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Abstract. Existing recommendation algorithms suffer from cold-start
issues as it is challenging to learn accurate representations of cold-start
users and items. In this paper, we formulate learning the representations
of cold-start users and items as a few-shot learning task, and address it
by training a representation function to predict the target user (item)
embeddings based on limited training instances. Specifically, we pro-
pose a novel attention-based encoder serving as the neural function, with
which the K training instances of a user (item) are viewed as the interac-
tive context information to be further encoded and aggregated. Experi-
ments show that our proposed method significantly outperforms existing
baselines in predicting the representations of the cold-start users and
items, and improves several downstream tasks where the embeddings of
users and items are used.

Keywords: Cold-start representation learning · Few-shot learning ·
Attention-based encoder

1 Introduction

Existing recommendation systems (RS) such as Matrix Factorization [14] and
Neural Collaborative Filtering [11] are facing serious challenges when making
cold-start recommendations, i.e., when dealing with a new user or item with
few interactions for which the representation of the user or the item can not be
learned well.

To deal with such cold-start challenges, some researches are conducted which
can be roughly classified into two categories. The first category incorporates
side information such as knowledge graph (KG) to alleviate the cold-start
issues [3,25,26,28]. Specifically, these methods first pre-process a KG by some
knowledge graph embedding methods such as TransE [1], TransH [27] and so on,
and then use the entities’ embeddings from KG to enhance the corresponding
items’ representations. For instance, Zhang et al. [28] learn item representations
by combining their embeddings in the user-item graph and the KG. Cao et al. [3]
and Wang et al. [25] jointly optimize the recommendation and KG embedding
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tasks in a multi-task learning setting via sharing item representations. However,
existing KGs are far from complete and it is not easy to link some items to the
existing entities in KG due to the missing entities in KG or the ambiguous issues.

The second category uses meta learning [2] to solve the cold-start issues.
The goal of meta learning is to design a meta-learner that can efficiently learn
the meta information and can rapidly adapt to new instances. For example,
Vartak et al. [21] propose to learn a neural network to solve the user cold-start
problem in the Tweet recommendation. Specifically, the neural network takes
items from user’s history and outputs a score function to apply to new items.
Du et al. [4] propose a scenario-specific meta learner framework, which first trains
a basic recommender, and then tunes the recommendation system according to
different scenarios. Pan et al. [16] propose to learn an embedding generator for
new ads by making use of previously learned ads’ features (e.g., the attributes
of ads, the user profiles and the contextual information) through gradient-based
meta-learning.

All these KG-based and meta learning based methods aim to directly learn
a powerful recommendation model. Different from these methods, in this paper,
we focus on how to learn the representations of the cold-start users and items.
We argue that the high-quality representations can not only improve the recom-
mendation task, but also benefit several classification tasks such as user profiling
classification, item classification and so on (which is justified in our experiments).
Motivated by the recently proposed inductive learning technique [7,23], which
learns node representations by performing an aggregator function over each node
and its fixed-size neighbours, in this paper, we aim to learn the high-quality
representations of the cold-start users and items in an inductive manner. Specif-
ically, we view the items that a target user interacts with as his/her contextual
information and view the users that a target item interacts with as its contex-
tual information. We then propose an attention-based context encoder (AE),
which adopts either soft-attention or multi-head self-attention to integrate the
contextual information to estimate the target user (item) embeddings.

In order to obtain a AE model to effectively predict the cold-start user and
item embeddings from just a few interactions, we formulate the cold-start repre-
sentation learning as a few-shot learning task. In each episode, we suppose a user
(item) which has enough interactions with items (users) as the target object to
predict. Then AE is asked to predict this target object using only K contextual
information, i.e., for each target user, AE is asked to use K interacted items to
predict his/her representation, while for each target item, AE is asked to use
K interacted users to predict the representation of the target item. This train-
ing scheme can simulate the real scenarios where there are cold-start users or
cold-start items which only have a few interactions.

We conduct several experiments based on both intrinsic and extrinsic embed-
ding evaluation. The intrinsic experiment is to evaluate the quality of the learned
embeddings of the cold-start users and items, while the extrinsic experiments are
three downstream tasks that the learned embeddings are used as inputs. Experi-
ments results show that our proposed AE can not only outperform the baselines
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in the intrinsic evaluation task, but also benefit several extrinsic evaluation tasks
such as personalized recommendation, user classification and item classification.

