
Evaluating Fault Tolerance of Distributed
Stream Processing Systems

Xiaotong Wang1, Cheng Jiang1, Junhua Fang2, Ke Shu3, Rong Zhang1(B),
Weining Qian1, and Aoying Zhou1

1 School of Data Science and Engineering, East China Normal University,
Shanghai, China

{wxt,jc}@stu.ecnu.edu.cn, {rzhang,wnqian,ayzhou}@dase.ecnu.edu.cn
2 Soochow University, Suzhou, China

jhfang@suda.edu.cn
3 PingCAP Ltd., Shanghai, China

shuke@pingcap.com

Abstract. Since failures in large-scale clusters can lead to severe perfor-
mance degradation and break system availability, fault tolerance is crit-
ical for distributed stream processing systems (DSPSs). Plenty of fault
tolerance approaches have been proposed over the last decade. However,
there is no systematic work to evaluate and compare them in detail. Pre-
vious work either evaluates global performance during failure-free run-
time, or merely measures throughout loss when failure happens. In this
paper, it is the first work proposing an evaluation framework customized
for quantitatively comparing runtime overhead and recovery efficiency
of fault tolerance mechanisms in DSPSs. We define three typical con-
figurable workloads, which are widely-adopted in previous DSPS evalu-
ations. We construct five workload suites based on three workloads to
investigate the effects of different factors on fault tolerance performance.
We carry out extensive experiments on two well-known open-sourced
DSPSs. The results demonstrate performance gap of two systems, which
is useful for choice and evolution of fault tolerance approaches.

Keywords: Fault tolerance · Benchmarking · Stream processing

1 Introduction

Over the last two decades, numerous stream processing systems (SPS) have
sprung up from both academia and industry, catering to the increasing require-
ments of continuous real-time processing from a wide range of scenarios, includ-
ing stock trading, network monitoring and fraud detection. Aurora [1] starts the
work in data stream management system (DSMS, one branch of SPS), which
adopt a centralized architecture. Then the growth and intrinsic dispersity of
data stream promote the emergence of distributed stream processing systems
(DSPS) which provide advanced features. Representatives include Borealis [3].

c© Springer Nature Switzerland AG 2020
X. Wang et al. (Eds.): APWeb-WAIM 2020, LNCS 12318, pp. 101–116, 2020.
https://doi.org/10.1007/978-3-030-60290-1_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-60290-1_8&domain=pdf
https://doi.org/10.1007/978-3-030-60290-1_8


102 X. Wang et al.

Since the prevalence of cloud computing, superior DSPSs have been developed,
e.g. Storm [20], Spark Streaming [22] and Flink [5], which are required to provide
highly-scalable and highly-available services.

Researchers have put much effort in benchmarking the characteristics (e.g.,
scalability) and performance (e.g., throughput and latency) of modern DSPSs [2,
4,6,14,18,21], shown in Table 1. We roughly classify these benchmarks into two
types based on workloads. One type is to simulate real-world scenario, such as
advertisement clicking analysis in Yahoo! StreamingBench [6]; the other type is to
compose synthetic operators to evaluate the specific characteristic, e.g. sampling
and projection in StreamBench [14]. However current stream benchmarks focus
on performance evaluation during failure-free runtime, except that StreamBench
introduces a penalty factor for latency and throughout during a failure.

Table 1. The overview of existing stream benchmarks.

Benchmarks System Datasets Workloads Metrics

LinearRoad [2] Aurora STREAM Road and vehicle

data

Highway toll

monitoring

Throughput

StreamBench [14] Storm Flink Spark

Streaming

Search internet

traces

Synthetic

sampling work

counting, et al.

Latency

Throughput

Penalty factor

Yahoo!

StreamingBench

[6]

Storm Flink Spark

Streaming

Advertising and

user clicking data

Clicking analysis Latency

Throughput

YCSB Extension

[9]

Storm Flink Spark

Streaming

Advertising and

user clicking data

Clicking analysis Latency

Throughput

StreamBench [21] Storm Flink Spark

Streaming

Synthetic data Synthetic word

counting,

Clicking, KMeans

Latency

Throughput

DSPSs are usually deployed on large-scale clusters of commodity servers, with
24/7 running requirement. Failures are ubiquitous, because failure probability
increases with the growing scale of cluster and running time [8]. DSPSs should
recover rapidly and accurately enough to minimize performance degradation. A
bunch of fault tolerance approaches have been proposed. We group them into
three categories: (1) active scheme replicates data on multiple nodes as well
as the processing; (2) passive scheme creates a global snapshot of system; (3)
hybrid scheme combines the strong points of these two schemes. However, there
is no systematic work to quantitatively evaluate the quality of a fault tolerance
mechanism, which is necessary to consolidate the state-of-the-art research and
to guide the development of strong fault-tolerant DSPSs. We address such a gap
in this paper, and make the following contributions:

– We first design an evaluation framework dedicated to compare extra runtime
overhead and recovery efficiency of fault tolerance of DSPSs.

