hydrological Measurements

The data analysed are represented by samples collected at
102 different sites (Bicocchi et al. 2019; Fig. 1). The
geotechnical and hydrological parameters for characterizing
the soils were determined as described in Tofani et al. 2017
and Bicocchi et al. 2019. In particular, the Borehole Shear
Test (BST; Luttenegger and Hallberg 1981) for measuring
the soil shear strength parameters, a constant head perme-
ameter test performed with the Amoozemeter instrument
(Amoozegar 1989) and matric suction measurements with a
tensiometer, were used for the in-situ determinations. In
addition, laboratory tests were conducted at the Department
of Earth Sciences, University of Florence, to determinate
grain size distributions, Atterberg limits, soil phase rela-
tionships (bulk porosity n; saturated, natural and dry unit
weight, csat, c and cd, respectively) and the soil organic
matter contents (SOM; for the latter refer to Masi et al. 2020
for further information about the analysis methods adopted).

Results

The analysed deposits are mostly classified as well-sorted
silty—clayey sands, i.e. SW, SM, SC and SM-SC classes by
using the Unified Soil Classification System (USCS; Wagner
1957). Nevertheless, a non-negligible part of the samples is
characterized by higher contents of silt and clay (ML and
MH class in the USCS), whilst an isolated sample is clas-
sified as GW (Fig. 2).

Descriptive statistics concerning dry unit weight, bulk
porosity, internal effective friction angle and saturated
hydraulic conductivity values are reported in Table 1. The
dry unit weight (cd) ranges between 10.7 and 20.8 kN m−3,
with a mean value of 15.5 kN m−3. Internal effective friction
angle values (u′) vary from 15° to 45° with an average value
of 32°, but much part of the value lies in a narrower interval
(±5° from the arithmetic mean). The bulk porosity
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(n) values span a wide interval: from 19.9 to 58.8% with a
median value of 38.8%. Also, the values of ks range in a
wide interval from 4 10−8 to 8 10−5 m s−1. The standard
deviation (r) values stress out this aspect since r is *15%
of the arithmetic mean value for u′ and cd, while is much
higher for n and ks.

The main mineral phases detected in the samples of the
27 selected sites, representative of the different USCS soil
types and bedrock lithology, are mica, quartz,
non-swelling clay minerals, plagioclases, k-feldspar and
calcite. The SOM normalized to the bulk samples ranges
between 1.8 and 8.9% by weight, the highest values of the
SOM content being associated with forest and woodlands
without shrubs. The SOM values distribution showed
close relationships with the abundance of the inorganic
finer fractions (silt and clay) of the soil samples (Masi
et al. 2020).

Discussion

In order to define a proper way to spatialize the parameters to
be used for physically-based forecasting models some fur-
ther analyses are carried out to examine the relationship
between (1) soil parameters and bedrock lithology and
(2) soil parameters and morphometric attributes.

Aggregated Data Statistics: Grouping by Bedrock
Lithology Versus by USCS Classification

First of all, we studied the distribution of the soils (Table 2),
classified according to USCS, with respect to the underlying
bedrock types recognized in the map (Fig. 1). Arenaceous
marly flysch (AMF), calcareous marly flysch (CMF),

Fig. 1 Lithological map of Tuscany (bedrock) and location of the survey points (from Bicocchi et al. 2019)
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limestones, dolomites, travertines and evaporitic deposits
(LDTE), and pelitic flysch (PF) have mainly silty sands and
clayey sands soil deposits. Clay, claystone and marls
(CCM) and granular deposits (GD) show silty soils with low
and high plasticity. As MVR class consists only of, three
observations, every consideration is statistically poorly
significant.

The variability of the main parameters (u′, cd and ks),
which play key roles in triggering slopes instability, was
further investigated aggregating these parameter values
according to the pertaining bedrock lithological and the
USCS classes (Fig. 3).

Aggregation based on USCS classes show friction angle
values distribution quite symmetric, especially for SM-SC
and SW classes, although the range of the values covers over
20°. Conversely, the ML + MH box plot is asymmetric,
because of the short distances between the box upper limit
and the maximum values, while the distance between the
lower limit and minimum values is quite high (over 10°).
Dry unit weight box plots are symmetric in their shape, apart
from SW and secondarily for CL + CH + OL, but the values
are extremely dispersed. Eventually, ks values, as for the
data aggregated by bedrock class, were log-transformed
prior to making up the box plots. The conductivity values are
asymmetrically distributed with respect to the arithmetic
mean values, which are located far above the median and
often above the 3rd quartile (i.e. the upper box limits).

The aggregation based on bedrock lithology shows boxes
of effective friction angle quite symmetric, as the median is
very similar to the arithmetic mean. The dry unit weight box
plots are symmetric in their shape, apart for the granular
deposits (GD) and limestones, dolomites, travertines and
evaporitic deposits (LDTE) classes, with median and arith-
metic mean values very close and the space between the
quartiles homogeneously distributed. Once again, hydraulic
conductivity values show some distinctive asymmetric dis-
tribution with respect to the arithmetic mean values, which are
located far above the median and often above the 3rd quartile.

An interesting fact to note is that, in the study area, a
reliable extrapolation of soil parameters is quite difficult to
achieve based on the simple observation of the underneath
bedrock lithology (Bicocchi et al. 2019). Despite most of the
samples in this study being classified as arenaceous marly
flysch (AMF), important differences have been found con-
cerning their grain size distribution (Table 2). The main
reasons for such decoupling between the bedrock type and
the deposit granulometry could be that (Bicocchi et al. 2019):
(1) the deposits may have originated from a different bedrock
with respect to what they overlie at present, and especially

Fig. 2 Distribution of USCS aggregated classes for the samples from
Bicocchi et al. (2019)

Table 1 Descriptive statistics of selected geotechnical parameters

cd (kN
m−3)

/′
(°)

n
(%)

ks (m
s−1)

N° of
measurements

81 109 81 119

Min 10.7 15 19.9 4.E−08

Max 20.8 45 58.8 8.E−05

Arithmetic mean 15.5 32 40.2 3.E−06

Median 15.9 32 38.8 1.E−06

Std. dev. (r) 2.2 5 9.5 9.E−06

Table 2 Soil classification of the bedrock lithologies according to
USCS classification. N°: number of survey points. AMF: arenaceous
marly flysch, CMF: calcareous marly flysch, LDTE: limestones,
dolomites, travertines and evaporitic deposits, PF: pelitic flysch,
CCM: Clay, claystone and marls, GD: granular deposits, MVR:
Metamorphic and volcanic rocks

Bed-rock N° SW + GW SM + SC ML + MH CL + CH + OL

AMF 57 18 27 9 3

CMF 21 0 11 5 5

CCM 9 0 3 4 2

GD 11 1 3 4 3

LDTE 11 2 6 2 1

MVR 3 2 1 0 0

PF 8 1 5 2 0

268 V. Tofani et al.



(2) most of the geological units of the Northern Apennine are
quite heterogeneous and intrinsically complex flysch (e.g.,
Martini and Vai 2001), often characterized by repeated
lithological changes (e.g. sandstone to claystone and/or to
limestone) in a few tens of meters, so that the characteristics
of the regolith, from which the deposits formed, may vary as
the bedrock lithological changes occurs.

Compared to the analysis performed by aggregating the
values by bedrock lithology, the use of USCS classes,
especially looking at SW + GW and CL + CH + OL for the
/′ and ks, appears to be more suitable for producing a
symmetric distribution and a homogeneous division of the

values, while both approaches substantially fail in finding an
appropriate way to describe the distribution of dry unit
weight box plots.

USCS Soil Type Occurrence Versus Morphometric
Attributes

We have investigated the relationship between the soil type,
in terms of USCS classification, and morphometric attributes
with reference to slope gradient, profile curvature and planar
curvature (Fig. 4).

Fig. 3 Box plots of u′ (internal effective friction angle), cd (dry unit
weight), KS (saturated hydraulic conductivity, scale is logarithmic) for
different bedrock lithologies (red coloured, on the right; the dots
represents the arithmetic mean value) and for USCS classes (blue

coloured, on the left; the dots represents the arithmetic mean value);
refer to the text for the bedrock acronyms (modified after Bicocchi et al.
2019)
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Fig. 4 Occurrence of USCS
aggregated soil types with respect
to the a slope, b profile curvature,
c planar curvature in the
hillslopes surveyed (modified
after Bicocchi et al. 2019)
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In general, at low slope angles, granular soils (SW +
GW, SM + SC) are predomisnant, while with the increase of
slope angle, the presence of cohesive soils (ML + MH,
CL + CH + OL) increases proportionally. This behaviour
can be related to the predominance of cohesive forces with
respect to frictional ones from low to high slope gradients.

Owing to the profile curvature, it is worth mentioning that
in convex areas granular soils (SW + GW, SM + SC) are
prevalent while in concave areas the distribution of soil
classes is more heterogeneous, and all the soil classes are
about evenly represented. This result can be explained
considering that in convex areas fine materials are more
easily remodeled and transported due to various processes of
surface runoff, such as rainwash and sheetwash.

The distribution of soil classes for planar curvature shows
that in very divergent areas (crests) coarse granular soils
(SW + GW) prevail over fine granular (SM + SC) and
cohesive ones (ML + MH, CL + CH + OL). This is in line
with the results coming from the profile curvature: in convex
and divergent areas, rainwash and sheetwash processes
produce residual soils composed of mainly coarse material.
In the other classes of planar curvature, silty sands prevail.
Nothing can be said about very convergent areas, where no
samples have been collected in the analysed database since
they usually represent incised channel bottoms or stream
thalwegs.

Conclusion

In this work selected information contained in the database
of geotechnical (internal effective friction angle, dry unit
weight, porosity) and hydrological (saturated hydraulic
conductivity) parameters for soil cover in the hillslope
deposits in Tuscany (Italy) has been interpreted in order to
improve the preparation of parameters for regional
physically-based landslide prediction models.

An important finding, while examining the database, is
that grouping the geotechnical parameters measurements
with respect soil types (USCS classification) and bedrock
lithology, substantially fails in giving back clearly distin-
guishable range of values for the different types of soils or
bedrock. Indeed, in most cases the grain size distribution of
soils is controlled by the intensities and the type of the acting
slope processes regardless of from what bedrock typology
they originated. For the same reason shear strength and
hydraulic conductivity are difficult to predict on the basis of
the geo-lithological maps only.

However, we have found that, instead, linkages between
the different USCS soil types with morphometric parameters
such as the profile of curvature of the hillslopes exist. This

finding could be a starting point to develop alternative
strategies to spatially organize and group in classes the
geotechnical parameters.

Acknowledgements This work was financially supported by a col-
laboration between the Department of Earth Sciences, University of
Florence and the Regional Administration of Tuscany.

References

Alvioli M, Baum RL (2016) Parallelization of the TRIGRS model for
rainfall-induced landslides using the message passing interface.
Environ Model Softw 81:122–135

Amoozegar A (1989) Compact constant head permeameter for
measuring saturated hydraulic conductivity of the vadose zone.
Soil Sci Soc Am J 53:1356–1361

Arnone E, Noto LV, Lepore C, Bras RL (2011) Physically—based and
distributed approach to analyse rainfall-triggered land- slides at 320
watershed scale. Geomorphology 133(3):121–131

Baroni G, Facchi A, Gandolfi C, Ortuani B, Horeschi D, van Dam JC
(2010) Uncertainty in the determination of soil hydraulic parameters
and its influence on the performance of two hydrological models of
different complexity. Hydrol Earth Syst Sci 14:251–270

Baum R, Savage WZ, Godt JW (2002) Trigrs: a FORTRAN program
for transient rainfall infiltration and grid-based regional slope-
stability 322 analysis. Open-file report, US Geol. Survey

Baum RL, Godt JW, Savage WZ (2010) Estimating the timing and
location of shallow rainfall-induced landslides using a model for
transient unsaturated infiltration. J. Geophys Res 115:F03013

Bicocchi G, D’Ambrosio M, Rossi G, Rosi A, Tacconi-Stefanelli C,
Segoni S, Nocentini, M, Vannocci, P, Tofani V, Casagli N, Catani F
(2016) Geotechnical in situ measures to improve landslides
forecasting models: a case study in Tuscany (Central Italy). In:
Proceedings ISL 2016 congress, pp 419–424. ISBN
9781138029880

Bicocchi G, Tofani V, D’Ambrosio M, Tacconi-Stefanelli C, Van-
nocci P, Casagli N, Lavorini G, Trevisani M, Catani F (2019)
Geotechnical and hydrological characterization of hillslope deposits
for regional landslide prediction modeling. Bull Eng Geol Env
78:4875–4891

Boccaletti M, Guazzone G (1974) Remnant arcs and marginal basins in
the Cenozoic development of the Mediterranean. Nature 252:18–21.
https://doi.org/10.1038/252018a0

Chen HX, Zhang LM (2014) A physically-based distributed cell model
for predicting regional rainfall-induced shallow slope failures. Eng
Geol 176:79–92. https://doi.org/10.1016/j.enggeo.2014.04.011

Fanelli G, Salciarini D, Tamagnini C (2016) Reliable soil property
maps over large areas: a case study in central Italy. Environ Eng
Geosci 22:37–52

Giannecchini R, Naldini D, D’Amato Avanzi G, Puccinelli A (2007)
Modelling of the initiation of rainfall-induced debris flows in the
Cardoso basin (Apuan Alps, Italy). Quat Int 171–172:108–117

Jia N, Mitani Y, Xie M, Djamaluddin I (2012) Shallow landslide hazard
assessment using a three dimensional deterministic model in a
mountainous area. Comput Geotech 45:1–10

Luttenegger JA, Hallberg BR (1981) Borehole shear test in geotech-
nical investigations. Am Soc Test Mater Spec Publ 740:566–578

Martini IP, Vai GB (2001) Anatomy of an Orogen: the Apennines and
adjacent mediterranean basins. Kluwer, Dordrecht. 633 pp. https://
doi.org/10.1007/978-94-015-9829-3

Characterization of Hillslope Deposits for Physically … 271

http://dx.doi.org/10.1038/252018a0
http://dx.doi.org/10.1016/j.enggeo.2014.04.011
http://dx.doi.org/10.1007/978-94-015-9829-3
http://dx.doi.org/10.1007/978-94-015-9829-3


Masi EB, Bicocchi G, Catani F (2020) Soil organic matter relationships
with geotechnical-hydrological parameters, mineralogy and vegeta-
tion cover of hillslope deposits in Tuscany (Italy). Bull Eng Geol
Environ. Accepted

Mercogliano P, Segoni S, Rossi G, Sikorsky B, Tofani V, Schiano P,
Catani F, Casagli N (2013) Brief communication: a prototype
forecasting chain for rainfall induced shallow landslides. Nat
Hazards Earth Syst Sci 13:771–777

Montrasio L, Valentino R, Losi GL (2011) Towards a real-time
susceptibility assessment of rainfall-induced shallow landslides on a
regional scale. Nat Hazards Earth Syst Sci 11:1927–1947

Pack R, Tarboton D, Goodwin C (2001) Assessing terrain stability in a
GIS using SINMAP. In: 15th annual GIS conference, GIS

Park HJ, Lee JH, Woo I (2013) Assessment of rainfall-induced shallow
landslide susceptibility using a GIS-based probabilistic approach.
Eng Geol 161:1–15

Peres DJ, Cancelliere A (2014) Derivation and evaluation of landslide
triggering thresholds by a Monte Carlo approach. Hydrol Earth Syst
Sci 18:4913–4931. https://doi.org/10.5194/hess-18-4913-2014

Raia S, Alvioli M, Rossi M, Baum RL, Godt JW, Guzzetti F (2014)
Improving predictive power of physically based rainfall-induced
shallow landslide models: a probabilistic approach. Geosci Model
Dev 7:495–514. https://doi.org/10.5194/gmd-7-495-2014

Ren D, Fu R, Leslie LM, Dickinson R, Xin X (2010) A storm-triggered
landslide monitoring and prediction system: formulation and case
study. Earth Interact 14:1–24

Ren D, Leslie L, Lynch M (2014) Trends in storm-triggered landslides
over Southern California. J Appl Meteor Climatol 53:217–233

Rossi G, Catani F, Leoni L, Segoni S, Tofani V (2013) HIRESSS: a
physically based slope stability simulator for HPC applications. Nat.
Hazards Earth Syst Sci 13:151–166

Rosso R, Rulli MC, Vannucchi G (2006) A physically based model for
the hydrologic control on shallow landsliding. Water Resour Res
42:W06410. https://doi.org/10.1029/2005WR004369

Salciarini D, Fanelli G, Tamagnini C (2017) A probabilistic model for
rainfall-induced shallow landslide prediction at the regional scale.
Landslides 14:1731–1746

Salvatici T, Tofani V, Rossi G, D’Ambrosio M, Tacconi Stefanelli C,
Masi EB, Rosi A, Pazzi V, Vannocci P, Petrolo M, Catani F,
Ratto S, Stevenin H, Casagli N (2018) Regional physically based
landslide early warning modelling: soil parameterisation and
validation of the results. Nat Hazards Earth Sys Sci 18:1919–
1935. https://doi.org/10.5194/nhess-18-1919-2018

Segoni S, Leoni L, Benedetti AI, Catani F, Righini G, Falorni G,
Gabellani S, Rudari R, Silvestro F, Rebora N (2009) Towards a
definition of a real-time forecasting network for rainfall induced
shallow landslides. Nat Hazards Earth Syst Sci 9:2119–2133

Simoni S, Zanotti F, Bertoldi G, Rigon R (2008) Modelling the
probability of occurrence of shallow landslides and channelized
debris flows using geotop-fs. Hydrol Process 22:532–545

Tao J, Barros AP (2014) Coupled prediction of flood response and
debris flow initiation during warm- and cold-season events in
the southern Appalachians USA. Hydrol Earth Syst Sci 18:367–
388

Tofani V, Bicocchi G, Rossi G, Segoni S, D’Ambrosio M, Casagli N,
Catani F (2017) Soil characterization for shallow landslides
modeling: a case study in the Northern Apennines (Central Italy).
Landslides 14:755–770. https://doi.org/10.1007/s10346-017-
0809-8

Wagner AA (1957) The use of the unified soil classification system by
the Bureau of Reclamation. In: Proceedings of the 4th international
conference on soil mechanics and foundation engineering, London
vol I, 125 pp

Zizioli D, Meisina C, Valentino R, Montrasio L (2013) Comparison
between different approaches to modeling shallow landslide
susceptibility: a case history in Oltrepo Pavese. Northern Italy.
Nat Hazards Earth Syst Sci 13:559–573

272 V. Tofani et al.

http://dx.doi.org/10.5194/hess-18-4913-2014
http://dx.doi.org/10.5194/gmd-7-495-2014
http://dx.doi.org/10.1029/2005WR004369
http://dx.doi.org/10.5194/nhess-18-1919-2018
http://dx.doi.org/10.1007/s10346-017-0809-8
http://dx.doi.org/10.1007/s10346-017-0809-8


Development of a Rainfall-Induced Landslide
Forecast Tool for New Zealand

Brenda Rosser, Chris Massey, Biljana Lukovic, Sally Dellow,
and Matt Hill

Abstract

Landslides kill 2–3 people per annum in New Zealand
and cost the country on average NZ$200–300 million
dollars per annum. The majority of landslides (90%) in
New Zealand are triggered by rainfall and often involve
thousands to tens of thousands of landslides being
triggered by a single event that can extend over areas
up to 20,000 km2. Steep hillslopes (>26°) occupy over
60% of the New Zealand landmass, and much of this
(5%) is classified as highly erodible land at risk of severe
mass-movement erosion. To reduce the risk associated
with landslides it is important to be able to predict where
and when they might occur. To this end we are
developing a landslide forecast tool for the National
GeoHazards Monitoring Centre that will be used to
forecast and warn the public of possible damaging
rainfall-induced landslide events. We used logistic
regression to investigate the influence of landslide
triggering variables on landslide occurrence on a dataset
of 20 recent and historic landslide-triggering rainfall
events. From this we developed relationships to predict
the probable spatial distribution of landslides triggered
from a given forecast rainfall event.

Keywords

Rainfall induced landslide�Forecast tool�NewZealand�
Threshold � Landslide modelling

Introduction

Landslides kill 2–3 people per annum inNewZealand and cost
the country on average NZ$200–300 million dollars per
annum (Page 2015). In New Zealand, landslides triggered by
storm rainfall are the most common type of mass-movement
erosion (Crozier 2005). Steep hillslopes (>26°) occupy over
60% of the New Zealand landmass, and much of this (5%) is
classified as highly erodible land at risk of severe
mass-movement erosion (Dymond et al. 2006).
Rainfall-induced landslides most commonly occur as
multiple-occurrence landslide events, that can cover areas
ranging from a few to several thousand km2, and usually
involve first-time occurrences (Crozier 2005). They are pre-
dominantly small (<1000 m2), rapid, shallow (<2 m deep)
earth or debris slides and flows. Although individually small,
cumulatively they can cause significant damage in a wide-
spread rainfall event (Fig. 1). Regional scale landslide trig-
gering storm events occur somewhere in New Zealand on
average 2–3 times per year (Crozier 2005, 2017).

Landslide occurrence in New Zealand is highly correlated
with rock type. The rock types most susceptible to rainfall
induced landslides are young (Quaternary and Tertiary),
poorly consolidated fine-grained sedimentary rocks or highly
weathered, fractured or sheared older rocks. Land cover also
plays an important role in determining landslide
susceptibility.

