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Abstract. Traditional Chinese Medicine (TCM) with diagnosis scales
is a holistic way for diagnosing Parkinson’s Disease, where symptoms
can be represented as multiple labels. To solve this problem, multi-label
learning provides a framework for handling such task and has exhib-
ited excellent performance. Besides, it is a challenging issue of how to
effectively utilize label correlations in multi-label learning. In this paper,
we propose a novel algorithm named Discriminative Multi-label Model
Reuse (DMLMR) for multi-label learning, which exploits label correla-
tions with model reuse, instance distribution adaptation and label dis-
tribution adaptation. Experiments on real-world dataset of Parkinson’s
disease demonstrate the superiority of DMLMR for diagnosing PD. To
prove the effectiveness of the proposed DMLMR, extensive experiments
on four benchmark multi-label datasets show that DMLMR significantly
outperforms other state-of-the-art multi-label learning algorithms.

Keywords: Parkinson’s disease · Multi-label learning · Label
correlations · Model reuse · Distribution adaptation

1 Introduction

Tradition Chinese Medicine (TCM) is a new way for PD [13]. For one thing, TCM
scales includes tongue phase as well as four traditional methods of diagnosis:
observation, listening, interrogation and pulse-taking. For another, syndrome
types of PD in TCM can be divided into following 5 categories: (1) stirring wind
due to phlegma-heat, (2) stirring wind due to blood heat, (3) deficiency of both
qi and blood, (4) insufficiency of the liver and kidney, (5) deficiency of both yin
and yang. Moreover, each TCM syndrome type can be subdivided into primary
and secondary syndrome types.

TCM scholars are supposed to collect disease information of patients, and
categorize a patient into one or more syndrome types based on TCM theory and
rich experience. This diagnostic process requires doctors equipped with exten-
sive experience of Syndrome Differentiation at the time of treatment. Due to
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the essential characteristic of TCM, TCM scales appear to be overwhelmingly
dependent on personal experience of doctors. The problems of diagnosing PD
in TCM lie in two aspects: specialists of PD are in short supply and diagnostic
levels of doctors are inconsistent. Consequently, the diagnosis of PD might be
subjective, which violates the original intention of effectiveness. Therefore, it is
desired to design a semi-automatic mechanism for diagnosing PD in TCM.

In this paper, we formalize the problem of diagnosing Parkinson’s disease
in TCM into a multi-label learning problem, where we treat TCM scales as
features and treat syndrome types as multiple labels. In multi-label learning [21],
each instance can be represented by multiple labels simultaneously. For example,
an image may be annotated with both sea and beach. The task of multi-label
learning is to learn a classification model which can predict all the relevant
labels for unseen instances. Nowadays, multi-label learning has been applied to
various application scenarios, such as text classification [9], image annotation
[11], video annotation [14], social networks [17], music emotion categorization
[18]. In addition, the exploration of label correlations has been accepted as a key
component of effective multi-label learning approaches [6,23].

The main contributions of this paper include:

– Real-world Parkinson’s disease diagnosis in Traditional Chines Medicine is
investigated and assessed.

– We formalize the problem of diagnosing PD in TCM as a multi-label learning
problem, by treating TCM scales as features while treating syndrome types
as multiple labels. Meanwhile, we apply multi-label classification technology
to diagnose PD in TCM.

– We propose a novel Discriminative Multi-label Model Reuse (DMLMR) algo-
rithm to deal with multi-label learning problem, which perform excellently
in handling diagnosis of Parkinson’s disease in TCM. Extensive experiments
on four benchmark multi-label datasets show that DMLMR algorithm signif-
icantly outperforms the state-of-the-art multi-label learning algorithms.

The remainder of the paper is organized as follows. Section 2 briefly reviews
some related work of multi-label learning. Section 3 presents formulation of the
problem and our proposed DMLMR algorithm. Section 4 reports the experimen-
tal results, followed by the conclusion in Sect. 5.

