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Abstract. Next Point-of-Interest (POI) recommendation, which aims
to recommend next POIs that the user will likely visit in the near future,
has become essential in Location-based Social Networks (LBSNs). Var-
ious Recurrent Neural Network (RNN) based sequential models have
been proposed for next POI recommendation and achieved state-of-the-
art performance, however RNN is difficult to parallelize which limits
its efficiency. Recently, Self-Attention Network (SAN), which is purely
based on the self-attention mechanism instead of recurrent modules,
improves both performance and efficiency in various sequential tasks.
However, none of the existing self-attention networks consider the spatio-
temporal intervals between neighbor check-ins, which are essential for
modeling user check-in behaviors in next POI recommendation. To this
end, in this paper, we propose a new Spatio-Temporal Self-Attention Net-
work (STSAN), which combines self-attention mechanisms with spatio-
temporal patterns of users’ check-in history. Specifically, time-specific
weight matrices and distance-specific weight matrices through a decay
function are used to model the spatio-temporal influence of POI pairs.
Moreover, we introduce a simple but effective way to dynamically mea-
sure the importances of spatial and temporal weights to capture users’
spatio-temporal preferences. Finally, we evaluate the proposed model
using two real-world LBSN datasets, and the experimental results show
that our model significantly outperforms the state-of-the-art approaches
for next POI recommendation.

Keywords: Self-Attention Network · Point-of-Interest · Recommender
system

1 Introduction

Nowadays, due to the popularity of Location-based Social Networks (LBSN),
such as Foursquare and Yelp, users can share their locations and experiences
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with friends. As a result, huge amounts of check-in data have been accumulated
with an increasing need of Point-of-Interest (POI) recommendation, which also
gains great research interest in recent years. Different from traditional recom-
mendation, spatio-temporal information (i.e., time intervals and geographical
distances) of users’ check-ins is critical in POI recommendation. However, inte-
grating spatio-temporal transitions into recommendation is a long-term chal-
lenge.

To model users’ sequential patterns, the Markov Chain based model is an
early approach for sequential recommendation. Factorizing Personalized Markov
Chain (FPMC) models users’ sequential information through factorizing user-
item matrix and utilizing item-item transitions for next basket recommendation
[14]. However, the Markov assumption is difficult to establish a more effective
relationship among factors. With the development of deep learning, Recurrent
Neural Network (RNN) has been successfully applied to capture the sequential
user behavior patterns, some examples are Long Short-Term Memory (LSTM)
[8] and Gated Recurrent Units (GRU) [4].

Some recent works have extended RNN to model the spatio-temporal infor-
mation, which capture the transition patterns of user check-ins, for POI recom-
mendation and demonstrate the effectiveness. Time-LSTM equips LSTM with
time gates, which are specially designed, to model time intervals [26]. ST-RNN
models local temporal and spatial contexts with time-specific transition matri-
ces for different time intervals and distance-specific transition matrices for differ-
ent geographical distances [13]. HST-LSTM combines spatio-temporal influences
into LSTM model naturally to mitigate the data sparsity in location predic-
tion problem [10]. Also by enhancing LSTM network, STGN introduced spatio-
temporal gates to capture spatio-temporal information between check-ins [24].
However, RNN-based models are difficult to preserve long-range dependencies.
Moreover, these methods need to compute step by step (i.e., computation of the
current time step should wait for the results of the last time step), which leads
to these models hard to parallelize.

Recently, a new sequential model Self-Attention Network (SAN) was pro-
posed, which is easy to parallelize and purely based on a self-attention mechanism
instead of recurrent modules [16]. It achieves state-of-the-art performance and
efficiency in various sequential tasks [17,22]. The essence of the self-attention net-
work is to capture long-term dependencies by calculating the weight of attention
between each pair of items in a sequence. Actually, a pure self-attention network
treats a sequence as a set, essentially without considering the order of the items
in a sequence. The order of the items in a sequence is extremely important for
sequential modeling tasks. To model the order information of the sequence, Tan
et al. [15] applied the positional embedding to encode the sequential position
information for semantic role labeling. Moreover, SASRec [9] applied position
embedding into the self-attention mechanism to consider the order of the items.
ATRank [25] divided items’ time into intervals whose length increases exponen-
tially, where each interval represents a time granularity. However, none of the
above self-attention networks take the spatio-temporal information into consid-
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eration. It is dramatically important to consider time intervals and geographical
distances between neighbor items for next POI recommendation. Hence, how to
integrate time intervals and geographical distances into the self-attention net-
work is a big challenge.

