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Abstract. Adverse Drug-Drug Interactions (DDIs) are a very impor-
tant risk factor in the medical process, which may lead to readmission
or death. Although a part of DDIs can be obtained through in wvitro
or in vivo experiments in the drug development stage, a large number
of new DDIs still appear after the market, more and more researchers
begin to pay attention to the research related to drug molecules, such
as drug discovery, drug target prediction, DDIs prediction, etc. In recent
years, many computational methods for predicting DDIs have been pro-
posed. However, most of them only used labeled data and neglect a lot
of information hidden in unlabeled data. Moreover, they always focus
on binary prediction instead of multiclass prediction, although the exact
DDI type is very helpful for our reasonable choice of medication. In this
paper, a Semi-Surpervised Variational Autoencoders (SPRAT) method
for predicting DDIs is proposed, which is composed of a neural network
classifier and a Variational autoencoders (VAE). Classifier is the core
components, VAE plays a role of calibration. In the end, the predicted
label is a multi-hot vector which indicates specific DDI types between
drug pairs. Finally, the experiments on real world dataset demonstrate
the effectiveness of the proposed method in this paper.

Keywords: Drug-drug interaction + Semi-surpervised learning -
Variational autoencoders - Prediction

1 Introduction

Drug-Drug interactions usually occur when patients take the combination drugs,
because a drug can affect the activity of another drug in the body [9], which is
likely to cause serious incidence rate and mortality [11]. Although some adverse
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DDIs have been screened out by in vivo and in wvitro experiments during the
drug development stage, many new DDIs have been found accidentally after the
drug was put on the market [8]. With the abundance of drug-related molecular
data and adverse event reporting data, such as Drugbank and FDA Adverse
Event Reporting System (FAERS), a large number of researchers have focused
their attention on the study of adverse DDIs.

Although there are many computational methods to predict potential DDIs,
such as similarity based [5,7,14], classification based [3,10] and network-based
[15,16], there are still some problems that are not highlighted.The first problem
is that many works regard DDI prediction as binary prediction rather than
multiclass prediction. However, it is very important to predict the specific types of
DDI for patient’s medication [13]. Another problem is that most of the previous
methods are supervised learning, which depends on adequate labeled data. Many
existing databases contain a lot of known DDI, but compared with the whole
search space, it is still insufficient. Therefore, the supervised method will be
affected by over fitting, which will reduce the prediction accuracy. Similarly, when
unsupervised learning is used, the model will be a two-step rather than an end-
to-end learning model, which will also greatly affect the prediction performance.

In order to overcome the above two problems, this paper focuses on the
prediction of specific adverse drug reactions, and makes better use of data
resources to improve the prediction performance. Therefore, we develope a Semi-
Surpervised Variational Autoencoders (SPRAT) method, which actually can
be seen as an ensemble model composed of a deep network classifier and a
Variational Autoencoders (VAE). Discrimination classifier is the core module,
which is calibrated by VAE. When the input is unlabeled data, the optimiza-
tion of VAE reconstruction error is helpful to get a better classifier, so as to
get more accurate ADRs prediction results. Finally, the experimental results
using real datasets demonstrate our SPRAT can get a better ADRs predictive
performance than other baseline methods.

2 Preliminaries

In order to describe the proposed method, in this section, some notations will
be briefly defined, and introduce a main construction of the model: variational
autoencodesr.

Definition 1. Set of Labeled Drug Pairs and Set of Unlabeled Drug pairs

In order to make better use of the information in the data set, we use the
known DDI as the tag data, and the other DDI as the unmarked data. Therefore,
set Dy is the set of labeled drug pairs and Dy is the set of unlabeled drug pairs.

Definition 2. DDI Data

The DDI data includes n drugs, w pairs of drug interaction and v types
of adverse drug reactions. We denote D = {dy,ds,...,d,} as the set of drugs,
I = {i1,42,..,%w} as known DDI drug pairs and R = {rq,r9,...,7,} as all types
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of adverse drug reaction between drug pairs. Therefore, we can denote labeled
data Dy, described in the last section as Dy, = {(d,,r,dq)|dp,dq € D,0 < p,q <
n,r C R}.

Definition 3. Drug Side Effects

Each drug has its own side effects, except for adverse drug-drug interactions.
Define all side effects exist in our DDI data as S, S = {s1, $2, ..., Sk }. Then, we
denote s(s C S) as owned side effects of one drug.

Variational Autoencoders

VAE is a series of models in which the input data is transformed into a coding
vector, and each dimension represents some learning attributes about the data
and decoder network, and then obtains these values and attempts to reconstruct
the original input. It is worth noting that original autoencoders output a single
value for each encoding dimension in latent representation, whereas a variational
autoencoder provides a probability distribution for each latent attribute. So that
it can serve as a generative model as Generative Adversarial Networks (GAN)
do.

