
Parallel Variable-Length Motif Discovery
in Time Series Using Subsequences

Correlation

Chuitian Rong1,2(B), Lili Chen1, Chunbin Lin3, and Chao Yuan1

1 School of Computer Science and Technology, Tiangong University, Tianjin, China
{chuitian,yuanchao}@tiangong.edu.cn

2 Tianjin Key Laboratory of Autonomous Intelligence Technology and Systems,
Tianjin, China

3 Amazon AWS, Seattle, USA
lichunbi@amazon.com

Abstract. The repeated patterns in a long time series are called as time
series motifs. As the motifs can reveal much useful information, time
series motif discovery has been received extensive attentions in recent
years. Time series motif discovery is an important operation for time
series analysis in many fields, such as financial data analysis, medical
and health monitoring. Although many algorithms have been proposed
for motifs discovery, most of existing works are running on single node
and focusing on finding fixed-length motifs. They cannot process very
long time series efficiently. However, the length of motifs cannot be pre-
dicted previously, and the Euclidean distance has many drawbacks as the
similarity measure. In this work, we propose a parallel algorithm based
on subsequences correlation called as PMDSC (Parallel Motif Discovery
based on Subsequences Correlation), which can be applied to find time
series motifs with variable lengths. We have conducted extensive experi-
ments on public data sets, the results demonstrate that our method can
efficiently find variable-length motifs in long time series.

Keywords: Time series · Motif discovery · Parallel · Spark

1 Introduction

Time series Motif Discovery is a task to discover repeated and similar (correlated)
patterns in time series. In recent years, time series motif discovery has been
received extensive attentions. It has been applied in many time series data mining
and analysis tasks, such as data classification, clustering, activity recognition and
outlier detection.

In the past decade, a large number of motif discovery algorithms have been
proposed. Most existing algorithms aim to find fixed-length motifs. While, the
length of motifs cannot be predicted previously in most cases. So, some inter-
esting motifs with different lengths will be lost. Mostly, finding variable-length
c© Springer Nature Switzerland AG 2020
X. Wang et al. (Eds.): APWeb-WAIM 2020, LNCS 12318, pp. 164–175, 2020.
https://doi.org/10.1007/978-3-030-60290-1_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-60290-1_13&domain=pdf
https://doi.org/10.1007/978-3-030-60290-1_13


Parallel Variable-Length Motif Discovery in Time Series 165

motifs in the time series can reveal more latent patterns than fixed-length motifs.
So, there are some works such as [3,4] have tried to discover the variable-length
motifs. The biggest challenge of variable-length motifs discovery is the mas-
sive computations. The complexity of variable-length motif discovery is 10 times
higher than the fixed-length motif discovery in [17]. For example, if the lengths of
motifs are ranging from 300 to 10300, the brute-force algorithm will take 5×1018

Euclidean distance calls [3]. In fact, many industrial applications generate very
large time series. While, most algorithms use a single compute node to analyze
large-scale time series. So, that is difficult to complete the analysis in a feasible
time. Therefore, in recent years, distributed and parallel computing platforms
are widely used in the data mining and analysis of large-scale time series.

 1

 1.2

 1.4

 1.6

 1.8

 2

 0  500  1000  1500  2000

va
lu

e

time

RandomWalk
Subseqence1
Subseqence2
Subseqence3
Subseqence4

 1

 1.2

 1.4

 1.6

 1.8

 2

 0  20  40  60  80  100  120

va
lu

e

index

Subseqence1
Subseqence2
Subseqence3
Subseqence4

(a) Motifs in Time Series (b) Discovered Motifs

Fig. 1. Variable-length motifs discovered by PMDSC algorithm on random walk
dataset

In addition, there are some other limitations in these motif discovery algo-
rithms. For example, the algorithms apply Euclidean distance as the similarity
and require the two compared subsequences with the same length, which is not
suitable in most applications. So, we propose a variable-length motif discovery
algorithm using Pearson Correlation Coefficient as the similarity measure. The
Pearson Correlation Coefficient is a commonly used similarity measure for time
series data mining due to its multiple beneficial mathematical properties, such as
it is invariant to scale and offset. The Pearson Correlation Coefficient can reveal
the true similarity of two time series. Therefore, we argue that the Pearson Cor-
relation Coefficient is a good similar measure in time series motif discovery. In
Fig. 1, we showed one of the results found by our proposed algorithm.

