
Tool Data Modeling Method Based
on an Object Deputy Model

Qianwen Luo, Chen Chen, Song Wang, Rongrong Li, and Yuwei Peng(B)

School of Computer Science, Wuhan University, Wuhan, Hubei, China
{qwluo17,chenchen33,xavierwang,rrli,ywpeng}@whu.edu.cn

Abstract. With the development of intelligent manufacturing industry,
the management of tool data in machine tool processing is becoming
more and more important. Due to the richness of machine tool data
and the complexity of relationships in them, it’s hard for a traditional
relational database to manage the tool data. Therefore, a new method
should be proposed to manage these data in a better way. In this work,
we propose a tool data modeling method based on the object deputy
model, which utilizes the characteristics of the class and the objects to
express the meaning of the tool data and the various semantic constraints
on them. Unlike the traditional relational model, objects are connected
with a two-way pointer in the object deputy model where an object can
have one or more deputy objects that inherit the properties and methods
of the source object, and the deputy objects can have their own properties
and methods. Besides, the two-way pointer between the source class and
its deputy class makes the cross-class query easier in two aspects: One
is to make complex queries expressed in intuitive statements, and the
other is to improve query efficiency. We implemented and evaluated our
model on an object deputy database. Experiments show that our method
is better than the traditional relational ones.

Keywords: Object deputy model · Tool data · Data modeling ·
Database

1 Introduction

In traditional metal manufacturing, the reasonable use of various tools is of great
significance to improve production efficiency, product quality, and process safety,
and reduce costs. In today’s large-scale use of NC machining, the use of tool data
in the programming process is particularly important. Especially the selection
of tools and the recommended cutting parameters of the tool when processing
the workpieces are of decisive significance. In detail, the tool data has two main
characteristics. Firstly, the tool data have rich meanings, including the geometric
parameters of the tool, such as diameter, included Angle, cutting edge length,
programming length, and material of the tool, such as tool material, tool coating
material, and description information of the tool, i.e. tool type, scope of applica-
tion. Secondly, the tool data contains complex relations, such as the machining
c© Springer Nature Switzerland AG 2020
X. Wang et al. (Eds.): APWeb-WAIM 2020, LNCS 12318, pp. 491–499, 2020.
https://doi.org/10.1007/978-3-030-60290-1_37

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-60290-1_37&domain=pdf
https://doi.org/10.1007/978-3-030-60290-1_37


492 Q. Luo et al.

of the tool, which needs to consider the parameters of the tool, the processing
technology, the workpiece material, and the cutting speed of the tool. According
to Sandvik’s statistics, machine tool operators spend 20% of their time finding
suitable tools in the manufacturing process which is a high percentage. Therefore,
if the time required to find a suitable tool is reduced, the machining efficiency
will be greatly improved. Advanced manufacturing countries attach great impor-
tance to tool data management and have successively developed their own tool
management software, such as AutoTas tool management system developed by
Sandvik of Sweden, TDM Systems developed by Walter Information System of
Germany, TMS developed by Zoller of Germany, WinTool system developed by
WinTool of Switzerland. The mature tool management system is still absent in
China. The existing tool management systems are developed by different enter-
prises according to their own requirements. Consequently, they lack uniform
standards. This situation is incompatible with China’s status as the world’s
largest manufacturing country. Therefore, our work focused on the organization
of tool data and the construction of the tool management model on the basis of
industrial data processing and industrial Internet technology.

In view of the above data characteristics, all of the above-mentioned foreign
tool management systems adopt the relational data model to represent tool enti-
ties and their relationships. Since the relational data model is simple and clear
[1]. It has a solid mathematical theoretical foundation, and the operating lan-
guage is descriptive, which greatly improves the efficiency of data storage and
system development. However, there are still some shortcomings. We begin with
a careful exploration of the tool data model and discuss the limitations of the
relational data model concerning the characteristics of the tool data listed above.
First, the semantic expression is foggy. In the tool processing scenario, the com-
pletion of the workpiece is related to many factors such as the workpiece material
and processing use cases. No matter what kind of relationship between entities
is connected by the join in the relational data model, the semantic expression
is foggy. Second, it’s hard for the relational data model to maintain data con-
sistency. During the use of the tool, the life cycle of the tool is limited, so the
tool will be updated frequently. Finally, the query efficiency of the relational
model in our scenario is low. A large number of join operations are required
to determine the information to be found. As we all know, the join operation
takes a lot of time. Therefore, to address these problems, we propose a tool
data modeling method based on the object deputy model [3]. The object deputy
model [2] is a new data model based on the traditional object-oriented model,
which enhances the flexibility and modeling ability of the object-oriented model.
There are four kinds of relationship types in the object deputy model, namely
select, group, union, and join, which make the semantic relation between tool
data express accurately and abundantly. The select deputy class indicates whose
deputy objects are selected from a class according to a select predicate. The join
deputy class indicates that the deputy objects are derived from the results of
several classes connected according to a combination predicate, so a join deputy
object corresponds to a source object in each source class. The group deputy class