2 Related Work

Generally, multi-label learning algorithms can be categorized into following three
strategies based on the order of label correlations considered by the system.

First-order strategy copes with multi-label learning problem in a label-by-
label manner. Binary Relevance (BR) [1] takes each label independently and
decomposes it into multiple binary classification tasks. However, BR neglects
the relationship among labels.

Second-order strategy introduces pairwise relations among multiple labels,
such as the ranking between the relevant and irrelevant labels [5]. Calibrated
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Label Ranking (CLR) [4] firstly transforms the multi-label learning problem into
label ranking problem by introducing the pairwise comparison. Recently, LLSF
[7] performs joint label-specific feature selection and take the label correlation
matrix as prior knowledge.

High-order strategy builds more complex relations among labels for multi-
label learning. Classifier Chain (CC) [15] transforms the multi-label classifica-
tion problem into a chain of binary classification problems, where the quality is
dependent on the label order in the chain. Ensemble Classifier Chains (ECC)
[16] constructs multiple CCs by using different random label orders. Multi-modal
Classifier Chains (MCC) [22] release the reliance of label order by combining pre-
dicted labels as a new modality. Multi-label k-nearest neighbour (MLkNN) [20]
builds a Bayesian model by using the k-nearest neighbour method to obtain
the prior and likelihood. In addition, there are also some high-order approaches
that exploit label correlations on the hypothesis space. For example, a boosting
approach Multi-label Hypothesis Reuse (MLHR) [8] is proposed to exploit label
correlations with a hypothesis reuse mechanism. Latent Semantic Aware Multi-
view Multi-label Learning (LSA-MML) [19] implicitly encodes the label corre-
lations by the common representation based on the uncovering latent seman-
tic bases and the relations among them. Considering the potential association
between paired labels, Dual-Set Multi-Label Learning (DSML) [10] exploits pair-
wise inter-set label relationships for assisting multi-label learning. Most of the
existing approaches take label correlations as prior knowledge, which may not
correctly characterize the real relationships among labels. And then, Collabo-
ration based Multi-Label Learning (CAMEL) [3] is proposed to learn the label
correlations via sparse reconstruction in the label space.

3 Methodology

This section mainly gives the detail description of Discriminative Multi-label
Model Reuse (DMLMR) algorithm after a preliminary notation explanation.

3.1 Preliminaries and Problem Formulation

Before describing the problem formulation, we begin with some notations and
preliminaries.

Let X = R
d denote the d dimensional feature space, and Y = {−1, 1}L

denote the label space with L labels.
Given the training dataset D = {(xi,yi)}N

i=1 with N instances, the task of
multi-label learning is to learn a mapping function H : X → Y, which maps
from feature space to label space. The i-th instance (xi,yi) contains a feature
vector xi = [x1, x2, . . . , xd] ∈ X and a label vector yi = [y1, y2, · · · , yL] ∈ Y,
where yk = 1 indicating xi is associated with the k-th label, yk = −1
otherwise. T = {(xi,yi)}M

i=1 denotes testing dataset. In addition, H(·) =
[H1(·),H2(·), . . . , HL(·)] can be used to predict labels for unseen instances in
T , where Hk(·) denotes the classifier of the k-th label.
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For simplicity, we denote X = [x1,x2, · · · ,xN ]T ∈ R
N×d as the instance

matrix, and Y = [y1,y2, · · · ,yN ]T ∈ R
N×L as the label matrix. The original

training dataset can be alternatively represented by D = {(X,Y )}.
With analysis in Sect. 1, the problem of diagnosing Parkinson’s disease can

be modeled as multi-label learning problem.
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Fig. 1. The overall flowchart of DMLMR algorithm. Cylinder shadowed with orange
denotes label distribution, while cylinder shadowed with blue denotes instance
distribution.

3.2 Discriminative Multi-label Model Reuse

In this subsection, we introduce Discriminative Multi-label Model Reuse
(DMLMR) algorithm in detail. The pseudo code of DMLMR is presented in
Algorithm 1.