– We define measurements of general and fault-tolerance-specific metrics.
– We exploit the design principles of fault tolerance mechanisms in classic

DSPSs. In order to study the extra cost during runtime, we dissect workloads



Evaluating Fault Tolerance of Distributed Stream Processing Systems 103

employed in previous work, abstract the common operations and construct
five fault-tolerance-sensitive workload suites with a set of configurable knobs.

– We present performance analysis of Flink and Storm through extensive exper-
iments. We conclude with interesting observations and future work.

The rest of this paper is organized as follows: Sect. 2 introduces the basic con-
cepts of stream processing and classifies fault tolerance approaches. The design
of evaluation framework is described in Sect. 3. Section 4 presents the experimen-
tal results and fault tolerance routines of Flink and Storm. Section 5 discusses
related work. We conclude the paper in Sect. 6.

2 Background

2.1 Stream Processing Model

SPSs can be classified into two categories based on processing model: (1) native
continuous-operator model, such as Flink and Storm; (2) micro-batch model,
such as Spark Streaming. As Fig. 1(a) shows, data stream is separated with data
processing in continuous-operator model. After job submission, user programs
are converted into a directed acyclic graph (DAG, a.k.a, topology) of operators
connected by data streams. Each operator encapsulates the real computation
logic, and consumes(produces) tuples from input(into output) queues. Operators
are usually parallelized into multiple instances and run on different nodes for high
throughput. On the contrary, as Fig. 1(b) shows, data stream is bundled with
data processing in micro-batch model. In this example, there are two operators
in the job1. Input streams are divided into continuous series of discrete t-second
micro-batches. User programs are converted into a directed acyclic graph of
stages. Within each stage, all the parallel instances of an operator are scheduled
by a centralized driver, consume the micro-batches and report the size of output
results to the driver. Then the driver launches the next state, and sends data
information that another operator should fetch. We mainly concern DSPSs with
continuous-operator model. DSPSs with micro-batch model, especially Spark
Streaming, are almost inherent fault-tolerant owing to the underlying resilient
data structures and lineage information [22].

2.2 Fault Tolerance Overview

Fault tolerance in SPSs is realized via replication, either data processing or
internal state. We can group them into active scheme [3,12,17], passive scheme
[5,7,11,13,16] and hybrid scheme [10,15,19]. In active scheme, each primary
node has k≥1 standby nodes doing the same job. Once a primary node becomes
unavailable, one of the standby nodes takes over it instantly. The main challenge
of active scheme lies in replica synchronization between primary and standby
nodes. On the contrary, in passive scheme, only the primary node consumes the

1 Circles in the same column are the parallel instances of an operator.



104 X. Wang et al.

Fig. 1. Two common stream processing models.

input stream, but it creates a checkpoint of its internal state as well as other
information necessary for recovery. Upon failure, operators on the primary node
will be relaunched on ≥ 1 standby nodes and rebuild the state from checkpoints.
Challenges of passive scheme mainly lie in four aspects: when to do checkpoint,
how to coordinate all the operators to create a consistent global snapshot, what
data to checkpoint, and where to store checkpoints. Recently, some work pro-
poses hybrid scheme to combine active and passive scheme. But how to find an
optimal assignment plan on each node is a key issue.

Table 2. Design goals of fault tolerance.

Runtime overhead Normal latency Hardware resource

CPU, Memory, Network

Recovery efficiency Recovery latency Recovery accuracy

Identical, Duplicated, Disordered, Lost, Incorrect

To measure the quality of fault tolerance, we define runtime overhead and
recovery efficiency, as summarized in Table 2. Obviously, extra overhead is
inevitable during failure-free runtime, such as more storage in active scheme,
or higher normal latency incurred by checkpointing in passive scheme. Recovery
efficiency can be evaluated from two aspects, i.e. recovery latency and degrees
of recovery accuracy. These design goals, however have trade-offs between each
other. For example, active scheme favors instant recovery at the cost of sub-
stantial hardware resource consumption, while passive scheme sacrifices higher
recovery latency to save resources, or trades accuracy for lower normal latency
by leveraging approximation techniques.