In order to reduce the risk posed by landslide hazards to
society, knowledge of when and where landslides occur is
essential. In this paper we present the methodology we have
used to develop a rainfall-induced landslide forecast tool for
New Zealand.
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Methodology

Development of Rainfall Intensity-Duration
Triggering Thresholds

Rainfall intensity-duration thresholds for triggering land-
slides were developed for different physiographic regions of
New Zealand. A database of 1029 landslide triggering
rainfall events was compiled from various sources that
covered the period from 1875 to 2019. The data covered all
regions of New Zealand (Fig. 2), however, some regions had
more landslide data than others which reflects both the
reporting of landslides (or lack of) and the variation in
general landslide susceptibility between different regions
(Glade 1998). For each landslide triggering event, the
location of the landslide or landsliding event (multiple
landslides) was recorded, along with the date and the rainfall
conditions that triggered the landslide. The regions reflect
broad differences in physiographic features/variables that
influence landslide occurrence such as topography, lithology
and meteorology, and generally conform to administrative
boundaries of local or regional government or agencies
responsible for responding to or managing the impact of
storm events (e.g. Civil defence and emergency management
groups in regional councils).

Rainfall intensity-duration thresholds were developed for
each of the regions by fitting a curve of the form:

I ¼ aD�b

where I = rainfall intensity (mm/h) and D = duration (h),
developed by Caine (1980), and secondly, using a proba-
bility approach to find the scale (intercept) a and the shape

(slope) b of the power law curve representing the minimum
and maximum thresholds (Guzzetti et al. 2008). The rainfall
ID curves for all New Zealand are presented in Fig. 3.

The slope of the rainfall ID threshold curve indicates the
relative importance of rainfall intensity versus rainfall dura-
tion for the initiation of shallow soil failures (Guzzetti et al.
2008). A steeper threshold curve, indicates that (short) rain-
fall duration is more significant for landslide generation than
for a less steep curves (Guzzetti et al. 2008). This indicates
that in general, short duration (<24 h) rainfall is an important
control for landslide initiation in New Zealand, however
there is considerable variation between regions. Guzzetti
et al. (2008) attributed differences in the ID thresholds to the
typical meteorological conditions and characteristic rainfall
patterns which trigger shallow landslides in different climatic
regions, as well as to local physiographic characteristics such
as geology, soil types, vegetation and slope morphology that
govern landslide susceptibility.

Fig. 1 Extensive shallow landslides triggered by the 2004 Manawatu
storm (Photo Graham Hancox, GNS Science)

Fig. 2 Regions used in this study and the location of
landslide-triggering rainfall events. The point marker symbolises only
the location of one or more event, not the event rainfall or extent of
landslide damage
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Compilation of Storm Landslide Inventories

Existing storm landslide inventories were compiled for 20
storm events during the period 1938–2019 (Table 1). There
were 16 existing storm datasets, and an additional 4 datasets
compiled for the project (or as part of ongoing Geonet
Landslide responses). The existing landslide datasets inclu-
ded a variety of data types and formats. A new GIS

inventory using the data format outlined by Massey et al.
(2018) was developed for the project and the data converted
to a single consistent format. Both points (representing
the top of the landslide source area) and polygons (repre-
senting the landslide source area) were used in the analy-
sis. The spatial distribution of the datasets is shown in
Fig. 4.

Compilation of Landslide Susceptibility
and Rainfall Data

National GIS datasets representing landslide susceptibility
factors (dominant rock type, slope, local slope height, aspect,
slope curvature, vegetation) were compiled into a GIS
database. The variables that contributed to landslide occur-
rence were determined in a pilot study carried out in
Wellington City, using a database of 16,000 landslides
mapped for 11 storm events over the period 1939–2016.
National GIS datasets were compiled at a grid size of 30 m
by 30 m for the whole country.

Fig. 3 Rainfall intensity-duration threshold curve for all New Zealand.
The upper curve is the power fit to the 90th percentile and represents
the upper ID threshold above which landslides will always occur. The
lower curve is the power fit to the 2nd percentile and represents the
rainfall ID threshold above which landslides will likely occur (as per
Guzzetti et al. 2008)

Table 1 Storm events with mapped landslide distributions used in this
study

Storm, year Storm rainfall

Kaikoura, 1975 561 mm/48 h

Coromandel, 1981 500 mm/72 h

Tasman, 2018 235 mm/18 h

Hawke’s Bay, 2011 646 mm/96 h

Hunua, 2017 200 mm/12 h

Ligar Bay, 2011 674 mm/48 h

Manawatu, 2004 215 mm/52 h

Nelson, 2011 423 mm/48 h

Northland, 2007 400 mm/36 h

Orongorongo, 2002 194 mm/24 h

Orongorongo, 2004 316 mm/72 h

Orongorongo, 2006 157 mm/24 h

Orongorongo, 2008 185 mm/24 h

Paekakariki, 2000 92 mm/72 h

Paekakariki, 2003 119 mm/24 h

Paekakariki, 2005 103 mm/24 h

Paekakariki, 2006 49 mm/24 h

Paekakariki, 2007 40 mm/24 h

Uawa, 2018 252 mm/24 h

West Coast, 2019 1087 mm/48 h

Fig. 4 Spatial distribution of rainfall-induced landslide datasets used
in the analysis
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Rainfall data for each storm event was provided by
NIWA, New Zealand’s National Institute of Water and
Atmospheric research from the National Climate Database
(www.cliflo.niwa.co.nz). Rainfall data included 24 h maxi-
mum and storm rainfall totals derived from the national rain
gauge network. Soil moisture data, representing the mod-
elled soil moisture deficit for the day before each storm event
was provided by NIWA from the Virtual Climate Station
Network (https://niwa.co.nz/climate/our-services/virtual-
climate-stations). The Virtual Climate Station Network
estimates climatic parameters, including soil moisture, on a
regular (*5 km) grid covering the whole of New Zealand.
The estimates are produced every day, based on the spatial
interpolation of actual data observations made at climate
stations located around the country.

Data from each of the landslide susceptibility and rainfall
GIS layers was extracted for each landslide in the storm
landslide inventory (n = *300,000). Each landslide point
therefore had its own landslide susceptibility factors (dom-
inant rock type, slope, local slope height, aspect, vegetation)
and triggering conditions (rainfall, soil moisture) associated
with it.

Logistic Regression Modelling

We used the mapped landslide distributions from the 20
storms to explore the relationships between landslide
occurrence and the variables that may control its occurrence.
The variables included the landslide triggering variables
(rainfall, soil moisture) and landslide susceptibility variables
(dominant rock type, slope, local slope relief, aspect, vege-
tation and anthropogenic modification). The variables that
contribute to landslide occurrence must have a physical
influence on landslide occurrence and contribute statistically
to the fit of the model (discussed below).

We used logistic regression to investigate the influence
that the triggering and susceptibility variables have on the
spatial distribution of 11,000 rainfall-induced landslides
attributed to 11 storm events in Wellington (Massey et al.
2019). The results indicated that the variables, which had the
most influence of predicting landslide susceptibility, in rank
order were: 24-hour rain; slope angle; slope aspect; local
slope relief; land cover (vegetation); soil moisture; and
material type. The model developed for Wellington was
adapted for the entire country by including landslides from
other storms (Fig. 4) along with the variables listed previ-
ously as the training data sets. The revised
model-coefficients allow us to forecast landslide probability
in each 32 � 32 m cell (covering the whole country) for a
given 24 h rainfall and soil moisture (e.g., Fig. 5).

Rainfall-Induced Landslide Forecast Tool
Development

Logistic regression model/s were converted to a forecast tool
by incorporation of forecast and actual rainfall amounts and
intensities supplied by MetService, New Zealand’s national
weather authority. The application of the Rainfall-induced
Landslide (RIL) forecast tool requires two sets of data;
(a) static data comprising the landslide susceptibility vari-
ables and the regional rainfall triggering thresholds and
(b) dynamic event data (rainfall and soil moisture). Initially
the RIL tool will run with forecast rainfall data at 72, 48, and
24 h prior to landfall, if forecast rainfall exceeds triggering
thresholds, then actual rainfall data from rain radar will be
used, complimented by data from the rain gauge network,
and accumulated on an hourly basis. The RIL forecast tool
will also be applied if the actual rainfall amounts during a
storm event exceed rainfall triggering thresholds.

Fig. 5 Probability of a landslide occurring at a given location in
Wellington if subjected to 24-hour rain amounts of 100-year return
period
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Conclusions

A rainfall-induced landslide forecast tool has been devel-
oped for New Zealand. Logistic regression modelling was
used to determine the influence that landslide triggering and
susceptibility variables had on a dataset of landslides initi-
ated by 20 storm events across the country. The relationships
developed by logistic regression modelling were applied at
the national scale using national landslide susceptibility GIS
datasets. The forecast tool will be run when regional rainfall
ID thresholds for landslide initiation are exceeded. When
combined with forecast rainfall amounts, the RIL forecast
model can predict the probability of landslide occurrence,
thus the spatial distribution of landslides for given forecast
rainfall amounts. The RIL forecast tool will be used by the
National GeoHazards Monitoring Centre to forecast and
warn the public of possible damaging rainfall-induced
landslide events.
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Presenting Some Successful Cases
of Regional Landslides Early Warning
Systems in China

Qiang Xu, Dalei Peng, Xuanmei Fan, Xing Zhu, and Chaoyang He

Abstract

The early warning of landslides is crucial for risk
management and reduction. However, it is challenging
due to the complex nature of landslide behaviours and
failure mechanisms. Generally, landslides undergo a
certain period of evolution from deformation to failure,
and own obvious three-stage deformation phases of creep
slope failure. Most of landslides own obvious sudden
characteristics, such as rockslide, avalanche, and loess
flowslide, which are object of this study. In this paper, an
early warning systems for regional landslides and a
comprehensive warning model are established, taking into
account deformation rate threshold and the improved
tangent angle as the early warning parameters.
A four-level early warning criterion is proposed. Once
the early warning parameters exceeded default thresholds,
relevant local authorities and scientists could immediately
receive the warning information released by the 3D
WebGIS-based platform. It is the 11 times our early
warning system successfully forecasted landslides in four
different regions since its implementation in 2017. Here,
we present three typical cases of successful early warning
from these three different regions and timely evacuation

in advance. It could take a reference and applicable for
other cases globally.

Keywords

Slope monitoring � Early warning system � Real-time �
Successful early warning

Introduction

In many countries and areas, landslide is considered as one
of the most severe natural hazard, which causes huge
socioeconomic losses, especially in mountainous areas (Zaki
et al. 2014; Fan et al. 2019a). The monitoring and early
warning of landslides are crucial for risk management and
the mitigation of their effects and the reduction of loss of
human lives and assets (Fan et al. 2019b). The monitoring of
landslides is a powerful tool for understanding kinematic
aspects of mass movements and disruptive processes. Early
warning should be implemented before a catastrophic event
arrive, to allow individuals to take early action and to avoid a
hazard turning into a human disaster (Sassa et al. 2009).

Prediction of slopes failure is a global challenge for
geoscientists due to the complex nature of landslide failure
mechanisms (Intrieri et al. 2019). To overcome this chal-
lenge, we have monitored the displacement of more than
hundreds of multiple types of landslides in Western China.
Based on these monitoring data from a large number of
landslides, we found that landslides undergo a certain period
of evolution from deformation to failure, and own obvious
three-stage deformation phases of creep slope failure, such
as initial deformation, constant deformation and accelerated
deformation (Saito and Uezawa 1961; Xu et al. 2011).
Displacement deformation of landslides will be obviously
arisen when the depromation phase enters the accelerated
deformation (Fig. 1a). (Fan et al. 2019b) (Fig. 1a). A defor-
mation-time curve could describe the whole process of slope
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failure. The curve is developed based on the statistical
analysis of failure characteristics of landslides and on many
displacement–time monitoring data (Fig. 1b) (Gance et al.
2014).

Movement patterns in different landslide have been
extensively documented (Varnes 1978; Petley and Allison
1997), which could be divided into three distinct patterns
being evident: stable, gradual failure, and sudden failure
(Fig. 1b). (1) Stable: some landslides may undergo long
periods of creep and movement will finally keep steady
stable. (2) Gradual failure: there may be long-term dis-
placement at low strain rates, frequently termed ‘creep’.
Creep may vary in rate on a seasonal basis but movement will
rarely cease altogether, representing a gradual failure. And
there are many successful warnings cases for gradual failure
(Casagli et al. 2010). (3) Sudden failure: there are cases of
short-term movement at very high rates of displacement

(Carlà et al. 2017). With this know-how, a real-time early
warning system based on the new artificial intelligence and
data transmission technologies was developed by State Key
Laboratory of Geohazard Prevention and Geoenvironment
Protection (SKLGP). This system has successfully predicted
11 landslides since 2017 and saved thousands of lives in
China (Fig. 2 and Table 1). In this study, the application of
our self-developed landslide early warning systems (LEWS)
to Baige rockslide-avalanche, Longjing rockslide in Xingyi,
and loess flowslide at Heifangtai is described, covering
monitoring strategies and early warning model.

In order to solve the key problem of “when a landslide will
occur”, main procedures have been undergone in this study:
(1) the location and size of potential landslides were inves-
tigated based on the effective integration of
Space-Sky-Ground three-dimension surveys (Xu et al. 2019).
(2) a field study site was carried out and the characteristics of

Fig. 1 Deformation characteristics of landslides. a Successive different
landslide cumulative displacement-time curves (The difference of these
landslides lies that some landslides have longer deformation period
before failure (years, months, and days) than some others (hours,
minutes)); b Movement patterns of slope displacement-time curve

Fig. 2 Map showing locations in China where SKLGP’s early warning
system successfully predicted the eleven landslides in four regions (for
details see Table 1)
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sudden-type landslides were summarized. (3) a monitoring
method with self-adaptive adjusting sampling frequency is
developed to monitor potential landslides. (4) a series of
landslide warning thresholds with the improved tangent angle
model and the deformation rate were proposed using the data
processing method.

These successful experiences provide an impressive
example of how a LEWS can help for preventing and mit-
igating landslide risks. We believe the practical implemen-
tations and the successful history of our LEWS will surely
benefit other countries as well and improve global landslide
resiliency.

Monitoring and Warning Methods Proposed
in this Study

Monitoring Strategy

Displacement and other displacement-derived quantities are
the main monitored parameters, which widely used for the
early warning of landslides all over the world (Fan et al.
2019b). The cumulative displacement obtained from
improved crack gauges present the most continuous and
reliable data during the accelerated deformation stage (Xu
et al. 2020). With the advantage of a self-adaptive data
acquisition technique developed by (SKLGP) (Zhu et al.
2017), the crack gauge can automatically adjust the sampling
frequency with respect to the displacement rate velocity
(Fig. 3) (Fan et al. 2019b).

Multiple Criteria Warning Model

Ageneral and quantitative criterion for LEWSwas proposed by
Xu et al. (2011), which described the improved tangential angle
(a), referring to the deformation rate of the displacement-time
curve at a given time (Eq. 1). This angle was used to specify
different alert levels (Fan et al. 2019b).

a ¼ arctan
vi
v0

ð1Þ

where a is improved tangential angle; mi is displacement
rates; m0 estimates of the creep rate at constant deformation
state.

Catastrophic landslides often occur suddenly without
any noticeable precursors, and are of a very short duration
after entering the accelerated deformation and the speed is
relatively fast in the imminent sliding stage (Qi et al.
2018). The early warning and prediction of the occurrence
of landslides may be misjudged based on the traditional
improved tangent angle method as the early warning cri-
terion. Due to this reason, multiple alert thresholds are
established in our LEWS. On the basis of the improved
tangential angle criterion, the slope sudden failure also
consider whether the deformation rate is larger than a
critical rate value (V1 < V2 < V3), the incremental rate
(DV) at the three deformation stages of landslide (Fan et al.
2019b). The comprehensive warning criteria, taking into
account three thresholds of improved tangential angle, three
thresholds of deformation rate, and deformation rate
increment are shown in Fig. 4.

Table 1 Successful and detailed
landslides predictions by the
LEWS (Fan et al. 2019b; Xu et al.
2020)

Landslide ID Lead time (h) Occurrence of landslide Region

Chenjia-1 1.02 13/05/2017 Heifangtai

Chenjia-2 2.03 04/03/2019 Heifangtai

Dangchuan-1 11.17 01/10/2017 Heifangtai

Dangchuan-2 0.68 26/03/2019 Heifangtai

Dangchuan-3 0.30 19/04/2019 Heifangtai

Dangchuan-4 32.15 05/10/2019 Heifangtai

Baige-1 24 03/11/2018 Baige

Baige-2 0.5 11/11/2018 Baige

Baige-3 0.5 21/11/2018 Baige

XY-1 0.88 17/02/2019 Xingyi

YMD-1 0.33 02/05/2019 Zunyi
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Fig. 3 Components of the
improved self-adaptive crack
gauge and monitoring data.
a Intelligent crack gauge
monitoring station; b Integrated
intelligent landslide crack gauge;
c Schematic diagram of
self-adaptive acquisition
frequency

Fig. 4 Outline of the four-level
comprehensive early warning
criterion based on velocity
threshold and tangential angle
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Application of the Method

Since the proposed the comprehensive early warning model
has been established, we were able to successfully warn 11
landslides spread across China (Fig. 2 and Table 1). In this
document, we present the experiences acquired in the
monitoring and warning of three landslide cases named
Baige landslide, loess flowslide and Xingyi rockslide. The
early warning of these landslides prevented casualties and
property losses, and guarantied the safety of more than 1000
people’s lives and property, and achieved very good eco-
nomic and social benefits.

Case 1: Baige Rockslide-Avalanche

In the early morning of October 11, 2018, a large
rockslide-avalanche occurred at the border between Sichuan
Province and Tibet. The landslide was located on the west
bank of the Jinsha River near Baige Village, Jiangda County,
Tibet. The landslide formed a dam with a water storage
capacity of about 290 million m3. It was fully drained by
October 13 with the completion of partial discharge, and the
danger was relieved. Then, on 3 November 2018, the land-
slide reactivated again in the form of a large rockslide that
dammed the river for a second time and formed a new barrier
lake with a volume of 5.24 � 108 m3. These two landslides

and river blocking events have aroused widespread social
concern. After the October 11, 2018 event, 16 global navi-
gation satellite system (GNSS) receivers, 16 crack gauges,
and 1 rainfall gauge were placed on tensile cracks behind the
source area. Sudden increases were observed three times,
and they are consistent with the increase in recorded dis-
placement time histories. First increase occurred at 18:00
local time on November 3, 2018, during the slope failure.
The other two were observed at 8:00 on 11 November 2018
and at 11:00 on 21 November 2018. The early warning
system performed remarkably well as predictor of the slope
failure on November 3 is presented in this paper. At 21:00
on 3 November 2018, the deformation rate was 60 mm/d
and the maximum tangent angle was 85°. The early warning
system was able to predict the second large-scale slope
failure 24 h in advance, along with minor rock falls during
the spillway construction (Fan et al. 2019a). (Fig. 5).

Case 2: Heifangtai Loess Flowslide

Heifangtai is located on the fourth terrace of the Yellow
River, in the semi-arid area of the Loess Plateau and at the
confluence of Huangshui River and the Yellow River. A to-
tal of 77 landslides were identified on the Heifangtai terrace
according to image taken on 18 January 2015 (Fig. 2). One
of loess landslide named Dangchuan-1 loess flowslide is

Fig. 5 Monitoring network,
observed displacements and
successful implementations of
early warning for Baige
rockslide-avalanche.
a Orthographic image of
post-sliding (taken on 5
November 2018); b Location map
of installed monitoring
instruments (GNSS gauge
(GP) refers to the GNSS
displacement sensors and CG
refers to crack gauges);
c Displacement curve before the
landslide event on 3 November
2018 (using crack gauge CG02)
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located on the southwest of the Heifangtai terrace. The
source area of the landslide is 300 m in length and 20 m in
width. Volume of the runout materials is about 3.4 � 105

m3. The landslide has begun to deform and the rate of
deformation has gradually increased since the end of August
2017. At 23:41 on 30 September 2017, the deformation rate
was 99.45 mm/day and the maximum tangent angle was
88.27°. A successful prediction of the flowslide was
achieved 8 h before the occurrence (Xu et al. 2020) (Fig. 6).

Case 3: Xingyi Rockslide

On 17 February 2019, a large rockslide occurred in
Longjing village, Xingyi city, Guizhou Province. The
rockslide was initially triggered in 2014 due to the removal
of rock mass near the slope toe for road construction. Since
then, the rockslide had become a potential threat to the local
residents, pedestrians, and traffic. The deployment of the
crack sensors and its distribution on the site are illustrated in
Fig. 7a. To avert human and economic losses, emergency
mitigation measures were implemented and a self-developed
real-time LEWS. At 5 a.m. on 17 February 2019, the
deformation rate was of about 251 mm/day, the cumulative
displacement was of 829.2 mm, and the tangent angle was
more than 85°. The real-time geological disaster monitoring
and early warning system automatically send out the red
early warning level to scientists, local government and

residents, and then evacuate the relevant personnel by local
government and residents in the site. A successful prediction
of the rockslide was achieved 53 min before the occurrence
on 17 February 2019. Prompt action taken by scientists and
local authorities averted human and economic losses com-
pletely (Fig. 7).

