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Abstract. Brain segmentation is key to brain structure evaluation for
disease diagnosis and treatment. Much research has been invested to
study brain segmentation. However, prior research has not considered
separating actual brain pixels from the background of brain images. Not
performing such separation may (a) distort brain segmentation models
and (b) introduce overhead to the modeling performance. In this paper,
we improve the performance of brain segmentation using 3D, fully Con-
volutional Neural Network (CNN) models. We use (i) infant and adult
datasets, (ii) a multi-instance loss method to separate actual brain pixels
from the background and (iii) Gabor filter banks and K-means clustering
to provide additional segmentation features. Our model obtains dice coef-
ficients of 87.4%–94.1% (i.e., an improvement of up to 11% to the results
of five state-of-the-art models). Unlike prior studies, we consult experts
in medical imaging to evaluate our segmentation results. We observe that
our results are fairly close to the manual reference. Moreover, we observe
that our model is 1.2x–2.6x faster than prior models. We conclude that
our model is more efficient and accurate in practice for both infant and
adult brain segmentation.

Keywords: Brain segmentation · Multi-instance loss (MIL) · Gabor
filter banks · Convolutional Neural Network (CNN)

1 Introduction

Brain tissues grow rapidly at early stages of human’s life. Over the past
two decades, brain segmentation has relied on manual segmentation, which is
extremely expensive and time consuming [1]. For example, 15–20 images of
infant’s brain may require 9–11 h to segment. Obtaining accurate tissue segmen-
tation of infant’s brain into white matter (WM), gray matter (GM) and cere-
brospinal fluid (CSF ) is important to (a) measure abnormal early brain devel-
opment, (b) monitor their progression and (c) evaluate treatment outcomes [2].
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However, due to low contrast and unclear boundaries between WM and GM , it
could be difficult to obtain accurate segmentation. Moreover, different experts
may produce different segmentation results.

Much research has been invested to perform brain segmentation using auto-
mated models, including atlas-based, statistical, and deep learning models. Deep
learning models, in particular Convolutional Neural Networks (CNNs), have
recently been used to perform automated segmentation of infant brain [5]. Previ-
ous models have achieved acceptable segmentation performance. However, prior
studies have not considered separating actual brain pixels from the background
of brain images. Not performing such separation may (a) distort brain segmenta-
tion models and (b) introduce overhead to the modeling performance. Therefore,
it is important to develop robust models to segment brain regions to improve
pathology detection and diseases diagnosis.

In this paper, we improve the performance of brain segmentation using fully
CNN models. To this end, we employ (i) a multi-instance loss method to sepa-
rate actual brain pixels from background and (ii) Gabor filter banks and K-
means clustering to provide additional segmentation information to support
the machine-learned features. To overcame the lack of medical imaging appli-
cations [6], we use full images as input to our model and apply max pooling
and mean pooling to process the data. To evaluate our model, we use both
infant and adult datasets and measure the performance of our model using dice
coefficients. Unlike prior studies, our results are evaluated by the MICCAI iSEG
organizers (experts in medical imaging) [4]. Our model obtain dice coefficients
ranging between 87.4% and 94.1% (i.e., an improvement of up to 11% to the
results obtained by five state-of-the-art models). Moreover, our model is 1.2x–
2.6x faster than prior models. Such results indicate that our model is more
efficient and accurate in practice for both infant and adult brain segmentation.

The rest of this paper is organized as follows. Section 2 presents prior studies
related to brain segmentation. Section 3 presents the methodologies used in our
paper. Section 4 presents our experimental results. Section 5 discusses threats to
the validity of our results. Finally, Sect. 6 concludes the conclusion and discusses
directions for future work.

2 Related Work

This section presents prior studies related to brain segmentation. The main
objective of a brain segmentation model is to solve the problem of having low
contrast and unclear boundaries between the white matter and the gray matter
in brain images. Some prior models for brain segmentation targeted infantile
stages [10] (e.g., using multiple modalities [11]), whereas some other targeted
early adult (<12 months). Images used by prior models are either T1, or T2
MRI images.