Tool Data Modeling Method Based on an Object Deputy Model 493

indicates whose deputy objects are derived from a class according to a grouping
predicate, so a group deputy object corresponds to a set of source objects. The
union deputy class indicates that the source objects of several classes of the same
type are merged into one deputy class. When the attribute values of the tool are
modified, our object deputy model provides the update propagation mechanism
to maintain their consistency. In addition, the cross-class query supported by
the object deputy model avoids a large number of join operations in the rela-
tional data model. In order to verify the effectiveness of our modeling method,
we used the actual tool data to make a comparative experiment between the
object deputy model and the relational model, the results of which show our
data model is more efficient than the relational data model.

In summary, our contribution are as follows.

– We propose a semantic analysis method for tool application scenarios. We use
classification to represent all objects in the tool scene. We use a classification
method to represent all objects in the tool scene according to the object
characteristics.

– We propose the tool data modeling method based on an object deputy model,
which effectively manages the tool data while meeting the most important
requirements in machine tool processing.

– We conduct experimental evaluations for our tool data model and existing
model based on the relational model. We evaluated the models from both
storage space and retrieval time.

The remainder of this paper is organized as follows. We introduce our Tool
Data modeling based on the Object Deputy Model in Sect. 2. Section 3 describes
our modeling method implementation and evaluates its efficiency, before con-
cluding the paper in Sect. 4.

2 Tool Data Modeling Method

In this section, we introduce the semantics of the tool data, illustrate the specific
Tool Data Modeling Method based on the Object Deputy Model, and give cross-
class query statements for the tool data scenarios.

2.1 Semantic Analysis

In our tool data model, we use a classification method to analyze data semantics.
According to the processing technology, the tools are divided into four categories
which are Drill, Mill Cutter, Boring Cutter, and Turning Tool. So we define four
source classes to represent the four types of tools in the tool processing scene.
In details, a class named Drill is used to define common drill objects which
have basic attributes, such as drillid which is the unique identifier of the object,
description which is recording the main purpose of the tool, material, Tconnec-
tion to describe the interface of the drill, and some geometric parameters that
are diameter, included angle, programming length, cutting edge length and total



494 Q. Luo et al.

length. The other three almost have the same attributes as the drill. Therefore,
only the drill is used as an example to describe the scene in the following. What’s
more, when the tools are installed on the machine, they need to be connected
to the machine through a tool holder. So we need to design a tool holder source
class to describe the tool holder interface information. In tool processing, if the
interface of the tool and the interface of the holder are matched, they can be suc-
cessfully paired and used. The workpiece to be processed is the most important
part of tool processing, and the material characteristics of the workpiece play a
decisive role in determining the processing parameters. We define a PartMate-
rial class to record material information. And the use case also affects the choice
of cutting parameters, so we define a UseCase class to record the descriptions,
indicating roughing or finishing.

2.2 Tool Data Modeling

In the previous chapter, we have introduced several important source classes. We
present the complete model in this subsection. As shown in Fig. 1, the model con-
tains four different deputy relationships, covering the main application scenarios
of tool processing. Next, we will introduce specific modeling schemes for differ-
ent data association relationships in the actual tool machining scene. We have
adopted the classification standard of tools in the manufacturing field according
to processing technology. Actually, each type of tool can be subdivided accord-
ing to its material. Machine managers usually want to see as few unrelated tools
as possible when looking for suitable tools. So we use the select operation to
derive a deputy class which only includes the deputy objects of the instances of
the source class that satisfy a selection predicate. Take Drill source class as an
example, the drill contains many instances including high-speed steel drills, car-
bide drills, and so on. While processing a workpiece, the managers usually need
to find a class of tools for its purpose, so the construction of the select deputy
class can make it more convenient and express the relationship of different types
of tools accurately. In Fig. 1, the select deputy class depicts the relationship of
this situation.