In order to solve the existing drawbacks and improve the efficiency of motif
discovery in long time series, we introduced a parallel motif discovery algorithm
on Spark platform. This algorithm applies the Pearson Correlation Coefficient
as the similarity measure to find variable-length motifs in large-scale time series.

In short, the main works of this paper are:

1. We propose a parallel algorithm for variable-length motifs discovery based on
subsequences correlation using Spark.

2. In order to compute the correlation efficiently, we proposed a parallel FFT
algorithm using Spark.

3. In order to improve the concurrency of parallel jobs, we proposed a time series
segmentation method and dot product matrix partition method.



166 C. Rong et al.

4. We demonstrate the efficiency and scalability of the proposed algorithm using
extensive experiments.

The rest of the paper is organized as follows. Section 2 discusses Related
Works of motif discovery. In Sect. 3, we introduce the problem definition and
background concepts used in this paper. In Sect. 4, we introduce our proposed
parallel PMDSC algorithm. The experimental results are shown in Sect. 5 and
the conclusions are given in Sect. 6.

2 Related Works

Time series motif discovery approach was proposed in 2002 [7]. Then, time series
motif discovery has received extensive attentions and many motif discovery algo-
rithms have been proposed. These methods discover the motif as the most sim-
ilar subsequences using some similar measures. Time series motif discovery is a
basic operation in time series data analysis, so a large amount of motif discovery
research works have been proposed in recent years.

The existing algorithms for time series motif discovery are mainly divided into
two strategies: fixed-length and variable-length. The fixed-length algorithms pro-
posed in [15] are based on SAX (Symbolic Aggregate approXimation) [6], which
was applied to represent the time series with symbols. These methods mainly
focus on fixed-length motif discovery. [10] proposed a MK algorithm to find the
most similar pair subsequences as motifs, which is adopted a pruning method to
speed up the Brute Force Algorithm. In [5], authors introduced a Quick-Motif
algorithm, whose calculation speed is increased by 3 orders of magnitude com-
pared with the traditional fixed-length motif discovery algorithm in [10]. Several
recent works focus on fixed-length motif discovery, [16] introduces an algorithm
named STAMP combined with MASS algorithm1 to find exact motifs for a given
length. An algorithm named STOMP was proposed in [17], which reduced the
time complexity of STAMP from O(n2 log n) to O(n2).

As variable-length motifs can reveal much more interesting latent patterns
than fix-length do, many research works have focused on variable-length motif
discovery in recent years. In 2011, the VLMD algorithm [11] was proposed by
calling fixed-length motif discovery algorithm to find K pair-motifs with variable-
length. In [9], the authors proposed an algorithm using Euclidean distance as
the similarity measure for Z-Normalized segments. It applied a lower-bound
to reduce the computing time of variable-length motifs discovery. In [14], the
authors proposed a novel method, which incorporated the grammar induction
to find approximate motifs with variable-length. Its running time is faster than
other algorithms. However, the idea of this algorithm is based on grammar induc-
tion, so this method may be limited in some applications. [2] proposed a method
based on discretization and the subsequences do not overlap with their adjacents,
which may lead to loss some real results. [3] introduced an algorithm named
HIME based on SAX and Induction Graph to find variable-length motifs. This

1 https://www.cs.unm.edu/∼mueen/FastestSimilaritySearch.html.

https://www.cs.unm.edu/~mueen/FastestSimilaritySearch.html


Parallel Variable-Length Motif Discovery in Time Series 167

approach can find exact motifs in an acceptable time. However, this method is
difficult to implement.

