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Abstract. The paper presents an investigation of attention mechanisms in end-
to-end Russian speech recognition system created by join Connectional Tem-
poral Classification model and attention-based encoder-decoder. We trained the
models on a small dataset of Russian speech with total duration of about 60 h,
and performed pretraining of the models using transfer learning with English as
non-target language. We experimented with following types of attention
mechanism: coverage-based attention and 2D location-aware attention as well as
their combination. At the decoding stage we used beam search pruning method
and gumbel-softmax function instead of softmax. We have achieved 4% relative
word error rate reduction using 2D location-aware attention.
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1 Introduction

In recent years, development of end-to-end systems became the main trend in speech
recognition technologies due to fast advances in deep learning approaches. The end-to-
end speech recognition methods are mainly based on two types of models: Connec-
tional Temporal Classification (CTC) and attention-based encoder-decoder, as well as
on their combination [1].

For example, an investigation of end-to-end model with CTC is described in [2]. It
was shown that such system is able to work without language model (LM) well.
Training dataset [3] was made up of audio tracks of Youtube videos with duration more
than 650 h. Testing dataset was made up of audio tracks of Google Preferred channels
on YouTube [4], its duration was 25 h. The lowest word error rate (WER) obtained
without using LM was 13.9% and it was equal to 13.4% with the usage of LM.

Attention based encoder-decoder model was used in [5] for experiments on
recognition of speech from LibriSpeech corpus. The authors performed data aug-
mentation by speed, tempo, and/or volume perturbation, sequence-noise injection. The
authors obtained WER = 4% on test-clean data and WER = 11.7% on test-other.
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The application of LSTM-based LM results in decreasing of WER to 2.5% and 8.2%
on test-clean and test-other sets respectively.

Joint CTC-attention based end-to-end speech recognition was proposed in [6]. Two
loss functions are used in these model, which are combined using weighted sum as
follows:

L ¼ kLCTC þ 1� kð ÞLatt;

where LCTC is an objective for CTC and Latt is an objective for attention-based model, k
is a weight of CTC model, k 2 0; 1½ �.

Different types of attention mechanism in end-to-end speech recognition systems
are analyzed in many paper. For example, in [7] an application of Self-attention in CTC
model was investigated. The proposed model allowed the authors to outperform the
existing end-to-end models (CTC, encoder-decoder, joint CTC/encoder-decoder
models) in speech recognition accuracy. In [8], the authors proposed Monotonic
Chunkwise Attention (MoChA), which adaptively splits the input sequence into small
chunks over which soft attention is computed. The authors applied this attention
mechanism for two tasks: online speech recognition and automatic document sum-
marization. Experiments on online speech recognition were performed on Wall Street
Journal (WSJ) corpus. WER was equal to 13.2%. However, the authors of another
research published in [9] found out that this attention mechanism is unstable in their
system and proposed modified attention mechanism called stable MoChA (sMoCha).
Moreover, the authors proposed to compute truncated CTC (T-CTC) prefix probability
on the segmented audio rather than on the complete audio. At the decoding stage, the
authors proposed the dynamic waiting joint decoding (DWDJ) algorithm to collect the
decoding hypotheses from the CTC and attention branches in order to deal with the
problem that these two branches predict labels asynchronously in beam search.
Experiments on online speech recognition showed WER equal to 6% and 16.7% on
test-clean and test-other of LibriSpeech respectively.

The aim of the current research was to improve the Russian end-to-end speech
recognition system developed in SPIIRAS by modification of attention mechanism in
joint CTC-attention based encoder-decoder model. We have investigated with
coverage-based attention and 2D location-aware attention as well as their combination.
The models were trained and tested with the help of EspNet toolkit [10] with a PyTorch
as a back-end part. The developed models were evaluated in terms of Character Error
Rate (CER) and word error rate (WER).

The rest of the paper is organized as follows. In Sect. 2 we present our baseline
end-to-end speech recognition model, in Sect. 3 we describe modifications of attention
mechanism, our Russian speech corpora are presented in Sect. 4, the experimental
results are given in Sect. 5, in Sect. 6 we make a conclusion to our work.
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2 The Baseline Russian End-to-End Model

As a baseline we used joint CTC-attention based encode-decoder model presented on
Fig. 1, where h is an input vector, h is a vector of hidden states obtained from encoder,
gi is a weighted vector obtained from attention mechanism on i-th iteration of decoding,
yi is decoder’s output on i-th iteration, wi is i-th symbol of output sequence, si-1 is the
decoder’s state on the previous iteration.