At first, we train on the original dataset D with a base multi-label algorithm
(here we adopt CC algorithm) and get F (·) = [F 1(·), · · · , F k(·), · · · , FL(·)],
where F k(·) represents the original classifier for the k-th label. τ = [τ1, · · · , τT ]
denotes chain of selected labels, where T denotes number of boosting round.
DMLMR maintains one label distribution WLt = [WL1

t , · · · ,WLk
t , · · · ,WLL

t ],
where WLk

t is the weight of the k-th label at t-th boosting round. Initially, τ = ∅
and WLk

1 = 1
L , which means WL1 = [ 1L , · · · , 1

L ].
Figure 1 illustrates an overview of our proposed DMLMR algorithm. At t-th

boosting round, there are following 5 steps.

Label Sampling. We sample one label a according to the label distribution
WLt, where a ∈ {1, 2, · · · , L}. And then we update τ by concatenating τ and
a, i.e., τ = [τ , a].

Instance Distribution Adaptation. After getting one sampled label a, we
transform the original dataset D into two dataset Da = {(X,Ya)} and D−a =
{(X,Y−a)}.
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Algorithm 1. The DMLMR algorithm
Input:

D = {(X , Y )}: original training dataset
λintra: intra-set reweight parameter
λinter: inter-set reweight parameter
T : number of boosting round

Output:
H(·): classifiers of all labels
Initialize: τ = ∅, W L1 = [ 1

L
, · · · , 1

L
]

Train on D
for t = 1 : T do

Sample one label a according to W Lt

Update τ = [τ , a]
Compute W D1 and W D2 with Eq. 1
Sample D1 from D according to W D1

Sample D2 from D according to W D2

Train G1, G2 and G3 with bipartite model reuse
ft(·) = G3(·)
Update W Lt+1 with Eq. 6

end for
for k = 1 : L do

Compute Hk(·) with Eq. 7
end for
return H(·)

Here Ya and Y−a are label vectors associated with instance matrix X, which
is shown in Fig. 2. More specifically, Ya ∈ R

N denotes the a-th column vector
of the matrix Y (versus yi ∈ R

L for the i-th row vector of Y ), and Y−a =
[Y1, · · · ,Ya−1,Ya+1, · · · ,YL] ∈ R

N×(L−1) represents the matrix that excludes
the a-th column vector of the matrix Y .

And then we get Fa(·) and F−a(·), where Fa(·) = F a(·) denotes the original
classifier of Ya and F−a = [F 1(·), · · · , F a−1(·), F a+1(·), · · · , FL(·)] denotes the
original classifiers of Y−a, where Ya = {−1, 1} denotes label space of the a-th
label and Y−a = {−1, 1}L−1 denotes label space of all the labels exclude the
a-th label.

In order to exploit label correlations, we maintain two instance distributions
WD1 and WD2 adapted by Eq. 1, where WDi

1 and WDi
2 are the weight for

the i-th instance with respect to Ya and Y−a, respectively.

WDi
1 =

1
N

· λ
I(Fa(xi) �=yi,a)
intra · λ

I(F−a(xi) �=yi,−a)
inter

WDi
2 =

1
N

· λ
I(F−a(xi) �=yi,−a)
intra · λ

I(Fa(xi) �=yi,a)
inter

(1)

where I(·) denotes the indicator function which outputs 1 if · is true, 0 otherwise.
Additionally, yi,a denotes ground truth of a-th label associated with xi and
yi,−a denotes ground truth of all the labels excludes a-th label associated with
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Fig. 2. Illustration of label vector Ya and Y−a in Y . In the left part, matrix shadowed
with orange represents Ya. In the right part, matrix shadowed with orange repre-
sents Y−a.

xi. λintra is the intra-set reweight parameter and λinter is the inter-set reweight
parameter. Take WDi

1 as an example, item λ
I(Fa(xi) �=yi,a)
intra considers the mistake

made by label in Ya, i.e, a model that has made mistake will be emphasized by
assigning a higher weight. Item λ

I(F−a(xi) �=yi,−a)
inter considers inter-set relationship

between Ya and Y−a, i.e., the weight of an instance on Ya will be increased when
misclassified on Y−a. Meaning of items in WDi

2 is similar to that in WDi
1.