When a tool is selected to machine a workpiece, it needs to be installed on
the machine tool via a tool holder. However, the tool and tool holder are paired
by the value of Tconnection, an attribute that records the interface criterion
of the tool and tool holder. So we also construct a join deputy class to record
the paired tools and tool holders. Further, looking up the suitable cutting speed
is a very common scenario in tool machining when the other factors such as
use case, material, and tool are exact. Therefore, we need to use these factors
as filter conditions to query the cutting speed. We use the join operation to
derive a deputy class that can store the relationship between them in order to
express this relationship. In this way, we can find the cutting speed we need to
find through this join deputy class. In Fig. 1, the join deputy class depicts the
relationship of this situation. The Tool deputy class is defined with SQL-like
statements as:



Tool Data Modeling Method Based on an Object Deputy Model 495

CREATE JOINDEPUTYCLASS Tool AS (
SELECT spiraldrill.id, toolholder.id,
toolholder.MConnection as MConnection
FROM spiraldrill, toolholder
WHERE spiraldrill.Tconnection=toolholder.TConnection)

Fig. 1. The tool data model

As mentioned above, we represented four different tools as four different
source classes, but we need to check all the tools during the inventory check,
so we have to put all the tools together so that the type of tools is no longer
single. The union operation in object deputy model can derive a deputy class of
which extension consists of deputy objects of instances of more than one source
class. Therefore, we use the union deputy class to describe the collection of four
different types of tools. In Fig. 1, the union deputy class depicts the relationship
of this situation.

During tool processing, the tool needs to be replaced frequently due to wear,
and the interface for installing the tool on the machine tool is fixed. In a real-life
scenario, when replacing the tools, we need to find the applicable tools for the
machine tool through the interface information. Therefore, in order to facilitate
the subsequent procurement of tools that can match the specific machine tool,
we can know the number of tools applicable to each machine tool in the tool
magazine through the tool interface information. The group operation of the
object deputy model can derive a deputy class which only includes the deputy
objects of the instances of the source class that have the same features. So we
need to use the group deputy class to show this message.



496 Q. Luo et al.

2.3 Cross Class Query

In the previous part, we stored the tool data according to their semantic rela-
tionships. In the actual application scenario, machine operators hope to quickly
retrieve the tool data that they want to query, so we can take advantage of the
cross-class query feature in our model. Cross-class query refers to finding an
object in a source class or deputy class based on the related information of the
other source classes or deputy classes. The objects and their deputy objects are
linked in two directions through pointers. So there is a path between any two
objects in our model to link them. For example, in the tool data scenario, we
usually need to find the optimal cutting speed of the tool when we already know
the type of tool, the material of the workpiece, and so on. We can define the
following cross-class query:

SELECT (spiraldrill{diameter=’16.0’}->cuttingdata).cuttingspeed
FROM drill WHERE cuttingspeed IN
(SELECT(usecase{description=’roughing’}->cuttingdata).cuttingspeed
FROM usecase WHERE cuttingspeed IN
(SELECT(partmaterial{description=’GG’}->cuttingdata).cuttingspeed
FROM partmaterial);

In this cross-class query, we can see that using arrows to represent associ-
ations between classes is very simple and intuitive. The system will first scan
the CuttingData class, and then check its connected source objects in the source
class Drill, and see whether its diameter is equal to 16. If the filter condition
is satisfied, then the system will judge whether the next filter condition is met
until all filter conditions are met, and its attribute cuttingid will be returned,
along with the value of its local attribute cutting speed. So the result of this
query will be cutting speed. The cross-class queries use bidirectional pointers to
find information in associated classes avoiding a large number of join operations
in relational types. In general, the cross-class query makes the complex queries
involving many filter conditions be presented clearly and executed efficiently.

2.4 Consistence Maintenance

In this section, we introduce how to achieve consistency maintenance by the
update propagation mechanism [5]. The update propagation mechanism is that
when an object is modified, the modification is automatically reflected its deputy
object through a switching operation. There are usually three types of modifica-
tions in the tooling scenario. First, when a tool object is added, its deputy objects
may be created automatically which satisfies the selection predicate so that the
tools can be presented in different machining applications. Second, when an old
tool is damaged, that is, a tool object is deleted, its deputy objects will also be
deleted. Third, when a tool object is modified, some of its deputy objects may
be deleted and some other deputy objects may be added. Thus, our tool data
model can maintain the consistency of the tool data by the update propagation
mechanism.