Fig. 1. Joint CTC-attention based encode-decoder model
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The model had the following topology. Long Short-Term Memory (LSTM) net-
work contained two layers with 512 cells in each was used as decoder. Bidirectional
LSTM (BLSTM) contained five layers with 512 cells in each was used as encoder.
Moreover we used highway connection in encoder. In order to prevent our model from
making over-confident predictions, we used dropout [11] with probability equal to 0.4
in LSTM layers at every time step in the encoder’s network as well we used label
smoothing [12] as a regularization mechanism with a smoothing factor of 0.01.
Location-aware [13] attention mechanism was used in decoder.

Before the encoder, there was a feature extraction block that was VGG model [14].
Moreover, we added residual connection (ResNet) in this block as it is shown on
Fig. 1. Thus, the feature extraction block consisted of two similar parts, which included
three convolution layers followed by batch normalization [15] and max-pooling layer;
rectified linear unit (ReLU) [16] was used as activation function. The number of output
features was equal to 128.

At the training stage, the CTC weight was equal to 0.3. Filter banks features were
used as input. The model’s training was carried out using the transfer learning
approach. At first, the models were pretrained on English speech data from LibriSpeech
corpus (we used 360 h of English data for pretraining). Then models were trained on
Russian speech data. Our Russian speech corpora are described in detail in Sect. 4.

Due to small size of Russian speech dataset, we additionally used LSTM-based LM
at speech recognition experiments. The language model was trained on text corpus
collected from online Russian newspapers. The corpus consisted of 350 M words
(2.4 GB data). LSTM contained one layer with 512 cells. The vocabulary consisted of
150 K most frequent word-forms from the training text corpus.

3 Attention Mechanisms in Russian End-to-End Speech
Recognition Model

3.1 The Baseline Location-Aware Attention

Attention mechanism is a subnetwork in the decoder. Attention mechanism chooses a
subsequence of the input and then uses it for updating hidden states of neural network
of decoder and predicting an output. On the i-th step decoder generates an output yi
focusing on separate components of h as follows [13]:

ai ¼ Attend si�1; ai�1; hð Þ;

gi ¼
XL

j¼1

ai;jhj;

where si�1 is the (i−1)-th state of neural network called Generator, ai 2 R
L are attention

weights, vector gi is called glimpse, Attend denotes a function that calculates attention
weight. The step comes to an end with computing a new generator state as
si ¼ Recurrency si�1; gi; yið Þ.
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In our baseline system we used location-aware attention that calculates as follows:

fi ¼ F � ai�1;

ei;j ¼ wTtanh Wsi�1 þVhj þUfi;j þ b
� �

;

where w 2 R
m and b 2 R

n denote weight vector, W 2 R
m�n, V 2 R

m�2n, and U 2
R

m�k are weight matrices, n and m are number of hidden units in the encoder and
decoder respectively, vector fi;j 2 R

k are convolutional features. Generally, an attention
weights matrix is calculated as ai ¼ softmaxi eð Þ.

3.2 Coverage-Based Attention

The attention mechanism usually takes into account only the previous time step when
calculating the matrix of weights. However, during research and experiments, it was
found out that models often miss some, mostly short, words, for example, prepositions.
Such words are often swallowed in pronunciation. In [17] a method of taking into
account all preceding history of weight matrix was proposed for text summarization. In
this method coverage vector is computed as follows [18]:

bi ¼
Xi�1

l¼0

al;

where al is weight matrix of neural network in attention mechanism at l-th time step,
i is an index of the current time step. Thus, in this case weight matrix in the attention
mechanism is the sum of attention weights at all preceding time steps. The coverage
vector is used as extra input to the attention mechanism as follows:

ei;j ¼ wTtanh Wsi�1 þVhj þUbi;j þ b
� �

:

3.3 2D Location-Aware Attention

The general location attention takes into account one frame to compute attention weight
vector. Therefore, it was suggested [13] to take into account several frames for com-
putation of weight vector using fixed-size window on frames. It should be noted that
convolution in location attention is carried out with the help of a kernel of the size (1,
K), where K is the given hyperparameter of the model. It was suggested to use the
kernel of the size (w, K), where w is the width of window on frames. At each iteration
the window is shifted on one frame updating the obtained matrix. We set w = 5 in our
experiments.