To this end, in this paper, we propose a new Spatio-Temporal Self-Attention
Network (STSAN) by incorporating spatio-temporal information between check-
ins into a self-attention block for next POI recommendation. Specifically, we map
the time and distance intervals between two check-ins to a weight between two
POIs by a decay function. In this way, POI i will get a high attention score
on POI j if their spatio-temporal intervals are relatively short, and vice versa.
Furthermore, in order to capture the dynamic spatio-temporal preferences of
different users, we combine the spatial and temporal weights adaptively and
incorporate them into the self-attention block. Experimental results show that
incorporating spatio-temporal information into the self-attention block can sig-
nificantly improve the performance of next POI recommendation.

To summarize, our contributions are listed as follows.

– We propose a novel framework, Spatio-Temporal Self-Attention Network
(STSAN), to model time and distance intervals through a decay function
and incorporate the weight values into a self-attention block for next POI
recommendation.

– We introduce a simple but effective way to adaptively measure the impor-
tance of spatial and temporal weight, which can capture the spatio-temporal
preferences of different users.

– We conduct extensive experiments on two representative real-world datasets,
i.e., Gowalla and Foursquare, to demonstrate the effectiveness of our proposed
model. The experimental results show that our proposed STSAN outperforms
state-of-the-art methods, especially RNN-based models.

2 Related Work

In this section, we give a brief review of POI recommendation and discuss related
work from two aspects, which are traditional POI recommendation and leverag-
ing neural networks for POI recommendation.

2.1 Traditional POI Recommendation

Matrix Factorization (MF) is a traditional method to learn users’ general taste,
which factorizes a user-item rating matrix into two lower dimensionality matri-
ces, each of which represents the latent factors of users or items [11]. Cheng
et al. [1] firstly fused MF with geographical and social influence by modeling
the probability of a user’s check-in as a Multi-center Gaussian Model for POI
recommendation. Yao et al. [20] extended the traditional MF-based approach
by exploiting a high-order tensor instead of a traditional user-item matrix to
model multi-dimensional contextual information. Another line of work focuses
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on Markov Chain based methods, which estimate an item-item transition matrix
and use it for predicting next item. For instance, FPMC fuses matrix factoriza-
tion and first-order Markov Chains to capture the long-term preference and
short term transitions respectively [14]. FPMC-LR employs FPMC to model the
personalized POI transitions and aims to recommend POIs for next hours by
merging consecutive check-ins in previous hours [2]. PRME, proposed by [5],
uses a metric embedding method to model the sequential patterns of POIs. He
et al. [6] further proposed a tensor-based latent model, which fuses the observed
successive check-in behavior with the latent behavior preference of each user to
address a personalized next POI recommendation problem.

2.2 Neural Networks for POI Recommendation

With the impressive achievement of deep learning methods in different domains
such as computer vision and natural language processing, there exist various
methods employing and extending deep neural networks for POI recommenda-
tion. Yang et al. [18] proposed a deep neural architecture named PACE, which
jointly learns the embeddings of users and POIs to predict both user preferences
and various context associated with users and POIs. Zhang et al. [23] presented
a unified framework named NEXT to learn user’s next movement intention and
incorporate meta-data information and temporal contexts for next POI recom-
mendation. Recurrent Neural Network (RNN) has been successfully employed
to capture users’ dynamic preferences from the sequence of check-ins. ST-RNN
[13], which employs time-specific and distance-specific transition matrices to
characterize dynamic time intervals and geographical distances respectively, was
first proposed to model the spatial and temporal contexts for the next location
prediction. Recently, HST-LSTM was proposed to mitigate the data sparsity
in the location prediction problem by combining the spatio-temporal influences
into the LSTM model [10]. A more recent work STGN equipped LSTM with
the new time and distance gates to model time and distance intervals between
neighbor check-ins and extract users’ long-term and short-term interests [24].
Though RNN-based methods are efficient in modeling sequential patterns, they
still suffer from several weaknesses, such as large time consuming, being hard to
parallelize and preserve long-range dependencies.