Conclusions

Early warning systems are valuable tools for risk reduction,
and they empower the community by providing timely alerts
spanning hours, thus saving invaluable lives. Our
self-developed LEWS helped to predict and mitigate eleven
landslides, including two new landslides and nine reactivation
landslide, eventually achieving zero casualties or injuries and
almost no property losses. These cases of successful moni-
toring, early warning, and prediction and mitigation of land-
slides are very exceptional worldwide due to their complex
nature. In this study, we presented three successful cases of
early warning for disastrous landslides in China. The
improved data monitoring and processing method were
introduced. A comprehensive early warning model was
established to realize the comprehensive dynamic and
real-time early warning of landslide, taking into account the
deformation rate threshold and improved tangent angle as the
early warning parameters. Four alert levels were proposed on
the basis of analysing the characteristics of displacement time

Fig. 6 Monitoring network,
observed displacements and
successful implementations of the
loess flowslide Dangchuan-1 at
Heifangtai. a Orthophoto image
and monitoring system layout
before landslide; b Orthophoto
image and monitoring system
layout after landslide; c Elevation
change from the pre-slide to the
post-slide; d Complete
monitoring curve of cumulative
displacement-time, deformation
rate, increment of deformation
rate and tangent angle curve
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series. The warning time in advance was from 0.3 h to 32 h.
Our study also contributed to the compilation of a compre-
hensive database of displacement time histories of landslides
that will be helpful for predicting similar landslides in the
future.
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Towards an Early Warning System
for Instable Slopes in Georgia: The Large
Tskneti-Akhaldaba-Landslide

Klaus-Peter Keilig, Markus Bauer, Peter Neumann, and Kurosch Thuro

Abstract

In June 2015 a flash flood caused by a failure of a natural
dam originated by a hazardous debris flow in the Vere
valley hit Georgias capital Tbilisi. 23 persons lost their
lives and property damages were USD 24 mio. Along
with the planning of the reconstruction of two destroyed
roads an early warning system shall be developed an
implemented for the safe use of the new roads. Therefore,
some detailed geological investigations were carried out
or are still in progress. This includes detailed
engineering-geological mapping, hazard and risk map-
ping, geophysical measurements as well as planning and
execution of exploration boreholes. Furthermore, a setup
of a multi-sensor network was designed and is already
installed in large parts. First data is providing some
evidence of geological, hydrogeological and geotechnical
setting in the Tskneti region as well as the occurring
deformation. Further monitoring combined with numer-
ical modelling will ultimately lead to the implementation
of an early warning system, which is the main goal of this
research. This paper tries to give an idea of the general
geomorphological and geological setting as well as the
occurring processes. It shows, the setup of the monitoring
system and how it already delivers safety relevant data.

Keywords

Early warning system � Rock slide � Geomorphology �
Monitoring network

Introduction

On the night of 13–14 June 2015 a very large landslide of
reportedly 1 mio m3 occurred in the Vere valley west of
Georgias capital Tbilisi (Gaprindashvili et al. 2016). The
landslide mass temporarily blocked the Vere river and a flash
flood impacted in Tbilisi after failing of the dam (UNDP
2015a; Gaprindashvili et al. 2016). More than 700 citizens
were directly affected, direct physical damage was estimated
to be at least USD 24 mio and most tragically it caused 23
fatalities (UNDP 2015a). The catchment area is a region of
high landslide susceptibility with a range of active and
expectable processes with differing intensities and volumes.
The event of 2015 must be seen as megaevent with a
recurrence period of several 1000 s of years or even more.
However, the landslide has created even more unstable
conditions and weakened an already semi-stable system. As
conclusion, the likelihood for medium to large subsequent
events has risen significantly.

As part of the reconstruction of two damaged roads in the
landslide area an early warning system (EWS) is to be
developed based on detailed geological and geotechnical
investigations. While some EWS for dams, mainly of
hydropower plants, already exist in the country (e.g. CAE S.
p.A. 2018) and the UNDP is currently developing a
climate-based regional multi-hazard EWS for the whole
country (UNDP 2015b), this is the first local EWS in
development for a single landslide in Georgia.

A joint-venture of the local construction company Cau-
casus Road Projects (CRP), the Austrian manufacturer of
retention structures Trumer Schutzbauten and the
geological-geotechnical consultants of Baugeologisches
Büro Bauer (Munich, Germany) is working on this project
and developing the EWS in cooperation with Technical
University of Munich, Engineering Geology.

Being located between the two main mountain ranges of
the Caucasus, the Greater Caucasus in the north and the
Lesser Caucasus in the south, about 65% of Georgias
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landmass is mountainous. Therefore, it is not surprising that
the country has a broad landslide inventory with all major
landslide processes occurring. Yet, a concept for landslide
mitigation is only just developing in the country, partly as a
response to the 2015 disaster (UNDP 2015b). Even though
the potential for landslide processes becomes clear just by
looking at the country’s geomorphology the first ever rock
fall protection fence in Georgia has been installed as part of
this project.

The goal of the research presented in this article is to
develop and implement a local early warning system for the
mountain range west of Tskneti. It shall provide the highest
safety possible for the newly reconstructed roads.

Study Area

Geological Setting

The large landslide is located about 10 km west of Tbilisi
between Tskneti and Akhaldaba on the northern edge of the
so-called Lesser Caucasus (Fig. 1). The Lesser Caucasus is
part of the Alpine-Himalayan mountain belt and is charac-
terized by complex thrust tectonics and strong volcanic
activity (Sosson et al. 2010; Danelian et al. 2011). After
Sosson et al. (2010) and Danelian et al. (2011) it can be
divided into four major units:

The South Armenian Block (1) in the south of the
mountain range is a remnant of the former Gondwana con-
tinent and is known for its Middle to Upper Paleozoic sed-
imentary rocks. The active Eurasian continental margin (2) is
mainly characterized by Jurassic and Cretaceous volcanic
deposits and follows to the northeast. In between lies the
ophiolite complex of the Sevan-Akera zone (3), which
reflects the area of the subduction zone during the conti-
nental collision. In addition, some 1,000 m thick molasse
deposits (4) can be found. They were formed by the erosion
of the young mountain range from the Paleocene to the
Miocene and they are accompanied by a variety of volcanic
deposits (Adamia et al. 2010; Sosson et al. 2010).

Two sedimentary rock formations of tertiary age occur in
the study area, which belong to the Molasse deposits
(4) (Gudjabidze 2003; Sosson et al. 2010). On the one hand,
very thin-bedded alternating Oligocene sandstones and
claystones appear in the lower part of the slope. The portion
of sandstones within this formation increases from the bot-
tom to the top (Gaprindashvili et al. 2016). On the other
hand, there are flyschoid Eocene alternating deposits of
thick-bedded to massive conglomerates and sandstones with
very thin-bedded clay- and siltstones (Gaprindashvili et al.

2016). Both formations are, partly strongly, folded and
tectonically stressed. In general, the rock layers are dipping
very unfavorably with about 25–50° parallel to the slope.
See Fig. 3 for an impression of the thick bedded formation.

The upper scarp of the large landslide is located at an
altitude of about 1410 m.a.s.l. directly at the top of the
mountain range west of Tskneti, which forms the southern
valley flank of the Vere valley (see also Fig. 2). The average
slope angle is 29° and therefore very steep between the main
scarp (1410 m) and the Akhaldaba road (910 m). Below the
Akhaldaba road, the terrain is significantly shallower at an
average of 6.5° until the Vere river.

The Tskneti-Akhaldaba Landslide

The landslide leading to the blockage of the Vere river
occurred between Tskneti and Akhaldaba south of the Vere
river west of Tbilisi (Fig. 1) and was a highly complex
process of different types of landslides, such as rock slides,
debris slides, earth slides and debris flows (UNDP 2015a;
Gaprindashvili et al. 2016). In the landslide area two
important roads were completely destroyed by rock slide
(upper Samadlo road) and debris flow (lower Akhaldaba
road), isolating Akhaldaba from Tskneti, which is the vil-
lages main source for supplies, water and food (UNDP
2015a; Gaprindashvili et al. 2016).

Both landslide and flash flood were caused by excep-
tionally long and heavy rainfalls in the previous ten days to
the event resulting in an already high discharge of the Vere
river. After the landslide mass temporarily blocking the river
and ultimately causing the flash flood after failing of the dam
peak discharge during the event has been estimated to be
468 m3/s (UNDP 2015a; Gaprindashvili et al. 2016). This
almost doubles the discharge during the catastrophic flood in
1960 (259 m3/s discharge; UNDP 2015a). Following a flood
recorded on 4 June 2015 (155 m3/s discharge) this were the
highest consecutive floods ever recorded in the Vere river
(UNDP 2015a). Vere river flows into Mtkvari river in
Tbilisi.

Field Investigation

The development and implementation of an early warning
system is an interdisciplinary and complex task. For a suc-
cessful execution, extensive investigations are necessary in
order to finally obtain a coherent geological and geotechnical
model of the slope and to install the appropriate monitoring
devices at the right locations.
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Fig. 1 Geographical overview of the study site
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Fig. 2 Overview on the sensor network installed in the upper part of the landslide area. Extent of Fig. 3 is indicated

Fig. 3 Large cliff in the upper part of the landslide that is being monitored with an inclinometer
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Geological-Geotechnical Investigation

The area of the large landslide, in particular the upper scarp
area, as well as the closer vicinity have already been mapped
in large parts from a geological-geotechnical point of view.
In addition to the spatial distribution and the geotechnical
properties of the rocks, geomorphological features of slope
movements were recorded in order to draw conclusions
about the different movement processes. The mapping has
been carried out on a scale of 1:1.000 and forms the basis for
the development of a geological model and the construction
of a sensor network. It will also provide important infor-
mation for further investigations.

In addition to the exploratory drillings along the roads,
which are to be rebuilt as part of the construction work,
further drillings were carried out on the basis of the first
mapping results. The aim was, on one hand, geological
exploration in other areas of the work area and, on the other
hand, to install monitoring equipment into the boreholes.

Representative rock samples were taken from both
boreholes and the surface to determine geotechnical
parameters such as uniaxial compressive strength, tensile
strength and durability in the laboratory.

Additionally, a very detailed characterization of discon-
tinuities based on ISRM (1978) was carried out. This was
done with special attention to spacing, persistence and
roughness of sets of different discontinuities in order to
create statistically relevant input data for future numerical
stability calculations.

Optical Investigations

Optical methods are used in order to observe the development
of the slope. UAV surveys are used to create digital elevation
models (DEMs) by the photogrammetric reconstruction of
the terrain surface. This is done using the commonly used
“structure from motion—multi-view stereo” (SfM MVS)
workflow (Carrivick et al 2016). Multiple DEMs can be
compared following the approach of Wheaton et al. (2010) in
order to detect areas with geomorphic changes.

Terrestrial laser scanning (TLS) is used to monitor par-
ticularly susceptible areas such as the 12 m high reinforced
earth construction (as seen in Fig. 2) or the main cliff in the
upper part of the study site (Fig. 3).

Monitoring Network

After the geological-geotechnical mapping was largely
completed, numerous monitoring devices were installed in
the project area in the summer of 2018. An overview of the
installed sensors and monitoring location is shown in Fig. 2.

Ground Deformation

In order to observe movements in the unstable rock mass or
between larger blocks, several crackmeters were installed in
the project area. With these devices the aperture of discon-
tinuities can be measured. In order to keep the costs for the
instrumentation as low as possible, a very simple construc-
tion was chosen. This construction consists of two common
rock bolts, which are installed on both sides of a discontinuity
or crack. The distance between these bolts can be manually
measured with a caliper. If the aperture of a discontinuity
changes, so does the distance between the screws. Advan-
tages of this easy to apply method are the extremely low costs
and the robustness against damage. Additionally, a total of
five automatic vibrating wire crackmeters were installed in
particularly dangerous areas which were also very difficult to
access. Just as the simple rock bolt construction, this moni-
toring device is fixed on both sides of a discontinuity and by
detecting frequency changes of the vibrating wire, deforma-
tions can be detected at sub-mm range.

Furthermore, several monitoring locations with
tape-extensometers were equipped to detect deformations at
longer distances e.g. between large blocks and/or trees and a
main slide scarp. This also represents a cost-effective and
simple device, but subsequent manual readings are necessary.
The measurement accuracy also is in the sub-mm range and
can provide important insights into the movement patterns.

At the moment, preparations are under way for the
installation of reflectors, which are to be regularly surveyed
geodetically with a tachymeter.

Deep Deformation

Two boreholes (42 m and 50 m) above the main scarp of the
landslide were equipped in order to perform inclinometer
measurements. This allows to detect and quantify movements
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perpendicular to the borehole axis. In order to be able to carry
out continuous deformation monitoring in case of movement
acceleration without the high investment costs of a chain
inclinometer, a coaxial cable was installed additionally in the
boreholes. Time domain reflectometry (TDR) uses a trans-
ceiver to transmit electrical pulses into the cable and measure
the reflection. If the cable is kinked by shearing movement,
this can be detected in the reflected signal (Singer et al. 2006,
2009). In addition to the continuous measurement, another
advantage is that also with large deformations, measurements
can be made even if the inclinometer tube has already been
squeezed and the inclinometer is not able to be lowered in the
borehole (Singer et al. 2006, 2009; Thuro et al. 2010).

Hydrological Measurements

In five boreholes with 30–50 m depth, a multi-sensor chain
of five piezometers was installed to measure water pressure
at different elevations. The alternation of impermeable clay
layers with more permeable sandstones suggests that
non-correspondence aquifers exist at different depths. On the
one hand, this hypothesis should be checked with the chosen
installation. On the other hand, possible connections
between pore water pressures and deformation measure-
ments can be recognized.

Meteorological Measurements

In order to be able to correlate measured deformations and
pore water pressures with intensity, duration and magnitude
of precipitation events, a meteorological station was installed
in the project area. This station measures precipitation,
temperatures and humidity. It is equipped with a solar cell
and thus self-contained.

First Results and Outlook

First measurement results show active movements in mul-
tiple sensors. Figure 4 shows parts of the inclinometer
measurements monitoring the large cliff at the main scarp
(see Fig. 3). A very defined translational shear movement in
about 30 m depth can be detected and quantified. The results
prove the ongoing deformation of the slope and provide vital
information about the activity, velocity and intensity of the
rock slide at the cliff. The results will also play an important
role for future numerical modelling by indication the depth
and activity of the movement.

Tape extensometer measurements have detected a high
acceleration of a shallow slide directly next to the road west

of the main landslide. Based on this data the slide was sta-
bilized by a simple wall construction and damage to the road
was avoided successfully. Monitoring of this slide continues
and movement rates have decreased dramatically after the
stabilization.

Fig. 4 Exemplary inclinometer measurements below the main cliff
shown in Fig. 3 near the main scarp at the top
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Overall, the installed monitoring system already proves to
be very valuable for the safety of the road and will continue
to provide important data for the completion of the EWS.

In the further progression of the project the data acqui-
sition will be optimized with improved radio antennas and
updated power supply. Ultimately, data collection and
analysis should be carried out simultaneously through an
integrated database system, as developed in the alpEWAS
project (Thuro et al. 2009, 2010).

To develop a true local EWS, thresholds must be defined
that are able to trigger the closure of the affected roads. Such
thresholds can be large amounts of precipitation, critical pore
water pressures or high deformation rates. To avoid false
alarms, a great deal of effort must be made in deriving and
evaluating these alarm thresholds correctly. Although there
are many different ways in which such thresholds can be
determined, the determination of such a value is still a
challenge and a constant adaptation to new information is
necessary. In most cases, time series analysis and/or
numerical modeling are used to identify the thresholds
(Nadim et al. 2009; Festl and Thuro 2016). In this project we
aim for a multi-level threshold consisting of a threshold for
precipitation, pore water pressure and deformation rate. In
theory, significant precipitation causes a rising water table
and therefore rising pore water pressure, which can result in
higher deformation rates. Between each step is a certain time
lag, which provides the possibility to both review the data
and have a timely and early warning in its true meaning.

The most important task for the near future will be to
complement and refine the geologicalmodel. These include e.g.
the ongoing laboratory tests of geotechnical parameters, further
drilling and their equipment to new measurement locations or
the implementation and evaluation of planned geophysical
measurements like ERT electrical resistivity tomography.

In addition, an application process is currently underway
with Georgian colleagues for the promotion of a project
aimed at developing a regional EWS for the whole Vere
catchment.
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An EWS of Landslide and Slope Failure
by MEMS Tilting Sensor Array

Lin Wang, Makoto Fukuhara, Taro Uchimura, Gallage Chaminda,
and Tharindu Abeykoon

Abstract

A low-cost and simple method of monitoring
rainfall-induced landslides is proposed, with the intention
of developing an early-warning system (Uchimura et al.
2015). Surface tilt angles of a slope are monitored using
this method, which incorporates a Micro Electro Mechan-
ical Systems (MEMS) tilt sensor and a volumetric water
content sensor. In several case studies, the system
detected distinct tilt behaviour in the slope in pre-failure
stages. Based on these behaviours and a conservative
approach, it is proposed that a precaution for slope failure
be issued at a tilting rate of 0.01°/h, and warning of slope
failure issued at a rate of 0.1°/h. The development of this
system can occur at a significantly reduced cost compared
with current and comparable monitoring methods, which
such as extensometer or borehole inclinometers. Increas-
ing the number of installed sensors, thus increasing the
accuracy of the early warning thresholds and predictions,
so that given the cost reduction, slopes can be monitored
at many points, resulting in detailed observation of slope
behaviours, but the potentially large number of monitor-
ing points for each slope does induce a financial
restriction. Therefore, the selection of sensor positions

needs to be carefully considered for an effective early
warning system. These case studies will henceforth be
helpful in determining the installation of the sensor array
of early warning system.

Keywords

Landslide � Slope failure � Early warning � MEMS
tilting sensor

Introduction

There is a long history of prevention and mitigation of
rainfall and/or scouring-induced landslides. Mechanical
countermeasures to prevent slope failure have been widely
used, including retaining walls and ground anchors. How-
ever, these methods can be expensive and are not always
realistically applicable for all slopes of varying scale and
potential risk factors. Therefore, careful monitoring of slope
behaviour and consequent early warning of failure provides a
reasonable and slope-specific alternative.

In this paper, an early warning system for slope failure is
proposed and its development is described (Fig. 1) (Uchi-
mura et al. 2015). The system consists of a minimum
number of low-cost sensors strategically placed on a slope,
with monitoring data that are collected being transmitted via
a wireless network. It is anticipated that this low-cost and
simple system will provide at risk residents with access to
accurate and timely precautions or warnings of slope failure.

Uchimura et al. (2015) summarized case studies of slope
tilting rates during pre-failure stages obtained on several
natural slope sites under natural or artificial heavy rainfall.
Figure 2 presents an example of the typical monitoring data
obtained, in which the tilting rate (X-axis) can be related
with the time elapsed until slope failure or slope stabilization
(Y-axis). Figure 3 shows the definition of the tilting rate and
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the time in Fig. 2, in which Ti is the time until failure or
stabilization, and Ri is tilting rate.

In cases where the slope failed at the position of the tilt
sensor, the elapsed time is measured from the time when
tilting accelerated to the time of failure. In cases where the
slope did not fail but instead stabilized, the time is measured
from when tilting decelerated to the time when the slope
stabilized.

According to Fig. 2, the order of tilting rate observed
with slope deformation varied widely, from 0.0001 to 10°/h
depending on a number of factors. The tilting rate tends to
increase towards failure with a relatively short time until
failure, when a higher tilting rate is observed. The observed
tilting rate was >0.01°/h for all the cases in which the slope
failed or nearly h was observed before failure for a tilting
rate of 0.1°/h.

Fig. 1 Schematic illustration of
MEMS tiltmeter sensor for early
warning

Fig. 2 Graphic illustration of the
tilting rate as a function of time
before slope failure (or
stabilization) for several case
studies
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Based on the past case studies, it is proposed that when the
tilting rate exceeds 0.1°/h a warning of slope failure should be
issued, and a precaution issued at a tilting rate of 0.01°/h,
taking safety into account. Additionally, this paper explores
efforts by the current authors to improve the applicability of
the monitoring and early warning system. The miniature tilt
sensors are modified from that currently available to be more
cost-effective, smaller in size and weight, and simpler to
install, maintain and operate. As a result, it is possible to
install a larger number of sensors on a given slope, thereby
providing greater coverage and higher data density.

Figure 4 illustrates the typical arrangement of two types
of proposed sensors, with data transfer pathways also shown.
Despite the advantages described above, the new type
miniature tilt sensors have relatively short radio transmission
distances (*30 m in non-ideal conditions). They are
arranged densely on high-risk areas of a slope, with one
conventional tilt sensor unit collecting all the data of each
area. The data are transmitted over greater distances (300–
600 m), and uploaded to an internet server. If the data

transfer is interrupted for other reasons, the data is reac-
quired and an alert is issued when the signal is restored.

Field Validation in Japan and Australia

A Case of Detection of Rain Induced Landslides
in Critical Slopes the Lake Baroon Catchment,
Maleny Plateau, Brisbane, Australia

This case study investigated the applicability of real-time
monitoring and wireless data transmission in predicting
rain-induced slope instability in critical slopes. The ground
inclinometers equipped with MEMS tilt sensors, volumetric
water content sensors, a rain gauge and a wireless data
transmission unit (DTU) for real-time slope monitoring. The
study employed a wide range of data collected in the period
from 10th May 2016 to now, this year of 2020, for the
prediction of the slope failure under rainfall infiltration.