Our contributions can be summarized as: (1) we formulate the cold-start rep-
resentation learning task as a K-shot learning problem and propose a simulated
episode-based training schema to predict the target user or item embeddings. (2)
We propose an attention-based context encoder which can encode the contex-
tual information of each user or each item. (3) Experiments on both intrinsic and
extrinsic embedding evaluation tasks demonstrate that our proposed method is
capable of learning the representations of cold-start users and items, and can
benefit the downstream tasks compared with the state-of-the-art baselines.

2 Approach

In this section, we first formalize learning the representations of cold-start users
and cold-start items as two separated few-shot learning tasks. We then present
our proposed attention-based encoder (AE) in solving both these two tasks.

2.1 Few-Shot Learning Framework

Problem Formulation. Let U = {u1, · · · , u|U |} be a set of users and I =
{i1, · · · , i|I|} be a set of items. Iu denotes the item set that the user u has
selected. Ui denotes the user set in which each user u ∈ Ui selects the item i.
Let M be the whole dataset that consists of all the (u, i) pairs.

Problem 1: Cold-Start User Embedding Inference. Let D
(u)
T =

{(uk, ik)|Tu|
k=1} be a meta-training set, where ik ∈ Iuk

, |Tu| denotes the number
of users in D

(u)
T . Given D

(u)
T and a recommendation algorithm1(e.g., Matrix fac-

torization) that yields a pre-trained embedding for each user and item, denoted
as eu ∈ Rd and ei ∈ Rd. Our goal is to infer embeddings for cold-start users
that are not observed in the meta-training set D

(u)
T based on a new meta-test

set D
(u)
N = {(u′

k, i′k)|Nu|
k=1 }, where i′k ∈ Iu′

k
, |Nu| denotes the number of users in

the meta-test set D
(u)
N .

Problem 2: Cold-Start Item Embedding Inference. Let D
(i)
T =

{(ik, uk)|T i|
k=1} be a meta-training set, where uk ∈ Uik , |T i| denotes the num-

ber of items in D
(i)
T . Given D

(i)
T and a recommendation algorithm that yields a

pre-trained embedding for each user and item, denoted as eu ∈ Rd and ei ∈ Rd.
Our goal is to infer embeddings for cold-start items that are not observed in the
meta-training set D

(i)
T based on a new meta-test set D

(i)
N = {(i′k, u′

k)|Ni|
k=1}, where

u′
k ∈ Ui′

k
, |N i| denotes the number of items in D

(i)
N .

1 We also select some node embedding methods (e.g., DeepWalk [17], LINE [20]) which
accept user-item bipartite graph as input and output a pre-trained embedding for
each user and item.
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Note that these two tasks are symmetrical and the difference between these
two tasks is that the roles of users and items are swapped. For simplicity, we
present the cold-start user embedding inference scenario, and the cold-start item
embedding inference scenario is similar to the cold-start user embedding infer-
ence scenario if we simply change the role of the users and items. In the following
parts, we omit the subscript and simply use DT and DN to denote the meta-
training set and meta-test set in both two tasks.

For the cold-start user embedding inference task, DN is usually much smaller
than DT , and the cold-start users in DN only have selected a few items, i.e.,
there are few (u′

k, i′k) pairs in DN . Thus it is difficult to directly learn the user
embedding from DN . Our solution is to learn a neural model fθ parameterized
with θ on DT . The function fθ takes the item set Iu of user u as input, and
outputs the predictive user embedding êu. The predictive user embedding is
expected to be close to its target embedding. Note that the user in DT has
enough interactions, thus the pre-trained embedding eu is convincing and we
view it as the target embedding.