In summary, the existing motif discovery algorithms mostly find fixed-length
motifs and mainly using Euclidean distance as a measure of similarity. As illus-
trated above, these algorithms have many limitations. In this paper, we propose
an efficient parallel time series motif discovery method on Spark. Our approach is
using subsequences correlation, combined with parallel FFT algorithm and time
series segmentation method, can efficiently find motifs with variable-length.

Table 1. Symbols and Definitions

Symbol Definition

T Time Series T

|T | The length of time series T

L The length of motif
Lmin The smallest length of motif
len The length of the subsequence in each segment
Corre(T ′, T ′′) Correlation coefficient between subsequences T ′ and T ′′

W (n) Butterfly coefficient of FFT
X(k) The result of FFT
I The index of a data point in the time series
P The segment index during time series segmentation
Z The Dot-Product Matrix of two time series subsequences
Z ′ A number of consecutive columns(one block) in Z

3 Problem Definition and Background

In this section, we present the problem definitions and introduce the background
concepts used in this paper. The symbols used in this paper are listed in Table 1.

Definition 1 (Time Series). A Time Series T is a sequence of real numbers
observed in the same time interval. T = [t1, t2, . . . , tn], where n is the length of
time series T .

Definition 2 (Subsequence). A Subsequence with the length of m in time series
T is a set of continuous points T [j : j + m] = [tj , tj+1, . . . , tj+m−1] starting at
position j.



168 C. Rong et al.

Definition 3 (K-Frequent Motif). Given a time series T and a minimum length
Lmin of motif, K-frequent motif of T is defined as a set of subsequences that have
at least K matches and denoted as φ, |φ| ≥ K. φ = {T ′′ | ∀T ′ ⊂ T, ∃T ′′ ⊂
T ∧ Corre(T ′, T ′′) ≥ θ}. T ′ and T ′′ are subsequences of the time series T
with |T ′| ≥ Lmin and |T ′′| ≥ Lmin. Corre(T ′, T ′′) is the correlation coefficient
between T ′ and T ′′, θ is a similarity threshold of the correlation given by user.

Definition 4 (Pearson Correlation Coefficient). Pearson Correlation Coeffi-
cient is a measure of the correlation between two variables. It can reflect the
degree of similarity between two subsequences. For two subsequences T ′ and T ′′,
the Pearson Correlation Coefficient can be computed as following.

Corre(T ′, T ′′) =
(E[(T ′ − E(T ′))(T ′′ − E(T ′′))])

(σT ′σT ′′)
(1)

The above calculation formula of the Pearson Correlation Coefficient can also
be defined as Formula 2, where T ′ and T ′′ are the subsequences of T , uT ′ , μT ′′

and σT ′ , σT ′′ are the mean and Standard deviation of T ′ and T ′′ respectively, and
the

∑
T ′T ′′ can be calculated from the dot product between the subsequences.

Corre(T ′, T ′′) =
(
∑

T ′T ′′ − mμT ′μT ′′)
(mσT ′σT ′′)

(2)

FFT (Fast Fourier Transform) is an efficient algorithm to compute the DFT
(Discrete Fourier Transform) of a sequence. In many applications, we are inter-
ested in finding motifs or the similar shapes. Before computing the correla-
tion coefficient, we normalized two subsequences by Z-Normalization. After
Z-Normalization, FFT can be used to compute the cross products of arbitrary
subsequences of two sequences. By doing this, the computational time complex-
ity of

∑
T ′T ′′ in Formula 2 can be reduced to O(n log n). In order to improve

the efficiency of motif discovery, we implemented a parallel FFT on Spark. In
order to avoid redundant computations, we computed the dot products of all
time series subsequences previously using parallel FFT and organized them as a
Dot-Product-Matrix Z.