Study area is Lake Baroon catchment, Maleny (Fig. 5) is
located approximately 100 km north of Brisbane (26.76 0S
152.85 0E). Mapleton—Maleny plateau, which contains
Lake Baroon catchment have been documented and dis-
cussed since the mid-1950s as a highly susceptible area for
rainfall-induced slope failure. Slope failure and mass
movement of sediment into the waterways within the Lake
Baroon catchment are recognized as a significant risk to
water quality and the water storage capacity of Lake Baroon,
which is used to supply water to South East Queensland.
Approximately 170 mass movement landforms have been
identified within the Baroon catchment, and the study area is
one such high-risk slope. This landslide site hosted a volu-
minous, single-failure rotational landslide in 2008 following
heavy rainfall (Abeykoon et al. 2018).

Fig. 3 Definition of the tilting rate and the durations

Fig. 4 An early warning system
of slope failure by multi-point tilt
and volumetric water content
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Fig. 5 a Locations of the sensors. X denotes the local downslope direction, whereas Y denotes the direction perpendicular to downslope.
b Cross-section from the above GPR profile, showing the position of the white clay/bedrock reflector (dashed line)
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Soil Properties

The soil extracted from the monitoring site was subjected to
laboratory tests to determine the required soil properties for
the numerical analysis. Table 1 summarises the results of the
laboratory tests conducted to determine the index properties
of the soil according to Australian standards.

Strength Properties

Strength properties of the soil were determined by the direct
shear test, in which all the samples were prepared to achieve
a dry density of 1.25 g/cm3 to replicate the in situ dry
density of the soil. Direct shear tests were conducted for four
different water contents. Figure 6 shows the variation of
apparent cohesion with gravimetric water content. However,
the soil friction angle did not significantly vary with the
gravimetric water content, which was determined as 15.90.

The pre-2008 landslide topography was subsequently
reset by pushing failed soil and colluvium back onto the
original slope. Vegetation (planting and growing trees) was
suggested as an effective slope stabilization method for this
area. Additionally, the five inclinometers slope monitoring

experiment were installed. The real-time slope monitoring
system aimed to measure the efficacy of revegetation as a
slope stabilization method for this slope (Abeykoon et al.
2018).

The real-time monitoring system that consists of five
sensor units (TS1, TS2, TS3, TS4, and TS5) and a central
logging station was installed in the slope as shown in Fig. 5.
Each sensor unit consists of a logging and transmission unit,
MEMS tilt sensor, volumetric soil moisture sensor, and
temperature sensor. The central unit comprises a central data
logger, power supply unit (solar panel and back-up battery),
data receiving unit (from sensor units), rain gauge as shown
in Fig. 5a.

After characterizing the soil profile by determining the
interface between soil and underlying bedrock by ground
penetrating radar (GPR) survey, four locations were selected
to excavate pits for determining the composition of soil
layers, soil layer thicknesses and verification of GPR survey
results. Figure 5b illustrate the longitudinal GPR profile and
the GPR survey transect line and a cross-section of soil
profile along the transect line with the locations of excava-
tion pits, respectively.

The tilt angles accumulated distribution due to each rain
are summarized as Fig. 7, which included the accumulated
distribution results from 15/Jun/2016 to 01/Nov/2016. Red
means the inclinometer is tilted in the direction of the land-
slide slope, and blue means the inclinometer is tilted in the
opposite direction of the slope. It was found that the slope
was clearly deformed as the time was increased. This slow
movement is considered a typical landslide deformation.

TS1, which is located at top of the slope failed area, tilted
(rotated) more than 2 degree in slope-direction during this
period. TS2 which is located outside the failed area did not
respond to the failure of the slope. However, TS2 started
showing minor rotation with the reactivation of the failure
above its location, which could be due to overloading the
area of TS2 by the failed soil mass above its location. TS3,
which is located at center of the slope, tilted (rotated) more
than 2 degree in opposite direction of landslide slope. TS5,
which is located at bottom of the landslide slope, is rotating
in the direction of the slope, was pushed by the top mass of
slope failure.

These results clearly show the movement of the entire
slope shown in Fig. 7 as time order. It can be seen that the
head and the bottom of the slope are inclined in the direction
of landslide slope inclination, and the middle of the slope is
a circular arc slide. By arranging five sensor arrays, it is
thought that false alarms can be prevented by issuing an alert
based on the movement of the entire slope, instead of local
fluctuations based on a single sensor result.

Figure 8 shows the aerial view of the landslide area that
the photos were taken in 28/Oct/2017, and Fig. 9 shows the
aerial view of the landslide deformation area that the photos

Table 1 Soil index properties

Classification test Results

Grain size % finer than 75 lm > 79%

Distribution Clay % = 41.0%

Atterburg limits LL = 67.2%
PI = 28.2%

Linear shrinkage LS = 13.4%

Fig. 6 The variation of apparent cohesion with gravimetric water
content
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Fig. 7 Distribution of
accumulated tilt angle of year
2016
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taken in 20/Feb/2018. These photographs show that the
results correspond to the landslide collapse measured by the
sensor array.

Monitoring Slope Failure at Manzawa,
Yamanashi, Japan

The Manzawa area in the Yamanashi Prefecture of Japan
contains a large-scale reactivation of old slope failures fea-
turing rockfalls that involve the detachment and rapid
downward movement of rock.

Because most traditional slope monitoring methods are
expensive, difficult to control and may not be suitable for
application in this civilian area, the simple and low-cost
monitoring system was deployed on a test slope to validate

field performance. It should be noted that the research is
supported by the Japanese Government, and the following
result that is reported in this paper is intermediate.

Figure 10 shows the scale of Manzawa slope failure site,
and Fig. 11 shows the arrangement of the multi-point tilt
sensors and locations, where two types of tilt sensor were
used. The arrangement interval of the sensor is designed to 5
m. A total of 66 sets of sensors were deployed.

The system proposed in this study implemented wireless
sensors consisting of MEMS accelerometers to measure tilt
from angular movements. This orientation change data from
the MEMS accelerometers were transmitted wirelessly to a
remote monitoring facility. A real-time monitoring system
would be an effective tool for the transmission of alerts and
immediate activation of emergency procedures, thus pro-
viding ample time to save lives and property.

Fig. 8 Areal view of the
landslide area (28/Oct/2017)

Fig. 9 View of the landslide area
(20/Feb/2018)
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Fig. 10 Area of slope failure at
Manzawa site, Japan

Fig. 11 Arrangement of the
multi-point tilt sensors
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Necessary components of the system include sensors with
the required resolution and software with the capacity for
signal interpretation and failure alert algorithms. The chal-
lenges exist in identifying methods to minimize energy
consumption of the units (i.e. improving battery life),
keeping the appropriate number of devices for deployment
and recognizing patterns of movement so that incipient
sliding can be distinguished from random movements and
environmental effects. The requirement for battery lifetime
should ideally be longer than one year to reliably monitor the
most critical time period without interruption and multiple
year lifetimes should be achievable given the progress being
made in battery technology.

Algorithms can then be developed to account for these
movements and the sensitivity of these to varying threshold
values can be evaluated. Finally, an effective early warning
system can be developed.

The 66 sensor units are divided into three groups,
left/middle/right zone, and one data receiver unit and one
logger/gateway unit for internet collect all the data from
respective group as shown in Fig. 11. There were eight
heavy rainfall events during summer of 2015 shown in

Fig. 12, and the tilt angles accumulated distribution due to
each rain are summarized as Fig. 13. The tilting rate aver-
aged during each rainfall event is shown in Fig. 14. Distri-
bution of tilting behaviours is figured out by multi-point
monitoring.

For practice, criteria for issuing early warning have to be
defined based on data from the large number of sensors. One
of very simple index for the criteria is simple sum of tilting
rate from the sensors:

Valarm ¼
X

n

n¼1

jVnj � An

A0
� @n

� �

ð1Þ

Here, n is serial number of tilt sensors, Vn is tilting rate of
slope sliding direction at the n-th sensor, An is the area of
installation of the n-th sensor, A0 is the total area of monitored
slope, and @n is a constant weight for the n-th sensor decided
considering geology, geography, vegetation, and other fac-
tors. As the simplest example, values calculated with n = 1 for
all the sensors are indicated in Fig. 14. The rain on 4/20, 6/3,
and 8/13 caused relatively higher value of Valarm in this case,
but did not exceed precaution threshold of 0.01°/h.

Fig. 12 Time histories of movements in rainy days
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Conclusion

A low-cost and simple monitoring method for an early
warning system of rainfall-induced landslides has been
proposed. Tilting angles in the surface layer of the slope are
mainly monitored using this method and, in several case
studies, distinct behaviours in the tilting angles in the
pre-failure stages were detected. From this behaviour it is

recommended that, from a regulatory perspective, a pre-
caution is issued when the tilting rate of a slope is 0.01°/h,
and a warning issued when the tilting rate is 0.1°/h.

Improvement in the applicability and development of the
monitoring and early warning system has been made by
modifying the equipment to be lower in cost, smaller in size
and weight, and simpler to operate. It is estimated that the
total cost for the monitoring system is reduced by one third,
compared to regular systems, and thus a larger number of

Fig. 13 Distribution of
accumulated inclination angle

Fig. 14 Distribution of tilting
rates during each rain day
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sensors can be deployed at the same cost (if desired). This
will assist in improving data density and real-time feedback
on slope behavior. These case studies will henceforth be
helpful in determining the installation of sensor array of
early warning system.
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Influence of Intervals Measuring Surface
Displacement on Time Prediction of Slope
Failure Using Fukuzono Method

Naoki Iwata and Katsuo Sasahara

Abstract

Time-prediction methods based on monitoring the dis-
placement of a slope are effective for the prevention of
sediment-related disasters. Several models have been
proposed to predict the failure time of a slope based on
the creep theory of soil, which describes the accelerating
surface displacements that precede slope failure. Fuku-
zono’s method has been widely adopted in practice. This
method can only be applied to the period when the
surface displacement accelerates. However, the observed
surface displacement appears to increase monotonically,
slightly repeating the increase and decrease. These results
decrease the accuracy of the predicted failure time.
Thinning out the observed data is effective for minimising
the influence of fluctuations. In this study, we predicted
the failure time of a sandy model slope under artificial
rainfall using four methods based on Fukuzono’s model,
compared the prediction accuracy of each method and
examined the influence of measurement intervals on the
predicted failure time using extracted data at different
measurement intervals. The results showed that the
variation of the extracted data group decreases and
the prediction accuracy of the failure time improves if
the measurement interval increases. Moreover, when the
failure time of a slope is predicted using statistical
methods, the accuracy of the prediction is further
improved.

Keywords

Monitoring � Slope failure � Surface displacement �
Time prediction � Fukuzono’s model � Measurement
interval � Prediction accuracy

Introduction

Disasters of natural and artificial slopes around roads, rail-
ways and residential area are caused by heavy rains. Fur-
thermore, in construction sites, slope failures occur by the
destabilisation of the ground owing to change in stress
caused by the embankment and cut earth. Time prediction
methods based on monitoring the displacement of a slope
using sensors are effective at preventing sediment-related
disasters.

Several methods have been proposed to predict slope
failure using the surface displacement of a slope. The for-
mulae proposed by Fukuzono (1985) have been widely
adopted in practice because of their simplicity. These models
were proposed to predict the failure time of a slope based on
the creep theory of soil, which is divided into three stages:
primary creep (decreasing velocity), secondary creep (con-
stant velocity) and tertiary creep (increasing velocity).

Fukuzono’s model formulates the relationship between
the velocity of the surface displacement and the acceleration
in the tertiary creep stage. Fukuzono found that the loga-
rithm of the acceleration of the surface displacement is
proportional to the logarithm of the velocity in model slope
experiments. Time integration of this relationship leads to
the typical trends of the time variation in the inverse-velocity
of the surface displacement before failure. The failure time
of a slope can be predicted when the extrapolation curves
approach zero. Fukuzono’s method has been widely applied
because of its simplicity and convenience of use.
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His method can only be applied to the period when the
surface displacement accelerates. However, the actual dis-
placement of the slope is complicated owing to variations in
the rainfall intensity and the inhomogeneity of the surface
layer, and it is not easy to specify the period when the sur-
face displacement accelerates. Moreover, the observed dis-
placement appears to increase monotonically, slightly
repeating the increase and decrease, the acceleration varies
widely and some data points become negative. These results
decrease the accuracy of the predicted failure time. Thinning
out the observed data is effective for minimising the influ-
ence of fluctuations.

In this study, we predicted the failure time of a sandy
model slope under artificial rainfall with constant rainfall
conditions using four methods based on Fukuzono’s model
to extract data at difference time intervals. We compared the
prediction accuracy of each method and examined the
influence of measurement intervals on the predicted failure
time.

Methods for Predicting the Failure Time

Fundamental Equation of Fukuzono’s Model

Fukuzono (1985) proposed that the logarithm of the velocity
of the surface displacement is proportional to the logarithm
of the acceleration in the tertiary creep stage, which
describes the accelerating surface displacement before slope
failure, given as

d2x
dt2

¼ a
dx
dt

� �a

ð1Þ

where x is the downward surface displacement along the
slope, t is the time, dx/dt is the velocity, dx2/dt2 is the
acceleration, and a and a are constants. a is greater than 1 in
the period during which the surface displacement
accelerates.

After integrating Eq. (1), the inverse-velocity of the sur-
face displacement can be written as follows:

dt
dx

¼ 1
v
¼ �aða� 1Þf g1=ða�1Þ tr � tð Þ 1

a�1ð Þ ð2Þ

where v is the velocity of the surface displacement and tr is
the failure time. Eq. (2) shows a downward slope; further,
the time approaches the time immediately prior to slope
failure as the inverse-velocity of the surface displacement,
1/v, approaches zero. The curve is linear for a = 2, convex
for a > 2 and concave for 1 < a < 2. The value of a for
actual slope failure ranges from 1.5 to 2.2.

Precise Prediction Method Using Inverse-Velocity

As Eq. (2 becomes linear for a = 2, the failure time is cal-
culated easily using two inverse-velocity values at different
times. However, when a 6¼ 2, it is difficult to predict it
accurately using two values owing to the curvature of the
inverse-velocity curve. Therefore, Fukuzono (1985) pro-
posed the time-prediction method expressed in Eq. (3) by a
time differential in Eq. (2).

1=vð Þ
�

dð1=vÞ
dt

¼ �ða� 1Þ � tr � tð Þ ð3Þ

The curve of Eq. (3) is linear; the failure time, tr, is
predicted by inserting two inverse-velocity values (1/vi-1, 1/
vi) and two inclination values (d(1/vi-1)/dt, d(1/vi)/dt) at two
different times (ti-1, ti) into Eq. (4) as follows:

tr ¼
ti � 1=vi�1ð Þ= d 1=vi�1ð Þ

dt

� �
� ti�1 � 1=við Þ= dð1=viÞ

dt

� �

1=vi�1ð Þ= d 1=vi�1ð Þ
dt

� �
� 1=við Þ= dð1=viÞ

dt

� � ð4Þ

Three Data Prediction Method

Tsuchiya and Omura (1989) proposed the time-prediction
method using time–velocity relationship in Eq.[2] and time–
displacement relationship by time integral in Eq. (2) from
three surface displacement values at equal time intervals. We
improved this method to be applicable to different time
intervals. The failure time, tr, is predicted by inserting three
displacement values (xi-2, xi-1, xi) at three different times (ti-2,
ti-1, ti) as follows:

tr ¼
ti�1 þ tið Þ � xi�xi�1

xi�1�xi�2
� ti�1�ti�2

ti�ti�1

� �a�1
� ti�1 � ti�2ð Þ

2� xi�xi�1
xi�1�xi�2

� ti�1�ti�2

ti�ti�1

� �a�1
�1

� �

ð5Þ

a ¼ 2�
log xi�2�xi�1

xi�1�xi

� �

log xi�1�xi�2
xi�xi�1

� ti�ti�1

ti�1�ti�2

� � ð6Þ

Least Squares Prediction Method

Assuming the curve of Eq. (2) to be linear (a = 2), the
relationship between the inverse-velocity and time is calcu-
lated via the least squares method using all previous
inverse-velocity values from the start of the measurement.
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The failure time, tr, corresponds to the intercept of the
straight line with the time axis.

Nonlinear Regression Prediction Method

The constants a and a in Eq. (1) are calculated by the least
squares methods using velocity and acceleration data plotted
in a double logarithmic chart. The failure time, tr, is pre-
dicted by inserting the constants a and a into Eq. (7) as
follows:

tr ¼ v1�a

aða� 1Þ þ t ð7Þ

Experimental Set-up and Observed Data

In this study, we used the observed surface displacement of a
slope failure experiment that was conducted using the
large-scale rainfall simulator at the National Research
Institute for Earth Science and Disaster Prevention (Sasahara
and Ishizawa 2016). Figure 1 shows a photograph of the
model slope. The model was 300 cm long and 150 cm wide
in the horizontal section and 600 cm long and 150 cm wide
in the slope section with an inclination of 30°. The soil layer
was 50 cm thick and composed of granitic soil. The surface
of the slope was parallel to the base of the slope.

The surface displacement was measured using an exten-
someter with a non-linearity of approximately 0.1 mm; it
was fixed at the upper boundary of the flume. The surface
displacement was defined as the distance between the upper
boundary of the flume and the moving pole at the surface of
the slope at 160 cm from the toe of the slope. The surface
displacement was measured every 10 s.

The rainfall had an intensity of 50 mm/h and continued
until the onset of the failure of the model slope. Slope failure
occurred at 9,220 s, and the surface displacement just before
the slope failure was 1.27 cm.

As the extensometer has an accuracy of 0.1 mm, data were
extracted to be greater than 0.1 mm between the two mea-
surements of the surface displacement. Figure 2 shows the
time variation of the surface displacement and the
inverse-velocity of the surface displacement. The slope of the
inverse-velocity curve before 7,500 s suddenly increases and
decreases and displays a uniform downward slope afterwards.

Data for the Prediction

The time-prediction methods based on Fukuzono’s model
are applied to the tertiary creep stage. However, a curve of
the inverse-velocity has fluctuations and it is difficult to
predict the time of onset of the tertiary creep in actual
practice. Therefore, in this study, all data from the start of
monitoring onwards are used to examine the influence of
measurement intervals of surface displacement, Dx, and
predict the failure time. The data were extracted to be greater
than difference Dx from previous extracted data of the sur-
face displacement: 0.01, 0.05, 0.1 and 0.2 cm.

The velocity of the surface displacement, vi, is calculated
from vi = (xi–xi−1)/(ti–ti−1), where xi and xi−1 are the surface
displacements at times ti and ti−1. Because vi is the average
velocity between ti−1 and ti, the time against vi, t’i, is set as the
mid of ti and ti−1, specifically t’i = (ti–ti−1)/2. The accelera-
tion of the surface displacement, (dv/dt)i, is calculated from
(dv/dt)i = (vi–vi−1)/(t’i–t’i−1), where vi and vi−1 are the
velocities at times t’i and t’i−1. The time against (dv/dt)i, t’’i, is
to set to the middle of t’i and t’i−1, i.e. t’’i = (t’i–t’i−1)/2.

The failure time is inferred via four prediction methods:
(1) Precise prediction method, (2) Three data prediction
method, (3) Least squares prediction method and (4) Non-
linear regression prediction method, using the extracted dataFig. 1 Overview of the model slope
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from the start of monitoring and onwards. We compare the
prediction accuracy of each method and examine the influ-
ence of measurement intervals on the predicted failure time.

Variation of the Extracted Data

Figure 3 shows the time variation of the displacement and
inverse-velocity for different Dx and the relationship
between velocity and acceleration. The time variation of the
displacement, shown in Fig. 3a, demonstrates behaviour
similar to that of tertiary creep after approximately 6500 s.
When Dx = 0.1 cm or less, the measurement value of
Dx = 0.01 cm is usually reproducible. However, when Dx
0.1 cm, the data could not be extracted at the initial stage of
the tertiary creep and the deviation of the data at the initial
stage increased at 8000 s and earlier. The time variation of
the inverse-velocity, shown in Fig. 3b, significantly varied at

7500 s and earlier for Dx = 0.01 cm; however, this variation
was eliminated by increasing the Dx. When Dx increases, the
number of displacement data to be extracted decreases, and
there are no data at the initial stage of the tertiary creep;
therefore, it is impossible to predict until immediately before
the failure.

As shown in Fig. 3c, the velocity–acceleration relation-
ship originally showed displacement behaviour similar to
that of the tertiary creep stage, and the variation was small.
The larger the Dx, the smaller the number of the data and the
smaller the variation. When the variation decreases, it is
assumed that applicability to Fukuzono’s prediction formula
increases, whereas the previously mentioned issues will
exist.

Results of Time-Prediction of Slope Failure

Figure 4 shows the comparison of the time variation of
difference between the predicted failure time and the elapsed
time, tr–t, obtained using the different prediction methods.
The tr–t implies the time interval for the slope failure. When
the accuracy of prediction is high, tr–t values are plotted in
the positive domain of the graph and tend to zero as the time
approaches the slope failure time (i.e. the time variation of
tr–t has a downward slope). When tr–t values appear in the
negative domain of the graph, the predicted failure time
precedes the elapsed time and the slope failure time is thus
unpredictable.

Using the precise prediction method, when Dx = 0.01
cm, tr–t is nearly 0, i.e. the current time is predicted as the
precise prediction time, indicating that the failure time is
unpredictable. Further, when Dx = 0.05 cm, tr–t signifi-
cantly fluctuates, indicating that the prediction accuracy is
poor. However, when Dx � 0.1 cm, the prediction result is
close to the black broken line, indicating high prediction
accuracy. This result is caused by the precise prediction
method, which predicts using the displacement velocity data
at two different times. If Dx is small, the prediction accuracy
will decrease because of the increasing and decreasing of the
surface displacement even if the data exhibit a behaviour
resembling the tertiary creep.

