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Abstract. Knowledge tracing is an essential task that estimates stu-
dents’ knowledge state as they engage in the online learning platform.
Several models have been proposed to predict the state of students’ learn-
ing process to improve their learning efficiencies, such as Bayesian Knowl-
edge Tracing, Deep Knowledge Tracing, and Dynamic Key-Value Mem-
ory Networks. However, these models fail to fully consider the influence
of students’ current knowledge state on knowledge growth, and ignore
the current knowledge state of students is affected by forgetting mech-
anisms. Moreover, these models are a unified model that does not con-
sider the use of group learning behavior to guide individual learning.
To tackle these problems, in this paper, we first propose a model named
Knowledge Tracking based on Learning and Memory Process (LMKT) to
solve the effect of students’ current knowledge state on knowledge growth
and forgetting mechanisms. Then we propose the definition of learning
capacity community and personalized knowledge tracking. Finally, we
present a novel method called Learning Ability Community for Person-
alized Knowledge Tracing (LACPKT), which models students’ learning
process according to group dynamics theory. Experimental results on
public data sets show that the LMKT model and LACPKT model are
effective. Besides, the LACPKT model can trace students’ knowledge
state in a personalized way.

Keywords: Personalized Knowledge Tracing · Learning ability
community · Knowledge growth · Knowledge state

1 Introduction

With the development of Intelligent Tutoring Systems (ITS) [1] and Massive
Open Online Courses (MOOCs) [15], a large number of students are willing
to learn new courses or acquire knowledge that they are interested in through
the online learning platform. When students have completed some exercises or
courses, the online learning platform can obtain the knowledge state they mas-
tered according to their learning records. For example, when a student tries to
solve the exercise “x2 − 2x + 1 = 0”, the online learning system can estimate
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the probability that the student will answer this exercise correctly according to
the student whether had mastered arithmetic operations and quadratic equation
with one unknown. In online learning platform, the task of knowledge tracing is
to model the learning process of students to trace their future knowledge state
based on their historical performance on exercises and the underlying knowledge
concepts they had mastered. Knowledge tracing can be formalized as: given
observations of interactions X = {x1, ..., xt} taken by a student on a past exer-
cise task, predict the probability that the student answers the next interaction
xt+1 correctly. In the knowledge tracing, interactions take the form of a tuple of
xt = (qt, rt) that combines a tag for the exercise being answered qt with whether
or not the exercise was answered correctly rt [18]. Therefore, knowledge trac-
ing technology can help teachers to teach according to their aptitude and give
students personalized guidance and can help students to strengthen training on
unfamiliar or less familiar knowledge concepts, which is very meaningful in the
teaching process.

Knowledge tracing is inherently difficult as the complexity of the human
brain learning process and the diversity of knowledge. Several models have been
proposed to model the knowledge state of students in a concept specific man-
ner, such as Bayesian Knowledge Tracing (BKT) [2,5], Deep Knowledge Trac-
ing (DKT) [18], Dynamic Key-Value Memory Networks (DKVMN) [24]. BKT
divides students’ knowledge states into different concept states and assumes the
concept state as a binary latent variable, known or unknown, and uses the Hid-
den Markov Model to update the posterior distribution of the binary concept
state. Although BKT can express each knowledge concept state for each stu-
dent, it requires students to define knowledge concepts in advance. Moreover,
BKT assumes that once students have mastered the knowledge, they will never
forget it, which limits its ability to capture the complicated relationship between
different knowledge concepts and model long-term dependencies in an exercise
sequence.