In order to mimic the real scenarios that the cold-start users only have inter-
acted with few items, we formalize the training of the neural model as a few-shot
learning framework, where the model is asked to predict cold-start user embed-
ding with just a few interacted items. To train the neural function fθ, inspired
by [24], we form episodes of few-shot learning tasks. In the cold-start user infer-
ence task, in each episode, for each user uj , we randomly sample K items from
Iuj

and construct a positive support set SK
u+
j

= {iu+
j ,k}K

k=1, where iu+
j ,k is sam-

pled from Iuj
and denotes the k-th sampled item for the target user uj . We

also randomly sample K negative items and construct a negative support set
SK

u−
j

= {iu−
j ,k}K

k=1, where each item iu−
j ,k is not in Iuj

. Based on the sampled
items, the model fθ is expected to predict more similar embedding to the tar-
get user embedding when given SK

u+
j

and more dissimilar embedding when given

SK
u−
j
. We use cosine similarity to indicate whether the predicted embedding is

similar to the target embedding. To further optimize the neural model fθ, we
minimize the regularized log loss defined as follows [10]:

L = − 1
|Tu|

|Tu|∑

j=1

(log(σ(ŷu+
j
)) + log(1 − σ(ŷu−

j
))) + λ||θ||2, (1)

where ŷu+
j

= cos(fθ(SK
u+
j
), uj), ŷu−

j
= cos(fθ(SK

u−
j
), uj), θ denotes the parameters

of the proposed model fθ, σ is a sigmoid function, the hyper-parameter λ controls
the strength of L2 regularization to prevent overfitting. Once the model fθ is
trained based on DT , it can be used to predict the embedding of each cold-
start user u′ in DN by taking the item set I ′

u as input. Similarly, we can also
design another neural model gφ to learn the representations of cold-start items.
Specifically, gφ can be trained on DT , and can be used to predict the embedding
of each cold-start item i′ in DN by taking the user set U ′

i as input.



Few-Shot Representation Learning for Cold-Start Users and Items 367

Fig. 1. The proposed attention-based encoder fθ framework. gφ is similar to fθ if we
simply swap the role of the users and items.

2.2 Attention-Based Representation Encoder

In this section, we detail the architecture of the proposed neural model fθ (gφ

is similar if we simply swap the role of the users and items). For the cold-start
user embedding inference task, the key idea is to view the items that a user
has selected as his/her contextual information, and we expect fθ to be able to
analyze the semantics of the contextual information, to aggregate these items
for predicting the target user embedding. Using AE as fθ, a more sophisticated
model to process and aggregate contextual information can be learned to infer
target user embedding.

Embedding Layer. As mentioned before, we first train a recommendation
(node embedding) algorithm on the whole dataset M to obtain the pre-trained
embeddings eu and ei. Note that we view ei as contextual information, and eu in
DT as target user embedding. Both eu and ei are fixed. Given each target user
uj and the support set SK

uj
= {SK

u+
j

∪ SK
u−
j
}, we map the support set SK

uj
to the

input matrix xK×d = [ei1 , · · · , eiK ] using the pre-trained embeddings, where K
is the number of interacted items, d is the dimension of pre-trained embeddings.
The input matrix is further fed into the aggregation encoder.

Aggregation Encoder. We present two types of aggregation encoder, namely
soft-attention encoder and self-attention encoder.

(1) Soft-attention Encoder. Inspired by [10] that uses soft-attention mecha-
nism to distinguish which historical items in a user profile are more important
to a target user, in this paper, we first calculate the attention score between the
target user embedding euj

and each item embedding eik that he/she has selected,
then we use weighted average items’ embeddings to represent the predicted user
embedding êuj

:
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aujik =
exp(r(euj

, eik))
∑K

k′=1 exp(r(euj
, eik′ ))

, (2)

r(euj
, eik) = WT

1 RELU(W2(euj
� eik)), (3)

êuj
=

1
K

K∑

k=1

aujikeik , (4)

where r is soft-attention neural function that has the element-wise operation �
between the two vectors euj

and eik , W1 ∈ Rd×1, W2 ∈ Rd×d are two weight
matrices, RELU is an activate function, K is the number of interacted items.

(2) Self-attention Encoder. Same as [22], our self-attention encoder consists
of several encoding blocks. Each encoding block consists of a self-attention layer
and a fully connected layer. Using such encoding blocks can enrich the interac-
tions of the input items to better predict the target user embedding.