Based on the three-data prediction method, tr–t signifi-
cantly increases or decreases for both Dx = 0.01 and
0.05 cm, after 8700 s at Dx = 0.05 cm, the prediction result
is close to the black broken line with improved accuracy.
When Dx = 0.1 cm, a table prediction result was obtained
using the precise rediction method; however the accuracy
before 8800 s was reduced by the three-data prediction
method. This demonstrates that the predicted value can
considerably vary depending on the data to be extracted.

As the least squares prediction method predicts using all
data from the start of monitoring onwards, the variation is
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limited and shows a right-downward tendency. The pre-
dicted value is plotted below the black dashed line and is
negative near the failure time, resulting in low prediction
accuracy. As Dx increases, the results approach the black
broken line with improved prediction accuracy. This is
because of data in the initial stage of measurement, showing
that the inverse-velocity is very large. As Dx increases, the
number of data and the value of inverse-velocity in the initial
stage decrease, thus improving the prediction accuracy.

The non-linear regression prediction method is close to
the black dashed line after 8700 s, even when Dx = 0.01 cm,
and comparatively high prediction accuracy results are
obtained. When Dx � 0.05 cm, good prediction accuracy is
obtained because the variation in velocity–acceleration is
small, as seen in Fig. 3c. When Dx = 0.01 cm, the constants
are a = 1.32 and a = 1.79 and the correlation coefficient is
0.94. When Dx � 0.05 cm, the constant a increases from
2.0 to 5.0 and a increase from 1.8 to 2.0. However, the
prediction accuracy is high because the correlation coeffi-
cient is around 0.99 and the curve between inverse-velocity
and time is almost linear (i.e. a is around 2.0).

Discussion

As shown in Fig. 3a, as Dx increases, the discrepancy
between measured and extracted data increases. This dis-
crepancy is evaluated using the root mean square error

(RMSE), which is a method for evaluating the variation in
data given by Eq.[8].

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

XN
i¼1

Fi�Aið Þ2
vuut ð8Þ

where N is number of target data, Fi is the measured dis-
placement at time ti, Ai is the extracted displacement at time
ti and Fi-Ai indicates an error. If there are no data at the time
ti among the extracted data, the datum for ti is projected by a
proportional distribution of the extracted data before and
after time ti. In the RMSE, the smaller the value, the smaller
the variation of the extracted data group, i.e. the greater the
reproducibility.

Figure 5 shows a comparison between the RMSE and the
correlation coefficient of the nonlinear regression equation
for the velocity–acceleration relationship when Dx is 1/5000,
1/2500, 1/1670, 1/1000, 1/500 and 1/250 of soil layer
thickness T (0.01, 0.02, 0.03, 0.05, 0.1 and 0.2 cm, respec-
tively). When Dx/T exceeds 1/1670–1/1000, the RMSE
rapidly increases and the reproducibility of measurement
data decreases; however, the correlation coefficient exceeds
0.98, indicating a very high correlation. Moreover, the cor-
relation decreases when the Dx/T is less than 1/1670–1/1000.
These results imply that the appropriate interval for
achieving high prediction accuracy in this study is 1/1670–
1/1000.
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In the least squares prediction method and nonlinear
regression prediction method, it was found that the predic-
tion accuracy tended to improve upon increasing Dx. This
suggests that additional improvement in the accuracy of
prediction is possible by rejecting the data at the initial stage
when the velocity is low (i.e. 1/v is very large). Therefore,
the method based on the moving average acceleration (i.e.
extracting the period where the average acceleration of the
five preceding steps is continuously positive) performed by
Iwata et al. (2017) was used to extract the time after 7600 s
at the tertiary creep stage. The failure time was predicted
using the least squares prediction method and nonlinear
regression prediction method for this period.

Figure 6 shows a comparison of the time variation of tr–
t with the tertiary creep stage. The prediction accuracy of the

least squares prediction method is significantly improved in
comparison with Fig. 4c. Consequently, it can be seen that
to improve the prediction accuracy, rejecting data at the
initial stage is very effective. Furthermore, the influence of
the difference of Dx is not significant because the variation in
data was small, as seen in Fig. 3c.

In comparison with Fig. 4d, the non-linear regression
prediction method shows a slight improvement in the pre-
diction accuracy above 9000 s at Dx = 0.01 cm but no
improvement at 9000 s or less. However, when Dx = 0.05
cm, the prediction accuracy for 8700 s or less declines
because the quantity of the data used in the regression
analysis is small, and the coefficient obtained in the regres-
sion analysis significantly differs owing to the slight changes
in the data.

Conclusion

We predicted the failure time of a sandy model slope using
four methods based on Fukuzono’s model and examined the
influence of measurement intervals on the predicted failure
time. The findings obtained from this study can be sum-
marised as follows:

1. The prediction accuracy decreases owing to the fluctua-
tions of the surface displacement even if the data exhibit
a behaviour resembling the tertiary creep.

2. As the measurement intervals of displacement increase,
the number of the extracted data decreases, the variation
of the extracted data group decreases, thus improving the
prediction accuracy.

3. The prediction accuracy using the precise prediction
method and three-data prediction method is inferior to
other methods because a small number of data are used to
predict the failure time and these methods are susceptible
to fluctuations.

4. The least squares prediction method and non-linear
regression prediction method give relatively stable pre-
diction results. However, when the data in the initial
stage where the velocity is low are included in the used
data, the prediction accuracy decreases.

5. The appropriate measurement interval to achieve high
prediction accuracy in this study is 1/1670–1/1000 of soil
layer thickness.

6. If the surface displacement data in the tertiary creep stage
can be extracted, the prediction accuracy of the least
squares prediction method and non-linear regression can
be significantly improved.

In this study, one problem was that the quantity of the
extracted data decreases as Dx increases because the mea-
surement data are for a small model slope. However, as the
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displacement just before the slope failure is large at the actual
slope, it is assumed that even if Dx is increased, there is no
problem with the number of acquired data being reduced.
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Velocity and Acceleration of Surface
Displacement in Sandy Model Slope
with Various Slope Conditions

Katsuo Sasahara

Abstract

Measurement of surface displacement was implemented
in three model slope test cases under constant intensity of
artificial rainfall with different initial water content or
slope inclination. The aim was to examine the relationship
between velocity and acceleration of the increase in the
surface displacement, which is the basis for predicting the
failure time of a slope (Fukuzono T (1985) A New
Method for Predicting the Failure Time of a Slope. In
Proceedings of the IVth International Conference and
Field Workshop on Landslides, Tokyo, Japan, pp 145–
150.). The velocity and acceleration were derived from
actual measured surface displacements. The relationship
between the velocity and acceleration of the increase in
the surface displacement was unique at different locations
on the slope and with different pore pressure loading
mechanisms (under unsaturated conditions or increased
groundwater levels). The relationship was also unique
under different slope inclination. This suggests the
possibility of deriving the relationship by indoor shear
tests with the same soil of actual slopes before monitoring
of displacement on the slope, for predicting the failure
time of the slope.

Keywords

Monitoring � Surface displacement � Model slope �
Slope angle � Water content

Introduction

Measurement of slope displacement or deformation has
often been adopted for early warning against landslides. This
has also been implemented in many experiments involving
model or natural slopes to examine the mechanism of
landslides.

Acceleration of slope displacement or deformation have
been observed prior to failure in many reports such as
Moriwaki et al. (2004) for a model slope, and Ochiai et al.
(2004) and Askarinejad et al. (2018) for natural slopes.
Kromer et al. (2015) observed variation in the topography of
a rock wall surface before and after collapse and identified
accelerating increase in displacement by analysing the dis-
placement of targets on the wall. Accelerative increase in
displacement has been recognised as a precursor of slope
instability. Many studies (Saito 1965; Saito and Yamada
1973; Varns 1982; Fukuzono 1985; Voight 1988, 1989;
Xiao et al. 2009; Bozzano and Mazzanti, 2012) helped
establish the method for better prediction of time of an onset
of slope failure, based on the measurement of an accelerative
increase in displacement.

Fukuzono (1985) reported that there is a linear relation-
ship between velocity and acceleration of an increase in
surface displacement (hereafter the displacement velocity
and acceleration) on a logarithmic scale prior to slope failure
of the model, and showed that any prediction method of
slope failure time is preferable to be based on the relation-
ship. This idea proposed by Fukuzono has been widely
adopted around the world. Further, he insisted that the
relationship could only be established during the tertiary
creep stage, when there is an accelerating increase in dis-
placement. It is for now not clear whether unique relation-
ship can be derived for slopes with different geometry or
initial conditions even though they are made of the same
soil. An attempt is made herein to examine, through a series
of indoor experiments, if we can derive a unique relationship
for various slope models of the same soil, expecting that the
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result would help develop a rational protocol for early
warnings.

Displacements and groundwater levels in model slopes
with different initial conditions were measured and those
data were analysed to clarify whether the relationship
between the displacement velocity and acceleration is unique
under different initial conditions of the slope model in this
study.

Methodology

Experimental Apparatus

Figure 1 shows a lateral view of the model slope and
arrangement of monitoring devices. The model slope was in
a steel flume with a lateral wall of glass and consisted of
granite soil, with the grain size distribution shown in Fig. 2.
The density of soil particles was 2.489 (g/cm3), and the
maximum and minimum densities were 1.307 (g/cm3) and
1.073 (g/cm3), respectively. The upper slope was 110 cm
long, 60 cm wide, 12 cm thick, and with a inclination of
40°. The lower slope was 50 cm long, 60 cm wide, 12 cm
thick at the boundary of both slopes, with 10° of surface
slope. The shape of the upper slope was rectangular, and that
of the lower slope was triangular. Steel blades (1 cm high)
were set at every 50 cm in a downward direction, and coarse
sand was glued on the base plate of the flume to prevent
slippage between the soil and the base plate.

Downward and vertical displacement at the surface and
pore pressure at the bottom of the upper slope were mea-
sured at distances of 25, 55, and 85 cm from the upper
boundary of the flume. The downward and vertical dis-
placements were measured by the system shown in Fig. 3.
Downward or vertical movement of the moving plate on the
surface of the slope pulled wires connected to displacement

gauges, which were set lateral to the flume. Dimension of
moving plate is 10 by 10 cm with four steel blades of 1 cm
height behind it to prevent slippage on the surface. Weight
of the moving plate was 700 g to resist reaction force of
displacement gauge. The direction of the wire was changed
from downward to vertical and from vertical to lateral by
two pulleys for the measurement of downward displacement,
while it was changed from vertical to lateral by a pulley for
the measurement of vertical measurement. Pullies were
made of acrylic resin to prevent friction between pullies and
wires. Only downward displacement was adopted as the
surface displacement in this study, because vertical dis-
placement could not be accurately measured. Many noises
and scattering were found in the vertical displacement
measurements. The accuracy of the displacement gauge was
0.2 mm, and the accuracy of the pore pressure gauge was
50 Pa, which corresponded to 0.5 mm of water level. The
measured pore pressure was converted into a water level in
this study. Trial in small scale model revealed the accuracy
of the measurement in groundwater level was around 1 cm.Fig. 1 Model slope and arrangement of monitoring devices in Case 1

Fig. 2 Grain size distribution of the soil of the model

Fig. 3 Measurement of downward and vertical displacements
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Water was sprinkled at a constant rate on the model slope
from the rainfall simulator above the flume. The quantity of
water sprinkled was expressed in rainfall intensity (mm/h) in
these experiments, as shown in Table 1.

Experimental Conditions

Three cases of the experiment with different model slope
conditions (Table 1) were implemented to examine the
relationship between surface displacement velocity and
acceleration for different slope conditions. Water content
was different between Case 1 and Case 2. It was 0 and
15.1% in Case 1 and Case 2, respectively. Soil was dried in
oven before the construction of the model and water content
was measured by soil moisture gauge of METER EC-5 with
2–3% resolution. The wet unit weight in Case 2 was 1.32
(g/cm3), which was the same as the dry unit weight of Case
1. Oven dry soil with this dry unit weight was adopted after
many trial using small model to make non-uniformity of soil
quantities in model slope least. The upper slope angle was
40° in both cases. The upper slope angle was 40° and 35° in
Case 1 and Case 3, respectively. The slope of the model was
almost same with shallow landslides in Japan. The dry unit
weight and water content was the same in both cases, and the
rainfall intensity was 46 mm/h in all cases. This was also
decided by actual rainfall intensity at landslide disaster in
Japan. Two times of tests with the condition of Case 1 were
conducted and results of both cases were compared to ensure
the repeatability of the experiment. The surface displacement
was 22 cm at 8,400 s in first case while it was 25 cm at the
same time in second case.

The surface displacement velocity and acceleration were
derived from measured data of surface displacement, by the
process shown in Fig. 4. Quantitative variation of the vector
of the surface displacement was adopted here. Surface dis-
placement velocity was defined as the increase in surface
displacement divided by the difference in time. Surface
displacement acceleration was derived as the increase in
surface velocity divided by the difference in time.

Video images were recorded from lateral side of the
model and no slippage was observed from the images.

Results of the Experiments

Figure 5a and b show the time variation in the surface dis-
placement and the groundwater levels, respectively, at dif-
ferent locations on the model slope for Case 1. The surface
displacement gradually increased from the start of the water

Table 1. Conditions of the model slope

Case1 Case2 Case3

Rainfall intensity (mm/h) 46 46 46

Dry unit weight (g/cm3) 1.32 1.21 1.32

Water content (%) 0 15.1 0

Upper slope angle (deg.) 40 40 35

Fig. 4 Definition of surface displacement velocity and acceleration

(a) The surface displacement

(b) The groundwater level

Fig. 5 Time variation of the surface displacement and the groundwater
level at Case 1. GWL: groundwater level
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sprinkling, and exhibited an accelerative increase just prior
to failure of the slope at 25 and 85 cm, while it remained at
almost zero until 5,500 s and then significantly increased
until 20 at 55 cm. It subsequently increased gradually, and
increased again acceleratively up to failure at 55 cm.
Groundwater levels remained almost zero until 6,000 s, and
increased up to 15–20 cm until the failure at 55 and 85 cm,
while it remained almost zero until the failure at 25 cm. It is
noteworthy that surface displacement increased even before
the generation of the groundwater level. Shear deformation
of the slope might have been generated even under unsatu-
rated conditions at this stage. The surface displacement
increase accelerated with the increase in groundwater level.
Time variations in the surface displacement and the
groundwater level also had the same tendency in Case 3,
which showed a different tendency to Case 2.

Figure 6a and b show comparisons between the surface
displacement and the groundwater level at 85 cm in each

case. The surface displacement significantly increased after
the generation of the groundwater level, and exhibited
accelerative increase with the increase in groundwater level
just prior to failure in Case 1 and Case 3. It increased linearly
with time without the generation of the groundwater level in
Case 2. Failed soil mass moved into earth flow and deposited
on the surface of the lower slope in Case 1 and Case 3. It
contained a considerable quantity of water because the
groundwater level was high at slope failure; thus, it could
flow into the earth flow. While the failed soil mass was
relatively dry in Case2. This was because the groundwater
level was almost zero at failure, even if the initial water
content was higher in Case 2 than in the other cases. It was
observed by video image that the dry soil mass moved
almost in one-piece, and it was pushed back by the soil layer
of the lower slope in Case 2. Movement and deformation of
the soil mass of the upper slope might have been restrained
in this way in Case 2.

Discussion

Figure 7 shows the relationship between the surface dis-
placement velocity and acceleration at different distances
from the upper boundary of the slope in Case 1 on a loga-
rithmic scale. It was recognised that the relationship may
have been linear on a logarithmic scale with some scatter,
while the time variation of the surface displacement was
different in each case. The relationship may have been
almost unique, even though there was some scatter at dif-
ferent locations on the model slope.

Figure 8 shows the relationship between the surface
displacement velocity and acceleration before and after the
generation of the groundwater level at 85 cm from the upper(a) The surface displacement

(b) The Groundwater level

Fig. 6 Comparison of the surface displacement and the groundwater
level at 85 cm from upper boundary in each case. GWL: the
groundwater level

Fig. 7 Relationship between the surface displacement velocity and
acceleration at different locations in Case 1. dsd: surface displace-
ment velocity (mm/s). dsd/dt: surface displacement acceleration
(mm/s/s)
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boundary of the model in Case 1. Red triangles symbolise
before the generation of the groundwater level, while blue
circles represent after the generation of the groundwater
level. The relationship before the generation of the ground-
water level was linear on a logarithmic scale, and almost the
same as after the generation of the groundwater levels. The
surface displacement was generated by the decrease in the
suction of the slope (in unsaturated conditions) before the
generation of the groundwater level, while it was generated
by the decrease of effective stress in the slope due to the
increase of static pore pressure (groundwater level) after the
generation of the groundwater level. The relationship

between the surface displacement velocity and acceleration
was the same in both cases.

Figure 9 shows a comparison of the relationship between
the surface displacement velocity and acceleration at the
same distance (85 cm) from the upper boundary of the slope
in each case on a logarithmic scale. The relationship in
Case3 was also linear on a logarithmic scale and almost the
same as that in Case1 in the range of the surface displace-
ment velocity from 1E-03 to 1E-01 mm/s. While the rela-
tionship in Case 2 gathered around the linear trend in Case1
and Case3 from 1E-02 to 1E-01 mm/s of the surface dis-
placement velocity and did not indicate a clear trend. The
range of the surface displacement velocity in Case2 was
from 1E-02 to 1E-01, much smaller than the range (1E-03 to
1E-01 m/s) in Case1 and Case3. These might have been due
to the restraint of the movement of soil mass in Case2. It was
revealed that the relationship between the surface displace-
ment velocity and acceleration was unique under different
inclination of model slope.

Conclusion

Measurement of surface displacement was implemented in
three cases of model slope test under artificial rainfall con-
ditions. Initial water content and slope inclination were
different in the three cases. The surface displacement
velocity and acceleration were derived from the measured
surface displacement and the relationship between those in
each case was compared. Following are the results of the
examination.

(1) The surface displacement showed accelerative increase
just prior to the failure of the slope with the increase in
the groundwater level in Case 1 and Case 2 with dif-
ferent slope inclinations, while it increased monotoni-
cally with time in Case 2 without the generation of the
groundwater level. Movement of the soil mass in upper
slope was restrained by the lower slope in a relatively
dry condition for Case 2.

(2) The relationships between the surface displacement
velocity and acceleration at different locations were
unique in Case 1 and Case 3.

(3) The relationship between the surface displacement
velocity and acceleration before the generation of the
groundwater level was similar to that during the
increase of the groundwater level. The relationship in
unsaturated conditions was same with that after the
generation of the groundwater level.

(4) The relationship between the surface displacement
velocity and acceleration was unique under different
slope inclinations. However, the influence of initial
water content to the relationship was not clear in this

Fig. 8 Relationship between the surface displacement velocity the
acceleration before and after the generation of the groundwater level at
85 cm from the upper boundary of the slope in Case 1. dsd: surface
displacement velocity (mm/s). dsd/dt: surface displacement acceleration
(mm/s/s). GWL: groundwater level

Fig. 9 Comparison of the relationship between the surface displace-
ment velocity and acceleration at 85 cm from the upper boundary of the
slope in each case. dsd: surface displacement velocity (mm/s). dsd/dt:
surface displacement acceleration (mm/s/s)
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study. Accordingly, further examination is necessary to
reveal the influence of the water content to the
relationship.

It was recognised that the relationship between the sur-
face displacement velocity and acceleration was unique
under different slope inclinations with the same soil. This
fact suggests the possibility of deriving the relationship by
indoor shear test before monitoring the displacement of
actual slopes to predict the failure time of the slope. While
much more examination are necessary to verify the rela-
tionship in a different condition and scale in a slope.

Part of this research is supported by the Grant-in-Aid for
Scientific Research B -KAKENHI-, 18H01674, JSPS.
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Comparison of Moving-Average, Lazy,
and Information Gain Methods
for Predicting Weekly Slope-Movements:
A Case-Study in Chamoli, India

Praveen Kumar, Priyanka Sihag, Ankush Pathania, Pratik Chaturvedi,
K. V. Uday, and Varun Dutt

Abstract

Landslide incidence is common in hilly areas. In partic-
ular, Tangni in Uttrakhand state between Pipalkoti and
Joshimath has experienced a number of landslide inci-
dents in the recent past. Thus, it is important to forecast
slope-movements and associated landslide events in
advance of their occurrence to avoid the associated risk.
A recent approach to predicting slope-movements is by
using machine-learning techniques. In machine-learning
literature, moving-average methods (Seasonal Autore-
gressive Integrated Moving Average (SARIMA) model
and Autoregressive (AR) model), Lazy methods
(Instance-based-k (IBk) and Locally Weighted Learning
(LWL)) and information-gain methods (REPTree and
M5P) have been proposed. However, a comparison of
these methods for real-world slope-movements has not
been explored. The primary objective of this paper is to
compare SARIMA, AR, LWL, IBk, REPTree and M5P
methods in their ability to predict soil-movements
recorded at the Tangni landslide in Chamoli, India.
Time-series data about slope-movements from

five-sensors placed on the Tangni landslide hill were
collected daily over a 78-week period from July 2012 to
July 2014. Different model parameters were calibrated to
the training data (first 62-weeks) and then made to
forecast the test data (the last 16-weeks). Results revealed
that the moving-average models (SARIMA and AR)
performed better compared to the lazy and
information-gain methods during both training and test.
Specifically, the SARIMA model possessed the smallest
error compared to other models in test data. We discuss
the implications of using moving-average methods in
predicting slope-movements at real-world landslide
locations.

