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Abstract. We present the current results of our ongoing work on
develop-ing tools and algorithms for processing Kazakh language in the
framework of KazNLP project. The project is motivated by the need
in accessible, easy to use, cross-platform, and well-documented auto-
mated text processing tools for Kazakh, particularly user generated text,
which includes transliteration, code switching, and other artifacts of
language-specific raw data that needs pre-processing. Thus, apart from
a basic tokenization-tagging-parsing pipeline, and downstream applica-
tions such as named entity recognition and spell checking, KazNLP offers
pre-processing tools such as text normalization and language identifica-
tion. All of the KazNLP tools are released under the Creative Commons
license. Since the detailed description of the methods and algorithms
that were used in KazNLP are published or to be published in various
venues, reference to which is given in the corresponding sections, this
work provides just an overview of the tools and their performance level.
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1 Introduction

Kazakh language is the official language of the Republic of Kazakhstan, spoken
by over 12 million people. From the NLP point of view, Kazakh is an interesting
research object that presents several challenges as an agglutinative language with
complex morphology and a relatively free word order. However, NLP research on
this language is rather scarce, while demand in automated processing of Kazakh
text is rising. For example, consider automatic spellchecking, one of the clas-
sic NLP tasks. To our knowledge there are only two research papers [12,20]
that discuss spell-checking for Kazakh. Moreover, the method described in [12]
achieved only 83% accuracy, which was enough to outperform MS Word spell-
checking system. Thus, while Kazakh spellcheckers are far from being perfect,
there is almost no research in this direction. This is not surprising, because to
achieve high performance on many NLP problems for languages with complex
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morphology, one needs the very basic tools such as morphological analyzers and
taggers. To be fair, we admit that such tools exist for Kazakh, but as far as we
can tell, they are limited in access [7], ease of use [1,31], or the degree of readi-
ness (“raw” experimental systems) [16]. Moreover, existing tools are documented
either poorly or not at all and have not been evaluated on user generated text,
such as internet reviews and message boards.

To address these issues, we have developed KazNLP, an open source Python
library for processing Kazakh texts. KazNLP consists of the following mod-
ules, that can be used in isolation or in a pipeline: 1) initial normalization tool;
2) sentence-word tokenizer; 3) language identification tool; 4) morphological ana-
lyzer; 5) morphological tagger; 6) syntactic parser; 7) spelling checking and cor-
rection tool; 8) secondary normalization tool; 9) named entity recognizer. The
set of tools is chosen to strike a balance between research and engineering appli-
cations, and will, hopefully, be extended in the future. To facilitate efficiency
and performance trade-off, where possible, we have developed both statistical
and neural implementations. Importantly, we avoided any hard-coded rules, to
make the tools adaptable to the announced shift of the Kazakh alphabet from
Cyrillic to Latin. The code is released under the CC-SA-BY license (Creative
Commons Attribution 4.0), which allows any use, including commercial.

In what follows, we describe KazNLP in more detail. Specifically, Sect. 2
describes the datasets and corpora used in the development of KazNLP. Section 3
provides an overview of KazNLP components and corresponding NLP tasks.
Section 4 briefly describes the software package and the demo web service.
Finally, we draw conclusions and discuss future work in Sect. 5.

2 Text Datasets and Corpora

The development of KazNLP would not be possible without language resources
described below. All the datasets are available either online or upon request.

2.1 Kazakh Language Corpus

The Kazakh Language Corpus (KLC) [17] was collected to aid linguistics, com-
putational linguistics, and NLP research for Kazakh. It contains more than 135
million words in more than 400 thousand documents classified by genres into
the following five sections: 1) literary ; 2) official ; 3) scientific; 4) publicistic; 5)
informal language. KLC also has a portion of data annotated for syntax and
morphology. It should be noted that initially the syntactic tagset comprised a
compact set of syntactic categories, which were later improved during the devel-
opment of Kazakh Dependency Treebank [13] described next.