At the end of the training process, we normalize WD1 and WD2 to form a
valid distribution.

Instance Sampling. We decompose the original problem into two depen-
dent sub-problems.

And then we sample two datasets D1 = {(X1,Ya)} and D2 = {(X2,Y−a)}
i.i.d. according to instance distributions WD1 and WD2 respectively, where
X1 ∈ R

N×d, Ya ∈ R
N×1, X2 ∈ R

N×d, Y−a ∈ R
N×(L−1).

Bipartite Model Reuse We train on two datasets D1 and D2 with model
reuse and get 3 models G1, G2 and G3.

– Firstly, we train on the dataset D2 with basic multi-label learning algorithm
(here we adopt CC algorithm), and then we get model G1 : X → Y−a.

– Secondly, we reuse model G1 on D1 and get predicted label vector G1(xi).
And then, we concatenate feature vector with predicted label vector, i.e,
[xi,G1(xi)]. Training on dataset D1, we get model G2 : X + Y−a → Ya.

– Thirdly, we reuse model G2 on D2 and get predicted label vector G2(xi). And
then, we concatenate xi with predicted label vector, i.e, [xi,G2([xi,G1(xi)])].
Training on dataset D2, we get model G3 : X + Ya → Y−a.

It is notable that G2 reuses model G1, so G3 reuses two models G1 and
G2. Model trained on one dataset is reused on the other dataset, which provides
additional help for the final classification. Furthermore, we provide theoretical
analysis for bipartite model reuse. ha(·) = G2(·) and h−a(·) = G3(·) in the
following analysis.
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Definition 1. Generalization error of hypothesis h(·) mapping from X to Y
based on HammingLoss:

R(h) = E
(x,y)∼D

[ 1
L

L∑
k=1

I(h(x) �= yk)
]

(2)

where yk is the ground-truth of the k-th label.

Definition 2. Empirical error of hypothesis h(·):

R̂(h) =
1
m

m∑
i=1

( 1
L

L∑
k=1

I(h(x) �= yk)
)

(3)

Lemma 1. R(h) ≤ max{R(ha), R(h−a)}, where h(·) is composed of ha(·) and
h−a(·).

Proof.

R(h) = E
(x,y)∼D

[ 1
L

L∑
k=1

I(h(x) �= yk)
]

=
1
L

E
(x,y)∼D

[
I(ha(x) �= ya)

]

+
1
L

E
(x,y)∼D

[ L∑
k=1,k �=a

I(h−a(x) �= yk)
]

=
1
L

(
R(ha) + (L − 1)R(h−a)

)

≤ 1
Lmax{R(ha), R(h−a)}(1 + L − 1)}

= max{R(ha), R(h−a)}
��

Lemma 2. R(h−a) ≤ max{R(hk)}L
k=1,k �=a

Proof.

R(h−a) = E
(x,y)∼D

[ 1
L − 1

L∑
k=1,k �=a

I(hk(x) �= yk)
]

=
1

L − 1 E
(x,y)∼D

[ L∑
k=1,k �=a

I(hk(x) �= yk)
]

=
1

L − 1 E
(x,y)∼D

[ L∑
k=1,k �=a

R(hk)
]

≤ 1
L − 1

(L − 1)max{R(hk)}L
k=1,k �=a = R(hm)

��



732 Y. Zhang et al.

where h−a(·) = [h1(·), · · · , ha−1(·), ha+1(·), · · · , hL(·)], and for simplicity, we
denote max{R(hk)}L

k=1,k �=a as R(hm).