Keywords

SARIMA� Instance-based� Locally weighted learning�
M5P � REPTree � Tangni landslide

Introduction

Landslides and associated slope-movements are caused due
to the rain, mostly in the monsoon season in hilly areas
(Pande et al. 2006). These landslides cause massive damage
to life and property (Parkash et al. 2011). In fact, landslides
are a major problem in India with a shocking 11,000 deaths
over the past 12 years in the country (Akter 2018). Thus,
one needs to monitor, forecast, and timely alert people about
slope-movements on hills prone to landslides (Chaturvedi
et al. 2016). A way of predicting slope-movements is via
machine-learning (ML) algorithms (Korup and Stolle 2014).
Here, ML algorithms could learn patterns in data collected
by sensor systems that are installed in different
landslide-prone sites (Mali et al. 2019).

There is a large class of ML algorithms that have been
proposed for making predictions about slope-movements.
For example, the Seasonal Autoregressive Integrated

P. Kumar (&) � P. Sihag � A. Pathania � V. Dutt
Applied Cognitive Science Laboratory, Indian Institute
of Technology Mandi, Mandi-175075 Suran, India
e-mail: bluecodeindia@gmail.com

P. Sihag
e-mail: priyankasihag8993@gmail.com

A. Pathania
e-mail: ankushpathania.ap@gmail.com

V. Dutt
e-mail: varun@iitmandi.ac.in

P. Chaturvedi
Defence Research and Development Organization (DRDO),
Defence Terrain Research Laboratory, 110054 New Delhi, India
e-mail: prateek@dtrl.drdo.in

K. V. Uday
Geohazard Studies Laboratory, Indian Institute of Technology
Mandi, Mandi-175075 Medford, India
e-mail: uday@iitmandi.ac.in

© Springer Nature Switzerland AG 2021
N. Casagli et al. (eds.), Understanding and Reducing Landslide Disaster Risk,
ICL Contribution to Landslide Disaster Risk Reduction,
https://doi.org/10.1007/978-3-030-60311-3_38

321

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-60311-3_38&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-60311-3_38&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-60311-3_38&amp;domain=pdf
mailto:bluecodeindia@gmail.com
mailto:priyankasihag8993@gmail.com
mailto:ankushpathania.ap@gmail.com
mailto:varun@iitmandi.ac.in
mailto:prateek@dtrl.drdo.in
mailto:uday@iitmandi.ac.in
https://doi.org/10.1007/978-3-030-60311-3_38


Moving Average (SARIMA) algorithm (Duan and Niu
2013; Qiang and Duan-you 2005) and the Autoregressive
(AR) algorithm (Pu et al 2015; Li et al. 2018) are popular
moving-average methods, where the previous values in a
time-series are used to predict upcoming values (Duan and
Niu 2013; Qiang and Duan-you 2005). Similarly, algorithms
like the Instance-based-k (IBk) and Locally Weighted
Learning (LWL) are lazy algorithms, where the most similar
training data are used to predict the test data (Cheng and
Hoang 2015,2016). There have also been algorithms like the
REPTree and M5P that maximize the information gain in
data to predict test data (Chen et al. 2017; Pham et al. 2019).

Although several ML algorithms have been used in lit-
erature to predict slope-movements in prior research, the
application and comparison of moving-average methods,
information-gain methods, and lazy methods has not been
explored. The primary objective of this paper is to compare
certain moving- average methods (SARIMA and AR) with
lazy methods (IBk and LWL) and information-gain method
(M5P and REPTree) in their ability to predict
slope-movements in an active landslide site in the Hima-
layan mountains. Specifically, we use weekly
slope-movement movement data collected via sensors at an
active landslide (the Tangni landslide between Pipalkoti and
Joshimath) between 2013 and 2014 and use it to predict
slope-movements one-week ahead of time. Tangni is a major
landslide site in Uttrakhand, India, which has seen a number
of landslides in the recent past (Pathak 2016).

In what follows, we first detail the background literature
concerning the use of ML algorithms for slope-movements
predictions. Next, we detail the working of the SARIMA,
AR, IBk LWL, REPTree and M5P algorithms and the
method of calibrating these algorithms to data from the
Tangni landslide. Finally, we present our results from dif-
ferent algorithms and discuss the implication of using
moving-average, information-gain, and lazy methods for
slope-movement predictions.

Background

Several prior research studies have used tree-based models
for predicting slope movements (Krkac et al. 2017). For
example, reference (Krkac et al. 2017) presented a
methodology for prediction of landslide movements using
random forests, a machine learning algorithm based on
regression trees. According to reference (Krkac et al. 2017),
the random forest method was established based on
time-series for landslide movement, groundwater level, and
precipitation gathered from the Kostanjek landslide moni-
toring system and nearby meteorological stations in Zagreb
(Croatia) over a 2-year period. The validation results showed
the capability of the information-gain model to predict the

evolution of daily displacements over a period up to
30 days.

Some researchers have found the moving-average models
to perform accurately in predicting slope movements (Duan
and Niu 2013; Qiang and Duan-you 2005). For example,
reference (Duan and Niu 2013) used the Autoregressive
Integrated Moving Average (ARIMA) model was employed
to forecast the cumulative displacement of the Bazimen
landslide. Results indicated that the ARIMA method
improved the mining result of traditional static data. Simi-
larly, reference (Qiang and Duan-you 2005), have compared
the ARIMA model and the considerable auto regressive
(CAR) model and found both these methods to yield good
results.

Furthermore, reference (Pu et al. 2015) have used
Autoregression (AR) model and a detrended fluctuation
analysis (DFA) method to model debris-flow. The coefficient
and variance of AR and scaling exponent of DFA were
estimated using a sliding window. Results showed that the
DFA scaling exponent could indicate the abrupt change in
debris-flows. Similarly, reference (Li et al. 2018) used
autoregressive moving-average time-series models to ana-
lyze the autocorrelation of landslide triggering factors.

Research has also used lazy methods (like IBk) to predict
slope movements (Cheng and Hoang 2015). For example,
reference (Cheng and Hoang 2015; Bui et al. 2017; Chen
et al. 2017) proposed a Swarm-Optimized Fuzzy
Instance-based Learning (SOFIL) model for predicting slope
collapses. The proposed model utilized the Fuzzy k-Nearest
Neighbor (FKNN) algorithm as an instance-based learning
method to predict slope collapse events. Similarly, reference
(Cheng and Hoang 2016) proposed a novel approach for
slope collapse assessment using the IBk algorithm, where
the IBk approach provided a probabilistic slope stability
estimation. A database containing 211 slope evaluation
samples was collected in the Taiwan Provincial Highway
Nos. 18 and 21, where the IBk achieved a roughly 8%
improvement in accuracy rate compared with other bench-
mark methods. In the same way, reference (Bui et al. 2017)
proposed combined a fuzzy IBk algorithm and a differential
evolution (DE) optimization for spatial prediction of
rainfall-induced shallow landslides at a tropical hilly area of
Quy Hop, Vietnam. Overall, the fuzzy IBk model performed
better compared to other support vector machines and
tree-based models.

Although literature has proposed moving-average,
information-gain, and lazy methods for slope movement
predictions, a comparison of these methods on real-world
slope movement data is yet to be undertaken. In this paper,
we address this literature gap by comparing moving-average
models (SARIMA and AR) with Information-gain models
(REPTree and M5P) and lazy models (IBk and LWL). We
perform our investigation by considering the prediction of
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slope movements on the Tangni landslide in Chamoli, India.
To best of authors’ knowledge, this study is the first of its
kind to compare moving-average methods with lazy meth-
ods and information-gain methods on the Tangni landslide in
India.

Study Area

The study was performed on the Tangni landslide in Cha-
moli district of Uttarakhand, India. The study area covers an
area of 0.72 km2. It is located in the northern Himalayan
region at latitudes 30° 27′ 54.3″ N and longitudes 79° 27′
26.3″ E, at an altitude of 1450 m (Fig. 1a and b). As seen in
Fig. 1b, the Tangni landslide is located on National High-
way 58, which connects Ghaziabad in Uttar Pradesh near
New Delhi with Badrinath and Mana Pass in Uttarakhand.
The geology of this area consists of slate and dolomite rocks
(Chaturvedi et al. 2016). The natural formation slope is 30º
above the road level and 42º below the road level. The
nearby area is a forest of oak and pinewood trees. There have
been several prior slope-failures in this area causing road-
blocks and economic losses to tourism (Landslides near
Badrinath in Uttarakhand 2013).

Soil movement data was collected from the inclinometers,
across five different boreholes in Tangni landslide area at a
daily scale between 1st July 2012 and 1st July 2014. These
five boreholes are represented by different colors in Fig. 1b
(red—borehole 1, green—borehole 2, yellow—borehole 3,
blue—borehole 4, and pink—borehole 5). Each borehole
contained five sensors at different depths (3, 6, 9, 12, and
15 m). Data from some of these five boreholes was used for
evaluating different moving-average and support-vector
methods.

Methodology

Data Pre-processing

Data from Tangni landslide in Chamoli, India was obtained
from the Defense Terrain Research Laboratory, Defense
Research and Development Organization. The monitoring
system in each of the five boreholes at the Tangni landslide
contains inclinometer sensors at different depths (3, 6, 9, 12,
and 15 m). These sensors measure tilt in mm per m units
(essentially the angle the inclinometer tilts). Each incli-
nometer sensor is a 0.5-m long sensor that is installed ver-
tically at different depths in a borehole. The monitoring
system at Tangni landslide has five sensors per borehole
across five boreholes. Thus, in total there are 25 sensors
across 5 boreholes. Figure 2 shows the inclinometer sensor
installed in its casing at a certain depth.

As shown in Fig. 2, if there is a tilting movement (h) of
the inclinometer of length L, then the horizontal displace-
ment in the tilting direction is L sin h. For better under-
standing, we converted the displacement in mm per m units
into a h angle (degrees), where 1 mm/m displacement
equaled 0.05729°.

First, we calculated the relative tilt angle of each sensor
from its initial reading at the time of installation. Second, we
chose only those sensors from each borehole that gave the
maximum average tilt angle over a two-year period. Thus,
the data was reduced to five time-series, where each
time-series represented the relative tilt per borehole from the
sensor that moved the most in the borehole across the
two-year period. As the daily data was sparse, we averaged
the tilt over weeks to yield 78 weeks of average tilt data per
time-series. Figure 3a–e represents the average relative tilt
per week from five sensors across five boreholes (one sensor

Fig. 1 a Location of the study area. b The Tangni landslide on Google Maps$'Fig1<>
$tforig 18mm, 178.3mm<>
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Fig. 2 Inclinometer sensor installed in its casing at a certain dept. Source Wilson and Mikkelsen 1977

Fig. 3 Average tilt angle in degrees across five sensors (one per borehole). a Borehole 1 and 3 m sensor. b Borehole 2 and 12 m sensor.
c Borehole 3 and 6 m sensor. d Borehole 4 and 15 m sensor. e Borehole 5 and 15 m sensor
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per borehole) that caused the maximum average tilt across
78 weeks. These five time-series were used to compare the
moving-average methods with the Lazy and information
gain methods.

By convention, a negative tilt angle was downhill motion
and a positive tilt angle was an uphill motion. As seen in
Fig. 3c, a downhill motion starts from −0.11º in the 73rd
week and suddenly becomes larger (−4.4º) in the last four
weeks. The data was split in an 80:20 ratio (sixty-two weeks
for training and the last sixteen weeks for testing) across
different machine learning algorithms.

Machine Learning Models

Seasonal Auto-Regressive Integrated
Moving-Average (SARIMA)

Seasonal Auto-Regressive Integrated Moving-Average
(SARIMA) is a statistical forecasting method popular for
univariate time-series data that may contain trend and sea-
sonal components. It predicts the time-series by describing
the autocorrelations in data (Asteriou and Hall 2011).

Stationarity of Time-Series: A time-series with constant
values over time for mean, variance, and autocorrelation is
stationary. Most statistical forecasting methods assume that a
time-series can be made approximately stationary using
mathematical transformations such as differencing (Hynd-
man and Athanasopoulos 2018). The first step of building a
SARIMA model is stationarizing the data.

Auto Regressive (AR): An auto-regressive component in
the SARIMA model predicts a variable at current state by
passing the past values of the same variable to the model.
Thus, an auto-regressive model is defined as:

yt ¼ cþ/1yt�1 þ/2yt�2 þ :::þ/pyt�p þ �t ð1Þ

where p is the auto-regressive trend parameter, �t is white
noise and yt�1; yt�2 …yt�p denote the movement data of the
previous weeks (Asteriou and Hall 2011).

Moving Average (MA): A moving-average component in
the SARIMA model uses past prediction errors in a regres-
sion model, which is given in Eq. (2). A moving-average
model is defined as:

yt ¼ cþ �t þ h1�t�1 þ h2�t�2 þ :::þ hq�t�q ð2Þ

where q is the moving-average trend parameter, �t is white
noise and �t�1; �t�2. . . �t�q are the error terms at previous
weeks.

If we combine auto-regression (AR) in Eq. (1) and a
moving-average (MA) in Eq. (2) model on stationary data,
we obtain a non-seasonal ARIMA model, which is defined
as:

y
0
t ¼ cþ/1y

0
t�1 þ :::þ/py

0
t�p þ h1�t�1 þ :::þ hq�t�q þ �t

ð3Þ
SARIMA builds upon an ARIMA model by adding

seasonal parts to the ARIMA model (Asteriou and Hall
2011; Hyndman and Athanasopoulos 2018). The seasonal
parts of an ARIMA model can have an AR factor, a MA
factor, and an order of difference term. All these factors in
seasonal data operate across multiples of the number of
lagged periods in a season. In SARIMA, the three trend
elements that require calibration are the trend AR order ‘p’,
the trend difference order ‘d’ and trend MA order ‘q’.
Additional four seasonal elements that require calibration are
the seasonal AR order ‘P’, the seasonal difference order ‘D’,
the seasonal MA order ‘Q’ and the number of time steps ‘m’
for a single seasonal period. A SARIMA model performs
differencing of the order D at a lag equal to the number of
seasons ‘m’ to remove additive seasonal effects. As with lag
1 differencing to remove the trend, the lag ‘m’ differencing
introduces a moving-average term. The SARIMA model
also possess a trend parameter that captures the constant or
linear trend in data.

Instance Based-K Learner (or K—Nearest
Neighbour)

The IBk algorithm (Ade and Deshmukh 2014) uses a dis-
tance measure to locate k “closest” instances in the training
data for each test instance. Next, the algorithm uses those
selected instances to make a prediction. We calibrated the
value of the parameter k to find its best value for
slope-movement data.

Locally Weighted Learning (LWL)

The LWL (Englert 2017) is a general algorithm for locally
weighted learning. It assigns weights using an
instance-based method. In a supervised learning problem,
where each input is associated to one output, the algorithm
uses a similarity model to predict values for test data points.

Auto Regression (AR)

Auto regression (AR) is a time series model that uses
observations from previous time steps as input to a
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Training Data Testing Data

Fig. 4. Relative angle (in degree) over training data (62 weeks) and
test data (16 weeks) from the best performing combined SARIMA
model. a and b: borehole 1, 3m depth. c and d: borehole 2, 12m depth.

e and f: borehole 3, 6m depth. g and h: borehole 4, 15m depth. i and j:
borehole 5, 15m depth
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regression equation to predict the value at the next time step
(Asteriou and Hall 2011; Hyndman and Athanasopoulos
2018). The autoregression model is identical to the AR part
in the SARIMA model.

Reduced Error Pruning Tree (REPTree)

Basically, the reduced error pruning Tree (or REPTree)
algorithm uses the regression tree logic and creates multiple
trees in different iterations (Kalmegh 2015). After the trees
are created, the algorithm selects the best tree from all
generated trees as the representative. In pruning the tree, the
measure used is the mean square error on the predictions
made by the tree. Overall, the REPTree is a fast decision tree
learning algorithm that builds a decision tree based on
maximizing the information gain on attributes present in data
(Al-Nabi and Ahmed 2013).

M5P

M5P tree algorithm was developed by Wang and Witten
(Zhan et al. 2011). They modified the original M5 tree
algorithm which was developed by Quinlan (1992). M5P
tree algorithm was developed by modifying M5 tree to
handle enumerated attributes and attribute missing values. In
the M5P tree algorithm, before tree construction, all enu-
merated attributes are converted into binary variables.

M5P is powerful because it combines decision trees and
linear regression for predicting a continuous variable (Braga
et al. 2007a). Moreover, the M5P implement both regression
tree and model tree (Braga et al. 2007b). The M5P algorithm
adapts decision trees, firstly developed for classification, to
regression problem.

These problems involve predicting a continuous numeric
value instead of a discrete class. The M5P algorithm has

three stages (Braga et al. 2007a, b): building a tree, pruning
the tree and Smoothing.

Optimization of Model Parameters

Sarima

This model has eight parameters p, d, q, P, D, Q, m, and
Trend. Table 1 shows the range of variations for different
parameters in the SARIMA model. The trend parameter has
four different values, where absent means no trend, constant
means constant (horizontal) trend, linear means linear trend,
and finally, the constant with linear trend means there is both
a constant and linear trend. The m parameter means the
number of time steps for a single seasonal period. A zero
value for a parameter means that we do not include that
parameter in the model. A reason for using the SARIMA
model was that it allows one to account for a seasonal trend
present in the time-series. We had two SARIMA models,
one calibrated to each borehole (individual SARIMA model)
and one calibrated across all boreholes (combined SARIMA
model).

IBK

The size of the neighborhood was controlled by the k
parameter. We varied the k parameter in steps of 2 from 1 to
21 instances. Also, we varied the distance (similarity) metric
used as Manhattan distance or Euclidean distance.

LWL

The size of the neighbourhood was controlled by the k
parameter in this model as well. We varied the k parameter

Table 1 Parameters and their
variation in SARIMA

Parameters Range of values

Trend auto regressive (p) [0, 1, 2]

Trend eifferencing (d) [0, 1]

Trend moving-average (q) [0, 1, 2]

Trend [Absent, Constant, Linear, Constant with Linear Trend]

Seasonal auto-regressive (P) [0, 1, 2]

Seasonal differencing (D) [0, 1]

Seasonal moving-average (Q) [0, 1, 2]

Seasonal periods (m) [0, 1]
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in steps of 2 from 1 to 21 instances. Also, we varied the
distance (similarity) metric used as Manhattan distance or
Euclidean distance.

AR

This algorithm has parameters varied from 1 to 7, i.e., the
model could have beta coefficients corresponding to the last
7 lag terms.

REPTree

In this algorithm, we varied the minimum number of
instances per leaf between 1 and 4 and number of folds for
reduced error pruning between 1 and 5.

M5P

In this algorithm, we varied the minimum number of
instances per leaf between 1 and 5. Pruning of tree was used
as part of the M5P algorithm.

Results

Eachmodel was calibrated to each time-series, independently.
Table 2 shows the root-mean squared error (RMSE) results of
training of IBk, AR, LWL, M5P, REPTree and SARIMA
models on the training data across the five boreholes. As can
we see in Table 2, among all the algorithms, the LWL and
M5P performed the best and second best for training data.

Tables 3, 4, and 5 shows the optimized values of different
parameters in the AR, IBk, LWL, REPTree, M5P, and
SARIMA algorithms. For example, in Table 3, the best value
of the k parameter was 9 for a Manhattan distance function
across all boreholes for the IBk algorithm. The SARIMA
models showed non-zero seasonal Q parameter and
non-seasonal q parameter. In certain cases, the seasonal P,
the non-seasonal p, and the non-seasonal d parameters
possessed non-zero values. The combined SARIMA model
only possessed non-zero seasonal parameters. Overall, the
combined SARIMA model produced the best result with
0.38° RMSE in the training dataset. Whereas, the SARIMA
model calibrated to each borehole yielded a poorer RMSE of
0.71° in the training dataset.

Table 6 shows the RMSEs from different models across
different boreholes in the last 16-weeks of test data. As can
be seen in the Table 6, the individual and combined

Table 2 The RMSE of different algorithms in the training dataset

Algorithm Root-mean squared error (RMSE) in degree of angle

BHa 1 03 m BH 2 12 m BH 3 06 m BH 4 15 m BH 5 15 m Avgb

LWL 0.17 0.00 0.00 0.00 0.17 0.07

M5P 0.48 0.00 0.00 0.03 0.61 0.22

AR 0.84 0.00 0.00 0.02 0.71 0.31

REPTree 0.20 0.00 0.01 0.01 1.34 0.31

IBk 1.06 0.00 0.00 0.02 0.82 0.38

SARIMAc 1.03 0.00 0.02 0.03 0.84 0.38

SARIMAd 0.86 0.00 0.03 1.04 1.11 0.71
aBorehole bAverage cCombined model across all borehole dIndividual model across all boreholes

Table 3 Optimized parameters for Autoregression

Sensor borehole Location depth Function ð/tþ 1 ¼ b0 þ b1 � /t�1. . .bn � /t�nÞ
1 03-m /tþ 1 ¼ �3:9� 0:57tþ 1:0/t�1 � 0:34/t�2

2 12-m /tþ 1 ¼ �42:96

3 06-m /tþ 1 ¼ 0:01þ 1:23/t�1 � 0:61/t�2 þ 0:44/t�3 � 0:18/t�4

4 15-m /tþ 1 ¼ �16:94þ 0:72/t�1 � 0:33/t�5 þ 0:51/t�6 � 0:20/t�7

5 15-m /tþ 1 ¼ �23:64þ 0:26tþ 0:57/t�1 þ 0:42/t�3 � 0:46/t�4 þ 0:24/t�5 þ 0:30/t�6 � 0:41/t�7
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SARIMA and AR models performed best and second best
compared to all other ML algorithms.