T Normalized(T)
Time Series

Partition

Parallel 
FFT(T)

Compute 
Dot Matrix Compute 

Correlation
(Correlated Pairs)

Motif 
Discovery

Matrix 
Partition

Fig. 2. The Framework of PMDSC Algorithm



Parallel Variable-Length Motif Discovery in Time Series 169

Algorithm 1: Segmentation(T, Pmax, len, Lmin)

Input : T : the normalized time series
Pmax: the number of partitions
len: the length in each partition
Lmin: the minimum length of subsegments

1 foreach T (i) ∈ T do
2 newV alue ← < i, T (i) >;
3 for P = 0 → Pmax do
4 if key ≥ P ∗ (len − Lmin)&&key ≤ (P + 1) ∗ len − P ∗ Lmin then
5 midresult ← 〈P, newV alue〉;

6 partitions ← midresult.partitionBy( .1);
7 segments ← partitions.gorupByKey( . .1);

4 Parallel Variable-Length Motifs Discovery

In this section, we present the implementation details of the parallel motif discov-
ery using subsequences correlation using Spark. Our approach is based on new
parallel FFT and data segmentation techniques. Figure 2 shows the framework
of our motif discovery algorithm. In following, we first introduce the time series
segmentation method. Then, we describe the Dot-Product-Matrix computation
and partition method. Finally, we describe the details of motif discovery.

4.1 Time Series Segmentation

In order to make better utilize the properties of RDD (Resilient Distributed
DataSet), we introduced a partition approach that divides time series into multi-
ple segments (subsequences) with equal length len. To assure the exact of results,
we keep an overlap between the adjacent segments with the length of Lmin. For
each segment, we can get the range of indices for its data points by using Formu-
las 3 and 4, in which Imin and Imax are the minimum and maximum data points
indices in SP , respectively. Also, we can get the number of segments Pmax for a
time series based on the len and Lmin using Formula 5. The Algorithm 1 describes
its implementation using Spark.

Imin ≥ P ∗ (len − Lmin) (3)

Imax ≤ (P + 1) ∗ len − P ∗ Lmin (4)

Pmax =
n − Lmin

len − Lmin
+ 1 (5)

In Spark, we use the map, partitionBy and groupByKey operators to complete
the time series segmentation task as presented in Algorithm 1. As presented in
Algorithm 1, the map operator is used to transform the time series data points
into 〈key, value〉 pairs (Lines 1–2). Here, the value is the data point T(i) and
the key is the index i of the data point. For each data point, we assign its par-
tition number P as its new key according to Formulas 3 and 4 and transform it



170 C. Rong et al.

Algorithm 2: Z−ComputationAndPartition(T, Pmax, len1, len2)
Input : T : the normalized time series

Pmax: the partition number of time series
len1, len2: the length of two subsequences

Output: Z ′: the blocks of dot product matrix
1 N ← T.length;
2 for i = 0 → N do
3 Ti ← T.takeRight(m − i);
4 for j = 0 → 2*N do
5 T ← Array[T, 0];
6 Ti ← Array[Ti, 0];

7 T ← FFT (T ), TI ← FFT (Ti);
8 Z ← T ∗ TI ;

9 for P1 = 0 → Pmax do
10 for P2 = 0 → Pmax do
11 if P1! = Pmax&&P2! = Pmax then
12 v = N + (P2 − P1 + 1) ∗ Lmin;
13 v1 = (v + (P1 − 1) ∗ len1 − P2 ∗ len2);
14 v2 = (v + P1 ∗ len1 − (P2 − 1) ∗ len2);
15 for j = v1 → v2 do
16 Z ′ ← iFFT (Z(j));

17 Z ′ ← < (P1, P2), Z ′ >

into 〈P, (i, T (i))〉 (Lines 3–5). Then, the partitionBy operator is used to parti-
tion the new key/value pairs into multiple partitions according to the partition
number (Line 6). Finally, the groupByKey operator is used to aggregate the new
key/value pairs in multiple groups with the same order as in the original time
series (Line 7). By doing this, the segmentation is completed.