In recent years, inspired by the successful application of deep learning [12],
the deep learning model is beginning to be used to solve the knowledge tracing
problem. DKT is the first deep knowledge tracing model, which exploits Recur-
rent Neural Networks (RNNs) to the problem of predicting students to exercise
based on students’ previous learning sequences. Because of the RNNs has hid-
den layers with a large number of neurons, it can comprehensively express the
relationships between different concepts to improve the accuracy of prediction.
However, DKT summarizes a student’s knowledge state of all concepts in one
hidden state, which makes it difficult to trace how much a student has mastered
a certain concept and pinpoint which concepts a student is good at or unfamiliar
with [11]. To address this deficiency, Zhang et al. proposed the DKVMN model
based on Memory Augmented Neural Networks (MANNs) [19,21], which can
discover the correlation between input exercises and underlying concepts and
reveal the evolving knowledge state of students through using a key-value mem-
ory. However, there are still some knowledge tracking problems that need to be
addressed, as follows:
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– The knowledge growth of DKVMN is calculated by multiplying students’
exercises xt = (qt, rt) with a trained embedded matrix, which means that
knowledge growth is only related to the absolute growth of this exercise.
According to human cognitive processes, students’ knowledge growth is
related to their current knowledge states [3], so the calculation method of
knowledge growth has limitations.

– The reading process of the DKVMN model ignores the effect of forgetting
mechanism on students’ knowledge state. According to the research that for-
getting occurs along an exponential curve [7], forgetting means that a stu-
dent’s knowledge decreases over time, we believe that the knowledge state of
students is affected by the forgetting mechanism.

– Existing knowledge tracing models assume that all students have the same
learning ability without considering their inherent differences, and then con-
struct a unified model to predict the probability that students answer the
exercise correctly at the next moment, which lacking personalized ability.

To solve the above problems, inspired by the literature [17,20], we propose a
novel method called Learning Ability Community for Personalized Knowledge
Tracing (LACPKT) based on the learning ability community and learning and
memory process. The main contributions of our paper are summarized as follows:

– We present a knowledge tracing model called Knowledge Tracking based on
Learning and Memory Process (LMKT), which solves the impact of the cur-
rent knowledge state of students on knowledge growth and consider the effect
of forgetting mechanisms on the current knowledge state of students.

– We first define the learning ability degree and learning ability community and
propose the definition of personalized knowledge tracking according to group
dynamics theory.

– We propose a novel method called Learning Ability Community for Person-
alized Knowledge Tracing (LACPKT), which models the learning process of
students in a personalized way.

– We conduct experiments on four public datasets to verify the effectiveness of
the LMKT model and LACPKT model.

2 Related Work

There are many kinds of research to estimate the knowledge state of students.
Bayesian Knowledge Tracing (BKT) [5] is the most popular knowledge tracing
model based on machine learning, which is also a highly constrained and struc-
tured model. BKT models every knowledge concept for every student, and each
knowledge concept only changes from the unmastered state to the mastery state.
Some variants of BKT have also raised. For example, Yudelson et al. [23] proposed
an individualized Bayesian knowledge tracing models. Baker et al. [2] presented a
more accurate student state model by estimating the P(G) and P(S) contexts in
BKT. Pardos et al. [16] added the item difficulty of item response theory (IRT) [10]
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to the BKT to increase the diversity of questions. Other information or technolo-
gies [6,8,9] have also been introduced into the Bayesian network framework.

Deep Knowledge Tracing (DKT) [18] applied the vanilla Recurrent Neural
Networks (RNNs) to trace knowledge concept state, reports substantial improve-
ments in prediction performance. DKT uses the RNNs with a hidden layer map
an input sequence of vectors X = {x1, x2, ..., xt} to an output sequence of vec-
tors Y = {y1, y2, ..., yt} to model student learning and predict student’s state of
all knowledge concepts. Zhang et al. [25] improved the DKT Model by incorpo-
rating more problem-level features and then proposed an adaptive DKT model
structure that converts the dimensional input into a low dimensional feature
vector that can effectively improve accuracy. Cheung et al. [4] proposed an auto-
matic and intelligent approach to integrating the heterogeneous features into the
DKT model that can capture students behaviors in the exercises. Nagatani et al.
[14] extended the DKT model behavior to consider forgetting by incorporating
multiple types of information related to forgetting, which improves the predic-
tive performance. Memory Augmented Neural Networks (MANNs) have made
progress in many areas, such as question answering [21] and one-shot learning
[19]. MANNs consists of two operations, reading and writing that are achieved
through additional attention mechanisms. Because of the recurrence introduced
in the read and write operations, MANNs is a special variant structure of RNNs,
it uses an external memory matrix that stores the knowledge state of a student.
Zhang et al. put forward a Dynamic Key-Value Memory Networks (DKVMN)
[24] that uses the concepts of Memory Augmented Neural Networks (MANNs)
to reveal the evolving knowledge state of students and learn the relationships
between concepts. DKVMN with one static key matrix that stores the concept
representations and one dynamic value matrix that stores and updates the stu-
dents understanding concept state of each concept, thus it has more capacity to
handle knowledge tracking problems.