Dolz et al. [6] proposed 3D and fully CNN for subcortical brain structure
segmentation. Later on, Bao and Chung [2] have improved the model proposed
by Dolz et al. by using a multi-scale structured CNN with label consistency.
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Badrinarayanan et al. [7] have also proposed CNNs models with the use of
residual connections to segment white matter hyperintensity from T1 and flair
images. Their models outperformed previous models with an overall dice coef-
ficients of 0.75% on H95 and 27.26% on an average surface distance. Fechter
et al. [8] also used fully CNNs for brain segmentation. Using five datasets, they
obtained dice coefficient rangin between 0.82 and 0.91 for each dataset. Visser
et al. [1] proposed CNN models for brain segmentation using a multimodal
method and subcortical segmentation. de Brebisson and Montana [9] proposed
a random walker approach driven by a 3D fully CNN to different tissue classes.
Their model was able to segment the esophagus using CT images.

Despite the research invested on brain segmentation, we observe that previ-
ous models were trained using images that contain actual brain pixels intermixed
with the image background. Therefore, in our work, we propose to separate brain
pixels from background to improve the overall performance of brain segmenta-
tion. Then, we use fully CNN model and supply it with additional machine-
learned features. In summary, our proposed method:

• speeds up model training;
• produces more accurate segmentation results;
• improves information and gradients flow throughout the entire network; and
• reduces the risk of overfitting.

Furthermore, what distinguishes our work from prior work is that our results
are evaluated by the MICCAI iSEG organizers.

3 Methodology

This section presents the methods that we use to process brain images, extract
addition features, and construct brain segmentation models. Figure 1 shows an
overview of our proposed network.

3.1 The Proposed CNN Model

In our proposed model, we use two paths where each path has six groups of
layers, as follows:

– The 1st group of layers: consists of two layers, each of which containing 90
filters. Each filter in a layer is applied to the input images. The outcome of
this process is known as a feature map. Feature maps are fed into the second
group of layers.

– The 2nd group of layers: consists of two layers, each of which contains 120
filters. Our kernel size is 3 × 3 × 3, which allows the network to learn more
complex features with a reduced risk of overfitting. Feature maps from the
second convolutional layers were up-sampled through a deconvolution layer.

– The 3rd group of layers: consists of two convolutional layers, each with 120
filters.
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Fig. 1. The proposed fully CNN on multi-instance loss and Gabor filter bank

– The 4th and 5th groups of layers: consists of deconvolution layers. Since
we employ four classes (i.e., WM , GM , CSF , and background), the last
deconvolution layer has four filters (i.e., one filer per class). Convolution layers
are used after each deconvolution operation.

– The last layer performs classification with softmax units.

Fig. 2. (a) Two upsampling strategies, (b) Three initialization strategies.

Overfitting is a major problem in deep neural networks. Jonathan et al. [24]
reported that deconvolution layers perform upsampling by learning to deconvolve
the input feature map. Badrinarayanan et al. [7] reported that index-upsampling
uses max pooling indices to upsample feature maps (without learning) and con-
volves with a bank of trainable filters. We experiment both upsampling strategies



Improved Brain Segmentation 89

using our data and observe, in Fig. 2 (a), that deconvolution layer performs bet-
ter than index-upsampling. Therefore, we choose to use the deconvolution layer
to upsample the input feature map to higher spatial space. After each convolu-
tion layer, we use PReLU [13] as an activation function, which (a) introduces a
smaller number of extra parameters (equal to the number of channels) and (b)
prevents overfitting.

As is the case with deep models, the weights were initialized by random
weights. He et al. [14] included Restricted Boltzmann machines and showed that
the equivalence between RBM’s and infinite directed nets with tied weights sug-
gests an efficient learning algorithm for multi-layer networks in which the weights
are not tied. Besides, He et al. [14] reported that the deep models can have dif-
ficulties to converge and proposed a weights initialization strategy to improve
the accuracy of deep neural networks. Figure 2 (b) shows that the initialization
strategy proposed by He et al. performs better than two other strategies. There-
fore, in our model, we use the initialization strategy proposed by He et al., which
employs variant responses in each layer.

A careful selection of a learning rate value can lead to better performance
results. However, increasing learning rate makes model training slower due to
local optimizations used to update the parameters. To this end, we experiment
different learning rates to investigate what suits our data and topology. We start
with a learning rate that is taken from a group of comparable models. First, we
use multiple runs by changing the learning rate value by alternating factors of
3 or 10 (i.e., 0.01, 0.003, 0.001, 0.0003, and so on). When obtain an acceptable
estimate of the sweet spot, where the final digit is tweaked to reach an optimum
value. Second, we increase the initial learning rate by a factor of 10 until the
model fails to converge to an optimum value. Similarly, we perform experiments
to identify the lowest number of epochs needed to train our model. Finally, we
initially set the learning rate to 0.01 and then reduce it by a factor of 10 after
every 10 epochs.

