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Abstract. Community search, which aims to retrieve important com-
munities (i.e., subgraphs) for a given query vertex, has been widely stud-
ied in the literature. In the recent, plenty of research is conducted to
detect influential communities, where each vertex in the network is asso-
ciated with an influence value. Nevertheless, there is a paucity of work
that can support personalized requirement. In this paper, we propose a
new problem, i.e., maximal personalized influential community (MPIC)
search. Given a graph G, an integer k and a query vertex u, we aim to
obtain the most influential community for u by leveraging the k-core con-
cept. To handle larger networks efficiently, two algorithms, i.e., top-down
algorithm and bottom-up algorithm, are developed. To further speedup
the search, an index-based approach is proposed. We conduct extensive
experiments on 6 real-world networks to demonstrate the advantage of
proposed techniques.
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1 Introduction

Retrieving communities and exploring the latent structures in the networks can
find many applications in different fields, such as protein complex identification,
friend recommendation, event organization, etc. [8,10]. There are two essential
problems in community retrieval, that is community detection and community
search. Generally, given a graph, community detection problem aims to find all
or top-r communities from the graph [12,16], while community search problem is
to identify the cohesive communities that contain the given query vertex [6,18].
In this paper, we focus on the category of community search problem, which is
very important for personalized applications. For instance, we can conduct better
friend recommendation by identifying the important community that contains
the query users. Similarly, we can make better event organization by retrieving
the community, which contains the user that we want to invite.

In the literature, lots of research tries to find personalized communities by
emphasizing the structure cohesiveness. While, in many cases, we also need to
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consider the influence of obtained communities. Recently, there are some research
that tries to find communities with large influence, e.g., [1,2,14]. In [14], Li
et al. propose a novel community model called k-influential community, where
each vertex is associated with a weight (i.e., influence value) in the graph. A
community (i.e., subgraph) is essential when it is cohesive and has large influence
value. Efficient algorithms are developed to obtain the top-r communities with
the largest influence value. Given the importance of the problem, [1,2] try to
speedup the search from different aspects. Since influence value is user’s natural
property, by considering the influence value, it can lead us to identify more
significant communities.

Nevertheless, the existing works on influential community detection mainly
focus on finding all or top-r influential communities. The personalized situation
is not considered. To fill this gap, in this paper, we propose the maximal per-
sonalized influential community (MPIC) search problem. Given a graph G, an
integer k and a query vertex q, the MPIC is the community with the largest
influence value that contains q, and satisfies the k-core (i.e., the degree of each
vertex inside is no less than k), connectivity (i.e., the subgraph is connected) and
maximal (i.e., no other supergraph satisfies the previous criteria) constraints. As
defined in the previous work [14], the influence value of a community is the min-
imum weight of all the vertices in the community. Given the graph in Fig. 1,
if k = 3 and the query vertex is v8, then the vertices in the dotted line is the
corresponding MPIC. Note that, the k-core model is also used in the previous
works to measure the cohesiveness of the community [1,2,14].

Challenges. The main challenges of the problem lie in the following two aspects.
Firstly, the real-world networks, such as social networks, are usually large in size.
It is critical for the algorithms to scale for large networks. Secondly, since we
investigate the personalized scenario, there may be plenty of queries generated
by users in real applications, it is important that the developed algorithms can
meet the online requirements.

Contributions. To the best of our knowledge, we are the first to investigate
the maximal personalized influential community (MPIC) search problem. The
contributions of this paper are summarized as follows.

– We formally define the MPIC search problem.
– To handle large networks, two algorithms, i.e., top-down algorithm and the

bottom-up algorithm, are developed based on different searching orders.
– An index-based method is proposed in order to meet the online requirements.
– We conduct extensive experiments on 6 real-world networks to evaluate the

performance of proposed techniques. As shown, the developed techniques can
significantly speedup the search compared with the baseline.