2.2 Kazakh Dependency Treebank

Another important linguistic resource that lays the grounds of the current work
is the Kazakh Dependency Treebank [13,14]. Following the best practices of the
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Universal Dependencies (UD) guidelines [23] for consistent annotation of gram-
mar, we have relabeled a part of KLC with lexical, morphological, and syntactic
annotation that can be used by computer scientists working on language pro-
cessing problems and by linguists likewise. The treebank contains about 61 K
sentences and 934.7 K tokens (of those 772.8 K alphanumeric), stored in the UD-
native CoNLL-U format. In addition, we annotated all the proper nouns of the
corpus with such labels as a person’s name, location, organization and others.

2.3 Other Datasets

To perform experiments on text normalization, language identification, and
senti-ment analysis, we used a data set of user generated text collected from
the three of the most popular Kazakhstani online news outlets, namely nur.kz,
zakon.kz, and tengrinews.kz [21]. The noisy data was corrected and labeled
semi-automatically resulting in total of 27,236 comments annotated for language
and sentiment. Positive and negative comments amounted to 5995 (22%) and
7409 (27.2%), respectively, with the rest being neutral. In terms of languages,
data set contains 63% of Kazakh texts, 34.4% of Russian texts and the rest is
mixed comments (i.e. code-switched between Kazakh and Russian).

3 KazNLP Components

3.1 Initial Normalization Module

User generated content (UGC) generally refers to any type of content created by
Internet users. UGC as a text is notoriously difficult to process due to prompt
introduction of neologisms, peculiar spelling, code-switching or transliteration.
All of this increases lexical variety, thereby aggravating the most prominent prob-
lems of NLP, such as out-of-vocabulary lexica and data sparseness. It has been
shown [6] that certain preprocessing, known as lexical normalization or simply
normalization, is required for them to work properly. Kazakhstani segment of
Internet is not except from noisy UGC and the following cases are the usual
suspects in wreaking the “spelling mayhem”:

– spontaneous transliteration, e.g. Kazakh word “” can be spelled in three addi-
tional ways: “”, “”, and “biz”;

– use of homoglyphs, e.g. Cyrillic letter “” (U+0456) can be replaced with Latin
homoglyph “i” (U+0069);

– code switching – use of Russian words and expressions in Kazakh text and
vice versa;

– word transformations, e.g. “”,“” instead of “” (great), or seg-mentation of
words, e.g. “ ”or “——”.

We have implemented a module for initial normalization of UGC. However,
unlike with lexical normalization [6], we do not attempt to detect ill-formed
words and recover their standard spelling. All that we really care about at this
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point is to provide an intermediate representation of the input UGC that will
not necessarily match its lexically normalized version, but will be less sparse.
Thus, we aim at improving performance of downstream applications by reducing
vocabulary size (effectively, parameter space) and OOV rate. To this end, initial
normalization does two things: (i) converts the input into a common script; (ii)
recovers word transformations and does various minor replacements. Our sim-
ple rule-based approach (using regular expressions and dictionary) amounts to
successive application of three straightforward procedures: (i) homoglyph reso-
lution - substitutes Latin letters with Cyrillic counterparts (ii) common script
transliteration - substitutes similar Latin and Cyrillic letters with common letter
(iii) replacement and transformation - applies regular expressions to correct ill-
formed word forms. It is difficult to perform a direct evaluation of this algorithm,
but an extrinsic evaluation can be found in our previous work [21].

3.2 Sentence-Word Tokenizer

Sentence segmentation is a problem of segmenting text into sentences for further
processing; and tokenization is a problem of segmenting text into chunks that for
a certain task constitute basic units of operation (e.g. words, digits, etc.). At first
glance, the problems might seem trivial, but this is not always the case, as many
standard punctuation symbols might be used in different contexts (abbreviations,
emoji, etc.), and the meaning of “tokens” and “sentences” may vary depending
on a task at hand. Thus, to solve sentence and token segmentation problems one
cannot blindly segment texts at the occurrences of certain symbols, and has to
resort to a more sophisticated approach.

We are aware of ready to use tools that can be adapted to Kazakh, such
as Punkt in NLTK [3], Elephant [4], and Apache OpenNLP [26]. However, they
mostly use hand-crafted features. The only free-distributed tokenizer for Kazakh
is based on the finite state transducer and is built into the morphological ana-
lyzer [31], which is not always convenient and necessary. Therefore, we decided to
implement our own module for sentence splitting and word tokenization, which
treats the problem as a single sequence labeling task.