Self-attention layer consists of several multi-head attention units. For each
head unit h, we view the input matrix x into query, key and value matrices.
Then linear projections are performed to map the query, key, value matrices to
a common space by three parameters matrices WQ

h , WK
h , WV

h . Next we calcu-
late the matrix product xWQ

h (xWK
h )T and scale it by the square root of the

dimension of the input matrix 1√
dx

to get mutual attention matrix. We further
multiply the attention matrix by the value matrix xWV

h to get the self attention
vector aself,h for head h:

aself,h = softmax(
xWQ

h (xWK
h )T

1√
dx

)xWV
h . (5)

We concatenate all the self attention vectors {aself,h}H
h=1 and use a linear

projection WO to get the self-attention output vector SA(x), where H is the
number of heads. Note that SA(x) can represent fruitful relationships of the
input matrix x, which has more powerful representations:

SA(x) = Concat(aself,1, · · · , aself,H)WO. (6)

A fully connected feed-forward network (FFN) is performed to accept SA(x)
as input and applies a non-linear transformation to each position of the input
matrix x. In order to get higher convergence and better generalization, we apply
residual connection [9] and layer normalization [13] in both self-attention layer
and fully connected layer. Besides, we do not incorporate any position informa-
tion as the items in the support set SK

uj
have no sequential dependency. After

averaging the encoded embeddings in the final FFN layer, we can obtain the
predicted user embedding êuj

.
Given the target user embedding euj

and the predicted user embedding êuj
,

the regularized log loss are performed to train AE (Eq. 1). For the self-attention
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model, the parameters θ = [{(WQ
h ,WK

h ,WV
h )}H

h=1, {(wl, bl)}H
l=1,W

O], where wl,
bl are the weights matrix and bias in the l-th FFN layer, for the soft-attention
model, the parameters θ = [W1,W2]. Figure 1 illustrates the proposed model fθ.

3 Experiment

In this section, we present two types of experiments to evaluate the quality of
embeddings resulted by the proposed AE model. One is an intrinsic evaluation
which involves two tasks: cold-start user inference task and cold-start item infer-
ence task. The other one is an extrinsic evaluation on three downstream tasks: (1)
Personalized recommendation, (2) Item classification and (3) User classification.

Table 1. Statistics of the datasets.

Dataset #Users #Items #Interactions #Sparse Ratio

MovieLens-1M 6,040 3,706 1,000,209 4.47%

Pinterest 55,187 9,916 1,500,809 0.27%

3.1 Settings

We select two public datasets, namely MovieLens-1M2 [8] and Pinterest3 [6].
Table 1 illustrates the statistics of the two datasets. For simplicity, we detail the
settings of training fθ (the settings of training gφ is similar if we simply swap
the roles of users and items). For each dataset, we first train the baseline on the
whole dataset M to get the pre-trained user embedding eu and item embedding
ei. We then split the dataset into meta-training set DT and meta-test set DN

according to the number of interactions for each user. In MovieLens-1M, the
users in DT interact with more than 40 items, and this splitting setting results
4689 users in DT and 1351 users in DN . In Pinterest, the users in DT interact
with more than 30 items, and this results 13397 users in DT and 41790 users
in DN

4. We use DT to train fθ, and use DN to do downstream tasks. The
pre-trained eu in DT is viewed as target user embedding and ei is viewed as
contextual information.

2 https://grouplens.org/datasets/movielens/.
3 https://www.pinterest.com/.
4 When training gφ, in MovieLens-1M, the items in DT interact with more than 30

users, and this results 2819 items in DT and 887 items in DN . In Pinterest, the items
in DT interact with more than 30 users, and this results 8544 items in DT and 1372
items in DN .

https://grouplens.org/datasets/movielens/
https://www.pinterest.com/


370 B. Hao et al.

Table 2. Performance on cold-start user and item embedding evaluation. We use
averaged cosine similarity as the evaluation metric.