2 Problem Definition

We consider a network G = (V,E, ω) as an undirected graph, where V and E
denote the vertex set and edge set, respectively. Each vertex u ∈ V is associated
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Fig. 1. Running example (The number in the vertex denotes its weight)

Algorithm 1: ComputeCore(G, k)
Input : G : a graph, k : degree constraint
Output : k-core of G
while exists u ∈ G with deg(u,G) < k do1

G = G \ u ;2

return G3

with a weight denoted by ω(u), representing the influence of vertex u. The vertex
weight can be its PageRank score or other user defined value. Without loss of
generality, we use the same setting as the previous work for vertex weight, where
different vertices have different weights [14]. Note, if that is not the case, we use
the vertex id to break the tie. We denote the number of vertices by n = |V |
and the number of edges by m = |E|. A subgraph S = (VS , ES) is an induced
subgraph of G, if VS ⊆ V and ES = {(u, v)|u, v ∈ VS , (u, v) ∈ E}. Given a
subgraph S, the neighbors of u ∈ VS is denoted by N(u, S) = {v|v ∈ VS , (u, v) ∈
ES}, and deg(u, S) represents the degree of u in S, i.e., deg(u, S) = |N(u, S)|.
In this paper, we utilize the k-core model to represent the cohesiveness of a
community, which is also widely used in the literature [1,14].

Definition 1 (k-core). Given a graph G and a positive integer k, a subgraph
S ⊆ G is the k-core of G, denoted by Ck(G), if S satisfies the following con-
ditions. (i) deg(u, S) ≥ k for each vertex u in S. (ii) S is maximal, i.e., any
subgraph S′ ⊃ S is not a k-core.

To compute the k-core of a graph, we can remove the vertex whose degree is
less than k recursively. The time complexity of computing k-core is O(m) [20]
and the detailed algorithm is shown in Algorithm1. To identify important com-
munities, we consider both the cohesiveness and the influence of a community.
We employ the widely used influence value to measure the influence of a com-
munity [1,14].

Definition 2 (Influence value). Given an induced subgraph S of G, the influ-
ence value of S is the minimum weight of the vertex in VS, denoted as f(S), i.e.,
f(S) = minu∈VS

ω(u).
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In the previous works, people usually focus on finding all or top-r influen-
tial communities [1,2,14]. While, as discussed, in real applications, it is also
essential to identify the personalized influential communities for different user
queries. Given this requirement, we define the maximal personalized influential
community as follows.

Definition 3 (Maximal Personalized Influential Community (MPIC)).
Given a graph G, a positive integer k and a query vertex q, a maximal
personalized influential community, short as MPIC, is an induced subgraph
S of G, which meets all the following constraints.

– Connectivity: S is connected;
– Cohesiveness: each vertex in S has degree at least k;
– Personalized: query vertex q is contained in S, i.e., q ∈ VS;
– Maximal: there is no other induced subgraph S′ that (i) satisfies the first three

constraints (i.e., connectivity, cohesiveness and personalized constraints), (ii)
is a supergraph of S, i.e., S′ ⊃ S, and (iii) has the same influence value as
S, i.e., f(S) = f(S′);

– Largest: S is the one with the largest influence value and satisfies the previous
constraints.

Problem Definition. Given a graph G = (V,E, ω), a query vertex q and a
positive integer k, we aim to develop efficient algorithm to find the maximal per-
sonalized influential community (MPIC) for the query, denoted by MPIC(q, k).

Example 1. As shown in Fig. 1, the number in each vertex is the corresponding
weight. Suppose k = 3 and query vertex is v8. Then we can see that the subgraph
S1 = {v6, v7, v8, v9, v10} in the dotted line is the corresponding MPIC with
influence value of 6. While the subgraph S2 = {v1, v2, v3, v4, v5, v6, v7, v8, v9,
v10}, which satisfies the first four constraints of MPIC with influence value of 1,
is not the MPIC, because it is not the one with the largest influence value.