3 Evaluation Framework

Figure 2 shows the overview of our evaluation framework. In-memory Data Gen-
erator (DG) injects tuple into Data Broker (DB, e.g., Kafka2.) and controls the
input rate as well as skew distribution. DSPS under test is isolated from DG and
2 http://kafka.apache.org.

http://kafka.apache.org


Evaluating Fault Tolerance of Distributed Stream Processing Systems 105

DB. It executes workloads, fetches input streams from DB and exports results
to DB as well. Metrics Collector is integrated into DB to collect metrics.

Fig. 2. The evaluation framework.

3.1 Evaluation Metric

Normal Latency (NL). NL is the average time difference (Lt) between each
tuple t generated at DG (TDG

t ) and all its causally dependent tuples generated
at the sink operators (TSink

t ), shown in Eq. 1. TDG
t is also known as event time

[5], and thus NL is also called as event-time latency.

Lt = TDG
t − TSink

t ; NL =
∑

Lt (1)

Resource Consumption (CPU). Extra resource overhead often results from
(1) scheduling checkpointing procedure and preparing state, which consume CPU
cycles; (2) maintaining operator state, which consumes memory; (3) transmit-
ting checkpoints to stable storage, which consumes network bandwidth. Dur-
ing the experiments we observe that the consumption of memory and network
bandwidth is proportional to the size of checkpoints. Hence we measure CPU
consumption. We monitor CPU every second by Ganglia3, and present both
average value and variation trend over time.

Recovery Latency (RL). We define RL from two perspectives: (1) A fine-
version RL is defined as the duration from the moment when a failure happens to
the moment when DSPS finishes replaying the last tuple. The recovery procedure
is composed of rollback phase and replay phase. These two phases execute in
sequence and in parallel inside Flink and Storm, respectively. Therefore, we
define RL of Flink as the sum of rollback latency and replay latency as shown
in Fig. 3(a); we define RL of Storm as the higher one between rollback latency
and replay latency. (2) A coarse-version RL can be evaluated indirectly by the
evolution of throughput as shown in Fig. 3(b). Once failure happens, throughput
fluctuates sharply compared to that during failure-free runtime. Hence, we can
measure RL roughly by the duration from the moment when a failure happens
to that when throughput comes to be steady.

3 http://ganglia.sourceforge.net/.

http://ganglia.sourceforge.net/


106 X. Wang et al.

Fig. 3. Two versions of recovery latency.

3.2 Data Generation

We use two kinds of datasets: (1) a collection of real-world English novels crawled
from Project Gutenberg4; (2) a synthetic dataset with different skew distribu-
tions of words. We present knobs for datasets in Table 3. To ensure stable running
of each system and avoid backpressure, we keep the data generation at a steady
rate 5000 tuples/s. But we lower the input rate down to 500 tuples/s in the last
set of experiments on Storm due to its performance bottleneck. Whether barri-
ers are aligned has significant influences on performance, especially when input
streams are highly-skewed. Hence, we generate synthetic dataset with uniform
(skew = 0) and highly-skewed (skew = 1) distributions.

Table 3. Configurable knobs for data generation.

Knob Abbr Unit Value

Input rate IR tuples/s 500, 5000

Skew distribution Skew - 0,1

3.3 Workloads Design

Workloads. Covering all the streaming workloads is impractical. Hence, we
choose and generate three typical workloads as depicted in Fig. 4. (1) In most
realistic scenarios, aggregation is one of the basic operations. The widely-used
task is streaming Word Count (WC) that counts the number of occurrences of
each word in continuously arriving sentences. As Fig. 4(a) shows, it contains both
stateless (i.e., Spliter) and stateful operators (i.e., Counter). (2) Numerical com-
putation is also common in stream processing, and its amount of computation
varies in different stream applications, such as CPU-bound model training in
machine learning algorithms. Hence, we create a synthetic PI Calculation (PI)
topology as shown in Fig. 4(b). Within it, we utilize Gregory-Leibniz series for-
mula for π which can control the amount of computation via n. (3) We generate
Dummy Topologies (DT) with different numbers of operators to simulate the
4 https://www.gutenberg.org/.

https://www.gutenberg.org/


Evaluating Fault Tolerance of Distributed Stream Processing Systems 107

complexity of topology. Each operator in dummy topologies has no real comput-
ing task, but receives and sends tuples.