Each time series is processed in the similar way. After that, in order to
pair all possible subsequences. First, we use the map operator to assign a new
key to the divided subsequences according to the maximum partition number
Pmax of each time series. Then, we joined the subsequences from different two
time series using the join operator. This step generates records in the form
〈(P1, P2), (Iterable[T ′], Iterable[T ′′])〉, where P1 and P2 are the indices of two
subsequences.

4.2 Dot-Product-Matrix Computation and Partition

Variable-length motifs discovery can reveal much more interesting latent patterns
than fix-length motifs discovery. However, it is a very expensive in time cost. As
the motif discovery is a pairwise operation to compute the correlations of all
possible subsequences, there are many redundant computations [8]. In order to
avoid redundant computations, we compute the correlations previously using
parallel FFT and store the results in the Dot-Product-Matrix Z. In fact, the
matrix partition is implemented during its computation and stored in multiple
distributed blocks, as shown in Algorithm 2.



Parallel Variable-Length Motif Discovery in Time Series 171

The Dot-Product-Matrix Z stores the shift-cross products of all possible
subsequences from tow time series. For parallel processing, the naive way to use
the Z is to send it to all worker nodes. In fact, just a little of columns in Z is
used to compute the correlations of each pair subsequences. In order to avoid
unnecessary data transfer and improve the efficiency, we proposed a partition
technique for Z. For each pair of subsequences, we can get the corresponding
blocks in Z according to their partition numbers. Without losing generality, we
assuming the partition number P1 and P2 of two subsequences T ′ and T ′′ with
lengths len1 and len2. The necessary corresponding part Z ′ ∈ Z for computing
Corre(T ′′, T ′) is from Z[∗][|T |+(P2 −P1 +1)∗Lmin +P1 ∗ len1 − (P2 +1)∗ len2]
to Z[∗][|T | + (P2 − P1 − 1) ∗ Lmin + (P1 + 1) ∗ len1 − P2 ∗ len2] .

In Algorithm 2, the first part is to compute the Z (lines 1–8). It gets all
subsequences of T (lines 2–3)and extend their length to the twice of length
T (lines 4–6). Then, each subsequence Ti of T and itself will be transformed
using FFT (line 7) and get their cross products (line 8). Finally, a part of the
Dot-Product-Matrix is retrieved by doing inverse Fourier transform (line 9).
This algorithm returns a two-dimensional array, which contains the sum of the
products of the elements in T and Ti for different shifts of T . The FFT() (line 7)
ensures that this process can be done in O(n log n) time. The FFT is a parallel
implementation [13]. The parallel FFT algorithm is implemented as the following
four steps.

1. Get the original index for each element in time series.
2. Compute the binary code B(I) for each element according to its original index

and the length of time series.
3. Compute the butterfly coefficient using Formula 6 based on the values of bits

in B(I).
4. Compute the final result for each element using Formula 7.

W (n) =
∏

W k
2j ∗ (−1)t, k ∈ [0, 2j−1) t =

{
0 n = k
1 n = k + 2j−1

(6)

X(n) =
n−1∑

i=0

x(i) ∗ W (n) (7)

The last part of Algorithm 2 (lines 9–16) shows the details of the matrix Z
partition. When computing the Z, we assign a key to the elements belongs to the
same block according to the partition number of the two subsequences. The Z is
organized and stored in the form of key/value pairs. By doing this, we completed
the matrix partition task. When performing motif discovery and computing the
correlations of each pair of subsequences, the subsequence pair along with the
corresponding block of Z ′ ∈ Z will be grouped together and shuffled to the same
worker node according to their assigned key in Algorithm 3.