3 Our Approach

In this section, we first formalize the problem statement of next POI recommen-
dation and then present the architecture of our Spatio-Temporal Self-Attention
Network (STSAN) for next POI recommendation.

3.1 Problem Statement

In the setting of next POI recommendation, we denote a set of users as U ={
u1, u2, ..., u|U |

}
and a set of POIs as V =

{
v1, v2, ..., v|V |

}
, where |U | and |V |
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Fig. 1. The architecture of our proposed STSAN.

are the number of users and POIs respectively. For a user u ∈ U , we use Lu =
(vu

1 , vu
2 , ..., vu|L|) to denote a sequence of check-ins in chronological order. And

each check-in record vu
i is associated with its timestamp tui and its geographic

coordinates sui of a POI. The goal of next POI recommendation is to predict
possible top-k POIs that a user may visit at next time step, given the user
historical check-ins.

3.2 Spatio-Temporal Self-Attention Network

As we mentioned above, spatial and temporal information is essential in POI
recommendation. Thus, we propose a spatio-temporal self-attention network
(STSAN) to integrate time and distance intervals into a self-attention block
through a decay function. As shown in Fig. 1, STSAN consists of four compo-
nents, i.e., Embedding layer, Spatio-Temporal weight block, Self-attention block
and Prediction layer. Specifically, we first transform the sparse representation of
POIs (i.e., one-hot representation) into a unique latent vector. This latent vector
has a lower dimension and can capture precise semantic relationships between
POIs. For spatial and temporal context, we utilize a decay function to measure
the importance of time and distance intervals, forming a hybrid weight matrix.
Then a user’s sequential patterns are learned by a self-attention network, where
the hybrid weight matrix is integrated into. Finally, we predict the next POI
with a higher probability score.

Embedding Layer: As the length of user’s check-in sequence is not fixed, we
transform the training sequence Lu = (vu

1 , vu
2 , ..., vu|L|) into a sequence with a
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fixed length L̂u = (vu
1 , vu

2 , ..., vun), where n denotes the maximum length that our
model handles. If the sequence length is less than n, we employ zero-padding to
fill the left side of the sequence until the sequence length is n. If the sequence
length is larger than n, we just consider the most recent n check-ins. Thus we
can create a POI embedding matrix M ∈ R

|V |×d where d is the latent dimension.
Since the self-attention network ignores the positional information of previous
POIs in a check-in sequence, we inject a positional matrix P ∈ R

n×d into the
input sequence embedding. The input matrix can be defined as follows:

E =

⎡

⎢
⎢
⎣

Mv1 + P1

Mv2 + P2

...
Mvn

+ Pn

⎤

⎥
⎥
⎦ (1)

Spatio-Temporal Weight Block: In order to capture spatio-temporal infor-
mation between check-ins, given the temporal and spatial sequence associated
with the user’s check-ins (i.e., (tu1 , tu2 , ..., tun) and (su1 , su2 , ..., sun)), we can calculate
the temporal and spatial transition matrices Tu and Su as follows:

Tu
ij =

{
Δtuij , i � j

0, i < j
(2)

Su
ij =

{
Δduij , i � j

0, i < j
(3)

where Δtuij and Δduij are the time intervals and distance intervals between check-
in vu

i and check-in vu
j respectively. Since the smaller the spatio-temporal intervals

between two POIs, the more related the two POIs are. We use an interval-aware
decay function to convert the time and distance intervals into an appropriate
weight. Hence the temporal weight matrix T̂

u
and the spatial weight matrix Ŝ

u

can be calculated as follows:

T̂
u

ij =

{
g(Δtuij), i � j

0, i < j
(4)

Ŝ
u

ij =

{
g(Δduij), i � j

0, i < j
(5)

where g is the decay function, which is defined as g(x) = 1/log(e + x). Due to
the nature of sequences, the model should consider only the previous POIs when
predicting the current POI. Thus we employ the future blinding that ignores
the influence of future POIs. That is to say, if POI vj is behind POI vi in a
sequence, the attention score of vi on vj will be 0. What’s more, spatial and
temporal contexts are not always the same important for capturing the patterns
of check-in sequence. For instance, a user may decide to visit a museum near the
restaurant where he or she had dinner on the previous day. Although the time
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intervals of two check-ins are long (i.e., more than 24 h), the restaurant and the
museum are close geographically. Thus we utilize a learnable weight factor α that
the model can adjust adaptively while training to balance the influence of the
spatial and temporal contexts. The hybrid weight is the adaptive combination
of the temporal weight and the spatial weight, which is defined as follows:

H = α · T̂ + (1 − α) · Ŝ, (6)

where 0 < α < 1. Finally we convert it through a linear projection:

Ĥ = WH + b, (7)

where W ∈ R
n×n is a global learnable projection matrix, and b ∈ R

n×n is the
bias, which can capture the high-order spatio-temporal transition patterns of all
check-in sequences and make the model more flexible.

Self-Attention Block: We can obtain the embedding matrix E from the above
embedding layer as the input of self-attention block, given a check-in sequence
(v1, v2, ..., vn). In order to model the transition patterns of the sequence, we use
the self-attention network proposed by [16], which can capture the relationships
between POIs in the sequence. Firstly, the scaled dot-product attention is defined
as follows:

Attention(Q,K,V) = softmax(
QKT

√
d

)V, (8)

where Q,K,V represent query, key, and value respectively, d denotes the latent
dimension of each POI. In the self-attention block, the query, the key and the
value are equal to E. We also convert them to three matrices through a linear
projection and feed them into an attention layer:

WSA = softmax(
EWQ(EWK)T√

d
), (9)

F = STSA(E) = ĤWSA(EWV ), (10)

where WQ,WK ,WV ∈ R
d×d are the projection matrices and Ĥ is the hybrid

weight matrix obtained from the spatio-temporal weight block. We argue that
layer normalization is beneficial for stabilizing and accelerating at the training
process [12], which is defined as follows:

LayerNorm(x) = α̃ � x − μ√
σ2 + ε

+ β̃, (11)

where x is an input vector with all features of a sample, � is an element-wise
product (i.e., the Hadamard product), σ and μ are the variance and the mean of
x respectively, α̃ and β̃ are learned scaling factors and bias terms. Since existing
methods have demonstrated that the last visited POI plays an important role
on predicting next POI [7,14], we also utilize a residual connection to propagate
the last POI’s embedding to the final layer.

F̂ = E + LayerNorm(F), (12)
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In order to learn more complex transitions between POIs, we apply a two-layer
fully-connected layer with the ReLU activation function.

O = ReLU(F̂W1 + b1)W2 + b2, (13)

where W1,b1,W2,b2 are model parameters.

Prediction Layer: After the self-attention block, we predict the next POI based
on Ot, given the first t POIs. We calculate the user’s preference for POIs through
a dot product operation as follows:

rvi,t = OtMT
vi

, (14)

where rvi,t is the relevance of POI vi being the next POI given the first t POIs.
A high score rvi

means a high relevance. Ot denotes the t-th line of O, and
M ∈ R

|V |×d is a POI embedding matrix. Note that the model inputs a sequence
(v1, v2, ..., vn) and its excepted output is a ‘shifted’ version of the same sequence
(v2, v3, ..., vn+1). After training process, we can generate next POI recommen-
dations by the last row of matrix O.