Tool Data Modeling Method Based on an Object Deputy Model 497

3 Experiments

In this section, we introduce our performance testing experiments on the model
from three aspects: platform, data set, and experimental results.

3.1 Platform

We report the different experiments we run to evaluate the performance of our
tool data model. We evaluate the performance of each data model when pro-
cessing the queries. We execute the query on two databases: Totem as a rep-
resentative for the object deputy model, and PostgreSQL represents the rela-
tional model. Totem has been developed as a database management system
(DBMS) based on the object deputy model [4]. In Totem, queries are expressed
with a declarative query language which is named object deputy query language
(ODQL) [6]. A query is executed on both of them, and meanwhile, the retrieval
time and storage space are recorded. The experiments were performed using
object deputy database Totem and relational database PostgreSQL under such
a platform: Intel(R)Core(TM)i7-2320 3.0 GHz CPU with 4 GB memory, 500 GB
hard disk and Ubuntu16.04.

3.2 Data Set

In the experiments, we used two types of data to evaluate the tool data models.
One type was collected from the tool catalog which is from real-world use cases.
But there are only a few hundred of such data. The other type was generated
by simulation based on the attribute type of the real data. In this way, we get
the data sets of different orders of magnitude. Every record in each data set
represents a tool application instance which includes the unique identifier of the
tool and its cutting speed corresponding to different machining conditions. We
choose the main application scenario of tool data, namely query cutting speed,
as our experimental scenario. We will compare the storage space of the tool data
and the retrieval time needed when querying the same amount of tool objects
between two data models based on two databases. We have done several tests
with the different data sets. The test results of the response time and storage
size are shown in Fig. 2. From the figures, we can see that the response time and
the consumed storage spaces in Totem outperform the PostgreSQL.



498 Q. Luo et al.

(a) Comparison of Response Time. (b) Comparison of Storage Consumption.

Fig. 2. The experimental results

4 Conclusion

We presented the tool data modeling method based on the object deputy model.
To the best of our knowledge, this model is the first implemented and evaluated
in tool data management. And the results of the experiments show that the per-
formance of the object deputy model is better compared to the relational model
in the retrieval time and consumed storage space. We also achieved consistency
maintenance of the tool data by the update propagation mechanism to make
the tool management efficient. As future work, we will further improve query
performance and optimize our model to meet more scenarios.

Acknowledgement. This work is supported by the Key Research and Development
Program of China (2016YFB1000701) and the key projects of the National Natural
Science Foundation of China (No. U1811263).

References

1. Codd, E.F.: A relational model of data for large shared data banks. Commun. ACM
13(6), 377–387 (1970)

2. Kambayashi, Y., Peng, Z.: Object deputy model and its applications. In: Proceedings
of the 4th International Conference on Database Systems for Advanced Applications
(DASFAA), Singapore, pp. 1–15 (1995)

3. Peng, Z., Kambayashi, Y.: Deputy mechanisms for object-oriented databases. In:
Proceedings of the Eleventh International Conference on Data Engineering, pp.
333–340 (1995)

4. Peng, Z., Peng, Y., Zhai, B.: Using object deputy database to realize multi-
representation geographic information system. In: Proceedings of the 15th ACM
International Symposium on Geographic Information Systems, ACM-GIS 2007,
Seattle, Washington, USA, 7–9 November 2007, pp. 43–46 (2007)



Tool Data Modeling Method Based on an Object Deputy Model 499

5. Wang, L., Wang, L., Peng, Z.: Probabilistic object deputy model for uncertain data
and lineage management. Data Knowl. Eng. 109, 70–84 (2017)

6. Zhai, B., Shi, Y., Peng, Z.: Object deputy database language. In: Fourth Interna-
tional Conference on Creating, Connecting and Collaborating through Computing,
C5 2006, Berkeley, California, USA, 26–27 January 2006, pp. 88–95 (2006)


	Tool Data Modeling Method Based on an Object Deputy Model
	1 Introduction
	2 Tool Data Modeling Method
	2.1 Semantic Analysis
	2.2 Tool Data Modeling
	2.3 Cross Class Query
	2.4 Consistence Maintenance

	3 Experiments
	3.1 Platform
	3.2 Data Set

	4 Conclusion
	References