Methods MovieLens (user) Pinterest (user) MovieLens (item) Pinterest (item)

3-shot 8-shot 3-shot 8-shot 3-shot 8-shot 3-shot 8-shot

LINE 0.623 0.709 0.499 0.599 0.423 0.593 0.516 0.578

AEw-LINE 0.680 0.749 0.502 0.644 0.460 0.602 0.534 0.585

AEo-LINE 0.926 0.962 0.926 0.928 0.726 0.802 0.726 0.804

AEe-LINE 0.964 0.990 0.984 0.987 0.797 0.849 0.783 0.845

DW 0.413 0.535 0.504 0.596 0.489 0.528 0.526 0.563

AEw-DW 0.445 0.568 0.518 0.630 0.496 0.521 0.564 0.596

AEo-DW 0.828 0.835 0.847 0.892 0.603 0.784 0.664 0.736

AEe-DW 0.866 0.887 0.950 0.988 0.767 0.834 0.739 0.820

MF 0.399 0.503 0.444 0.524 0.579 0.729 0.503 0.569

AEw-MF 0.424 0.512 0.492 0.556 0.592 0.743 0.524 0.589

AEo-MF 0.836 0.945 0.646 0.813 0.713 0.809 0.698 0.823

AEe-MF 0.949 0.971 0.799 0.857 0.849 0.932 0.837 0.908

FM 0.542 0.528 0.539 0.564 0.535 0.543 0.474 0.495

AEw-FM 0.568 0.559 0.583 0.584 0.553 0.573 0.495 0.513

AEo-FM 0.702 0.803 0.809 0.826 0.723 0.809 0.694 0.804

AEe-FM 0.810 0.866 0.948 0.968 0.817 0.870 0.794 0.867

GS 0.693 0.735 0.584 0.664 0.593 0.678 0.642 0.682

AEw-GS 0.704 0.744 0.624 0.642 0.624 0.686 0.654 0.694

AEo-GS 0.806 0.896 0.825 0.906 0.747 0.828 0.712 0.812

AEe-GS 0.951 0.972 0.912 0.984 0.869 0.942 0.816 0.903

GAT 0.723 0.769 0.604 0.684 0.613 0.698 0.684 0.702

AEw-GAT 0.724 0.784 0.664 0.682 0.664 0.726 0.694 0.712

AEo-GAT 0.846 0.935 0.886 0.916 0.757 0.868 0.725 0.821

AEe-GAT 0.969 0.981 0.952 0.991 0.869 0.950 0.846 0.912

3.2 Baseline Methods

We select the following baseline models for learning the user and item embed-
dings, and compare our method with the corresponding baseline methods.

Matrix Factorization (MF) [12]: Learns user and item representations by
decomposing the rating matrix.

Factorization Machine (FM) [18]: Learns user and item representations
through considering the first-order and high-order interactions between features.
For fair comparison, we only use the users and items as features.

LINE [20]: Learns node embeddings through maximizing the first-order proxim-
ity and the second-order proximity between a user and an item in the user-item
bipartite graph.
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DeepWalk (DW) [17]: Learns node embeddings through first performing ran-
dom walk to sample sequences of nodes from the user-item bipartite graph, and
then using Skip-Gram algorithm to learn user and item embeddings.

GraphSAGE (GS) [7]: Learns node embeddings through aggregating node
information from a node’s local neighbors. We first formalize the user-item inter-
action ratings as a user-item bipartite graph, and then aggregate at most third-
order neighbours of each user (item) to update the user (item) representation.
We find using second-order neighbours can lead to the best performance.

GAT [23]: Learns node embeddings through adding attention mechanism upon
the GraphSAGE method. We also find using second-order neighbours can lead
to the best performance.

AE-Baseline: Is our proposed method which accepts the pre-trained embed-
dings of items (users), and predicts the final embeddings of the corresponding
users (items) by the trained fθ or gφ. We use the name AE-baseline to denote
the pre-trained embeddings are produced by the corresponding baseline method.
We compare our model AE with these baselines one by one. To verify the effec-
tiveness of the attention part, we have three variant models: (1) AEo-baseline
which uses soft-attention as attention encoder. (2) AEe-baseline which uses
self-attention as attention encoder. (3) AEw-baseline which discards the atten-
tion part and use multilayer perceptron (MLP) to replace it.