3 Solutions

In this section, we first introduce some properties about the maximal personal-
ized influential community. Then we develop two approaches, top-down method
and bottom-up method by verifying the vertices in different orders. Finally, to
support efficient online processing and scale for large networks, an index-based
method is proposed based on the bottom-up framework.

3.1 Properties of Maximal Personalized Influential Community

Lemma 1. Given a graph G, an integer k and a query vertex q, then the influ-
ence value of MPIC(q, k) is at most the weight of q, i.e., f(MPIC(q, k)) ≤ ω(q).

Proof. MPIC(q, k) must contain q. Based on the definition of influence value, we
have f(MPIC(q, k)) = minu∈MPIC(q,k) ω(u) ≤ ω(q). Thus, the lemma holds.
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Algorithm 2: Top-Down Algorithm

Input : G : a graph, k : degree constraint, q : query vertex
Output : MPIC for the query
Ck(G) ← ComputeCore(G, k);1

if q /∈ Ck(G) then2

return error3

Ck(G, q) ← the connected component of Ck(G) that contains q;4

S ← sort vertices of Ck(G, q) in descending order based on vertex weights;5

Q ← ∅; i ← 0;6

while i < S.size do7

Q ← Q ∪ {S[i]};8

If S[i] = q then break;9

i ← i + 1;10

if q ∈ Ck(Q) then11

return the connected component containing q in Ck(Q)12

i ← i + 1;13

while i < S.size do14

Q ← Q ∪ {S[i]};15

if q ∈ Ck(Q) then16

return the connected component containing q in Ck(Q)17

i ← i + 1;18

Lemma 2. Given a graph G and two induced subgraphs S1 and S2, we have
VS2 ⊂ VS1 and VS1 = VS2 ∪ {u}. If the weight of u is smaller than the influence
value of S2 (i.e., ω(u) < f(S2)), then the influence value of S1 is smaller than
that of S2 (i.e., f(S1) < f(S2)).

Proof. Based on the definition of influence value, f(S1) = minv∈VS1
ω(v) ≤ ω(u)

< f(S2). Therefore, the lemma holds.

3.2 Top-Down Algorithm

In this section, we present the top-down algorithm which is inspired by the
existing influential community detection method [1]. According to Lemma 1, the
influence value of the identified MPIC is at most ω(q). To find the community
with the largest influence value, we can first add all the vertices whose weight
is no less than ω(q) and check if we can obtain a community that satisfies the
first four constraints of MPIC. If so, we can output the identified community.
Otherwise, we can add some vertices with weight smaller than ω(q) to find the
MPIC. The detailed algorithm is shown in Algorithm2.

In Algorithm 2, we first compute the k-core of G, denoted by Ck(G). Since
the MPIC must be inside Ck(G), if q does not belong to the k-core, error code
is returned in Line 3, which means we cannot find a MPIC containing q. Oth-
erwise, due to the connectivity constraint, we only need to keep the connected
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component that contains q. Then we sort the survived vertices in descending
order by their weights and store them in S (Lines 4–5). We load the query q
and the vertices ranked above q into Q (Lines 7–10). If the k-core Ck(Q) of Q
contains q, then we return the connected component containing q, which can
be obtained by conducting a BFS from q (Lines 11–12). Otherwise, we add the
remaining vertices in S one by one to Q until the k-core of Q contains the query
vertex q, and the connected component is returned (Lines 14–18).

Example 2. Consider the graph in Fig. 1. Suppose k = 3 and the query vertex is
v8. Following the top-down algorithm, we first compute the k-core of G. Thus,
v11 and v12 are deleted, because they violate the degree constraint. Then we
add v8 and the vertices ranked higher (i.e., {v10, v9}) than v8 into Q. However,
they cannot form a 3-core. Then we insert vertex one by one into Q. Until v6 is
added, there is a 3-core containing query v8, i.e., {v10, v9, v8, v7, v6}, which is
the MPIC returned.