Theorem 31. In mono-label case, let H ⊂ R
X×Y be a hypothesis set. Fix ρ > 0.

Assume there exists r > 0 such that k(x,x) ≤ r2 for all x ∈ X . For any δ > 0,
with probability at least 1 − δ, the following holds for all h ∈ H. [12]

R(h) ≤ R̂ρ(h) + 2

√
r2 ∧2 /ρ2

m
+ 3

√
log(2/δ)

m
(4)

Combine Lemma 1, Lemma 2 and Theorem 31, we have:

Proof.

R(h) ≤ max{R(ha), R(h−a)

≤ max
{
R̂ρ(ha) + 2

√
r2 ∧2 /ρ2

m
+ 3

√
log(2/δ)

m
,

R̂ρ(hm) + 2

√
r2 ∧2 /ρ2

m
+ 3

√
log(2/δ)

m

}

≤ max{R̂ρ(ha), R̂ρ(hm)} + 2

√
r2 ∧2 /ρ2

m
+ 3

√
log(2/δ)

m

��

The convergence rate of generalization error is standard as O( 1√
m

), which
validates the effect of bipartite model reuse.

Label Distribution Adaptation. In order to select most discriminative label
for bipartite model reuse, we are supposed to adapt label distribution according
to the models trained by bipartite model reuse. We get prediction ft(·) = G3(·),
and ft(·) = [f1

t (·), · · · , fa−1
t (·), fa+1

t (·), · · · , fL
t (·)] where fk

t (·) denotes the clas-
sifier of the k-th label. And then we test on dataset T with ft(·) and F−a(·)
respectively. We get importance rate of the a-th label for other labels as follows:

αt =
SubAcc(ft)

SubAcc(F−a)
(5)

where SubsetAcct(ft) = 1
M

∑M
i=1 I

(
ft(xi) = yi,−a

)
and SubsetAcct(F−a) =

1
M

∑M
i=1 I

(
F−a(xi) = yi,−a

)
.

On the other hand, we will increase the weight of the a-th label if αt > 1, i.e,
the a-th label has a positive effect to other labels with bipartite model reuse. The
weight of other labels exclude the a-th label remain unchanged. And then we
adapt label distribution WLt+1 = [WL1

t+1, · · · ,WLk
t+1, · · · ,WLL

t+1] for next
boosting round.

WLk
t+1 = WLk

t · α
I(k=a)
t (6)

where I(·) is an indicator function and k = {1, · · · , L}. Similar to WD1 and
WD2, we then normalize WLt+1.
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Above all, Overall Model Reuse is adopted. As is shown in Fig. 1, we get
f1(·),f2(·), · · · ,fT (·) after T number of boosting round. Finally we integrate
all models together and get H(·) = [H1(·), · · · ,Hk(·), · · · ,HL(·)], where Hk(·)
denotes final classifier of the k-th label. In the testing phase, labels are predicted
for instance x according to:

Hk(x) = argmax
l

T∑
t=1,k �=τt

αt · I(fk
t (x) = l) (7)

where l ∈ {−1, 1}, k = {1, · · · , L}.

4 Experiments

In this section, we validate the effectiveness of our proposed DMLMR algorithm
on real-world dataset of Parkinson’s disease and various benchmark multi-label
datasets.

4.1 Dataset Description

Firstly, we manually collect real-world dataset of Parkinson’s disease in Tradi-
tional Chinese Medicine (TCM). Furthermore, we will briefly present the feature
and label generation procedure for Parkinson’s disease diagnosis.

Both Parkinson-P and Parkinson have 91 TCM scales as features. However,
Parkinson-P has 5 primary symptoms. Parkinson has 10 syndrome types: 5
primary syndrome types and 5 secondary syndrome types. More details with
regard to syndrome types can be found in Sect. 1.

It is notable that DMLMR is designed for diagnosing Parkinson’s disease, it
is also a general multi-label learning algorithm. For comprehensive performance
evaluation, we collect 4 benchmark multi-label datasets.