3 The Proposed Model

In this section, we first give the formalization of definitions and then intro-
duce Knowledge Tracking based on Learning and Memory Process. Finally, we
propose a novel method named Learning Ability Community for Personalized
Knowledge Tracing to model the learning process of students. In description
below, we assume a student’s exercise sequence X = {x1, x2, ..., xt} contains N
latent knowledge concepts C = {c1, c2, ..., cN}, where xt = (qt, rt) is a tuple
containing the question qt and the correctness of the students answer rt, and all
exercise sequences of M students U = {u1, u2, ..., uM} are X = {X1,X2, ...,XM}.
The details are elaborated in the following three subsections.

3.1 Definition Formulation

Learning ability represents the internal quality of an individual that can cause
lasting changes in behavior or thinking, which can be formed and developed
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through certain learning practices. In the knowledge tracing problem, because
of the cognitive level of each student is different, the result of each student’s
exercise sequence reflect their learning ability. We introduce the definition of
learning ability degree δ according to the exercise sequence of students.

Definition 1. Learning Ability Degree. We assume that the exercise of stu-
dent ui is xt = (qt, rt) contains knowledge concept cj, the learning ability degree
of student ui is δ

cj
ui = s

cj
max/s

cj
length that represents the learning ability of student

ui to learn the knowledge concept cj in question qt.

Where a big δ
cj
ui ∈ [1, scjmax] indicates that the student ui has a strong ability to

learn this question qt, s
cj
length represents the number of times that the student

ui repeatedly learns the knowledge concept cj , s
cj
max represents the maximum

number of times that a student repeatedly learns the knowledge concept cj .
Because of the exercise sequence of student ui is Xi = {xi

1, ..., x
i
t} contains

knowledge concepts {c1, ..., cj}, the learning ability degree sequence of student
ui is δui

= {δc1ui
, δc2ui

, ..., δ
cj
ui}. Therefore, according to the learning ability degree

sequence of all students, we definite the Learning Ability Community is as fol-
lows:

Definition 2. Learning Ability Community. We Suppose that the learning
ability sequence of student ui and student uj are δui

= {δc1ui
, δc2ui

, ..., δ
cj
ui} and

δuj
= {δc1uj

, δc2uj
, ..., δ

cj
uj}, if |δui

− δuj
| ≤ ε, we believe that student ui and student

uj have similar learning abilities. In other words, they belong to the same learning
ability community.

According to the exercise sequence of students and the definition of learning abil-
ity community, we use an unsupervised deep clustering algorithm to minimize ε
to divide students into their range of learning ability through continuous iter-
ation and acquire multiple different learning ability communities. In a learning
ability community k, we input all exercise sequences into a basic knowledge trac-
ing model for training and get a corresponding optimization model by adjusting
the parameters of the basic model. Because all students have similar learning
abilities in the learning ability community k, we can use group learning char-
acteristics to guide individual learning. Therefore, we give the definition of the
Personalized Knowledge Tracing is as follows:

Definition 3. Personalized Knowledge Tracing. We Suppose that m stu-
dents had already learned the exercise sequences X = {x1, x2, ..., xT } contain
knowledge concepts {c1, c2, ..., cj} in the learning ability community k, if a stu-
dent um+i wants to learn this exercise sequences, we are able to trace the per-
sonalized knowledge state of student um+i according to the knowledge state of
m students. In other words, we can predict the probability that student um+i

correctly answer this exercise sequence, which is called Personalized Knowledge
Tracing.
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3.2 Knowledge Tracking Based on Learning and Memory Process

Despite being more powerful than DKT and BKT in storing and updating the
exercise sequence of students, DKVMN still has deficiencies when solved the
knowledge tracing problem. To solve the problem, we propose the model: Knowl-
edge Tracking based on Learning and Memory Process (LMKT), its framework
is shown in Fig. 1. We assume the key matrix Mk (of size N ×dk) is a static
matrix that stores the concept representations and the value matrix Mv

t (of size
N ×dv) is a dynamic value matrix that stores the student’s mastery levels of
each concept, meanwhile Mv

t updates over time. The task of knowledge tracing
is completed by three mechanisms of LMKT: attention, reading and writing.