Figure 4 shows the fits of the combined SARIMA Model
to the time-series data across the five boreholes in the
training and test datasets. Overall, these results are reason-
ably good with very small RMSE values.

Discussion and Conclusion

One focus of machine-learning (ML) algorithms could be the
prediction of slope-movements in advance to timely alert
people about impending landslides. In this work, we applied
moving-average models (SARIMA and AR), lazy models
(IBk and LWL) and information-gain models on weekly
slope-movement data from the Tangni landslides in Chamoli,

India. Our results revealed that the moving-average models
(SARIMA and AR) outperformed the lazy models (IBk and
LWL) and information-gain models (REPTree and M5P) on
test data. One likely reason for the SARIMAmodel to perform
better compared to other models could be because this model
has seasonal, auto-regressive, integrated, andmoving-average
components built into its working. Similarly, the AR model
may also contain the AR component and this component
helped this model to perform better. A likely reason for the
combined SARIMA model to perform similar to or better
compared to the individual SARIMA models could be that
seasonal components fitted the dataset better compared to the
non-seasonal components. It could also be that the similar
geological and hydrological conditions across co-located
boreholes made the combined SARIMA model to perform
better compared to the individual SARIMA models. In fact,

Table 4 Different ML
algorithms and their calibrated
parameters value

Algorithm Parameters Calibrated values

IBk K 9

Distance function Manhattan

LWL K 9

Distance function Manhattan

REPTree Minimum number of instances 1

Number of folds 3

M5P Minimum number of instances 4

Table 5 Optimized parameter
for SARIMA

SARIMA model Location Best set of parameters [(p, d, q), (P, D, Q, m), ‘Trend’]

BHa Depth

Individual 1 03 m [(0, 1, 0), (0, 0, 1, 0), ‘Absent’]

2 12 m [(0, 0, 1), (1, 0, 1, 1), ‘Constant’]

3 06 m [(0, 1, 1), (0, 0, 0, 0), ‘Absent’]

4 15 m [(2, 0, 1), (0, 0, 1, 0), ‘Absent’]

5 15 m [(1, 0, 0), (0, 0, 0, 0), ‘Absent’]

Combined All [(0, 0, 0), (0, 1,1, 1), ‘Absent’]
aBorehole

Table 6 The RMSE of different
algorithms in the testing dataset

Algorithm Root-mean squared error (RMSE) in degree of angle

BHa 1 03 m BH 2 12 m BH 3 06 m BH 4 15 m BH 5 15 m Avgb

SARIMAc 0.00 0.00 0.52 0.06 1.05 0.33

SARIMAd 0.00 0.00 0.52 0.07 1.15 0.35

AR 0.02 0.00 0.57 0.07 1.42 0.53

LWL 0.00 0.00 1.55 0.09 1.12 0.55

IBk 0.00 0.00 1.55 0.09 1.35 0.60

REPTree 0.00 0.00 1.55 0.09 1.70 0.67

M5P 0.46 0.00 0.67 0.63 2.13 0.78
aBorehole bAverage cCombined model across all borehole dIndividual model across all boreholes
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the combined SARIMA model showed similar results across
both training and test data compared to individual SARIMA
models, where the latter performed poorly in training data.

In this paper, we were able to show that moving-average
methods to outperform lazy and information-gain algorithms
for real-world slope-movement predictions. These results
may not agree with findings in literature (Bui et al. 2017),
where lazy algorithms have been shown to dominate other
models. Thus, slope-movement predictions at different pla-
ces may need different algorithms.

As part of our future research, we plan to extend these
analyses to other ML algorithms including neural-network
methods including the use of both artificial neural networks
as well as recurrent neural networks (e.g., long short-term
memory models). Some of these ideas form the immediate
next steps in our program on slope-movement predictions
using machine-learning techniques.
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New Insights into the Spatiotemporal
Precursory Failure Dynamics of the 2017
Xinmo Landslide and Its Surrounds

Antoinette Tordesillas, Shuo Zhou, Federico Di Traglia,
and Emanuele Intrieri

Abstract

Sentinel-1 data on the kinematics of the 2017 Xinmo
landslide and its surrounds are studied to understand the
precursory failure dynamics of a large region with a
historical predisposition to landslides. We perform a
systematic spatiotemporal analysis over a period of two
years to identify high-risk regions and discriminate
between their precursory failure dynamics. We found
the 2017 Xinmo landslide source to exhibit a unique
kinematic signature which can be distinguished, almost a
year in advance, from those of other sites of instabilities.
Findings pave the way for the development of a new
framework that exploits these differences in the dynamics
of motions to accurately predict the location and size of a
catastrophic landslide, and distinguish it from false alarms
and/or smaller land slips early in the pre-failure regime.

Keywords

Sentinel-1 �Kinematics � Clustering � Precursory failure
dynamics � Spatiotemporal

Introduction

The level of hazard and hence risk of a landslide depends
crucially on its location and size. Consequently, the accurate
and timely prediction of the location and geometry of an
impending landslide is essential for effective risk manage-
ment and decision-making (Bellugi et al. 2015; Intrieri et al.
2012). Unfortunately, despite tremendous advances in the

acquisition of monitoring data for early warning systems,
identifying precisely where a catastrophic slope failure will
likely occur remains a challenge. In particular, one key
aspect remains poorly understood: the precursory failure
dynamics of landslide kinematics and its influence on the
location and size of the rupture area. Landslide kinematics
bears spatiotemporal structure; hence data of high spatial and
temporal resolution are needed to properly characterise its
salient features (Intrieri et al. 2012; Schulz et al. 2017). To
this end, we study data from multi temporal interferometric
synthetic aperture radar (MT-InSAR) using a method that
integrates advanced analytics with state-of-the-art knowl-
edge of granular media failure dynamics (Das and Torde-
sillas 2019; Singh and Tordesillas 2020; Tordesillas et al.
2018; Zhou et al. 2020; Wang et al. 2020; and references
therein).

MT-InSAR techniques offer data with high spatial and
temporal coverage of surface deformation. This is achieved
by processing a long stack of synthetic aperture radar ima-
ges, leading to measurements of millimetre-scale displace-
ments over long time frames with reduced temporal
decorrelation, atmospheric artefacts and other error sources
(Ferretti et al. 2011). But a major problem with large
MT-InSAR datasets is that they are difficult to interpret due
to the huge number of moving points. For this reason, var-
ious techniques for mapping fast moving areas have been
proposed, mainly based on clustering analysis (Lu et al.
2012). These studies, however, do not predict the area that
will actually collapse. Indeed, landslide forecasting from
satellites has so far proved to be feasible only in the after-
math of the event, when the precise location of the landslide
is known (Carlà et al. 2019). Significant progress in
MT-InSAR data usage would thus be achieved by a method
that can precisely predict the site of collapse (and not simply
detect areas displaying large movements) from a very large
MT-InSAR dataset – without need for any other information
(i.e. Landslides Inventory Maps, Digital Elevation Models,
field surveys etc.). Such a method, which can potentially
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identify newly formed landslides with a high probability of
collapse, is proposed here.

Using data from Sentinel-1 (Intrieri et al. 2018), we
develop and test our method for a large region comprising
130,000 measurement points (MPs) including the source of
the 2017 Xinmo landslide. The region is in an area of active
tectonics and is highly susceptible to recurring landslides in
multiple locations – in tuned with earthquake and rainfall
cycles (Fan et al. 2017). The study period is around 2 years
and culminates at the time of catastrophic failure (ToF) on
24 June 2017. Given the history of the region, many local
sites of instability prior to ToF may have led to smaller
landslides while others may have never eventuated into an
actual collapse – a defining feature that, for our purposes,
can be defined as “false alarms”.

The specific question we seek to answer is: Did the
landslide source exhibit unique precursory dynamics that
distinguish it from other sites of instability in the region and,
if so, how early? The impetus of this research into this
question in part stems from the “hot issues” raised in Fan
et al. (2017): Did the source mass exhibit any precursors
before sliding and what was its deformation history? Is it
possible to perform early recognition and warning of such
kind of landslides, originating in inaccessible, high-elevation
and steep mountain slopes with dense vegetation, and, if so,
how?

Sentinel-1 Data on Xinmo Landslide

On 24 June 2017 a rock avalanche occurred on the mountain
above Xinmo village. Initially, 4.3 million m3 of rock
material detached from near the crest of the mountain and
gained momentum along the slope; the volume increased up
to 13 million m3 as the rock avalanche entrained new
material until it eventually reached Xinmo village with an
estimated velocity of 250 km/h (Fan et al. 2017). This
caused the death of 83 people and the destruction of 64
houses. Given the remoteness of the source area (located on
a 55°-60° steep slope at an elevation of 3400 m a.s.l.),
detecting early signs of instability through field survey was
virtually impossible and, although Sentinel-1 data were
regularly acquired, no data elaboration and interpretation
was performed. This made it only possible to assess that, in
hindsight, the displacement time series gathered by
Sentinel-1 showed clear signs of tertiary creep leading to
failure (Carlà et al. 2019; Intrieri et al. 2018). The data used
to perform this analysis (and which are also adopted in the
present paper) consisted in 45 SAR images acquired by
Sentinel-1 constellation in C-band (6.5 cm wavelength), at
5 � 14 m spatial resolution, along the descending orbit
(incidence angle of 40.78°) and spanning from 9 October
2014 to 19 June 2017 (i.e. five days before the failure). Data

cover a 460 km2 area, encapsulating 130,000 measurement
points, elaborated using SqueeSAR algorithm (Ferretti et al.
2011).

It is apparent that making an actual prediction would have
been difficult because of the small size of the initial critically
unstable area (Fig. 1) with respect to the 460 km2 area,
especially because other zones were displaying movements.
This highlights the necessity of a method that, starting from
a wide-scale map, is able to precisely and timely pinpoint
slopes where failure is approaching, even before they start
displaying a tertiary creep behaviour (Intrieri et al. 2018).

The method we propose here is different from both
Intrieri et al. (2018) and Carlà et al. (2019) where individual
displacement time series for the MPs in the landslide source
were analysed and, as such, can be vulnerable to noise
effects and estimation errors in displacement. By contrast,
here the motion of all 130,000 MPs are examined to uncover
emergent spatiotemporal patterns. In this task, the relative
(not the absolute) values of displacements matter the most in
identifying the dynamics that differentiate the landslide
source area from the other high-risk areas. Consequently,
one of the advantages of our approach is that it is more
robust to noise compared to traditional landslide forecasting
methods of analysing a univariate displacement time series
from selected locations.

Methods

Here we describe our proposed method which is designed to
both characterise the spatiotemporal dynamics of motions of
MPs and identify patterns that distinguish the true landslide
source from the other regions of high risk of a landslide.
First, we propose a procedure to identify those regions of
highest risk of a landslide. Next, the actual landslide source,
together with three other representative high-risk regions, are
characterised. To do this, we employ a range of techniques,
including knowledge of granular failure dynamics gained
from new data-driven approaches, to uncover salient kine-
matic patterns that distinguish the region most likely to
undergo catastrophic failure.

Identification of High-Risk Regions

We proceed in two steps. In step 1, we partition the whole
monitoring domain into a 40 � 40 equal-sized grid partition.
Each grid cell covers 0.3 km2, which is of similar size to the
landslide source area around the Xinmo village. On average,
each grid cell contains around 80 MPs. Since MPs are not
uniformly distributed in the monitoring space, we eliminate
grid cells that have less than 100 MPs from further analysis,
resulting in a total of 368 valid grid cells. In step 2, we
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identify the high-risk regions. To do so, we first form a
candidate set of grid cells that show motions considerably
larger than all others. Cumulative displacement, velocity and
acceleration are used to identify three high-risk regions
(denoted by A1-A3), to compare against the landslide source
(A*). At each time stamp, cells are ranked by their cumu-
lative displacement; those in the top 2.5% are added to the
candidate set. The cell with the highest frequency in this
displacement candidate set is treated as the high-risk region
A1. This protocol is repeated for velocity and acceleration to
find A2 and A3, respectively.

Characterisation of High-Risk Regions

Each of the high-risk regions, A1-A3 and A*, contains
hundreds of MPs. It is difficult to directly compare these
regions and discover patterns that can discriminate A* from
the other high-risk areas based on the raw multivariate time
series. Consequently, we propose to characterise each region
using advanced analytics techniques and concepts – in
addition to basic statistical properties. Specifically, we build
on recent studies which examined kinematic clustering (Das
and Tordesillas 2019; Tordesillas et al. 2018; Zhou et al.
2020) and explosive percolation (Singh and Tordesillas
2020) in the precursory failure regime. Such studies, which
analysed radar data of a rockslide in an open pit mine and

various laboratory tests, used knowledge of kinematic pat-
terns that emerge when different sites of instabilities interact
in the precursory failure regime in granular systems. For
example, in laboratory samples, antecedent localised failure
zones (e.g., cracks and shear bands) are known to interact,
leading to structural arrest in some parts while failure
amplifies in other parts, before catastrophic failure occurs.
Similar phenomena at the large scale have been reported
(Intrieri et al. 2018). Findings from Singh and Tordesillas
(2020) suggest that the spatiotemporal dynamics of this
interaction, at both small and large scales, manifest a distinct
pattern of kinematic clustering and, crucially, the quality and
temporal persistence of the “active cluster” for a given
region determine the likely location and time of catastrophic
failure. We emphasise that the characterisation of the
spatiotemporal pre-failure dynamics and the determi-
nation of the active cluster (set of MPs that form a cluster
with the highest mean displacement) for each region is
performed entirely in the displacement-state-space
(DSS). No information on the locations of the MPs is
used to inform these studies, except for visualisation and
validation of the spatial location and geometry of the
predicted area of collapse.

Following Zhou et al. (2020), we perform a k-means
clustering (Lloyd 1982) analysis in DSS for each region at
each time stamp. That is, MPs are assigned into k clusters
such that each MP has the minimal distance in DSS to its

 
(a) Locations of high-risk 
regions 

(b) Mean displacement 

 
(c) Mean velocity (d) Mean acceleration 

Fig. 1 Locations and temporal
evolutions of the kinematic
features of four high-risk regions
A1, A2, A3 and A*. Region A*
encapsulates the Xinmo landslide
source. BG denotes all other MPs
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cluster centre (i.e., mean displacement over MPs within the
cluster). Here we perform a quantitative evaluation of the
clustering quality to find the optimum number of clusters: 2
for all time stamps. Accordingly, we set k = 2: one is the
active cluster which corresponds to the unstable sliding area;
the other is the stable area.

We characterise the dynamics of the kinematic clustering
pattern from a number of aspects. First, since the active
cluster provides an early prediction of the likely sliding area,
we can apply the well-known Fukuzono’s method (Fuku-
zono 1985) to study the velocity time series of the MPs
belonging to this area. Specifically, for a given region and
time stamp, a linear regression is fitted to the inverse of the
mean velocity of the predicted sliding area for the last 6 time
stamps to current time, in accordance with the size of the
time window in Intrieri et al. (2018). The goodness of fit is
used to identify an acceleration regime, by choosing the
time period with the highest r-squared and a slope lower than
-0.2. We refer to this time period as the tertiary creep phase.

Two metrics are used to summarise the dynamics of the
clustering pattern: normalised mutual information (NMI)
(Vinh et al. 2010) and the Silhouette score S (Rousseeuw
1987). NMI is a clustering similarity measurement, used here
to quantify the persistence of clustering assignments
between consecutive time stamps as follows:

NMI Yt; Ytþ 1ð Þ ¼ I Yt; Ytþ 1ð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

H Ytð ÞHðYtþ 1Þ
p

where Yt and Ytþ 1 are the clustering assignments at time t
and tþ 1, I Yt; Ytþ 1ð Þ is the mutual information between Yt

and Ytþ 1, and H �ð Þ is the entropy of the corresponding
clustering partition. NMI = 1 means the clustering pattern at
the current and previous times are exactly the same. Thus,
the higher the NMI score, the more persistent and robust is
the clustering pattern across time.

In addition, the Silhouette score S, which is the Silhouette
coefficient averaged among the MPs in each region, is used
to quantify the clustering quality. Specifically, the Silhouette

coefficient of the i-th MP at time t; sðiÞt ; is a measure of how
similar it is to its own cluster compared to the other cluster:

sðiÞt ¼ bt � at
max at; btð Þ

where at is the mean distance (measured in DSS) of the i-th
MP to other MPs in the same cluster at time t, bt is the
averaged distance to MPs in the other cluster. The Silhouette
score S ranges from -1 to 1. A value close to 1 means that
MPs in different clusters are well separated in terms of their
displacements, while MPs in the same cluster are very
similar – i.e., MPs move in near-rigid-body motion.

A more powerful technique than k-means clustering
analysis is the method proposed by Singh and Tordesillas
(2020) using the concept of explosive percolation (Ach-
lioptas et al. 2009). Distinct from k-means, this method does
not depend on a prescribed k. Its key merit is that it provides
a succinct summary of the time evolution of the number, size
and member MPs of individual clusters, as well as their
kinematic separation in DSS. At each time stamp, MPs
within a kinematic-distance r in DSS are classified in the
same cluster. The growth in the size of the largest cluster, p
(r, t) = G(r, t)/n, is tracked as r is systematically increased,
such that G(r, t) is the number of MPs in the largest cluster
and n is the total number of MPs in the studied high-risk
region. In the absence of a clustering pattern in DSS, p(r, t)
should increase with r continuously until the largest cluster
contains all n MPs. On the other hand, if the region is
fractured, then member MPs may exhibit subdivided
motions: e.g., a group of MPs may show accelerated motions
and thus form a separate cluster in the high-displacement end
of DSS, away from the MPs in the stable cluster in the
low-displacement end of DSS. Depending on the number of
clusters, this partitioning in motion results in multiple dis-
continuous jumps p(r, t) as r increases. Each such jump or
“explosive” growth in the size of the largest cluster results
when a cluster is amalgamated into the largest cluster. These
mergers lead to a distinctive stair-case pattern of consecutive
“run-rise” cycles in the profile p(r, t) vs r. The number of
rises in each profile corresponds to one less than the number
of clusters. The height of each “rise” corresponds to the size
of the newly merged cluster, while the width of each “run”
preceding the rise corresponds to the separation between the
mean displacements of MPs in the largest cluster and its
newly subsumed members. Readers are referred to (Singh
and Tordesillas 2020) for complete details.

Results and Discussions

The positions of the three identified high-risk regions (A1,
A2, A3 as described in the previous section) relative to the
entire monitoring domain is shown in Fig. 1a, along with a
comparison of their motions against those in the region A*
containing the landslide source. Relative to A1-A3, A*
exhibits the highest mean displacement (Fig. 1b) of con-
stituent MPs in the year leading up to ToF (24 June 2017),
followed by a sharp rise in velocity and acceleration in the
last 9-week period of 20 April 2017 to 19 June 2017
(Fig. 1c, d). On average, spatially and temporally, the
motions in A1 are similar to those in A*. Although, in the
latter half of the monitoring period, motions in A* accelerate
and surpass those in A1, the real difference between the two
is only recorded in the last time stamp, when A* experiences
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a strong acceleration; apart from that, a manifestly similar
pattern of behaviour can be observed in the time series for
A* and A1 thus giving no hint of their vastly different
outcome. As for A2 and A3, relatively large fluctuations can
be observed in their mean displacement and velocity, though
the mean displacement in these regions remain consistently
lower than those observed in A*.

In Figs. 2–6, we show the results from recently developed
analytics approaches to characterise the spatiotemporal
dynamics of landslides in the pre-failure regime. Different
tertiary creep phases are identified for different regions: 20
April 2017 to 19 June 2017 for A* and A3.

A3, 20 Jan 2016 to 19 May 2016 for A1, and 7 April
2015 to 5 August 2015 for A2 (Fig. 2). The corresponding
clustering pattern for each region during its respective ter-
tiary creep phase is shown in Fig. 3. The spatial pattern of
the predicted sliding area in A* is coherent while those in
A1, A2 and A3 are relatively fragmented. This suggests that
the active sliding area in A* will likely detach as a solid
whole.

In Fig. 4a, we observe a consistently high clustering
persistence in time for A* with NMI > 0.8 from February
2016. The clustering quality (Silhouette score S in Fig. 4b)
of A* is also gradually increasing with increasing time. This
means that for A*, the separation among its MPs in DSS
manifests way before the ToF and is steadily developing to
the final failure. By contrast, this pattern is absent in the
other high-risk regions. Focussing on the tertiary creep phase

for each region (highlighted in Fig. 4), we observe A* shows
consistently high NMI and S (NMI > 0.8 and S > 0.75). By
comparison, although both A1 and A2 show relatively good
quality clustering during their tertiary creep phases (S * 0.7
for A1 and S * 0.6 for A2), their clustering patterns do not
persist in time (NMI * 0.5 for A1 and NMI * 0.2 for A2).