172 C. Rong et al.

Algorithm 3: CorrelationComputation(list, Lmin,Z ′, θ)
Input : list : 〈(SegmentT ′ , SegmentT ′′)〉

Lmin : the minimum length of motif
Z ′ : the corresponding block in Z
θ : the threshold of correlation

Output: result: the motifs with correlation ≥ θ
1 n ← list. 1.length, m ← list. 2.length;
2 mlen = Lmin;
3 for i = 0 → m do
4 for j = 0 → n do
5 maxLength ← min(m − i + 1, n − j + 1);
6 len ← Lmin;
7 while len < maxLength do
8

∑
T ′T ′′ ← Z ′ ;

9 /* Si ∈ SegmentT ′ , Sj ∈ SegmentT ′′ */
10 mean ← getMean(Si, Sj);
11 stdv ← getStdv(Si, Sj);

12 C ←
∑

T ′T ′′−len∗mean
len∗stdv ;

13 if C > θ&&mlen ≥ len then
14 mi = i, mj = j;
15 mlen = len;
16 result ← (mi, mj , mlen, C);

17 len ← len + +;

18 /*filter out the covered subsequence pairs*/
19 result ← result.maxBy(mlen);

4.3 K-Frequent Motif Discovery

In this part, we introduce the algorithms for discovering K-Frequent motifs,
as shown in Algorithm 3. Algorithm 3 is used to compute the correlation of all
possible subsequence pairs and filter out the covered subsequence pairs to get
the longest ones.

In Algorithm 3, the input list contains two segments, SegmentT ′ and
SegmentT ′′ , generatedbyusing segmentationmethod1 on two time series. In order
to get variable-length motifs, we should compute the correlations of all possible
subsequences contained in these two segments (Lines 3–11). According to the Dot-
Matrix-Partition method, only a little block of Z ′ ∈ Z is needed for each pair of
segments to compute the correlations of contained subsequences (Line 8). For each
pair of subsequences (Si, Sj), in which Si ∈ SegmentT ′ and Sj ∈ SegmentT ′′ , the
mean and standard deviation of data points contained by Si and Sj should be com-
puted (Lines 9–10). After that, we can use Formula 2 to compute the correlation
coefficient of two subsequences (Line 11). Then, we will apply the filtering method
to select the required subsequence pairs (Lines 12–15). It’s to be noted that, some
found short subsequence pairs can be covered by the longer ones. So, it is necessary
to remove the covered subsequence pairs. At the last step, we filter out the short
ones and keep the long ones (Line 17). Finally, Algorithm3 returns the longest sub-
sequences pair contained in each segments pair.



Parallel Variable-Length Motif Discovery in Time Series 173

After that, we use groupByKey operator to aggregate the motifs with the
same key, and we can get a series motifs of the form 〈Pid1, Iterable(Pid2, len,
Correlation)〉. So, we can find the motifs whose frequency is more than K easily.

 100

 200

 300

 400

 500

 600

 700

 0.5  1  1.5  2  2.5  3

Ti
m

e 
Co

st
(S

ec
)

Time series length(x 104)

BloodPressure
lightCurve

Power
RandomWalk

Fig. 3. Time series length.

 300

 400

 500

 600

 700

 800

 900

 400  450  500  550  600  650  700  750  800

Ti
m

e 
Co

st
(S

ec
)

subsequences length

BloodPressure
lightCurve

Power
RandomWalk

Fig. 4. Partition segment
length.

 300

 400

 500

 600

 700

 800

 4 5 6 7 8

Ti
m

e 
Co

st
(S

ec
)

The number of computing nodes

BloodPressure
lightCurve

Power
RandomWalk

Fig. 5. Computing nodes
number

5 Experiments

We have implemented our proposed algorithm using the Scala programming
language on Spark. Our experiments are conducted on Spark-2.1.0 cluster, in
which there is one master node and 8 worker nodes. Each node in the cluster
are equipped with Linux CentOS 6.2, 4 cores, 6 GB of memory and 500 GB of
disk storage. In this section, we evaluated the experimental results with the
variations of different parameters, including the segment length of motif, the
length of time series and the threshold θ. We also testified the scalability by
changing the number of computing nodes. All the experiments are tested on
public datasets that are downloaded from the web site2. There are four datasets
used in our experiments, including Blood Pressure [1], Light Curve [12], Power
[8] and Random Walk.