3.3 Bottom-Up Algorithm

In the top-down algorithm, we first add all the vertices ranked higher than q
into Q. After that, by adding each vertex into Q, we need to invoke the k-core
computation procedure. Even though the time complexity of k-core computation
is O(m), in the worst case, we need to repeat the process n times, which can
be time-consuming. Ideally, we can add more vertices into Q for each iteration.
However, in order to guarantee the correctness of the algorithm, it is difficult to
determine the appropriate number of vertices to be added. If too many vertices
are added, we may need a lot of computations to shrink the result. Otherwise, we
still need to compute the k-core plenty of times. To reduce the computation cost,
in this section, the bottom-up method is proposed, which can avoid computing
the k-core repeatedly.

According to Lemma 2, for a given induced subgraph, we can increase its
influence value by removing the vertex with the smallest weight. Intuitively, since
we aim to find the MPIC, we can iteratively remove the vertices with the smallest
weight and keep tracking the other constraints of MPIC, until the MPIC is found.
Different from the top-down approach, in the bottom-up method, we visit the
vertices in ascending order and remove the unpromising vertices iteratively. The
detailed algorithm is shown in Algorithm3.

For the algorithm, the first three steps are exactly the same as the top-down
method (Lines 1–4). Then, we sort the survived vertices in ascending order by
the weight of vertex and store them in S (Line 5). Then we try to remove the
vertex with the current smallest weight one by one until the query vertex q is
met (Lines 6–10). For each vertex u processed, we invoke the Delete procedure,
which details are shown in Lines 11–26. For each processed vertex u, we need
to ensure the remained subgraph satisfies the k-core constraint. After deleting a
vertex, it may cause its neighbors to have less than k neighbors. Then we remove
these vertices as well (Lines 17–20). We put the vertices that violate the degree
constraint into R and process them iteratively. When w = q (Line 15), it means
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Algorithm 3: Bottom-Up Algorithm

Input : G : a weighted graph, k : degree constraint, q : query vertex
Output : MPIC for the query
Ck(G) ← ComputeCore(G, k);1

if q /∈ Ck(G) then2

return error3

Ck(G, q) ← the connected component of Ck(G) that contains q;4

S ← sort vertices of Ck(G, q) in ascending order based on vertex weights;5

while S �= ∅ do6

D ← ∅;7

u ← S.front();8

if Delete(u, q, S,D) = 1 then9

return S ∪ D10

Procedure Delete(u, q, S,D);11

initialize a queue R = {u};12

while R �= ∅ do13

w ← R.pop();14

if w = q then15

return 116

for each v ∈ N(w,S) do17

deg(v, S) ← deg(v, S) − 1;18

if deg(v, S) < k then19

R.push(v);20

remove w from S;21

D ← D ∪ {w};22

for each connected component S′ in S do23

if q /∈ S′ then24

remove S′ from S;25

return 026

either (i) the input vertex u of Delete procedure is q, or (ii) deg(q, S) becomes
less than k because of the deletion u. In this case, the remained subgraph S
and D (i.e, S ∪ D) form the MPIC. This is because, when we remove the input
vertex u, it will cause the remained subgraph does not contain q or q violates
the degree constraint. The reason that we keep tracking the deleted vertices
D for each Delete procedure is for case when ii situation happens. Since the
identified community should satisfy the connectivity constraint, we can safely
remove the connected components in S that do not contain q (Lines 23–25).