3.3 Intrinsic Evaluation: Evaluate Cold-Start Embeddings

Here we illustrate the settings in the cold-start user inference task. We select both
MovieLens-1M and Pinterest datasets to do evaluation. As mentioned before, we
train our model fθ on DT . However, in order to make effective evaluation of the
predicted user embeddings, the target users should be obtained from the users
with sufficient interactions. Thus in this task, we drop out DN and split the
meta-training set DT into training set Tr and test set Te with ratio 7:3. We first
use each baseline method to train the meta-training set DT to get the target
user embedding. Then for each user in Te, we randomly drop out other items
and only maintain K items to predict the user embedding. This simulates the
scenario that the users in the test set Te are cold-start users. We train fθ on Tr

and do the evaluation on Te. After trained on Tr, fθ outputs the predicted user
embeddings in Te based on the K interacted items. For each user, we calculate
the cosine similarity between the predicted user embedding and the target user
embedding, and average them to get the final cosine similarity to denote the
quality of the predicted embeddings. For all the baseline methods, we use Tr

and the Te (each user in Te only has K items) to obtain the predicted user
embeddings and calculate the average cosine similarity. In our experiments, K
is set as 3 and 8, the number of encoding blocks is 4, the number of heads H is
2, the parameter λ is 1e−6, the batch size is 256, the embedding dimension d is
16 and the learning rate is 0.01.
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Experimental Results. Table 2 lists the performance of the proposed model
AEo-baseline, AEe-baseline and other baselines under K-shot training settings.
The results show that our proposed AEo-baseline and AEe-baseline significantly
improve the quality of the learned embeddings comparing with each baseline.
Besides, we have four findings: (1) Compared with AEw-baseline, both AEo-
baseline and AEe-baseline have better performance, which demonstrates adding
attention mechanism is useful. (2) The performance of AEe-baseline is better
than AEo-baseline, which implies that using self-attention is better than using
soft-attention. The reason is that multi-head self-attention has a more pow-
erful representation ability than soft-attention. (3) When K is relative small
(i.e., K = 3), the performance of all the baselines gets lower, while the proposed
method AEo-baseline and AEe-baseline still have a good performance. (4) Some
competitive baselines such as GraphSAGE and GAT can alleviate the cold-start
problem by aggregating user’s (item’s) information from user’s (item’s) first-
order or high-order neighbours, however, their performance is lower than our
proposed method. The reason is that for the cold-start users and the cold-start
items, there are still few high-order neighbours. Both (3) and (4) demonstrates
all the baselines are difficult to deal with the cold-start issues, while our model
is capable of generating good representations for cold-start users and items.

3.4 Extrinsic Evaluation: Evaluate Cold-Start Embeddings
on Downstream Tasks

To illustrate the effectiveness of our proposed method in dealing with learning
the representations of the cold-start users and items, we evaluate the resulted
embeddings on three downstream tasks: (1) Personalized recommendation (2)
User classification and (3) Item classification. For each task, for the proposed
method, we use fθ and gφ to generate the user and item embeddings in DN to
do evaluation; for the baseline methods, we directly train the baseline on M and
use the resulted user and item embeddings to do evaluation.

Personalized Recommendation Task. Personalized recommendation task
aims at recommending proper items to users. Recent approaches for recommen-
dation tasks use randomly initialized user and item embeddings as their inputs,
which often get suboptimal recommendation performance. We claim that a high-
quality pre-trained embeddings can benefit the recommendation task.

We use MovieLens-1M and Pinterest datasets and select Neural Collabo-
rative Filtering (NCF) [11] as the recommender. We first randomly split DN

into training set and test set with ratio 7:3, and then feed the user and item
embeddings generated by our model or the baselines into the GMF and MLP
unit in NCF as pre-trained embeddings, which are further fine-tuned during
training process. During the training process, for each positive pairs (u, i), we
randomly sample one negative pairs. During the test process, for each positive
instance, we randomly sample 99 negative instance [11]. We use Hit Ratio of
top m items (HR@m), Normalized Discounted Cumulative Gain of top m items
(NDCG@m) and Mean Reciprocal Rank (MRR) as the evaluation indicator.



Few-Shot Representation Learning for Cold-Start Users and Items 373

Fig. 2. Recommendation performance of GraphSAGE, GAT and our proposed method
when using first-order and high-order neighbours.