3 Method

3.1 Overview of Our Method

The proposed method consists of three parts, as shown in Fig.1: classifier,
encoder and decoder. Moreover, the encoder and the decoder together form a
VAE. In brief, classifier can be seen core component in our model with VAE as a
calibrator to improve performance of the classifier. Specifically, the VAE encode
its input into latent representation z, if we join a label y into z, then decoder
strive to reconstruct the input based on z and y. As in conditional VAE, a more
accurate y can be more informative and helpful for the reconstruction process.
Similarly the predicted label 3’ of our classifier will do so as to. In this way, the
classifier will be benefited when the input is unlabeled data, while we optimizing
the reconstruction loss of VAE, which is exactly what we want.

Adverse Drug-Drug Interaction Prediction Task The task is to predict
unknown new adverse reactions between drug pairs. The following part will
specifically introduce the model architecture centered on our prediction task.
First, we gain labeled data (z,y) from Dy and unlabeled data z from Dy.
Then, we input the concatenated feature vector representation [z;,z;] of the
drug pairs (d;,d;) to classifier and encoder, whether it is labeled or unlabeled.
In the next step, the training of the model will be divided into two situations.
The first is that the data is labeled, we directly incorporate the label y to latent
variable z. In that case, both classifier loss and VAE loss need to be optimized.
The other is the data is unlabeled, the predicted label 4’ from classifier is added
to latent representation z and we just require to reduce the loss of VAE. At last,
the overall loss of the model is the sum of the two parts, a multiple hot-label 3’
representing adverse drug reactions is obtained.



A Drug-Drug Interactions Prediction Model 135

¥ {drug label in 2}

’Chssifie
y*{|abelad) loss

3 y{unlabaled)

w3

input embedding

=9 fod

X

CmO0QCAOxCmMOCO QOO0
FAY

IOOOOOGOGOOOOO 4 pt——]

-
Input Aj

Rrepreseniatian

e_JelolodeleYeTe Lo (eleleTe)oYoYo ]|

mtarz 4
VAE
Reconstruction los: output

Fig. 1. The overview of our SPRAT model for DDIs prediction

3.2 Conditional VAE Model

Conditional variational autoencoders (CAVE) refer to adding label y to the
model to aid in the generative module. CVAE involves a series of models instead
of one, depending on how the label y is added. For this model we have two cases
to consider, in the first case y is given directly, in the other y can be calculated by
a discriminative model. Accurately, our method is based on the second situation
exactly for this knowledge can help us form a better classifier and predict the
labels of unseen data.

In the first case, the variational lower bound is similar to Eq. (1). In the
second case, assume ¢(y|z) represents the predicted layel via discriminative net-
work. Therefore, the variational lower bound is shown in the following Eq. (2).

log(p(z,y)) 2 Eq(zla ) log(p(aly, 2)) = KL(q(z]z,y)llp(2)) +logply) -y
= —L(z)

log p(x) > Eq(y,2|a) [log p(x|y, 2) + log p(y) + log p(2) — log(y, z|x)]
= Zy(fJ(jvlw)(—ﬁ(w, y)) + H(q(ylx)) (2)
=—-U(x

Loss Function
The training process for the model is described in detail below.

Goal Since the model is composed of a classifier network and a VAE, and the
data can be divided into labeled and unlabeled, our training object is to optimize
the following three losses:

J = L(7)(z,y)cp, TUT) @)Dy + Classiﬁer_loss(w’y)cDL (3)
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The input mentioned above for our classifier and encoder is the feature vector
of (d;,d;). Next, there are two situations. The first is when input comes from
Dy, y is an exact vector given by classifier. Thus, the optimization of VAE is
just concatenating y to the latent variable z on the original basis. The specific
calculation formula of loss during training is shown in Eq. (4).

‘C(x)(z,y)CDL
= min{D(z*,z)* + KL(q(z|z,y)||p(2))}

D(x*,2)? represents reconstruction loss which can be obtained directly with
machine learning tools. Moreover, q(z|z, y) generally selects normal gaussian dis-
tribution and p(z) is unit gaussian distribution. Finally, formula to be optimized
is shown in Eq. (5)

(4)

KL(q(z|z,y)|lp(2))
= KL(N (1, 6%)||N(0,1)) (5)
= %(uQ +6% —logdé? — 1)

Another situation is, y is output by classifier when input comes form Dy . We
assume that the predicted label y' is added to only affect the mean of the dis-
tribution without affecting the variance. As a result, the loss function of this
situation can be expressed as Eq. (6)

U(T)(z)c Dy

1 2
= D(x*,2)? + 5((u — ) +6%—logd* —1)

(6)

4 Experiments

This section briefly describes the datasets and experimental settings used. At
the end, the experimental results on these datasets are explained.