Attention. For the input exercise qt of a student ui, we utilize the attention
mechanism to determine which concepts are relevant to it. Thus, we multiply qt
by embedding matrix A to get an embedding vector kt. Relevance probability
of qt belongs to every concept in Mk is computed by comparing the question
to each key matrix slot Mk(i), which is defined as attention weight vector wt.
wt represents the weight of each student’s attention between exercise and each
concept and will be applied to read and write processes.

wt(i) = Softmax(kT
t M

k(i)), (1)

where Softmax(x) = ex/
∑

y(e
y).

Fig. 1. The framework of Knowledge Tracking based on learning and memory process
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Reading. When an exercise qt comes, the value matrix Mv
t of students’ current

knowledge state cannot remain unchanged, because of the influence of human
forgetting mechanism. Therefore, we assume the forgetting vector ekt represents
the forgetting of current knowledge state during the reading process, and stu-
dents’ current knowledge state Mv

t (i) will be updated as M̂
v

t (i).

ekt = Sigmoid(ET
kM

v
t + bk), (2)

M̂
v

t (i) = Mv
t (i)[1 − wt(i)ekt ], (3)

where ET
k is a transformation matrix, the elements of ekt lie in the range (0, 1).

Then, according to the attention weight wt, we can calculate the read content rt
that stands for a summary of the student’s mastery level of this exercise through
the value matrix M̂

v

t (i).

rt =
N∑

i

wt(i)M̂
v

t (i). (4)

next, we concatenate the read content rt and the input exercise embedding kt

and then pass through a multilayer perceptron with the Tanh activation function
to get a summary of knowledge state vector f t, which contains the student’s
mastery level and the difficulty of exercise qt.

f t = Tanh(W T
1 [rt,kt] + b1). (5)

finally, after f t pass through the sigmoid activation function, we can get the
predicted scalar pt that represents the probability of answering the exercise qt
correctly.

pt = Sigmoid(W T
2 f t + b2), (6)

where W T
1 ,W T

2 stand for the weight and b1, b2 stand for the bias.

Writing. Writing process is the update process of students’ knowledge state. In
DKVMN model, The (qt, rt) embedded with an embedding matrix B to obtain
the knowledge growth vt of the students after working on this exercise [24],
which is insufficient to express the actual gains in the learning process. However,
concatenate the original knowledge growth vt and the read content rt and pass it
through a fully connected layer with a Tanh activation to get the new knowledge
growth v

′
t.

v
′
t = Tanh(W T

3 [vt, rt] + b3). (7)

before writing the student’s knowledge growth into the value matrix Mv
t , we

should consider the forgetting according to human learning and cognitive pro-
cesses. We assume that the forgetting vector evt that is computed from v

′
t.

evt = Sigmoid(ET
v v

′
t + bv), (8)
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where ET
v is a transformation matrix, the elements of evt lie in the range (0,1).

After the forgetting vector evt , the memory vectors component Mv
t-1(i) from the

previous timestamp are modified as follows:

M̃
v

t (i) = Mv
t-1(i)[1 − wt(i)evt ], (9)

where wt(i) is the same as in the reading process. After forgetting, the add
vector at is the actual gains of the new knowledge growth v

′
t, which is calculated

as follows:
at = Tanh(W T

a v
′
t + ba), (10)

where W T
a is a transformation matrix. Finally, the value matrix is updated at

each time t based on M̃
v

t (i) and at.

Mv
t (i) = M̃

v

t (i) + wt(i)at. (11)

Training. All parameters of the LMKT model, such as the embedding matri-
ces A and B as well as other weight parameters, are trained by minimizing a
standard cross entropy loss between the prediction label pt and the ground-truth
label rt.