3.3 Network Training

During the training process, we apply the binary cross-entropy loss as the opti-
mization objective function of our model as follows:

−
∑

vi∈Lu

∑

t∈[1,2,...,n]

[log(σ(rvi,t)) +
∑

vj /∈Lu

log(1 − σ(rvj ,t))], (15)

In each training epoch, for each target POI vi in each sequence, we randomly
sample a negative POI vj . And we use Adam to optimize the parameters in our
model, which is a variant of gradient descent and can adapt the learning rate
for each parameter by performing a little update for frequent parameters and
heavily update for infrequent parameters.

3.4 Complexity Analysis

Space Complexity: Compared with SASRec [9], whose total number of param-
eters is O(|V |d + nd + d2) from the embedding layer, self-attention layers, feed-
forward networks and layer normalization, our proposed model needs to consider
the time and the distance intervals of all POI pairs in a user’s check-in sequence.
Thus the space complexity of our model inevitably grows but is acceptable, which
is O(|U |n + |V |d + nd + d2).

Time Complexity: The time complexity of our model consists mostly of
the spatio-temporal weight block and the self-attention block. Hence it is
O(|U |n2 + nepochn2d), where nepoch is the number of epochs at the training
process. If the total number of users |U | is equal to nepochd, our model will be
about twice slower than the original self-attention network. Although the time
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Table 1. Statistics of the datasets after preprocessing

Dataset #User #POI #Check-in Density

Gowalla 51089 106735 3136810 0.058%

Foursquare 3376 11860 584028 1.459%

complexity of our model increases to some extent for the computation of spatial
and temporal transition matrices, the parallelism nature of the self-attention
network has not been destroyed. Thus our model is also much faster than those
RNN-based methods, whose computation on time step t should wait for the
results of time step t − 1.

4 Experiments

In this section, we first describe datasets, evaluation metrics and baseline meth-
ods used in our experiments. Then we evaluate the performance of STSAN com-
pared with the state-of-the-art baseline methods and analyze our experimental
results.

4.1 Datasets

We conducted experiments on two public available LBSNs datasets (i.e.,
Gowalla1 and Foursquare2), which have user-POI interactions, timestamps of
check-ins and locations of POIs. Gowalla is a location-based social networking
website where users share their locations by checking-in and the dataset was
generated worldwide from February 2009 to October 2010 [3]. Foursquare con-
tains check-ins in New York and Tokyo collected from April 2012 to February
2013 [19]. Each check-in of the two datasets is associated with its timestamp
and geographic coordinates. For both datasets, we remove users with fewer than
10 check-ins and POIs visited by fewer than 10 users. The statistics of the two
datasets are summarized in Table 1. We sort each user’s check-ins according to
the chronological order and take the early 70% of users’ check-ins as the training
data, the last 30% as the testing data.

4.2 Evaluation Metrics and Implementation Details

To evaluate the recommendation performance of STSAN and the baseline meth-
ods, we adopt two widely used evaluation metrics, i.e., Recall and Normalized
Discounted Cumulative Gain (NDCG). Recall measures the accuracy of the rec-
ommendation. For an instance in the testing set, Recall@K is 1 if the visited
POI appears in the set of top-K recommended POIs, and 0 otherwise. NDCG

1 http://snap.stanford.edu/data/loc-gowalla.html.
2 https://sites.google.com/site/yangdingqi/home/foursquare-dataset.

http://snap.stanford.edu/data/loc-gowalla.html
https://sites.google.com/site/yangdingqi/home/foursquare-dataset


418 J. Ni et al.

is a position-aware metric, which assigns larger weights on higher positions. In
this paper, we choose K = {5, 10} to illustrate different results of Recall@K and
NDCG@K. In the default version of STSAN, we set the embedding size d to 100
on Gowalla and 50 on Foursquare. The maximum sequence length n is set to
50 on both datasets. Following [9], we implement our experiments in Tensorflow
and apply the mini-batch Adam optimizer to optimize the parameters in our
model. We set the learning rate to 0.001 initially. The number of epochs is set
to 200, the batch size is 128 and we apply only one self-attention block.