Dropout and normalization techniques are also used to reduce overfitting in a
neural network models and other gradient-related problems [14]. During forward
propagation in neural network models, activations are passed from one layer to
another. Such activations may not fit a single distribution. In addition, in model
training, each layer has to learn a new distribution every time, which slows down
the training process (i.e., internal covariate shift). Hence, fixing the distribution
of layer inputs eliminates the internal covariate shift and offers faster and bet-
ter model training. Therefore, in our model, we compute batch mean and batch
variance to normalize the inputs/outputs of each layer. In batch normalization,
layer outputs are normalized to a fit a single distribution by maintaining a stan-
dard deviation of 1 and a mean of 0. Dropout randomly sets the activations
of a certain number of neurons (i.e., dropout rate) to 0. That allows neurons
to survive and participate in the learning at the next layer. In our model, we
applied batch normalization according to the strategy proposed in [13]. We note
that we do not preprocess the T1 and T2 input images.
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3.2 Loss Methods

In our proposed model stochastic gradient descent was used with two loss meth-
ods:

In our proposed model, we use stochastic gradient descent with two loss
methods: (i) Multi-instance loss at the intermediate stages and (ii) Cross-entropy
loss at the final stage.

Fig. 3. Pink area marks the receptive field of one pixel in Layer 2. Blue area marks
the receptive field of one pixel in Layer 3. (Color figure online)

3.2.1 Multi-Instance Loss
Multi-instance learning is used to describe learning examples in a diverse array.
Each learning example contains a bag of instances instead of a single feature
vector. Each bag is associated with a label. In the training examples, a single
example object has feature vectors (instance). Only one of those feature vectors
is responsible for the classification of the object [15]. In traditional supervised
learning, the aim was to find a model that predicts the value of a target variable,
y ∈ {0, 1}, for a given instance, x ∈ RD). In multi-instance learning, there is
a bag of instances instead of a single instance X = {x1, ..., xK} and there is a
single label Y associated with the bag, yk ∈ {0, 1}. During the training set, there
is no access to the labels as they remain unknown.

Multi-instance loss was inspired by multi-instance learning assumptions. The
assumption is that (a) if at least one instance in the bag is positive, then the
bag is positive and (b) if all instances in the bag are negative, then the bag is
negative. In our model, the third and forth layers can be considered as a multi-
instance problem. We use two loss functions: one for positive pixels (i.e., inside
the MRI image) and another for negative pixels (i.e., outside the MRI image).
The I-loss function (inside the MRI image) is given by the following equation:

LOS1 =
∑

i,j,Ri,j=1

log(1 + exp (−Ri,j ∗ Hm
i,j )), (1)
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where Ri,j is the ground truth provided by the dataset organizers. Ri,j = 1 if
pixel (i, j) is inside the MRI image. The novelty here is that pixel (i, j) is in Ri,j

and such pixel has a receptive field. The receptive field refers to a certain part
of an image. If the receptive field has at least one positive pixel (inside MRI
image), then (i, j) should be positive. Otherwise, (i, j) is negative. Figure 3
depicts the receptive field where pink area marks the receptive field of one pixel
in Layer 2, whereas blue area marks the receptive field of one pixel in Layer
3. A bag-level predictive map Hm

i,j represents max pooling from feature maps.
Ou-loss functions (outside the MRI image) is given by the following equation:

LOS2 =
∑

i,j,Ri,j=−1

log(1 + exp (−Ri,j ∗ Ha
i,j)), (2)

where Ri,j = −1 if pixel (i, j) is outside the MRI image. A bag-level predictive
map Ha

i,j represents average pooling from feature maps. The total multi-instance
loss function is given by the following equation:

MIL = LOS1+ ‖ W ‖2 LOS2, (3)

where the MIL ensures a proper differentiation between actual brain pixels and
background. ‖ W ‖2 presents the weights in the neural network, which is given
by the following equation:

‖ W ‖2 =
√

W 2
1 + W 2

2 + ... + W 2
n . (4)

3.2.2 Cross-Entropy Loss
Loss functions are crucial in machine learning pipelines. However, knowing which
one loss function to use can be challenging. Cross-entropy loss is commonly used
as a cost function when training classifiers. Cross-entropy loss is also used to
measure the performance of a classification model. In our model, we use the
softmax function to convert the output of the classification layer into normalized
probability values.