The current version of KazNLP includes only HMM-based implementation of
the module, but we have also experimented with an LSTM-based approach. This
approach utilizes character embeddings, i.e. represent characters as vectors in a
multidimensional continuous space. We evaluated our method on three typologi-
cally distant languages, namely Kazakh, English, and Italian. Experi-ments show
that the performance on F1-measure achieves 95.60% on sentence and 99.61%
word segmentation, respectively, for Kazakh language which is better than that
of popular systems like Punkt and the Elephant. An interested reader is referred
to our work in [30].

3.3 Language Identification Module

Language identification (LID) is the task of determining a language in which a
given piece of information is presented be it text, audio or video. Early works
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on LID for texts have achieved near perfect accuracy when applied to small sets
of monolingual texts, languages and domains, which led to a popular miscon-
ception that LID task was solved. The authors of [2] argue that LID is far from
being solved, and show that as number of target languages grows and documents
become shorter, performance of the standard methods drops. Another challenge
that the authors mention, but do not address, is the fact that input text may be
multilingual. Indeed, the results of the Workshop on Computational Approaches
to Code Switching show that word-level LID on multilingual input is significantly
harder than classical LID, i.e. document-level on monolingual input.

In KazNLP, we aim to provide tools for processing real world data, including
noisy UGC, i.e. tweets, comments, Internet forum dialogs, etc. Apart from noise,
there is a certain amount of Kazakh-Russian code-switching, which allows us to
experiment with multilingual word-level LID. Following a common strategy of
dealing with noisy UGC, prior to LID, we perform normalization as described
above. For LID, we trained and applied character-based LSTM neural networks.
The best performance of 99.73% was achieved for 150-character long sequences.
Our results suggest improvement over the state-of-the-art for Kazakh language
based on popular LangID [11] or Bayesian approach [9].

3.4 Morphological Analyzer and Tagger

Morphological analysis is the task of identifying the constituents of a word (root
and morphemes), while morphological tagging is the task of identifying the most
suitable analysis in the context of a sentence. Thus, this problems are closely
related. A common approach for the agglutinative languages like Kazakh is to
develop a finite state transducers to identify all possible morphological parses
of a word [31], and on top of that apply a morphological disambiguation model
based on statistical or other machine learning approaches [16,29].

In this module, we addressed the morphological analysis and tagging prob-
lem as a single sequence-to-sequence modeling task similar to neural machine
transla-tion. In particular, we applied a character-level encoder-decoder neural
models with attention using bi-directional LSTM network implemented in Open-
NMT [8]. For comparison, we experimented with language independent packages
like UDPi-pe [27] and Lemming [19]. In both tasks, our model outperformed the
latter models, achieving the accuracy on morphological analysis of 87.8% and on
mor-phological tagging of 96.8%.

3.5 Syntactic Parser

In computational linguistics and NLP, syntactic parsing usually amounts to
determining a parse tree of a given sentence, according to a predefined grammar
formalism, e.g. constituency, dependency, etc. grammars. In KazNLP, we adhere
to dependency formalism and develop a dependency parser. Commonly used
approaches to tackle this problem fall into two main classes: graph-based (MST-
Parser [18]) and transition-based (Malt-parser [24]) parsing models. As an initial
version, we have implemented a graph-based parser using data-driven statistical
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approach to compute weights of the search graph [32]. Thus, the goal is to find a
minimum spanning tree in the given weighted directed graph. The performance
of the parser in terms of unlabeled attachment score was 61.08, which is barely
comparable to the state-of-the-art neural-based models. Nonetheless, the tool
can be used in the domains with limited amount of data, where the advanced
models are not applicable.

3.6 Spelling Correction Module

The spelling correction can be divided into two tasks: word recognition and error
correction. For languages with a fairly straightforward morphology recognition
may be reduced to a trivial dictionary look up. Correction is done through
generating a list of possible suggestions: usually words within some minimal edit
distance to a misspelled word. For agglutinative languages, such as Kazakh, even
recognizing misspelled words becomes challenging as a single root may produce
hundreds of word forms. It is practically infeasible to construct a dictionary with
all possible word forms included: apart from being gigantic such a dictionary
would be all but verifiable. For the same reason the correction task becomes
challenging as well.