5.1 Effect of Time Series Length

In this experiment, we verify the efficiency of PMDSC by changing the length
of time series from 2000 to 32,768. In this experiment, we set the minimum
motif length Lmin = 100, the correlation threshold θ = 0.9 and the partitioned
segment length len = 400. The experimental results are shown in Fig. 3.

From the Fig. 3, we can observe that the time cost is increasing near linearly
on the four different data sets as the length of time series increasing. Compared
with the time costs on these four data sets, we find that the time cost on the
Power data is the most. It is because the Power dataset has large spikes that
cause increased time to compute the correlation in each partition. The time costs
on the two datasets Blood Pressure and Random Walk is smaller and near the
same. The reason is that after normalization, the spikes and changing frequencies
of the two datasets are like to each other.

2 https://files.secureserver.net/0fzoieonFsQcsM.

https://files.secureserver.net/0fzoieonFsQcsM


174 C. Rong et al.

5.2 Effect of the Segment Length

In this test, we test the time costs by changing the segment length len from 400
to 800 with the interval 100. In this experiment, we set the time series length
to 16,384, the correlation threshold θ = 0.9 and Lmin = 100. Figure 4 shows the
effects of segment length variations on time costs.

From Fig. 4, we can find that the time costs are increasing on four different
datasets as the segment length increasing. The reason is that increasing the seg-
ment length will bring more subsequence pairs to be processed in each segment.
We can also find that the time costs increasing trend is different on four data
sets. When the segment length is more than 500, the time costs increase mostly
on Power data set followed by Light Curve data set. It is caused by the large
variations of data values contained in the two time series. While, the distribu-
tion of data point values in other two data sets are relatively stable. So, the time
costs changing on Blood Pressure and Random Walk is relatively smaller.

5.3 Effect of the Number of Computing Nodes

In this part, we test the scalability of our proposed method by changing the
number of computing nodes in the cluster. In this experiment, we set the length of
time series to 16,384, the segment length len = 400 and the correlation threshold
θ = 0.9. The experimental results are shown in Fig. 5. In Fig. 5, the time costs
on four data sets are decreasing when the computing nodes number is increased
from 4 to 8. The more computing nodes in the cluster means more computing
power and higher parallel concurrency.

6 Conclusion

Time series motif is the repetitive similar patterns in time series. In this paper,
we introduce a parallel algorithm to discover the time series motifs with variable-
length. This algorithm can process large-scale time series in an acceptable time.
Experimental results demonstrate that our algorithm can efficiently and precisely
find motifs in large-scale time series. In the future, we will improve our method
to find motifs from multivariate time series.

Acknowledgment. This work was supported by the project of Natural Science Foun-
dation of China (No. 61402329, No. 61972456), the Natural Science Foundation of
Tianjin (No. 19JCYBJC15400) and Natural Science Foundation of Tianjin-Science and
Technology Correspondent Project (No. 18JCTPJC63300).

References

1. Bugenhagen, S.M., Cowley Jr., A.W., Beard, D.A.: Identifying physiological origins
of baroreflex dysfunction in salt-sensitive hypertension in the Dahl SS rat. Physiol.
Genomics 42, 23–41 (2010)



Parallel Variable-Length Motif Discovery in Time Series 175

2. Castro, N., Azevedo, P.J.: Multiresolution motif discovery in time series. In: SIAM,
pp. 665–676 (2010)

3. Gao, Y., Lin, J.: Efficient discovery of variable-length time series motifs with large
length range in million scale time series. CoRR abs/1802.04883 (2018)

4. Gao, Y., Lin, J., Rangwala, H.: Iterative grammar-based framework for discovering
variable-length time series motifs. In: ICMLA, pp. 7–12 (2016)