Example 3. Consider the graph in Fig. 1. Suppose k = 3 and the query vertex
is v8. Following the bottom-up approach, v11 and v12 are firstly deleted due to
the k-core computation. After deleting the vertex v1 with the smallest weight,
the remained graph are separated into two connected components. Therefore,
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Algorithm 4: Index Construction

Input : G : a graph
Output : constructed index
for k from 1 to kmax do1

Ck(G) ← ComputeCore(G, k);2

rn ← empty root node of Tk;3

for each connected component S in Ck(G) do4

BuildNode(k, rn, S);5

Procedure BuildNode(k, rn, S);6

u ← the vertex with the smallest weight in S;7

R ← {u}; D ← ∅;8

while R is not empty do9

w ← R.pop();10

for each v ∈ N(w,S) do11

deg(v, S) ← deg(v, S) − 1;12

if deg(v, S) < k then13

R.push(v);14

remove w from S;15

D ← D ∪ {w};16

construct an intermediate node crn containing D;17

append crn to the parent node rn;18

for each connected component S′ in S do19

BuildNode(k, crn, S′);20

we can safely remove the connected component {v2, v3, v4, v5} from S since it
does not contain the query vertex. Then, we process v6. As we can see, when
processing v6 in the Delete procedure, it will result in v8 violating the degree
constraint. Then we can stop and output {v6, v7, v8, v9, v10} as the result.

3.4 Index-Based Algorithm

In the bottom-up approach, we invoke the k-core computation at the beginning
of the algorithm and the total cost of checking degree constraint in Delete only
takes O(m) time, which avoids lots of computations compared to the top-down
method. However, the bottom-up approach still has some limitations. (i) When
deleting the vertices, it still costs a lot for processing very large graphs. (ii) For
real applications, different users may have different requirements and there may
exist a large amount of queries. Therefore, it is hard for it to meet the online
requirement.

Motivated by the requirements, in this section, we propose an index-based
algorithm by leveraging the bottom-up framework. In the bottom-up method, for
a given k, we try to delete the vertex u with the smallest weight in each iteration
by Delete procedure. Then we can obtain the MPIC for certain vertices, such
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Fig. 2. Example for index construction

as the vertex u and the vertices removed when processing u. If we process the
vertices in order, we can obtain the MPICs for all the vertices. Therefore, we
can build a tree structure index according to the processing order. Let kmax be
the largest core number, i.e., the largest k value for any k-core. If we build a
tree index for each k value, then we can answer any given query efficiently. In
Algorithm 4, we present the details of how to index the visited vertices effectively.
Then we show how to answer a query by utilizing the index.

Index Construction. In Algorithm 4, we build a tree index for each k value
from 1 to kmax (Lines 1–5). In each iteration, we first compute the corresponding
k-core, and for each connected component, we construct the indexed tree nodes
by invoking BuildNode procedure. The details of BuildNode procedure are
shown in Lines 6–20. The BuildNode procedure is very similar to the Delete

procedure in Algorithm 3. It starts by processing the vertex with the smallest
weight (Line 7). When we process a vertex u, it will cause some other vertices
violating the degree constraints (Lines 11–14) and we add them and u into D
(Line 16). According to the bottom-up method, it means the vertices in D belong
to the same MPIC. Then we construct an intermediate node crn that contains
the vertices in D, and append it to its parent node rn (Lines 17–18). Then
we recursively call the BuildNode to process each connected component S′ of
the remained subgraph S (Lines 19–20). After processing each k, the index is
constructed. Based on the construction process, we can see that the MPIC of a
vertex consists of its belonged intermediate node and its children nodes in the
index.

Example 4. Figure 2 shows the constructed index for the graph in Fig. 1 when
k = 1, 2, 3. The ER node is the empty root node. It is for the case when the
computed k-core in Line 2 of Algorithm 4 is not connected. For k = 1, the
constructed index is shown in Fig. 2(a). We first process v1 which will result in 2
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connected components. Then we remove v2 and v3 and create two intermediate
nodes for them, since the removal of them does not make other vertices violate
the degree constraint. When deleting v4, the degree of v5 becomes less than 1.
Then we construct an intermediate node that contains v4 and v5. We conduct
similar procedure for the other connected component, and the constructed index
is shown in the right branch. Similar procedure is conducted for k = 2, 3, where
the corresponding index are shown in Figs. 2(b) and 2(c).