The results from the explosive percolation analysis are
given in Fig. 5 during the tertiary creep phase and, more
broadly, for the entire monitoring period in Fig. 6. Consis-
tent with the recent study of a developing rockslide (Singh
and Tordesillas 2020), we similarly find explosive percola-
tion behaviour as evident in the distinctive stair-case pattern
in all the high-risk areas during their respective tertiary creep
phase. However, the pattern in A* (Fig. 5a) is distinct from
those observed in the other regions (Fig. 5b–d). Specifically,
there is one major step transition or jump for the same value
of pðr; tÞ across all time states in the tertiary creep regime for
A*. This signifies the emergence of two major clusters that
remain essentially invariant with respect to member MPs and
whose inter-cluster motions become increasingly separated
with time. By contrast, the clusters in the other regions keep
changing in size, separation and number with time (Fig. 5b–
d). Finally, the profiles in Fig. 6 suggest that a critical
transition to the precursory failure regime for A* occurred
around April 2016. Prior to this time, the profiles are rela-
tively smooth and lacking the characteristic prolonged run
followed by a step transition that define the so-called
explosive percolation transition (Singh and Tordesillas

(a) A* (b) A1

(c) A2 (d) A3

Fig. 2 Evolution with time of the
inverse mean velocity of the
predicted sliding zone in each
high-risk region. The regression
line is shown for the tertiary creep
phase, that time period when the
goodness of fit is maximum
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2020). Most notably, the inverse velocity method only
anticipates failure from April 2017, i.e. one year later
(Intrieri et al. 2018).

Conclusions

We studied cumulative displacement time series data across
a large region with a long history of susceptibility to land-
slides from Sentinel-1 satellites. In particular, we charac-
terised the spatiotemporal precursory failure dynamics of
motions in regions of high risk of a landslide, including that
encapsulating the 2017 Xinmo landslide source. The patterns
uncovered effectively distinguish the true landslide region
from the other high-risk regions that may constitute false

alarms or smaller landslides. Specifically, our key findings
are:

• In the tertiary creep phase, A* distinguishes itself from
A1-A3 by its increasingly high Silhouette and consis-
tently high NMI scores. This suggests that MPs in the
sliding area increasingly move “in rigid-body motion” as
ToF draws near.

• The distinct spatiotemporal dynamics of motions in A*
during the tertiary creep phase can be observed even
before the tertiary creep phase: from April 2016, more
than a year before ToF.

• Results here suggest a regime change point occurred for
A* on April 2016. Fan et al. (2017) reported a large
quantity of pre-existing inter-connected cracks and

(a) A* (b) A1

(c) A2 (d) A3

Fig. 3 The kinematic clustering
pattern for k = 2 clusters mapped
to the spatial domain during the
tertiary creep phase. The active
cluster (red MPs) corresponds to
the predicted sliding area for each
high-risk region

(a) NMI w.r.t. time                (b) S w.r.t. time

Fig. 4 Spatiotemporal dynamics
of the clustering pattern in the
motions of the constituent MPs
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fractures within the rock mass in this source area from
prior earthquakes. As April marks the start of the rainy
monsoon season, it is likely that the infiltration of water
into these cracks from the ensuing heavy rainfall may
have induced further growth of the old cracks, as well as
created new cracks and fractures in the rock mass. The
clustering pattern uncovered here suggests a significant

crack growth of the sliding surface initiated as early as
April 2016.

Ongoing work is now focussed on the development of a
new machine learning framework that exploits these differ-
ences in pre-failure dynamics of motions to predict the
location and size of a catastrophic landslide and distinguish

(a) A* (b) A1

(c) A2 (d) A3

Fig. 5 Explosive percolation
profiles at different time states
during the tertiary creep phase for
each high-risk region

(a) Before April 2016 (b) After April 2016

Fig. 6 Explosive percolation
profiles before and after April
2016 for A*. Light grey to black
corresponds to increasing time
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it from false alarms and/or smaller land slips early in the
precursory failure regime.
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Cutting-Edge Technologies Aiming for Better
Outcomes of Landslide Disaster Mitigation

Kazuo Konagai

The International Consortium on Landslides (ICL) and The
Global Promotion Committee of the International Pro-
gramme on Landslides (GPC/IPL) have been responsible for
organizing the World Landslide Forums (WLFs) every three
years since 2008. Ever since the 1st WLF, the forums have
long been the arena for landslide researchers and practi-
tioners to exchange up-to-date information of recent devas-
tations caused by landslides, cutting-edge technologies for
landslide disaster mitigations and early warnings etc. to
establish synergies among all participants worldwide.

Though the upcoming WLF5 has officially been post-
poned by one year to 2 to 6 November 2021 due to the
global disruption caused by the coronavirus pandemic, the
WLF5 will be all the more important with the Kyoto
Landslide Commitment 2020 (KLC2020) to be launched as
planned in the final online signatory meeting on 5 November
2020; the KLC 2020 is intended to be our action goals as the
further advanced successor of the ‘Sendai Landslide Part-
nerships 2015–2025 for Global Promotion of Understanding
and Reducing Landslide Disaster Risk’ in line with some of
17 Sustainable Development Goals (SDGs), particularly
SDG 11, “Make cities and human settlements inclusive, safe,
resilient and sustainable,” of the United Nations.

For these important goals, the ICL has been inviting
sponsorship from industries, businesses, and government
agencies; all leading players in landslide science and tech-
nologies. They have been supporting a variety of the

ICL/IPL activities such as publishing the International
full-color journal “Landslides (Journal of the International
Consortium on Landslides), full-color books for WLFs,
exhibiting their cutting-edge technologies in WLFs, etc.
Here follow short introductions of their activities with their
names, addresses and contact information:

Marui & Co. Ltd.

1-9-17 Goryo, Daito City, Osaka 574-0064, Japan.
URL: https://marui-group.co.jp/en/index.html
Contact: hp-mail@marui-group.co.jp

Marui & Co. Ltd. celebrates its 100th anniversary in
2020. Marui, as one of the leading manufacturers of testing
apparatuses in Japan, has been constantly striving to further
improve its service since its foundation in 1920, thus con-
tributing to the sustainable development of our nation and
society. Our main products cover a wide variety of
destructive and non-destructive testing apparatuses in the
fields of geotechnical engineering, concrete engineering
(mortar, aggregates, etc.), and ceramic engineering. Of
special note is that Marui has been helping manufacture
ring-shear apparatuses half-century long based on the
leading-edge idea of Dr. Kyoji Sassa, Professor Emeritus at
the Kyoto University. Marui has delivered total 7 ring-shear
apparatuses to the Disaster Prevention Research Institute,
Kyoto University, and 2 to the International Consortium on
Landslides. Also the apparatuses were exported to the Uni-
ted States of America, China, Croatia and Vietnam.

Marui & Co. Ltd. takes great pleasure in developing,
manufacturing, and providing new products of high value
sharing the delight of achievement with our customers, and

K. Konagai (&)
Secretary General, Organizing Committee of the Fifth World
Landslide Forum, International Consortium On Landslides, Kyoto,
606-8226, Japan
e-mail: konagai@iclhq.org
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thus contributing to the social development. The whole staff
of Marui & Co. Ltd. are determined to devote ceaseless
effort to keep its organization optimized for its speedy and
high-quality services, by the motto “Creativity and Revo-
lution”, and strive hard to take a step further, as a leading
manufacturer of testing apparatuses, to answer our cus-
tomer's expectations for the twenty-second century to come.

Nippon Koei Co., Ltd.

5-4 Kojimachi, Chiyoda-ku, Tokyo 102-8539, Japan.
URL: https://www.n-koei.co.jp/english/
Contact: https://www.n-koei.co.jp/english/contact/
input.

Nippon Koei Co., Ltd. and its group companies conduct
many projects to support the growth of developing countries
in Asia, Africa, the Middle and Near East, Latin America
and other regions. Examples of their efforts include envi-
ronmental measures to combat global warming, develop-
ment of regional transportation infrastructure to support the
rapid growth of emerging economies, and reconstruction
assistance for regions affected by conflict and/or natural
disasters.

OSASI Technos, Inc.

65-3 Hongu-cho, Kochi City, Kochi 780-0945, Japan.
URL: https://www.osasi.co.jp/en/
Contact: cs@osasi.co.jp

OSASI Technos, Inc. has been making its best efforts to
develop its cutting-edge technologies for landslide early
warning. Its unique compact and lightweight sensors making
up the Landslide Early Warning System enable long-term
monitoring of unstable landslide mass movements, precipi-
tations, porewater pressure buildups, etc., in a remote
mountainous area where commercial power is often
unavailable. OSASI Technos, Inc. is also proud of its
advanced technology to transfer observed data even in areas
with poor telecom environments as proven in the successful
implementations in South Asia.

All stuff members of OSASI Technos work together for
mitigation of landslide disasters worldwide.

Godai Corporation

1-35 Kuroda, Kanazawa City, Ishikawa Prefecture 921-8051,
Japan.
URL: https://soft.godai.co.jp/En/Soft/Product/
Products/LS-RAPID/
Contact: pp-sales@godai.co.jp

Ever since its foundation in 1965, Godai Kaihatsu Co.,
Ltd., a civil engineering consulting firm, has long been
providing a variety of software and measures particularly for
natural disaster mitigation. With its rich expertise in both
civil engineering and information technology (IT), the
company has its primary goal to address real world needs of
disaster mitigation. All the staff of Godai Kaihatsu Co., Ltd.
feel it more than happy that their cutting-edge technologies
help mitigate natural disasters.

Japan Conservation Engineers & Co., Ltd.

3-18-5 Toranomon, Minato-ku, Tokyo 1,050,001, Japan.
URL: https://www.jce.co.jp/en/
Contact: go_info@jce.jp

Japan Conservation Engineers & Co., Ltd. (JCE) is a
general consulting firm working on landslide prevention
research and consulting. JCE provides various disaster pre-
vention technologies for debris flows, landslides, slope
failures, rockfalls, etc. In addition, JCE is proud of its
expertise having been conducting surveys and consulting
works on coastal erosions and tsunami countermeasures for
about 20 years. JCE contributes to the world through its
activities in the realm of both structural and non-structural
measures to build a resilient society.

OYO Corporation

7 Kanda-Mitoshiro-cho, Chiyoda-ku, Tokyo 101-8486, Japan.
URL: https://www.oyo.co.jp/english/
Contact: https://www.oyo.co.jp/english/contacts/.

OYO Corporation, the top geological survey company in
Japan established in Tokyo in 1957, is well known as one of
leading companies providing cutting-edge technologies and
measures for natural disasters such as landslides,
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earthquakes, tsunamis, and floods. Not just developing and
selling measuring instruments related to disaster prevention,
OYO also delivers a market-leading services in 3D
ground/geological modeling and 3D exploration
technologies.

Kokusai Kogyo Co., Ltd.

2 Rokubancho, Chiyoda-ku, Tokyo 102-0085, Japan.
URL: https://www.kkc.co.jp/english/index.html
Contact: overseas@kk-grp.jp

Kokusai Kogyo Co., Ltd. as a leading company of
geospatial information technologies, has long been provid-
ing public services with its comprehensive expertise to
address real world needs and cutting-edge measurement
technologies. Kokusai Kogyo Co., Ltd. helps rebuild “Green
Communities,” which has been of our great concern in terms
of “environment and energy,” “disaster risk reduction” and
“asset management”. Kokusai Kogyo Co., Ltd. offers the
advanced and comprehensive analyses of geospatial infor-
mation for developing new government policies, maintain-
ing and operating social infrastructures safe and secure, and
implementing low-carbon measures in cities.

Influenced by the recent global climate change, extreme
rainfall events have become more frequent worldwide and
resultant hydro-meteorological hazards are creating more
deaths and devastations particularly in many developing
countries where effective advanced countermeasures are not
readily available. Kokusai Kogyo Co., Ltd. is proud of its
achievements in establishing resilient infrastructure systems
and implementing effective monitoring/early warning sys-
tems in developing countries, which have long been helping
reduce the risks from natural hazards.

Geobrugg AG

Aachstrasse 11, 8590 Romanshorn, Switzerland.
URL: https://www.geobrugg.com
Contact: info@geobrugg.com

Swiss company Geobrugg is the global leader in the
supply of high-tensile steel wire safety nets and meshes –

with production facilities on four continents, as well as
branches and partners in over 50 countries. True to the
philosophy “Safety is our nature” the company develops and
manufactures protection systems made of high-tensile steel

wire. These systems protect against natural hazards such as
rockfall, landslides, debris flow and avalanches. They ensure
safety in mining and tunneling, as well as on motorsport
tracks and stop other impacts from falling or flying objects.
More than 65 years of experience and close collaboration
with research institutes and universities make Geobrugg a
pioneer in these fields.

Ellegi Srl

Via Petrarca, 55 I-22070 Rovello Porro (CO) Italy.
URL: https://www.lisalab.com/engl/?seze=1
Contact: info@lisalab.com

Ellegi srl provides worldwide monitoring services and
produces Ground Based synthetic aperture radar (GBInsAR)
for remote measurement of displacements and deformations
on natural hazards and manmade buildings using its own
designed and patented LiSALab system.

Its activities started in 2003 as a spin off project to exploit
commercially the Ground Based Linear Synthetic Aperture
Radars technology developed by European Commission’s
Ispra Joint Research Centre and based on the results of more
than 10 years of research. Since then Ellegi has industrial-
ized and developed the core technology of the LiSALab
system and latest LiSAmobile system represents the 5th
generation of development.

In 2003 it was the first commercial company in the world
to provide GBInSAR measurements of natural hazards and
structure.

Ellegi srl offers:

• Displacement fields measurement, control and monitoring
of the deformation caused by natural hazards, like land-
slides, rockslides, sinkhole, volcanic deformation in every
operative condition, including emergencies,

• Structural strain fields measurement, control, monitoring
and diagnosis of the deformation affecting buildings,
bridges, viaducts, dams.

• GBInSAR monitoring systems, installation, management
and maintenance in order to provide information about
natural hazards or anthropic activity, that can generate or
cause slopes failures or buildings instabilities.

• In all the above-mentioned activities Ellegi srl uses the
GBInSAR LiSALab technology that represents a real
“break-through”.

Cutting-Edge Technologies Aiming … 341

https://www.kkc.co.jp/english/index.html
https://www.geobrugg.com
https://www.lisalab.com/engl/?seze=1


Chuo Kaihatsu Corporation

3-13-5 Nishi-waseda, Shinjuku-ku, Tokyo 169-8612, Japan.
URL: https://www.ckcnet.co.jp/global/
Contact: https://www.ckcnet.co.jp/contactus/.

Chuo Kaihatsu Corporation (CKC) was founded in 1946,
and has been aiming to become the “Only One” consultant
for our customers. We engage in the hands-on work that will
“Remain with the earth, Remain in people’s hearts, and Lead
to a prosperous future.” We focus on road, river and dam
engineering to flesh out industrial infrastructures specifically
by means of geophysical/geotechnical/geological investiga-
tions, civil engineering surveys and project implementations.
In recent years, we make significant efforts on earthquake
disaster mitigation, sediment disaster prevention/mitigation
and ICT information services. Many achievements of ours
have already contributed to mitigation of natural disasters
such as landslides, earthquakes and slope failures in Japan,
Asia and the Pacific Region.

IDS GeoRadar s.r.l.

Via Augusto Righi, 6, 6A, 8, Loc. Ospedaletto, Pisa, Italy,
56,121.
URL: https://idsgeoradar.com/
Contact: info@idsgeoradar.com

IDS GeoRadar, part of Hexagon, provides products and
solutions, based on radar technology, for monitoring appli-
cations including landslides, rockfalls, complex structures,
mining and civil engineering. The company is a leading
provider of Ground Penetrating Radar (GPR) and Interfer-
ometric Radar solutions worldwide. IDS GeoRadar is com-
mitted to delivering best-in-class performance solutions and
to the pursuit of product excellence, through the creation of
application-specific, innovative and cost-efficient systems
for a wide range of applications.

METER Group, Inc.

2365 NE Hopkins Court, Pullman, WA 99,163, USA.
URL: https://metergroup.com/wlf5.
Contact: bryan.wacker@metergroup.com

METER Group provides accurate, rugged, and depend-
able instrumentation to monitor moisture in all its phases

within an unstable slope. METER specializes in instrumen-
tation for near real-time monitoring of incoming moisture in
the form of rain and weather. In addition, we provide
real-time below-surface monitoring of existing moisture
conditions like moisture content and soil suction which show
how the soil profile is filling with water to saturation,
including the transition to positive pore water pressure.

The ZL6 advanced cloud data logger works together with
ZENTRA Cloud data software to simplify and speed up data
collection, management, visualization, and alerting. Our
well-published instrumentation is used worldwide in uni-
versities, research and testing labs, government agencies,
and industrial applications.

For almost four decades, scientists and engineers have
relied on our instrumentation to understand critical moisture
parameters. We’ve even partnered with NASA to measure
soil (regolith) moisture on Mars. Wherever you measure, and
whatever you’re measuring, rely on METER for accuracy,
affordability, and simplicity that will make your job easier.

Asia Air Survey Co., Ltd.

Shinyuri 21 BLDG 3F, 1-2-2 Manpukuji, Asao-Ku,
Kawasaki, Kanagawa, 215-0004, Japan.
URL: https://www.ajiko.co.jp/en/
Contact: service@ajiko.co.jp

Asia Air Survey (AAS), as one of the leading engineering
and consulting companies, has long been providing disaster
prevention and mitigation services for over 65 years, par-
ticularly in the fields of landslide, debris flow, erosion
control, etc. AAS is proud of being the inventor of Red
Relief Image Map (RRIM), which is a cutting-edge 3D
terrain visualization method allowing great geomorphologi-
cal details to be visualized in one glance, thus has been used
in various facets of disaster prevention and mitigation.

Kiso-Jiban Consultants Co., Ltd.

Kinshicho Prime Tower 12 Floor, 1-5-7 Kameido, Koto-ku,
Tokyo 36-8577, Japan.
URL: https://www.kisojiban.com/
Contact: kisojiban-contactus@kiso.co.jp

Kiso-Jiban Consultants, established in 1953, is an engi-
neering consulting firm especially well known in the field of
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geotechnical engineering. The areas of its comprehensive
services are listed below:

Geological and Geotechnical Survey
Geotechnical Analysis and Design
Disaster Prevention and Management
GIS (Geographic Information Systems)
Soil and Rock Laboratory Tests
Instrumentation and Monitoring
Geophysical Exploration and Logging
Distribution of Geosynthetics Products

Much-talked-about new service is Kiso-SAR System
allowing accurate estimation of both extent and rate of
landslide movements based upon a comprehensive inter-
pretation of InSAR results from geotechnical and landslide
engineering viewpoint (see the one-page introduction of
Kiso-Jiban Consultants Co., Ltd.). With Kiso-SAR system,
the following pieces of important geotechnical information
can be provided:

(1) Extent of a deforming landslide mass (and the rate of its
movement.

(2) Consolidation buildup in soft clay underlying a fill.
(3) Deformation buildups induced by slope cutting.

Okuyama Boring Co., Ltd.

10-39 Shimei-cho, Yokote City, Akita 013-0046, Japan.
URL: https://okuyama.co.jp/en/
Contact: info@okuyama.co.jp

Okuyama Boring Co., Ltd. is proud of its achievements in
various projects to help solve many landslide problems. The
company has been offering services in geological surveys
and analyses, developing rational countermeasures against
various geotechnical problems as well as safe workflow
diagrams, and providing necessary pieces of advice for
ensuring safety during landslide countermeasure works. For
this purpose, Okuyama Boring Co., Ltd. works on moni-
toring, observations, field surveys, numerical analyses,
countermeasure works, etc. of landslides.

Kawasaki Geological Engineering Co. Ltd.

Mita-Kawasaki Bldg, 2-11-15 Mita, Minato-ku, Tokyo10
8-8337, Japan.
URL: https://www.kge.co.jp/
Contact: post-master@kge.co.jp

Kawasaki Geological Engineering Co., Ltd. as one of the
leading members of SAAM Research Group, has proactively
been involved in developing “Sustainable Asset Anchor
Maintenance (SAAM, hereafter) System,” enabling easy
maintenance of ground anchors. Its unique jack, weighing
about half the weight of a conventional jack, together with a
newly developed jig, can be applied to any type of anchor even
with a short extra length, thus allowing for in-situ lift-off tests
on these anchors. The SAAM system also has an optional
weightmeter that canbe installed after performing a lift-off test.

Nissaku Co., Ltd.

4-199-3 Sakuragi-cho, Omiya-ku, Saitama 330-0854, Japan.
URL: https://www.nissaku.co.jp/
Contact: survey@nissaku.co.jp

Nissaku Co., Ltd., founded in 1912 as a well drilling com-
pany, provides services for far-flung fields of not only
groundwater exploitation but also measures for landslides.
Having its rich expertise in these fields, Nissaku Co., Ltd. offers
general reliable one-stop technical services including designs,
investigations, analyses, constructions, and maintenances.

Full-color presentations from the above seventeen exhi-
bitors focusing on their landslide technologies are shown on
the following pages. Their cutting-edge technologies have of
course been instrumental in the progress that we have made
in landslide risk-reduction worldwide, and we want to exert
even greater effort to aim high given the KLC 2020 as our
new action goals. The International Consortium on Land-
slides seeks volunteers willing to support our activities
introducing their brand-new technologies for landslide dis-
aster mitigation in our international journal “Landslides,”
full color books for WLFs, exhibitions at WLFs, etc. If you
are interested in being engaged in supporting ICL activities,
please contact the ICL secretariat <secretariat@iclhq.org>.
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