4.3 Baselines

We compare our proposed model STSAN with the following representative meth-
ods, which are briefly described as follows.

– RNN: This is a traditional recurrent architecture, which only considers the
sequence of POIs in its hidden unit while ignoring additional contextual infor-
mation [21].

– ST-RNN: It replaces the single transition matrix in RNN to model spatio-
temporal contexts by including time-specific and distance-specific transition
matrices during model learning [13].

– HST-LSTM: It combines spatio-temporal influences into a LSTM model
naturally to mitigate the data sparsity in the location prediction problem
[10].

– STGN: Enhancing LSTM network, STGN introduces the spatio-temporal
gates to capture the spatio-temporal relationships between successive check-
ins [24]. We use its variation named STGCN, which uses couple input and
forget gates.

– SASRec: This is a strong sequential model, which applies self-attention
mechanisms to capture long-term sequential semantics [9].

– T-SAN: This is a variant of our proposed model with only temporal context.
– S-SAN: This is a variant of our proposed model with only spatial context.
– STSAN: This is our proposed model.

4.4 Performance Comparison

In this subsection, we analyze the performance of the proposed STSAN, com-
paring with eight baselines on two datasets. Our experimental results in terms of
Recall@K and NDCG@K are shown in Table 2. From the table we can see the fol-
lowing observations: Compared with the standard RNN, ST-RNN, HST-LSTM,
and STGN perform better on the two datasets. This confirms that incorporating
time and distance information into the standard RNN architecture is critical for
improving the POI recommendation performance. SASRec achieves a better per-
formance, comparing with RNN-based methods. This confirms the advantages
of self-attention mechanisms to model sequential patterns. Although ST-RNN,
HST-LSTM and STGN take the spatio-temporal information into consideration,
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Table 2. Experimental results of STSAN and baselines. The best performing method
in each row is boldfaced.

Dataset Method Topk= 5 Topk= 10

Recall NDCG Recall NDCG

Gowalla RNN 0.0893 0.0674 0.1136 0.0756

ST-RNN 0.0967 0.0706 0.1229 0.0792

HST-LSTM 0.1128 0.0816 0.1433 0.0905

STGN 0.1348 0.1020 0.1714 0.1139

SAN 0.2093 0.1440 0.2812 0.1672

T-SAN 0.2660 0.1896 0.3418 0.2140

S-SAN 0.2369 0.1699 0.3092 0.1934

STSAN 0.3113 0.2287 0.3699 0.2478

Foursquare RNN 0.1206 0.0809 0.1799 0.0999

ST-RNN 0.1306 0.1087 0.1867 0.1197

HST-LSTM 0.2067 0.1546 0.2662 0.1738

STGN 0.2366 0.1736 0.3018 0.1920

SAN 0.3966 0.2746 0.5140 0.3126

T-SAN 0.4177 0.2922 0.5286 0.3282

S-SAN 0.4046 0.2871 0.5149 0.3229

STSAN 0.4243 0.3033 0.5221 0.3350

they perform worse than SASRec, which may be due to the weakness of RNN
architectures. Finally, our proposed model STSAN achieves the best recommen-
dation performance regardless of the datasets and the evaluation metrics. This
proves that STSAN can better capture long-term and short-term preferences
like SASRec. Although SASRec has also achieved a better result than RNN-
based methods, it cannot incorporate the time and the distance intervals, which
are essential for POI recommendation. Our proposed STSAN outperforms SAS-
Rec as the time and the distance intervals can be correctly combined into the
self-attention block.

4.5 Discussions

In this subsection, we explore the effectiveness of spatio-temporal components
in our architecture via an ablation study and investigate the influence of hyper-
parameters.

Effectiveness of Spatio-Temporal Context: In order to explore the effec-
tiveness of spatial and temporal context, we illustrate the performance of SAS-
Rec, T-SAN, S-SAN and STSAN in Table 2. SASRec applies the original self-
attention block following [9]. Both T-SAN and S-SAN are variants of our pro-
posed model with only temporal context or spatial context respectively. For T-
SAN, we replace the hybrid weight matrix H as the temporal transition matrix
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Fig. 2. Performance with different embedding sizes and number of self-attention block.