Fig. 4. Three typical workloads.

Workload Suites. After investigating all the fault tolerance approaches of pas-
sive scheme, we summarize 6 knobs in Table 4 to compose different workloads
suites, by configuring application characteristics and checkpoint requirements.
State denotes the size in byte of states including in a checkpoint. During the
experiments, we find that if we enable the window mode of operators, checkpoint-
ing can happen at any moment within a time window. As a result, State of each
checkpoint is of random distribution, which baffles the evaluation of its impacts
on performance. Therefore, we artificially simulate State of each operator by
maintaining a string variable and conduct the experiments under full-history
mode. Computing intensity controls the computation amount of operators and
is configured as various execution rounds of PI calculation. Topology length is
the number of operators in a dummy topology. Checkpoint interval defines the
time interval between two consecutive checkpointing requests. Checkpoint syn-
chronicity defines whether checkpointing executes synchronously with normal
processing. Barrier alignment defines whether barriers are aligned.

The knobs, along with workloads mentioned above, together compose 5 work-
load suites as listed in Table 5, each of which focuses on distinct effects of knobs
on fault tolerance performance. Suite 1–3 evaluate extra overhead of each DSPS
incurred by fault tolerance during failure-free runtime. Suite 4–5 evaluate the
recovery latency of each DSPS after randomly killing worker processes.

Table 4. Configurable knobs for workloads: default value in bold.

Object Knobs Abbr Unit Values

Application State size State MB 1, 10, 15, 30

Computing intensity CPI round 0(low), 2000(medium), 5000(high)

Topology length TL # of operators 2, 10

Checkpoint Checkpoint interval CI second NC (disabled), 1 30, 45, 60

Checkpoint Synchronicity CS - sync, async

Barrier alignment BA - true, false



108 X. Wang et al.

Table 5. Workload suites with distinct purposes.

Workload Suite Name Description Cost

1 WC Effects of CI on NL

and CPU for

applications with

different State

Overhead

2 PI Effects of CS on NL

and CPU for

applications with

different CPI

3 WC Effects of BA on NL

and CPU when

processing streams

with different Skew

4 DT Effects of TL on RL Recovery efficiency

5 WC Effects of CI on RL

4 Experiments

We implement the evaluation framework to compare the fault tolerance per-
formance of Flink and Storm. We perform our experiments on a 5-node cluster
where 1 node is equipped with 24 Intel Xeon E5-2620 CPUs and 31 GB of RAM,
and the others with 8 Intel Xeon E5606 CPUs and 94 GB of RAM. The nodes are
inter-connected via Gigabit Ethernet and run a CentOS Linux operating system
with kernel version 6.5.0. We conduct five sets of experiments to understand the
design principles of fault tolerance for each system. We roughly simulate failures
by killing multiple worker processes randomly.

Flink. As shown in Fig. 5(a), three operators src, opt and snk together com-
pose a topology, and are partitioned into different slots. JobManager is the
controller process, and TaskManager is the worker process. src receives peri-
odic checkpointing requests from CheckpointCoordinator, and injects barriers
into data streams. opt with multiple input streams doesn’t make checkpoints
until it receives barriers with the same ID from all its input streams. When one
barrier arrives, opt suspends the corresponding input stream and buffers the
follow-up tuples into the input queue. Such a step is called barrier alignment. It
can be disabled, but precise recovery will not be guaranteed. Once all the barri-
ers with the same version ID arrive, opt can either block the normal processing
to make checkpoints synchronously, or apply the “copy-on-write” technique to
make checkpoints asynchronously. When a failure occurs to TaskManager (i.e.,
all the operators it manages fail as well), as shown in Fig. 5(b), operators that
communicate with the failed ones receive no responses, and then inform JobMan-
ager. JobManager marks the job as Failing and broadcasts a Canceling message
to each alive TaskMangager. Once received, TaskManager forcibly terminates all
the operators it manages and sends back a Canceled message. JobManager will
never receive a Canceled message from the failed TaskManager, and then marks
the job as Restarting when the threshold of waiting time is reached. The whole



Evaluating Fault Tolerance of Distributed Stream Processing Systems 109

Fig. 5. Fault tolerance routines of Flink and Storm.

topology will be reset and restore Running status. Accordingly, all the operators
redeployed retrieve their own last checkpoints to rollback the state. Once src
finishes the rollback, it begins to fetch the tuples that were processed but not
reflected into the latest checkpoint.