L = −
∑

t

(rt log pt + (1 − rt) log (1 − pt)) (12)

3.3 Learning Ability Community for Personalized Knowledge
Tracing

In this subsection, we introduce Learning Ability Community for Personalized
Knowledge Tracing (LACPKT) based on the previous two subsections. The
framework of LACPKT is shown in Fig. 2, the process of the LACPKT is as
follows:

Firstly, we input the exercise sequences of all students into the LMKT model
for training and get a basic LMKT0 model suitable for all students.

Secondly, According to Definition 1, we process each student’s exercise
sequence to obtain their learning ability degree sequence {δ1, δ1, ..., δL}.

Thirdly, we input the learning ability degree sequence of all students into
the deep clustering network (DCN) [22], which joints dimensionality reduction
and K-means clustering approach in which DR is accomplished via learning a
deep neural network. According to the Definition 2, we assume that we obtain k
learning ability communities (LAC) as follows:

{LAC1, LAC2, ..., LACk} ⇐ {(δ1, δ1, ..., δL),DCN}. (13)
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Fig. 2. The framework of learning ability community for Personalized Knowledge Trac-
ing

Then, we input the exercise sequences of k learning ability communities into
the basic LMKT0 model for training, and acquire k optimized LMKT models
by adjusting the parameters of the basic model, as shown in Eq. (14). In any
learning ability community, we can trace the personalized knowledge state of
each student.

{LMKTLAC1 , ..., LMKTLACk
} ⇐ {(LAC1, ..., LACk), LMKT0}. (14)

Next, according to the Definition 3, if there are m students had already
learned the exercise sequence X = {x1, x2, ..., xt} involves knowledge concepts
{c1, c2, ..., cj} in the learning ability community k, we are able to construct m per-
sonalized knowledge models for these m students, and obtain these m students’
current knowledge state {fu1

k , fu2
k , ..., fum

k }, as shown in Eq. (15) and Eq. (16).

{LMKTLAC
u1
k

, ..., LMKTLACum
k

} ⇐ {(u1, ..., um), LMKTLACk
}, (15)

{fu1
k , fu2

k , ..., fum

k } ⇐ {LMKTLAC
u1
k

, ..., LMKTLACum
k

}. (16)

Finally, when student um+1 wants to learn the exercise sequence X =
{x1, ..., xt}, we concatenate these m students’ current knowledge state
{fu1

k , fu2
k , ..., fum

k } and then pass it through a fully connected network with the
Sigmoid activation function to predict the probability p

um+1
k that student um+1

will correctly answer this exercise sequence.

p
um+1
k = Sigmoid(WT

k [fu1
k , fu2

k , ..., fum

k ] + bk), (17)



Learning Ability Community for Personalized Knowledge Tracing 185

where W T
k and bk stand for the weight and bias of student um+1. The optimized

objective function is the standard cross entropy loss between the prediction label
p
um+1
k and the ground-truth label rt.

L
um+1
k = −

∑

t

(
rt log p

um+1
k + (1 − rt) log

(
1 − p

um+1
k

))
. (18)

4 Experiments

In this section, we first evaluate the performance of our LMKT model against the
state-of-the-art knowledge tracing models on four experimental datasets. Then,
we verify the validity of our LACPKT model and analyze the effectiveness of
Personalized knowledge tracing.

4.1 Experiment Settings

Datasets. We use four public datasets from the literature [18,24]: Synthetic-51,
ASSISTments20092, ASSISTments20153, and Statics20114, where Synthetic-5 is
one synthetic dataset, the other three are the real-world datasets obtained from
online learning platforms. The statistics of four datasets are shown in Table 1.

Implementation Details. First, we encoded the experimental datasets with
one-hot encoding, and the length of the encoding depends on the number of dif-
ferent questions. In the synthetic-5 dataset, 50% of exercise sequences were used
as a training dataset, but in the other three dataets, 70% of exercise sequences
were used as a training dataset. A total 20% of the training dataset was split
to form a validation dataset that was used to find the optimal model archi-
tecture and hyperparameters, hyperparameters were tuned using the five-fold
cross-validation. Then, we constructed the deep clustering network consist of
four hidden layers to cluster learning ability community, of which the number of
neurons in the four hidden layers is 1000,800,500,100, in addition to every layer
is pre-trained for 100 epochs and the entire deep network is further finetuned
for 50 epochs. Next, in all experiments of our model, we trained with Adam
optimizer and repeated the training five times to obtain the average test results.
Finally, about evaluation indicators, we choose the AUC ∈ [0, 1], which is the
area under the Receiver Operating Characteristic (ROC) curve, to measure the
performance of all models.