4.1 Datasets

DDI Data

The FDA Adverse Event Reporting System (FAERS) is a database designed
to support FDA post-marketing surveillance programs for pharmaceuticals
and therapeutic biologics, including all adverse event information and medi-
cation error information collected by FDA. As a sub-database extracted from
the FAERS, TWOSIDES [14] contains all types of adverse reactions between
reported and confirmed drug pairs.

Drug Feature Information

Like TWOSIDES, OFFSIDES [14] is also a sub-database extracted from FAERS,
which includes the drug side effects information about drugs. According to [1],
it can be used as a phenotypic feature information to improve our performance
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of prediction. In addition, the drug structure fingerprint can be received from
PubChem [6], where the drug is represented as an 881 dimensional binary vector,
and each bit represents whether there is a chemical substructure.

As described in the previous datasets, we eventually have 635 drugs, 63,055
distinct drug pairs and each drug own a 5,394-dimensional binary feature vector
(4,513 side effect types and 881-dimensional fingerprint). We construct a DDI
matrix used to query whether a group of drug pairs is labeled data, where 1
indicating that the two drugs interact and 0 means that the two drugs do not
interact as far as we know, by the way, the diagonal elements are all set to 0.

4.2 Evaluations

In order to optimize the prediction results, cross validation is designed as an effec-
tive method to estimate the generalization error. First, we randomly assigned
10% of the drugs and all DDIs associated with these drugs to be tested. The
remaining 90% were then divided into K groups (generally equal). Each group
is verified once, and the rest k-1 subset is used as training set. Therefore, under
the condition of k-CV, the average value of classification accuracy of the final
verification set of K model is used as the performance index of the classifier. To
increase the randomness, repeat the K-CV process 50 times. In addition, because
of the imbalance of DDIs data, that is, the known positive samples are much
smaller than the unknown samples, so the area under the precise recall curve
(AUPR) [2] should be used as a measure of model performance.

4.3 Experimental Setup

We construct a DDI matrix used to query whether a group of drug pairs is
labeled data, where 1 indicating that the two drugs interact and 0 means that
the two drugs do not interact as far as we know, by the way, the diagonal
elements are all set to 0. From a macro point of view, our SPRAT method is
composed of a classifier and a VAE. From a macro point of view, our SPRAT
method is composed of a classifier and a VAE. But in more detail, it contains
three components across which the classifier and the decoder of VAE is realized
with general deep network, the decoder of VAE is implemented by CNN.

The proposed method is compared with other methods which are completely
different but perform well in DDIs prediction: Concatenated drug features,
Dyadic prediction [4] and LoNAGE graph embedding [12].

4.4 Experimental Results

Experiment I: Binary prediction

First of all, in order to verify the advantages of the proposed model in ADRs predic-
tion, the comparative method is applied to binary prediction, that is, only to find
out whether two drugs interact, rather than to predict specific drug types. Table 1
shows the results w.r.t AUROC score and AUPR score. From the results we can
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draw a conclusion our method performs better than other alternative approaches.
Simultaneously, we find that deep learning based approaches (LoNAGE and our
model) perform much better that general machine learning methods because of its
powerful non-linear learning ability. Furthermore, AUROC score improves while
AUPR score reduces when the K value of Cross-validation is increased.

Table 1. Comparison with Three State-of-the-Art Approaches by 50 Runs of 5-CV
and 10-CV

Evaluation | Method AUROC | AUPR

5-CV Concatenated drug features | 0.793 0.456
Dyadic prediction 0.705 0.375
LoNAGE graph embedding | 0.857 0.482
SPRAT (our model) 0.876 0.513

10-CV Concatenated drug features | 0.798 0.429
Dyadic prediction 0.739 0.331
LoNAGE graph embedding | 0.883 0.447
SPRAT (our model) 0.893 0.486

Experiment II: Multi-class prediction

Most importantly, we need to prove the effectiveness of our method in multiple
ADRs prediction. In the LoNAGE method, latent representations output by
encoder are input into a SVM for prediction label y. As shown in Fig. 2, compared
with binary prediction, the multi-class prediction performance of all methods
is reduced, which reveals that comprehensive prediction is more difficult than
binary prediction. Despite this, our approach is still better than others in terms
of both AUROC and AUPR.

AUPR
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Fig. 2. The results of multi-class ADRs prediction under 5-CV.
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5 Conclusion

This paper proposes a new method to predict the adverse reactions between
drug combinations. In order to improve the prediction efficiency, this method
uses the variational autoencoder to integrate the discriminant classifier. The
greatest advantage of this model is that it is a semi-supervised learning method
which can make full use of the effective information hiddened in unlabeled data.
In order to verify the effectiveness of this method, experiments are carried out on
a large real world dataset (Twosides) and compared with several representative
methods. Finally, the experiments results demonstrate that SPRAT performs
better than the other three state-of-the-art approaches. The direction of future
work is to combine our method with the graph and add more drug-related data
to improve the prediction accuracy of specific ADRs types.
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