Storm. We use the same topology to discuss Storm, which is inspired by Flink
but has some differences. As Fig. 5(c) shows, Supervisor is the controller process,
Worker is the worker process and Acker is responsible for message processing
guarantee. CheckpointSpout is one kind of src but only injects periodic check-
pointing messages (i.e., the role of barrier in Flink). When fault tolerance is
enabled, Storm will acknowledge all tuples that arrive during a checkpoint inter-
val. We call it batch-acking. Storm completes a checkpointing procedure in two
phases. In preparing phase, each operator receives a preparing message, writes a
temporary checkpoint meta data into Redis5 and then acknowledges Acker. Once
receiving all the acknowledgments from each operator, the committing phase is
triggered, so CheckpointSpout sends a committing message to inform each oper-
ator to write down real checkpoints to Redis synchronously. After that, each
operator deletes the previous checkpoint, and performs batch-acking. When a
failure occurs to Worker, as shown in Fig. 5(d), Supervisor always monitors the
heartbeats of Worker. Unlike Flink, only operators that were managed by the
failed Worker will be reset. If failure happens in preparing phase, the redeployed
operators will rollback to the last checkpoint and actively fail the tuples that were
processed from that checkpoint to the failure time; if failure happens in commit-
ting phase, since the up-to-date state of Storm is already stored in Redis, the
redeployed operators directly continue the normal processing after fetching the
corresponding checkpoints. Note, src will receive two kinds of Failing messages

5 https://redis.io//.

https://redis.io//


110 X. Wang et al.

if failure happens in the preparing phase, namely the actively-failed tuples and
time-out tuples which are not acknowledged in time by Acker due to failure.
Tuple replaying and state rollback in Storm execute in parallel, thus it can not
provide precise recovery.

4.1 Experimental Results

Workload Suite 1: Since Storm can’t function properly with highly frequent
checkpointing and large state, we don’t run it with 1s-CI and 30 MB-State. As
shown in Fig. 6, for Flink, more frequent checkpointing means more interference
on normal processing and more thread scheduling. When checkpointing executes
synchronously with normal processing, larger State incurs longer pause of nor-
mal processing to make and transmit checkpoints. Hence, both NL and CPU
are proportional to State, but inversely proportional to CI. For Storm, under a
certain CI, NL and CPU have a linear relational with State. We can conclude
that: (1) larger CI and State usually incur higher NL and CPU ; (2) even the
barrier of Flink is aligned which incurs more waiting time, performance of Storm
has greater degradation when fault tolerance is enabled, compared with Flink.

(a) Flink NL (b) Storm NL

(c) Flink CPU (d) Storm CPU

Fig. 6. The effects of State and CI on NL and CPU .

Workload Suite 2: Since checkpointing by default executes synchronously with
normal processing, and that checkpointing messages are not aligned in Storm, we
only evaluate Flink here. As shown in Fig. 7(a)–7(c), if checkpointing executes
asynchronously, new incoming tuples will be processed in time; otherwise, they
will be buffered in input queues of each operator until checkpointing is finished.
Hence, asynchronous checkpointing can optimize the increase of NL.



Evaluating Fault Tolerance of Distributed Stream Processing Systems 111

(a) Low CPI (b) Medium CPI (c) High CPI

(d) Low CPI (e) Medium CPI (f) High CPI

(g) Low CPI (h) Medium CPI (i) High CPI

Fig. 7. The effects of CS and CPI on NL and CPU.

Moreover, we evaluate CPU under different CPI. As the total computation
amount is constant, the average CPU of asynchronous checkpointing is approx-
imate to that of synchronous checkpointing, as shown in Fig. 7(d)–7(f). For fur-
ther analysis, we evaluate CPU trend over time. As illustrated in Fig. 7(g)–7(i),
with the increase of CPI, CPU of synchronous checkpointing changes more vio-
lently. Once checkpointing is trigger, each operator suspends its normal process-
ing, which leads to an obvious trough of CPU. When checkpointing is finished,
the buffered new incoming tuples are first processed, which leads to a peak. In
Fig. 7(i), there is no peak but a longer continuously-high period in that CPU
is already extremely high due to heavy CPI. We conclude that asynchronous
checkpointing gains lower runtime overhead, but this predominance is weakened
under heavy computation amount and highly-frequent checkpointing.