Query Processing. As we can see, for a given query, the MPIC consists of the
intermediate node that contains the query vertex and all its children nodes in
the corresponding k index. If we maintain kmax pointers for each vertex to its
corresponding intermediate nodes, we can efficiently locate the vertex’s interme-
diate node for a given k and traverse the index to return the result. For a given
query, if we cannot find its intermediate node in the index, it means it does not
has a MPIC for the query.

Example 5. Consider the graph in Fig. 1. The constructed index is shown in
Fig. 2 for k = 1, 2, 3. Given the query vertex v8, the MPIC is the vertices in the
dotted line for k = 1, 2, 3 respectively.

Discussion. If we do not need to retrieve the specific vertices in MPIC, the
index can answer the query in O(1) time by just returning the pointer for the
intermediate node. Otherwise, we need to traverse from the intermediate node to
obtain all the vertices. In this paper, we use the second case in the experiments,
since the first two algorithms will obtain all the vertices in MPIC.

4 Experiments

In this section, we conduct extensive experiments on real-world networks to
evaluate the performance of proposed techniques.

4.1 Experiment Setup

Algorithms. Since there is no previous work for the proposed problem, we con-
duct experiments with the proposed three algorithms, i.e., top-down algorithm,
bottom-up algorithm and index-based algorithm. The top-down algorithm serves
as the baseline method.

Datasets. We evaluate the algorithms on 6 real-world datasets, i.e., Email,
Brightkite, Gowalla, YouTube, Wiki and Livejournal. Table 1 shows the statistic
details of the datasets. The datasets are downloaded from the Stanford Network
Analysis Platform1, which are public available. Similar as previous work, we use
the PageRank value to serve as the vertex weight [14].

1 http://snap.stanford.edu.

http://snap.stanford.edu
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Table 1. Statistics of datasets

Dataset #Vertices #Edges dmax kmax

Email 36,692 183,831 1,367 43

Brightkite 58,228 214,078 1,134 52

Gowalla 196,591 950,327 14,730 51

YouTube 1,134,890 2,987,624 28,754 51

Wiki 1,791,488 13,846,826 16,063 72

Livejournal 3,997,962 34,681,189 14,815 360

Fig. 3. Index construction time

Parameter and Workload. To evaluate the performance of proposed tech-
niques, we vary the weight of query vertex and k. To generate the query vertices,
we sort the vertices according to the weight and divide them into 5 buckets. For
each bucket, we randomly select 200 vertices as query vertices. For k, we vary k
from 5 to 25 with 10 as the default value. For each setting, we run the algorithms
10 times and report the average response time.

All algorithms are implemented in C++ with GNU GCC 7.4.0. Experiments
are conducted on a PC with Intel Xeon 3.2 GHz CPU and 32 GB RAM using
Ubuntu 18.04 (64-bit).

4.2 Experiment Result

Results of Index Construction. We first present the index construction time
for all datasets, the results are shown in Fig. 3. As we can observe, the index
construction phase is very efficient. It only takes 0.290 seconds for Brightkite
dataset. For the largest network Livejournal, which has more than 34 million
edges, it only takes 325.656 s for constructing the index.

Results of Varying Query Vertex Weight. By varying the query vertex
weight, we conduct the experiments on all the datasets. The response time is
shown in Fig. 4, where k is set as the default value. As observed, the bottom-up
method is much faster than the top-down method, since the top-down method
may compute the k-core many times. Among all, the index-based method runs
fastest, due to the novel index structure proposed. In the two largest datasets,
i.e., Wiki and Livejournal, the index-based method achieves up to 6 orders of
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Fig. 4. Experiment results by varying query vertex weight

magnitudes speedup compared with the top-down method. As we can see, the
bottom-up and index-based methods are not sensitive to the weight of query
vertex. While, for the top-down method, the response time increases when the
weight increases. This is because, for query vertex with larger weight, it may
compute the k-core more times when adding vertices one by one.