The hyperparameters we used are the same as [11]. Table 3 illustrates the rec-
ommendation performance. Note that the method NCF represents using the
randomly initialized embeddings. The results show that: (1) Using pre-trained
embeddings can improve the recommendation performance. (2) Our model
beats all the baselines. (3) Compared with AEw-baseline+NCF method which
uses MLP layer to replace the attention encoder, using soft-attention and self-
attention can improve the performance. (4) Due to the strong representation
ability of multi-layer self-attention mechanism, the performance of using self-
attention encoder is better than using soft-attention encoder. All the above
analysis shows that our proposed method has the ability of learning high-quality
representations of cold-start users and items. We further show the recommen-
dation performance of GraphSAGE (GS), GAT and our proposed method AEe-
GS, AEe-GAT when using first-order, second-order and third-order neighbours
of target users and target items. Figure 2 illustrates the recommendation per-
formance. The results show that all the methods have better performance when
using second-order neighbours. Besides, our proposed method significantly beats
GS and GAT due to the strong representation ability.

Item Classification Task. We evaluate the encoded item embeddings in AE
through a multi-label classification task. The goal is to predict multi-labels of
items given the user-item interactive ratings. Intuitively, similar items have a
higher probability belonging to the same genre, thus this task needs high-quality
item embeddings as input features. We select MovieLens-1M dataset, in which
the movies are divided into 18 categories (e.g., Comedy, Action, War). Note that
each movie belongs to multi genres, for example, the movie ‘Toy Story (1995)’
belongs to there genres, namely animation, children’s, and comedy. We use logis-
tic regression classifier which accepts the item embeddings as input features to
do evaluation. Specifically, we first randomly split DN into training set and test
set with ratio 7:3, and then use item embeddings generated by our model or the
baselines as input features. Next we train the logistic regression classifier in the
training set and finally evaluate the performance in the test set. Micro-averaged
F1-score is used as an evaluation metric. Table 4 illustrates the item classification
performance. The result shows that our proposed model beats all the baselines,
which verifies our model can produce high-quality item representations. Besides,
the performance of AEw-baseline is lower than AEo-baseline and AEe-baseline;
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Table 3. Performance on recommendation performances.

Methods MovieLens Pinterest

HR@5 NDCG@5 MRR HR@5 NDCG@5 MRR

NCF 0.392 0.263 0.260 0.627 0.441 0.414

LINE + NCF 0.633 0.631 0.648 0.642 0.543 0.587

AEw-LINE + NCF 0.641 0.637 0.652 0.644 0.549 0.582

AEo-LINE + NCF 0.659 0.640 0.664 0.651 0.568 0.590

AEe-LINE + NCF 0.666 0.646 0.679 0.659 0.585 0.593

DW+NCF 0.621 0.620 0.634 0.587 0.392 0.367

AEw-DW + NCF 0.628 0.624 0.643 0.593 0.403 0.369

AEo-DW + NCF 0.646 0.640 0.663 0.624 0.483 0.402

AEe-DW+NCF 0.673 0.643 0.684 0.652 0.462 0.433

MF + NCF 0.558 0.577 0.579 0.711 0.660 0.666

AEw-MF + NCF 0.562 0.564 0.581 0.718 0.672 0.678

AEo-MF + NCF 0.573 0.583 0.589 0.726 0.702 0.693

AEe-MF + NCF 0.597 0.591 0.595 0.748 0.725 0.736

FM + NCF 0.448 0.286 0.265 0.641 0.453 0.424

AEw-FM + NCF 0.451 0.291 0.271 0.652 0.482 0.482

AEo-FM + NCF 0.482 0.334 0.326 0.723 0.702 0.672

AEe-FM + NCF 0.495 0.357 0.346 0.756 0.721 0.729

GS + NCF 0.657 0.664 0.657 0.743 0.642 0.681

AEw-GS + NCF 0.668 0.672 0.675 0.753 0.652 0.693

AEo-GS + NCF 0.683 0.693 0.684 0.778 0.683 0.723

AEe-GS + NCF 0.703 0.724 0.704 0.782 0.693 0.735

GAT + NCF 0.667 0.672 0.664 0.765 0.664 0.702

AEw-GAT + NCF 0.684 0.681 0.682 0.771 0.674 0.719

AEo-GAT + NCF 0.694 0.702 0.704 0.782 0.693 0.723

AEe-GAT + NCF 0.713 0.724 0.735 0.793 0.713 0.746

AEe-baseline has the best performance, which verifies adding attention encoder
can improve the performance; due to the strong representation ability, using
self-attention is a better choice than using soft-attention.