Workload Suite 3: As shown in Fig. 8, with uniform distribution, effects on NL
have little difference whether barriers are aligned. However, when input streams
are highly-skewed, arrival time of barriers on different streams differs sharply
with each other, which leads to longer blocking of the stream on which the
barrier arrives first, and accordingly higher NL. Figure 9 demonstrates CPU
trend over time under different Skew. We also compare high-load nodes with
low-load nodes. As Fig. 9(a) and 9(b) demonstrate, when Skew is low, there is



112 X. Wang et al.

little difference on CPU whether barriers are aligned or not. But with severe
skewness, temporary blocking of some stream causes massive tuples buffered,
which leads to an obvious period of peak usage of CPU, as shown in Fig. 9(c)
and 9(d). We conclude that aligning barriers incurs higher normal latency and
unstable CPU status when input streams are of highly-skewed distribution.

Fig. 8. The effects of Skew and
BA on NL in Flink.

(a) Skew=0, BA=true (b) Skew=0, BA=false

(c) Skew=1, BA=true (d) Skew=1, BA=false

Fig. 9. The effects of Skew and BA on NL and
CPU in Flink.

Workload Suite 4: JobManager decides the failure of a failed TaskManager, if
it receives no responses from TaskManager when the threshold of waiting time
is reached. As shown in Fig. 10, longer topology lightly increases the rollback
latency, but is bound to the timeout threshold of failure detection. We omit the
evaluation of Storm for this workload suite in that we observe that the recovery
latency is dominated by the replay latency.

Workload Suite 5: Input rate for Storm is adjusted to 500 tuples/s because
its mediocre performance. Figure 11 presents the fine-version recovery latency of
Flink and Storm. We observe that the rollback latency of Flink is always bound
to 45 s, having nothing to do with State and CI. After reviewing system logs, we
find that the default time-out threshold of failure detection is 45 s. However, as
Fig. 11(b) and 11(d) show, the replay latency of Flink has a linear relationship
with CI, but is not affected by State; while State has greater influence on the
volume of replayed tuples than CI. We analyze logs and observe that the replay
phase begins before all the operators have finished the rollback phase. Once
the source operator has finished its rollback, it begins to fetch tuples from DB.
The bigger State implies more time downstream operators spend on rollback.
New incoming tuples are buffered before downstream operators have finished
the rollback, which may cause backpressure and consequently lead to higher
replay latency. For Storm, RL is proportional to CI as shown in Fig. 11(d),



Evaluating Fault Tolerance of Distributed Stream Processing Systems 113

but almost not affected by State. We figure out that RL is mainly affected by
batch-acking and tuple replaying. When CI is relatively large, the impact of
batch-acking outweighs that of tuple replaying. Hence, when failure happens in
preparing phase, RL is higher than that at committing phase. While for the
smaller CI, we draw an opposite conclusion.

Fig. 10. The effects of TL on
rollback latency in Flink.

(a) (b)

(c) (d)

Fig. 11. The effects of State and CI on fine-version
RL.

Figure 12 shows the coarse-version recovery latency of Flink and Storm. The
first dotted arrow marks the moment when failure occurs, and the second one
marks the moment when the system restores the steady throughput. For Flink,
after failure is detected, source operators of Flink stop fetching tuples from data
broker, which results in a temporary zero throughput. After source operators
finish the rollback phase, tuples that were emitted from the latest checkpoint
to the failure point are re-fetched, leading to wave crests. For Storm, source
operators keep emitting tuples downstream even when failure happens. The wave
crests imply the replaying of tuples which are actively failed by downstream
operators. We conclude that (1) Flink recovers much more efficiently than Storm.

(a) Flink (b) Storm

Fig. 12. The coarse-version RL of Flink and Storm.



114 X. Wang et al.

Even all the operators are forced to be redeployed in Flink, Flink gains far less
recovery latency than Storm; (2) Checkpoint interval has great effects on recovery
latency, as larger interval indicates more tuples to be replayed.

Discussion: Fault tolerance indeed leads to high performance degradation of
system. A moderate checkpoint frequency (e.g., 30 s) can incur x4 - x12 severe
latency in Flink and Storm. Asynchronous checkpointing technique can mitigate
it, but its effect is diminished when the workload is computation-intensive. But
if high burst of streams happens to those platforms, checkpointing will occupy
the runtime processing all the time. Hence, it is essential to design an adap-
tive checkpointing technique to adjust checkpoint interval according to real-time
workloads. Moreover, the recovery procedure can be dominated by tuple relay-
ing. Even the whole system is reset, retrieving the checkpoints and rebuilding
the state are not time-consuming. Until now, the research focuses more on the
content to checkpoint instead of the fatal problem in source replaying, and then
parallel recovery is necessary in future.