3.4 Joint Coverage-Based and 2D Location-Aware Attention

As well we performed combination of coverage-based and 2D location-aware attention
mechanisms. In this case attention is computed over 5 frames as 2D location-aware
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attention and then coverage vector is compute as the sum of attention distributions over
all previous decoder timesteps.

4 Speech Datasets

For training the acoustic models, we used three corpora of Russian speech recorded at
SPIIRAS [19, 20]:

– the speech database developed within the framework of the EuroNounce project
[21] that consists of recordings of 50 speakers, each of them pronounced a set of
327 phonetically rich and meaningful phrases and texts;

– the corpus consisting of recordings of other 55 native Russian speakers; each
speaker pronounced 105 phrases: 50 phrases were taken from the Appendix G to the
Russian State Standard P 50840-95 [22] (these phrases were different for each
speaker), and 55 common phrases were taken from a phonetically representative
text, presented in [23];

– the audio part of the audio-visual speech corpus HAVRUS [24] that consists of
recordings of 20 speakers pronouncing 200 phrases: (a) 130 phrases for training
were two phonetically rich texts common for all speakers, and (b) 70 phrases for
testing were different for every speaker: 20 phrases were commands for the MIDAS
information kiosk [25] and 50 phrases were 7-digits telephone numbers (connected
digits);
In addition, we supplemented our speech data with free available speech corpora:

– Voxforge1 that contains about 25 h of Russian speech recordings pronounced by
200 speakers; unfortunately, some recordings contained a lot of noises, hesitations,
self-repairs, etc., therefore some recordings were excluded;

– M-AILABS2 that mostly contains recordings of audiobooks; Russian part of the
corpus contains 46 h of speech recordings of three speaker (two men and one
woman).

As a result we had about 60 h of speech data. This speech dataset was splitted into
validation and trains parts with sizes of 5% and 95%.

Our test speech corpus consists of 500 phrases pronounced by 5 speakers. The
phrases were taken from online newspaper which was not used for LM training.

5 Experiments

At the decoding stage we used beam search pruning method similar to the approach
described in [26]. Our method is described in detail in [27], in general terms, we filter
beam search output with some condition to remove too bad hypotheses.

1 http://www.voxforge.org/.
2 https://www.caito.de/2019/01/the-m-ailabs-speech-dataset/.
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Moreover, during decoding we used gumbel-softmax function instead of softmax.
The standard decoding algorithm uses softmax function building probability distribu-
tion for estimating the character probability on each iteration. However this distribution
is rather strict that can influence on the recognition result. Therefore we replaced
softmax function by gumbel-sofmax [28]:

gumbel softmaxi zð Þ ¼ e
ziþ gi

T

PK
k¼1 e

zi þ gk
T

;

where T is smoothing coefficient, gi is values from Gumbel probability destribution.
With T increasing, the probability distribution of the characters become more uniform
that does not allow the decoding algorithm to give too confident decisions regarding the
characters. During the preliminary experiments we chose T ¼ 3.

Using our baseline system we obtained CER = 10.8% and WER = 29.1%. The
results obtained with usage of coverage-based and 2D location-aware attention as well
as joint usage of coverage and 2D location-aware attentions are presented in Table 1.

As we can see from the Table, the best result was obtained with 2D location-aware
attention (CER = 10.8%, WER = 27.9%). The usage of coverage-based attention, as
well as joint coverage and 2D location-aware attention does not results in improvement
of speech recognition results.

6 Conclusions and Future Work

In the paper, we have investigated two types of attention mechanisms for Russian end-
to-end speech recognition system: coverage-based attention and 2D location-aware
attention. Coverage-based attention unfortunately does not results in improving speech
recognition result. The usage of 2D location-aware attention allowed us to achieve 4%
relative reduction of WER. In further research we are going to research another
architectures of neural network for Russian end-to-end speech recognition, for exam-
ple, Transformer.

Acknowledgements. This research was supported by the Russian Foundation for Basic Research
(project No. 18-07-01216).

Table 1. Experimental results on speech recognition using different types of attention

Model CER, % WER, %

Baseline 10.8 29.1
Coverage-based attention 11.0 29.5
2D location-aware attention 10.6 27.9
Joint coverage-based and 2D location-aware attention 10.9 29.8
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