3.3 Gabor Filters

Due to low contrast and lack of clear boundaries between WM and GM , features
are not sufficient for accurate segmentation. Gabor filter is a strong tool for the
description of textures in images. Figure 4 shows the process of obtaining Gabor
filters. Gabor filter can be obtained by convolving the image and applied to our
model as human-designed features to improve the segmentation results [23]. The
equation is given by:

G(x, y;λ, θ, ψ, σ, γ) = exp(−((x′2 + y2y′2)/2σ2)) exp(i(2πx′/y + ψ)), (5)

where σ is the standard deviation of Gaussian envelope, ψ is the phase shift, λ
is the wavelength of the sinusoid, θ is the spatial orientation of the filter and
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Fig. 4. Gabor filter bank.

γ is the spatial aspect ratio. The terms x′ and y′ are given by the following
equations:

x′ = xcon(θ) + ysin(θ), (6)

y′ = ycos(θ) − xsin(θ), (7)

where filter sizes are from 0.3 to 1.5 and the wavelength of sinusoid coefficients
was 0.8, 1.0, 1.2 and 1.5.

3.4 K-means

K-means is a technique used to split a dataset into k groups. In our model, the
filter responses are merged together and apply the K-means clustering algorithm
to cluster the pixels with similar features.

4 Experiments

This section presents our experimental design and evaluation.

4.1 Datasets

In our work, we use two different datasets of brain images: the MICCAI iSEG
dataset and MRBrains dataset. We describe each of these datasets in the follow-
ing.

4.1.1 MICCAI iSEG Dataset
The aim of the evaluation framework1 introduced by the MICCAI iSEG orga-
nizers is to compare segmentation models of WM , GM and CSF on T1 and
T2. The MICCAI iSEG dataset contains 10 images, named subject-1 through
1 http://iseg2017.web.unc.edu.

http://iseg2017.web.unc.edu
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subject-10, subject T1 : T1 -weighted image, subject T2 : T2-weighted, and a
‘manual segmentation’ label used as a training set. The dataset also contains 13
images, named subject-11 through subject-23, used as a testing set. An example
of the MICCAI iSEG dataset (T1, T2, and manual reference contour) is shown in
Fig. 5. The dataset has two different times (i.e., longitudinal relaxation time and
transverse relaxation time), which are used to generate T1 and T2 (Table 1).
The dataset has been interpolated, registered, and skull-removed by the MICCAI
iSEG organizers. We present the evaluation equations in Subsect. 4.2.

Fig. 5. Example of MICCAIiSEG dataset (T1, T2, manual reference contour)

Table 1. Shows the parameters used to generate T1 and T2.

Parameters TR/TE Flip angle Resolution

T1 1900/4.38 ms 7 1× 1× 1

T2 7380/119 ms 150 1.25× 1.25× 1.25

4.1.2 MRBrains Dataset
The MRBrains2 dataset contains 20 subjects for adults for segmentation of (a)
cortical gray matter, (b) basal ganglia, (c) white matter, (d) white matter lesions,
(e) peripheral cerebrospinal fluid, (f) lateral ventricles, (g) cerebellum, and (h)
brainstem on T1, T2, and FLAIR. Five (i.e., 2 male and 3 female) subjects are
provided to the training set and 15 subjects are provided for the testing set. On
the evaluation of the segmentation, these structures merged into gray matter
(a–b), white matter (c–d), and cerebrospinal fluid (e–f). The cerebellum and
brainstem were excluded from the evaluation.

4.2 Segmentation Evaluation

To better demonstrate the significance of our model, we submitted our results
to be evaluated by the MICCAI iSEG organizers [4]. The MICCAI iSEG organizers
have used three metrics to evaluate our model.
2 https://mrbrains13.isi.uu.nl/results.php.

https://mrbrains13.isi.uu.nl/results.php
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4.2.1 Dice Coefficient (DC)
Vref is the reference. Vauto is automatic segmentations. The DC is given by the
following equation:

DC(Vref, Vauto) =
2|Vref

⋂
Vauto|

|Vref| + |Vauto| , (8)

DC values are given in this range [0, 1]. 1 corresponding to the perfect overlap
and 0 indicating the total mismatch.

4.2.2 Modified Hausdorff Distance (MHD)
Pref denote to sets of voxels within the reference and Pauto indicate automatic
segmentation boundary. MHD is given by the following equation:

MHD
(
Pref, Pauto

)
= max

{
max

q∈Pref
d(q, Pauto), max

q∈Pauto
d(q, Pref)

}
, (9)

d(q, pauto) denote to the point-to-set distance. The equation is given by:

d (q, pauto) = min
p∈P

‖q − pauto‖, (10)

||.|| indicate the Euclidean distance.