User Classification Task. We further evaluate the encoded user embeddings
in AE through a classification task. The goal is to predict the age bracket of
users given the user-item interactions. Intuitively, similar users have same tastes,
thus they have a higher probability belonging to the same age bracket. We select
MovieLens-1M dataset, and the users are divided into 7 age brackets, (i.e., Under
18, 18–24, 25–34, 35–44, 44–49, 50–55, 56+). We use logistic regression classifier
which accepts user embeddings as input features to do evaluation. Specifically,
we first randomly split DN into training set and test set with ratio 7:3, and
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Table 4. Performance on item classification and user classification task.

Methods Movielens-1M

Items
classification
(micro-averaged
F1 score)

Users
classification
(averaged F1
score)

LINE 0.6052 0.3031

AEw-LINE + NCF 0.6111 0.3067

AEo-LINE + NCF 0.6478 0.3294

AEe-LINE 0.6620 0.3309

DW 0.5335 0.2605

AEw-DW+ NCF 0.5435 0.2685

AEo-DW + NCF 0.5687 0.2799

AEe-DW 0.5707 0.2894

MF 0.4791 0.2273

AEw-MF + NCF 0.4852 0.2291

AEo-MF + NCF 0.5364 0.2368

AEe-MF 0.5496 0.2477

FM 0.4809 0.2803

AEw-FM + NCF 0.4883 0.2894

AEo-FM + NCF 0.4912 0.3194

AEe-FM 0.5062 0.3286

GS 0.5931 0.2941

AEw-GS + NCF 0.6012 0.3011

AEo-GS + NCF 0.6342 0.3134

AEe-GS 0.6546 0.3295

GAT 0.6135 0.3147

AEw-GAT + NCF 0.6243 0.3256

AEo-GAT + NCF 0.6464 0.3456

AEe-GAT 0.6646 0.3673

then use user embeddings generated by our model or the baselines as input
features. Next we train the logistic regression classifier in the training set and
finally evaluate the performance in the test set. Averaged F1-score is used as an
evaluation metric. Table 4 shows the user classification performance. The result
shows that our method beats all baselines, which further demonstrates our model
is capable of learning the high-quality representations.

4 Related Work

Our work is highly related to the meta learning method, which aims to design
a meta-learner that can efficiently learn the meta information and can rapidly
adapt to new instances. It has been successfully applied in Computer Vision (CV)
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area and can be classified into two groups. One is the metric-based method which
learns a similarity metric between new instances and instances in the training
set. Examples include Matching Network [24] and Prototypical Network [19].
The other one is model-based method which designs a meta learning model to
directly predict or update the parameters of the classifier according to the train-
ing data. Examples include MAML [5] and Meta Network [15]. Recently, some
works attempt to use meta learning to solve the cold-start issue in the recommen-
dation systems. Pan et al. [16] propose to learn a embedding generator for new
ads by making use of previously learned ads’ features through gradient-based
meta-learning. Vartak et al. [21] propose to learn a neural network which takes
items from user’s history and outputs a score function to apply to new items. Du
et al. [4] propose a scenario-specific meta learner, which adjust the parameters
of the recommendation system when a new scenario comes. Different from these
methods that aim to directly learn a powerful recommendation model, we focus
on how to learn the representations of the cold-start users and items, and we
design a novel attention-based encoder that encode the contextual information
to predict the target embeddings.

5 Conclusion

We present the first attempt to solve the problem of learning accurate represen-
tations of cold-start users and cold-start items. We formulate the problem as a
few-shot learning task and propose a novel attention-based encoder AE which
learns to predict the target users (items) embeddings by aggregating only K
instances corresponding to the users (items). Different from recent state-of-the-
art meta learning methods which aim to directly learn a powerful recommen-
dation model, we focus on how to learn the representations of cold-start users
and items. Experiments on both intrinsic evaluation task and three extrinsic
evaluation tasks demonstrate the effectiveness of our proposed model.
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