T̂ calculated by Eq. (2). For S-SAN, the hybrid weight matrix H is replaced
by the spatial transition matrix Ŝ calculated by Eq. (3). As we can see from
the experimental results, both T-SAN and S-SAN outperform SASRec. This
suggests that incorporating the temporal weight and the spatial weight into
self-attention block yields a significant improvement in POI recommendation.
Moreover, STSAN combines spatial and temporal context through dynamically
learning to give the proper weight to spatial and temporal transition matrices.
Thus, it achieves the best performance among these methods. This means that
time and distance intervals are both critical for improving the recommendation
performances.

Influence of Hyper-parameters: Figure 2(a) shows the performance of four
self-attention based models with different embedding sizes on Foursquare. As we
can see from our experimental results, high dimensions can capture more charac-
teristic information of POIs. On the other hand, the performance of four models
is almost unchanged when the embedding size exceeds 50. This demonstrates
that the model with a larger dimension cannot capture more useful patterns
of POIs. The original self-attention mechanism (Transformer) proposed by [16]
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Fig. 3. Visualization of the spatio-temporal weight at random sampled sequences of
user A on Foursquare.

Fig. 4. Visualization of the spatio-temporal weight at random sampled sequences of
user B on Foursquare.

stacks several self-attention blocks to capture complicated sequential patterns.
We conduct the experiments of our model with varying the number of self-
attention blocks on Foursquare. Figure 2(b) shows that a larger number of self-
attention blocks cannot significantly improve the recommendation performance.
This may be because the hierarchical self-attention structure may increase the
number of model parameters and the model may suffer over-fitting.

4.6 Visualization of Attention Weight

As we mentioned above, different users may have different spatio-temporal inter-
ests. In this subsection, we seek to reveal the different influence of time and dis-
tance intervals on the check-in sequences of different users through the visual-
ization of three weight matrices (i.e., the temporal weight matrix T̂, the spatial
weight matrix Ŝ and the hybrid weight matrix H). We randomly choose two
check-in sequences among all users and convert these three weight matrices of
each sequence into heat maps as shown in Fig. 3 and 4, which only shows the
last 20 positions of each sequence. From the visualizations, we can conclude as
follows.

Firstly, the heat map of the temporal weight indicates that more recent POIs
will obtain more attention (a higher weight) due to the decay function. In reality,
two POIs that a user visited in a short time tend to have similar characteristics.
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Similarly, two POIs with short distance intervals are related to each other, which
can be depicted from the heat map of the spatial weight. The heat map of the
hybrid weight is a fusion of the two heat maps above.

Secondly, as we can see from Fig. 3(c) and Fig. 4(c), the heat map of the
hybrid weight of user A is more similar to the heat map of the temporal weight.
This indicates that user A tends to be more time focused. On the contrary, the
heat map of the hybrid weight of user B is more similar to the spatial weight.
This demonstrates that user B may prefer to walk out so that closer POIs can
obtain more attention.

Overall, the visualizations of the spatio-temporal weight show the effective-
ness of our proposed model in dynamically capturing users’ spatial and temporal
preferences.

5 Conclusion

In this paper, we proposed a spatio-temporal self-attention based model named
STSAN for next POI recommendation. We incorporated the time and distance
intervals between check-ins in a sequence to enhance the recommendation perfor-
mance of standard self-attention networks. Specifically, we designed a decay func-
tion to obtain the weight of spatio-temporal intervals. Furthermore, we combined
the spatial and the temporal weight dynamically to capture the spatio-temporal
interests of the user through an adaptive factor. Extensive experimental results
on two real-world datasets showed that STSAN outperforms the state-of-the-art
methods. This demonstrates the effectiveness of our STSAN in modeling the
spatio-temporal information into the self-attention network. In the future, we
will consider richer context information, such as social relationships and textual
contents to further improve the performance for next POI recommendation.
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