4.2.3 Average Surface Distance (ASD)
The ASD is given by the following equation:

ASD
(
Pref, Pauto

)
=

1
|(Pref|

∑

P∈Pref

d(p, Pauto), (11)

|.| denote to the cardinality of a set. Due to the limited number of pages, we
refer readers to read about the three metrics on [4].

4.2.4 Comparing Our Results with Prior Work
To demonstrate the significance of our model, we compare our obtained results
with the results of five state-of-the-art models. We choose these five models
because (a) they have been considered as a baseline (i.e., benchmark) to com-
pare segmentation models in the literature to compare brain segmentation mod-
els [4,17,19–21] and (b) all implementation details of such models are publicly
available.

4.3 Result and Discussion

We train and test our model on two datasets of different ages (i.e., infants and
adults). Table 2 presents the results of our model to segment CSF , GM , and
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WM using the MICCAI iSEG dataset. Our model obtains a DC values of 94.1%
in CSF segmentation. The DC values obtained from segmenting CSF by state-
of-the-art models range between 83.5% and 91.5%. The results indicate that our
proposed model improves CSF segmentation by 2.6%–10.6%. In addition, our
model obtains a DC values of 90.2% and 89.7% in segmenting GM and WM ,
respectively. The state-of-the-art models, on the other hand, obtain DC values
in the ranges of 85.2%–88.6% for GM segmentation and 80.6%–88.7% for WM
segmentation. According to the results obtained, we observe that our model
achieves a significant improvement of 1.5%–9.6% on segmenting GM and WM .
Such results highlight the remarkable efficiency gained by separating actual brain
pixels from background and the additional features used in our model.

Table 2. Results for our model provided by MICCAIiSEG organizers [4]. (a) CSF
evaluation, (b) WM evaluation, (c) GM evaluation.

(a) (b) (c)

ID DC MHD ASD ID DC MHD ASD ID DC MHD ASD

11 0.89 10.8 0.44 11 0.89 7.3 0.44 11 0.89 8.5 0.42

12 0.93 10.2 0.49 12 0.87 6.4 0.49 12 0.87 5.0 0.43

13 0.93 9.5 0.47 13 0.89 7.3 0.47 13 0.89 10.7 0.44

14 0.89 10.9 0.48 14 0.89 5.8 0.48 14 0.88 6.7 0.48

15 0.93 12.2 0.47 15 0.89 6.0 0.47 15 0.89 11.0 0.42

16 0.92 11.8 0.49 16 0.89 8.1 0.49 16 0.89 7.1 0.45

17 0.92 9.00 0.38 17 0.90 10.6 0.38 17 0.90 10.7 0.37

18 0.93 10.8 0.44 18 0.89 7.4 0.44 18 0.89 8.6 0.40

19 0.93 11.1 0.48 19 0.89 8.1 0.48 19 0.89 6.7 0.42

20 0.90 13.2 0.69 20 0.83 8.5 0.69 20 0.83 7.8 0.58

21 0.92 10.8 0.52 21 0.87 8.1 0.52 21 0.87 8.1 0.45

22 0.89 10.1 0.65 22 0.85 8.6 0.65 22 0.85 6.7 0.58

23 0.92 10.6 0.56 23 0.86 7.7 0.56 23 0.86 7.6 0.47

Mean 0.92 10.9 0.2 Mean 0.88 7.69 0.50 Mean 0.89 8.09 0.45

Std 0.01 1.1 0.03 Std 0.02 1.26 0.08 Std 0.01 1.80 0.06

Fig. 6. (a) T1, (b) T2, (c) manual reference contour, and (d) our model result on the
subject used for validation.
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Table 3. Segmentation performance in Dice Coefficient (DC) obtained on the
MICCAIiSEG dataset. The best performance for each tissue class is highlighted in
bold.

Model Dice Coefficient (DC) Accuracy

CSF GM WM

[19] 91.2% 86.1% 84.1%

[20] 83.5% 85.2% 86.4%

[17] 90.3% 86.8% 84.3%

[21] 85.5% 87.3% 88.7%

3D, FCN 85.2% 87.6% 80.6%

3D, FCN + MIL 91.5% 88.6% 87.6%

3D, FCN + MIL+G+K 94.1% 90.2% 89.7%

Table 3 compares the results obtained using the MRBrains dataset. We
observe that our model achieves a DC value of 87.4% on CSF segmentation,
90.6% on GM segmentation, and 90.1% on WM segmentation. Such results are
superior to the results obtained using the state-of-the-art models. Therefore, we
argue that our mode can perform better on segmenting both infant or adult
brain structures.