5 Related Work

Linear Road Benchmark [2] is the first benchmark dedicated to DSMSs. It sim-
ulates a highway toll system. Lu et al. raise StreamBench [14] to evaluate Storm
and Spark Streaming. Apart from performance measurements, StreamBench also
evaluates the distributed characteristics of system, such as fault tolerance ability
and durability. StreamBench gathers two seed data sets from web log process-
ing and network traffic monitoring, and leverages a message system to inject
data into DSPSs on the fly. Based on data type, computation complexity and
operator state, StreamBench selects 7 programs and defines 4 synthetic work-
load suites. However, for the evaluation of fault tolerance ability, StreamBench
merely compares the throughput and latency after failures with those before
failures. Yahoo! Storm team [6] proposes a open-source streaming benchmark
(YSB) which simulates an advertisement analytics pipeline. It uses Kafka and
Redis for data fetching and storage respectively. Three DSPSs, namely Flink,
Storm and Spark Streaming, are compared in terms of 99th percentile latency
and throughput, with checkpointing off by default. Later, Grier [9] extends YSB
to measure the latency and maximum throughput of Flink and Storm. Wang
[21] also demonstrates a stream benchmark tool called StreamBench to evaluate
the event-time latency and throughput of Storm, Flink and Spark Streaming.
To distinguish from [14], we rename it as StreamBench’. StreamBench’ defines
three kinds of workloads to evaluate three representative operations in stream
processing, namely aggregation, joining and iterating. Similarly, it utilizes a mes-
sage system to simulate the on-the-fly data generation, and control the skew
distribution.

6 Conclusion

We design an evaluation framework to empirically investigate the fault tolerance
performance of DSPSs, which is an urgent requirement from cloud-based/cluster-



Evaluating Fault Tolerance of Distributed Stream Processing Systems 115

based applications as the persistent increasing of stream data and strict ser-
vice quality demands. Experimental results reveal a moderate checkpointing fre-
quency can incur x4 - x12 performance degradation in Flink and Storm. And
even Flink forces all the operators to rollback during recovery, it gains x2 recov-
ery efficiency than Storm. These performance gap can be explained by the fault
tolerance routine we tease apart. And we conclude that parallel sources recov-
ery and adaptive checkpointing are necessary for improving system performance.
Though we have some interesting observations in this work, there are still some
points to be covered in the future. First, our work is merely appropriate for
DSPSs with continuous-operator model and takes no account of fault tolerance
approaches with active and hybrid scheme. The challenge is that SPSs adopting
these two fault tolerance schemes either drop behind or with no open-sourced
prototypes. Second, all the evaluations in this paper are conducted under stable
conditions when DSPSs ingest stable inputs. However, streaming data in real-
world is often highly dynamic, and its impact on fault tolerance performance
need to be investigated as well. Third, we will involve more complex computa-
tion, such as machine learning algorithms, to the framework. Last, a universal
measurement of recovery accuracy has to be settled since more stream applica-
tions emphasize precise results rather than traditional approximate processing.

Acknowledgement. The work is supported by National Key Research and Develop-
ment Plan Project (No.2018YFB1003402) and National Science Foundation of China
(NSFC) (No.61672233,61802273). Ke Shu is supported by PingCAP.

References

1. Abadi, D.J., Carney, D., Zdonik, S.B., et al.: Aurora: a new model and architecture
for data stream management. VLDBJ 12(2), 120–139 (2003)

2. Arasu, A., Cherniack, M., Tibbetts, R., et al.: Linear road: a stream data manage-
ment benchmark. In: Proceedings of the 30th VLDB International Conference on
Very Large Data Bases, pp. 480–491 (2004)

3. Balazinska, M., Balakrishnan, H., Madden, S., Stonebraker, M.: Fault-tolerance
in the borealis distributed stream processing system. In: Proceedings of the 2005
ACM SIGMOD International Conference on Management of Data, pp. 13–24. ACM
(2005)

4. Bordin, M.: A Benchmark Suite for Distributed Stream Processing Systems. Ph.D.
thesis, Universidade Federal do Rio Grande Do Su (2017)

5. Carbone, P., Katsifodimos, A., Tzoumas, K., et al.: Apache flinkTM: stream and
batch processing in a single engine. IEEE Data Eng. Bull. 38(4), 28–38 (2015)

6. Chintapalli, S., Dagit, D., Poulosky, P., et al.: Benchmarking streaming compu-
tation engines: storm, flink and spark streaming. In: Proceedings of the 2016
IEEE International Parallel and Distributed Processing Symposium Workshops,
pp. 1789–1792 (2016)