To address this problem, we followed the approach presented by Oflazer and
Güzey [25]. In particular, we used a mixture of lexicon-based and generative
approach by keeping a lexicon of roots and generating word forms from that
lexicon on the fly for lookup and correct suggestions. To rank a list of sug-
gestions, we use a Bayesian argument that combines error and source models.
For our error model we employ a noisy channel-based approach proposed by
Church and Gale [6]. Our source model is built upon the theoretical aspects
that were used for morphological disambiguation in [5]. For the purpose of com-
parison we experimented with built-in Kazakh spelling packages in OpenOffice
and Microsoft Office 2010. We show that although our method is more accurate
than the open source and commercial analogues, achieving the overall accuracy
of 83% in generating correct suggestions, the generation of those suggestions still
needs improvement in terms of pruning and better ranking [12].

3.7 Secondary Normalization Module

In addition to the initial normalization and spelling correction modules, we
implemented another tool to normalize and correct texts - secondary normaliza-
tion module. The secondary normalization is designed to directly convert UGC to
the standard language overcoming the drawbacks of two former stages, namely,
incompleteness of rule-based approach. In this task, we applied a statistical
machine translation strategy to convert from noisy texts (source language) to
lexically correct texts (target language) given the corresponding parallel data
set. The performance of this approach was 21,67 in terms of BLEU metrics,
which is considered as a moderate result [22]. It should be noted, that this tool
still can be used after initial normalization and spelling correction, as it also able
to correctly deal with phrases.
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3.8 Named Entity Recognizer

Named entity recognition (NER) is considered one of the important NLP task.
It is a problem of recognizing real world objects found in a sentence, such as
geographical location, person’s name, organization, and others. There are several
approaches based on manually created grammar rules, statistical models, and
machine learning to solve the NER problem.

Fig. 1. A screenshot demonstrating a work of the morphological analyzer module.

Previously we have implemented a model for recognition of named entities in
Kazakh language based on conditional random field (CRF) [28]. However, in our
latest setup, we use a hybrid approach combining a bidirectional LSTM neural
network and a CRF models. The main idea is to feed the features determined by
CRF as input to LSTM network, thus, replacing the linear scoring by non-linear
neural network scoring. The performance of this model in terms of F1-measure
is 88%. For more details see our work [10,28].

4 Toolkit and Web Service

This project aims at building free/open source language processing tools for
Kazakh. The proposed set of tools is designed to tackle a wide range of NLP prob-
lems that can be divided into pre-processing, core processing, and application-
level routines. Each NLP task is implemented as a separate programming module
in Python 3 programming language and released under CC-SA-BY license. The
current version of source code of KazNLP and the documentation are available
on Github repository [15]. KazNLP can be installed and run on all platforms
including Linux, OS X, and Windows, where Python is supported.

In addition to the packages, we have developed a web service that can be
tested by an interested user. The web service is accessible online via link http://
kazcorpus.kz/kaznlp/. Figure 1 shows a screenshot demonstrating a work of the
morphological analyzer module.

http://kazcorpus.kz/kaznlp/
http://kazcorpus.kz/kaznlp/
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5 Conclusion and Future Work

In this paper we presented a new package KazNLP which implements the core
natural language processing tasks for automated processing of texts in Kazakh
language. Rather than emphasizing the design and usage of the package, for
which the reader is referred to the corresponding documentation in the repos-
itory, we focused on the NLP tasks and outlined the way we tackled them in
order to better explain the internals of the developed modules.

Although KazNLP is a unique and holistic tool oriented for Kazakh language,
we understand there is a considerable amount of work necessary to make it
mature and widely used in research and industry. Therefore, as a future work,
we plan to improve documentation, usability and performance of the modules
as well as implement the latest methods and algorithms in the field of natural
language processing.

Acknowledgments. Supported by Ministry of Education and Science of the Republic
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