Figure 6 shows a sample of the results of our model on the subject used for
validation set. We observe that our model performs well for brain segmentation,
especially for the brain tissues. In Fig. 6, we show an example of our segmenta-
tion results and how our result compares to the ground truth. We observe that
segmentation results obtained by our model fairly close to the manual reference
contour provided by the MICCAI iSEG organizers [4]. As expected, much of the
improvement by our model is gained at the brain boundary (i.e., between GM
and WM). Moreover, we observe that the use of multi-instance loss and Gabor
filter banks enabled our model to better handle thin regions than using original
brain images. Table 5 presents the execution time (in minutes) for the state-
of-art-models and our proposed model. We observe that the execution of our
proposed model is faster than the state-of-the-art models. Such results indicate
that our model is more efficient and practical to be used in real time systems.

5 Threats to Validity

This section discusses the validity threats of our results and how we address
them in our study.

5.1 External Validity

Threats to external validity are related to the generalizability of our results.
One could argue that our datasets do not have enough samples. We mitigate
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such threat by using two datasets that (a) contain both infant and adult brain
data and (b) were previously used by prior studies. In addition, we compare our
model with five prior models using the same datasets. Furthermore, we use the
small-size kernels, deconvolution layer (to upsample the input), PReLU, dropout
and normalization methods to reduce the risk of overfitting. Hence, any potential
deficiency in the data should affect all the implemented models. Nevertheless,
our model obtains higher performance than prior models (Table 4 and Fig. 7).

Table 4. Segmentation performance in Dice Coefficient (DC) obtained on the
MRBRAINS datasets. The best performance for each tissue class is highlighted in
bold.

Model Dice Coefficient (DC) Accuracy

CSF GM WM

[4] 83.9% 88.9% 89.4%

[20] 83.5% 85.4% 88.9%

[21] 82.8% 84.8% 88.5%

[22] 83.7% 84.8% 88.3%

3D, FCN 81.4% 86.1% 85.2%

3D, FCN + MIL 84.3% 87.6% 89.4%

3D, FCN + MIL+G+K 87.4% 90.6% 90.1%

Fig. 7. A sample of our model result on the subject employed for validation. (a) 10
epochs, (b) 20 epochs, (c) 30 epochs.

5.2 Internal Validity

Threats to internal validity are related to experimental errors and bias. Our
model is constructed using data extracted from medical images in which con-
tracts might be low. To mitigate such threat, we use the multi-instance loss
method to reduce any potential noise in the data by separating actual brain
pixels from background. Such method has improved the efficiency and accuracy
of our model as well as the accuracy. In addition, our results have been evaluated
by the same medical experts (i.e., the organizers of the MICCAI iSEG dataset).
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Table 5. Average execution time (in minutes) and standard deviation (SD) in the
MRBrains dataset

Model Time (SD)

[19] 15.40 (0.16)

[20] 19.23 (0.20)

[17] 17.6 (0.18)

[21] 18.4 (0.15)

3D, FCNN 7.2 (0.12)

3D, FCNN + MIL 5.9 (0.11)

3D, FCNN + MIL+G+K 5.9 (0.11)

6 Conclusion and Future Work

In this study, we propose an improved fully Convolutional Neural Network
(CNN) model for brain segmentation supported by (i) separating brain pix-
els from background using the multi-instance loss method and (ii) adding addi-
tional features using Gabor filter bank and K-means clustering. Our results have
been evaluated by the MICCAI iSEG organizers and found to be fairly close to
the manual reference. In addition, we compare our model with five baseline
state-of-the-art models and observe that our model achieves an improvement of
up to 11%. In particular, we obtain dice coefficients that range between 87.4%
and 94.1%. Such results indicates that the adoption of the multi-instance loss
method and Gabor filter banks has significantly improved segmentation results.
We argue that our model is more efficient and accurate in practice for both infant
and adult brain segmentation.

Despite the promising results obtained from our proposed model, we believe
that further improvements can be achieved in the future. For example, condi-
tional random fields (i.e., statistical modeling methods) can be used to predict
sequences in pattern recognition and machine learning. We plan to supply a con-
ditional random field to brain segmentation models to investigate whether it is
possible to gain better segmentation performance.
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