7. Fernandez, R.C., Migliavacca, M., Kalyvianaki, E., Pietzuch, P.R.: Integrating
scale out and fault tolerance in stream processing using operator state manage-
ment. In: Proceedings of the 2013 ACM SIGMOD International Conference on
Management of Data, pp. 725–736. ACM (2013)



116 X. Wang et al.

8. Gill, P., Jain, N., Nagappan, N.: Understanding network failures in data centers:
measurement, analysis, and implications. In: Proceedings of the 2011 ACM SIG-
COMM Conference on Applications, Technologies, Architectures, and Protocols
for Computer Communications, pp. 350–361. ACM (2011)

9. Grier, J.: Extending the yahoo! streaming benchmark (2016). https://www.
ververica.com/blog/extending-the-yahoo-streaming-benchmark

10. Heinze, T., Zia, M., Fetzer, C., et al.: An adaptive replication scheme for elastic
data stream processing systems. In: Proceedings of the 9th ACM DEBS Interna-
tional Conference on Distributed Event-Based Systems, pp. 150–161. ACM (2015)

11. Huang, Q., Lee, P.P.C.: Toward high-performance distributed stream processing
via approximate fault tolerance. PVLDB 10(3), 73–84 (2016)

12. Hwang, J., Çetintemel, U., Zdonik, S.B.: Fast and highly-available stream process-
ing over wide area networks. In: Proceedings of the 24th IEEE ICDE International
Conference on Data Engineering, pp. 804–813. IEEE (2008)

13. Kwon, Y., Balazinska, M., Greenberg, A.G.: Fault-tolerant stream processing using
a distributed, replicated file system. PVLDB 1(1), 574–585 (2008)

14. Lu, R., Wu, G., Xie, B., Hu, J.: Streambench: towards benchmarking modern
distributed stream computing frameworks. In: Proceedings of the 7th IEEE/ACM
International Conference on Utility and Cloud Computing, pp. 69–78. IEEE/ACM
(2014)

15. Martin, A., Smaneoto, T., Fetzer, C., et al.: User-constraint and self-adaptive fault
tolerance for event stream processing systems. In: Proceedings of the 45th Annual
IEEE/IFIP DSN International Conference on Dependable Systems and Networks,
pp. 462–473. IEEE/IFIP (2015)

16. Sebepou, Z., Magoutis, K.: CEC: continuous eventual checkpointing for data
stream processing operators. In: Proceedings of the 2011 IEEE/IFIP DSN Interna-
tional Conference on Dependable Systems and Networks, pp. 145–156. IEEE/IFIP
(2011)

17. Shah, M.A., Hellerstein, J.M., Brewer, E.A.: Highly-available, fault-tolerant, paral-
lel dataflows. In: Proceedings of the 2004 ACM SIGMOD International Conference
on Management of Data, pp. 827–838. ACM (2004)

18. Shukla, A., Chaturvedi, S., Simmhan, Y.L.: RIoTbench: an IoT benchmark for
distributed stream processing systems. CCPE 29(21), e4257 (2017)

19. Su, L., Zhou, Y.: Passive and partially active fault tolerance for massively parallel
stream processing engines. TKDE 31(1), 32–45 (2019)

20. Toshniwal, A., Taneja, S., Ryaboy, D.V., et al.: Storm@Twitter. In: Proceedings
of the 2014 ACM SIGMOD International Conference on Management of Data, pp.
147–156. ACM (2014)

21. Wang, Y.: Stream Processing Systems Benchmark: StreamBench. Master’s thesis,
Aalto University (2016)

22. Zaharia, M., Das, T., Stoica, I., et al.: Discretized streams: fault-tolerant streaming
computation at scale. In: Proceedings of the 24th ACM SIGOPS Symposium on
Operating Systems Principles, pp. 423–438. ACM (2013)

https://www.ververica.com/blog/extending-the-yahoo-streaming-benchmark
https://www.ververica.com/blog/extending-the-yahoo-streaming-benchmark

	Evaluating Fault Tolerance of Distributed Stream Processing Systems
	1 Introduction
	2 Background
	2.1 Stream Processing Model
	2.2 Fault Tolerance Overview

	3 Evaluation Framework
	3.1 Evaluation Metric
	3.2 Data Generation
	3.3 Workloads Design

	4 Experiments
	4.1 Experimental Results

	5 Related Work
	6 Conclusion
	References