– ML2000 : is an image dataset from [20], including 2000 images from 5 cate-
gories.

– Scene: has 2407 images and 6 possible labels [1].
– Emotions: is a set of 593 songs with 6 clusters of music emotions [16].
– Genbase: consists of 662 proteins with known structure families that belong

in 27 labels [2].

Table 1 summarizes the detailed characteristics of all datasets, Given a multi-
label dataset D = {(X,Y )}, we use |D|, dim(D), L(D), LCard(D), LDen(D)
and F (D) to represent number of instances, feature dimension, number of pos-
sible labels, label cardinality, label density and feature type, respectively.

– LCard(D) = 1
N

∑N
i=1 |yi| measures the average number of labels per instance.

– LDen(D) = LCard(D)
L(D) normalizes LCard(D) by the number of possible labels.
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Table 1. Characteristics of datasets.

Dataset |D| dim(D) L(D) LCard(D) LDen(D) F(D)

Parkinson-P 401 91 5 1.262 0.126 Nominal

Parkinson 401 91 10 0.798 0.160 Nominal

ML2000 2000 2000 5 1.236 0.247 Numeric

Scene 2407 294 6 1.074 0.179 Numeric

Emotions 593 72 6 1.869 0.311 Numeric

Genbase 662 1185 27 1.252 0.046 Nominal

4.2 Evaluation Metrics

To have a fair comparison, we employ five widely-used evaluation metrics, includ-
ing: HammingLoss, SubsetAcc, MacroF1, MicroF1, ExampleF1 [21].

4.3 Comparing Algorithms

We compare our proposed DMLMR algorithm with six state-of-the-art multi-
label algorithms, listed as follows:

– BR [1]: first-order algorithm which transforms the multi-label learning task
into multiple binary classification tasks

– CC [15]: a novel chaining method that considers the relativity between labels
– ECC [15]: state-of-the-art supervised ensemble multi-label learning method
– MLKNN [20]: is a kNN style multi-label classification algorithm, and outper-

forms some existing algorithms
– LLSF [7]: second-order algorithm which exploits different feature sets for the

discrimination of different labels
– CAMEL [3]: a novel method to learn the label correlations via sparse recon-

struction in the label space.

4.4 Experimental Results

For all these algorithms, we report the best results of the optimal parameters in
terms of classification performance. 10-fold cross validation (CV) is performed
on each dataset. To better characterize the comparison, we take the mean metric
value as well as the standard deviation of each algorithm. Note that for all the
employed multi-label evaluation metrics, their values vary within the interval
[0,1]. The larger the value of them, the better the performance of the classifier
for all of these evaluation metrics except HammingLoss.

Experimental results of our proposed DMLMR and other comparing algo-
rithms on real-world dataset of Parkinson’s disease and four benchmark multi-
label datasets are listed in Table 2 and Table 3 respectively. From the results,
it is obvious that DMLMR algorithm can achieve best or at least comparable
performance on all datasets with different evaluation metrics, which reveals that
DMLMR algorithm is a high-competitive multi-label learning algorithm.
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Table 2. Performance comparison on Parkinson-P and Parkinson dataset. ↑ / ↓ indi-
cates that the larger/smaller the better of a criterion. The best results are in bold.

4.5 Influence of Parameters

More experiments are conducted on one real-world Parkinson-P dataset and one
benchmark multi-label Scene dataset to explore parameter sensitivity.

Inter-set Reweight Parameter. λinter is used for exploring the inter-set
relationship between Ya and Y−a. For Parkinson-P dataset, we fix λintra = 1.5,
T = 3, and then we set λinter between 1.0 and 1.5 with an interval of 0.1. For
Scene dataset, we fix λintra = 2, T = 3, and then we set λinter between 1.0 and
1.5 with an interval of 0.1.

As shown in Table 4, the performance of λinter > 1.0 is better than others
when λinter = 1.0 in most cases, which validates the effectiveness of exploit-
ing inter-set label relationship. In addition, we get optimal performance when
λinter = 1.7 on Parkinson-P dataset and λinter = 1.3 on Scene dataset.