1 https://github.com/chrispiech/DeepKnowledgeTracing/tree/master/data/
synthetic.

2 https://sites.google.com/site/assistmentsdata/home/assistment-2009-2010-data/
skill-builder-data-2009-2010.

3 https://sites.google.com/site/assistmentsdata/home/2015-assistments-skill-
builder-data.

4 Statics2011:https://pslcdatashop.web.cmu.edu/DatasetInfo?datasetId=507.

https://github.com/chrispiech/DeepKnowledgeTracing/tree/master/data/synthetic
https://github.com/chrispiech/DeepKnowledgeTracing/tree/master/data/synthetic
https://sites.google.com/site/assistmentsdata/home/assistment-2009-2010-data/skill-builder-data-2009-2010
https://sites.google.com/site/assistmentsdata/home/assistment-2009-2010-data/skill-builder-data-2009-2010
https://sites.google.com/site/assistmentsdata/home/2015-assistments-skill-builder-data
https://sites.google.com/site/assistmentsdata/home/2015-assistments-skill-builder-data
https://pslcdatashop.web.cmu.edu/ DatasetInfo?datasetId=507
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Table 1. The statistics of four datasets.

Datasets Students Questions Exercises

Synthetic-5 4000 50 200,000

ASSISTments2009 4,151 110 325,637

ASSISTments2015 19,840 100 683,801

Statics2011 333 1223 189,297

4.2 Results and Analysis

LMKT Model Performance Evaluation. We evaluate our LMKT model
against the other three knowledge tracing models: BKT, DKT and DKVMN.
The test AUC results are shown in Table 2.

Table 2. The AUC results of the four models on four datasets.

Datasets Test AUC (%)

BKT DKT DKVMN LMKT

Synthetic-5 62 80.34 82.76 82.95

ASSISTments2009 63 80.53 81.52 81.77

ASSISTments2015 64 72.52 72.73 72.94

Statics2011 73 80.20 82.33 82.76

Since the performance of the BKT model and the DKT model is lower than
the DKVMN model, the AUC results of these two models refer to the optimal
results in [24]. For the DKVMN model, we set the parameters of it to be consis-
tent with those in the original literature, then trained five times on four datasets
to obtain the final average test results. In our LMKT model, we adjusted the
model parameters to find the best model structure and obtain the best results
according to the change of our model structure. It can be seen that our model
outperformed the other models over all the four datasets. Although the perfor-
mance of our model is improved by 0.25% to 0.5% compared to the DKVMN
model, it proved the effectiveness of dealing with knowledge tracking problems
based on human learning and memory processes. Besides, the state dimensions
and memory size of the LMKT model are 10 or 20, it can get better results.
However, the state dimensions and memory size of the DKVMN model are 50 or
100, which leads to problems such as more model parameters and longer training
time. As shown in Fig. 3, the performance of the LMKT model is better than the
DKVMN model, especially the LMKT model can reach the optimal structure of
the model in fewer iterations. However, In the Statics2011 dataset, although the
performance of the LMKT model and the DKVMN model are similar, the gap
exists between the training AUC and the validation AUC of the DKVMN model
is larger than the LMKT model, so the over-fitting problem of the LMKT model
is smaller than the DKVMN model.
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Fig. 3. Training AUC and validation AUC of DKVMN and LMKT on four datasets