Results of Varying k. We conduct the experiments on all the datasets by
varying the query parameter k. The results of response time are shown in Fig. 5,
where similar trend can be observed. The bottom-up and index-based methods
are significantly faster than the top-down method, and the index-based method
is the fastest one for all cases. In the largest dataset, i.e., Livejournal, the index-
based method can achieve up to 6 orders of magnitudes speedup compared with
the top-down method. With the increase of k, the response time of top-down
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Fig. 5. Experiment results by varying k

method decreases. This is because, for larger k, the identified MPIC tends to be
smaller. As shown, the bottom-up and index-based methods can scale well for
the parameter k.

Summary. As demonstrated in the experiments, both bottom-up and index-
based methods are significantly faster than the top-down method, and they
can scale well for different query parameters. Especially for the index-based
method, it usually can achieve orders of magnitudes speedup. Given the exper-
iment results, in real applications, users can make a trade-off when selecting
algorithms. If index construction is allowed by the applied platform, it would be
better to use the index-based method. Otherwise, users can select the bottom-up
method, which can also provide competitive performance.
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5 Related Work

We present the related work from the following three aspects, i.e., cohesive sub-
graph mining, community search and influential community detection.

Cohesive Subgraph Mining. Cohesive subgraph mining is a very important
tool for graph analysis and can find many applications in different fields [4,17].
In the literature, different models are proposed to measure the cohesiveness of
a subgraph, such as k-core [20], k-truss [21], clique [5], etc. There are also some
works that try to identify cohesive subgraph on special graphs, such as identifying
k-core and k-truss over uncertain graphs [11,19].

Community Search. For cohesive subgraph mining, people usually focus on
finding all or high ranked cohesive subgraphs. Given a graph G and query ver-
tices, the community search problem aims to identify a densely connected sub-
graph that contains the query vertices [8]. To measure the cohesiveness of a com-
munity, different models are used. In [6,18], authors use the minimum degree to
serve as the metric, which is similar to the k-core constraint. [18] proposes a
global search framework to identify the community. Cui et al. [6] develop a local
search method to avoid visiting too many vertices. Huang et al. [9] leverage the
k-truss model and propose the triangle-connected k-truss community problem. It
designs a triangle connectivity-preserving index to efficiently search the k-truss
communities. There is lots of research for other kinds of graphs, e.g., attribute
graphs and profile graphs [3,7]. [8] presents a comprehensive survey of recent
advanced methods for community search problems.

Influential Community Detection. In traditional community detection/
search problems, the influence value of a community has been neglected. In [14],
Li et al. present a novel community model called k-influential community. Given
a graph G, each vertex is associated with a weight, i.e., influence value. It aims
to find the top-r k-influential communities, where the cohesiveness is measured
based on the k-core model. In [2], Chen et al. propose the backward searching
technique to enable early termination. Recently, Bi et al. [1] develop a local
search method, which can overcome the deficiency of accessing the whole graph.
Li et al. [15] present an I/O-efficient algorithm to compute the top-r influential
communities. In [13], authors further investigate the case when each user is asso-
ciated with multiple weights. However, as observed, these works aim to identify
the influential communities for the whole network, while the personalized case
has not been considered.

6 Conclusion

In this paper, we investigate the maximal personalized influential community
search problem, which is an important tool for many applications, such as per-
sonalized friend recommendation, social network advertisement, etc. In order to
scale for large networks, two algorithms, i.e., top-down algorithm and bottom-
up algorithm, are developed based on different vertex accessing orders. To fulfill
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the requirement of online searching, an index based method is proposed. Finally,
comprehensive experiments are conducted to verify the advantage of developed
techniques on 6 real world datasets.
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