5. Li, Y., U, L.H., Yiu, M.L., Gong, Z.: Quick-motif: an efficient and scalable frame-
work for exact motif discovery. In: ICDE. pp. 579–590 (2015)

6. Lin, J., Keogh, E., Li, W., Lonardi, S.: Experiencing SAX: a novel symbolic rep-
resentation of time series. Data Min. Knowl. Discov. 15, 107–144 (2007). https://
doi.org/10.1007/s10618-007-0064-z

7. Lin, J., Keogh, E., Lonardi, S., Patel, P.: Finding motifs in time series. In: Pro-
ceedings of 2nd Workshop on Temporal Data Mining at KDD, pp. 53–68 (2002)

8. Mueen, A., Hamooni, H., Estrada, T.: Time series join on subsequence correlation.
In: ICDM, pp. 450–459 (2014)

9. Mueen, A.: Enumeration of time series motifs of all lengths. In: ICDM, pp. 547–556
(2013)

10. Mueen, A., Keogh, E.J., Zhu, Q., Cash, S., Westover, M.B.: Exact discovery of
time series motifs. In: SIAM, pp. 473–484 (2009)

11. Nunthanid, P., Niennattrakul, V., Ratanamahatana, C.A.: Discovery of variable
length time series motif. In: EEE, pp. 472–475 (2011)

12. Rebbapragada, U., Protopapas, P., Brodley, C.E., Alcock, C.: Finding anomalous
periodic time series. Mach. Learn. 74, 281–313 (2009). https://doi.org/10.1007/
s10994-008-5093-3

13. Rong, C., Chen, L., Silva, Y.N.: Parallel time series join using spark. Concurr.
Comput. Pract. Exp. 32(9), e5622 (2020)

14. Senin, P., et al.: GrammarViz 2.0: a tool for grammar-based pattern discovery in
time series. In: Calders, T., Esposito, F., Hüllermeier, E., Meo, R. (eds.) ECML
PKDD. LNCS, vol. 8726, pp. 468–472. Springer, Heidelberg (2014). https://doi.
org/10.1007/978-3-662-44845-8 37

15. Tanaka, Y., Iwamoto, K., Uehara, K.: Discovery of time-series motif from multi-
dimensional data based on MDL principle. Mach. Learn. 58, 269–300 (2005).
https://doi.org/10.1007/s10994-005-5829-2

16. Yeh, C.C.M., Yan, Z., Ulanova, L., Begum, N., Keogh, E.: Matrix profile I: all pairs
similarity joins for time series: a unifying view that includes motifs, discords and
shapelets. In: ICDM, pp. 1317–1322 (2016)

17. Zhu, Y., Zimmerman, Z., Senobari, N.S., et al.: Matrix profile II: exploiting a novel
algorithm and gpus to break the one hundred million barrier for time series motifs
and joins. In: ICDM, pp. 739–748 (2016)

https://doi.org/10.1007/s10618-007-0064-z
https://doi.org/10.1007/s10618-007-0064-z
https://doi.org/10.1007/s10994-008-5093-3
https://doi.org/10.1007/s10994-008-5093-3
https://doi.org/10.1007/978-3-662-44845-8_37
https://doi.org/10.1007/978-3-662-44845-8_37
https://doi.org/10.1007/s10994-005-5829-2

	Parallel Variable-Length Motif Discovery in Time Series Using Subsequences Correlation
	1 Introduction
	2 Related Works
	3 Problem Definition and Background
	4 Parallel Variable-Length Motifs Discovery
	4.1 Time Series Segmentation
	4.2 Dot-Product-Matrix Computation and Partition
	4.3 K-Frequent Motif Discovery

	5 Experiments
	5.1 Effect of Time Series Length
	5.2 Effect of the Segment Length
	5.3 Effect of the Number of Computing Nodes

	6 Conclusion
	References