Learning Ability Community Analysis. By analyzing the exercise
sequences of the four experimental datasets, we divide each student into different
learning ability communities thought the deep clustering network. According to
Definitions 1 and 2, we knew that δ determines the difference in learning abil-
ity among students and then normalized the learning ability degree is between
0 and 1. However, we set up clusters of deep clustering networks to determine
the number of learning ability communities and divide students into the learning
ability communities to which they belong. We set the ASSISTments2015 dataset
contains six different learning ability communities and the other three datasets
contain five different learning ability communities, and visualize each dataset
through t-SNE [13]. Figure 4 shows the results of the visualization of the learn-
ing ability community, where each color represents a learning ability community.
In the Synthetic-5 dataset, because it is obtained by artificially simulating the
student’s answering process, the effect of dividing the learning ability commu-
nity shows discrete characteristics. In ASSISTments2009 and ASSISTments2015
dataset, because of the exercise sequences are shorter in the datasets or the exer-
cise questions are repeated multiple times in the same exercise sequence, some
data is far from the center of the learning ability community. Moreover, the
dataset ASSISTments2015 contains 19,840 students, so the number of learning
ability communities set is not enough to meet the actual situation, so it has the
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problem of overlapping learning ability communities. In the Statics2011 dataset,
since it contains only 333 students, the overall clustering effect is sparse.

Fig. 4. Learning ability community

Personalized Knowledge Tracing. Because the dataset ASSISTments2015
is an updated version of the data set ASSISTments2009, and the data set Stat-
ics2011 has only 333 student exercise sequences, we chose the datasets Synthetic-
5 and ASSISTments2015 for experimental verification of personalized knowledge
tracing. Through the analysis of the dataset and the learning ability community,
we set the number of learning ability communities of the datasets Synthetic-5
and ASSISTments2015 to 4 and 6. To ensure the sufficiency and reliability of
personalized knowledge tracing experiment, we input different learning ability
communities to DKVMN called the LAC DKVMN model and compare it with
LACPKT. According to Definition 3, we conducted experiments to validate the
validity of the LACPKT model, the experimental results are shown in Fig. 5.

According to Fig. 5(a) and (b), we found that the personalized knowledge
tracking capability of the LACPKT model is better than the LAC DKVMN
model in all learning capability communities of the two datasets. In dataset
Synthetic-5, the AUC results of the LACPKT model in the four learning abil-
ity communities are 83.96%, 84.98%, 82.56%, 81.67%, respectively. In dataset
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ASSISTments2015, the AUC results of the LACPKT model in the six learn-
ing ability communities are 76.25%, 70.34%, 73.23%, 71.87%, 70.68%, 72.72%,
respectively. From the experimental results, when the LACPKT model tracks
the knowledge status of students in different learning ability communities, its
performance is shown to be different. The reason is that students learn different
exercise sequence length and problems in different learning ability communities,
so the performance of the LACPKT model is different in different learning abil-
ity communities. Figure 5(c) and (d) show the changing state of AUC of the
LACPKT model in the validation dataset. In dataset Synthetic-5, because it
is an artificial simulation dataset, the length and questions of each student’s
exercise sequence are the same, the test results and the verification results of
the LACPKT model remain the same. However, in ASSISTments2015 dataset,
because each student’s exercise sequence length and questions are different, the
performance of the LACPKT model in different learning communities is differ-
ent. For different learning ability communities, the LACPKT model can model
students’ learning processes according to different learning abilities, and track
students’ personalized knowledge status based on the effect of group learning
behavior on individuals. Therefore, the experimental results proved the effec-
tiveness of dividing the learning ability community and the effectiveness of the
LACPKT model in tracing students’ personalized knowledge state.

Fig. 5. The results of personalized knowledge tracing.
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5 Conclusions and Future Work

In this paper, we propose a novel method that is called Learning Ability Com-
munity for Personalized Knowledge Tracing (LACPKT) to model the learning
process of students and trace the knowledge state of students. The LACPKT
model consists of two aspects, on the one hand, we propose the definition of
learning ability community, which utilizes the effect of group learning on indi-
viduals to trace the personalized knowledge state of students; On the other
hand, we propose a Knowledge Tracking based on Learning and Memory Pro-
cess model that considers the relationship between the current knowledge state
and knowledge growth and forgetting mechanisms. Finally, we demonstrate the
effectiveness of the LACPKT model in tracing students’ personalized knowledge
on public datasets. For future work, we will integrate the content information
of the problem to optimize the learning ability community and optimize the
network structure to improve the prediction ability.
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