Intra-set Reweight Parameter. λintra is used for exploring the intra-set
relationship on Ya (or Y−a). Based on the above discussion of inter-set reweight
parameter λinter, for Parkinson-P dataset, we fix λintra = 1.7, T = 3, and then
we set λinter between 1.0 and 3 with an interval of 0.5. For Scene dataset, we fix
λintra = 1.3, T = 3, and then we set λinter between 1.0 and 3 with an interval
of 0.5. In Table 5, we find that λintra = 1.25 or λintra = 1.5 for Parkinson-P
dataset may be a relatively proper setting, while λintra = 2.0 or λintra = 2.5 for
Scene dataset.

Boosting RoundT . We fix λinter = 1.7, λintra = 1.25 for Parkinson-P dataset
and fix λinter = 1.3, λintra = 2.0 for Scene dataset. With λinter and λintra fixed,
we get the optimal results when T = 8 on Parkinson-P dataset. Similarly, we
get the optimal results when T = 7 on Scene dataset.

For one thing, increasing number of boosting rounds will make classifier
overly complex and may lead to overfitting. We can see from Fig. 3(a) that when
boosting round T = 10, all evaluation metrics decline slightly, which accords
with our intuition since DMLMR is an approach with a boosting framework.
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Table 3. Performance comparison on four benchmark multi-label datasets. ↑ / ↓ indi-
cates that the larger/smaller the better of a criterion. The best results are in bold.

2 3 4 5 6 7 8 9 10
Boosting round

0.30

0.35

0.40

0.45

0.50

0.55

0.60

Macro F1
Micro F1
Example F1
Subset Accuracy

(a) Parkinson-P

1 2 3 4 5 6 7 8 9 10 11
Boosting round

0.70

0.71

0.72

0.73

0.74

0.75

0.76

0.77

0.78

0.79

0.80

0.81

Macro F1
Micro F1
Example F1
Subset Accuracy

(b) Scene

Fig. 3. Performance of changes made by the number of boosting rounds T on
Parkinson-P and Scene dataset, with λinter and λintra fixed.

For another, classifier should have low training error and a small number
of boosting rounds in order to achieve good performance. As is shown in Fig. 3,
with λinter and λintra fixed, the performance of DMLMR is unstable in the initial
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Table 4. Performance comparison on Parkinson-P and Scene dataset when λinter

increases with λintra and T fixed. ↑ / ↓ indicates that the larger/smaller the better of
a criterion. The best results are in bold.

Table 5. Performance comparison on Parkinson-P and Scene dataset when λintra

increases from 1.0 to 3.0 with λinter and T fixed. ↑ / ↓ indicates that the larger/smaller
the better of a criterion. The best results are in bold.

increasing phase of T . After that, DMLMR improves remarkably. Eventually, as
the number of boosting round T increases, all curves tend to be smoother, which
show convergence when T > 6 for Parkinson-P and T > 7 for Scene dataset.

5 Conclusion

Traditional Chinese Medicine (TCM) is a new way for diagnosing Parkinson’s
disease (PD). In this paper, we apply multi-label classification technology to
diagnose PD in TCM, where we treat TCM scales as features and treat syndrome
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types as multiple labels. Furthermore, we propose a novel Discriminative Multi-
label Model Reuse (DMLMR) algorithm to advance diagnosing PD in TCM.
DMLMR exploits label correlations by selecting discriminative label with label
distribution adaptation, and then trains with model reuse. An assessment on the
real-world dataset of PD shows that DMLMR obtains remarkable results in terms
of various evaluation metrics, and DMLMR validates its ability of diagnosing PD
in TCM. Extensive experiments on multi-label benchmark datasets show that
DMLMR outperforms the state-of-the-art counterparts. In the future, how to
extend to scenario with partial labels is a very interesting work.
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